]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
btrfs: finish ordered extent cleaning if no progress is found
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
7dbc5302
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
00361589
JB
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
c8b97818 284{
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
0b246afa 319 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 351 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 353out:
94ed938a
QW
354 /*
355 * Don't forget to free the reserved space, as for inlined extent
356 * it won't count as data extent, free them directly here.
357 * And at reserve time, it's always aligned to page size, so
358 * just free one page here.
359 */
bc42bda2 360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 361 btrfs_free_path(path);
3a45bb20 362 btrfs_end_transaction(trans);
00361589 363 return ret;
c8b97818
CM
364}
365
771ed689
CM
366struct async_extent {
367 u64 start;
368 u64 ram_size;
369 u64 compressed_size;
370 struct page **pages;
371 unsigned long nr_pages;
261507a0 372 int compress_type;
771ed689
CM
373 struct list_head list;
374};
375
376struct async_cow {
377 struct inode *inode;
378 struct btrfs_root *root;
379 struct page *locked_page;
380 u64 start;
381 u64 end;
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
261507a0
LZ
390 unsigned long nr_pages,
391 int compress_type)
771ed689
CM
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 396 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
261507a0 402 async_extent->compress_type = compress_type;
771ed689
CM
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
f79707b0
WS
407static inline int inode_need_compress(struct inode *inode)
408{
0b246afa 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
410
411 /* force compress */
0b246afa 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
413 return 1;
414 /* bad compression ratios */
415 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
416 return 0;
0b246afa 417 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
418 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
419 BTRFS_I(inode)->force_compress)
420 return 1;
421 return 0;
422}
423
6158e1ce 424static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
425 u64 start, u64 end, u64 num_bytes, u64 small_write)
426{
427 /* If this is a small write inside eof, kick off a defrag */
428 if (num_bytes < small_write &&
6158e1ce 429 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
430 btrfs_add_inode_defrag(NULL, inode);
431}
432
d352ac68 433/*
771ed689
CM
434 * we create compressed extents in two phases. The first
435 * phase compresses a range of pages that have already been
436 * locked (both pages and state bits are locked).
c8b97818 437 *
771ed689
CM
438 * This is done inside an ordered work queue, and the compression
439 * is spread across many cpus. The actual IO submission is step
440 * two, and the ordered work queue takes care of making sure that
441 * happens in the same order things were put onto the queue by
442 * writepages and friends.
c8b97818 443 *
771ed689
CM
444 * If this code finds it can't get good compression, it puts an
445 * entry onto the work queue to write the uncompressed bytes. This
446 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
447 * are written in the same order that the flusher thread sent them
448 * down.
d352ac68 449 */
c44f649e 450static noinline void compress_file_range(struct inode *inode,
771ed689
CM
451 struct page *locked_page,
452 u64 start, u64 end,
453 struct async_cow *async_cow,
454 int *num_added)
b888db2b 455{
0b246afa 456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 457 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 458 u64 num_bytes;
0b246afa 459 u64 blocksize = fs_info->sectorsize;
c8b97818 460 u64 actual_end;
42dc7bab 461 u64 isize = i_size_read(inode);
e6dcd2dc 462 int ret = 0;
c8b97818
CM
463 struct page **pages = NULL;
464 unsigned long nr_pages;
c8b97818
CM
465 unsigned long total_compressed = 0;
466 unsigned long total_in = 0;
c8b97818
CM
467 int i;
468 int will_compress;
0b246afa 469 int compress_type = fs_info->compress_type;
4adaa611 470 int redirty = 0;
b888db2b 471
6158e1ce
NB
472 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
473 SZ_16K);
4cb5300b 474
42dc7bab 475 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
476again:
477 will_compress = 0;
09cbfeaf 478 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
479 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
480 nr_pages = min_t(unsigned long, nr_pages,
481 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 482
f03d9301
CM
483 /*
484 * we don't want to send crud past the end of i_size through
485 * compression, that's just a waste of CPU time. So, if the
486 * end of the file is before the start of our current
487 * requested range of bytes, we bail out to the uncompressed
488 * cleanup code that can deal with all of this.
489 *
490 * It isn't really the fastest way to fix things, but this is a
491 * very uncommon corner.
492 */
493 if (actual_end <= start)
494 goto cleanup_and_bail_uncompressed;
495
c8b97818
CM
496 total_compressed = actual_end - start;
497
4bcbb332
SW
498 /*
499 * skip compression for a small file range(<=blocksize) that
01327610 500 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
501 */
502 if (total_compressed <= blocksize &&
503 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
504 goto cleanup_and_bail_uncompressed;
505
069eac78
DS
506 total_compressed = min_t(unsigned long, total_compressed,
507 BTRFS_MAX_UNCOMPRESSED);
fda2832f 508 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 509 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
510 total_in = 0;
511 ret = 0;
db94535d 512
771ed689
CM
513 /*
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
c8b97818 517 */
f79707b0 518 if (inode_need_compress(inode)) {
c8b97818 519 WARN_ON(pages);
31e818fe 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
521 if (!pages) {
522 /* just bail out to the uncompressed code */
523 goto cont;
524 }
c8b97818 525
261507a0
LZ
526 if (BTRFS_I(inode)->force_compress)
527 compress_type = BTRFS_I(inode)->force_compress;
528
4adaa611
CM
529 /*
530 * we need to call clear_page_dirty_for_io on each
531 * page in the range. Otherwise applications with the file
532 * mmap'd can wander in and change the page contents while
533 * we are compressing them.
534 *
535 * If the compression fails for any reason, we set the pages
536 * dirty again later on.
537 */
538 extent_range_clear_dirty_for_io(inode, start, end);
539 redirty = 1;
261507a0
LZ
540 ret = btrfs_compress_pages(compress_type,
541 inode->i_mapping, start,
38c31464 542 pages,
4d3a800e 543 &nr_pages,
261507a0 544 &total_in,
e5d74902 545 &total_compressed);
c8b97818
CM
546
547 if (!ret) {
548 unsigned long offset = total_compressed &
09cbfeaf 549 (PAGE_SIZE - 1);
4d3a800e 550 struct page *page = pages[nr_pages - 1];
c8b97818
CM
551 char *kaddr;
552
553 /* zero the tail end of the last page, we might be
554 * sending it down to disk
555 */
556 if (offset) {
7ac687d9 557 kaddr = kmap_atomic(page);
c8b97818 558 memset(kaddr + offset, 0,
09cbfeaf 559 PAGE_SIZE - offset);
7ac687d9 560 kunmap_atomic(kaddr);
c8b97818
CM
561 }
562 will_compress = 1;
563 }
564 }
560f7d75 565cont:
c8b97818
CM
566 if (start == 0) {
567 /* lets try to make an inline extent */
771ed689 568 if (ret || total_in < (actual_end - start)) {
c8b97818 569 /* we didn't compress the entire range, try
771ed689 570 * to make an uncompressed inline extent.
c8b97818 571 */
00361589 572 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 573 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 574 } else {
771ed689 575 /* try making a compressed inline extent */
00361589 576 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
577 total_compressed,
578 compress_type, pages);
c8b97818 579 }
79787eaa 580 if (ret <= 0) {
151a41bc 581 unsigned long clear_flags = EXTENT_DELALLOC |
a7e3b975 582 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
e6eb4314
FM
583 unsigned long page_error_op;
584
151a41bc 585 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 586 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 587
771ed689 588 /*
79787eaa
JM
589 * inline extent creation worked or returned error,
590 * we don't need to create any more async work items.
591 * Unlock and free up our temp pages.
771ed689 592 */
ba8b04c1
QW
593 extent_clear_unlock_delalloc(inode, start, end, end,
594 NULL, clear_flags,
595 PAGE_UNLOCK |
c2790a2e
JB
596 PAGE_CLEAR_DIRTY |
597 PAGE_SET_WRITEBACK |
e6eb4314 598 page_error_op |
c2790a2e 599 PAGE_END_WRITEBACK);
1c81ba23
FM
600 if (ret == 0)
601 btrfs_free_reserved_data_space_noquota(inode,
602 start,
603 end - start + 1);
c8b97818
CM
604 goto free_pages_out;
605 }
606 }
607
608 if (will_compress) {
609 /*
610 * we aren't doing an inline extent round the compressed size
611 * up to a block size boundary so the allocator does sane
612 * things
613 */
fda2832f 614 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
615
616 /*
617 * one last check to make sure the compression is really a
170607eb
TT
618 * win, compare the page count read with the blocks on disk,
619 * compression must free at least one sector size
c8b97818 620 */
09cbfeaf 621 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 622 if (total_compressed + blocksize <= total_in) {
c8b97818 623 num_bytes = total_in;
c8bb0c8b
AS
624 *num_added += 1;
625
626 /*
627 * The async work queues will take care of doing actual
628 * allocation on disk for these compressed pages, and
629 * will submit them to the elevator.
630 */
631 add_async_extent(async_cow, start, num_bytes,
4d3a800e 632 total_compressed, pages, nr_pages,
c8bb0c8b
AS
633 compress_type);
634
635 if (start + num_bytes < end) {
636 start += num_bytes;
637 pages = NULL;
638 cond_resched();
639 goto again;
640 }
641 return;
c8b97818
CM
642 }
643 }
c8bb0c8b 644 if (pages) {
c8b97818
CM
645 /*
646 * the compression code ran but failed to make things smaller,
647 * free any pages it allocated and our page pointer array
648 */
4d3a800e 649 for (i = 0; i < nr_pages; i++) {
70b99e69 650 WARN_ON(pages[i]->mapping);
09cbfeaf 651 put_page(pages[i]);
c8b97818
CM
652 }
653 kfree(pages);
654 pages = NULL;
655 total_compressed = 0;
4d3a800e 656 nr_pages = 0;
c8b97818
CM
657
658 /* flag the file so we don't compress in the future */
0b246afa 659 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 660 !(BTRFS_I(inode)->force_compress)) {
a555f810 661 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 662 }
c8b97818 663 }
f03d9301 664cleanup_and_bail_uncompressed:
c8bb0c8b
AS
665 /*
666 * No compression, but we still need to write the pages in the file
667 * we've been given so far. redirty the locked page if it corresponds
668 * to our extent and set things up for the async work queue to run
669 * cow_file_range to do the normal delalloc dance.
670 */
671 if (page_offset(locked_page) >= start &&
672 page_offset(locked_page) <= end)
673 __set_page_dirty_nobuffers(locked_page);
674 /* unlocked later on in the async handlers */
675
676 if (redirty)
677 extent_range_redirty_for_io(inode, start, end);
678 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
679 BTRFS_COMPRESS_NONE);
680 *num_added += 1;
3b951516 681
c44f649e 682 return;
771ed689
CM
683
684free_pages_out:
4d3a800e 685 for (i = 0; i < nr_pages; i++) {
771ed689 686 WARN_ON(pages[i]->mapping);
09cbfeaf 687 put_page(pages[i]);
771ed689 688 }
d397712b 689 kfree(pages);
771ed689 690}
771ed689 691
40ae837b
FM
692static void free_async_extent_pages(struct async_extent *async_extent)
693{
694 int i;
695
696 if (!async_extent->pages)
697 return;
698
699 for (i = 0; i < async_extent->nr_pages; i++) {
700 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 701 put_page(async_extent->pages[i]);
40ae837b
FM
702 }
703 kfree(async_extent->pages);
704 async_extent->nr_pages = 0;
705 async_extent->pages = NULL;
771ed689
CM
706}
707
708/*
709 * phase two of compressed writeback. This is the ordered portion
710 * of the code, which only gets called in the order the work was
711 * queued. We walk all the async extents created by compress_file_range
712 * and send them down to the disk.
713 */
dec8f175 714static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
715 struct async_cow *async_cow)
716{
0b246afa 717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
718 struct async_extent *async_extent;
719 u64 alloc_hint = 0;
771ed689
CM
720 struct btrfs_key ins;
721 struct extent_map *em;
722 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 723 struct extent_io_tree *io_tree;
f5a84ee3 724 int ret = 0;
771ed689 725
3e04e7f1 726again:
d397712b 727 while (!list_empty(&async_cow->extents)) {
771ed689
CM
728 async_extent = list_entry(async_cow->extents.next,
729 struct async_extent, list);
730 list_del(&async_extent->list);
c8b97818 731
771ed689
CM
732 io_tree = &BTRFS_I(inode)->io_tree;
733
f5a84ee3 734retry:
771ed689
CM
735 /* did the compression code fall back to uncompressed IO? */
736 if (!async_extent->pages) {
737 int page_started = 0;
738 unsigned long nr_written = 0;
739
740 lock_extent(io_tree, async_extent->start,
2ac55d41 741 async_extent->start +
d0082371 742 async_extent->ram_size - 1);
771ed689
CM
743
744 /* allocate blocks */
f5a84ee3
JB
745 ret = cow_file_range(inode, async_cow->locked_page,
746 async_extent->start,
747 async_extent->start +
748 async_extent->ram_size - 1,
dda3245e
WX
749 async_extent->start +
750 async_extent->ram_size - 1,
751 &page_started, &nr_written, 0,
752 NULL);
771ed689 753
79787eaa
JM
754 /* JDM XXX */
755
771ed689
CM
756 /*
757 * if page_started, cow_file_range inserted an
758 * inline extent and took care of all the unlocking
759 * and IO for us. Otherwise, we need to submit
760 * all those pages down to the drive.
761 */
f5a84ee3 762 if (!page_started && !ret)
771ed689
CM
763 extent_write_locked_range(io_tree,
764 inode, async_extent->start,
d397712b 765 async_extent->start +
771ed689
CM
766 async_extent->ram_size - 1,
767 btrfs_get_extent,
768 WB_SYNC_ALL);
3e04e7f1
JB
769 else if (ret)
770 unlock_page(async_cow->locked_page);
771ed689
CM
771 kfree(async_extent);
772 cond_resched();
773 continue;
774 }
775
776 lock_extent(io_tree, async_extent->start,
d0082371 777 async_extent->start + async_extent->ram_size - 1);
771ed689 778
18513091 779 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
780 async_extent->compressed_size,
781 async_extent->compressed_size,
e570fd27 782 0, alloc_hint, &ins, 1, 1);
f5a84ee3 783 if (ret) {
40ae837b 784 free_async_extent_pages(async_extent);
3e04e7f1 785
fdf8e2ea
JB
786 if (ret == -ENOSPC) {
787 unlock_extent(io_tree, async_extent->start,
788 async_extent->start +
789 async_extent->ram_size - 1);
ce62003f
LB
790
791 /*
792 * we need to redirty the pages if we decide to
793 * fallback to uncompressed IO, otherwise we
794 * will not submit these pages down to lower
795 * layers.
796 */
797 extent_range_redirty_for_io(inode,
798 async_extent->start,
799 async_extent->start +
800 async_extent->ram_size - 1);
801
79787eaa 802 goto retry;
fdf8e2ea 803 }
3e04e7f1 804 goto out_free;
f5a84ee3 805 }
c2167754
YZ
806 /*
807 * here we're doing allocation and writeback of the
808 * compressed pages
809 */
6f9994db
LB
810 em = create_io_em(inode, async_extent->start,
811 async_extent->ram_size, /* len */
812 async_extent->start, /* orig_start */
813 ins.objectid, /* block_start */
814 ins.offset, /* block_len */
815 ins.offset, /* orig_block_len */
816 async_extent->ram_size, /* ram_bytes */
817 async_extent->compress_type,
818 BTRFS_ORDERED_COMPRESSED);
819 if (IS_ERR(em))
820 /* ret value is not necessary due to void function */
3e04e7f1 821 goto out_free_reserve;
6f9994db 822 free_extent_map(em);
3e04e7f1 823
261507a0
LZ
824 ret = btrfs_add_ordered_extent_compress(inode,
825 async_extent->start,
826 ins.objectid,
827 async_extent->ram_size,
828 ins.offset,
829 BTRFS_ORDERED_COMPRESSED,
830 async_extent->compress_type);
d9f85963 831 if (ret) {
dcdbc059
NB
832 btrfs_drop_extent_cache(BTRFS_I(inode),
833 async_extent->start,
d9f85963
FM
834 async_extent->start +
835 async_extent->ram_size - 1, 0);
3e04e7f1 836 goto out_free_reserve;
d9f85963 837 }
0b246afa 838 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 839
771ed689
CM
840 /*
841 * clear dirty, set writeback and unlock the pages.
842 */
c2790a2e 843 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
844 async_extent->start +
845 async_extent->ram_size - 1,
a791e35e
CM
846 async_extent->start +
847 async_extent->ram_size - 1,
151a41bc
JB
848 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
849 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 850 PAGE_SET_WRITEBACK);
4e4cbee9 851 if (btrfs_submit_compressed_write(inode,
d397712b
CM
852 async_extent->start,
853 async_extent->ram_size,
854 ins.objectid,
855 ins.offset, async_extent->pages,
4e4cbee9 856 async_extent->nr_pages)) {
fce2a4e6
FM
857 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
858 struct page *p = async_extent->pages[0];
859 const u64 start = async_extent->start;
860 const u64 end = start + async_extent->ram_size - 1;
861
862 p->mapping = inode->i_mapping;
863 tree->ops->writepage_end_io_hook(p, start, end,
864 NULL, 0);
865 p->mapping = NULL;
ba8b04c1
QW
866 extent_clear_unlock_delalloc(inode, start, end, end,
867 NULL, 0,
fce2a4e6
FM
868 PAGE_END_WRITEBACK |
869 PAGE_SET_ERROR);
40ae837b 870 free_async_extent_pages(async_extent);
fce2a4e6 871 }
771ed689
CM
872 alloc_hint = ins.objectid + ins.offset;
873 kfree(async_extent);
874 cond_resched();
875 }
dec8f175 876 return;
3e04e7f1 877out_free_reserve:
0b246afa 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 879 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 880out_free:
c2790a2e 881 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
882 async_extent->start +
883 async_extent->ram_size - 1,
3e04e7f1
JB
884 async_extent->start +
885 async_extent->ram_size - 1,
c2790a2e 886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 887 EXTENT_DELALLOC_NEW |
151a41bc
JB
888 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
889 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
890 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
891 PAGE_SET_ERROR);
40ae837b 892 free_async_extent_pages(async_extent);
79787eaa 893 kfree(async_extent);
3e04e7f1 894 goto again;
771ed689
CM
895}
896
4b46fce2
JB
897static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
898 u64 num_bytes)
899{
900 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 struct extent_map *em;
902 u64 alloc_hint = 0;
903
904 read_lock(&em_tree->lock);
905 em = search_extent_mapping(em_tree, start, num_bytes);
906 if (em) {
907 /*
908 * if block start isn't an actual block number then find the
909 * first block in this inode and use that as a hint. If that
910 * block is also bogus then just don't worry about it.
911 */
912 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
913 free_extent_map(em);
914 em = search_extent_mapping(em_tree, 0, 0);
915 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
916 alloc_hint = em->block_start;
917 if (em)
918 free_extent_map(em);
919 } else {
920 alloc_hint = em->block_start;
921 free_extent_map(em);
922 }
923 }
924 read_unlock(&em_tree->lock);
925
926 return alloc_hint;
927}
928
771ed689
CM
929/*
930 * when extent_io.c finds a delayed allocation range in the file,
931 * the call backs end up in this code. The basic idea is to
932 * allocate extents on disk for the range, and create ordered data structs
933 * in ram to track those extents.
934 *
935 * locked_page is the page that writepage had locked already. We use
936 * it to make sure we don't do extra locks or unlocks.
937 *
938 * *page_started is set to one if we unlock locked_page and do everything
939 * required to start IO on it. It may be clean and already done with
940 * IO when we return.
941 */
00361589
JB
942static noinline int cow_file_range(struct inode *inode,
943 struct page *locked_page,
dda3245e
WX
944 u64 start, u64 end, u64 delalloc_end,
945 int *page_started, unsigned long *nr_written,
946 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 947{
0b246afa 948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 949 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
950 u64 alloc_hint = 0;
951 u64 num_bytes;
952 unsigned long ram_size;
953 u64 disk_num_bytes;
a315e68f 954 u64 cur_alloc_size = 0;
0b246afa 955 u64 blocksize = fs_info->sectorsize;
771ed689
CM
956 struct btrfs_key ins;
957 struct extent_map *em;
a315e68f
FM
958 unsigned clear_bits;
959 unsigned long page_ops;
960 bool extent_reserved = false;
771ed689
CM
961 int ret = 0;
962
70ddc553 963 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 964 WARN_ON_ONCE(1);
29bce2f3
JB
965 ret = -EINVAL;
966 goto out_unlock;
02ecd2c2 967 }
771ed689 968
fda2832f 969 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
970 num_bytes = max(blocksize, num_bytes);
971 disk_num_bytes = num_bytes;
771ed689 972
6158e1ce 973 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 974
771ed689
CM
975 if (start == 0) {
976 /* lets try to make an inline extent */
f74670f7
AJ
977 ret = cow_file_range_inline(root, inode, start, end, 0,
978 BTRFS_COMPRESS_NONE, NULL);
771ed689 979 if (ret == 0) {
ba8b04c1
QW
980 extent_clear_unlock_delalloc(inode, start, end,
981 delalloc_end, NULL,
c2790a2e 982 EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 983 EXTENT_DELALLOC_NEW |
151a41bc 984 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
985 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
986 PAGE_END_WRITEBACK);
18513091
WX
987 btrfs_free_reserved_data_space_noquota(inode, start,
988 end - start + 1);
771ed689 989 *nr_written = *nr_written +
09cbfeaf 990 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 991 *page_started = 1;
771ed689 992 goto out;
79787eaa 993 } else if (ret < 0) {
79787eaa 994 goto out_unlock;
771ed689
CM
995 }
996 }
997
998 BUG_ON(disk_num_bytes >
0b246afa 999 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1000
4b46fce2 1001 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1002 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1003 start + num_bytes - 1, 0);
771ed689 1004
d397712b 1005 while (disk_num_bytes > 0) {
287a0ab9 1006 cur_alloc_size = disk_num_bytes;
18513091 1007 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1008 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1009 &ins, 1, 1);
00361589 1010 if (ret < 0)
79787eaa 1011 goto out_unlock;
a315e68f
FM
1012 cur_alloc_size = ins.offset;
1013 extent_reserved = true;
d397712b 1014
771ed689 1015 ram_size = ins.offset;
6f9994db
LB
1016 em = create_io_em(inode, start, ins.offset, /* len */
1017 start, /* orig_start */
1018 ins.objectid, /* block_start */
1019 ins.offset, /* block_len */
1020 ins.offset, /* orig_block_len */
1021 ram_size, /* ram_bytes */
1022 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1023 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1024 if (IS_ERR(em))
ace68bac 1025 goto out_reserve;
6f9994db 1026 free_extent_map(em);
e6dcd2dc 1027
e6dcd2dc 1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1029 ram_size, cur_alloc_size, 0);
ace68bac 1030 if (ret)
d9f85963 1031 goto out_drop_extent_cache;
c8b97818 1032
17d217fe
YZ
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
4dbd80fb
QW
1037 /*
1038 * Only drop cache here, and process as normal.
1039 *
1040 * We must not allow extent_clear_unlock_delalloc()
1041 * at out_unlock label to free meta of this ordered
1042 * extent, as its meta should be freed by
1043 * btrfs_finish_ordered_io().
1044 *
1045 * So we must continue until @start is increased to
1046 * skip current ordered extent.
1047 */
00361589 1048 if (ret)
4dbd80fb
QW
1049 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1050 start + ram_size - 1, 0);
17d217fe
YZ
1051 }
1052
0b246afa 1053 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1054
c8b97818
CM
1055 /* we're not doing compressed IO, don't unlock the first
1056 * page (which the caller expects to stay locked), don't
1057 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1058 *
1059 * Do set the Private2 bit so we know this page was properly
1060 * setup for writepage
c8b97818 1061 */
a315e68f
FM
1062 page_ops = unlock ? PAGE_UNLOCK : 0;
1063 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1064
c2790a2e 1065 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1066 start + ram_size - 1,
1067 delalloc_end, locked_page,
c2790a2e 1068 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1069 page_ops);
4dbd80fb
QW
1070 if (disk_num_bytes < cur_alloc_size)
1071 disk_num_bytes = 0;
1072 else
1073 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1074 num_bytes -= cur_alloc_size;
1075 alloc_hint = ins.objectid + ins.offset;
1076 start += cur_alloc_size;
a315e68f 1077 extent_reserved = false;
4dbd80fb
QW
1078
1079 /*
1080 * btrfs_reloc_clone_csums() error, since start is increased
1081 * extent_clear_unlock_delalloc() at out_unlock label won't
1082 * free metadata of current ordered extent, we're OK to exit.
1083 */
1084 if (ret)
1085 goto out_unlock;
b888db2b 1086 }
79787eaa 1087out:
be20aa9d 1088 return ret;
b7d5b0a8 1089
d9f85963 1090out_drop_extent_cache:
dcdbc059 1091 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1092out_reserve:
0b246afa 1093 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1094 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1095out_unlock:
a7e3b975
FM
1096 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1097 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1098 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1099 PAGE_END_WRITEBACK;
1100 /*
1101 * If we reserved an extent for our delalloc range (or a subrange) and
1102 * failed to create the respective ordered extent, then it means that
1103 * when we reserved the extent we decremented the extent's size from
1104 * the data space_info's bytes_may_use counter and incremented the
1105 * space_info's bytes_reserved counter by the same amount. We must make
1106 * sure extent_clear_unlock_delalloc() does not try to decrement again
1107 * the data space_info's bytes_may_use counter, therefore we do not pass
1108 * it the flag EXTENT_CLEAR_DATA_RESV.
1109 */
1110 if (extent_reserved) {
1111 extent_clear_unlock_delalloc(inode, start,
1112 start + cur_alloc_size,
1113 start + cur_alloc_size,
1114 locked_page,
1115 clear_bits,
1116 page_ops);
1117 start += cur_alloc_size;
1118 if (start >= end)
1119 goto out;
1120 }
ba8b04c1
QW
1121 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1122 locked_page,
a315e68f
FM
1123 clear_bits | EXTENT_CLEAR_DATA_RESV,
1124 page_ops);
79787eaa 1125 goto out;
771ed689 1126}
c8b97818 1127
771ed689
CM
1128/*
1129 * work queue call back to started compression on a file and pages
1130 */
1131static noinline void async_cow_start(struct btrfs_work *work)
1132{
1133 struct async_cow *async_cow;
1134 int num_added = 0;
1135 async_cow = container_of(work, struct async_cow, work);
1136
1137 compress_file_range(async_cow->inode, async_cow->locked_page,
1138 async_cow->start, async_cow->end, async_cow,
1139 &num_added);
8180ef88 1140 if (num_added == 0) {
cb77fcd8 1141 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1142 async_cow->inode = NULL;
8180ef88 1143 }
771ed689
CM
1144}
1145
1146/*
1147 * work queue call back to submit previously compressed pages
1148 */
1149static noinline void async_cow_submit(struct btrfs_work *work)
1150{
0b246afa 1151 struct btrfs_fs_info *fs_info;
771ed689
CM
1152 struct async_cow *async_cow;
1153 struct btrfs_root *root;
1154 unsigned long nr_pages;
1155
1156 async_cow = container_of(work, struct async_cow, work);
1157
1158 root = async_cow->root;
0b246afa 1159 fs_info = root->fs_info;
09cbfeaf
KS
1160 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1161 PAGE_SHIFT;
771ed689 1162
ee863954
DS
1163 /*
1164 * atomic_sub_return implies a barrier for waitqueue_active
1165 */
0b246afa 1166 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1167 5 * SZ_1M &&
0b246afa
JM
1168 waitqueue_active(&fs_info->async_submit_wait))
1169 wake_up(&fs_info->async_submit_wait);
771ed689 1170
d397712b 1171 if (async_cow->inode)
771ed689 1172 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1173}
c8b97818 1174
771ed689
CM
1175static noinline void async_cow_free(struct btrfs_work *work)
1176{
1177 struct async_cow *async_cow;
1178 async_cow = container_of(work, struct async_cow, work);
8180ef88 1179 if (async_cow->inode)
cb77fcd8 1180 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1181 kfree(async_cow);
1182}
1183
1184static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1185 u64 start, u64 end, int *page_started,
1186 unsigned long *nr_written)
1187{
0b246afa 1188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1189 struct async_cow *async_cow;
1190 struct btrfs_root *root = BTRFS_I(inode)->root;
1191 unsigned long nr_pages;
1192 u64 cur_end;
771ed689 1193
a3429ab7
CM
1194 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1195 1, 0, NULL, GFP_NOFS);
d397712b 1196 while (start < end) {
771ed689 1197 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1198 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1199 async_cow->inode = igrab(inode);
771ed689
CM
1200 async_cow->root = root;
1201 async_cow->locked_page = locked_page;
1202 async_cow->start = start;
1203
f79707b0 1204 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1205 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1206 cur_end = end;
1207 else
ee22184b 1208 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1209
1210 async_cow->end = cur_end;
1211 INIT_LIST_HEAD(&async_cow->extents);
1212
9e0af237
LB
1213 btrfs_init_work(&async_cow->work,
1214 btrfs_delalloc_helper,
1215 async_cow_start, async_cow_submit,
1216 async_cow_free);
771ed689 1217
09cbfeaf
KS
1218 nr_pages = (cur_end - start + PAGE_SIZE) >>
1219 PAGE_SHIFT;
0b246afa 1220 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1221
0b246afa 1222 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1223
0b246afa
JM
1224 while (atomic_read(&fs_info->async_submit_draining) &&
1225 atomic_read(&fs_info->async_delalloc_pages)) {
1226 wait_event(fs_info->async_submit_wait,
1227 (atomic_read(&fs_info->async_delalloc_pages) ==
1228 0));
771ed689
CM
1229 }
1230
1231 *nr_written += nr_pages;
1232 start = cur_end + 1;
1233 }
1234 *page_started = 1;
1235 return 0;
be20aa9d
CM
1236}
1237
2ff7e61e 1238static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1239 u64 bytenr, u64 num_bytes)
1240{
1241 int ret;
1242 struct btrfs_ordered_sum *sums;
1243 LIST_HEAD(list);
1244
0b246afa 1245 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1246 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1247 if (ret == 0 && list_empty(&list))
1248 return 0;
1249
1250 while (!list_empty(&list)) {
1251 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1252 list_del(&sums->list);
1253 kfree(sums);
1254 }
1255 return 1;
1256}
1257
d352ac68
CM
1258/*
1259 * when nowcow writeback call back. This checks for snapshots or COW copies
1260 * of the extents that exist in the file, and COWs the file as required.
1261 *
1262 * If no cow copies or snapshots exist, we write directly to the existing
1263 * blocks on disk
1264 */
7f366cfe
CM
1265static noinline int run_delalloc_nocow(struct inode *inode,
1266 struct page *locked_page,
771ed689
CM
1267 u64 start, u64 end, int *page_started, int force,
1268 unsigned long *nr_written)
be20aa9d 1269{
0b246afa 1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct extent_buffer *leaf;
be20aa9d 1273 struct btrfs_path *path;
80ff3856 1274 struct btrfs_file_extent_item *fi;
be20aa9d 1275 struct btrfs_key found_key;
6f9994db 1276 struct extent_map *em;
80ff3856
YZ
1277 u64 cow_start;
1278 u64 cur_offset;
1279 u64 extent_end;
5d4f98a2 1280 u64 extent_offset;
80ff3856
YZ
1281 u64 disk_bytenr;
1282 u64 num_bytes;
b4939680 1283 u64 disk_num_bytes;
cc95bef6 1284 u64 ram_bytes;
80ff3856 1285 int extent_type;
79787eaa 1286 int ret, err;
d899e052 1287 int type;
80ff3856
YZ
1288 int nocow;
1289 int check_prev = 1;
82d5902d 1290 bool nolock;
4a0cc7ca 1291 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1292
1293 path = btrfs_alloc_path();
17ca04af 1294 if (!path) {
ba8b04c1
QW
1295 extent_clear_unlock_delalloc(inode, start, end, end,
1296 locked_page,
c2790a2e 1297 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1298 EXTENT_DO_ACCOUNTING |
1299 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1300 PAGE_CLEAR_DIRTY |
1301 PAGE_SET_WRITEBACK |
1302 PAGE_END_WRITEBACK);
d8926bb3 1303 return -ENOMEM;
17ca04af 1304 }
82d5902d 1305
70ddc553 1306 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1307
80ff3856
YZ
1308 cow_start = (u64)-1;
1309 cur_offset = start;
1310 while (1) {
e4c3b2dc 1311 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1312 cur_offset, 0);
d788a349 1313 if (ret < 0)
79787eaa 1314 goto error;
80ff3856
YZ
1315 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1316 leaf = path->nodes[0];
1317 btrfs_item_key_to_cpu(leaf, &found_key,
1318 path->slots[0] - 1);
33345d01 1319 if (found_key.objectid == ino &&
80ff3856
YZ
1320 found_key.type == BTRFS_EXTENT_DATA_KEY)
1321 path->slots[0]--;
1322 }
1323 check_prev = 0;
1324next_slot:
1325 leaf = path->nodes[0];
1326 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1327 ret = btrfs_next_leaf(root, path);
d788a349 1328 if (ret < 0)
79787eaa 1329 goto error;
80ff3856
YZ
1330 if (ret > 0)
1331 break;
1332 leaf = path->nodes[0];
1333 }
be20aa9d 1334
80ff3856
YZ
1335 nocow = 0;
1336 disk_bytenr = 0;
17d217fe 1337 num_bytes = 0;
80ff3856
YZ
1338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1339
1d512cb7
FM
1340 if (found_key.objectid > ino)
1341 break;
1342 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1343 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
1347 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1348 found_key.offset > end)
1349 break;
1350
1351 if (found_key.offset > cur_offset) {
1352 extent_end = found_key.offset;
e9061e21 1353 extent_type = 0;
80ff3856
YZ
1354 goto out_check;
1355 }
1356
1357 fi = btrfs_item_ptr(leaf, path->slots[0],
1358 struct btrfs_file_extent_item);
1359 extent_type = btrfs_file_extent_type(leaf, fi);
1360
cc95bef6 1361 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1362 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1363 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1364 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1365 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1366 extent_end = found_key.offset +
1367 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1368 disk_num_bytes =
1369 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1370 if (extent_end <= start) {
1371 path->slots[0]++;
1372 goto next_slot;
1373 }
17d217fe
YZ
1374 if (disk_bytenr == 0)
1375 goto out_check;
80ff3856
YZ
1376 if (btrfs_file_extent_compression(leaf, fi) ||
1377 btrfs_file_extent_encryption(leaf, fi) ||
1378 btrfs_file_extent_other_encoding(leaf, fi))
1379 goto out_check;
d899e052
YZ
1380 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1381 goto out_check;
2ff7e61e 1382 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1383 goto out_check;
e4c3b2dc 1384 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1385 found_key.offset -
1386 extent_offset, disk_bytenr))
17d217fe 1387 goto out_check;
5d4f98a2 1388 disk_bytenr += extent_offset;
17d217fe
YZ
1389 disk_bytenr += cur_offset - found_key.offset;
1390 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1391 /*
1392 * if there are pending snapshots for this root,
1393 * we fall into common COW way.
1394 */
1395 if (!nolock) {
9ea24bbe 1396 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1397 if (!err)
1398 goto out_check;
1399 }
17d217fe
YZ
1400 /*
1401 * force cow if csum exists in the range.
1402 * this ensure that csum for a given extent are
1403 * either valid or do not exist.
1404 */
2ff7e61e 1405 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1406 num_bytes)) {
1407 if (!nolock)
1408 btrfs_end_write_no_snapshoting(root);
17d217fe 1409 goto out_check;
91e1f56a
RK
1410 }
1411 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1412 if (!nolock)
1413 btrfs_end_write_no_snapshoting(root);
f78c436c 1414 goto out_check;
91e1f56a 1415 }
80ff3856
YZ
1416 nocow = 1;
1417 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1418 extent_end = found_key.offset +
514ac8ad
CM
1419 btrfs_file_extent_inline_len(leaf,
1420 path->slots[0], fi);
da17066c 1421 extent_end = ALIGN(extent_end,
0b246afa 1422 fs_info->sectorsize);
80ff3856
YZ
1423 } else {
1424 BUG_ON(1);
1425 }
1426out_check:
1427 if (extent_end <= start) {
1428 path->slots[0]++;
e9894fd3 1429 if (!nolock && nocow)
9ea24bbe 1430 btrfs_end_write_no_snapshoting(root);
f78c436c 1431 if (nocow)
0b246afa 1432 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1433 goto next_slot;
1434 }
1435 if (!nocow) {
1436 if (cow_start == (u64)-1)
1437 cow_start = cur_offset;
1438 cur_offset = extent_end;
1439 if (cur_offset > end)
1440 break;
1441 path->slots[0]++;
1442 goto next_slot;
7ea394f1
YZ
1443 }
1444
b3b4aa74 1445 btrfs_release_path(path);
80ff3856 1446 if (cow_start != (u64)-1) {
00361589
JB
1447 ret = cow_file_range(inode, locked_page,
1448 cow_start, found_key.offset - 1,
dda3245e
WX
1449 end, page_started, nr_written, 1,
1450 NULL);
e9894fd3
WS
1451 if (ret) {
1452 if (!nolock && nocow)
9ea24bbe 1453 btrfs_end_write_no_snapshoting(root);
f78c436c 1454 if (nocow)
0b246afa 1455 btrfs_dec_nocow_writers(fs_info,
f78c436c 1456 disk_bytenr);
79787eaa 1457 goto error;
e9894fd3 1458 }
80ff3856 1459 cow_start = (u64)-1;
7ea394f1 1460 }
80ff3856 1461
d899e052 1462 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1463 u64 orig_start = found_key.offset - extent_offset;
1464
1465 em = create_io_em(inode, cur_offset, num_bytes,
1466 orig_start,
1467 disk_bytenr, /* block_start */
1468 num_bytes, /* block_len */
1469 disk_num_bytes, /* orig_block_len */
1470 ram_bytes, BTRFS_COMPRESS_NONE,
1471 BTRFS_ORDERED_PREALLOC);
1472 if (IS_ERR(em)) {
1473 if (!nolock && nocow)
1474 btrfs_end_write_no_snapshoting(root);
1475 if (nocow)
1476 btrfs_dec_nocow_writers(fs_info,
1477 disk_bytenr);
1478 ret = PTR_ERR(em);
1479 goto error;
d899e052 1480 }
6f9994db
LB
1481 free_extent_map(em);
1482 }
1483
1484 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1485 type = BTRFS_ORDERED_PREALLOC;
1486 } else {
1487 type = BTRFS_ORDERED_NOCOW;
1488 }
80ff3856
YZ
1489
1490 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1491 num_bytes, num_bytes, type);
f78c436c 1492 if (nocow)
0b246afa 1493 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1494 BUG_ON(ret); /* -ENOMEM */
771ed689 1495
efa56464 1496 if (root->root_key.objectid ==
4dbd80fb
QW
1497 BTRFS_DATA_RELOC_TREE_OBJECTID)
1498 /*
1499 * Error handled later, as we must prevent
1500 * extent_clear_unlock_delalloc() in error handler
1501 * from freeing metadata of created ordered extent.
1502 */
efa56464
YZ
1503 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1504 num_bytes);
efa56464 1505
c2790a2e 1506 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1507 cur_offset + num_bytes - 1, end,
c2790a2e 1508 locked_page, EXTENT_LOCKED |
18513091
WX
1509 EXTENT_DELALLOC |
1510 EXTENT_CLEAR_DATA_RESV,
1511 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1512
e9894fd3 1513 if (!nolock && nocow)
9ea24bbe 1514 btrfs_end_write_no_snapshoting(root);
80ff3856 1515 cur_offset = extent_end;
4dbd80fb
QW
1516
1517 /*
1518 * btrfs_reloc_clone_csums() error, now we're OK to call error
1519 * handler, as metadata for created ordered extent will only
1520 * be freed by btrfs_finish_ordered_io().
1521 */
1522 if (ret)
1523 goto error;
80ff3856
YZ
1524 if (cur_offset > end)
1525 break;
be20aa9d 1526 }
b3b4aa74 1527 btrfs_release_path(path);
80ff3856 1528
17ca04af 1529 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1530 cow_start = cur_offset;
17ca04af
JB
1531 cur_offset = end;
1532 }
1533
80ff3856 1534 if (cow_start != (u64)-1) {
dda3245e
WX
1535 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1536 page_started, nr_written, 1, NULL);
d788a349 1537 if (ret)
79787eaa 1538 goto error;
80ff3856
YZ
1539 }
1540
79787eaa 1541error:
17ca04af 1542 if (ret && cur_offset < end)
ba8b04c1 1543 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1544 locked_page, EXTENT_LOCKED |
151a41bc
JB
1545 EXTENT_DELALLOC | EXTENT_DEFRAG |
1546 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1547 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1548 PAGE_SET_WRITEBACK |
1549 PAGE_END_WRITEBACK);
7ea394f1 1550 btrfs_free_path(path);
79787eaa 1551 return ret;
be20aa9d
CM
1552}
1553
47059d93
WS
1554static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1555{
1556
1557 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1558 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1559 return 0;
1560
1561 /*
1562 * @defrag_bytes is a hint value, no spinlock held here,
1563 * if is not zero, it means the file is defragging.
1564 * Force cow if given extent needs to be defragged.
1565 */
1566 if (BTRFS_I(inode)->defrag_bytes &&
1567 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1568 EXTENT_DEFRAG, 0, NULL))
1569 return 1;
1570
1571 return 0;
1572}
1573
d352ac68
CM
1574/*
1575 * extent_io.c call back to do delayed allocation processing
1576 */
c6100a4b 1577static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689
CM
1578 u64 start, u64 end, int *page_started,
1579 unsigned long *nr_written)
be20aa9d 1580{
c6100a4b 1581 struct inode *inode = private_data;
be20aa9d 1582 int ret;
47059d93 1583 int force_cow = need_force_cow(inode, start, end);
a2135011 1584
47059d93 1585 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1586 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1587 page_started, 1, nr_written);
47059d93 1588 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1589 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1590 page_started, 0, nr_written);
7816030e 1591 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1592 ret = cow_file_range(inode, locked_page, start, end, end,
1593 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1594 } else {
1595 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1596 &BTRFS_I(inode)->runtime_flags);
771ed689 1597 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1598 page_started, nr_written);
7ddf5a42 1599 }
52427260
QW
1600 if (ret)
1601 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1602 return ret;
1603}
1604
c6100a4b 1605static void btrfs_split_extent_hook(void *private_data,
1bf85046 1606 struct extent_state *orig, u64 split)
9ed74f2d 1607{
c6100a4b 1608 struct inode *inode = private_data;
dcab6a3b
JB
1609 u64 size;
1610
0ca1f7ce 1611 /* not delalloc, ignore it */
9ed74f2d 1612 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1613 return;
9ed74f2d 1614
dcab6a3b
JB
1615 size = orig->end - orig->start + 1;
1616 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1617 u32 num_extents;
dcab6a3b
JB
1618 u64 new_size;
1619
1620 /*
ba117213
JB
1621 * See the explanation in btrfs_merge_extent_hook, the same
1622 * applies here, just in reverse.
dcab6a3b
JB
1623 */
1624 new_size = orig->end - split + 1;
823bb20a 1625 num_extents = count_max_extents(new_size);
ba117213 1626 new_size = split - orig->start;
823bb20a
DS
1627 num_extents += count_max_extents(new_size);
1628 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1629 return;
1630 }
1631
9e0baf60
JB
1632 spin_lock(&BTRFS_I(inode)->lock);
1633 BTRFS_I(inode)->outstanding_extents++;
1634 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1635}
1636
1637/*
1638 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1639 * extents so we can keep track of new extents that are just merged onto old
1640 * extents, such as when we are doing sequential writes, so we can properly
1641 * account for the metadata space we'll need.
1642 */
c6100a4b 1643static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1644 struct extent_state *new,
1645 struct extent_state *other)
9ed74f2d 1646{
c6100a4b 1647 struct inode *inode = private_data;
dcab6a3b 1648 u64 new_size, old_size;
823bb20a 1649 u32 num_extents;
dcab6a3b 1650
9ed74f2d
JB
1651 /* not delalloc, ignore it */
1652 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1653 return;
9ed74f2d 1654
8461a3de
JB
1655 if (new->start > other->start)
1656 new_size = new->end - other->start + 1;
1657 else
1658 new_size = other->end - new->start + 1;
dcab6a3b
JB
1659
1660 /* we're not bigger than the max, unreserve the space and go */
1661 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1662 spin_lock(&BTRFS_I(inode)->lock);
1663 BTRFS_I(inode)->outstanding_extents--;
1664 spin_unlock(&BTRFS_I(inode)->lock);
1665 return;
1666 }
1667
1668 /*
ba117213
JB
1669 * We have to add up either side to figure out how many extents were
1670 * accounted for before we merged into one big extent. If the number of
1671 * extents we accounted for is <= the amount we need for the new range
1672 * then we can return, otherwise drop. Think of it like this
1673 *
1674 * [ 4k][MAX_SIZE]
1675 *
1676 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1677 * need 2 outstanding extents, on one side we have 1 and the other side
1678 * we have 1 so they are == and we can return. But in this case
1679 *
1680 * [MAX_SIZE+4k][MAX_SIZE+4k]
1681 *
1682 * Each range on their own accounts for 2 extents, but merged together
1683 * they are only 3 extents worth of accounting, so we need to drop in
1684 * this case.
dcab6a3b 1685 */
ba117213 1686 old_size = other->end - other->start + 1;
823bb20a 1687 num_extents = count_max_extents(old_size);
ba117213 1688 old_size = new->end - new->start + 1;
823bb20a
DS
1689 num_extents += count_max_extents(old_size);
1690 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1691 return;
1692
9e0baf60
JB
1693 spin_lock(&BTRFS_I(inode)->lock);
1694 BTRFS_I(inode)->outstanding_extents--;
1695 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1696}
1697
eb73c1b7
MX
1698static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1699 struct inode *inode)
1700{
0b246afa
JM
1701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1702
eb73c1b7
MX
1703 spin_lock(&root->delalloc_lock);
1704 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1705 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1706 &root->delalloc_inodes);
1707 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1708 &BTRFS_I(inode)->runtime_flags);
1709 root->nr_delalloc_inodes++;
1710 if (root->nr_delalloc_inodes == 1) {
0b246afa 1711 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1712 BUG_ON(!list_empty(&root->delalloc_root));
1713 list_add_tail(&root->delalloc_root,
0b246afa
JM
1714 &fs_info->delalloc_roots);
1715 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1716 }
1717 }
1718 spin_unlock(&root->delalloc_lock);
1719}
1720
1721static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1722 struct btrfs_inode *inode)
eb73c1b7 1723{
9e3e97f4 1724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1725
eb73c1b7 1726 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1727 if (!list_empty(&inode->delalloc_inodes)) {
1728 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1729 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1730 &inode->runtime_flags);
eb73c1b7
MX
1731 root->nr_delalloc_inodes--;
1732 if (!root->nr_delalloc_inodes) {
0b246afa 1733 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1734 BUG_ON(list_empty(&root->delalloc_root));
1735 list_del_init(&root->delalloc_root);
0b246afa 1736 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1737 }
1738 }
1739 spin_unlock(&root->delalloc_lock);
1740}
1741
d352ac68
CM
1742/*
1743 * extent_io.c set_bit_hook, used to track delayed allocation
1744 * bytes in this file, and to maintain the list of inodes that
1745 * have pending delalloc work to be done.
1746 */
c6100a4b 1747static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1748 struct extent_state *state, unsigned *bits)
291d673e 1749{
c6100a4b 1750 struct inode *inode = private_data;
9ed74f2d 1751
0b246afa
JM
1752 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1753
47059d93
WS
1754 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1755 WARN_ON(1);
75eff68e
CM
1756 /*
1757 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1758 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1759 * bit, which is only set or cleared with irqs on
1760 */
0ca1f7ce 1761 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1762 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1763 u64 len = state->end + 1 - state->start;
70ddc553 1764 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1765
9e0baf60 1766 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1767 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1768 } else {
1769 spin_lock(&BTRFS_I(inode)->lock);
1770 BTRFS_I(inode)->outstanding_extents++;
1771 spin_unlock(&BTRFS_I(inode)->lock);
1772 }
287a0ab9 1773
6a3891c5 1774 /* For sanity tests */
0b246afa 1775 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1776 return;
1777
104b4e51
NB
1778 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1779 fs_info->delalloc_batch);
df0af1a5 1780 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1781 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1782 if (*bits & EXTENT_DEFRAG)
1783 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1784 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1785 &BTRFS_I(inode)->runtime_flags))
1786 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1787 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1788 }
a7e3b975
FM
1789
1790 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1791 (*bits & EXTENT_DELALLOC_NEW)) {
1792 spin_lock(&BTRFS_I(inode)->lock);
1793 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1794 state->start;
1795 spin_unlock(&BTRFS_I(inode)->lock);
1796 }
291d673e
CM
1797}
1798
d352ac68
CM
1799/*
1800 * extent_io.c clear_bit_hook, see set_bit_hook for why
1801 */
c6100a4b 1802static void btrfs_clear_bit_hook(void *private_data,
41074888 1803 struct extent_state *state,
9ee49a04 1804 unsigned *bits)
291d673e 1805{
c6100a4b 1806 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1808 u64 len = state->end + 1 - state->start;
823bb20a 1809 u32 num_extents = count_max_extents(len);
47059d93 1810
6fc0ef68 1811 spin_lock(&inode->lock);
47059d93 1812 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
6fc0ef68
NB
1813 inode->defrag_bytes -= len;
1814 spin_unlock(&inode->lock);
47059d93 1815
75eff68e
CM
1816 /*
1817 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1818 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1819 * bit, which is only set or cleared with irqs on
1820 */
0ca1f7ce 1821 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1822 struct btrfs_root *root = inode->root;
83eea1f1 1823 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1824
9e0baf60 1825 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1826 *bits &= ~EXTENT_FIRST_DELALLOC;
a315e68f 1827 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
6fc0ef68
NB
1828 spin_lock(&inode->lock);
1829 inode->outstanding_extents -= num_extents;
1830 spin_unlock(&inode->lock);
9e0baf60 1831 }
0ca1f7ce 1832
b6d08f06
JB
1833 /*
1834 * We don't reserve metadata space for space cache inodes so we
1835 * don't need to call dellalloc_release_metadata if there is an
1836 * error.
1837 */
a315e68f 1838 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1839 root != fs_info->tree_root)
0ca1f7ce
YZ
1840 btrfs_delalloc_release_metadata(inode, len);
1841
6a3891c5 1842 /* For sanity tests. */
0b246afa 1843 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1844 return;
1845
a315e68f
FM
1846 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1847 do_list && !(state->state & EXTENT_NORESERVE) &&
1848 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1849 btrfs_free_reserved_data_space_noquota(
1850 &inode->vfs_inode,
51773bec 1851 state->start, len);
9ed74f2d 1852
104b4e51
NB
1853 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1854 fs_info->delalloc_batch);
6fc0ef68
NB
1855 spin_lock(&inode->lock);
1856 inode->delalloc_bytes -= len;
1857 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1858 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1859 &inode->runtime_flags))
eb73c1b7 1860 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1861 spin_unlock(&inode->lock);
291d673e 1862 }
a7e3b975
FM
1863
1864 if ((state->state & EXTENT_DELALLOC_NEW) &&
1865 (*bits & EXTENT_DELALLOC_NEW)) {
1866 spin_lock(&inode->lock);
1867 ASSERT(inode->new_delalloc_bytes >= len);
1868 inode->new_delalloc_bytes -= len;
1869 spin_unlock(&inode->lock);
1870 }
291d673e
CM
1871}
1872
d352ac68
CM
1873/*
1874 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1875 * we don't create bios that span stripes or chunks
6f034ece
LB
1876 *
1877 * return 1 if page cannot be merged to bio
1878 * return 0 if page can be merged to bio
1879 * return error otherwise
d352ac68 1880 */
81a75f67 1881int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1882 size_t size, struct bio *bio,
1883 unsigned long bio_flags)
239b14b3 1884{
0b246afa
JM
1885 struct inode *inode = page->mapping->host;
1886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1887 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1888 u64 length = 0;
1889 u64 map_length;
239b14b3
CM
1890 int ret;
1891
771ed689
CM
1892 if (bio_flags & EXTENT_BIO_COMPRESSED)
1893 return 0;
1894
4f024f37 1895 length = bio->bi_iter.bi_size;
239b14b3 1896 map_length = length;
0b246afa
JM
1897 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1898 NULL, 0);
6f034ece
LB
1899 if (ret < 0)
1900 return ret;
d397712b 1901 if (map_length < length + size)
239b14b3 1902 return 1;
3444a972 1903 return 0;
239b14b3
CM
1904}
1905
d352ac68
CM
1906/*
1907 * in order to insert checksums into the metadata in large chunks,
1908 * we wait until bio submission time. All the pages in the bio are
1909 * checksummed and sums are attached onto the ordered extent record.
1910 *
1911 * At IO completion time the cums attached on the ordered extent record
1912 * are inserted into the btree
1913 */
8c27cb35 1914static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1915 int mirror_num, unsigned long bio_flags,
eaf25d93 1916 u64 bio_offset)
065631f6 1917{
c6100a4b 1918 struct inode *inode = private_data;
4e4cbee9 1919 blk_status_t ret = 0;
e015640f 1920
2ff7e61e 1921 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1922 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1923 return 0;
1924}
e015640f 1925
4a69a410
CM
1926/*
1927 * in order to insert checksums into the metadata in large chunks,
1928 * we wait until bio submission time. All the pages in the bio are
1929 * checksummed and sums are attached onto the ordered extent record.
1930 *
1931 * At IO completion time the cums attached on the ordered extent record
1932 * are inserted into the btree
1933 */
8c27cb35 1934static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1935 int mirror_num, unsigned long bio_flags,
1936 u64 bio_offset)
4a69a410 1937{
c6100a4b 1938 struct inode *inode = private_data;
2ff7e61e 1939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1940 blk_status_t ret;
61891923 1941
2ff7e61e 1942 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1943 if (ret) {
4e4cbee9 1944 bio->bi_status = ret;
4246a0b6
CH
1945 bio_endio(bio);
1946 }
61891923 1947 return ret;
44b8bd7e
CM
1948}
1949
d352ac68 1950/*
cad321ad
CM
1951 * extent_io.c submission hook. This does the right thing for csum calculation
1952 * on write, or reading the csums from the tree before a read
d352ac68 1953 */
8c27cb35 1954static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1955 int mirror_num, unsigned long bio_flags,
1956 u64 bio_offset)
44b8bd7e 1957{
c6100a4b 1958 struct inode *inode = private_data;
0b246afa 1959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1960 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1961 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1962 blk_status_t ret = 0;
19b9bdb0 1963 int skip_sum;
b812ce28 1964 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1965
6cbff00f 1966 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1967
70ddc553 1968 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1969 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1970
37226b21 1971 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1972 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1973 if (ret)
61891923 1974 goto out;
5fd02043 1975
d20f7043 1976 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1977 ret = btrfs_submit_compressed_read(inode, bio,
1978 mirror_num,
1979 bio_flags);
1980 goto out;
c2db1073 1981 } else if (!skip_sum) {
2ff7e61e 1982 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1983 if (ret)
61891923 1984 goto out;
c2db1073 1985 }
4d1b5fb4 1986 goto mapit;
b812ce28 1987 } else if (async && !skip_sum) {
17d217fe
YZ
1988 /* csum items have already been cloned */
1989 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1990 goto mapit;
19b9bdb0 1991 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1992 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1993 bio_offset, inode,
0b246afa
JM
1994 __btrfs_submit_bio_start,
1995 __btrfs_submit_bio_done);
61891923 1996 goto out;
b812ce28 1997 } else if (!skip_sum) {
2ff7e61e 1998 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1999 if (ret)
2000 goto out;
19b9bdb0
CM
2001 }
2002
0b86a832 2003mapit:
2ff7e61e 2004 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2005
2006out:
4e4cbee9
CH
2007 if (ret) {
2008 bio->bi_status = ret;
4246a0b6
CH
2009 bio_endio(bio);
2010 }
61891923 2011 return ret;
065631f6 2012}
6885f308 2013
d352ac68
CM
2014/*
2015 * given a list of ordered sums record them in the inode. This happens
2016 * at IO completion time based on sums calculated at bio submission time.
2017 */
ba1da2f4 2018static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2019 struct inode *inode, struct list_head *list)
e6dcd2dc 2020{
e6dcd2dc
CM
2021 struct btrfs_ordered_sum *sum;
2022
c6e30871 2023 list_for_each_entry(sum, list, list) {
39847c4d 2024 trans->adding_csums = 1;
d20f7043
CM
2025 btrfs_csum_file_blocks(trans,
2026 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2027 trans->adding_csums = 0;
e6dcd2dc
CM
2028 }
2029 return 0;
2030}
2031
2ac55d41 2032int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2033 struct extent_state **cached_state, int dedupe)
ea8c2819 2034{
09cbfeaf 2035 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2036 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2037 cached_state);
ea8c2819
CM
2038}
2039
d352ac68 2040/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2041struct btrfs_writepage_fixup {
2042 struct page *page;
2043 struct btrfs_work work;
2044};
2045
b2950863 2046static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2047{
2048 struct btrfs_writepage_fixup *fixup;
2049 struct btrfs_ordered_extent *ordered;
2ac55d41 2050 struct extent_state *cached_state = NULL;
364ecf36 2051 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2052 struct page *page;
2053 struct inode *inode;
2054 u64 page_start;
2055 u64 page_end;
87826df0 2056 int ret;
247e743c
CM
2057
2058 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2059 page = fixup->page;
4a096752 2060again:
247e743c
CM
2061 lock_page(page);
2062 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2063 ClearPageChecked(page);
2064 goto out_page;
2065 }
2066
2067 inode = page->mapping->host;
2068 page_start = page_offset(page);
09cbfeaf 2069 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2070
ff13db41 2071 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2072 &cached_state);
4a096752
CM
2073
2074 /* already ordered? We're done */
8b62b72b 2075 if (PagePrivate2(page))
247e743c 2076 goto out;
4a096752 2077
a776c6fa 2078 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2079 PAGE_SIZE);
4a096752 2080 if (ordered) {
2ac55d41
JB
2081 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2082 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2083 unlock_page(page);
2084 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2085 btrfs_put_ordered_extent(ordered);
4a096752
CM
2086 goto again;
2087 }
247e743c 2088
364ecf36 2089 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2090 PAGE_SIZE);
87826df0
JM
2091 if (ret) {
2092 mapping_set_error(page->mapping, ret);
2093 end_extent_writepage(page, ret, page_start, page_end);
2094 ClearPageChecked(page);
2095 goto out;
2096 }
2097
ba8b04c1
QW
2098 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2099 0);
247e743c 2100 ClearPageChecked(page);
87826df0 2101 set_page_dirty(page);
247e743c 2102out:
2ac55d41
JB
2103 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2104 &cached_state, GFP_NOFS);
247e743c
CM
2105out_page:
2106 unlock_page(page);
09cbfeaf 2107 put_page(page);
b897abec 2108 kfree(fixup);
364ecf36 2109 extent_changeset_free(data_reserved);
247e743c
CM
2110}
2111
2112/*
2113 * There are a few paths in the higher layers of the kernel that directly
2114 * set the page dirty bit without asking the filesystem if it is a
2115 * good idea. This causes problems because we want to make sure COW
2116 * properly happens and the data=ordered rules are followed.
2117 *
c8b97818 2118 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2119 * hasn't been properly setup for IO. We kick off an async process
2120 * to fix it up. The async helper will wait for ordered extents, set
2121 * the delalloc bit and make it safe to write the page.
2122 */
b2950863 2123static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2124{
2125 struct inode *inode = page->mapping->host;
0b246afa 2126 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2127 struct btrfs_writepage_fixup *fixup;
247e743c 2128
8b62b72b
CM
2129 /* this page is properly in the ordered list */
2130 if (TestClearPagePrivate2(page))
247e743c
CM
2131 return 0;
2132
2133 if (PageChecked(page))
2134 return -EAGAIN;
2135
2136 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2137 if (!fixup)
2138 return -EAGAIN;
f421950f 2139
247e743c 2140 SetPageChecked(page);
09cbfeaf 2141 get_page(page);
9e0af237
LB
2142 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2143 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2144 fixup->page = page;
0b246afa 2145 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2146 return -EBUSY;
247e743c
CM
2147}
2148
d899e052
YZ
2149static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2150 struct inode *inode, u64 file_pos,
2151 u64 disk_bytenr, u64 disk_num_bytes,
2152 u64 num_bytes, u64 ram_bytes,
2153 u8 compression, u8 encryption,
2154 u16 other_encoding, int extent_type)
2155{
2156 struct btrfs_root *root = BTRFS_I(inode)->root;
2157 struct btrfs_file_extent_item *fi;
2158 struct btrfs_path *path;
2159 struct extent_buffer *leaf;
2160 struct btrfs_key ins;
a12b877b 2161 u64 qg_released;
1acae57b 2162 int extent_inserted = 0;
d899e052
YZ
2163 int ret;
2164
2165 path = btrfs_alloc_path();
d8926bb3
MF
2166 if (!path)
2167 return -ENOMEM;
d899e052 2168
a1ed835e
CM
2169 /*
2170 * we may be replacing one extent in the tree with another.
2171 * The new extent is pinned in the extent map, and we don't want
2172 * to drop it from the cache until it is completely in the btree.
2173 *
2174 * So, tell btrfs_drop_extents to leave this extent in the cache.
2175 * the caller is expected to unpin it and allow it to be merged
2176 * with the others.
2177 */
1acae57b
FDBM
2178 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2179 file_pos + num_bytes, NULL, 0,
2180 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2181 if (ret)
2182 goto out;
d899e052 2183
1acae57b 2184 if (!extent_inserted) {
4a0cc7ca 2185 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2186 ins.offset = file_pos;
2187 ins.type = BTRFS_EXTENT_DATA_KEY;
2188
2189 path->leave_spinning = 1;
2190 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2191 sizeof(*fi));
2192 if (ret)
2193 goto out;
2194 }
d899e052
YZ
2195 leaf = path->nodes[0];
2196 fi = btrfs_item_ptr(leaf, path->slots[0],
2197 struct btrfs_file_extent_item);
2198 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2199 btrfs_set_file_extent_type(leaf, fi, extent_type);
2200 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2201 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2202 btrfs_set_file_extent_offset(leaf, fi, 0);
2203 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2204 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2205 btrfs_set_file_extent_compression(leaf, fi, compression);
2206 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2207 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2208
d899e052 2209 btrfs_mark_buffer_dirty(leaf);
ce195332 2210 btrfs_release_path(path);
d899e052
YZ
2211
2212 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2213
2214 ins.objectid = disk_bytenr;
2215 ins.offset = disk_num_bytes;
2216 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2217
297d750b 2218 /*
5846a3c2
QW
2219 * Release the reserved range from inode dirty range map, as it is
2220 * already moved into delayed_ref_head
297d750b 2221 */
a12b877b
QW
2222 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2223 if (ret < 0)
2224 goto out;
2225 qg_released = ret;
2226 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2227 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
79787eaa 2228out:
d899e052 2229 btrfs_free_path(path);
b9473439 2230
79787eaa 2231 return ret;
d899e052
YZ
2232}
2233
38c227d8
LB
2234/* snapshot-aware defrag */
2235struct sa_defrag_extent_backref {
2236 struct rb_node node;
2237 struct old_sa_defrag_extent *old;
2238 u64 root_id;
2239 u64 inum;
2240 u64 file_pos;
2241 u64 extent_offset;
2242 u64 num_bytes;
2243 u64 generation;
2244};
2245
2246struct old_sa_defrag_extent {
2247 struct list_head list;
2248 struct new_sa_defrag_extent *new;
2249
2250 u64 extent_offset;
2251 u64 bytenr;
2252 u64 offset;
2253 u64 len;
2254 int count;
2255};
2256
2257struct new_sa_defrag_extent {
2258 struct rb_root root;
2259 struct list_head head;
2260 struct btrfs_path *path;
2261 struct inode *inode;
2262 u64 file_pos;
2263 u64 len;
2264 u64 bytenr;
2265 u64 disk_len;
2266 u8 compress_type;
2267};
2268
2269static int backref_comp(struct sa_defrag_extent_backref *b1,
2270 struct sa_defrag_extent_backref *b2)
2271{
2272 if (b1->root_id < b2->root_id)
2273 return -1;
2274 else if (b1->root_id > b2->root_id)
2275 return 1;
2276
2277 if (b1->inum < b2->inum)
2278 return -1;
2279 else if (b1->inum > b2->inum)
2280 return 1;
2281
2282 if (b1->file_pos < b2->file_pos)
2283 return -1;
2284 else if (b1->file_pos > b2->file_pos)
2285 return 1;
2286
2287 /*
2288 * [------------------------------] ===> (a range of space)
2289 * |<--->| |<---->| =============> (fs/file tree A)
2290 * |<---------------------------->| ===> (fs/file tree B)
2291 *
2292 * A range of space can refer to two file extents in one tree while
2293 * refer to only one file extent in another tree.
2294 *
2295 * So we may process a disk offset more than one time(two extents in A)
2296 * and locate at the same extent(one extent in B), then insert two same
2297 * backrefs(both refer to the extent in B).
2298 */
2299 return 0;
2300}
2301
2302static void backref_insert(struct rb_root *root,
2303 struct sa_defrag_extent_backref *backref)
2304{
2305 struct rb_node **p = &root->rb_node;
2306 struct rb_node *parent = NULL;
2307 struct sa_defrag_extent_backref *entry;
2308 int ret;
2309
2310 while (*p) {
2311 parent = *p;
2312 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2313
2314 ret = backref_comp(backref, entry);
2315 if (ret < 0)
2316 p = &(*p)->rb_left;
2317 else
2318 p = &(*p)->rb_right;
2319 }
2320
2321 rb_link_node(&backref->node, parent, p);
2322 rb_insert_color(&backref->node, root);
2323}
2324
2325/*
2326 * Note the backref might has changed, and in this case we just return 0.
2327 */
2328static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2329 void *ctx)
2330{
2331 struct btrfs_file_extent_item *extent;
38c227d8
LB
2332 struct old_sa_defrag_extent *old = ctx;
2333 struct new_sa_defrag_extent *new = old->new;
2334 struct btrfs_path *path = new->path;
2335 struct btrfs_key key;
2336 struct btrfs_root *root;
2337 struct sa_defrag_extent_backref *backref;
2338 struct extent_buffer *leaf;
2339 struct inode *inode = new->inode;
0b246afa 2340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2341 int slot;
2342 int ret;
2343 u64 extent_offset;
2344 u64 num_bytes;
2345
2346 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2347 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2348 return 0;
2349
2350 key.objectid = root_id;
2351 key.type = BTRFS_ROOT_ITEM_KEY;
2352 key.offset = (u64)-1;
2353
38c227d8
LB
2354 root = btrfs_read_fs_root_no_name(fs_info, &key);
2355 if (IS_ERR(root)) {
2356 if (PTR_ERR(root) == -ENOENT)
2357 return 0;
2358 WARN_ON(1);
ab8d0fc4 2359 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2360 inum, offset, root_id);
2361 return PTR_ERR(root);
2362 }
2363
2364 key.objectid = inum;
2365 key.type = BTRFS_EXTENT_DATA_KEY;
2366 if (offset > (u64)-1 << 32)
2367 key.offset = 0;
2368 else
2369 key.offset = offset;
2370
2371 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2372 if (WARN_ON(ret < 0))
38c227d8 2373 return ret;
50f1319c 2374 ret = 0;
38c227d8
LB
2375
2376 while (1) {
2377 cond_resched();
2378
2379 leaf = path->nodes[0];
2380 slot = path->slots[0];
2381
2382 if (slot >= btrfs_header_nritems(leaf)) {
2383 ret = btrfs_next_leaf(root, path);
2384 if (ret < 0) {
2385 goto out;
2386 } else if (ret > 0) {
2387 ret = 0;
2388 goto out;
2389 }
2390 continue;
2391 }
2392
2393 path->slots[0]++;
2394
2395 btrfs_item_key_to_cpu(leaf, &key, slot);
2396
2397 if (key.objectid > inum)
2398 goto out;
2399
2400 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2401 continue;
2402
2403 extent = btrfs_item_ptr(leaf, slot,
2404 struct btrfs_file_extent_item);
2405
2406 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2407 continue;
2408
e68afa49
LB
2409 /*
2410 * 'offset' refers to the exact key.offset,
2411 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2412 * (key.offset - extent_offset).
2413 */
2414 if (key.offset != offset)
38c227d8
LB
2415 continue;
2416
e68afa49 2417 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2418 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2419
38c227d8
LB
2420 if (extent_offset >= old->extent_offset + old->offset +
2421 old->len || extent_offset + num_bytes <=
2422 old->extent_offset + old->offset)
2423 continue;
38c227d8
LB
2424 break;
2425 }
2426
2427 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2428 if (!backref) {
2429 ret = -ENOENT;
2430 goto out;
2431 }
2432
2433 backref->root_id = root_id;
2434 backref->inum = inum;
e68afa49 2435 backref->file_pos = offset;
38c227d8
LB
2436 backref->num_bytes = num_bytes;
2437 backref->extent_offset = extent_offset;
2438 backref->generation = btrfs_file_extent_generation(leaf, extent);
2439 backref->old = old;
2440 backref_insert(&new->root, backref);
2441 old->count++;
2442out:
2443 btrfs_release_path(path);
2444 WARN_ON(ret);
2445 return ret;
2446}
2447
2448static noinline bool record_extent_backrefs(struct btrfs_path *path,
2449 struct new_sa_defrag_extent *new)
2450{
0b246afa 2451 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2452 struct old_sa_defrag_extent *old, *tmp;
2453 int ret;
2454
2455 new->path = path;
2456
2457 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2458 ret = iterate_inodes_from_logical(old->bytenr +
2459 old->extent_offset, fs_info,
38c227d8
LB
2460 path, record_one_backref,
2461 old);
4724b106
JB
2462 if (ret < 0 && ret != -ENOENT)
2463 return false;
38c227d8
LB
2464
2465 /* no backref to be processed for this extent */
2466 if (!old->count) {
2467 list_del(&old->list);
2468 kfree(old);
2469 }
2470 }
2471
2472 if (list_empty(&new->head))
2473 return false;
2474
2475 return true;
2476}
2477
2478static int relink_is_mergable(struct extent_buffer *leaf,
2479 struct btrfs_file_extent_item *fi,
116e0024 2480 struct new_sa_defrag_extent *new)
38c227d8 2481{
116e0024 2482 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2483 return 0;
2484
2485 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2486 return 0;
2487
116e0024
LB
2488 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2489 return 0;
2490
2491 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2492 btrfs_file_extent_other_encoding(leaf, fi))
2493 return 0;
2494
2495 return 1;
2496}
2497
2498/*
2499 * Note the backref might has changed, and in this case we just return 0.
2500 */
2501static noinline int relink_extent_backref(struct btrfs_path *path,
2502 struct sa_defrag_extent_backref *prev,
2503 struct sa_defrag_extent_backref *backref)
2504{
2505 struct btrfs_file_extent_item *extent;
2506 struct btrfs_file_extent_item *item;
2507 struct btrfs_ordered_extent *ordered;
2508 struct btrfs_trans_handle *trans;
38c227d8
LB
2509 struct btrfs_root *root;
2510 struct btrfs_key key;
2511 struct extent_buffer *leaf;
2512 struct old_sa_defrag_extent *old = backref->old;
2513 struct new_sa_defrag_extent *new = old->new;
0b246afa 2514 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2515 struct inode *inode;
2516 struct extent_state *cached = NULL;
2517 int ret = 0;
2518 u64 start;
2519 u64 len;
2520 u64 lock_start;
2521 u64 lock_end;
2522 bool merge = false;
2523 int index;
2524
2525 if (prev && prev->root_id == backref->root_id &&
2526 prev->inum == backref->inum &&
2527 prev->file_pos + prev->num_bytes == backref->file_pos)
2528 merge = true;
2529
2530 /* step 1: get root */
2531 key.objectid = backref->root_id;
2532 key.type = BTRFS_ROOT_ITEM_KEY;
2533 key.offset = (u64)-1;
2534
38c227d8
LB
2535 index = srcu_read_lock(&fs_info->subvol_srcu);
2536
2537 root = btrfs_read_fs_root_no_name(fs_info, &key);
2538 if (IS_ERR(root)) {
2539 srcu_read_unlock(&fs_info->subvol_srcu, index);
2540 if (PTR_ERR(root) == -ENOENT)
2541 return 0;
2542 return PTR_ERR(root);
2543 }
38c227d8 2544
bcbba5e6
WS
2545 if (btrfs_root_readonly(root)) {
2546 srcu_read_unlock(&fs_info->subvol_srcu, index);
2547 return 0;
2548 }
2549
38c227d8
LB
2550 /* step 2: get inode */
2551 key.objectid = backref->inum;
2552 key.type = BTRFS_INODE_ITEM_KEY;
2553 key.offset = 0;
2554
2555 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2556 if (IS_ERR(inode)) {
2557 srcu_read_unlock(&fs_info->subvol_srcu, index);
2558 return 0;
2559 }
2560
2561 srcu_read_unlock(&fs_info->subvol_srcu, index);
2562
2563 /* step 3: relink backref */
2564 lock_start = backref->file_pos;
2565 lock_end = backref->file_pos + backref->num_bytes - 1;
2566 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2567 &cached);
38c227d8
LB
2568
2569 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2570 if (ordered) {
2571 btrfs_put_ordered_extent(ordered);
2572 goto out_unlock;
2573 }
2574
2575 trans = btrfs_join_transaction(root);
2576 if (IS_ERR(trans)) {
2577 ret = PTR_ERR(trans);
2578 goto out_unlock;
2579 }
2580
2581 key.objectid = backref->inum;
2582 key.type = BTRFS_EXTENT_DATA_KEY;
2583 key.offset = backref->file_pos;
2584
2585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586 if (ret < 0) {
2587 goto out_free_path;
2588 } else if (ret > 0) {
2589 ret = 0;
2590 goto out_free_path;
2591 }
2592
2593 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2594 struct btrfs_file_extent_item);
2595
2596 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2597 backref->generation)
2598 goto out_free_path;
2599
2600 btrfs_release_path(path);
2601
2602 start = backref->file_pos;
2603 if (backref->extent_offset < old->extent_offset + old->offset)
2604 start += old->extent_offset + old->offset -
2605 backref->extent_offset;
2606
2607 len = min(backref->extent_offset + backref->num_bytes,
2608 old->extent_offset + old->offset + old->len);
2609 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2610
2611 ret = btrfs_drop_extents(trans, root, inode, start,
2612 start + len, 1);
2613 if (ret)
2614 goto out_free_path;
2615again:
4a0cc7ca 2616 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2617 key.type = BTRFS_EXTENT_DATA_KEY;
2618 key.offset = start;
2619
a09a0a70 2620 path->leave_spinning = 1;
38c227d8
LB
2621 if (merge) {
2622 struct btrfs_file_extent_item *fi;
2623 u64 extent_len;
2624 struct btrfs_key found_key;
2625
3c9665df 2626 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2627 if (ret < 0)
2628 goto out_free_path;
2629
2630 path->slots[0]--;
2631 leaf = path->nodes[0];
2632 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2633
2634 fi = btrfs_item_ptr(leaf, path->slots[0],
2635 struct btrfs_file_extent_item);
2636 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2637
116e0024
LB
2638 if (extent_len + found_key.offset == start &&
2639 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2640 btrfs_set_file_extent_num_bytes(leaf, fi,
2641 extent_len + len);
2642 btrfs_mark_buffer_dirty(leaf);
2643 inode_add_bytes(inode, len);
2644
2645 ret = 1;
2646 goto out_free_path;
2647 } else {
2648 merge = false;
2649 btrfs_release_path(path);
2650 goto again;
2651 }
2652 }
2653
2654 ret = btrfs_insert_empty_item(trans, root, path, &key,
2655 sizeof(*extent));
2656 if (ret) {
66642832 2657 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2658 goto out_free_path;
2659 }
2660
2661 leaf = path->nodes[0];
2662 item = btrfs_item_ptr(leaf, path->slots[0],
2663 struct btrfs_file_extent_item);
2664 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2665 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2666 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2667 btrfs_set_file_extent_num_bytes(leaf, item, len);
2668 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2669 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2670 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2671 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2672 btrfs_set_file_extent_encryption(leaf, item, 0);
2673 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2674
2675 btrfs_mark_buffer_dirty(leaf);
2676 inode_add_bytes(inode, len);
a09a0a70 2677 btrfs_release_path(path);
38c227d8 2678
2ff7e61e 2679 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2680 new->disk_len, 0,
2681 backref->root_id, backref->inum,
b06c4bf5 2682 new->file_pos); /* start - extent_offset */
38c227d8 2683 if (ret) {
66642832 2684 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2685 goto out_free_path;
2686 }
2687
2688 ret = 1;
2689out_free_path:
2690 btrfs_release_path(path);
a09a0a70 2691 path->leave_spinning = 0;
3a45bb20 2692 btrfs_end_transaction(trans);
38c227d8
LB
2693out_unlock:
2694 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2695 &cached, GFP_NOFS);
2696 iput(inode);
2697 return ret;
2698}
2699
6f519564
LB
2700static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2701{
2702 struct old_sa_defrag_extent *old, *tmp;
2703
2704 if (!new)
2705 return;
2706
2707 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2708 kfree(old);
2709 }
2710 kfree(new);
2711}
2712
38c227d8
LB
2713static void relink_file_extents(struct new_sa_defrag_extent *new)
2714{
0b246afa 2715 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2716 struct btrfs_path *path;
38c227d8
LB
2717 struct sa_defrag_extent_backref *backref;
2718 struct sa_defrag_extent_backref *prev = NULL;
2719 struct inode *inode;
2720 struct btrfs_root *root;
2721 struct rb_node *node;
2722 int ret;
2723
2724 inode = new->inode;
2725 root = BTRFS_I(inode)->root;
2726
2727 path = btrfs_alloc_path();
2728 if (!path)
2729 return;
2730
2731 if (!record_extent_backrefs(path, new)) {
2732 btrfs_free_path(path);
2733 goto out;
2734 }
2735 btrfs_release_path(path);
2736
2737 while (1) {
2738 node = rb_first(&new->root);
2739 if (!node)
2740 break;
2741 rb_erase(node, &new->root);
2742
2743 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2744
2745 ret = relink_extent_backref(path, prev, backref);
2746 WARN_ON(ret < 0);
2747
2748 kfree(prev);
2749
2750 if (ret == 1)
2751 prev = backref;
2752 else
2753 prev = NULL;
2754 cond_resched();
2755 }
2756 kfree(prev);
2757
2758 btrfs_free_path(path);
38c227d8 2759out:
6f519564
LB
2760 free_sa_defrag_extent(new);
2761
0b246afa
JM
2762 atomic_dec(&fs_info->defrag_running);
2763 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2764}
2765
2766static struct new_sa_defrag_extent *
2767record_old_file_extents(struct inode *inode,
2768 struct btrfs_ordered_extent *ordered)
2769{
0b246afa 2770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2771 struct btrfs_root *root = BTRFS_I(inode)->root;
2772 struct btrfs_path *path;
2773 struct btrfs_key key;
6f519564 2774 struct old_sa_defrag_extent *old;
38c227d8
LB
2775 struct new_sa_defrag_extent *new;
2776 int ret;
2777
2778 new = kmalloc(sizeof(*new), GFP_NOFS);
2779 if (!new)
2780 return NULL;
2781
2782 new->inode = inode;
2783 new->file_pos = ordered->file_offset;
2784 new->len = ordered->len;
2785 new->bytenr = ordered->start;
2786 new->disk_len = ordered->disk_len;
2787 new->compress_type = ordered->compress_type;
2788 new->root = RB_ROOT;
2789 INIT_LIST_HEAD(&new->head);
2790
2791 path = btrfs_alloc_path();
2792 if (!path)
2793 goto out_kfree;
2794
4a0cc7ca 2795 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2796 key.type = BTRFS_EXTENT_DATA_KEY;
2797 key.offset = new->file_pos;
2798
2799 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2800 if (ret < 0)
2801 goto out_free_path;
2802 if (ret > 0 && path->slots[0] > 0)
2803 path->slots[0]--;
2804
2805 /* find out all the old extents for the file range */
2806 while (1) {
2807 struct btrfs_file_extent_item *extent;
2808 struct extent_buffer *l;
2809 int slot;
2810 u64 num_bytes;
2811 u64 offset;
2812 u64 end;
2813 u64 disk_bytenr;
2814 u64 extent_offset;
2815
2816 l = path->nodes[0];
2817 slot = path->slots[0];
2818
2819 if (slot >= btrfs_header_nritems(l)) {
2820 ret = btrfs_next_leaf(root, path);
2821 if (ret < 0)
6f519564 2822 goto out_free_path;
38c227d8
LB
2823 else if (ret > 0)
2824 break;
2825 continue;
2826 }
2827
2828 btrfs_item_key_to_cpu(l, &key, slot);
2829
4a0cc7ca 2830 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2831 break;
2832 if (key.type != BTRFS_EXTENT_DATA_KEY)
2833 break;
2834 if (key.offset >= new->file_pos + new->len)
2835 break;
2836
2837 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2838
2839 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2840 if (key.offset + num_bytes < new->file_pos)
2841 goto next;
2842
2843 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2844 if (!disk_bytenr)
2845 goto next;
2846
2847 extent_offset = btrfs_file_extent_offset(l, extent);
2848
2849 old = kmalloc(sizeof(*old), GFP_NOFS);
2850 if (!old)
6f519564 2851 goto out_free_path;
38c227d8
LB
2852
2853 offset = max(new->file_pos, key.offset);
2854 end = min(new->file_pos + new->len, key.offset + num_bytes);
2855
2856 old->bytenr = disk_bytenr;
2857 old->extent_offset = extent_offset;
2858 old->offset = offset - key.offset;
2859 old->len = end - offset;
2860 old->new = new;
2861 old->count = 0;
2862 list_add_tail(&old->list, &new->head);
2863next:
2864 path->slots[0]++;
2865 cond_resched();
2866 }
2867
2868 btrfs_free_path(path);
0b246afa 2869 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2870
2871 return new;
2872
38c227d8
LB
2873out_free_path:
2874 btrfs_free_path(path);
2875out_kfree:
6f519564 2876 free_sa_defrag_extent(new);
38c227d8
LB
2877 return NULL;
2878}
2879
2ff7e61e 2880static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2881 u64 start, u64 len)
2882{
2883 struct btrfs_block_group_cache *cache;
2884
0b246afa 2885 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2886 ASSERT(cache);
2887
2888 spin_lock(&cache->lock);
2889 cache->delalloc_bytes -= len;
2890 spin_unlock(&cache->lock);
2891
2892 btrfs_put_block_group(cache);
2893}
2894
d352ac68
CM
2895/* as ordered data IO finishes, this gets called so we can finish
2896 * an ordered extent if the range of bytes in the file it covers are
2897 * fully written.
2898 */
5fd02043 2899static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2900{
5fd02043 2901 struct inode *inode = ordered_extent->inode;
0b246afa 2902 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2903 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2904 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2905 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2906 struct extent_state *cached_state = NULL;
38c227d8 2907 struct new_sa_defrag_extent *new = NULL;
261507a0 2908 int compress_type = 0;
77cef2ec
JB
2909 int ret = 0;
2910 u64 logical_len = ordered_extent->len;
82d5902d 2911 bool nolock;
77cef2ec 2912 bool truncated = false;
a7e3b975
FM
2913 bool range_locked = false;
2914 bool clear_new_delalloc_bytes = false;
2915
2916 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2917 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2918 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2919 clear_new_delalloc_bytes = true;
e6dcd2dc 2920
70ddc553 2921 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2922
5fd02043
JB
2923 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2924 ret = -EIO;
2925 goto out;
2926 }
2927
7ab7956e
NB
2928 btrfs_free_io_failure_record(BTRFS_I(inode),
2929 ordered_extent->file_offset,
2930 ordered_extent->file_offset +
2931 ordered_extent->len - 1);
f612496b 2932
77cef2ec
JB
2933 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2934 truncated = true;
2935 logical_len = ordered_extent->truncated_len;
2936 /* Truncated the entire extent, don't bother adding */
2937 if (!logical_len)
2938 goto out;
2939 }
2940
c2167754 2941 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2942 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2943
2944 /*
2945 * For mwrite(mmap + memset to write) case, we still reserve
2946 * space for NOCOW range.
2947 * As NOCOW won't cause a new delayed ref, just free the space
2948 */
bc42bda2 2949 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2950 ordered_extent->len);
6c760c07
JB
2951 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2952 if (nolock)
2953 trans = btrfs_join_transaction_nolock(root);
2954 else
2955 trans = btrfs_join_transaction(root);
2956 if (IS_ERR(trans)) {
2957 ret = PTR_ERR(trans);
2958 trans = NULL;
2959 goto out;
c2167754 2960 }
0b246afa 2961 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2962 ret = btrfs_update_inode_fallback(trans, root, inode);
2963 if (ret) /* -ENOMEM or corruption */
66642832 2964 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2965 goto out;
2966 }
e6dcd2dc 2967
a7e3b975 2968 range_locked = true;
2ac55d41
JB
2969 lock_extent_bits(io_tree, ordered_extent->file_offset,
2970 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2971 &cached_state);
e6dcd2dc 2972
38c227d8
LB
2973 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2974 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2975 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2976 if (ret) {
2977 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2978 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2979 /* the inode is shared */
2980 new = record_old_file_extents(inode, ordered_extent);
2981
2982 clear_extent_bit(io_tree, ordered_extent->file_offset,
2983 ordered_extent->file_offset + ordered_extent->len - 1,
2984 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2985 }
2986
0cb59c99 2987 if (nolock)
7a7eaa40 2988 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2989 else
7a7eaa40 2990 trans = btrfs_join_transaction(root);
79787eaa
JM
2991 if (IS_ERR(trans)) {
2992 ret = PTR_ERR(trans);
2993 trans = NULL;
a7e3b975 2994 goto out;
79787eaa 2995 }
a79b7d4b 2996
0b246afa 2997 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2998
c8b97818 2999 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3000 compress_type = ordered_extent->compress_type;
d899e052 3001 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3002 BUG_ON(compress_type);
7a6d7067 3003 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3004 ordered_extent->file_offset,
3005 ordered_extent->file_offset +
77cef2ec 3006 logical_len);
d899e052 3007 } else {
0b246afa 3008 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3009 ret = insert_reserved_file_extent(trans, inode,
3010 ordered_extent->file_offset,
3011 ordered_extent->start,
3012 ordered_extent->disk_len,
77cef2ec 3013 logical_len, logical_len,
261507a0 3014 compress_type, 0, 0,
d899e052 3015 BTRFS_FILE_EXTENT_REG);
e570fd27 3016 if (!ret)
2ff7e61e 3017 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3018 ordered_extent->start,
3019 ordered_extent->disk_len);
d899e052 3020 }
5dc562c5
JB
3021 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3022 ordered_extent->file_offset, ordered_extent->len,
3023 trans->transid);
79787eaa 3024 if (ret < 0) {
66642832 3025 btrfs_abort_transaction(trans, ret);
a7e3b975 3026 goto out;
79787eaa 3027 }
2ac55d41 3028
df9f628e 3029 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3030
6c760c07
JB
3031 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3032 ret = btrfs_update_inode_fallback(trans, root, inode);
3033 if (ret) { /* -ENOMEM or corruption */
66642832 3034 btrfs_abort_transaction(trans, ret);
a7e3b975 3035 goto out;
1ef30be1
JB
3036 }
3037 ret = 0;
c2167754 3038out:
a7e3b975
FM
3039 if (range_locked || clear_new_delalloc_bytes) {
3040 unsigned int clear_bits = 0;
3041
3042 if (range_locked)
3043 clear_bits |= EXTENT_LOCKED;
3044 if (clear_new_delalloc_bytes)
3045 clear_bits |= EXTENT_DELALLOC_NEW;
3046 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3047 ordered_extent->file_offset,
3048 ordered_extent->file_offset +
3049 ordered_extent->len - 1,
3050 clear_bits,
3051 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3052 0, &cached_state, GFP_NOFS);
3053 }
3054
0b246afa 3055 if (root != fs_info->tree_root)
691fa059
NB
3056 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3057 ordered_extent->len);
a698d075 3058 if (trans)
3a45bb20 3059 btrfs_end_transaction(trans);
0cb59c99 3060
77cef2ec
JB
3061 if (ret || truncated) {
3062 u64 start, end;
3063
3064 if (truncated)
3065 start = ordered_extent->file_offset + logical_len;
3066 else
3067 start = ordered_extent->file_offset;
3068 end = ordered_extent->file_offset + ordered_extent->len - 1;
3069 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3070
3071 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3072 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3073
0bec9ef5
JB
3074 /*
3075 * If the ordered extent had an IOERR or something else went
3076 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3077 * back to the allocator. We only free the extent in the
3078 * truncated case if we didn't write out the extent at all.
0bec9ef5 3079 */
77cef2ec
JB
3080 if ((ret || !logical_len) &&
3081 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3082 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3083 btrfs_free_reserved_extent(fs_info,
3084 ordered_extent->start,
e570fd27 3085 ordered_extent->disk_len, 1);
0bec9ef5
JB
3086 }
3087
3088
5fd02043 3089 /*
8bad3c02
LB
3090 * This needs to be done to make sure anybody waiting knows we are done
3091 * updating everything for this ordered extent.
5fd02043
JB
3092 */
3093 btrfs_remove_ordered_extent(inode, ordered_extent);
3094
38c227d8 3095 /* for snapshot-aware defrag */
6f519564
LB
3096 if (new) {
3097 if (ret) {
3098 free_sa_defrag_extent(new);
0b246afa 3099 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3100 } else {
3101 relink_file_extents(new);
3102 }
3103 }
38c227d8 3104
e6dcd2dc
CM
3105 /* once for us */
3106 btrfs_put_ordered_extent(ordered_extent);
3107 /* once for the tree */
3108 btrfs_put_ordered_extent(ordered_extent);
3109
5fd02043
JB
3110 return ret;
3111}
3112
3113static void finish_ordered_fn(struct btrfs_work *work)
3114{
3115 struct btrfs_ordered_extent *ordered_extent;
3116 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3117 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3118}
3119
c3988d63 3120static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3121 struct extent_state *state, int uptodate)
3122{
5fd02043 3123 struct inode *inode = page->mapping->host;
0b246afa 3124 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3125 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3126 struct btrfs_workqueue *wq;
3127 btrfs_work_func_t func;
5fd02043 3128
1abe9b8a 3129 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3130
8b62b72b 3131 ClearPagePrivate2(page);
5fd02043
JB
3132 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3133 end - start + 1, uptodate))
c3988d63 3134 return;
5fd02043 3135
70ddc553 3136 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3137 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3138 func = btrfs_freespace_write_helper;
3139 } else {
0b246afa 3140 wq = fs_info->endio_write_workers;
9e0af237
LB
3141 func = btrfs_endio_write_helper;
3142 }
5fd02043 3143
9e0af237
LB
3144 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3145 NULL);
3146 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3147}
3148
dc380aea
MX
3149static int __readpage_endio_check(struct inode *inode,
3150 struct btrfs_io_bio *io_bio,
3151 int icsum, struct page *page,
3152 int pgoff, u64 start, size_t len)
3153{
3154 char *kaddr;
3155 u32 csum_expected;
3156 u32 csum = ~(u32)0;
dc380aea
MX
3157
3158 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3159
3160 kaddr = kmap_atomic(page);
3161 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3162 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3163 if (csum != csum_expected)
3164 goto zeroit;
3165
3166 kunmap_atomic(kaddr);
3167 return 0;
3168zeroit:
0970a22e 3169 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3170 io_bio->mirror_num);
dc380aea
MX
3171 memset(kaddr + pgoff, 1, len);
3172 flush_dcache_page(page);
3173 kunmap_atomic(kaddr);
3174 if (csum_expected == 0)
3175 return 0;
3176 return -EIO;
3177}
3178
d352ac68
CM
3179/*
3180 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3181 * if there's a match, we allow the bio to finish. If not, the code in
3182 * extent_io.c will try to find good copies for us.
d352ac68 3183 */
facc8a22
MX
3184static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3185 u64 phy_offset, struct page *page,
3186 u64 start, u64 end, int mirror)
07157aac 3187{
4eee4fa4 3188 size_t offset = start - page_offset(page);
07157aac 3189 struct inode *inode = page->mapping->host;
d1310b2e 3190 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3191 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3192
d20f7043
CM
3193 if (PageChecked(page)) {
3194 ClearPageChecked(page);
dc380aea 3195 return 0;
d20f7043 3196 }
6cbff00f
CH
3197
3198 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3199 return 0;
17d217fe
YZ
3200
3201 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3202 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3203 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3204 return 0;
17d217fe 3205 }
d20f7043 3206
facc8a22 3207 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3208 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3209 start, (size_t)(end - start + 1));
07157aac 3210}
b888db2b 3211
24bbcf04
YZ
3212void btrfs_add_delayed_iput(struct inode *inode)
3213{
0b246afa 3214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3215 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3216
3217 if (atomic_add_unless(&inode->i_count, -1, 1))
3218 return;
3219
24bbcf04 3220 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3221 if (binode->delayed_iput_count == 0) {
3222 ASSERT(list_empty(&binode->delayed_iput));
3223 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3224 } else {
3225 binode->delayed_iput_count++;
3226 }
24bbcf04
YZ
3227 spin_unlock(&fs_info->delayed_iput_lock);
3228}
3229
2ff7e61e 3230void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3231{
24bbcf04 3232
24bbcf04 3233 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3234 while (!list_empty(&fs_info->delayed_iputs)) {
3235 struct btrfs_inode *inode;
3236
3237 inode = list_first_entry(&fs_info->delayed_iputs,
3238 struct btrfs_inode, delayed_iput);
3239 if (inode->delayed_iput_count) {
3240 inode->delayed_iput_count--;
3241 list_move_tail(&inode->delayed_iput,
3242 &fs_info->delayed_iputs);
3243 } else {
3244 list_del_init(&inode->delayed_iput);
3245 }
3246 spin_unlock(&fs_info->delayed_iput_lock);
3247 iput(&inode->vfs_inode);
3248 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3249 }
8089fe62 3250 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3251}
3252
d68fc57b 3253/*
42b2aa86 3254 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3255 * files in the subvolume, it removes orphan item and frees block_rsv
3256 * structure.
3257 */
3258void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3259 struct btrfs_root *root)
3260{
0b246afa 3261 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3262 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3263 int ret;
3264
8a35d95f 3265 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3266 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3267 return;
3268
90290e19 3269 spin_lock(&root->orphan_lock);
8a35d95f 3270 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3271 spin_unlock(&root->orphan_lock);
3272 return;
3273 }
3274
3275 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3276 spin_unlock(&root->orphan_lock);
3277 return;
3278 }
3279
3280 block_rsv = root->orphan_block_rsv;
3281 root->orphan_block_rsv = NULL;
3282 spin_unlock(&root->orphan_lock);
3283
27cdeb70 3284 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3285 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3286 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3287 root->root_key.objectid);
4ef31a45 3288 if (ret)
66642832 3289 btrfs_abort_transaction(trans, ret);
4ef31a45 3290 else
27cdeb70
MX
3291 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3292 &root->state);
d68fc57b
YZ
3293 }
3294
90290e19
JB
3295 if (block_rsv) {
3296 WARN_ON(block_rsv->size > 0);
2ff7e61e 3297 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3298 }
3299}
3300
7b128766
JB
3301/*
3302 * This creates an orphan entry for the given inode in case something goes
3303 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3304 *
3305 * NOTE: caller of this function should reserve 5 units of metadata for
3306 * this function.
7b128766 3307 */
73f2e545
NB
3308int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3309 struct btrfs_inode *inode)
7b128766 3310{
73f2e545
NB
3311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3312 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3313 struct btrfs_block_rsv *block_rsv = NULL;
3314 int reserve = 0;
3315 int insert = 0;
3316 int ret;
7b128766 3317
d68fc57b 3318 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3319 block_rsv = btrfs_alloc_block_rsv(fs_info,
3320 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3321 if (!block_rsv)
3322 return -ENOMEM;
d68fc57b 3323 }
7b128766 3324
d68fc57b
YZ
3325 spin_lock(&root->orphan_lock);
3326 if (!root->orphan_block_rsv) {
3327 root->orphan_block_rsv = block_rsv;
3328 } else if (block_rsv) {
2ff7e61e 3329 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3330 block_rsv = NULL;
7b128766 3331 }
7b128766 3332
8a35d95f 3333 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3334 &inode->runtime_flags)) {
d68fc57b
YZ
3335#if 0
3336 /*
3337 * For proper ENOSPC handling, we should do orphan
3338 * cleanup when mounting. But this introduces backward
3339 * compatibility issue.
3340 */
3341 if (!xchg(&root->orphan_item_inserted, 1))
3342 insert = 2;
3343 else
3344 insert = 1;
3345#endif
3346 insert = 1;
321f0e70 3347 atomic_inc(&root->orphan_inodes);
7b128766
JB
3348 }
3349
72ac3c0d 3350 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3351 &inode->runtime_flags))
d68fc57b 3352 reserve = 1;
d68fc57b 3353 spin_unlock(&root->orphan_lock);
7b128766 3354
d68fc57b
YZ
3355 /* grab metadata reservation from transaction handle */
3356 if (reserve) {
3357 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3358 ASSERT(!ret);
3359 if (ret) {
3360 atomic_dec(&root->orphan_inodes);
3361 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3362 &inode->runtime_flags);
3b6571c1
JB
3363 if (insert)
3364 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3365 &inode->runtime_flags);
3b6571c1
JB
3366 return ret;
3367 }
d68fc57b 3368 }
7b128766 3369
d68fc57b
YZ
3370 /* insert an orphan item to track this unlinked/truncated file */
3371 if (insert >= 1) {
73f2e545 3372 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3373 if (ret) {
703c88e0 3374 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3375 if (reserve) {
3376 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3377 &inode->runtime_flags);
4ef31a45
JB
3378 btrfs_orphan_release_metadata(inode);
3379 }
3380 if (ret != -EEXIST) {
e8e7cff6 3381 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3382 &inode->runtime_flags);
66642832 3383 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3384 return ret;
3385 }
79787eaa
JM
3386 }
3387 ret = 0;
d68fc57b
YZ
3388 }
3389
3390 /* insert an orphan item to track subvolume contains orphan files */
3391 if (insert >= 2) {
0b246afa 3392 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3393 root->root_key.objectid);
79787eaa 3394 if (ret && ret != -EEXIST) {
66642832 3395 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3396 return ret;
3397 }
d68fc57b
YZ
3398 }
3399 return 0;
7b128766
JB
3400}
3401
3402/*
3403 * We have done the truncate/delete so we can go ahead and remove the orphan
3404 * item for this particular inode.
3405 */
48a3b636 3406static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3407 struct btrfs_inode *inode)
7b128766 3408{
3d6ae7bb 3409 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3410 int delete_item = 0;
3411 int release_rsv = 0;
7b128766
JB
3412 int ret = 0;
3413
d68fc57b 3414 spin_lock(&root->orphan_lock);
8a35d95f 3415 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3416 &inode->runtime_flags))
d68fc57b 3417 delete_item = 1;
7b128766 3418
72ac3c0d 3419 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3420 &inode->runtime_flags))
d68fc57b 3421 release_rsv = 1;
d68fc57b 3422 spin_unlock(&root->orphan_lock);
7b128766 3423
703c88e0 3424 if (delete_item) {
8a35d95f 3425 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3426 if (trans)
3427 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3428 btrfs_ino(inode));
8a35d95f 3429 }
7b128766 3430
703c88e0
FDBM
3431 if (release_rsv)
3432 btrfs_orphan_release_metadata(inode);
3433
4ef31a45 3434 return ret;
7b128766
JB
3435}
3436
3437/*
3438 * this cleans up any orphans that may be left on the list from the last use
3439 * of this root.
3440 */
66b4ffd1 3441int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3442{
0b246afa 3443 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3444 struct btrfs_path *path;
3445 struct extent_buffer *leaf;
7b128766
JB
3446 struct btrfs_key key, found_key;
3447 struct btrfs_trans_handle *trans;
3448 struct inode *inode;
8f6d7f4f 3449 u64 last_objectid = 0;
7b128766
JB
3450 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3451
d68fc57b 3452 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3453 return 0;
c71bf099
YZ
3454
3455 path = btrfs_alloc_path();
66b4ffd1
JB
3456 if (!path) {
3457 ret = -ENOMEM;
3458 goto out;
3459 }
e4058b54 3460 path->reada = READA_BACK;
7b128766
JB
3461
3462 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3463 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3464 key.offset = (u64)-1;
3465
7b128766
JB
3466 while (1) {
3467 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3468 if (ret < 0)
3469 goto out;
7b128766
JB
3470
3471 /*
3472 * if ret == 0 means we found what we were searching for, which
25985edc 3473 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3474 * find the key and see if we have stuff that matches
3475 */
3476 if (ret > 0) {
66b4ffd1 3477 ret = 0;
7b128766
JB
3478 if (path->slots[0] == 0)
3479 break;
3480 path->slots[0]--;
3481 }
3482
3483 /* pull out the item */
3484 leaf = path->nodes[0];
7b128766
JB
3485 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3486
3487 /* make sure the item matches what we want */
3488 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3489 break;
962a298f 3490 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3491 break;
3492
3493 /* release the path since we're done with it */
b3b4aa74 3494 btrfs_release_path(path);
7b128766
JB
3495
3496 /*
3497 * this is where we are basically btrfs_lookup, without the
3498 * crossing root thing. we store the inode number in the
3499 * offset of the orphan item.
3500 */
8f6d7f4f
JB
3501
3502 if (found_key.offset == last_objectid) {
0b246afa
JM
3503 btrfs_err(fs_info,
3504 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3505 ret = -EINVAL;
3506 goto out;
3507 }
3508
3509 last_objectid = found_key.offset;
3510
5d4f98a2
YZ
3511 found_key.objectid = found_key.offset;
3512 found_key.type = BTRFS_INODE_ITEM_KEY;
3513 found_key.offset = 0;
0b246afa 3514 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3515 ret = PTR_ERR_OR_ZERO(inode);
67710892 3516 if (ret && ret != -ENOENT)
66b4ffd1 3517 goto out;
7b128766 3518
0b246afa 3519 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3520 struct btrfs_root *dead_root;
3521 struct btrfs_fs_info *fs_info = root->fs_info;
3522 int is_dead_root = 0;
3523
3524 /*
3525 * this is an orphan in the tree root. Currently these
3526 * could come from 2 sources:
3527 * a) a snapshot deletion in progress
3528 * b) a free space cache inode
3529 * We need to distinguish those two, as the snapshot
3530 * orphan must not get deleted.
3531 * find_dead_roots already ran before us, so if this
3532 * is a snapshot deletion, we should find the root
3533 * in the dead_roots list
3534 */
3535 spin_lock(&fs_info->trans_lock);
3536 list_for_each_entry(dead_root, &fs_info->dead_roots,
3537 root_list) {
3538 if (dead_root->root_key.objectid ==
3539 found_key.objectid) {
3540 is_dead_root = 1;
3541 break;
3542 }
3543 }
3544 spin_unlock(&fs_info->trans_lock);
3545 if (is_dead_root) {
3546 /* prevent this orphan from being found again */
3547 key.offset = found_key.objectid - 1;
3548 continue;
3549 }
3550 }
7b128766 3551 /*
a8c9e576
JB
3552 * Inode is already gone but the orphan item is still there,
3553 * kill the orphan item.
7b128766 3554 */
67710892 3555 if (ret == -ENOENT) {
a8c9e576 3556 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3557 if (IS_ERR(trans)) {
3558 ret = PTR_ERR(trans);
3559 goto out;
3560 }
0b246afa
JM
3561 btrfs_debug(fs_info, "auto deleting %Lu",
3562 found_key.objectid);
a8c9e576
JB
3563 ret = btrfs_del_orphan_item(trans, root,
3564 found_key.objectid);
3a45bb20 3565 btrfs_end_transaction(trans);
4ef31a45
JB
3566 if (ret)
3567 goto out;
7b128766
JB
3568 continue;
3569 }
3570
a8c9e576
JB
3571 /*
3572 * add this inode to the orphan list so btrfs_orphan_del does
3573 * the proper thing when we hit it
3574 */
8a35d95f
JB
3575 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3576 &BTRFS_I(inode)->runtime_flags);
925396ec 3577 atomic_inc(&root->orphan_inodes);
a8c9e576 3578
7b128766
JB
3579 /* if we have links, this was a truncate, lets do that */
3580 if (inode->i_nlink) {
fae7f21c 3581 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3582 iput(inode);
3583 continue;
3584 }
7b128766 3585 nr_truncate++;
f3fe820c
JB
3586
3587 /* 1 for the orphan item deletion. */
3588 trans = btrfs_start_transaction(root, 1);
3589 if (IS_ERR(trans)) {
c69b26b0 3590 iput(inode);
f3fe820c
JB
3591 ret = PTR_ERR(trans);
3592 goto out;
3593 }
73f2e545 3594 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3595 btrfs_end_transaction(trans);
c69b26b0
JB
3596 if (ret) {
3597 iput(inode);
f3fe820c 3598 goto out;
c69b26b0 3599 }
f3fe820c 3600
66b4ffd1 3601 ret = btrfs_truncate(inode);
4a7d0f68 3602 if (ret)
3d6ae7bb 3603 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3604 } else {
3605 nr_unlink++;
3606 }
3607
3608 /* this will do delete_inode and everything for us */
3609 iput(inode);
66b4ffd1
JB
3610 if (ret)
3611 goto out;
7b128766 3612 }
3254c876
MX
3613 /* release the path since we're done with it */
3614 btrfs_release_path(path);
3615
d68fc57b
YZ
3616 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3617
3618 if (root->orphan_block_rsv)
2ff7e61e 3619 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3620 (u64)-1);
3621
27cdeb70
MX
3622 if (root->orphan_block_rsv ||
3623 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3624 trans = btrfs_join_transaction(root);
66b4ffd1 3625 if (!IS_ERR(trans))
3a45bb20 3626 btrfs_end_transaction(trans);
d68fc57b 3627 }
7b128766
JB
3628
3629 if (nr_unlink)
0b246afa 3630 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3631 if (nr_truncate)
0b246afa 3632 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3633
3634out:
3635 if (ret)
0b246afa 3636 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3637 btrfs_free_path(path);
3638 return ret;
7b128766
JB
3639}
3640
46a53cca
CM
3641/*
3642 * very simple check to peek ahead in the leaf looking for xattrs. If we
3643 * don't find any xattrs, we know there can't be any acls.
3644 *
3645 * slot is the slot the inode is in, objectid is the objectid of the inode
3646 */
3647static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3648 int slot, u64 objectid,
3649 int *first_xattr_slot)
46a53cca
CM
3650{
3651 u32 nritems = btrfs_header_nritems(leaf);
3652 struct btrfs_key found_key;
f23b5a59
JB
3653 static u64 xattr_access = 0;
3654 static u64 xattr_default = 0;
46a53cca
CM
3655 int scanned = 0;
3656
f23b5a59 3657 if (!xattr_access) {
97d79299
AG
3658 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3659 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3660 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3661 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3662 }
3663
46a53cca 3664 slot++;
63541927 3665 *first_xattr_slot = -1;
46a53cca
CM
3666 while (slot < nritems) {
3667 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3668
3669 /* we found a different objectid, there must not be acls */
3670 if (found_key.objectid != objectid)
3671 return 0;
3672
3673 /* we found an xattr, assume we've got an acl */
f23b5a59 3674 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3675 if (*first_xattr_slot == -1)
3676 *first_xattr_slot = slot;
f23b5a59
JB
3677 if (found_key.offset == xattr_access ||
3678 found_key.offset == xattr_default)
3679 return 1;
3680 }
46a53cca
CM
3681
3682 /*
3683 * we found a key greater than an xattr key, there can't
3684 * be any acls later on
3685 */
3686 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3687 return 0;
3688
3689 slot++;
3690 scanned++;
3691
3692 /*
3693 * it goes inode, inode backrefs, xattrs, extents,
3694 * so if there are a ton of hard links to an inode there can
3695 * be a lot of backrefs. Don't waste time searching too hard,
3696 * this is just an optimization
3697 */
3698 if (scanned >= 8)
3699 break;
3700 }
3701 /* we hit the end of the leaf before we found an xattr or
3702 * something larger than an xattr. We have to assume the inode
3703 * has acls
3704 */
63541927
FDBM
3705 if (*first_xattr_slot == -1)
3706 *first_xattr_slot = slot;
46a53cca
CM
3707 return 1;
3708}
3709
d352ac68
CM
3710/*
3711 * read an inode from the btree into the in-memory inode
3712 */
67710892 3713static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3714{
0b246afa 3715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3716 struct btrfs_path *path;
5f39d397 3717 struct extent_buffer *leaf;
39279cc3
CM
3718 struct btrfs_inode_item *inode_item;
3719 struct btrfs_root *root = BTRFS_I(inode)->root;
3720 struct btrfs_key location;
67de1176 3721 unsigned long ptr;
46a53cca 3722 int maybe_acls;
618e21d5 3723 u32 rdev;
39279cc3 3724 int ret;
2f7e33d4 3725 bool filled = false;
63541927 3726 int first_xattr_slot;
2f7e33d4
MX
3727
3728 ret = btrfs_fill_inode(inode, &rdev);
3729 if (!ret)
3730 filled = true;
39279cc3
CM
3731
3732 path = btrfs_alloc_path();
67710892
FM
3733 if (!path) {
3734 ret = -ENOMEM;
1748f843 3735 goto make_bad;
67710892 3736 }
1748f843 3737
39279cc3 3738 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3739
39279cc3 3740 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3741 if (ret) {
3742 if (ret > 0)
3743 ret = -ENOENT;
39279cc3 3744 goto make_bad;
67710892 3745 }
39279cc3 3746
5f39d397 3747 leaf = path->nodes[0];
2f7e33d4
MX
3748
3749 if (filled)
67de1176 3750 goto cache_index;
2f7e33d4 3751
5f39d397
CM
3752 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3753 struct btrfs_inode_item);
5f39d397 3754 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3755 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3756 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3757 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3758 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3759
a937b979
DS
3760 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3761 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3762
a937b979
DS
3763 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3764 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3765
a937b979
DS
3766 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3767 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3768
9cc97d64 3769 BTRFS_I(inode)->i_otime.tv_sec =
3770 btrfs_timespec_sec(leaf, &inode_item->otime);
3771 BTRFS_I(inode)->i_otime.tv_nsec =
3772 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3773
a76a3cd4 3774 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3775 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3776 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3777
6e17d30b
YD
3778 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3779 inode->i_generation = BTRFS_I(inode)->generation;
3780 inode->i_rdev = 0;
3781 rdev = btrfs_inode_rdev(leaf, inode_item);
3782
3783 BTRFS_I(inode)->index_cnt = (u64)-1;
3784 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3785
3786cache_index:
5dc562c5
JB
3787 /*
3788 * If we were modified in the current generation and evicted from memory
3789 * and then re-read we need to do a full sync since we don't have any
3790 * idea about which extents were modified before we were evicted from
3791 * cache.
6e17d30b
YD
3792 *
3793 * This is required for both inode re-read from disk and delayed inode
3794 * in delayed_nodes_tree.
5dc562c5 3795 */
0b246afa 3796 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3797 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3798 &BTRFS_I(inode)->runtime_flags);
3799
bde6c242
FM
3800 /*
3801 * We don't persist the id of the transaction where an unlink operation
3802 * against the inode was last made. So here we assume the inode might
3803 * have been evicted, and therefore the exact value of last_unlink_trans
3804 * lost, and set it to last_trans to avoid metadata inconsistencies
3805 * between the inode and its parent if the inode is fsync'ed and the log
3806 * replayed. For example, in the scenario:
3807 *
3808 * touch mydir/foo
3809 * ln mydir/foo mydir/bar
3810 * sync
3811 * unlink mydir/bar
3812 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3813 * xfs_io -c fsync mydir/foo
3814 * <power failure>
3815 * mount fs, triggers fsync log replay
3816 *
3817 * We must make sure that when we fsync our inode foo we also log its
3818 * parent inode, otherwise after log replay the parent still has the
3819 * dentry with the "bar" name but our inode foo has a link count of 1
3820 * and doesn't have an inode ref with the name "bar" anymore.
3821 *
3822 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3823 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3824 * transaction commits on fsync if our inode is a directory, or if our
3825 * inode is not a directory, logging its parent unnecessarily.
3826 */
3827 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3828
67de1176
MX
3829 path->slots[0]++;
3830 if (inode->i_nlink != 1 ||
3831 path->slots[0] >= btrfs_header_nritems(leaf))
3832 goto cache_acl;
3833
3834 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3835 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3836 goto cache_acl;
3837
3838 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3839 if (location.type == BTRFS_INODE_REF_KEY) {
3840 struct btrfs_inode_ref *ref;
3841
3842 ref = (struct btrfs_inode_ref *)ptr;
3843 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3844 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3845 struct btrfs_inode_extref *extref;
3846
3847 extref = (struct btrfs_inode_extref *)ptr;
3848 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3849 extref);
3850 }
2f7e33d4 3851cache_acl:
46a53cca
CM
3852 /*
3853 * try to precache a NULL acl entry for files that don't have
3854 * any xattrs or acls
3855 */
33345d01 3856 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3857 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3858 if (first_xattr_slot != -1) {
3859 path->slots[0] = first_xattr_slot;
3860 ret = btrfs_load_inode_props(inode, path);
3861 if (ret)
0b246afa 3862 btrfs_err(fs_info,
351fd353 3863 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3864 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3865 root->root_key.objectid, ret);
3866 }
3867 btrfs_free_path(path);
3868
72c04902
AV
3869 if (!maybe_acls)
3870 cache_no_acl(inode);
46a53cca 3871
39279cc3 3872 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3873 case S_IFREG:
3874 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3875 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3876 inode->i_fop = &btrfs_file_operations;
3877 inode->i_op = &btrfs_file_inode_operations;
3878 break;
3879 case S_IFDIR:
3880 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3881 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3882 break;
3883 case S_IFLNK:
3884 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3885 inode_nohighmem(inode);
39279cc3
CM
3886 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3887 break;
618e21d5 3888 default:
0279b4cd 3889 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3890 init_special_inode(inode, inode->i_mode, rdev);
3891 break;
39279cc3 3892 }
6cbff00f
CH
3893
3894 btrfs_update_iflags(inode);
67710892 3895 return 0;
39279cc3
CM
3896
3897make_bad:
39279cc3 3898 btrfs_free_path(path);
39279cc3 3899 make_bad_inode(inode);
67710892 3900 return ret;
39279cc3
CM
3901}
3902
d352ac68
CM
3903/*
3904 * given a leaf and an inode, copy the inode fields into the leaf
3905 */
e02119d5
CM
3906static void fill_inode_item(struct btrfs_trans_handle *trans,
3907 struct extent_buffer *leaf,
5f39d397 3908 struct btrfs_inode_item *item,
39279cc3
CM
3909 struct inode *inode)
3910{
51fab693
LB
3911 struct btrfs_map_token token;
3912
3913 btrfs_init_map_token(&token);
5f39d397 3914
51fab693
LB
3915 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3916 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3917 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3918 &token);
3919 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3920 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3921
a937b979 3922 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3923 inode->i_atime.tv_sec, &token);
a937b979 3924 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3925 inode->i_atime.tv_nsec, &token);
5f39d397 3926
a937b979 3927 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3928 inode->i_mtime.tv_sec, &token);
a937b979 3929 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3930 inode->i_mtime.tv_nsec, &token);
5f39d397 3931
a937b979 3932 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3933 inode->i_ctime.tv_sec, &token);
a937b979 3934 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3935 inode->i_ctime.tv_nsec, &token);
5f39d397 3936
9cc97d64 3937 btrfs_set_token_timespec_sec(leaf, &item->otime,
3938 BTRFS_I(inode)->i_otime.tv_sec, &token);
3939 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3940 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3941
51fab693
LB
3942 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3943 &token);
3944 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3945 &token);
3946 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3947 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3948 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3949 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3950 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3951}
3952
d352ac68
CM
3953/*
3954 * copy everything in the in-memory inode into the btree.
3955 */
2115133f 3956static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3957 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3958{
3959 struct btrfs_inode_item *inode_item;
3960 struct btrfs_path *path;
5f39d397 3961 struct extent_buffer *leaf;
39279cc3
CM
3962 int ret;
3963
3964 path = btrfs_alloc_path();
16cdcec7
MX
3965 if (!path)
3966 return -ENOMEM;
3967
b9473439 3968 path->leave_spinning = 1;
16cdcec7
MX
3969 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3970 1);
39279cc3
CM
3971 if (ret) {
3972 if (ret > 0)
3973 ret = -ENOENT;
3974 goto failed;
3975 }
3976
5f39d397
CM
3977 leaf = path->nodes[0];
3978 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3979 struct btrfs_inode_item);
39279cc3 3980
e02119d5 3981 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3982 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3983 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3984 ret = 0;
3985failed:
39279cc3
CM
3986 btrfs_free_path(path);
3987 return ret;
3988}
3989
2115133f
CM
3990/*
3991 * copy everything in the in-memory inode into the btree.
3992 */
3993noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3994 struct btrfs_root *root, struct inode *inode)
3995{
0b246afa 3996 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3997 int ret;
3998
3999 /*
4000 * If the inode is a free space inode, we can deadlock during commit
4001 * if we put it into the delayed code.
4002 *
4003 * The data relocation inode should also be directly updated
4004 * without delay
4005 */
70ddc553 4006 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4007 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4008 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4009 btrfs_update_root_times(trans, root);
4010
2115133f
CM
4011 ret = btrfs_delayed_update_inode(trans, root, inode);
4012 if (!ret)
4013 btrfs_set_inode_last_trans(trans, inode);
4014 return ret;
4015 }
4016
4017 return btrfs_update_inode_item(trans, root, inode);
4018}
4019
be6aef60
JB
4020noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4021 struct btrfs_root *root,
4022 struct inode *inode)
2115133f
CM
4023{
4024 int ret;
4025
4026 ret = btrfs_update_inode(trans, root, inode);
4027 if (ret == -ENOSPC)
4028 return btrfs_update_inode_item(trans, root, inode);
4029 return ret;
4030}
4031
d352ac68
CM
4032/*
4033 * unlink helper that gets used here in inode.c and in the tree logging
4034 * recovery code. It remove a link in a directory with a given name, and
4035 * also drops the back refs in the inode to the directory
4036 */
92986796
AV
4037static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4038 struct btrfs_root *root,
4ec5934e
NB
4039 struct btrfs_inode *dir,
4040 struct btrfs_inode *inode,
92986796 4041 const char *name, int name_len)
39279cc3 4042{
0b246afa 4043 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4044 struct btrfs_path *path;
39279cc3 4045 int ret = 0;
5f39d397 4046 struct extent_buffer *leaf;
39279cc3 4047 struct btrfs_dir_item *di;
5f39d397 4048 struct btrfs_key key;
aec7477b 4049 u64 index;
33345d01
LZ
4050 u64 ino = btrfs_ino(inode);
4051 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4052
4053 path = btrfs_alloc_path();
54aa1f4d
CM
4054 if (!path) {
4055 ret = -ENOMEM;
554233a6 4056 goto out;
54aa1f4d
CM
4057 }
4058
b9473439 4059 path->leave_spinning = 1;
33345d01 4060 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4061 name, name_len, -1);
4062 if (IS_ERR(di)) {
4063 ret = PTR_ERR(di);
4064 goto err;
4065 }
4066 if (!di) {
4067 ret = -ENOENT;
4068 goto err;
4069 }
5f39d397
CM
4070 leaf = path->nodes[0];
4071 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4072 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4073 if (ret)
4074 goto err;
b3b4aa74 4075 btrfs_release_path(path);
39279cc3 4076
67de1176
MX
4077 /*
4078 * If we don't have dir index, we have to get it by looking up
4079 * the inode ref, since we get the inode ref, remove it directly,
4080 * it is unnecessary to do delayed deletion.
4081 *
4082 * But if we have dir index, needn't search inode ref to get it.
4083 * Since the inode ref is close to the inode item, it is better
4084 * that we delay to delete it, and just do this deletion when
4085 * we update the inode item.
4086 */
4ec5934e 4087 if (inode->dir_index) {
67de1176
MX
4088 ret = btrfs_delayed_delete_inode_ref(inode);
4089 if (!ret) {
4ec5934e 4090 index = inode->dir_index;
67de1176
MX
4091 goto skip_backref;
4092 }
4093 }
4094
33345d01
LZ
4095 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4096 dir_ino, &index);
aec7477b 4097 if (ret) {
0b246afa 4098 btrfs_info(fs_info,
c2cf52eb 4099 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4100 name_len, name, ino, dir_ino);
66642832 4101 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4102 goto err;
4103 }
67de1176 4104skip_backref:
2ff7e61e 4105 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4106 if (ret) {
66642832 4107 btrfs_abort_transaction(trans, ret);
39279cc3 4108 goto err;
79787eaa 4109 }
39279cc3 4110
4ec5934e
NB
4111 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4112 dir_ino);
79787eaa 4113 if (ret != 0 && ret != -ENOENT) {
66642832 4114 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4115 goto err;
4116 }
e02119d5 4117
4ec5934e
NB
4118 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4119 index);
6418c961
CM
4120 if (ret == -ENOENT)
4121 ret = 0;
d4e3991b 4122 else if (ret)
66642832 4123 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4124err:
4125 btrfs_free_path(path);
e02119d5
CM
4126 if (ret)
4127 goto out;
4128
6ef06d27 4129 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4130 inode_inc_iversion(&inode->vfs_inode);
4131 inode_inc_iversion(&dir->vfs_inode);
4132 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4133 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4134 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4135out:
39279cc3
CM
4136 return ret;
4137}
4138
92986796
AV
4139int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4140 struct btrfs_root *root,
4ec5934e 4141 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4142 const char *name, int name_len)
4143{
4144 int ret;
4145 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4146 if (!ret) {
4ec5934e
NB
4147 drop_nlink(&inode->vfs_inode);
4148 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4149 }
4150 return ret;
4151}
39279cc3 4152
a22285a6
YZ
4153/*
4154 * helper to start transaction for unlink and rmdir.
4155 *
d52be818
JB
4156 * unlink and rmdir are special in btrfs, they do not always free space, so
4157 * if we cannot make our reservations the normal way try and see if there is
4158 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4159 * allow the unlink to occur.
a22285a6 4160 */
d52be818 4161static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4162{
a22285a6 4163 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4164
e70bea5f
JB
4165 /*
4166 * 1 for the possible orphan item
4167 * 1 for the dir item
4168 * 1 for the dir index
4169 * 1 for the inode ref
e70bea5f
JB
4170 * 1 for the inode
4171 */
8eab77ff 4172 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4173}
4174
4175static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4176{
4177 struct btrfs_root *root = BTRFS_I(dir)->root;
4178 struct btrfs_trans_handle *trans;
2b0143b5 4179 struct inode *inode = d_inode(dentry);
a22285a6 4180 int ret;
a22285a6 4181
d52be818 4182 trans = __unlink_start_trans(dir);
a22285a6
YZ
4183 if (IS_ERR(trans))
4184 return PTR_ERR(trans);
5f39d397 4185
4ec5934e
NB
4186 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4187 0);
12fcfd22 4188
4ec5934e
NB
4189 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4190 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4191 dentry->d_name.len);
b532402e
TI
4192 if (ret)
4193 goto out;
7b128766 4194
a22285a6 4195 if (inode->i_nlink == 0) {
73f2e545 4196 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4197 if (ret)
4198 goto out;
a22285a6 4199 }
7b128766 4200
b532402e 4201out:
3a45bb20 4202 btrfs_end_transaction(trans);
2ff7e61e 4203 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4204 return ret;
4205}
4206
4df27c4d
YZ
4207int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4208 struct btrfs_root *root,
4209 struct inode *dir, u64 objectid,
4210 const char *name, int name_len)
4211{
0b246afa 4212 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4213 struct btrfs_path *path;
4214 struct extent_buffer *leaf;
4215 struct btrfs_dir_item *di;
4216 struct btrfs_key key;
4217 u64 index;
4218 int ret;
4a0cc7ca 4219 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4220
4221 path = btrfs_alloc_path();
4222 if (!path)
4223 return -ENOMEM;
4224
33345d01 4225 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4226 name, name_len, -1);
79787eaa
JM
4227 if (IS_ERR_OR_NULL(di)) {
4228 if (!di)
4229 ret = -ENOENT;
4230 else
4231 ret = PTR_ERR(di);
4232 goto out;
4233 }
4df27c4d
YZ
4234
4235 leaf = path->nodes[0];
4236 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4237 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4238 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4239 if (ret) {
66642832 4240 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4241 goto out;
4242 }
b3b4aa74 4243 btrfs_release_path(path);
4df27c4d 4244
0b246afa
JM
4245 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4246 root->root_key.objectid, dir_ino,
4247 &index, name, name_len);
4df27c4d 4248 if (ret < 0) {
79787eaa 4249 if (ret != -ENOENT) {
66642832 4250 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4251 goto out;
4252 }
33345d01 4253 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4254 name, name_len);
79787eaa
JM
4255 if (IS_ERR_OR_NULL(di)) {
4256 if (!di)
4257 ret = -ENOENT;
4258 else
4259 ret = PTR_ERR(di);
66642832 4260 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4261 goto out;
4262 }
4df27c4d
YZ
4263
4264 leaf = path->nodes[0];
4265 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4266 btrfs_release_path(path);
4df27c4d
YZ
4267 index = key.offset;
4268 }
945d8962 4269 btrfs_release_path(path);
4df27c4d 4270
e67bbbb9 4271 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4272 if (ret) {
66642832 4273 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4274 goto out;
4275 }
4df27c4d 4276
6ef06d27 4277 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4278 inode_inc_iversion(dir);
c2050a45 4279 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4280 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4281 if (ret)
66642832 4282 btrfs_abort_transaction(trans, ret);
79787eaa 4283out:
71d7aed0 4284 btrfs_free_path(path);
79787eaa 4285 return ret;
4df27c4d
YZ
4286}
4287
39279cc3
CM
4288static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4289{
2b0143b5 4290 struct inode *inode = d_inode(dentry);
1832a6d5 4291 int err = 0;
39279cc3 4292 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4293 struct btrfs_trans_handle *trans;
44f714da 4294 u64 last_unlink_trans;
39279cc3 4295
b3ae244e 4296 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4297 return -ENOTEMPTY;
4a0cc7ca 4298 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4299 return -EPERM;
134d4512 4300
d52be818 4301 trans = __unlink_start_trans(dir);
a22285a6 4302 if (IS_ERR(trans))
5df6a9f6 4303 return PTR_ERR(trans);
5df6a9f6 4304
4a0cc7ca 4305 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4306 err = btrfs_unlink_subvol(trans, root, dir,
4307 BTRFS_I(inode)->location.objectid,
4308 dentry->d_name.name,
4309 dentry->d_name.len);
4310 goto out;
4311 }
4312
73f2e545 4313 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4314 if (err)
4df27c4d 4315 goto out;
7b128766 4316
44f714da
FM
4317 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4318
39279cc3 4319 /* now the directory is empty */
4ec5934e
NB
4320 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4321 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4322 dentry->d_name.len);
44f714da 4323 if (!err) {
6ef06d27 4324 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4325 /*
4326 * Propagate the last_unlink_trans value of the deleted dir to
4327 * its parent directory. This is to prevent an unrecoverable
4328 * log tree in the case we do something like this:
4329 * 1) create dir foo
4330 * 2) create snapshot under dir foo
4331 * 3) delete the snapshot
4332 * 4) rmdir foo
4333 * 5) mkdir foo
4334 * 6) fsync foo or some file inside foo
4335 */
4336 if (last_unlink_trans >= trans->transid)
4337 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4338 }
4df27c4d 4339out:
3a45bb20 4340 btrfs_end_transaction(trans);
2ff7e61e 4341 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4342
39279cc3
CM
4343 return err;
4344}
4345
28f75a0e
CM
4346static int truncate_space_check(struct btrfs_trans_handle *trans,
4347 struct btrfs_root *root,
4348 u64 bytes_deleted)
4349{
0b246afa 4350 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4351 int ret;
4352
dc95f7bf
JB
4353 /*
4354 * This is only used to apply pressure to the enospc system, we don't
4355 * intend to use this reservation at all.
4356 */
2ff7e61e 4357 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4358 bytes_deleted *= fs_info->nodesize;
4359 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4360 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4361 if (!ret) {
0b246afa 4362 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4363 trans->transid,
4364 bytes_deleted, 1);
28f75a0e 4365 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4366 }
28f75a0e
CM
4367 return ret;
4368
4369}
4370
0305cd5f
FM
4371static int truncate_inline_extent(struct inode *inode,
4372 struct btrfs_path *path,
4373 struct btrfs_key *found_key,
4374 const u64 item_end,
4375 const u64 new_size)
4376{
4377 struct extent_buffer *leaf = path->nodes[0];
4378 int slot = path->slots[0];
4379 struct btrfs_file_extent_item *fi;
4380 u32 size = (u32)(new_size - found_key->offset);
4381 struct btrfs_root *root = BTRFS_I(inode)->root;
4382
4383 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4384
4385 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4386 loff_t offset = new_size;
09cbfeaf 4387 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4388
4389 /*
4390 * Zero out the remaining of the last page of our inline extent,
4391 * instead of directly truncating our inline extent here - that
4392 * would be much more complex (decompressing all the data, then
4393 * compressing the truncated data, which might be bigger than
4394 * the size of the inline extent, resize the extent, etc).
4395 * We release the path because to get the page we might need to
4396 * read the extent item from disk (data not in the page cache).
4397 */
4398 btrfs_release_path(path);
9703fefe
CR
4399 return btrfs_truncate_block(inode, offset, page_end - offset,
4400 0);
0305cd5f
FM
4401 }
4402
4403 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4404 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4405 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4406
4407 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4408 inode_sub_bytes(inode, item_end + 1 - new_size);
4409
4410 return 0;
4411}
4412
39279cc3
CM
4413/*
4414 * this can truncate away extent items, csum items and directory items.
4415 * It starts at a high offset and removes keys until it can't find
d352ac68 4416 * any higher than new_size
39279cc3
CM
4417 *
4418 * csum items that cross the new i_size are truncated to the new size
4419 * as well.
7b128766
JB
4420 *
4421 * min_type is the minimum key type to truncate down to. If set to 0, this
4422 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4423 */
8082510e
YZ
4424int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4425 struct btrfs_root *root,
4426 struct inode *inode,
4427 u64 new_size, u32 min_type)
39279cc3 4428{
0b246afa 4429 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4430 struct btrfs_path *path;
5f39d397 4431 struct extent_buffer *leaf;
39279cc3 4432 struct btrfs_file_extent_item *fi;
8082510e
YZ
4433 struct btrfs_key key;
4434 struct btrfs_key found_key;
39279cc3 4435 u64 extent_start = 0;
db94535d 4436 u64 extent_num_bytes = 0;
5d4f98a2 4437 u64 extent_offset = 0;
39279cc3 4438 u64 item_end = 0;
c1aa4575 4439 u64 last_size = new_size;
8082510e 4440 u32 found_type = (u8)-1;
39279cc3
CM
4441 int found_extent;
4442 int del_item;
85e21bac
CM
4443 int pending_del_nr = 0;
4444 int pending_del_slot = 0;
179e29e4 4445 int extent_type = -1;
8082510e
YZ
4446 int ret;
4447 int err = 0;
4a0cc7ca 4448 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4449 u64 bytes_deleted = 0;
1262133b
JB
4450 bool be_nice = 0;
4451 bool should_throttle = 0;
28f75a0e 4452 bool should_end = 0;
8082510e
YZ
4453
4454 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4455
28ed1345
CM
4456 /*
4457 * for non-free space inodes and ref cows, we want to back off from
4458 * time to time
4459 */
70ddc553 4460 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4461 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4462 be_nice = 1;
4463
0eb0e19c
MF
4464 path = btrfs_alloc_path();
4465 if (!path)
4466 return -ENOMEM;
e4058b54 4467 path->reada = READA_BACK;
0eb0e19c 4468
5dc562c5
JB
4469 /*
4470 * We want to drop from the next block forward in case this new size is
4471 * not block aligned since we will be keeping the last block of the
4472 * extent just the way it is.
4473 */
27cdeb70 4474 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4475 root == fs_info->tree_root)
dcdbc059 4476 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4477 fs_info->sectorsize),
da17066c 4478 (u64)-1, 0);
8082510e 4479
16cdcec7
MX
4480 /*
4481 * This function is also used to drop the items in the log tree before
4482 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4483 * it is used to drop the loged items. So we shouldn't kill the delayed
4484 * items.
4485 */
4486 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4487 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4488
33345d01 4489 key.objectid = ino;
39279cc3 4490 key.offset = (u64)-1;
5f39d397
CM
4491 key.type = (u8)-1;
4492
85e21bac 4493search_again:
28ed1345
CM
4494 /*
4495 * with a 16K leaf size and 128MB extents, you can actually queue
4496 * up a huge file in a single leaf. Most of the time that
4497 * bytes_deleted is > 0, it will be huge by the time we get here
4498 */
ee22184b 4499 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4500 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4501 err = -EAGAIN;
4502 goto error;
4503 }
4504 }
4505
4506
b9473439 4507 path->leave_spinning = 1;
85e21bac 4508 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4509 if (ret < 0) {
4510 err = ret;
4511 goto out;
4512 }
d397712b 4513
85e21bac 4514 if (ret > 0) {
e02119d5
CM
4515 /* there are no items in the tree for us to truncate, we're
4516 * done
4517 */
8082510e
YZ
4518 if (path->slots[0] == 0)
4519 goto out;
85e21bac
CM
4520 path->slots[0]--;
4521 }
4522
d397712b 4523 while (1) {
39279cc3 4524 fi = NULL;
5f39d397
CM
4525 leaf = path->nodes[0];
4526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4527 found_type = found_key.type;
39279cc3 4528
33345d01 4529 if (found_key.objectid != ino)
39279cc3 4530 break;
5f39d397 4531
85e21bac 4532 if (found_type < min_type)
39279cc3
CM
4533 break;
4534
5f39d397 4535 item_end = found_key.offset;
39279cc3 4536 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4537 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4538 struct btrfs_file_extent_item);
179e29e4
CM
4539 extent_type = btrfs_file_extent_type(leaf, fi);
4540 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4541 item_end +=
db94535d 4542 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4543
4544 trace_btrfs_truncate_show_fi_regular(
4545 BTRFS_I(inode), leaf, fi,
4546 found_key.offset);
179e29e4 4547 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4548 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4549 path->slots[0], fi);
09ed2f16
LB
4550
4551 trace_btrfs_truncate_show_fi_inline(
4552 BTRFS_I(inode), leaf, fi, path->slots[0],
4553 found_key.offset);
39279cc3 4554 }
008630c1 4555 item_end--;
39279cc3 4556 }
8082510e
YZ
4557 if (found_type > min_type) {
4558 del_item = 1;
4559 } else {
76b42abb 4560 if (item_end < new_size)
b888db2b 4561 break;
8082510e
YZ
4562 if (found_key.offset >= new_size)
4563 del_item = 1;
4564 else
4565 del_item = 0;
39279cc3 4566 }
39279cc3 4567 found_extent = 0;
39279cc3 4568 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4569 if (found_type != BTRFS_EXTENT_DATA_KEY)
4570 goto delete;
4571
7f4f6e0a
JB
4572 if (del_item)
4573 last_size = found_key.offset;
4574 else
4575 last_size = new_size;
4576
179e29e4 4577 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4578 u64 num_dec;
db94535d 4579 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4580 if (!del_item) {
db94535d
CM
4581 u64 orig_num_bytes =
4582 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4583 extent_num_bytes = ALIGN(new_size -
4584 found_key.offset,
0b246afa 4585 fs_info->sectorsize);
db94535d
CM
4586 btrfs_set_file_extent_num_bytes(leaf, fi,
4587 extent_num_bytes);
4588 num_dec = (orig_num_bytes -
9069218d 4589 extent_num_bytes);
27cdeb70
MX
4590 if (test_bit(BTRFS_ROOT_REF_COWS,
4591 &root->state) &&
4592 extent_start != 0)
a76a3cd4 4593 inode_sub_bytes(inode, num_dec);
5f39d397 4594 btrfs_mark_buffer_dirty(leaf);
39279cc3 4595 } else {
db94535d
CM
4596 extent_num_bytes =
4597 btrfs_file_extent_disk_num_bytes(leaf,
4598 fi);
5d4f98a2
YZ
4599 extent_offset = found_key.offset -
4600 btrfs_file_extent_offset(leaf, fi);
4601
39279cc3 4602 /* FIXME blocksize != 4096 */
9069218d 4603 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4604 if (extent_start != 0) {
4605 found_extent = 1;
27cdeb70
MX
4606 if (test_bit(BTRFS_ROOT_REF_COWS,
4607 &root->state))
a76a3cd4 4608 inode_sub_bytes(inode, num_dec);
e02119d5 4609 }
39279cc3 4610 }
9069218d 4611 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4612 /*
4613 * we can't truncate inline items that have had
4614 * special encodings
4615 */
4616 if (!del_item &&
c8b97818
CM
4617 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4618 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4619
4620 /*
0305cd5f
FM
4621 * Need to release path in order to truncate a
4622 * compressed extent. So delete any accumulated
4623 * extent items so far.
514ac8ad 4624 */
0305cd5f
FM
4625 if (btrfs_file_extent_compression(leaf, fi) !=
4626 BTRFS_COMPRESS_NONE && pending_del_nr) {
4627 err = btrfs_del_items(trans, root, path,
4628 pending_del_slot,
4629 pending_del_nr);
4630 if (err) {
4631 btrfs_abort_transaction(trans,
0305cd5f
FM
4632 err);
4633 goto error;
4634 }
4635 pending_del_nr = 0;
4636 }
4637
4638 err = truncate_inline_extent(inode, path,
4639 &found_key,
4640 item_end,
4641 new_size);
4642 if (err) {
66642832 4643 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4644 goto error;
4645 }
27cdeb70
MX
4646 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4647 &root->state)) {
0305cd5f 4648 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4649 }
39279cc3 4650 }
179e29e4 4651delete:
39279cc3 4652 if (del_item) {
85e21bac
CM
4653 if (!pending_del_nr) {
4654 /* no pending yet, add ourselves */
4655 pending_del_slot = path->slots[0];
4656 pending_del_nr = 1;
4657 } else if (pending_del_nr &&
4658 path->slots[0] + 1 == pending_del_slot) {
4659 /* hop on the pending chunk */
4660 pending_del_nr++;
4661 pending_del_slot = path->slots[0];
4662 } else {
d397712b 4663 BUG();
85e21bac 4664 }
39279cc3
CM
4665 } else {
4666 break;
4667 }
28f75a0e
CM
4668 should_throttle = 0;
4669
27cdeb70
MX
4670 if (found_extent &&
4671 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4672 root == fs_info->tree_root)) {
b9473439 4673 btrfs_set_path_blocking(path);
28ed1345 4674 bytes_deleted += extent_num_bytes;
2ff7e61e 4675 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4676 extent_num_bytes, 0,
4677 btrfs_header_owner(leaf),
b06c4bf5 4678 ino, extent_offset);
39279cc3 4679 BUG_ON(ret);
2ff7e61e
JM
4680 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4681 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4682 trans->delayed_ref_updates * 2,
4683 trans->transid, 0);
28f75a0e
CM
4684 if (be_nice) {
4685 if (truncate_space_check(trans, root,
4686 extent_num_bytes)) {
4687 should_end = 1;
4688 }
4689 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4690 fs_info))
28f75a0e 4691 should_throttle = 1;
28f75a0e 4692 }
39279cc3 4693 }
85e21bac 4694
8082510e
YZ
4695 if (found_type == BTRFS_INODE_ITEM_KEY)
4696 break;
4697
4698 if (path->slots[0] == 0 ||
1262133b 4699 path->slots[0] != pending_del_slot ||
28f75a0e 4700 should_throttle || should_end) {
8082510e
YZ
4701 if (pending_del_nr) {
4702 ret = btrfs_del_items(trans, root, path,
4703 pending_del_slot,
4704 pending_del_nr);
79787eaa 4705 if (ret) {
66642832 4706 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4707 goto error;
4708 }
8082510e
YZ
4709 pending_del_nr = 0;
4710 }
b3b4aa74 4711 btrfs_release_path(path);
28f75a0e 4712 if (should_throttle) {
1262133b
JB
4713 unsigned long updates = trans->delayed_ref_updates;
4714 if (updates) {
4715 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4716 ret = btrfs_run_delayed_refs(trans,
4717 fs_info,
4718 updates * 2);
1262133b
JB
4719 if (ret && !err)
4720 err = ret;
4721 }
4722 }
28f75a0e
CM
4723 /*
4724 * if we failed to refill our space rsv, bail out
4725 * and let the transaction restart
4726 */
4727 if (should_end) {
4728 err = -EAGAIN;
4729 goto error;
4730 }
85e21bac 4731 goto search_again;
8082510e
YZ
4732 } else {
4733 path->slots[0]--;
85e21bac 4734 }
39279cc3 4735 }
8082510e 4736out:
85e21bac
CM
4737 if (pending_del_nr) {
4738 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4739 pending_del_nr);
79787eaa 4740 if (ret)
66642832 4741 btrfs_abort_transaction(trans, ret);
85e21bac 4742 }
79787eaa 4743error:
76b42abb
FM
4744 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4745 ASSERT(last_size >= new_size);
4746 if (!err && last_size > new_size)
4747 last_size = new_size;
7f4f6e0a 4748 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4749 }
28ed1345 4750
39279cc3 4751 btrfs_free_path(path);
28ed1345 4752
ee22184b 4753 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4754 unsigned long updates = trans->delayed_ref_updates;
4755 if (updates) {
4756 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4757 ret = btrfs_run_delayed_refs(trans, fs_info,
4758 updates * 2);
28ed1345
CM
4759 if (ret && !err)
4760 err = ret;
4761 }
4762 }
8082510e 4763 return err;
39279cc3
CM
4764}
4765
4766/*
9703fefe 4767 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4768 * @inode - inode that we're zeroing
4769 * @from - the offset to start zeroing
4770 * @len - the length to zero, 0 to zero the entire range respective to the
4771 * offset
4772 * @front - zero up to the offset instead of from the offset on
4773 *
9703fefe 4774 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4775 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4776 */
9703fefe 4777int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4778 int front)
39279cc3 4779{
0b246afa 4780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4781 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4783 struct btrfs_ordered_extent *ordered;
2ac55d41 4784 struct extent_state *cached_state = NULL;
364ecf36 4785 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4786 char *kaddr;
0b246afa 4787 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4788 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4789 unsigned offset = from & (blocksize - 1);
39279cc3 4790 struct page *page;
3b16a4e3 4791 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4792 int ret = 0;
9703fefe
CR
4793 u64 block_start;
4794 u64 block_end;
39279cc3 4795
2aaa6655
JB
4796 if ((offset & (blocksize - 1)) == 0 &&
4797 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4798 goto out;
9703fefe 4799
364ecf36 4800 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
9703fefe 4801 round_down(from, blocksize), blocksize);
5d5e103a
JB
4802 if (ret)
4803 goto out;
39279cc3 4804
211c17f5 4805again:
3b16a4e3 4806 page = find_or_create_page(mapping, index, mask);
5d5e103a 4807 if (!page) {
bc42bda2 4808 btrfs_delalloc_release_space(inode, data_reserved,
9703fefe
CR
4809 round_down(from, blocksize),
4810 blocksize);
ac6a2b36 4811 ret = -ENOMEM;
39279cc3 4812 goto out;
5d5e103a 4813 }
e6dcd2dc 4814
9703fefe
CR
4815 block_start = round_down(from, blocksize);
4816 block_end = block_start + blocksize - 1;
e6dcd2dc 4817
39279cc3 4818 if (!PageUptodate(page)) {
9ebefb18 4819 ret = btrfs_readpage(NULL, page);
39279cc3 4820 lock_page(page);
211c17f5
CM
4821 if (page->mapping != mapping) {
4822 unlock_page(page);
09cbfeaf 4823 put_page(page);
211c17f5
CM
4824 goto again;
4825 }
39279cc3
CM
4826 if (!PageUptodate(page)) {
4827 ret = -EIO;
89642229 4828 goto out_unlock;
39279cc3
CM
4829 }
4830 }
211c17f5 4831 wait_on_page_writeback(page);
e6dcd2dc 4832
9703fefe 4833 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4834 set_page_extent_mapped(page);
4835
9703fefe 4836 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4837 if (ordered) {
9703fefe 4838 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4839 &cached_state, GFP_NOFS);
e6dcd2dc 4840 unlock_page(page);
09cbfeaf 4841 put_page(page);
eb84ae03 4842 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4843 btrfs_put_ordered_extent(ordered);
4844 goto again;
4845 }
4846
9703fefe 4847 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4848 EXTENT_DIRTY | EXTENT_DELALLOC |
4849 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4850 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4851
9703fefe 4852 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4853 &cached_state, 0);
9ed74f2d 4854 if (ret) {
9703fefe 4855 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4856 &cached_state, GFP_NOFS);
9ed74f2d
JB
4857 goto out_unlock;
4858 }
4859
9703fefe 4860 if (offset != blocksize) {
2aaa6655 4861 if (!len)
9703fefe 4862 len = blocksize - offset;
e6dcd2dc 4863 kaddr = kmap(page);
2aaa6655 4864 if (front)
9703fefe
CR
4865 memset(kaddr + (block_start - page_offset(page)),
4866 0, offset);
2aaa6655 4867 else
9703fefe
CR
4868 memset(kaddr + (block_start - page_offset(page)) + offset,
4869 0, len);
e6dcd2dc
CM
4870 flush_dcache_page(page);
4871 kunmap(page);
4872 }
247e743c 4873 ClearPageChecked(page);
e6dcd2dc 4874 set_page_dirty(page);
9703fefe 4875 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4876 GFP_NOFS);
39279cc3 4877
89642229 4878out_unlock:
5d5e103a 4879 if (ret)
bc42bda2 4880 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4881 blocksize);
39279cc3 4882 unlock_page(page);
09cbfeaf 4883 put_page(page);
39279cc3 4884out:
364ecf36 4885 extent_changeset_free(data_reserved);
39279cc3
CM
4886 return ret;
4887}
4888
16e7549f
JB
4889static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4890 u64 offset, u64 len)
4891{
0b246afa 4892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4893 struct btrfs_trans_handle *trans;
4894 int ret;
4895
4896 /*
4897 * Still need to make sure the inode looks like it's been updated so
4898 * that any holes get logged if we fsync.
4899 */
0b246afa
JM
4900 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4901 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4902 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4903 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4904 return 0;
4905 }
4906
4907 /*
4908 * 1 - for the one we're dropping
4909 * 1 - for the one we're adding
4910 * 1 - for updating the inode.
4911 */
4912 trans = btrfs_start_transaction(root, 3);
4913 if (IS_ERR(trans))
4914 return PTR_ERR(trans);
4915
4916 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4917 if (ret) {
66642832 4918 btrfs_abort_transaction(trans, ret);
3a45bb20 4919 btrfs_end_transaction(trans);
16e7549f
JB
4920 return ret;
4921 }
4922
f85b7379
DS
4923 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4924 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4925 if (ret)
66642832 4926 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4927 else
4928 btrfs_update_inode(trans, root, inode);
3a45bb20 4929 btrfs_end_transaction(trans);
16e7549f
JB
4930 return ret;
4931}
4932
695a0d0d
JB
4933/*
4934 * This function puts in dummy file extents for the area we're creating a hole
4935 * for. So if we are truncating this file to a larger size we need to insert
4936 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4937 * the range between oldsize and size
4938 */
a41ad394 4939int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4940{
0b246afa 4941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4942 struct btrfs_root *root = BTRFS_I(inode)->root;
4943 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4944 struct extent_map *em = NULL;
2ac55d41 4945 struct extent_state *cached_state = NULL;
5dc562c5 4946 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4947 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4948 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4949 u64 last_byte;
4950 u64 cur_offset;
4951 u64 hole_size;
9ed74f2d 4952 int err = 0;
39279cc3 4953
a71754fc 4954 /*
9703fefe
CR
4955 * If our size started in the middle of a block we need to zero out the
4956 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4957 * expose stale data.
4958 */
9703fefe 4959 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4960 if (err)
4961 return err;
4962
9036c102
YZ
4963 if (size <= hole_start)
4964 return 0;
4965
9036c102
YZ
4966 while (1) {
4967 struct btrfs_ordered_extent *ordered;
fa7c1494 4968
ff13db41 4969 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4970 &cached_state);
a776c6fa 4971 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4972 block_end - hole_start);
9036c102
YZ
4973 if (!ordered)
4974 break;
2ac55d41
JB
4975 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4976 &cached_state, GFP_NOFS);
fa7c1494 4977 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4978 btrfs_put_ordered_extent(ordered);
4979 }
39279cc3 4980
9036c102
YZ
4981 cur_offset = hole_start;
4982 while (1) {
fc4f21b1 4983 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4984 block_end - cur_offset, 0);
79787eaa
JM
4985 if (IS_ERR(em)) {
4986 err = PTR_ERR(em);
f2767956 4987 em = NULL;
79787eaa
JM
4988 break;
4989 }
9036c102 4990 last_byte = min(extent_map_end(em), block_end);
0b246afa 4991 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4992 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4993 struct extent_map *hole_em;
9036c102 4994 hole_size = last_byte - cur_offset;
9ed74f2d 4995
16e7549f
JB
4996 err = maybe_insert_hole(root, inode, cur_offset,
4997 hole_size);
4998 if (err)
3893e33b 4999 break;
dcdbc059 5000 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5001 cur_offset + hole_size - 1, 0);
5002 hole_em = alloc_extent_map();
5003 if (!hole_em) {
5004 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5005 &BTRFS_I(inode)->runtime_flags);
5006 goto next;
5007 }
5008 hole_em->start = cur_offset;
5009 hole_em->len = hole_size;
5010 hole_em->orig_start = cur_offset;
8082510e 5011
5dc562c5
JB
5012 hole_em->block_start = EXTENT_MAP_HOLE;
5013 hole_em->block_len = 0;
b4939680 5014 hole_em->orig_block_len = 0;
cc95bef6 5015 hole_em->ram_bytes = hole_size;
0b246afa 5016 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5017 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5018 hole_em->generation = fs_info->generation;
8082510e 5019
5dc562c5
JB
5020 while (1) {
5021 write_lock(&em_tree->lock);
09a2a8f9 5022 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5023 write_unlock(&em_tree->lock);
5024 if (err != -EEXIST)
5025 break;
dcdbc059
NB
5026 btrfs_drop_extent_cache(BTRFS_I(inode),
5027 cur_offset,
5dc562c5
JB
5028 cur_offset +
5029 hole_size - 1, 0);
5030 }
5031 free_extent_map(hole_em);
9036c102 5032 }
16e7549f 5033next:
9036c102 5034 free_extent_map(em);
a22285a6 5035 em = NULL;
9036c102 5036 cur_offset = last_byte;
8082510e 5037 if (cur_offset >= block_end)
9036c102
YZ
5038 break;
5039 }
a22285a6 5040 free_extent_map(em);
2ac55d41
JB
5041 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5042 GFP_NOFS);
9036c102
YZ
5043 return err;
5044}
39279cc3 5045
3972f260 5046static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5047{
f4a2f4c5
MX
5048 struct btrfs_root *root = BTRFS_I(inode)->root;
5049 struct btrfs_trans_handle *trans;
a41ad394 5050 loff_t oldsize = i_size_read(inode);
3972f260
ES
5051 loff_t newsize = attr->ia_size;
5052 int mask = attr->ia_valid;
8082510e
YZ
5053 int ret;
5054
3972f260
ES
5055 /*
5056 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5057 * special case where we need to update the times despite not having
5058 * these flags set. For all other operations the VFS set these flags
5059 * explicitly if it wants a timestamp update.
5060 */
dff6efc3
CH
5061 if (newsize != oldsize) {
5062 inode_inc_iversion(inode);
5063 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5064 inode->i_ctime = inode->i_mtime =
c2050a45 5065 current_time(inode);
dff6efc3 5066 }
3972f260 5067
a41ad394 5068 if (newsize > oldsize) {
9ea24bbe
FM
5069 /*
5070 * Don't do an expanding truncate while snapshoting is ongoing.
5071 * This is to ensure the snapshot captures a fully consistent
5072 * state of this file - if the snapshot captures this expanding
5073 * truncation, it must capture all writes that happened before
5074 * this truncation.
5075 */
0bc19f90 5076 btrfs_wait_for_snapshot_creation(root);
a41ad394 5077 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
5078 if (ret) {
5079 btrfs_end_write_no_snapshoting(root);
8082510e 5080 return ret;
9ea24bbe 5081 }
8082510e 5082
f4a2f4c5 5083 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
5084 if (IS_ERR(trans)) {
5085 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5086 return PTR_ERR(trans);
9ea24bbe 5087 }
f4a2f4c5
MX
5088
5089 i_size_write(inode, newsize);
5090 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5091 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5092 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5093 btrfs_end_write_no_snapshoting(root);
3a45bb20 5094 btrfs_end_transaction(trans);
a41ad394 5095 } else {
8082510e 5096
a41ad394
JB
5097 /*
5098 * We're truncating a file that used to have good data down to
5099 * zero. Make sure it gets into the ordered flush list so that
5100 * any new writes get down to disk quickly.
5101 */
5102 if (newsize == 0)
72ac3c0d
JB
5103 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5104 &BTRFS_I(inode)->runtime_flags);
8082510e 5105
f3fe820c
JB
5106 /*
5107 * 1 for the orphan item we're going to add
5108 * 1 for the orphan item deletion.
5109 */
5110 trans = btrfs_start_transaction(root, 2);
5111 if (IS_ERR(trans))
5112 return PTR_ERR(trans);
5113
5114 /*
5115 * We need to do this in case we fail at _any_ point during the
5116 * actual truncate. Once we do the truncate_setsize we could
5117 * invalidate pages which forces any outstanding ordered io to
5118 * be instantly completed which will give us extents that need
5119 * to be truncated. If we fail to get an orphan inode down we
5120 * could have left over extents that were never meant to live,
01327610 5121 * so we need to guarantee from this point on that everything
f3fe820c
JB
5122 * will be consistent.
5123 */
73f2e545 5124 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5125 btrfs_end_transaction(trans);
f3fe820c
JB
5126 if (ret)
5127 return ret;
5128
a41ad394
JB
5129 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5130 truncate_setsize(inode, newsize);
2e60a51e
MX
5131
5132 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5133 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5134 inode_dio_wait(inode);
0b581701 5135 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5136
a41ad394 5137 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5138 if (ret && inode->i_nlink) {
5139 int err;
5140
19fd2df5
LB
5141 /* To get a stable disk_i_size */
5142 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5143 if (err) {
3d6ae7bb 5144 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5145 return err;
5146 }
5147
7f4f6e0a
JB
5148 /*
5149 * failed to truncate, disk_i_size is only adjusted down
5150 * as we remove extents, so it should represent the true
5151 * size of the inode, so reset the in memory size and
5152 * delete our orphan entry.
5153 */
5154 trans = btrfs_join_transaction(root);
5155 if (IS_ERR(trans)) {
3d6ae7bb 5156 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5157 return ret;
5158 }
5159 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5160 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5161 if (err)
66642832 5162 btrfs_abort_transaction(trans, err);
3a45bb20 5163 btrfs_end_transaction(trans);
7f4f6e0a 5164 }
8082510e
YZ
5165 }
5166
a41ad394 5167 return ret;
8082510e
YZ
5168}
5169
9036c102
YZ
5170static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5171{
2b0143b5 5172 struct inode *inode = d_inode(dentry);
b83cc969 5173 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5174 int err;
39279cc3 5175
b83cc969
LZ
5176 if (btrfs_root_readonly(root))
5177 return -EROFS;
5178
31051c85 5179 err = setattr_prepare(dentry, attr);
9036c102
YZ
5180 if (err)
5181 return err;
2bf5a725 5182
5a3f23d5 5183 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5184 err = btrfs_setsize(inode, attr);
8082510e
YZ
5185 if (err)
5186 return err;
39279cc3 5187 }
9036c102 5188
1025774c
CH
5189 if (attr->ia_valid) {
5190 setattr_copy(inode, attr);
0c4d2d95 5191 inode_inc_iversion(inode);
22c44fe6 5192 err = btrfs_dirty_inode(inode);
1025774c 5193
22c44fe6 5194 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5195 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5196 }
33268eaf 5197
39279cc3
CM
5198 return err;
5199}
61295eb8 5200
131e404a
FDBM
5201/*
5202 * While truncating the inode pages during eviction, we get the VFS calling
5203 * btrfs_invalidatepage() against each page of the inode. This is slow because
5204 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5205 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5206 * extent_state structures over and over, wasting lots of time.
5207 *
5208 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5209 * those expensive operations on a per page basis and do only the ordered io
5210 * finishing, while we release here the extent_map and extent_state structures,
5211 * without the excessive merging and splitting.
5212 */
5213static void evict_inode_truncate_pages(struct inode *inode)
5214{
5215 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5216 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5217 struct rb_node *node;
5218
5219 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5220 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5221
5222 write_lock(&map_tree->lock);
5223 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5224 struct extent_map *em;
5225
5226 node = rb_first(&map_tree->map);
5227 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5228 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5229 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5230 remove_extent_mapping(map_tree, em);
5231 free_extent_map(em);
7064dd5c
FM
5232 if (need_resched()) {
5233 write_unlock(&map_tree->lock);
5234 cond_resched();
5235 write_lock(&map_tree->lock);
5236 }
131e404a
FDBM
5237 }
5238 write_unlock(&map_tree->lock);
5239
6ca07097
FM
5240 /*
5241 * Keep looping until we have no more ranges in the io tree.
5242 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5243 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5244 * still in progress (unlocked the pages in the bio but did not yet
5245 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5246 * ranges can still be locked and eviction started because before
5247 * submitting those bios, which are executed by a separate task (work
5248 * queue kthread), inode references (inode->i_count) were not taken
5249 * (which would be dropped in the end io callback of each bio).
5250 * Therefore here we effectively end up waiting for those bios and
5251 * anyone else holding locked ranges without having bumped the inode's
5252 * reference count - if we don't do it, when they access the inode's
5253 * io_tree to unlock a range it may be too late, leading to an
5254 * use-after-free issue.
5255 */
131e404a
FDBM
5256 spin_lock(&io_tree->lock);
5257 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5258 struct extent_state *state;
5259 struct extent_state *cached_state = NULL;
6ca07097
FM
5260 u64 start;
5261 u64 end;
131e404a
FDBM
5262
5263 node = rb_first(&io_tree->state);
5264 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5265 start = state->start;
5266 end = state->end;
131e404a
FDBM
5267 spin_unlock(&io_tree->lock);
5268
ff13db41 5269 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5270
5271 /*
5272 * If still has DELALLOC flag, the extent didn't reach disk,
5273 * and its reserved space won't be freed by delayed_ref.
5274 * So we need to free its reserved space here.
5275 * (Refer to comment in btrfs_invalidatepage, case 2)
5276 *
5277 * Note, end is the bytenr of last byte, so we need + 1 here.
5278 */
5279 if (state->state & EXTENT_DELALLOC)
bc42bda2 5280 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5281
6ca07097 5282 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5283 EXTENT_LOCKED | EXTENT_DIRTY |
5284 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5285 EXTENT_DEFRAG, 1, 1,
5286 &cached_state, GFP_NOFS);
131e404a 5287
7064dd5c 5288 cond_resched();
131e404a
FDBM
5289 spin_lock(&io_tree->lock);
5290 }
5291 spin_unlock(&io_tree->lock);
5292}
5293
bd555975 5294void btrfs_evict_inode(struct inode *inode)
39279cc3 5295{
0b246afa 5296 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5297 struct btrfs_trans_handle *trans;
5298 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5299 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5300 int steal_from_global = 0;
3d48d981 5301 u64 min_size;
39279cc3
CM
5302 int ret;
5303
1abe9b8a 5304 trace_btrfs_inode_evict(inode);
5305
3d48d981
NB
5306 if (!root) {
5307 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5308 return;
5309 }
5310
0b246afa 5311 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5312
131e404a
FDBM
5313 evict_inode_truncate_pages(inode);
5314
69e9c6c6
SB
5315 if (inode->i_nlink &&
5316 ((btrfs_root_refs(&root->root_item) != 0 &&
5317 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5318 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5319 goto no_delete;
5320
39279cc3 5321 if (is_bad_inode(inode)) {
3d6ae7bb 5322 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5323 goto no_delete;
5324 }
bd555975 5325 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5326 if (!special_file(inode->i_mode))
5327 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5328
7ab7956e 5329 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5330
0b246afa 5331 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5332 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5333 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5334 goto no_delete;
5335 }
5336
76dda93c 5337 if (inode->i_nlink > 0) {
69e9c6c6
SB
5338 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5339 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5340 goto no_delete;
5341 }
5342
aa79021f 5343 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5344 if (ret) {
3d6ae7bb 5345 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5346 goto no_delete;
5347 }
5348
2ff7e61e 5349 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5350 if (!rsv) {
3d6ae7bb 5351 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5352 goto no_delete;
5353 }
4a338542 5354 rsv->size = min_size;
ca7e70f5 5355 rsv->failfast = 1;
0b246afa 5356 global_rsv = &fs_info->global_block_rsv;
4289a667 5357
6ef06d27 5358 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5359
4289a667 5360 /*
8407aa46
MX
5361 * This is a bit simpler than btrfs_truncate since we've already
5362 * reserved our space for our orphan item in the unlink, so we just
5363 * need to reserve some slack space in case we add bytes and update
5364 * inode item when doing the truncate.
4289a667 5365 */
8082510e 5366 while (1) {
08e007d2
MX
5367 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5368 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5369
5370 /*
5371 * Try and steal from the global reserve since we will
5372 * likely not use this space anyway, we want to try as
5373 * hard as possible to get this to work.
5374 */
5375 if (ret)
3bce876f
JB
5376 steal_from_global++;
5377 else
5378 steal_from_global = 0;
5379 ret = 0;
d68fc57b 5380
3bce876f
JB
5381 /*
5382 * steal_from_global == 0: we reserved stuff, hooray!
5383 * steal_from_global == 1: we didn't reserve stuff, boo!
5384 * steal_from_global == 2: we've committed, still not a lot of
5385 * room but maybe we'll have room in the global reserve this
5386 * time.
5387 * steal_from_global == 3: abandon all hope!
5388 */
5389 if (steal_from_global > 2) {
0b246afa
JM
5390 btrfs_warn(fs_info,
5391 "Could not get space for a delete, will truncate on mount %d",
5392 ret);
3d6ae7bb 5393 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5394 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5395 goto no_delete;
d68fc57b 5396 }
7b128766 5397
0e8c36a9 5398 trans = btrfs_join_transaction(root);
4289a667 5399 if (IS_ERR(trans)) {
3d6ae7bb 5400 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5401 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5402 goto no_delete;
d68fc57b 5403 }
7b128766 5404
3bce876f 5405 /*
01327610 5406 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5407 * sure there is room to do it, if not we need to commit and try
5408 * again.
5409 */
5410 if (steal_from_global) {
2ff7e61e 5411 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5412 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5413 min_size, 0);
3bce876f
JB
5414 else
5415 ret = -ENOSPC;
5416 }
5417
5418 /*
5419 * Couldn't steal from the global reserve, we have too much
5420 * pending stuff built up, commit the transaction and try it
5421 * again.
5422 */
5423 if (ret) {
3a45bb20 5424 ret = btrfs_commit_transaction(trans);
3bce876f 5425 if (ret) {
3d6ae7bb 5426 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5427 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5428 goto no_delete;
5429 }
5430 continue;
5431 } else {
5432 steal_from_global = 0;
5433 }
5434
4289a667
JB
5435 trans->block_rsv = rsv;
5436
d68fc57b 5437 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5438 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5439 break;
85e21bac 5440
0b246afa 5441 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5442 btrfs_end_transaction(trans);
8082510e 5443 trans = NULL;
2ff7e61e 5444 btrfs_btree_balance_dirty(fs_info);
8082510e 5445 }
5f39d397 5446
2ff7e61e 5447 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5448
4ef31a45
JB
5449 /*
5450 * Errors here aren't a big deal, it just means we leave orphan items
5451 * in the tree. They will be cleaned up on the next mount.
5452 */
8082510e 5453 if (ret == 0) {
4289a667 5454 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5455 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5456 } else {
3d6ae7bb 5457 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5458 }
54aa1f4d 5459
0b246afa
JM
5460 trans->block_rsv = &fs_info->trans_block_rsv;
5461 if (!(root == fs_info->tree_root ||
581bb050 5462 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5463 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5464
3a45bb20 5465 btrfs_end_transaction(trans);
2ff7e61e 5466 btrfs_btree_balance_dirty(fs_info);
39279cc3 5467no_delete:
f48d1cf5 5468 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5469 clear_inode(inode);
39279cc3
CM
5470}
5471
5472/*
5473 * this returns the key found in the dir entry in the location pointer.
5474 * If no dir entries were found, location->objectid is 0.
5475 */
5476static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5477 struct btrfs_key *location)
5478{
5479 const char *name = dentry->d_name.name;
5480 int namelen = dentry->d_name.len;
5481 struct btrfs_dir_item *di;
5482 struct btrfs_path *path;
5483 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5484 int ret = 0;
39279cc3
CM
5485
5486 path = btrfs_alloc_path();
d8926bb3
MF
5487 if (!path)
5488 return -ENOMEM;
3954401f 5489
f85b7379
DS
5490 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5491 name, namelen, 0);
0d9f7f3e
Y
5492 if (IS_ERR(di))
5493 ret = PTR_ERR(di);
d397712b 5494
c704005d 5495 if (IS_ERR_OR_NULL(di))
3954401f 5496 goto out_err;
d397712b 5497
5f39d397 5498 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5499out:
39279cc3
CM
5500 btrfs_free_path(path);
5501 return ret;
3954401f
CM
5502out_err:
5503 location->objectid = 0;
5504 goto out;
39279cc3
CM
5505}
5506
5507/*
5508 * when we hit a tree root in a directory, the btrfs part of the inode
5509 * needs to be changed to reflect the root directory of the tree root. This
5510 * is kind of like crossing a mount point.
5511 */
2ff7e61e 5512static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5513 struct inode *dir,
5514 struct dentry *dentry,
5515 struct btrfs_key *location,
5516 struct btrfs_root **sub_root)
39279cc3 5517{
4df27c4d
YZ
5518 struct btrfs_path *path;
5519 struct btrfs_root *new_root;
5520 struct btrfs_root_ref *ref;
5521 struct extent_buffer *leaf;
1d4c08e0 5522 struct btrfs_key key;
4df27c4d
YZ
5523 int ret;
5524 int err = 0;
39279cc3 5525
4df27c4d
YZ
5526 path = btrfs_alloc_path();
5527 if (!path) {
5528 err = -ENOMEM;
5529 goto out;
5530 }
39279cc3 5531
4df27c4d 5532 err = -ENOENT;
1d4c08e0
DS
5533 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5534 key.type = BTRFS_ROOT_REF_KEY;
5535 key.offset = location->objectid;
5536
0b246afa 5537 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5538 if (ret) {
5539 if (ret < 0)
5540 err = ret;
5541 goto out;
5542 }
39279cc3 5543
4df27c4d
YZ
5544 leaf = path->nodes[0];
5545 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5546 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5547 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5548 goto out;
39279cc3 5549
4df27c4d
YZ
5550 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5551 (unsigned long)(ref + 1),
5552 dentry->d_name.len);
5553 if (ret)
5554 goto out;
5555
b3b4aa74 5556 btrfs_release_path(path);
4df27c4d 5557
0b246afa 5558 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5559 if (IS_ERR(new_root)) {
5560 err = PTR_ERR(new_root);
5561 goto out;
5562 }
5563
4df27c4d
YZ
5564 *sub_root = new_root;
5565 location->objectid = btrfs_root_dirid(&new_root->root_item);
5566 location->type = BTRFS_INODE_ITEM_KEY;
5567 location->offset = 0;
5568 err = 0;
5569out:
5570 btrfs_free_path(path);
5571 return err;
39279cc3
CM
5572}
5573
5d4f98a2
YZ
5574static void inode_tree_add(struct inode *inode)
5575{
5576 struct btrfs_root *root = BTRFS_I(inode)->root;
5577 struct btrfs_inode *entry;
03e860bd
FNP
5578 struct rb_node **p;
5579 struct rb_node *parent;
cef21937 5580 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5581 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5582
1d3382cb 5583 if (inode_unhashed(inode))
76dda93c 5584 return;
e1409cef 5585 parent = NULL;
5d4f98a2 5586 spin_lock(&root->inode_lock);
e1409cef 5587 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5588 while (*p) {
5589 parent = *p;
5590 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5591
4a0cc7ca 5592 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5593 p = &parent->rb_left;
4a0cc7ca 5594 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5595 p = &parent->rb_right;
5d4f98a2
YZ
5596 else {
5597 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5598 (I_WILL_FREE | I_FREEING)));
cef21937 5599 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5600 RB_CLEAR_NODE(parent);
5601 spin_unlock(&root->inode_lock);
cef21937 5602 return;
5d4f98a2
YZ
5603 }
5604 }
cef21937
FDBM
5605 rb_link_node(new, parent, p);
5606 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5607 spin_unlock(&root->inode_lock);
5608}
5609
5610static void inode_tree_del(struct inode *inode)
5611{
0b246afa 5612 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5613 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5614 int empty = 0;
5d4f98a2 5615
03e860bd 5616 spin_lock(&root->inode_lock);
5d4f98a2 5617 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5618 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5619 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5620 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5621 }
03e860bd 5622 spin_unlock(&root->inode_lock);
76dda93c 5623
69e9c6c6 5624 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5625 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5626 spin_lock(&root->inode_lock);
5627 empty = RB_EMPTY_ROOT(&root->inode_tree);
5628 spin_unlock(&root->inode_lock);
5629 if (empty)
5630 btrfs_add_dead_root(root);
5631 }
5632}
5633
143bede5 5634void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5635{
0b246afa 5636 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5637 struct rb_node *node;
5638 struct rb_node *prev;
5639 struct btrfs_inode *entry;
5640 struct inode *inode;
5641 u64 objectid = 0;
5642
0b246afa 5643 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5644 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5645
5646 spin_lock(&root->inode_lock);
5647again:
5648 node = root->inode_tree.rb_node;
5649 prev = NULL;
5650 while (node) {
5651 prev = node;
5652 entry = rb_entry(node, struct btrfs_inode, rb_node);
5653
4a0cc7ca 5654 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5655 node = node->rb_left;
4a0cc7ca 5656 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5657 node = node->rb_right;
5658 else
5659 break;
5660 }
5661 if (!node) {
5662 while (prev) {
5663 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5664 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5665 node = prev;
5666 break;
5667 }
5668 prev = rb_next(prev);
5669 }
5670 }
5671 while (node) {
5672 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5673 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5674 inode = igrab(&entry->vfs_inode);
5675 if (inode) {
5676 spin_unlock(&root->inode_lock);
5677 if (atomic_read(&inode->i_count) > 1)
5678 d_prune_aliases(inode);
5679 /*
45321ac5 5680 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5681 * the inode cache when its usage count
5682 * hits zero.
5683 */
5684 iput(inode);
5685 cond_resched();
5686 spin_lock(&root->inode_lock);
5687 goto again;
5688 }
5689
5690 if (cond_resched_lock(&root->inode_lock))
5691 goto again;
5692
5693 node = rb_next(node);
5694 }
5695 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5696}
5697
e02119d5
CM
5698static int btrfs_init_locked_inode(struct inode *inode, void *p)
5699{
5700 struct btrfs_iget_args *args = p;
90d3e592
CM
5701 inode->i_ino = args->location->objectid;
5702 memcpy(&BTRFS_I(inode)->location, args->location,
5703 sizeof(*args->location));
e02119d5 5704 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5705 return 0;
5706}
5707
5708static int btrfs_find_actor(struct inode *inode, void *opaque)
5709{
5710 struct btrfs_iget_args *args = opaque;
90d3e592 5711 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5712 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5713}
5714
5d4f98a2 5715static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5716 struct btrfs_key *location,
5d4f98a2 5717 struct btrfs_root *root)
39279cc3
CM
5718{
5719 struct inode *inode;
5720 struct btrfs_iget_args args;
90d3e592 5721 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5722
90d3e592 5723 args.location = location;
39279cc3
CM
5724 args.root = root;
5725
778ba82b 5726 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5727 btrfs_init_locked_inode,
5728 (void *)&args);
5729 return inode;
5730}
5731
1a54ef8c
BR
5732/* Get an inode object given its location and corresponding root.
5733 * Returns in *is_new if the inode was read from disk
5734 */
5735struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5736 struct btrfs_root *root, int *new)
1a54ef8c
BR
5737{
5738 struct inode *inode;
5739
90d3e592 5740 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5741 if (!inode)
5d4f98a2 5742 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5743
5744 if (inode->i_state & I_NEW) {
67710892
FM
5745 int ret;
5746
5747 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5748 if (!is_bad_inode(inode)) {
5749 inode_tree_add(inode);
5750 unlock_new_inode(inode);
5751 if (new)
5752 *new = 1;
5753 } else {
e0b6d65b
ST
5754 unlock_new_inode(inode);
5755 iput(inode);
67710892
FM
5756 ASSERT(ret < 0);
5757 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5758 }
5759 }
5760
1a54ef8c
BR
5761 return inode;
5762}
5763
4df27c4d
YZ
5764static struct inode *new_simple_dir(struct super_block *s,
5765 struct btrfs_key *key,
5766 struct btrfs_root *root)
5767{
5768 struct inode *inode = new_inode(s);
5769
5770 if (!inode)
5771 return ERR_PTR(-ENOMEM);
5772
4df27c4d
YZ
5773 BTRFS_I(inode)->root = root;
5774 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5775 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5776
5777 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5778 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5779 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5780 inode->i_fop = &simple_dir_operations;
5781 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5782 inode->i_mtime = current_time(inode);
9cc97d64 5783 inode->i_atime = inode->i_mtime;
5784 inode->i_ctime = inode->i_mtime;
5785 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5786
5787 return inode;
5788}
5789
3de4586c 5790struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5791{
0b246afa 5792 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5793 struct inode *inode;
4df27c4d 5794 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5795 struct btrfs_root *sub_root = root;
5796 struct btrfs_key location;
76dda93c 5797 int index;
b4aff1f8 5798 int ret = 0;
39279cc3
CM
5799
5800 if (dentry->d_name.len > BTRFS_NAME_LEN)
5801 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5802
39e3c955 5803 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5804 if (ret < 0)
5805 return ERR_PTR(ret);
5f39d397 5806
4df27c4d 5807 if (location.objectid == 0)
5662344b 5808 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5809
5810 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5811 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5812 return inode;
5813 }
5814
5815 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5816
0b246afa 5817 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5818 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5819 &location, &sub_root);
5820 if (ret < 0) {
5821 if (ret != -ENOENT)
5822 inode = ERR_PTR(ret);
5823 else
5824 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5825 } else {
73f73415 5826 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5827 }
0b246afa 5828 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5829
34d19bad 5830 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5831 down_read(&fs_info->cleanup_work_sem);
c71bf099 5832 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5833 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5834 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5835 if (ret) {
5836 iput(inode);
66b4ffd1 5837 inode = ERR_PTR(ret);
01cd3367 5838 }
c71bf099
YZ
5839 }
5840
3de4586c
CM
5841 return inode;
5842}
5843
fe15ce44 5844static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5845{
5846 struct btrfs_root *root;
2b0143b5 5847 struct inode *inode = d_inode(dentry);
76dda93c 5848
848cce0d 5849 if (!inode && !IS_ROOT(dentry))
2b0143b5 5850 inode = d_inode(dentry->d_parent);
76dda93c 5851
848cce0d
LZ
5852 if (inode) {
5853 root = BTRFS_I(inode)->root;
efefb143
YZ
5854 if (btrfs_root_refs(&root->root_item) == 0)
5855 return 1;
848cce0d 5856
4a0cc7ca 5857 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5858 return 1;
efefb143 5859 }
76dda93c
YZ
5860 return 0;
5861}
5862
b4aff1f8
JB
5863static void btrfs_dentry_release(struct dentry *dentry)
5864{
944a4515 5865 kfree(dentry->d_fsdata);
b4aff1f8
JB
5866}
5867
3de4586c 5868static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5869 unsigned int flags)
3de4586c 5870{
5662344b 5871 struct inode *inode;
a66e7cc6 5872
5662344b
TI
5873 inode = btrfs_lookup_dentry(dir, dentry);
5874 if (IS_ERR(inode)) {
5875 if (PTR_ERR(inode) == -ENOENT)
5876 inode = NULL;
5877 else
5878 return ERR_CAST(inode);
5879 }
5880
41d28bca 5881 return d_splice_alias(inode, dentry);
39279cc3
CM
5882}
5883
16cdcec7 5884unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5885 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5886};
5887
9cdda8d3 5888static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5889{
9cdda8d3 5890 struct inode *inode = file_inode(file);
2ff7e61e 5891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5892 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3
CM
5893 struct btrfs_dir_item *di;
5894 struct btrfs_key key;
5f39d397 5895 struct btrfs_key found_key;
39279cc3 5896 struct btrfs_path *path;
16cdcec7
MX
5897 struct list_head ins_list;
5898 struct list_head del_list;
39279cc3 5899 int ret;
5f39d397 5900 struct extent_buffer *leaf;
39279cc3 5901 int slot;
39279cc3
CM
5902 unsigned char d_type;
5903 int over = 0;
5f39d397
CM
5904 char tmp_name[32];
5905 char *name_ptr;
5906 int name_len;
02dbfc99 5907 bool put = false;
c2951f32 5908 struct btrfs_key location;
5f39d397 5909
9cdda8d3
AV
5910 if (!dir_emit_dots(file, ctx))
5911 return 0;
5912
49593bfa 5913 path = btrfs_alloc_path();
16cdcec7
MX
5914 if (!path)
5915 return -ENOMEM;
ff5714cc 5916
e4058b54 5917 path->reada = READA_FORWARD;
49593bfa 5918
c2951f32
JM
5919 INIT_LIST_HEAD(&ins_list);
5920 INIT_LIST_HEAD(&del_list);
5921 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5922
c2951f32 5923 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5924 key.offset = ctx->pos;
4a0cc7ca 5925 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5926
39279cc3
CM
5927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5928 if (ret < 0)
5929 goto err;
49593bfa
DW
5930
5931 while (1) {
5f39d397 5932 leaf = path->nodes[0];
39279cc3 5933 slot = path->slots[0];
b9e03af0
LZ
5934 if (slot >= btrfs_header_nritems(leaf)) {
5935 ret = btrfs_next_leaf(root, path);
5936 if (ret < 0)
5937 goto err;
5938 else if (ret > 0)
5939 break;
5940 continue;
39279cc3 5941 }
3de4586c 5942
5f39d397
CM
5943 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5944
5945 if (found_key.objectid != key.objectid)
39279cc3 5946 break;
c2951f32 5947 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5948 break;
9cdda8d3 5949 if (found_key.offset < ctx->pos)
b9e03af0 5950 goto next;
c2951f32 5951 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5952 goto next;
5f39d397 5953
9cdda8d3 5954 ctx->pos = found_key.offset;
49593bfa 5955
39279cc3 5956 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5957 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5958 goto next;
22a94d44 5959
c2951f32
JM
5960 name_len = btrfs_dir_name_len(leaf, di);
5961 if (name_len <= sizeof(tmp_name)) {
5962 name_ptr = tmp_name;
5963 } else {
5964 name_ptr = kmalloc(name_len, GFP_KERNEL);
5965 if (!name_ptr) {
5966 ret = -ENOMEM;
5967 goto err;
5f39d397 5968 }
c2951f32
JM
5969 }
5970 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5971 name_len);
3de4586c 5972
c2951f32
JM
5973 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5974 btrfs_dir_item_key_to_cpu(leaf, di, &location);
fede766f 5975
c2951f32
JM
5976 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5977 d_type);
5f39d397 5978
c2951f32
JM
5979 if (name_ptr != tmp_name)
5980 kfree(name_ptr);
5f39d397 5981
c2951f32
JM
5982 if (over)
5983 goto nopos;
d2fbb2b5 5984 ctx->pos++;
b9e03af0
LZ
5985next:
5986 path->slots[0]++;
39279cc3 5987 }
49593bfa 5988
d2fbb2b5 5989 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5990 if (ret)
bc4ef759
DS
5991 goto nopos;
5992
db62efbb
ZB
5993 /*
5994 * Stop new entries from being returned after we return the last
5995 * entry.
5996 *
5997 * New directory entries are assigned a strictly increasing
5998 * offset. This means that new entries created during readdir
5999 * are *guaranteed* to be seen in the future by that readdir.
6000 * This has broken buggy programs which operate on names as
6001 * they're returned by readdir. Until we re-use freed offsets
6002 * we have this hack to stop new entries from being returned
6003 * under the assumption that they'll never reach this huge
6004 * offset.
6005 *
6006 * This is being careful not to overflow 32bit loff_t unless the
6007 * last entry requires it because doing so has broken 32bit apps
6008 * in the past.
6009 */
c2951f32
JM
6010 if (ctx->pos >= INT_MAX)
6011 ctx->pos = LLONG_MAX;
6012 else
6013 ctx->pos = INT_MAX;
39279cc3
CM
6014nopos:
6015 ret = 0;
6016err:
02dbfc99
OS
6017 if (put)
6018 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6019 btrfs_free_path(path);
39279cc3
CM
6020 return ret;
6021}
6022
a9185b41 6023int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6024{
6025 struct btrfs_root *root = BTRFS_I(inode)->root;
6026 struct btrfs_trans_handle *trans;
6027 int ret = 0;
0af3d00b 6028 bool nolock = false;
39279cc3 6029
72ac3c0d 6030 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6031 return 0;
6032
70ddc553
NB
6033 if (btrfs_fs_closing(root->fs_info) &&
6034 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6035 nolock = true;
0af3d00b 6036
a9185b41 6037 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6038 if (nolock)
7a7eaa40 6039 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6040 else
7a7eaa40 6041 trans = btrfs_join_transaction(root);
3612b495
TI
6042 if (IS_ERR(trans))
6043 return PTR_ERR(trans);
3a45bb20 6044 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6045 }
6046 return ret;
6047}
6048
6049/*
54aa1f4d 6050 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6051 * inode changes. But, it is most likely to find the inode in cache.
6052 * FIXME, needs more benchmarking...there are no reasons other than performance
6053 * to keep or drop this code.
6054 */
48a3b636 6055static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6056{
2ff7e61e 6057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6058 struct btrfs_root *root = BTRFS_I(inode)->root;
6059 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6060 int ret;
6061
72ac3c0d 6062 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6063 return 0;
39279cc3 6064
7a7eaa40 6065 trans = btrfs_join_transaction(root);
22c44fe6
JB
6066 if (IS_ERR(trans))
6067 return PTR_ERR(trans);
8929ecfa
YZ
6068
6069 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6070 if (ret && ret == -ENOSPC) {
6071 /* whoops, lets try again with the full transaction */
3a45bb20 6072 btrfs_end_transaction(trans);
94b60442 6073 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6074 if (IS_ERR(trans))
6075 return PTR_ERR(trans);
8929ecfa 6076
94b60442 6077 ret = btrfs_update_inode(trans, root, inode);
94b60442 6078 }
3a45bb20 6079 btrfs_end_transaction(trans);
16cdcec7 6080 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6081 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6082
6083 return ret;
6084}
6085
6086/*
6087 * This is a copy of file_update_time. We need this so we can return error on
6088 * ENOSPC for updating the inode in the case of file write and mmap writes.
6089 */
e41f941a
JB
6090static int btrfs_update_time(struct inode *inode, struct timespec *now,
6091 int flags)
22c44fe6 6092{
2bc55652
AB
6093 struct btrfs_root *root = BTRFS_I(inode)->root;
6094
6095 if (btrfs_root_readonly(root))
6096 return -EROFS;
6097
e41f941a 6098 if (flags & S_VERSION)
22c44fe6 6099 inode_inc_iversion(inode);
e41f941a
JB
6100 if (flags & S_CTIME)
6101 inode->i_ctime = *now;
6102 if (flags & S_MTIME)
6103 inode->i_mtime = *now;
6104 if (flags & S_ATIME)
6105 inode->i_atime = *now;
6106 return btrfs_dirty_inode(inode);
39279cc3
CM
6107}
6108
d352ac68
CM
6109/*
6110 * find the highest existing sequence number in a directory
6111 * and then set the in-memory index_cnt variable to reflect
6112 * free sequence numbers
6113 */
4c570655 6114static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6115{
4c570655 6116 struct btrfs_root *root = inode->root;
aec7477b
JB
6117 struct btrfs_key key, found_key;
6118 struct btrfs_path *path;
6119 struct extent_buffer *leaf;
6120 int ret;
6121
4c570655 6122 key.objectid = btrfs_ino(inode);
962a298f 6123 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6124 key.offset = (u64)-1;
6125
6126 path = btrfs_alloc_path();
6127 if (!path)
6128 return -ENOMEM;
6129
6130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6131 if (ret < 0)
6132 goto out;
6133 /* FIXME: we should be able to handle this */
6134 if (ret == 0)
6135 goto out;
6136 ret = 0;
6137
6138 /*
6139 * MAGIC NUMBER EXPLANATION:
6140 * since we search a directory based on f_pos we have to start at 2
6141 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6142 * else has to start at 2
6143 */
6144 if (path->slots[0] == 0) {
4c570655 6145 inode->index_cnt = 2;
aec7477b
JB
6146 goto out;
6147 }
6148
6149 path->slots[0]--;
6150
6151 leaf = path->nodes[0];
6152 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6153
4c570655 6154 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6155 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6156 inode->index_cnt = 2;
aec7477b
JB
6157 goto out;
6158 }
6159
4c570655 6160 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6161out:
6162 btrfs_free_path(path);
6163 return ret;
6164}
6165
d352ac68
CM
6166/*
6167 * helper to find a free sequence number in a given directory. This current
6168 * code is very simple, later versions will do smarter things in the btree
6169 */
877574e2 6170int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6171{
6172 int ret = 0;
6173
877574e2
NB
6174 if (dir->index_cnt == (u64)-1) {
6175 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6176 if (ret) {
6177 ret = btrfs_set_inode_index_count(dir);
6178 if (ret)
6179 return ret;
6180 }
aec7477b
JB
6181 }
6182
877574e2
NB
6183 *index = dir->index_cnt;
6184 dir->index_cnt++;
aec7477b
JB
6185
6186 return ret;
6187}
6188
b0d5d10f
CM
6189static int btrfs_insert_inode_locked(struct inode *inode)
6190{
6191 struct btrfs_iget_args args;
6192 args.location = &BTRFS_I(inode)->location;
6193 args.root = BTRFS_I(inode)->root;
6194
6195 return insert_inode_locked4(inode,
6196 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6197 btrfs_find_actor, &args);
6198}
6199
39279cc3
CM
6200static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6201 struct btrfs_root *root,
aec7477b 6202 struct inode *dir,
9c58309d 6203 const char *name, int name_len,
175a4eb7
AV
6204 u64 ref_objectid, u64 objectid,
6205 umode_t mode, u64 *index)
39279cc3 6206{
0b246afa 6207 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6208 struct inode *inode;
5f39d397 6209 struct btrfs_inode_item *inode_item;
39279cc3 6210 struct btrfs_key *location;
5f39d397 6211 struct btrfs_path *path;
9c58309d
CM
6212 struct btrfs_inode_ref *ref;
6213 struct btrfs_key key[2];
6214 u32 sizes[2];
ef3b9af5 6215 int nitems = name ? 2 : 1;
9c58309d 6216 unsigned long ptr;
39279cc3 6217 int ret;
39279cc3 6218
5f39d397 6219 path = btrfs_alloc_path();
d8926bb3
MF
6220 if (!path)
6221 return ERR_PTR(-ENOMEM);
5f39d397 6222
0b246afa 6223 inode = new_inode(fs_info->sb);
8fb27640
YS
6224 if (!inode) {
6225 btrfs_free_path(path);
39279cc3 6226 return ERR_PTR(-ENOMEM);
8fb27640 6227 }
39279cc3 6228
5762b5c9
FM
6229 /*
6230 * O_TMPFILE, set link count to 0, so that after this point,
6231 * we fill in an inode item with the correct link count.
6232 */
6233 if (!name)
6234 set_nlink(inode, 0);
6235
581bb050
LZ
6236 /*
6237 * we have to initialize this early, so we can reclaim the inode
6238 * number if we fail afterwards in this function.
6239 */
6240 inode->i_ino = objectid;
6241
ef3b9af5 6242 if (dir && name) {
1abe9b8a 6243 trace_btrfs_inode_request(dir);
6244
877574e2 6245 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6246 if (ret) {
8fb27640 6247 btrfs_free_path(path);
09771430 6248 iput(inode);
aec7477b 6249 return ERR_PTR(ret);
09771430 6250 }
ef3b9af5
FM
6251 } else if (dir) {
6252 *index = 0;
aec7477b
JB
6253 }
6254 /*
6255 * index_cnt is ignored for everything but a dir,
6256 * btrfs_get_inode_index_count has an explanation for the magic
6257 * number
6258 */
6259 BTRFS_I(inode)->index_cnt = 2;
67de1176 6260 BTRFS_I(inode)->dir_index = *index;
39279cc3 6261 BTRFS_I(inode)->root = root;
e02119d5 6262 BTRFS_I(inode)->generation = trans->transid;
76195853 6263 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6264
5dc562c5
JB
6265 /*
6266 * We could have gotten an inode number from somebody who was fsynced
6267 * and then removed in this same transaction, so let's just set full
6268 * sync since it will be a full sync anyway and this will blow away the
6269 * old info in the log.
6270 */
6271 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6272
9c58309d 6273 key[0].objectid = objectid;
962a298f 6274 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6275 key[0].offset = 0;
6276
9c58309d 6277 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6278
6279 if (name) {
6280 /*
6281 * Start new inodes with an inode_ref. This is slightly more
6282 * efficient for small numbers of hard links since they will
6283 * be packed into one item. Extended refs will kick in if we
6284 * add more hard links than can fit in the ref item.
6285 */
6286 key[1].objectid = objectid;
962a298f 6287 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6288 key[1].offset = ref_objectid;
6289
6290 sizes[1] = name_len + sizeof(*ref);
6291 }
9c58309d 6292
b0d5d10f
CM
6293 location = &BTRFS_I(inode)->location;
6294 location->objectid = objectid;
6295 location->offset = 0;
962a298f 6296 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6297
6298 ret = btrfs_insert_inode_locked(inode);
6299 if (ret < 0)
6300 goto fail;
6301
b9473439 6302 path->leave_spinning = 1;
ef3b9af5 6303 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6304 if (ret != 0)
b0d5d10f 6305 goto fail_unlock;
5f39d397 6306
ecc11fab 6307 inode_init_owner(inode, dir, mode);
a76a3cd4 6308 inode_set_bytes(inode, 0);
9cc97d64 6309
c2050a45 6310 inode->i_mtime = current_time(inode);
9cc97d64 6311 inode->i_atime = inode->i_mtime;
6312 inode->i_ctime = inode->i_mtime;
6313 BTRFS_I(inode)->i_otime = inode->i_mtime;
6314
5f39d397
CM
6315 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6316 struct btrfs_inode_item);
b159fa28 6317 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6318 sizeof(*inode_item));
e02119d5 6319 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6320
ef3b9af5
FM
6321 if (name) {
6322 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6323 struct btrfs_inode_ref);
6324 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6325 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6326 ptr = (unsigned long)(ref + 1);
6327 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6328 }
9c58309d 6329
5f39d397
CM
6330 btrfs_mark_buffer_dirty(path->nodes[0]);
6331 btrfs_free_path(path);
6332
6cbff00f
CH
6333 btrfs_inherit_iflags(inode, dir);
6334
569254b0 6335 if (S_ISREG(mode)) {
0b246afa 6336 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6337 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6338 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6339 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6340 BTRFS_INODE_NODATASUM;
94272164
CM
6341 }
6342
5d4f98a2 6343 inode_tree_add(inode);
1abe9b8a 6344
6345 trace_btrfs_inode_new(inode);
1973f0fa 6346 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6347
8ea05e3a
AB
6348 btrfs_update_root_times(trans, root);
6349
63541927
FDBM
6350 ret = btrfs_inode_inherit_props(trans, inode, dir);
6351 if (ret)
0b246afa 6352 btrfs_err(fs_info,
63541927 6353 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6354 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6355
39279cc3 6356 return inode;
b0d5d10f
CM
6357
6358fail_unlock:
6359 unlock_new_inode(inode);
5f39d397 6360fail:
ef3b9af5 6361 if (dir && name)
aec7477b 6362 BTRFS_I(dir)->index_cnt--;
5f39d397 6363 btrfs_free_path(path);
09771430 6364 iput(inode);
5f39d397 6365 return ERR_PTR(ret);
39279cc3
CM
6366}
6367
6368static inline u8 btrfs_inode_type(struct inode *inode)
6369{
6370 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6371}
6372
d352ac68
CM
6373/*
6374 * utility function to add 'inode' into 'parent_inode' with
6375 * a give name and a given sequence number.
6376 * if 'add_backref' is true, also insert a backref from the
6377 * inode to the parent directory.
6378 */
e02119d5 6379int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6380 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6381 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6382{
db0a669f 6383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6384 int ret = 0;
39279cc3 6385 struct btrfs_key key;
db0a669f
NB
6386 struct btrfs_root *root = parent_inode->root;
6387 u64 ino = btrfs_ino(inode);
6388 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6389
33345d01 6390 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6391 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6392 } else {
33345d01 6393 key.objectid = ino;
962a298f 6394 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6395 key.offset = 0;
6396 }
6397
33345d01 6398 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6399 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6400 root->root_key.objectid, parent_ino,
6401 index, name, name_len);
4df27c4d 6402 } else if (add_backref) {
33345d01
LZ
6403 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6404 parent_ino, index);
4df27c4d 6405 }
39279cc3 6406
79787eaa
JM
6407 /* Nothing to clean up yet */
6408 if (ret)
6409 return ret;
4df27c4d 6410
79787eaa
JM
6411 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6412 parent_inode, &key,
db0a669f 6413 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6414 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6415 goto fail_dir_item;
6416 else if (ret) {
66642832 6417 btrfs_abort_transaction(trans, ret);
79787eaa 6418 return ret;
39279cc3 6419 }
79787eaa 6420
db0a669f 6421 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6422 name_len * 2);
db0a669f
NB
6423 inode_inc_iversion(&parent_inode->vfs_inode);
6424 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6425 current_time(&parent_inode->vfs_inode);
6426 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6427 if (ret)
66642832 6428 btrfs_abort_transaction(trans, ret);
39279cc3 6429 return ret;
fe66a05a
CM
6430
6431fail_dir_item:
6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6433 u64 local_index;
6434 int err;
0b246afa
JM
6435 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6436 root->root_key.objectid, parent_ino,
6437 &local_index, name, name_len);
fe66a05a
CM
6438
6439 } else if (add_backref) {
6440 u64 local_index;
6441 int err;
6442
6443 err = btrfs_del_inode_ref(trans, root, name, name_len,
6444 ino, parent_ino, &local_index);
6445 }
6446 return ret;
39279cc3
CM
6447}
6448
6449static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6450 struct btrfs_inode *dir, struct dentry *dentry,
6451 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6452{
a1b075d2
JB
6453 int err = btrfs_add_link(trans, dir, inode,
6454 dentry->d_name.name, dentry->d_name.len,
6455 backref, index);
39279cc3
CM
6456 if (err > 0)
6457 err = -EEXIST;
6458 return err;
6459}
6460
618e21d5 6461static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6462 umode_t mode, dev_t rdev)
618e21d5 6463{
2ff7e61e 6464 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6465 struct btrfs_trans_handle *trans;
6466 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6467 struct inode *inode = NULL;
618e21d5
JB
6468 int err;
6469 int drop_inode = 0;
6470 u64 objectid;
00e4e6b3 6471 u64 index = 0;
618e21d5 6472
9ed74f2d
JB
6473 /*
6474 * 2 for inode item and ref
6475 * 2 for dir items
6476 * 1 for xattr if selinux is on
6477 */
a22285a6
YZ
6478 trans = btrfs_start_transaction(root, 5);
6479 if (IS_ERR(trans))
6480 return PTR_ERR(trans);
1832a6d5 6481
581bb050
LZ
6482 err = btrfs_find_free_ino(root, &objectid);
6483 if (err)
6484 goto out_unlock;
6485
aec7477b 6486 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6487 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6488 mode, &index);
7cf96da3
TI
6489 if (IS_ERR(inode)) {
6490 err = PTR_ERR(inode);
618e21d5 6491 goto out_unlock;
7cf96da3 6492 }
618e21d5 6493
ad19db71
CS
6494 /*
6495 * If the active LSM wants to access the inode during
6496 * d_instantiate it needs these. Smack checks to see
6497 * if the filesystem supports xattrs by looking at the
6498 * ops vector.
6499 */
ad19db71 6500 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6501 init_special_inode(inode, inode->i_mode, rdev);
6502
6503 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6504 if (err)
b0d5d10f
CM
6505 goto out_unlock_inode;
6506
cef415af
NB
6507 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6508 0, index);
b0d5d10f
CM
6509 if (err) {
6510 goto out_unlock_inode;
6511 } else {
1b4ab1bb 6512 btrfs_update_inode(trans, root, inode);
b0d5d10f 6513 unlock_new_inode(inode);
08c422c2 6514 d_instantiate(dentry, inode);
618e21d5 6515 }
b0d5d10f 6516
618e21d5 6517out_unlock:
3a45bb20 6518 btrfs_end_transaction(trans);
2ff7e61e
JM
6519 btrfs_balance_delayed_items(fs_info);
6520 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6521 if (drop_inode) {
6522 inode_dec_link_count(inode);
6523 iput(inode);
6524 }
618e21d5 6525 return err;
b0d5d10f
CM
6526
6527out_unlock_inode:
6528 drop_inode = 1;
6529 unlock_new_inode(inode);
6530 goto out_unlock;
6531
618e21d5
JB
6532}
6533
39279cc3 6534static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6535 umode_t mode, bool excl)
39279cc3 6536{
2ff7e61e 6537 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6538 struct btrfs_trans_handle *trans;
6539 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6540 struct inode *inode = NULL;
43baa579 6541 int drop_inode_on_err = 0;
a22285a6 6542 int err;
39279cc3 6543 u64 objectid;
00e4e6b3 6544 u64 index = 0;
39279cc3 6545
9ed74f2d
JB
6546 /*
6547 * 2 for inode item and ref
6548 * 2 for dir items
6549 * 1 for xattr if selinux is on
6550 */
a22285a6
YZ
6551 trans = btrfs_start_transaction(root, 5);
6552 if (IS_ERR(trans))
6553 return PTR_ERR(trans);
9ed74f2d 6554
581bb050
LZ
6555 err = btrfs_find_free_ino(root, &objectid);
6556 if (err)
6557 goto out_unlock;
6558
aec7477b 6559 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6560 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6561 mode, &index);
7cf96da3
TI
6562 if (IS_ERR(inode)) {
6563 err = PTR_ERR(inode);
39279cc3 6564 goto out_unlock;
7cf96da3 6565 }
43baa579 6566 drop_inode_on_err = 1;
ad19db71
CS
6567 /*
6568 * If the active LSM wants to access the inode during
6569 * d_instantiate it needs these. Smack checks to see
6570 * if the filesystem supports xattrs by looking at the
6571 * ops vector.
6572 */
6573 inode->i_fop = &btrfs_file_operations;
6574 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6575 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6576
6577 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6578 if (err)
6579 goto out_unlock_inode;
6580
6581 err = btrfs_update_inode(trans, root, inode);
6582 if (err)
6583 goto out_unlock_inode;
ad19db71 6584
cef415af
NB
6585 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6586 0, index);
39279cc3 6587 if (err)
b0d5d10f 6588 goto out_unlock_inode;
43baa579 6589
43baa579 6590 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6591 unlock_new_inode(inode);
43baa579
FB
6592 d_instantiate(dentry, inode);
6593
39279cc3 6594out_unlock:
3a45bb20 6595 btrfs_end_transaction(trans);
43baa579 6596 if (err && drop_inode_on_err) {
39279cc3
CM
6597 inode_dec_link_count(inode);
6598 iput(inode);
6599 }
2ff7e61e
JM
6600 btrfs_balance_delayed_items(fs_info);
6601 btrfs_btree_balance_dirty(fs_info);
39279cc3 6602 return err;
b0d5d10f
CM
6603
6604out_unlock_inode:
6605 unlock_new_inode(inode);
6606 goto out_unlock;
6607
39279cc3
CM
6608}
6609
6610static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6611 struct dentry *dentry)
6612{
271dba45 6613 struct btrfs_trans_handle *trans = NULL;
39279cc3 6614 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6615 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6617 u64 index;
39279cc3
CM
6618 int err;
6619 int drop_inode = 0;
6620
4a8be425
TH
6621 /* do not allow sys_link's with other subvols of the same device */
6622 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6623 return -EXDEV;
4a8be425 6624
f186373f 6625 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6626 return -EMLINK;
4a8be425 6627
877574e2 6628 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6629 if (err)
6630 goto fail;
6631
a22285a6 6632 /*
7e6b6465 6633 * 2 items for inode and inode ref
a22285a6 6634 * 2 items for dir items
7e6b6465 6635 * 1 item for parent inode
a22285a6 6636 */
7e6b6465 6637 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6638 if (IS_ERR(trans)) {
6639 err = PTR_ERR(trans);
271dba45 6640 trans = NULL;
a22285a6
YZ
6641 goto fail;
6642 }
5f39d397 6643
67de1176
MX
6644 /* There are several dir indexes for this inode, clear the cache. */
6645 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6646 inc_nlink(inode);
0c4d2d95 6647 inode_inc_iversion(inode);
c2050a45 6648 inode->i_ctime = current_time(inode);
7de9c6ee 6649 ihold(inode);
e9976151 6650 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6651
cef415af
NB
6652 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6653 1, index);
5f39d397 6654
a5719521 6655 if (err) {
54aa1f4d 6656 drop_inode = 1;
a5719521 6657 } else {
10d9f309 6658 struct dentry *parent = dentry->d_parent;
a5719521 6659 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6660 if (err)
6661 goto fail;
ef3b9af5
FM
6662 if (inode->i_nlink == 1) {
6663 /*
6664 * If new hard link count is 1, it's a file created
6665 * with open(2) O_TMPFILE flag.
6666 */
3d6ae7bb 6667 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6668 if (err)
6669 goto fail;
6670 }
08c422c2 6671 d_instantiate(dentry, inode);
9ca5fbfb 6672 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6673 }
39279cc3 6674
2ff7e61e 6675 btrfs_balance_delayed_items(fs_info);
1832a6d5 6676fail:
271dba45 6677 if (trans)
3a45bb20 6678 btrfs_end_transaction(trans);
39279cc3
CM
6679 if (drop_inode) {
6680 inode_dec_link_count(inode);
6681 iput(inode);
6682 }
2ff7e61e 6683 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6684 return err;
6685}
6686
18bb1db3 6687static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6688{
2ff7e61e 6689 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6690 struct inode *inode = NULL;
39279cc3
CM
6691 struct btrfs_trans_handle *trans;
6692 struct btrfs_root *root = BTRFS_I(dir)->root;
6693 int err = 0;
6694 int drop_on_err = 0;
b9d86667 6695 u64 objectid = 0;
00e4e6b3 6696 u64 index = 0;
39279cc3 6697
9ed74f2d
JB
6698 /*
6699 * 2 items for inode and ref
6700 * 2 items for dir items
6701 * 1 for xattr if selinux is on
6702 */
a22285a6
YZ
6703 trans = btrfs_start_transaction(root, 5);
6704 if (IS_ERR(trans))
6705 return PTR_ERR(trans);
39279cc3 6706
581bb050
LZ
6707 err = btrfs_find_free_ino(root, &objectid);
6708 if (err)
6709 goto out_fail;
6710
aec7477b 6711 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6712 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6713 S_IFDIR | mode, &index);
39279cc3
CM
6714 if (IS_ERR(inode)) {
6715 err = PTR_ERR(inode);
6716 goto out_fail;
6717 }
5f39d397 6718
39279cc3 6719 drop_on_err = 1;
b0d5d10f
CM
6720 /* these must be set before we unlock the inode */
6721 inode->i_op = &btrfs_dir_inode_operations;
6722 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6723
2a7dba39 6724 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6725 if (err)
b0d5d10f 6726 goto out_fail_inode;
39279cc3 6727
6ef06d27 6728 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6729 err = btrfs_update_inode(trans, root, inode);
6730 if (err)
b0d5d10f 6731 goto out_fail_inode;
5f39d397 6732
db0a669f
NB
6733 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6734 dentry->d_name.name,
6735 dentry->d_name.len, 0, index);
39279cc3 6736 if (err)
b0d5d10f 6737 goto out_fail_inode;
5f39d397 6738
39279cc3 6739 d_instantiate(dentry, inode);
b0d5d10f
CM
6740 /*
6741 * mkdir is special. We're unlocking after we call d_instantiate
6742 * to avoid a race with nfsd calling d_instantiate.
6743 */
6744 unlock_new_inode(inode);
39279cc3 6745 drop_on_err = 0;
39279cc3
CM
6746
6747out_fail:
3a45bb20 6748 btrfs_end_transaction(trans);
c7cfb8a5
WS
6749 if (drop_on_err) {
6750 inode_dec_link_count(inode);
39279cc3 6751 iput(inode);
c7cfb8a5 6752 }
2ff7e61e
JM
6753 btrfs_balance_delayed_items(fs_info);
6754 btrfs_btree_balance_dirty(fs_info);
39279cc3 6755 return err;
b0d5d10f
CM
6756
6757out_fail_inode:
6758 unlock_new_inode(inode);
6759 goto out_fail;
39279cc3
CM
6760}
6761
e6c4efd8
QW
6762/* Find next extent map of a given extent map, caller needs to ensure locks */
6763static struct extent_map *next_extent_map(struct extent_map *em)
6764{
6765 struct rb_node *next;
6766
6767 next = rb_next(&em->rb_node);
6768 if (!next)
6769 return NULL;
6770 return container_of(next, struct extent_map, rb_node);
6771}
6772
6773static struct extent_map *prev_extent_map(struct extent_map *em)
6774{
6775 struct rb_node *prev;
6776
6777 prev = rb_prev(&em->rb_node);
6778 if (!prev)
6779 return NULL;
6780 return container_of(prev, struct extent_map, rb_node);
6781}
6782
d352ac68 6783/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6784 * the existing extent is the nearest extent to map_start,
d352ac68 6785 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6786 * the best fitted new extent into the tree.
d352ac68 6787 */
3b951516
CM
6788static int merge_extent_mapping(struct extent_map_tree *em_tree,
6789 struct extent_map *existing,
e6dcd2dc 6790 struct extent_map *em,
51f395ad 6791 u64 map_start)
3b951516 6792{
e6c4efd8
QW
6793 struct extent_map *prev;
6794 struct extent_map *next;
6795 u64 start;
6796 u64 end;
3b951516 6797 u64 start_diff;
3b951516 6798
e6dcd2dc 6799 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6800
6801 if (existing->start > map_start) {
6802 next = existing;
6803 prev = prev_extent_map(next);
6804 } else {
6805 prev = existing;
6806 next = next_extent_map(prev);
6807 }
6808
6809 start = prev ? extent_map_end(prev) : em->start;
6810 start = max_t(u64, start, em->start);
6811 end = next ? next->start : extent_map_end(em);
6812 end = min_t(u64, end, extent_map_end(em));
6813 start_diff = start - em->start;
6814 em->start = start;
6815 em->len = end - start;
c8b97818
CM
6816 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6817 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6818 em->block_start += start_diff;
c8b97818
CM
6819 em->block_len -= start_diff;
6820 }
09a2a8f9 6821 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6822}
6823
c8b97818 6824static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6825 struct page *page,
c8b97818
CM
6826 size_t pg_offset, u64 extent_offset,
6827 struct btrfs_file_extent_item *item)
6828{
6829 int ret;
6830 struct extent_buffer *leaf = path->nodes[0];
6831 char *tmp;
6832 size_t max_size;
6833 unsigned long inline_size;
6834 unsigned long ptr;
261507a0 6835 int compress_type;
c8b97818
CM
6836
6837 WARN_ON(pg_offset != 0);
261507a0 6838 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6839 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6840 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6841 btrfs_item_nr(path->slots[0]));
c8b97818 6842 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6843 if (!tmp)
6844 return -ENOMEM;
c8b97818
CM
6845 ptr = btrfs_file_extent_inline_start(item);
6846
6847 read_extent_buffer(leaf, tmp, ptr, inline_size);
6848
09cbfeaf 6849 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6850 ret = btrfs_decompress(compress_type, tmp, page,
6851 extent_offset, inline_size, max_size);
e1699d2d
ZB
6852
6853 /*
6854 * decompression code contains a memset to fill in any space between the end
6855 * of the uncompressed data and the end of max_size in case the decompressed
6856 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6857 * the end of an inline extent and the beginning of the next block, so we
6858 * cover that region here.
6859 */
6860
6861 if (max_size + pg_offset < PAGE_SIZE) {
6862 char *map = kmap(page);
6863 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6864 kunmap(page);
6865 }
c8b97818 6866 kfree(tmp);
166ae5a4 6867 return ret;
c8b97818
CM
6868}
6869
d352ac68
CM
6870/*
6871 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6872 * the ugly parts come from merging extents from the disk with the in-ram
6873 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6874 * where the in-ram extents might be locked pending data=ordered completion.
6875 *
6876 * This also copies inline extents directly into the page.
6877 */
fc4f21b1
NB
6878struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6879 struct page *page,
6880 size_t pg_offset, u64 start, u64 len,
6881 int create)
a52d9a80 6882{
fc4f21b1 6883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6884 int ret;
6885 int err = 0;
a52d9a80
CM
6886 u64 extent_start = 0;
6887 u64 extent_end = 0;
fc4f21b1 6888 u64 objectid = btrfs_ino(inode);
a52d9a80 6889 u32 found_type;
f421950f 6890 struct btrfs_path *path = NULL;
fc4f21b1 6891 struct btrfs_root *root = inode->root;
a52d9a80 6892 struct btrfs_file_extent_item *item;
5f39d397
CM
6893 struct extent_buffer *leaf;
6894 struct btrfs_key found_key;
a52d9a80 6895 struct extent_map *em = NULL;
fc4f21b1
NB
6896 struct extent_map_tree *em_tree = &inode->extent_tree;
6897 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6898 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6899 const bool new_inline = !page || create;
a52d9a80 6900
a52d9a80 6901again:
890871be 6902 read_lock(&em_tree->lock);
d1310b2e 6903 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6904 if (em)
0b246afa 6905 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6906 read_unlock(&em_tree->lock);
d1310b2e 6907
a52d9a80 6908 if (em) {
e1c4b745
CM
6909 if (em->start > start || em->start + em->len <= start)
6910 free_extent_map(em);
6911 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6912 free_extent_map(em);
6913 else
6914 goto out;
a52d9a80 6915 }
172ddd60 6916 em = alloc_extent_map();
a52d9a80 6917 if (!em) {
d1310b2e
CM
6918 err = -ENOMEM;
6919 goto out;
a52d9a80 6920 }
0b246afa 6921 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6922 em->start = EXTENT_MAP_HOLE;
445a6944 6923 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6924 em->len = (u64)-1;
c8b97818 6925 em->block_len = (u64)-1;
f421950f
CM
6926
6927 if (!path) {
6928 path = btrfs_alloc_path();
026fd317
JB
6929 if (!path) {
6930 err = -ENOMEM;
6931 goto out;
6932 }
6933 /*
6934 * Chances are we'll be called again, so go ahead and do
6935 * readahead
6936 */
e4058b54 6937 path->reada = READA_FORWARD;
f421950f
CM
6938 }
6939
179e29e4
CM
6940 ret = btrfs_lookup_file_extent(trans, root, path,
6941 objectid, start, trans != NULL);
a52d9a80
CM
6942 if (ret < 0) {
6943 err = ret;
6944 goto out;
6945 }
6946
6947 if (ret != 0) {
6948 if (path->slots[0] == 0)
6949 goto not_found;
6950 path->slots[0]--;
6951 }
6952
5f39d397
CM
6953 leaf = path->nodes[0];
6954 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6955 struct btrfs_file_extent_item);
a52d9a80 6956 /* are we inside the extent that was found? */
5f39d397 6957 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6958 found_type = found_key.type;
5f39d397 6959 if (found_key.objectid != objectid ||
a52d9a80 6960 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6961 /*
6962 * If we backup past the first extent we want to move forward
6963 * and see if there is an extent in front of us, otherwise we'll
6964 * say there is a hole for our whole search range which can
6965 * cause problems.
6966 */
6967 extent_end = start;
6968 goto next;
a52d9a80
CM
6969 }
6970
5f39d397
CM
6971 found_type = btrfs_file_extent_type(leaf, item);
6972 extent_start = found_key.offset;
d899e052
YZ
6973 if (found_type == BTRFS_FILE_EXTENT_REG ||
6974 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6975 extent_end = extent_start +
db94535d 6976 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6977
6978 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6979 extent_start);
9036c102
YZ
6980 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6981 size_t size;
514ac8ad 6982 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6983 extent_end = ALIGN(extent_start + size,
0b246afa 6984 fs_info->sectorsize);
09ed2f16
LB
6985
6986 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6987 path->slots[0],
6988 extent_start);
9036c102 6989 }
25a50341 6990next:
9036c102
YZ
6991 if (start >= extent_end) {
6992 path->slots[0]++;
6993 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6994 ret = btrfs_next_leaf(root, path);
6995 if (ret < 0) {
6996 err = ret;
6997 goto out;
a52d9a80 6998 }
9036c102
YZ
6999 if (ret > 0)
7000 goto not_found;
7001 leaf = path->nodes[0];
a52d9a80 7002 }
9036c102
YZ
7003 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7004 if (found_key.objectid != objectid ||
7005 found_key.type != BTRFS_EXTENT_DATA_KEY)
7006 goto not_found;
7007 if (start + len <= found_key.offset)
7008 goto not_found;
e2eca69d
WS
7009 if (start > found_key.offset)
7010 goto next;
9036c102 7011 em->start = start;
70c8a91c 7012 em->orig_start = start;
9036c102
YZ
7013 em->len = found_key.offset - start;
7014 goto not_found_em;
7015 }
7016
fc4f21b1 7017 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7018 new_inline, em);
7ffbb598 7019
d899e052
YZ
7020 if (found_type == BTRFS_FILE_EXTENT_REG ||
7021 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7022 goto insert;
7023 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7024 unsigned long ptr;
a52d9a80 7025 char *map;
3326d1b0
CM
7026 size_t size;
7027 size_t extent_offset;
7028 size_t copy_size;
a52d9a80 7029
7ffbb598 7030 if (new_inline)
689f9346 7031 goto out;
5f39d397 7032
514ac8ad 7033 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7034 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7035 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7036 size - extent_offset);
3326d1b0 7037 em->start = extent_start + extent_offset;
0b246afa 7038 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7039 em->orig_block_len = em->len;
70c8a91c 7040 em->orig_start = em->start;
689f9346 7041 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7042 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7043 if (btrfs_file_extent_compression(leaf, item) !=
7044 BTRFS_COMPRESS_NONE) {
e40da0e5 7045 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7046 extent_offset, item);
166ae5a4
ZB
7047 if (ret) {
7048 err = ret;
7049 goto out;
7050 }
c8b97818
CM
7051 } else {
7052 map = kmap(page);
7053 read_extent_buffer(leaf, map + pg_offset, ptr,
7054 copy_size);
09cbfeaf 7055 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7056 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7057 PAGE_SIZE - pg_offset -
93c82d57
CM
7058 copy_size);
7059 }
c8b97818
CM
7060 kunmap(page);
7061 }
179e29e4
CM
7062 flush_dcache_page(page);
7063 } else if (create && PageUptodate(page)) {
6bf7e080 7064 BUG();
179e29e4
CM
7065 if (!trans) {
7066 kunmap(page);
7067 free_extent_map(em);
7068 em = NULL;
ff5714cc 7069
b3b4aa74 7070 btrfs_release_path(path);
7a7eaa40 7071 trans = btrfs_join_transaction(root);
ff5714cc 7072
3612b495
TI
7073 if (IS_ERR(trans))
7074 return ERR_CAST(trans);
179e29e4
CM
7075 goto again;
7076 }
c8b97818 7077 map = kmap(page);
70dec807 7078 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7079 copy_size);
c8b97818 7080 kunmap(page);
179e29e4 7081 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7082 }
d1310b2e 7083 set_extent_uptodate(io_tree, em->start,
507903b8 7084 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7085 goto insert;
a52d9a80
CM
7086 }
7087not_found:
7088 em->start = start;
70c8a91c 7089 em->orig_start = start;
d1310b2e 7090 em->len = len;
a52d9a80 7091not_found_em:
5f39d397 7092 em->block_start = EXTENT_MAP_HOLE;
9036c102 7093 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7094insert:
b3b4aa74 7095 btrfs_release_path(path);
d1310b2e 7096 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7097 btrfs_err(fs_info,
5d163e0e
JM
7098 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7099 em->start, em->len, start, len);
a52d9a80
CM
7100 err = -EIO;
7101 goto out;
7102 }
d1310b2e
CM
7103
7104 err = 0;
890871be 7105 write_lock(&em_tree->lock);
09a2a8f9 7106 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7107 /* it is possible that someone inserted the extent into the tree
7108 * while we had the lock dropped. It is also possible that
7109 * an overlapping map exists in the tree
7110 */
a52d9a80 7111 if (ret == -EEXIST) {
3b951516 7112 struct extent_map *existing;
e6dcd2dc
CM
7113
7114 ret = 0;
7115
e6c4efd8
QW
7116 existing = search_extent_mapping(em_tree, start, len);
7117 /*
7118 * existing will always be non-NULL, since there must be
7119 * extent causing the -EEXIST.
7120 */
8dff9c85 7121 if (existing->start == em->start &&
8e2bd3b7 7122 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7123 em->block_start == existing->block_start) {
7124 /*
8e2bd3b7
OS
7125 * The existing extent map already encompasses the
7126 * entire extent map we tried to add.
8dff9c85
CM
7127 */
7128 free_extent_map(em);
7129 em = existing;
7130 err = 0;
7131
7132 } else if (start >= extent_map_end(existing) ||
32be3a1a 7133 start <= existing->start) {
e6c4efd8
QW
7134 /*
7135 * The existing extent map is the one nearest to
7136 * the [start, start + len) range which overlaps
7137 */
7138 err = merge_extent_mapping(em_tree, existing,
7139 em, start);
e1c4b745 7140 free_extent_map(existing);
e6c4efd8 7141 if (err) {
3b951516
CM
7142 free_extent_map(em);
7143 em = NULL;
7144 }
7145 } else {
7146 free_extent_map(em);
7147 em = existing;
e6dcd2dc 7148 err = 0;
a52d9a80 7149 }
a52d9a80 7150 }
890871be 7151 write_unlock(&em_tree->lock);
a52d9a80 7152out:
1abe9b8a 7153
fc4f21b1 7154 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7155
527afb44 7156 btrfs_free_path(path);
a52d9a80 7157 if (trans) {
3a45bb20 7158 ret = btrfs_end_transaction(trans);
d397712b 7159 if (!err)
a52d9a80
CM
7160 err = ret;
7161 }
a52d9a80
CM
7162 if (err) {
7163 free_extent_map(em);
a52d9a80
CM
7164 return ERR_PTR(err);
7165 }
79787eaa 7166 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7167 return em;
7168}
7169
fc4f21b1
NB
7170struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7171 struct page *page,
7172 size_t pg_offset, u64 start, u64 len,
7173 int create)
ec29ed5b
CM
7174{
7175 struct extent_map *em;
7176 struct extent_map *hole_em = NULL;
7177 u64 range_start = start;
7178 u64 end;
7179 u64 found;
7180 u64 found_end;
7181 int err = 0;
7182
7183 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7184 if (IS_ERR(em))
7185 return em;
9986277e
DC
7186 /*
7187 * If our em maps to:
7188 * - a hole or
7189 * - a pre-alloc extent,
7190 * there might actually be delalloc bytes behind it.
7191 */
7192 if (em->block_start != EXTENT_MAP_HOLE &&
7193 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7194 return em;
7195 else
7196 hole_em = em;
ec29ed5b
CM
7197
7198 /* check to see if we've wrapped (len == -1 or similar) */
7199 end = start + len;
7200 if (end < start)
7201 end = (u64)-1;
7202 else
7203 end -= 1;
7204
7205 em = NULL;
7206
7207 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7208 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7209 end, len, EXTENT_DELALLOC, 1);
7210 found_end = range_start + found;
7211 if (found_end < range_start)
7212 found_end = (u64)-1;
7213
7214 /*
7215 * we didn't find anything useful, return
7216 * the original results from get_extent()
7217 */
7218 if (range_start > end || found_end <= start) {
7219 em = hole_em;
7220 hole_em = NULL;
7221 goto out;
7222 }
7223
7224 /* adjust the range_start to make sure it doesn't
7225 * go backwards from the start they passed in
7226 */
67871254 7227 range_start = max(start, range_start);
ec29ed5b
CM
7228 found = found_end - range_start;
7229
7230 if (found > 0) {
7231 u64 hole_start = start;
7232 u64 hole_len = len;
7233
172ddd60 7234 em = alloc_extent_map();
ec29ed5b
CM
7235 if (!em) {
7236 err = -ENOMEM;
7237 goto out;
7238 }
7239 /*
7240 * when btrfs_get_extent can't find anything it
7241 * returns one huge hole
7242 *
7243 * make sure what it found really fits our range, and
7244 * adjust to make sure it is based on the start from
7245 * the caller
7246 */
7247 if (hole_em) {
7248 u64 calc_end = extent_map_end(hole_em);
7249
7250 if (calc_end <= start || (hole_em->start > end)) {
7251 free_extent_map(hole_em);
7252 hole_em = NULL;
7253 } else {
7254 hole_start = max(hole_em->start, start);
7255 hole_len = calc_end - hole_start;
7256 }
7257 }
7258 em->bdev = NULL;
7259 if (hole_em && range_start > hole_start) {
7260 /* our hole starts before our delalloc, so we
7261 * have to return just the parts of the hole
7262 * that go until the delalloc starts
7263 */
7264 em->len = min(hole_len,
7265 range_start - hole_start);
7266 em->start = hole_start;
7267 em->orig_start = hole_start;
7268 /*
7269 * don't adjust block start at all,
7270 * it is fixed at EXTENT_MAP_HOLE
7271 */
7272 em->block_start = hole_em->block_start;
7273 em->block_len = hole_len;
f9e4fb53
LB
7274 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7275 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7276 } else {
7277 em->start = range_start;
7278 em->len = found;
7279 em->orig_start = range_start;
7280 em->block_start = EXTENT_MAP_DELALLOC;
7281 em->block_len = found;
7282 }
7283 } else if (hole_em) {
7284 return hole_em;
7285 }
7286out:
7287
7288 free_extent_map(hole_em);
7289 if (err) {
7290 free_extent_map(em);
7291 return ERR_PTR(err);
7292 }
7293 return em;
7294}
7295
5f9a8a51
FM
7296static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7297 const u64 start,
7298 const u64 len,
7299 const u64 orig_start,
7300 const u64 block_start,
7301 const u64 block_len,
7302 const u64 orig_block_len,
7303 const u64 ram_bytes,
7304 const int type)
7305{
7306 struct extent_map *em = NULL;
7307 int ret;
7308
5f9a8a51 7309 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7310 em = create_io_em(inode, start, len, orig_start,
7311 block_start, block_len, orig_block_len,
7312 ram_bytes,
7313 BTRFS_COMPRESS_NONE, /* compress_type */
7314 type);
5f9a8a51
FM
7315 if (IS_ERR(em))
7316 goto out;
7317 }
7318 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7319 len, block_len, type);
7320 if (ret) {
7321 if (em) {
7322 free_extent_map(em);
dcdbc059 7323 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7324 start + len - 1, 0);
7325 }
7326 em = ERR_PTR(ret);
7327 }
7328 out:
5f9a8a51
FM
7329
7330 return em;
7331}
7332
4b46fce2
JB
7333static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7334 u64 start, u64 len)
7335{
0b246afa 7336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7337 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7338 struct extent_map *em;
4b46fce2
JB
7339 struct btrfs_key ins;
7340 u64 alloc_hint;
7341 int ret;
4b46fce2 7342
4b46fce2 7343 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7344 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7345 0, alloc_hint, &ins, 1, 1);
00361589
JB
7346 if (ret)
7347 return ERR_PTR(ret);
4b46fce2 7348
5f9a8a51
FM
7349 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7350 ins.objectid, ins.offset, ins.offset,
6288d6ea 7351 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7352 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7353 if (IS_ERR(em))
2ff7e61e
JM
7354 btrfs_free_reserved_extent(fs_info, ins.objectid,
7355 ins.offset, 1);
de0ee0ed 7356
4b46fce2
JB
7357 return em;
7358}
7359
46bfbb5c
CM
7360/*
7361 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7362 * block must be cow'd
7363 */
00361589 7364noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7365 u64 *orig_start, u64 *orig_block_len,
7366 u64 *ram_bytes)
46bfbb5c 7367{
2ff7e61e 7368 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7369 struct btrfs_path *path;
7370 int ret;
7371 struct extent_buffer *leaf;
7372 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7373 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7374 struct btrfs_file_extent_item *fi;
7375 struct btrfs_key key;
7376 u64 disk_bytenr;
7377 u64 backref_offset;
7378 u64 extent_end;
7379 u64 num_bytes;
7380 int slot;
7381 int found_type;
7ee9e440 7382 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7383
46bfbb5c
CM
7384 path = btrfs_alloc_path();
7385 if (!path)
7386 return -ENOMEM;
7387
f85b7379
DS
7388 ret = btrfs_lookup_file_extent(NULL, root, path,
7389 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7390 if (ret < 0)
7391 goto out;
7392
7393 slot = path->slots[0];
7394 if (ret == 1) {
7395 if (slot == 0) {
7396 /* can't find the item, must cow */
7397 ret = 0;
7398 goto out;
7399 }
7400 slot--;
7401 }
7402 ret = 0;
7403 leaf = path->nodes[0];
7404 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7405 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7406 key.type != BTRFS_EXTENT_DATA_KEY) {
7407 /* not our file or wrong item type, must cow */
7408 goto out;
7409 }
7410
7411 if (key.offset > offset) {
7412 /* Wrong offset, must cow */
7413 goto out;
7414 }
7415
7416 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7417 found_type = btrfs_file_extent_type(leaf, fi);
7418 if (found_type != BTRFS_FILE_EXTENT_REG &&
7419 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7420 /* not a regular extent, must cow */
7421 goto out;
7422 }
7ee9e440
JB
7423
7424 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7425 goto out;
7426
e77751aa
MX
7427 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7428 if (extent_end <= offset)
7429 goto out;
7430
46bfbb5c 7431 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7432 if (disk_bytenr == 0)
7433 goto out;
7434
7435 if (btrfs_file_extent_compression(leaf, fi) ||
7436 btrfs_file_extent_encryption(leaf, fi) ||
7437 btrfs_file_extent_other_encoding(leaf, fi))
7438 goto out;
7439
46bfbb5c
CM
7440 backref_offset = btrfs_file_extent_offset(leaf, fi);
7441
7ee9e440
JB
7442 if (orig_start) {
7443 *orig_start = key.offset - backref_offset;
7444 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7445 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7446 }
eb384b55 7447
2ff7e61e 7448 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7449 goto out;
7b2b7085
MX
7450
7451 num_bytes = min(offset + *len, extent_end) - offset;
7452 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7453 u64 range_end;
7454
da17066c
JM
7455 range_end = round_up(offset + num_bytes,
7456 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7457 ret = test_range_bit(io_tree, offset, range_end,
7458 EXTENT_DELALLOC, 0, NULL);
7459 if (ret) {
7460 ret = -EAGAIN;
7461 goto out;
7462 }
7463 }
7464
1bda19eb 7465 btrfs_release_path(path);
46bfbb5c
CM
7466
7467 /*
7468 * look for other files referencing this extent, if we
7469 * find any we must cow
7470 */
00361589 7471
e4c3b2dc 7472 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7473 key.offset - backref_offset, disk_bytenr);
00361589
JB
7474 if (ret) {
7475 ret = 0;
7476 goto out;
7477 }
46bfbb5c
CM
7478
7479 /*
7480 * adjust disk_bytenr and num_bytes to cover just the bytes
7481 * in this extent we are about to write. If there
7482 * are any csums in that range we have to cow in order
7483 * to keep the csums correct
7484 */
7485 disk_bytenr += backref_offset;
7486 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7487 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7488 goto out;
46bfbb5c
CM
7489 /*
7490 * all of the above have passed, it is safe to overwrite this extent
7491 * without cow
7492 */
eb384b55 7493 *len = num_bytes;
46bfbb5c
CM
7494 ret = 1;
7495out:
7496 btrfs_free_path(path);
7497 return ret;
7498}
7499
fc4adbff
AG
7500bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7501{
7502 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7503 bool found = false;
fc4adbff
AG
7504 void **pagep = NULL;
7505 struct page *page = NULL;
cc2b702c
DS
7506 unsigned long start_idx;
7507 unsigned long end_idx;
fc4adbff 7508
09cbfeaf 7509 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7510
7511 /*
7512 * end is the last byte in the last page. end == start is legal
7513 */
09cbfeaf 7514 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7515
7516 rcu_read_lock();
7517
7518 /* Most of the code in this while loop is lifted from
7519 * find_get_page. It's been modified to begin searching from a
7520 * page and return just the first page found in that range. If the
7521 * found idx is less than or equal to the end idx then we know that
7522 * a page exists. If no pages are found or if those pages are
7523 * outside of the range then we're fine (yay!) */
7524 while (page == NULL &&
7525 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7526 page = radix_tree_deref_slot(pagep);
7527 if (unlikely(!page))
7528 break;
7529
7530 if (radix_tree_exception(page)) {
809f9016
FM
7531 if (radix_tree_deref_retry(page)) {
7532 page = NULL;
fc4adbff 7533 continue;
809f9016 7534 }
fc4adbff
AG
7535 /*
7536 * Otherwise, shmem/tmpfs must be storing a swap entry
7537 * here as an exceptional entry: so return it without
7538 * attempting to raise page count.
7539 */
6fdef6d4 7540 page = NULL;
fc4adbff
AG
7541 break; /* TODO: Is this relevant for this use case? */
7542 }
7543
91405151
FM
7544 if (!page_cache_get_speculative(page)) {
7545 page = NULL;
fc4adbff 7546 continue;
91405151 7547 }
fc4adbff
AG
7548
7549 /*
7550 * Has the page moved?
7551 * This is part of the lockless pagecache protocol. See
7552 * include/linux/pagemap.h for details.
7553 */
7554 if (unlikely(page != *pagep)) {
09cbfeaf 7555 put_page(page);
fc4adbff
AG
7556 page = NULL;
7557 }
7558 }
7559
7560 if (page) {
7561 if (page->index <= end_idx)
7562 found = true;
09cbfeaf 7563 put_page(page);
fc4adbff
AG
7564 }
7565
7566 rcu_read_unlock();
7567 return found;
7568}
7569
eb838e73
JB
7570static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7571 struct extent_state **cached_state, int writing)
7572{
7573 struct btrfs_ordered_extent *ordered;
7574 int ret = 0;
7575
7576 while (1) {
7577 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7578 cached_state);
eb838e73
JB
7579 /*
7580 * We're concerned with the entire range that we're going to be
01327610 7581 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7582 * extents in this range.
7583 */
a776c6fa 7584 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7585 lockend - lockstart + 1);
7586
7587 /*
7588 * We need to make sure there are no buffered pages in this
7589 * range either, we could have raced between the invalidate in
7590 * generic_file_direct_write and locking the extent. The
7591 * invalidate needs to happen so that reads after a write do not
7592 * get stale data.
7593 */
fc4adbff
AG
7594 if (!ordered &&
7595 (!writing ||
7596 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7597 break;
7598
7599 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7600 cached_state, GFP_NOFS);
7601
7602 if (ordered) {
ade77029
FM
7603 /*
7604 * If we are doing a DIO read and the ordered extent we
7605 * found is for a buffered write, we can not wait for it
7606 * to complete and retry, because if we do so we can
7607 * deadlock with concurrent buffered writes on page
7608 * locks. This happens only if our DIO read covers more
7609 * than one extent map, if at this point has already
7610 * created an ordered extent for a previous extent map
7611 * and locked its range in the inode's io tree, and a
7612 * concurrent write against that previous extent map's
7613 * range and this range started (we unlock the ranges
7614 * in the io tree only when the bios complete and
7615 * buffered writes always lock pages before attempting
7616 * to lock range in the io tree).
7617 */
7618 if (writing ||
7619 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7620 btrfs_start_ordered_extent(inode, ordered, 1);
7621 else
7622 ret = -ENOTBLK;
eb838e73
JB
7623 btrfs_put_ordered_extent(ordered);
7624 } else {
eb838e73 7625 /*
b850ae14
FM
7626 * We could trigger writeback for this range (and wait
7627 * for it to complete) and then invalidate the pages for
7628 * this range (through invalidate_inode_pages2_range()),
7629 * but that can lead us to a deadlock with a concurrent
7630 * call to readpages() (a buffered read or a defrag call
7631 * triggered a readahead) on a page lock due to an
7632 * ordered dio extent we created before but did not have
7633 * yet a corresponding bio submitted (whence it can not
7634 * complete), which makes readpages() wait for that
7635 * ordered extent to complete while holding a lock on
7636 * that page.
eb838e73 7637 */
b850ae14 7638 ret = -ENOTBLK;
eb838e73
JB
7639 }
7640
ade77029
FM
7641 if (ret)
7642 break;
7643
eb838e73
JB
7644 cond_resched();
7645 }
7646
7647 return ret;
7648}
7649
6f9994db
LB
7650/* The callers of this must take lock_extent() */
7651static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7652 u64 orig_start, u64 block_start,
7653 u64 block_len, u64 orig_block_len,
7654 u64 ram_bytes, int compress_type,
7655 int type)
69ffb543
JB
7656{
7657 struct extent_map_tree *em_tree;
7658 struct extent_map *em;
7659 struct btrfs_root *root = BTRFS_I(inode)->root;
7660 int ret;
7661
6f9994db
LB
7662 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7663 type == BTRFS_ORDERED_COMPRESSED ||
7664 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7665 type == BTRFS_ORDERED_REGULAR);
6f9994db 7666
69ffb543
JB
7667 em_tree = &BTRFS_I(inode)->extent_tree;
7668 em = alloc_extent_map();
7669 if (!em)
7670 return ERR_PTR(-ENOMEM);
7671
7672 em->start = start;
7673 em->orig_start = orig_start;
7674 em->len = len;
7675 em->block_len = block_len;
7676 em->block_start = block_start;
7677 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7678 em->orig_block_len = orig_block_len;
cc95bef6 7679 em->ram_bytes = ram_bytes;
70c8a91c 7680 em->generation = -1;
69ffb543 7681 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7682 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7683 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7684 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7685 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7686 em->compress_type = compress_type;
7687 }
69ffb543
JB
7688
7689 do {
dcdbc059 7690 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7691 em->start + em->len - 1, 0);
7692 write_lock(&em_tree->lock);
09a2a8f9 7693 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7694 write_unlock(&em_tree->lock);
6f9994db
LB
7695 /*
7696 * The caller has taken lock_extent(), who could race with us
7697 * to add em?
7698 */
69ffb543
JB
7699 } while (ret == -EEXIST);
7700
7701 if (ret) {
7702 free_extent_map(em);
7703 return ERR_PTR(ret);
7704 }
7705
6f9994db 7706 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7707 return em;
7708}
7709
9c9464cc
FM
7710static void adjust_dio_outstanding_extents(struct inode *inode,
7711 struct btrfs_dio_data *dio_data,
7712 const u64 len)
7713{
823bb20a 7714 unsigned num_extents = count_max_extents(len);
9c9464cc 7715
9c9464cc
FM
7716 /*
7717 * If we have an outstanding_extents count still set then we're
7718 * within our reservation, otherwise we need to adjust our inode
7719 * counter appropriately.
7720 */
c2931667 7721 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7722 dio_data->outstanding_extents -= num_extents;
7723 } else {
c2931667
LB
7724 /*
7725 * If dio write length has been split due to no large enough
7726 * contiguous space, we need to compensate our inode counter
7727 * appropriately.
7728 */
7729 u64 num_needed = num_extents - dio_data->outstanding_extents;
7730
9c9464cc 7731 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7732 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7733 spin_unlock(&BTRFS_I(inode)->lock);
7734 }
7735}
7736
4b46fce2
JB
7737static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7738 struct buffer_head *bh_result, int create)
7739{
0b246afa 7740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7741 struct extent_map *em;
eb838e73 7742 struct extent_state *cached_state = NULL;
50745b0a 7743 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7744 u64 start = iblock << inode->i_blkbits;
eb838e73 7745 u64 lockstart, lockend;
4b46fce2 7746 u64 len = bh_result->b_size;
eb838e73 7747 int unlock_bits = EXTENT_LOCKED;
0934856d 7748 int ret = 0;
eb838e73 7749
172a5049 7750 if (create)
3266789f 7751 unlock_bits |= EXTENT_DIRTY;
172a5049 7752 else
0b246afa 7753 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7754
c329861d
JB
7755 lockstart = start;
7756 lockend = start + len - 1;
7757
e1cbbfa5
JB
7758 if (current->journal_info) {
7759 /*
7760 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7761 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7762 * confused.
7763 */
50745b0a 7764 dio_data = current->journal_info;
e1cbbfa5
JB
7765 current->journal_info = NULL;
7766 }
7767
eb838e73
JB
7768 /*
7769 * If this errors out it's because we couldn't invalidate pagecache for
7770 * this range and we need to fallback to buffered.
7771 */
9c9464cc
FM
7772 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7773 create)) {
7774 ret = -ENOTBLK;
7775 goto err;
7776 }
eb838e73 7777
fc4f21b1 7778 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7779 if (IS_ERR(em)) {
7780 ret = PTR_ERR(em);
7781 goto unlock_err;
7782 }
4b46fce2
JB
7783
7784 /*
7785 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7786 * io. INLINE is special, and we could probably kludge it in here, but
7787 * it's still buffered so for safety lets just fall back to the generic
7788 * buffered path.
7789 *
7790 * For COMPRESSED we _have_ to read the entire extent in so we can
7791 * decompress it, so there will be buffering required no matter what we
7792 * do, so go ahead and fallback to buffered.
7793 *
01327610 7794 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7795 * to buffered IO. Don't blame me, this is the price we pay for using
7796 * the generic code.
7797 */
7798 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7799 em->block_start == EXTENT_MAP_INLINE) {
7800 free_extent_map(em);
eb838e73
JB
7801 ret = -ENOTBLK;
7802 goto unlock_err;
4b46fce2
JB
7803 }
7804
7805 /* Just a good old fashioned hole, return */
7806 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7807 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7808 free_extent_map(em);
eb838e73 7809 goto unlock_err;
4b46fce2
JB
7810 }
7811
7812 /*
7813 * We don't allocate a new extent in the following cases
7814 *
7815 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7816 * existing extent.
7817 * 2) The extent is marked as PREALLOC. We're good to go here and can
7818 * just use the extent.
7819 *
7820 */
46bfbb5c 7821 if (!create) {
eb838e73
JB
7822 len = min(len, em->len - (start - em->start));
7823 lockstart = start + len;
7824 goto unlock;
46bfbb5c 7825 }
4b46fce2
JB
7826
7827 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7828 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7829 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7830 int type;
eb384b55 7831 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7832
7833 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7834 type = BTRFS_ORDERED_PREALLOC;
7835 else
7836 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7837 len = min(len, em->len - (start - em->start));
4b46fce2 7838 block_start = em->block_start + (start - em->start);
46bfbb5c 7839
00361589 7840 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7841 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7842 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7843 struct extent_map *em2;
0b901916 7844
5f9a8a51
FM
7845 em2 = btrfs_create_dio_extent(inode, start, len,
7846 orig_start, block_start,
7847 len, orig_block_len,
7848 ram_bytes, type);
0b246afa 7849 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7850 if (type == BTRFS_ORDERED_PREALLOC) {
7851 free_extent_map(em);
5f9a8a51 7852 em = em2;
69ffb543 7853 }
5f9a8a51
FM
7854 if (em2 && IS_ERR(em2)) {
7855 ret = PTR_ERR(em2);
eb838e73 7856 goto unlock_err;
46bfbb5c 7857 }
18513091
WX
7858 /*
7859 * For inode marked NODATACOW or extent marked PREALLOC,
7860 * use the existing or preallocated extent, so does not
7861 * need to adjust btrfs_space_info's bytes_may_use.
7862 */
7863 btrfs_free_reserved_data_space_noquota(inode,
7864 start, len);
46bfbb5c 7865 goto unlock;
4b46fce2 7866 }
4b46fce2 7867 }
00361589 7868
46bfbb5c
CM
7869 /*
7870 * this will cow the extent, reset the len in case we changed
7871 * it above
7872 */
7873 len = bh_result->b_size;
70c8a91c
JB
7874 free_extent_map(em);
7875 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7876 if (IS_ERR(em)) {
7877 ret = PTR_ERR(em);
7878 goto unlock_err;
7879 }
46bfbb5c
CM
7880 len = min(len, em->len - (start - em->start));
7881unlock:
4b46fce2
JB
7882 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7883 inode->i_blkbits;
46bfbb5c 7884 bh_result->b_size = len;
4b46fce2
JB
7885 bh_result->b_bdev = em->bdev;
7886 set_buffer_mapped(bh_result);
c3473e83
JB
7887 if (create) {
7888 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7889 set_buffer_new(bh_result);
7890
7891 /*
7892 * Need to update the i_size under the extent lock so buffered
7893 * readers will get the updated i_size when we unlock.
7894 */
4aaedfb0 7895 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7896 i_size_write(inode, start + len);
0934856d 7897
9c9464cc 7898 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7899 WARN_ON(dio_data->reserve < len);
7900 dio_data->reserve -= len;
f28a4928 7901 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7902 current->journal_info = dio_data;
c3473e83 7903 }
4b46fce2 7904
eb838e73
JB
7905 /*
7906 * In the case of write we need to clear and unlock the entire range,
7907 * in the case of read we need to unlock only the end area that we
7908 * aren't using if there is any left over space.
7909 */
24c03fa5 7910 if (lockstart < lockend) {
0934856d
MX
7911 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7912 lockend, unlock_bits, 1, 0,
7913 &cached_state, GFP_NOFS);
24c03fa5 7914 } else {
eb838e73 7915 free_extent_state(cached_state);
24c03fa5 7916 }
eb838e73 7917
4b46fce2
JB
7918 free_extent_map(em);
7919
7920 return 0;
eb838e73
JB
7921
7922unlock_err:
eb838e73
JB
7923 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7924 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7925err:
50745b0a 7926 if (dio_data)
7927 current->journal_info = dio_data;
9c9464cc
FM
7928 /*
7929 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7930 * write less data then expected, so that we don't underflow our inode's
7931 * outstanding extents counter.
7932 */
7933 if (create && dio_data)
7934 adjust_dio_outstanding_extents(inode, dio_data, len);
7935
eb838e73 7936 return ret;
4b46fce2
JB
7937}
7938
58efbc9f
OS
7939static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7940 struct bio *bio,
7941 int mirror_num)
8b110e39 7942{
2ff7e61e 7943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7944 blk_status_t ret;
8b110e39 7945
37226b21 7946 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7947
7948 bio_get(bio);
7949
2ff7e61e 7950 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7951 if (ret)
7952 goto err;
7953
2ff7e61e 7954 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7955err:
7956 bio_put(bio);
7957 return ret;
7958}
7959
7960static int btrfs_check_dio_repairable(struct inode *inode,
7961 struct bio *failed_bio,
7962 struct io_failure_record *failrec,
7963 int failed_mirror)
7964{
ab8d0fc4 7965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7966 int num_copies;
7967
ab8d0fc4 7968 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7969 if (num_copies == 1) {
7970 /*
7971 * we only have a single copy of the data, so don't bother with
7972 * all the retry and error correction code that follows. no
7973 * matter what the error is, it is very likely to persist.
7974 */
ab8d0fc4
JM
7975 btrfs_debug(fs_info,
7976 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7977 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7978 return 0;
7979 }
7980
7981 failrec->failed_mirror = failed_mirror;
7982 failrec->this_mirror++;
7983 if (failrec->this_mirror == failed_mirror)
7984 failrec->this_mirror++;
7985
7986 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7987 btrfs_debug(fs_info,
7988 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7989 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7990 return 0;
7991 }
7992
7993 return 1;
7994}
7995
58efbc9f
OS
7996static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7997 struct page *page, unsigned int pgoff,
7998 u64 start, u64 end, int failed_mirror,
7999 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
8000{
8001 struct io_failure_record *failrec;
7870d082
JB
8002 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8003 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
8004 struct bio *bio;
8005 int isector;
70fd7614 8006 int read_mode = 0;
17347cec 8007 int segs;
8b110e39 8008 int ret;
58efbc9f 8009 blk_status_t status;
8b110e39 8010
37226b21 8011 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
8012
8013 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8014 if (ret)
58efbc9f 8015 return errno_to_blk_status(ret);
8b110e39
MX
8016
8017 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8018 failed_mirror);
8019 if (!ret) {
7870d082 8020 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 8021 return BLK_STS_IOERR;
8b110e39
MX
8022 }
8023
17347cec
LB
8024 segs = bio_segments(failed_bio);
8025 if (segs > 1 ||
8026 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8027 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8028
8029 isector = start - btrfs_io_bio(failed_bio)->logical;
8030 isector >>= inode->i_sb->s_blocksize_bits;
8031 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8032 pgoff, isector, repair_endio, repair_arg);
37226b21 8033 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8034
8035 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8036 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8037 read_mode, failrec->this_mirror, failrec->in_validation);
8038
58efbc9f
OS
8039 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8040 if (status) {
7870d082 8041 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8042 bio_put(bio);
8043 }
8044
58efbc9f 8045 return status;
8b110e39
MX
8046}
8047
8048struct btrfs_retry_complete {
8049 struct completion done;
8050 struct inode *inode;
8051 u64 start;
8052 int uptodate;
8053};
8054
4246a0b6 8055static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8056{
8057 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8058 struct inode *inode = done->inode;
8b110e39 8059 struct bio_vec *bvec;
7870d082 8060 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8061 int i;
8062
4e4cbee9 8063 if (bio->bi_status)
8b110e39
MX
8064 goto end;
8065
2dabb324 8066 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8067 io_tree = &BTRFS_I(inode)->io_tree;
8068 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8069 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8070
8b110e39 8071 done->uptodate = 1;
c09abff8 8072 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8073 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8074 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8075 io_tree, done->start, bvec->bv_page,
8076 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8077end:
8078 complete(&done->done);
8079 bio_put(bio);
8080}
8081
58efbc9f
OS
8082static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8083 struct btrfs_io_bio *io_bio)
4b46fce2 8084{
2dabb324 8085 struct btrfs_fs_info *fs_info;
17347cec
LB
8086 struct bio_vec bvec;
8087 struct bvec_iter iter;
8b110e39 8088 struct btrfs_retry_complete done;
4b46fce2 8089 u64 start;
2dabb324
CR
8090 unsigned int pgoff;
8091 u32 sectorsize;
8092 int nr_sectors;
58efbc9f
OS
8093 blk_status_t ret;
8094 blk_status_t err = BLK_STS_OK;
4b46fce2 8095
2dabb324 8096 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8097 sectorsize = fs_info->sectorsize;
2dabb324 8098
8b110e39
MX
8099 start = io_bio->logical;
8100 done.inode = inode;
17347cec 8101 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8102
17347cec
LB
8103 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8104 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8105 pgoff = bvec.bv_offset;
2dabb324
CR
8106
8107next_block_or_try_again:
8b110e39
MX
8108 done.uptodate = 0;
8109 done.start = start;
8110 init_completion(&done.done);
8111
17347cec 8112 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8113 pgoff, start, start + sectorsize - 1,
8114 io_bio->mirror_num,
8115 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8116 if (ret) {
8117 err = ret;
8118 goto next;
8119 }
8b110e39
MX
8120
8121 wait_for_completion(&done.done);
8122
8123 if (!done.uptodate) {
8124 /* We might have another mirror, so try again */
2dabb324 8125 goto next_block_or_try_again;
8b110e39
MX
8126 }
8127
629ebf4f 8128next:
2dabb324
CR
8129 start += sectorsize;
8130
97bf5a55
LB
8131 nr_sectors--;
8132 if (nr_sectors) {
2dabb324 8133 pgoff += sectorsize;
97bf5a55 8134 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8135 goto next_block_or_try_again;
8136 }
8b110e39
MX
8137 }
8138
629ebf4f 8139 return err;
8b110e39
MX
8140}
8141
4246a0b6 8142static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8143{
8144 struct btrfs_retry_complete *done = bio->bi_private;
8145 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8146 struct extent_io_tree *io_tree, *failure_tree;
8147 struct inode *inode = done->inode;
8b110e39
MX
8148 struct bio_vec *bvec;
8149 int uptodate;
8150 int ret;
8151 int i;
8152
4e4cbee9 8153 if (bio->bi_status)
8b110e39
MX
8154 goto end;
8155
8156 uptodate = 1;
2dabb324 8157
2dabb324 8158 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8159 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8160
7870d082
JB
8161 io_tree = &BTRFS_I(inode)->io_tree;
8162 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8163
c09abff8 8164 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8165 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8166 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8167 bvec->bv_offset, done->start,
8168 bvec->bv_len);
8b110e39 8169 if (!ret)
7870d082
JB
8170 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8171 failure_tree, io_tree, done->start,
8172 bvec->bv_page,
8173 btrfs_ino(BTRFS_I(inode)),
8174 bvec->bv_offset);
8b110e39
MX
8175 else
8176 uptodate = 0;
8177 }
8178
8179 done->uptodate = uptodate;
8180end:
8181 complete(&done->done);
8182 bio_put(bio);
8183}
8184
4e4cbee9
CH
8185static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8186 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8187{
2dabb324 8188 struct btrfs_fs_info *fs_info;
17347cec
LB
8189 struct bio_vec bvec;
8190 struct bvec_iter iter;
8b110e39
MX
8191 struct btrfs_retry_complete done;
8192 u64 start;
8193 u64 offset = 0;
2dabb324
CR
8194 u32 sectorsize;
8195 int nr_sectors;
8196 unsigned int pgoff;
8197 int csum_pos;
ef7cdac1 8198 bool uptodate = (err == 0);
8b110e39 8199 int ret;
58efbc9f 8200 blk_status_t status;
dc380aea 8201
2dabb324 8202 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8203 sectorsize = fs_info->sectorsize;
2dabb324 8204
58efbc9f 8205 err = BLK_STS_OK;
c1dc0896 8206 start = io_bio->logical;
8b110e39 8207 done.inode = inode;
17347cec 8208 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8209
17347cec
LB
8210 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8211 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8212
17347cec 8213 pgoff = bvec.bv_offset;
2dabb324 8214next_block:
ef7cdac1
LB
8215 if (uptodate) {
8216 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8217 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8218 bvec.bv_page, pgoff, start, sectorsize);
8219 if (likely(!ret))
8220 goto next;
8221 }
8b110e39
MX
8222try_again:
8223 done.uptodate = 0;
8224 done.start = start;
8225 init_completion(&done.done);
8226
58efbc9f
OS
8227 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8228 pgoff, start, start + sectorsize - 1,
8229 io_bio->mirror_num, btrfs_retry_endio,
8230 &done);
8231 if (status) {
8232 err = status;
8b110e39
MX
8233 goto next;
8234 }
8235
8236 wait_for_completion(&done.done);
8237
8238 if (!done.uptodate) {
8239 /* We might have another mirror, so try again */
8240 goto try_again;
8241 }
8242next:
2dabb324
CR
8243 offset += sectorsize;
8244 start += sectorsize;
8245
8246 ASSERT(nr_sectors);
8247
97bf5a55
LB
8248 nr_sectors--;
8249 if (nr_sectors) {
2dabb324 8250 pgoff += sectorsize;
97bf5a55 8251 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8252 goto next_block;
8253 }
2c30c71b 8254 }
c1dc0896
MX
8255
8256 return err;
8257}
8258
4e4cbee9
CH
8259static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8260 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8261{
8262 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8263
8264 if (skip_csum) {
8265 if (unlikely(err))
8266 return __btrfs_correct_data_nocsum(inode, io_bio);
8267 else
58efbc9f 8268 return BLK_STS_OK;
8b110e39
MX
8269 } else {
8270 return __btrfs_subio_endio_read(inode, io_bio, err);
8271 }
8272}
8273
4246a0b6 8274static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8275{
8276 struct btrfs_dio_private *dip = bio->bi_private;
8277 struct inode *inode = dip->inode;
8278 struct bio *dio_bio;
8279 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8280 blk_status_t err = bio->bi_status;
c1dc0896 8281
e3d37fab 8282 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8b110e39 8283 err = btrfs_subio_endio_read(inode, io_bio, err);
e3d37fab 8284 if (!err)
8c27cb35 8285 bio->bi_status = 0;
e3d37fab 8286 }
c1dc0896 8287
4b46fce2 8288 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8289 dip->logical_offset + dip->bytes - 1);
9be3395b 8290 dio_bio = dip->dio_bio;
4b46fce2 8291
4b46fce2 8292 kfree(dip);
c0da7aa1 8293
4e4cbee9 8294 dio_bio->bi_status = bio->bi_status;
4055351c 8295 dio_end_io(dio_bio);
23ea8e5a
MX
8296
8297 if (io_bio->end_io)
4e4cbee9 8298 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8299 bio_put(bio);
4b46fce2
JB
8300}
8301
52427260
QW
8302static void __endio_write_update_ordered(struct inode *inode,
8303 const u64 offset, const u64 bytes,
8304 const bool uptodate)
4b46fce2 8305{
0b246afa 8306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8307 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8308 struct btrfs_workqueue *wq;
8309 btrfs_work_func_t func;
14543774
FM
8310 u64 ordered_offset = offset;
8311 u64 ordered_bytes = bytes;
96c2e2ca 8312 u64 last_offset;
4b46fce2
JB
8313 int ret;
8314
52427260
QW
8315 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8316 wq = fs_info->endio_freespace_worker;
8317 func = btrfs_freespace_write_helper;
8318 } else {
8319 wq = fs_info->endio_write_workers;
8320 func = btrfs_endio_write_helper;
8321 }
8322
163cf09c 8323again:
96c2e2ca 8324 last_offset = ordered_offset;
163cf09c
CM
8325 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8326 &ordered_offset,
4246a0b6 8327 ordered_bytes,
14543774 8328 uptodate);
4b46fce2 8329 if (!ret)
163cf09c 8330 goto out_test;
4b46fce2 8331
52427260
QW
8332 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8333 btrfs_queue_work(wq, &ordered->work);
163cf09c 8334out_test:
96c2e2ca
NA
8335 /*
8336 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8337 * in the range, we can exit.
8338 */
8339 if (ordered_offset == last_offset)
8340 return;
163cf09c
CM
8341 /*
8342 * our bio might span multiple ordered extents. If we haven't
8343 * completed the accounting for the whole dio, go back and try again
8344 */
14543774
FM
8345 if (ordered_offset < offset + bytes) {
8346 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8347 ordered = NULL;
163cf09c
CM
8348 goto again;
8349 }
14543774
FM
8350}
8351
8352static void btrfs_endio_direct_write(struct bio *bio)
8353{
8354 struct btrfs_dio_private *dip = bio->bi_private;
8355 struct bio *dio_bio = dip->dio_bio;
8356
52427260 8357 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8358 dip->bytes, !bio->bi_status);
4b46fce2 8359
4b46fce2 8360 kfree(dip);
c0da7aa1 8361
4e4cbee9 8362 dio_bio->bi_status = bio->bi_status;
4055351c 8363 dio_end_io(dio_bio);
9be3395b 8364 bio_put(bio);
4b46fce2
JB
8365}
8366
8c27cb35 8367static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8368 struct bio *bio, int mirror_num,
8369 unsigned long bio_flags, u64 offset)
8370{
c6100a4b 8371 struct inode *inode = private_data;
4e4cbee9 8372 blk_status_t ret;
2ff7e61e 8373 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8374 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8375 return 0;
8376}
8377
4246a0b6 8378static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8379{
8380 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8381 blk_status_t err = bio->bi_status;
e65e1535 8382
8b110e39
MX
8383 if (err)
8384 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8385 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8386 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8387 bio->bi_opf,
8b110e39
MX
8388 (unsigned long long)bio->bi_iter.bi_sector,
8389 bio->bi_iter.bi_size, err);
8390
8391 if (dip->subio_endio)
8392 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8393
8394 if (err) {
e65e1535
MX
8395 dip->errors = 1;
8396
8397 /*
8398 * before atomic variable goto zero, we must make sure
8399 * dip->errors is perceived to be set.
8400 */
4e857c58 8401 smp_mb__before_atomic();
e65e1535
MX
8402 }
8403
8404 /* if there are more bios still pending for this dio, just exit */
8405 if (!atomic_dec_and_test(&dip->pending_bios))
8406 goto out;
8407
9be3395b 8408 if (dip->errors) {
e65e1535 8409 bio_io_error(dip->orig_bio);
9be3395b 8410 } else {
4e4cbee9 8411 dip->dio_bio->bi_status = 0;
4246a0b6 8412 bio_endio(dip->orig_bio);
e65e1535
MX
8413 }
8414out:
8415 bio_put(bio);
8416}
8417
4e4cbee9 8418static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8419 struct btrfs_dio_private *dip,
8420 struct bio *bio,
8421 u64 file_offset)
8422{
8423 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8424 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8425 blk_status_t ret;
c1dc0896
MX
8426
8427 /*
8428 * We load all the csum data we need when we submit
8429 * the first bio to reduce the csum tree search and
8430 * contention.
8431 */
8432 if (dip->logical_offset == file_offset) {
2ff7e61e 8433 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8434 file_offset);
8435 if (ret)
8436 return ret;
8437 }
8438
8439 if (bio == dip->orig_bio)
8440 return 0;
8441
8442 file_offset -= dip->logical_offset;
8443 file_offset >>= inode->i_sb->s_blocksize_bits;
8444 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8445
8446 return 0;
8447}
8448
58efbc9f
OS
8449static inline blk_status_t
8450__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8451 int skip_sum, int async_submit)
e65e1535 8452{
0b246afa 8453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8454 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8455 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8456 blk_status_t ret;
e65e1535 8457
b812ce28
JB
8458 if (async_submit)
8459 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8460
e65e1535 8461 bio_get(bio);
5fd02043
JB
8462
8463 if (!write) {
0b246afa 8464 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8465 if (ret)
8466 goto err;
8467 }
e65e1535 8468
1ae39938
JB
8469 if (skip_sum)
8470 goto map;
8471
8472 if (write && async_submit) {
c6100a4b
JB
8473 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8474 file_offset, inode,
0b246afa
JM
8475 __btrfs_submit_bio_start_direct_io,
8476 __btrfs_submit_bio_done);
e65e1535 8477 goto err;
1ae39938
JB
8478 } else if (write) {
8479 /*
8480 * If we aren't doing async submit, calculate the csum of the
8481 * bio now.
8482 */
2ff7e61e 8483 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8484 if (ret)
8485 goto err;
23ea8e5a 8486 } else {
2ff7e61e 8487 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8488 file_offset);
c2db1073
TI
8489 if (ret)
8490 goto err;
8491 }
1ae39938 8492map:
2ff7e61e 8493 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8494err:
8495 bio_put(bio);
8496 return ret;
8497}
8498
81a75f67 8499static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8500 int skip_sum)
8501{
8502 struct inode *inode = dip->inode;
0b246afa 8503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8504 struct bio *bio;
8505 struct bio *orig_bio = dip->orig_bio;
4f024f37 8506 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8507 u64 file_offset = dip->logical_offset;
e65e1535 8508 u64 map_length;
1ae39938 8509 int async_submit = 0;
725130ba
LB
8510 u64 submit_len;
8511 int clone_offset = 0;
8512 int clone_len;
5f4dc8fc 8513 int ret;
58efbc9f 8514 blk_status_t status;
e65e1535 8515
4f024f37 8516 map_length = orig_bio->bi_iter.bi_size;
725130ba 8517 submit_len = map_length;
0b246afa
JM
8518 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8519 &map_length, NULL, 0);
7a5c3c9b 8520 if (ret)
e65e1535 8521 return -EIO;
facc8a22 8522
725130ba 8523 if (map_length >= submit_len) {
02f57c7a 8524 bio = orig_bio;
c1dc0896 8525 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8526 goto submit;
8527 }
8528
53b381b3 8529 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8530 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8531 async_submit = 0;
8532 else
8533 async_submit = 1;
8534
725130ba
LB
8535 /* bio split */
8536 ASSERT(map_length <= INT_MAX);
02f57c7a 8537 atomic_inc(&dip->pending_bios);
3c91ee69 8538 do {
725130ba 8539 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8540
725130ba
LB
8541 /*
8542 * This will never fail as it's passing GPF_NOFS and
8543 * the allocation is backed by btrfs_bioset.
8544 */
e477094f 8545 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8546 clone_len);
8547 bio->bi_private = dip;
8548 bio->bi_end_io = btrfs_end_dio_bio;
8549 btrfs_io_bio(bio)->logical = file_offset;
8550
8551 ASSERT(submit_len >= clone_len);
8552 submit_len -= clone_len;
8553 if (submit_len == 0)
8554 break;
e65e1535 8555
725130ba
LB
8556 /*
8557 * Increase the count before we submit the bio so we know
8558 * the end IO handler won't happen before we increase the
8559 * count. Otherwise, the dip might get freed before we're
8560 * done setting it up.
8561 */
8562 atomic_inc(&dip->pending_bios);
e65e1535 8563
58efbc9f
OS
8564 status = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8565 async_submit);
8566 if (status) {
725130ba
LB
8567 bio_put(bio);
8568 atomic_dec(&dip->pending_bios);
8569 goto out_err;
8570 }
e65e1535 8571
725130ba
LB
8572 clone_offset += clone_len;
8573 start_sector += clone_len >> 9;
8574 file_offset += clone_len;
5f4dc8fc 8575
725130ba
LB
8576 map_length = submit_len;
8577 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8578 start_sector << 9, &map_length, NULL, 0);
8579 if (ret)
8580 goto out_err;
3c91ee69 8581 } while (submit_len > 0);
e65e1535 8582
02f57c7a 8583submit:
58efbc9f
OS
8584 status = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8585 async_submit);
8586 if (!status)
e65e1535
MX
8587 return 0;
8588
8589 bio_put(bio);
8590out_err:
8591 dip->errors = 1;
8592 /*
8593 * before atomic variable goto zero, we must
8594 * make sure dip->errors is perceived to be set.
8595 */
4e857c58 8596 smp_mb__before_atomic();
e65e1535
MX
8597 if (atomic_dec_and_test(&dip->pending_bios))
8598 bio_io_error(dip->orig_bio);
8599
8600 /* bio_end_io() will handle error, so we needn't return it */
8601 return 0;
8602}
8603
8a4c1e42
MC
8604static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8605 loff_t file_offset)
4b46fce2 8606{
61de718f 8607 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8608 struct bio *bio = NULL;
8609 struct btrfs_io_bio *io_bio;
4b46fce2 8610 int skip_sum;
8a4c1e42 8611 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8612 int ret = 0;
8613
8614 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8615
8b6c1d56 8616 bio = btrfs_bio_clone(dio_bio);
9be3395b 8617
c1dc0896 8618 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8619 if (!dip) {
8620 ret = -ENOMEM;
61de718f 8621 goto free_ordered;
4b46fce2 8622 }
4b46fce2 8623
9be3395b 8624 dip->private = dio_bio->bi_private;
4b46fce2
JB
8625 dip->inode = inode;
8626 dip->logical_offset = file_offset;
4f024f37
KO
8627 dip->bytes = dio_bio->bi_iter.bi_size;
8628 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8629 bio->bi_private = dip;
8630 dip->orig_bio = bio;
9be3395b 8631 dip->dio_bio = dio_bio;
e65e1535 8632 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8633 io_bio = btrfs_io_bio(bio);
8634 io_bio->logical = file_offset;
4b46fce2 8635
c1dc0896 8636 if (write) {
3892ac90 8637 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8638 } else {
3892ac90 8639 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8640 dip->subio_endio = btrfs_subio_endio_read;
8641 }
4b46fce2 8642
f28a4928
FM
8643 /*
8644 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8645 * even if we fail to submit a bio, because in such case we do the
8646 * corresponding error handling below and it must not be done a second
8647 * time by btrfs_direct_IO().
8648 */
8649 if (write) {
8650 struct btrfs_dio_data *dio_data = current->journal_info;
8651
8652 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8653 dip->bytes;
8654 dio_data->unsubmitted_oe_range_start =
8655 dio_data->unsubmitted_oe_range_end;
8656 }
8657
81a75f67 8658 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8659 if (!ret)
eaf25d93 8660 return;
9be3395b 8661
3892ac90
LB
8662 if (io_bio->end_io)
8663 io_bio->end_io(io_bio, ret);
9be3395b 8664
4b46fce2
JB
8665free_ordered:
8666 /*
61de718f
FM
8667 * If we arrived here it means either we failed to submit the dip
8668 * or we either failed to clone the dio_bio or failed to allocate the
8669 * dip. If we cloned the dio_bio and allocated the dip, we can just
8670 * call bio_endio against our io_bio so that we get proper resource
8671 * cleanup if we fail to submit the dip, otherwise, we must do the
8672 * same as btrfs_endio_direct_[write|read] because we can't call these
8673 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8674 */
3892ac90 8675 if (bio && dip) {
054ec2f6 8676 bio_io_error(bio);
61de718f 8677 /*
3892ac90 8678 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8679 * and all the cleanup and final put for dio_bio (through
8680 * dio_end_io()).
8681 */
8682 dip = NULL;
3892ac90 8683 bio = NULL;
61de718f 8684 } else {
14543774 8685 if (write)
52427260 8686 __endio_write_update_ordered(inode,
14543774
FM
8687 file_offset,
8688 dio_bio->bi_iter.bi_size,
52427260 8689 false);
14543774 8690 else
61de718f
FM
8691 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8692 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8693
4e4cbee9 8694 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8695 /*
8696 * Releases and cleans up our dio_bio, no need to bio_put()
8697 * nor bio_endio()/bio_io_error() against dio_bio.
8698 */
4055351c 8699 dio_end_io(dio_bio);
4b46fce2 8700 }
3892ac90
LB
8701 if (bio)
8702 bio_put(bio);
61de718f 8703 kfree(dip);
4b46fce2
JB
8704}
8705
2ff7e61e
JM
8706static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8707 struct kiocb *iocb,
8708 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8709{
8710 int seg;
a1b75f7d 8711 int i;
0b246afa 8712 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8713 ssize_t retval = -EINVAL;
5a5f79b5
CM
8714
8715 if (offset & blocksize_mask)
8716 goto out;
8717
28060d5d
AV
8718 if (iov_iter_alignment(iter) & blocksize_mask)
8719 goto out;
a1b75f7d 8720
28060d5d 8721 /* If this is a write we don't need to check anymore */
cd27e455 8722 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8723 return 0;
8724 /*
8725 * Check to make sure we don't have duplicate iov_base's in this
8726 * iovec, if so return EINVAL, otherwise we'll get csum errors
8727 * when reading back.
8728 */
8729 for (seg = 0; seg < iter->nr_segs; seg++) {
8730 for (i = seg + 1; i < iter->nr_segs; i++) {
8731 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8732 goto out;
8733 }
5a5f79b5
CM
8734 }
8735 retval = 0;
8736out:
8737 return retval;
8738}
eb838e73 8739
c8b8e32d 8740static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8741{
4b46fce2
JB
8742 struct file *file = iocb->ki_filp;
8743 struct inode *inode = file->f_mapping->host;
0b246afa 8744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8745 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8746 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8747 loff_t offset = iocb->ki_pos;
0934856d 8748 size_t count = 0;
2e60a51e 8749 int flags = 0;
38851cc1
MX
8750 bool wakeup = true;
8751 bool relock = false;
0934856d 8752 ssize_t ret;
4b46fce2 8753
2ff7e61e 8754 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8755 return 0;
3f7c579c 8756
fe0f07d0 8757 inode_dio_begin(inode);
4e857c58 8758 smp_mb__after_atomic();
38851cc1 8759
0e267c44 8760 /*
41bd9ca4
MX
8761 * The generic stuff only does filemap_write_and_wait_range, which
8762 * isn't enough if we've written compressed pages to this area, so
8763 * we need to flush the dirty pages again to make absolutely sure
8764 * that any outstanding dirty pages are on disk.
0e267c44 8765 */
a6cbcd4a 8766 count = iov_iter_count(iter);
41bd9ca4
MX
8767 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8768 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8769 filemap_fdatawrite_range(inode->i_mapping, offset,
8770 offset + count - 1);
0e267c44 8771
6f673763 8772 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8773 /*
8774 * If the write DIO is beyond the EOF, we need update
8775 * the isize, but it is protected by i_mutex. So we can
8776 * not unlock the i_mutex at this case.
8777 */
8778 if (offset + count <= inode->i_size) {
4aaedfb0 8779 dio_data.overwrite = 1;
5955102c 8780 inode_unlock(inode);
38851cc1 8781 relock = true;
edf064e7
GR
8782 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8783 ret = -EAGAIN;
8784 goto out;
38851cc1 8785 }
364ecf36
QW
8786 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8787 offset, count);
0934856d 8788 if (ret)
38851cc1 8789 goto out;
823bb20a 8790 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8791
8792 /*
8793 * We need to know how many extents we reserved so that we can
8794 * do the accounting properly if we go over the number we
8795 * originally calculated. Abuse current->journal_info for this.
8796 */
da17066c 8797 dio_data.reserve = round_up(count,
0b246afa 8798 fs_info->sectorsize);
f28a4928
FM
8799 dio_data.unsubmitted_oe_range_start = (u64)offset;
8800 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8801 current->journal_info = &dio_data;
97dcdea0 8802 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8803 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8804 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8805 inode_dio_end(inode);
38851cc1
MX
8806 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8807 wakeup = false;
0934856d
MX
8808 }
8809
17f8c842 8810 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8811 fs_info->fs_devices->latest_bdev,
c8b8e32d 8812 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8813 btrfs_submit_direct, flags);
6f673763 8814 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8815 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8816 current->journal_info = NULL;
ddba1bfc 8817 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8818 if (dio_data.reserve)
bc42bda2
QW
8819 btrfs_delalloc_release_space(inode, data_reserved,
8820 offset, dio_data.reserve);
f28a4928
FM
8821 /*
8822 * On error we might have left some ordered extents
8823 * without submitting corresponding bios for them, so
8824 * cleanup them up to avoid other tasks getting them
8825 * and waiting for them to complete forever.
8826 */
8827 if (dio_data.unsubmitted_oe_range_start <
8828 dio_data.unsubmitted_oe_range_end)
52427260 8829 __endio_write_update_ordered(inode,
f28a4928
FM
8830 dio_data.unsubmitted_oe_range_start,
8831 dio_data.unsubmitted_oe_range_end -
8832 dio_data.unsubmitted_oe_range_start,
52427260 8833 false);
ddba1bfc 8834 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8835 btrfs_delalloc_release_space(inode, data_reserved,
8836 offset, count - (size_t)ret);
0934856d 8837 }
38851cc1 8838out:
2e60a51e 8839 if (wakeup)
fe0f07d0 8840 inode_dio_end(inode);
38851cc1 8841 if (relock)
5955102c 8842 inode_lock(inode);
0934856d 8843
364ecf36 8844 extent_changeset_free(data_reserved);
0934856d 8845 return ret;
16432985
CM
8846}
8847
05dadc09
TI
8848#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8849
1506fcc8
YS
8850static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8851 __u64 start, __u64 len)
8852{
05dadc09
TI
8853 int ret;
8854
8855 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8856 if (ret)
8857 return ret;
8858
ec29ed5b 8859 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8860}
8861
a52d9a80 8862int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8863{
d1310b2e
CM
8864 struct extent_io_tree *tree;
8865 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8866 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8867}
1832a6d5 8868
a52d9a80 8869static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8870{
d1310b2e 8871 struct extent_io_tree *tree;
be7bd730
JB
8872 struct inode *inode = page->mapping->host;
8873 int ret;
b888db2b
CM
8874
8875 if (current->flags & PF_MEMALLOC) {
8876 redirty_page_for_writepage(wbc, page);
8877 unlock_page(page);
8878 return 0;
8879 }
be7bd730
JB
8880
8881 /*
8882 * If we are under memory pressure we will call this directly from the
8883 * VM, we need to make sure we have the inode referenced for the ordered
8884 * extent. If not just return like we didn't do anything.
8885 */
8886 if (!igrab(inode)) {
8887 redirty_page_for_writepage(wbc, page);
8888 return AOP_WRITEPAGE_ACTIVATE;
8889 }
d1310b2e 8890 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8891 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8892 btrfs_add_delayed_iput(inode);
8893 return ret;
9ebefb18
CM
8894}
8895
48a3b636
ES
8896static int btrfs_writepages(struct address_space *mapping,
8897 struct writeback_control *wbc)
b293f02e 8898{
d1310b2e 8899 struct extent_io_tree *tree;
771ed689 8900
d1310b2e 8901 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8902 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8903}
8904
3ab2fb5a
CM
8905static int
8906btrfs_readpages(struct file *file, struct address_space *mapping,
8907 struct list_head *pages, unsigned nr_pages)
8908{
d1310b2e
CM
8909 struct extent_io_tree *tree;
8910 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8911 return extent_readpages(tree, mapping, pages, nr_pages,
8912 btrfs_get_extent);
8913}
e6dcd2dc 8914static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8915{
d1310b2e
CM
8916 struct extent_io_tree *tree;
8917 struct extent_map_tree *map;
a52d9a80 8918 int ret;
8c2383c3 8919
d1310b2e
CM
8920 tree = &BTRFS_I(page->mapping->host)->io_tree;
8921 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8922 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8923 if (ret == 1) {
8924 ClearPagePrivate(page);
8925 set_page_private(page, 0);
09cbfeaf 8926 put_page(page);
39279cc3 8927 }
a52d9a80 8928 return ret;
39279cc3
CM
8929}
8930
e6dcd2dc
CM
8931static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8932{
98509cfc
CM
8933 if (PageWriteback(page) || PageDirty(page))
8934 return 0;
3ba7ab22 8935 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8936}
8937
d47992f8
LC
8938static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8939 unsigned int length)
39279cc3 8940{
5fd02043 8941 struct inode *inode = page->mapping->host;
d1310b2e 8942 struct extent_io_tree *tree;
e6dcd2dc 8943 struct btrfs_ordered_extent *ordered;
2ac55d41 8944 struct extent_state *cached_state = NULL;
e6dcd2dc 8945 u64 page_start = page_offset(page);
09cbfeaf 8946 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8947 u64 start;
8948 u64 end;
131e404a 8949 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8950
8b62b72b
CM
8951 /*
8952 * we have the page locked, so new writeback can't start,
8953 * and the dirty bit won't be cleared while we are here.
8954 *
8955 * Wait for IO on this page so that we can safely clear
8956 * the PagePrivate2 bit and do ordered accounting
8957 */
e6dcd2dc 8958 wait_on_page_writeback(page);
8b62b72b 8959
5fd02043 8960 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8961 if (offset) {
8962 btrfs_releasepage(page, GFP_NOFS);
8963 return;
8964 }
131e404a
FDBM
8965
8966 if (!inode_evicting)
ff13db41 8967 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8968again:
8969 start = page_start;
a776c6fa 8970 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8971 page_end - start + 1);
e6dcd2dc 8972 if (ordered) {
dbfdb6d1 8973 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8974 /*
8975 * IO on this page will never be started, so we need
8976 * to account for any ordered extents now
8977 */
131e404a 8978 if (!inode_evicting)
dbfdb6d1 8979 clear_extent_bit(tree, start, end,
131e404a 8980 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8981 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8982 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8983 EXTENT_DEFRAG, 1, 0, &cached_state,
8984 GFP_NOFS);
8b62b72b
CM
8985 /*
8986 * whoever cleared the private bit is responsible
8987 * for the finish_ordered_io
8988 */
77cef2ec
JB
8989 if (TestClearPagePrivate2(page)) {
8990 struct btrfs_ordered_inode_tree *tree;
8991 u64 new_len;
8992
8993 tree = &BTRFS_I(inode)->ordered_tree;
8994
8995 spin_lock_irq(&tree->lock);
8996 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8997 new_len = start - ordered->file_offset;
77cef2ec
JB
8998 if (new_len < ordered->truncated_len)
8999 ordered->truncated_len = new_len;
9000 spin_unlock_irq(&tree->lock);
9001
9002 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
9003 start,
9004 end - start + 1, 1))
77cef2ec 9005 btrfs_finish_ordered_io(ordered);
8b62b72b 9006 }
e6dcd2dc 9007 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
9008 if (!inode_evicting) {
9009 cached_state = NULL;
dbfdb6d1 9010 lock_extent_bits(tree, start, end,
131e404a
FDBM
9011 &cached_state);
9012 }
dbfdb6d1
CR
9013
9014 start = end + 1;
9015 if (start < page_end)
9016 goto again;
131e404a
FDBM
9017 }
9018
b9d0b389
QW
9019 /*
9020 * Qgroup reserved space handler
9021 * Page here will be either
9022 * 1) Already written to disk
9023 * In this case, its reserved space is released from data rsv map
9024 * and will be freed by delayed_ref handler finally.
9025 * So even we call qgroup_free_data(), it won't decrease reserved
9026 * space.
9027 * 2) Not written to disk
0b34c261
GR
9028 * This means the reserved space should be freed here. However,
9029 * if a truncate invalidates the page (by clearing PageDirty)
9030 * and the page is accounted for while allocating extent
9031 * in btrfs_check_data_free_space() we let delayed_ref to
9032 * free the entire extent.
b9d0b389 9033 */
0b34c261 9034 if (PageDirty(page))
bc42bda2 9035 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9036 if (!inode_evicting) {
9037 clear_extent_bit(tree, page_start, page_end,
9038 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9039 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9040 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9041 &cached_state, GFP_NOFS);
9042
9043 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9044 }
e6dcd2dc 9045
4a096752 9046 ClearPageChecked(page);
9ad6b7bc 9047 if (PagePrivate(page)) {
9ad6b7bc
CM
9048 ClearPagePrivate(page);
9049 set_page_private(page, 0);
09cbfeaf 9050 put_page(page);
9ad6b7bc 9051 }
39279cc3
CM
9052}
9053
9ebefb18
CM
9054/*
9055 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9056 * called from a page fault handler when a page is first dirtied. Hence we must
9057 * be careful to check for EOF conditions here. We set the page up correctly
9058 * for a written page which means we get ENOSPC checking when writing into
9059 * holes and correct delalloc and unwritten extent mapping on filesystems that
9060 * support these features.
9061 *
9062 * We are not allowed to take the i_mutex here so we have to play games to
9063 * protect against truncate races as the page could now be beyond EOF. Because
9064 * vmtruncate() writes the inode size before removing pages, once we have the
9065 * page lock we can determine safely if the page is beyond EOF. If it is not
9066 * beyond EOF, then the page is guaranteed safe against truncation until we
9067 * unlock the page.
9068 */
11bac800 9069int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9070{
c2ec175c 9071 struct page *page = vmf->page;
11bac800 9072 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9073 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9074 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9075 struct btrfs_ordered_extent *ordered;
2ac55d41 9076 struct extent_state *cached_state = NULL;
364ecf36 9077 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9078 char *kaddr;
9079 unsigned long zero_start;
9ebefb18 9080 loff_t size;
1832a6d5 9081 int ret;
9998eb70 9082 int reserved = 0;
d0b7da88 9083 u64 reserved_space;
a52d9a80 9084 u64 page_start;
e6dcd2dc 9085 u64 page_end;
d0b7da88
CR
9086 u64 end;
9087
09cbfeaf 9088 reserved_space = PAGE_SIZE;
9ebefb18 9089
b2b5ef5c 9090 sb_start_pagefault(inode->i_sb);
df480633 9091 page_start = page_offset(page);
09cbfeaf 9092 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9093 end = page_end;
df480633 9094
d0b7da88
CR
9095 /*
9096 * Reserving delalloc space after obtaining the page lock can lead to
9097 * deadlock. For example, if a dirty page is locked by this function
9098 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9099 * dirty page write out, then the btrfs_writepage() function could
9100 * end up waiting indefinitely to get a lock on the page currently
9101 * being processed by btrfs_page_mkwrite() function.
9102 */
364ecf36 9103 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9104 reserved_space);
9998eb70 9105 if (!ret) {
11bac800 9106 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9107 reserved = 1;
9108 }
56a76f82
NP
9109 if (ret) {
9110 if (ret == -ENOMEM)
9111 ret = VM_FAULT_OOM;
9112 else /* -ENOSPC, -EIO, etc */
9113 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9114 if (reserved)
9115 goto out;
9116 goto out_noreserve;
56a76f82 9117 }
1832a6d5 9118
56a76f82 9119 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9120again:
9ebefb18 9121 lock_page(page);
9ebefb18 9122 size = i_size_read(inode);
a52d9a80 9123
9ebefb18 9124 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9125 (page_start >= size)) {
9ebefb18
CM
9126 /* page got truncated out from underneath us */
9127 goto out_unlock;
9128 }
e6dcd2dc
CM
9129 wait_on_page_writeback(page);
9130
ff13db41 9131 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9132 set_page_extent_mapped(page);
9133
eb84ae03
CM
9134 /*
9135 * we can't set the delalloc bits if there are pending ordered
9136 * extents. Drop our locks and wait for them to finish
9137 */
a776c6fa
NB
9138 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9139 PAGE_SIZE);
e6dcd2dc 9140 if (ordered) {
2ac55d41
JB
9141 unlock_extent_cached(io_tree, page_start, page_end,
9142 &cached_state, GFP_NOFS);
e6dcd2dc 9143 unlock_page(page);
eb84ae03 9144 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9145 btrfs_put_ordered_extent(ordered);
9146 goto again;
9147 }
9148
09cbfeaf 9149 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9150 reserved_space = round_up(size - page_start,
0b246afa 9151 fs_info->sectorsize);
09cbfeaf 9152 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9153 end = page_start + reserved_space - 1;
9154 spin_lock(&BTRFS_I(inode)->lock);
9155 BTRFS_I(inode)->outstanding_extents++;
9156 spin_unlock(&BTRFS_I(inode)->lock);
bc42bda2
QW
9157 btrfs_delalloc_release_space(inode, data_reserved,
9158 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9159 }
9160 }
9161
fbf19087 9162 /*
5416034f
LB
9163 * page_mkwrite gets called when the page is firstly dirtied after it's
9164 * faulted in, but write(2) could also dirty a page and set delalloc
9165 * bits, thus in this case for space account reason, we still need to
9166 * clear any delalloc bits within this page range since we have to
9167 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9168 */
d0b7da88 9169 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9170 EXTENT_DIRTY | EXTENT_DELALLOC |
9171 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9172 0, 0, &cached_state, GFP_NOFS);
fbf19087 9173
d0b7da88 9174 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9175 &cached_state, 0);
9ed74f2d 9176 if (ret) {
2ac55d41
JB
9177 unlock_extent_cached(io_tree, page_start, page_end,
9178 &cached_state, GFP_NOFS);
9ed74f2d
JB
9179 ret = VM_FAULT_SIGBUS;
9180 goto out_unlock;
9181 }
e6dcd2dc 9182 ret = 0;
9ebefb18
CM
9183
9184 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9185 if (page_start + PAGE_SIZE > size)
9186 zero_start = size & ~PAGE_MASK;
9ebefb18 9187 else
09cbfeaf 9188 zero_start = PAGE_SIZE;
9ebefb18 9189
09cbfeaf 9190 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9191 kaddr = kmap(page);
09cbfeaf 9192 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9193 flush_dcache_page(page);
9194 kunmap(page);
9195 }
247e743c 9196 ClearPageChecked(page);
e6dcd2dc 9197 set_page_dirty(page);
50a9b214 9198 SetPageUptodate(page);
5a3f23d5 9199
0b246afa 9200 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9201 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9202 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9203
2ac55d41 9204 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9205
9206out_unlock:
b2b5ef5c
JK
9207 if (!ret) {
9208 sb_end_pagefault(inode->i_sb);
364ecf36 9209 extent_changeset_free(data_reserved);
50a9b214 9210 return VM_FAULT_LOCKED;
b2b5ef5c 9211 }
9ebefb18 9212 unlock_page(page);
1832a6d5 9213out:
bc42bda2
QW
9214 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9215 reserved_space);
9998eb70 9216out_noreserve:
b2b5ef5c 9217 sb_end_pagefault(inode->i_sb);
364ecf36 9218 extent_changeset_free(data_reserved);
9ebefb18
CM
9219 return ret;
9220}
9221
a41ad394 9222static int btrfs_truncate(struct inode *inode)
39279cc3 9223{
0b246afa 9224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9225 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9226 struct btrfs_block_rsv *rsv;
a71754fc 9227 int ret = 0;
3893e33b 9228 int err = 0;
39279cc3 9229 struct btrfs_trans_handle *trans;
0b246afa
JM
9230 u64 mask = fs_info->sectorsize - 1;
9231 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9232
0ef8b726
JB
9233 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9234 (u64)-1);
9235 if (ret)
9236 return ret;
39279cc3 9237
fcb80c2a 9238 /*
01327610 9239 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9240 * 3 things going on here
9241 *
9242 * 1) We need to reserve space for our orphan item and the space to
9243 * delete our orphan item. Lord knows we don't want to have a dangling
9244 * orphan item because we didn't reserve space to remove it.
9245 *
9246 * 2) We need to reserve space to update our inode.
9247 *
9248 * 3) We need to have something to cache all the space that is going to
9249 * be free'd up by the truncate operation, but also have some slack
9250 * space reserved in case it uses space during the truncate (thank you
9251 * very much snapshotting).
9252 *
01327610 9253 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9254 * space doing the truncate, and we have no earthly idea how much space
01327610 9255 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9256 * doesn't end up using space reserved for updating the inode or
9257 * removing the orphan item. We also need to be able to stop the
9258 * transaction and start a new one, which means we need to be able to
9259 * update the inode several times, and we have no idea of knowing how
9260 * many times that will be, so we can't just reserve 1 item for the
01327610 9261 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9262 * Then there is the orphan item, which does indeed need to be held on
9263 * to for the whole operation, and we need nobody to touch this reserved
9264 * space except the orphan code.
9265 *
9266 * So that leaves us with
9267 *
9268 * 1) root->orphan_block_rsv - for the orphan deletion.
9269 * 2) rsv - for the truncate reservation, which we will steal from the
9270 * transaction reservation.
9271 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9272 * updating the inode.
9273 */
2ff7e61e 9274 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9275 if (!rsv)
9276 return -ENOMEM;
4a338542 9277 rsv->size = min_size;
ca7e70f5 9278 rsv->failfast = 1;
f0cd846e 9279
907cbceb 9280 /*
07127184 9281 * 1 for the truncate slack space
907cbceb
JB
9282 * 1 for updating the inode.
9283 */
f3fe820c 9284 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9285 if (IS_ERR(trans)) {
9286 err = PTR_ERR(trans);
9287 goto out;
9288 }
f0cd846e 9289
907cbceb 9290 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9291 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9292 min_size, 0);
fcb80c2a 9293 BUG_ON(ret);
f0cd846e 9294
5dc562c5
JB
9295 /*
9296 * So if we truncate and then write and fsync we normally would just
9297 * write the extents that changed, which is a problem if we need to
9298 * first truncate that entire inode. So set this flag so we write out
9299 * all of the extents in the inode to the sync log so we're completely
9300 * safe.
9301 */
9302 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9303 trans->block_rsv = rsv;
907cbceb 9304
8082510e
YZ
9305 while (1) {
9306 ret = btrfs_truncate_inode_items(trans, root, inode,
9307 inode->i_size,
9308 BTRFS_EXTENT_DATA_KEY);
28ed1345 9309 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9310 err = ret;
8082510e 9311 break;
3893e33b 9312 }
39279cc3 9313
0b246afa 9314 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9315 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9316 if (ret) {
9317 err = ret;
9318 break;
9319 }
ca7e70f5 9320
3a45bb20 9321 btrfs_end_transaction(trans);
2ff7e61e 9322 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9323
9324 trans = btrfs_start_transaction(root, 2);
9325 if (IS_ERR(trans)) {
9326 ret = err = PTR_ERR(trans);
9327 trans = NULL;
9328 break;
9329 }
9330
47b5d646 9331 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9332 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9333 rsv, min_size, 0);
ca7e70f5
JB
9334 BUG_ON(ret); /* shouldn't happen */
9335 trans->block_rsv = rsv;
8082510e
YZ
9336 }
9337
9338 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9339 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9340 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9341 if (ret)
9342 err = ret;
8082510e
YZ
9343 }
9344
917c16b2 9345 if (trans) {
0b246afa 9346 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9347 ret = btrfs_update_inode(trans, root, inode);
9348 if (ret && !err)
9349 err = ret;
7b128766 9350
3a45bb20 9351 ret = btrfs_end_transaction(trans);
2ff7e61e 9352 btrfs_btree_balance_dirty(fs_info);
917c16b2 9353 }
fcb80c2a 9354out:
2ff7e61e 9355 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9356
3893e33b
JB
9357 if (ret && !err)
9358 err = ret;
a41ad394 9359
3893e33b 9360 return err;
39279cc3
CM
9361}
9362
d352ac68
CM
9363/*
9364 * create a new subvolume directory/inode (helper for the ioctl).
9365 */
d2fb3437 9366int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9367 struct btrfs_root *new_root,
9368 struct btrfs_root *parent_root,
9369 u64 new_dirid)
39279cc3 9370{
39279cc3 9371 struct inode *inode;
76dda93c 9372 int err;
00e4e6b3 9373 u64 index = 0;
39279cc3 9374
12fc9d09
FA
9375 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9376 new_dirid, new_dirid,
9377 S_IFDIR | (~current_umask() & S_IRWXUGO),
9378 &index);
54aa1f4d 9379 if (IS_ERR(inode))
f46b5a66 9380 return PTR_ERR(inode);
39279cc3
CM
9381 inode->i_op = &btrfs_dir_inode_operations;
9382 inode->i_fop = &btrfs_dir_file_operations;
9383
bfe86848 9384 set_nlink(inode, 1);
6ef06d27 9385 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9386 unlock_new_inode(inode);
3b96362c 9387
63541927
FDBM
9388 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9389 if (err)
9390 btrfs_err(new_root->fs_info,
351fd353 9391 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9392 new_root->root_key.objectid, err);
9393
76dda93c 9394 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9395
76dda93c 9396 iput(inode);
ce598979 9397 return err;
39279cc3
CM
9398}
9399
39279cc3
CM
9400struct inode *btrfs_alloc_inode(struct super_block *sb)
9401{
9402 struct btrfs_inode *ei;
2ead6ae7 9403 struct inode *inode;
39279cc3
CM
9404
9405 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9406 if (!ei)
9407 return NULL;
2ead6ae7
YZ
9408
9409 ei->root = NULL;
2ead6ae7 9410 ei->generation = 0;
15ee9bc7 9411 ei->last_trans = 0;
257c62e1 9412 ei->last_sub_trans = 0;
e02119d5 9413 ei->logged_trans = 0;
2ead6ae7 9414 ei->delalloc_bytes = 0;
a7e3b975 9415 ei->new_delalloc_bytes = 0;
47059d93 9416 ei->defrag_bytes = 0;
2ead6ae7
YZ
9417 ei->disk_i_size = 0;
9418 ei->flags = 0;
7709cde3 9419 ei->csum_bytes = 0;
2ead6ae7 9420 ei->index_cnt = (u64)-1;
67de1176 9421 ei->dir_index = 0;
2ead6ae7 9422 ei->last_unlink_trans = 0;
46d8bc34 9423 ei->last_log_commit = 0;
8089fe62 9424 ei->delayed_iput_count = 0;
2ead6ae7 9425
9e0baf60
JB
9426 spin_lock_init(&ei->lock);
9427 ei->outstanding_extents = 0;
9428 ei->reserved_extents = 0;
2ead6ae7 9429
72ac3c0d 9430 ei->runtime_flags = 0;
261507a0 9431 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9432
16cdcec7
MX
9433 ei->delayed_node = NULL;
9434
9cc97d64 9435 ei->i_otime.tv_sec = 0;
9436 ei->i_otime.tv_nsec = 0;
9437
2ead6ae7 9438 inode = &ei->vfs_inode;
a8067e02 9439 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9440 extent_io_tree_init(&ei->io_tree, inode);
9441 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9442 ei->io_tree.track_uptodate = 1;
9443 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9444 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9445 mutex_init(&ei->log_mutex);
f248679e 9446 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9447 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9448 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9449 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9450 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9451 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9452
9453 return inode;
39279cc3
CM
9454}
9455
aaedb55b
JB
9456#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9457void btrfs_test_destroy_inode(struct inode *inode)
9458{
dcdbc059 9459 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9460 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9461}
9462#endif
9463
fa0d7e3d
NP
9464static void btrfs_i_callback(struct rcu_head *head)
9465{
9466 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9467 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9468}
9469
39279cc3
CM
9470void btrfs_destroy_inode(struct inode *inode)
9471{
0b246afa 9472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9473 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9474 struct btrfs_root *root = BTRFS_I(inode)->root;
9475
b3d9b7a3 9476 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9477 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9478 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9479 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3 9480 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9481 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9482 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9483 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9484
a6dbd429
JB
9485 /*
9486 * This can happen where we create an inode, but somebody else also
9487 * created the same inode and we need to destroy the one we already
9488 * created.
9489 */
9490 if (!root)
9491 goto free;
9492
8a35d95f
JB
9493 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9494 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9495 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9496 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9497 atomic_dec(&root->orphan_inodes);
7b128766 9498 }
7b128766 9499
d397712b 9500 while (1) {
e6dcd2dc
CM
9501 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9502 if (!ordered)
9503 break;
9504 else {
0b246afa 9505 btrfs_err(fs_info,
5d163e0e
JM
9506 "found ordered extent %llu %llu on inode cleanup",
9507 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9508 btrfs_remove_ordered_extent(inode, ordered);
9509 btrfs_put_ordered_extent(ordered);
9510 btrfs_put_ordered_extent(ordered);
9511 }
9512 }
56fa9d07 9513 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9514 inode_tree_del(inode);
dcdbc059 9515 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9516free:
fa0d7e3d 9517 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9518}
9519
45321ac5 9520int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9521{
9522 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9523
6379ef9f
NA
9524 if (root == NULL)
9525 return 1;
9526
fa6ac876 9527 /* the snap/subvol tree is on deleting */
69e9c6c6 9528 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9529 return 1;
76dda93c 9530 else
45321ac5 9531 return generic_drop_inode(inode);
76dda93c
YZ
9532}
9533
0ee0fda0 9534static void init_once(void *foo)
39279cc3
CM
9535{
9536 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9537
9538 inode_init_once(&ei->vfs_inode);
9539}
9540
9541void btrfs_destroy_cachep(void)
9542{
8c0a8537
KS
9543 /*
9544 * Make sure all delayed rcu free inodes are flushed before we
9545 * destroy cache.
9546 */
9547 rcu_barrier();
5598e900
KM
9548 kmem_cache_destroy(btrfs_inode_cachep);
9549 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9550 kmem_cache_destroy(btrfs_path_cachep);
9551 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9552}
9553
9554int btrfs_init_cachep(void)
9555{
837e1972 9556 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9557 sizeof(struct btrfs_inode), 0,
5d097056
VD
9558 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9559 init_once);
39279cc3
CM
9560 if (!btrfs_inode_cachep)
9561 goto fail;
9601e3f6 9562
837e1972 9563 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9564 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9565 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9566 if (!btrfs_trans_handle_cachep)
9567 goto fail;
9601e3f6 9568
837e1972 9569 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9570 sizeof(struct btrfs_path), 0,
fba4b697 9571 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9572 if (!btrfs_path_cachep)
9573 goto fail;
9601e3f6 9574
837e1972 9575 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9576 sizeof(struct btrfs_free_space), 0,
fba4b697 9577 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9578 if (!btrfs_free_space_cachep)
9579 goto fail;
9580
39279cc3
CM
9581 return 0;
9582fail:
9583 btrfs_destroy_cachep();
9584 return -ENOMEM;
9585}
9586
a528d35e
DH
9587static int btrfs_getattr(const struct path *path, struct kstat *stat,
9588 u32 request_mask, unsigned int flags)
39279cc3 9589{
df0af1a5 9590 u64 delalloc_bytes;
a528d35e 9591 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9592 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9593 u32 bi_flags = BTRFS_I(inode)->flags;
9594
9595 stat->result_mask |= STATX_BTIME;
9596 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9597 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9598 if (bi_flags & BTRFS_INODE_APPEND)
9599 stat->attributes |= STATX_ATTR_APPEND;
9600 if (bi_flags & BTRFS_INODE_COMPRESS)
9601 stat->attributes |= STATX_ATTR_COMPRESSED;
9602 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9603 stat->attributes |= STATX_ATTR_IMMUTABLE;
9604 if (bi_flags & BTRFS_INODE_NODUMP)
9605 stat->attributes |= STATX_ATTR_NODUMP;
9606
9607 stat->attributes_mask |= (STATX_ATTR_APPEND |
9608 STATX_ATTR_COMPRESSED |
9609 STATX_ATTR_IMMUTABLE |
9610 STATX_ATTR_NODUMP);
fadc0d8b 9611
39279cc3 9612 generic_fillattr(inode, stat);
0ee5dc67 9613 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9614
9615 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9616 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9617 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9618 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9619 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9620 return 0;
9621}
9622
cdd1fedf
DF
9623static int btrfs_rename_exchange(struct inode *old_dir,
9624 struct dentry *old_dentry,
9625 struct inode *new_dir,
9626 struct dentry *new_dentry)
9627{
0b246afa 9628 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9629 struct btrfs_trans_handle *trans;
9630 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9631 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9632 struct inode *new_inode = new_dentry->d_inode;
9633 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9634 struct timespec ctime = current_time(old_inode);
cdd1fedf 9635 struct dentry *parent;
4a0cc7ca
NB
9636 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9637 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9638 u64 old_idx = 0;
9639 u64 new_idx = 0;
9640 u64 root_objectid;
9641 int ret;
86e8aa0e
FM
9642 bool root_log_pinned = false;
9643 bool dest_log_pinned = false;
cdd1fedf
DF
9644
9645 /* we only allow rename subvolume link between subvolumes */
9646 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9647 return -EXDEV;
9648
9649 /* close the race window with snapshot create/destroy ioctl */
9650 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9651 down_read(&fs_info->subvol_sem);
cdd1fedf 9652 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9653 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9654
9655 /*
9656 * We want to reserve the absolute worst case amount of items. So if
9657 * both inodes are subvols and we need to unlink them then that would
9658 * require 4 item modifications, but if they are both normal inodes it
9659 * would require 5 item modifications, so we'll assume their normal
9660 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9661 * should cover the worst case number of items we'll modify.
9662 */
9663 trans = btrfs_start_transaction(root, 12);
9664 if (IS_ERR(trans)) {
9665 ret = PTR_ERR(trans);
9666 goto out_notrans;
9667 }
9668
9669 /*
9670 * We need to find a free sequence number both in the source and
9671 * in the destination directory for the exchange.
9672 */
877574e2 9673 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9674 if (ret)
9675 goto out_fail;
877574e2 9676 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9677 if (ret)
9678 goto out_fail;
9679
9680 BTRFS_I(old_inode)->dir_index = 0ULL;
9681 BTRFS_I(new_inode)->dir_index = 0ULL;
9682
9683 /* Reference for the source. */
9684 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9685 /* force full log commit if subvolume involved. */
0b246afa 9686 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9687 } else {
376e5a57
FM
9688 btrfs_pin_log_trans(root);
9689 root_log_pinned = true;
cdd1fedf
DF
9690 ret = btrfs_insert_inode_ref(trans, dest,
9691 new_dentry->d_name.name,
9692 new_dentry->d_name.len,
9693 old_ino,
f85b7379
DS
9694 btrfs_ino(BTRFS_I(new_dir)),
9695 old_idx);
cdd1fedf
DF
9696 if (ret)
9697 goto out_fail;
cdd1fedf
DF
9698 }
9699
9700 /* And now for the dest. */
9701 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9702 /* force full log commit if subvolume involved. */
0b246afa 9703 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9704 } else {
376e5a57
FM
9705 btrfs_pin_log_trans(dest);
9706 dest_log_pinned = true;
cdd1fedf
DF
9707 ret = btrfs_insert_inode_ref(trans, root,
9708 old_dentry->d_name.name,
9709 old_dentry->d_name.len,
9710 new_ino,
f85b7379
DS
9711 btrfs_ino(BTRFS_I(old_dir)),
9712 new_idx);
cdd1fedf
DF
9713 if (ret)
9714 goto out_fail;
cdd1fedf
DF
9715 }
9716
9717 /* Update inode version and ctime/mtime. */
9718 inode_inc_iversion(old_dir);
9719 inode_inc_iversion(new_dir);
9720 inode_inc_iversion(old_inode);
9721 inode_inc_iversion(new_inode);
9722 old_dir->i_ctime = old_dir->i_mtime = ctime;
9723 new_dir->i_ctime = new_dir->i_mtime = ctime;
9724 old_inode->i_ctime = ctime;
9725 new_inode->i_ctime = ctime;
9726
9727 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9728 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9729 BTRFS_I(old_inode), 1);
9730 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9731 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9732 }
9733
9734 /* src is a subvolume */
9735 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9736 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9737 ret = btrfs_unlink_subvol(trans, root, old_dir,
9738 root_objectid,
9739 old_dentry->d_name.name,
9740 old_dentry->d_name.len);
9741 } else { /* src is an inode */
4ec5934e
NB
9742 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9743 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9744 old_dentry->d_name.name,
9745 old_dentry->d_name.len);
9746 if (!ret)
9747 ret = btrfs_update_inode(trans, root, old_inode);
9748 }
9749 if (ret) {
66642832 9750 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9751 goto out_fail;
9752 }
9753
9754 /* dest is a subvolume */
9755 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9756 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9757 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9758 root_objectid,
9759 new_dentry->d_name.name,
9760 new_dentry->d_name.len);
9761 } else { /* dest is an inode */
4ec5934e
NB
9762 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9763 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9764 new_dentry->d_name.name,
9765 new_dentry->d_name.len);
9766 if (!ret)
9767 ret = btrfs_update_inode(trans, dest, new_inode);
9768 }
9769 if (ret) {
66642832 9770 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9771 goto out_fail;
9772 }
9773
db0a669f 9774 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9775 new_dentry->d_name.name,
9776 new_dentry->d_name.len, 0, old_idx);
9777 if (ret) {
66642832 9778 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9779 goto out_fail;
9780 }
9781
db0a669f 9782 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9783 old_dentry->d_name.name,
9784 old_dentry->d_name.len, 0, new_idx);
9785 if (ret) {
66642832 9786 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9787 goto out_fail;
9788 }
9789
9790 if (old_inode->i_nlink == 1)
9791 BTRFS_I(old_inode)->dir_index = old_idx;
9792 if (new_inode->i_nlink == 1)
9793 BTRFS_I(new_inode)->dir_index = new_idx;
9794
86e8aa0e 9795 if (root_log_pinned) {
cdd1fedf 9796 parent = new_dentry->d_parent;
f85b7379
DS
9797 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9798 parent);
cdd1fedf 9799 btrfs_end_log_trans(root);
86e8aa0e 9800 root_log_pinned = false;
cdd1fedf 9801 }
86e8aa0e 9802 if (dest_log_pinned) {
cdd1fedf 9803 parent = old_dentry->d_parent;
f85b7379
DS
9804 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9805 parent);
cdd1fedf 9806 btrfs_end_log_trans(dest);
86e8aa0e 9807 dest_log_pinned = false;
cdd1fedf
DF
9808 }
9809out_fail:
86e8aa0e
FM
9810 /*
9811 * If we have pinned a log and an error happened, we unpin tasks
9812 * trying to sync the log and force them to fallback to a transaction
9813 * commit if the log currently contains any of the inodes involved in
9814 * this rename operation (to ensure we do not persist a log with an
9815 * inconsistent state for any of these inodes or leading to any
9816 * inconsistencies when replayed). If the transaction was aborted, the
9817 * abortion reason is propagated to userspace when attempting to commit
9818 * the transaction. If the log does not contain any of these inodes, we
9819 * allow the tasks to sync it.
9820 */
9821 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9822 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9823 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9824 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9825 (new_inode &&
0f8939b8 9826 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9827 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9828
9829 if (root_log_pinned) {
9830 btrfs_end_log_trans(root);
9831 root_log_pinned = false;
9832 }
9833 if (dest_log_pinned) {
9834 btrfs_end_log_trans(dest);
9835 dest_log_pinned = false;
9836 }
9837 }
3a45bb20 9838 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9839out_notrans:
9840 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9841 up_read(&fs_info->subvol_sem);
cdd1fedf 9842 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9843 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9844
9845 return ret;
9846}
9847
9848static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9849 struct btrfs_root *root,
9850 struct inode *dir,
9851 struct dentry *dentry)
9852{
9853 int ret;
9854 struct inode *inode;
9855 u64 objectid;
9856 u64 index;
9857
9858 ret = btrfs_find_free_ino(root, &objectid);
9859 if (ret)
9860 return ret;
9861
9862 inode = btrfs_new_inode(trans, root, dir,
9863 dentry->d_name.name,
9864 dentry->d_name.len,
4a0cc7ca 9865 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9866 objectid,
9867 S_IFCHR | WHITEOUT_MODE,
9868 &index);
9869
9870 if (IS_ERR(inode)) {
9871 ret = PTR_ERR(inode);
9872 return ret;
9873 }
9874
9875 inode->i_op = &btrfs_special_inode_operations;
9876 init_special_inode(inode, inode->i_mode,
9877 WHITEOUT_DEV);
9878
9879 ret = btrfs_init_inode_security(trans, inode, dir,
9880 &dentry->d_name);
9881 if (ret)
c9901618 9882 goto out;
cdd1fedf 9883
cef415af
NB
9884 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9885 BTRFS_I(inode), 0, index);
cdd1fedf 9886 if (ret)
c9901618 9887 goto out;
cdd1fedf
DF
9888
9889 ret = btrfs_update_inode(trans, root, inode);
c9901618 9890out:
cdd1fedf 9891 unlock_new_inode(inode);
c9901618
FM
9892 if (ret)
9893 inode_dec_link_count(inode);
cdd1fedf
DF
9894 iput(inode);
9895
c9901618 9896 return ret;
cdd1fedf
DF
9897}
9898
d397712b 9899static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9900 struct inode *new_dir, struct dentry *new_dentry,
9901 unsigned int flags)
39279cc3 9902{
0b246afa 9903 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9904 struct btrfs_trans_handle *trans;
5062af35 9905 unsigned int trans_num_items;
39279cc3 9906 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9907 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9908 struct inode *new_inode = d_inode(new_dentry);
9909 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9910 u64 index = 0;
4df27c4d 9911 u64 root_objectid;
39279cc3 9912 int ret;
4a0cc7ca 9913 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9914 bool log_pinned = false;
39279cc3 9915
4a0cc7ca 9916 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9917 return -EPERM;
9918
4df27c4d 9919 /* we only allow rename subvolume link between subvolumes */
33345d01 9920 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9921 return -EXDEV;
9922
33345d01 9923 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9924 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9925 return -ENOTEMPTY;
5f39d397 9926
4df27c4d
YZ
9927 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9928 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9929 return -ENOTEMPTY;
9c52057c
CM
9930
9931
9932 /* check for collisions, even if the name isn't there */
4871c158 9933 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9934 new_dentry->d_name.name,
9935 new_dentry->d_name.len);
9936
9937 if (ret) {
9938 if (ret == -EEXIST) {
9939 /* we shouldn't get
9940 * eexist without a new_inode */
fae7f21c 9941 if (WARN_ON(!new_inode)) {
9c52057c
CM
9942 return ret;
9943 }
9944 } else {
9945 /* maybe -EOVERFLOW */
9946 return ret;
9947 }
9948 }
9949 ret = 0;
9950
5a3f23d5 9951 /*
8d875f95
CM
9952 * we're using rename to replace one file with another. Start IO on it
9953 * now so we don't add too much work to the end of the transaction
5a3f23d5 9954 */
8d875f95 9955 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9956 filemap_flush(old_inode->i_mapping);
9957
76dda93c 9958 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9959 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9960 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9961 /*
9962 * We want to reserve the absolute worst case amount of items. So if
9963 * both inodes are subvols and we need to unlink them then that would
9964 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9965 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9966 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9967 * should cover the worst case number of items we'll modify.
5062af35
FM
9968 * If our rename has the whiteout flag, we need more 5 units for the
9969 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9970 * when selinux is enabled).
a22285a6 9971 */
5062af35
FM
9972 trans_num_items = 11;
9973 if (flags & RENAME_WHITEOUT)
9974 trans_num_items += 5;
9975 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9976 if (IS_ERR(trans)) {
cdd1fedf
DF
9977 ret = PTR_ERR(trans);
9978 goto out_notrans;
9979 }
76dda93c 9980
4df27c4d
YZ
9981 if (dest != root)
9982 btrfs_record_root_in_trans(trans, dest);
5f39d397 9983
877574e2 9984 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9985 if (ret)
9986 goto out_fail;
5a3f23d5 9987
67de1176 9988 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9989 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9990 /* force full log commit if subvolume involved. */
0b246afa 9991 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9992 } else {
c4aba954
FM
9993 btrfs_pin_log_trans(root);
9994 log_pinned = true;
a5719521
YZ
9995 ret = btrfs_insert_inode_ref(trans, dest,
9996 new_dentry->d_name.name,
9997 new_dentry->d_name.len,
33345d01 9998 old_ino,
4a0cc7ca 9999 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
10000 if (ret)
10001 goto out_fail;
4df27c4d 10002 }
5a3f23d5 10003
0c4d2d95
JB
10004 inode_inc_iversion(old_dir);
10005 inode_inc_iversion(new_dir);
10006 inode_inc_iversion(old_inode);
04b285f3
DD
10007 old_dir->i_ctime = old_dir->i_mtime =
10008 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 10009 old_inode->i_ctime = current_time(old_dir);
5f39d397 10010
12fcfd22 10011 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
10012 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10013 BTRFS_I(old_inode), 1);
12fcfd22 10014
33345d01 10015 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
10016 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10017 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10018 old_dentry->d_name.name,
10019 old_dentry->d_name.len);
10020 } else {
4ec5934e
NB
10021 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10022 BTRFS_I(d_inode(old_dentry)),
92986796
AV
10023 old_dentry->d_name.name,
10024 old_dentry->d_name.len);
10025 if (!ret)
10026 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10027 }
79787eaa 10028 if (ret) {
66642832 10029 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10030 goto out_fail;
10031 }
39279cc3
CM
10032
10033 if (new_inode) {
0c4d2d95 10034 inode_inc_iversion(new_inode);
c2050a45 10035 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10036 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10037 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10038 root_objectid = BTRFS_I(new_inode)->location.objectid;
10039 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10040 root_objectid,
10041 new_dentry->d_name.name,
10042 new_dentry->d_name.len);
10043 BUG_ON(new_inode->i_nlink == 0);
10044 } else {
4ec5934e
NB
10045 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10046 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10047 new_dentry->d_name.name,
10048 new_dentry->d_name.len);
10049 }
4ef31a45 10050 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10051 ret = btrfs_orphan_add(trans,
10052 BTRFS_I(d_inode(new_dentry)));
79787eaa 10053 if (ret) {
66642832 10054 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10055 goto out_fail;
10056 }
39279cc3 10057 }
aec7477b 10058
db0a669f 10059 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10060 new_dentry->d_name.name,
a5719521 10061 new_dentry->d_name.len, 0, index);
79787eaa 10062 if (ret) {
66642832 10063 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10064 goto out_fail;
10065 }
39279cc3 10066
67de1176
MX
10067 if (old_inode->i_nlink == 1)
10068 BTRFS_I(old_inode)->dir_index = index;
10069
3dc9e8f7 10070 if (log_pinned) {
10d9f309 10071 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10072
f85b7379
DS
10073 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10074 parent);
4df27c4d 10075 btrfs_end_log_trans(root);
3dc9e8f7 10076 log_pinned = false;
4df27c4d 10077 }
cdd1fedf
DF
10078
10079 if (flags & RENAME_WHITEOUT) {
10080 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10081 old_dentry);
10082
10083 if (ret) {
66642832 10084 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10085 goto out_fail;
10086 }
4df27c4d 10087 }
39279cc3 10088out_fail:
3dc9e8f7
FM
10089 /*
10090 * If we have pinned the log and an error happened, we unpin tasks
10091 * trying to sync the log and force them to fallback to a transaction
10092 * commit if the log currently contains any of the inodes involved in
10093 * this rename operation (to ensure we do not persist a log with an
10094 * inconsistent state for any of these inodes or leading to any
10095 * inconsistencies when replayed). If the transaction was aborted, the
10096 * abortion reason is propagated to userspace when attempting to commit
10097 * the transaction. If the log does not contain any of these inodes, we
10098 * allow the tasks to sync it.
10099 */
10100 if (ret && log_pinned) {
0f8939b8
NB
10101 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10102 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10103 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10104 (new_inode &&
0f8939b8 10105 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10106 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10107
10108 btrfs_end_log_trans(root);
10109 log_pinned = false;
10110 }
3a45bb20 10111 btrfs_end_transaction(trans);
b44c59a8 10112out_notrans:
33345d01 10113 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10114 up_read(&fs_info->subvol_sem);
9ed74f2d 10115
39279cc3
CM
10116 return ret;
10117}
10118
80ace85c
MS
10119static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10120 struct inode *new_dir, struct dentry *new_dentry,
10121 unsigned int flags)
10122{
cdd1fedf 10123 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10124 return -EINVAL;
10125
cdd1fedf
DF
10126 if (flags & RENAME_EXCHANGE)
10127 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10128 new_dentry);
10129
10130 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10131}
10132
8ccf6f19
MX
10133static void btrfs_run_delalloc_work(struct btrfs_work *work)
10134{
10135 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10136 struct inode *inode;
8ccf6f19
MX
10137
10138 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10139 work);
9f23e289 10140 inode = delalloc_work->inode;
30424601
DS
10141 filemap_flush(inode->i_mapping);
10142 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10143 &BTRFS_I(inode)->runtime_flags))
9f23e289 10144 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10145
10146 if (delalloc_work->delay_iput)
9f23e289 10147 btrfs_add_delayed_iput(inode);
8ccf6f19 10148 else
9f23e289 10149 iput(inode);
8ccf6f19
MX
10150 complete(&delalloc_work->completion);
10151}
10152
10153struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10154 int delay_iput)
8ccf6f19
MX
10155{
10156 struct btrfs_delalloc_work *work;
10157
100d5702 10158 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10159 if (!work)
10160 return NULL;
10161
10162 init_completion(&work->completion);
10163 INIT_LIST_HEAD(&work->list);
10164 work->inode = inode;
8ccf6f19 10165 work->delay_iput = delay_iput;
9e0af237
LB
10166 WARN_ON_ONCE(!inode);
10167 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10168 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10169
10170 return work;
10171}
10172
10173void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10174{
10175 wait_for_completion(&work->completion);
100d5702 10176 kfree(work);
8ccf6f19
MX
10177}
10178
d352ac68
CM
10179/*
10180 * some fairly slow code that needs optimization. This walks the list
10181 * of all the inodes with pending delalloc and forces them to disk.
10182 */
6c255e67
MX
10183static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10184 int nr)
ea8c2819 10185{
ea8c2819 10186 struct btrfs_inode *binode;
5b21f2ed 10187 struct inode *inode;
8ccf6f19
MX
10188 struct btrfs_delalloc_work *work, *next;
10189 struct list_head works;
1eafa6c7 10190 struct list_head splice;
8ccf6f19 10191 int ret = 0;
ea8c2819 10192
8ccf6f19 10193 INIT_LIST_HEAD(&works);
1eafa6c7 10194 INIT_LIST_HEAD(&splice);
63607cc8 10195
573bfb72 10196 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10197 spin_lock(&root->delalloc_lock);
10198 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10199 while (!list_empty(&splice)) {
10200 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10201 delalloc_inodes);
1eafa6c7 10202
eb73c1b7
MX
10203 list_move_tail(&binode->delalloc_inodes,
10204 &root->delalloc_inodes);
5b21f2ed 10205 inode = igrab(&binode->vfs_inode);
df0af1a5 10206 if (!inode) {
eb73c1b7 10207 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10208 continue;
df0af1a5 10209 }
eb73c1b7 10210 spin_unlock(&root->delalloc_lock);
1eafa6c7 10211
651d494a 10212 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10213 if (!work) {
f4ab9ea7
JB
10214 if (delay_iput)
10215 btrfs_add_delayed_iput(inode);
10216 else
10217 iput(inode);
1eafa6c7 10218 ret = -ENOMEM;
a1ecaabb 10219 goto out;
5b21f2ed 10220 }
1eafa6c7 10221 list_add_tail(&work->list, &works);
a44903ab
QW
10222 btrfs_queue_work(root->fs_info->flush_workers,
10223 &work->work);
6c255e67
MX
10224 ret++;
10225 if (nr != -1 && ret >= nr)
a1ecaabb 10226 goto out;
5b21f2ed 10227 cond_resched();
eb73c1b7 10228 spin_lock(&root->delalloc_lock);
ea8c2819 10229 }
eb73c1b7 10230 spin_unlock(&root->delalloc_lock);
8c8bee1d 10231
a1ecaabb 10232out:
eb73c1b7
MX
10233 list_for_each_entry_safe(work, next, &works, list) {
10234 list_del_init(&work->list);
10235 btrfs_wait_and_free_delalloc_work(work);
10236 }
10237
10238 if (!list_empty_careful(&splice)) {
10239 spin_lock(&root->delalloc_lock);
10240 list_splice_tail(&splice, &root->delalloc_inodes);
10241 spin_unlock(&root->delalloc_lock);
10242 }
573bfb72 10243 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10244 return ret;
10245}
1eafa6c7 10246
eb73c1b7
MX
10247int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10248{
0b246afa 10249 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10250 int ret;
1eafa6c7 10251
0b246afa 10252 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10253 return -EROFS;
10254
6c255e67
MX
10255 ret = __start_delalloc_inodes(root, delay_iput, -1);
10256 if (ret > 0)
10257 ret = 0;
eb73c1b7
MX
10258 /*
10259 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10260 * we have to make sure the IO is actually started and that
10261 * ordered extents get created before we return
10262 */
0b246afa
JM
10263 atomic_inc(&fs_info->async_submit_draining);
10264 while (atomic_read(&fs_info->nr_async_submits) ||
10265 atomic_read(&fs_info->async_delalloc_pages)) {
10266 wait_event(fs_info->async_submit_wait,
10267 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10268 atomic_read(&fs_info->async_delalloc_pages) == 0));
10269 }
10270 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10271 return ret;
10272}
10273
6c255e67
MX
10274int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10275 int nr)
eb73c1b7
MX
10276{
10277 struct btrfs_root *root;
10278 struct list_head splice;
10279 int ret;
10280
2c21b4d7 10281 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10282 return -EROFS;
10283
10284 INIT_LIST_HEAD(&splice);
10285
573bfb72 10286 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10287 spin_lock(&fs_info->delalloc_root_lock);
10288 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10289 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10290 root = list_first_entry(&splice, struct btrfs_root,
10291 delalloc_root);
10292 root = btrfs_grab_fs_root(root);
10293 BUG_ON(!root);
10294 list_move_tail(&root->delalloc_root,
10295 &fs_info->delalloc_roots);
10296 spin_unlock(&fs_info->delalloc_root_lock);
10297
6c255e67 10298 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10299 btrfs_put_fs_root(root);
6c255e67 10300 if (ret < 0)
eb73c1b7
MX
10301 goto out;
10302
6c255e67
MX
10303 if (nr != -1) {
10304 nr -= ret;
10305 WARN_ON(nr < 0);
10306 }
eb73c1b7 10307 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10308 }
eb73c1b7 10309 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10310
6c255e67 10311 ret = 0;
eb73c1b7
MX
10312 atomic_inc(&fs_info->async_submit_draining);
10313 while (atomic_read(&fs_info->nr_async_submits) ||
10314 atomic_read(&fs_info->async_delalloc_pages)) {
10315 wait_event(fs_info->async_submit_wait,
10316 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10317 atomic_read(&fs_info->async_delalloc_pages) == 0));
10318 }
10319 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10320out:
1eafa6c7 10321 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10322 spin_lock(&fs_info->delalloc_root_lock);
10323 list_splice_tail(&splice, &fs_info->delalloc_roots);
10324 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10325 }
573bfb72 10326 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10327 return ret;
ea8c2819
CM
10328}
10329
39279cc3
CM
10330static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10331 const char *symname)
10332{
0b246afa 10333 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10334 struct btrfs_trans_handle *trans;
10335 struct btrfs_root *root = BTRFS_I(dir)->root;
10336 struct btrfs_path *path;
10337 struct btrfs_key key;
1832a6d5 10338 struct inode *inode = NULL;
39279cc3
CM
10339 int err;
10340 int drop_inode = 0;
10341 u64 objectid;
67871254 10342 u64 index = 0;
39279cc3
CM
10343 int name_len;
10344 int datasize;
5f39d397 10345 unsigned long ptr;
39279cc3 10346 struct btrfs_file_extent_item *ei;
5f39d397 10347 struct extent_buffer *leaf;
39279cc3 10348
f06becc4 10349 name_len = strlen(symname);
0b246afa 10350 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10351 return -ENAMETOOLONG;
1832a6d5 10352
9ed74f2d
JB
10353 /*
10354 * 2 items for inode item and ref
10355 * 2 items for dir items
9269d12b
FM
10356 * 1 item for updating parent inode item
10357 * 1 item for the inline extent item
9ed74f2d
JB
10358 * 1 item for xattr if selinux is on
10359 */
9269d12b 10360 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10361 if (IS_ERR(trans))
10362 return PTR_ERR(trans);
1832a6d5 10363
581bb050
LZ
10364 err = btrfs_find_free_ino(root, &objectid);
10365 if (err)
10366 goto out_unlock;
10367
aec7477b 10368 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10369 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10370 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10371 if (IS_ERR(inode)) {
10372 err = PTR_ERR(inode);
39279cc3 10373 goto out_unlock;
7cf96da3 10374 }
39279cc3 10375
ad19db71
CS
10376 /*
10377 * If the active LSM wants to access the inode during
10378 * d_instantiate it needs these. Smack checks to see
10379 * if the filesystem supports xattrs by looking at the
10380 * ops vector.
10381 */
10382 inode->i_fop = &btrfs_file_operations;
10383 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10384 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10385 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10386
10387 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10388 if (err)
10389 goto out_unlock_inode;
ad19db71 10390
39279cc3 10391 path = btrfs_alloc_path();
d8926bb3
MF
10392 if (!path) {
10393 err = -ENOMEM;
b0d5d10f 10394 goto out_unlock_inode;
d8926bb3 10395 }
4a0cc7ca 10396 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10397 key.offset = 0;
962a298f 10398 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10399 datasize = btrfs_file_extent_calc_inline_size(name_len);
10400 err = btrfs_insert_empty_item(trans, root, path, &key,
10401 datasize);
54aa1f4d 10402 if (err) {
b0839166 10403 btrfs_free_path(path);
b0d5d10f 10404 goto out_unlock_inode;
54aa1f4d 10405 }
5f39d397
CM
10406 leaf = path->nodes[0];
10407 ei = btrfs_item_ptr(leaf, path->slots[0],
10408 struct btrfs_file_extent_item);
10409 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10410 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10411 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10412 btrfs_set_file_extent_encryption(leaf, ei, 0);
10413 btrfs_set_file_extent_compression(leaf, ei, 0);
10414 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10415 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10416
39279cc3 10417 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10418 write_extent_buffer(leaf, symname, ptr, name_len);
10419 btrfs_mark_buffer_dirty(leaf);
39279cc3 10420 btrfs_free_path(path);
5f39d397 10421
39279cc3 10422 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10423 inode_nohighmem(inode);
39279cc3 10424 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10425 inode_set_bytes(inode, name_len);
6ef06d27 10426 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10427 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10428 /*
10429 * Last step, add directory indexes for our symlink inode. This is the
10430 * last step to avoid extra cleanup of these indexes if an error happens
10431 * elsewhere above.
10432 */
10433 if (!err)
cef415af
NB
10434 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10435 BTRFS_I(inode), 0, index);
b0d5d10f 10436 if (err) {
54aa1f4d 10437 drop_inode = 1;
b0d5d10f
CM
10438 goto out_unlock_inode;
10439 }
10440
10441 unlock_new_inode(inode);
10442 d_instantiate(dentry, inode);
39279cc3
CM
10443
10444out_unlock:
3a45bb20 10445 btrfs_end_transaction(trans);
39279cc3
CM
10446 if (drop_inode) {
10447 inode_dec_link_count(inode);
10448 iput(inode);
10449 }
2ff7e61e 10450 btrfs_btree_balance_dirty(fs_info);
39279cc3 10451 return err;
b0d5d10f
CM
10452
10453out_unlock_inode:
10454 drop_inode = 1;
10455 unlock_new_inode(inode);
10456 goto out_unlock;
39279cc3 10457}
16432985 10458
0af3d00b
JB
10459static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10460 u64 start, u64 num_bytes, u64 min_size,
10461 loff_t actual_len, u64 *alloc_hint,
10462 struct btrfs_trans_handle *trans)
d899e052 10463{
0b246afa 10464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10465 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10466 struct extent_map *em;
d899e052
YZ
10467 struct btrfs_root *root = BTRFS_I(inode)->root;
10468 struct btrfs_key ins;
d899e052 10469 u64 cur_offset = start;
55a61d1d 10470 u64 i_size;
154ea289 10471 u64 cur_bytes;
0b670dc4 10472 u64 last_alloc = (u64)-1;
d899e052 10473 int ret = 0;
0af3d00b 10474 bool own_trans = true;
18513091 10475 u64 end = start + num_bytes - 1;
d899e052 10476
0af3d00b
JB
10477 if (trans)
10478 own_trans = false;
d899e052 10479 while (num_bytes > 0) {
0af3d00b
JB
10480 if (own_trans) {
10481 trans = btrfs_start_transaction(root, 3);
10482 if (IS_ERR(trans)) {
10483 ret = PTR_ERR(trans);
10484 break;
10485 }
5a303d5d
YZ
10486 }
10487
ee22184b 10488 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10489 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10490 /*
10491 * If we are severely fragmented we could end up with really
10492 * small allocations, so if the allocator is returning small
10493 * chunks lets make its job easier by only searching for those
10494 * sized chunks.
10495 */
10496 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10497 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10498 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10499 if (ret) {
0af3d00b 10500 if (own_trans)
3a45bb20 10501 btrfs_end_transaction(trans);
a22285a6 10502 break;
d899e052 10503 }
0b246afa 10504 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10505
0b670dc4 10506 last_alloc = ins.offset;
d899e052
YZ
10507 ret = insert_reserved_file_extent(trans, inode,
10508 cur_offset, ins.objectid,
10509 ins.offset, ins.offset,
920bbbfb 10510 ins.offset, 0, 0, 0,
d899e052 10511 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10512 if (ret) {
2ff7e61e 10513 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10514 ins.offset, 0);
66642832 10515 btrfs_abort_transaction(trans, ret);
79787eaa 10516 if (own_trans)
3a45bb20 10517 btrfs_end_transaction(trans);
79787eaa
JM
10518 break;
10519 }
31193213 10520
dcdbc059 10521 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10522 cur_offset + ins.offset -1, 0);
5a303d5d 10523
5dc562c5
JB
10524 em = alloc_extent_map();
10525 if (!em) {
10526 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10527 &BTRFS_I(inode)->runtime_flags);
10528 goto next;
10529 }
10530
10531 em->start = cur_offset;
10532 em->orig_start = cur_offset;
10533 em->len = ins.offset;
10534 em->block_start = ins.objectid;
10535 em->block_len = ins.offset;
b4939680 10536 em->orig_block_len = ins.offset;
cc95bef6 10537 em->ram_bytes = ins.offset;
0b246afa 10538 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10539 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10540 em->generation = trans->transid;
10541
10542 while (1) {
10543 write_lock(&em_tree->lock);
09a2a8f9 10544 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10545 write_unlock(&em_tree->lock);
10546 if (ret != -EEXIST)
10547 break;
dcdbc059 10548 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10549 cur_offset + ins.offset - 1,
10550 0);
10551 }
10552 free_extent_map(em);
10553next:
d899e052
YZ
10554 num_bytes -= ins.offset;
10555 cur_offset += ins.offset;
efa56464 10556 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10557
0c4d2d95 10558 inode_inc_iversion(inode);
c2050a45 10559 inode->i_ctime = current_time(inode);
6cbff00f 10560 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10561 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10562 (actual_len > inode->i_size) &&
10563 (cur_offset > inode->i_size)) {
d1ea6a61 10564 if (cur_offset > actual_len)
55a61d1d 10565 i_size = actual_len;
d1ea6a61 10566 else
55a61d1d
JB
10567 i_size = cur_offset;
10568 i_size_write(inode, i_size);
10569 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10570 }
10571
d899e052 10572 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10573
10574 if (ret) {
66642832 10575 btrfs_abort_transaction(trans, ret);
79787eaa 10576 if (own_trans)
3a45bb20 10577 btrfs_end_transaction(trans);
79787eaa
JM
10578 break;
10579 }
d899e052 10580
0af3d00b 10581 if (own_trans)
3a45bb20 10582 btrfs_end_transaction(trans);
5a303d5d 10583 }
18513091 10584 if (cur_offset < end)
bc42bda2 10585 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10586 end - cur_offset + 1);
d899e052
YZ
10587 return ret;
10588}
10589
0af3d00b
JB
10590int btrfs_prealloc_file_range(struct inode *inode, int mode,
10591 u64 start, u64 num_bytes, u64 min_size,
10592 loff_t actual_len, u64 *alloc_hint)
10593{
10594 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10595 min_size, actual_len, alloc_hint,
10596 NULL);
10597}
10598
10599int btrfs_prealloc_file_range_trans(struct inode *inode,
10600 struct btrfs_trans_handle *trans, int mode,
10601 u64 start, u64 num_bytes, u64 min_size,
10602 loff_t actual_len, u64 *alloc_hint)
10603{
10604 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10605 min_size, actual_len, alloc_hint, trans);
10606}
10607
e6dcd2dc
CM
10608static int btrfs_set_page_dirty(struct page *page)
10609{
e6dcd2dc
CM
10610 return __set_page_dirty_nobuffers(page);
10611}
10612
10556cb2 10613static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10614{
b83cc969 10615 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10616 umode_t mode = inode->i_mode;
b83cc969 10617
cb6db4e5
JM
10618 if (mask & MAY_WRITE &&
10619 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10620 if (btrfs_root_readonly(root))
10621 return -EROFS;
10622 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10623 return -EACCES;
10624 }
2830ba7f 10625 return generic_permission(inode, mask);
fdebe2bd 10626}
39279cc3 10627
ef3b9af5
FM
10628static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10629{
2ff7e61e 10630 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10631 struct btrfs_trans_handle *trans;
10632 struct btrfs_root *root = BTRFS_I(dir)->root;
10633 struct inode *inode = NULL;
10634 u64 objectid;
10635 u64 index;
10636 int ret = 0;
10637
10638 /*
10639 * 5 units required for adding orphan entry
10640 */
10641 trans = btrfs_start_transaction(root, 5);
10642 if (IS_ERR(trans))
10643 return PTR_ERR(trans);
10644
10645 ret = btrfs_find_free_ino(root, &objectid);
10646 if (ret)
10647 goto out;
10648
10649 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10650 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10651 if (IS_ERR(inode)) {
10652 ret = PTR_ERR(inode);
10653 inode = NULL;
10654 goto out;
10655 }
10656
ef3b9af5
FM
10657 inode->i_fop = &btrfs_file_operations;
10658 inode->i_op = &btrfs_file_inode_operations;
10659
10660 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10661 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10662
b0d5d10f
CM
10663 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10664 if (ret)
10665 goto out_inode;
10666
10667 ret = btrfs_update_inode(trans, root, inode);
10668 if (ret)
10669 goto out_inode;
73f2e545 10670 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10671 if (ret)
b0d5d10f 10672 goto out_inode;
ef3b9af5 10673
5762b5c9
FM
10674 /*
10675 * We set number of links to 0 in btrfs_new_inode(), and here we set
10676 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10677 * through:
10678 *
10679 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10680 */
10681 set_nlink(inode, 1);
b0d5d10f 10682 unlock_new_inode(inode);
ef3b9af5
FM
10683 d_tmpfile(dentry, inode);
10684 mark_inode_dirty(inode);
10685
10686out:
3a45bb20 10687 btrfs_end_transaction(trans);
ef3b9af5
FM
10688 if (ret)
10689 iput(inode);
2ff7e61e
JM
10690 btrfs_balance_delayed_items(fs_info);
10691 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10692 return ret;
b0d5d10f
CM
10693
10694out_inode:
10695 unlock_new_inode(inode);
10696 goto out;
10697
ef3b9af5
FM
10698}
10699
20a7db8a 10700__attribute__((const))
9d0d1c8b 10701static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10702{
9d0d1c8b 10703 return -EAGAIN;
20a7db8a
DS
10704}
10705
c6100a4b
JB
10706static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10707{
10708 struct inode *inode = private_data;
10709 return btrfs_sb(inode->i_sb);
10710}
10711
10712static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10713 u64 start, u64 end)
10714{
10715 struct inode *inode = private_data;
10716 u64 isize;
10717
10718 isize = i_size_read(inode);
10719 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10720 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10721 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10722 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10723 }
10724}
10725
10726void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10727{
10728 struct inode *inode = private_data;
10729 unsigned long index = start >> PAGE_SHIFT;
10730 unsigned long end_index = end >> PAGE_SHIFT;
10731 struct page *page;
10732
10733 while (index <= end_index) {
10734 page = find_get_page(inode->i_mapping, index);
10735 ASSERT(page); /* Pages should be in the extent_io_tree */
10736 set_page_writeback(page);
10737 put_page(page);
10738 index++;
10739 }
10740}
10741
6e1d5dcc 10742static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10743 .getattr = btrfs_getattr,
39279cc3
CM
10744 .lookup = btrfs_lookup,
10745 .create = btrfs_create,
10746 .unlink = btrfs_unlink,
10747 .link = btrfs_link,
10748 .mkdir = btrfs_mkdir,
10749 .rmdir = btrfs_rmdir,
2773bf00 10750 .rename = btrfs_rename2,
39279cc3
CM
10751 .symlink = btrfs_symlink,
10752 .setattr = btrfs_setattr,
618e21d5 10753 .mknod = btrfs_mknod,
5103e947 10754 .listxattr = btrfs_listxattr,
fdebe2bd 10755 .permission = btrfs_permission,
4e34e719 10756 .get_acl = btrfs_get_acl,
996a710d 10757 .set_acl = btrfs_set_acl,
93fd63c2 10758 .update_time = btrfs_update_time,
ef3b9af5 10759 .tmpfile = btrfs_tmpfile,
39279cc3 10760};
6e1d5dcc 10761static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10762 .lookup = btrfs_lookup,
fdebe2bd 10763 .permission = btrfs_permission,
93fd63c2 10764 .update_time = btrfs_update_time,
39279cc3 10765};
76dda93c 10766
828c0950 10767static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10768 .llseek = generic_file_llseek,
10769 .read = generic_read_dir,
02dbfc99 10770 .iterate_shared = btrfs_real_readdir,
34287aa3 10771 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10772#ifdef CONFIG_COMPAT
4c63c245 10773 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10774#endif
6bf13c0c 10775 .release = btrfs_release_file,
e02119d5 10776 .fsync = btrfs_sync_file,
39279cc3
CM
10777};
10778
20e5506b 10779static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10780 /* mandatory callbacks */
065631f6 10781 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10782 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10783 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10784 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10785 .tree_fs_info = iotree_fs_info,
10786 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10787
10788 /* optional callbacks */
10789 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10790 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10791 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10792 .set_bit_hook = btrfs_set_bit_hook,
10793 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10794 .merge_extent_hook = btrfs_merge_extent_hook,
10795 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10796 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10797};
10798
35054394
CM
10799/*
10800 * btrfs doesn't support the bmap operation because swapfiles
10801 * use bmap to make a mapping of extents in the file. They assume
10802 * these extents won't change over the life of the file and they
10803 * use the bmap result to do IO directly to the drive.
10804 *
10805 * the btrfs bmap call would return logical addresses that aren't
10806 * suitable for IO and they also will change frequently as COW
10807 * operations happen. So, swapfile + btrfs == corruption.
10808 *
10809 * For now we're avoiding this by dropping bmap.
10810 */
7f09410b 10811static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10812 .readpage = btrfs_readpage,
10813 .writepage = btrfs_writepage,
b293f02e 10814 .writepages = btrfs_writepages,
3ab2fb5a 10815 .readpages = btrfs_readpages,
16432985 10816 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10817 .invalidatepage = btrfs_invalidatepage,
10818 .releasepage = btrfs_releasepage,
e6dcd2dc 10819 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10820 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10821};
10822
7f09410b 10823static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10824 .readpage = btrfs_readpage,
10825 .writepage = btrfs_writepage,
2bf5a725
CM
10826 .invalidatepage = btrfs_invalidatepage,
10827 .releasepage = btrfs_releasepage,
39279cc3
CM
10828};
10829
6e1d5dcc 10830static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10831 .getattr = btrfs_getattr,
10832 .setattr = btrfs_setattr,
5103e947 10833 .listxattr = btrfs_listxattr,
fdebe2bd 10834 .permission = btrfs_permission,
1506fcc8 10835 .fiemap = btrfs_fiemap,
4e34e719 10836 .get_acl = btrfs_get_acl,
996a710d 10837 .set_acl = btrfs_set_acl,
e41f941a 10838 .update_time = btrfs_update_time,
39279cc3 10839};
6e1d5dcc 10840static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10841 .getattr = btrfs_getattr,
10842 .setattr = btrfs_setattr,
fdebe2bd 10843 .permission = btrfs_permission,
33268eaf 10844 .listxattr = btrfs_listxattr,
4e34e719 10845 .get_acl = btrfs_get_acl,
996a710d 10846 .set_acl = btrfs_set_acl,
e41f941a 10847 .update_time = btrfs_update_time,
618e21d5 10848};
6e1d5dcc 10849static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10850 .get_link = page_get_link,
f209561a 10851 .getattr = btrfs_getattr,
22c44fe6 10852 .setattr = btrfs_setattr,
fdebe2bd 10853 .permission = btrfs_permission,
0279b4cd 10854 .listxattr = btrfs_listxattr,
e41f941a 10855 .update_time = btrfs_update_time,
39279cc3 10856};
76dda93c 10857
82d339d9 10858const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10859 .d_delete = btrfs_dentry_delete,
b4aff1f8 10860 .d_release = btrfs_dentry_release,
76dda93c 10861};