]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/inode.c
Btrfs: Fix deadlock between direct IO and fast fsync
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
111static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
112 u64 len, u64 orig_start,
113 u64 block_start, u64 block_len,
cc95bef6
JB
114 u64 orig_block_len, u64 ram_bytes,
115 int type);
7b128766 116
48a3b636 117static int btrfs_dirty_inode(struct inode *inode);
7b128766 118
6a3891c5
JB
119#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
120void btrfs_test_inode_set_ops(struct inode *inode)
121{
122 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
123}
124#endif
125
f34f57a3 126static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
127 struct inode *inode, struct inode *dir,
128 const struct qstr *qstr)
0279b4cd
JO
129{
130 int err;
131
f34f57a3 132 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 133 if (!err)
2a7dba39 134 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
135 return err;
136}
137
c8b97818
CM
138/*
139 * this does all the hard work for inserting an inline extent into
140 * the btree. The caller should have done a btrfs_drop_extents so that
141 * no overlapping inline items exist in the btree
142 */
40f76580 143static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 144 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
145 struct btrfs_root *root, struct inode *inode,
146 u64 start, size_t size, size_t compressed_size,
fe3f566c 147 int compress_type,
c8b97818
CM
148 struct page **compressed_pages)
149{
c8b97818
CM
150 struct extent_buffer *leaf;
151 struct page *page = NULL;
152 char *kaddr;
153 unsigned long ptr;
154 struct btrfs_file_extent_item *ei;
155 int err = 0;
156 int ret;
157 size_t cur_size = size;
c8b97818 158 unsigned long offset;
c8b97818 159
fe3f566c 160 if (compressed_size && compressed_pages)
c8b97818 161 cur_size = compressed_size;
c8b97818 162
1acae57b 163 inode_add_bytes(inode, size);
c8b97818 164
1acae57b
FDBM
165 if (!extent_inserted) {
166 struct btrfs_key key;
167 size_t datasize;
c8b97818 168
1acae57b
FDBM
169 key.objectid = btrfs_ino(inode);
170 key.offset = start;
962a298f 171 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 172
1acae57b
FDBM
173 datasize = btrfs_file_extent_calc_inline_size(cur_size);
174 path->leave_spinning = 1;
175 ret = btrfs_insert_empty_item(trans, root, path, &key,
176 datasize);
177 if (ret) {
178 err = ret;
179 goto fail;
180 }
c8b97818
CM
181 }
182 leaf = path->nodes[0];
183 ei = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_file_extent_item);
185 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
186 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
187 btrfs_set_file_extent_encryption(leaf, ei, 0);
188 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
189 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
190 ptr = btrfs_file_extent_inline_start(ei);
191
261507a0 192 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
193 struct page *cpage;
194 int i = 0;
d397712b 195 while (compressed_size > 0) {
c8b97818 196 cpage = compressed_pages[i];
5b050f04 197 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 198 PAGE_SIZE);
c8b97818 199
7ac687d9 200 kaddr = kmap_atomic(cpage);
c8b97818 201 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203
204 i++;
205 ptr += cur_size;
206 compressed_size -= cur_size;
207 }
208 btrfs_set_file_extent_compression(leaf, ei,
261507a0 209 compress_type);
c8b97818
CM
210 } else {
211 page = find_get_page(inode->i_mapping,
09cbfeaf 212 start >> PAGE_SHIFT);
c8b97818 213 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 214 kaddr = kmap_atomic(page);
09cbfeaf 215 offset = start & (PAGE_SIZE - 1);
c8b97818 216 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 217 kunmap_atomic(kaddr);
09cbfeaf 218 put_page(page);
c8b97818
CM
219 }
220 btrfs_mark_buffer_dirty(leaf);
1acae57b 221 btrfs_release_path(path);
c8b97818 222
c2167754
YZ
223 /*
224 * we're an inline extent, so nobody can
225 * extend the file past i_size without locking
226 * a page we already have locked.
227 *
228 * We must do any isize and inode updates
229 * before we unlock the pages. Otherwise we
230 * could end up racing with unlink.
231 */
c8b97818 232 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 233 ret = btrfs_update_inode(trans, root, inode);
c2167754 234
79787eaa 235 return ret;
c8b97818 236fail:
c8b97818
CM
237 return err;
238}
239
240
241/*
242 * conditionally insert an inline extent into the file. This
243 * does the checks required to make sure the data is small enough
244 * to fit as an inline extent.
245 */
00361589
JB
246static noinline int cow_file_range_inline(struct btrfs_root *root,
247 struct inode *inode, u64 start,
248 u64 end, size_t compressed_size,
249 int compress_type,
250 struct page **compressed_pages)
c8b97818 251{
0b246afa 252 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 253 struct btrfs_trans_handle *trans;
c8b97818
CM
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
0b246afa 257 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
258 u64 data_len = inline_len;
259 int ret;
1acae57b
FDBM
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
c8b97818
CM
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
0b246afa
JM
268 actual_end > fs_info->sectorsize ||
269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 270 (!compressed_size &&
0b246afa 271 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 272 end + 1 < isize ||
0b246afa 273 data_len > fs_info->max_inline) {
c8b97818
CM
274 return 1;
275 }
276
1acae57b
FDBM
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
00361589 281 trans = btrfs_join_transaction(root);
1acae57b
FDBM
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
00361589 284 return PTR_ERR(trans);
1acae57b 285 }
0b246afa 286 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 287
1acae57b
FDBM
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
00361589 298 if (ret) {
66642832 299 btrfs_abort_transaction(trans, ret);
00361589
JB
300 goto out;
301 }
c8b97818
CM
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
c8b97818 307 inline_len, compressed_size,
fe3f566c 308 compress_type, compressed_pages);
2adcac1a 309 if (ret && ret != -ENOSPC) {
66642832 310 btrfs_abort_transaction(trans, ret);
00361589 311 goto out;
2adcac1a 312 } else if (ret == -ENOSPC) {
00361589
JB
313 ret = 1;
314 goto out;
79787eaa 315 }
2adcac1a 316
bdc20e67 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 320out:
94ed938a
QW
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
09cbfeaf 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 328 btrfs_free_path(path);
3a45bb20 329 btrfs_end_transaction(trans);
00361589 330 return ret;
c8b97818
CM
331}
332
771ed689
CM
333struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
261507a0 339 int compress_type;
771ed689
CM
340 struct list_head list;
341};
342
343struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351};
352
353static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
261507a0
LZ
357 unsigned long nr_pages,
358 int compress_type)
771ed689
CM
359{
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 363 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
261507a0 369 async_extent->compress_type = compress_type;
771ed689
CM
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372}
373
f79707b0
WS
374static inline int inode_need_compress(struct inode *inode)
375{
0b246afa 376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
377
378 /* force compress */
0b246afa 379 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0
WS
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
0b246afa 384 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0
WS
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389}
390
d352ac68 391/*
771ed689
CM
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
c8b97818 395 *
771ed689
CM
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
c8b97818 401 *
771ed689
CM
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
405 * are written in the same order that the flusher thread sent them
406 * down.
d352ac68 407 */
c44f649e 408static noinline void compress_file_range(struct inode *inode,
771ed689
CM
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
b888db2b 413{
0b246afa 414 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 415 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 416 u64 num_bytes;
0b246afa 417 u64 blocksize = fs_info->sectorsize;
c8b97818 418 u64 actual_end;
42dc7bab 419 u64 isize = i_size_read(inode);
e6dcd2dc 420 int ret = 0;
c8b97818
CM
421 struct page **pages = NULL;
422 unsigned long nr_pages;
423 unsigned long nr_pages_ret = 0;
424 unsigned long total_compressed = 0;
425 unsigned long total_in = 0;
ee22184b
BL
426 unsigned long max_compressed = SZ_128K;
427 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
428 int i;
429 int will_compress;
0b246afa 430 int compress_type = fs_info->compress_type;
4adaa611 431 int redirty = 0;
b888db2b 432
4cb13e5d 433 /* if this is a small write inside eof, kick off a defrag */
ee22184b 434 if ((end - start + 1) < SZ_16K &&
4cb13e5d 435 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
436 btrfs_add_inode_defrag(NULL, inode);
437
42dc7bab 438 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
439again:
440 will_compress = 0;
09cbfeaf
KS
441 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
442 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 443
f03d9301
CM
444 /*
445 * we don't want to send crud past the end of i_size through
446 * compression, that's just a waste of CPU time. So, if the
447 * end of the file is before the start of our current
448 * requested range of bytes, we bail out to the uncompressed
449 * cleanup code that can deal with all of this.
450 *
451 * It isn't really the fastest way to fix things, but this is a
452 * very uncommon corner.
453 */
454 if (actual_end <= start)
455 goto cleanup_and_bail_uncompressed;
456
c8b97818
CM
457 total_compressed = actual_end - start;
458
4bcbb332
SW
459 /*
460 * skip compression for a small file range(<=blocksize) that
01327610 461 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
462 */
463 if (total_compressed <= blocksize &&
464 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
465 goto cleanup_and_bail_uncompressed;
466
c8b97818
CM
467 /* we want to make sure that amount of ram required to uncompress
468 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
469 * of a compressed extent to 128k. This is a crucial number
470 * because it also controls how easily we can spread reads across
471 * cpus for decompression.
472 *
473 * We also want to make sure the amount of IO required to do
474 * a random read is reasonably small, so we limit the size of
475 * a compressed extent to 128k.
c8b97818
CM
476 */
477 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 478 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 479 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
480 total_in = 0;
481 ret = 0;
db94535d 482
771ed689
CM
483 /*
484 * we do compression for mount -o compress and when the
485 * inode has not been flagged as nocompress. This flag can
486 * change at any time if we discover bad compression ratios.
c8b97818 487 */
f79707b0 488 if (inode_need_compress(inode)) {
c8b97818 489 WARN_ON(pages);
31e818fe 490 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
491 if (!pages) {
492 /* just bail out to the uncompressed code */
493 goto cont;
494 }
c8b97818 495
261507a0
LZ
496 if (BTRFS_I(inode)->force_compress)
497 compress_type = BTRFS_I(inode)->force_compress;
498
4adaa611
CM
499 /*
500 * we need to call clear_page_dirty_for_io on each
501 * page in the range. Otherwise applications with the file
502 * mmap'd can wander in and change the page contents while
503 * we are compressing them.
504 *
505 * If the compression fails for any reason, we set the pages
506 * dirty again later on.
507 */
508 extent_range_clear_dirty_for_io(inode, start, end);
509 redirty = 1;
261507a0
LZ
510 ret = btrfs_compress_pages(compress_type,
511 inode->i_mapping, start,
512 total_compressed, pages,
513 nr_pages, &nr_pages_ret,
514 &total_in,
515 &total_compressed,
516 max_compressed);
c8b97818
CM
517
518 if (!ret) {
519 unsigned long offset = total_compressed &
09cbfeaf 520 (PAGE_SIZE - 1);
c8b97818
CM
521 struct page *page = pages[nr_pages_ret - 1];
522 char *kaddr;
523
524 /* zero the tail end of the last page, we might be
525 * sending it down to disk
526 */
527 if (offset) {
7ac687d9 528 kaddr = kmap_atomic(page);
c8b97818 529 memset(kaddr + offset, 0,
09cbfeaf 530 PAGE_SIZE - offset);
7ac687d9 531 kunmap_atomic(kaddr);
c8b97818
CM
532 }
533 will_compress = 1;
534 }
535 }
560f7d75 536cont:
c8b97818
CM
537 if (start == 0) {
538 /* lets try to make an inline extent */
771ed689 539 if (ret || total_in < (actual_end - start)) {
c8b97818 540 /* we didn't compress the entire range, try
771ed689 541 * to make an uncompressed inline extent.
c8b97818 542 */
00361589
JB
543 ret = cow_file_range_inline(root, inode, start, end,
544 0, 0, NULL);
c8b97818 545 } else {
771ed689 546 /* try making a compressed inline extent */
00361589 547 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
548 total_compressed,
549 compress_type, pages);
c8b97818 550 }
79787eaa 551 if (ret <= 0) {
151a41bc
JB
552 unsigned long clear_flags = EXTENT_DELALLOC |
553 EXTENT_DEFRAG;
e6eb4314
FM
554 unsigned long page_error_op;
555
151a41bc 556 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 557 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 558
771ed689 559 /*
79787eaa
JM
560 * inline extent creation worked or returned error,
561 * we don't need to create any more async work items.
562 * Unlock and free up our temp pages.
771ed689 563 */
ba8b04c1
QW
564 extent_clear_unlock_delalloc(inode, start, end, end,
565 NULL, clear_flags,
566 PAGE_UNLOCK |
c2790a2e
JB
567 PAGE_CLEAR_DIRTY |
568 PAGE_SET_WRITEBACK |
e6eb4314 569 page_error_op |
c2790a2e 570 PAGE_END_WRITEBACK);
18513091
WX
571 btrfs_free_reserved_data_space_noquota(inode, start,
572 end - start + 1);
c8b97818
CM
573 goto free_pages_out;
574 }
575 }
576
577 if (will_compress) {
578 /*
579 * we aren't doing an inline extent round the compressed size
580 * up to a block size boundary so the allocator does sane
581 * things
582 */
fda2832f 583 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
584
585 /*
586 * one last check to make sure the compression is really a
587 * win, compare the page count read with the blocks on disk
588 */
09cbfeaf 589 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
590 if (total_compressed >= total_in) {
591 will_compress = 0;
592 } else {
c8b97818 593 num_bytes = total_in;
c8bb0c8b
AS
594 *num_added += 1;
595
596 /*
597 * The async work queues will take care of doing actual
598 * allocation on disk for these compressed pages, and
599 * will submit them to the elevator.
600 */
601 add_async_extent(async_cow, start, num_bytes,
602 total_compressed, pages, nr_pages_ret,
603 compress_type);
604
605 if (start + num_bytes < end) {
606 start += num_bytes;
607 pages = NULL;
608 cond_resched();
609 goto again;
610 }
611 return;
c8b97818
CM
612 }
613 }
c8bb0c8b 614 if (pages) {
c8b97818
CM
615 /*
616 * the compression code ran but failed to make things smaller,
617 * free any pages it allocated and our page pointer array
618 */
619 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 620 WARN_ON(pages[i]->mapping);
09cbfeaf 621 put_page(pages[i]);
c8b97818
CM
622 }
623 kfree(pages);
624 pages = NULL;
625 total_compressed = 0;
626 nr_pages_ret = 0;
627
628 /* flag the file so we don't compress in the future */
0b246afa 629 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1e701a32 630 !(BTRFS_I(inode)->force_compress)) {
a555f810 631 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 632 }
c8b97818 633 }
f03d9301 634cleanup_and_bail_uncompressed:
c8bb0c8b
AS
635 /*
636 * No compression, but we still need to write the pages in the file
637 * we've been given so far. redirty the locked page if it corresponds
638 * to our extent and set things up for the async work queue to run
639 * cow_file_range to do the normal delalloc dance.
640 */
641 if (page_offset(locked_page) >= start &&
642 page_offset(locked_page) <= end)
643 __set_page_dirty_nobuffers(locked_page);
644 /* unlocked later on in the async handlers */
645
646 if (redirty)
647 extent_range_redirty_for_io(inode, start, end);
648 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
649 BTRFS_COMPRESS_NONE);
650 *num_added += 1;
3b951516 651
c44f649e 652 return;
771ed689
CM
653
654free_pages_out:
655 for (i = 0; i < nr_pages_ret; i++) {
656 WARN_ON(pages[i]->mapping);
09cbfeaf 657 put_page(pages[i]);
771ed689 658 }
d397712b 659 kfree(pages);
771ed689 660}
771ed689 661
40ae837b
FM
662static void free_async_extent_pages(struct async_extent *async_extent)
663{
664 int i;
665
666 if (!async_extent->pages)
667 return;
668
669 for (i = 0; i < async_extent->nr_pages; i++) {
670 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 671 put_page(async_extent->pages[i]);
40ae837b
FM
672 }
673 kfree(async_extent->pages);
674 async_extent->nr_pages = 0;
675 async_extent->pages = NULL;
771ed689
CM
676}
677
678/*
679 * phase two of compressed writeback. This is the ordered portion
680 * of the code, which only gets called in the order the work was
681 * queued. We walk all the async extents created by compress_file_range
682 * and send them down to the disk.
683 */
dec8f175 684static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
685 struct async_cow *async_cow)
686{
0b246afa 687 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
688 struct async_extent *async_extent;
689 u64 alloc_hint = 0;
771ed689
CM
690 struct btrfs_key ins;
691 struct extent_map *em;
692 struct btrfs_root *root = BTRFS_I(inode)->root;
693 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
694 struct extent_io_tree *io_tree;
f5a84ee3 695 int ret = 0;
771ed689 696
3e04e7f1 697again:
d397712b 698 while (!list_empty(&async_cow->extents)) {
771ed689
CM
699 async_extent = list_entry(async_cow->extents.next,
700 struct async_extent, list);
701 list_del(&async_extent->list);
c8b97818 702
771ed689
CM
703 io_tree = &BTRFS_I(inode)->io_tree;
704
f5a84ee3 705retry:
771ed689
CM
706 /* did the compression code fall back to uncompressed IO? */
707 if (!async_extent->pages) {
708 int page_started = 0;
709 unsigned long nr_written = 0;
710
711 lock_extent(io_tree, async_extent->start,
2ac55d41 712 async_extent->start +
d0082371 713 async_extent->ram_size - 1);
771ed689
CM
714
715 /* allocate blocks */
f5a84ee3
JB
716 ret = cow_file_range(inode, async_cow->locked_page,
717 async_extent->start,
718 async_extent->start +
719 async_extent->ram_size - 1,
dda3245e
WX
720 async_extent->start +
721 async_extent->ram_size - 1,
722 &page_started, &nr_written, 0,
723 NULL);
771ed689 724
79787eaa
JM
725 /* JDM XXX */
726
771ed689
CM
727 /*
728 * if page_started, cow_file_range inserted an
729 * inline extent and took care of all the unlocking
730 * and IO for us. Otherwise, we need to submit
731 * all those pages down to the drive.
732 */
f5a84ee3 733 if (!page_started && !ret)
771ed689
CM
734 extent_write_locked_range(io_tree,
735 inode, async_extent->start,
d397712b 736 async_extent->start +
771ed689
CM
737 async_extent->ram_size - 1,
738 btrfs_get_extent,
739 WB_SYNC_ALL);
3e04e7f1
JB
740 else if (ret)
741 unlock_page(async_cow->locked_page);
771ed689
CM
742 kfree(async_extent);
743 cond_resched();
744 continue;
745 }
746
747 lock_extent(io_tree, async_extent->start,
d0082371 748 async_extent->start + async_extent->ram_size - 1);
771ed689 749
18513091 750 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
751 async_extent->compressed_size,
752 async_extent->compressed_size,
e570fd27 753 0, alloc_hint, &ins, 1, 1);
f5a84ee3 754 if (ret) {
40ae837b 755 free_async_extent_pages(async_extent);
3e04e7f1 756
fdf8e2ea
JB
757 if (ret == -ENOSPC) {
758 unlock_extent(io_tree, async_extent->start,
759 async_extent->start +
760 async_extent->ram_size - 1);
ce62003f
LB
761
762 /*
763 * we need to redirty the pages if we decide to
764 * fallback to uncompressed IO, otherwise we
765 * will not submit these pages down to lower
766 * layers.
767 */
768 extent_range_redirty_for_io(inode,
769 async_extent->start,
770 async_extent->start +
771 async_extent->ram_size - 1);
772
79787eaa 773 goto retry;
fdf8e2ea 774 }
3e04e7f1 775 goto out_free;
f5a84ee3 776 }
c2167754
YZ
777 /*
778 * here we're doing allocation and writeback of the
779 * compressed pages
780 */
781 btrfs_drop_extent_cache(inode, async_extent->start,
782 async_extent->start +
783 async_extent->ram_size - 1, 0);
784
172ddd60 785 em = alloc_extent_map();
b9aa55be
LB
786 if (!em) {
787 ret = -ENOMEM;
3e04e7f1 788 goto out_free_reserve;
b9aa55be 789 }
771ed689
CM
790 em->start = async_extent->start;
791 em->len = async_extent->ram_size;
445a6944 792 em->orig_start = em->start;
2ab28f32
JB
793 em->mod_start = em->start;
794 em->mod_len = em->len;
c8b97818 795
771ed689
CM
796 em->block_start = ins.objectid;
797 em->block_len = ins.offset;
b4939680 798 em->orig_block_len = ins.offset;
cc95bef6 799 em->ram_bytes = async_extent->ram_size;
0b246afa 800 em->bdev = fs_info->fs_devices->latest_bdev;
261507a0 801 em->compress_type = async_extent->compress_type;
771ed689
CM
802 set_bit(EXTENT_FLAG_PINNED, &em->flags);
803 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 804 em->generation = -1;
771ed689 805
d397712b 806 while (1) {
890871be 807 write_lock(&em_tree->lock);
09a2a8f9 808 ret = add_extent_mapping(em_tree, em, 1);
890871be 809 write_unlock(&em_tree->lock);
771ed689
CM
810 if (ret != -EEXIST) {
811 free_extent_map(em);
812 break;
813 }
814 btrfs_drop_extent_cache(inode, async_extent->start,
815 async_extent->start +
816 async_extent->ram_size - 1, 0);
817 }
818
3e04e7f1
JB
819 if (ret)
820 goto out_free_reserve;
821
261507a0
LZ
822 ret = btrfs_add_ordered_extent_compress(inode,
823 async_extent->start,
824 ins.objectid,
825 async_extent->ram_size,
826 ins.offset,
827 BTRFS_ORDERED_COMPRESSED,
828 async_extent->compress_type);
d9f85963
FM
829 if (ret) {
830 btrfs_drop_extent_cache(inode, async_extent->start,
831 async_extent->start +
832 async_extent->ram_size - 1, 0);
3e04e7f1 833 goto out_free_reserve;
d9f85963 834 }
0b246afa 835 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 836
771ed689
CM
837 /*
838 * clear dirty, set writeback and unlock the pages.
839 */
c2790a2e 840 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
841 async_extent->start +
842 async_extent->ram_size - 1,
a791e35e
CM
843 async_extent->start +
844 async_extent->ram_size - 1,
151a41bc
JB
845 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
846 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 847 PAGE_SET_WRITEBACK);
771ed689 848 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
849 async_extent->start,
850 async_extent->ram_size,
851 ins.objectid,
852 ins.offset, async_extent->pages,
853 async_extent->nr_pages);
fce2a4e6
FM
854 if (ret) {
855 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
856 struct page *p = async_extent->pages[0];
857 const u64 start = async_extent->start;
858 const u64 end = start + async_extent->ram_size - 1;
859
860 p->mapping = inode->i_mapping;
861 tree->ops->writepage_end_io_hook(p, start, end,
862 NULL, 0);
863 p->mapping = NULL;
ba8b04c1
QW
864 extent_clear_unlock_delalloc(inode, start, end, end,
865 NULL, 0,
fce2a4e6
FM
866 PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
40ae837b 868 free_async_extent_pages(async_extent);
fce2a4e6 869 }
771ed689
CM
870 alloc_hint = ins.objectid + ins.offset;
871 kfree(async_extent);
872 cond_resched();
873 }
dec8f175 874 return;
3e04e7f1 875out_free_reserve:
0b246afa 876 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 877 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 878out_free:
c2790a2e 879 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
880 async_extent->start +
881 async_extent->ram_size - 1,
3e04e7f1
JB
882 async_extent->start +
883 async_extent->ram_size - 1,
c2790a2e 884 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
40ae837b 889 free_async_extent_pages(async_extent);
79787eaa 890 kfree(async_extent);
3e04e7f1 891 goto again;
771ed689
CM
892}
893
4b46fce2
JB
894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896{
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924}
925
771ed689
CM
926/*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
00361589
JB
939static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
dda3245e
WX
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 944{
0b246afa 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 946 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
947 u64 alloc_hint = 0;
948 u64 num_bytes;
949 unsigned long ram_size;
950 u64 disk_num_bytes;
951 u64 cur_alloc_size;
0b246afa 952 u64 blocksize = fs_info->sectorsize;
771ed689
CM
953 struct btrfs_key ins;
954 struct extent_map *em;
955 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
956 int ret = 0;
957
02ecd2c2
JB
958 if (btrfs_is_free_space_inode(inode)) {
959 WARN_ON_ONCE(1);
29bce2f3
JB
960 ret = -EINVAL;
961 goto out_unlock;
02ecd2c2 962 }
771ed689 963
fda2832f 964 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
965 num_bytes = max(blocksize, num_bytes);
966 disk_num_bytes = num_bytes;
771ed689 967
4cb5300b 968 /* if this is a small write inside eof, kick off defrag */
ee22184b 969 if (num_bytes < SZ_64K &&
4cb13e5d 970 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 971 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 972
771ed689
CM
973 if (start == 0) {
974 /* lets try to make an inline extent */
00361589
JB
975 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
976 NULL);
771ed689 977 if (ret == 0) {
ba8b04c1
QW
978 extent_clear_unlock_delalloc(inode, start, end,
979 delalloc_end, NULL,
c2790a2e 980 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 981 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
982 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
983 PAGE_END_WRITEBACK);
18513091
WX
984 btrfs_free_reserved_data_space_noquota(inode, start,
985 end - start + 1);
771ed689 986 *nr_written = *nr_written +
09cbfeaf 987 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 988 *page_started = 1;
771ed689 989 goto out;
79787eaa 990 } else if (ret < 0) {
79787eaa 991 goto out_unlock;
771ed689
CM
992 }
993 }
994
995 BUG_ON(disk_num_bytes >
0b246afa 996 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 997
4b46fce2 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
999 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1000
d397712b 1001 while (disk_num_bytes > 0) {
a791e35e
CM
1002 unsigned long op;
1003
287a0ab9 1004 cur_alloc_size = disk_num_bytes;
18513091 1005 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1006 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1007 &ins, 1, 1);
00361589 1008 if (ret < 0)
79787eaa 1009 goto out_unlock;
d397712b 1010
172ddd60 1011 em = alloc_extent_map();
b9aa55be
LB
1012 if (!em) {
1013 ret = -ENOMEM;
ace68bac 1014 goto out_reserve;
b9aa55be 1015 }
e6dcd2dc 1016 em->start = start;
445a6944 1017 em->orig_start = em->start;
771ed689
CM
1018 ram_size = ins.offset;
1019 em->len = ins.offset;
2ab28f32
JB
1020 em->mod_start = em->start;
1021 em->mod_len = em->len;
c8b97818 1022
e6dcd2dc 1023 em->block_start = ins.objectid;
c8b97818 1024 em->block_len = ins.offset;
b4939680 1025 em->orig_block_len = ins.offset;
cc95bef6 1026 em->ram_bytes = ram_size;
0b246afa 1027 em->bdev = fs_info->fs_devices->latest_bdev;
7f3c74fb 1028 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1029 em->generation = -1;
c8b97818 1030
d397712b 1031 while (1) {
890871be 1032 write_lock(&em_tree->lock);
09a2a8f9 1033 ret = add_extent_mapping(em_tree, em, 1);
890871be 1034 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1035 if (ret != -EEXIST) {
1036 free_extent_map(em);
1037 break;
1038 }
1039 btrfs_drop_extent_cache(inode, start,
c8b97818 1040 start + ram_size - 1, 0);
e6dcd2dc 1041 }
ace68bac
LB
1042 if (ret)
1043 goto out_reserve;
e6dcd2dc 1044
98d20f67 1045 cur_alloc_size = ins.offset;
e6dcd2dc 1046 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1047 ram_size, cur_alloc_size, 0);
ace68bac 1048 if (ret)
d9f85963 1049 goto out_drop_extent_cache;
c8b97818 1050
17d217fe
YZ
1051 if (root->root_key.objectid ==
1052 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1053 ret = btrfs_reloc_clone_csums(inode, start,
1054 cur_alloc_size);
00361589 1055 if (ret)
d9f85963 1056 goto out_drop_extent_cache;
17d217fe
YZ
1057 }
1058
0b246afa 1059 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1060
d397712b 1061 if (disk_num_bytes < cur_alloc_size)
3b951516 1062 break;
d397712b 1063
c8b97818
CM
1064 /* we're not doing compressed IO, don't unlock the first
1065 * page (which the caller expects to stay locked), don't
1066 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1067 *
1068 * Do set the Private2 bit so we know this page was properly
1069 * setup for writepage
c8b97818 1070 */
c2790a2e
JB
1071 op = unlock ? PAGE_UNLOCK : 0;
1072 op |= PAGE_SET_PRIVATE2;
a791e35e 1073
c2790a2e 1074 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1075 start + ram_size - 1,
1076 delalloc_end, locked_page,
c2790a2e
JB
1077 EXTENT_LOCKED | EXTENT_DELALLOC,
1078 op);
c8b97818 1079 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1080 num_bytes -= cur_alloc_size;
1081 alloc_hint = ins.objectid + ins.offset;
1082 start += cur_alloc_size;
b888db2b 1083 }
79787eaa 1084out:
be20aa9d 1085 return ret;
b7d5b0a8 1086
d9f85963
FM
1087out_drop_extent_cache:
1088 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1089out_reserve:
0b246afa 1090 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1091 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1092out_unlock:
ba8b04c1
QW
1093 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1094 locked_page,
151a41bc
JB
1095 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1096 EXTENT_DELALLOC | EXTENT_DEFRAG,
1097 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1098 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1099 goto out;
771ed689 1100}
c8b97818 1101
771ed689
CM
1102/*
1103 * work queue call back to started compression on a file and pages
1104 */
1105static noinline void async_cow_start(struct btrfs_work *work)
1106{
1107 struct async_cow *async_cow;
1108 int num_added = 0;
1109 async_cow = container_of(work, struct async_cow, work);
1110
1111 compress_file_range(async_cow->inode, async_cow->locked_page,
1112 async_cow->start, async_cow->end, async_cow,
1113 &num_added);
8180ef88 1114 if (num_added == 0) {
cb77fcd8 1115 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1116 async_cow->inode = NULL;
8180ef88 1117 }
771ed689
CM
1118}
1119
1120/*
1121 * work queue call back to submit previously compressed pages
1122 */
1123static noinline void async_cow_submit(struct btrfs_work *work)
1124{
0b246afa 1125 struct btrfs_fs_info *fs_info;
771ed689
CM
1126 struct async_cow *async_cow;
1127 struct btrfs_root *root;
1128 unsigned long nr_pages;
1129
1130 async_cow = container_of(work, struct async_cow, work);
1131
1132 root = async_cow->root;
0b246afa 1133 fs_info = root->fs_info;
09cbfeaf
KS
1134 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1135 PAGE_SHIFT;
771ed689 1136
ee863954
DS
1137 /*
1138 * atomic_sub_return implies a barrier for waitqueue_active
1139 */
0b246afa 1140 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1141 5 * SZ_1M &&
0b246afa
JM
1142 waitqueue_active(&fs_info->async_submit_wait))
1143 wake_up(&fs_info->async_submit_wait);
771ed689 1144
d397712b 1145 if (async_cow->inode)
771ed689 1146 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1147}
c8b97818 1148
771ed689
CM
1149static noinline void async_cow_free(struct btrfs_work *work)
1150{
1151 struct async_cow *async_cow;
1152 async_cow = container_of(work, struct async_cow, work);
8180ef88 1153 if (async_cow->inode)
cb77fcd8 1154 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1155 kfree(async_cow);
1156}
1157
1158static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1159 u64 start, u64 end, int *page_started,
1160 unsigned long *nr_written)
1161{
0b246afa 1162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1163 struct async_cow *async_cow;
1164 struct btrfs_root *root = BTRFS_I(inode)->root;
1165 unsigned long nr_pages;
1166 u64 cur_end;
ee22184b 1167 int limit = 10 * SZ_1M;
771ed689 1168
a3429ab7
CM
1169 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1170 1, 0, NULL, GFP_NOFS);
d397712b 1171 while (start < end) {
771ed689 1172 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1173 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1174 async_cow->inode = igrab(inode);
771ed689
CM
1175 async_cow->root = root;
1176 async_cow->locked_page = locked_page;
1177 async_cow->start = start;
1178
f79707b0 1179 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1180 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1181 cur_end = end;
1182 else
ee22184b 1183 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1184
1185 async_cow->end = cur_end;
1186 INIT_LIST_HEAD(&async_cow->extents);
1187
9e0af237
LB
1188 btrfs_init_work(&async_cow->work,
1189 btrfs_delalloc_helper,
1190 async_cow_start, async_cow_submit,
1191 async_cow_free);
771ed689 1192
09cbfeaf
KS
1193 nr_pages = (cur_end - start + PAGE_SIZE) >>
1194 PAGE_SHIFT;
0b246afa 1195 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1196
0b246afa 1197 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1198
0b246afa
JM
1199 if (atomic_read(&fs_info->async_delalloc_pages) > limit) {
1200 wait_event(fs_info->async_submit_wait,
1201 (atomic_read(&fs_info->async_delalloc_pages) <
1202 limit));
771ed689
CM
1203 }
1204
0b246afa
JM
1205 while (atomic_read(&fs_info->async_submit_draining) &&
1206 atomic_read(&fs_info->async_delalloc_pages)) {
1207 wait_event(fs_info->async_submit_wait,
1208 (atomic_read(&fs_info->async_delalloc_pages) ==
1209 0));
771ed689
CM
1210 }
1211
1212 *nr_written += nr_pages;
1213 start = cur_end + 1;
1214 }
1215 *page_started = 1;
1216 return 0;
be20aa9d
CM
1217}
1218
2ff7e61e 1219static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1220 u64 bytenr, u64 num_bytes)
1221{
1222 int ret;
1223 struct btrfs_ordered_sum *sums;
1224 LIST_HEAD(list);
1225
0b246afa 1226 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1227 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1228 if (ret == 0 && list_empty(&list))
1229 return 0;
1230
1231 while (!list_empty(&list)) {
1232 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1233 list_del(&sums->list);
1234 kfree(sums);
1235 }
1236 return 1;
1237}
1238
d352ac68
CM
1239/*
1240 * when nowcow writeback call back. This checks for snapshots or COW copies
1241 * of the extents that exist in the file, and COWs the file as required.
1242 *
1243 * If no cow copies or snapshots exist, we write directly to the existing
1244 * blocks on disk
1245 */
7f366cfe
CM
1246static noinline int run_delalloc_nocow(struct inode *inode,
1247 struct page *locked_page,
771ed689
CM
1248 u64 start, u64 end, int *page_started, int force,
1249 unsigned long *nr_written)
be20aa9d 1250{
0b246afa 1251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d 1252 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1253 struct btrfs_trans_handle *trans;
be20aa9d 1254 struct extent_buffer *leaf;
be20aa9d 1255 struct btrfs_path *path;
80ff3856 1256 struct btrfs_file_extent_item *fi;
be20aa9d 1257 struct btrfs_key found_key;
80ff3856
YZ
1258 u64 cow_start;
1259 u64 cur_offset;
1260 u64 extent_end;
5d4f98a2 1261 u64 extent_offset;
80ff3856
YZ
1262 u64 disk_bytenr;
1263 u64 num_bytes;
b4939680 1264 u64 disk_num_bytes;
cc95bef6 1265 u64 ram_bytes;
80ff3856 1266 int extent_type;
79787eaa 1267 int ret, err;
d899e052 1268 int type;
80ff3856
YZ
1269 int nocow;
1270 int check_prev = 1;
82d5902d 1271 bool nolock;
33345d01 1272 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1273
1274 path = btrfs_alloc_path();
17ca04af 1275 if (!path) {
ba8b04c1
QW
1276 extent_clear_unlock_delalloc(inode, start, end, end,
1277 locked_page,
c2790a2e 1278 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1279 EXTENT_DO_ACCOUNTING |
1280 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1281 PAGE_CLEAR_DIRTY |
1282 PAGE_SET_WRITEBACK |
1283 PAGE_END_WRITEBACK);
d8926bb3 1284 return -ENOMEM;
17ca04af 1285 }
82d5902d 1286
83eea1f1 1287 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1288
1289 if (nolock)
7a7eaa40 1290 trans = btrfs_join_transaction_nolock(root);
82d5902d 1291 else
7a7eaa40 1292 trans = btrfs_join_transaction(root);
ff5714cc 1293
79787eaa 1294 if (IS_ERR(trans)) {
ba8b04c1
QW
1295 extent_clear_unlock_delalloc(inode, start, end, end,
1296 locked_page,
c2790a2e 1297 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1298 EXTENT_DO_ACCOUNTING |
1299 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1300 PAGE_CLEAR_DIRTY |
1301 PAGE_SET_WRITEBACK |
1302 PAGE_END_WRITEBACK);
79787eaa
JM
1303 btrfs_free_path(path);
1304 return PTR_ERR(trans);
1305 }
1306
0b246afa 1307 trans->block_rsv = &fs_info->delalloc_block_rsv;
be20aa9d 1308
80ff3856
YZ
1309 cow_start = (u64)-1;
1310 cur_offset = start;
1311 while (1) {
33345d01 1312 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1313 cur_offset, 0);
d788a349 1314 if (ret < 0)
79787eaa 1315 goto error;
80ff3856
YZ
1316 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1317 leaf = path->nodes[0];
1318 btrfs_item_key_to_cpu(leaf, &found_key,
1319 path->slots[0] - 1);
33345d01 1320 if (found_key.objectid == ino &&
80ff3856
YZ
1321 found_key.type == BTRFS_EXTENT_DATA_KEY)
1322 path->slots[0]--;
1323 }
1324 check_prev = 0;
1325next_slot:
1326 leaf = path->nodes[0];
1327 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1328 ret = btrfs_next_leaf(root, path);
d788a349 1329 if (ret < 0)
79787eaa 1330 goto error;
80ff3856
YZ
1331 if (ret > 0)
1332 break;
1333 leaf = path->nodes[0];
1334 }
be20aa9d 1335
80ff3856
YZ
1336 nocow = 0;
1337 disk_bytenr = 0;
17d217fe 1338 num_bytes = 0;
80ff3856
YZ
1339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1340
1d512cb7
FM
1341 if (found_key.objectid > ino)
1342 break;
1343 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1344 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1345 path->slots[0]++;
1346 goto next_slot;
1347 }
1348 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1349 found_key.offset > end)
1350 break;
1351
1352 if (found_key.offset > cur_offset) {
1353 extent_end = found_key.offset;
e9061e21 1354 extent_type = 0;
80ff3856
YZ
1355 goto out_check;
1356 }
1357
1358 fi = btrfs_item_ptr(leaf, path->slots[0],
1359 struct btrfs_file_extent_item);
1360 extent_type = btrfs_file_extent_type(leaf, fi);
1361
cc95bef6 1362 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1363 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1364 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1365 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1366 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1367 extent_end = found_key.offset +
1368 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1369 disk_num_bytes =
1370 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1371 if (extent_end <= start) {
1372 path->slots[0]++;
1373 goto next_slot;
1374 }
17d217fe
YZ
1375 if (disk_bytenr == 0)
1376 goto out_check;
80ff3856
YZ
1377 if (btrfs_file_extent_compression(leaf, fi) ||
1378 btrfs_file_extent_encryption(leaf, fi) ||
1379 btrfs_file_extent_other_encoding(leaf, fi))
1380 goto out_check;
d899e052
YZ
1381 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1382 goto out_check;
2ff7e61e 1383 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1384 goto out_check;
33345d01 1385 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1386 found_key.offset -
1387 extent_offset, disk_bytenr))
17d217fe 1388 goto out_check;
5d4f98a2 1389 disk_bytenr += extent_offset;
17d217fe
YZ
1390 disk_bytenr += cur_offset - found_key.offset;
1391 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1392 /*
1393 * if there are pending snapshots for this root,
1394 * we fall into common COW way.
1395 */
1396 if (!nolock) {
9ea24bbe 1397 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1398 if (!err)
1399 goto out_check;
1400 }
17d217fe
YZ
1401 /*
1402 * force cow if csum exists in the range.
1403 * this ensure that csum for a given extent are
1404 * either valid or do not exist.
1405 */
2ff7e61e
JM
1406 if (csum_exist_in_range(fs_info, disk_bytenr,
1407 num_bytes))
17d217fe 1408 goto out_check;
0b246afa 1409 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1410 goto out_check;
80ff3856
YZ
1411 nocow = 1;
1412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1413 extent_end = found_key.offset +
514ac8ad
CM
1414 btrfs_file_extent_inline_len(leaf,
1415 path->slots[0], fi);
da17066c 1416 extent_end = ALIGN(extent_end,
0b246afa 1417 fs_info->sectorsize);
80ff3856
YZ
1418 } else {
1419 BUG_ON(1);
1420 }
1421out_check:
1422 if (extent_end <= start) {
1423 path->slots[0]++;
e9894fd3 1424 if (!nolock && nocow)
9ea24bbe 1425 btrfs_end_write_no_snapshoting(root);
f78c436c 1426 if (nocow)
0b246afa 1427 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1428 goto next_slot;
1429 }
1430 if (!nocow) {
1431 if (cow_start == (u64)-1)
1432 cow_start = cur_offset;
1433 cur_offset = extent_end;
1434 if (cur_offset > end)
1435 break;
1436 path->slots[0]++;
1437 goto next_slot;
7ea394f1
YZ
1438 }
1439
b3b4aa74 1440 btrfs_release_path(path);
80ff3856 1441 if (cow_start != (u64)-1) {
00361589
JB
1442 ret = cow_file_range(inode, locked_page,
1443 cow_start, found_key.offset - 1,
dda3245e
WX
1444 end, page_started, nr_written, 1,
1445 NULL);
e9894fd3
WS
1446 if (ret) {
1447 if (!nolock && nocow)
9ea24bbe 1448 btrfs_end_write_no_snapshoting(root);
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info,
f78c436c 1451 disk_bytenr);
79787eaa 1452 goto error;
e9894fd3 1453 }
80ff3856 1454 cow_start = (u64)-1;
7ea394f1 1455 }
80ff3856 1456
d899e052
YZ
1457 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1458 struct extent_map *em;
1459 struct extent_map_tree *em_tree;
1460 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1461 em = alloc_extent_map();
79787eaa 1462 BUG_ON(!em); /* -ENOMEM */
d899e052 1463 em->start = cur_offset;
70c8a91c 1464 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1465 em->len = num_bytes;
1466 em->block_len = num_bytes;
1467 em->block_start = disk_bytenr;
b4939680 1468 em->orig_block_len = disk_num_bytes;
cc95bef6 1469 em->ram_bytes = ram_bytes;
0b246afa 1470 em->bdev = fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1471 em->mod_start = em->start;
1472 em->mod_len = em->len;
d899e052 1473 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1474 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1475 em->generation = -1;
d899e052 1476 while (1) {
890871be 1477 write_lock(&em_tree->lock);
09a2a8f9 1478 ret = add_extent_mapping(em_tree, em, 1);
890871be 1479 write_unlock(&em_tree->lock);
d899e052
YZ
1480 if (ret != -EEXIST) {
1481 free_extent_map(em);
1482 break;
1483 }
1484 btrfs_drop_extent_cache(inode, em->start,
1485 em->start + em->len - 1, 0);
1486 }
1487 type = BTRFS_ORDERED_PREALLOC;
1488 } else {
1489 type = BTRFS_ORDERED_NOCOW;
1490 }
80ff3856
YZ
1491
1492 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1493 num_bytes, num_bytes, type);
f78c436c 1494 if (nocow)
0b246afa 1495 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1496 BUG_ON(ret); /* -ENOMEM */
771ed689 1497
efa56464
YZ
1498 if (root->root_key.objectid ==
1499 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1500 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1501 num_bytes);
e9894fd3
WS
1502 if (ret) {
1503 if (!nolock && nocow)
9ea24bbe 1504 btrfs_end_write_no_snapshoting(root);
79787eaa 1505 goto error;
e9894fd3 1506 }
efa56464
YZ
1507 }
1508
c2790a2e 1509 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1510 cur_offset + num_bytes - 1, end,
c2790a2e 1511 locked_page, EXTENT_LOCKED |
18513091
WX
1512 EXTENT_DELALLOC |
1513 EXTENT_CLEAR_DATA_RESV,
1514 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1515
e9894fd3 1516 if (!nolock && nocow)
9ea24bbe 1517 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1518 cur_offset = extent_end;
1519 if (cur_offset > end)
1520 break;
be20aa9d 1521 }
b3b4aa74 1522 btrfs_release_path(path);
80ff3856 1523
17ca04af 1524 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1525 cow_start = cur_offset;
17ca04af
JB
1526 cur_offset = end;
1527 }
1528
80ff3856 1529 if (cow_start != (u64)-1) {
dda3245e
WX
1530 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1531 page_started, nr_written, 1, NULL);
d788a349 1532 if (ret)
79787eaa 1533 goto error;
80ff3856
YZ
1534 }
1535
79787eaa 1536error:
3a45bb20 1537 err = btrfs_end_transaction(trans);
79787eaa
JM
1538 if (!ret)
1539 ret = err;
1540
17ca04af 1541 if (ret && cur_offset < end)
ba8b04c1 1542 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1543 locked_page, EXTENT_LOCKED |
151a41bc
JB
1544 EXTENT_DELALLOC | EXTENT_DEFRAG |
1545 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1546 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1547 PAGE_SET_WRITEBACK |
1548 PAGE_END_WRITEBACK);
7ea394f1 1549 btrfs_free_path(path);
79787eaa 1550 return ret;
be20aa9d
CM
1551}
1552
47059d93
WS
1553static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1554{
1555
1556 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1557 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1558 return 0;
1559
1560 /*
1561 * @defrag_bytes is a hint value, no spinlock held here,
1562 * if is not zero, it means the file is defragging.
1563 * Force cow if given extent needs to be defragged.
1564 */
1565 if (BTRFS_I(inode)->defrag_bytes &&
1566 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1567 EXTENT_DEFRAG, 0, NULL))
1568 return 1;
1569
1570 return 0;
1571}
1572
d352ac68
CM
1573/*
1574 * extent_io.c call back to do delayed allocation processing
1575 */
c8b97818 1576static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1577 u64 start, u64 end, int *page_started,
1578 unsigned long *nr_written)
be20aa9d 1579{
be20aa9d 1580 int ret;
47059d93 1581 int force_cow = need_force_cow(inode, start, end);
a2135011 1582
47059d93 1583 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1584 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1585 page_started, 1, nr_written);
47059d93 1586 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1587 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1588 page_started, 0, nr_written);
7816030e 1589 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1590 ret = cow_file_range(inode, locked_page, start, end, end,
1591 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1592 } else {
1593 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1594 &BTRFS_I(inode)->runtime_flags);
771ed689 1595 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1596 page_started, nr_written);
7ddf5a42 1597 }
b888db2b
CM
1598 return ret;
1599}
1600
1bf85046
JM
1601static void btrfs_split_extent_hook(struct inode *inode,
1602 struct extent_state *orig, u64 split)
9ed74f2d 1603{
dcab6a3b
JB
1604 u64 size;
1605
0ca1f7ce 1606 /* not delalloc, ignore it */
9ed74f2d 1607 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1608 return;
9ed74f2d 1609
dcab6a3b
JB
1610 size = orig->end - orig->start + 1;
1611 if (size > BTRFS_MAX_EXTENT_SIZE) {
1612 u64 num_extents;
1613 u64 new_size;
1614
1615 /*
ba117213
JB
1616 * See the explanation in btrfs_merge_extent_hook, the same
1617 * applies here, just in reverse.
dcab6a3b
JB
1618 */
1619 new_size = orig->end - split + 1;
ba117213 1620 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1621 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1622 new_size = split - orig->start;
1623 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
1625 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1626 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1627 return;
1628 }
1629
9e0baf60
JB
1630 spin_lock(&BTRFS_I(inode)->lock);
1631 BTRFS_I(inode)->outstanding_extents++;
1632 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1633}
1634
1635/*
1636 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1637 * extents so we can keep track of new extents that are just merged onto old
1638 * extents, such as when we are doing sequential writes, so we can properly
1639 * account for the metadata space we'll need.
1640 */
1bf85046
JM
1641static void btrfs_merge_extent_hook(struct inode *inode,
1642 struct extent_state *new,
1643 struct extent_state *other)
9ed74f2d 1644{
dcab6a3b
JB
1645 u64 new_size, old_size;
1646 u64 num_extents;
1647
9ed74f2d
JB
1648 /* not delalloc, ignore it */
1649 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1650 return;
9ed74f2d 1651
8461a3de
JB
1652 if (new->start > other->start)
1653 new_size = new->end - other->start + 1;
1654 else
1655 new_size = other->end - new->start + 1;
dcab6a3b
JB
1656
1657 /* we're not bigger than the max, unreserve the space and go */
1658 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1659 spin_lock(&BTRFS_I(inode)->lock);
1660 BTRFS_I(inode)->outstanding_extents--;
1661 spin_unlock(&BTRFS_I(inode)->lock);
1662 return;
1663 }
1664
1665 /*
ba117213
JB
1666 * We have to add up either side to figure out how many extents were
1667 * accounted for before we merged into one big extent. If the number of
1668 * extents we accounted for is <= the amount we need for the new range
1669 * then we can return, otherwise drop. Think of it like this
1670 *
1671 * [ 4k][MAX_SIZE]
1672 *
1673 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1674 * need 2 outstanding extents, on one side we have 1 and the other side
1675 * we have 1 so they are == and we can return. But in this case
1676 *
1677 * [MAX_SIZE+4k][MAX_SIZE+4k]
1678 *
1679 * Each range on their own accounts for 2 extents, but merged together
1680 * they are only 3 extents worth of accounting, so we need to drop in
1681 * this case.
dcab6a3b 1682 */
ba117213 1683 old_size = other->end - other->start + 1;
dcab6a3b
JB
1684 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1685 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1686 old_size = new->end - new->start + 1;
1687 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1688 BTRFS_MAX_EXTENT_SIZE);
1689
dcab6a3b 1690 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1691 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1692 return;
1693
9e0baf60
JB
1694 spin_lock(&BTRFS_I(inode)->lock);
1695 BTRFS_I(inode)->outstanding_extents--;
1696 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1697}
1698
eb73c1b7
MX
1699static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1700 struct inode *inode)
1701{
0b246afa
JM
1702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1703
eb73c1b7
MX
1704 spin_lock(&root->delalloc_lock);
1705 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1706 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1707 &root->delalloc_inodes);
1708 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1709 &BTRFS_I(inode)->runtime_flags);
1710 root->nr_delalloc_inodes++;
1711 if (root->nr_delalloc_inodes == 1) {
0b246afa 1712 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1713 BUG_ON(!list_empty(&root->delalloc_root));
1714 list_add_tail(&root->delalloc_root,
0b246afa
JM
1715 &fs_info->delalloc_roots);
1716 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1717 }
1718 }
1719 spin_unlock(&root->delalloc_lock);
1720}
1721
1722static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1723 struct inode *inode)
1724{
0b246afa
JM
1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1726
eb73c1b7
MX
1727 spin_lock(&root->delalloc_lock);
1728 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1730 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1731 &BTRFS_I(inode)->runtime_flags);
1732 root->nr_delalloc_inodes--;
1733 if (!root->nr_delalloc_inodes) {
0b246afa 1734 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1735 BUG_ON(list_empty(&root->delalloc_root));
1736 list_del_init(&root->delalloc_root);
0b246afa 1737 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1738 }
1739 }
1740 spin_unlock(&root->delalloc_lock);
1741}
1742
d352ac68
CM
1743/*
1744 * extent_io.c set_bit_hook, used to track delayed allocation
1745 * bytes in this file, and to maintain the list of inodes that
1746 * have pending delalloc work to be done.
1747 */
1bf85046 1748static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1749 struct extent_state *state, unsigned *bits)
291d673e 1750{
9ed74f2d 1751
0b246afa
JM
1752 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1753
47059d93
WS
1754 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1755 WARN_ON(1);
75eff68e
CM
1756 /*
1757 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1758 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1759 * bit, which is only set or cleared with irqs on
1760 */
0ca1f7ce 1761 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1762 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1763 u64 len = state->end + 1 - state->start;
83eea1f1 1764 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1765
9e0baf60 1766 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1767 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1768 } else {
1769 spin_lock(&BTRFS_I(inode)->lock);
1770 BTRFS_I(inode)->outstanding_extents++;
1771 spin_unlock(&BTRFS_I(inode)->lock);
1772 }
287a0ab9 1773
6a3891c5 1774 /* For sanity tests */
0b246afa 1775 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1776 return;
1777
0b246afa
JM
1778 __percpu_counter_add(&fs_info->delalloc_bytes, len,
1779 fs_info->delalloc_batch);
df0af1a5 1780 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1781 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1782 if (*bits & EXTENT_DEFRAG)
1783 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1784 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1785 &BTRFS_I(inode)->runtime_flags))
1786 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1787 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1788 }
291d673e
CM
1789}
1790
d352ac68
CM
1791/*
1792 * extent_io.c clear_bit_hook, see set_bit_hook for why
1793 */
1bf85046 1794static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1795 struct extent_state *state,
9ee49a04 1796 unsigned *bits)
291d673e 1797{
0b246afa 1798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
47059d93 1799 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1800 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1801 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1802
1803 spin_lock(&BTRFS_I(inode)->lock);
1804 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1805 BTRFS_I(inode)->defrag_bytes -= len;
1806 spin_unlock(&BTRFS_I(inode)->lock);
1807
75eff68e
CM
1808 /*
1809 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1810 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1811 * bit, which is only set or cleared with irqs on
1812 */
0ca1f7ce 1813 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1814 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1815 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1816
9e0baf60 1817 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1818 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1819 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1820 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1821 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1822 spin_unlock(&BTRFS_I(inode)->lock);
1823 }
0ca1f7ce 1824
b6d08f06
JB
1825 /*
1826 * We don't reserve metadata space for space cache inodes so we
1827 * don't need to call dellalloc_release_metadata if there is an
1828 * error.
1829 */
1830 if (*bits & EXTENT_DO_ACCOUNTING &&
0b246afa 1831 root != fs_info->tree_root)
0ca1f7ce
YZ
1832 btrfs_delalloc_release_metadata(inode, len);
1833
6a3891c5 1834 /* For sanity tests. */
0b246afa 1835 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1836 return;
1837
0cb59c99 1838 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1839 && do_list && !(state->state & EXTENT_NORESERVE)
1840 && (*bits & (EXTENT_DO_ACCOUNTING |
1841 EXTENT_CLEAR_DATA_RESV)))
51773bec
QW
1842 btrfs_free_reserved_data_space_noquota(inode,
1843 state->start, len);
9ed74f2d 1844
0b246afa
JM
1845 __percpu_counter_add(&fs_info->delalloc_bytes, -len,
1846 fs_info->delalloc_batch);
df0af1a5 1847 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1848 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1849 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1850 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1851 &BTRFS_I(inode)->runtime_flags))
1852 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1853 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1854 }
291d673e
CM
1855}
1856
d352ac68
CM
1857/*
1858 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1859 * we don't create bios that span stripes or chunks
6f034ece
LB
1860 *
1861 * return 1 if page cannot be merged to bio
1862 * return 0 if page can be merged to bio
1863 * return error otherwise
d352ac68 1864 */
81a75f67 1865int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1866 size_t size, struct bio *bio,
1867 unsigned long bio_flags)
239b14b3 1868{
0b246afa
JM
1869 struct inode *inode = page->mapping->host;
1870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1871 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1872 u64 length = 0;
1873 u64 map_length;
239b14b3
CM
1874 int ret;
1875
771ed689
CM
1876 if (bio_flags & EXTENT_BIO_COMPRESSED)
1877 return 0;
1878
4f024f37 1879 length = bio->bi_iter.bi_size;
239b14b3 1880 map_length = length;
0b246afa
JM
1881 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1882 NULL, 0);
6f034ece
LB
1883 if (ret < 0)
1884 return ret;
d397712b 1885 if (map_length < length + size)
239b14b3 1886 return 1;
3444a972 1887 return 0;
239b14b3
CM
1888}
1889
d352ac68
CM
1890/*
1891 * in order to insert checksums into the metadata in large chunks,
1892 * we wait until bio submission time. All the pages in the bio are
1893 * checksummed and sums are attached onto the ordered extent record.
1894 *
1895 * At IO completion time the cums attached on the ordered extent record
1896 * are inserted into the btree
1897 */
81a75f67
MC
1898static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1899 int mirror_num, unsigned long bio_flags,
eaf25d93 1900 u64 bio_offset)
065631f6 1901{
065631f6 1902 int ret = 0;
e015640f 1903
2ff7e61e 1904 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1905 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1906 return 0;
1907}
e015640f 1908
4a69a410
CM
1909/*
1910 * in order to insert checksums into the metadata in large chunks,
1911 * we wait until bio submission time. All the pages in the bio are
1912 * checksummed and sums are attached onto the ordered extent record.
1913 *
1914 * At IO completion time the cums attached on the ordered extent record
1915 * are inserted into the btree
1916 */
81a75f67 1917static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1918 int mirror_num, unsigned long bio_flags,
1919 u64 bio_offset)
4a69a410 1920{
2ff7e61e 1921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
61891923
SB
1922 int ret;
1923
2ff7e61e 1924 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6
CH
1925 if (ret) {
1926 bio->bi_error = ret;
1927 bio_endio(bio);
1928 }
61891923 1929 return ret;
44b8bd7e
CM
1930}
1931
d352ac68 1932/*
cad321ad
CM
1933 * extent_io.c submission hook. This does the right thing for csum calculation
1934 * on write, or reading the csums from the tree before a read
d352ac68 1935 */
81a75f67 1936static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1937 int mirror_num, unsigned long bio_flags,
1938 u64 bio_offset)
44b8bd7e 1939{
0b246afa 1940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1941 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1942 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1943 int ret = 0;
19b9bdb0 1944 int skip_sum;
b812ce28 1945 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1946
6cbff00f 1947 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1948
83eea1f1 1949 if (btrfs_is_free_space_inode(inode))
0d51e28a 1950 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1951
37226b21 1952 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1953 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1954 if (ret)
61891923 1955 goto out;
5fd02043 1956
d20f7043 1957 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1958 ret = btrfs_submit_compressed_read(inode, bio,
1959 mirror_num,
1960 bio_flags);
1961 goto out;
c2db1073 1962 } else if (!skip_sum) {
2ff7e61e 1963 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1964 if (ret)
61891923 1965 goto out;
c2db1073 1966 }
4d1b5fb4 1967 goto mapit;
b812ce28 1968 } else if (async && !skip_sum) {
17d217fe
YZ
1969 /* csum items have already been cloned */
1970 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1971 goto mapit;
19b9bdb0 1972 /* we're doing a write, do the async checksumming */
0b246afa
JM
1973 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1974 bio_flags, bio_offset,
1975 __btrfs_submit_bio_start,
1976 __btrfs_submit_bio_done);
61891923 1977 goto out;
b812ce28 1978 } else if (!skip_sum) {
2ff7e61e 1979 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1980 if (ret)
1981 goto out;
19b9bdb0
CM
1982 }
1983
0b86a832 1984mapit:
2ff7e61e 1985 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1986
1987out:
4246a0b6
CH
1988 if (ret < 0) {
1989 bio->bi_error = ret;
1990 bio_endio(bio);
1991 }
61891923 1992 return ret;
065631f6 1993}
6885f308 1994
d352ac68
CM
1995/*
1996 * given a list of ordered sums record them in the inode. This happens
1997 * at IO completion time based on sums calculated at bio submission time.
1998 */
ba1da2f4 1999static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
2000 struct inode *inode, u64 file_offset,
2001 struct list_head *list)
2002{
e6dcd2dc
CM
2003 struct btrfs_ordered_sum *sum;
2004
c6e30871 2005 list_for_each_entry(sum, list, list) {
39847c4d 2006 trans->adding_csums = 1;
d20f7043
CM
2007 btrfs_csum_file_blocks(trans,
2008 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2009 trans->adding_csums = 0;
e6dcd2dc
CM
2010 }
2011 return 0;
2012}
2013
2ac55d41 2014int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2015 struct extent_state **cached_state, int dedupe)
ea8c2819 2016{
09cbfeaf 2017 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2018 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2019 cached_state);
ea8c2819
CM
2020}
2021
d352ac68 2022/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2023struct btrfs_writepage_fixup {
2024 struct page *page;
2025 struct btrfs_work work;
2026};
2027
b2950863 2028static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2029{
2030 struct btrfs_writepage_fixup *fixup;
2031 struct btrfs_ordered_extent *ordered;
2ac55d41 2032 struct extent_state *cached_state = NULL;
247e743c
CM
2033 struct page *page;
2034 struct inode *inode;
2035 u64 page_start;
2036 u64 page_end;
87826df0 2037 int ret;
247e743c
CM
2038
2039 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2040 page = fixup->page;
4a096752 2041again:
247e743c
CM
2042 lock_page(page);
2043 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2044 ClearPageChecked(page);
2045 goto out_page;
2046 }
2047
2048 inode = page->mapping->host;
2049 page_start = page_offset(page);
09cbfeaf 2050 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2051
ff13db41 2052 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2053 &cached_state);
4a096752
CM
2054
2055 /* already ordered? We're done */
8b62b72b 2056 if (PagePrivate2(page))
247e743c 2057 goto out;
4a096752 2058
dbfdb6d1 2059 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2060 PAGE_SIZE);
4a096752 2061 if (ordered) {
2ac55d41
JB
2062 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2063 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2064 unlock_page(page);
2065 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2066 btrfs_put_ordered_extent(ordered);
4a096752
CM
2067 goto again;
2068 }
247e743c 2069
7cf5b976 2070 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2071 PAGE_SIZE);
87826df0
JM
2072 if (ret) {
2073 mapping_set_error(page->mapping, ret);
2074 end_extent_writepage(page, ret, page_start, page_end);
2075 ClearPageChecked(page);
2076 goto out;
2077 }
2078
ba8b04c1
QW
2079 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2080 0);
247e743c 2081 ClearPageChecked(page);
87826df0 2082 set_page_dirty(page);
247e743c 2083out:
2ac55d41
JB
2084 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2085 &cached_state, GFP_NOFS);
247e743c
CM
2086out_page:
2087 unlock_page(page);
09cbfeaf 2088 put_page(page);
b897abec 2089 kfree(fixup);
247e743c
CM
2090}
2091
2092/*
2093 * There are a few paths in the higher layers of the kernel that directly
2094 * set the page dirty bit without asking the filesystem if it is a
2095 * good idea. This causes problems because we want to make sure COW
2096 * properly happens and the data=ordered rules are followed.
2097 *
c8b97818 2098 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2099 * hasn't been properly setup for IO. We kick off an async process
2100 * to fix it up. The async helper will wait for ordered extents, set
2101 * the delalloc bit and make it safe to write the page.
2102 */
b2950863 2103static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2104{
2105 struct inode *inode = page->mapping->host;
0b246afa 2106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2107 struct btrfs_writepage_fixup *fixup;
247e743c 2108
8b62b72b
CM
2109 /* this page is properly in the ordered list */
2110 if (TestClearPagePrivate2(page))
247e743c
CM
2111 return 0;
2112
2113 if (PageChecked(page))
2114 return -EAGAIN;
2115
2116 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2117 if (!fixup)
2118 return -EAGAIN;
f421950f 2119
247e743c 2120 SetPageChecked(page);
09cbfeaf 2121 get_page(page);
9e0af237
LB
2122 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2123 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2124 fixup->page = page;
0b246afa 2125 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2126 return -EBUSY;
247e743c
CM
2127}
2128
d899e052
YZ
2129static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2130 struct inode *inode, u64 file_pos,
2131 u64 disk_bytenr, u64 disk_num_bytes,
2132 u64 num_bytes, u64 ram_bytes,
2133 u8 compression, u8 encryption,
2134 u16 other_encoding, int extent_type)
2135{
2136 struct btrfs_root *root = BTRFS_I(inode)->root;
2137 struct btrfs_file_extent_item *fi;
2138 struct btrfs_path *path;
2139 struct extent_buffer *leaf;
2140 struct btrfs_key ins;
1acae57b 2141 int extent_inserted = 0;
d899e052
YZ
2142 int ret;
2143
2144 path = btrfs_alloc_path();
d8926bb3
MF
2145 if (!path)
2146 return -ENOMEM;
d899e052 2147
a1ed835e
CM
2148 /*
2149 * we may be replacing one extent in the tree with another.
2150 * The new extent is pinned in the extent map, and we don't want
2151 * to drop it from the cache until it is completely in the btree.
2152 *
2153 * So, tell btrfs_drop_extents to leave this extent in the cache.
2154 * the caller is expected to unpin it and allow it to be merged
2155 * with the others.
2156 */
1acae57b
FDBM
2157 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2158 file_pos + num_bytes, NULL, 0,
2159 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2160 if (ret)
2161 goto out;
d899e052 2162
1acae57b
FDBM
2163 if (!extent_inserted) {
2164 ins.objectid = btrfs_ino(inode);
2165 ins.offset = file_pos;
2166 ins.type = BTRFS_EXTENT_DATA_KEY;
2167
2168 path->leave_spinning = 1;
2169 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2170 sizeof(*fi));
2171 if (ret)
2172 goto out;
2173 }
d899e052
YZ
2174 leaf = path->nodes[0];
2175 fi = btrfs_item_ptr(leaf, path->slots[0],
2176 struct btrfs_file_extent_item);
2177 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2178 btrfs_set_file_extent_type(leaf, fi, extent_type);
2179 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2180 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2181 btrfs_set_file_extent_offset(leaf, fi, 0);
2182 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2183 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2184 btrfs_set_file_extent_compression(leaf, fi, compression);
2185 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2186 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2187
d899e052 2188 btrfs_mark_buffer_dirty(leaf);
ce195332 2189 btrfs_release_path(path);
d899e052
YZ
2190
2191 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2192
2193 ins.objectid = disk_bytenr;
2194 ins.offset = disk_num_bytes;
2195 ins.type = BTRFS_EXTENT_ITEM_KEY;
2ff7e61e
JM
2196 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2197 btrfs_ino(inode), file_pos,
2198 ram_bytes, &ins);
297d750b 2199 /*
5846a3c2
QW
2200 * Release the reserved range from inode dirty range map, as it is
2201 * already moved into delayed_ref_head
297d750b
QW
2202 */
2203 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2204out:
d899e052 2205 btrfs_free_path(path);
b9473439 2206
79787eaa 2207 return ret;
d899e052
YZ
2208}
2209
38c227d8
LB
2210/* snapshot-aware defrag */
2211struct sa_defrag_extent_backref {
2212 struct rb_node node;
2213 struct old_sa_defrag_extent *old;
2214 u64 root_id;
2215 u64 inum;
2216 u64 file_pos;
2217 u64 extent_offset;
2218 u64 num_bytes;
2219 u64 generation;
2220};
2221
2222struct old_sa_defrag_extent {
2223 struct list_head list;
2224 struct new_sa_defrag_extent *new;
2225
2226 u64 extent_offset;
2227 u64 bytenr;
2228 u64 offset;
2229 u64 len;
2230 int count;
2231};
2232
2233struct new_sa_defrag_extent {
2234 struct rb_root root;
2235 struct list_head head;
2236 struct btrfs_path *path;
2237 struct inode *inode;
2238 u64 file_pos;
2239 u64 len;
2240 u64 bytenr;
2241 u64 disk_len;
2242 u8 compress_type;
2243};
2244
2245static int backref_comp(struct sa_defrag_extent_backref *b1,
2246 struct sa_defrag_extent_backref *b2)
2247{
2248 if (b1->root_id < b2->root_id)
2249 return -1;
2250 else if (b1->root_id > b2->root_id)
2251 return 1;
2252
2253 if (b1->inum < b2->inum)
2254 return -1;
2255 else if (b1->inum > b2->inum)
2256 return 1;
2257
2258 if (b1->file_pos < b2->file_pos)
2259 return -1;
2260 else if (b1->file_pos > b2->file_pos)
2261 return 1;
2262
2263 /*
2264 * [------------------------------] ===> (a range of space)
2265 * |<--->| |<---->| =============> (fs/file tree A)
2266 * |<---------------------------->| ===> (fs/file tree B)
2267 *
2268 * A range of space can refer to two file extents in one tree while
2269 * refer to only one file extent in another tree.
2270 *
2271 * So we may process a disk offset more than one time(two extents in A)
2272 * and locate at the same extent(one extent in B), then insert two same
2273 * backrefs(both refer to the extent in B).
2274 */
2275 return 0;
2276}
2277
2278static void backref_insert(struct rb_root *root,
2279 struct sa_defrag_extent_backref *backref)
2280{
2281 struct rb_node **p = &root->rb_node;
2282 struct rb_node *parent = NULL;
2283 struct sa_defrag_extent_backref *entry;
2284 int ret;
2285
2286 while (*p) {
2287 parent = *p;
2288 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2289
2290 ret = backref_comp(backref, entry);
2291 if (ret < 0)
2292 p = &(*p)->rb_left;
2293 else
2294 p = &(*p)->rb_right;
2295 }
2296
2297 rb_link_node(&backref->node, parent, p);
2298 rb_insert_color(&backref->node, root);
2299}
2300
2301/*
2302 * Note the backref might has changed, and in this case we just return 0.
2303 */
2304static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2305 void *ctx)
2306{
2307 struct btrfs_file_extent_item *extent;
38c227d8
LB
2308 struct old_sa_defrag_extent *old = ctx;
2309 struct new_sa_defrag_extent *new = old->new;
2310 struct btrfs_path *path = new->path;
2311 struct btrfs_key key;
2312 struct btrfs_root *root;
2313 struct sa_defrag_extent_backref *backref;
2314 struct extent_buffer *leaf;
2315 struct inode *inode = new->inode;
0b246afa 2316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2317 int slot;
2318 int ret;
2319 u64 extent_offset;
2320 u64 num_bytes;
2321
2322 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2323 inum == btrfs_ino(inode))
2324 return 0;
2325
2326 key.objectid = root_id;
2327 key.type = BTRFS_ROOT_ITEM_KEY;
2328 key.offset = (u64)-1;
2329
38c227d8
LB
2330 root = btrfs_read_fs_root_no_name(fs_info, &key);
2331 if (IS_ERR(root)) {
2332 if (PTR_ERR(root) == -ENOENT)
2333 return 0;
2334 WARN_ON(1);
ab8d0fc4 2335 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2336 inum, offset, root_id);
2337 return PTR_ERR(root);
2338 }
2339
2340 key.objectid = inum;
2341 key.type = BTRFS_EXTENT_DATA_KEY;
2342 if (offset > (u64)-1 << 32)
2343 key.offset = 0;
2344 else
2345 key.offset = offset;
2346
2347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2348 if (WARN_ON(ret < 0))
38c227d8 2349 return ret;
50f1319c 2350 ret = 0;
38c227d8
LB
2351
2352 while (1) {
2353 cond_resched();
2354
2355 leaf = path->nodes[0];
2356 slot = path->slots[0];
2357
2358 if (slot >= btrfs_header_nritems(leaf)) {
2359 ret = btrfs_next_leaf(root, path);
2360 if (ret < 0) {
2361 goto out;
2362 } else if (ret > 0) {
2363 ret = 0;
2364 goto out;
2365 }
2366 continue;
2367 }
2368
2369 path->slots[0]++;
2370
2371 btrfs_item_key_to_cpu(leaf, &key, slot);
2372
2373 if (key.objectid > inum)
2374 goto out;
2375
2376 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2377 continue;
2378
2379 extent = btrfs_item_ptr(leaf, slot,
2380 struct btrfs_file_extent_item);
2381
2382 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2383 continue;
2384
e68afa49
LB
2385 /*
2386 * 'offset' refers to the exact key.offset,
2387 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2388 * (key.offset - extent_offset).
2389 */
2390 if (key.offset != offset)
38c227d8
LB
2391 continue;
2392
e68afa49 2393 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2394 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2395
38c227d8
LB
2396 if (extent_offset >= old->extent_offset + old->offset +
2397 old->len || extent_offset + num_bytes <=
2398 old->extent_offset + old->offset)
2399 continue;
38c227d8
LB
2400 break;
2401 }
2402
2403 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2404 if (!backref) {
2405 ret = -ENOENT;
2406 goto out;
2407 }
2408
2409 backref->root_id = root_id;
2410 backref->inum = inum;
e68afa49 2411 backref->file_pos = offset;
38c227d8
LB
2412 backref->num_bytes = num_bytes;
2413 backref->extent_offset = extent_offset;
2414 backref->generation = btrfs_file_extent_generation(leaf, extent);
2415 backref->old = old;
2416 backref_insert(&new->root, backref);
2417 old->count++;
2418out:
2419 btrfs_release_path(path);
2420 WARN_ON(ret);
2421 return ret;
2422}
2423
2424static noinline bool record_extent_backrefs(struct btrfs_path *path,
2425 struct new_sa_defrag_extent *new)
2426{
0b246afa 2427 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2428 struct old_sa_defrag_extent *old, *tmp;
2429 int ret;
2430
2431 new->path = path;
2432
2433 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2434 ret = iterate_inodes_from_logical(old->bytenr +
2435 old->extent_offset, fs_info,
38c227d8
LB
2436 path, record_one_backref,
2437 old);
4724b106
JB
2438 if (ret < 0 && ret != -ENOENT)
2439 return false;
38c227d8
LB
2440
2441 /* no backref to be processed for this extent */
2442 if (!old->count) {
2443 list_del(&old->list);
2444 kfree(old);
2445 }
2446 }
2447
2448 if (list_empty(&new->head))
2449 return false;
2450
2451 return true;
2452}
2453
2454static int relink_is_mergable(struct extent_buffer *leaf,
2455 struct btrfs_file_extent_item *fi,
116e0024 2456 struct new_sa_defrag_extent *new)
38c227d8 2457{
116e0024 2458 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2459 return 0;
2460
2461 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2462 return 0;
2463
116e0024
LB
2464 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2465 return 0;
2466
2467 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2468 btrfs_file_extent_other_encoding(leaf, fi))
2469 return 0;
2470
2471 return 1;
2472}
2473
2474/*
2475 * Note the backref might has changed, and in this case we just return 0.
2476 */
2477static noinline int relink_extent_backref(struct btrfs_path *path,
2478 struct sa_defrag_extent_backref *prev,
2479 struct sa_defrag_extent_backref *backref)
2480{
2481 struct btrfs_file_extent_item *extent;
2482 struct btrfs_file_extent_item *item;
2483 struct btrfs_ordered_extent *ordered;
2484 struct btrfs_trans_handle *trans;
38c227d8
LB
2485 struct btrfs_root *root;
2486 struct btrfs_key key;
2487 struct extent_buffer *leaf;
2488 struct old_sa_defrag_extent *old = backref->old;
2489 struct new_sa_defrag_extent *new = old->new;
0b246afa 2490 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2491 struct inode *inode;
2492 struct extent_state *cached = NULL;
2493 int ret = 0;
2494 u64 start;
2495 u64 len;
2496 u64 lock_start;
2497 u64 lock_end;
2498 bool merge = false;
2499 int index;
2500
2501 if (prev && prev->root_id == backref->root_id &&
2502 prev->inum == backref->inum &&
2503 prev->file_pos + prev->num_bytes == backref->file_pos)
2504 merge = true;
2505
2506 /* step 1: get root */
2507 key.objectid = backref->root_id;
2508 key.type = BTRFS_ROOT_ITEM_KEY;
2509 key.offset = (u64)-1;
2510
38c227d8
LB
2511 index = srcu_read_lock(&fs_info->subvol_srcu);
2512
2513 root = btrfs_read_fs_root_no_name(fs_info, &key);
2514 if (IS_ERR(root)) {
2515 srcu_read_unlock(&fs_info->subvol_srcu, index);
2516 if (PTR_ERR(root) == -ENOENT)
2517 return 0;
2518 return PTR_ERR(root);
2519 }
38c227d8 2520
bcbba5e6
WS
2521 if (btrfs_root_readonly(root)) {
2522 srcu_read_unlock(&fs_info->subvol_srcu, index);
2523 return 0;
2524 }
2525
38c227d8
LB
2526 /* step 2: get inode */
2527 key.objectid = backref->inum;
2528 key.type = BTRFS_INODE_ITEM_KEY;
2529 key.offset = 0;
2530
2531 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2532 if (IS_ERR(inode)) {
2533 srcu_read_unlock(&fs_info->subvol_srcu, index);
2534 return 0;
2535 }
2536
2537 srcu_read_unlock(&fs_info->subvol_srcu, index);
2538
2539 /* step 3: relink backref */
2540 lock_start = backref->file_pos;
2541 lock_end = backref->file_pos + backref->num_bytes - 1;
2542 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2543 &cached);
38c227d8
LB
2544
2545 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2546 if (ordered) {
2547 btrfs_put_ordered_extent(ordered);
2548 goto out_unlock;
2549 }
2550
2551 trans = btrfs_join_transaction(root);
2552 if (IS_ERR(trans)) {
2553 ret = PTR_ERR(trans);
2554 goto out_unlock;
2555 }
2556
2557 key.objectid = backref->inum;
2558 key.type = BTRFS_EXTENT_DATA_KEY;
2559 key.offset = backref->file_pos;
2560
2561 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2562 if (ret < 0) {
2563 goto out_free_path;
2564 } else if (ret > 0) {
2565 ret = 0;
2566 goto out_free_path;
2567 }
2568
2569 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2570 struct btrfs_file_extent_item);
2571
2572 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2573 backref->generation)
2574 goto out_free_path;
2575
2576 btrfs_release_path(path);
2577
2578 start = backref->file_pos;
2579 if (backref->extent_offset < old->extent_offset + old->offset)
2580 start += old->extent_offset + old->offset -
2581 backref->extent_offset;
2582
2583 len = min(backref->extent_offset + backref->num_bytes,
2584 old->extent_offset + old->offset + old->len);
2585 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2586
2587 ret = btrfs_drop_extents(trans, root, inode, start,
2588 start + len, 1);
2589 if (ret)
2590 goto out_free_path;
2591again:
2592 key.objectid = btrfs_ino(inode);
2593 key.type = BTRFS_EXTENT_DATA_KEY;
2594 key.offset = start;
2595
a09a0a70 2596 path->leave_spinning = 1;
38c227d8
LB
2597 if (merge) {
2598 struct btrfs_file_extent_item *fi;
2599 u64 extent_len;
2600 struct btrfs_key found_key;
2601
3c9665df 2602 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2603 if (ret < 0)
2604 goto out_free_path;
2605
2606 path->slots[0]--;
2607 leaf = path->nodes[0];
2608 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2609
2610 fi = btrfs_item_ptr(leaf, path->slots[0],
2611 struct btrfs_file_extent_item);
2612 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2613
116e0024
LB
2614 if (extent_len + found_key.offset == start &&
2615 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2616 btrfs_set_file_extent_num_bytes(leaf, fi,
2617 extent_len + len);
2618 btrfs_mark_buffer_dirty(leaf);
2619 inode_add_bytes(inode, len);
2620
2621 ret = 1;
2622 goto out_free_path;
2623 } else {
2624 merge = false;
2625 btrfs_release_path(path);
2626 goto again;
2627 }
2628 }
2629
2630 ret = btrfs_insert_empty_item(trans, root, path, &key,
2631 sizeof(*extent));
2632 if (ret) {
66642832 2633 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2634 goto out_free_path;
2635 }
2636
2637 leaf = path->nodes[0];
2638 item = btrfs_item_ptr(leaf, path->slots[0],
2639 struct btrfs_file_extent_item);
2640 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2641 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2642 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2643 btrfs_set_file_extent_num_bytes(leaf, item, len);
2644 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2645 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2646 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2647 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2648 btrfs_set_file_extent_encryption(leaf, item, 0);
2649 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2650
2651 btrfs_mark_buffer_dirty(leaf);
2652 inode_add_bytes(inode, len);
a09a0a70 2653 btrfs_release_path(path);
38c227d8 2654
2ff7e61e 2655 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2656 new->disk_len, 0,
2657 backref->root_id, backref->inum,
b06c4bf5 2658 new->file_pos); /* start - extent_offset */
38c227d8 2659 if (ret) {
66642832 2660 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2661 goto out_free_path;
2662 }
2663
2664 ret = 1;
2665out_free_path:
2666 btrfs_release_path(path);
a09a0a70 2667 path->leave_spinning = 0;
3a45bb20 2668 btrfs_end_transaction(trans);
38c227d8
LB
2669out_unlock:
2670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2671 &cached, GFP_NOFS);
2672 iput(inode);
2673 return ret;
2674}
2675
6f519564
LB
2676static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2677{
2678 struct old_sa_defrag_extent *old, *tmp;
2679
2680 if (!new)
2681 return;
2682
2683 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2684 kfree(old);
2685 }
2686 kfree(new);
2687}
2688
38c227d8
LB
2689static void relink_file_extents(struct new_sa_defrag_extent *new)
2690{
0b246afa 2691 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2692 struct btrfs_path *path;
38c227d8
LB
2693 struct sa_defrag_extent_backref *backref;
2694 struct sa_defrag_extent_backref *prev = NULL;
2695 struct inode *inode;
2696 struct btrfs_root *root;
2697 struct rb_node *node;
2698 int ret;
2699
2700 inode = new->inode;
2701 root = BTRFS_I(inode)->root;
2702
2703 path = btrfs_alloc_path();
2704 if (!path)
2705 return;
2706
2707 if (!record_extent_backrefs(path, new)) {
2708 btrfs_free_path(path);
2709 goto out;
2710 }
2711 btrfs_release_path(path);
2712
2713 while (1) {
2714 node = rb_first(&new->root);
2715 if (!node)
2716 break;
2717 rb_erase(node, &new->root);
2718
2719 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2720
2721 ret = relink_extent_backref(path, prev, backref);
2722 WARN_ON(ret < 0);
2723
2724 kfree(prev);
2725
2726 if (ret == 1)
2727 prev = backref;
2728 else
2729 prev = NULL;
2730 cond_resched();
2731 }
2732 kfree(prev);
2733
2734 btrfs_free_path(path);
38c227d8 2735out:
6f519564
LB
2736 free_sa_defrag_extent(new);
2737
0b246afa
JM
2738 atomic_dec(&fs_info->defrag_running);
2739 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2740}
2741
2742static struct new_sa_defrag_extent *
2743record_old_file_extents(struct inode *inode,
2744 struct btrfs_ordered_extent *ordered)
2745{
0b246afa 2746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2747 struct btrfs_root *root = BTRFS_I(inode)->root;
2748 struct btrfs_path *path;
2749 struct btrfs_key key;
6f519564 2750 struct old_sa_defrag_extent *old;
38c227d8
LB
2751 struct new_sa_defrag_extent *new;
2752 int ret;
2753
2754 new = kmalloc(sizeof(*new), GFP_NOFS);
2755 if (!new)
2756 return NULL;
2757
2758 new->inode = inode;
2759 new->file_pos = ordered->file_offset;
2760 new->len = ordered->len;
2761 new->bytenr = ordered->start;
2762 new->disk_len = ordered->disk_len;
2763 new->compress_type = ordered->compress_type;
2764 new->root = RB_ROOT;
2765 INIT_LIST_HEAD(&new->head);
2766
2767 path = btrfs_alloc_path();
2768 if (!path)
2769 goto out_kfree;
2770
2771 key.objectid = btrfs_ino(inode);
2772 key.type = BTRFS_EXTENT_DATA_KEY;
2773 key.offset = new->file_pos;
2774
2775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2776 if (ret < 0)
2777 goto out_free_path;
2778 if (ret > 0 && path->slots[0] > 0)
2779 path->slots[0]--;
2780
2781 /* find out all the old extents for the file range */
2782 while (1) {
2783 struct btrfs_file_extent_item *extent;
2784 struct extent_buffer *l;
2785 int slot;
2786 u64 num_bytes;
2787 u64 offset;
2788 u64 end;
2789 u64 disk_bytenr;
2790 u64 extent_offset;
2791
2792 l = path->nodes[0];
2793 slot = path->slots[0];
2794
2795 if (slot >= btrfs_header_nritems(l)) {
2796 ret = btrfs_next_leaf(root, path);
2797 if (ret < 0)
6f519564 2798 goto out_free_path;
38c227d8
LB
2799 else if (ret > 0)
2800 break;
2801 continue;
2802 }
2803
2804 btrfs_item_key_to_cpu(l, &key, slot);
2805
2806 if (key.objectid != btrfs_ino(inode))
2807 break;
2808 if (key.type != BTRFS_EXTENT_DATA_KEY)
2809 break;
2810 if (key.offset >= new->file_pos + new->len)
2811 break;
2812
2813 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2814
2815 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2816 if (key.offset + num_bytes < new->file_pos)
2817 goto next;
2818
2819 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2820 if (!disk_bytenr)
2821 goto next;
2822
2823 extent_offset = btrfs_file_extent_offset(l, extent);
2824
2825 old = kmalloc(sizeof(*old), GFP_NOFS);
2826 if (!old)
6f519564 2827 goto out_free_path;
38c227d8
LB
2828
2829 offset = max(new->file_pos, key.offset);
2830 end = min(new->file_pos + new->len, key.offset + num_bytes);
2831
2832 old->bytenr = disk_bytenr;
2833 old->extent_offset = extent_offset;
2834 old->offset = offset - key.offset;
2835 old->len = end - offset;
2836 old->new = new;
2837 old->count = 0;
2838 list_add_tail(&old->list, &new->head);
2839next:
2840 path->slots[0]++;
2841 cond_resched();
2842 }
2843
2844 btrfs_free_path(path);
0b246afa 2845 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2846
2847 return new;
2848
38c227d8
LB
2849out_free_path:
2850 btrfs_free_path(path);
2851out_kfree:
6f519564 2852 free_sa_defrag_extent(new);
38c227d8
LB
2853 return NULL;
2854}
2855
2ff7e61e 2856static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2857 u64 start, u64 len)
2858{
2859 struct btrfs_block_group_cache *cache;
2860
0b246afa 2861 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2862 ASSERT(cache);
2863
2864 spin_lock(&cache->lock);
2865 cache->delalloc_bytes -= len;
2866 spin_unlock(&cache->lock);
2867
2868 btrfs_put_block_group(cache);
2869}
2870
d352ac68
CM
2871/* as ordered data IO finishes, this gets called so we can finish
2872 * an ordered extent if the range of bytes in the file it covers are
2873 * fully written.
2874 */
5fd02043 2875static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2876{
5fd02043 2877 struct inode *inode = ordered_extent->inode;
0b246afa 2878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2879 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2880 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2881 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2882 struct extent_state *cached_state = NULL;
38c227d8 2883 struct new_sa_defrag_extent *new = NULL;
261507a0 2884 int compress_type = 0;
77cef2ec
JB
2885 int ret = 0;
2886 u64 logical_len = ordered_extent->len;
82d5902d 2887 bool nolock;
77cef2ec 2888 bool truncated = false;
e6dcd2dc 2889
83eea1f1 2890 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2891
5fd02043
JB
2892 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2893 ret = -EIO;
2894 goto out;
2895 }
2896
f612496b
MX
2897 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2898 ordered_extent->file_offset +
2899 ordered_extent->len - 1);
2900
77cef2ec
JB
2901 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2902 truncated = true;
2903 logical_len = ordered_extent->truncated_len;
2904 /* Truncated the entire extent, don't bother adding */
2905 if (!logical_len)
2906 goto out;
2907 }
2908
c2167754 2909 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2910 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2911
2912 /*
2913 * For mwrite(mmap + memset to write) case, we still reserve
2914 * space for NOCOW range.
2915 * As NOCOW won't cause a new delayed ref, just free the space
2916 */
2917 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2918 ordered_extent->len);
6c760c07
JB
2919 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2920 if (nolock)
2921 trans = btrfs_join_transaction_nolock(root);
2922 else
2923 trans = btrfs_join_transaction(root);
2924 if (IS_ERR(trans)) {
2925 ret = PTR_ERR(trans);
2926 trans = NULL;
2927 goto out;
c2167754 2928 }
0b246afa 2929 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2930 ret = btrfs_update_inode_fallback(trans, root, inode);
2931 if (ret) /* -ENOMEM or corruption */
66642832 2932 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2933 goto out;
2934 }
e6dcd2dc 2935
2ac55d41
JB
2936 lock_extent_bits(io_tree, ordered_extent->file_offset,
2937 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2938 &cached_state);
e6dcd2dc 2939
38c227d8
LB
2940 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2941 ordered_extent->file_offset + ordered_extent->len - 1,
2942 EXTENT_DEFRAG, 1, cached_state);
2943 if (ret) {
2944 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2945 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2946 /* the inode is shared */
2947 new = record_old_file_extents(inode, ordered_extent);
2948
2949 clear_extent_bit(io_tree, ordered_extent->file_offset,
2950 ordered_extent->file_offset + ordered_extent->len - 1,
2951 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2952 }
2953
0cb59c99 2954 if (nolock)
7a7eaa40 2955 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2956 else
7a7eaa40 2957 trans = btrfs_join_transaction(root);
79787eaa
JM
2958 if (IS_ERR(trans)) {
2959 ret = PTR_ERR(trans);
2960 trans = NULL;
2961 goto out_unlock;
2962 }
a79b7d4b 2963
0b246afa 2964 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2965
c8b97818 2966 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2967 compress_type = ordered_extent->compress_type;
d899e052 2968 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2969 BUG_ON(compress_type);
920bbbfb 2970 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2971 ordered_extent->file_offset,
2972 ordered_extent->file_offset +
77cef2ec 2973 logical_len);
d899e052 2974 } else {
0b246afa 2975 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
2976 ret = insert_reserved_file_extent(trans, inode,
2977 ordered_extent->file_offset,
2978 ordered_extent->start,
2979 ordered_extent->disk_len,
77cef2ec 2980 logical_len, logical_len,
261507a0 2981 compress_type, 0, 0,
d899e052 2982 BTRFS_FILE_EXTENT_REG);
e570fd27 2983 if (!ret)
2ff7e61e 2984 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
2985 ordered_extent->start,
2986 ordered_extent->disk_len);
d899e052 2987 }
5dc562c5
JB
2988 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2989 ordered_extent->file_offset, ordered_extent->len,
2990 trans->transid);
79787eaa 2991 if (ret < 0) {
66642832 2992 btrfs_abort_transaction(trans, ret);
5fd02043 2993 goto out_unlock;
79787eaa 2994 }
2ac55d41 2995
e6dcd2dc
CM
2996 add_pending_csums(trans, inode, ordered_extent->file_offset,
2997 &ordered_extent->list);
2998
6c760c07
JB
2999 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3000 ret = btrfs_update_inode_fallback(trans, root, inode);
3001 if (ret) { /* -ENOMEM or corruption */
66642832 3002 btrfs_abort_transaction(trans, ret);
6c760c07 3003 goto out_unlock;
1ef30be1
JB
3004 }
3005 ret = 0;
5fd02043
JB
3006out_unlock:
3007 unlock_extent_cached(io_tree, ordered_extent->file_offset,
3008 ordered_extent->file_offset +
3009 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 3010out:
0b246afa 3011 if (root != fs_info->tree_root)
0cb59c99 3012 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075 3013 if (trans)
3a45bb20 3014 btrfs_end_transaction(trans);
0cb59c99 3015
77cef2ec
JB
3016 if (ret || truncated) {
3017 u64 start, end;
3018
3019 if (truncated)
3020 start = ordered_extent->file_offset + logical_len;
3021 else
3022 start = ordered_extent->file_offset;
3023 end = ordered_extent->file_offset + ordered_extent->len - 1;
3024 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3025
3026 /* Drop the cache for the part of the extent we didn't write. */
3027 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 3028
0bec9ef5
JB
3029 /*
3030 * If the ordered extent had an IOERR or something else went
3031 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3032 * back to the allocator. We only free the extent in the
3033 * truncated case if we didn't write out the extent at all.
0bec9ef5 3034 */
77cef2ec
JB
3035 if ((ret || !logical_len) &&
3036 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3038 btrfs_free_reserved_extent(fs_info,
3039 ordered_extent->start,
e570fd27 3040 ordered_extent->disk_len, 1);
0bec9ef5
JB
3041 }
3042
3043
5fd02043 3044 /*
8bad3c02
LB
3045 * This needs to be done to make sure anybody waiting knows we are done
3046 * updating everything for this ordered extent.
5fd02043
JB
3047 */
3048 btrfs_remove_ordered_extent(inode, ordered_extent);
3049
38c227d8 3050 /* for snapshot-aware defrag */
6f519564
LB
3051 if (new) {
3052 if (ret) {
3053 free_sa_defrag_extent(new);
0b246afa 3054 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3055 } else {
3056 relink_file_extents(new);
3057 }
3058 }
38c227d8 3059
e6dcd2dc
CM
3060 /* once for us */
3061 btrfs_put_ordered_extent(ordered_extent);
3062 /* once for the tree */
3063 btrfs_put_ordered_extent(ordered_extent);
3064
5fd02043
JB
3065 return ret;
3066}
3067
3068static void finish_ordered_fn(struct btrfs_work *work)
3069{
3070 struct btrfs_ordered_extent *ordered_extent;
3071 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3072 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3073}
3074
b2950863 3075static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3076 struct extent_state *state, int uptodate)
3077{
5fd02043 3078 struct inode *inode = page->mapping->host;
0b246afa 3079 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3080 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3081 struct btrfs_workqueue *wq;
3082 btrfs_work_func_t func;
5fd02043 3083
1abe9b8a 3084 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3085
8b62b72b 3086 ClearPagePrivate2(page);
5fd02043
JB
3087 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3088 end - start + 1, uptodate))
3089 return 0;
3090
9e0af237 3091 if (btrfs_is_free_space_inode(inode)) {
0b246afa 3092 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3093 func = btrfs_freespace_write_helper;
3094 } else {
0b246afa 3095 wq = fs_info->endio_write_workers;
9e0af237
LB
3096 func = btrfs_endio_write_helper;
3097 }
5fd02043 3098
9e0af237
LB
3099 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3100 NULL);
3101 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3102
3103 return 0;
211f90e6
CM
3104}
3105
dc380aea
MX
3106static int __readpage_endio_check(struct inode *inode,
3107 struct btrfs_io_bio *io_bio,
3108 int icsum, struct page *page,
3109 int pgoff, u64 start, size_t len)
3110{
3111 char *kaddr;
3112 u32 csum_expected;
3113 u32 csum = ~(u32)0;
dc380aea
MX
3114
3115 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3116
3117 kaddr = kmap_atomic(page);
3118 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3119 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3120 if (csum != csum_expected)
3121 goto zeroit;
3122
3123 kunmap_atomic(kaddr);
3124 return 0;
3125zeroit:
94647322
DS
3126 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3127 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3128 btrfs_ino(inode), start, csum, csum_expected);
3129 memset(kaddr + pgoff, 1, len);
3130 flush_dcache_page(page);
3131 kunmap_atomic(kaddr);
3132 if (csum_expected == 0)
3133 return 0;
3134 return -EIO;
3135}
3136
d352ac68
CM
3137/*
3138 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3139 * if there's a match, we allow the bio to finish. If not, the code in
3140 * extent_io.c will try to find good copies for us.
d352ac68 3141 */
facc8a22
MX
3142static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3143 u64 phy_offset, struct page *page,
3144 u64 start, u64 end, int mirror)
07157aac 3145{
4eee4fa4 3146 size_t offset = start - page_offset(page);
07157aac 3147 struct inode *inode = page->mapping->host;
d1310b2e 3148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3149 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3150
d20f7043
CM
3151 if (PageChecked(page)) {
3152 ClearPageChecked(page);
dc380aea 3153 return 0;
d20f7043 3154 }
6cbff00f
CH
3155
3156 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3157 return 0;
17d217fe
YZ
3158
3159 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3160 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3161 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3162 return 0;
17d217fe 3163 }
d20f7043 3164
facc8a22 3165 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3166 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3167 start, (size_t)(end - start + 1));
07157aac 3168}
b888db2b 3169
24bbcf04
YZ
3170void btrfs_add_delayed_iput(struct inode *inode)
3171{
0b246afa 3172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3173 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3174
3175 if (atomic_add_unless(&inode->i_count, -1, 1))
3176 return;
3177
24bbcf04 3178 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3179 if (binode->delayed_iput_count == 0) {
3180 ASSERT(list_empty(&binode->delayed_iput));
3181 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3182 } else {
3183 binode->delayed_iput_count++;
3184 }
24bbcf04
YZ
3185 spin_unlock(&fs_info->delayed_iput_lock);
3186}
3187
2ff7e61e 3188void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3189{
24bbcf04 3190
24bbcf04 3191 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3192 while (!list_empty(&fs_info->delayed_iputs)) {
3193 struct btrfs_inode *inode;
3194
3195 inode = list_first_entry(&fs_info->delayed_iputs,
3196 struct btrfs_inode, delayed_iput);
3197 if (inode->delayed_iput_count) {
3198 inode->delayed_iput_count--;
3199 list_move_tail(&inode->delayed_iput,
3200 &fs_info->delayed_iputs);
3201 } else {
3202 list_del_init(&inode->delayed_iput);
3203 }
3204 spin_unlock(&fs_info->delayed_iput_lock);
3205 iput(&inode->vfs_inode);
3206 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3207 }
8089fe62 3208 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3209}
3210
d68fc57b 3211/*
42b2aa86 3212 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3213 * files in the subvolume, it removes orphan item and frees block_rsv
3214 * structure.
3215 */
3216void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root)
3218{
0b246afa 3219 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3220 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3221 int ret;
3222
8a35d95f 3223 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3224 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3225 return;
3226
90290e19 3227 spin_lock(&root->orphan_lock);
8a35d95f 3228 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3229 spin_unlock(&root->orphan_lock);
3230 return;
3231 }
3232
3233 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3234 spin_unlock(&root->orphan_lock);
3235 return;
3236 }
3237
3238 block_rsv = root->orphan_block_rsv;
3239 root->orphan_block_rsv = NULL;
3240 spin_unlock(&root->orphan_lock);
3241
27cdeb70 3242 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3243 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3244 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3245 root->root_key.objectid);
4ef31a45 3246 if (ret)
66642832 3247 btrfs_abort_transaction(trans, ret);
4ef31a45 3248 else
27cdeb70
MX
3249 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3250 &root->state);
d68fc57b
YZ
3251 }
3252
90290e19
JB
3253 if (block_rsv) {
3254 WARN_ON(block_rsv->size > 0);
2ff7e61e 3255 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3256 }
3257}
3258
7b128766
JB
3259/*
3260 * This creates an orphan entry for the given inode in case something goes
3261 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3262 *
3263 * NOTE: caller of this function should reserve 5 units of metadata for
3264 * this function.
7b128766
JB
3265 */
3266int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3267{
0b246afa 3268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7b128766 3269 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3270 struct btrfs_block_rsv *block_rsv = NULL;
3271 int reserve = 0;
3272 int insert = 0;
3273 int ret;
7b128766 3274
d68fc57b 3275 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3276 block_rsv = btrfs_alloc_block_rsv(fs_info,
3277 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3278 if (!block_rsv)
3279 return -ENOMEM;
d68fc57b 3280 }
7b128766 3281
d68fc57b
YZ
3282 spin_lock(&root->orphan_lock);
3283 if (!root->orphan_block_rsv) {
3284 root->orphan_block_rsv = block_rsv;
3285 } else if (block_rsv) {
2ff7e61e 3286 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3287 block_rsv = NULL;
7b128766 3288 }
7b128766 3289
8a35d95f
JB
3290 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3291 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3292#if 0
3293 /*
3294 * For proper ENOSPC handling, we should do orphan
3295 * cleanup when mounting. But this introduces backward
3296 * compatibility issue.
3297 */
3298 if (!xchg(&root->orphan_item_inserted, 1))
3299 insert = 2;
3300 else
3301 insert = 1;
3302#endif
3303 insert = 1;
321f0e70 3304 atomic_inc(&root->orphan_inodes);
7b128766
JB
3305 }
3306
72ac3c0d
JB
3307 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3308 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3309 reserve = 1;
d68fc57b 3310 spin_unlock(&root->orphan_lock);
7b128766 3311
d68fc57b
YZ
3312 /* grab metadata reservation from transaction handle */
3313 if (reserve) {
3314 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3315 ASSERT(!ret);
3316 if (ret) {
3317 atomic_dec(&root->orphan_inodes);
3318 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3319 &BTRFS_I(inode)->runtime_flags);
3320 if (insert)
3321 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3322 &BTRFS_I(inode)->runtime_flags);
3323 return ret;
3324 }
d68fc57b 3325 }
7b128766 3326
d68fc57b
YZ
3327 /* insert an orphan item to track this unlinked/truncated file */
3328 if (insert >= 1) {
33345d01 3329 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3330 if (ret) {
703c88e0 3331 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3332 if (reserve) {
3333 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3334 &BTRFS_I(inode)->runtime_flags);
3335 btrfs_orphan_release_metadata(inode);
3336 }
3337 if (ret != -EEXIST) {
e8e7cff6
JB
3338 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3339 &BTRFS_I(inode)->runtime_flags);
66642832 3340 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3341 return ret;
3342 }
79787eaa
JM
3343 }
3344 ret = 0;
d68fc57b
YZ
3345 }
3346
3347 /* insert an orphan item to track subvolume contains orphan files */
3348 if (insert >= 2) {
0b246afa 3349 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3350 root->root_key.objectid);
79787eaa 3351 if (ret && ret != -EEXIST) {
66642832 3352 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3353 return ret;
3354 }
d68fc57b
YZ
3355 }
3356 return 0;
7b128766
JB
3357}
3358
3359/*
3360 * We have done the truncate/delete so we can go ahead and remove the orphan
3361 * item for this particular inode.
3362 */
48a3b636
ES
3363static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3364 struct inode *inode)
7b128766
JB
3365{
3366 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3367 int delete_item = 0;
3368 int release_rsv = 0;
7b128766
JB
3369 int ret = 0;
3370
d68fc57b 3371 spin_lock(&root->orphan_lock);
8a35d95f
JB
3372 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3373 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3374 delete_item = 1;
7b128766 3375
72ac3c0d
JB
3376 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3377 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3378 release_rsv = 1;
d68fc57b 3379 spin_unlock(&root->orphan_lock);
7b128766 3380
703c88e0 3381 if (delete_item) {
8a35d95f 3382 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3383 if (trans)
3384 ret = btrfs_del_orphan_item(trans, root,
3385 btrfs_ino(inode));
8a35d95f 3386 }
7b128766 3387
703c88e0
FDBM
3388 if (release_rsv)
3389 btrfs_orphan_release_metadata(inode);
3390
4ef31a45 3391 return ret;
7b128766
JB
3392}
3393
3394/*
3395 * this cleans up any orphans that may be left on the list from the last use
3396 * of this root.
3397 */
66b4ffd1 3398int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3399{
0b246afa 3400 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3401 struct btrfs_path *path;
3402 struct extent_buffer *leaf;
7b128766
JB
3403 struct btrfs_key key, found_key;
3404 struct btrfs_trans_handle *trans;
3405 struct inode *inode;
8f6d7f4f 3406 u64 last_objectid = 0;
7b128766
JB
3407 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3408
d68fc57b 3409 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3410 return 0;
c71bf099
YZ
3411
3412 path = btrfs_alloc_path();
66b4ffd1
JB
3413 if (!path) {
3414 ret = -ENOMEM;
3415 goto out;
3416 }
e4058b54 3417 path->reada = READA_BACK;
7b128766
JB
3418
3419 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3420 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3421 key.offset = (u64)-1;
3422
7b128766
JB
3423 while (1) {
3424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3425 if (ret < 0)
3426 goto out;
7b128766
JB
3427
3428 /*
3429 * if ret == 0 means we found what we were searching for, which
25985edc 3430 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3431 * find the key and see if we have stuff that matches
3432 */
3433 if (ret > 0) {
66b4ffd1 3434 ret = 0;
7b128766
JB
3435 if (path->slots[0] == 0)
3436 break;
3437 path->slots[0]--;
3438 }
3439
3440 /* pull out the item */
3441 leaf = path->nodes[0];
7b128766
JB
3442 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3443
3444 /* make sure the item matches what we want */
3445 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3446 break;
962a298f 3447 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3448 break;
3449
3450 /* release the path since we're done with it */
b3b4aa74 3451 btrfs_release_path(path);
7b128766
JB
3452
3453 /*
3454 * this is where we are basically btrfs_lookup, without the
3455 * crossing root thing. we store the inode number in the
3456 * offset of the orphan item.
3457 */
8f6d7f4f
JB
3458
3459 if (found_key.offset == last_objectid) {
0b246afa
JM
3460 btrfs_err(fs_info,
3461 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3462 ret = -EINVAL;
3463 goto out;
3464 }
3465
3466 last_objectid = found_key.offset;
3467
5d4f98a2
YZ
3468 found_key.objectid = found_key.offset;
3469 found_key.type = BTRFS_INODE_ITEM_KEY;
3470 found_key.offset = 0;
0b246afa 3471 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3472 ret = PTR_ERR_OR_ZERO(inode);
67710892 3473 if (ret && ret != -ENOENT)
66b4ffd1 3474 goto out;
7b128766 3475
0b246afa 3476 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3477 struct btrfs_root *dead_root;
3478 struct btrfs_fs_info *fs_info = root->fs_info;
3479 int is_dead_root = 0;
3480
3481 /*
3482 * this is an orphan in the tree root. Currently these
3483 * could come from 2 sources:
3484 * a) a snapshot deletion in progress
3485 * b) a free space cache inode
3486 * We need to distinguish those two, as the snapshot
3487 * orphan must not get deleted.
3488 * find_dead_roots already ran before us, so if this
3489 * is a snapshot deletion, we should find the root
3490 * in the dead_roots list
3491 */
3492 spin_lock(&fs_info->trans_lock);
3493 list_for_each_entry(dead_root, &fs_info->dead_roots,
3494 root_list) {
3495 if (dead_root->root_key.objectid ==
3496 found_key.objectid) {
3497 is_dead_root = 1;
3498 break;
3499 }
3500 }
3501 spin_unlock(&fs_info->trans_lock);
3502 if (is_dead_root) {
3503 /* prevent this orphan from being found again */
3504 key.offset = found_key.objectid - 1;
3505 continue;
3506 }
3507 }
7b128766 3508 /*
a8c9e576
JB
3509 * Inode is already gone but the orphan item is still there,
3510 * kill the orphan item.
7b128766 3511 */
67710892 3512 if (ret == -ENOENT) {
a8c9e576 3513 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3514 if (IS_ERR(trans)) {
3515 ret = PTR_ERR(trans);
3516 goto out;
3517 }
0b246afa
JM
3518 btrfs_debug(fs_info, "auto deleting %Lu",
3519 found_key.objectid);
a8c9e576
JB
3520 ret = btrfs_del_orphan_item(trans, root,
3521 found_key.objectid);
3a45bb20 3522 btrfs_end_transaction(trans);
4ef31a45
JB
3523 if (ret)
3524 goto out;
7b128766
JB
3525 continue;
3526 }
3527
a8c9e576
JB
3528 /*
3529 * add this inode to the orphan list so btrfs_orphan_del does
3530 * the proper thing when we hit it
3531 */
8a35d95f
JB
3532 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3533 &BTRFS_I(inode)->runtime_flags);
925396ec 3534 atomic_inc(&root->orphan_inodes);
a8c9e576 3535
7b128766
JB
3536 /* if we have links, this was a truncate, lets do that */
3537 if (inode->i_nlink) {
fae7f21c 3538 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3539 iput(inode);
3540 continue;
3541 }
7b128766 3542 nr_truncate++;
f3fe820c
JB
3543
3544 /* 1 for the orphan item deletion. */
3545 trans = btrfs_start_transaction(root, 1);
3546 if (IS_ERR(trans)) {
c69b26b0 3547 iput(inode);
f3fe820c
JB
3548 ret = PTR_ERR(trans);
3549 goto out;
3550 }
3551 ret = btrfs_orphan_add(trans, inode);
3a45bb20 3552 btrfs_end_transaction(trans);
c69b26b0
JB
3553 if (ret) {
3554 iput(inode);
f3fe820c 3555 goto out;
c69b26b0 3556 }
f3fe820c 3557
66b4ffd1 3558 ret = btrfs_truncate(inode);
4a7d0f68
JB
3559 if (ret)
3560 btrfs_orphan_del(NULL, inode);
7b128766
JB
3561 } else {
3562 nr_unlink++;
3563 }
3564
3565 /* this will do delete_inode and everything for us */
3566 iput(inode);
66b4ffd1
JB
3567 if (ret)
3568 goto out;
7b128766 3569 }
3254c876
MX
3570 /* release the path since we're done with it */
3571 btrfs_release_path(path);
3572
d68fc57b
YZ
3573 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3574
3575 if (root->orphan_block_rsv)
2ff7e61e 3576 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3577 (u64)-1);
3578
27cdeb70
MX
3579 if (root->orphan_block_rsv ||
3580 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3581 trans = btrfs_join_transaction(root);
66b4ffd1 3582 if (!IS_ERR(trans))
3a45bb20 3583 btrfs_end_transaction(trans);
d68fc57b 3584 }
7b128766
JB
3585
3586 if (nr_unlink)
0b246afa 3587 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3588 if (nr_truncate)
0b246afa 3589 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3590
3591out:
3592 if (ret)
0b246afa 3593 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3594 btrfs_free_path(path);
3595 return ret;
7b128766
JB
3596}
3597
46a53cca
CM
3598/*
3599 * very simple check to peek ahead in the leaf looking for xattrs. If we
3600 * don't find any xattrs, we know there can't be any acls.
3601 *
3602 * slot is the slot the inode is in, objectid is the objectid of the inode
3603 */
3604static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3605 int slot, u64 objectid,
3606 int *first_xattr_slot)
46a53cca
CM
3607{
3608 u32 nritems = btrfs_header_nritems(leaf);
3609 struct btrfs_key found_key;
f23b5a59
JB
3610 static u64 xattr_access = 0;
3611 static u64 xattr_default = 0;
46a53cca
CM
3612 int scanned = 0;
3613
f23b5a59 3614 if (!xattr_access) {
97d79299
AG
3615 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3616 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3617 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3618 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3619 }
3620
46a53cca 3621 slot++;
63541927 3622 *first_xattr_slot = -1;
46a53cca
CM
3623 while (slot < nritems) {
3624 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3625
3626 /* we found a different objectid, there must not be acls */
3627 if (found_key.objectid != objectid)
3628 return 0;
3629
3630 /* we found an xattr, assume we've got an acl */
f23b5a59 3631 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3632 if (*first_xattr_slot == -1)
3633 *first_xattr_slot = slot;
f23b5a59
JB
3634 if (found_key.offset == xattr_access ||
3635 found_key.offset == xattr_default)
3636 return 1;
3637 }
46a53cca
CM
3638
3639 /*
3640 * we found a key greater than an xattr key, there can't
3641 * be any acls later on
3642 */
3643 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3644 return 0;
3645
3646 slot++;
3647 scanned++;
3648
3649 /*
3650 * it goes inode, inode backrefs, xattrs, extents,
3651 * so if there are a ton of hard links to an inode there can
3652 * be a lot of backrefs. Don't waste time searching too hard,
3653 * this is just an optimization
3654 */
3655 if (scanned >= 8)
3656 break;
3657 }
3658 /* we hit the end of the leaf before we found an xattr or
3659 * something larger than an xattr. We have to assume the inode
3660 * has acls
3661 */
63541927
FDBM
3662 if (*first_xattr_slot == -1)
3663 *first_xattr_slot = slot;
46a53cca
CM
3664 return 1;
3665}
3666
d352ac68
CM
3667/*
3668 * read an inode from the btree into the in-memory inode
3669 */
67710892 3670static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3671{
0b246afa 3672 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3673 struct btrfs_path *path;
5f39d397 3674 struct extent_buffer *leaf;
39279cc3
CM
3675 struct btrfs_inode_item *inode_item;
3676 struct btrfs_root *root = BTRFS_I(inode)->root;
3677 struct btrfs_key location;
67de1176 3678 unsigned long ptr;
46a53cca 3679 int maybe_acls;
618e21d5 3680 u32 rdev;
39279cc3 3681 int ret;
2f7e33d4 3682 bool filled = false;
63541927 3683 int first_xattr_slot;
2f7e33d4
MX
3684
3685 ret = btrfs_fill_inode(inode, &rdev);
3686 if (!ret)
3687 filled = true;
39279cc3
CM
3688
3689 path = btrfs_alloc_path();
67710892
FM
3690 if (!path) {
3691 ret = -ENOMEM;
1748f843 3692 goto make_bad;
67710892 3693 }
1748f843 3694
39279cc3 3695 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3696
39279cc3 3697 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3698 if (ret) {
3699 if (ret > 0)
3700 ret = -ENOENT;
39279cc3 3701 goto make_bad;
67710892 3702 }
39279cc3 3703
5f39d397 3704 leaf = path->nodes[0];
2f7e33d4
MX
3705
3706 if (filled)
67de1176 3707 goto cache_index;
2f7e33d4 3708
5f39d397
CM
3709 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3710 struct btrfs_inode_item);
5f39d397 3711 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3712 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3713 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3714 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3715 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3716
a937b979
DS
3717 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3718 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3719
a937b979
DS
3720 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3721 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3722
a937b979
DS
3723 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3724 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3725
9cc97d64 3726 BTRFS_I(inode)->i_otime.tv_sec =
3727 btrfs_timespec_sec(leaf, &inode_item->otime);
3728 BTRFS_I(inode)->i_otime.tv_nsec =
3729 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3730
a76a3cd4 3731 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3732 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3733 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3734
6e17d30b
YD
3735 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3736 inode->i_generation = BTRFS_I(inode)->generation;
3737 inode->i_rdev = 0;
3738 rdev = btrfs_inode_rdev(leaf, inode_item);
3739
3740 BTRFS_I(inode)->index_cnt = (u64)-1;
3741 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3742
3743cache_index:
5dc562c5
JB
3744 /*
3745 * If we were modified in the current generation and evicted from memory
3746 * and then re-read we need to do a full sync since we don't have any
3747 * idea about which extents were modified before we were evicted from
3748 * cache.
6e17d30b
YD
3749 *
3750 * This is required for both inode re-read from disk and delayed inode
3751 * in delayed_nodes_tree.
5dc562c5 3752 */
0b246afa 3753 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3754 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3755 &BTRFS_I(inode)->runtime_flags);
3756
bde6c242
FM
3757 /*
3758 * We don't persist the id of the transaction where an unlink operation
3759 * against the inode was last made. So here we assume the inode might
3760 * have been evicted, and therefore the exact value of last_unlink_trans
3761 * lost, and set it to last_trans to avoid metadata inconsistencies
3762 * between the inode and its parent if the inode is fsync'ed and the log
3763 * replayed. For example, in the scenario:
3764 *
3765 * touch mydir/foo
3766 * ln mydir/foo mydir/bar
3767 * sync
3768 * unlink mydir/bar
3769 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3770 * xfs_io -c fsync mydir/foo
3771 * <power failure>
3772 * mount fs, triggers fsync log replay
3773 *
3774 * We must make sure that when we fsync our inode foo we also log its
3775 * parent inode, otherwise after log replay the parent still has the
3776 * dentry with the "bar" name but our inode foo has a link count of 1
3777 * and doesn't have an inode ref with the name "bar" anymore.
3778 *
3779 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3780 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3781 * transaction commits on fsync if our inode is a directory, or if our
3782 * inode is not a directory, logging its parent unnecessarily.
3783 */
3784 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3785
67de1176
MX
3786 path->slots[0]++;
3787 if (inode->i_nlink != 1 ||
3788 path->slots[0] >= btrfs_header_nritems(leaf))
3789 goto cache_acl;
3790
3791 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3792 if (location.objectid != btrfs_ino(inode))
3793 goto cache_acl;
3794
3795 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3796 if (location.type == BTRFS_INODE_REF_KEY) {
3797 struct btrfs_inode_ref *ref;
3798
3799 ref = (struct btrfs_inode_ref *)ptr;
3800 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3801 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3802 struct btrfs_inode_extref *extref;
3803
3804 extref = (struct btrfs_inode_extref *)ptr;
3805 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3806 extref);
3807 }
2f7e33d4 3808cache_acl:
46a53cca
CM
3809 /*
3810 * try to precache a NULL acl entry for files that don't have
3811 * any xattrs or acls
3812 */
33345d01 3813 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3814 btrfs_ino(inode), &first_xattr_slot);
3815 if (first_xattr_slot != -1) {
3816 path->slots[0] = first_xattr_slot;
3817 ret = btrfs_load_inode_props(inode, path);
3818 if (ret)
0b246afa 3819 btrfs_err(fs_info,
351fd353 3820 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3821 btrfs_ino(inode),
3822 root->root_key.objectid, ret);
3823 }
3824 btrfs_free_path(path);
3825
72c04902
AV
3826 if (!maybe_acls)
3827 cache_no_acl(inode);
46a53cca 3828
39279cc3 3829 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3830 case S_IFREG:
3831 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3832 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3833 inode->i_fop = &btrfs_file_operations;
3834 inode->i_op = &btrfs_file_inode_operations;
3835 break;
3836 case S_IFDIR:
3837 inode->i_fop = &btrfs_dir_file_operations;
0b246afa 3838 if (root == fs_info->tree_root)
39279cc3
CM
3839 inode->i_op = &btrfs_dir_ro_inode_operations;
3840 else
3841 inode->i_op = &btrfs_dir_inode_operations;
3842 break;
3843 case S_IFLNK:
3844 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3845 inode_nohighmem(inode);
39279cc3
CM
3846 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3847 break;
618e21d5 3848 default:
0279b4cd 3849 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3850 init_special_inode(inode, inode->i_mode, rdev);
3851 break;
39279cc3 3852 }
6cbff00f
CH
3853
3854 btrfs_update_iflags(inode);
67710892 3855 return 0;
39279cc3
CM
3856
3857make_bad:
39279cc3 3858 btrfs_free_path(path);
39279cc3 3859 make_bad_inode(inode);
67710892 3860 return ret;
39279cc3
CM
3861}
3862
d352ac68
CM
3863/*
3864 * given a leaf and an inode, copy the inode fields into the leaf
3865 */
e02119d5
CM
3866static void fill_inode_item(struct btrfs_trans_handle *trans,
3867 struct extent_buffer *leaf,
5f39d397 3868 struct btrfs_inode_item *item,
39279cc3
CM
3869 struct inode *inode)
3870{
51fab693
LB
3871 struct btrfs_map_token token;
3872
3873 btrfs_init_map_token(&token);
5f39d397 3874
51fab693
LB
3875 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3876 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3877 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3878 &token);
3879 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3880 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3881
a937b979 3882 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3883 inode->i_atime.tv_sec, &token);
a937b979 3884 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3885 inode->i_atime.tv_nsec, &token);
5f39d397 3886
a937b979 3887 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3888 inode->i_mtime.tv_sec, &token);
a937b979 3889 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3890 inode->i_mtime.tv_nsec, &token);
5f39d397 3891
a937b979 3892 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3893 inode->i_ctime.tv_sec, &token);
a937b979 3894 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3895 inode->i_ctime.tv_nsec, &token);
5f39d397 3896
9cc97d64 3897 btrfs_set_token_timespec_sec(leaf, &item->otime,
3898 BTRFS_I(inode)->i_otime.tv_sec, &token);
3899 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3900 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3901
51fab693
LB
3902 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3903 &token);
3904 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3905 &token);
3906 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3907 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3908 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3909 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3910 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3911}
3912
d352ac68
CM
3913/*
3914 * copy everything in the in-memory inode into the btree.
3915 */
2115133f 3916static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3917 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3918{
3919 struct btrfs_inode_item *inode_item;
3920 struct btrfs_path *path;
5f39d397 3921 struct extent_buffer *leaf;
39279cc3
CM
3922 int ret;
3923
3924 path = btrfs_alloc_path();
16cdcec7
MX
3925 if (!path)
3926 return -ENOMEM;
3927
b9473439 3928 path->leave_spinning = 1;
16cdcec7
MX
3929 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3930 1);
39279cc3
CM
3931 if (ret) {
3932 if (ret > 0)
3933 ret = -ENOENT;
3934 goto failed;
3935 }
3936
5f39d397
CM
3937 leaf = path->nodes[0];
3938 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3939 struct btrfs_inode_item);
39279cc3 3940
e02119d5 3941 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3942 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3943 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3944 ret = 0;
3945failed:
39279cc3
CM
3946 btrfs_free_path(path);
3947 return ret;
3948}
3949
2115133f
CM
3950/*
3951 * copy everything in the in-memory inode into the btree.
3952 */
3953noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3954 struct btrfs_root *root, struct inode *inode)
3955{
0b246afa 3956 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3957 int ret;
3958
3959 /*
3960 * If the inode is a free space inode, we can deadlock during commit
3961 * if we put it into the delayed code.
3962 *
3963 * The data relocation inode should also be directly updated
3964 * without delay
3965 */
83eea1f1 3966 if (!btrfs_is_free_space_inode(inode)
1d52c78a 3967 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3968 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3969 btrfs_update_root_times(trans, root);
3970
2115133f
CM
3971 ret = btrfs_delayed_update_inode(trans, root, inode);
3972 if (!ret)
3973 btrfs_set_inode_last_trans(trans, inode);
3974 return ret;
3975 }
3976
3977 return btrfs_update_inode_item(trans, root, inode);
3978}
3979
be6aef60
JB
3980noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct inode *inode)
2115133f
CM
3983{
3984 int ret;
3985
3986 ret = btrfs_update_inode(trans, root, inode);
3987 if (ret == -ENOSPC)
3988 return btrfs_update_inode_item(trans, root, inode);
3989 return ret;
3990}
3991
d352ac68
CM
3992/*
3993 * unlink helper that gets used here in inode.c and in the tree logging
3994 * recovery code. It remove a link in a directory with a given name, and
3995 * also drops the back refs in the inode to the directory
3996 */
92986796
AV
3997static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3998 struct btrfs_root *root,
3999 struct inode *dir, struct inode *inode,
4000 const char *name, int name_len)
39279cc3 4001{
0b246afa 4002 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4003 struct btrfs_path *path;
39279cc3 4004 int ret = 0;
5f39d397 4005 struct extent_buffer *leaf;
39279cc3 4006 struct btrfs_dir_item *di;
5f39d397 4007 struct btrfs_key key;
aec7477b 4008 u64 index;
33345d01
LZ
4009 u64 ino = btrfs_ino(inode);
4010 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4011
4012 path = btrfs_alloc_path();
54aa1f4d
CM
4013 if (!path) {
4014 ret = -ENOMEM;
554233a6 4015 goto out;
54aa1f4d
CM
4016 }
4017
b9473439 4018 path->leave_spinning = 1;
33345d01 4019 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4020 name, name_len, -1);
4021 if (IS_ERR(di)) {
4022 ret = PTR_ERR(di);
4023 goto err;
4024 }
4025 if (!di) {
4026 ret = -ENOENT;
4027 goto err;
4028 }
5f39d397
CM
4029 leaf = path->nodes[0];
4030 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4031 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4032 if (ret)
4033 goto err;
b3b4aa74 4034 btrfs_release_path(path);
39279cc3 4035
67de1176
MX
4036 /*
4037 * If we don't have dir index, we have to get it by looking up
4038 * the inode ref, since we get the inode ref, remove it directly,
4039 * it is unnecessary to do delayed deletion.
4040 *
4041 * But if we have dir index, needn't search inode ref to get it.
4042 * Since the inode ref is close to the inode item, it is better
4043 * that we delay to delete it, and just do this deletion when
4044 * we update the inode item.
4045 */
4046 if (BTRFS_I(inode)->dir_index) {
4047 ret = btrfs_delayed_delete_inode_ref(inode);
4048 if (!ret) {
4049 index = BTRFS_I(inode)->dir_index;
4050 goto skip_backref;
4051 }
4052 }
4053
33345d01
LZ
4054 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4055 dir_ino, &index);
aec7477b 4056 if (ret) {
0b246afa 4057 btrfs_info(fs_info,
c2cf52eb 4058 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4059 name_len, name, ino, dir_ino);
66642832 4060 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4061 goto err;
4062 }
67de1176 4063skip_backref:
2ff7e61e 4064 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4065 if (ret) {
66642832 4066 btrfs_abort_transaction(trans, ret);
39279cc3 4067 goto err;
79787eaa 4068 }
39279cc3 4069
e02119d5 4070 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4071 inode, dir_ino);
79787eaa 4072 if (ret != 0 && ret != -ENOENT) {
66642832 4073 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4074 goto err;
4075 }
e02119d5
CM
4076
4077 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4078 dir, index);
6418c961
CM
4079 if (ret == -ENOENT)
4080 ret = 0;
d4e3991b 4081 else if (ret)
66642832 4082 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4083err:
4084 btrfs_free_path(path);
e02119d5
CM
4085 if (ret)
4086 goto out;
4087
4088 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4089 inode_inc_iversion(inode);
4090 inode_inc_iversion(dir);
04b285f3 4091 inode->i_ctime = dir->i_mtime =
c2050a45 4092 dir->i_ctime = current_time(inode);
b9959295 4093 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4094out:
39279cc3
CM
4095 return ret;
4096}
4097
92986796
AV
4098int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4099 struct btrfs_root *root,
4100 struct inode *dir, struct inode *inode,
4101 const char *name, int name_len)
4102{
4103 int ret;
4104 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4105 if (!ret) {
8b558c5f 4106 drop_nlink(inode);
92986796
AV
4107 ret = btrfs_update_inode(trans, root, inode);
4108 }
4109 return ret;
4110}
39279cc3 4111
a22285a6
YZ
4112/*
4113 * helper to start transaction for unlink and rmdir.
4114 *
d52be818
JB
4115 * unlink and rmdir are special in btrfs, they do not always free space, so
4116 * if we cannot make our reservations the normal way try and see if there is
4117 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4118 * allow the unlink to occur.
a22285a6 4119 */
d52be818 4120static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4121{
a22285a6 4122 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4123
e70bea5f
JB
4124 /*
4125 * 1 for the possible orphan item
4126 * 1 for the dir item
4127 * 1 for the dir index
4128 * 1 for the inode ref
e70bea5f
JB
4129 * 1 for the inode
4130 */
8eab77ff 4131 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4132}
4133
4134static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4135{
4136 struct btrfs_root *root = BTRFS_I(dir)->root;
4137 struct btrfs_trans_handle *trans;
2b0143b5 4138 struct inode *inode = d_inode(dentry);
a22285a6 4139 int ret;
a22285a6 4140
d52be818 4141 trans = __unlink_start_trans(dir);
a22285a6
YZ
4142 if (IS_ERR(trans))
4143 return PTR_ERR(trans);
5f39d397 4144
2b0143b5 4145 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4146
2b0143b5 4147 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4148 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4149 if (ret)
4150 goto out;
7b128766 4151
a22285a6 4152 if (inode->i_nlink == 0) {
7b128766 4153 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4154 if (ret)
4155 goto out;
a22285a6 4156 }
7b128766 4157
b532402e 4158out:
3a45bb20 4159 btrfs_end_transaction(trans);
2ff7e61e 4160 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4161 return ret;
4162}
4163
4df27c4d
YZ
4164int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4165 struct btrfs_root *root,
4166 struct inode *dir, u64 objectid,
4167 const char *name, int name_len)
4168{
0b246afa 4169 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4170 struct btrfs_path *path;
4171 struct extent_buffer *leaf;
4172 struct btrfs_dir_item *di;
4173 struct btrfs_key key;
4174 u64 index;
4175 int ret;
33345d01 4176 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4177
4178 path = btrfs_alloc_path();
4179 if (!path)
4180 return -ENOMEM;
4181
33345d01 4182 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4183 name, name_len, -1);
79787eaa
JM
4184 if (IS_ERR_OR_NULL(di)) {
4185 if (!di)
4186 ret = -ENOENT;
4187 else
4188 ret = PTR_ERR(di);
4189 goto out;
4190 }
4df27c4d
YZ
4191
4192 leaf = path->nodes[0];
4193 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4194 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4195 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4196 if (ret) {
66642832 4197 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4198 goto out;
4199 }
b3b4aa74 4200 btrfs_release_path(path);
4df27c4d 4201
0b246afa
JM
4202 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4203 root->root_key.objectid, dir_ino,
4204 &index, name, name_len);
4df27c4d 4205 if (ret < 0) {
79787eaa 4206 if (ret != -ENOENT) {
66642832 4207 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4208 goto out;
4209 }
33345d01 4210 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4211 name, name_len);
79787eaa
JM
4212 if (IS_ERR_OR_NULL(di)) {
4213 if (!di)
4214 ret = -ENOENT;
4215 else
4216 ret = PTR_ERR(di);
66642832 4217 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4218 goto out;
4219 }
4df27c4d
YZ
4220
4221 leaf = path->nodes[0];
4222 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4223 btrfs_release_path(path);
4df27c4d
YZ
4224 index = key.offset;
4225 }
945d8962 4226 btrfs_release_path(path);
4df27c4d 4227
2ff7e61e 4228 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4229 if (ret) {
66642832 4230 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4231 goto out;
4232 }
4df27c4d
YZ
4233
4234 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4235 inode_inc_iversion(dir);
c2050a45 4236 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4237 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4238 if (ret)
66642832 4239 btrfs_abort_transaction(trans, ret);
79787eaa 4240out:
71d7aed0 4241 btrfs_free_path(path);
79787eaa 4242 return ret;
4df27c4d
YZ
4243}
4244
39279cc3
CM
4245static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4246{
2b0143b5 4247 struct inode *inode = d_inode(dentry);
1832a6d5 4248 int err = 0;
39279cc3 4249 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4250 struct btrfs_trans_handle *trans;
44f714da 4251 u64 last_unlink_trans;
39279cc3 4252
b3ae244e 4253 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4254 return -ENOTEMPTY;
b3ae244e
DS
4255 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4256 return -EPERM;
134d4512 4257
d52be818 4258 trans = __unlink_start_trans(dir);
a22285a6 4259 if (IS_ERR(trans))
5df6a9f6 4260 return PTR_ERR(trans);
5df6a9f6 4261
33345d01 4262 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4263 err = btrfs_unlink_subvol(trans, root, dir,
4264 BTRFS_I(inode)->location.objectid,
4265 dentry->d_name.name,
4266 dentry->d_name.len);
4267 goto out;
4268 }
4269
7b128766
JB
4270 err = btrfs_orphan_add(trans, inode);
4271 if (err)
4df27c4d 4272 goto out;
7b128766 4273
44f714da
FM
4274 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4275
39279cc3 4276 /* now the directory is empty */
2b0143b5 4277 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4278 dentry->d_name.name, dentry->d_name.len);
44f714da 4279 if (!err) {
dbe674a9 4280 btrfs_i_size_write(inode, 0);
44f714da
FM
4281 /*
4282 * Propagate the last_unlink_trans value of the deleted dir to
4283 * its parent directory. This is to prevent an unrecoverable
4284 * log tree in the case we do something like this:
4285 * 1) create dir foo
4286 * 2) create snapshot under dir foo
4287 * 3) delete the snapshot
4288 * 4) rmdir foo
4289 * 5) mkdir foo
4290 * 6) fsync foo or some file inside foo
4291 */
4292 if (last_unlink_trans >= trans->transid)
4293 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4294 }
4df27c4d 4295out:
3a45bb20 4296 btrfs_end_transaction(trans);
2ff7e61e 4297 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4298
39279cc3
CM
4299 return err;
4300}
4301
28f75a0e
CM
4302static int truncate_space_check(struct btrfs_trans_handle *trans,
4303 struct btrfs_root *root,
4304 u64 bytes_deleted)
4305{
0b246afa 4306 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4307 int ret;
4308
dc95f7bf
JB
4309 /*
4310 * This is only used to apply pressure to the enospc system, we don't
4311 * intend to use this reservation at all.
4312 */
2ff7e61e 4313 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4314 bytes_deleted *= fs_info->nodesize;
4315 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4316 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4317 if (!ret) {
0b246afa 4318 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4319 trans->transid,
4320 bytes_deleted, 1);
28f75a0e 4321 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4322 }
28f75a0e
CM
4323 return ret;
4324
4325}
4326
0305cd5f
FM
4327static int truncate_inline_extent(struct inode *inode,
4328 struct btrfs_path *path,
4329 struct btrfs_key *found_key,
4330 const u64 item_end,
4331 const u64 new_size)
4332{
4333 struct extent_buffer *leaf = path->nodes[0];
4334 int slot = path->slots[0];
4335 struct btrfs_file_extent_item *fi;
4336 u32 size = (u32)(new_size - found_key->offset);
4337 struct btrfs_root *root = BTRFS_I(inode)->root;
4338
4339 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4340
4341 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4342 loff_t offset = new_size;
09cbfeaf 4343 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4344
4345 /*
4346 * Zero out the remaining of the last page of our inline extent,
4347 * instead of directly truncating our inline extent here - that
4348 * would be much more complex (decompressing all the data, then
4349 * compressing the truncated data, which might be bigger than
4350 * the size of the inline extent, resize the extent, etc).
4351 * We release the path because to get the page we might need to
4352 * read the extent item from disk (data not in the page cache).
4353 */
4354 btrfs_release_path(path);
9703fefe
CR
4355 return btrfs_truncate_block(inode, offset, page_end - offset,
4356 0);
0305cd5f
FM
4357 }
4358
4359 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4360 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4361 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4362
4363 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4364 inode_sub_bytes(inode, item_end + 1 - new_size);
4365
4366 return 0;
4367}
4368
39279cc3
CM
4369/*
4370 * this can truncate away extent items, csum items and directory items.
4371 * It starts at a high offset and removes keys until it can't find
d352ac68 4372 * any higher than new_size
39279cc3
CM
4373 *
4374 * csum items that cross the new i_size are truncated to the new size
4375 * as well.
7b128766
JB
4376 *
4377 * min_type is the minimum key type to truncate down to. If set to 0, this
4378 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4379 */
8082510e
YZ
4380int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4381 struct btrfs_root *root,
4382 struct inode *inode,
4383 u64 new_size, u32 min_type)
39279cc3 4384{
0b246afa 4385 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4386 struct btrfs_path *path;
5f39d397 4387 struct extent_buffer *leaf;
39279cc3 4388 struct btrfs_file_extent_item *fi;
8082510e
YZ
4389 struct btrfs_key key;
4390 struct btrfs_key found_key;
39279cc3 4391 u64 extent_start = 0;
db94535d 4392 u64 extent_num_bytes = 0;
5d4f98a2 4393 u64 extent_offset = 0;
39279cc3 4394 u64 item_end = 0;
c1aa4575 4395 u64 last_size = new_size;
8082510e 4396 u32 found_type = (u8)-1;
39279cc3
CM
4397 int found_extent;
4398 int del_item;
85e21bac
CM
4399 int pending_del_nr = 0;
4400 int pending_del_slot = 0;
179e29e4 4401 int extent_type = -1;
8082510e
YZ
4402 int ret;
4403 int err = 0;
33345d01 4404 u64 ino = btrfs_ino(inode);
28ed1345 4405 u64 bytes_deleted = 0;
1262133b
JB
4406 bool be_nice = 0;
4407 bool should_throttle = 0;
28f75a0e 4408 bool should_end = 0;
8082510e
YZ
4409
4410 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4411
28ed1345
CM
4412 /*
4413 * for non-free space inodes and ref cows, we want to back off from
4414 * time to time
4415 */
4416 if (!btrfs_is_free_space_inode(inode) &&
4417 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4418 be_nice = 1;
4419
0eb0e19c
MF
4420 path = btrfs_alloc_path();
4421 if (!path)
4422 return -ENOMEM;
e4058b54 4423 path->reada = READA_BACK;
0eb0e19c 4424
5dc562c5
JB
4425 /*
4426 * We want to drop from the next block forward in case this new size is
4427 * not block aligned since we will be keeping the last block of the
4428 * extent just the way it is.
4429 */
27cdeb70 4430 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4431 root == fs_info->tree_root)
fda2832f 4432 btrfs_drop_extent_cache(inode, ALIGN(new_size,
0b246afa 4433 fs_info->sectorsize),
da17066c 4434 (u64)-1, 0);
8082510e 4435
16cdcec7
MX
4436 /*
4437 * This function is also used to drop the items in the log tree before
4438 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4439 * it is used to drop the loged items. So we shouldn't kill the delayed
4440 * items.
4441 */
4442 if (min_type == 0 && root == BTRFS_I(inode)->root)
4443 btrfs_kill_delayed_inode_items(inode);
4444
33345d01 4445 key.objectid = ino;
39279cc3 4446 key.offset = (u64)-1;
5f39d397
CM
4447 key.type = (u8)-1;
4448
85e21bac 4449search_again:
28ed1345
CM
4450 /*
4451 * with a 16K leaf size and 128MB extents, you can actually queue
4452 * up a huge file in a single leaf. Most of the time that
4453 * bytes_deleted is > 0, it will be huge by the time we get here
4454 */
ee22184b 4455 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4456 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4457 err = -EAGAIN;
4458 goto error;
4459 }
4460 }
4461
4462
b9473439 4463 path->leave_spinning = 1;
85e21bac 4464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4465 if (ret < 0) {
4466 err = ret;
4467 goto out;
4468 }
d397712b 4469
85e21bac 4470 if (ret > 0) {
e02119d5
CM
4471 /* there are no items in the tree for us to truncate, we're
4472 * done
4473 */
8082510e
YZ
4474 if (path->slots[0] == 0)
4475 goto out;
85e21bac
CM
4476 path->slots[0]--;
4477 }
4478
d397712b 4479 while (1) {
39279cc3 4480 fi = NULL;
5f39d397
CM
4481 leaf = path->nodes[0];
4482 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4483 found_type = found_key.type;
39279cc3 4484
33345d01 4485 if (found_key.objectid != ino)
39279cc3 4486 break;
5f39d397 4487
85e21bac 4488 if (found_type < min_type)
39279cc3
CM
4489 break;
4490
5f39d397 4491 item_end = found_key.offset;
39279cc3 4492 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4493 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4494 struct btrfs_file_extent_item);
179e29e4
CM
4495 extent_type = btrfs_file_extent_type(leaf, fi);
4496 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4497 item_end +=
db94535d 4498 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4499 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4500 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4501 path->slots[0], fi);
39279cc3 4502 }
008630c1 4503 item_end--;
39279cc3 4504 }
8082510e
YZ
4505 if (found_type > min_type) {
4506 del_item = 1;
4507 } else {
4508 if (item_end < new_size)
b888db2b 4509 break;
8082510e
YZ
4510 if (found_key.offset >= new_size)
4511 del_item = 1;
4512 else
4513 del_item = 0;
39279cc3 4514 }
39279cc3 4515 found_extent = 0;
39279cc3 4516 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4517 if (found_type != BTRFS_EXTENT_DATA_KEY)
4518 goto delete;
4519
7f4f6e0a
JB
4520 if (del_item)
4521 last_size = found_key.offset;
4522 else
4523 last_size = new_size;
4524
179e29e4 4525 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4526 u64 num_dec;
db94535d 4527 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4528 if (!del_item) {
db94535d
CM
4529 u64 orig_num_bytes =
4530 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4531 extent_num_bytes = ALIGN(new_size -
4532 found_key.offset,
0b246afa 4533 fs_info->sectorsize);
db94535d
CM
4534 btrfs_set_file_extent_num_bytes(leaf, fi,
4535 extent_num_bytes);
4536 num_dec = (orig_num_bytes -
9069218d 4537 extent_num_bytes);
27cdeb70
MX
4538 if (test_bit(BTRFS_ROOT_REF_COWS,
4539 &root->state) &&
4540 extent_start != 0)
a76a3cd4 4541 inode_sub_bytes(inode, num_dec);
5f39d397 4542 btrfs_mark_buffer_dirty(leaf);
39279cc3 4543 } else {
db94535d
CM
4544 extent_num_bytes =
4545 btrfs_file_extent_disk_num_bytes(leaf,
4546 fi);
5d4f98a2
YZ
4547 extent_offset = found_key.offset -
4548 btrfs_file_extent_offset(leaf, fi);
4549
39279cc3 4550 /* FIXME blocksize != 4096 */
9069218d 4551 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4552 if (extent_start != 0) {
4553 found_extent = 1;
27cdeb70
MX
4554 if (test_bit(BTRFS_ROOT_REF_COWS,
4555 &root->state))
a76a3cd4 4556 inode_sub_bytes(inode, num_dec);
e02119d5 4557 }
39279cc3 4558 }
9069218d 4559 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4560 /*
4561 * we can't truncate inline items that have had
4562 * special encodings
4563 */
4564 if (!del_item &&
c8b97818
CM
4565 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4566 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4567
4568 /*
0305cd5f
FM
4569 * Need to release path in order to truncate a
4570 * compressed extent. So delete any accumulated
4571 * extent items so far.
514ac8ad 4572 */
0305cd5f
FM
4573 if (btrfs_file_extent_compression(leaf, fi) !=
4574 BTRFS_COMPRESS_NONE && pending_del_nr) {
4575 err = btrfs_del_items(trans, root, path,
4576 pending_del_slot,
4577 pending_del_nr);
4578 if (err) {
4579 btrfs_abort_transaction(trans,
0305cd5f
FM
4580 err);
4581 goto error;
4582 }
4583 pending_del_nr = 0;
4584 }
4585
4586 err = truncate_inline_extent(inode, path,
4587 &found_key,
4588 item_end,
4589 new_size);
4590 if (err) {
66642832 4591 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4592 goto error;
4593 }
27cdeb70
MX
4594 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4595 &root->state)) {
0305cd5f 4596 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4597 }
39279cc3 4598 }
179e29e4 4599delete:
39279cc3 4600 if (del_item) {
85e21bac
CM
4601 if (!pending_del_nr) {
4602 /* no pending yet, add ourselves */
4603 pending_del_slot = path->slots[0];
4604 pending_del_nr = 1;
4605 } else if (pending_del_nr &&
4606 path->slots[0] + 1 == pending_del_slot) {
4607 /* hop on the pending chunk */
4608 pending_del_nr++;
4609 pending_del_slot = path->slots[0];
4610 } else {
d397712b 4611 BUG();
85e21bac 4612 }
39279cc3
CM
4613 } else {
4614 break;
4615 }
28f75a0e
CM
4616 should_throttle = 0;
4617
27cdeb70
MX
4618 if (found_extent &&
4619 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4620 root == fs_info->tree_root)) {
b9473439 4621 btrfs_set_path_blocking(path);
28ed1345 4622 bytes_deleted += extent_num_bytes;
2ff7e61e 4623 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4624 extent_num_bytes, 0,
4625 btrfs_header_owner(leaf),
b06c4bf5 4626 ino, extent_offset);
39279cc3 4627 BUG_ON(ret);
2ff7e61e
JM
4628 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4629 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4630 trans->delayed_ref_updates * 2,
4631 trans->transid, 0);
28f75a0e
CM
4632 if (be_nice) {
4633 if (truncate_space_check(trans, root,
4634 extent_num_bytes)) {
4635 should_end = 1;
4636 }
4637 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4638 fs_info))
28f75a0e 4639 should_throttle = 1;
28f75a0e 4640 }
39279cc3 4641 }
85e21bac 4642
8082510e
YZ
4643 if (found_type == BTRFS_INODE_ITEM_KEY)
4644 break;
4645
4646 if (path->slots[0] == 0 ||
1262133b 4647 path->slots[0] != pending_del_slot ||
28f75a0e 4648 should_throttle || should_end) {
8082510e
YZ
4649 if (pending_del_nr) {
4650 ret = btrfs_del_items(trans, root, path,
4651 pending_del_slot,
4652 pending_del_nr);
79787eaa 4653 if (ret) {
66642832 4654 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4655 goto error;
4656 }
8082510e
YZ
4657 pending_del_nr = 0;
4658 }
b3b4aa74 4659 btrfs_release_path(path);
28f75a0e 4660 if (should_throttle) {
1262133b
JB
4661 unsigned long updates = trans->delayed_ref_updates;
4662 if (updates) {
4663 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4664 ret = btrfs_run_delayed_refs(trans,
4665 fs_info,
4666 updates * 2);
1262133b
JB
4667 if (ret && !err)
4668 err = ret;
4669 }
4670 }
28f75a0e
CM
4671 /*
4672 * if we failed to refill our space rsv, bail out
4673 * and let the transaction restart
4674 */
4675 if (should_end) {
4676 err = -EAGAIN;
4677 goto error;
4678 }
85e21bac 4679 goto search_again;
8082510e
YZ
4680 } else {
4681 path->slots[0]--;
85e21bac 4682 }
39279cc3 4683 }
8082510e 4684out:
85e21bac
CM
4685 if (pending_del_nr) {
4686 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4687 pending_del_nr);
79787eaa 4688 if (ret)
66642832 4689 btrfs_abort_transaction(trans, ret);
85e21bac 4690 }
79787eaa 4691error:
c1aa4575 4692 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4693 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4694
39279cc3 4695 btrfs_free_path(path);
28ed1345 4696
ee22184b 4697 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4698 unsigned long updates = trans->delayed_ref_updates;
4699 if (updates) {
4700 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4701 ret = btrfs_run_delayed_refs(trans, fs_info,
4702 updates * 2);
28ed1345
CM
4703 if (ret && !err)
4704 err = ret;
4705 }
4706 }
8082510e 4707 return err;
39279cc3
CM
4708}
4709
4710/*
9703fefe 4711 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4712 * @inode - inode that we're zeroing
4713 * @from - the offset to start zeroing
4714 * @len - the length to zero, 0 to zero the entire range respective to the
4715 * offset
4716 * @front - zero up to the offset instead of from the offset on
4717 *
9703fefe 4718 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4719 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4720 */
9703fefe 4721int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4722 int front)
39279cc3 4723{
0b246afa 4724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4725 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4726 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4727 struct btrfs_ordered_extent *ordered;
2ac55d41 4728 struct extent_state *cached_state = NULL;
e6dcd2dc 4729 char *kaddr;
0b246afa 4730 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4731 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4732 unsigned offset = from & (blocksize - 1);
39279cc3 4733 struct page *page;
3b16a4e3 4734 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4735 int ret = 0;
9703fefe
CR
4736 u64 block_start;
4737 u64 block_end;
39279cc3 4738
2aaa6655
JB
4739 if ((offset & (blocksize - 1)) == 0 &&
4740 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4741 goto out;
9703fefe 4742
7cf5b976 4743 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4744 round_down(from, blocksize), blocksize);
5d5e103a
JB
4745 if (ret)
4746 goto out;
39279cc3 4747
211c17f5 4748again:
3b16a4e3 4749 page = find_or_create_page(mapping, index, mask);
5d5e103a 4750 if (!page) {
7cf5b976 4751 btrfs_delalloc_release_space(inode,
9703fefe
CR
4752 round_down(from, blocksize),
4753 blocksize);
ac6a2b36 4754 ret = -ENOMEM;
39279cc3 4755 goto out;
5d5e103a 4756 }
e6dcd2dc 4757
9703fefe
CR
4758 block_start = round_down(from, blocksize);
4759 block_end = block_start + blocksize - 1;
e6dcd2dc 4760
39279cc3 4761 if (!PageUptodate(page)) {
9ebefb18 4762 ret = btrfs_readpage(NULL, page);
39279cc3 4763 lock_page(page);
211c17f5
CM
4764 if (page->mapping != mapping) {
4765 unlock_page(page);
09cbfeaf 4766 put_page(page);
211c17f5
CM
4767 goto again;
4768 }
39279cc3
CM
4769 if (!PageUptodate(page)) {
4770 ret = -EIO;
89642229 4771 goto out_unlock;
39279cc3
CM
4772 }
4773 }
211c17f5 4774 wait_on_page_writeback(page);
e6dcd2dc 4775
9703fefe 4776 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4777 set_page_extent_mapped(page);
4778
9703fefe 4779 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4780 if (ordered) {
9703fefe 4781 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4782 &cached_state, GFP_NOFS);
e6dcd2dc 4783 unlock_page(page);
09cbfeaf 4784 put_page(page);
eb84ae03 4785 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4786 btrfs_put_ordered_extent(ordered);
4787 goto again;
4788 }
4789
9703fefe 4790 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4791 EXTENT_DIRTY | EXTENT_DELALLOC |
4792 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4793 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4794
9703fefe 4795 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4796 &cached_state, 0);
9ed74f2d 4797 if (ret) {
9703fefe 4798 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4799 &cached_state, GFP_NOFS);
9ed74f2d
JB
4800 goto out_unlock;
4801 }
4802
9703fefe 4803 if (offset != blocksize) {
2aaa6655 4804 if (!len)
9703fefe 4805 len = blocksize - offset;
e6dcd2dc 4806 kaddr = kmap(page);
2aaa6655 4807 if (front)
9703fefe
CR
4808 memset(kaddr + (block_start - page_offset(page)),
4809 0, offset);
2aaa6655 4810 else
9703fefe
CR
4811 memset(kaddr + (block_start - page_offset(page)) + offset,
4812 0, len);
e6dcd2dc
CM
4813 flush_dcache_page(page);
4814 kunmap(page);
4815 }
247e743c 4816 ClearPageChecked(page);
e6dcd2dc 4817 set_page_dirty(page);
9703fefe 4818 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4819 GFP_NOFS);
39279cc3 4820
89642229 4821out_unlock:
5d5e103a 4822 if (ret)
9703fefe
CR
4823 btrfs_delalloc_release_space(inode, block_start,
4824 blocksize);
39279cc3 4825 unlock_page(page);
09cbfeaf 4826 put_page(page);
39279cc3
CM
4827out:
4828 return ret;
4829}
4830
16e7549f
JB
4831static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4832 u64 offset, u64 len)
4833{
0b246afa 4834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4835 struct btrfs_trans_handle *trans;
4836 int ret;
4837
4838 /*
4839 * Still need to make sure the inode looks like it's been updated so
4840 * that any holes get logged if we fsync.
4841 */
0b246afa
JM
4842 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4843 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4844 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4845 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4846 return 0;
4847 }
4848
4849 /*
4850 * 1 - for the one we're dropping
4851 * 1 - for the one we're adding
4852 * 1 - for updating the inode.
4853 */
4854 trans = btrfs_start_transaction(root, 3);
4855 if (IS_ERR(trans))
4856 return PTR_ERR(trans);
4857
4858 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4859 if (ret) {
66642832 4860 btrfs_abort_transaction(trans, ret);
3a45bb20 4861 btrfs_end_transaction(trans);
16e7549f
JB
4862 return ret;
4863 }
4864
4865 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4866 0, 0, len, 0, len, 0, 0, 0);
4867 if (ret)
66642832 4868 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4869 else
4870 btrfs_update_inode(trans, root, inode);
3a45bb20 4871 btrfs_end_transaction(trans);
16e7549f
JB
4872 return ret;
4873}
4874
695a0d0d
JB
4875/*
4876 * This function puts in dummy file extents for the area we're creating a hole
4877 * for. So if we are truncating this file to a larger size we need to insert
4878 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4879 * the range between oldsize and size
4880 */
a41ad394 4881int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4882{
0b246afa 4883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4884 struct btrfs_root *root = BTRFS_I(inode)->root;
4885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4886 struct extent_map *em = NULL;
2ac55d41 4887 struct extent_state *cached_state = NULL;
5dc562c5 4888 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4889 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4890 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4891 u64 last_byte;
4892 u64 cur_offset;
4893 u64 hole_size;
9ed74f2d 4894 int err = 0;
39279cc3 4895
a71754fc 4896 /*
9703fefe
CR
4897 * If our size started in the middle of a block we need to zero out the
4898 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4899 * expose stale data.
4900 */
9703fefe 4901 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4902 if (err)
4903 return err;
4904
9036c102
YZ
4905 if (size <= hole_start)
4906 return 0;
4907
9036c102
YZ
4908 while (1) {
4909 struct btrfs_ordered_extent *ordered;
fa7c1494 4910
ff13db41 4911 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4912 &cached_state);
fa7c1494
MX
4913 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4914 block_end - hole_start);
9036c102
YZ
4915 if (!ordered)
4916 break;
2ac55d41
JB
4917 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4918 &cached_state, GFP_NOFS);
fa7c1494 4919 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4920 btrfs_put_ordered_extent(ordered);
4921 }
39279cc3 4922
9036c102
YZ
4923 cur_offset = hole_start;
4924 while (1) {
4925 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4926 block_end - cur_offset, 0);
79787eaa
JM
4927 if (IS_ERR(em)) {
4928 err = PTR_ERR(em);
f2767956 4929 em = NULL;
79787eaa
JM
4930 break;
4931 }
9036c102 4932 last_byte = min(extent_map_end(em), block_end);
0b246afa 4933 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4934 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4935 struct extent_map *hole_em;
9036c102 4936 hole_size = last_byte - cur_offset;
9ed74f2d 4937
16e7549f
JB
4938 err = maybe_insert_hole(root, inode, cur_offset,
4939 hole_size);
4940 if (err)
3893e33b 4941 break;
5dc562c5
JB
4942 btrfs_drop_extent_cache(inode, cur_offset,
4943 cur_offset + hole_size - 1, 0);
4944 hole_em = alloc_extent_map();
4945 if (!hole_em) {
4946 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4947 &BTRFS_I(inode)->runtime_flags);
4948 goto next;
4949 }
4950 hole_em->start = cur_offset;
4951 hole_em->len = hole_size;
4952 hole_em->orig_start = cur_offset;
8082510e 4953
5dc562c5
JB
4954 hole_em->block_start = EXTENT_MAP_HOLE;
4955 hole_em->block_len = 0;
b4939680 4956 hole_em->orig_block_len = 0;
cc95bef6 4957 hole_em->ram_bytes = hole_size;
0b246afa 4958 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4959 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4960 hole_em->generation = fs_info->generation;
8082510e 4961
5dc562c5
JB
4962 while (1) {
4963 write_lock(&em_tree->lock);
09a2a8f9 4964 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4965 write_unlock(&em_tree->lock);
4966 if (err != -EEXIST)
4967 break;
4968 btrfs_drop_extent_cache(inode, cur_offset,
4969 cur_offset +
4970 hole_size - 1, 0);
4971 }
4972 free_extent_map(hole_em);
9036c102 4973 }
16e7549f 4974next:
9036c102 4975 free_extent_map(em);
a22285a6 4976 em = NULL;
9036c102 4977 cur_offset = last_byte;
8082510e 4978 if (cur_offset >= block_end)
9036c102
YZ
4979 break;
4980 }
a22285a6 4981 free_extent_map(em);
2ac55d41
JB
4982 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4983 GFP_NOFS);
9036c102
YZ
4984 return err;
4985}
39279cc3 4986
3972f260 4987static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4988{
f4a2f4c5
MX
4989 struct btrfs_root *root = BTRFS_I(inode)->root;
4990 struct btrfs_trans_handle *trans;
a41ad394 4991 loff_t oldsize = i_size_read(inode);
3972f260
ES
4992 loff_t newsize = attr->ia_size;
4993 int mask = attr->ia_valid;
8082510e
YZ
4994 int ret;
4995
3972f260
ES
4996 /*
4997 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4998 * special case where we need to update the times despite not having
4999 * these flags set. For all other operations the VFS set these flags
5000 * explicitly if it wants a timestamp update.
5001 */
dff6efc3
CH
5002 if (newsize != oldsize) {
5003 inode_inc_iversion(inode);
5004 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5005 inode->i_ctime = inode->i_mtime =
c2050a45 5006 current_time(inode);
dff6efc3 5007 }
3972f260 5008
a41ad394 5009 if (newsize > oldsize) {
9ea24bbe
FM
5010 /*
5011 * Don't do an expanding truncate while snapshoting is ongoing.
5012 * This is to ensure the snapshot captures a fully consistent
5013 * state of this file - if the snapshot captures this expanding
5014 * truncation, it must capture all writes that happened before
5015 * this truncation.
5016 */
0bc19f90 5017 btrfs_wait_for_snapshot_creation(root);
a41ad394 5018 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
5019 if (ret) {
5020 btrfs_end_write_no_snapshoting(root);
8082510e 5021 return ret;
9ea24bbe 5022 }
8082510e 5023
f4a2f4c5 5024 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
5025 if (IS_ERR(trans)) {
5026 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5027 return PTR_ERR(trans);
9ea24bbe 5028 }
f4a2f4c5
MX
5029
5030 i_size_write(inode, newsize);
5031 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5032 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5033 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5034 btrfs_end_write_no_snapshoting(root);
3a45bb20 5035 btrfs_end_transaction(trans);
a41ad394 5036 } else {
8082510e 5037
a41ad394
JB
5038 /*
5039 * We're truncating a file that used to have good data down to
5040 * zero. Make sure it gets into the ordered flush list so that
5041 * any new writes get down to disk quickly.
5042 */
5043 if (newsize == 0)
72ac3c0d
JB
5044 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5045 &BTRFS_I(inode)->runtime_flags);
8082510e 5046
f3fe820c
JB
5047 /*
5048 * 1 for the orphan item we're going to add
5049 * 1 for the orphan item deletion.
5050 */
5051 trans = btrfs_start_transaction(root, 2);
5052 if (IS_ERR(trans))
5053 return PTR_ERR(trans);
5054
5055 /*
5056 * We need to do this in case we fail at _any_ point during the
5057 * actual truncate. Once we do the truncate_setsize we could
5058 * invalidate pages which forces any outstanding ordered io to
5059 * be instantly completed which will give us extents that need
5060 * to be truncated. If we fail to get an orphan inode down we
5061 * could have left over extents that were never meant to live,
01327610 5062 * so we need to guarantee from this point on that everything
f3fe820c
JB
5063 * will be consistent.
5064 */
5065 ret = btrfs_orphan_add(trans, inode);
3a45bb20 5066 btrfs_end_transaction(trans);
f3fe820c
JB
5067 if (ret)
5068 return ret;
5069
a41ad394
JB
5070 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5071 truncate_setsize(inode, newsize);
2e60a51e
MX
5072
5073 /* Disable nonlocked read DIO to avoid the end less truncate */
5074 btrfs_inode_block_unlocked_dio(inode);
5075 inode_dio_wait(inode);
5076 btrfs_inode_resume_unlocked_dio(inode);
5077
a41ad394 5078 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5079 if (ret && inode->i_nlink) {
5080 int err;
5081
5082 /*
5083 * failed to truncate, disk_i_size is only adjusted down
5084 * as we remove extents, so it should represent the true
5085 * size of the inode, so reset the in memory size and
5086 * delete our orphan entry.
5087 */
5088 trans = btrfs_join_transaction(root);
5089 if (IS_ERR(trans)) {
5090 btrfs_orphan_del(NULL, inode);
5091 return ret;
5092 }
5093 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5094 err = btrfs_orphan_del(trans, inode);
5095 if (err)
66642832 5096 btrfs_abort_transaction(trans, err);
3a45bb20 5097 btrfs_end_transaction(trans);
7f4f6e0a 5098 }
8082510e
YZ
5099 }
5100
a41ad394 5101 return ret;
8082510e
YZ
5102}
5103
9036c102
YZ
5104static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5105{
2b0143b5 5106 struct inode *inode = d_inode(dentry);
b83cc969 5107 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5108 int err;
39279cc3 5109
b83cc969
LZ
5110 if (btrfs_root_readonly(root))
5111 return -EROFS;
5112
31051c85 5113 err = setattr_prepare(dentry, attr);
9036c102
YZ
5114 if (err)
5115 return err;
2bf5a725 5116
5a3f23d5 5117 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5118 err = btrfs_setsize(inode, attr);
8082510e
YZ
5119 if (err)
5120 return err;
39279cc3 5121 }
9036c102 5122
1025774c
CH
5123 if (attr->ia_valid) {
5124 setattr_copy(inode, attr);
0c4d2d95 5125 inode_inc_iversion(inode);
22c44fe6 5126 err = btrfs_dirty_inode(inode);
1025774c 5127
22c44fe6 5128 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5129 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5130 }
33268eaf 5131
39279cc3
CM
5132 return err;
5133}
61295eb8 5134
131e404a
FDBM
5135/*
5136 * While truncating the inode pages during eviction, we get the VFS calling
5137 * btrfs_invalidatepage() against each page of the inode. This is slow because
5138 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5139 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5140 * extent_state structures over and over, wasting lots of time.
5141 *
5142 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5143 * those expensive operations on a per page basis and do only the ordered io
5144 * finishing, while we release here the extent_map and extent_state structures,
5145 * without the excessive merging and splitting.
5146 */
5147static void evict_inode_truncate_pages(struct inode *inode)
5148{
5149 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5150 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5151 struct rb_node *node;
5152
5153 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5154 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5155
5156 write_lock(&map_tree->lock);
5157 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5158 struct extent_map *em;
5159
5160 node = rb_first(&map_tree->map);
5161 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5162 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5163 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5164 remove_extent_mapping(map_tree, em);
5165 free_extent_map(em);
7064dd5c
FM
5166 if (need_resched()) {
5167 write_unlock(&map_tree->lock);
5168 cond_resched();
5169 write_lock(&map_tree->lock);
5170 }
131e404a
FDBM
5171 }
5172 write_unlock(&map_tree->lock);
5173
6ca07097
FM
5174 /*
5175 * Keep looping until we have no more ranges in the io tree.
5176 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5177 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5178 * still in progress (unlocked the pages in the bio but did not yet
5179 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5180 * ranges can still be locked and eviction started because before
5181 * submitting those bios, which are executed by a separate task (work
5182 * queue kthread), inode references (inode->i_count) were not taken
5183 * (which would be dropped in the end io callback of each bio).
5184 * Therefore here we effectively end up waiting for those bios and
5185 * anyone else holding locked ranges without having bumped the inode's
5186 * reference count - if we don't do it, when they access the inode's
5187 * io_tree to unlock a range it may be too late, leading to an
5188 * use-after-free issue.
5189 */
131e404a
FDBM
5190 spin_lock(&io_tree->lock);
5191 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5192 struct extent_state *state;
5193 struct extent_state *cached_state = NULL;
6ca07097
FM
5194 u64 start;
5195 u64 end;
131e404a
FDBM
5196
5197 node = rb_first(&io_tree->state);
5198 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5199 start = state->start;
5200 end = state->end;
131e404a
FDBM
5201 spin_unlock(&io_tree->lock);
5202
ff13db41 5203 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5204
5205 /*
5206 * If still has DELALLOC flag, the extent didn't reach disk,
5207 * and its reserved space won't be freed by delayed_ref.
5208 * So we need to free its reserved space here.
5209 * (Refer to comment in btrfs_invalidatepage, case 2)
5210 *
5211 * Note, end is the bytenr of last byte, so we need + 1 here.
5212 */
5213 if (state->state & EXTENT_DELALLOC)
5214 btrfs_qgroup_free_data(inode, start, end - start + 1);
5215
6ca07097 5216 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5217 EXTENT_LOCKED | EXTENT_DIRTY |
5218 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5219 EXTENT_DEFRAG, 1, 1,
5220 &cached_state, GFP_NOFS);
131e404a 5221
7064dd5c 5222 cond_resched();
131e404a
FDBM
5223 spin_lock(&io_tree->lock);
5224 }
5225 spin_unlock(&io_tree->lock);
5226}
5227
bd555975 5228void btrfs_evict_inode(struct inode *inode)
39279cc3 5229{
0b246afa 5230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5231 struct btrfs_trans_handle *trans;
5232 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5233 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5234 int steal_from_global = 0;
3d48d981 5235 u64 min_size;
39279cc3
CM
5236 int ret;
5237
1abe9b8a 5238 trace_btrfs_inode_evict(inode);
5239
3d48d981
NB
5240 if (!root) {
5241 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5242 return;
5243 }
5244
0b246afa 5245 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5246
131e404a
FDBM
5247 evict_inode_truncate_pages(inode);
5248
69e9c6c6
SB
5249 if (inode->i_nlink &&
5250 ((btrfs_root_refs(&root->root_item) != 0 &&
5251 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5252 btrfs_is_free_space_inode(inode)))
bd555975
AV
5253 goto no_delete;
5254
39279cc3 5255 if (is_bad_inode(inode)) {
7b128766 5256 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5257 goto no_delete;
5258 }
bd555975 5259 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5260 if (!special_file(inode->i_mode))
5261 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5262
f612496b
MX
5263 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5264
0b246afa 5265 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5266 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5267 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5268 goto no_delete;
5269 }
5270
76dda93c 5271 if (inode->i_nlink > 0) {
69e9c6c6
SB
5272 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5273 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5274 goto no_delete;
5275 }
5276
0e8c36a9
MX
5277 ret = btrfs_commit_inode_delayed_inode(inode);
5278 if (ret) {
5279 btrfs_orphan_del(NULL, inode);
5280 goto no_delete;
5281 }
5282
2ff7e61e 5283 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5284 if (!rsv) {
5285 btrfs_orphan_del(NULL, inode);
5286 goto no_delete;
5287 }
4a338542 5288 rsv->size = min_size;
ca7e70f5 5289 rsv->failfast = 1;
0b246afa 5290 global_rsv = &fs_info->global_block_rsv;
4289a667 5291
dbe674a9 5292 btrfs_i_size_write(inode, 0);
5f39d397 5293
4289a667 5294 /*
8407aa46
MX
5295 * This is a bit simpler than btrfs_truncate since we've already
5296 * reserved our space for our orphan item in the unlink, so we just
5297 * need to reserve some slack space in case we add bytes and update
5298 * inode item when doing the truncate.
4289a667 5299 */
8082510e 5300 while (1) {
08e007d2
MX
5301 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5302 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5303
5304 /*
5305 * Try and steal from the global reserve since we will
5306 * likely not use this space anyway, we want to try as
5307 * hard as possible to get this to work.
5308 */
5309 if (ret)
3bce876f
JB
5310 steal_from_global++;
5311 else
5312 steal_from_global = 0;
5313 ret = 0;
d68fc57b 5314
3bce876f
JB
5315 /*
5316 * steal_from_global == 0: we reserved stuff, hooray!
5317 * steal_from_global == 1: we didn't reserve stuff, boo!
5318 * steal_from_global == 2: we've committed, still not a lot of
5319 * room but maybe we'll have room in the global reserve this
5320 * time.
5321 * steal_from_global == 3: abandon all hope!
5322 */
5323 if (steal_from_global > 2) {
0b246afa
JM
5324 btrfs_warn(fs_info,
5325 "Could not get space for a delete, will truncate on mount %d",
5326 ret);
4289a667 5327 btrfs_orphan_del(NULL, inode);
2ff7e61e 5328 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5329 goto no_delete;
d68fc57b 5330 }
7b128766 5331
0e8c36a9 5332 trans = btrfs_join_transaction(root);
4289a667
JB
5333 if (IS_ERR(trans)) {
5334 btrfs_orphan_del(NULL, inode);
2ff7e61e 5335 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5336 goto no_delete;
d68fc57b 5337 }
7b128766 5338
3bce876f 5339 /*
01327610 5340 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5341 * sure there is room to do it, if not we need to commit and try
5342 * again.
5343 */
5344 if (steal_from_global) {
2ff7e61e 5345 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5346 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5347 min_size, 0);
3bce876f
JB
5348 else
5349 ret = -ENOSPC;
5350 }
5351
5352 /*
5353 * Couldn't steal from the global reserve, we have too much
5354 * pending stuff built up, commit the transaction and try it
5355 * again.
5356 */
5357 if (ret) {
3a45bb20 5358 ret = btrfs_commit_transaction(trans);
3bce876f
JB
5359 if (ret) {
5360 btrfs_orphan_del(NULL, inode);
2ff7e61e 5361 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5362 goto no_delete;
5363 }
5364 continue;
5365 } else {
5366 steal_from_global = 0;
5367 }
5368
4289a667
JB
5369 trans->block_rsv = rsv;
5370
d68fc57b 5371 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5372 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5373 break;
85e21bac 5374
0b246afa 5375 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5376 btrfs_end_transaction(trans);
8082510e 5377 trans = NULL;
2ff7e61e 5378 btrfs_btree_balance_dirty(fs_info);
8082510e 5379 }
5f39d397 5380
2ff7e61e 5381 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5382
4ef31a45
JB
5383 /*
5384 * Errors here aren't a big deal, it just means we leave orphan items
5385 * in the tree. They will be cleaned up on the next mount.
5386 */
8082510e 5387 if (ret == 0) {
4289a667 5388 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5389 btrfs_orphan_del(trans, inode);
5390 } else {
5391 btrfs_orphan_del(NULL, inode);
8082510e 5392 }
54aa1f4d 5393
0b246afa
JM
5394 trans->block_rsv = &fs_info->trans_block_rsv;
5395 if (!(root == fs_info->tree_root ||
581bb050 5396 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5397 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5398
3a45bb20 5399 btrfs_end_transaction(trans);
2ff7e61e 5400 btrfs_btree_balance_dirty(fs_info);
39279cc3 5401no_delete:
89042e5a 5402 btrfs_remove_delayed_node(inode);
dbd5768f 5403 clear_inode(inode);
39279cc3
CM
5404}
5405
5406/*
5407 * this returns the key found in the dir entry in the location pointer.
5408 * If no dir entries were found, location->objectid is 0.
5409 */
5410static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5411 struct btrfs_key *location)
5412{
5413 const char *name = dentry->d_name.name;
5414 int namelen = dentry->d_name.len;
5415 struct btrfs_dir_item *di;
5416 struct btrfs_path *path;
5417 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5418 int ret = 0;
39279cc3
CM
5419
5420 path = btrfs_alloc_path();
d8926bb3
MF
5421 if (!path)
5422 return -ENOMEM;
3954401f 5423
33345d01 5424 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5425 namelen, 0);
0d9f7f3e
Y
5426 if (IS_ERR(di))
5427 ret = PTR_ERR(di);
d397712b 5428
c704005d 5429 if (IS_ERR_OR_NULL(di))
3954401f 5430 goto out_err;
d397712b 5431
5f39d397 5432 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5433out:
39279cc3
CM
5434 btrfs_free_path(path);
5435 return ret;
3954401f
CM
5436out_err:
5437 location->objectid = 0;
5438 goto out;
39279cc3
CM
5439}
5440
5441/*
5442 * when we hit a tree root in a directory, the btrfs part of the inode
5443 * needs to be changed to reflect the root directory of the tree root. This
5444 * is kind of like crossing a mount point.
5445 */
2ff7e61e 5446static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5447 struct inode *dir,
5448 struct dentry *dentry,
5449 struct btrfs_key *location,
5450 struct btrfs_root **sub_root)
39279cc3 5451{
4df27c4d
YZ
5452 struct btrfs_path *path;
5453 struct btrfs_root *new_root;
5454 struct btrfs_root_ref *ref;
5455 struct extent_buffer *leaf;
1d4c08e0 5456 struct btrfs_key key;
4df27c4d
YZ
5457 int ret;
5458 int err = 0;
39279cc3 5459
4df27c4d
YZ
5460 path = btrfs_alloc_path();
5461 if (!path) {
5462 err = -ENOMEM;
5463 goto out;
5464 }
39279cc3 5465
4df27c4d 5466 err = -ENOENT;
1d4c08e0
DS
5467 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5468 key.type = BTRFS_ROOT_REF_KEY;
5469 key.offset = location->objectid;
5470
0b246afa 5471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5472 if (ret) {
5473 if (ret < 0)
5474 err = ret;
5475 goto out;
5476 }
39279cc3 5477
4df27c4d
YZ
5478 leaf = path->nodes[0];
5479 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5480 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5481 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5482 goto out;
39279cc3 5483
4df27c4d
YZ
5484 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5485 (unsigned long)(ref + 1),
5486 dentry->d_name.len);
5487 if (ret)
5488 goto out;
5489
b3b4aa74 5490 btrfs_release_path(path);
4df27c4d 5491
0b246afa 5492 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5493 if (IS_ERR(new_root)) {
5494 err = PTR_ERR(new_root);
5495 goto out;
5496 }
5497
4df27c4d
YZ
5498 *sub_root = new_root;
5499 location->objectid = btrfs_root_dirid(&new_root->root_item);
5500 location->type = BTRFS_INODE_ITEM_KEY;
5501 location->offset = 0;
5502 err = 0;
5503out:
5504 btrfs_free_path(path);
5505 return err;
39279cc3
CM
5506}
5507
5d4f98a2
YZ
5508static void inode_tree_add(struct inode *inode)
5509{
5510 struct btrfs_root *root = BTRFS_I(inode)->root;
5511 struct btrfs_inode *entry;
03e860bd
FNP
5512 struct rb_node **p;
5513 struct rb_node *parent;
cef21937 5514 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5515 u64 ino = btrfs_ino(inode);
5d4f98a2 5516
1d3382cb 5517 if (inode_unhashed(inode))
76dda93c 5518 return;
e1409cef 5519 parent = NULL;
5d4f98a2 5520 spin_lock(&root->inode_lock);
e1409cef 5521 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5522 while (*p) {
5523 parent = *p;
5524 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5525
33345d01 5526 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5527 p = &parent->rb_left;
33345d01 5528 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5529 p = &parent->rb_right;
5d4f98a2
YZ
5530 else {
5531 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5532 (I_WILL_FREE | I_FREEING)));
cef21937 5533 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5534 RB_CLEAR_NODE(parent);
5535 spin_unlock(&root->inode_lock);
cef21937 5536 return;
5d4f98a2
YZ
5537 }
5538 }
cef21937
FDBM
5539 rb_link_node(new, parent, p);
5540 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5541 spin_unlock(&root->inode_lock);
5542}
5543
5544static void inode_tree_del(struct inode *inode)
5545{
0b246afa 5546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5547 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5548 int empty = 0;
5d4f98a2 5549
03e860bd 5550 spin_lock(&root->inode_lock);
5d4f98a2 5551 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5552 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5553 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5554 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5555 }
03e860bd 5556 spin_unlock(&root->inode_lock);
76dda93c 5557
69e9c6c6 5558 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5559 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5560 spin_lock(&root->inode_lock);
5561 empty = RB_EMPTY_ROOT(&root->inode_tree);
5562 spin_unlock(&root->inode_lock);
5563 if (empty)
5564 btrfs_add_dead_root(root);
5565 }
5566}
5567
143bede5 5568void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5569{
0b246afa 5570 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5571 struct rb_node *node;
5572 struct rb_node *prev;
5573 struct btrfs_inode *entry;
5574 struct inode *inode;
5575 u64 objectid = 0;
5576
0b246afa 5577 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5578 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5579
5580 spin_lock(&root->inode_lock);
5581again:
5582 node = root->inode_tree.rb_node;
5583 prev = NULL;
5584 while (node) {
5585 prev = node;
5586 entry = rb_entry(node, struct btrfs_inode, rb_node);
5587
33345d01 5588 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5589 node = node->rb_left;
33345d01 5590 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5591 node = node->rb_right;
5592 else
5593 break;
5594 }
5595 if (!node) {
5596 while (prev) {
5597 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5598 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5599 node = prev;
5600 break;
5601 }
5602 prev = rb_next(prev);
5603 }
5604 }
5605 while (node) {
5606 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5607 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5608 inode = igrab(&entry->vfs_inode);
5609 if (inode) {
5610 spin_unlock(&root->inode_lock);
5611 if (atomic_read(&inode->i_count) > 1)
5612 d_prune_aliases(inode);
5613 /*
45321ac5 5614 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5615 * the inode cache when its usage count
5616 * hits zero.
5617 */
5618 iput(inode);
5619 cond_resched();
5620 spin_lock(&root->inode_lock);
5621 goto again;
5622 }
5623
5624 if (cond_resched_lock(&root->inode_lock))
5625 goto again;
5626
5627 node = rb_next(node);
5628 }
5629 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5630}
5631
e02119d5
CM
5632static int btrfs_init_locked_inode(struct inode *inode, void *p)
5633{
5634 struct btrfs_iget_args *args = p;
90d3e592
CM
5635 inode->i_ino = args->location->objectid;
5636 memcpy(&BTRFS_I(inode)->location, args->location,
5637 sizeof(*args->location));
e02119d5 5638 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5639 return 0;
5640}
5641
5642static int btrfs_find_actor(struct inode *inode, void *opaque)
5643{
5644 struct btrfs_iget_args *args = opaque;
90d3e592 5645 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5646 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5647}
5648
5d4f98a2 5649static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5650 struct btrfs_key *location,
5d4f98a2 5651 struct btrfs_root *root)
39279cc3
CM
5652{
5653 struct inode *inode;
5654 struct btrfs_iget_args args;
90d3e592 5655 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5656
90d3e592 5657 args.location = location;
39279cc3
CM
5658 args.root = root;
5659
778ba82b 5660 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5661 btrfs_init_locked_inode,
5662 (void *)&args);
5663 return inode;
5664}
5665
1a54ef8c
BR
5666/* Get an inode object given its location and corresponding root.
5667 * Returns in *is_new if the inode was read from disk
5668 */
5669struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5670 struct btrfs_root *root, int *new)
1a54ef8c
BR
5671{
5672 struct inode *inode;
5673
90d3e592 5674 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5675 if (!inode)
5d4f98a2 5676 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5677
5678 if (inode->i_state & I_NEW) {
67710892
FM
5679 int ret;
5680
5681 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5682 if (!is_bad_inode(inode)) {
5683 inode_tree_add(inode);
5684 unlock_new_inode(inode);
5685 if (new)
5686 *new = 1;
5687 } else {
e0b6d65b
ST
5688 unlock_new_inode(inode);
5689 iput(inode);
67710892
FM
5690 ASSERT(ret < 0);
5691 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5692 }
5693 }
5694
1a54ef8c
BR
5695 return inode;
5696}
5697
4df27c4d
YZ
5698static struct inode *new_simple_dir(struct super_block *s,
5699 struct btrfs_key *key,
5700 struct btrfs_root *root)
5701{
5702 struct inode *inode = new_inode(s);
5703
5704 if (!inode)
5705 return ERR_PTR(-ENOMEM);
5706
4df27c4d
YZ
5707 BTRFS_I(inode)->root = root;
5708 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5709 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5710
5711 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5712 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5713 inode->i_fop = &simple_dir_operations;
5714 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5715 inode->i_mtime = current_time(inode);
9cc97d64 5716 inode->i_atime = inode->i_mtime;
5717 inode->i_ctime = inode->i_mtime;
5718 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5719
5720 return inode;
5721}
5722
3de4586c 5723struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5724{
0b246afa 5725 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5726 struct inode *inode;
4df27c4d 5727 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5728 struct btrfs_root *sub_root = root;
5729 struct btrfs_key location;
76dda93c 5730 int index;
b4aff1f8 5731 int ret = 0;
39279cc3
CM
5732
5733 if (dentry->d_name.len > BTRFS_NAME_LEN)
5734 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5735
39e3c955 5736 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5737 if (ret < 0)
5738 return ERR_PTR(ret);
5f39d397 5739
4df27c4d 5740 if (location.objectid == 0)
5662344b 5741 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5742
5743 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5744 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5745 return inode;
5746 }
5747
5748 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5749
0b246afa 5750 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5751 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5752 &location, &sub_root);
5753 if (ret < 0) {
5754 if (ret != -ENOENT)
5755 inode = ERR_PTR(ret);
5756 else
5757 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5758 } else {
73f73415 5759 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5760 }
0b246afa 5761 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5762
34d19bad 5763 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5764 down_read(&fs_info->cleanup_work_sem);
c71bf099 5765 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5766 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5767 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5768 if (ret) {
5769 iput(inode);
66b4ffd1 5770 inode = ERR_PTR(ret);
01cd3367 5771 }
c71bf099
YZ
5772 }
5773
3de4586c
CM
5774 return inode;
5775}
5776
fe15ce44 5777static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5778{
5779 struct btrfs_root *root;
2b0143b5 5780 struct inode *inode = d_inode(dentry);
76dda93c 5781
848cce0d 5782 if (!inode && !IS_ROOT(dentry))
2b0143b5 5783 inode = d_inode(dentry->d_parent);
76dda93c 5784
848cce0d
LZ
5785 if (inode) {
5786 root = BTRFS_I(inode)->root;
efefb143
YZ
5787 if (btrfs_root_refs(&root->root_item) == 0)
5788 return 1;
848cce0d
LZ
5789
5790 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5791 return 1;
efefb143 5792 }
76dda93c
YZ
5793 return 0;
5794}
5795
b4aff1f8
JB
5796static void btrfs_dentry_release(struct dentry *dentry)
5797{
944a4515 5798 kfree(dentry->d_fsdata);
b4aff1f8
JB
5799}
5800
3de4586c 5801static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5802 unsigned int flags)
3de4586c 5803{
5662344b 5804 struct inode *inode;
a66e7cc6 5805
5662344b
TI
5806 inode = btrfs_lookup_dentry(dir, dentry);
5807 if (IS_ERR(inode)) {
5808 if (PTR_ERR(inode) == -ENOENT)
5809 inode = NULL;
5810 else
5811 return ERR_CAST(inode);
5812 }
5813
41d28bca 5814 return d_splice_alias(inode, dentry);
39279cc3
CM
5815}
5816
16cdcec7 5817unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5818 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5819};
5820
9cdda8d3 5821static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5822{
9cdda8d3 5823 struct inode *inode = file_inode(file);
2ff7e61e 5824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5825 struct btrfs_root *root = BTRFS_I(inode)->root;
5826 struct btrfs_item *item;
5827 struct btrfs_dir_item *di;
5828 struct btrfs_key key;
5f39d397 5829 struct btrfs_key found_key;
39279cc3 5830 struct btrfs_path *path;
16cdcec7
MX
5831 struct list_head ins_list;
5832 struct list_head del_list;
39279cc3 5833 int ret;
5f39d397 5834 struct extent_buffer *leaf;
39279cc3 5835 int slot;
39279cc3
CM
5836 unsigned char d_type;
5837 int over = 0;
5f39d397
CM
5838 char tmp_name[32];
5839 char *name_ptr;
5840 int name_len;
02dbfc99 5841 bool put = false;
c2951f32 5842 struct btrfs_key location;
5f39d397 5843
9cdda8d3
AV
5844 if (!dir_emit_dots(file, ctx))
5845 return 0;
5846
49593bfa 5847 path = btrfs_alloc_path();
16cdcec7
MX
5848 if (!path)
5849 return -ENOMEM;
ff5714cc 5850
e4058b54 5851 path->reada = READA_FORWARD;
49593bfa 5852
c2951f32
JM
5853 INIT_LIST_HEAD(&ins_list);
5854 INIT_LIST_HEAD(&del_list);
5855 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5856
c2951f32 5857 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5858 key.offset = ctx->pos;
33345d01 5859 key.objectid = btrfs_ino(inode);
5f39d397 5860
39279cc3
CM
5861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5862 if (ret < 0)
5863 goto err;
49593bfa
DW
5864
5865 while (1) {
5f39d397 5866 leaf = path->nodes[0];
39279cc3 5867 slot = path->slots[0];
b9e03af0
LZ
5868 if (slot >= btrfs_header_nritems(leaf)) {
5869 ret = btrfs_next_leaf(root, path);
5870 if (ret < 0)
5871 goto err;
5872 else if (ret > 0)
5873 break;
5874 continue;
39279cc3 5875 }
3de4586c 5876
dd3cc16b 5877 item = btrfs_item_nr(slot);
5f39d397
CM
5878 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5879
5880 if (found_key.objectid != key.objectid)
39279cc3 5881 break;
c2951f32 5882 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5883 break;
9cdda8d3 5884 if (found_key.offset < ctx->pos)
b9e03af0 5885 goto next;
c2951f32 5886 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5887 goto next;
5f39d397 5888
9cdda8d3 5889 ctx->pos = found_key.offset;
49593bfa 5890
39279cc3 5891 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2ff7e61e 5892 if (verify_dir_item(fs_info, leaf, di))
c2951f32 5893 goto next;
22a94d44 5894
c2951f32
JM
5895 name_len = btrfs_dir_name_len(leaf, di);
5896 if (name_len <= sizeof(tmp_name)) {
5897 name_ptr = tmp_name;
5898 } else {
5899 name_ptr = kmalloc(name_len, GFP_KERNEL);
5900 if (!name_ptr) {
5901 ret = -ENOMEM;
5902 goto err;
5f39d397 5903 }
c2951f32
JM
5904 }
5905 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5906 name_len);
5f39d397 5907
c2951f32
JM
5908 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5909 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5910
c2951f32
JM
5911 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5912 d_type);
fede766f 5913
c2951f32
JM
5914 if (name_ptr != tmp_name)
5915 kfree(name_ptr);
5f39d397 5916
c2951f32
JM
5917 if (over)
5918 goto nopos;
d2fbb2b5 5919 ctx->pos++;
b9e03af0
LZ
5920next:
5921 path->slots[0]++;
39279cc3 5922 }
49593bfa 5923
d2fbb2b5 5924 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32
JM
5925 if (ret)
5926 goto nopos;
16cdcec7 5927
db62efbb
ZB
5928 /*
5929 * Stop new entries from being returned after we return the last
5930 * entry.
5931 *
5932 * New directory entries are assigned a strictly increasing
5933 * offset. This means that new entries created during readdir
5934 * are *guaranteed* to be seen in the future by that readdir.
5935 * This has broken buggy programs which operate on names as
5936 * they're returned by readdir. Until we re-use freed offsets
5937 * we have this hack to stop new entries from being returned
5938 * under the assumption that they'll never reach this huge
5939 * offset.
5940 *
5941 * This is being careful not to overflow 32bit loff_t unless the
5942 * last entry requires it because doing so has broken 32bit apps
5943 * in the past.
5944 */
c2951f32
JM
5945 if (ctx->pos >= INT_MAX)
5946 ctx->pos = LLONG_MAX;
5947 else
5948 ctx->pos = INT_MAX;
39279cc3
CM
5949nopos:
5950 ret = 0;
5951err:
02dbfc99
OS
5952 if (put)
5953 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5954 btrfs_free_path(path);
39279cc3
CM
5955 return ret;
5956}
5957
a9185b41 5958int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5959{
5960 struct btrfs_root *root = BTRFS_I(inode)->root;
5961 struct btrfs_trans_handle *trans;
5962 int ret = 0;
0af3d00b 5963 bool nolock = false;
39279cc3 5964
72ac3c0d 5965 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5966 return 0;
5967
83eea1f1 5968 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5969 nolock = true;
0af3d00b 5970
a9185b41 5971 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5972 if (nolock)
7a7eaa40 5973 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5974 else
7a7eaa40 5975 trans = btrfs_join_transaction(root);
3612b495
TI
5976 if (IS_ERR(trans))
5977 return PTR_ERR(trans);
3a45bb20 5978 ret = btrfs_commit_transaction(trans);
39279cc3
CM
5979 }
5980 return ret;
5981}
5982
5983/*
54aa1f4d 5984 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5985 * inode changes. But, it is most likely to find the inode in cache.
5986 * FIXME, needs more benchmarking...there are no reasons other than performance
5987 * to keep or drop this code.
5988 */
48a3b636 5989static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5990{
2ff7e61e 5991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5992 struct btrfs_root *root = BTRFS_I(inode)->root;
5993 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5994 int ret;
5995
72ac3c0d 5996 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5997 return 0;
39279cc3 5998
7a7eaa40 5999 trans = btrfs_join_transaction(root);
22c44fe6
JB
6000 if (IS_ERR(trans))
6001 return PTR_ERR(trans);
8929ecfa
YZ
6002
6003 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6004 if (ret && ret == -ENOSPC) {
6005 /* whoops, lets try again with the full transaction */
3a45bb20 6006 btrfs_end_transaction(trans);
94b60442 6007 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6008 if (IS_ERR(trans))
6009 return PTR_ERR(trans);
8929ecfa 6010
94b60442 6011 ret = btrfs_update_inode(trans, root, inode);
94b60442 6012 }
3a45bb20 6013 btrfs_end_transaction(trans);
16cdcec7 6014 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6015 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6016
6017 return ret;
6018}
6019
6020/*
6021 * This is a copy of file_update_time. We need this so we can return error on
6022 * ENOSPC for updating the inode in the case of file write and mmap writes.
6023 */
e41f941a
JB
6024static int btrfs_update_time(struct inode *inode, struct timespec *now,
6025 int flags)
22c44fe6 6026{
2bc55652
AB
6027 struct btrfs_root *root = BTRFS_I(inode)->root;
6028
6029 if (btrfs_root_readonly(root))
6030 return -EROFS;
6031
e41f941a 6032 if (flags & S_VERSION)
22c44fe6 6033 inode_inc_iversion(inode);
e41f941a
JB
6034 if (flags & S_CTIME)
6035 inode->i_ctime = *now;
6036 if (flags & S_MTIME)
6037 inode->i_mtime = *now;
6038 if (flags & S_ATIME)
6039 inode->i_atime = *now;
6040 return btrfs_dirty_inode(inode);
39279cc3
CM
6041}
6042
d352ac68
CM
6043/*
6044 * find the highest existing sequence number in a directory
6045 * and then set the in-memory index_cnt variable to reflect
6046 * free sequence numbers
6047 */
aec7477b
JB
6048static int btrfs_set_inode_index_count(struct inode *inode)
6049{
6050 struct btrfs_root *root = BTRFS_I(inode)->root;
6051 struct btrfs_key key, found_key;
6052 struct btrfs_path *path;
6053 struct extent_buffer *leaf;
6054 int ret;
6055
33345d01 6056 key.objectid = btrfs_ino(inode);
962a298f 6057 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6058 key.offset = (u64)-1;
6059
6060 path = btrfs_alloc_path();
6061 if (!path)
6062 return -ENOMEM;
6063
6064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6065 if (ret < 0)
6066 goto out;
6067 /* FIXME: we should be able to handle this */
6068 if (ret == 0)
6069 goto out;
6070 ret = 0;
6071
6072 /*
6073 * MAGIC NUMBER EXPLANATION:
6074 * since we search a directory based on f_pos we have to start at 2
6075 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6076 * else has to start at 2
6077 */
6078 if (path->slots[0] == 0) {
6079 BTRFS_I(inode)->index_cnt = 2;
6080 goto out;
6081 }
6082
6083 path->slots[0]--;
6084
6085 leaf = path->nodes[0];
6086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6087
33345d01 6088 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6089 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6090 BTRFS_I(inode)->index_cnt = 2;
6091 goto out;
6092 }
6093
6094 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6095out:
6096 btrfs_free_path(path);
6097 return ret;
6098}
6099
d352ac68
CM
6100/*
6101 * helper to find a free sequence number in a given directory. This current
6102 * code is very simple, later versions will do smarter things in the btree
6103 */
3de4586c 6104int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6105{
6106 int ret = 0;
6107
6108 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6109 ret = btrfs_inode_delayed_dir_index_count(dir);
6110 if (ret) {
6111 ret = btrfs_set_inode_index_count(dir);
6112 if (ret)
6113 return ret;
6114 }
aec7477b
JB
6115 }
6116
00e4e6b3 6117 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6118 BTRFS_I(dir)->index_cnt++;
6119
6120 return ret;
6121}
6122
b0d5d10f
CM
6123static int btrfs_insert_inode_locked(struct inode *inode)
6124{
6125 struct btrfs_iget_args args;
6126 args.location = &BTRFS_I(inode)->location;
6127 args.root = BTRFS_I(inode)->root;
6128
6129 return insert_inode_locked4(inode,
6130 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6131 btrfs_find_actor, &args);
6132}
6133
39279cc3
CM
6134static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6135 struct btrfs_root *root,
aec7477b 6136 struct inode *dir,
9c58309d 6137 const char *name, int name_len,
175a4eb7
AV
6138 u64 ref_objectid, u64 objectid,
6139 umode_t mode, u64 *index)
39279cc3 6140{
0b246afa 6141 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6142 struct inode *inode;
5f39d397 6143 struct btrfs_inode_item *inode_item;
39279cc3 6144 struct btrfs_key *location;
5f39d397 6145 struct btrfs_path *path;
9c58309d
CM
6146 struct btrfs_inode_ref *ref;
6147 struct btrfs_key key[2];
6148 u32 sizes[2];
ef3b9af5 6149 int nitems = name ? 2 : 1;
9c58309d 6150 unsigned long ptr;
39279cc3 6151 int ret;
39279cc3 6152
5f39d397 6153 path = btrfs_alloc_path();
d8926bb3
MF
6154 if (!path)
6155 return ERR_PTR(-ENOMEM);
5f39d397 6156
0b246afa 6157 inode = new_inode(fs_info->sb);
8fb27640
YS
6158 if (!inode) {
6159 btrfs_free_path(path);
39279cc3 6160 return ERR_PTR(-ENOMEM);
8fb27640 6161 }
39279cc3 6162
5762b5c9
FM
6163 /*
6164 * O_TMPFILE, set link count to 0, so that after this point,
6165 * we fill in an inode item with the correct link count.
6166 */
6167 if (!name)
6168 set_nlink(inode, 0);
6169
581bb050
LZ
6170 /*
6171 * we have to initialize this early, so we can reclaim the inode
6172 * number if we fail afterwards in this function.
6173 */
6174 inode->i_ino = objectid;
6175
ef3b9af5 6176 if (dir && name) {
1abe9b8a 6177 trace_btrfs_inode_request(dir);
6178
3de4586c 6179 ret = btrfs_set_inode_index(dir, index);
09771430 6180 if (ret) {
8fb27640 6181 btrfs_free_path(path);
09771430 6182 iput(inode);
aec7477b 6183 return ERR_PTR(ret);
09771430 6184 }
ef3b9af5
FM
6185 } else if (dir) {
6186 *index = 0;
aec7477b
JB
6187 }
6188 /*
6189 * index_cnt is ignored for everything but a dir,
6190 * btrfs_get_inode_index_count has an explanation for the magic
6191 * number
6192 */
6193 BTRFS_I(inode)->index_cnt = 2;
67de1176 6194 BTRFS_I(inode)->dir_index = *index;
39279cc3 6195 BTRFS_I(inode)->root = root;
e02119d5 6196 BTRFS_I(inode)->generation = trans->transid;
76195853 6197 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6198
5dc562c5
JB
6199 /*
6200 * We could have gotten an inode number from somebody who was fsynced
6201 * and then removed in this same transaction, so let's just set full
6202 * sync since it will be a full sync anyway and this will blow away the
6203 * old info in the log.
6204 */
6205 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6206
9c58309d 6207 key[0].objectid = objectid;
962a298f 6208 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6209 key[0].offset = 0;
6210
9c58309d 6211 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6212
6213 if (name) {
6214 /*
6215 * Start new inodes with an inode_ref. This is slightly more
6216 * efficient for small numbers of hard links since they will
6217 * be packed into one item. Extended refs will kick in if we
6218 * add more hard links than can fit in the ref item.
6219 */
6220 key[1].objectid = objectid;
962a298f 6221 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6222 key[1].offset = ref_objectid;
6223
6224 sizes[1] = name_len + sizeof(*ref);
6225 }
9c58309d 6226
b0d5d10f
CM
6227 location = &BTRFS_I(inode)->location;
6228 location->objectid = objectid;
6229 location->offset = 0;
962a298f 6230 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6231
6232 ret = btrfs_insert_inode_locked(inode);
6233 if (ret < 0)
6234 goto fail;
6235
b9473439 6236 path->leave_spinning = 1;
ef3b9af5 6237 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6238 if (ret != 0)
b0d5d10f 6239 goto fail_unlock;
5f39d397 6240
ecc11fab 6241 inode_init_owner(inode, dir, mode);
a76a3cd4 6242 inode_set_bytes(inode, 0);
9cc97d64 6243
c2050a45 6244 inode->i_mtime = current_time(inode);
9cc97d64 6245 inode->i_atime = inode->i_mtime;
6246 inode->i_ctime = inode->i_mtime;
6247 BTRFS_I(inode)->i_otime = inode->i_mtime;
6248
5f39d397
CM
6249 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6250 struct btrfs_inode_item);
b159fa28 6251 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6252 sizeof(*inode_item));
e02119d5 6253 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6254
ef3b9af5
FM
6255 if (name) {
6256 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6257 struct btrfs_inode_ref);
6258 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6259 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6260 ptr = (unsigned long)(ref + 1);
6261 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6262 }
9c58309d 6263
5f39d397
CM
6264 btrfs_mark_buffer_dirty(path->nodes[0]);
6265 btrfs_free_path(path);
6266
6cbff00f
CH
6267 btrfs_inherit_iflags(inode, dir);
6268
569254b0 6269 if (S_ISREG(mode)) {
0b246afa 6270 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6271 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6272 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6273 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6274 BTRFS_INODE_NODATASUM;
94272164
CM
6275 }
6276
5d4f98a2 6277 inode_tree_add(inode);
1abe9b8a 6278
6279 trace_btrfs_inode_new(inode);
1973f0fa 6280 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6281
8ea05e3a
AB
6282 btrfs_update_root_times(trans, root);
6283
63541927
FDBM
6284 ret = btrfs_inode_inherit_props(trans, inode, dir);
6285 if (ret)
0b246afa 6286 btrfs_err(fs_info,
63541927
FDBM
6287 "error inheriting props for ino %llu (root %llu): %d",
6288 btrfs_ino(inode), root->root_key.objectid, ret);
6289
39279cc3 6290 return inode;
b0d5d10f
CM
6291
6292fail_unlock:
6293 unlock_new_inode(inode);
5f39d397 6294fail:
ef3b9af5 6295 if (dir && name)
aec7477b 6296 BTRFS_I(dir)->index_cnt--;
5f39d397 6297 btrfs_free_path(path);
09771430 6298 iput(inode);
5f39d397 6299 return ERR_PTR(ret);
39279cc3
CM
6300}
6301
6302static inline u8 btrfs_inode_type(struct inode *inode)
6303{
6304 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6305}
6306
d352ac68
CM
6307/*
6308 * utility function to add 'inode' into 'parent_inode' with
6309 * a give name and a given sequence number.
6310 * if 'add_backref' is true, also insert a backref from the
6311 * inode to the parent directory.
6312 */
e02119d5
CM
6313int btrfs_add_link(struct btrfs_trans_handle *trans,
6314 struct inode *parent_inode, struct inode *inode,
6315 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6316{
0b246afa 6317 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4df27c4d 6318 int ret = 0;
39279cc3 6319 struct btrfs_key key;
e02119d5 6320 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6321 u64 ino = btrfs_ino(inode);
6322 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6323
33345d01 6324 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6325 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6326 } else {
33345d01 6327 key.objectid = ino;
962a298f 6328 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6329 key.offset = 0;
6330 }
6331
33345d01 6332 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6333 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6334 root->root_key.objectid, parent_ino,
6335 index, name, name_len);
4df27c4d 6336 } else if (add_backref) {
33345d01
LZ
6337 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6338 parent_ino, index);
4df27c4d 6339 }
39279cc3 6340
79787eaa
JM
6341 /* Nothing to clean up yet */
6342 if (ret)
6343 return ret;
4df27c4d 6344
79787eaa
JM
6345 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6346 parent_inode, &key,
6347 btrfs_inode_type(inode), index);
9c52057c 6348 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6349 goto fail_dir_item;
6350 else if (ret) {
66642832 6351 btrfs_abort_transaction(trans, ret);
79787eaa 6352 return ret;
39279cc3 6353 }
79787eaa
JM
6354
6355 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6356 name_len * 2);
0c4d2d95 6357 inode_inc_iversion(parent_inode);
04b285f3 6358 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 6359 current_time(parent_inode);
79787eaa
JM
6360 ret = btrfs_update_inode(trans, root, parent_inode);
6361 if (ret)
66642832 6362 btrfs_abort_transaction(trans, ret);
39279cc3 6363 return ret;
fe66a05a
CM
6364
6365fail_dir_item:
6366 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6367 u64 local_index;
6368 int err;
0b246afa
JM
6369 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6370 root->root_key.objectid, parent_ino,
6371 &local_index, name, name_len);
fe66a05a
CM
6372
6373 } else if (add_backref) {
6374 u64 local_index;
6375 int err;
6376
6377 err = btrfs_del_inode_ref(trans, root, name, name_len,
6378 ino, parent_ino, &local_index);
6379 }
6380 return ret;
39279cc3
CM
6381}
6382
6383static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6384 struct inode *dir, struct dentry *dentry,
6385 struct inode *inode, int backref, u64 index)
39279cc3 6386{
a1b075d2
JB
6387 int err = btrfs_add_link(trans, dir, inode,
6388 dentry->d_name.name, dentry->d_name.len,
6389 backref, index);
39279cc3
CM
6390 if (err > 0)
6391 err = -EEXIST;
6392 return err;
6393}
6394
618e21d5 6395static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6396 umode_t mode, dev_t rdev)
618e21d5 6397{
2ff7e61e 6398 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6399 struct btrfs_trans_handle *trans;
6400 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6401 struct inode *inode = NULL;
618e21d5
JB
6402 int err;
6403 int drop_inode = 0;
6404 u64 objectid;
00e4e6b3 6405 u64 index = 0;
618e21d5 6406
9ed74f2d
JB
6407 /*
6408 * 2 for inode item and ref
6409 * 2 for dir items
6410 * 1 for xattr if selinux is on
6411 */
a22285a6
YZ
6412 trans = btrfs_start_transaction(root, 5);
6413 if (IS_ERR(trans))
6414 return PTR_ERR(trans);
1832a6d5 6415
581bb050
LZ
6416 err = btrfs_find_free_ino(root, &objectid);
6417 if (err)
6418 goto out_unlock;
6419
aec7477b 6420 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6421 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6422 mode, &index);
7cf96da3
TI
6423 if (IS_ERR(inode)) {
6424 err = PTR_ERR(inode);
618e21d5 6425 goto out_unlock;
7cf96da3 6426 }
618e21d5 6427
ad19db71
CS
6428 /*
6429 * If the active LSM wants to access the inode during
6430 * d_instantiate it needs these. Smack checks to see
6431 * if the filesystem supports xattrs by looking at the
6432 * ops vector.
6433 */
ad19db71 6434 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6435 init_special_inode(inode, inode->i_mode, rdev);
6436
6437 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6438 if (err)
b0d5d10f
CM
6439 goto out_unlock_inode;
6440
6441 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6442 if (err) {
6443 goto out_unlock_inode;
6444 } else {
1b4ab1bb 6445 btrfs_update_inode(trans, root, inode);
b0d5d10f 6446 unlock_new_inode(inode);
08c422c2 6447 d_instantiate(dentry, inode);
618e21d5 6448 }
b0d5d10f 6449
618e21d5 6450out_unlock:
3a45bb20 6451 btrfs_end_transaction(trans);
2ff7e61e
JM
6452 btrfs_balance_delayed_items(fs_info);
6453 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6454 if (drop_inode) {
6455 inode_dec_link_count(inode);
6456 iput(inode);
6457 }
618e21d5 6458 return err;
b0d5d10f
CM
6459
6460out_unlock_inode:
6461 drop_inode = 1;
6462 unlock_new_inode(inode);
6463 goto out_unlock;
6464
618e21d5
JB
6465}
6466
39279cc3 6467static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6468 umode_t mode, bool excl)
39279cc3 6469{
2ff7e61e 6470 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6471 struct btrfs_trans_handle *trans;
6472 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6473 struct inode *inode = NULL;
43baa579 6474 int drop_inode_on_err = 0;
a22285a6 6475 int err;
39279cc3 6476 u64 objectid;
00e4e6b3 6477 u64 index = 0;
39279cc3 6478
9ed74f2d
JB
6479 /*
6480 * 2 for inode item and ref
6481 * 2 for dir items
6482 * 1 for xattr if selinux is on
6483 */
a22285a6
YZ
6484 trans = btrfs_start_transaction(root, 5);
6485 if (IS_ERR(trans))
6486 return PTR_ERR(trans);
9ed74f2d 6487
581bb050
LZ
6488 err = btrfs_find_free_ino(root, &objectid);
6489 if (err)
6490 goto out_unlock;
6491
aec7477b 6492 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6493 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6494 mode, &index);
7cf96da3
TI
6495 if (IS_ERR(inode)) {
6496 err = PTR_ERR(inode);
39279cc3 6497 goto out_unlock;
7cf96da3 6498 }
43baa579 6499 drop_inode_on_err = 1;
ad19db71
CS
6500 /*
6501 * If the active LSM wants to access the inode during
6502 * d_instantiate it needs these. Smack checks to see
6503 * if the filesystem supports xattrs by looking at the
6504 * ops vector.
6505 */
6506 inode->i_fop = &btrfs_file_operations;
6507 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6508 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6509
6510 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6511 if (err)
6512 goto out_unlock_inode;
6513
6514 err = btrfs_update_inode(trans, root, inode);
6515 if (err)
6516 goto out_unlock_inode;
ad19db71 6517
a1b075d2 6518 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6519 if (err)
b0d5d10f 6520 goto out_unlock_inode;
43baa579 6521
43baa579 6522 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6523 unlock_new_inode(inode);
43baa579
FB
6524 d_instantiate(dentry, inode);
6525
39279cc3 6526out_unlock:
3a45bb20 6527 btrfs_end_transaction(trans);
43baa579 6528 if (err && drop_inode_on_err) {
39279cc3
CM
6529 inode_dec_link_count(inode);
6530 iput(inode);
6531 }
2ff7e61e
JM
6532 btrfs_balance_delayed_items(fs_info);
6533 btrfs_btree_balance_dirty(fs_info);
39279cc3 6534 return err;
b0d5d10f
CM
6535
6536out_unlock_inode:
6537 unlock_new_inode(inode);
6538 goto out_unlock;
6539
39279cc3
CM
6540}
6541
6542static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6543 struct dentry *dentry)
6544{
271dba45 6545 struct btrfs_trans_handle *trans = NULL;
39279cc3 6546 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6547 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6549 u64 index;
39279cc3
CM
6550 int err;
6551 int drop_inode = 0;
6552
4a8be425
TH
6553 /* do not allow sys_link's with other subvols of the same device */
6554 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6555 return -EXDEV;
4a8be425 6556
f186373f 6557 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6558 return -EMLINK;
4a8be425 6559
3de4586c 6560 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6561 if (err)
6562 goto fail;
6563
a22285a6 6564 /*
7e6b6465 6565 * 2 items for inode and inode ref
a22285a6 6566 * 2 items for dir items
7e6b6465 6567 * 1 item for parent inode
a22285a6 6568 */
7e6b6465 6569 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6570 if (IS_ERR(trans)) {
6571 err = PTR_ERR(trans);
271dba45 6572 trans = NULL;
a22285a6
YZ
6573 goto fail;
6574 }
5f39d397 6575
67de1176
MX
6576 /* There are several dir indexes for this inode, clear the cache. */
6577 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6578 inc_nlink(inode);
0c4d2d95 6579 inode_inc_iversion(inode);
c2050a45 6580 inode->i_ctime = current_time(inode);
7de9c6ee 6581 ihold(inode);
e9976151 6582 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6583
a1b075d2 6584 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6585
a5719521 6586 if (err) {
54aa1f4d 6587 drop_inode = 1;
a5719521 6588 } else {
10d9f309 6589 struct dentry *parent = dentry->d_parent;
a5719521 6590 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6591 if (err)
6592 goto fail;
ef3b9af5
FM
6593 if (inode->i_nlink == 1) {
6594 /*
6595 * If new hard link count is 1, it's a file created
6596 * with open(2) O_TMPFILE flag.
6597 */
6598 err = btrfs_orphan_del(trans, inode);
6599 if (err)
6600 goto fail;
6601 }
08c422c2 6602 d_instantiate(dentry, inode);
6a912213 6603 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6604 }
39279cc3 6605
2ff7e61e 6606 btrfs_balance_delayed_items(fs_info);
1832a6d5 6607fail:
271dba45 6608 if (trans)
3a45bb20 6609 btrfs_end_transaction(trans);
39279cc3
CM
6610 if (drop_inode) {
6611 inode_dec_link_count(inode);
6612 iput(inode);
6613 }
2ff7e61e 6614 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6615 return err;
6616}
6617
18bb1db3 6618static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6619{
2ff7e61e 6620 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6621 struct inode *inode = NULL;
39279cc3
CM
6622 struct btrfs_trans_handle *trans;
6623 struct btrfs_root *root = BTRFS_I(dir)->root;
6624 int err = 0;
6625 int drop_on_err = 0;
b9d86667 6626 u64 objectid = 0;
00e4e6b3 6627 u64 index = 0;
39279cc3 6628
9ed74f2d
JB
6629 /*
6630 * 2 items for inode and ref
6631 * 2 items for dir items
6632 * 1 for xattr if selinux is on
6633 */
a22285a6
YZ
6634 trans = btrfs_start_transaction(root, 5);
6635 if (IS_ERR(trans))
6636 return PTR_ERR(trans);
39279cc3 6637
581bb050
LZ
6638 err = btrfs_find_free_ino(root, &objectid);
6639 if (err)
6640 goto out_fail;
6641
aec7477b 6642 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6643 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6644 S_IFDIR | mode, &index);
39279cc3
CM
6645 if (IS_ERR(inode)) {
6646 err = PTR_ERR(inode);
6647 goto out_fail;
6648 }
5f39d397 6649
39279cc3 6650 drop_on_err = 1;
b0d5d10f
CM
6651 /* these must be set before we unlock the inode */
6652 inode->i_op = &btrfs_dir_inode_operations;
6653 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6654
2a7dba39 6655 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6656 if (err)
b0d5d10f 6657 goto out_fail_inode;
39279cc3 6658
dbe674a9 6659 btrfs_i_size_write(inode, 0);
39279cc3
CM
6660 err = btrfs_update_inode(trans, root, inode);
6661 if (err)
b0d5d10f 6662 goto out_fail_inode;
5f39d397 6663
a1b075d2
JB
6664 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6665 dentry->d_name.len, 0, index);
39279cc3 6666 if (err)
b0d5d10f 6667 goto out_fail_inode;
5f39d397 6668
39279cc3 6669 d_instantiate(dentry, inode);
b0d5d10f
CM
6670 /*
6671 * mkdir is special. We're unlocking after we call d_instantiate
6672 * to avoid a race with nfsd calling d_instantiate.
6673 */
6674 unlock_new_inode(inode);
39279cc3 6675 drop_on_err = 0;
39279cc3
CM
6676
6677out_fail:
3a45bb20 6678 btrfs_end_transaction(trans);
c7cfb8a5
WS
6679 if (drop_on_err) {
6680 inode_dec_link_count(inode);
39279cc3 6681 iput(inode);
c7cfb8a5 6682 }
2ff7e61e
JM
6683 btrfs_balance_delayed_items(fs_info);
6684 btrfs_btree_balance_dirty(fs_info);
39279cc3 6685 return err;
b0d5d10f
CM
6686
6687out_fail_inode:
6688 unlock_new_inode(inode);
6689 goto out_fail;
39279cc3
CM
6690}
6691
e6c4efd8
QW
6692/* Find next extent map of a given extent map, caller needs to ensure locks */
6693static struct extent_map *next_extent_map(struct extent_map *em)
6694{
6695 struct rb_node *next;
6696
6697 next = rb_next(&em->rb_node);
6698 if (!next)
6699 return NULL;
6700 return container_of(next, struct extent_map, rb_node);
6701}
6702
6703static struct extent_map *prev_extent_map(struct extent_map *em)
6704{
6705 struct rb_node *prev;
6706
6707 prev = rb_prev(&em->rb_node);
6708 if (!prev)
6709 return NULL;
6710 return container_of(prev, struct extent_map, rb_node);
6711}
6712
d352ac68 6713/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6714 * the existing extent is the nearest extent to map_start,
d352ac68 6715 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6716 * the best fitted new extent into the tree.
d352ac68 6717 */
3b951516
CM
6718static int merge_extent_mapping(struct extent_map_tree *em_tree,
6719 struct extent_map *existing,
e6dcd2dc 6720 struct extent_map *em,
51f395ad 6721 u64 map_start)
3b951516 6722{
e6c4efd8
QW
6723 struct extent_map *prev;
6724 struct extent_map *next;
6725 u64 start;
6726 u64 end;
3b951516 6727 u64 start_diff;
3b951516 6728
e6dcd2dc 6729 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6730
6731 if (existing->start > map_start) {
6732 next = existing;
6733 prev = prev_extent_map(next);
6734 } else {
6735 prev = existing;
6736 next = next_extent_map(prev);
6737 }
6738
6739 start = prev ? extent_map_end(prev) : em->start;
6740 start = max_t(u64, start, em->start);
6741 end = next ? next->start : extent_map_end(em);
6742 end = min_t(u64, end, extent_map_end(em));
6743 start_diff = start - em->start;
6744 em->start = start;
6745 em->len = end - start;
c8b97818
CM
6746 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6747 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6748 em->block_start += start_diff;
c8b97818
CM
6749 em->block_len -= start_diff;
6750 }
09a2a8f9 6751 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6752}
6753
c8b97818 6754static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6755 struct page *page,
c8b97818
CM
6756 size_t pg_offset, u64 extent_offset,
6757 struct btrfs_file_extent_item *item)
6758{
6759 int ret;
6760 struct extent_buffer *leaf = path->nodes[0];
6761 char *tmp;
6762 size_t max_size;
6763 unsigned long inline_size;
6764 unsigned long ptr;
261507a0 6765 int compress_type;
c8b97818
CM
6766
6767 WARN_ON(pg_offset != 0);
261507a0 6768 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6769 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6770 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6771 btrfs_item_nr(path->slots[0]));
c8b97818 6772 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6773 if (!tmp)
6774 return -ENOMEM;
c8b97818
CM
6775 ptr = btrfs_file_extent_inline_start(item);
6776
6777 read_extent_buffer(leaf, tmp, ptr, inline_size);
6778
09cbfeaf 6779 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6780 ret = btrfs_decompress(compress_type, tmp, page,
6781 extent_offset, inline_size, max_size);
c8b97818 6782 kfree(tmp);
166ae5a4 6783 return ret;
c8b97818
CM
6784}
6785
d352ac68
CM
6786/*
6787 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6788 * the ugly parts come from merging extents from the disk with the in-ram
6789 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6790 * where the in-ram extents might be locked pending data=ordered completion.
6791 *
6792 * This also copies inline extents directly into the page.
6793 */
d397712b 6794
a52d9a80 6795struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6796 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6797 int create)
6798{
0b246afa 6799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
a52d9a80
CM
6800 int ret;
6801 int err = 0;
a52d9a80
CM
6802 u64 extent_start = 0;
6803 u64 extent_end = 0;
33345d01 6804 u64 objectid = btrfs_ino(inode);
a52d9a80 6805 u32 found_type;
f421950f 6806 struct btrfs_path *path = NULL;
a52d9a80
CM
6807 struct btrfs_root *root = BTRFS_I(inode)->root;
6808 struct btrfs_file_extent_item *item;
5f39d397
CM
6809 struct extent_buffer *leaf;
6810 struct btrfs_key found_key;
a52d9a80
CM
6811 struct extent_map *em = NULL;
6812 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6813 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6814 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6815 const bool new_inline = !page || create;
a52d9a80 6816
a52d9a80 6817again:
890871be 6818 read_lock(&em_tree->lock);
d1310b2e 6819 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6820 if (em)
0b246afa 6821 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6822 read_unlock(&em_tree->lock);
d1310b2e 6823
a52d9a80 6824 if (em) {
e1c4b745
CM
6825 if (em->start > start || em->start + em->len <= start)
6826 free_extent_map(em);
6827 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6828 free_extent_map(em);
6829 else
6830 goto out;
a52d9a80 6831 }
172ddd60 6832 em = alloc_extent_map();
a52d9a80 6833 if (!em) {
d1310b2e
CM
6834 err = -ENOMEM;
6835 goto out;
a52d9a80 6836 }
0b246afa 6837 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6838 em->start = EXTENT_MAP_HOLE;
445a6944 6839 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6840 em->len = (u64)-1;
c8b97818 6841 em->block_len = (u64)-1;
f421950f
CM
6842
6843 if (!path) {
6844 path = btrfs_alloc_path();
026fd317
JB
6845 if (!path) {
6846 err = -ENOMEM;
6847 goto out;
6848 }
6849 /*
6850 * Chances are we'll be called again, so go ahead and do
6851 * readahead
6852 */
e4058b54 6853 path->reada = READA_FORWARD;
f421950f
CM
6854 }
6855
179e29e4
CM
6856 ret = btrfs_lookup_file_extent(trans, root, path,
6857 objectid, start, trans != NULL);
a52d9a80
CM
6858 if (ret < 0) {
6859 err = ret;
6860 goto out;
6861 }
6862
6863 if (ret != 0) {
6864 if (path->slots[0] == 0)
6865 goto not_found;
6866 path->slots[0]--;
6867 }
6868
5f39d397
CM
6869 leaf = path->nodes[0];
6870 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6871 struct btrfs_file_extent_item);
a52d9a80 6872 /* are we inside the extent that was found? */
5f39d397 6873 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6874 found_type = found_key.type;
5f39d397 6875 if (found_key.objectid != objectid ||
a52d9a80 6876 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6877 /*
6878 * If we backup past the first extent we want to move forward
6879 * and see if there is an extent in front of us, otherwise we'll
6880 * say there is a hole for our whole search range which can
6881 * cause problems.
6882 */
6883 extent_end = start;
6884 goto next;
a52d9a80
CM
6885 }
6886
5f39d397
CM
6887 found_type = btrfs_file_extent_type(leaf, item);
6888 extent_start = found_key.offset;
d899e052
YZ
6889 if (found_type == BTRFS_FILE_EXTENT_REG ||
6890 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6891 extent_end = extent_start +
db94535d 6892 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6893 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6894 size_t size;
514ac8ad 6895 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6896 extent_end = ALIGN(extent_start + size,
0b246afa 6897 fs_info->sectorsize);
9036c102 6898 }
25a50341 6899next:
9036c102
YZ
6900 if (start >= extent_end) {
6901 path->slots[0]++;
6902 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6903 ret = btrfs_next_leaf(root, path);
6904 if (ret < 0) {
6905 err = ret;
6906 goto out;
a52d9a80 6907 }
9036c102
YZ
6908 if (ret > 0)
6909 goto not_found;
6910 leaf = path->nodes[0];
a52d9a80 6911 }
9036c102
YZ
6912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6913 if (found_key.objectid != objectid ||
6914 found_key.type != BTRFS_EXTENT_DATA_KEY)
6915 goto not_found;
6916 if (start + len <= found_key.offset)
6917 goto not_found;
e2eca69d
WS
6918 if (start > found_key.offset)
6919 goto next;
9036c102 6920 em->start = start;
70c8a91c 6921 em->orig_start = start;
9036c102
YZ
6922 em->len = found_key.offset - start;
6923 goto not_found_em;
6924 }
6925
7ffbb598
FM
6926 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6927
d899e052
YZ
6928 if (found_type == BTRFS_FILE_EXTENT_REG ||
6929 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6930 goto insert;
6931 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6932 unsigned long ptr;
a52d9a80 6933 char *map;
3326d1b0
CM
6934 size_t size;
6935 size_t extent_offset;
6936 size_t copy_size;
a52d9a80 6937
7ffbb598 6938 if (new_inline)
689f9346 6939 goto out;
5f39d397 6940
514ac8ad 6941 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6942 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6943 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6944 size - extent_offset);
3326d1b0 6945 em->start = extent_start + extent_offset;
0b246afa 6946 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6947 em->orig_block_len = em->len;
70c8a91c 6948 em->orig_start = em->start;
689f9346 6949 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6950 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6951 if (btrfs_file_extent_compression(leaf, item) !=
6952 BTRFS_COMPRESS_NONE) {
e40da0e5 6953 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6954 extent_offset, item);
166ae5a4
ZB
6955 if (ret) {
6956 err = ret;
6957 goto out;
6958 }
c8b97818
CM
6959 } else {
6960 map = kmap(page);
6961 read_extent_buffer(leaf, map + pg_offset, ptr,
6962 copy_size);
09cbfeaf 6963 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6964 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6965 PAGE_SIZE - pg_offset -
93c82d57
CM
6966 copy_size);
6967 }
c8b97818
CM
6968 kunmap(page);
6969 }
179e29e4
CM
6970 flush_dcache_page(page);
6971 } else if (create && PageUptodate(page)) {
6bf7e080 6972 BUG();
179e29e4
CM
6973 if (!trans) {
6974 kunmap(page);
6975 free_extent_map(em);
6976 em = NULL;
ff5714cc 6977
b3b4aa74 6978 btrfs_release_path(path);
7a7eaa40 6979 trans = btrfs_join_transaction(root);
ff5714cc 6980
3612b495
TI
6981 if (IS_ERR(trans))
6982 return ERR_CAST(trans);
179e29e4
CM
6983 goto again;
6984 }
c8b97818 6985 map = kmap(page);
70dec807 6986 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6987 copy_size);
c8b97818 6988 kunmap(page);
179e29e4 6989 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6990 }
d1310b2e 6991 set_extent_uptodate(io_tree, em->start,
507903b8 6992 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6993 goto insert;
a52d9a80
CM
6994 }
6995not_found:
6996 em->start = start;
70c8a91c 6997 em->orig_start = start;
d1310b2e 6998 em->len = len;
a52d9a80 6999not_found_em:
5f39d397 7000 em->block_start = EXTENT_MAP_HOLE;
9036c102 7001 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7002insert:
b3b4aa74 7003 btrfs_release_path(path);
d1310b2e 7004 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7005 btrfs_err(fs_info,
5d163e0e
JM
7006 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7007 em->start, em->len, start, len);
a52d9a80
CM
7008 err = -EIO;
7009 goto out;
7010 }
d1310b2e
CM
7011
7012 err = 0;
890871be 7013 write_lock(&em_tree->lock);
09a2a8f9 7014 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7015 /* it is possible that someone inserted the extent into the tree
7016 * while we had the lock dropped. It is also possible that
7017 * an overlapping map exists in the tree
7018 */
a52d9a80 7019 if (ret == -EEXIST) {
3b951516 7020 struct extent_map *existing;
e6dcd2dc
CM
7021
7022 ret = 0;
7023
e6c4efd8
QW
7024 existing = search_extent_mapping(em_tree, start, len);
7025 /*
7026 * existing will always be non-NULL, since there must be
7027 * extent causing the -EEXIST.
7028 */
8dff9c85 7029 if (existing->start == em->start &&
8e2bd3b7 7030 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7031 em->block_start == existing->block_start) {
7032 /*
8e2bd3b7
OS
7033 * The existing extent map already encompasses the
7034 * entire extent map we tried to add.
8dff9c85
CM
7035 */
7036 free_extent_map(em);
7037 em = existing;
7038 err = 0;
7039
7040 } else if (start >= extent_map_end(existing) ||
32be3a1a 7041 start <= existing->start) {
e6c4efd8
QW
7042 /*
7043 * The existing extent map is the one nearest to
7044 * the [start, start + len) range which overlaps
7045 */
7046 err = merge_extent_mapping(em_tree, existing,
7047 em, start);
e1c4b745 7048 free_extent_map(existing);
e6c4efd8 7049 if (err) {
3b951516
CM
7050 free_extent_map(em);
7051 em = NULL;
7052 }
7053 } else {
7054 free_extent_map(em);
7055 em = existing;
e6dcd2dc 7056 err = 0;
a52d9a80 7057 }
a52d9a80 7058 }
890871be 7059 write_unlock(&em_tree->lock);
a52d9a80 7060out:
1abe9b8a 7061
92a1bf76 7062 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7063
527afb44 7064 btrfs_free_path(path);
a52d9a80 7065 if (trans) {
3a45bb20 7066 ret = btrfs_end_transaction(trans);
d397712b 7067 if (!err)
a52d9a80
CM
7068 err = ret;
7069 }
a52d9a80
CM
7070 if (err) {
7071 free_extent_map(em);
a52d9a80
CM
7072 return ERR_PTR(err);
7073 }
79787eaa 7074 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7075 return em;
7076}
7077
ec29ed5b
CM
7078struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7079 size_t pg_offset, u64 start, u64 len,
7080 int create)
7081{
7082 struct extent_map *em;
7083 struct extent_map *hole_em = NULL;
7084 u64 range_start = start;
7085 u64 end;
7086 u64 found;
7087 u64 found_end;
7088 int err = 0;
7089
7090 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7091 if (IS_ERR(em))
7092 return em;
7093 if (em) {
7094 /*
f9e4fb53
LB
7095 * if our em maps to
7096 * - a hole or
7097 * - a pre-alloc extent,
7098 * there might actually be delalloc bytes behind it.
ec29ed5b 7099 */
f9e4fb53
LB
7100 if (em->block_start != EXTENT_MAP_HOLE &&
7101 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7102 return em;
7103 else
7104 hole_em = em;
7105 }
7106
7107 /* check to see if we've wrapped (len == -1 or similar) */
7108 end = start + len;
7109 if (end < start)
7110 end = (u64)-1;
7111 else
7112 end -= 1;
7113
7114 em = NULL;
7115
7116 /* ok, we didn't find anything, lets look for delalloc */
7117 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7118 end, len, EXTENT_DELALLOC, 1);
7119 found_end = range_start + found;
7120 if (found_end < range_start)
7121 found_end = (u64)-1;
7122
7123 /*
7124 * we didn't find anything useful, return
7125 * the original results from get_extent()
7126 */
7127 if (range_start > end || found_end <= start) {
7128 em = hole_em;
7129 hole_em = NULL;
7130 goto out;
7131 }
7132
7133 /* adjust the range_start to make sure it doesn't
7134 * go backwards from the start they passed in
7135 */
67871254 7136 range_start = max(start, range_start);
ec29ed5b
CM
7137 found = found_end - range_start;
7138
7139 if (found > 0) {
7140 u64 hole_start = start;
7141 u64 hole_len = len;
7142
172ddd60 7143 em = alloc_extent_map();
ec29ed5b
CM
7144 if (!em) {
7145 err = -ENOMEM;
7146 goto out;
7147 }
7148 /*
7149 * when btrfs_get_extent can't find anything it
7150 * returns one huge hole
7151 *
7152 * make sure what it found really fits our range, and
7153 * adjust to make sure it is based on the start from
7154 * the caller
7155 */
7156 if (hole_em) {
7157 u64 calc_end = extent_map_end(hole_em);
7158
7159 if (calc_end <= start || (hole_em->start > end)) {
7160 free_extent_map(hole_em);
7161 hole_em = NULL;
7162 } else {
7163 hole_start = max(hole_em->start, start);
7164 hole_len = calc_end - hole_start;
7165 }
7166 }
7167 em->bdev = NULL;
7168 if (hole_em && range_start > hole_start) {
7169 /* our hole starts before our delalloc, so we
7170 * have to return just the parts of the hole
7171 * that go until the delalloc starts
7172 */
7173 em->len = min(hole_len,
7174 range_start - hole_start);
7175 em->start = hole_start;
7176 em->orig_start = hole_start;
7177 /*
7178 * don't adjust block start at all,
7179 * it is fixed at EXTENT_MAP_HOLE
7180 */
7181 em->block_start = hole_em->block_start;
7182 em->block_len = hole_len;
f9e4fb53
LB
7183 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7184 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7185 } else {
7186 em->start = range_start;
7187 em->len = found;
7188 em->orig_start = range_start;
7189 em->block_start = EXTENT_MAP_DELALLOC;
7190 em->block_len = found;
7191 }
7192 } else if (hole_em) {
7193 return hole_em;
7194 }
7195out:
7196
7197 free_extent_map(hole_em);
7198 if (err) {
7199 free_extent_map(em);
7200 return ERR_PTR(err);
7201 }
7202 return em;
7203}
7204
5f9a8a51
FM
7205static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7206 const u64 start,
7207 const u64 len,
7208 const u64 orig_start,
7209 const u64 block_start,
7210 const u64 block_len,
7211 const u64 orig_block_len,
7212 const u64 ram_bytes,
7213 const int type)
7214{
7215 struct extent_map *em = NULL;
7216 int ret;
7217
5f9a8a51
FM
7218 if (type != BTRFS_ORDERED_NOCOW) {
7219 em = create_pinned_em(inode, start, len, orig_start,
7220 block_start, block_len, orig_block_len,
7221 ram_bytes, type);
7222 if (IS_ERR(em))
7223 goto out;
7224 }
7225 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7226 len, block_len, type);
7227 if (ret) {
7228 if (em) {
7229 free_extent_map(em);
7230 btrfs_drop_extent_cache(inode, start,
7231 start + len - 1, 0);
7232 }
7233 em = ERR_PTR(ret);
7234 }
7235 out:
5f9a8a51
FM
7236
7237 return em;
7238}
7239
4b46fce2
JB
7240static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7241 u64 start, u64 len)
7242{
0b246afa 7243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7244 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7245 struct extent_map *em;
4b46fce2
JB
7246 struct btrfs_key ins;
7247 u64 alloc_hint;
7248 int ret;
4b46fce2 7249
4b46fce2 7250 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7251 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7252 0, alloc_hint, &ins, 1, 1);
00361589
JB
7253 if (ret)
7254 return ERR_PTR(ret);
4b46fce2 7255
5f9a8a51
FM
7256 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7257 ins.objectid, ins.offset, ins.offset,
7258 ins.offset, 0);
0b246afa 7259 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7260 if (IS_ERR(em))
2ff7e61e
JM
7261 btrfs_free_reserved_extent(fs_info, ins.objectid,
7262 ins.offset, 1);
de0ee0ed 7263
4b46fce2
JB
7264 return em;
7265}
7266
46bfbb5c
CM
7267/*
7268 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7269 * block must be cow'd
7270 */
00361589 7271noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7272 u64 *orig_start, u64 *orig_block_len,
7273 u64 *ram_bytes)
46bfbb5c 7274{
2ff7e61e 7275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 7276 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7277 struct btrfs_path *path;
7278 int ret;
7279 struct extent_buffer *leaf;
7280 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7281 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7282 struct btrfs_file_extent_item *fi;
7283 struct btrfs_key key;
7284 u64 disk_bytenr;
7285 u64 backref_offset;
7286 u64 extent_end;
7287 u64 num_bytes;
7288 int slot;
7289 int found_type;
7ee9e440 7290 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7291
46bfbb5c
CM
7292 path = btrfs_alloc_path();
7293 if (!path)
7294 return -ENOMEM;
7295
00361589 7296 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7297 offset, 0);
7298 if (ret < 0)
7299 goto out;
7300
7301 slot = path->slots[0];
7302 if (ret == 1) {
7303 if (slot == 0) {
7304 /* can't find the item, must cow */
7305 ret = 0;
7306 goto out;
7307 }
7308 slot--;
7309 }
7310 ret = 0;
7311 leaf = path->nodes[0];
7312 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7313 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7314 key.type != BTRFS_EXTENT_DATA_KEY) {
7315 /* not our file or wrong item type, must cow */
7316 goto out;
7317 }
7318
7319 if (key.offset > offset) {
7320 /* Wrong offset, must cow */
7321 goto out;
7322 }
7323
7324 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7325 found_type = btrfs_file_extent_type(leaf, fi);
7326 if (found_type != BTRFS_FILE_EXTENT_REG &&
7327 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7328 /* not a regular extent, must cow */
7329 goto out;
7330 }
7ee9e440
JB
7331
7332 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7333 goto out;
7334
e77751aa
MX
7335 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7336 if (extent_end <= offset)
7337 goto out;
7338
46bfbb5c 7339 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7340 if (disk_bytenr == 0)
7341 goto out;
7342
7343 if (btrfs_file_extent_compression(leaf, fi) ||
7344 btrfs_file_extent_encryption(leaf, fi) ||
7345 btrfs_file_extent_other_encoding(leaf, fi))
7346 goto out;
7347
46bfbb5c
CM
7348 backref_offset = btrfs_file_extent_offset(leaf, fi);
7349
7ee9e440
JB
7350 if (orig_start) {
7351 *orig_start = key.offset - backref_offset;
7352 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7353 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7354 }
eb384b55 7355
2ff7e61e 7356 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7357 goto out;
7b2b7085
MX
7358
7359 num_bytes = min(offset + *len, extent_end) - offset;
7360 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7361 u64 range_end;
7362
da17066c
JM
7363 range_end = round_up(offset + num_bytes,
7364 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7365 ret = test_range_bit(io_tree, offset, range_end,
7366 EXTENT_DELALLOC, 0, NULL);
7367 if (ret) {
7368 ret = -EAGAIN;
7369 goto out;
7370 }
7371 }
7372
1bda19eb 7373 btrfs_release_path(path);
46bfbb5c
CM
7374
7375 /*
7376 * look for other files referencing this extent, if we
7377 * find any we must cow
7378 */
00361589
JB
7379 trans = btrfs_join_transaction(root);
7380 if (IS_ERR(trans)) {
7381 ret = 0;
46bfbb5c 7382 goto out;
00361589
JB
7383 }
7384
7385 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7386 key.offset - backref_offset, disk_bytenr);
3a45bb20 7387 btrfs_end_transaction(trans);
00361589
JB
7388 if (ret) {
7389 ret = 0;
7390 goto out;
7391 }
46bfbb5c
CM
7392
7393 /*
7394 * adjust disk_bytenr and num_bytes to cover just the bytes
7395 * in this extent we are about to write. If there
7396 * are any csums in that range we have to cow in order
7397 * to keep the csums correct
7398 */
7399 disk_bytenr += backref_offset;
7400 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7401 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7402 goto out;
46bfbb5c
CM
7403 /*
7404 * all of the above have passed, it is safe to overwrite this extent
7405 * without cow
7406 */
eb384b55 7407 *len = num_bytes;
46bfbb5c
CM
7408 ret = 1;
7409out:
7410 btrfs_free_path(path);
7411 return ret;
7412}
7413
fc4adbff
AG
7414bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7415{
7416 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7417 int found = false;
7418 void **pagep = NULL;
7419 struct page *page = NULL;
7420 int start_idx;
7421 int end_idx;
7422
09cbfeaf 7423 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7424
7425 /*
7426 * end is the last byte in the last page. end == start is legal
7427 */
09cbfeaf 7428 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7429
7430 rcu_read_lock();
7431
7432 /* Most of the code in this while loop is lifted from
7433 * find_get_page. It's been modified to begin searching from a
7434 * page and return just the first page found in that range. If the
7435 * found idx is less than or equal to the end idx then we know that
7436 * a page exists. If no pages are found or if those pages are
7437 * outside of the range then we're fine (yay!) */
7438 while (page == NULL &&
7439 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7440 page = radix_tree_deref_slot(pagep);
7441 if (unlikely(!page))
7442 break;
7443
7444 if (radix_tree_exception(page)) {
809f9016
FM
7445 if (radix_tree_deref_retry(page)) {
7446 page = NULL;
fc4adbff 7447 continue;
809f9016 7448 }
fc4adbff
AG
7449 /*
7450 * Otherwise, shmem/tmpfs must be storing a swap entry
7451 * here as an exceptional entry: so return it without
7452 * attempting to raise page count.
7453 */
6fdef6d4 7454 page = NULL;
fc4adbff
AG
7455 break; /* TODO: Is this relevant for this use case? */
7456 }
7457
91405151
FM
7458 if (!page_cache_get_speculative(page)) {
7459 page = NULL;
fc4adbff 7460 continue;
91405151 7461 }
fc4adbff
AG
7462
7463 /*
7464 * Has the page moved?
7465 * This is part of the lockless pagecache protocol. See
7466 * include/linux/pagemap.h for details.
7467 */
7468 if (unlikely(page != *pagep)) {
09cbfeaf 7469 put_page(page);
fc4adbff
AG
7470 page = NULL;
7471 }
7472 }
7473
7474 if (page) {
7475 if (page->index <= end_idx)
7476 found = true;
09cbfeaf 7477 put_page(page);
fc4adbff
AG
7478 }
7479
7480 rcu_read_unlock();
7481 return found;
7482}
7483
eb838e73
JB
7484static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7485 struct extent_state **cached_state, int writing)
7486{
7487 struct btrfs_ordered_extent *ordered;
7488 int ret = 0;
7489
7490 while (1) {
7491 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7492 cached_state);
eb838e73
JB
7493 /*
7494 * We're concerned with the entire range that we're going to be
01327610 7495 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7496 * extents in this range.
7497 */
7498 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7499 lockend - lockstart + 1);
7500
7501 /*
7502 * We need to make sure there are no buffered pages in this
7503 * range either, we could have raced between the invalidate in
7504 * generic_file_direct_write and locking the extent. The
7505 * invalidate needs to happen so that reads after a write do not
7506 * get stale data.
7507 */
fc4adbff
AG
7508 if (!ordered &&
7509 (!writing ||
7510 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7511 break;
7512
7513 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7514 cached_state, GFP_NOFS);
7515
7516 if (ordered) {
ade77029
FM
7517 /*
7518 * If we are doing a DIO read and the ordered extent we
7519 * found is for a buffered write, we can not wait for it
7520 * to complete and retry, because if we do so we can
7521 * deadlock with concurrent buffered writes on page
7522 * locks. This happens only if our DIO read covers more
7523 * than one extent map, if at this point has already
7524 * created an ordered extent for a previous extent map
7525 * and locked its range in the inode's io tree, and a
7526 * concurrent write against that previous extent map's
7527 * range and this range started (we unlock the ranges
7528 * in the io tree only when the bios complete and
7529 * buffered writes always lock pages before attempting
7530 * to lock range in the io tree).
7531 */
7532 if (writing ||
7533 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7534 btrfs_start_ordered_extent(inode, ordered, 1);
7535 else
7536 ret = -ENOTBLK;
eb838e73
JB
7537 btrfs_put_ordered_extent(ordered);
7538 } else {
eb838e73 7539 /*
b850ae14
FM
7540 * We could trigger writeback for this range (and wait
7541 * for it to complete) and then invalidate the pages for
7542 * this range (through invalidate_inode_pages2_range()),
7543 * but that can lead us to a deadlock with a concurrent
7544 * call to readpages() (a buffered read or a defrag call
7545 * triggered a readahead) on a page lock due to an
7546 * ordered dio extent we created before but did not have
7547 * yet a corresponding bio submitted (whence it can not
7548 * complete), which makes readpages() wait for that
7549 * ordered extent to complete while holding a lock on
7550 * that page.
eb838e73 7551 */
b850ae14 7552 ret = -ENOTBLK;
eb838e73
JB
7553 }
7554
ade77029
FM
7555 if (ret)
7556 break;
7557
eb838e73
JB
7558 cond_resched();
7559 }
7560
7561 return ret;
7562}
7563
69ffb543
JB
7564static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7565 u64 len, u64 orig_start,
7566 u64 block_start, u64 block_len,
cc95bef6
JB
7567 u64 orig_block_len, u64 ram_bytes,
7568 int type)
69ffb543
JB
7569{
7570 struct extent_map_tree *em_tree;
7571 struct extent_map *em;
7572 struct btrfs_root *root = BTRFS_I(inode)->root;
7573 int ret;
7574
7575 em_tree = &BTRFS_I(inode)->extent_tree;
7576 em = alloc_extent_map();
7577 if (!em)
7578 return ERR_PTR(-ENOMEM);
7579
7580 em->start = start;
7581 em->orig_start = orig_start;
2ab28f32
JB
7582 em->mod_start = start;
7583 em->mod_len = len;
69ffb543
JB
7584 em->len = len;
7585 em->block_len = block_len;
7586 em->block_start = block_start;
7587 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7588 em->orig_block_len = orig_block_len;
cc95bef6 7589 em->ram_bytes = ram_bytes;
70c8a91c 7590 em->generation = -1;
69ffb543
JB
7591 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7592 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7593 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7594
7595 do {
7596 btrfs_drop_extent_cache(inode, em->start,
7597 em->start + em->len - 1, 0);
7598 write_lock(&em_tree->lock);
09a2a8f9 7599 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7600 write_unlock(&em_tree->lock);
7601 } while (ret == -EEXIST);
7602
7603 if (ret) {
7604 free_extent_map(em);
7605 return ERR_PTR(ret);
7606 }
7607
7608 return em;
7609}
7610
9c9464cc
FM
7611static void adjust_dio_outstanding_extents(struct inode *inode,
7612 struct btrfs_dio_data *dio_data,
7613 const u64 len)
7614{
7615 unsigned num_extents;
7616
7617 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7618 BTRFS_MAX_EXTENT_SIZE);
7619 /*
7620 * If we have an outstanding_extents count still set then we're
7621 * within our reservation, otherwise we need to adjust our inode
7622 * counter appropriately.
7623 */
c2931667 7624 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7625 dio_data->outstanding_extents -= num_extents;
7626 } else {
c2931667
LB
7627 /*
7628 * If dio write length has been split due to no large enough
7629 * contiguous space, we need to compensate our inode counter
7630 * appropriately.
7631 */
7632 u64 num_needed = num_extents - dio_data->outstanding_extents;
7633
9c9464cc 7634 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7635 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7636 spin_unlock(&BTRFS_I(inode)->lock);
7637 }
7638}
7639
4b46fce2
JB
7640static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7641 struct buffer_head *bh_result, int create)
7642{
0b246afa 7643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7644 struct extent_map *em;
eb838e73 7645 struct extent_state *cached_state = NULL;
50745b0a 7646 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7647 u64 start = iblock << inode->i_blkbits;
eb838e73 7648 u64 lockstart, lockend;
4b46fce2 7649 u64 len = bh_result->b_size;
eb838e73 7650 int unlock_bits = EXTENT_LOCKED;
0934856d 7651 int ret = 0;
eb838e73 7652
172a5049 7653 if (create)
3266789f 7654 unlock_bits |= EXTENT_DIRTY;
172a5049 7655 else
0b246afa 7656 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7657
c329861d
JB
7658 lockstart = start;
7659 lockend = start + len - 1;
7660
e1cbbfa5
JB
7661 if (current->journal_info) {
7662 /*
7663 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7664 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7665 * confused.
7666 */
50745b0a 7667 dio_data = current->journal_info;
e1cbbfa5
JB
7668 current->journal_info = NULL;
7669 }
7670
eb838e73
JB
7671 /*
7672 * If this errors out it's because we couldn't invalidate pagecache for
7673 * this range and we need to fallback to buffered.
7674 */
9c9464cc
FM
7675 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7676 create)) {
7677 ret = -ENOTBLK;
7678 goto err;
7679 }
eb838e73 7680
4b46fce2 7681 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7682 if (IS_ERR(em)) {
7683 ret = PTR_ERR(em);
7684 goto unlock_err;
7685 }
4b46fce2
JB
7686
7687 /*
7688 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7689 * io. INLINE is special, and we could probably kludge it in here, but
7690 * it's still buffered so for safety lets just fall back to the generic
7691 * buffered path.
7692 *
7693 * For COMPRESSED we _have_ to read the entire extent in so we can
7694 * decompress it, so there will be buffering required no matter what we
7695 * do, so go ahead and fallback to buffered.
7696 *
01327610 7697 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7698 * to buffered IO. Don't blame me, this is the price we pay for using
7699 * the generic code.
7700 */
7701 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7702 em->block_start == EXTENT_MAP_INLINE) {
7703 free_extent_map(em);
eb838e73
JB
7704 ret = -ENOTBLK;
7705 goto unlock_err;
4b46fce2
JB
7706 }
7707
7708 /* Just a good old fashioned hole, return */
7709 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7710 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7711 free_extent_map(em);
eb838e73 7712 goto unlock_err;
4b46fce2
JB
7713 }
7714
7715 /*
7716 * We don't allocate a new extent in the following cases
7717 *
7718 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7719 * existing extent.
7720 * 2) The extent is marked as PREALLOC. We're good to go here and can
7721 * just use the extent.
7722 *
7723 */
46bfbb5c 7724 if (!create) {
eb838e73
JB
7725 len = min(len, em->len - (start - em->start));
7726 lockstart = start + len;
7727 goto unlock;
46bfbb5c 7728 }
4b46fce2
JB
7729
7730 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7731 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7732 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7733 int type;
eb384b55 7734 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7735
7736 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7737 type = BTRFS_ORDERED_PREALLOC;
7738 else
7739 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7740 len = min(len, em->len - (start - em->start));
4b46fce2 7741 block_start = em->block_start + (start - em->start);
46bfbb5c 7742
00361589 7743 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7744 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7745 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7746 struct extent_map *em2;
0b901916 7747
5f9a8a51
FM
7748 em2 = btrfs_create_dio_extent(inode, start, len,
7749 orig_start, block_start,
7750 len, orig_block_len,
7751 ram_bytes, type);
0b246afa 7752 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7753 if (type == BTRFS_ORDERED_PREALLOC) {
7754 free_extent_map(em);
5f9a8a51 7755 em = em2;
69ffb543 7756 }
5f9a8a51
FM
7757 if (em2 && IS_ERR(em2)) {
7758 ret = PTR_ERR(em2);
eb838e73 7759 goto unlock_err;
46bfbb5c 7760 }
18513091
WX
7761 /*
7762 * For inode marked NODATACOW or extent marked PREALLOC,
7763 * use the existing or preallocated extent, so does not
7764 * need to adjust btrfs_space_info's bytes_may_use.
7765 */
7766 btrfs_free_reserved_data_space_noquota(inode,
7767 start, len);
46bfbb5c 7768 goto unlock;
4b46fce2 7769 }
4b46fce2 7770 }
00361589 7771
46bfbb5c 7772 /*
7c4c71ac
CM
7773 * this will cow the extent, reset the len in case we changed
7774 * it above
46bfbb5c 7775 */
7c4c71ac 7776 len = bh_result->b_size;
70c8a91c
JB
7777 free_extent_map(em);
7778 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7779 if (IS_ERR(em)) {
7780 ret = PTR_ERR(em);
7781 goto unlock_err;
7782 }
46bfbb5c
CM
7783 len = min(len, em->len - (start - em->start));
7784unlock:
4b46fce2
JB
7785 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7786 inode->i_blkbits;
46bfbb5c 7787 bh_result->b_size = len;
4b46fce2
JB
7788 bh_result->b_bdev = em->bdev;
7789 set_buffer_mapped(bh_result);
c3473e83
JB
7790 if (create) {
7791 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7792 set_buffer_new(bh_result);
7793
7794 /*
7795 * Need to update the i_size under the extent lock so buffered
7796 * readers will get the updated i_size when we unlock.
7797 */
7798 if (start + len > i_size_read(inode))
7799 i_size_write(inode, start + len);
0934856d 7800
9c9464cc 7801 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7802 WARN_ON(dio_data->reserve < len);
7803 dio_data->reserve -= len;
f28a4928 7804 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7805 current->journal_info = dio_data;
c3473e83 7806 }
4b46fce2 7807
eb838e73
JB
7808 /*
7809 * In the case of write we need to clear and unlock the entire range,
7810 * in the case of read we need to unlock only the end area that we
7811 * aren't using if there is any left over space.
7812 */
24c03fa5 7813 if (lockstart < lockend) {
0934856d
MX
7814 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7815 lockend, unlock_bits, 1, 0,
7816 &cached_state, GFP_NOFS);
24c03fa5 7817 } else {
eb838e73 7818 free_extent_state(cached_state);
24c03fa5 7819 }
eb838e73 7820
4b46fce2
JB
7821 free_extent_map(em);
7822
7823 return 0;
eb838e73
JB
7824
7825unlock_err:
eb838e73
JB
7826 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7827 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7828err:
50745b0a 7829 if (dio_data)
7830 current->journal_info = dio_data;
9c9464cc
FM
7831 /*
7832 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7833 * write less data then expected, so that we don't underflow our inode's
7834 * outstanding extents counter.
7835 */
7836 if (create && dio_data)
7837 adjust_dio_outstanding_extents(inode, dio_data, len);
7838
eb838e73 7839 return ret;
4b46fce2
JB
7840}
7841
8b110e39 7842static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7843 int mirror_num)
8b110e39 7844{
2ff7e61e 7845 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7846 int ret;
7847
37226b21 7848 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7849
7850 bio_get(bio);
7851
2ff7e61e 7852 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7853 if (ret)
7854 goto err;
7855
2ff7e61e 7856 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7857err:
7858 bio_put(bio);
7859 return ret;
7860}
7861
7862static int btrfs_check_dio_repairable(struct inode *inode,
7863 struct bio *failed_bio,
7864 struct io_failure_record *failrec,
7865 int failed_mirror)
7866{
ab8d0fc4 7867 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7868 int num_copies;
7869
ab8d0fc4 7870 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7871 if (num_copies == 1) {
7872 /*
7873 * we only have a single copy of the data, so don't bother with
7874 * all the retry and error correction code that follows. no
7875 * matter what the error is, it is very likely to persist.
7876 */
ab8d0fc4
JM
7877 btrfs_debug(fs_info,
7878 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7879 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7880 return 0;
7881 }
7882
7883 failrec->failed_mirror = failed_mirror;
7884 failrec->this_mirror++;
7885 if (failrec->this_mirror == failed_mirror)
7886 failrec->this_mirror++;
7887
7888 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7889 btrfs_debug(fs_info,
7890 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7891 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7892 return 0;
7893 }
7894
7895 return 1;
7896}
7897
7898static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7899 struct page *page, unsigned int pgoff,
7900 u64 start, u64 end, int failed_mirror,
7901 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7902{
7903 struct io_failure_record *failrec;
7904 struct bio *bio;
7905 int isector;
7906 int read_mode;
7907 int ret;
7908
37226b21 7909 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7910
7911 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7912 if (ret)
7913 return ret;
7914
7915 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7916 failed_mirror);
7917 if (!ret) {
7918 free_io_failure(inode, failrec);
7919 return -EIO;
7920 }
7921
2dabb324
CR
7922 if ((failed_bio->bi_vcnt > 1)
7923 || (failed_bio->bi_io_vec->bv_len
da17066c 7924 > btrfs_inode_sectorsize(inode)))
8b110e39
MX
7925 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7926 else
7927 read_mode = READ_SYNC;
7928
7929 isector = start - btrfs_io_bio(failed_bio)->logical;
7930 isector >>= inode->i_sb->s_blocksize_bits;
7931 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7932 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7933 if (!bio) {
7934 free_io_failure(inode, failrec);
7935 return -EIO;
7936 }
37226b21 7937 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7938
7939 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7940 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7941 read_mode, failrec->this_mirror, failrec->in_validation);
7942
81a75f67 7943 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7944 if (ret) {
7945 free_io_failure(inode, failrec);
7946 bio_put(bio);
7947 }
7948
7949 return ret;
7950}
7951
7952struct btrfs_retry_complete {
7953 struct completion done;
7954 struct inode *inode;
7955 u64 start;
7956 int uptodate;
7957};
7958
4246a0b6 7959static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7960{
7961 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7962 struct inode *inode;
8b110e39
MX
7963 struct bio_vec *bvec;
7964 int i;
7965
4246a0b6 7966 if (bio->bi_error)
8b110e39
MX
7967 goto end;
7968
2dabb324
CR
7969 ASSERT(bio->bi_vcnt == 1);
7970 inode = bio->bi_io_vec->bv_page->mapping->host;
da17066c 7971 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7972
8b110e39
MX
7973 done->uptodate = 1;
7974 bio_for_each_segment_all(bvec, bio, i)
7975 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7976end:
7977 complete(&done->done);
7978 bio_put(bio);
7979}
7980
7981static int __btrfs_correct_data_nocsum(struct inode *inode,
7982 struct btrfs_io_bio *io_bio)
4b46fce2 7983{
2dabb324 7984 struct btrfs_fs_info *fs_info;
2c30c71b 7985 struct bio_vec *bvec;
8b110e39 7986 struct btrfs_retry_complete done;
4b46fce2 7987 u64 start;
2dabb324
CR
7988 unsigned int pgoff;
7989 u32 sectorsize;
7990 int nr_sectors;
2c30c71b 7991 int i;
c1dc0896 7992 int ret;
4b46fce2 7993
2dabb324 7994 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7995 sectorsize = fs_info->sectorsize;
2dabb324 7996
8b110e39
MX
7997 start = io_bio->logical;
7998 done.inode = inode;
7999
8000 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8001 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8002 pgoff = bvec->bv_offset;
8003
8004next_block_or_try_again:
8b110e39
MX
8005 done.uptodate = 0;
8006 done.start = start;
8007 init_completion(&done.done);
8008
2dabb324
CR
8009 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8010 pgoff, start, start + sectorsize - 1,
8011 io_bio->mirror_num,
8012 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
8013 if (ret)
8014 return ret;
8015
8016 wait_for_completion(&done.done);
8017
8018 if (!done.uptodate) {
8019 /* We might have another mirror, so try again */
2dabb324 8020 goto next_block_or_try_again;
8b110e39
MX
8021 }
8022
2dabb324
CR
8023 start += sectorsize;
8024
8025 if (nr_sectors--) {
8026 pgoff += sectorsize;
8027 goto next_block_or_try_again;
8028 }
8b110e39
MX
8029 }
8030
8031 return 0;
8032}
8033
4246a0b6 8034static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8035{
8036 struct btrfs_retry_complete *done = bio->bi_private;
8037 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 8038 struct inode *inode;
8b110e39 8039 struct bio_vec *bvec;
2dabb324 8040 u64 start;
8b110e39
MX
8041 int uptodate;
8042 int ret;
8043 int i;
8044
4246a0b6 8045 if (bio->bi_error)
8b110e39
MX
8046 goto end;
8047
8048 uptodate = 1;
2dabb324
CR
8049
8050 start = done->start;
8051
8052 ASSERT(bio->bi_vcnt == 1);
8053 inode = bio->bi_io_vec->bv_page->mapping->host;
da17066c 8054 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8055
8b110e39
MX
8056 bio_for_each_segment_all(bvec, bio, i) {
8057 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8058 bvec->bv_page, bvec->bv_offset,
8059 done->start, bvec->bv_len);
8b110e39
MX
8060 if (!ret)
8061 clean_io_failure(done->inode, done->start,
2dabb324 8062 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8063 else
8064 uptodate = 0;
8065 }
8066
8067 done->uptodate = uptodate;
8068end:
8069 complete(&done->done);
8070 bio_put(bio);
8071}
8072
8073static int __btrfs_subio_endio_read(struct inode *inode,
8074 struct btrfs_io_bio *io_bio, int err)
8075{
2dabb324 8076 struct btrfs_fs_info *fs_info;
8b110e39
MX
8077 struct bio_vec *bvec;
8078 struct btrfs_retry_complete done;
8079 u64 start;
8080 u64 offset = 0;
2dabb324
CR
8081 u32 sectorsize;
8082 int nr_sectors;
8083 unsigned int pgoff;
8084 int csum_pos;
8b110e39
MX
8085 int i;
8086 int ret;
dc380aea 8087
2dabb324 8088 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8089 sectorsize = fs_info->sectorsize;
2dabb324 8090
8b110e39 8091 err = 0;
c1dc0896 8092 start = io_bio->logical;
8b110e39
MX
8093 done.inode = inode;
8094
c1dc0896 8095 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8096 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8097
8098 pgoff = bvec->bv_offset;
8099next_block:
8100 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8101 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8102 bvec->bv_page, pgoff, start,
8103 sectorsize);
8b110e39
MX
8104 if (likely(!ret))
8105 goto next;
8106try_again:
8107 done.uptodate = 0;
8108 done.start = start;
8109 init_completion(&done.done);
8110
2dabb324
CR
8111 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8112 pgoff, start, start + sectorsize - 1,
8113 io_bio->mirror_num,
8114 btrfs_retry_endio, &done);
8b110e39
MX
8115 if (ret) {
8116 err = ret;
8117 goto next;
8118 }
8119
8120 wait_for_completion(&done.done);
8121
8122 if (!done.uptodate) {
8123 /* We might have another mirror, so try again */
8124 goto try_again;
8125 }
8126next:
2dabb324
CR
8127 offset += sectorsize;
8128 start += sectorsize;
8129
8130 ASSERT(nr_sectors);
8131
8132 if (--nr_sectors) {
8133 pgoff += sectorsize;
8134 goto next_block;
8135 }
2c30c71b 8136 }
c1dc0896
MX
8137
8138 return err;
8139}
8140
8b110e39
MX
8141static int btrfs_subio_endio_read(struct inode *inode,
8142 struct btrfs_io_bio *io_bio, int err)
8143{
8144 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8145
8146 if (skip_csum) {
8147 if (unlikely(err))
8148 return __btrfs_correct_data_nocsum(inode, io_bio);
8149 else
8150 return 0;
8151 } else {
8152 return __btrfs_subio_endio_read(inode, io_bio, err);
8153 }
8154}
8155
4246a0b6 8156static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8157{
8158 struct btrfs_dio_private *dip = bio->bi_private;
8159 struct inode *inode = dip->inode;
8160 struct bio *dio_bio;
8161 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8162 int err = bio->bi_error;
c1dc0896 8163
8b110e39
MX
8164 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8165 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8166
4b46fce2 8167 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8168 dip->logical_offset + dip->bytes - 1);
9be3395b 8169 dio_bio = dip->dio_bio;
4b46fce2 8170
4b46fce2 8171 kfree(dip);
c0da7aa1 8172
1636d1d7 8173 dio_bio->bi_error = bio->bi_error;
4246a0b6 8174 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8175
8176 if (io_bio->end_io)
8177 io_bio->end_io(io_bio, err);
9be3395b 8178 bio_put(bio);
4b46fce2
JB
8179}
8180
14543774
FM
8181static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8182 const u64 offset,
8183 const u64 bytes,
8184 const int uptodate)
4b46fce2 8185{
0b246afa 8186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8187 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8188 u64 ordered_offset = offset;
8189 u64 ordered_bytes = bytes;
4b46fce2
JB
8190 int ret;
8191
163cf09c
CM
8192again:
8193 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8194 &ordered_offset,
4246a0b6 8195 ordered_bytes,
14543774 8196 uptodate);
4b46fce2 8197 if (!ret)
163cf09c 8198 goto out_test;
4b46fce2 8199
9e0af237
LB
8200 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8201 finish_ordered_fn, NULL, NULL);
0b246afa 8202 btrfs_queue_work(fs_info->endio_write_workers, &ordered->work);
163cf09c
CM
8203out_test:
8204 /*
8205 * our bio might span multiple ordered extents. If we haven't
8206 * completed the accounting for the whole dio, go back and try again
8207 */
14543774
FM
8208 if (ordered_offset < offset + bytes) {
8209 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8210 ordered = NULL;
163cf09c
CM
8211 goto again;
8212 }
14543774
FM
8213}
8214
8215static void btrfs_endio_direct_write(struct bio *bio)
8216{
8217 struct btrfs_dio_private *dip = bio->bi_private;
8218 struct bio *dio_bio = dip->dio_bio;
8219
8220 btrfs_endio_direct_write_update_ordered(dip->inode,
8221 dip->logical_offset,
8222 dip->bytes,
8223 !bio->bi_error);
4b46fce2 8224
4b46fce2 8225 kfree(dip);
c0da7aa1 8226
1636d1d7 8227 dio_bio->bi_error = bio->bi_error;
4246a0b6 8228 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8229 bio_put(bio);
4b46fce2
JB
8230}
8231
81a75f67 8232static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8233 struct bio *bio, int mirror_num,
8234 unsigned long bio_flags, u64 offset)
8235{
8236 int ret;
2ff7e61e 8237 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8238 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8239 return 0;
8240}
8241
4246a0b6 8242static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8243{
8244 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8245 int err = bio->bi_error;
e65e1535 8246
8b110e39
MX
8247 if (err)
8248 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8249 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
1eff9d32 8250 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8b110e39
MX
8251 (unsigned long long)bio->bi_iter.bi_sector,
8252 bio->bi_iter.bi_size, err);
8253
8254 if (dip->subio_endio)
8255 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8256
8257 if (err) {
e65e1535
MX
8258 dip->errors = 1;
8259
8260 /*
8261 * before atomic variable goto zero, we must make sure
8262 * dip->errors is perceived to be set.
8263 */
4e857c58 8264 smp_mb__before_atomic();
e65e1535
MX
8265 }
8266
8267 /* if there are more bios still pending for this dio, just exit */
8268 if (!atomic_dec_and_test(&dip->pending_bios))
8269 goto out;
8270
9be3395b 8271 if (dip->errors) {
e65e1535 8272 bio_io_error(dip->orig_bio);
9be3395b 8273 } else {
4246a0b6
CH
8274 dip->dio_bio->bi_error = 0;
8275 bio_endio(dip->orig_bio);
e65e1535
MX
8276 }
8277out:
8278 bio_put(bio);
8279}
8280
8281static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8282 u64 first_sector, gfp_t gfp_flags)
8283{
da2f0f74 8284 struct bio *bio;
22365979 8285 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8286 if (bio)
8287 bio_associate_current(bio);
8288 return bio;
e65e1535
MX
8289}
8290
2ff7e61e 8291static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8292 struct btrfs_dio_private *dip,
8293 struct bio *bio,
8294 u64 file_offset)
8295{
8296 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8297 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8298 int ret;
8299
8300 /*
8301 * We load all the csum data we need when we submit
8302 * the first bio to reduce the csum tree search and
8303 * contention.
8304 */
8305 if (dip->logical_offset == file_offset) {
2ff7e61e 8306 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8307 file_offset);
8308 if (ret)
8309 return ret;
8310 }
8311
8312 if (bio == dip->orig_bio)
8313 return 0;
8314
8315 file_offset -= dip->logical_offset;
8316 file_offset >>= inode->i_sb->s_blocksize_bits;
8317 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8318
8319 return 0;
8320}
8321
e65e1535 8322static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8323 u64 file_offset, int skip_sum,
c329861d 8324 int async_submit)
e65e1535 8325{
0b246afa 8326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8327 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8328 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8329 int ret;
8330
b812ce28
JB
8331 if (async_submit)
8332 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8333
e65e1535 8334 bio_get(bio);
5fd02043
JB
8335
8336 if (!write) {
0b246afa 8337 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8338 if (ret)
8339 goto err;
8340 }
e65e1535 8341
1ae39938
JB
8342 if (skip_sum)
8343 goto map;
8344
8345 if (write && async_submit) {
0b246afa
JM
8346 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8347 file_offset,
8348 __btrfs_submit_bio_start_direct_io,
8349 __btrfs_submit_bio_done);
e65e1535 8350 goto err;
1ae39938
JB
8351 } else if (write) {
8352 /*
8353 * If we aren't doing async submit, calculate the csum of the
8354 * bio now.
8355 */
2ff7e61e 8356 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8357 if (ret)
8358 goto err;
23ea8e5a 8359 } else {
2ff7e61e 8360 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8361 file_offset);
c2db1073
TI
8362 if (ret)
8363 goto err;
8364 }
1ae39938 8365map:
2ff7e61e 8366 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8367err:
8368 bio_put(bio);
8369 return ret;
8370}
8371
81a75f67 8372static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8373 int skip_sum)
8374{
8375 struct inode *inode = dip->inode;
0b246afa 8376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535 8377 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8378 struct bio *bio;
8379 struct bio *orig_bio = dip->orig_bio;
6a2de22f 8380 struct bio_vec *bvec;
4f024f37 8381 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8382 u64 file_offset = dip->logical_offset;
8383 u64 submit_len = 0;
8384 u64 map_length;
0b246afa 8385 u32 blocksize = fs_info->sectorsize;
1ae39938 8386 int async_submit = 0;
5f4dc8fc
CR
8387 int nr_sectors;
8388 int ret;
6a2de22f 8389 int i, j;
e65e1535 8390
4f024f37 8391 map_length = orig_bio->bi_iter.bi_size;
0b246afa
JM
8392 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8393 &map_length, NULL, 0);
7a5c3c9b 8394 if (ret)
e65e1535 8395 return -EIO;
facc8a22 8396
4f024f37 8397 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8398 bio = orig_bio;
c1dc0896 8399 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8400 goto submit;
8401 }
8402
53b381b3 8403 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8404 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8405 async_submit = 0;
8406 else
8407 async_submit = 1;
8408
02f57c7a
JB
8409 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8410 if (!bio)
8411 return -ENOMEM;
7a5c3c9b 8412
4382e33a 8413 bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
02f57c7a
JB
8414 bio->bi_private = dip;
8415 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8416 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8417 atomic_inc(&dip->pending_bios);
8418
6a2de22f 8419 bio_for_each_segment_all(bvec, orig_bio, j) {
0b246afa 8420 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
5f4dc8fc
CR
8421 i = 0;
8422next_block:
8423 if (unlikely(map_length < submit_len + blocksize ||
8424 bio_add_page(bio, bvec->bv_page, blocksize,
8425 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8426 /*
8427 * inc the count before we submit the bio so
8428 * we know the end IO handler won't happen before
8429 * we inc the count. Otherwise, the dip might get freed
8430 * before we're done setting it up
8431 */
8432 atomic_inc(&dip->pending_bios);
81a75f67 8433 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8434 file_offset, skip_sum,
c329861d 8435 async_submit);
e65e1535
MX
8436 if (ret) {
8437 bio_put(bio);
8438 atomic_dec(&dip->pending_bios);
8439 goto out_err;
8440 }
8441
e65e1535
MX
8442 start_sector += submit_len >> 9;
8443 file_offset += submit_len;
8444
8445 submit_len = 0;
e65e1535
MX
8446
8447 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8448 start_sector, GFP_NOFS);
8449 if (!bio)
8450 goto out_err;
4382e33a
BVA
8451 bio_set_op_attrs(bio, bio_op(orig_bio),
8452 bio_flags(orig_bio));
e65e1535
MX
8453 bio->bi_private = dip;
8454 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8455 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8456
4f024f37 8457 map_length = orig_bio->bi_iter.bi_size;
0b246afa 8458 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
3ec706c8 8459 start_sector << 9,
e65e1535
MX
8460 &map_length, NULL, 0);
8461 if (ret) {
8462 bio_put(bio);
8463 goto out_err;
8464 }
5f4dc8fc
CR
8465
8466 goto next_block;
e65e1535 8467 } else {
5f4dc8fc
CR
8468 submit_len += blocksize;
8469 if (--nr_sectors) {
8470 i++;
8471 goto next_block;
8472 }
e65e1535
MX
8473 }
8474 }
8475
02f57c7a 8476submit:
81a75f67 8477 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8478 async_submit);
e65e1535
MX
8479 if (!ret)
8480 return 0;
8481
8482 bio_put(bio);
8483out_err:
8484 dip->errors = 1;
8485 /*
8486 * before atomic variable goto zero, we must
8487 * make sure dip->errors is perceived to be set.
8488 */
4e857c58 8489 smp_mb__before_atomic();
e65e1535
MX
8490 if (atomic_dec_and_test(&dip->pending_bios))
8491 bio_io_error(dip->orig_bio);
8492
8493 /* bio_end_io() will handle error, so we needn't return it */
8494 return 0;
8495}
8496
8a4c1e42
MC
8497static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8498 loff_t file_offset)
4b46fce2 8499{
61de718f
FM
8500 struct btrfs_dio_private *dip = NULL;
8501 struct bio *io_bio = NULL;
23ea8e5a 8502 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8503 int skip_sum;
8a4c1e42 8504 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8505 int ret = 0;
8506
8507 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8508
9be3395b 8509 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8510 if (!io_bio) {
8511 ret = -ENOMEM;
8512 goto free_ordered;
8513 }
8514
c1dc0896 8515 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8516 if (!dip) {
8517 ret = -ENOMEM;
61de718f 8518 goto free_ordered;
4b46fce2 8519 }
4b46fce2 8520
9be3395b 8521 dip->private = dio_bio->bi_private;
4b46fce2
JB
8522 dip->inode = inode;
8523 dip->logical_offset = file_offset;
4f024f37
KO
8524 dip->bytes = dio_bio->bi_iter.bi_size;
8525 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8526 io_bio->bi_private = dip;
9be3395b
CM
8527 dip->orig_bio = io_bio;
8528 dip->dio_bio = dio_bio;
e65e1535 8529 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8530 btrfs_bio = btrfs_io_bio(io_bio);
8531 btrfs_bio->logical = file_offset;
4b46fce2 8532
c1dc0896 8533 if (write) {
9be3395b 8534 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8535 } else {
9be3395b 8536 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8537 dip->subio_endio = btrfs_subio_endio_read;
8538 }
4b46fce2 8539
f28a4928
FM
8540 /*
8541 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8542 * even if we fail to submit a bio, because in such case we do the
8543 * corresponding error handling below and it must not be done a second
8544 * time by btrfs_direct_IO().
8545 */
8546 if (write) {
8547 struct btrfs_dio_data *dio_data = current->journal_info;
8548
8549 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8550 dip->bytes;
8551 dio_data->unsubmitted_oe_range_start =
8552 dio_data->unsubmitted_oe_range_end;
8553 }
8554
81a75f67 8555 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8556 if (!ret)
eaf25d93 8557 return;
9be3395b 8558
23ea8e5a
MX
8559 if (btrfs_bio->end_io)
8560 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8561
4b46fce2
JB
8562free_ordered:
8563 /*
61de718f
FM
8564 * If we arrived here it means either we failed to submit the dip
8565 * or we either failed to clone the dio_bio or failed to allocate the
8566 * dip. If we cloned the dio_bio and allocated the dip, we can just
8567 * call bio_endio against our io_bio so that we get proper resource
8568 * cleanup if we fail to submit the dip, otherwise, we must do the
8569 * same as btrfs_endio_direct_[write|read] because we can't call these
8570 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8571 */
61de718f 8572 if (io_bio && dip) {
4246a0b6
CH
8573 io_bio->bi_error = -EIO;
8574 bio_endio(io_bio);
61de718f
FM
8575 /*
8576 * The end io callbacks free our dip, do the final put on io_bio
8577 * and all the cleanup and final put for dio_bio (through
8578 * dio_end_io()).
8579 */
8580 dip = NULL;
8581 io_bio = NULL;
8582 } else {
14543774
FM
8583 if (write)
8584 btrfs_endio_direct_write_update_ordered(inode,
8585 file_offset,
8586 dio_bio->bi_iter.bi_size,
8587 0);
8588 else
61de718f
FM
8589 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8590 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8591
4246a0b6 8592 dio_bio->bi_error = -EIO;
61de718f
FM
8593 /*
8594 * Releases and cleans up our dio_bio, no need to bio_put()
8595 * nor bio_endio()/bio_io_error() against dio_bio.
8596 */
8597 dio_end_io(dio_bio, ret);
4b46fce2 8598 }
61de718f
FM
8599 if (io_bio)
8600 bio_put(io_bio);
8601 kfree(dip);
4b46fce2
JB
8602}
8603
2ff7e61e
JM
8604static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8605 struct kiocb *iocb,
8606 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8607{
8608 int seg;
a1b75f7d 8609 int i;
0b246afa 8610 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8611 ssize_t retval = -EINVAL;
5a5f79b5
CM
8612
8613 if (offset & blocksize_mask)
8614 goto out;
8615
28060d5d
AV
8616 if (iov_iter_alignment(iter) & blocksize_mask)
8617 goto out;
a1b75f7d 8618
28060d5d 8619 /* If this is a write we don't need to check anymore */
cd27e455 8620 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8621 return 0;
8622 /*
8623 * Check to make sure we don't have duplicate iov_base's in this
8624 * iovec, if so return EINVAL, otherwise we'll get csum errors
8625 * when reading back.
8626 */
8627 for (seg = 0; seg < iter->nr_segs; seg++) {
8628 for (i = seg + 1; i < iter->nr_segs; i++) {
8629 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8630 goto out;
8631 }
5a5f79b5
CM
8632 }
8633 retval = 0;
8634out:
8635 return retval;
8636}
eb838e73 8637
c8b8e32d 8638static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8639{
4b46fce2
JB
8640 struct file *file = iocb->ki_filp;
8641 struct inode *inode = file->f_mapping->host;
0b246afa 8642 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8643 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8644 loff_t offset = iocb->ki_pos;
0934856d 8645 size_t count = 0;
2e60a51e 8646 int flags = 0;
38851cc1
MX
8647 bool wakeup = true;
8648 bool relock = false;
0934856d 8649 ssize_t ret;
4b46fce2 8650
2ff7e61e 8651 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8652 return 0;
3f7c579c 8653
fe0f07d0 8654 inode_dio_begin(inode);
4e857c58 8655 smp_mb__after_atomic();
38851cc1 8656
0e267c44 8657 /*
41bd9ca4
MX
8658 * The generic stuff only does filemap_write_and_wait_range, which
8659 * isn't enough if we've written compressed pages to this area, so
8660 * we need to flush the dirty pages again to make absolutely sure
8661 * that any outstanding dirty pages are on disk.
0e267c44 8662 */
a6cbcd4a 8663 count = iov_iter_count(iter);
41bd9ca4
MX
8664 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8665 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8666 filemap_fdatawrite_range(inode->i_mapping, offset,
8667 offset + count - 1);
0e267c44 8668
6f673763 8669 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8670 /*
8671 * If the write DIO is beyond the EOF, we need update
8672 * the isize, but it is protected by i_mutex. So we can
8673 * not unlock the i_mutex at this case.
8674 */
8675 if (offset + count <= inode->i_size) {
5955102c 8676 inode_unlock(inode);
38851cc1
MX
8677 relock = true;
8678 }
7cf5b976 8679 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8680 if (ret)
38851cc1 8681 goto out;
50745b0a 8682 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8683 BTRFS_MAX_EXTENT_SIZE - 1,
8684 BTRFS_MAX_EXTENT_SIZE);
8685
8686 /*
8687 * We need to know how many extents we reserved so that we can
8688 * do the accounting properly if we go over the number we
8689 * originally calculated. Abuse current->journal_info for this.
8690 */
da17066c 8691 dio_data.reserve = round_up(count,
0b246afa 8692 fs_info->sectorsize);
f28a4928
FM
8693 dio_data.unsubmitted_oe_range_start = (u64)offset;
8694 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8695 current->journal_info = &dio_data;
97dcdea0 8696 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8697 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8698 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8699 inode_dio_end(inode);
38851cc1
MX
8700 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8701 wakeup = false;
0934856d
MX
8702 }
8703
17f8c842 8704 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8705 fs_info->fs_devices->latest_bdev,
c8b8e32d 8706 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8707 btrfs_submit_direct, flags);
6f673763 8708 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8709 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8710 current->journal_info = NULL;
ddba1bfc 8711 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8712 if (dio_data.reserve)
7cf5b976
QW
8713 btrfs_delalloc_release_space(inode, offset,
8714 dio_data.reserve);
f28a4928
FM
8715 /*
8716 * On error we might have left some ordered extents
8717 * without submitting corresponding bios for them, so
8718 * cleanup them up to avoid other tasks getting them
8719 * and waiting for them to complete forever.
8720 */
8721 if (dio_data.unsubmitted_oe_range_start <
8722 dio_data.unsubmitted_oe_range_end)
8723 btrfs_endio_direct_write_update_ordered(inode,
8724 dio_data.unsubmitted_oe_range_start,
8725 dio_data.unsubmitted_oe_range_end -
8726 dio_data.unsubmitted_oe_range_start,
8727 0);
ddba1bfc 8728 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8729 btrfs_delalloc_release_space(inode, offset,
8730 count - (size_t)ret);
0934856d 8731 }
38851cc1 8732out:
2e60a51e 8733 if (wakeup)
fe0f07d0 8734 inode_dio_end(inode);
38851cc1 8735 if (relock)
5955102c 8736 inode_lock(inode);
0934856d
MX
8737
8738 return ret;
16432985
CM
8739}
8740
05dadc09
TI
8741#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8742
1506fcc8
YS
8743static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8744 __u64 start, __u64 len)
8745{
05dadc09
TI
8746 int ret;
8747
8748 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8749 if (ret)
8750 return ret;
8751
ec29ed5b 8752 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8753}
8754
a52d9a80 8755int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8756{
d1310b2e
CM
8757 struct extent_io_tree *tree;
8758 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8759 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8760}
1832a6d5 8761
a52d9a80 8762static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8763{
d1310b2e 8764 struct extent_io_tree *tree;
be7bd730
JB
8765 struct inode *inode = page->mapping->host;
8766 int ret;
b888db2b
CM
8767
8768 if (current->flags & PF_MEMALLOC) {
8769 redirty_page_for_writepage(wbc, page);
8770 unlock_page(page);
8771 return 0;
8772 }
be7bd730
JB
8773
8774 /*
8775 * If we are under memory pressure we will call this directly from the
8776 * VM, we need to make sure we have the inode referenced for the ordered
8777 * extent. If not just return like we didn't do anything.
8778 */
8779 if (!igrab(inode)) {
8780 redirty_page_for_writepage(wbc, page);
8781 return AOP_WRITEPAGE_ACTIVATE;
8782 }
d1310b2e 8783 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8784 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8785 btrfs_add_delayed_iput(inode);
8786 return ret;
9ebefb18
CM
8787}
8788
48a3b636
ES
8789static int btrfs_writepages(struct address_space *mapping,
8790 struct writeback_control *wbc)
b293f02e 8791{
d1310b2e 8792 struct extent_io_tree *tree;
771ed689 8793
d1310b2e 8794 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8795 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8796}
8797
3ab2fb5a
CM
8798static int
8799btrfs_readpages(struct file *file, struct address_space *mapping,
8800 struct list_head *pages, unsigned nr_pages)
8801{
d1310b2e
CM
8802 struct extent_io_tree *tree;
8803 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8804 return extent_readpages(tree, mapping, pages, nr_pages,
8805 btrfs_get_extent);
8806}
e6dcd2dc 8807static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8808{
d1310b2e
CM
8809 struct extent_io_tree *tree;
8810 struct extent_map_tree *map;
a52d9a80 8811 int ret;
8c2383c3 8812
d1310b2e
CM
8813 tree = &BTRFS_I(page->mapping->host)->io_tree;
8814 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8815 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8816 if (ret == 1) {
8817 ClearPagePrivate(page);
8818 set_page_private(page, 0);
09cbfeaf 8819 put_page(page);
39279cc3 8820 }
a52d9a80 8821 return ret;
39279cc3
CM
8822}
8823
e6dcd2dc
CM
8824static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8825{
98509cfc
CM
8826 if (PageWriteback(page) || PageDirty(page))
8827 return 0;
b335b003 8828 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8829}
8830
d47992f8
LC
8831static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8832 unsigned int length)
39279cc3 8833{
5fd02043 8834 struct inode *inode = page->mapping->host;
d1310b2e 8835 struct extent_io_tree *tree;
e6dcd2dc 8836 struct btrfs_ordered_extent *ordered;
2ac55d41 8837 struct extent_state *cached_state = NULL;
e6dcd2dc 8838 u64 page_start = page_offset(page);
09cbfeaf 8839 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8840 u64 start;
8841 u64 end;
131e404a 8842 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8843
8b62b72b
CM
8844 /*
8845 * we have the page locked, so new writeback can't start,
8846 * and the dirty bit won't be cleared while we are here.
8847 *
8848 * Wait for IO on this page so that we can safely clear
8849 * the PagePrivate2 bit and do ordered accounting
8850 */
e6dcd2dc 8851 wait_on_page_writeback(page);
8b62b72b 8852
5fd02043 8853 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8854 if (offset) {
8855 btrfs_releasepage(page, GFP_NOFS);
8856 return;
8857 }
131e404a
FDBM
8858
8859 if (!inode_evicting)
ff13db41 8860 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8861again:
8862 start = page_start;
8863 ordered = btrfs_lookup_ordered_range(inode, start,
8864 page_end - start + 1);
e6dcd2dc 8865 if (ordered) {
dbfdb6d1 8866 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8867 /*
8868 * IO on this page will never be started, so we need
8869 * to account for any ordered extents now
8870 */
131e404a 8871 if (!inode_evicting)
dbfdb6d1 8872 clear_extent_bit(tree, start, end,
131e404a
FDBM
8873 EXTENT_DIRTY | EXTENT_DELALLOC |
8874 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8875 EXTENT_DEFRAG, 1, 0, &cached_state,
8876 GFP_NOFS);
8b62b72b
CM
8877 /*
8878 * whoever cleared the private bit is responsible
8879 * for the finish_ordered_io
8880 */
77cef2ec
JB
8881 if (TestClearPagePrivate2(page)) {
8882 struct btrfs_ordered_inode_tree *tree;
8883 u64 new_len;
8884
8885 tree = &BTRFS_I(inode)->ordered_tree;
8886
8887 spin_lock_irq(&tree->lock);
8888 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8889 new_len = start - ordered->file_offset;
77cef2ec
JB
8890 if (new_len < ordered->truncated_len)
8891 ordered->truncated_len = new_len;
8892 spin_unlock_irq(&tree->lock);
8893
8894 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8895 start,
8896 end - start + 1, 1))
77cef2ec 8897 btrfs_finish_ordered_io(ordered);
8b62b72b 8898 }
e6dcd2dc 8899 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8900 if (!inode_evicting) {
8901 cached_state = NULL;
dbfdb6d1 8902 lock_extent_bits(tree, start, end,
131e404a
FDBM
8903 &cached_state);
8904 }
dbfdb6d1
CR
8905
8906 start = end + 1;
8907 if (start < page_end)
8908 goto again;
131e404a
FDBM
8909 }
8910
b9d0b389
QW
8911 /*
8912 * Qgroup reserved space handler
8913 * Page here will be either
8914 * 1) Already written to disk
8915 * In this case, its reserved space is released from data rsv map
8916 * and will be freed by delayed_ref handler finally.
8917 * So even we call qgroup_free_data(), it won't decrease reserved
8918 * space.
8919 * 2) Not written to disk
0b34c261
GR
8920 * This means the reserved space should be freed here. However,
8921 * if a truncate invalidates the page (by clearing PageDirty)
8922 * and the page is accounted for while allocating extent
8923 * in btrfs_check_data_free_space() we let delayed_ref to
8924 * free the entire extent.
b9d0b389 8925 */
0b34c261
GR
8926 if (PageDirty(page))
8927 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8928 if (!inode_evicting) {
8929 clear_extent_bit(tree, page_start, page_end,
8930 EXTENT_LOCKED | EXTENT_DIRTY |
8931 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8932 EXTENT_DEFRAG, 1, 1,
8933 &cached_state, GFP_NOFS);
8934
8935 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8936 }
e6dcd2dc 8937
4a096752 8938 ClearPageChecked(page);
9ad6b7bc 8939 if (PagePrivate(page)) {
9ad6b7bc
CM
8940 ClearPagePrivate(page);
8941 set_page_private(page, 0);
09cbfeaf 8942 put_page(page);
9ad6b7bc 8943 }
39279cc3
CM
8944}
8945
9ebefb18
CM
8946/*
8947 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8948 * called from a page fault handler when a page is first dirtied. Hence we must
8949 * be careful to check for EOF conditions here. We set the page up correctly
8950 * for a written page which means we get ENOSPC checking when writing into
8951 * holes and correct delalloc and unwritten extent mapping on filesystems that
8952 * support these features.
8953 *
8954 * We are not allowed to take the i_mutex here so we have to play games to
8955 * protect against truncate races as the page could now be beyond EOF. Because
8956 * vmtruncate() writes the inode size before removing pages, once we have the
8957 * page lock we can determine safely if the page is beyond EOF. If it is not
8958 * beyond EOF, then the page is guaranteed safe against truncation until we
8959 * unlock the page.
8960 */
c2ec175c 8961int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8962{
c2ec175c 8963 struct page *page = vmf->page;
496ad9aa 8964 struct inode *inode = file_inode(vma->vm_file);
0b246afa 8965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8966 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8967 struct btrfs_ordered_extent *ordered;
2ac55d41 8968 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8969 char *kaddr;
8970 unsigned long zero_start;
9ebefb18 8971 loff_t size;
1832a6d5 8972 int ret;
9998eb70 8973 int reserved = 0;
d0b7da88 8974 u64 reserved_space;
a52d9a80 8975 u64 page_start;
e6dcd2dc 8976 u64 page_end;
d0b7da88
CR
8977 u64 end;
8978
09cbfeaf 8979 reserved_space = PAGE_SIZE;
9ebefb18 8980
b2b5ef5c 8981 sb_start_pagefault(inode->i_sb);
df480633 8982 page_start = page_offset(page);
09cbfeaf 8983 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8984 end = page_end;
df480633 8985
d0b7da88
CR
8986 /*
8987 * Reserving delalloc space after obtaining the page lock can lead to
8988 * deadlock. For example, if a dirty page is locked by this function
8989 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8990 * dirty page write out, then the btrfs_writepage() function could
8991 * end up waiting indefinitely to get a lock on the page currently
8992 * being processed by btrfs_page_mkwrite() function.
8993 */
7cf5b976 8994 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8995 reserved_space);
9998eb70 8996 if (!ret) {
e41f941a 8997 ret = file_update_time(vma->vm_file);
9998eb70
CM
8998 reserved = 1;
8999 }
56a76f82
NP
9000 if (ret) {
9001 if (ret == -ENOMEM)
9002 ret = VM_FAULT_OOM;
9003 else /* -ENOSPC, -EIO, etc */
9004 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9005 if (reserved)
9006 goto out;
9007 goto out_noreserve;
56a76f82 9008 }
1832a6d5 9009
56a76f82 9010 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9011again:
9ebefb18 9012 lock_page(page);
9ebefb18 9013 size = i_size_read(inode);
a52d9a80 9014
9ebefb18 9015 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9016 (page_start >= size)) {
9ebefb18
CM
9017 /* page got truncated out from underneath us */
9018 goto out_unlock;
9019 }
e6dcd2dc
CM
9020 wait_on_page_writeback(page);
9021
ff13db41 9022 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9023 set_page_extent_mapped(page);
9024
eb84ae03
CM
9025 /*
9026 * we can't set the delalloc bits if there are pending ordered
9027 * extents. Drop our locks and wait for them to finish
9028 */
d0b7da88 9029 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 9030 if (ordered) {
2ac55d41
JB
9031 unlock_extent_cached(io_tree, page_start, page_end,
9032 &cached_state, GFP_NOFS);
e6dcd2dc 9033 unlock_page(page);
eb84ae03 9034 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9035 btrfs_put_ordered_extent(ordered);
9036 goto again;
9037 }
9038
09cbfeaf 9039 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9040 reserved_space = round_up(size - page_start,
0b246afa 9041 fs_info->sectorsize);
09cbfeaf 9042 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9043 end = page_start + reserved_space - 1;
9044 spin_lock(&BTRFS_I(inode)->lock);
9045 BTRFS_I(inode)->outstanding_extents++;
9046 spin_unlock(&BTRFS_I(inode)->lock);
9047 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9048 PAGE_SIZE - reserved_space);
d0b7da88
CR
9049 }
9050 }
9051
fbf19087
JB
9052 /*
9053 * XXX - page_mkwrite gets called every time the page is dirtied, even
9054 * if it was already dirty, so for space accounting reasons we need to
9055 * clear any delalloc bits for the range we are fixing to save. There
9056 * is probably a better way to do this, but for now keep consistent with
9057 * prepare_pages in the normal write path.
9058 */
d0b7da88 9059 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9060 EXTENT_DIRTY | EXTENT_DELALLOC |
9061 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9062 0, 0, &cached_state, GFP_NOFS);
fbf19087 9063
d0b7da88 9064 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9065 &cached_state, 0);
9ed74f2d 9066 if (ret) {
2ac55d41
JB
9067 unlock_extent_cached(io_tree, page_start, page_end,
9068 &cached_state, GFP_NOFS);
9ed74f2d
JB
9069 ret = VM_FAULT_SIGBUS;
9070 goto out_unlock;
9071 }
e6dcd2dc 9072 ret = 0;
9ebefb18
CM
9073
9074 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9075 if (page_start + PAGE_SIZE > size)
9076 zero_start = size & ~PAGE_MASK;
9ebefb18 9077 else
09cbfeaf 9078 zero_start = PAGE_SIZE;
9ebefb18 9079
09cbfeaf 9080 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9081 kaddr = kmap(page);
09cbfeaf 9082 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9083 flush_dcache_page(page);
9084 kunmap(page);
9085 }
247e743c 9086 ClearPageChecked(page);
e6dcd2dc 9087 set_page_dirty(page);
50a9b214 9088 SetPageUptodate(page);
5a3f23d5 9089
0b246afa 9090 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9091 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9092 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9093
2ac55d41 9094 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9095
9096out_unlock:
b2b5ef5c
JK
9097 if (!ret) {
9098 sb_end_pagefault(inode->i_sb);
50a9b214 9099 return VM_FAULT_LOCKED;
b2b5ef5c 9100 }
9ebefb18 9101 unlock_page(page);
1832a6d5 9102out:
d0b7da88 9103 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9104out_noreserve:
b2b5ef5c 9105 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9106 return ret;
9107}
9108
a41ad394 9109static int btrfs_truncate(struct inode *inode)
39279cc3 9110{
0b246afa 9111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9112 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9113 struct btrfs_block_rsv *rsv;
a71754fc 9114 int ret = 0;
3893e33b 9115 int err = 0;
39279cc3 9116 struct btrfs_trans_handle *trans;
0b246afa
JM
9117 u64 mask = fs_info->sectorsize - 1;
9118 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9119
0ef8b726
JB
9120 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9121 (u64)-1);
9122 if (ret)
9123 return ret;
39279cc3 9124
fcb80c2a 9125 /*
01327610 9126 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9127 * 3 things going on here
9128 *
9129 * 1) We need to reserve space for our orphan item and the space to
9130 * delete our orphan item. Lord knows we don't want to have a dangling
9131 * orphan item because we didn't reserve space to remove it.
9132 *
9133 * 2) We need to reserve space to update our inode.
9134 *
9135 * 3) We need to have something to cache all the space that is going to
9136 * be free'd up by the truncate operation, but also have some slack
9137 * space reserved in case it uses space during the truncate (thank you
9138 * very much snapshotting).
9139 *
01327610 9140 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9141 * space doing the truncate, and we have no earthly idea how much space
01327610 9142 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9143 * doesn't end up using space reserved for updating the inode or
9144 * removing the orphan item. We also need to be able to stop the
9145 * transaction and start a new one, which means we need to be able to
9146 * update the inode several times, and we have no idea of knowing how
9147 * many times that will be, so we can't just reserve 1 item for the
01327610 9148 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9149 * Then there is the orphan item, which does indeed need to be held on
9150 * to for the whole operation, and we need nobody to touch this reserved
9151 * space except the orphan code.
9152 *
9153 * So that leaves us with
9154 *
9155 * 1) root->orphan_block_rsv - for the orphan deletion.
9156 * 2) rsv - for the truncate reservation, which we will steal from the
9157 * transaction reservation.
9158 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9159 * updating the inode.
9160 */
2ff7e61e 9161 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9162 if (!rsv)
9163 return -ENOMEM;
4a338542 9164 rsv->size = min_size;
ca7e70f5 9165 rsv->failfast = 1;
f0cd846e 9166
907cbceb 9167 /*
07127184 9168 * 1 for the truncate slack space
907cbceb
JB
9169 * 1 for updating the inode.
9170 */
f3fe820c 9171 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9172 if (IS_ERR(trans)) {
9173 err = PTR_ERR(trans);
9174 goto out;
9175 }
f0cd846e 9176
907cbceb 9177 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9178 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9179 min_size, 0);
fcb80c2a 9180 BUG_ON(ret);
f0cd846e 9181
5dc562c5
JB
9182 /*
9183 * So if we truncate and then write and fsync we normally would just
9184 * write the extents that changed, which is a problem if we need to
9185 * first truncate that entire inode. So set this flag so we write out
9186 * all of the extents in the inode to the sync log so we're completely
9187 * safe.
9188 */
9189 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9190 trans->block_rsv = rsv;
907cbceb 9191
8082510e
YZ
9192 while (1) {
9193 ret = btrfs_truncate_inode_items(trans, root, inode,
9194 inode->i_size,
9195 BTRFS_EXTENT_DATA_KEY);
28ed1345 9196 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9197 err = ret;
8082510e 9198 break;
3893e33b 9199 }
39279cc3 9200
0b246afa 9201 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9202 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9203 if (ret) {
9204 err = ret;
9205 break;
9206 }
ca7e70f5 9207
3a45bb20 9208 btrfs_end_transaction(trans);
2ff7e61e 9209 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9210
9211 trans = btrfs_start_transaction(root, 2);
9212 if (IS_ERR(trans)) {
9213 ret = err = PTR_ERR(trans);
9214 trans = NULL;
9215 break;
9216 }
9217
47b5d646 9218 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9219 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9220 rsv, min_size, 0);
ca7e70f5
JB
9221 BUG_ON(ret); /* shouldn't happen */
9222 trans->block_rsv = rsv;
8082510e
YZ
9223 }
9224
9225 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9226 trans->block_rsv = root->orphan_block_rsv;
8082510e 9227 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9228 if (ret)
9229 err = ret;
8082510e
YZ
9230 }
9231
917c16b2 9232 if (trans) {
0b246afa 9233 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9234 ret = btrfs_update_inode(trans, root, inode);
9235 if (ret && !err)
9236 err = ret;
7b128766 9237
3a45bb20 9238 ret = btrfs_end_transaction(trans);
2ff7e61e 9239 btrfs_btree_balance_dirty(fs_info);
917c16b2 9240 }
fcb80c2a 9241out:
2ff7e61e 9242 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9243
3893e33b
JB
9244 if (ret && !err)
9245 err = ret;
a41ad394 9246
3893e33b 9247 return err;
39279cc3
CM
9248}
9249
d352ac68
CM
9250/*
9251 * create a new subvolume directory/inode (helper for the ioctl).
9252 */
d2fb3437 9253int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9254 struct btrfs_root *new_root,
9255 struct btrfs_root *parent_root,
9256 u64 new_dirid)
39279cc3 9257{
39279cc3 9258 struct inode *inode;
76dda93c 9259 int err;
00e4e6b3 9260 u64 index = 0;
39279cc3 9261
12fc9d09
FA
9262 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9263 new_dirid, new_dirid,
9264 S_IFDIR | (~current_umask() & S_IRWXUGO),
9265 &index);
54aa1f4d 9266 if (IS_ERR(inode))
f46b5a66 9267 return PTR_ERR(inode);
39279cc3
CM
9268 inode->i_op = &btrfs_dir_inode_operations;
9269 inode->i_fop = &btrfs_dir_file_operations;
9270
bfe86848 9271 set_nlink(inode, 1);
dbe674a9 9272 btrfs_i_size_write(inode, 0);
b0d5d10f 9273 unlock_new_inode(inode);
3b96362c 9274
63541927
FDBM
9275 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9276 if (err)
9277 btrfs_err(new_root->fs_info,
351fd353 9278 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9279 new_root->root_key.objectid, err);
9280
76dda93c 9281 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9282
76dda93c 9283 iput(inode);
ce598979 9284 return err;
39279cc3
CM
9285}
9286
39279cc3
CM
9287struct inode *btrfs_alloc_inode(struct super_block *sb)
9288{
9289 struct btrfs_inode *ei;
2ead6ae7 9290 struct inode *inode;
39279cc3
CM
9291
9292 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9293 if (!ei)
9294 return NULL;
2ead6ae7
YZ
9295
9296 ei->root = NULL;
2ead6ae7 9297 ei->generation = 0;
15ee9bc7 9298 ei->last_trans = 0;
257c62e1 9299 ei->last_sub_trans = 0;
e02119d5 9300 ei->logged_trans = 0;
2ead6ae7 9301 ei->delalloc_bytes = 0;
47059d93 9302 ei->defrag_bytes = 0;
2ead6ae7
YZ
9303 ei->disk_i_size = 0;
9304 ei->flags = 0;
7709cde3 9305 ei->csum_bytes = 0;
2ead6ae7 9306 ei->index_cnt = (u64)-1;
67de1176 9307 ei->dir_index = 0;
2ead6ae7 9308 ei->last_unlink_trans = 0;
46d8bc34 9309 ei->last_log_commit = 0;
8089fe62 9310 ei->delayed_iput_count = 0;
2ead6ae7 9311
9e0baf60
JB
9312 spin_lock_init(&ei->lock);
9313 ei->outstanding_extents = 0;
9314 ei->reserved_extents = 0;
2ead6ae7 9315
72ac3c0d 9316 ei->runtime_flags = 0;
261507a0 9317 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9318
16cdcec7
MX
9319 ei->delayed_node = NULL;
9320
9cc97d64 9321 ei->i_otime.tv_sec = 0;
9322 ei->i_otime.tv_nsec = 0;
9323
2ead6ae7 9324 inode = &ei->vfs_inode;
a8067e02 9325 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9326 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9327 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9328 ei->io_tree.track_uptodate = 1;
9329 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9330 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9331 mutex_init(&ei->log_mutex);
f248679e 9332 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9333 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9334 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9335 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9336 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9337 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9338
9339 return inode;
39279cc3
CM
9340}
9341
aaedb55b
JB
9342#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9343void btrfs_test_destroy_inode(struct inode *inode)
9344{
9345 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9346 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9347}
9348#endif
9349
fa0d7e3d
NP
9350static void btrfs_i_callback(struct rcu_head *head)
9351{
9352 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9353 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9354}
9355
39279cc3
CM
9356void btrfs_destroy_inode(struct inode *inode)
9357{
0b246afa 9358 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9359 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9360 struct btrfs_root *root = BTRFS_I(inode)->root;
9361
b3d9b7a3 9362 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9363 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9364 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9365 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9366 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9367 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9368 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9369
a6dbd429
JB
9370 /*
9371 * This can happen where we create an inode, but somebody else also
9372 * created the same inode and we need to destroy the one we already
9373 * created.
9374 */
9375 if (!root)
9376 goto free;
9377
8a35d95f
JB
9378 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9379 &BTRFS_I(inode)->runtime_flags)) {
0b246afa
JM
9380 btrfs_info(fs_info, "inode %llu still on the orphan list",
9381 btrfs_ino(inode));
8a35d95f 9382 atomic_dec(&root->orphan_inodes);
7b128766 9383 }
7b128766 9384
d397712b 9385 while (1) {
e6dcd2dc
CM
9386 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9387 if (!ordered)
9388 break;
9389 else {
0b246afa 9390 btrfs_err(fs_info,
5d163e0e
JM
9391 "found ordered extent %llu %llu on inode cleanup",
9392 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9393 btrfs_remove_ordered_extent(inode, ordered);
9394 btrfs_put_ordered_extent(ordered);
9395 btrfs_put_ordered_extent(ordered);
9396 }
9397 }
56fa9d07 9398 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9399 inode_tree_del(inode);
5b21f2ed 9400 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9401free:
fa0d7e3d 9402 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9403}
9404
45321ac5 9405int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9406{
9407 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9408
6379ef9f
NA
9409 if (root == NULL)
9410 return 1;
9411
fa6ac876 9412 /* the snap/subvol tree is on deleting */
69e9c6c6 9413 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9414 return 1;
76dda93c 9415 else
45321ac5 9416 return generic_drop_inode(inode);
76dda93c
YZ
9417}
9418
0ee0fda0 9419static void init_once(void *foo)
39279cc3
CM
9420{
9421 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9422
9423 inode_init_once(&ei->vfs_inode);
9424}
9425
9426void btrfs_destroy_cachep(void)
9427{
8c0a8537
KS
9428 /*
9429 * Make sure all delayed rcu free inodes are flushed before we
9430 * destroy cache.
9431 */
9432 rcu_barrier();
5598e900
KM
9433 kmem_cache_destroy(btrfs_inode_cachep);
9434 kmem_cache_destroy(btrfs_trans_handle_cachep);
9435 kmem_cache_destroy(btrfs_transaction_cachep);
9436 kmem_cache_destroy(btrfs_path_cachep);
9437 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9438}
9439
9440int btrfs_init_cachep(void)
9441{
837e1972 9442 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9443 sizeof(struct btrfs_inode), 0,
5d097056
VD
9444 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9445 init_once);
39279cc3
CM
9446 if (!btrfs_inode_cachep)
9447 goto fail;
9601e3f6 9448
837e1972 9449 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9450 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9451 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9452 if (!btrfs_trans_handle_cachep)
9453 goto fail;
9601e3f6 9454
837e1972 9455 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9456 sizeof(struct btrfs_transaction), 0,
fba4b697 9457 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9458 if (!btrfs_transaction_cachep)
9459 goto fail;
9601e3f6 9460
837e1972 9461 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9462 sizeof(struct btrfs_path), 0,
fba4b697 9463 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9464 if (!btrfs_path_cachep)
9465 goto fail;
9601e3f6 9466
837e1972 9467 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9468 sizeof(struct btrfs_free_space), 0,
fba4b697 9469 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9470 if (!btrfs_free_space_cachep)
9471 goto fail;
9472
39279cc3
CM
9473 return 0;
9474fail:
9475 btrfs_destroy_cachep();
9476 return -ENOMEM;
9477}
9478
9479static int btrfs_getattr(struct vfsmount *mnt,
9480 struct dentry *dentry, struct kstat *stat)
9481{
df0af1a5 9482 u64 delalloc_bytes;
2b0143b5 9483 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9484 u32 blocksize = inode->i_sb->s_blocksize;
9485
39279cc3 9486 generic_fillattr(inode, stat);
0ee5dc67 9487 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9488
9489 spin_lock(&BTRFS_I(inode)->lock);
9490 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9491 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9492 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9493 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9494 return 0;
9495}
9496
cdd1fedf
DF
9497static int btrfs_rename_exchange(struct inode *old_dir,
9498 struct dentry *old_dentry,
9499 struct inode *new_dir,
9500 struct dentry *new_dentry)
9501{
0b246afa 9502 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9503 struct btrfs_trans_handle *trans;
9504 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9505 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9506 struct inode *new_inode = new_dentry->d_inode;
9507 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9508 struct timespec ctime = current_time(old_inode);
cdd1fedf
DF
9509 struct dentry *parent;
9510 u64 old_ino = btrfs_ino(old_inode);
9511 u64 new_ino = btrfs_ino(new_inode);
9512 u64 old_idx = 0;
9513 u64 new_idx = 0;
9514 u64 root_objectid;
9515 int ret;
86e8aa0e
FM
9516 bool root_log_pinned = false;
9517 bool dest_log_pinned = false;
cdd1fedf
DF
9518
9519 /* we only allow rename subvolume link between subvolumes */
9520 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9521 return -EXDEV;
9522
9523 /* close the race window with snapshot create/destroy ioctl */
9524 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9525 down_read(&fs_info->subvol_sem);
cdd1fedf 9526 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9527 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9528
9529 /*
9530 * We want to reserve the absolute worst case amount of items. So if
9531 * both inodes are subvols and we need to unlink them then that would
9532 * require 4 item modifications, but if they are both normal inodes it
9533 * would require 5 item modifications, so we'll assume their normal
9534 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9535 * should cover the worst case number of items we'll modify.
9536 */
9537 trans = btrfs_start_transaction(root, 12);
9538 if (IS_ERR(trans)) {
9539 ret = PTR_ERR(trans);
9540 goto out_notrans;
9541 }
9542
9543 /*
9544 * We need to find a free sequence number both in the source and
9545 * in the destination directory for the exchange.
9546 */
9547 ret = btrfs_set_inode_index(new_dir, &old_idx);
9548 if (ret)
9549 goto out_fail;
9550 ret = btrfs_set_inode_index(old_dir, &new_idx);
9551 if (ret)
9552 goto out_fail;
9553
9554 BTRFS_I(old_inode)->dir_index = 0ULL;
9555 BTRFS_I(new_inode)->dir_index = 0ULL;
9556
9557 /* Reference for the source. */
9558 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9559 /* force full log commit if subvolume involved. */
0b246afa 9560 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9561 } else {
376e5a57
FM
9562 btrfs_pin_log_trans(root);
9563 root_log_pinned = true;
cdd1fedf
DF
9564 ret = btrfs_insert_inode_ref(trans, dest,
9565 new_dentry->d_name.name,
9566 new_dentry->d_name.len,
9567 old_ino,
9568 btrfs_ino(new_dir), old_idx);
9569 if (ret)
9570 goto out_fail;
cdd1fedf
DF
9571 }
9572
9573 /* And now for the dest. */
9574 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9575 /* force full log commit if subvolume involved. */
0b246afa 9576 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9577 } else {
376e5a57
FM
9578 btrfs_pin_log_trans(dest);
9579 dest_log_pinned = true;
cdd1fedf
DF
9580 ret = btrfs_insert_inode_ref(trans, root,
9581 old_dentry->d_name.name,
9582 old_dentry->d_name.len,
9583 new_ino,
9584 btrfs_ino(old_dir), new_idx);
9585 if (ret)
9586 goto out_fail;
cdd1fedf
DF
9587 }
9588
9589 /* Update inode version and ctime/mtime. */
9590 inode_inc_iversion(old_dir);
9591 inode_inc_iversion(new_dir);
9592 inode_inc_iversion(old_inode);
9593 inode_inc_iversion(new_inode);
9594 old_dir->i_ctime = old_dir->i_mtime = ctime;
9595 new_dir->i_ctime = new_dir->i_mtime = ctime;
9596 old_inode->i_ctime = ctime;
9597 new_inode->i_ctime = ctime;
9598
9599 if (old_dentry->d_parent != new_dentry->d_parent) {
9600 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9601 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9602 }
9603
9604 /* src is a subvolume */
9605 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9606 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9607 ret = btrfs_unlink_subvol(trans, root, old_dir,
9608 root_objectid,
9609 old_dentry->d_name.name,
9610 old_dentry->d_name.len);
9611 } else { /* src is an inode */
9612 ret = __btrfs_unlink_inode(trans, root, old_dir,
9613 old_dentry->d_inode,
9614 old_dentry->d_name.name,
9615 old_dentry->d_name.len);
9616 if (!ret)
9617 ret = btrfs_update_inode(trans, root, old_inode);
9618 }
9619 if (ret) {
66642832 9620 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9621 goto out_fail;
9622 }
9623
9624 /* dest is a subvolume */
9625 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9626 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9627 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9628 root_objectid,
9629 new_dentry->d_name.name,
9630 new_dentry->d_name.len);
9631 } else { /* dest is an inode */
9632 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9633 new_dentry->d_inode,
9634 new_dentry->d_name.name,
9635 new_dentry->d_name.len);
9636 if (!ret)
9637 ret = btrfs_update_inode(trans, dest, new_inode);
9638 }
9639 if (ret) {
66642832 9640 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9641 goto out_fail;
9642 }
9643
9644 ret = btrfs_add_link(trans, new_dir, old_inode,
9645 new_dentry->d_name.name,
9646 new_dentry->d_name.len, 0, old_idx);
9647 if (ret) {
66642832 9648 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9649 goto out_fail;
9650 }
9651
9652 ret = btrfs_add_link(trans, old_dir, new_inode,
9653 old_dentry->d_name.name,
9654 old_dentry->d_name.len, 0, new_idx);
9655 if (ret) {
66642832 9656 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9657 goto out_fail;
9658 }
9659
9660 if (old_inode->i_nlink == 1)
9661 BTRFS_I(old_inode)->dir_index = old_idx;
9662 if (new_inode->i_nlink == 1)
9663 BTRFS_I(new_inode)->dir_index = new_idx;
9664
86e8aa0e 9665 if (root_log_pinned) {
cdd1fedf
DF
9666 parent = new_dentry->d_parent;
9667 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9668 btrfs_end_log_trans(root);
86e8aa0e 9669 root_log_pinned = false;
cdd1fedf 9670 }
86e8aa0e 9671 if (dest_log_pinned) {
cdd1fedf
DF
9672 parent = old_dentry->d_parent;
9673 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9674 btrfs_end_log_trans(dest);
86e8aa0e 9675 dest_log_pinned = false;
cdd1fedf
DF
9676 }
9677out_fail:
86e8aa0e
FM
9678 /*
9679 * If we have pinned a log and an error happened, we unpin tasks
9680 * trying to sync the log and force them to fallback to a transaction
9681 * commit if the log currently contains any of the inodes involved in
9682 * this rename operation (to ensure we do not persist a log with an
9683 * inconsistent state for any of these inodes or leading to any
9684 * inconsistencies when replayed). If the transaction was aborted, the
9685 * abortion reason is propagated to userspace when attempting to commit
9686 * the transaction. If the log does not contain any of these inodes, we
9687 * allow the tasks to sync it.
9688 */
9689 if (ret && (root_log_pinned || dest_log_pinned)) {
0b246afa
JM
9690 if (btrfs_inode_in_log(old_dir, fs_info->generation) ||
9691 btrfs_inode_in_log(new_dir, fs_info->generation) ||
9692 btrfs_inode_in_log(old_inode, fs_info->generation) ||
86e8aa0e 9693 (new_inode &&
0b246afa
JM
9694 btrfs_inode_in_log(new_inode, fs_info->generation)))
9695 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9696
9697 if (root_log_pinned) {
9698 btrfs_end_log_trans(root);
9699 root_log_pinned = false;
9700 }
9701 if (dest_log_pinned) {
9702 btrfs_end_log_trans(dest);
9703 dest_log_pinned = false;
9704 }
9705 }
3a45bb20 9706 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9707out_notrans:
9708 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9709 up_read(&fs_info->subvol_sem);
cdd1fedf 9710 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9711 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9712
9713 return ret;
9714}
9715
9716static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9717 struct btrfs_root *root,
9718 struct inode *dir,
9719 struct dentry *dentry)
9720{
9721 int ret;
9722 struct inode *inode;
9723 u64 objectid;
9724 u64 index;
9725
9726 ret = btrfs_find_free_ino(root, &objectid);
9727 if (ret)
9728 return ret;
9729
9730 inode = btrfs_new_inode(trans, root, dir,
9731 dentry->d_name.name,
9732 dentry->d_name.len,
9733 btrfs_ino(dir),
9734 objectid,
9735 S_IFCHR | WHITEOUT_MODE,
9736 &index);
9737
9738 if (IS_ERR(inode)) {
9739 ret = PTR_ERR(inode);
9740 return ret;
9741 }
9742
9743 inode->i_op = &btrfs_special_inode_operations;
9744 init_special_inode(inode, inode->i_mode,
9745 WHITEOUT_DEV);
9746
9747 ret = btrfs_init_inode_security(trans, inode, dir,
9748 &dentry->d_name);
9749 if (ret)
c9901618 9750 goto out;
cdd1fedf
DF
9751
9752 ret = btrfs_add_nondir(trans, dir, dentry,
9753 inode, 0, index);
9754 if (ret)
c9901618 9755 goto out;
cdd1fedf
DF
9756
9757 ret = btrfs_update_inode(trans, root, inode);
c9901618 9758out:
cdd1fedf 9759 unlock_new_inode(inode);
c9901618
FM
9760 if (ret)
9761 inode_dec_link_count(inode);
cdd1fedf
DF
9762 iput(inode);
9763
c9901618 9764 return ret;
cdd1fedf
DF
9765}
9766
d397712b 9767static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9768 struct inode *new_dir, struct dentry *new_dentry,
9769 unsigned int flags)
39279cc3 9770{
0b246afa 9771 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9772 struct btrfs_trans_handle *trans;
5062af35 9773 unsigned int trans_num_items;
39279cc3 9774 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9775 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9776 struct inode *new_inode = d_inode(new_dentry);
9777 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9778 u64 index = 0;
4df27c4d 9779 u64 root_objectid;
39279cc3 9780 int ret;
33345d01 9781 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9782 bool log_pinned = false;
39279cc3 9783
33345d01 9784 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9785 return -EPERM;
9786
4df27c4d 9787 /* we only allow rename subvolume link between subvolumes */
33345d01 9788 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9789 return -EXDEV;
9790
33345d01
LZ
9791 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9792 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9793 return -ENOTEMPTY;
5f39d397 9794
4df27c4d
YZ
9795 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9796 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9797 return -ENOTEMPTY;
9c52057c
CM
9798
9799
9800 /* check for collisions, even if the name isn't there */
4871c158 9801 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9802 new_dentry->d_name.name,
9803 new_dentry->d_name.len);
9804
9805 if (ret) {
9806 if (ret == -EEXIST) {
9807 /* we shouldn't get
9808 * eexist without a new_inode */
fae7f21c 9809 if (WARN_ON(!new_inode)) {
9c52057c
CM
9810 return ret;
9811 }
9812 } else {
9813 /* maybe -EOVERFLOW */
9814 return ret;
9815 }
9816 }
9817 ret = 0;
9818
5a3f23d5 9819 /*
8d875f95
CM
9820 * we're using rename to replace one file with another. Start IO on it
9821 * now so we don't add too much work to the end of the transaction
5a3f23d5 9822 */
8d875f95 9823 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9824 filemap_flush(old_inode->i_mapping);
9825
76dda93c 9826 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9827 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9828 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9829 /*
9830 * We want to reserve the absolute worst case amount of items. So if
9831 * both inodes are subvols and we need to unlink them then that would
9832 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9833 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9834 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9835 * should cover the worst case number of items we'll modify.
5062af35
FM
9836 * If our rename has the whiteout flag, we need more 5 units for the
9837 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9838 * when selinux is enabled).
a22285a6 9839 */
5062af35
FM
9840 trans_num_items = 11;
9841 if (flags & RENAME_WHITEOUT)
9842 trans_num_items += 5;
9843 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9844 if (IS_ERR(trans)) {
cdd1fedf
DF
9845 ret = PTR_ERR(trans);
9846 goto out_notrans;
9847 }
76dda93c 9848
4df27c4d
YZ
9849 if (dest != root)
9850 btrfs_record_root_in_trans(trans, dest);
5f39d397 9851
a5719521
YZ
9852 ret = btrfs_set_inode_index(new_dir, &index);
9853 if (ret)
9854 goto out_fail;
5a3f23d5 9855
67de1176 9856 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9857 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9858 /* force full log commit if subvolume involved. */
0b246afa 9859 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9860 } else {
c4aba954
FM
9861 btrfs_pin_log_trans(root);
9862 log_pinned = true;
a5719521
YZ
9863 ret = btrfs_insert_inode_ref(trans, dest,
9864 new_dentry->d_name.name,
9865 new_dentry->d_name.len,
33345d01
LZ
9866 old_ino,
9867 btrfs_ino(new_dir), index);
a5719521
YZ
9868 if (ret)
9869 goto out_fail;
4df27c4d 9870 }
5a3f23d5 9871
0c4d2d95
JB
9872 inode_inc_iversion(old_dir);
9873 inode_inc_iversion(new_dir);
9874 inode_inc_iversion(old_inode);
04b285f3
DD
9875 old_dir->i_ctime = old_dir->i_mtime =
9876 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9877 old_inode->i_ctime = current_time(old_dir);
5f39d397 9878
12fcfd22
CM
9879 if (old_dentry->d_parent != new_dentry->d_parent)
9880 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9881
33345d01 9882 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9883 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9884 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9885 old_dentry->d_name.name,
9886 old_dentry->d_name.len);
9887 } else {
92986796 9888 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9889 d_inode(old_dentry),
92986796
AV
9890 old_dentry->d_name.name,
9891 old_dentry->d_name.len);
9892 if (!ret)
9893 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9894 }
79787eaa 9895 if (ret) {
66642832 9896 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9897 goto out_fail;
9898 }
39279cc3
CM
9899
9900 if (new_inode) {
0c4d2d95 9901 inode_inc_iversion(new_inode);
c2050a45 9902 new_inode->i_ctime = current_time(new_inode);
33345d01 9903 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9904 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9905 root_objectid = BTRFS_I(new_inode)->location.objectid;
9906 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9907 root_objectid,
9908 new_dentry->d_name.name,
9909 new_dentry->d_name.len);
9910 BUG_ON(new_inode->i_nlink == 0);
9911 } else {
9912 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9913 d_inode(new_dentry),
4df27c4d
YZ
9914 new_dentry->d_name.name,
9915 new_dentry->d_name.len);
9916 }
4ef31a45 9917 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9918 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9919 if (ret) {
66642832 9920 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9921 goto out_fail;
9922 }
39279cc3 9923 }
aec7477b 9924
4df27c4d
YZ
9925 ret = btrfs_add_link(trans, new_dir, old_inode,
9926 new_dentry->d_name.name,
a5719521 9927 new_dentry->d_name.len, 0, index);
79787eaa 9928 if (ret) {
66642832 9929 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9930 goto out_fail;
9931 }
39279cc3 9932
67de1176
MX
9933 if (old_inode->i_nlink == 1)
9934 BTRFS_I(old_inode)->dir_index = index;
9935
3dc9e8f7 9936 if (log_pinned) {
10d9f309 9937 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9938
6a912213 9939 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9940 btrfs_end_log_trans(root);
3dc9e8f7 9941 log_pinned = false;
4df27c4d 9942 }
cdd1fedf
DF
9943
9944 if (flags & RENAME_WHITEOUT) {
9945 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9946 old_dentry);
9947
9948 if (ret) {
66642832 9949 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9950 goto out_fail;
9951 }
4df27c4d 9952 }
39279cc3 9953out_fail:
3dc9e8f7
FM
9954 /*
9955 * If we have pinned the log and an error happened, we unpin tasks
9956 * trying to sync the log and force them to fallback to a transaction
9957 * commit if the log currently contains any of the inodes involved in
9958 * this rename operation (to ensure we do not persist a log with an
9959 * inconsistent state for any of these inodes or leading to any
9960 * inconsistencies when replayed). If the transaction was aborted, the
9961 * abortion reason is propagated to userspace when attempting to commit
9962 * the transaction. If the log does not contain any of these inodes, we
9963 * allow the tasks to sync it.
9964 */
9965 if (ret && log_pinned) {
0b246afa
JM
9966 if (btrfs_inode_in_log(old_dir, fs_info->generation) ||
9967 btrfs_inode_in_log(new_dir, fs_info->generation) ||
9968 btrfs_inode_in_log(old_inode, fs_info->generation) ||
3dc9e8f7 9969 (new_inode &&
0b246afa
JM
9970 btrfs_inode_in_log(new_inode, fs_info->generation)))
9971 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9972
9973 btrfs_end_log_trans(root);
9974 log_pinned = false;
9975 }
3a45bb20 9976 btrfs_end_transaction(trans);
b44c59a8 9977out_notrans:
33345d01 9978 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9979 up_read(&fs_info->subvol_sem);
9ed74f2d 9980
39279cc3
CM
9981 return ret;
9982}
9983
80ace85c
MS
9984static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9985 struct inode *new_dir, struct dentry *new_dentry,
9986 unsigned int flags)
9987{
cdd1fedf 9988 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9989 return -EINVAL;
9990
cdd1fedf
DF
9991 if (flags & RENAME_EXCHANGE)
9992 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9993 new_dentry);
9994
9995 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9996}
9997
8ccf6f19
MX
9998static void btrfs_run_delalloc_work(struct btrfs_work *work)
9999{
10000 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10001 struct inode *inode;
8ccf6f19
MX
10002
10003 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10004 work);
9f23e289 10005 inode = delalloc_work->inode;
30424601
DS
10006 filemap_flush(inode->i_mapping);
10007 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10008 &BTRFS_I(inode)->runtime_flags))
9f23e289 10009 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10010
10011 if (delalloc_work->delay_iput)
9f23e289 10012 btrfs_add_delayed_iput(inode);
8ccf6f19 10013 else
9f23e289 10014 iput(inode);
8ccf6f19
MX
10015 complete(&delalloc_work->completion);
10016}
10017
10018struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10019 int delay_iput)
8ccf6f19
MX
10020{
10021 struct btrfs_delalloc_work *work;
10022
100d5702 10023 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10024 if (!work)
10025 return NULL;
10026
10027 init_completion(&work->completion);
10028 INIT_LIST_HEAD(&work->list);
10029 work->inode = inode;
8ccf6f19 10030 work->delay_iput = delay_iput;
9e0af237
LB
10031 WARN_ON_ONCE(!inode);
10032 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10033 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10034
10035 return work;
10036}
10037
10038void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10039{
10040 wait_for_completion(&work->completion);
100d5702 10041 kfree(work);
8ccf6f19
MX
10042}
10043
d352ac68
CM
10044/*
10045 * some fairly slow code that needs optimization. This walks the list
10046 * of all the inodes with pending delalloc and forces them to disk.
10047 */
6c255e67
MX
10048static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10049 int nr)
ea8c2819 10050{
ea8c2819 10051 struct btrfs_inode *binode;
5b21f2ed 10052 struct inode *inode;
8ccf6f19
MX
10053 struct btrfs_delalloc_work *work, *next;
10054 struct list_head works;
1eafa6c7 10055 struct list_head splice;
8ccf6f19 10056 int ret = 0;
ea8c2819 10057
8ccf6f19 10058 INIT_LIST_HEAD(&works);
1eafa6c7 10059 INIT_LIST_HEAD(&splice);
63607cc8 10060
573bfb72 10061 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10062 spin_lock(&root->delalloc_lock);
10063 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10064 while (!list_empty(&splice)) {
10065 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10066 delalloc_inodes);
1eafa6c7 10067
eb73c1b7
MX
10068 list_move_tail(&binode->delalloc_inodes,
10069 &root->delalloc_inodes);
5b21f2ed 10070 inode = igrab(&binode->vfs_inode);
df0af1a5 10071 if (!inode) {
eb73c1b7 10072 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10073 continue;
df0af1a5 10074 }
eb73c1b7 10075 spin_unlock(&root->delalloc_lock);
1eafa6c7 10076
651d494a 10077 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10078 if (!work) {
f4ab9ea7
JB
10079 if (delay_iput)
10080 btrfs_add_delayed_iput(inode);
10081 else
10082 iput(inode);
1eafa6c7 10083 ret = -ENOMEM;
a1ecaabb 10084 goto out;
5b21f2ed 10085 }
1eafa6c7 10086 list_add_tail(&work->list, &works);
a44903ab
QW
10087 btrfs_queue_work(root->fs_info->flush_workers,
10088 &work->work);
6c255e67
MX
10089 ret++;
10090 if (nr != -1 && ret >= nr)
a1ecaabb 10091 goto out;
5b21f2ed 10092 cond_resched();
eb73c1b7 10093 spin_lock(&root->delalloc_lock);
ea8c2819 10094 }
eb73c1b7 10095 spin_unlock(&root->delalloc_lock);
8c8bee1d 10096
a1ecaabb 10097out:
eb73c1b7
MX
10098 list_for_each_entry_safe(work, next, &works, list) {
10099 list_del_init(&work->list);
10100 btrfs_wait_and_free_delalloc_work(work);
10101 }
10102
10103 if (!list_empty_careful(&splice)) {
10104 spin_lock(&root->delalloc_lock);
10105 list_splice_tail(&splice, &root->delalloc_inodes);
10106 spin_unlock(&root->delalloc_lock);
10107 }
573bfb72 10108 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10109 return ret;
10110}
1eafa6c7 10111
eb73c1b7
MX
10112int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10113{
0b246afa 10114 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10115 int ret;
1eafa6c7 10116
0b246afa 10117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10118 return -EROFS;
10119
6c255e67
MX
10120 ret = __start_delalloc_inodes(root, delay_iput, -1);
10121 if (ret > 0)
10122 ret = 0;
eb73c1b7
MX
10123 /*
10124 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10125 * we have to make sure the IO is actually started and that
10126 * ordered extents get created before we return
10127 */
0b246afa
JM
10128 atomic_inc(&fs_info->async_submit_draining);
10129 while (atomic_read(&fs_info->nr_async_submits) ||
10130 atomic_read(&fs_info->async_delalloc_pages)) {
10131 wait_event(fs_info->async_submit_wait,
10132 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10133 atomic_read(&fs_info->async_delalloc_pages) == 0));
10134 }
10135 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10136 return ret;
10137}
10138
6c255e67
MX
10139int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10140 int nr)
eb73c1b7
MX
10141{
10142 struct btrfs_root *root;
10143 struct list_head splice;
10144 int ret;
10145
2c21b4d7 10146 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10147 return -EROFS;
10148
10149 INIT_LIST_HEAD(&splice);
10150
573bfb72 10151 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10152 spin_lock(&fs_info->delalloc_root_lock);
10153 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10154 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10155 root = list_first_entry(&splice, struct btrfs_root,
10156 delalloc_root);
10157 root = btrfs_grab_fs_root(root);
10158 BUG_ON(!root);
10159 list_move_tail(&root->delalloc_root,
10160 &fs_info->delalloc_roots);
10161 spin_unlock(&fs_info->delalloc_root_lock);
10162
6c255e67 10163 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10164 btrfs_put_fs_root(root);
6c255e67 10165 if (ret < 0)
eb73c1b7
MX
10166 goto out;
10167
6c255e67
MX
10168 if (nr != -1) {
10169 nr -= ret;
10170 WARN_ON(nr < 0);
10171 }
eb73c1b7 10172 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10173 }
eb73c1b7 10174 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10175
6c255e67 10176 ret = 0;
eb73c1b7
MX
10177 atomic_inc(&fs_info->async_submit_draining);
10178 while (atomic_read(&fs_info->nr_async_submits) ||
10179 atomic_read(&fs_info->async_delalloc_pages)) {
10180 wait_event(fs_info->async_submit_wait,
10181 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10182 atomic_read(&fs_info->async_delalloc_pages) == 0));
10183 }
10184 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10185out:
1eafa6c7 10186 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10187 spin_lock(&fs_info->delalloc_root_lock);
10188 list_splice_tail(&splice, &fs_info->delalloc_roots);
10189 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10190 }
573bfb72 10191 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10192 return ret;
ea8c2819
CM
10193}
10194
39279cc3
CM
10195static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10196 const char *symname)
10197{
0b246afa 10198 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10199 struct btrfs_trans_handle *trans;
10200 struct btrfs_root *root = BTRFS_I(dir)->root;
10201 struct btrfs_path *path;
10202 struct btrfs_key key;
1832a6d5 10203 struct inode *inode = NULL;
39279cc3
CM
10204 int err;
10205 int drop_inode = 0;
10206 u64 objectid;
67871254 10207 u64 index = 0;
39279cc3
CM
10208 int name_len;
10209 int datasize;
5f39d397 10210 unsigned long ptr;
39279cc3 10211 struct btrfs_file_extent_item *ei;
5f39d397 10212 struct extent_buffer *leaf;
39279cc3 10213
f06becc4 10214 name_len = strlen(symname);
0b246afa 10215 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10216 return -ENAMETOOLONG;
1832a6d5 10217
9ed74f2d
JB
10218 /*
10219 * 2 items for inode item and ref
10220 * 2 items for dir items
9269d12b
FM
10221 * 1 item for updating parent inode item
10222 * 1 item for the inline extent item
9ed74f2d
JB
10223 * 1 item for xattr if selinux is on
10224 */
9269d12b 10225 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10226 if (IS_ERR(trans))
10227 return PTR_ERR(trans);
1832a6d5 10228
581bb050
LZ
10229 err = btrfs_find_free_ino(root, &objectid);
10230 if (err)
10231 goto out_unlock;
10232
aec7477b 10233 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10234 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10235 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10236 if (IS_ERR(inode)) {
10237 err = PTR_ERR(inode);
39279cc3 10238 goto out_unlock;
7cf96da3 10239 }
39279cc3 10240
ad19db71
CS
10241 /*
10242 * If the active LSM wants to access the inode during
10243 * d_instantiate it needs these. Smack checks to see
10244 * if the filesystem supports xattrs by looking at the
10245 * ops vector.
10246 */
10247 inode->i_fop = &btrfs_file_operations;
10248 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10249 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10250 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10251
10252 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10253 if (err)
10254 goto out_unlock_inode;
ad19db71 10255
39279cc3 10256 path = btrfs_alloc_path();
d8926bb3
MF
10257 if (!path) {
10258 err = -ENOMEM;
b0d5d10f 10259 goto out_unlock_inode;
d8926bb3 10260 }
33345d01 10261 key.objectid = btrfs_ino(inode);
39279cc3 10262 key.offset = 0;
962a298f 10263 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10264 datasize = btrfs_file_extent_calc_inline_size(name_len);
10265 err = btrfs_insert_empty_item(trans, root, path, &key,
10266 datasize);
54aa1f4d 10267 if (err) {
b0839166 10268 btrfs_free_path(path);
b0d5d10f 10269 goto out_unlock_inode;
54aa1f4d 10270 }
5f39d397
CM
10271 leaf = path->nodes[0];
10272 ei = btrfs_item_ptr(leaf, path->slots[0],
10273 struct btrfs_file_extent_item);
10274 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10275 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10276 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10277 btrfs_set_file_extent_encryption(leaf, ei, 0);
10278 btrfs_set_file_extent_compression(leaf, ei, 0);
10279 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10280 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10281
39279cc3 10282 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10283 write_extent_buffer(leaf, symname, ptr, name_len);
10284 btrfs_mark_buffer_dirty(leaf);
39279cc3 10285 btrfs_free_path(path);
5f39d397 10286
39279cc3 10287 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10288 inode_nohighmem(inode);
39279cc3 10289 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10290 inode_set_bytes(inode, name_len);
f06becc4 10291 btrfs_i_size_write(inode, name_len);
54aa1f4d 10292 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10293 /*
10294 * Last step, add directory indexes for our symlink inode. This is the
10295 * last step to avoid extra cleanup of these indexes if an error happens
10296 * elsewhere above.
10297 */
10298 if (!err)
10299 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10300 if (err) {
54aa1f4d 10301 drop_inode = 1;
b0d5d10f
CM
10302 goto out_unlock_inode;
10303 }
10304
10305 unlock_new_inode(inode);
10306 d_instantiate(dentry, inode);
39279cc3
CM
10307
10308out_unlock:
3a45bb20 10309 btrfs_end_transaction(trans);
39279cc3
CM
10310 if (drop_inode) {
10311 inode_dec_link_count(inode);
10312 iput(inode);
10313 }
2ff7e61e 10314 btrfs_btree_balance_dirty(fs_info);
39279cc3 10315 return err;
b0d5d10f
CM
10316
10317out_unlock_inode:
10318 drop_inode = 1;
10319 unlock_new_inode(inode);
10320 goto out_unlock;
39279cc3 10321}
16432985 10322
0af3d00b
JB
10323static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10324 u64 start, u64 num_bytes, u64 min_size,
10325 loff_t actual_len, u64 *alloc_hint,
10326 struct btrfs_trans_handle *trans)
d899e052 10327{
0b246afa 10328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10329 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10330 struct extent_map *em;
d899e052
YZ
10331 struct btrfs_root *root = BTRFS_I(inode)->root;
10332 struct btrfs_key ins;
d899e052 10333 u64 cur_offset = start;
55a61d1d 10334 u64 i_size;
154ea289 10335 u64 cur_bytes;
0b670dc4 10336 u64 last_alloc = (u64)-1;
d899e052 10337 int ret = 0;
0af3d00b 10338 bool own_trans = true;
18513091 10339 u64 end = start + num_bytes - 1;
d899e052 10340
0af3d00b
JB
10341 if (trans)
10342 own_trans = false;
d899e052 10343 while (num_bytes > 0) {
0af3d00b
JB
10344 if (own_trans) {
10345 trans = btrfs_start_transaction(root, 3);
10346 if (IS_ERR(trans)) {
10347 ret = PTR_ERR(trans);
10348 break;
10349 }
5a303d5d
YZ
10350 }
10351
ee22184b 10352 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10353 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10354 /*
10355 * If we are severely fragmented we could end up with really
10356 * small allocations, so if the allocator is returning small
10357 * chunks lets make its job easier by only searching for those
10358 * sized chunks.
10359 */
10360 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10361 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10362 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10363 if (ret) {
0af3d00b 10364 if (own_trans)
3a45bb20 10365 btrfs_end_transaction(trans);
a22285a6 10366 break;
d899e052 10367 }
0b246afa 10368 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10369
0b670dc4 10370 last_alloc = ins.offset;
d899e052
YZ
10371 ret = insert_reserved_file_extent(trans, inode,
10372 cur_offset, ins.objectid,
10373 ins.offset, ins.offset,
920bbbfb 10374 ins.offset, 0, 0, 0,
d899e052 10375 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10376 if (ret) {
2ff7e61e 10377 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10378 ins.offset, 0);
66642832 10379 btrfs_abort_transaction(trans, ret);
79787eaa 10380 if (own_trans)
3a45bb20 10381 btrfs_end_transaction(trans);
79787eaa
JM
10382 break;
10383 }
31193213 10384
a1ed835e
CM
10385 btrfs_drop_extent_cache(inode, cur_offset,
10386 cur_offset + ins.offset -1, 0);
5a303d5d 10387
5dc562c5
JB
10388 em = alloc_extent_map();
10389 if (!em) {
10390 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10391 &BTRFS_I(inode)->runtime_flags);
10392 goto next;
10393 }
10394
10395 em->start = cur_offset;
10396 em->orig_start = cur_offset;
10397 em->len = ins.offset;
10398 em->block_start = ins.objectid;
10399 em->block_len = ins.offset;
b4939680 10400 em->orig_block_len = ins.offset;
cc95bef6 10401 em->ram_bytes = ins.offset;
0b246afa 10402 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10403 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10404 em->generation = trans->transid;
10405
10406 while (1) {
10407 write_lock(&em_tree->lock);
09a2a8f9 10408 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10409 write_unlock(&em_tree->lock);
10410 if (ret != -EEXIST)
10411 break;
10412 btrfs_drop_extent_cache(inode, cur_offset,
10413 cur_offset + ins.offset - 1,
10414 0);
10415 }
10416 free_extent_map(em);
10417next:
d899e052
YZ
10418 num_bytes -= ins.offset;
10419 cur_offset += ins.offset;
efa56464 10420 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10421
0c4d2d95 10422 inode_inc_iversion(inode);
c2050a45 10423 inode->i_ctime = current_time(inode);
6cbff00f 10424 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10425 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10426 (actual_len > inode->i_size) &&
10427 (cur_offset > inode->i_size)) {
d1ea6a61 10428 if (cur_offset > actual_len)
55a61d1d 10429 i_size = actual_len;
d1ea6a61 10430 else
55a61d1d
JB
10431 i_size = cur_offset;
10432 i_size_write(inode, i_size);
10433 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10434 }
10435
d899e052 10436 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10437
10438 if (ret) {
66642832 10439 btrfs_abort_transaction(trans, ret);
79787eaa 10440 if (own_trans)
3a45bb20 10441 btrfs_end_transaction(trans);
79787eaa
JM
10442 break;
10443 }
d899e052 10444
0af3d00b 10445 if (own_trans)
3a45bb20 10446 btrfs_end_transaction(trans);
5a303d5d 10447 }
18513091
WX
10448 if (cur_offset < end)
10449 btrfs_free_reserved_data_space(inode, cur_offset,
10450 end - cur_offset + 1);
d899e052
YZ
10451 return ret;
10452}
10453
0af3d00b
JB
10454int btrfs_prealloc_file_range(struct inode *inode, int mode,
10455 u64 start, u64 num_bytes, u64 min_size,
10456 loff_t actual_len, u64 *alloc_hint)
10457{
10458 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10459 min_size, actual_len, alloc_hint,
10460 NULL);
10461}
10462
10463int btrfs_prealloc_file_range_trans(struct inode *inode,
10464 struct btrfs_trans_handle *trans, int mode,
10465 u64 start, u64 num_bytes, u64 min_size,
10466 loff_t actual_len, u64 *alloc_hint)
10467{
10468 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10469 min_size, actual_len, alloc_hint, trans);
10470}
10471
e6dcd2dc
CM
10472static int btrfs_set_page_dirty(struct page *page)
10473{
e6dcd2dc
CM
10474 return __set_page_dirty_nobuffers(page);
10475}
10476
10556cb2 10477static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10478{
b83cc969 10479 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10480 umode_t mode = inode->i_mode;
b83cc969 10481
cb6db4e5
JM
10482 if (mask & MAY_WRITE &&
10483 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10484 if (btrfs_root_readonly(root))
10485 return -EROFS;
10486 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10487 return -EACCES;
10488 }
2830ba7f 10489 return generic_permission(inode, mask);
fdebe2bd 10490}
39279cc3 10491
ef3b9af5
FM
10492static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10493{
2ff7e61e 10494 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10495 struct btrfs_trans_handle *trans;
10496 struct btrfs_root *root = BTRFS_I(dir)->root;
10497 struct inode *inode = NULL;
10498 u64 objectid;
10499 u64 index;
10500 int ret = 0;
10501
10502 /*
10503 * 5 units required for adding orphan entry
10504 */
10505 trans = btrfs_start_transaction(root, 5);
10506 if (IS_ERR(trans))
10507 return PTR_ERR(trans);
10508
10509 ret = btrfs_find_free_ino(root, &objectid);
10510 if (ret)
10511 goto out;
10512
10513 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10514 btrfs_ino(dir), objectid, mode, &index);
10515 if (IS_ERR(inode)) {
10516 ret = PTR_ERR(inode);
10517 inode = NULL;
10518 goto out;
10519 }
10520
ef3b9af5
FM
10521 inode->i_fop = &btrfs_file_operations;
10522 inode->i_op = &btrfs_file_inode_operations;
10523
10524 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10525 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10526
b0d5d10f
CM
10527 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10528 if (ret)
10529 goto out_inode;
10530
10531 ret = btrfs_update_inode(trans, root, inode);
10532 if (ret)
10533 goto out_inode;
ef3b9af5
FM
10534 ret = btrfs_orphan_add(trans, inode);
10535 if (ret)
b0d5d10f 10536 goto out_inode;
ef3b9af5 10537
5762b5c9
FM
10538 /*
10539 * We set number of links to 0 in btrfs_new_inode(), and here we set
10540 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10541 * through:
10542 *
10543 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10544 */
10545 set_nlink(inode, 1);
b0d5d10f 10546 unlock_new_inode(inode);
ef3b9af5
FM
10547 d_tmpfile(dentry, inode);
10548 mark_inode_dirty(inode);
10549
10550out:
3a45bb20 10551 btrfs_end_transaction(trans);
ef3b9af5
FM
10552 if (ret)
10553 iput(inode);
2ff7e61e
JM
10554 btrfs_balance_delayed_items(fs_info);
10555 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10556 return ret;
b0d5d10f
CM
10557
10558out_inode:
10559 unlock_new_inode(inode);
10560 goto out;
10561
ef3b9af5
FM
10562}
10563
6e1d5dcc 10564static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10565 .getattr = btrfs_getattr,
39279cc3
CM
10566 .lookup = btrfs_lookup,
10567 .create = btrfs_create,
10568 .unlink = btrfs_unlink,
10569 .link = btrfs_link,
10570 .mkdir = btrfs_mkdir,
10571 .rmdir = btrfs_rmdir,
2773bf00 10572 .rename = btrfs_rename2,
39279cc3
CM
10573 .symlink = btrfs_symlink,
10574 .setattr = btrfs_setattr,
618e21d5 10575 .mknod = btrfs_mknod,
5103e947 10576 .listxattr = btrfs_listxattr,
fdebe2bd 10577 .permission = btrfs_permission,
4e34e719 10578 .get_acl = btrfs_get_acl,
996a710d 10579 .set_acl = btrfs_set_acl,
93fd63c2 10580 .update_time = btrfs_update_time,
ef3b9af5 10581 .tmpfile = btrfs_tmpfile,
39279cc3 10582};
6e1d5dcc 10583static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10584 .lookup = btrfs_lookup,
fdebe2bd 10585 .permission = btrfs_permission,
4e34e719 10586 .get_acl = btrfs_get_acl,
996a710d 10587 .set_acl = btrfs_set_acl,
93fd63c2 10588 .update_time = btrfs_update_time,
39279cc3 10589};
76dda93c 10590
828c0950 10591static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10592 .llseek = generic_file_llseek,
10593 .read = generic_read_dir,
02dbfc99 10594 .iterate_shared = btrfs_real_readdir,
34287aa3 10595 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10596#ifdef CONFIG_COMPAT
4c63c245 10597 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10598#endif
6bf13c0c 10599 .release = btrfs_release_file,
e02119d5 10600 .fsync = btrfs_sync_file,
39279cc3
CM
10601};
10602
20e5506b 10603static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10604 .fill_delalloc = run_delalloc_range,
065631f6 10605 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10606 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10607 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10608 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10609 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10610 .set_bit_hook = btrfs_set_bit_hook,
10611 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10612 .merge_extent_hook = btrfs_merge_extent_hook,
10613 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10614};
10615
35054394
CM
10616/*
10617 * btrfs doesn't support the bmap operation because swapfiles
10618 * use bmap to make a mapping of extents in the file. They assume
10619 * these extents won't change over the life of the file and they
10620 * use the bmap result to do IO directly to the drive.
10621 *
10622 * the btrfs bmap call would return logical addresses that aren't
10623 * suitable for IO and they also will change frequently as COW
10624 * operations happen. So, swapfile + btrfs == corruption.
10625 *
10626 * For now we're avoiding this by dropping bmap.
10627 */
7f09410b 10628static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10629 .readpage = btrfs_readpage,
10630 .writepage = btrfs_writepage,
b293f02e 10631 .writepages = btrfs_writepages,
3ab2fb5a 10632 .readpages = btrfs_readpages,
16432985 10633 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10634 .invalidatepage = btrfs_invalidatepage,
10635 .releasepage = btrfs_releasepage,
e6dcd2dc 10636 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10637 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10638};
10639
7f09410b 10640static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10641 .readpage = btrfs_readpage,
10642 .writepage = btrfs_writepage,
2bf5a725
CM
10643 .invalidatepage = btrfs_invalidatepage,
10644 .releasepage = btrfs_releasepage,
39279cc3
CM
10645};
10646
6e1d5dcc 10647static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10648 .getattr = btrfs_getattr,
10649 .setattr = btrfs_setattr,
5103e947 10650 .listxattr = btrfs_listxattr,
fdebe2bd 10651 .permission = btrfs_permission,
1506fcc8 10652 .fiemap = btrfs_fiemap,
4e34e719 10653 .get_acl = btrfs_get_acl,
996a710d 10654 .set_acl = btrfs_set_acl,
e41f941a 10655 .update_time = btrfs_update_time,
39279cc3 10656};
6e1d5dcc 10657static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10658 .getattr = btrfs_getattr,
10659 .setattr = btrfs_setattr,
fdebe2bd 10660 .permission = btrfs_permission,
33268eaf 10661 .listxattr = btrfs_listxattr,
4e34e719 10662 .get_acl = btrfs_get_acl,
996a710d 10663 .set_acl = btrfs_set_acl,
e41f941a 10664 .update_time = btrfs_update_time,
618e21d5 10665};
6e1d5dcc 10666static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10667 .readlink = generic_readlink,
6b255391 10668 .get_link = page_get_link,
f209561a 10669 .getattr = btrfs_getattr,
22c44fe6 10670 .setattr = btrfs_setattr,
fdebe2bd 10671 .permission = btrfs_permission,
0279b4cd 10672 .listxattr = btrfs_listxattr,
e41f941a 10673 .update_time = btrfs_update_time,
39279cc3 10674};
76dda93c 10675
82d339d9 10676const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10677 .d_delete = btrfs_dentry_delete,
b4aff1f8 10678 .d_release = btrfs_dentry_release,
76dda93c 10679};