]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
Btrfs: fiemap: pass correct bytenr when fm_extent_count is zero
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3
CM
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
39279cc3 20#include <linux/compat.h>
9ebefb18 21#include <linux/bit_spinlock.h>
5103e947 22#include <linux/xattr.h>
33268eaf 23#include <linux/posix_acl.h>
d899e052 24#include <linux/falloc.h>
5a0e3ad6 25#include <linux/slab.h>
7a36ddec 26#include <linux/ratelimit.h>
22c44fe6 27#include <linux/mount.h>
55e301fd 28#include <linux/btrfs.h>
53b381b3 29#include <linux/blkdev.h>
f23b5a59 30#include <linux/posix_acl_xattr.h>
e2e40f2c 31#include <linux/uio.h>
69fe2d75 32#include <linux/magic.h>
ae5e165d 33#include <linux/iversion.h>
92d32170 34#include <asm/unaligned.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
38c227d8 48#include "backref.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
dda3245e 51#include "dedupe.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
20e5506b 73static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
4d4ab6d6 81static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 92static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
dda3245e
WX
96 u64 start, u64 end, u64 delalloc_end,
97 int *page_started, unsigned long *nr_written,
98 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
99static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 u64 orig_start, u64 block_start,
101 u64 block_len, u64 orig_block_len,
102 u64 ram_bytes, int compress_type,
103 int type);
7b128766 104
52427260
QW
105static void __endio_write_update_ordered(struct inode *inode,
106 const u64 offset, const u64 bytes,
107 const bool uptodate);
108
109/*
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
112 *
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
121 */
122static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 const u64 offset,
124 const u64 bytes)
125{
63d71450
NA
126 unsigned long index = offset >> PAGE_SHIFT;
127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 struct page *page;
129
130 while (index <= end_index) {
131 page = find_get_page(inode->i_mapping, index);
132 index++;
133 if (!page)
134 continue;
135 ClearPagePrivate2(page);
136 put_page(page);
137 }
52427260
QW
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
d02c0e20 267static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
268 u64 end, size_t compressed_size,
269 int compress_type,
270 struct page **compressed_pages)
c8b97818 271{
d02c0e20 272 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
69fe2d75 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 340out:
94ed938a
QW
341 /*
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
346 */
bc42bda2 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 348 btrfs_free_path(path);
3a45bb20 349 btrfs_end_transaction(trans);
00361589 350 return ret;
c8b97818
CM
351}
352
771ed689
CM
353struct async_extent {
354 u64 start;
355 u64 ram_size;
356 u64 compressed_size;
357 struct page **pages;
358 unsigned long nr_pages;
261507a0 359 int compress_type;
771ed689
CM
360 struct list_head list;
361};
362
363struct async_cow {
364 struct inode *inode;
365 struct btrfs_root *root;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689
CM
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
c2fcdcdf 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 401 return 1;
eec63c65
DS
402 /* defrag ioctl */
403 if (BTRFS_I(inode)->defrag_compress)
404 return 1;
f79707b0
WS
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 return 0;
0b246afa 408 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 410 BTRFS_I(inode)->prop_compress)
c2fcdcdf 411 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
412 return 0;
413}
414
6158e1ce 415static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
417{
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
6158e1ce 420 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
421 btrfs_add_inode_defrag(NULL, inode);
422}
423
d352ac68 424/*
771ed689
CM
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
c8b97818 428 *
771ed689
CM
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
c8b97818 434 *
771ed689
CM
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
438 * are written in the same order that the flusher thread sent them
439 * down.
d352ac68 440 */
c44f649e 441static noinline void compress_file_range(struct inode *inode,
771ed689
CM
442 struct page *locked_page,
443 u64 start, u64 end,
444 struct async_cow *async_cow,
445 int *num_added)
b888db2b 446{
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 448 u64 blocksize = fs_info->sectorsize;
c8b97818 449 u64 actual_end;
42dc7bab 450 u64 isize = i_size_read(inode);
e6dcd2dc 451 int ret = 0;
c8b97818
CM
452 struct page **pages = NULL;
453 unsigned long nr_pages;
c8b97818
CM
454 unsigned long total_compressed = 0;
455 unsigned long total_in = 0;
c8b97818
CM
456 int i;
457 int will_compress;
0b246afa 458 int compress_type = fs_info->compress_type;
4adaa611 459 int redirty = 0;
b888db2b 460
6158e1ce
NB
461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 SZ_16K);
4cb5300b 463
42dc7bab 464 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
465again:
466 will_compress = 0;
09cbfeaf 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 nr_pages = min_t(unsigned long, nr_pages,
470 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 471
f03d9301
CM
472 /*
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
478 *
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
481 */
482 if (actual_end <= start)
483 goto cleanup_and_bail_uncompressed;
484
c8b97818
CM
485 total_compressed = actual_end - start;
486
4bcbb332
SW
487 /*
488 * skip compression for a small file range(<=blocksize) that
01327610 489 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
490 */
491 if (total_compressed <= blocksize &&
492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 goto cleanup_and_bail_uncompressed;
494
069eac78
DS
495 total_compressed = min_t(unsigned long, total_compressed,
496 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
497 total_in = 0;
498 ret = 0;
db94535d 499
771ed689
CM
500 /*
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
c8b97818 504 */
c2fcdcdf 505 if (inode_need_compress(inode, start, end)) {
c8b97818 506 WARN_ON(pages);
31e818fe 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
508 if (!pages) {
509 /* just bail out to the uncompressed code */
510 goto cont;
511 }
c8b97818 512
eec63c65
DS
513 if (BTRFS_I(inode)->defrag_compress)
514 compress_type = BTRFS_I(inode)->defrag_compress;
515 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 516 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 517
4adaa611
CM
518 /*
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
523 *
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
e9679de3
TT
526 *
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
4adaa611 529 */
e9679de3
TT
530 if (!redirty) {
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
533 }
f51d2b59
DS
534
535 /* Compression level is applied here and only here */
536 ret = btrfs_compress_pages(
537 compress_type | (fs_info->compress_level << 4),
261507a0 538 inode->i_mapping, start,
38c31464 539 pages,
4d3a800e 540 &nr_pages,
261507a0 541 &total_in,
e5d74902 542 &total_compressed);
c8b97818
CM
543
544 if (!ret) {
545 unsigned long offset = total_compressed &
09cbfeaf 546 (PAGE_SIZE - 1);
4d3a800e 547 struct page *page = pages[nr_pages - 1];
c8b97818
CM
548 char *kaddr;
549
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
552 */
553 if (offset) {
7ac687d9 554 kaddr = kmap_atomic(page);
c8b97818 555 memset(kaddr + offset, 0,
09cbfeaf 556 PAGE_SIZE - offset);
7ac687d9 557 kunmap_atomic(kaddr);
c8b97818
CM
558 }
559 will_compress = 1;
560 }
561 }
560f7d75 562cont:
c8b97818
CM
563 if (start == 0) {
564 /* lets try to make an inline extent */
6018ba0a 565 if (ret || total_in < actual_end) {
c8b97818 566 /* we didn't compress the entire range, try
771ed689 567 * to make an uncompressed inline extent.
c8b97818 568 */
d02c0e20
NB
569 ret = cow_file_range_inline(inode, start, end, 0,
570 BTRFS_COMPRESS_NONE, NULL);
c8b97818 571 } else {
771ed689 572 /* try making a compressed inline extent */
d02c0e20 573 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
574 total_compressed,
575 compress_type, pages);
c8b97818 576 }
79787eaa 577 if (ret <= 0) {
151a41bc 578 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
581 unsigned long page_error_op;
582
e6eb4314 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 584
771ed689 585 /*
79787eaa
JM
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
8b62f87b
JB
589 *
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
593 * range.
771ed689 594 */
ba8b04c1
QW
595 extent_clear_unlock_delalloc(inode, start, end, end,
596 NULL, clear_flags,
597 PAGE_UNLOCK |
c2790a2e
JB
598 PAGE_CLEAR_DIRTY |
599 PAGE_SET_WRITEBACK |
e6eb4314 600 page_error_op |
c2790a2e 601 PAGE_END_WRITEBACK);
c8b97818
CM
602 goto free_pages_out;
603 }
604 }
605
606 if (will_compress) {
607 /*
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
610 * things
611 */
fda2832f 612 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
613
614 /*
615 * one last check to make sure the compression is really a
170607eb
TT
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
c8b97818 618 */
09cbfeaf 619 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 620 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
621 *num_added += 1;
622
623 /*
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
627 */
1170862d 628 add_async_extent(async_cow, start, total_in,
4d3a800e 629 total_compressed, pages, nr_pages,
c8bb0c8b
AS
630 compress_type);
631
1170862d
TT
632 if (start + total_in < end) {
633 start += total_in;
c8bb0c8b
AS
634 pages = NULL;
635 cond_resched();
636 goto again;
637 }
638 return;
c8b97818
CM
639 }
640 }
c8bb0c8b 641 if (pages) {
c8b97818
CM
642 /*
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
645 */
4d3a800e 646 for (i = 0; i < nr_pages; i++) {
70b99e69 647 WARN_ON(pages[i]->mapping);
09cbfeaf 648 put_page(pages[i]);
c8b97818
CM
649 }
650 kfree(pages);
651 pages = NULL;
652 total_compressed = 0;
4d3a800e 653 nr_pages = 0;
c8b97818
CM
654
655 /* flag the file so we don't compress in the future */
0b246afa 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 657 !(BTRFS_I(inode)->prop_compress)) {
a555f810 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 659 }
c8b97818 660 }
f03d9301 661cleanup_and_bail_uncompressed:
c8bb0c8b
AS
662 /*
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
667 */
668 if (page_offset(locked_page) >= start &&
669 page_offset(locked_page) <= end)
670 __set_page_dirty_nobuffers(locked_page);
671 /* unlocked later on in the async handlers */
672
673 if (redirty)
674 extent_range_redirty_for_io(inode, start, end);
675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 BTRFS_COMPRESS_NONE);
677 *num_added += 1;
3b951516 678
c44f649e 679 return;
771ed689
CM
680
681free_pages_out:
4d3a800e 682 for (i = 0; i < nr_pages; i++) {
771ed689 683 WARN_ON(pages[i]->mapping);
09cbfeaf 684 put_page(pages[i]);
771ed689 685 }
d397712b 686 kfree(pages);
771ed689 687}
771ed689 688
40ae837b
FM
689static void free_async_extent_pages(struct async_extent *async_extent)
690{
691 int i;
692
693 if (!async_extent->pages)
694 return;
695
696 for (i = 0; i < async_extent->nr_pages; i++) {
697 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 698 put_page(async_extent->pages[i]);
40ae837b
FM
699 }
700 kfree(async_extent->pages);
701 async_extent->nr_pages = 0;
702 async_extent->pages = NULL;
771ed689
CM
703}
704
705/*
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
710 */
dec8f175 711static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
712 struct async_cow *async_cow)
713{
0b246afa 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
715 struct async_extent *async_extent;
716 u64 alloc_hint = 0;
771ed689
CM
717 struct btrfs_key ins;
718 struct extent_map *em;
719 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 720 struct extent_io_tree *io_tree;
f5a84ee3 721 int ret = 0;
771ed689 722
3e04e7f1 723again:
d397712b 724 while (!list_empty(&async_cow->extents)) {
771ed689
CM
725 async_extent = list_entry(async_cow->extents.next,
726 struct async_extent, list);
727 list_del(&async_extent->list);
c8b97818 728
771ed689
CM
729 io_tree = &BTRFS_I(inode)->io_tree;
730
f5a84ee3 731retry:
771ed689
CM
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent->pages) {
734 int page_started = 0;
735 unsigned long nr_written = 0;
736
737 lock_extent(io_tree, async_extent->start,
2ac55d41 738 async_extent->start +
d0082371 739 async_extent->ram_size - 1);
771ed689
CM
740
741 /* allocate blocks */
f5a84ee3
JB
742 ret = cow_file_range(inode, async_cow->locked_page,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
dda3245e
WX
746 async_extent->start +
747 async_extent->ram_size - 1,
748 &page_started, &nr_written, 0,
749 NULL);
771ed689 750
79787eaa
JM
751 /* JDM XXX */
752
771ed689
CM
753 /*
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
758 */
f5a84ee3 759 if (!page_started && !ret)
5e3ee236
NB
760 extent_write_locked_range(inode,
761 async_extent->start,
d397712b 762 async_extent->start +
771ed689 763 async_extent->ram_size - 1,
771ed689 764 WB_SYNC_ALL);
3e04e7f1
JB
765 else if (ret)
766 unlock_page(async_cow->locked_page);
771ed689
CM
767 kfree(async_extent);
768 cond_resched();
769 continue;
770 }
771
772 lock_extent(io_tree, async_extent->start,
d0082371 773 async_extent->start + async_extent->ram_size - 1);
771ed689 774
18513091 775 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
776 async_extent->compressed_size,
777 async_extent->compressed_size,
e570fd27 778 0, alloc_hint, &ins, 1, 1);
f5a84ee3 779 if (ret) {
40ae837b 780 free_async_extent_pages(async_extent);
3e04e7f1 781
fdf8e2ea
JB
782 if (ret == -ENOSPC) {
783 unlock_extent(io_tree, async_extent->start,
784 async_extent->start +
785 async_extent->ram_size - 1);
ce62003f
LB
786
787 /*
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
791 * layers.
792 */
793 extent_range_redirty_for_io(inode,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1);
797
79787eaa 798 goto retry;
fdf8e2ea 799 }
3e04e7f1 800 goto out_free;
f5a84ee3 801 }
c2167754
YZ
802 /*
803 * here we're doing allocation and writeback of the
804 * compressed pages
805 */
6f9994db
LB
806 em = create_io_em(inode, async_extent->start,
807 async_extent->ram_size, /* len */
808 async_extent->start, /* orig_start */
809 ins.objectid, /* block_start */
810 ins.offset, /* block_len */
811 ins.offset, /* orig_block_len */
812 async_extent->ram_size, /* ram_bytes */
813 async_extent->compress_type,
814 BTRFS_ORDERED_COMPRESSED);
815 if (IS_ERR(em))
816 /* ret value is not necessary due to void function */
3e04e7f1 817 goto out_free_reserve;
6f9994db 818 free_extent_map(em);
3e04e7f1 819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963 827 if (ret) {
dcdbc059
NB
828 btrfs_drop_extent_cache(BTRFS_I(inode),
829 async_extent->start,
d9f85963
FM
830 async_extent->start +
831 async_extent->ram_size - 1, 0);
3e04e7f1 832 goto out_free_reserve;
d9f85963 833 }
0b246afa 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 835
771ed689
CM
836 /*
837 * clear dirty, set writeback and unlock the pages.
838 */
c2790a2e 839 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
840 async_extent->start +
841 async_extent->ram_size - 1,
a791e35e
CM
842 async_extent->start +
843 async_extent->ram_size - 1,
151a41bc
JB
844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 846 PAGE_SET_WRITEBACK);
4e4cbee9 847 if (btrfs_submit_compressed_write(inode,
d397712b
CM
848 async_extent->start,
849 async_extent->ram_size,
850 ins.objectid,
851 ins.offset, async_extent->pages,
f82b7359
LB
852 async_extent->nr_pages,
853 async_cow->write_flags)) {
fce2a4e6
FM
854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 struct page *p = async_extent->pages[0];
856 const u64 start = async_extent->start;
857 const u64 end = start + async_extent->ram_size - 1;
858
859 p->mapping = inode->i_mapping;
860 tree->ops->writepage_end_io_hook(p, start, end,
861 NULL, 0);
862 p->mapping = NULL;
ba8b04c1
QW
863 extent_clear_unlock_delalloc(inode, start, end, end,
864 NULL, 0,
fce2a4e6
FM
865 PAGE_END_WRITEBACK |
866 PAGE_SET_ERROR);
40ae837b 867 free_async_extent_pages(async_extent);
fce2a4e6 868 }
771ed689
CM
869 alloc_hint = ins.objectid + ins.offset;
870 kfree(async_extent);
871 cond_resched();
872 }
dec8f175 873 return;
3e04e7f1 874out_free_reserve:
0b246afa 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 877out_free:
c2790a2e 878 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
879 async_extent->start +
880 async_extent->ram_size - 1,
3e04e7f1
JB
881 async_extent->start +
882 async_extent->ram_size - 1,
c2790a2e 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 884 EXTENT_DELALLOC_NEW |
151a41bc
JB
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
40ae837b 889 free_async_extent_pages(async_extent);
79787eaa 890 kfree(async_extent);
3e04e7f1 891 goto again;
771ed689
CM
892}
893
4b46fce2
JB
894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896{
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924}
925
771ed689
CM
926/*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
00361589
JB
939static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
dda3245e
WX
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 944{
0b246afa 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 946 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
947 u64 alloc_hint = 0;
948 u64 num_bytes;
949 unsigned long ram_size;
a315e68f 950 u64 cur_alloc_size = 0;
0b246afa 951 u64 blocksize = fs_info->sectorsize;
771ed689
CM
952 struct btrfs_key ins;
953 struct extent_map *em;
a315e68f
FM
954 unsigned clear_bits;
955 unsigned long page_ops;
956 bool extent_reserved = false;
771ed689
CM
957 int ret = 0;
958
70ddc553 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 960 WARN_ON_ONCE(1);
29bce2f3
JB
961 ret = -EINVAL;
962 goto out_unlock;
02ecd2c2 963 }
771ed689 964
fda2832f 965 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 966 num_bytes = max(blocksize, num_bytes);
566b1760 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 968
6158e1ce 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 970
771ed689
CM
971 if (start == 0) {
972 /* lets try to make an inline extent */
d02c0e20
NB
973 ret = cow_file_range_inline(inode, start, end, 0,
974 BTRFS_COMPRESS_NONE, NULL);
771ed689 975 if (ret == 0) {
8b62f87b
JB
976 /*
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
980 * range.
981 */
ba8b04c1
QW
982 extent_clear_unlock_delalloc(inode, start, end,
983 delalloc_end, NULL,
c2790a2e 984 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 PAGE_END_WRITEBACK);
771ed689 989 *nr_written = *nr_written +
09cbfeaf 990 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 991 *page_started = 1;
771ed689 992 goto out;
79787eaa 993 } else if (ret < 0) {
79787eaa 994 goto out_unlock;
771ed689
CM
995 }
996 }
997
4b46fce2 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
999 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 start + num_bytes - 1, 0);
771ed689 1001
3752d22f
AJ
1002 while (num_bytes > 0) {
1003 cur_alloc_size = num_bytes;
18513091 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1005 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1006 &ins, 1, 1);
00361589 1007 if (ret < 0)
79787eaa 1008 goto out_unlock;
a315e68f
FM
1009 cur_alloc_size = ins.offset;
1010 extent_reserved = true;
d397712b 1011
771ed689 1012 ram_size = ins.offset;
6f9994db
LB
1013 em = create_io_em(inode, start, ins.offset, /* len */
1014 start, /* orig_start */
1015 ins.objectid, /* block_start */
1016 ins.offset, /* block_len */
1017 ins.offset, /* orig_block_len */
1018 ram_size, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1020 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1021 if (IS_ERR(em)) {
1022 ret = PTR_ERR(em);
ace68bac 1023 goto out_reserve;
090a127a 1024 }
6f9994db 1025 free_extent_map(em);
e6dcd2dc 1026
e6dcd2dc 1027 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1028 ram_size, cur_alloc_size, 0);
ace68bac 1029 if (ret)
d9f85963 1030 goto out_drop_extent_cache;
c8b97818 1031
17d217fe
YZ
1032 if (root->root_key.objectid ==
1033 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1034 ret = btrfs_reloc_clone_csums(inode, start,
1035 cur_alloc_size);
4dbd80fb
QW
1036 /*
1037 * Only drop cache here, and process as normal.
1038 *
1039 * We must not allow extent_clear_unlock_delalloc()
1040 * at out_unlock label to free meta of this ordered
1041 * extent, as its meta should be freed by
1042 * btrfs_finish_ordered_io().
1043 *
1044 * So we must continue until @start is increased to
1045 * skip current ordered extent.
1046 */
00361589 1047 if (ret)
4dbd80fb
QW
1048 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1049 start + ram_size - 1, 0);
17d217fe
YZ
1050 }
1051
0b246afa 1052 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1053
c8b97818
CM
1054 /* we're not doing compressed IO, don't unlock the first
1055 * page (which the caller expects to stay locked), don't
1056 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1057 *
1058 * Do set the Private2 bit so we know this page was properly
1059 * setup for writepage
c8b97818 1060 */
a315e68f
FM
1061 page_ops = unlock ? PAGE_UNLOCK : 0;
1062 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1063
c2790a2e 1064 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1065 start + ram_size - 1,
1066 delalloc_end, locked_page,
c2790a2e 1067 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1068 page_ops);
3752d22f
AJ
1069 if (num_bytes < cur_alloc_size)
1070 num_bytes = 0;
4dbd80fb 1071 else
3752d22f 1072 num_bytes -= cur_alloc_size;
c59f8951
CM
1073 alloc_hint = ins.objectid + ins.offset;
1074 start += cur_alloc_size;
a315e68f 1075 extent_reserved = false;
4dbd80fb
QW
1076
1077 /*
1078 * btrfs_reloc_clone_csums() error, since start is increased
1079 * extent_clear_unlock_delalloc() at out_unlock label won't
1080 * free metadata of current ordered extent, we're OK to exit.
1081 */
1082 if (ret)
1083 goto out_unlock;
b888db2b 1084 }
79787eaa 1085out:
be20aa9d 1086 return ret;
b7d5b0a8 1087
d9f85963 1088out_drop_extent_cache:
dcdbc059 1089 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1090out_reserve:
0b246afa 1091 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1092 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1093out_unlock:
a7e3b975
FM
1094 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1095 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1096 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1097 PAGE_END_WRITEBACK;
1098 /*
1099 * If we reserved an extent for our delalloc range (or a subrange) and
1100 * failed to create the respective ordered extent, then it means that
1101 * when we reserved the extent we decremented the extent's size from
1102 * the data space_info's bytes_may_use counter and incremented the
1103 * space_info's bytes_reserved counter by the same amount. We must make
1104 * sure extent_clear_unlock_delalloc() does not try to decrement again
1105 * the data space_info's bytes_may_use counter, therefore we do not pass
1106 * it the flag EXTENT_CLEAR_DATA_RESV.
1107 */
1108 if (extent_reserved) {
1109 extent_clear_unlock_delalloc(inode, start,
1110 start + cur_alloc_size,
1111 start + cur_alloc_size,
1112 locked_page,
1113 clear_bits,
1114 page_ops);
1115 start += cur_alloc_size;
1116 if (start >= end)
1117 goto out;
1118 }
ba8b04c1
QW
1119 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1120 locked_page,
a315e68f
FM
1121 clear_bits | EXTENT_CLEAR_DATA_RESV,
1122 page_ops);
79787eaa 1123 goto out;
771ed689 1124}
c8b97818 1125
771ed689
CM
1126/*
1127 * work queue call back to started compression on a file and pages
1128 */
1129static noinline void async_cow_start(struct btrfs_work *work)
1130{
1131 struct async_cow *async_cow;
1132 int num_added = 0;
1133 async_cow = container_of(work, struct async_cow, work);
1134
1135 compress_file_range(async_cow->inode, async_cow->locked_page,
1136 async_cow->start, async_cow->end, async_cow,
1137 &num_added);
8180ef88 1138 if (num_added == 0) {
cb77fcd8 1139 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1140 async_cow->inode = NULL;
8180ef88 1141 }
771ed689
CM
1142}
1143
1144/*
1145 * work queue call back to submit previously compressed pages
1146 */
1147static noinline void async_cow_submit(struct btrfs_work *work)
1148{
0b246afa 1149 struct btrfs_fs_info *fs_info;
771ed689
CM
1150 struct async_cow *async_cow;
1151 struct btrfs_root *root;
1152 unsigned long nr_pages;
1153
1154 async_cow = container_of(work, struct async_cow, work);
1155
1156 root = async_cow->root;
0b246afa 1157 fs_info = root->fs_info;
09cbfeaf
KS
1158 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1159 PAGE_SHIFT;
771ed689 1160
093258e6 1161 /* atomic_sub_return implies a barrier */
0b246afa 1162 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1163 5 * SZ_1M)
1164 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1165
d397712b 1166 if (async_cow->inode)
771ed689 1167 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1168}
c8b97818 1169
771ed689
CM
1170static noinline void async_cow_free(struct btrfs_work *work)
1171{
1172 struct async_cow *async_cow;
1173 async_cow = container_of(work, struct async_cow, work);
8180ef88 1174 if (async_cow->inode)
cb77fcd8 1175 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1176 kfree(async_cow);
1177}
1178
1179static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 u64 start, u64 end, int *page_started,
f82b7359
LB
1181 unsigned long *nr_written,
1182 unsigned int write_flags)
771ed689 1183{
0b246afa 1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1185 struct async_cow *async_cow;
1186 struct btrfs_root *root = BTRFS_I(inode)->root;
1187 unsigned long nr_pages;
1188 u64 cur_end;
771ed689 1189
a3429ab7 1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1191 1, 0, NULL);
d397712b 1192 while (start < end) {
771ed689 1193 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1194 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1195 async_cow->inode = igrab(inode);
771ed689
CM
1196 async_cow->root = root;
1197 async_cow->locked_page = locked_page;
1198 async_cow->start = start;
f82b7359 1199 async_cow->write_flags = write_flags;
771ed689 1200
f79707b0 1201 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1202 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1203 cur_end = end;
1204 else
ee22184b 1205 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1206
1207 async_cow->end = cur_end;
1208 INIT_LIST_HEAD(&async_cow->extents);
1209
9e0af237
LB
1210 btrfs_init_work(&async_cow->work,
1211 btrfs_delalloc_helper,
1212 async_cow_start, async_cow_submit,
1213 async_cow_free);
771ed689 1214
09cbfeaf
KS
1215 nr_pages = (cur_end - start + PAGE_SIZE) >>
1216 PAGE_SHIFT;
0b246afa 1217 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1218
0b246afa 1219 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1220
771ed689
CM
1221 *nr_written += nr_pages;
1222 start = cur_end + 1;
1223 }
1224 *page_started = 1;
1225 return 0;
be20aa9d
CM
1226}
1227
2ff7e61e 1228static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1229 u64 bytenr, u64 num_bytes)
1230{
1231 int ret;
1232 struct btrfs_ordered_sum *sums;
1233 LIST_HEAD(list);
1234
0b246afa 1235 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1236 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1237 if (ret == 0 && list_empty(&list))
1238 return 0;
1239
1240 while (!list_empty(&list)) {
1241 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1242 list_del(&sums->list);
1243 kfree(sums);
1244 }
58113753
LB
1245 if (ret < 0)
1246 return ret;
17d217fe
YZ
1247 return 1;
1248}
1249
d352ac68
CM
1250/*
1251 * when nowcow writeback call back. This checks for snapshots or COW copies
1252 * of the extents that exist in the file, and COWs the file as required.
1253 *
1254 * If no cow copies or snapshots exist, we write directly to the existing
1255 * blocks on disk
1256 */
7f366cfe
CM
1257static noinline int run_delalloc_nocow(struct inode *inode,
1258 struct page *locked_page,
771ed689
CM
1259 u64 start, u64 end, int *page_started, int force,
1260 unsigned long *nr_written)
be20aa9d 1261{
0b246afa 1262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1263 struct btrfs_root *root = BTRFS_I(inode)->root;
1264 struct extent_buffer *leaf;
be20aa9d 1265 struct btrfs_path *path;
80ff3856 1266 struct btrfs_file_extent_item *fi;
be20aa9d 1267 struct btrfs_key found_key;
6f9994db 1268 struct extent_map *em;
80ff3856
YZ
1269 u64 cow_start;
1270 u64 cur_offset;
1271 u64 extent_end;
5d4f98a2 1272 u64 extent_offset;
80ff3856
YZ
1273 u64 disk_bytenr;
1274 u64 num_bytes;
b4939680 1275 u64 disk_num_bytes;
cc95bef6 1276 u64 ram_bytes;
80ff3856 1277 int extent_type;
79787eaa 1278 int ret, err;
d899e052 1279 int type;
80ff3856
YZ
1280 int nocow;
1281 int check_prev = 1;
82d5902d 1282 bool nolock;
4a0cc7ca 1283 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1284
1285 path = btrfs_alloc_path();
17ca04af 1286 if (!path) {
ba8b04c1
QW
1287 extent_clear_unlock_delalloc(inode, start, end, end,
1288 locked_page,
c2790a2e 1289 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1290 EXTENT_DO_ACCOUNTING |
1291 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1292 PAGE_CLEAR_DIRTY |
1293 PAGE_SET_WRITEBACK |
1294 PAGE_END_WRITEBACK);
d8926bb3 1295 return -ENOMEM;
17ca04af 1296 }
82d5902d 1297
70ddc553 1298 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1299
80ff3856
YZ
1300 cow_start = (u64)-1;
1301 cur_offset = start;
1302 while (1) {
e4c3b2dc 1303 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1304 cur_offset, 0);
d788a349 1305 if (ret < 0)
79787eaa 1306 goto error;
80ff3856
YZ
1307 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1308 leaf = path->nodes[0];
1309 btrfs_item_key_to_cpu(leaf, &found_key,
1310 path->slots[0] - 1);
33345d01 1311 if (found_key.objectid == ino &&
80ff3856
YZ
1312 found_key.type == BTRFS_EXTENT_DATA_KEY)
1313 path->slots[0]--;
1314 }
1315 check_prev = 0;
1316next_slot:
1317 leaf = path->nodes[0];
1318 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1319 ret = btrfs_next_leaf(root, path);
e8916699
LB
1320 if (ret < 0) {
1321 if (cow_start != (u64)-1)
1322 cur_offset = cow_start;
79787eaa 1323 goto error;
e8916699 1324 }
80ff3856
YZ
1325 if (ret > 0)
1326 break;
1327 leaf = path->nodes[0];
1328 }
be20aa9d 1329
80ff3856
YZ
1330 nocow = 0;
1331 disk_bytenr = 0;
17d217fe 1332 num_bytes = 0;
80ff3856
YZ
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1334
1d512cb7
FM
1335 if (found_key.objectid > ino)
1336 break;
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1343 found_key.offset > end)
1344 break;
1345
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
e9061e21 1348 extent_type = 0;
80ff3856
YZ
1349 goto out_check;
1350 }
1351
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1355
cc95bef6 1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1363 disk_num_bytes =
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1365 if (extent_end <= start) {
1366 path->slots[0]++;
1367 goto next_slot;
1368 }
17d217fe
YZ
1369 if (disk_bytenr == 0)
1370 goto out_check;
80ff3856
YZ
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1374 goto out_check;
78d4295b
EL
1375 /*
1376 * Do the same check as in btrfs_cross_ref_exist but
1377 * without the unnecessary search.
1378 */
1379 if (btrfs_file_extent_generation(leaf, fi) <=
1380 btrfs_root_last_snapshot(&root->root_item))
1381 goto out_check;
d899e052
YZ
1382 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1383 goto out_check;
2ff7e61e 1384 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1385 goto out_check;
58113753
LB
1386 ret = btrfs_cross_ref_exist(root, ino,
1387 found_key.offset -
1388 extent_offset, disk_bytenr);
1389 if (ret) {
1390 /*
1391 * ret could be -EIO if the above fails to read
1392 * metadata.
1393 */
1394 if (ret < 0) {
1395 if (cow_start != (u64)-1)
1396 cur_offset = cow_start;
1397 goto error;
1398 }
1399
1400 WARN_ON_ONCE(nolock);
17d217fe 1401 goto out_check;
58113753 1402 }
5d4f98a2 1403 disk_bytenr += extent_offset;
17d217fe
YZ
1404 disk_bytenr += cur_offset - found_key.offset;
1405 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1406 /*
1407 * if there are pending snapshots for this root,
1408 * we fall into common COW way.
1409 */
1410 if (!nolock) {
ea14b57f 1411 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1412 if (!err)
1413 goto out_check;
1414 }
17d217fe
YZ
1415 /*
1416 * force cow if csum exists in the range.
1417 * this ensure that csum for a given extent are
1418 * either valid or do not exist.
1419 */
58113753
LB
1420 ret = csum_exist_in_range(fs_info, disk_bytenr,
1421 num_bytes);
1422 if (ret) {
91e1f56a 1423 if (!nolock)
ea14b57f 1424 btrfs_end_write_no_snapshotting(root);
58113753
LB
1425
1426 /*
1427 * ret could be -EIO if the above fails to read
1428 * metadata.
1429 */
1430 if (ret < 0) {
1431 if (cow_start != (u64)-1)
1432 cur_offset = cow_start;
1433 goto error;
1434 }
1435 WARN_ON_ONCE(nolock);
17d217fe 1436 goto out_check;
91e1f56a
RK
1437 }
1438 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1439 if (!nolock)
ea14b57f 1440 btrfs_end_write_no_snapshotting(root);
f78c436c 1441 goto out_check;
91e1f56a 1442 }
80ff3856
YZ
1443 nocow = 1;
1444 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1445 extent_end = found_key.offset +
514ac8ad
CM
1446 btrfs_file_extent_inline_len(leaf,
1447 path->slots[0], fi);
da17066c 1448 extent_end = ALIGN(extent_end,
0b246afa 1449 fs_info->sectorsize);
80ff3856
YZ
1450 } else {
1451 BUG_ON(1);
1452 }
1453out_check:
1454 if (extent_end <= start) {
1455 path->slots[0]++;
e9894fd3 1456 if (!nolock && nocow)
ea14b57f 1457 btrfs_end_write_no_snapshotting(root);
f78c436c 1458 if (nocow)
0b246afa 1459 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1460 goto next_slot;
1461 }
1462 if (!nocow) {
1463 if (cow_start == (u64)-1)
1464 cow_start = cur_offset;
1465 cur_offset = extent_end;
1466 if (cur_offset > end)
1467 break;
1468 path->slots[0]++;
1469 goto next_slot;
7ea394f1
YZ
1470 }
1471
b3b4aa74 1472 btrfs_release_path(path);
80ff3856 1473 if (cow_start != (u64)-1) {
00361589
JB
1474 ret = cow_file_range(inode, locked_page,
1475 cow_start, found_key.offset - 1,
dda3245e
WX
1476 end, page_started, nr_written, 1,
1477 NULL);
e9894fd3
WS
1478 if (ret) {
1479 if (!nolock && nocow)
ea14b57f 1480 btrfs_end_write_no_snapshotting(root);
f78c436c 1481 if (nocow)
0b246afa 1482 btrfs_dec_nocow_writers(fs_info,
f78c436c 1483 disk_bytenr);
79787eaa 1484 goto error;
e9894fd3 1485 }
80ff3856 1486 cow_start = (u64)-1;
7ea394f1 1487 }
80ff3856 1488
d899e052 1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1490 u64 orig_start = found_key.offset - extent_offset;
1491
1492 em = create_io_em(inode, cur_offset, num_bytes,
1493 orig_start,
1494 disk_bytenr, /* block_start */
1495 num_bytes, /* block_len */
1496 disk_num_bytes, /* orig_block_len */
1497 ram_bytes, BTRFS_COMPRESS_NONE,
1498 BTRFS_ORDERED_PREALLOC);
1499 if (IS_ERR(em)) {
1500 if (!nolock && nocow)
ea14b57f 1501 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1502 if (nocow)
1503 btrfs_dec_nocow_writers(fs_info,
1504 disk_bytenr);
1505 ret = PTR_ERR(em);
1506 goto error;
d899e052 1507 }
6f9994db
LB
1508 free_extent_map(em);
1509 }
1510
1511 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1512 type = BTRFS_ORDERED_PREALLOC;
1513 } else {
1514 type = BTRFS_ORDERED_NOCOW;
1515 }
80ff3856
YZ
1516
1517 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1518 num_bytes, num_bytes, type);
f78c436c 1519 if (nocow)
0b246afa 1520 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1521 BUG_ON(ret); /* -ENOMEM */
771ed689 1522
efa56464 1523 if (root->root_key.objectid ==
4dbd80fb
QW
1524 BTRFS_DATA_RELOC_TREE_OBJECTID)
1525 /*
1526 * Error handled later, as we must prevent
1527 * extent_clear_unlock_delalloc() in error handler
1528 * from freeing metadata of created ordered extent.
1529 */
efa56464
YZ
1530 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1531 num_bytes);
efa56464 1532
c2790a2e 1533 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1534 cur_offset + num_bytes - 1, end,
c2790a2e 1535 locked_page, EXTENT_LOCKED |
18513091
WX
1536 EXTENT_DELALLOC |
1537 EXTENT_CLEAR_DATA_RESV,
1538 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1539
e9894fd3 1540 if (!nolock && nocow)
ea14b57f 1541 btrfs_end_write_no_snapshotting(root);
80ff3856 1542 cur_offset = extent_end;
4dbd80fb
QW
1543
1544 /*
1545 * btrfs_reloc_clone_csums() error, now we're OK to call error
1546 * handler, as metadata for created ordered extent will only
1547 * be freed by btrfs_finish_ordered_io().
1548 */
1549 if (ret)
1550 goto error;
80ff3856
YZ
1551 if (cur_offset > end)
1552 break;
be20aa9d 1553 }
b3b4aa74 1554 btrfs_release_path(path);
80ff3856 1555
17ca04af 1556 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1557 cow_start = cur_offset;
17ca04af
JB
1558 cur_offset = end;
1559 }
1560
80ff3856 1561 if (cow_start != (u64)-1) {
dda3245e
WX
1562 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1563 page_started, nr_written, 1, NULL);
d788a349 1564 if (ret)
79787eaa 1565 goto error;
80ff3856
YZ
1566 }
1567
79787eaa 1568error:
17ca04af 1569 if (ret && cur_offset < end)
ba8b04c1 1570 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1571 locked_page, EXTENT_LOCKED |
151a41bc
JB
1572 EXTENT_DELALLOC | EXTENT_DEFRAG |
1573 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1574 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1575 PAGE_SET_WRITEBACK |
1576 PAGE_END_WRITEBACK);
7ea394f1 1577 btrfs_free_path(path);
79787eaa 1578 return ret;
be20aa9d
CM
1579}
1580
47059d93
WS
1581static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1582{
1583
1584 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1585 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1586 return 0;
1587
1588 /*
1589 * @defrag_bytes is a hint value, no spinlock held here,
1590 * if is not zero, it means the file is defragging.
1591 * Force cow if given extent needs to be defragged.
1592 */
1593 if (BTRFS_I(inode)->defrag_bytes &&
1594 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1595 EXTENT_DEFRAG, 0, NULL))
1596 return 1;
1597
1598 return 0;
1599}
1600
d352ac68
CM
1601/*
1602 * extent_io.c call back to do delayed allocation processing
1603 */
c6100a4b 1604static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1605 u64 start, u64 end, int *page_started,
f82b7359
LB
1606 unsigned long *nr_written,
1607 struct writeback_control *wbc)
be20aa9d 1608{
c6100a4b 1609 struct inode *inode = private_data;
be20aa9d 1610 int ret;
47059d93 1611 int force_cow = need_force_cow(inode, start, end);
f82b7359 1612 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1613
47059d93 1614 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1615 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1616 page_started, 1, nr_written);
47059d93 1617 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1618 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1619 page_started, 0, nr_written);
c2fcdcdf 1620 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1621 ret = cow_file_range(inode, locked_page, start, end, end,
1622 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1623 } else {
1624 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1625 &BTRFS_I(inode)->runtime_flags);
771ed689 1626 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1627 page_started, nr_written,
1628 write_flags);
7ddf5a42 1629 }
52427260
QW
1630 if (ret)
1631 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1632 return ret;
1633}
1634
c6100a4b 1635static void btrfs_split_extent_hook(void *private_data,
1bf85046 1636 struct extent_state *orig, u64 split)
9ed74f2d 1637{
c6100a4b 1638 struct inode *inode = private_data;
dcab6a3b
JB
1639 u64 size;
1640
0ca1f7ce 1641 /* not delalloc, ignore it */
9ed74f2d 1642 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1643 return;
9ed74f2d 1644
dcab6a3b
JB
1645 size = orig->end - orig->start + 1;
1646 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1647 u32 num_extents;
dcab6a3b
JB
1648 u64 new_size;
1649
1650 /*
ba117213
JB
1651 * See the explanation in btrfs_merge_extent_hook, the same
1652 * applies here, just in reverse.
dcab6a3b
JB
1653 */
1654 new_size = orig->end - split + 1;
823bb20a 1655 num_extents = count_max_extents(new_size);
ba117213 1656 new_size = split - orig->start;
823bb20a
DS
1657 num_extents += count_max_extents(new_size);
1658 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1659 return;
1660 }
1661
9e0baf60 1662 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1663 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1664 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1665}
1666
1667/*
1668 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1669 * extents so we can keep track of new extents that are just merged onto old
1670 * extents, such as when we are doing sequential writes, so we can properly
1671 * account for the metadata space we'll need.
1672 */
c6100a4b 1673static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1674 struct extent_state *new,
1675 struct extent_state *other)
9ed74f2d 1676{
c6100a4b 1677 struct inode *inode = private_data;
dcab6a3b 1678 u64 new_size, old_size;
823bb20a 1679 u32 num_extents;
dcab6a3b 1680
9ed74f2d
JB
1681 /* not delalloc, ignore it */
1682 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1683 return;
9ed74f2d 1684
8461a3de
JB
1685 if (new->start > other->start)
1686 new_size = new->end - other->start + 1;
1687 else
1688 new_size = other->end - new->start + 1;
dcab6a3b
JB
1689
1690 /* we're not bigger than the max, unreserve the space and go */
1691 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1692 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1693 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1694 spin_unlock(&BTRFS_I(inode)->lock);
1695 return;
1696 }
1697
1698 /*
ba117213
JB
1699 * We have to add up either side to figure out how many extents were
1700 * accounted for before we merged into one big extent. If the number of
1701 * extents we accounted for is <= the amount we need for the new range
1702 * then we can return, otherwise drop. Think of it like this
1703 *
1704 * [ 4k][MAX_SIZE]
1705 *
1706 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1707 * need 2 outstanding extents, on one side we have 1 and the other side
1708 * we have 1 so they are == and we can return. But in this case
1709 *
1710 * [MAX_SIZE+4k][MAX_SIZE+4k]
1711 *
1712 * Each range on their own accounts for 2 extents, but merged together
1713 * they are only 3 extents worth of accounting, so we need to drop in
1714 * this case.
dcab6a3b 1715 */
ba117213 1716 old_size = other->end - other->start + 1;
823bb20a 1717 num_extents = count_max_extents(old_size);
ba117213 1718 old_size = new->end - new->start + 1;
823bb20a
DS
1719 num_extents += count_max_extents(old_size);
1720 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1721 return;
1722
9e0baf60 1723 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1724 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1725 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1726}
1727
eb73c1b7
MX
1728static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1729 struct inode *inode)
1730{
0b246afa
JM
1731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1732
eb73c1b7
MX
1733 spin_lock(&root->delalloc_lock);
1734 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1735 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1736 &root->delalloc_inodes);
1737 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 &BTRFS_I(inode)->runtime_flags);
1739 root->nr_delalloc_inodes++;
1740 if (root->nr_delalloc_inodes == 1) {
0b246afa 1741 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1742 BUG_ON(!list_empty(&root->delalloc_root));
1743 list_add_tail(&root->delalloc_root,
0b246afa
JM
1744 &fs_info->delalloc_roots);
1745 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1746 }
1747 }
1748 spin_unlock(&root->delalloc_lock);
1749}
1750
2b877331
NB
1751
1752void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1753 struct btrfs_inode *inode)
eb73c1b7 1754{
9e3e97f4 1755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1756
9e3e97f4
NB
1757 if (!list_empty(&inode->delalloc_inodes)) {
1758 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1759 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1760 &inode->runtime_flags);
eb73c1b7
MX
1761 root->nr_delalloc_inodes--;
1762 if (!root->nr_delalloc_inodes) {
7c8a0d36 1763 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1764 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1765 BUG_ON(list_empty(&root->delalloc_root));
1766 list_del_init(&root->delalloc_root);
0b246afa 1767 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1768 }
1769 }
2b877331
NB
1770}
1771
1772static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1773 struct btrfs_inode *inode)
1774{
1775 spin_lock(&root->delalloc_lock);
1776 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1777 spin_unlock(&root->delalloc_lock);
1778}
1779
d352ac68
CM
1780/*
1781 * extent_io.c set_bit_hook, used to track delayed allocation
1782 * bytes in this file, and to maintain the list of inodes that
1783 * have pending delalloc work to be done.
1784 */
c6100a4b 1785static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1786 struct extent_state *state, unsigned *bits)
291d673e 1787{
c6100a4b 1788 struct inode *inode = private_data;
9ed74f2d 1789
0b246afa
JM
1790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1791
47059d93
WS
1792 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1793 WARN_ON(1);
75eff68e
CM
1794 /*
1795 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1796 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1797 * bit, which is only set or cleared with irqs on
1798 */
0ca1f7ce 1799 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1800 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1801 u64 len = state->end + 1 - state->start;
8b62f87b 1802 u32 num_extents = count_max_extents(len);
70ddc553 1803 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1804
8b62f87b
JB
1805 spin_lock(&BTRFS_I(inode)->lock);
1806 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1807 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1808
6a3891c5 1809 /* For sanity tests */
0b246afa 1810 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1811 return;
1812
104b4e51
NB
1813 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1814 fs_info->delalloc_batch);
df0af1a5 1815 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1816 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1817 if (*bits & EXTENT_DEFRAG)
1818 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1819 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1820 &BTRFS_I(inode)->runtime_flags))
1821 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1822 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1823 }
a7e3b975
FM
1824
1825 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1826 (*bits & EXTENT_DELALLOC_NEW)) {
1827 spin_lock(&BTRFS_I(inode)->lock);
1828 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1829 state->start;
1830 spin_unlock(&BTRFS_I(inode)->lock);
1831 }
291d673e
CM
1832}
1833
d352ac68
CM
1834/*
1835 * extent_io.c clear_bit_hook, see set_bit_hook for why
1836 */
c6100a4b 1837static void btrfs_clear_bit_hook(void *private_data,
41074888 1838 struct extent_state *state,
9ee49a04 1839 unsigned *bits)
291d673e 1840{
c6100a4b 1841 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1843 u64 len = state->end + 1 - state->start;
823bb20a 1844 u32 num_extents = count_max_extents(len);
47059d93 1845
4a4b964f
FM
1846 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1847 spin_lock(&inode->lock);
6fc0ef68 1848 inode->defrag_bytes -= len;
4a4b964f
FM
1849 spin_unlock(&inode->lock);
1850 }
47059d93 1851
75eff68e
CM
1852 /*
1853 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1854 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1855 * bit, which is only set or cleared with irqs on
1856 */
0ca1f7ce 1857 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1858 struct btrfs_root *root = inode->root;
83eea1f1 1859 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1860
8b62f87b
JB
1861 spin_lock(&inode->lock);
1862 btrfs_mod_outstanding_extents(inode, -num_extents);
1863 spin_unlock(&inode->lock);
0ca1f7ce 1864
b6d08f06
JB
1865 /*
1866 * We don't reserve metadata space for space cache inodes so we
1867 * don't need to call dellalloc_release_metadata if there is an
1868 * error.
1869 */
a315e68f 1870 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1871 root != fs_info->tree_root)
43b18595 1872 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1873
6a3891c5 1874 /* For sanity tests. */
0b246afa 1875 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1876 return;
1877
a315e68f
FM
1878 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1879 do_list && !(state->state & EXTENT_NORESERVE) &&
1880 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1881 btrfs_free_reserved_data_space_noquota(
1882 &inode->vfs_inode,
51773bec 1883 state->start, len);
9ed74f2d 1884
104b4e51
NB
1885 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1886 fs_info->delalloc_batch);
6fc0ef68
NB
1887 spin_lock(&inode->lock);
1888 inode->delalloc_bytes -= len;
1889 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1890 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1891 &inode->runtime_flags))
eb73c1b7 1892 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1893 spin_unlock(&inode->lock);
291d673e 1894 }
a7e3b975
FM
1895
1896 if ((state->state & EXTENT_DELALLOC_NEW) &&
1897 (*bits & EXTENT_DELALLOC_NEW)) {
1898 spin_lock(&inode->lock);
1899 ASSERT(inode->new_delalloc_bytes >= len);
1900 inode->new_delalloc_bytes -= len;
1901 spin_unlock(&inode->lock);
1902 }
291d673e
CM
1903}
1904
d352ac68
CM
1905/*
1906 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1907 * we don't create bios that span stripes or chunks
6f034ece
LB
1908 *
1909 * return 1 if page cannot be merged to bio
1910 * return 0 if page can be merged to bio
1911 * return error otherwise
d352ac68 1912 */
81a75f67 1913int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1914 size_t size, struct bio *bio,
1915 unsigned long bio_flags)
239b14b3 1916{
0b246afa
JM
1917 struct inode *inode = page->mapping->host;
1918 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1919 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1920 u64 length = 0;
1921 u64 map_length;
239b14b3
CM
1922 int ret;
1923
771ed689
CM
1924 if (bio_flags & EXTENT_BIO_COMPRESSED)
1925 return 0;
1926
4f024f37 1927 length = bio->bi_iter.bi_size;
239b14b3 1928 map_length = length;
0b246afa
JM
1929 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1930 NULL, 0);
6f034ece
LB
1931 if (ret < 0)
1932 return ret;
d397712b 1933 if (map_length < length + size)
239b14b3 1934 return 1;
3444a972 1935 return 0;
239b14b3
CM
1936}
1937
d352ac68
CM
1938/*
1939 * in order to insert checksums into the metadata in large chunks,
1940 * we wait until bio submission time. All the pages in the bio are
1941 * checksummed and sums are attached onto the ordered extent record.
1942 *
1943 * At IO completion time the cums attached on the ordered extent record
1944 * are inserted into the btree
1945 */
d0ee3934 1946static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1947 u64 bio_offset)
065631f6 1948{
c6100a4b 1949 struct inode *inode = private_data;
4e4cbee9 1950 blk_status_t ret = 0;
e015640f 1951
2ff7e61e 1952 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1953 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1954 return 0;
1955}
e015640f 1956
4a69a410
CM
1957/*
1958 * in order to insert checksums into the metadata in large chunks,
1959 * we wait until bio submission time. All the pages in the bio are
1960 * checksummed and sums are attached onto the ordered extent record.
1961 *
1962 * At IO completion time the cums attached on the ordered extent record
1963 * are inserted into the btree
1964 */
d0ee3934 1965static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
6c553435 1966 int mirror_num)
4a69a410 1967{
c6100a4b 1968 struct inode *inode = private_data;
2ff7e61e 1969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1970 blk_status_t ret;
61891923 1971
2ff7e61e 1972 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1973 if (ret) {
4e4cbee9 1974 bio->bi_status = ret;
4246a0b6
CH
1975 bio_endio(bio);
1976 }
61891923 1977 return ret;
44b8bd7e
CM
1978}
1979
d352ac68 1980/*
cad321ad 1981 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1982 * on write, or reading the csums from the tree before a read.
1983 *
1984 * Rules about async/sync submit,
1985 * a) read: sync submit
1986 *
1987 * b) write without checksum: sync submit
1988 *
1989 * c) write with checksum:
1990 * c-1) if bio is issued by fsync: sync submit
1991 * (sync_writers != 0)
1992 *
1993 * c-2) if root is reloc root: sync submit
1994 * (only in case of buffered IO)
1995 *
1996 * c-3) otherwise: async submit
d352ac68 1997 */
8c27cb35 1998static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1999 int mirror_num, unsigned long bio_flags,
2000 u64 bio_offset)
44b8bd7e 2001{
c6100a4b 2002 struct inode *inode = private_data;
0b246afa 2003 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2004 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2005 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2006 blk_status_t ret = 0;
19b9bdb0 2007 int skip_sum;
b812ce28 2008 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2009
6cbff00f 2010 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2011
70ddc553 2012 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2013 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2014
37226b21 2015 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2016 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2017 if (ret)
61891923 2018 goto out;
5fd02043 2019
d20f7043 2020 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2021 ret = btrfs_submit_compressed_read(inode, bio,
2022 mirror_num,
2023 bio_flags);
2024 goto out;
c2db1073 2025 } else if (!skip_sum) {
2ff7e61e 2026 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2027 if (ret)
61891923 2028 goto out;
c2db1073 2029 }
4d1b5fb4 2030 goto mapit;
b812ce28 2031 } else if (async && !skip_sum) {
17d217fe
YZ
2032 /* csum items have already been cloned */
2033 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2034 goto mapit;
19b9bdb0 2035 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2036 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2037 bio_offset, inode,
d0ee3934
DS
2038 btrfs_submit_bio_start,
2039 btrfs_submit_bio_done);
61891923 2040 goto out;
b812ce28 2041 } else if (!skip_sum) {
2ff7e61e 2042 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2043 if (ret)
2044 goto out;
19b9bdb0
CM
2045 }
2046
0b86a832 2047mapit:
2ff7e61e 2048 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2049
2050out:
4e4cbee9
CH
2051 if (ret) {
2052 bio->bi_status = ret;
4246a0b6
CH
2053 bio_endio(bio);
2054 }
61891923 2055 return ret;
065631f6 2056}
6885f308 2057
d352ac68
CM
2058/*
2059 * given a list of ordered sums record them in the inode. This happens
2060 * at IO completion time based on sums calculated at bio submission time.
2061 */
ba1da2f4 2062static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2063 struct inode *inode, struct list_head *list)
e6dcd2dc 2064{
e6dcd2dc 2065 struct btrfs_ordered_sum *sum;
ac01f26a 2066 int ret;
e6dcd2dc 2067
c6e30871 2068 list_for_each_entry(sum, list, list) {
7c2871a2 2069 trans->adding_csums = true;
ac01f26a 2070 ret = btrfs_csum_file_blocks(trans,
d20f7043 2071 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2072 trans->adding_csums = false;
ac01f26a
NB
2073 if (ret)
2074 return ret;
e6dcd2dc
CM
2075 }
2076 return 0;
2077}
2078
2ac55d41 2079int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2080 unsigned int extra_bits,
ba8b04c1 2081 struct extent_state **cached_state, int dedupe)
ea8c2819 2082{
09cbfeaf 2083 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2084 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2085 extra_bits, cached_state);
ea8c2819
CM
2086}
2087
d352ac68 2088/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2089struct btrfs_writepage_fixup {
2090 struct page *page;
2091 struct btrfs_work work;
2092};
2093
b2950863 2094static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2095{
2096 struct btrfs_writepage_fixup *fixup;
2097 struct btrfs_ordered_extent *ordered;
2ac55d41 2098 struct extent_state *cached_state = NULL;
364ecf36 2099 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2100 struct page *page;
2101 struct inode *inode;
2102 u64 page_start;
2103 u64 page_end;
87826df0 2104 int ret;
247e743c
CM
2105
2106 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2107 page = fixup->page;
4a096752 2108again:
247e743c
CM
2109 lock_page(page);
2110 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2111 ClearPageChecked(page);
2112 goto out_page;
2113 }
2114
2115 inode = page->mapping->host;
2116 page_start = page_offset(page);
09cbfeaf 2117 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2118
ff13db41 2119 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2120 &cached_state);
4a096752
CM
2121
2122 /* already ordered? We're done */
8b62b72b 2123 if (PagePrivate2(page))
247e743c 2124 goto out;
4a096752 2125
a776c6fa 2126 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2127 PAGE_SIZE);
4a096752 2128 if (ordered) {
2ac55d41 2129 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2130 page_end, &cached_state);
4a096752
CM
2131 unlock_page(page);
2132 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2133 btrfs_put_ordered_extent(ordered);
4a096752
CM
2134 goto again;
2135 }
247e743c 2136
364ecf36 2137 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2138 PAGE_SIZE);
87826df0
JM
2139 if (ret) {
2140 mapping_set_error(page->mapping, ret);
2141 end_extent_writepage(page, ret, page_start, page_end);
2142 ClearPageChecked(page);
2143 goto out;
2144 }
2145
f3038ee3
NB
2146 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2147 &cached_state, 0);
2148 if (ret) {
2149 mapping_set_error(page->mapping, ret);
2150 end_extent_writepage(page, ret, page_start, page_end);
2151 ClearPageChecked(page);
2152 goto out;
2153 }
2154
247e743c 2155 ClearPageChecked(page);
87826df0 2156 set_page_dirty(page);
43b18595 2157 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2158out:
2ac55d41 2159 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2160 &cached_state);
247e743c
CM
2161out_page:
2162 unlock_page(page);
09cbfeaf 2163 put_page(page);
b897abec 2164 kfree(fixup);
364ecf36 2165 extent_changeset_free(data_reserved);
247e743c
CM
2166}
2167
2168/*
2169 * There are a few paths in the higher layers of the kernel that directly
2170 * set the page dirty bit without asking the filesystem if it is a
2171 * good idea. This causes problems because we want to make sure COW
2172 * properly happens and the data=ordered rules are followed.
2173 *
c8b97818 2174 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2175 * hasn't been properly setup for IO. We kick off an async process
2176 * to fix it up. The async helper will wait for ordered extents, set
2177 * the delalloc bit and make it safe to write the page.
2178 */
b2950863 2179static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2180{
2181 struct inode *inode = page->mapping->host;
0b246afa 2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2183 struct btrfs_writepage_fixup *fixup;
247e743c 2184
8b62b72b
CM
2185 /* this page is properly in the ordered list */
2186 if (TestClearPagePrivate2(page))
247e743c
CM
2187 return 0;
2188
2189 if (PageChecked(page))
2190 return -EAGAIN;
2191
2192 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2193 if (!fixup)
2194 return -EAGAIN;
f421950f 2195
247e743c 2196 SetPageChecked(page);
09cbfeaf 2197 get_page(page);
9e0af237
LB
2198 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2199 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2200 fixup->page = page;
0b246afa 2201 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2202 return -EBUSY;
247e743c
CM
2203}
2204
d899e052
YZ
2205static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2206 struct inode *inode, u64 file_pos,
2207 u64 disk_bytenr, u64 disk_num_bytes,
2208 u64 num_bytes, u64 ram_bytes,
2209 u8 compression, u8 encryption,
2210 u16 other_encoding, int extent_type)
2211{
2212 struct btrfs_root *root = BTRFS_I(inode)->root;
2213 struct btrfs_file_extent_item *fi;
2214 struct btrfs_path *path;
2215 struct extent_buffer *leaf;
2216 struct btrfs_key ins;
a12b877b 2217 u64 qg_released;
1acae57b 2218 int extent_inserted = 0;
d899e052
YZ
2219 int ret;
2220
2221 path = btrfs_alloc_path();
d8926bb3
MF
2222 if (!path)
2223 return -ENOMEM;
d899e052 2224
a1ed835e
CM
2225 /*
2226 * we may be replacing one extent in the tree with another.
2227 * The new extent is pinned in the extent map, and we don't want
2228 * to drop it from the cache until it is completely in the btree.
2229 *
2230 * So, tell btrfs_drop_extents to leave this extent in the cache.
2231 * the caller is expected to unpin it and allow it to be merged
2232 * with the others.
2233 */
1acae57b
FDBM
2234 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2235 file_pos + num_bytes, NULL, 0,
2236 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2237 if (ret)
2238 goto out;
d899e052 2239
1acae57b 2240 if (!extent_inserted) {
4a0cc7ca 2241 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2242 ins.offset = file_pos;
2243 ins.type = BTRFS_EXTENT_DATA_KEY;
2244
2245 path->leave_spinning = 1;
2246 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2247 sizeof(*fi));
2248 if (ret)
2249 goto out;
2250 }
d899e052
YZ
2251 leaf = path->nodes[0];
2252 fi = btrfs_item_ptr(leaf, path->slots[0],
2253 struct btrfs_file_extent_item);
2254 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2255 btrfs_set_file_extent_type(leaf, fi, extent_type);
2256 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2257 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2258 btrfs_set_file_extent_offset(leaf, fi, 0);
2259 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2260 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2261 btrfs_set_file_extent_compression(leaf, fi, compression);
2262 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2263 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2264
d899e052 2265 btrfs_mark_buffer_dirty(leaf);
ce195332 2266 btrfs_release_path(path);
d899e052
YZ
2267
2268 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2269
2270 ins.objectid = disk_bytenr;
2271 ins.offset = disk_num_bytes;
2272 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2273
297d750b 2274 /*
5846a3c2
QW
2275 * Release the reserved range from inode dirty range map, as it is
2276 * already moved into delayed_ref_head
297d750b 2277 */
a12b877b
QW
2278 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2279 if (ret < 0)
2280 goto out;
2281 qg_released = ret;
84f7d8e6
JB
2282 ret = btrfs_alloc_reserved_file_extent(trans, root,
2283 btrfs_ino(BTRFS_I(inode)),
2284 file_pos, qg_released, &ins);
79787eaa 2285out:
d899e052 2286 btrfs_free_path(path);
b9473439 2287
79787eaa 2288 return ret;
d899e052
YZ
2289}
2290
38c227d8
LB
2291/* snapshot-aware defrag */
2292struct sa_defrag_extent_backref {
2293 struct rb_node node;
2294 struct old_sa_defrag_extent *old;
2295 u64 root_id;
2296 u64 inum;
2297 u64 file_pos;
2298 u64 extent_offset;
2299 u64 num_bytes;
2300 u64 generation;
2301};
2302
2303struct old_sa_defrag_extent {
2304 struct list_head list;
2305 struct new_sa_defrag_extent *new;
2306
2307 u64 extent_offset;
2308 u64 bytenr;
2309 u64 offset;
2310 u64 len;
2311 int count;
2312};
2313
2314struct new_sa_defrag_extent {
2315 struct rb_root root;
2316 struct list_head head;
2317 struct btrfs_path *path;
2318 struct inode *inode;
2319 u64 file_pos;
2320 u64 len;
2321 u64 bytenr;
2322 u64 disk_len;
2323 u8 compress_type;
2324};
2325
2326static int backref_comp(struct sa_defrag_extent_backref *b1,
2327 struct sa_defrag_extent_backref *b2)
2328{
2329 if (b1->root_id < b2->root_id)
2330 return -1;
2331 else if (b1->root_id > b2->root_id)
2332 return 1;
2333
2334 if (b1->inum < b2->inum)
2335 return -1;
2336 else if (b1->inum > b2->inum)
2337 return 1;
2338
2339 if (b1->file_pos < b2->file_pos)
2340 return -1;
2341 else if (b1->file_pos > b2->file_pos)
2342 return 1;
2343
2344 /*
2345 * [------------------------------] ===> (a range of space)
2346 * |<--->| |<---->| =============> (fs/file tree A)
2347 * |<---------------------------->| ===> (fs/file tree B)
2348 *
2349 * A range of space can refer to two file extents in one tree while
2350 * refer to only one file extent in another tree.
2351 *
2352 * So we may process a disk offset more than one time(two extents in A)
2353 * and locate at the same extent(one extent in B), then insert two same
2354 * backrefs(both refer to the extent in B).
2355 */
2356 return 0;
2357}
2358
2359static void backref_insert(struct rb_root *root,
2360 struct sa_defrag_extent_backref *backref)
2361{
2362 struct rb_node **p = &root->rb_node;
2363 struct rb_node *parent = NULL;
2364 struct sa_defrag_extent_backref *entry;
2365 int ret;
2366
2367 while (*p) {
2368 parent = *p;
2369 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2370
2371 ret = backref_comp(backref, entry);
2372 if (ret < 0)
2373 p = &(*p)->rb_left;
2374 else
2375 p = &(*p)->rb_right;
2376 }
2377
2378 rb_link_node(&backref->node, parent, p);
2379 rb_insert_color(&backref->node, root);
2380}
2381
2382/*
2383 * Note the backref might has changed, and in this case we just return 0.
2384 */
2385static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2386 void *ctx)
2387{
2388 struct btrfs_file_extent_item *extent;
38c227d8
LB
2389 struct old_sa_defrag_extent *old = ctx;
2390 struct new_sa_defrag_extent *new = old->new;
2391 struct btrfs_path *path = new->path;
2392 struct btrfs_key key;
2393 struct btrfs_root *root;
2394 struct sa_defrag_extent_backref *backref;
2395 struct extent_buffer *leaf;
2396 struct inode *inode = new->inode;
0b246afa 2397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2398 int slot;
2399 int ret;
2400 u64 extent_offset;
2401 u64 num_bytes;
2402
2403 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2404 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2405 return 0;
2406
2407 key.objectid = root_id;
2408 key.type = BTRFS_ROOT_ITEM_KEY;
2409 key.offset = (u64)-1;
2410
38c227d8
LB
2411 root = btrfs_read_fs_root_no_name(fs_info, &key);
2412 if (IS_ERR(root)) {
2413 if (PTR_ERR(root) == -ENOENT)
2414 return 0;
2415 WARN_ON(1);
ab8d0fc4 2416 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2417 inum, offset, root_id);
2418 return PTR_ERR(root);
2419 }
2420
2421 key.objectid = inum;
2422 key.type = BTRFS_EXTENT_DATA_KEY;
2423 if (offset > (u64)-1 << 32)
2424 key.offset = 0;
2425 else
2426 key.offset = offset;
2427
2428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2429 if (WARN_ON(ret < 0))
38c227d8 2430 return ret;
50f1319c 2431 ret = 0;
38c227d8
LB
2432
2433 while (1) {
2434 cond_resched();
2435
2436 leaf = path->nodes[0];
2437 slot = path->slots[0];
2438
2439 if (slot >= btrfs_header_nritems(leaf)) {
2440 ret = btrfs_next_leaf(root, path);
2441 if (ret < 0) {
2442 goto out;
2443 } else if (ret > 0) {
2444 ret = 0;
2445 goto out;
2446 }
2447 continue;
2448 }
2449
2450 path->slots[0]++;
2451
2452 btrfs_item_key_to_cpu(leaf, &key, slot);
2453
2454 if (key.objectid > inum)
2455 goto out;
2456
2457 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2458 continue;
2459
2460 extent = btrfs_item_ptr(leaf, slot,
2461 struct btrfs_file_extent_item);
2462
2463 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2464 continue;
2465
e68afa49
LB
2466 /*
2467 * 'offset' refers to the exact key.offset,
2468 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2469 * (key.offset - extent_offset).
2470 */
2471 if (key.offset != offset)
38c227d8
LB
2472 continue;
2473
e68afa49 2474 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2475 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2476
38c227d8
LB
2477 if (extent_offset >= old->extent_offset + old->offset +
2478 old->len || extent_offset + num_bytes <=
2479 old->extent_offset + old->offset)
2480 continue;
38c227d8
LB
2481 break;
2482 }
2483
2484 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2485 if (!backref) {
2486 ret = -ENOENT;
2487 goto out;
2488 }
2489
2490 backref->root_id = root_id;
2491 backref->inum = inum;
e68afa49 2492 backref->file_pos = offset;
38c227d8
LB
2493 backref->num_bytes = num_bytes;
2494 backref->extent_offset = extent_offset;
2495 backref->generation = btrfs_file_extent_generation(leaf, extent);
2496 backref->old = old;
2497 backref_insert(&new->root, backref);
2498 old->count++;
2499out:
2500 btrfs_release_path(path);
2501 WARN_ON(ret);
2502 return ret;
2503}
2504
2505static noinline bool record_extent_backrefs(struct btrfs_path *path,
2506 struct new_sa_defrag_extent *new)
2507{
0b246afa 2508 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2509 struct old_sa_defrag_extent *old, *tmp;
2510 int ret;
2511
2512 new->path = path;
2513
2514 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2515 ret = iterate_inodes_from_logical(old->bytenr +
2516 old->extent_offset, fs_info,
38c227d8 2517 path, record_one_backref,
c995ab3c 2518 old, false);
4724b106
JB
2519 if (ret < 0 && ret != -ENOENT)
2520 return false;
38c227d8
LB
2521
2522 /* no backref to be processed for this extent */
2523 if (!old->count) {
2524 list_del(&old->list);
2525 kfree(old);
2526 }
2527 }
2528
2529 if (list_empty(&new->head))
2530 return false;
2531
2532 return true;
2533}
2534
2535static int relink_is_mergable(struct extent_buffer *leaf,
2536 struct btrfs_file_extent_item *fi,
116e0024 2537 struct new_sa_defrag_extent *new)
38c227d8 2538{
116e0024 2539 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2540 return 0;
2541
2542 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2543 return 0;
2544
116e0024
LB
2545 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2546 return 0;
2547
2548 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2549 btrfs_file_extent_other_encoding(leaf, fi))
2550 return 0;
2551
2552 return 1;
2553}
2554
2555/*
2556 * Note the backref might has changed, and in this case we just return 0.
2557 */
2558static noinline int relink_extent_backref(struct btrfs_path *path,
2559 struct sa_defrag_extent_backref *prev,
2560 struct sa_defrag_extent_backref *backref)
2561{
2562 struct btrfs_file_extent_item *extent;
2563 struct btrfs_file_extent_item *item;
2564 struct btrfs_ordered_extent *ordered;
2565 struct btrfs_trans_handle *trans;
38c227d8
LB
2566 struct btrfs_root *root;
2567 struct btrfs_key key;
2568 struct extent_buffer *leaf;
2569 struct old_sa_defrag_extent *old = backref->old;
2570 struct new_sa_defrag_extent *new = old->new;
0b246afa 2571 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2572 struct inode *inode;
2573 struct extent_state *cached = NULL;
2574 int ret = 0;
2575 u64 start;
2576 u64 len;
2577 u64 lock_start;
2578 u64 lock_end;
2579 bool merge = false;
2580 int index;
2581
2582 if (prev && prev->root_id == backref->root_id &&
2583 prev->inum == backref->inum &&
2584 prev->file_pos + prev->num_bytes == backref->file_pos)
2585 merge = true;
2586
2587 /* step 1: get root */
2588 key.objectid = backref->root_id;
2589 key.type = BTRFS_ROOT_ITEM_KEY;
2590 key.offset = (u64)-1;
2591
38c227d8
LB
2592 index = srcu_read_lock(&fs_info->subvol_srcu);
2593
2594 root = btrfs_read_fs_root_no_name(fs_info, &key);
2595 if (IS_ERR(root)) {
2596 srcu_read_unlock(&fs_info->subvol_srcu, index);
2597 if (PTR_ERR(root) == -ENOENT)
2598 return 0;
2599 return PTR_ERR(root);
2600 }
38c227d8 2601
bcbba5e6
WS
2602 if (btrfs_root_readonly(root)) {
2603 srcu_read_unlock(&fs_info->subvol_srcu, index);
2604 return 0;
2605 }
2606
38c227d8
LB
2607 /* step 2: get inode */
2608 key.objectid = backref->inum;
2609 key.type = BTRFS_INODE_ITEM_KEY;
2610 key.offset = 0;
2611
2612 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2613 if (IS_ERR(inode)) {
2614 srcu_read_unlock(&fs_info->subvol_srcu, index);
2615 return 0;
2616 }
2617
2618 srcu_read_unlock(&fs_info->subvol_srcu, index);
2619
2620 /* step 3: relink backref */
2621 lock_start = backref->file_pos;
2622 lock_end = backref->file_pos + backref->num_bytes - 1;
2623 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2624 &cached);
38c227d8
LB
2625
2626 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2627 if (ordered) {
2628 btrfs_put_ordered_extent(ordered);
2629 goto out_unlock;
2630 }
2631
2632 trans = btrfs_join_transaction(root);
2633 if (IS_ERR(trans)) {
2634 ret = PTR_ERR(trans);
2635 goto out_unlock;
2636 }
2637
2638 key.objectid = backref->inum;
2639 key.type = BTRFS_EXTENT_DATA_KEY;
2640 key.offset = backref->file_pos;
2641
2642 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2643 if (ret < 0) {
2644 goto out_free_path;
2645 } else if (ret > 0) {
2646 ret = 0;
2647 goto out_free_path;
2648 }
2649
2650 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2651 struct btrfs_file_extent_item);
2652
2653 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2654 backref->generation)
2655 goto out_free_path;
2656
2657 btrfs_release_path(path);
2658
2659 start = backref->file_pos;
2660 if (backref->extent_offset < old->extent_offset + old->offset)
2661 start += old->extent_offset + old->offset -
2662 backref->extent_offset;
2663
2664 len = min(backref->extent_offset + backref->num_bytes,
2665 old->extent_offset + old->offset + old->len);
2666 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2667
2668 ret = btrfs_drop_extents(trans, root, inode, start,
2669 start + len, 1);
2670 if (ret)
2671 goto out_free_path;
2672again:
4a0cc7ca 2673 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2674 key.type = BTRFS_EXTENT_DATA_KEY;
2675 key.offset = start;
2676
a09a0a70 2677 path->leave_spinning = 1;
38c227d8
LB
2678 if (merge) {
2679 struct btrfs_file_extent_item *fi;
2680 u64 extent_len;
2681 struct btrfs_key found_key;
2682
3c9665df 2683 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2684 if (ret < 0)
2685 goto out_free_path;
2686
2687 path->slots[0]--;
2688 leaf = path->nodes[0];
2689 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2690
2691 fi = btrfs_item_ptr(leaf, path->slots[0],
2692 struct btrfs_file_extent_item);
2693 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2694
116e0024
LB
2695 if (extent_len + found_key.offset == start &&
2696 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2697 btrfs_set_file_extent_num_bytes(leaf, fi,
2698 extent_len + len);
2699 btrfs_mark_buffer_dirty(leaf);
2700 inode_add_bytes(inode, len);
2701
2702 ret = 1;
2703 goto out_free_path;
2704 } else {
2705 merge = false;
2706 btrfs_release_path(path);
2707 goto again;
2708 }
2709 }
2710
2711 ret = btrfs_insert_empty_item(trans, root, path, &key,
2712 sizeof(*extent));
2713 if (ret) {
66642832 2714 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2715 goto out_free_path;
2716 }
2717
2718 leaf = path->nodes[0];
2719 item = btrfs_item_ptr(leaf, path->slots[0],
2720 struct btrfs_file_extent_item);
2721 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2722 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2723 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2724 btrfs_set_file_extent_num_bytes(leaf, item, len);
2725 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2726 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2727 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2728 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2729 btrfs_set_file_extent_encryption(leaf, item, 0);
2730 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2731
2732 btrfs_mark_buffer_dirty(leaf);
2733 inode_add_bytes(inode, len);
a09a0a70 2734 btrfs_release_path(path);
38c227d8 2735
84f7d8e6 2736 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2737 new->disk_len, 0,
2738 backref->root_id, backref->inum,
b06c4bf5 2739 new->file_pos); /* start - extent_offset */
38c227d8 2740 if (ret) {
66642832 2741 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2742 goto out_free_path;
2743 }
2744
2745 ret = 1;
2746out_free_path:
2747 btrfs_release_path(path);
a09a0a70 2748 path->leave_spinning = 0;
3a45bb20 2749 btrfs_end_transaction(trans);
38c227d8
LB
2750out_unlock:
2751 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2752 &cached);
38c227d8
LB
2753 iput(inode);
2754 return ret;
2755}
2756
6f519564
LB
2757static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2758{
2759 struct old_sa_defrag_extent *old, *tmp;
2760
2761 if (!new)
2762 return;
2763
2764 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2765 kfree(old);
2766 }
2767 kfree(new);
2768}
2769
38c227d8
LB
2770static void relink_file_extents(struct new_sa_defrag_extent *new)
2771{
0b246afa 2772 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2773 struct btrfs_path *path;
38c227d8
LB
2774 struct sa_defrag_extent_backref *backref;
2775 struct sa_defrag_extent_backref *prev = NULL;
2776 struct inode *inode;
38c227d8
LB
2777 struct rb_node *node;
2778 int ret;
2779
2780 inode = new->inode;
38c227d8
LB
2781
2782 path = btrfs_alloc_path();
2783 if (!path)
2784 return;
2785
2786 if (!record_extent_backrefs(path, new)) {
2787 btrfs_free_path(path);
2788 goto out;
2789 }
2790 btrfs_release_path(path);
2791
2792 while (1) {
2793 node = rb_first(&new->root);
2794 if (!node)
2795 break;
2796 rb_erase(node, &new->root);
2797
2798 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2799
2800 ret = relink_extent_backref(path, prev, backref);
2801 WARN_ON(ret < 0);
2802
2803 kfree(prev);
2804
2805 if (ret == 1)
2806 prev = backref;
2807 else
2808 prev = NULL;
2809 cond_resched();
2810 }
2811 kfree(prev);
2812
2813 btrfs_free_path(path);
38c227d8 2814out:
6f519564
LB
2815 free_sa_defrag_extent(new);
2816
0b246afa
JM
2817 atomic_dec(&fs_info->defrag_running);
2818 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2819}
2820
2821static struct new_sa_defrag_extent *
2822record_old_file_extents(struct inode *inode,
2823 struct btrfs_ordered_extent *ordered)
2824{
0b246afa 2825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2826 struct btrfs_root *root = BTRFS_I(inode)->root;
2827 struct btrfs_path *path;
2828 struct btrfs_key key;
6f519564 2829 struct old_sa_defrag_extent *old;
38c227d8
LB
2830 struct new_sa_defrag_extent *new;
2831 int ret;
2832
2833 new = kmalloc(sizeof(*new), GFP_NOFS);
2834 if (!new)
2835 return NULL;
2836
2837 new->inode = inode;
2838 new->file_pos = ordered->file_offset;
2839 new->len = ordered->len;
2840 new->bytenr = ordered->start;
2841 new->disk_len = ordered->disk_len;
2842 new->compress_type = ordered->compress_type;
2843 new->root = RB_ROOT;
2844 INIT_LIST_HEAD(&new->head);
2845
2846 path = btrfs_alloc_path();
2847 if (!path)
2848 goto out_kfree;
2849
4a0cc7ca 2850 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2851 key.type = BTRFS_EXTENT_DATA_KEY;
2852 key.offset = new->file_pos;
2853
2854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2855 if (ret < 0)
2856 goto out_free_path;
2857 if (ret > 0 && path->slots[0] > 0)
2858 path->slots[0]--;
2859
2860 /* find out all the old extents for the file range */
2861 while (1) {
2862 struct btrfs_file_extent_item *extent;
2863 struct extent_buffer *l;
2864 int slot;
2865 u64 num_bytes;
2866 u64 offset;
2867 u64 end;
2868 u64 disk_bytenr;
2869 u64 extent_offset;
2870
2871 l = path->nodes[0];
2872 slot = path->slots[0];
2873
2874 if (slot >= btrfs_header_nritems(l)) {
2875 ret = btrfs_next_leaf(root, path);
2876 if (ret < 0)
6f519564 2877 goto out_free_path;
38c227d8
LB
2878 else if (ret > 0)
2879 break;
2880 continue;
2881 }
2882
2883 btrfs_item_key_to_cpu(l, &key, slot);
2884
4a0cc7ca 2885 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2886 break;
2887 if (key.type != BTRFS_EXTENT_DATA_KEY)
2888 break;
2889 if (key.offset >= new->file_pos + new->len)
2890 break;
2891
2892 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2893
2894 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2895 if (key.offset + num_bytes < new->file_pos)
2896 goto next;
2897
2898 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2899 if (!disk_bytenr)
2900 goto next;
2901
2902 extent_offset = btrfs_file_extent_offset(l, extent);
2903
2904 old = kmalloc(sizeof(*old), GFP_NOFS);
2905 if (!old)
6f519564 2906 goto out_free_path;
38c227d8
LB
2907
2908 offset = max(new->file_pos, key.offset);
2909 end = min(new->file_pos + new->len, key.offset + num_bytes);
2910
2911 old->bytenr = disk_bytenr;
2912 old->extent_offset = extent_offset;
2913 old->offset = offset - key.offset;
2914 old->len = end - offset;
2915 old->new = new;
2916 old->count = 0;
2917 list_add_tail(&old->list, &new->head);
2918next:
2919 path->slots[0]++;
2920 cond_resched();
2921 }
2922
2923 btrfs_free_path(path);
0b246afa 2924 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2925
2926 return new;
2927
38c227d8
LB
2928out_free_path:
2929 btrfs_free_path(path);
2930out_kfree:
6f519564 2931 free_sa_defrag_extent(new);
38c227d8
LB
2932 return NULL;
2933}
2934
2ff7e61e 2935static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2936 u64 start, u64 len)
2937{
2938 struct btrfs_block_group_cache *cache;
2939
0b246afa 2940 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2941 ASSERT(cache);
2942
2943 spin_lock(&cache->lock);
2944 cache->delalloc_bytes -= len;
2945 spin_unlock(&cache->lock);
2946
2947 btrfs_put_block_group(cache);
2948}
2949
d352ac68
CM
2950/* as ordered data IO finishes, this gets called so we can finish
2951 * an ordered extent if the range of bytes in the file it covers are
2952 * fully written.
2953 */
5fd02043 2954static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2955{
5fd02043 2956 struct inode *inode = ordered_extent->inode;
0b246afa 2957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2958 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2959 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2961 struct extent_state *cached_state = NULL;
38c227d8 2962 struct new_sa_defrag_extent *new = NULL;
261507a0 2963 int compress_type = 0;
77cef2ec
JB
2964 int ret = 0;
2965 u64 logical_len = ordered_extent->len;
82d5902d 2966 bool nolock;
77cef2ec 2967 bool truncated = false;
a7e3b975
FM
2968 bool range_locked = false;
2969 bool clear_new_delalloc_bytes = false;
2970
2971 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2972 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2973 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2974 clear_new_delalloc_bytes = true;
e6dcd2dc 2975
70ddc553 2976 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2977
5fd02043
JB
2978 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2979 ret = -EIO;
2980 goto out;
2981 }
2982
7ab7956e
NB
2983 btrfs_free_io_failure_record(BTRFS_I(inode),
2984 ordered_extent->file_offset,
2985 ordered_extent->file_offset +
2986 ordered_extent->len - 1);
f612496b 2987
77cef2ec
JB
2988 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2989 truncated = true;
2990 logical_len = ordered_extent->truncated_len;
2991 /* Truncated the entire extent, don't bother adding */
2992 if (!logical_len)
2993 goto out;
2994 }
2995
c2167754 2996 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2997 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2998
2999 /*
3000 * For mwrite(mmap + memset to write) case, we still reserve
3001 * space for NOCOW range.
3002 * As NOCOW won't cause a new delayed ref, just free the space
3003 */
bc42bda2 3004 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 3005 ordered_extent->len);
6c760c07
JB
3006 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3007 if (nolock)
3008 trans = btrfs_join_transaction_nolock(root);
3009 else
3010 trans = btrfs_join_transaction(root);
3011 if (IS_ERR(trans)) {
3012 ret = PTR_ERR(trans);
3013 trans = NULL;
3014 goto out;
c2167754 3015 }
69fe2d75 3016 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3017 ret = btrfs_update_inode_fallback(trans, root, inode);
3018 if (ret) /* -ENOMEM or corruption */
66642832 3019 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3020 goto out;
3021 }
e6dcd2dc 3022
a7e3b975 3023 range_locked = true;
2ac55d41
JB
3024 lock_extent_bits(io_tree, ordered_extent->file_offset,
3025 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3026 &cached_state);
e6dcd2dc 3027
38c227d8
LB
3028 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3029 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3030 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3031 if (ret) {
3032 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3033 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3034 /* the inode is shared */
3035 new = record_old_file_extents(inode, ordered_extent);
3036
3037 clear_extent_bit(io_tree, ordered_extent->file_offset,
3038 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3039 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3040 }
3041
0cb59c99 3042 if (nolock)
7a7eaa40 3043 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3044 else
7a7eaa40 3045 trans = btrfs_join_transaction(root);
79787eaa
JM
3046 if (IS_ERR(trans)) {
3047 ret = PTR_ERR(trans);
3048 trans = NULL;
a7e3b975 3049 goto out;
79787eaa 3050 }
a79b7d4b 3051
69fe2d75 3052 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3053
c8b97818 3054 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3055 compress_type = ordered_extent->compress_type;
d899e052 3056 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3057 BUG_ON(compress_type);
b430b775
JM
3058 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3059 ordered_extent->len);
7a6d7067 3060 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3061 ordered_extent->file_offset,
3062 ordered_extent->file_offset +
77cef2ec 3063 logical_len);
d899e052 3064 } else {
0b246afa 3065 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3066 ret = insert_reserved_file_extent(trans, inode,
3067 ordered_extent->file_offset,
3068 ordered_extent->start,
3069 ordered_extent->disk_len,
77cef2ec 3070 logical_len, logical_len,
261507a0 3071 compress_type, 0, 0,
d899e052 3072 BTRFS_FILE_EXTENT_REG);
e570fd27 3073 if (!ret)
2ff7e61e 3074 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3075 ordered_extent->start,
3076 ordered_extent->disk_len);
d899e052 3077 }
5dc562c5
JB
3078 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3079 ordered_extent->file_offset, ordered_extent->len,
3080 trans->transid);
79787eaa 3081 if (ret < 0) {
66642832 3082 btrfs_abort_transaction(trans, ret);
a7e3b975 3083 goto out;
79787eaa 3084 }
2ac55d41 3085
ac01f26a
NB
3086 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3087 if (ret) {
3088 btrfs_abort_transaction(trans, ret);
3089 goto out;
3090 }
e6dcd2dc 3091
6c760c07
JB
3092 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3093 ret = btrfs_update_inode_fallback(trans, root, inode);
3094 if (ret) { /* -ENOMEM or corruption */
66642832 3095 btrfs_abort_transaction(trans, ret);
a7e3b975 3096 goto out;
1ef30be1
JB
3097 }
3098 ret = 0;
c2167754 3099out:
a7e3b975
FM
3100 if (range_locked || clear_new_delalloc_bytes) {
3101 unsigned int clear_bits = 0;
3102
3103 if (range_locked)
3104 clear_bits |= EXTENT_LOCKED;
3105 if (clear_new_delalloc_bytes)
3106 clear_bits |= EXTENT_DELALLOC_NEW;
3107 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3108 ordered_extent->file_offset,
3109 ordered_extent->file_offset +
3110 ordered_extent->len - 1,
3111 clear_bits,
3112 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3113 0, &cached_state);
a7e3b975
FM
3114 }
3115
a698d075 3116 if (trans)
3a45bb20 3117 btrfs_end_transaction(trans);
0cb59c99 3118
77cef2ec
JB
3119 if (ret || truncated) {
3120 u64 start, end;
3121
3122 if (truncated)
3123 start = ordered_extent->file_offset + logical_len;
3124 else
3125 start = ordered_extent->file_offset;
3126 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3127 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3128
3129 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3130 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3131
0bec9ef5
JB
3132 /*
3133 * If the ordered extent had an IOERR or something else went
3134 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3135 * back to the allocator. We only free the extent in the
3136 * truncated case if we didn't write out the extent at all.
0bec9ef5 3137 */
77cef2ec
JB
3138 if ((ret || !logical_len) &&
3139 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3140 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3141 btrfs_free_reserved_extent(fs_info,
3142 ordered_extent->start,
e570fd27 3143 ordered_extent->disk_len, 1);
0bec9ef5
JB
3144 }
3145
3146
5fd02043 3147 /*
8bad3c02
LB
3148 * This needs to be done to make sure anybody waiting knows we are done
3149 * updating everything for this ordered extent.
5fd02043
JB
3150 */
3151 btrfs_remove_ordered_extent(inode, ordered_extent);
3152
38c227d8 3153 /* for snapshot-aware defrag */
6f519564
LB
3154 if (new) {
3155 if (ret) {
3156 free_sa_defrag_extent(new);
0b246afa 3157 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3158 } else {
3159 relink_file_extents(new);
3160 }
3161 }
38c227d8 3162
e6dcd2dc
CM
3163 /* once for us */
3164 btrfs_put_ordered_extent(ordered_extent);
3165 /* once for the tree */
3166 btrfs_put_ordered_extent(ordered_extent);
3167
e73e81b6
EL
3168 /* Try to release some metadata so we don't get an OOM but don't wait */
3169 btrfs_btree_balance_dirty_nodelay(fs_info);
3170
5fd02043
JB
3171 return ret;
3172}
3173
3174static void finish_ordered_fn(struct btrfs_work *work)
3175{
3176 struct btrfs_ordered_extent *ordered_extent;
3177 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3178 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3179}
3180
c3988d63 3181static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3182 struct extent_state *state, int uptodate)
3183{
5fd02043 3184 struct inode *inode = page->mapping->host;
0b246afa 3185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3186 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3187 struct btrfs_workqueue *wq;
3188 btrfs_work_func_t func;
5fd02043 3189
1abe9b8a 3190 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3191
8b62b72b 3192 ClearPagePrivate2(page);
5fd02043
JB
3193 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3194 end - start + 1, uptodate))
c3988d63 3195 return;
5fd02043 3196
70ddc553 3197 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3198 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3199 func = btrfs_freespace_write_helper;
3200 } else {
0b246afa 3201 wq = fs_info->endio_write_workers;
9e0af237
LB
3202 func = btrfs_endio_write_helper;
3203 }
5fd02043 3204
9e0af237
LB
3205 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3206 NULL);
3207 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3208}
3209
dc380aea
MX
3210static int __readpage_endio_check(struct inode *inode,
3211 struct btrfs_io_bio *io_bio,
3212 int icsum, struct page *page,
3213 int pgoff, u64 start, size_t len)
3214{
3215 char *kaddr;
3216 u32 csum_expected;
3217 u32 csum = ~(u32)0;
dc380aea
MX
3218
3219 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3220
3221 kaddr = kmap_atomic(page);
3222 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3223 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3224 if (csum != csum_expected)
3225 goto zeroit;
3226
3227 kunmap_atomic(kaddr);
3228 return 0;
3229zeroit:
0970a22e 3230 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3231 io_bio->mirror_num);
dc380aea
MX
3232 memset(kaddr + pgoff, 1, len);
3233 flush_dcache_page(page);
3234 kunmap_atomic(kaddr);
dc380aea
MX
3235 return -EIO;
3236}
3237
d352ac68
CM
3238/*
3239 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3240 * if there's a match, we allow the bio to finish. If not, the code in
3241 * extent_io.c will try to find good copies for us.
d352ac68 3242 */
facc8a22
MX
3243static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3244 u64 phy_offset, struct page *page,
3245 u64 start, u64 end, int mirror)
07157aac 3246{
4eee4fa4 3247 size_t offset = start - page_offset(page);
07157aac 3248 struct inode *inode = page->mapping->host;
d1310b2e 3249 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3250 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3251
d20f7043
CM
3252 if (PageChecked(page)) {
3253 ClearPageChecked(page);
dc380aea 3254 return 0;
d20f7043 3255 }
6cbff00f
CH
3256
3257 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3258 return 0;
17d217fe
YZ
3259
3260 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3261 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3262 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3263 return 0;
17d217fe 3264 }
d20f7043 3265
facc8a22 3266 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3267 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3268 start, (size_t)(end - start + 1));
07157aac 3269}
b888db2b 3270
c1c3fac2
NB
3271/*
3272 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3273 *
3274 * @inode: The inode we want to perform iput on
3275 *
3276 * This function uses the generic vfs_inode::i_count to track whether we should
3277 * just decrement it (in case it's > 1) or if this is the last iput then link
3278 * the inode to the delayed iput machinery. Delayed iputs are processed at
3279 * transaction commit time/superblock commit/cleaner kthread.
3280 */
24bbcf04
YZ
3281void btrfs_add_delayed_iput(struct inode *inode)
3282{
0b246afa 3283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3284 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3285
3286 if (atomic_add_unless(&inode->i_count, -1, 1))
3287 return;
3288
24bbcf04 3289 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3290 ASSERT(list_empty(&binode->delayed_iput));
3291 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3292 spin_unlock(&fs_info->delayed_iput_lock);
3293}
3294
2ff7e61e 3295void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3296{
24bbcf04 3297
24bbcf04 3298 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3299 while (!list_empty(&fs_info->delayed_iputs)) {
3300 struct btrfs_inode *inode;
3301
3302 inode = list_first_entry(&fs_info->delayed_iputs,
3303 struct btrfs_inode, delayed_iput);
c1c3fac2 3304 list_del_init(&inode->delayed_iput);
8089fe62
DS
3305 spin_unlock(&fs_info->delayed_iput_lock);
3306 iput(&inode->vfs_inode);
3307 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3308 }
8089fe62 3309 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3310}
3311
7b128766 3312/*
f7e9e8fc
OS
3313 * This creates an orphan entry for the given inode in case something goes wrong
3314 * in the middle of an unlink.
7b128766 3315 */
73f2e545 3316int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3317 struct btrfs_inode *inode)
7b128766 3318{
d68fc57b 3319 int ret;
7b128766 3320
27919067
OS
3321 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3322 if (ret && ret != -EEXIST) {
3323 btrfs_abort_transaction(trans, ret);
3324 return ret;
d68fc57b
YZ
3325 }
3326
d68fc57b 3327 return 0;
7b128766
JB
3328}
3329
3330/*
f7e9e8fc
OS
3331 * We have done the delete so we can go ahead and remove the orphan item for
3332 * this particular inode.
7b128766 3333 */
48a3b636 3334static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3335 struct btrfs_inode *inode)
7b128766 3336{
27919067 3337 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3338}
3339
3340/*
3341 * this cleans up any orphans that may be left on the list from the last use
3342 * of this root.
3343 */
66b4ffd1 3344int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3345{
0b246afa 3346 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3347 struct btrfs_path *path;
3348 struct extent_buffer *leaf;
7b128766
JB
3349 struct btrfs_key key, found_key;
3350 struct btrfs_trans_handle *trans;
3351 struct inode *inode;
8f6d7f4f 3352 u64 last_objectid = 0;
f7e9e8fc 3353 int ret = 0, nr_unlink = 0;
7b128766 3354
d68fc57b 3355 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3356 return 0;
c71bf099
YZ
3357
3358 path = btrfs_alloc_path();
66b4ffd1
JB
3359 if (!path) {
3360 ret = -ENOMEM;
3361 goto out;
3362 }
e4058b54 3363 path->reada = READA_BACK;
7b128766
JB
3364
3365 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3366 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3367 key.offset = (u64)-1;
3368
7b128766
JB
3369 while (1) {
3370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3371 if (ret < 0)
3372 goto out;
7b128766
JB
3373
3374 /*
3375 * if ret == 0 means we found what we were searching for, which
25985edc 3376 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3377 * find the key and see if we have stuff that matches
3378 */
3379 if (ret > 0) {
66b4ffd1 3380 ret = 0;
7b128766
JB
3381 if (path->slots[0] == 0)
3382 break;
3383 path->slots[0]--;
3384 }
3385
3386 /* pull out the item */
3387 leaf = path->nodes[0];
7b128766
JB
3388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3389
3390 /* make sure the item matches what we want */
3391 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3392 break;
962a298f 3393 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3394 break;
3395
3396 /* release the path since we're done with it */
b3b4aa74 3397 btrfs_release_path(path);
7b128766
JB
3398
3399 /*
3400 * this is where we are basically btrfs_lookup, without the
3401 * crossing root thing. we store the inode number in the
3402 * offset of the orphan item.
3403 */
8f6d7f4f
JB
3404
3405 if (found_key.offset == last_objectid) {
0b246afa
JM
3406 btrfs_err(fs_info,
3407 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3408 ret = -EINVAL;
3409 goto out;
3410 }
3411
3412 last_objectid = found_key.offset;
3413
5d4f98a2
YZ
3414 found_key.objectid = found_key.offset;
3415 found_key.type = BTRFS_INODE_ITEM_KEY;
3416 found_key.offset = 0;
0b246afa 3417 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3418 ret = PTR_ERR_OR_ZERO(inode);
67710892 3419 if (ret && ret != -ENOENT)
66b4ffd1 3420 goto out;
7b128766 3421
0b246afa 3422 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3423 struct btrfs_root *dead_root;
3424 struct btrfs_fs_info *fs_info = root->fs_info;
3425 int is_dead_root = 0;
3426
3427 /*
3428 * this is an orphan in the tree root. Currently these
3429 * could come from 2 sources:
3430 * a) a snapshot deletion in progress
3431 * b) a free space cache inode
3432 * We need to distinguish those two, as the snapshot
3433 * orphan must not get deleted.
3434 * find_dead_roots already ran before us, so if this
3435 * is a snapshot deletion, we should find the root
3436 * in the dead_roots list
3437 */
3438 spin_lock(&fs_info->trans_lock);
3439 list_for_each_entry(dead_root, &fs_info->dead_roots,
3440 root_list) {
3441 if (dead_root->root_key.objectid ==
3442 found_key.objectid) {
3443 is_dead_root = 1;
3444 break;
3445 }
3446 }
3447 spin_unlock(&fs_info->trans_lock);
3448 if (is_dead_root) {
3449 /* prevent this orphan from being found again */
3450 key.offset = found_key.objectid - 1;
3451 continue;
3452 }
f7e9e8fc 3453
f8e9e0b0 3454 }
f7e9e8fc 3455
7b128766 3456 /*
f7e9e8fc
OS
3457 * If we have an inode with links, there are a couple of
3458 * possibilities. Old kernels (before v3.12) used to create an
3459 * orphan item for truncate indicating that there were possibly
3460 * extent items past i_size that needed to be deleted. In v3.12,
3461 * truncate was changed to update i_size in sync with the extent
3462 * items, but the (useless) orphan item was still created. Since
3463 * v4.18, we don't create the orphan item for truncate at all.
3464 *
3465 * So, this item could mean that we need to do a truncate, but
3466 * only if this filesystem was last used on a pre-v3.12 kernel
3467 * and was not cleanly unmounted. The odds of that are quite
3468 * slim, and it's a pain to do the truncate now, so just delete
3469 * the orphan item.
3470 *
3471 * It's also possible that this orphan item was supposed to be
3472 * deleted but wasn't. The inode number may have been reused,
3473 * but either way, we can delete the orphan item.
7b128766 3474 */
f7e9e8fc
OS
3475 if (ret == -ENOENT || inode->i_nlink) {
3476 if (!ret)
3477 iput(inode);
a8c9e576 3478 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3479 if (IS_ERR(trans)) {
3480 ret = PTR_ERR(trans);
3481 goto out;
3482 }
0b246afa
JM
3483 btrfs_debug(fs_info, "auto deleting %Lu",
3484 found_key.objectid);
a8c9e576
JB
3485 ret = btrfs_del_orphan_item(trans, root,
3486 found_key.objectid);
3a45bb20 3487 btrfs_end_transaction(trans);
4ef31a45
JB
3488 if (ret)
3489 goto out;
7b128766
JB
3490 continue;
3491 }
3492
f7e9e8fc 3493 nr_unlink++;
7b128766
JB
3494
3495 /* this will do delete_inode and everything for us */
3496 iput(inode);
66b4ffd1
JB
3497 if (ret)
3498 goto out;
7b128766 3499 }
3254c876
MX
3500 /* release the path since we're done with it */
3501 btrfs_release_path(path);
3502
d68fc57b
YZ
3503 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3504
a575ceeb 3505 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3506 trans = btrfs_join_transaction(root);
66b4ffd1 3507 if (!IS_ERR(trans))
3a45bb20 3508 btrfs_end_transaction(trans);
d68fc57b 3509 }
7b128766
JB
3510
3511 if (nr_unlink)
0b246afa 3512 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3513
3514out:
3515 if (ret)
0b246afa 3516 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3517 btrfs_free_path(path);
3518 return ret;
7b128766
JB
3519}
3520
46a53cca
CM
3521/*
3522 * very simple check to peek ahead in the leaf looking for xattrs. If we
3523 * don't find any xattrs, we know there can't be any acls.
3524 *
3525 * slot is the slot the inode is in, objectid is the objectid of the inode
3526 */
3527static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3528 int slot, u64 objectid,
3529 int *first_xattr_slot)
46a53cca
CM
3530{
3531 u32 nritems = btrfs_header_nritems(leaf);
3532 struct btrfs_key found_key;
f23b5a59
JB
3533 static u64 xattr_access = 0;
3534 static u64 xattr_default = 0;
46a53cca
CM
3535 int scanned = 0;
3536
f23b5a59 3537 if (!xattr_access) {
97d79299
AG
3538 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3539 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3540 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3541 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3542 }
3543
46a53cca 3544 slot++;
63541927 3545 *first_xattr_slot = -1;
46a53cca
CM
3546 while (slot < nritems) {
3547 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3548
3549 /* we found a different objectid, there must not be acls */
3550 if (found_key.objectid != objectid)
3551 return 0;
3552
3553 /* we found an xattr, assume we've got an acl */
f23b5a59 3554 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3555 if (*first_xattr_slot == -1)
3556 *first_xattr_slot = slot;
f23b5a59
JB
3557 if (found_key.offset == xattr_access ||
3558 found_key.offset == xattr_default)
3559 return 1;
3560 }
46a53cca
CM
3561
3562 /*
3563 * we found a key greater than an xattr key, there can't
3564 * be any acls later on
3565 */
3566 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3567 return 0;
3568
3569 slot++;
3570 scanned++;
3571
3572 /*
3573 * it goes inode, inode backrefs, xattrs, extents,
3574 * so if there are a ton of hard links to an inode there can
3575 * be a lot of backrefs. Don't waste time searching too hard,
3576 * this is just an optimization
3577 */
3578 if (scanned >= 8)
3579 break;
3580 }
3581 /* we hit the end of the leaf before we found an xattr or
3582 * something larger than an xattr. We have to assume the inode
3583 * has acls
3584 */
63541927
FDBM
3585 if (*first_xattr_slot == -1)
3586 *first_xattr_slot = slot;
46a53cca
CM
3587 return 1;
3588}
3589
d352ac68
CM
3590/*
3591 * read an inode from the btree into the in-memory inode
3592 */
67710892 3593static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3594{
0b246afa 3595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3596 struct btrfs_path *path;
5f39d397 3597 struct extent_buffer *leaf;
39279cc3
CM
3598 struct btrfs_inode_item *inode_item;
3599 struct btrfs_root *root = BTRFS_I(inode)->root;
3600 struct btrfs_key location;
67de1176 3601 unsigned long ptr;
46a53cca 3602 int maybe_acls;
618e21d5 3603 u32 rdev;
39279cc3 3604 int ret;
2f7e33d4 3605 bool filled = false;
63541927 3606 int first_xattr_slot;
2f7e33d4
MX
3607
3608 ret = btrfs_fill_inode(inode, &rdev);
3609 if (!ret)
3610 filled = true;
39279cc3
CM
3611
3612 path = btrfs_alloc_path();
67710892
FM
3613 if (!path) {
3614 ret = -ENOMEM;
1748f843 3615 goto make_bad;
67710892 3616 }
1748f843 3617
39279cc3 3618 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3619
39279cc3 3620 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3621 if (ret) {
3622 if (ret > 0)
3623 ret = -ENOENT;
39279cc3 3624 goto make_bad;
67710892 3625 }
39279cc3 3626
5f39d397 3627 leaf = path->nodes[0];
2f7e33d4
MX
3628
3629 if (filled)
67de1176 3630 goto cache_index;
2f7e33d4 3631
5f39d397
CM
3632 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3633 struct btrfs_inode_item);
5f39d397 3634 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3635 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3636 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3637 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3638 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3639
a937b979
DS
3640 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3641 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3642
a937b979
DS
3643 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3644 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3645
a937b979
DS
3646 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3647 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3648
9cc97d64 3649 BTRFS_I(inode)->i_otime.tv_sec =
3650 btrfs_timespec_sec(leaf, &inode_item->otime);
3651 BTRFS_I(inode)->i_otime.tv_nsec =
3652 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3653
a76a3cd4 3654 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3655 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3656 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3657
c7f88c4e
JL
3658 inode_set_iversion_queried(inode,
3659 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3660 inode->i_generation = BTRFS_I(inode)->generation;
3661 inode->i_rdev = 0;
3662 rdev = btrfs_inode_rdev(leaf, inode_item);
3663
3664 BTRFS_I(inode)->index_cnt = (u64)-1;
3665 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3666
3667cache_index:
5dc562c5
JB
3668 /*
3669 * If we were modified in the current generation and evicted from memory
3670 * and then re-read we need to do a full sync since we don't have any
3671 * idea about which extents were modified before we were evicted from
3672 * cache.
6e17d30b
YD
3673 *
3674 * This is required for both inode re-read from disk and delayed inode
3675 * in delayed_nodes_tree.
5dc562c5 3676 */
0b246afa 3677 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3678 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3679 &BTRFS_I(inode)->runtime_flags);
3680
bde6c242
FM
3681 /*
3682 * We don't persist the id of the transaction where an unlink operation
3683 * against the inode was last made. So here we assume the inode might
3684 * have been evicted, and therefore the exact value of last_unlink_trans
3685 * lost, and set it to last_trans to avoid metadata inconsistencies
3686 * between the inode and its parent if the inode is fsync'ed and the log
3687 * replayed. For example, in the scenario:
3688 *
3689 * touch mydir/foo
3690 * ln mydir/foo mydir/bar
3691 * sync
3692 * unlink mydir/bar
3693 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3694 * xfs_io -c fsync mydir/foo
3695 * <power failure>
3696 * mount fs, triggers fsync log replay
3697 *
3698 * We must make sure that when we fsync our inode foo we also log its
3699 * parent inode, otherwise after log replay the parent still has the
3700 * dentry with the "bar" name but our inode foo has a link count of 1
3701 * and doesn't have an inode ref with the name "bar" anymore.
3702 *
3703 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3704 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3705 * transaction commits on fsync if our inode is a directory, or if our
3706 * inode is not a directory, logging its parent unnecessarily.
3707 */
3708 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3709
67de1176
MX
3710 path->slots[0]++;
3711 if (inode->i_nlink != 1 ||
3712 path->slots[0] >= btrfs_header_nritems(leaf))
3713 goto cache_acl;
3714
3715 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3716 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3717 goto cache_acl;
3718
3719 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720 if (location.type == BTRFS_INODE_REF_KEY) {
3721 struct btrfs_inode_ref *ref;
3722
3723 ref = (struct btrfs_inode_ref *)ptr;
3724 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3725 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3726 struct btrfs_inode_extref *extref;
3727
3728 extref = (struct btrfs_inode_extref *)ptr;
3729 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3730 extref);
3731 }
2f7e33d4 3732cache_acl:
46a53cca
CM
3733 /*
3734 * try to precache a NULL acl entry for files that don't have
3735 * any xattrs or acls
3736 */
33345d01 3737 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3738 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3739 if (first_xattr_slot != -1) {
3740 path->slots[0] = first_xattr_slot;
3741 ret = btrfs_load_inode_props(inode, path);
3742 if (ret)
0b246afa 3743 btrfs_err(fs_info,
351fd353 3744 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3745 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3746 root->root_key.objectid, ret);
3747 }
3748 btrfs_free_path(path);
3749
72c04902
AV
3750 if (!maybe_acls)
3751 cache_no_acl(inode);
46a53cca 3752
39279cc3 3753 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3754 case S_IFREG:
3755 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3756 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3757 inode->i_fop = &btrfs_file_operations;
3758 inode->i_op = &btrfs_file_inode_operations;
3759 break;
3760 case S_IFDIR:
3761 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3762 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3763 break;
3764 case S_IFLNK:
3765 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3766 inode_nohighmem(inode);
39279cc3
CM
3767 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3768 break;
618e21d5 3769 default:
0279b4cd 3770 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3771 init_special_inode(inode, inode->i_mode, rdev);
3772 break;
39279cc3 3773 }
6cbff00f 3774
7b6a221e 3775 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3776 return 0;
39279cc3
CM
3777
3778make_bad:
39279cc3 3779 btrfs_free_path(path);
39279cc3 3780 make_bad_inode(inode);
67710892 3781 return ret;
39279cc3
CM
3782}
3783
d352ac68
CM
3784/*
3785 * given a leaf and an inode, copy the inode fields into the leaf
3786 */
e02119d5
CM
3787static void fill_inode_item(struct btrfs_trans_handle *trans,
3788 struct extent_buffer *leaf,
5f39d397 3789 struct btrfs_inode_item *item,
39279cc3
CM
3790 struct inode *inode)
3791{
51fab693
LB
3792 struct btrfs_map_token token;
3793
3794 btrfs_init_map_token(&token);
5f39d397 3795
51fab693
LB
3796 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3797 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3798 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3799 &token);
3800 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3801 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3802
a937b979 3803 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3804 inode->i_atime.tv_sec, &token);
a937b979 3805 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3806 inode->i_atime.tv_nsec, &token);
5f39d397 3807
a937b979 3808 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3809 inode->i_mtime.tv_sec, &token);
a937b979 3810 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3811 inode->i_mtime.tv_nsec, &token);
5f39d397 3812
a937b979 3813 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3814 inode->i_ctime.tv_sec, &token);
a937b979 3815 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3816 inode->i_ctime.tv_nsec, &token);
5f39d397 3817
9cc97d64 3818 btrfs_set_token_timespec_sec(leaf, &item->otime,
3819 BTRFS_I(inode)->i_otime.tv_sec, &token);
3820 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3821 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3822
51fab693
LB
3823 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3824 &token);
3825 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3826 &token);
c7f88c4e
JL
3827 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3828 &token);
51fab693
LB
3829 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3830 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3831 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3832 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3833}
3834
d352ac68
CM
3835/*
3836 * copy everything in the in-memory inode into the btree.
3837 */
2115133f 3838static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3839 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3840{
3841 struct btrfs_inode_item *inode_item;
3842 struct btrfs_path *path;
5f39d397 3843 struct extent_buffer *leaf;
39279cc3
CM
3844 int ret;
3845
3846 path = btrfs_alloc_path();
16cdcec7
MX
3847 if (!path)
3848 return -ENOMEM;
3849
b9473439 3850 path->leave_spinning = 1;
16cdcec7
MX
3851 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3852 1);
39279cc3
CM
3853 if (ret) {
3854 if (ret > 0)
3855 ret = -ENOENT;
3856 goto failed;
3857 }
3858
5f39d397
CM
3859 leaf = path->nodes[0];
3860 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3861 struct btrfs_inode_item);
39279cc3 3862
e02119d5 3863 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3864 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3865 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3866 ret = 0;
3867failed:
39279cc3
CM
3868 btrfs_free_path(path);
3869 return ret;
3870}
3871
2115133f
CM
3872/*
3873 * copy everything in the in-memory inode into the btree.
3874 */
3875noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3876 struct btrfs_root *root, struct inode *inode)
3877{
0b246afa 3878 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3879 int ret;
3880
3881 /*
3882 * If the inode is a free space inode, we can deadlock during commit
3883 * if we put it into the delayed code.
3884 *
3885 * The data relocation inode should also be directly updated
3886 * without delay
3887 */
70ddc553 3888 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3889 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3890 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3891 btrfs_update_root_times(trans, root);
3892
2115133f
CM
3893 ret = btrfs_delayed_update_inode(trans, root, inode);
3894 if (!ret)
3895 btrfs_set_inode_last_trans(trans, inode);
3896 return ret;
3897 }
3898
3899 return btrfs_update_inode_item(trans, root, inode);
3900}
3901
be6aef60
JB
3902noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3903 struct btrfs_root *root,
3904 struct inode *inode)
2115133f
CM
3905{
3906 int ret;
3907
3908 ret = btrfs_update_inode(trans, root, inode);
3909 if (ret == -ENOSPC)
3910 return btrfs_update_inode_item(trans, root, inode);
3911 return ret;
3912}
3913
d352ac68
CM
3914/*
3915 * unlink helper that gets used here in inode.c and in the tree logging
3916 * recovery code. It remove a link in a directory with a given name, and
3917 * also drops the back refs in the inode to the directory
3918 */
92986796
AV
3919static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3920 struct btrfs_root *root,
4ec5934e
NB
3921 struct btrfs_inode *dir,
3922 struct btrfs_inode *inode,
92986796 3923 const char *name, int name_len)
39279cc3 3924{
0b246afa 3925 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3926 struct btrfs_path *path;
39279cc3 3927 int ret = 0;
5f39d397 3928 struct extent_buffer *leaf;
39279cc3 3929 struct btrfs_dir_item *di;
5f39d397 3930 struct btrfs_key key;
aec7477b 3931 u64 index;
33345d01
LZ
3932 u64 ino = btrfs_ino(inode);
3933 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3934
3935 path = btrfs_alloc_path();
54aa1f4d
CM
3936 if (!path) {
3937 ret = -ENOMEM;
554233a6 3938 goto out;
54aa1f4d
CM
3939 }
3940
b9473439 3941 path->leave_spinning = 1;
33345d01 3942 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3943 name, name_len, -1);
3944 if (IS_ERR(di)) {
3945 ret = PTR_ERR(di);
3946 goto err;
3947 }
3948 if (!di) {
3949 ret = -ENOENT;
3950 goto err;
3951 }
5f39d397
CM
3952 leaf = path->nodes[0];
3953 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3954 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3955 if (ret)
3956 goto err;
b3b4aa74 3957 btrfs_release_path(path);
39279cc3 3958
67de1176
MX
3959 /*
3960 * If we don't have dir index, we have to get it by looking up
3961 * the inode ref, since we get the inode ref, remove it directly,
3962 * it is unnecessary to do delayed deletion.
3963 *
3964 * But if we have dir index, needn't search inode ref to get it.
3965 * Since the inode ref is close to the inode item, it is better
3966 * that we delay to delete it, and just do this deletion when
3967 * we update the inode item.
3968 */
4ec5934e 3969 if (inode->dir_index) {
67de1176
MX
3970 ret = btrfs_delayed_delete_inode_ref(inode);
3971 if (!ret) {
4ec5934e 3972 index = inode->dir_index;
67de1176
MX
3973 goto skip_backref;
3974 }
3975 }
3976
33345d01
LZ
3977 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3978 dir_ino, &index);
aec7477b 3979 if (ret) {
0b246afa 3980 btrfs_info(fs_info,
c2cf52eb 3981 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3982 name_len, name, ino, dir_ino);
66642832 3983 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3984 goto err;
3985 }
67de1176 3986skip_backref:
2ff7e61e 3987 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 3988 if (ret) {
66642832 3989 btrfs_abort_transaction(trans, ret);
39279cc3 3990 goto err;
79787eaa 3991 }
39279cc3 3992
4ec5934e
NB
3993 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3994 dir_ino);
79787eaa 3995 if (ret != 0 && ret != -ENOENT) {
66642832 3996 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3997 goto err;
3998 }
e02119d5 3999
4ec5934e
NB
4000 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4001 index);
6418c961
CM
4002 if (ret == -ENOENT)
4003 ret = 0;
d4e3991b 4004 else if (ret)
66642832 4005 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4006err:
4007 btrfs_free_path(path);
e02119d5
CM
4008 if (ret)
4009 goto out;
4010
6ef06d27 4011 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4012 inode_inc_iversion(&inode->vfs_inode);
4013 inode_inc_iversion(&dir->vfs_inode);
4014 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4015 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4016 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4017out:
39279cc3
CM
4018 return ret;
4019}
4020
92986796
AV
4021int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4022 struct btrfs_root *root,
4ec5934e 4023 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4024 const char *name, int name_len)
4025{
4026 int ret;
4027 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4028 if (!ret) {
4ec5934e
NB
4029 drop_nlink(&inode->vfs_inode);
4030 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4031 }
4032 return ret;
4033}
39279cc3 4034
a22285a6
YZ
4035/*
4036 * helper to start transaction for unlink and rmdir.
4037 *
d52be818
JB
4038 * unlink and rmdir are special in btrfs, they do not always free space, so
4039 * if we cannot make our reservations the normal way try and see if there is
4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041 * allow the unlink to occur.
a22285a6 4042 */
d52be818 4043static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4044{
a22285a6 4045 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4046
e70bea5f
JB
4047 /*
4048 * 1 for the possible orphan item
4049 * 1 for the dir item
4050 * 1 for the dir index
4051 * 1 for the inode ref
e70bea5f
JB
4052 * 1 for the inode
4053 */
8eab77ff 4054 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4055}
4056
4057static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4058{
4059 struct btrfs_root *root = BTRFS_I(dir)->root;
4060 struct btrfs_trans_handle *trans;
2b0143b5 4061 struct inode *inode = d_inode(dentry);
a22285a6 4062 int ret;
a22285a6 4063
d52be818 4064 trans = __unlink_start_trans(dir);
a22285a6
YZ
4065 if (IS_ERR(trans))
4066 return PTR_ERR(trans);
5f39d397 4067
4ec5934e
NB
4068 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4069 0);
12fcfd22 4070
4ec5934e
NB
4071 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4072 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4073 dentry->d_name.len);
b532402e
TI
4074 if (ret)
4075 goto out;
7b128766 4076
a22285a6 4077 if (inode->i_nlink == 0) {
73f2e545 4078 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4079 if (ret)
4080 goto out;
a22285a6 4081 }
7b128766 4082
b532402e 4083out:
3a45bb20 4084 btrfs_end_transaction(trans);
2ff7e61e 4085 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4086 return ret;
4087}
4088
f60a2364 4089static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4df27c4d
YZ
4090 struct btrfs_root *root,
4091 struct inode *dir, u64 objectid,
4092 const char *name, int name_len)
4093{
0b246afa 4094 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4095 struct btrfs_path *path;
4096 struct extent_buffer *leaf;
4097 struct btrfs_dir_item *di;
4098 struct btrfs_key key;
4099 u64 index;
4100 int ret;
4a0cc7ca 4101 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4102
4103 path = btrfs_alloc_path();
4104 if (!path)
4105 return -ENOMEM;
4106
33345d01 4107 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4108 name, name_len, -1);
79787eaa
JM
4109 if (IS_ERR_OR_NULL(di)) {
4110 if (!di)
4111 ret = -ENOENT;
4112 else
4113 ret = PTR_ERR(di);
4114 goto out;
4115 }
4df27c4d
YZ
4116
4117 leaf = path->nodes[0];
4118 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4119 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4120 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4121 if (ret) {
66642832 4122 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4123 goto out;
4124 }
b3b4aa74 4125 btrfs_release_path(path);
4df27c4d 4126
0b246afa
JM
4127 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4128 root->root_key.objectid, dir_ino,
4129 &index, name, name_len);
4df27c4d 4130 if (ret < 0) {
79787eaa 4131 if (ret != -ENOENT) {
66642832 4132 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4133 goto out;
4134 }
33345d01 4135 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4136 name, name_len);
79787eaa
JM
4137 if (IS_ERR_OR_NULL(di)) {
4138 if (!di)
4139 ret = -ENOENT;
4140 else
4141 ret = PTR_ERR(di);
66642832 4142 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4143 goto out;
4144 }
4df27c4d
YZ
4145
4146 leaf = path->nodes[0];
4147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4148 btrfs_release_path(path);
4df27c4d
YZ
4149 index = key.offset;
4150 }
945d8962 4151 btrfs_release_path(path);
4df27c4d 4152
e67bbbb9 4153 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4154 if (ret) {
66642832 4155 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4156 goto out;
4157 }
4df27c4d 4158
6ef06d27 4159 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4160 inode_inc_iversion(dir);
c2050a45 4161 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4162 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4163 if (ret)
66642832 4164 btrfs_abort_transaction(trans, ret);
79787eaa 4165out:
71d7aed0 4166 btrfs_free_path(path);
79787eaa 4167 return ret;
4df27c4d
YZ
4168}
4169
ec42f167
MT
4170/*
4171 * Helper to check if the subvolume references other subvolumes or if it's
4172 * default.
4173 */
f60a2364 4174static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4175{
4176 struct btrfs_fs_info *fs_info = root->fs_info;
4177 struct btrfs_path *path;
4178 struct btrfs_dir_item *di;
4179 struct btrfs_key key;
4180 u64 dir_id;
4181 int ret;
4182
4183 path = btrfs_alloc_path();
4184 if (!path)
4185 return -ENOMEM;
4186
4187 /* Make sure this root isn't set as the default subvol */
4188 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4189 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4190 dir_id, "default", 7, 0);
4191 if (di && !IS_ERR(di)) {
4192 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4193 if (key.objectid == root->root_key.objectid) {
4194 ret = -EPERM;
4195 btrfs_err(fs_info,
4196 "deleting default subvolume %llu is not allowed",
4197 key.objectid);
4198 goto out;
4199 }
4200 btrfs_release_path(path);
4201 }
4202
4203 key.objectid = root->root_key.objectid;
4204 key.type = BTRFS_ROOT_REF_KEY;
4205 key.offset = (u64)-1;
4206
4207 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4208 if (ret < 0)
4209 goto out;
4210 BUG_ON(ret == 0);
4211
4212 ret = 0;
4213 if (path->slots[0] > 0) {
4214 path->slots[0]--;
4215 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4216 if (key.objectid == root->root_key.objectid &&
4217 key.type == BTRFS_ROOT_REF_KEY)
4218 ret = -ENOTEMPTY;
4219 }
4220out:
4221 btrfs_free_path(path);
4222 return ret;
4223}
4224
20a68004
NB
4225/* Delete all dentries for inodes belonging to the root */
4226static void btrfs_prune_dentries(struct btrfs_root *root)
4227{
4228 struct btrfs_fs_info *fs_info = root->fs_info;
4229 struct rb_node *node;
4230 struct rb_node *prev;
4231 struct btrfs_inode *entry;
4232 struct inode *inode;
4233 u64 objectid = 0;
4234
4235 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4236 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4237
4238 spin_lock(&root->inode_lock);
4239again:
4240 node = root->inode_tree.rb_node;
4241 prev = NULL;
4242 while (node) {
4243 prev = node;
4244 entry = rb_entry(node, struct btrfs_inode, rb_node);
4245
4246 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4247 node = node->rb_left;
4248 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4249 node = node->rb_right;
4250 else
4251 break;
4252 }
4253 if (!node) {
4254 while (prev) {
4255 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4256 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
4257 node = prev;
4258 break;
4259 }
4260 prev = rb_next(prev);
4261 }
4262 }
4263 while (node) {
4264 entry = rb_entry(node, struct btrfs_inode, rb_node);
4265 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
4266 inode = igrab(&entry->vfs_inode);
4267 if (inode) {
4268 spin_unlock(&root->inode_lock);
4269 if (atomic_read(&inode->i_count) > 1)
4270 d_prune_aliases(inode);
4271 /*
4272 * btrfs_drop_inode will have it removed from the inode
4273 * cache when its usage count hits zero.
4274 */
4275 iput(inode);
4276 cond_resched();
4277 spin_lock(&root->inode_lock);
4278 goto again;
4279 }
4280
4281 if (cond_resched_lock(&root->inode_lock))
4282 goto again;
4283
4284 node = rb_next(node);
4285 }
4286 spin_unlock(&root->inode_lock);
4287}
4288
f60a2364
MT
4289int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4290{
4291 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4292 struct btrfs_root *root = BTRFS_I(dir)->root;
4293 struct inode *inode = d_inode(dentry);
4294 struct btrfs_root *dest = BTRFS_I(inode)->root;
4295 struct btrfs_trans_handle *trans;
4296 struct btrfs_block_rsv block_rsv;
4297 u64 root_flags;
f60a2364
MT
4298 int ret;
4299 int err;
4300
4301 /*
4302 * Don't allow to delete a subvolume with send in progress. This is
4303 * inside the inode lock so the error handling that has to drop the bit
4304 * again is not run concurrently.
4305 */
4306 spin_lock(&dest->root_item_lock);
4307 root_flags = btrfs_root_flags(&dest->root_item);
4308 if (dest->send_in_progress == 0) {
4309 btrfs_set_root_flags(&dest->root_item,
4310 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4311 spin_unlock(&dest->root_item_lock);
4312 } else {
4313 spin_unlock(&dest->root_item_lock);
4314 btrfs_warn(fs_info,
4315 "attempt to delete subvolume %llu during send",
4316 dest->root_key.objectid);
4317 return -EPERM;
4318 }
4319
4320 down_write(&fs_info->subvol_sem);
4321
4322 err = may_destroy_subvol(dest);
4323 if (err)
4324 goto out_up_write;
4325
4326 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4327 /*
4328 * One for dir inode,
4329 * two for dir entries,
4330 * two for root ref/backref.
4331 */
c4c129db 4332 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4333 if (err)
4334 goto out_up_write;
4335
4336 trans = btrfs_start_transaction(root, 0);
4337 if (IS_ERR(trans)) {
4338 err = PTR_ERR(trans);
4339 goto out_release;
4340 }
4341 trans->block_rsv = &block_rsv;
4342 trans->bytes_reserved = block_rsv.size;
4343
4344 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4345
4346 ret = btrfs_unlink_subvol(trans, root, dir,
4347 dest->root_key.objectid,
4348 dentry->d_name.name,
4349 dentry->d_name.len);
4350 if (ret) {
4351 err = ret;
4352 btrfs_abort_transaction(trans, ret);
4353 goto out_end_trans;
4354 }
4355
4356 btrfs_record_root_in_trans(trans, dest);
4357
4358 memset(&dest->root_item.drop_progress, 0,
4359 sizeof(dest->root_item.drop_progress));
4360 dest->root_item.drop_level = 0;
4361 btrfs_set_root_refs(&dest->root_item, 0);
4362
4363 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4364 ret = btrfs_insert_orphan_item(trans,
4365 fs_info->tree_root,
4366 dest->root_key.objectid);
4367 if (ret) {
4368 btrfs_abort_transaction(trans, ret);
4369 err = ret;
4370 goto out_end_trans;
4371 }
4372 }
4373
d1957791 4374 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4375 BTRFS_UUID_KEY_SUBVOL,
4376 dest->root_key.objectid);
4377 if (ret && ret != -ENOENT) {
4378 btrfs_abort_transaction(trans, ret);
4379 err = ret;
4380 goto out_end_trans;
4381 }
4382 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4383 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4384 dest->root_item.received_uuid,
4385 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4386 dest->root_key.objectid);
4387 if (ret && ret != -ENOENT) {
4388 btrfs_abort_transaction(trans, ret);
4389 err = ret;
4390 goto out_end_trans;
4391 }
4392 }
4393
4394out_end_trans:
4395 trans->block_rsv = NULL;
4396 trans->bytes_reserved = 0;
4397 ret = btrfs_end_transaction(trans);
4398 if (ret && !err)
4399 err = ret;
4400 inode->i_flags |= S_DEAD;
4401out_release:
4402 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4403out_up_write:
4404 up_write(&fs_info->subvol_sem);
4405 if (err) {
4406 spin_lock(&dest->root_item_lock);
4407 root_flags = btrfs_root_flags(&dest->root_item);
4408 btrfs_set_root_flags(&dest->root_item,
4409 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4410 spin_unlock(&dest->root_item_lock);
4411 } else {
4412 d_invalidate(dentry);
20a68004 4413 btrfs_prune_dentries(dest);
f60a2364
MT
4414 ASSERT(dest->send_in_progress == 0);
4415
4416 /* the last ref */
4417 if (dest->ino_cache_inode) {
4418 iput(dest->ino_cache_inode);
4419 dest->ino_cache_inode = NULL;
4420 }
4421 }
4422
4423 return err;
4424}
4425
39279cc3
CM
4426static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4427{
2b0143b5 4428 struct inode *inode = d_inode(dentry);
1832a6d5 4429 int err = 0;
39279cc3 4430 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4431 struct btrfs_trans_handle *trans;
44f714da 4432 u64 last_unlink_trans;
39279cc3 4433
b3ae244e 4434 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4435 return -ENOTEMPTY;
4a0cc7ca 4436 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4437 return btrfs_delete_subvolume(dir, dentry);
134d4512 4438
d52be818 4439 trans = __unlink_start_trans(dir);
a22285a6 4440 if (IS_ERR(trans))
5df6a9f6 4441 return PTR_ERR(trans);
5df6a9f6 4442
4a0cc7ca 4443 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4444 err = btrfs_unlink_subvol(trans, root, dir,
4445 BTRFS_I(inode)->location.objectid,
4446 dentry->d_name.name,
4447 dentry->d_name.len);
4448 goto out;
4449 }
4450
73f2e545 4451 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4452 if (err)
4df27c4d 4453 goto out;
7b128766 4454
44f714da
FM
4455 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4456
39279cc3 4457 /* now the directory is empty */
4ec5934e
NB
4458 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4459 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4460 dentry->d_name.len);
44f714da 4461 if (!err) {
6ef06d27 4462 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4463 /*
4464 * Propagate the last_unlink_trans value of the deleted dir to
4465 * its parent directory. This is to prevent an unrecoverable
4466 * log tree in the case we do something like this:
4467 * 1) create dir foo
4468 * 2) create snapshot under dir foo
4469 * 3) delete the snapshot
4470 * 4) rmdir foo
4471 * 5) mkdir foo
4472 * 6) fsync foo or some file inside foo
4473 */
4474 if (last_unlink_trans >= trans->transid)
4475 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4476 }
4df27c4d 4477out:
3a45bb20 4478 btrfs_end_transaction(trans);
2ff7e61e 4479 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4480
39279cc3
CM
4481 return err;
4482}
4483
28f75a0e
CM
4484static int truncate_space_check(struct btrfs_trans_handle *trans,
4485 struct btrfs_root *root,
4486 u64 bytes_deleted)
4487{
0b246afa 4488 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4489 int ret;
4490
dc95f7bf
JB
4491 /*
4492 * This is only used to apply pressure to the enospc system, we don't
4493 * intend to use this reservation at all.
4494 */
2ff7e61e 4495 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4496 bytes_deleted *= fs_info->nodesize;
4497 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4498 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4499 if (!ret) {
0b246afa 4500 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4501 trans->transid,
4502 bytes_deleted, 1);
28f75a0e 4503 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4504 }
28f75a0e
CM
4505 return ret;
4506
4507}
4508
ddfae63c
JB
4509/*
4510 * Return this if we need to call truncate_block for the last bit of the
4511 * truncate.
4512 */
4513#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4514
39279cc3
CM
4515/*
4516 * this can truncate away extent items, csum items and directory items.
4517 * It starts at a high offset and removes keys until it can't find
d352ac68 4518 * any higher than new_size
39279cc3
CM
4519 *
4520 * csum items that cross the new i_size are truncated to the new size
4521 * as well.
7b128766
JB
4522 *
4523 * min_type is the minimum key type to truncate down to. If set to 0, this
4524 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4525 */
8082510e
YZ
4526int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4527 struct btrfs_root *root,
4528 struct inode *inode,
4529 u64 new_size, u32 min_type)
39279cc3 4530{
0b246afa 4531 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4532 struct btrfs_path *path;
5f39d397 4533 struct extent_buffer *leaf;
39279cc3 4534 struct btrfs_file_extent_item *fi;
8082510e
YZ
4535 struct btrfs_key key;
4536 struct btrfs_key found_key;
39279cc3 4537 u64 extent_start = 0;
db94535d 4538 u64 extent_num_bytes = 0;
5d4f98a2 4539 u64 extent_offset = 0;
39279cc3 4540 u64 item_end = 0;
c1aa4575 4541 u64 last_size = new_size;
8082510e 4542 u32 found_type = (u8)-1;
39279cc3
CM
4543 int found_extent;
4544 int del_item;
85e21bac
CM
4545 int pending_del_nr = 0;
4546 int pending_del_slot = 0;
179e29e4 4547 int extent_type = -1;
8082510e 4548 int ret;
4a0cc7ca 4549 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4550 u64 bytes_deleted = 0;
897ca819
TM
4551 bool be_nice = false;
4552 bool should_throttle = false;
4553 bool should_end = false;
8082510e
YZ
4554
4555 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4556
28ed1345
CM
4557 /*
4558 * for non-free space inodes and ref cows, we want to back off from
4559 * time to time
4560 */
70ddc553 4561 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4562 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4563 be_nice = true;
28ed1345 4564
0eb0e19c
MF
4565 path = btrfs_alloc_path();
4566 if (!path)
4567 return -ENOMEM;
e4058b54 4568 path->reada = READA_BACK;
0eb0e19c 4569
5dc562c5
JB
4570 /*
4571 * We want to drop from the next block forward in case this new size is
4572 * not block aligned since we will be keeping the last block of the
4573 * extent just the way it is.
4574 */
27cdeb70 4575 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4576 root == fs_info->tree_root)
dcdbc059 4577 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4578 fs_info->sectorsize),
da17066c 4579 (u64)-1, 0);
8082510e 4580
16cdcec7
MX
4581 /*
4582 * This function is also used to drop the items in the log tree before
4583 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4584 * it is used to drop the loged items. So we shouldn't kill the delayed
4585 * items.
4586 */
4587 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4588 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4589
33345d01 4590 key.objectid = ino;
39279cc3 4591 key.offset = (u64)-1;
5f39d397
CM
4592 key.type = (u8)-1;
4593
85e21bac 4594search_again:
28ed1345
CM
4595 /*
4596 * with a 16K leaf size and 128MB extents, you can actually queue
4597 * up a huge file in a single leaf. Most of the time that
4598 * bytes_deleted is > 0, it will be huge by the time we get here
4599 */
fd86a3a3
OS
4600 if (be_nice && bytes_deleted > SZ_32M &&
4601 btrfs_should_end_transaction(trans)) {
4602 ret = -EAGAIN;
4603 goto out;
28ed1345
CM
4604 }
4605
b9473439 4606 path->leave_spinning = 1;
85e21bac 4607 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4608 if (ret < 0)
8082510e 4609 goto out;
d397712b 4610
85e21bac 4611 if (ret > 0) {
fd86a3a3 4612 ret = 0;
e02119d5
CM
4613 /* there are no items in the tree for us to truncate, we're
4614 * done
4615 */
8082510e
YZ
4616 if (path->slots[0] == 0)
4617 goto out;
85e21bac
CM
4618 path->slots[0]--;
4619 }
4620
d397712b 4621 while (1) {
39279cc3 4622 fi = NULL;
5f39d397
CM
4623 leaf = path->nodes[0];
4624 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4625 found_type = found_key.type;
39279cc3 4626
33345d01 4627 if (found_key.objectid != ino)
39279cc3 4628 break;
5f39d397 4629
85e21bac 4630 if (found_type < min_type)
39279cc3
CM
4631 break;
4632
5f39d397 4633 item_end = found_key.offset;
39279cc3 4634 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4635 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4636 struct btrfs_file_extent_item);
179e29e4
CM
4637 extent_type = btrfs_file_extent_type(leaf, fi);
4638 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4639 item_end +=
db94535d 4640 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4641
4642 trace_btrfs_truncate_show_fi_regular(
4643 BTRFS_I(inode), leaf, fi,
4644 found_key.offset);
179e29e4 4645 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4646 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4647 path->slots[0], fi);
09ed2f16
LB
4648
4649 trace_btrfs_truncate_show_fi_inline(
4650 BTRFS_I(inode), leaf, fi, path->slots[0],
4651 found_key.offset);
39279cc3 4652 }
008630c1 4653 item_end--;
39279cc3 4654 }
8082510e
YZ
4655 if (found_type > min_type) {
4656 del_item = 1;
4657 } else {
76b42abb 4658 if (item_end < new_size)
b888db2b 4659 break;
8082510e
YZ
4660 if (found_key.offset >= new_size)
4661 del_item = 1;
4662 else
4663 del_item = 0;
39279cc3 4664 }
39279cc3 4665 found_extent = 0;
39279cc3 4666 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4667 if (found_type != BTRFS_EXTENT_DATA_KEY)
4668 goto delete;
4669
4670 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4671 u64 num_dec;
db94535d 4672 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4673 if (!del_item) {
db94535d
CM
4674 u64 orig_num_bytes =
4675 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4676 extent_num_bytes = ALIGN(new_size -
4677 found_key.offset,
0b246afa 4678 fs_info->sectorsize);
db94535d
CM
4679 btrfs_set_file_extent_num_bytes(leaf, fi,
4680 extent_num_bytes);
4681 num_dec = (orig_num_bytes -
9069218d 4682 extent_num_bytes);
27cdeb70
MX
4683 if (test_bit(BTRFS_ROOT_REF_COWS,
4684 &root->state) &&
4685 extent_start != 0)
a76a3cd4 4686 inode_sub_bytes(inode, num_dec);
5f39d397 4687 btrfs_mark_buffer_dirty(leaf);
39279cc3 4688 } else {
db94535d
CM
4689 extent_num_bytes =
4690 btrfs_file_extent_disk_num_bytes(leaf,
4691 fi);
5d4f98a2
YZ
4692 extent_offset = found_key.offset -
4693 btrfs_file_extent_offset(leaf, fi);
4694
39279cc3 4695 /* FIXME blocksize != 4096 */
9069218d 4696 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4697 if (extent_start != 0) {
4698 found_extent = 1;
27cdeb70
MX
4699 if (test_bit(BTRFS_ROOT_REF_COWS,
4700 &root->state))
a76a3cd4 4701 inode_sub_bytes(inode, num_dec);
e02119d5 4702 }
39279cc3 4703 }
9069218d 4704 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4705 /*
4706 * we can't truncate inline items that have had
4707 * special encodings
4708 */
4709 if (!del_item &&
c8b97818 4710 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4711 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4712 btrfs_file_extent_compression(leaf, fi) == 0) {
4713 u32 size = (u32)(new_size - found_key.offset);
4714
4715 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4716 size = btrfs_file_extent_calc_inline_size(size);
4717 btrfs_truncate_item(root->fs_info, path, size, 1);
4718 } else if (!del_item) {
514ac8ad 4719 /*
ddfae63c
JB
4720 * We have to bail so the last_size is set to
4721 * just before this extent.
514ac8ad 4722 */
fd86a3a3 4723 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4724 break;
4725 }
0305cd5f 4726
ddfae63c 4727 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4728 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4729 }
179e29e4 4730delete:
ddfae63c
JB
4731 if (del_item)
4732 last_size = found_key.offset;
4733 else
4734 last_size = new_size;
39279cc3 4735 if (del_item) {
85e21bac
CM
4736 if (!pending_del_nr) {
4737 /* no pending yet, add ourselves */
4738 pending_del_slot = path->slots[0];
4739 pending_del_nr = 1;
4740 } else if (pending_del_nr &&
4741 path->slots[0] + 1 == pending_del_slot) {
4742 /* hop on the pending chunk */
4743 pending_del_nr++;
4744 pending_del_slot = path->slots[0];
4745 } else {
d397712b 4746 BUG();
85e21bac 4747 }
39279cc3
CM
4748 } else {
4749 break;
4750 }
897ca819 4751 should_throttle = false;
28f75a0e 4752
27cdeb70
MX
4753 if (found_extent &&
4754 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4755 root == fs_info->tree_root)) {
b9473439 4756 btrfs_set_path_blocking(path);
28ed1345 4757 bytes_deleted += extent_num_bytes;
84f7d8e6 4758 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4759 extent_num_bytes, 0,
4760 btrfs_header_owner(leaf),
b06c4bf5 4761 ino, extent_offset);
05522109
OS
4762 if (ret) {
4763 btrfs_abort_transaction(trans, ret);
4764 break;
4765 }
2ff7e61e
JM
4766 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4767 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4768 trans->delayed_ref_updates * 2,
4769 trans->transid, 0);
28f75a0e
CM
4770 if (be_nice) {
4771 if (truncate_space_check(trans, root,
4772 extent_num_bytes)) {
897ca819 4773 should_end = true;
28f75a0e
CM
4774 }
4775 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4776 fs_info))
897ca819 4777 should_throttle = true;
28f75a0e 4778 }
39279cc3 4779 }
85e21bac 4780
8082510e
YZ
4781 if (found_type == BTRFS_INODE_ITEM_KEY)
4782 break;
4783
4784 if (path->slots[0] == 0 ||
1262133b 4785 path->slots[0] != pending_del_slot ||
28f75a0e 4786 should_throttle || should_end) {
8082510e
YZ
4787 if (pending_del_nr) {
4788 ret = btrfs_del_items(trans, root, path,
4789 pending_del_slot,
4790 pending_del_nr);
79787eaa 4791 if (ret) {
66642832 4792 btrfs_abort_transaction(trans, ret);
fd86a3a3 4793 break;
79787eaa 4794 }
8082510e
YZ
4795 pending_del_nr = 0;
4796 }
b3b4aa74 4797 btrfs_release_path(path);
28f75a0e 4798 if (should_throttle) {
1262133b
JB
4799 unsigned long updates = trans->delayed_ref_updates;
4800 if (updates) {
4801 trans->delayed_ref_updates = 0;
2ff7e61e 4802 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4803 updates * 2);
fd86a3a3
OS
4804 if (ret)
4805 break;
1262133b
JB
4806 }
4807 }
28f75a0e
CM
4808 /*
4809 * if we failed to refill our space rsv, bail out
4810 * and let the transaction restart
4811 */
4812 if (should_end) {
fd86a3a3
OS
4813 ret = -EAGAIN;
4814 break;
28f75a0e 4815 }
85e21bac 4816 goto search_again;
8082510e
YZ
4817 } else {
4818 path->slots[0]--;
85e21bac 4819 }
39279cc3 4820 }
8082510e 4821out:
fd86a3a3
OS
4822 if (ret >= 0 && pending_del_nr) {
4823 int err;
4824
4825 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4826 pending_del_nr);
fd86a3a3
OS
4827 if (err) {
4828 btrfs_abort_transaction(trans, err);
4829 ret = err;
4830 }
85e21bac 4831 }
76b42abb
FM
4832 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4833 ASSERT(last_size >= new_size);
fd86a3a3 4834 if (!ret && last_size > new_size)
76b42abb 4835 last_size = new_size;
7f4f6e0a 4836 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4837 }
28ed1345 4838
39279cc3 4839 btrfs_free_path(path);
28ed1345 4840
fd86a3a3 4841 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
28ed1345 4842 unsigned long updates = trans->delayed_ref_updates;
fd86a3a3
OS
4843 int err;
4844
28ed1345
CM
4845 if (updates) {
4846 trans->delayed_ref_updates = 0;
fd86a3a3
OS
4847 err = btrfs_run_delayed_refs(trans, updates * 2);
4848 if (err)
4849 ret = err;
28ed1345
CM
4850 }
4851 }
fd86a3a3 4852 return ret;
39279cc3
CM
4853}
4854
4855/*
9703fefe 4856 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4857 * @inode - inode that we're zeroing
4858 * @from - the offset to start zeroing
4859 * @len - the length to zero, 0 to zero the entire range respective to the
4860 * offset
4861 * @front - zero up to the offset instead of from the offset on
4862 *
9703fefe 4863 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4864 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4865 */
9703fefe 4866int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4867 int front)
39279cc3 4868{
0b246afa 4869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4870 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4872 struct btrfs_ordered_extent *ordered;
2ac55d41 4873 struct extent_state *cached_state = NULL;
364ecf36 4874 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4875 char *kaddr;
0b246afa 4876 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4877 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4878 unsigned offset = from & (blocksize - 1);
39279cc3 4879 struct page *page;
3b16a4e3 4880 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4881 int ret = 0;
9703fefe
CR
4882 u64 block_start;
4883 u64 block_end;
39279cc3 4884
b03ebd99
NB
4885 if (IS_ALIGNED(offset, blocksize) &&
4886 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4887 goto out;
9703fefe 4888
8b62f87b
JB
4889 block_start = round_down(from, blocksize);
4890 block_end = block_start + blocksize - 1;
4891
364ecf36 4892 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4893 block_start, blocksize);
5d5e103a
JB
4894 if (ret)
4895 goto out;
39279cc3 4896
211c17f5 4897again:
3b16a4e3 4898 page = find_or_create_page(mapping, index, mask);
5d5e103a 4899 if (!page) {
bc42bda2 4900 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4901 block_start, blocksize, true);
4902 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4903 ret = -ENOMEM;
39279cc3 4904 goto out;
5d5e103a 4905 }
e6dcd2dc 4906
39279cc3 4907 if (!PageUptodate(page)) {
9ebefb18 4908 ret = btrfs_readpage(NULL, page);
39279cc3 4909 lock_page(page);
211c17f5
CM
4910 if (page->mapping != mapping) {
4911 unlock_page(page);
09cbfeaf 4912 put_page(page);
211c17f5
CM
4913 goto again;
4914 }
39279cc3
CM
4915 if (!PageUptodate(page)) {
4916 ret = -EIO;
89642229 4917 goto out_unlock;
39279cc3
CM
4918 }
4919 }
211c17f5 4920 wait_on_page_writeback(page);
e6dcd2dc 4921
9703fefe 4922 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4923 set_page_extent_mapped(page);
4924
9703fefe 4925 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4926 if (ordered) {
9703fefe 4927 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4928 &cached_state);
e6dcd2dc 4929 unlock_page(page);
09cbfeaf 4930 put_page(page);
eb84ae03 4931 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4932 btrfs_put_ordered_extent(ordered);
4933 goto again;
4934 }
4935
9703fefe 4936 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4937 EXTENT_DIRTY | EXTENT_DELALLOC |
4938 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4939 0, 0, &cached_state);
5d5e103a 4940
e3b8a485 4941 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4942 &cached_state, 0);
9ed74f2d 4943 if (ret) {
9703fefe 4944 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4945 &cached_state);
9ed74f2d
JB
4946 goto out_unlock;
4947 }
4948
9703fefe 4949 if (offset != blocksize) {
2aaa6655 4950 if (!len)
9703fefe 4951 len = blocksize - offset;
e6dcd2dc 4952 kaddr = kmap(page);
2aaa6655 4953 if (front)
9703fefe
CR
4954 memset(kaddr + (block_start - page_offset(page)),
4955 0, offset);
2aaa6655 4956 else
9703fefe
CR
4957 memset(kaddr + (block_start - page_offset(page)) + offset,
4958 0, len);
e6dcd2dc
CM
4959 flush_dcache_page(page);
4960 kunmap(page);
4961 }
247e743c 4962 ClearPageChecked(page);
e6dcd2dc 4963 set_page_dirty(page);
e43bbe5e 4964 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4965
89642229 4966out_unlock:
5d5e103a 4967 if (ret)
bc42bda2 4968 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4969 blocksize, true);
4970 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4971 unlock_page(page);
09cbfeaf 4972 put_page(page);
39279cc3 4973out:
364ecf36 4974 extent_changeset_free(data_reserved);
39279cc3
CM
4975 return ret;
4976}
4977
16e7549f
JB
4978static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4979 u64 offset, u64 len)
4980{
0b246afa 4981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4982 struct btrfs_trans_handle *trans;
4983 int ret;
4984
4985 /*
4986 * Still need to make sure the inode looks like it's been updated so
4987 * that any holes get logged if we fsync.
4988 */
0b246afa
JM
4989 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4990 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4991 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4992 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4993 return 0;
4994 }
4995
4996 /*
4997 * 1 - for the one we're dropping
4998 * 1 - for the one we're adding
4999 * 1 - for updating the inode.
5000 */
5001 trans = btrfs_start_transaction(root, 3);
5002 if (IS_ERR(trans))
5003 return PTR_ERR(trans);
5004
5005 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5006 if (ret) {
66642832 5007 btrfs_abort_transaction(trans, ret);
3a45bb20 5008 btrfs_end_transaction(trans);
16e7549f
JB
5009 return ret;
5010 }
5011
f85b7379
DS
5012 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5013 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5014 if (ret)
66642832 5015 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5016 else
5017 btrfs_update_inode(trans, root, inode);
3a45bb20 5018 btrfs_end_transaction(trans);
16e7549f
JB
5019 return ret;
5020}
5021
695a0d0d
JB
5022/*
5023 * This function puts in dummy file extents for the area we're creating a hole
5024 * for. So if we are truncating this file to a larger size we need to insert
5025 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5026 * the range between oldsize and size
5027 */
a41ad394 5028int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5029{
0b246afa 5030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5031 struct btrfs_root *root = BTRFS_I(inode)->root;
5032 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5033 struct extent_map *em = NULL;
2ac55d41 5034 struct extent_state *cached_state = NULL;
5dc562c5 5035 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5036 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5037 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5038 u64 last_byte;
5039 u64 cur_offset;
5040 u64 hole_size;
9ed74f2d 5041 int err = 0;
39279cc3 5042
a71754fc 5043 /*
9703fefe
CR
5044 * If our size started in the middle of a block we need to zero out the
5045 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5046 * expose stale data.
5047 */
9703fefe 5048 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5049 if (err)
5050 return err;
5051
9036c102
YZ
5052 if (size <= hole_start)
5053 return 0;
5054
9036c102
YZ
5055 while (1) {
5056 struct btrfs_ordered_extent *ordered;
fa7c1494 5057
ff13db41 5058 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 5059 &cached_state);
a776c6fa 5060 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 5061 block_end - hole_start);
9036c102
YZ
5062 if (!ordered)
5063 break;
2ac55d41 5064 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 5065 &cached_state);
fa7c1494 5066 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
5067 btrfs_put_ordered_extent(ordered);
5068 }
39279cc3 5069
9036c102
YZ
5070 cur_offset = hole_start;
5071 while (1) {
fc4f21b1 5072 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5073 block_end - cur_offset, 0);
79787eaa
JM
5074 if (IS_ERR(em)) {
5075 err = PTR_ERR(em);
f2767956 5076 em = NULL;
79787eaa
JM
5077 break;
5078 }
9036c102 5079 last_byte = min(extent_map_end(em), block_end);
0b246afa 5080 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5081 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5082 struct extent_map *hole_em;
9036c102 5083 hole_size = last_byte - cur_offset;
9ed74f2d 5084
16e7549f
JB
5085 err = maybe_insert_hole(root, inode, cur_offset,
5086 hole_size);
5087 if (err)
3893e33b 5088 break;
dcdbc059 5089 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5090 cur_offset + hole_size - 1, 0);
5091 hole_em = alloc_extent_map();
5092 if (!hole_em) {
5093 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5094 &BTRFS_I(inode)->runtime_flags);
5095 goto next;
5096 }
5097 hole_em->start = cur_offset;
5098 hole_em->len = hole_size;
5099 hole_em->orig_start = cur_offset;
8082510e 5100
5dc562c5
JB
5101 hole_em->block_start = EXTENT_MAP_HOLE;
5102 hole_em->block_len = 0;
b4939680 5103 hole_em->orig_block_len = 0;
cc95bef6 5104 hole_em->ram_bytes = hole_size;
0b246afa 5105 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5106 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5107 hole_em->generation = fs_info->generation;
8082510e 5108
5dc562c5
JB
5109 while (1) {
5110 write_lock(&em_tree->lock);
09a2a8f9 5111 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5112 write_unlock(&em_tree->lock);
5113 if (err != -EEXIST)
5114 break;
dcdbc059
NB
5115 btrfs_drop_extent_cache(BTRFS_I(inode),
5116 cur_offset,
5dc562c5
JB
5117 cur_offset +
5118 hole_size - 1, 0);
5119 }
5120 free_extent_map(hole_em);
9036c102 5121 }
16e7549f 5122next:
9036c102 5123 free_extent_map(em);
a22285a6 5124 em = NULL;
9036c102 5125 cur_offset = last_byte;
8082510e 5126 if (cur_offset >= block_end)
9036c102
YZ
5127 break;
5128 }
a22285a6 5129 free_extent_map(em);
e43bbe5e 5130 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5131 return err;
5132}
39279cc3 5133
3972f260 5134static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5135{
f4a2f4c5
MX
5136 struct btrfs_root *root = BTRFS_I(inode)->root;
5137 struct btrfs_trans_handle *trans;
a41ad394 5138 loff_t oldsize = i_size_read(inode);
3972f260
ES
5139 loff_t newsize = attr->ia_size;
5140 int mask = attr->ia_valid;
8082510e
YZ
5141 int ret;
5142
3972f260
ES
5143 /*
5144 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5145 * special case where we need to update the times despite not having
5146 * these flags set. For all other operations the VFS set these flags
5147 * explicitly if it wants a timestamp update.
5148 */
dff6efc3
CH
5149 if (newsize != oldsize) {
5150 inode_inc_iversion(inode);
5151 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5152 inode->i_ctime = inode->i_mtime =
c2050a45 5153 current_time(inode);
dff6efc3 5154 }
3972f260 5155
a41ad394 5156 if (newsize > oldsize) {
9ea24bbe 5157 /*
ea14b57f 5158 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5159 * This is to ensure the snapshot captures a fully consistent
5160 * state of this file - if the snapshot captures this expanding
5161 * truncation, it must capture all writes that happened before
5162 * this truncation.
5163 */
0bc19f90 5164 btrfs_wait_for_snapshot_creation(root);
a41ad394 5165 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5166 if (ret) {
ea14b57f 5167 btrfs_end_write_no_snapshotting(root);
8082510e 5168 return ret;
9ea24bbe 5169 }
8082510e 5170
f4a2f4c5 5171 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5172 if (IS_ERR(trans)) {
ea14b57f 5173 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5174 return PTR_ERR(trans);
9ea24bbe 5175 }
f4a2f4c5
MX
5176
5177 i_size_write(inode, newsize);
5178 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5179 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5180 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5181 btrfs_end_write_no_snapshotting(root);
3a45bb20 5182 btrfs_end_transaction(trans);
a41ad394 5183 } else {
8082510e 5184
a41ad394
JB
5185 /*
5186 * We're truncating a file that used to have good data down to
5187 * zero. Make sure it gets into the ordered flush list so that
5188 * any new writes get down to disk quickly.
5189 */
5190 if (newsize == 0)
72ac3c0d
JB
5191 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5192 &BTRFS_I(inode)->runtime_flags);
8082510e 5193
a41ad394 5194 truncate_setsize(inode, newsize);
2e60a51e
MX
5195
5196 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5197 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5198 inode_dio_wait(inode);
0b581701 5199 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5200
213e8c55 5201 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5202 if (ret && inode->i_nlink) {
5203 int err;
5204
5205 /*
f7e9e8fc
OS
5206 * Truncate failed, so fix up the in-memory size. We
5207 * adjusted disk_i_size down as we removed extents, so
5208 * wait for disk_i_size to be stable and then update the
5209 * in-memory size to match.
7f4f6e0a 5210 */
f7e9e8fc 5211 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5212 if (err)
f7e9e8fc
OS
5213 return err;
5214 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5215 }
8082510e
YZ
5216 }
5217
a41ad394 5218 return ret;
8082510e
YZ
5219}
5220
9036c102
YZ
5221static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5222{
2b0143b5 5223 struct inode *inode = d_inode(dentry);
b83cc969 5224 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5225 int err;
39279cc3 5226
b83cc969
LZ
5227 if (btrfs_root_readonly(root))
5228 return -EROFS;
5229
31051c85 5230 err = setattr_prepare(dentry, attr);
9036c102
YZ
5231 if (err)
5232 return err;
2bf5a725 5233
5a3f23d5 5234 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5235 err = btrfs_setsize(inode, attr);
8082510e
YZ
5236 if (err)
5237 return err;
39279cc3 5238 }
9036c102 5239
1025774c
CH
5240 if (attr->ia_valid) {
5241 setattr_copy(inode, attr);
0c4d2d95 5242 inode_inc_iversion(inode);
22c44fe6 5243 err = btrfs_dirty_inode(inode);
1025774c 5244
22c44fe6 5245 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5246 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5247 }
33268eaf 5248
39279cc3
CM
5249 return err;
5250}
61295eb8 5251
131e404a
FDBM
5252/*
5253 * While truncating the inode pages during eviction, we get the VFS calling
5254 * btrfs_invalidatepage() against each page of the inode. This is slow because
5255 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5256 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5257 * extent_state structures over and over, wasting lots of time.
5258 *
5259 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5260 * those expensive operations on a per page basis and do only the ordered io
5261 * finishing, while we release here the extent_map and extent_state structures,
5262 * without the excessive merging and splitting.
5263 */
5264static void evict_inode_truncate_pages(struct inode *inode)
5265{
5266 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5267 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5268 struct rb_node *node;
5269
5270 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5271 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5272
5273 write_lock(&map_tree->lock);
5274 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5275 struct extent_map *em;
5276
5277 node = rb_first(&map_tree->map);
5278 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5279 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5280 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5281 remove_extent_mapping(map_tree, em);
5282 free_extent_map(em);
7064dd5c
FM
5283 if (need_resched()) {
5284 write_unlock(&map_tree->lock);
5285 cond_resched();
5286 write_lock(&map_tree->lock);
5287 }
131e404a
FDBM
5288 }
5289 write_unlock(&map_tree->lock);
5290
6ca07097
FM
5291 /*
5292 * Keep looping until we have no more ranges in the io tree.
5293 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5294 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5295 * still in progress (unlocked the pages in the bio but did not yet
5296 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5297 * ranges can still be locked and eviction started because before
5298 * submitting those bios, which are executed by a separate task (work
5299 * queue kthread), inode references (inode->i_count) were not taken
5300 * (which would be dropped in the end io callback of each bio).
5301 * Therefore here we effectively end up waiting for those bios and
5302 * anyone else holding locked ranges without having bumped the inode's
5303 * reference count - if we don't do it, when they access the inode's
5304 * io_tree to unlock a range it may be too late, leading to an
5305 * use-after-free issue.
5306 */
131e404a
FDBM
5307 spin_lock(&io_tree->lock);
5308 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5309 struct extent_state *state;
5310 struct extent_state *cached_state = NULL;
6ca07097
FM
5311 u64 start;
5312 u64 end;
131e404a
FDBM
5313
5314 node = rb_first(&io_tree->state);
5315 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5316 start = state->start;
5317 end = state->end;
131e404a
FDBM
5318 spin_unlock(&io_tree->lock);
5319
ff13db41 5320 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5321
5322 /*
5323 * If still has DELALLOC flag, the extent didn't reach disk,
5324 * and its reserved space won't be freed by delayed_ref.
5325 * So we need to free its reserved space here.
5326 * (Refer to comment in btrfs_invalidatepage, case 2)
5327 *
5328 * Note, end is the bytenr of last byte, so we need + 1 here.
5329 */
5330 if (state->state & EXTENT_DELALLOC)
bc42bda2 5331 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5332
6ca07097 5333 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5334 EXTENT_LOCKED | EXTENT_DIRTY |
5335 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5336 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5337
7064dd5c 5338 cond_resched();
131e404a
FDBM
5339 spin_lock(&io_tree->lock);
5340 }
5341 spin_unlock(&io_tree->lock);
5342}
5343
4b9d7b59
OS
5344static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5345 struct btrfs_block_rsv *rsv,
5346 u64 min_size)
5347{
5348 struct btrfs_fs_info *fs_info = root->fs_info;
5349 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5350 int failures = 0;
5351
5352 for (;;) {
5353 struct btrfs_trans_handle *trans;
5354 int ret;
5355
5356 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5357 BTRFS_RESERVE_FLUSH_LIMIT);
5358
5359 if (ret && ++failures > 2) {
5360 btrfs_warn(fs_info,
5361 "could not allocate space for a delete; will truncate on mount");
5362 return ERR_PTR(-ENOSPC);
5363 }
5364
5365 trans = btrfs_join_transaction(root);
5366 if (IS_ERR(trans) || !ret)
5367 return trans;
5368
5369 /*
5370 * Try to steal from the global reserve if there is space for
5371 * it.
5372 */
5373 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5374 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5375 return trans;
5376
5377 /* If not, commit and try again. */
5378 ret = btrfs_commit_transaction(trans);
5379 if (ret)
5380 return ERR_PTR(ret);
5381 }
5382}
5383
bd555975 5384void btrfs_evict_inode(struct inode *inode)
39279cc3 5385{
0b246afa 5386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5387 struct btrfs_trans_handle *trans;
5388 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5389 struct btrfs_block_rsv *rsv;
3d48d981 5390 u64 min_size;
39279cc3
CM
5391 int ret;
5392
1abe9b8a 5393 trace_btrfs_inode_evict(inode);
5394
3d48d981 5395 if (!root) {
e8f1bc14 5396 clear_inode(inode);
3d48d981
NB
5397 return;
5398 }
5399
0b246afa 5400 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5401
131e404a
FDBM
5402 evict_inode_truncate_pages(inode);
5403
69e9c6c6
SB
5404 if (inode->i_nlink &&
5405 ((btrfs_root_refs(&root->root_item) != 0 &&
5406 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5407 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5408 goto no_delete;
5409
27919067 5410 if (is_bad_inode(inode))
39279cc3 5411 goto no_delete;
bd555975 5412 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5413 if (!special_file(inode->i_mode))
5414 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5415
7ab7956e 5416 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5417
7b40b695 5418 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5419 goto no_delete;
c71bf099 5420
76dda93c 5421 if (inode->i_nlink > 0) {
69e9c6c6
SB
5422 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5423 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5424 goto no_delete;
5425 }
5426
aa79021f 5427 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5428 if (ret)
0e8c36a9 5429 goto no_delete;
0e8c36a9 5430
2ff7e61e 5431 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5432 if (!rsv)
4289a667 5433 goto no_delete;
4a338542 5434 rsv->size = min_size;
ca7e70f5 5435 rsv->failfast = 1;
4289a667 5436
6ef06d27 5437 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5438
8082510e 5439 while (1) {
4b9d7b59 5440 trans = evict_refill_and_join(root, rsv, min_size);
27919067
OS
5441 if (IS_ERR(trans))
5442 goto free_rsv;
7b128766 5443
4289a667
JB
5444 trans->block_rsv = rsv;
5445
d68fc57b 5446 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5447 trans->block_rsv = &fs_info->trans_block_rsv;
5448 btrfs_end_transaction(trans);
5449 btrfs_btree_balance_dirty(fs_info);
5450 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5451 goto free_rsv;
5452 else if (!ret)
8082510e 5453 break;
8082510e 5454 }
5f39d397 5455
4ef31a45 5456 /*
27919067
OS
5457 * Errors here aren't a big deal, it just means we leave orphan items in
5458 * the tree. They will be cleaned up on the next mount. If the inode
5459 * number gets reused, cleanup deletes the orphan item without doing
5460 * anything, and unlink reuses the existing orphan item.
5461 *
5462 * If it turns out that we are dropping too many of these, we might want
5463 * to add a mechanism for retrying these after a commit.
4ef31a45 5464 */
27919067
OS
5465 trans = evict_refill_and_join(root, rsv, min_size);
5466 if (!IS_ERR(trans)) {
5467 trans->block_rsv = rsv;
5468 btrfs_orphan_del(trans, BTRFS_I(inode));
5469 trans->block_rsv = &fs_info->trans_block_rsv;
5470 btrfs_end_transaction(trans);
5471 }
54aa1f4d 5472
0b246afa 5473 if (!(root == fs_info->tree_root ||
581bb050 5474 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5475 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5476
27919067
OS
5477free_rsv:
5478 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5479no_delete:
27919067
OS
5480 /*
5481 * If we didn't successfully delete, the orphan item will still be in
5482 * the tree and we'll retry on the next mount. Again, we might also want
5483 * to retry these periodically in the future.
5484 */
f48d1cf5 5485 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5486 clear_inode(inode);
39279cc3
CM
5487}
5488
5489/*
5490 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5491 * If no dir entries were found, returns -ENOENT.
5492 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5493 */
5494static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5495 struct btrfs_key *location)
5496{
5497 const char *name = dentry->d_name.name;
5498 int namelen = dentry->d_name.len;
5499 struct btrfs_dir_item *di;
5500 struct btrfs_path *path;
5501 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5502 int ret = 0;
39279cc3
CM
5503
5504 path = btrfs_alloc_path();
d8926bb3
MF
5505 if (!path)
5506 return -ENOMEM;
3954401f 5507
f85b7379
DS
5508 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5509 name, namelen, 0);
005d6712
SY
5510 if (!di) {
5511 ret = -ENOENT;
5512 goto out;
5513 }
5514 if (IS_ERR(di)) {
0d9f7f3e 5515 ret = PTR_ERR(di);
005d6712
SY
5516 goto out;
5517 }
d397712b 5518
5f39d397 5519 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5520 if (location->type != BTRFS_INODE_ITEM_KEY &&
5521 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5522 ret = -EUCLEAN;
56a0e706
LB
5523 btrfs_warn(root->fs_info,
5524"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5525 __func__, name, btrfs_ino(BTRFS_I(dir)),
5526 location->objectid, location->type, location->offset);
56a0e706 5527 }
39279cc3 5528out:
39279cc3
CM
5529 btrfs_free_path(path);
5530 return ret;
5531}
5532
5533/*
5534 * when we hit a tree root in a directory, the btrfs part of the inode
5535 * needs to be changed to reflect the root directory of the tree root. This
5536 * is kind of like crossing a mount point.
5537 */
2ff7e61e 5538static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5539 struct inode *dir,
5540 struct dentry *dentry,
5541 struct btrfs_key *location,
5542 struct btrfs_root **sub_root)
39279cc3 5543{
4df27c4d
YZ
5544 struct btrfs_path *path;
5545 struct btrfs_root *new_root;
5546 struct btrfs_root_ref *ref;
5547 struct extent_buffer *leaf;
1d4c08e0 5548 struct btrfs_key key;
4df27c4d
YZ
5549 int ret;
5550 int err = 0;
39279cc3 5551
4df27c4d
YZ
5552 path = btrfs_alloc_path();
5553 if (!path) {
5554 err = -ENOMEM;
5555 goto out;
5556 }
39279cc3 5557
4df27c4d 5558 err = -ENOENT;
1d4c08e0
DS
5559 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5560 key.type = BTRFS_ROOT_REF_KEY;
5561 key.offset = location->objectid;
5562
0b246afa 5563 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5564 if (ret) {
5565 if (ret < 0)
5566 err = ret;
5567 goto out;
5568 }
39279cc3 5569
4df27c4d
YZ
5570 leaf = path->nodes[0];
5571 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5572 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5573 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5574 goto out;
39279cc3 5575
4df27c4d
YZ
5576 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5577 (unsigned long)(ref + 1),
5578 dentry->d_name.len);
5579 if (ret)
5580 goto out;
5581
b3b4aa74 5582 btrfs_release_path(path);
4df27c4d 5583
0b246afa 5584 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5585 if (IS_ERR(new_root)) {
5586 err = PTR_ERR(new_root);
5587 goto out;
5588 }
5589
4df27c4d
YZ
5590 *sub_root = new_root;
5591 location->objectid = btrfs_root_dirid(&new_root->root_item);
5592 location->type = BTRFS_INODE_ITEM_KEY;
5593 location->offset = 0;
5594 err = 0;
5595out:
5596 btrfs_free_path(path);
5597 return err;
39279cc3
CM
5598}
5599
5d4f98a2
YZ
5600static void inode_tree_add(struct inode *inode)
5601{
5602 struct btrfs_root *root = BTRFS_I(inode)->root;
5603 struct btrfs_inode *entry;
03e860bd
NP
5604 struct rb_node **p;
5605 struct rb_node *parent;
cef21937 5606 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5607 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5608
1d3382cb 5609 if (inode_unhashed(inode))
76dda93c 5610 return;
e1409cef 5611 parent = NULL;
5d4f98a2 5612 spin_lock(&root->inode_lock);
e1409cef 5613 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5614 while (*p) {
5615 parent = *p;
5616 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5617
4a0cc7ca 5618 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5619 p = &parent->rb_left;
4a0cc7ca 5620 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5621 p = &parent->rb_right;
5d4f98a2
YZ
5622 else {
5623 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5624 (I_WILL_FREE | I_FREEING)));
cef21937 5625 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5626 RB_CLEAR_NODE(parent);
5627 spin_unlock(&root->inode_lock);
cef21937 5628 return;
5d4f98a2
YZ
5629 }
5630 }
cef21937
FDBM
5631 rb_link_node(new, parent, p);
5632 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5633 spin_unlock(&root->inode_lock);
5634}
5635
5636static void inode_tree_del(struct inode *inode)
5637{
0b246afa 5638 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5639 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5640 int empty = 0;
5d4f98a2 5641
03e860bd 5642 spin_lock(&root->inode_lock);
5d4f98a2 5643 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5644 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5645 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5646 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5647 }
03e860bd 5648 spin_unlock(&root->inode_lock);
76dda93c 5649
69e9c6c6 5650 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5651 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5652 spin_lock(&root->inode_lock);
5653 empty = RB_EMPTY_ROOT(&root->inode_tree);
5654 spin_unlock(&root->inode_lock);
5655 if (empty)
5656 btrfs_add_dead_root(root);
5657 }
5658}
5659
5d4f98a2 5660
e02119d5
CM
5661static int btrfs_init_locked_inode(struct inode *inode, void *p)
5662{
5663 struct btrfs_iget_args *args = p;
90d3e592
CM
5664 inode->i_ino = args->location->objectid;
5665 memcpy(&BTRFS_I(inode)->location, args->location,
5666 sizeof(*args->location));
e02119d5 5667 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5668 return 0;
5669}
5670
5671static int btrfs_find_actor(struct inode *inode, void *opaque)
5672{
5673 struct btrfs_iget_args *args = opaque;
90d3e592 5674 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5675 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5676}
5677
5d4f98a2 5678static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5679 struct btrfs_key *location,
5d4f98a2 5680 struct btrfs_root *root)
39279cc3
CM
5681{
5682 struct inode *inode;
5683 struct btrfs_iget_args args;
90d3e592 5684 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5685
90d3e592 5686 args.location = location;
39279cc3
CM
5687 args.root = root;
5688
778ba82b 5689 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5690 btrfs_init_locked_inode,
5691 (void *)&args);
5692 return inode;
5693}
5694
1a54ef8c
BR
5695/* Get an inode object given its location and corresponding root.
5696 * Returns in *is_new if the inode was read from disk
5697 */
5698struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5699 struct btrfs_root *root, int *new)
1a54ef8c
BR
5700{
5701 struct inode *inode;
5702
90d3e592 5703 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5704 if (!inode)
5d4f98a2 5705 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5706
5707 if (inode->i_state & I_NEW) {
67710892
FM
5708 int ret;
5709
5710 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5711 if (!is_bad_inode(inode)) {
5712 inode_tree_add(inode);
5713 unlock_new_inode(inode);
5714 if (new)
5715 *new = 1;
5716 } else {
e0b6d65b
ST
5717 unlock_new_inode(inode);
5718 iput(inode);
67710892
FM
5719 ASSERT(ret < 0);
5720 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5721 }
5722 }
5723
1a54ef8c
BR
5724 return inode;
5725}
5726
4df27c4d
YZ
5727static struct inode *new_simple_dir(struct super_block *s,
5728 struct btrfs_key *key,
5729 struct btrfs_root *root)
5730{
5731 struct inode *inode = new_inode(s);
5732
5733 if (!inode)
5734 return ERR_PTR(-ENOMEM);
5735
4df27c4d
YZ
5736 BTRFS_I(inode)->root = root;
5737 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5738 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5739
5740 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5741 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5742 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5743 inode->i_fop = &simple_dir_operations;
5744 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5745 inode->i_mtime = current_time(inode);
9cc97d64 5746 inode->i_atime = inode->i_mtime;
5747 inode->i_ctime = inode->i_mtime;
5748 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5749
5750 return inode;
5751}
5752
3de4586c 5753struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5754{
0b246afa 5755 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5756 struct inode *inode;
4df27c4d 5757 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5758 struct btrfs_root *sub_root = root;
5759 struct btrfs_key location;
76dda93c 5760 int index;
b4aff1f8 5761 int ret = 0;
39279cc3
CM
5762
5763 if (dentry->d_name.len > BTRFS_NAME_LEN)
5764 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5765
39e3c955 5766 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5767 if (ret < 0)
5768 return ERR_PTR(ret);
5f39d397 5769
4df27c4d 5770 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5771 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5772 return inode;
5773 }
5774
0b246afa 5775 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5776 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5777 &location, &sub_root);
5778 if (ret < 0) {
5779 if (ret != -ENOENT)
5780 inode = ERR_PTR(ret);
5781 else
5782 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5783 } else {
73f73415 5784 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5785 }
0b246afa 5786 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5787
34d19bad 5788 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5789 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5790 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5791 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5792 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5793 if (ret) {
5794 iput(inode);
66b4ffd1 5795 inode = ERR_PTR(ret);
01cd3367 5796 }
c71bf099
YZ
5797 }
5798
3de4586c
CM
5799 return inode;
5800}
5801
fe15ce44 5802static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5803{
5804 struct btrfs_root *root;
2b0143b5 5805 struct inode *inode = d_inode(dentry);
76dda93c 5806
848cce0d 5807 if (!inode && !IS_ROOT(dentry))
2b0143b5 5808 inode = d_inode(dentry->d_parent);
76dda93c 5809
848cce0d
LZ
5810 if (inode) {
5811 root = BTRFS_I(inode)->root;
efefb143
YZ
5812 if (btrfs_root_refs(&root->root_item) == 0)
5813 return 1;
848cce0d 5814
4a0cc7ca 5815 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5816 return 1;
efefb143 5817 }
76dda93c
YZ
5818 return 0;
5819}
5820
3de4586c 5821static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5822 unsigned int flags)
3de4586c 5823{
5662344b 5824 struct inode *inode;
a66e7cc6 5825
5662344b
TI
5826 inode = btrfs_lookup_dentry(dir, dentry);
5827 if (IS_ERR(inode)) {
5828 if (PTR_ERR(inode) == -ENOENT)
5829 inode = NULL;
5830 else
5831 return ERR_CAST(inode);
5832 }
5833
41d28bca 5834 return d_splice_alias(inode, dentry);
39279cc3
CM
5835}
5836
16cdcec7 5837unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5838 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5839};
5840
23b5ec74
JB
5841/*
5842 * All this infrastructure exists because dir_emit can fault, and we are holding
5843 * the tree lock when doing readdir. For now just allocate a buffer and copy
5844 * our information into that, and then dir_emit from the buffer. This is
5845 * similar to what NFS does, only we don't keep the buffer around in pagecache
5846 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5847 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5848 * tree lock.
5849 */
5850static int btrfs_opendir(struct inode *inode, struct file *file)
5851{
5852 struct btrfs_file_private *private;
5853
5854 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5855 if (!private)
5856 return -ENOMEM;
5857 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5858 if (!private->filldir_buf) {
5859 kfree(private);
5860 return -ENOMEM;
5861 }
5862 file->private_data = private;
5863 return 0;
5864}
5865
5866struct dir_entry {
5867 u64 ino;
5868 u64 offset;
5869 unsigned type;
5870 int name_len;
5871};
5872
5873static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5874{
5875 while (entries--) {
5876 struct dir_entry *entry = addr;
5877 char *name = (char *)(entry + 1);
5878
92d32170
DS
5879 ctx->pos = get_unaligned(&entry->offset);
5880 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5881 get_unaligned(&entry->ino),
5882 get_unaligned(&entry->type)))
23b5ec74 5883 return 1;
92d32170
DS
5884 addr += sizeof(struct dir_entry) +
5885 get_unaligned(&entry->name_len);
23b5ec74
JB
5886 ctx->pos++;
5887 }
5888 return 0;
5889}
5890
9cdda8d3 5891static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5892{
9cdda8d3 5893 struct inode *inode = file_inode(file);
39279cc3 5894 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5895 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5896 struct btrfs_dir_item *di;
5897 struct btrfs_key key;
5f39d397 5898 struct btrfs_key found_key;
39279cc3 5899 struct btrfs_path *path;
23b5ec74 5900 void *addr;
16cdcec7
MX
5901 struct list_head ins_list;
5902 struct list_head del_list;
39279cc3 5903 int ret;
5f39d397 5904 struct extent_buffer *leaf;
39279cc3 5905 int slot;
5f39d397
CM
5906 char *name_ptr;
5907 int name_len;
23b5ec74
JB
5908 int entries = 0;
5909 int total_len = 0;
02dbfc99 5910 bool put = false;
c2951f32 5911 struct btrfs_key location;
5f39d397 5912
9cdda8d3
AV
5913 if (!dir_emit_dots(file, ctx))
5914 return 0;
5915
49593bfa 5916 path = btrfs_alloc_path();
16cdcec7
MX
5917 if (!path)
5918 return -ENOMEM;
ff5714cc 5919
23b5ec74 5920 addr = private->filldir_buf;
e4058b54 5921 path->reada = READA_FORWARD;
49593bfa 5922
c2951f32
JM
5923 INIT_LIST_HEAD(&ins_list);
5924 INIT_LIST_HEAD(&del_list);
5925 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5926
23b5ec74 5927again:
c2951f32 5928 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5929 key.offset = ctx->pos;
4a0cc7ca 5930 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5931
39279cc3
CM
5932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5933 if (ret < 0)
5934 goto err;
49593bfa
DW
5935
5936 while (1) {
23b5ec74
JB
5937 struct dir_entry *entry;
5938
5f39d397 5939 leaf = path->nodes[0];
39279cc3 5940 slot = path->slots[0];
b9e03af0
LZ
5941 if (slot >= btrfs_header_nritems(leaf)) {
5942 ret = btrfs_next_leaf(root, path);
5943 if (ret < 0)
5944 goto err;
5945 else if (ret > 0)
5946 break;
5947 continue;
39279cc3 5948 }
3de4586c 5949
5f39d397
CM
5950 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5951
5952 if (found_key.objectid != key.objectid)
39279cc3 5953 break;
c2951f32 5954 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5955 break;
9cdda8d3 5956 if (found_key.offset < ctx->pos)
b9e03af0 5957 goto next;
c2951f32 5958 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5959 goto next;
39279cc3 5960 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5961 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5962 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5963 PAGE_SIZE) {
5964 btrfs_release_path(path);
5965 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5966 if (ret)
5967 goto nopos;
5968 addr = private->filldir_buf;
5969 entries = 0;
5970 total_len = 0;
5971 goto again;
c2951f32 5972 }
23b5ec74
JB
5973
5974 entry = addr;
92d32170 5975 put_unaligned(name_len, &entry->name_len);
23b5ec74 5976 name_ptr = (char *)(entry + 1);
c2951f32
JM
5977 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5978 name_len);
92d32170
DS
5979 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5980 &entry->type);
c2951f32 5981 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5982 put_unaligned(location.objectid, &entry->ino);
5983 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5984 entries++;
5985 addr += sizeof(struct dir_entry) + name_len;
5986 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5987next:
5988 path->slots[0]++;
39279cc3 5989 }
23b5ec74
JB
5990 btrfs_release_path(path);
5991
5992 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5993 if (ret)
5994 goto nopos;
49593bfa 5995
d2fbb2b5 5996 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5997 if (ret)
bc4ef759
DS
5998 goto nopos;
5999
db62efbb
ZB
6000 /*
6001 * Stop new entries from being returned after we return the last
6002 * entry.
6003 *
6004 * New directory entries are assigned a strictly increasing
6005 * offset. This means that new entries created during readdir
6006 * are *guaranteed* to be seen in the future by that readdir.
6007 * This has broken buggy programs which operate on names as
6008 * they're returned by readdir. Until we re-use freed offsets
6009 * we have this hack to stop new entries from being returned
6010 * under the assumption that they'll never reach this huge
6011 * offset.
6012 *
6013 * This is being careful not to overflow 32bit loff_t unless the
6014 * last entry requires it because doing so has broken 32bit apps
6015 * in the past.
6016 */
c2951f32
JM
6017 if (ctx->pos >= INT_MAX)
6018 ctx->pos = LLONG_MAX;
6019 else
6020 ctx->pos = INT_MAX;
39279cc3
CM
6021nopos:
6022 ret = 0;
6023err:
02dbfc99
OS
6024 if (put)
6025 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6026 btrfs_free_path(path);
39279cc3
CM
6027 return ret;
6028}
6029
a9185b41 6030int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6031{
6032 struct btrfs_root *root = BTRFS_I(inode)->root;
6033 struct btrfs_trans_handle *trans;
6034 int ret = 0;
0af3d00b 6035 bool nolock = false;
39279cc3 6036
72ac3c0d 6037 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6038 return 0;
6039
70ddc553
NB
6040 if (btrfs_fs_closing(root->fs_info) &&
6041 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6042 nolock = true;
0af3d00b 6043
a9185b41 6044 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6045 if (nolock)
7a7eaa40 6046 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6047 else
7a7eaa40 6048 trans = btrfs_join_transaction(root);
3612b495
TI
6049 if (IS_ERR(trans))
6050 return PTR_ERR(trans);
3a45bb20 6051 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6052 }
6053 return ret;
6054}
6055
6056/*
54aa1f4d 6057 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6058 * inode changes. But, it is most likely to find the inode in cache.
6059 * FIXME, needs more benchmarking...there are no reasons other than performance
6060 * to keep or drop this code.
6061 */
48a3b636 6062static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6063{
2ff7e61e 6064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6065 struct btrfs_root *root = BTRFS_I(inode)->root;
6066 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6067 int ret;
6068
72ac3c0d 6069 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6070 return 0;
39279cc3 6071
7a7eaa40 6072 trans = btrfs_join_transaction(root);
22c44fe6
JB
6073 if (IS_ERR(trans))
6074 return PTR_ERR(trans);
8929ecfa
YZ
6075
6076 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6077 if (ret && ret == -ENOSPC) {
6078 /* whoops, lets try again with the full transaction */
3a45bb20 6079 btrfs_end_transaction(trans);
94b60442 6080 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6081 if (IS_ERR(trans))
6082 return PTR_ERR(trans);
8929ecfa 6083
94b60442 6084 ret = btrfs_update_inode(trans, root, inode);
94b60442 6085 }
3a45bb20 6086 btrfs_end_transaction(trans);
16cdcec7 6087 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6088 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6089
6090 return ret;
6091}
6092
6093/*
6094 * This is a copy of file_update_time. We need this so we can return error on
6095 * ENOSPC for updating the inode in the case of file write and mmap writes.
6096 */
e41f941a
JB
6097static int btrfs_update_time(struct inode *inode, struct timespec *now,
6098 int flags)
22c44fe6 6099{
2bc55652 6100 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6101 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6102
6103 if (btrfs_root_readonly(root))
6104 return -EROFS;
6105
e41f941a 6106 if (flags & S_VERSION)
3a8c7231 6107 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6108 if (flags & S_CTIME)
6109 inode->i_ctime = *now;
6110 if (flags & S_MTIME)
6111 inode->i_mtime = *now;
6112 if (flags & S_ATIME)
6113 inode->i_atime = *now;
3a8c7231 6114 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6115}
6116
d352ac68
CM
6117/*
6118 * find the highest existing sequence number in a directory
6119 * and then set the in-memory index_cnt variable to reflect
6120 * free sequence numbers
6121 */
4c570655 6122static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6123{
4c570655 6124 struct btrfs_root *root = inode->root;
aec7477b
JB
6125 struct btrfs_key key, found_key;
6126 struct btrfs_path *path;
6127 struct extent_buffer *leaf;
6128 int ret;
6129
4c570655 6130 key.objectid = btrfs_ino(inode);
962a298f 6131 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6132 key.offset = (u64)-1;
6133
6134 path = btrfs_alloc_path();
6135 if (!path)
6136 return -ENOMEM;
6137
6138 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6139 if (ret < 0)
6140 goto out;
6141 /* FIXME: we should be able to handle this */
6142 if (ret == 0)
6143 goto out;
6144 ret = 0;
6145
6146 /*
6147 * MAGIC NUMBER EXPLANATION:
6148 * since we search a directory based on f_pos we have to start at 2
6149 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6150 * else has to start at 2
6151 */
6152 if (path->slots[0] == 0) {
4c570655 6153 inode->index_cnt = 2;
aec7477b
JB
6154 goto out;
6155 }
6156
6157 path->slots[0]--;
6158
6159 leaf = path->nodes[0];
6160 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6161
4c570655 6162 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6163 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6164 inode->index_cnt = 2;
aec7477b
JB
6165 goto out;
6166 }
6167
4c570655 6168 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6169out:
6170 btrfs_free_path(path);
6171 return ret;
6172}
6173
d352ac68
CM
6174/*
6175 * helper to find a free sequence number in a given directory. This current
6176 * code is very simple, later versions will do smarter things in the btree
6177 */
877574e2 6178int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6179{
6180 int ret = 0;
6181
877574e2
NB
6182 if (dir->index_cnt == (u64)-1) {
6183 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6184 if (ret) {
6185 ret = btrfs_set_inode_index_count(dir);
6186 if (ret)
6187 return ret;
6188 }
aec7477b
JB
6189 }
6190
877574e2
NB
6191 *index = dir->index_cnt;
6192 dir->index_cnt++;
aec7477b
JB
6193
6194 return ret;
6195}
6196
b0d5d10f
CM
6197static int btrfs_insert_inode_locked(struct inode *inode)
6198{
6199 struct btrfs_iget_args args;
6200 args.location = &BTRFS_I(inode)->location;
6201 args.root = BTRFS_I(inode)->root;
6202
6203 return insert_inode_locked4(inode,
6204 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6205 btrfs_find_actor, &args);
6206}
6207
19aee8de
AJ
6208/*
6209 * Inherit flags from the parent inode.
6210 *
6211 * Currently only the compression flags and the cow flags are inherited.
6212 */
6213static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6214{
6215 unsigned int flags;
6216
6217 if (!dir)
6218 return;
6219
6220 flags = BTRFS_I(dir)->flags;
6221
6222 if (flags & BTRFS_INODE_NOCOMPRESS) {
6223 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6224 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6225 } else if (flags & BTRFS_INODE_COMPRESS) {
6226 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6227 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6228 }
6229
6230 if (flags & BTRFS_INODE_NODATACOW) {
6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6232 if (S_ISREG(inode->i_mode))
6233 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6234 }
6235
7b6a221e 6236 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6237}
6238
39279cc3
CM
6239static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6240 struct btrfs_root *root,
aec7477b 6241 struct inode *dir,
9c58309d 6242 const char *name, int name_len,
175a4eb7
AV
6243 u64 ref_objectid, u64 objectid,
6244 umode_t mode, u64 *index)
39279cc3 6245{
0b246afa 6246 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6247 struct inode *inode;
5f39d397 6248 struct btrfs_inode_item *inode_item;
39279cc3 6249 struct btrfs_key *location;
5f39d397 6250 struct btrfs_path *path;
9c58309d
CM
6251 struct btrfs_inode_ref *ref;
6252 struct btrfs_key key[2];
6253 u32 sizes[2];
ef3b9af5 6254 int nitems = name ? 2 : 1;
9c58309d 6255 unsigned long ptr;
39279cc3 6256 int ret;
39279cc3 6257
5f39d397 6258 path = btrfs_alloc_path();
d8926bb3
MF
6259 if (!path)
6260 return ERR_PTR(-ENOMEM);
5f39d397 6261
0b246afa 6262 inode = new_inode(fs_info->sb);
8fb27640
YS
6263 if (!inode) {
6264 btrfs_free_path(path);
39279cc3 6265 return ERR_PTR(-ENOMEM);
8fb27640 6266 }
39279cc3 6267
5762b5c9
FM
6268 /*
6269 * O_TMPFILE, set link count to 0, so that after this point,
6270 * we fill in an inode item with the correct link count.
6271 */
6272 if (!name)
6273 set_nlink(inode, 0);
6274
581bb050
LZ
6275 /*
6276 * we have to initialize this early, so we can reclaim the inode
6277 * number if we fail afterwards in this function.
6278 */
6279 inode->i_ino = objectid;
6280
ef3b9af5 6281 if (dir && name) {
1abe9b8a 6282 trace_btrfs_inode_request(dir);
6283
877574e2 6284 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6285 if (ret) {
8fb27640 6286 btrfs_free_path(path);
09771430 6287 iput(inode);
aec7477b 6288 return ERR_PTR(ret);
09771430 6289 }
ef3b9af5
FM
6290 } else if (dir) {
6291 *index = 0;
aec7477b
JB
6292 }
6293 /*
6294 * index_cnt is ignored for everything but a dir,
df6703e1 6295 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6296 * number
6297 */
6298 BTRFS_I(inode)->index_cnt = 2;
67de1176 6299 BTRFS_I(inode)->dir_index = *index;
39279cc3 6300 BTRFS_I(inode)->root = root;
e02119d5 6301 BTRFS_I(inode)->generation = trans->transid;
76195853 6302 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6303
5dc562c5
JB
6304 /*
6305 * We could have gotten an inode number from somebody who was fsynced
6306 * and then removed in this same transaction, so let's just set full
6307 * sync since it will be a full sync anyway and this will blow away the
6308 * old info in the log.
6309 */
6310 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6311
9c58309d 6312 key[0].objectid = objectid;
962a298f 6313 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6314 key[0].offset = 0;
6315
9c58309d 6316 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6317
6318 if (name) {
6319 /*
6320 * Start new inodes with an inode_ref. This is slightly more
6321 * efficient for small numbers of hard links since they will
6322 * be packed into one item. Extended refs will kick in if we
6323 * add more hard links than can fit in the ref item.
6324 */
6325 key[1].objectid = objectid;
962a298f 6326 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6327 key[1].offset = ref_objectid;
6328
6329 sizes[1] = name_len + sizeof(*ref);
6330 }
9c58309d 6331
b0d5d10f
CM
6332 location = &BTRFS_I(inode)->location;
6333 location->objectid = objectid;
6334 location->offset = 0;
962a298f 6335 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6336
6337 ret = btrfs_insert_inode_locked(inode);
6338 if (ret < 0)
6339 goto fail;
6340
b9473439 6341 path->leave_spinning = 1;
ef3b9af5 6342 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6343 if (ret != 0)
b0d5d10f 6344 goto fail_unlock;
5f39d397 6345
ecc11fab 6346 inode_init_owner(inode, dir, mode);
a76a3cd4 6347 inode_set_bytes(inode, 0);
9cc97d64 6348
c2050a45 6349 inode->i_mtime = current_time(inode);
9cc97d64 6350 inode->i_atime = inode->i_mtime;
6351 inode->i_ctime = inode->i_mtime;
6352 BTRFS_I(inode)->i_otime = inode->i_mtime;
6353
5f39d397
CM
6354 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6355 struct btrfs_inode_item);
b159fa28 6356 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6357 sizeof(*inode_item));
e02119d5 6358 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6359
ef3b9af5
FM
6360 if (name) {
6361 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6362 struct btrfs_inode_ref);
6363 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6364 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6365 ptr = (unsigned long)(ref + 1);
6366 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6367 }
9c58309d 6368
5f39d397
CM
6369 btrfs_mark_buffer_dirty(path->nodes[0]);
6370 btrfs_free_path(path);
6371
6cbff00f
CH
6372 btrfs_inherit_iflags(inode, dir);
6373
569254b0 6374 if (S_ISREG(mode)) {
0b246afa 6375 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6376 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6377 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6378 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6379 BTRFS_INODE_NODATASUM;
94272164
CM
6380 }
6381
5d4f98a2 6382 inode_tree_add(inode);
1abe9b8a 6383
6384 trace_btrfs_inode_new(inode);
1973f0fa 6385 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6386
8ea05e3a
AB
6387 btrfs_update_root_times(trans, root);
6388
63541927
FDBM
6389 ret = btrfs_inode_inherit_props(trans, inode, dir);
6390 if (ret)
0b246afa 6391 btrfs_err(fs_info,
63541927 6392 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6393 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6394
39279cc3 6395 return inode;
b0d5d10f
CM
6396
6397fail_unlock:
6398 unlock_new_inode(inode);
5f39d397 6399fail:
ef3b9af5 6400 if (dir && name)
aec7477b 6401 BTRFS_I(dir)->index_cnt--;
5f39d397 6402 btrfs_free_path(path);
09771430 6403 iput(inode);
5f39d397 6404 return ERR_PTR(ret);
39279cc3
CM
6405}
6406
6407static inline u8 btrfs_inode_type(struct inode *inode)
6408{
6409 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6410}
6411
d352ac68
CM
6412/*
6413 * utility function to add 'inode' into 'parent_inode' with
6414 * a give name and a given sequence number.
6415 * if 'add_backref' is true, also insert a backref from the
6416 * inode to the parent directory.
6417 */
e02119d5 6418int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6419 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6420 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6421{
db0a669f 6422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6423 int ret = 0;
39279cc3 6424 struct btrfs_key key;
db0a669f
NB
6425 struct btrfs_root *root = parent_inode->root;
6426 u64 ino = btrfs_ino(inode);
6427 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6428
33345d01 6429 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6430 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6431 } else {
33345d01 6432 key.objectid = ino;
962a298f 6433 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6434 key.offset = 0;
6435 }
6436
33345d01 6437 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6438 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6439 root->root_key.objectid, parent_ino,
6440 index, name, name_len);
4df27c4d 6441 } else if (add_backref) {
33345d01
LZ
6442 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6443 parent_ino, index);
4df27c4d 6444 }
39279cc3 6445
79787eaa
JM
6446 /* Nothing to clean up yet */
6447 if (ret)
6448 return ret;
4df27c4d 6449
79787eaa
JM
6450 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6451 parent_inode, &key,
db0a669f 6452 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6453 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6454 goto fail_dir_item;
6455 else if (ret) {
66642832 6456 btrfs_abort_transaction(trans, ret);
79787eaa 6457 return ret;
39279cc3 6458 }
79787eaa 6459
db0a669f 6460 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6461 name_len * 2);
db0a669f
NB
6462 inode_inc_iversion(&parent_inode->vfs_inode);
6463 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6464 current_time(&parent_inode->vfs_inode);
6465 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6466 if (ret)
66642832 6467 btrfs_abort_transaction(trans, ret);
39279cc3 6468 return ret;
fe66a05a
CM
6469
6470fail_dir_item:
6471 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6472 u64 local_index;
6473 int err;
0b246afa
JM
6474 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6475 root->root_key.objectid, parent_ino,
6476 &local_index, name, name_len);
fe66a05a
CM
6477
6478 } else if (add_backref) {
6479 u64 local_index;
6480 int err;
6481
6482 err = btrfs_del_inode_ref(trans, root, name, name_len,
6483 ino, parent_ino, &local_index);
6484 }
6485 return ret;
39279cc3
CM
6486}
6487
6488static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6489 struct btrfs_inode *dir, struct dentry *dentry,
6490 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6491{
a1b075d2
JB
6492 int err = btrfs_add_link(trans, dir, inode,
6493 dentry->d_name.name, dentry->d_name.len,
6494 backref, index);
39279cc3
CM
6495 if (err > 0)
6496 err = -EEXIST;
6497 return err;
6498}
6499
618e21d5 6500static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6501 umode_t mode, dev_t rdev)
618e21d5 6502{
2ff7e61e 6503 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6504 struct btrfs_trans_handle *trans;
6505 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6506 struct inode *inode = NULL;
618e21d5
JB
6507 int err;
6508 int drop_inode = 0;
6509 u64 objectid;
00e4e6b3 6510 u64 index = 0;
618e21d5 6511
9ed74f2d
JB
6512 /*
6513 * 2 for inode item and ref
6514 * 2 for dir items
6515 * 1 for xattr if selinux is on
6516 */
a22285a6
YZ
6517 trans = btrfs_start_transaction(root, 5);
6518 if (IS_ERR(trans))
6519 return PTR_ERR(trans);
1832a6d5 6520
581bb050
LZ
6521 err = btrfs_find_free_ino(root, &objectid);
6522 if (err)
6523 goto out_unlock;
6524
aec7477b 6525 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6526 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6527 mode, &index);
7cf96da3
TI
6528 if (IS_ERR(inode)) {
6529 err = PTR_ERR(inode);
618e21d5 6530 goto out_unlock;
7cf96da3 6531 }
618e21d5 6532
ad19db71
CS
6533 /*
6534 * If the active LSM wants to access the inode during
6535 * d_instantiate it needs these. Smack checks to see
6536 * if the filesystem supports xattrs by looking at the
6537 * ops vector.
6538 */
ad19db71 6539 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6540 init_special_inode(inode, inode->i_mode, rdev);
6541
6542 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6543 if (err)
b0d5d10f
CM
6544 goto out_unlock_inode;
6545
cef415af
NB
6546 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6547 0, index);
b0d5d10f
CM
6548 if (err) {
6549 goto out_unlock_inode;
6550 } else {
1b4ab1bb 6551 btrfs_update_inode(trans, root, inode);
1e2e547a 6552 d_instantiate_new(dentry, inode);
618e21d5 6553 }
b0d5d10f 6554
618e21d5 6555out_unlock:
3a45bb20 6556 btrfs_end_transaction(trans);
2ff7e61e 6557 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6558 if (drop_inode) {
6559 inode_dec_link_count(inode);
6560 iput(inode);
6561 }
618e21d5 6562 return err;
b0d5d10f
CM
6563
6564out_unlock_inode:
6565 drop_inode = 1;
6566 unlock_new_inode(inode);
6567 goto out_unlock;
6568
618e21d5
JB
6569}
6570
39279cc3 6571static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6572 umode_t mode, bool excl)
39279cc3 6573{
2ff7e61e 6574 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6575 struct btrfs_trans_handle *trans;
6576 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6577 struct inode *inode = NULL;
43baa579 6578 int drop_inode_on_err = 0;
a22285a6 6579 int err;
39279cc3 6580 u64 objectid;
00e4e6b3 6581 u64 index = 0;
39279cc3 6582
9ed74f2d
JB
6583 /*
6584 * 2 for inode item and ref
6585 * 2 for dir items
6586 * 1 for xattr if selinux is on
6587 */
a22285a6
YZ
6588 trans = btrfs_start_transaction(root, 5);
6589 if (IS_ERR(trans))
6590 return PTR_ERR(trans);
9ed74f2d 6591
581bb050
LZ
6592 err = btrfs_find_free_ino(root, &objectid);
6593 if (err)
6594 goto out_unlock;
6595
aec7477b 6596 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6597 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6598 mode, &index);
7cf96da3
TI
6599 if (IS_ERR(inode)) {
6600 err = PTR_ERR(inode);
39279cc3 6601 goto out_unlock;
7cf96da3 6602 }
43baa579 6603 drop_inode_on_err = 1;
ad19db71
CS
6604 /*
6605 * If the active LSM wants to access the inode during
6606 * d_instantiate it needs these. Smack checks to see
6607 * if the filesystem supports xattrs by looking at the
6608 * ops vector.
6609 */
6610 inode->i_fop = &btrfs_file_operations;
6611 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6612 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6613
6614 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6615 if (err)
6616 goto out_unlock_inode;
6617
6618 err = btrfs_update_inode(trans, root, inode);
6619 if (err)
6620 goto out_unlock_inode;
ad19db71 6621
cef415af
NB
6622 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6623 0, index);
39279cc3 6624 if (err)
b0d5d10f 6625 goto out_unlock_inode;
43baa579 6626
43baa579 6627 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6628 d_instantiate_new(dentry, inode);
43baa579 6629
39279cc3 6630out_unlock:
3a45bb20 6631 btrfs_end_transaction(trans);
43baa579 6632 if (err && drop_inode_on_err) {
39279cc3
CM
6633 inode_dec_link_count(inode);
6634 iput(inode);
6635 }
2ff7e61e 6636 btrfs_btree_balance_dirty(fs_info);
39279cc3 6637 return err;
b0d5d10f
CM
6638
6639out_unlock_inode:
6640 unlock_new_inode(inode);
6641 goto out_unlock;
6642
39279cc3
CM
6643}
6644
6645static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6646 struct dentry *dentry)
6647{
271dba45 6648 struct btrfs_trans_handle *trans = NULL;
39279cc3 6649 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6650 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6652 u64 index;
39279cc3
CM
6653 int err;
6654 int drop_inode = 0;
6655
4a8be425
TH
6656 /* do not allow sys_link's with other subvols of the same device */
6657 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6658 return -EXDEV;
4a8be425 6659
f186373f 6660 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6661 return -EMLINK;
4a8be425 6662
877574e2 6663 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6664 if (err)
6665 goto fail;
6666
a22285a6 6667 /*
7e6b6465 6668 * 2 items for inode and inode ref
a22285a6 6669 * 2 items for dir items
7e6b6465 6670 * 1 item for parent inode
399b0bbf 6671 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6672 */
399b0bbf 6673 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6674 if (IS_ERR(trans)) {
6675 err = PTR_ERR(trans);
271dba45 6676 trans = NULL;
a22285a6
YZ
6677 goto fail;
6678 }
5f39d397 6679
67de1176
MX
6680 /* There are several dir indexes for this inode, clear the cache. */
6681 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6682 inc_nlink(inode);
0c4d2d95 6683 inode_inc_iversion(inode);
c2050a45 6684 inode->i_ctime = current_time(inode);
7de9c6ee 6685 ihold(inode);
e9976151 6686 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6687
cef415af
NB
6688 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6689 1, index);
5f39d397 6690
a5719521 6691 if (err) {
54aa1f4d 6692 drop_inode = 1;
a5719521 6693 } else {
10d9f309 6694 struct dentry *parent = dentry->d_parent;
a5719521 6695 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6696 if (err)
6697 goto fail;
ef3b9af5
FM
6698 if (inode->i_nlink == 1) {
6699 /*
6700 * If new hard link count is 1, it's a file created
6701 * with open(2) O_TMPFILE flag.
6702 */
3d6ae7bb 6703 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6704 if (err)
6705 goto fail;
6706 }
08c422c2 6707 d_instantiate(dentry, inode);
9ca5fbfb 6708 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6709 }
39279cc3 6710
1832a6d5 6711fail:
271dba45 6712 if (trans)
3a45bb20 6713 btrfs_end_transaction(trans);
39279cc3
CM
6714 if (drop_inode) {
6715 inode_dec_link_count(inode);
6716 iput(inode);
6717 }
2ff7e61e 6718 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6719 return err;
6720}
6721
18bb1db3 6722static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6723{
2ff7e61e 6724 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6725 struct inode *inode = NULL;
39279cc3
CM
6726 struct btrfs_trans_handle *trans;
6727 struct btrfs_root *root = BTRFS_I(dir)->root;
6728 int err = 0;
6729 int drop_on_err = 0;
b9d86667 6730 u64 objectid = 0;
00e4e6b3 6731 u64 index = 0;
39279cc3 6732
9ed74f2d
JB
6733 /*
6734 * 2 items for inode and ref
6735 * 2 items for dir items
6736 * 1 for xattr if selinux is on
6737 */
a22285a6
YZ
6738 trans = btrfs_start_transaction(root, 5);
6739 if (IS_ERR(trans))
6740 return PTR_ERR(trans);
39279cc3 6741
581bb050
LZ
6742 err = btrfs_find_free_ino(root, &objectid);
6743 if (err)
6744 goto out_fail;
6745
aec7477b 6746 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6747 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6748 S_IFDIR | mode, &index);
39279cc3
CM
6749 if (IS_ERR(inode)) {
6750 err = PTR_ERR(inode);
6751 goto out_fail;
6752 }
5f39d397 6753
39279cc3 6754 drop_on_err = 1;
b0d5d10f
CM
6755 /* these must be set before we unlock the inode */
6756 inode->i_op = &btrfs_dir_inode_operations;
6757 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6758
2a7dba39 6759 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6760 if (err)
b0d5d10f 6761 goto out_fail_inode;
39279cc3 6762
6ef06d27 6763 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6764 err = btrfs_update_inode(trans, root, inode);
6765 if (err)
b0d5d10f 6766 goto out_fail_inode;
5f39d397 6767
db0a669f
NB
6768 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6769 dentry->d_name.name,
6770 dentry->d_name.len, 0, index);
39279cc3 6771 if (err)
b0d5d10f 6772 goto out_fail_inode;
5f39d397 6773
1e2e547a 6774 d_instantiate_new(dentry, inode);
39279cc3 6775 drop_on_err = 0;
39279cc3
CM
6776
6777out_fail:
3a45bb20 6778 btrfs_end_transaction(trans);
c7cfb8a5
WS
6779 if (drop_on_err) {
6780 inode_dec_link_count(inode);
39279cc3 6781 iput(inode);
c7cfb8a5 6782 }
2ff7e61e 6783 btrfs_btree_balance_dirty(fs_info);
39279cc3 6784 return err;
b0d5d10f
CM
6785
6786out_fail_inode:
6787 unlock_new_inode(inode);
6788 goto out_fail;
39279cc3
CM
6789}
6790
c8b97818 6791static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6792 struct page *page,
c8b97818
CM
6793 size_t pg_offset, u64 extent_offset,
6794 struct btrfs_file_extent_item *item)
6795{
6796 int ret;
6797 struct extent_buffer *leaf = path->nodes[0];
6798 char *tmp;
6799 size_t max_size;
6800 unsigned long inline_size;
6801 unsigned long ptr;
261507a0 6802 int compress_type;
c8b97818
CM
6803
6804 WARN_ON(pg_offset != 0);
261507a0 6805 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6806 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6807 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6808 btrfs_item_nr(path->slots[0]));
c8b97818 6809 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6810 if (!tmp)
6811 return -ENOMEM;
c8b97818
CM
6812 ptr = btrfs_file_extent_inline_start(item);
6813
6814 read_extent_buffer(leaf, tmp, ptr, inline_size);
6815
09cbfeaf 6816 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6817 ret = btrfs_decompress(compress_type, tmp, page,
6818 extent_offset, inline_size, max_size);
e1699d2d
ZB
6819
6820 /*
6821 * decompression code contains a memset to fill in any space between the end
6822 * of the uncompressed data and the end of max_size in case the decompressed
6823 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6824 * the end of an inline extent and the beginning of the next block, so we
6825 * cover that region here.
6826 */
6827
6828 if (max_size + pg_offset < PAGE_SIZE) {
6829 char *map = kmap(page);
6830 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6831 kunmap(page);
6832 }
c8b97818 6833 kfree(tmp);
166ae5a4 6834 return ret;
c8b97818
CM
6835}
6836
d352ac68
CM
6837/*
6838 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6839 * the ugly parts come from merging extents from the disk with the in-ram
6840 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6841 * where the in-ram extents might be locked pending data=ordered completion.
6842 *
6843 * This also copies inline extents directly into the page.
6844 */
fc4f21b1
NB
6845struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6846 struct page *page,
6847 size_t pg_offset, u64 start, u64 len,
6848 int create)
a52d9a80 6849{
fc4f21b1 6850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6851 int ret;
6852 int err = 0;
a52d9a80
CM
6853 u64 extent_start = 0;
6854 u64 extent_end = 0;
fc4f21b1 6855 u64 objectid = btrfs_ino(inode);
a52d9a80 6856 u32 found_type;
f421950f 6857 struct btrfs_path *path = NULL;
fc4f21b1 6858 struct btrfs_root *root = inode->root;
a52d9a80 6859 struct btrfs_file_extent_item *item;
5f39d397
CM
6860 struct extent_buffer *leaf;
6861 struct btrfs_key found_key;
a52d9a80 6862 struct extent_map *em = NULL;
fc4f21b1
NB
6863 struct extent_map_tree *em_tree = &inode->extent_tree;
6864 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6865 const bool new_inline = !page || create;
a52d9a80 6866
890871be 6867 read_lock(&em_tree->lock);
d1310b2e 6868 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6869 if (em)
0b246afa 6870 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6871 read_unlock(&em_tree->lock);
d1310b2e 6872
a52d9a80 6873 if (em) {
e1c4b745
CM
6874 if (em->start > start || em->start + em->len <= start)
6875 free_extent_map(em);
6876 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6877 free_extent_map(em);
6878 else
6879 goto out;
a52d9a80 6880 }
172ddd60 6881 em = alloc_extent_map();
a52d9a80 6882 if (!em) {
d1310b2e
CM
6883 err = -ENOMEM;
6884 goto out;
a52d9a80 6885 }
0b246afa 6886 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6887 em->start = EXTENT_MAP_HOLE;
445a6944 6888 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6889 em->len = (u64)-1;
c8b97818 6890 em->block_len = (u64)-1;
f421950f
CM
6891
6892 if (!path) {
6893 path = btrfs_alloc_path();
026fd317
JB
6894 if (!path) {
6895 err = -ENOMEM;
6896 goto out;
6897 }
6898 /*
6899 * Chances are we'll be called again, so go ahead and do
6900 * readahead
6901 */
e4058b54 6902 path->reada = READA_FORWARD;
f421950f
CM
6903 }
6904
5c9a702e 6905 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6906 if (ret < 0) {
6907 err = ret;
6908 goto out;
6909 }
6910
6911 if (ret != 0) {
6912 if (path->slots[0] == 0)
6913 goto not_found;
6914 path->slots[0]--;
6915 }
6916
5f39d397
CM
6917 leaf = path->nodes[0];
6918 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6919 struct btrfs_file_extent_item);
a52d9a80 6920 /* are we inside the extent that was found? */
5f39d397 6921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6922 found_type = found_key.type;
5f39d397 6923 if (found_key.objectid != objectid ||
a52d9a80 6924 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6925 /*
6926 * If we backup past the first extent we want to move forward
6927 * and see if there is an extent in front of us, otherwise we'll
6928 * say there is a hole for our whole search range which can
6929 * cause problems.
6930 */
6931 extent_end = start;
6932 goto next;
a52d9a80
CM
6933 }
6934
5f39d397
CM
6935 found_type = btrfs_file_extent_type(leaf, item);
6936 extent_start = found_key.offset;
d899e052
YZ
6937 if (found_type == BTRFS_FILE_EXTENT_REG ||
6938 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6939 extent_end = extent_start +
db94535d 6940 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6941
6942 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6943 extent_start);
9036c102
YZ
6944 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6945 size_t size;
514ac8ad 6946 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6947 extent_end = ALIGN(extent_start + size,
0b246afa 6948 fs_info->sectorsize);
09ed2f16
LB
6949
6950 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6951 path->slots[0],
6952 extent_start);
9036c102 6953 }
25a50341 6954next:
9036c102
YZ
6955 if (start >= extent_end) {
6956 path->slots[0]++;
6957 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6958 ret = btrfs_next_leaf(root, path);
6959 if (ret < 0) {
6960 err = ret;
6961 goto out;
a52d9a80 6962 }
9036c102
YZ
6963 if (ret > 0)
6964 goto not_found;
6965 leaf = path->nodes[0];
a52d9a80 6966 }
9036c102
YZ
6967 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6968 if (found_key.objectid != objectid ||
6969 found_key.type != BTRFS_EXTENT_DATA_KEY)
6970 goto not_found;
6971 if (start + len <= found_key.offset)
6972 goto not_found;
e2eca69d
WS
6973 if (start > found_key.offset)
6974 goto next;
9036c102 6975 em->start = start;
70c8a91c 6976 em->orig_start = start;
9036c102
YZ
6977 em->len = found_key.offset - start;
6978 goto not_found_em;
6979 }
6980
fc4f21b1 6981 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6982 new_inline, em);
7ffbb598 6983
d899e052
YZ
6984 if (found_type == BTRFS_FILE_EXTENT_REG ||
6985 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6986 goto insert;
6987 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6988 unsigned long ptr;
a52d9a80 6989 char *map;
3326d1b0
CM
6990 size_t size;
6991 size_t extent_offset;
6992 size_t copy_size;
a52d9a80 6993
7ffbb598 6994 if (new_inline)
689f9346 6995 goto out;
5f39d397 6996
514ac8ad 6997 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6998 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6999 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7000 size - extent_offset);
3326d1b0 7001 em->start = extent_start + extent_offset;
0b246afa 7002 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7003 em->orig_block_len = em->len;
70c8a91c 7004 em->orig_start = em->start;
689f9346 7005 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7006 if (!PageUptodate(page)) {
261507a0
LZ
7007 if (btrfs_file_extent_compression(leaf, item) !=
7008 BTRFS_COMPRESS_NONE) {
e40da0e5 7009 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7010 extent_offset, item);
166ae5a4
ZB
7011 if (ret) {
7012 err = ret;
7013 goto out;
7014 }
c8b97818
CM
7015 } else {
7016 map = kmap(page);
7017 read_extent_buffer(leaf, map + pg_offset, ptr,
7018 copy_size);
09cbfeaf 7019 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7020 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7021 PAGE_SIZE - pg_offset -
93c82d57
CM
7022 copy_size);
7023 }
c8b97818
CM
7024 kunmap(page);
7025 }
179e29e4 7026 flush_dcache_page(page);
a52d9a80 7027 }
d1310b2e 7028 set_extent_uptodate(io_tree, em->start,
507903b8 7029 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7030 goto insert;
a52d9a80
CM
7031 }
7032not_found:
7033 em->start = start;
70c8a91c 7034 em->orig_start = start;
d1310b2e 7035 em->len = len;
a52d9a80 7036not_found_em:
5f39d397 7037 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7038insert:
b3b4aa74 7039 btrfs_release_path(path);
d1310b2e 7040 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7041 btrfs_err(fs_info,
5d163e0e
JM
7042 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7043 em->start, em->len, start, len);
a52d9a80
CM
7044 err = -EIO;
7045 goto out;
7046 }
d1310b2e
CM
7047
7048 err = 0;
890871be 7049 write_lock(&em_tree->lock);
f46b24c9 7050 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7051 write_unlock(&em_tree->lock);
a52d9a80 7052out:
1abe9b8a 7053
fc4f21b1 7054 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7055
527afb44 7056 btrfs_free_path(path);
a52d9a80
CM
7057 if (err) {
7058 free_extent_map(em);
a52d9a80
CM
7059 return ERR_PTR(err);
7060 }
79787eaa 7061 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7062 return em;
7063}
7064
fc4f21b1
NB
7065struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7066 struct page *page,
7067 size_t pg_offset, u64 start, u64 len,
7068 int create)
ec29ed5b
CM
7069{
7070 struct extent_map *em;
7071 struct extent_map *hole_em = NULL;
7072 u64 range_start = start;
7073 u64 end;
7074 u64 found;
7075 u64 found_end;
7076 int err = 0;
7077
7078 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7079 if (IS_ERR(em))
7080 return em;
9986277e
DC
7081 /*
7082 * If our em maps to:
7083 * - a hole or
7084 * - a pre-alloc extent,
7085 * there might actually be delalloc bytes behind it.
7086 */
7087 if (em->block_start != EXTENT_MAP_HOLE &&
7088 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7089 return em;
7090 else
7091 hole_em = em;
ec29ed5b
CM
7092
7093 /* check to see if we've wrapped (len == -1 or similar) */
7094 end = start + len;
7095 if (end < start)
7096 end = (u64)-1;
7097 else
7098 end -= 1;
7099
7100 em = NULL;
7101
7102 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7103 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7104 end, len, EXTENT_DELALLOC, 1);
7105 found_end = range_start + found;
7106 if (found_end < range_start)
7107 found_end = (u64)-1;
7108
7109 /*
7110 * we didn't find anything useful, return
7111 * the original results from get_extent()
7112 */
7113 if (range_start > end || found_end <= start) {
7114 em = hole_em;
7115 hole_em = NULL;
7116 goto out;
7117 }
7118
7119 /* adjust the range_start to make sure it doesn't
7120 * go backwards from the start they passed in
7121 */
67871254 7122 range_start = max(start, range_start);
ec29ed5b
CM
7123 found = found_end - range_start;
7124
7125 if (found > 0) {
7126 u64 hole_start = start;
7127 u64 hole_len = len;
7128
172ddd60 7129 em = alloc_extent_map();
ec29ed5b
CM
7130 if (!em) {
7131 err = -ENOMEM;
7132 goto out;
7133 }
7134 /*
7135 * when btrfs_get_extent can't find anything it
7136 * returns one huge hole
7137 *
7138 * make sure what it found really fits our range, and
7139 * adjust to make sure it is based on the start from
7140 * the caller
7141 */
7142 if (hole_em) {
7143 u64 calc_end = extent_map_end(hole_em);
7144
7145 if (calc_end <= start || (hole_em->start > end)) {
7146 free_extent_map(hole_em);
7147 hole_em = NULL;
7148 } else {
7149 hole_start = max(hole_em->start, start);
7150 hole_len = calc_end - hole_start;
7151 }
7152 }
7153 em->bdev = NULL;
7154 if (hole_em && range_start > hole_start) {
7155 /* our hole starts before our delalloc, so we
7156 * have to return just the parts of the hole
7157 * that go until the delalloc starts
7158 */
7159 em->len = min(hole_len,
7160 range_start - hole_start);
7161 em->start = hole_start;
7162 em->orig_start = hole_start;
7163 /*
7164 * don't adjust block start at all,
7165 * it is fixed at EXTENT_MAP_HOLE
7166 */
7167 em->block_start = hole_em->block_start;
7168 em->block_len = hole_len;
f9e4fb53
LB
7169 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7170 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7171 } else {
7172 em->start = range_start;
7173 em->len = found;
7174 em->orig_start = range_start;
7175 em->block_start = EXTENT_MAP_DELALLOC;
7176 em->block_len = found;
7177 }
bf8d32b9 7178 } else {
ec29ed5b
CM
7179 return hole_em;
7180 }
7181out:
7182
7183 free_extent_map(hole_em);
7184 if (err) {
7185 free_extent_map(em);
7186 return ERR_PTR(err);
7187 }
7188 return em;
7189}
7190
5f9a8a51
FM
7191static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7192 const u64 start,
7193 const u64 len,
7194 const u64 orig_start,
7195 const u64 block_start,
7196 const u64 block_len,
7197 const u64 orig_block_len,
7198 const u64 ram_bytes,
7199 const int type)
7200{
7201 struct extent_map *em = NULL;
7202 int ret;
7203
5f9a8a51 7204 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7205 em = create_io_em(inode, start, len, orig_start,
7206 block_start, block_len, orig_block_len,
7207 ram_bytes,
7208 BTRFS_COMPRESS_NONE, /* compress_type */
7209 type);
5f9a8a51
FM
7210 if (IS_ERR(em))
7211 goto out;
7212 }
7213 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7214 len, block_len, type);
7215 if (ret) {
7216 if (em) {
7217 free_extent_map(em);
dcdbc059 7218 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7219 start + len - 1, 0);
7220 }
7221 em = ERR_PTR(ret);
7222 }
7223 out:
5f9a8a51
FM
7224
7225 return em;
7226}
7227
4b46fce2
JB
7228static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7229 u64 start, u64 len)
7230{
0b246afa 7231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7232 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7233 struct extent_map *em;
4b46fce2
JB
7234 struct btrfs_key ins;
7235 u64 alloc_hint;
7236 int ret;
4b46fce2 7237
4b46fce2 7238 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7239 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7240 0, alloc_hint, &ins, 1, 1);
00361589
JB
7241 if (ret)
7242 return ERR_PTR(ret);
4b46fce2 7243
5f9a8a51
FM
7244 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7245 ins.objectid, ins.offset, ins.offset,
6288d6ea 7246 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7247 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7248 if (IS_ERR(em))
2ff7e61e
JM
7249 btrfs_free_reserved_extent(fs_info, ins.objectid,
7250 ins.offset, 1);
de0ee0ed 7251
4b46fce2
JB
7252 return em;
7253}
7254
46bfbb5c
CM
7255/*
7256 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7257 * block must be cow'd
7258 */
00361589 7259noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7260 u64 *orig_start, u64 *orig_block_len,
7261 u64 *ram_bytes)
46bfbb5c 7262{
2ff7e61e 7263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7264 struct btrfs_path *path;
7265 int ret;
7266 struct extent_buffer *leaf;
7267 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7268 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7269 struct btrfs_file_extent_item *fi;
7270 struct btrfs_key key;
7271 u64 disk_bytenr;
7272 u64 backref_offset;
7273 u64 extent_end;
7274 u64 num_bytes;
7275 int slot;
7276 int found_type;
7ee9e440 7277 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7278
46bfbb5c
CM
7279 path = btrfs_alloc_path();
7280 if (!path)
7281 return -ENOMEM;
7282
f85b7379
DS
7283 ret = btrfs_lookup_file_extent(NULL, root, path,
7284 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7285 if (ret < 0)
7286 goto out;
7287
7288 slot = path->slots[0];
7289 if (ret == 1) {
7290 if (slot == 0) {
7291 /* can't find the item, must cow */
7292 ret = 0;
7293 goto out;
7294 }
7295 slot--;
7296 }
7297 ret = 0;
7298 leaf = path->nodes[0];
7299 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7300 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7301 key.type != BTRFS_EXTENT_DATA_KEY) {
7302 /* not our file or wrong item type, must cow */
7303 goto out;
7304 }
7305
7306 if (key.offset > offset) {
7307 /* Wrong offset, must cow */
7308 goto out;
7309 }
7310
7311 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7312 found_type = btrfs_file_extent_type(leaf, fi);
7313 if (found_type != BTRFS_FILE_EXTENT_REG &&
7314 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7315 /* not a regular extent, must cow */
7316 goto out;
7317 }
7ee9e440
JB
7318
7319 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7320 goto out;
7321
e77751aa
MX
7322 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7323 if (extent_end <= offset)
7324 goto out;
7325
46bfbb5c 7326 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7327 if (disk_bytenr == 0)
7328 goto out;
7329
7330 if (btrfs_file_extent_compression(leaf, fi) ||
7331 btrfs_file_extent_encryption(leaf, fi) ||
7332 btrfs_file_extent_other_encoding(leaf, fi))
7333 goto out;
7334
78d4295b
EL
7335 /*
7336 * Do the same check as in btrfs_cross_ref_exist but without the
7337 * unnecessary search.
7338 */
7339 if (btrfs_file_extent_generation(leaf, fi) <=
7340 btrfs_root_last_snapshot(&root->root_item))
7341 goto out;
7342
46bfbb5c
CM
7343 backref_offset = btrfs_file_extent_offset(leaf, fi);
7344
7ee9e440
JB
7345 if (orig_start) {
7346 *orig_start = key.offset - backref_offset;
7347 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7348 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7349 }
eb384b55 7350
2ff7e61e 7351 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7352 goto out;
7b2b7085
MX
7353
7354 num_bytes = min(offset + *len, extent_end) - offset;
7355 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7356 u64 range_end;
7357
da17066c
JM
7358 range_end = round_up(offset + num_bytes,
7359 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7360 ret = test_range_bit(io_tree, offset, range_end,
7361 EXTENT_DELALLOC, 0, NULL);
7362 if (ret) {
7363 ret = -EAGAIN;
7364 goto out;
7365 }
7366 }
7367
1bda19eb 7368 btrfs_release_path(path);
46bfbb5c
CM
7369
7370 /*
7371 * look for other files referencing this extent, if we
7372 * find any we must cow
7373 */
00361589 7374
e4c3b2dc 7375 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7376 key.offset - backref_offset, disk_bytenr);
00361589
JB
7377 if (ret) {
7378 ret = 0;
7379 goto out;
7380 }
46bfbb5c
CM
7381
7382 /*
7383 * adjust disk_bytenr and num_bytes to cover just the bytes
7384 * in this extent we are about to write. If there
7385 * are any csums in that range we have to cow in order
7386 * to keep the csums correct
7387 */
7388 disk_bytenr += backref_offset;
7389 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7390 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7391 goto out;
46bfbb5c
CM
7392 /*
7393 * all of the above have passed, it is safe to overwrite this extent
7394 * without cow
7395 */
eb384b55 7396 *len = num_bytes;
46bfbb5c
CM
7397 ret = 1;
7398out:
7399 btrfs_free_path(path);
7400 return ret;
7401}
7402
eb838e73
JB
7403static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7404 struct extent_state **cached_state, int writing)
7405{
7406 struct btrfs_ordered_extent *ordered;
7407 int ret = 0;
7408
7409 while (1) {
7410 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7411 cached_state);
eb838e73
JB
7412 /*
7413 * We're concerned with the entire range that we're going to be
01327610 7414 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7415 * extents in this range.
7416 */
a776c6fa 7417 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7418 lockend - lockstart + 1);
7419
7420 /*
7421 * We need to make sure there are no buffered pages in this
7422 * range either, we could have raced between the invalidate in
7423 * generic_file_direct_write and locking the extent. The
7424 * invalidate needs to happen so that reads after a write do not
7425 * get stale data.
7426 */
fc4adbff 7427 if (!ordered &&
051c98eb
DS
7428 (!writing || !filemap_range_has_page(inode->i_mapping,
7429 lockstart, lockend)))
eb838e73
JB
7430 break;
7431
7432 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7433 cached_state);
eb838e73
JB
7434
7435 if (ordered) {
ade77029
FM
7436 /*
7437 * If we are doing a DIO read and the ordered extent we
7438 * found is for a buffered write, we can not wait for it
7439 * to complete and retry, because if we do so we can
7440 * deadlock with concurrent buffered writes on page
7441 * locks. This happens only if our DIO read covers more
7442 * than one extent map, if at this point has already
7443 * created an ordered extent for a previous extent map
7444 * and locked its range in the inode's io tree, and a
7445 * concurrent write against that previous extent map's
7446 * range and this range started (we unlock the ranges
7447 * in the io tree only when the bios complete and
7448 * buffered writes always lock pages before attempting
7449 * to lock range in the io tree).
7450 */
7451 if (writing ||
7452 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7453 btrfs_start_ordered_extent(inode, ordered, 1);
7454 else
7455 ret = -ENOTBLK;
eb838e73
JB
7456 btrfs_put_ordered_extent(ordered);
7457 } else {
eb838e73 7458 /*
b850ae14
FM
7459 * We could trigger writeback for this range (and wait
7460 * for it to complete) and then invalidate the pages for
7461 * this range (through invalidate_inode_pages2_range()),
7462 * but that can lead us to a deadlock with a concurrent
7463 * call to readpages() (a buffered read or a defrag call
7464 * triggered a readahead) on a page lock due to an
7465 * ordered dio extent we created before but did not have
7466 * yet a corresponding bio submitted (whence it can not
7467 * complete), which makes readpages() wait for that
7468 * ordered extent to complete while holding a lock on
7469 * that page.
eb838e73 7470 */
b850ae14 7471 ret = -ENOTBLK;
eb838e73
JB
7472 }
7473
ade77029
FM
7474 if (ret)
7475 break;
7476
eb838e73
JB
7477 cond_resched();
7478 }
7479
7480 return ret;
7481}
7482
6f9994db
LB
7483/* The callers of this must take lock_extent() */
7484static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7485 u64 orig_start, u64 block_start,
7486 u64 block_len, u64 orig_block_len,
7487 u64 ram_bytes, int compress_type,
7488 int type)
69ffb543
JB
7489{
7490 struct extent_map_tree *em_tree;
7491 struct extent_map *em;
7492 struct btrfs_root *root = BTRFS_I(inode)->root;
7493 int ret;
7494
6f9994db
LB
7495 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7496 type == BTRFS_ORDERED_COMPRESSED ||
7497 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7498 type == BTRFS_ORDERED_REGULAR);
6f9994db 7499
69ffb543
JB
7500 em_tree = &BTRFS_I(inode)->extent_tree;
7501 em = alloc_extent_map();
7502 if (!em)
7503 return ERR_PTR(-ENOMEM);
7504
7505 em->start = start;
7506 em->orig_start = orig_start;
7507 em->len = len;
7508 em->block_len = block_len;
7509 em->block_start = block_start;
7510 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7511 em->orig_block_len = orig_block_len;
cc95bef6 7512 em->ram_bytes = ram_bytes;
70c8a91c 7513 em->generation = -1;
69ffb543 7514 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7515 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7516 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7517 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7518 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7519 em->compress_type = compress_type;
7520 }
69ffb543
JB
7521
7522 do {
dcdbc059 7523 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7524 em->start + em->len - 1, 0);
7525 write_lock(&em_tree->lock);
09a2a8f9 7526 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7527 write_unlock(&em_tree->lock);
6f9994db
LB
7528 /*
7529 * The caller has taken lock_extent(), who could race with us
7530 * to add em?
7531 */
69ffb543
JB
7532 } while (ret == -EEXIST);
7533
7534 if (ret) {
7535 free_extent_map(em);
7536 return ERR_PTR(ret);
7537 }
7538
6f9994db 7539 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7540 return em;
7541}
7542
1c8d0175
NB
7543
7544static int btrfs_get_blocks_direct_read(struct extent_map *em,
7545 struct buffer_head *bh_result,
7546 struct inode *inode,
7547 u64 start, u64 len)
7548{
7549 if (em->block_start == EXTENT_MAP_HOLE ||
7550 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7551 return -ENOENT;
7552
7553 len = min(len, em->len - (start - em->start));
7554
7555 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7556 inode->i_blkbits;
7557 bh_result->b_size = len;
7558 bh_result->b_bdev = em->bdev;
7559 set_buffer_mapped(bh_result);
7560
7561 return 0;
7562}
7563
c5794e51
NB
7564static int btrfs_get_blocks_direct_write(struct extent_map **map,
7565 struct buffer_head *bh_result,
7566 struct inode *inode,
7567 struct btrfs_dio_data *dio_data,
7568 u64 start, u64 len)
7569{
7570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7571 struct extent_map *em = *map;
7572 int ret = 0;
7573
7574 /*
7575 * We don't allocate a new extent in the following cases
7576 *
7577 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7578 * existing extent.
7579 * 2) The extent is marked as PREALLOC. We're good to go here and can
7580 * just use the extent.
7581 *
7582 */
7583 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7584 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7585 em->block_start != EXTENT_MAP_HOLE)) {
7586 int type;
7587 u64 block_start, orig_start, orig_block_len, ram_bytes;
7588
7589 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7590 type = BTRFS_ORDERED_PREALLOC;
7591 else
7592 type = BTRFS_ORDERED_NOCOW;
7593 len = min(len, em->len - (start - em->start));
7594 block_start = em->block_start + (start - em->start);
7595
7596 if (can_nocow_extent(inode, start, &len, &orig_start,
7597 &orig_block_len, &ram_bytes) == 1 &&
7598 btrfs_inc_nocow_writers(fs_info, block_start)) {
7599 struct extent_map *em2;
7600
7601 em2 = btrfs_create_dio_extent(inode, start, len,
7602 orig_start, block_start,
7603 len, orig_block_len,
7604 ram_bytes, type);
7605 btrfs_dec_nocow_writers(fs_info, block_start);
7606 if (type == BTRFS_ORDERED_PREALLOC) {
7607 free_extent_map(em);
7608 *map = em = em2;
7609 }
7610
7611 if (em2 && IS_ERR(em2)) {
7612 ret = PTR_ERR(em2);
7613 goto out;
7614 }
7615 /*
7616 * For inode marked NODATACOW or extent marked PREALLOC,
7617 * use the existing or preallocated extent, so does not
7618 * need to adjust btrfs_space_info's bytes_may_use.
7619 */
7620 btrfs_free_reserved_data_space_noquota(inode, start,
7621 len);
7622 goto skip_cow;
7623 }
7624 }
7625
7626 /* this will cow the extent */
7627 len = bh_result->b_size;
7628 free_extent_map(em);
7629 *map = em = btrfs_new_extent_direct(inode, start, len);
7630 if (IS_ERR(em)) {
7631 ret = PTR_ERR(em);
7632 goto out;
7633 }
7634
7635 len = min(len, em->len - (start - em->start));
7636
7637skip_cow:
7638 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7639 inode->i_blkbits;
7640 bh_result->b_size = len;
7641 bh_result->b_bdev = em->bdev;
7642 set_buffer_mapped(bh_result);
7643
7644 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7645 set_buffer_new(bh_result);
7646
7647 /*
7648 * Need to update the i_size under the extent lock so buffered
7649 * readers will get the updated i_size when we unlock.
7650 */
7651 if (!dio_data->overwrite && start + len > i_size_read(inode))
7652 i_size_write(inode, start + len);
7653
7654 WARN_ON(dio_data->reserve < len);
7655 dio_data->reserve -= len;
7656 dio_data->unsubmitted_oe_range_end = start + len;
7657 current->journal_info = dio_data;
7658out:
7659 return ret;
7660}
7661
4b46fce2
JB
7662static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7663 struct buffer_head *bh_result, int create)
7664{
0b246afa 7665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7666 struct extent_map *em;
eb838e73 7667 struct extent_state *cached_state = NULL;
50745b0a 7668 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7669 u64 start = iblock << inode->i_blkbits;
eb838e73 7670 u64 lockstart, lockend;
4b46fce2 7671 u64 len = bh_result->b_size;
eb838e73 7672 int unlock_bits = EXTENT_LOCKED;
0934856d 7673 int ret = 0;
eb838e73 7674
172a5049 7675 if (create)
3266789f 7676 unlock_bits |= EXTENT_DIRTY;
172a5049 7677 else
0b246afa 7678 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7679
c329861d
JB
7680 lockstart = start;
7681 lockend = start + len - 1;
7682
e1cbbfa5
JB
7683 if (current->journal_info) {
7684 /*
7685 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7686 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7687 * confused.
7688 */
50745b0a 7689 dio_data = current->journal_info;
e1cbbfa5
JB
7690 current->journal_info = NULL;
7691 }
7692
eb838e73
JB
7693 /*
7694 * If this errors out it's because we couldn't invalidate pagecache for
7695 * this range and we need to fallback to buffered.
7696 */
9c9464cc
FM
7697 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7698 create)) {
7699 ret = -ENOTBLK;
7700 goto err;
7701 }
eb838e73 7702
fc4f21b1 7703 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7704 if (IS_ERR(em)) {
7705 ret = PTR_ERR(em);
7706 goto unlock_err;
7707 }
4b46fce2
JB
7708
7709 /*
7710 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7711 * io. INLINE is special, and we could probably kludge it in here, but
7712 * it's still buffered so for safety lets just fall back to the generic
7713 * buffered path.
7714 *
7715 * For COMPRESSED we _have_ to read the entire extent in so we can
7716 * decompress it, so there will be buffering required no matter what we
7717 * do, so go ahead and fallback to buffered.
7718 *
01327610 7719 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7720 * to buffered IO. Don't blame me, this is the price we pay for using
7721 * the generic code.
7722 */
7723 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7724 em->block_start == EXTENT_MAP_INLINE) {
7725 free_extent_map(em);
eb838e73
JB
7726 ret = -ENOTBLK;
7727 goto unlock_err;
4b46fce2
JB
7728 }
7729
c5794e51
NB
7730 if (create) {
7731 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7732 dio_data, start, len);
7733 if (ret < 0)
7734 goto unlock_err;
7735
7736 /* clear and unlock the entire range */
7737 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7738 unlock_bits, 1, 0, &cached_state);
7739 } else {
1c8d0175
NB
7740 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7741 start, len);
7742 /* Can be negative only if we read from a hole */
7743 if (ret < 0) {
7744 ret = 0;
7745 free_extent_map(em);
7746 goto unlock_err;
7747 }
7748 /*
7749 * We need to unlock only the end area that we aren't using.
7750 * The rest is going to be unlocked by the endio routine.
7751 */
7752 lockstart = start + bh_result->b_size;
7753 if (lockstart < lockend) {
7754 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7755 lockend, unlock_bits, 1, 0,
7756 &cached_state);
7757 } else {
7758 free_extent_state(cached_state);
7759 }
4b46fce2
JB
7760 }
7761
4b46fce2
JB
7762 free_extent_map(em);
7763
7764 return 0;
eb838e73
JB
7765
7766unlock_err:
eb838e73 7767 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7768 unlock_bits, 1, 0, &cached_state);
9c9464cc 7769err:
50745b0a 7770 if (dio_data)
7771 current->journal_info = dio_data;
eb838e73 7772 return ret;
4b46fce2
JB
7773}
7774
58efbc9f
OS
7775static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7776 struct bio *bio,
7777 int mirror_num)
8b110e39 7778{
2ff7e61e 7779 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7780 blk_status_t ret;
8b110e39 7781
37226b21 7782 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7783
2ff7e61e 7784 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7785 if (ret)
ea057f6d 7786 return ret;
8b110e39 7787
2ff7e61e 7788 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7789
8b110e39
MX
7790 return ret;
7791}
7792
7793static int btrfs_check_dio_repairable(struct inode *inode,
7794 struct bio *failed_bio,
7795 struct io_failure_record *failrec,
7796 int failed_mirror)
7797{
ab8d0fc4 7798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7799 int num_copies;
7800
ab8d0fc4 7801 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7802 if (num_copies == 1) {
7803 /*
7804 * we only have a single copy of the data, so don't bother with
7805 * all the retry and error correction code that follows. no
7806 * matter what the error is, it is very likely to persist.
7807 */
ab8d0fc4
JM
7808 btrfs_debug(fs_info,
7809 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7810 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7811 return 0;
7812 }
7813
7814 failrec->failed_mirror = failed_mirror;
7815 failrec->this_mirror++;
7816 if (failrec->this_mirror == failed_mirror)
7817 failrec->this_mirror++;
7818
7819 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7820 btrfs_debug(fs_info,
7821 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7822 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7823 return 0;
7824 }
7825
7826 return 1;
7827}
7828
58efbc9f
OS
7829static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7830 struct page *page, unsigned int pgoff,
7831 u64 start, u64 end, int failed_mirror,
7832 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7833{
7834 struct io_failure_record *failrec;
7870d082
JB
7835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7836 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7837 struct bio *bio;
7838 int isector;
f1c77c55 7839 unsigned int read_mode = 0;
17347cec 7840 int segs;
8b110e39 7841 int ret;
58efbc9f 7842 blk_status_t status;
c16a8ac3 7843 struct bio_vec bvec;
8b110e39 7844
37226b21 7845 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7846
7847 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7848 if (ret)
58efbc9f 7849 return errno_to_blk_status(ret);
8b110e39
MX
7850
7851 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7852 failed_mirror);
7853 if (!ret) {
7870d082 7854 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7855 return BLK_STS_IOERR;
8b110e39
MX
7856 }
7857
17347cec 7858 segs = bio_segments(failed_bio);
c16a8ac3 7859 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7860 if (segs > 1 ||
c16a8ac3 7861 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7862 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7863
7864 isector = start - btrfs_io_bio(failed_bio)->logical;
7865 isector >>= inode->i_sb->s_blocksize_bits;
7866 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7867 pgoff, isector, repair_endio, repair_arg);
37226b21 7868 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7869
7870 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7871 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7872 read_mode, failrec->this_mirror, failrec->in_validation);
7873
58efbc9f
OS
7874 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7875 if (status) {
7870d082 7876 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7877 bio_put(bio);
7878 }
7879
58efbc9f 7880 return status;
8b110e39
MX
7881}
7882
7883struct btrfs_retry_complete {
7884 struct completion done;
7885 struct inode *inode;
7886 u64 start;
7887 int uptodate;
7888};
7889
4246a0b6 7890static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7891{
7892 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7893 struct inode *inode = done->inode;
8b110e39 7894 struct bio_vec *bvec;
7870d082 7895 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7896 int i;
7897
4e4cbee9 7898 if (bio->bi_status)
8b110e39
MX
7899 goto end;
7900
2dabb324 7901 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7902 io_tree = &BTRFS_I(inode)->io_tree;
7903 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7904 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7905
8b110e39 7906 done->uptodate = 1;
c09abff8 7907 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7908 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7909 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7910 io_tree, done->start, bvec->bv_page,
7911 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7912end:
7913 complete(&done->done);
7914 bio_put(bio);
7915}
7916
58efbc9f
OS
7917static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7918 struct btrfs_io_bio *io_bio)
4b46fce2 7919{
2dabb324 7920 struct btrfs_fs_info *fs_info;
17347cec
LB
7921 struct bio_vec bvec;
7922 struct bvec_iter iter;
8b110e39 7923 struct btrfs_retry_complete done;
4b46fce2 7924 u64 start;
2dabb324
CR
7925 unsigned int pgoff;
7926 u32 sectorsize;
7927 int nr_sectors;
58efbc9f
OS
7928 blk_status_t ret;
7929 blk_status_t err = BLK_STS_OK;
4b46fce2 7930
2dabb324 7931 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7932 sectorsize = fs_info->sectorsize;
2dabb324 7933
8b110e39
MX
7934 start = io_bio->logical;
7935 done.inode = inode;
17347cec 7936 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7937
17347cec
LB
7938 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7939 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7940 pgoff = bvec.bv_offset;
2dabb324
CR
7941
7942next_block_or_try_again:
8b110e39
MX
7943 done.uptodate = 0;
7944 done.start = start;
7945 init_completion(&done.done);
7946
17347cec 7947 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7948 pgoff, start, start + sectorsize - 1,
7949 io_bio->mirror_num,
7950 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7951 if (ret) {
7952 err = ret;
7953 goto next;
7954 }
8b110e39 7955
9c17f6cd 7956 wait_for_completion_io(&done.done);
8b110e39
MX
7957
7958 if (!done.uptodate) {
7959 /* We might have another mirror, so try again */
2dabb324 7960 goto next_block_or_try_again;
8b110e39
MX
7961 }
7962
629ebf4f 7963next:
2dabb324
CR
7964 start += sectorsize;
7965
97bf5a55
LB
7966 nr_sectors--;
7967 if (nr_sectors) {
2dabb324 7968 pgoff += sectorsize;
97bf5a55 7969 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7970 goto next_block_or_try_again;
7971 }
8b110e39
MX
7972 }
7973
629ebf4f 7974 return err;
8b110e39
MX
7975}
7976
4246a0b6 7977static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7978{
7979 struct btrfs_retry_complete *done = bio->bi_private;
7980 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7981 struct extent_io_tree *io_tree, *failure_tree;
7982 struct inode *inode = done->inode;
8b110e39
MX
7983 struct bio_vec *bvec;
7984 int uptodate;
7985 int ret;
7986 int i;
7987
4e4cbee9 7988 if (bio->bi_status)
8b110e39
MX
7989 goto end;
7990
7991 uptodate = 1;
2dabb324 7992
2dabb324 7993 ASSERT(bio->bi_vcnt == 1);
263663cd 7994 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7995
7870d082
JB
7996 io_tree = &BTRFS_I(inode)->io_tree;
7997 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7998
c09abff8 7999 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8000 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8001 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8002 bvec->bv_offset, done->start,
8003 bvec->bv_len);
8b110e39 8004 if (!ret)
7870d082
JB
8005 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8006 failure_tree, io_tree, done->start,
8007 bvec->bv_page,
8008 btrfs_ino(BTRFS_I(inode)),
8009 bvec->bv_offset);
8b110e39
MX
8010 else
8011 uptodate = 0;
8012 }
8013
8014 done->uptodate = uptodate;
8015end:
8016 complete(&done->done);
8017 bio_put(bio);
8018}
8019
4e4cbee9
CH
8020static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8021 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8022{
2dabb324 8023 struct btrfs_fs_info *fs_info;
17347cec
LB
8024 struct bio_vec bvec;
8025 struct bvec_iter iter;
8b110e39
MX
8026 struct btrfs_retry_complete done;
8027 u64 start;
8028 u64 offset = 0;
2dabb324
CR
8029 u32 sectorsize;
8030 int nr_sectors;
8031 unsigned int pgoff;
8032 int csum_pos;
ef7cdac1 8033 bool uptodate = (err == 0);
8b110e39 8034 int ret;
58efbc9f 8035 blk_status_t status;
dc380aea 8036
2dabb324 8037 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8038 sectorsize = fs_info->sectorsize;
2dabb324 8039
58efbc9f 8040 err = BLK_STS_OK;
c1dc0896 8041 start = io_bio->logical;
8b110e39 8042 done.inode = inode;
17347cec 8043 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8044
17347cec
LB
8045 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8046 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8047
17347cec 8048 pgoff = bvec.bv_offset;
2dabb324 8049next_block:
ef7cdac1
LB
8050 if (uptodate) {
8051 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8052 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8053 bvec.bv_page, pgoff, start, sectorsize);
8054 if (likely(!ret))
8055 goto next;
8056 }
8b110e39
MX
8057try_again:
8058 done.uptodate = 0;
8059 done.start = start;
8060 init_completion(&done.done);
8061
58efbc9f
OS
8062 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8063 pgoff, start, start + sectorsize - 1,
8064 io_bio->mirror_num, btrfs_retry_endio,
8065 &done);
8066 if (status) {
8067 err = status;
8b110e39
MX
8068 goto next;
8069 }
8070
9c17f6cd 8071 wait_for_completion_io(&done.done);
8b110e39
MX
8072
8073 if (!done.uptodate) {
8074 /* We might have another mirror, so try again */
8075 goto try_again;
8076 }
8077next:
2dabb324
CR
8078 offset += sectorsize;
8079 start += sectorsize;
8080
8081 ASSERT(nr_sectors);
8082
97bf5a55
LB
8083 nr_sectors--;
8084 if (nr_sectors) {
2dabb324 8085 pgoff += sectorsize;
97bf5a55 8086 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8087 goto next_block;
8088 }
2c30c71b 8089 }
c1dc0896
MX
8090
8091 return err;
8092}
8093
4e4cbee9
CH
8094static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8095 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8096{
8097 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8098
8099 if (skip_csum) {
8100 if (unlikely(err))
8101 return __btrfs_correct_data_nocsum(inode, io_bio);
8102 else
58efbc9f 8103 return BLK_STS_OK;
8b110e39
MX
8104 } else {
8105 return __btrfs_subio_endio_read(inode, io_bio, err);
8106 }
8107}
8108
4246a0b6 8109static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8110{
8111 struct btrfs_dio_private *dip = bio->bi_private;
8112 struct inode *inode = dip->inode;
8113 struct bio *dio_bio;
8114 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8115 blk_status_t err = bio->bi_status;
c1dc0896 8116
99c4e3b9 8117 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8118 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8119
4b46fce2 8120 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8121 dip->logical_offset + dip->bytes - 1);
9be3395b 8122 dio_bio = dip->dio_bio;
4b46fce2 8123
4b46fce2 8124 kfree(dip);
c0da7aa1 8125
99c4e3b9 8126 dio_bio->bi_status = err;
4055351c 8127 dio_end_io(dio_bio);
23ea8e5a
MX
8128
8129 if (io_bio->end_io)
4e4cbee9 8130 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8131 bio_put(bio);
4b46fce2
JB
8132}
8133
52427260
QW
8134static void __endio_write_update_ordered(struct inode *inode,
8135 const u64 offset, const u64 bytes,
8136 const bool uptodate)
4b46fce2 8137{
0b246afa 8138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8139 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8140 struct btrfs_workqueue *wq;
8141 btrfs_work_func_t func;
14543774
FM
8142 u64 ordered_offset = offset;
8143 u64 ordered_bytes = bytes;
67c003f9 8144 u64 last_offset;
4b46fce2 8145
52427260
QW
8146 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8147 wq = fs_info->endio_freespace_worker;
8148 func = btrfs_freespace_write_helper;
8149 } else {
8150 wq = fs_info->endio_write_workers;
8151 func = btrfs_endio_write_helper;
8152 }
8153
b25f0d00
NB
8154 while (ordered_offset < offset + bytes) {
8155 last_offset = ordered_offset;
8156 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8157 &ordered_offset,
8158 ordered_bytes,
8159 uptodate)) {
8160 btrfs_init_work(&ordered->work, func,
8161 finish_ordered_fn,
8162 NULL, NULL);
8163 btrfs_queue_work(wq, &ordered->work);
8164 }
8165 /*
8166 * If btrfs_dec_test_ordered_pending does not find any ordered
8167 * extent in the range, we can exit.
8168 */
8169 if (ordered_offset == last_offset)
8170 return;
8171 /*
8172 * Our bio might span multiple ordered extents. In this case
8173 * we keep goin until we have accounted the whole dio.
8174 */
8175 if (ordered_offset < offset + bytes) {
8176 ordered_bytes = offset + bytes - ordered_offset;
8177 ordered = NULL;
8178 }
163cf09c 8179 }
14543774
FM
8180}
8181
8182static void btrfs_endio_direct_write(struct bio *bio)
8183{
8184 struct btrfs_dio_private *dip = bio->bi_private;
8185 struct bio *dio_bio = dip->dio_bio;
8186
52427260 8187 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8188 dip->bytes, !bio->bi_status);
4b46fce2 8189
4b46fce2 8190 kfree(dip);
c0da7aa1 8191
4e4cbee9 8192 dio_bio->bi_status = bio->bi_status;
4055351c 8193 dio_end_io(dio_bio);
9be3395b 8194 bio_put(bio);
4b46fce2
JB
8195}
8196
d0ee3934 8197static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8198 struct bio *bio, u64 offset)
eaf25d93 8199{
c6100a4b 8200 struct inode *inode = private_data;
4e4cbee9 8201 blk_status_t ret;
2ff7e61e 8202 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8203 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8204 return 0;
8205}
8206
4246a0b6 8207static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8208{
8209 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8210 blk_status_t err = bio->bi_status;
e65e1535 8211
8b110e39
MX
8212 if (err)
8213 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8214 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8215 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8216 bio->bi_opf,
8b110e39
MX
8217 (unsigned long long)bio->bi_iter.bi_sector,
8218 bio->bi_iter.bi_size, err);
8219
8220 if (dip->subio_endio)
8221 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8222
8223 if (err) {
e65e1535 8224 /*
de224b7c
NB
8225 * We want to perceive the errors flag being set before
8226 * decrementing the reference count. We don't need a barrier
8227 * since atomic operations with a return value are fully
8228 * ordered as per atomic_t.txt
e65e1535 8229 */
de224b7c 8230 dip->errors = 1;
e65e1535
MX
8231 }
8232
8233 /* if there are more bios still pending for this dio, just exit */
8234 if (!atomic_dec_and_test(&dip->pending_bios))
8235 goto out;
8236
9be3395b 8237 if (dip->errors) {
e65e1535 8238 bio_io_error(dip->orig_bio);
9be3395b 8239 } else {
2dbe0c77 8240 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8241 bio_endio(dip->orig_bio);
e65e1535
MX
8242 }
8243out:
8244 bio_put(bio);
8245}
8246
4e4cbee9 8247static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8248 struct btrfs_dio_private *dip,
8249 struct bio *bio,
8250 u64 file_offset)
8251{
8252 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8253 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8254 blk_status_t ret;
c1dc0896
MX
8255
8256 /*
8257 * We load all the csum data we need when we submit
8258 * the first bio to reduce the csum tree search and
8259 * contention.
8260 */
8261 if (dip->logical_offset == file_offset) {
2ff7e61e 8262 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8263 file_offset);
8264 if (ret)
8265 return ret;
8266 }
8267
8268 if (bio == dip->orig_bio)
8269 return 0;
8270
8271 file_offset -= dip->logical_offset;
8272 file_offset >>= inode->i_sb->s_blocksize_bits;
8273 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8274
8275 return 0;
8276}
8277
d0ee3934
DS
8278static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8279 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8280{
0b246afa 8281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8282 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8283 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8284 blk_status_t ret;
e65e1535 8285
4c274bc6 8286 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8287 if (async_submit)
8288 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8289
5fd02043 8290 if (!write) {
0b246afa 8291 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8292 if (ret)
8293 goto err;
8294 }
e65e1535 8295
e6961cac 8296 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8297 goto map;
8298
8299 if (write && async_submit) {
c6100a4b
JB
8300 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8301 file_offset, inode,
d0ee3934
DS
8302 btrfs_submit_bio_start_direct_io,
8303 btrfs_submit_bio_done);
e65e1535 8304 goto err;
1ae39938
JB
8305 } else if (write) {
8306 /*
8307 * If we aren't doing async submit, calculate the csum of the
8308 * bio now.
8309 */
2ff7e61e 8310 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8311 if (ret)
8312 goto err;
23ea8e5a 8313 } else {
2ff7e61e 8314 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8315 file_offset);
c2db1073
TI
8316 if (ret)
8317 goto err;
8318 }
1ae39938 8319map:
9b4a9b28 8320 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8321err:
e65e1535
MX
8322 return ret;
8323}
8324
e6961cac 8325static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8326{
8327 struct inode *inode = dip->inode;
0b246afa 8328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8329 struct bio *bio;
8330 struct bio *orig_bio = dip->orig_bio;
4f024f37 8331 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8332 u64 file_offset = dip->logical_offset;
e65e1535 8333 u64 map_length;
1ae39938 8334 int async_submit = 0;
725130ba
LB
8335 u64 submit_len;
8336 int clone_offset = 0;
8337 int clone_len;
5f4dc8fc 8338 int ret;
58efbc9f 8339 blk_status_t status;
e65e1535 8340
4f024f37 8341 map_length = orig_bio->bi_iter.bi_size;
725130ba 8342 submit_len = map_length;
0b246afa
JM
8343 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8344 &map_length, NULL, 0);
7a5c3c9b 8345 if (ret)
e65e1535 8346 return -EIO;
facc8a22 8347
725130ba 8348 if (map_length >= submit_len) {
02f57c7a 8349 bio = orig_bio;
c1dc0896 8350 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8351 goto submit;
8352 }
8353
53b381b3 8354 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8355 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8356 async_submit = 0;
8357 else
8358 async_submit = 1;
8359
725130ba
LB
8360 /* bio split */
8361 ASSERT(map_length <= INT_MAX);
02f57c7a 8362 atomic_inc(&dip->pending_bios);
3c91ee69 8363 do {
725130ba 8364 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8365
725130ba
LB
8366 /*
8367 * This will never fail as it's passing GPF_NOFS and
8368 * the allocation is backed by btrfs_bioset.
8369 */
e477094f 8370 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8371 clone_len);
8372 bio->bi_private = dip;
8373 bio->bi_end_io = btrfs_end_dio_bio;
8374 btrfs_io_bio(bio)->logical = file_offset;
8375
8376 ASSERT(submit_len >= clone_len);
8377 submit_len -= clone_len;
8378 if (submit_len == 0)
8379 break;
e65e1535 8380
725130ba
LB
8381 /*
8382 * Increase the count before we submit the bio so we know
8383 * the end IO handler won't happen before we increase the
8384 * count. Otherwise, the dip might get freed before we're
8385 * done setting it up.
8386 */
8387 atomic_inc(&dip->pending_bios);
e65e1535 8388
d0ee3934 8389 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8390 async_submit);
8391 if (status) {
725130ba
LB
8392 bio_put(bio);
8393 atomic_dec(&dip->pending_bios);
8394 goto out_err;
8395 }
e65e1535 8396
725130ba
LB
8397 clone_offset += clone_len;
8398 start_sector += clone_len >> 9;
8399 file_offset += clone_len;
5f4dc8fc 8400
725130ba
LB
8401 map_length = submit_len;
8402 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8403 start_sector << 9, &map_length, NULL, 0);
8404 if (ret)
8405 goto out_err;
3c91ee69 8406 } while (submit_len > 0);
e65e1535 8407
02f57c7a 8408submit:
d0ee3934 8409 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8410 if (!status)
e65e1535
MX
8411 return 0;
8412
8413 bio_put(bio);
8414out_err:
8415 dip->errors = 1;
8416 /*
de224b7c
NB
8417 * Before atomic variable goto zero, we must make sure dip->errors is
8418 * perceived to be set. This ordering is ensured by the fact that an
8419 * atomic operations with a return value are fully ordered as per
8420 * atomic_t.txt
e65e1535 8421 */
e65e1535
MX
8422 if (atomic_dec_and_test(&dip->pending_bios))
8423 bio_io_error(dip->orig_bio);
8424
8425 /* bio_end_io() will handle error, so we needn't return it */
8426 return 0;
8427}
8428
8a4c1e42
MC
8429static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8430 loff_t file_offset)
4b46fce2 8431{
61de718f 8432 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8433 struct bio *bio = NULL;
8434 struct btrfs_io_bio *io_bio;
8a4c1e42 8435 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8436 int ret = 0;
8437
8b6c1d56 8438 bio = btrfs_bio_clone(dio_bio);
9be3395b 8439
c1dc0896 8440 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8441 if (!dip) {
8442 ret = -ENOMEM;
61de718f 8443 goto free_ordered;
4b46fce2 8444 }
4b46fce2 8445
9be3395b 8446 dip->private = dio_bio->bi_private;
4b46fce2
JB
8447 dip->inode = inode;
8448 dip->logical_offset = file_offset;
4f024f37
KO
8449 dip->bytes = dio_bio->bi_iter.bi_size;
8450 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8451 bio->bi_private = dip;
8452 dip->orig_bio = bio;
9be3395b 8453 dip->dio_bio = dio_bio;
e65e1535 8454 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8455 io_bio = btrfs_io_bio(bio);
8456 io_bio->logical = file_offset;
4b46fce2 8457
c1dc0896 8458 if (write) {
3892ac90 8459 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8460 } else {
3892ac90 8461 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8462 dip->subio_endio = btrfs_subio_endio_read;
8463 }
4b46fce2 8464
f28a4928
FM
8465 /*
8466 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8467 * even if we fail to submit a bio, because in such case we do the
8468 * corresponding error handling below and it must not be done a second
8469 * time by btrfs_direct_IO().
8470 */
8471 if (write) {
8472 struct btrfs_dio_data *dio_data = current->journal_info;
8473
8474 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8475 dip->bytes;
8476 dio_data->unsubmitted_oe_range_start =
8477 dio_data->unsubmitted_oe_range_end;
8478 }
8479
e6961cac 8480 ret = btrfs_submit_direct_hook(dip);
e65e1535 8481 if (!ret)
eaf25d93 8482 return;
9be3395b 8483
3892ac90
LB
8484 if (io_bio->end_io)
8485 io_bio->end_io(io_bio, ret);
9be3395b 8486
4b46fce2
JB
8487free_ordered:
8488 /*
61de718f
FM
8489 * If we arrived here it means either we failed to submit the dip
8490 * or we either failed to clone the dio_bio or failed to allocate the
8491 * dip. If we cloned the dio_bio and allocated the dip, we can just
8492 * call bio_endio against our io_bio so that we get proper resource
8493 * cleanup if we fail to submit the dip, otherwise, we must do the
8494 * same as btrfs_endio_direct_[write|read] because we can't call these
8495 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8496 */
3892ac90 8497 if (bio && dip) {
054ec2f6 8498 bio_io_error(bio);
61de718f 8499 /*
3892ac90 8500 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8501 * and all the cleanup and final put for dio_bio (through
8502 * dio_end_io()).
8503 */
8504 dip = NULL;
3892ac90 8505 bio = NULL;
61de718f 8506 } else {
14543774 8507 if (write)
52427260 8508 __endio_write_update_ordered(inode,
14543774
FM
8509 file_offset,
8510 dio_bio->bi_iter.bi_size,
52427260 8511 false);
14543774 8512 else
61de718f
FM
8513 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8514 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8515
4e4cbee9 8516 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8517 /*
8518 * Releases and cleans up our dio_bio, no need to bio_put()
8519 * nor bio_endio()/bio_io_error() against dio_bio.
8520 */
4055351c 8521 dio_end_io(dio_bio);
4b46fce2 8522 }
3892ac90
LB
8523 if (bio)
8524 bio_put(bio);
61de718f 8525 kfree(dip);
4b46fce2
JB
8526}
8527
2ff7e61e 8528static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8529 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8530{
8531 int seg;
a1b75f7d 8532 int i;
0b246afa 8533 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8534 ssize_t retval = -EINVAL;
5a5f79b5
CM
8535
8536 if (offset & blocksize_mask)
8537 goto out;
8538
28060d5d
AV
8539 if (iov_iter_alignment(iter) & blocksize_mask)
8540 goto out;
a1b75f7d 8541
28060d5d 8542 /* If this is a write we don't need to check anymore */
cd27e455 8543 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8544 return 0;
8545 /*
8546 * Check to make sure we don't have duplicate iov_base's in this
8547 * iovec, if so return EINVAL, otherwise we'll get csum errors
8548 * when reading back.
8549 */
8550 for (seg = 0; seg < iter->nr_segs; seg++) {
8551 for (i = seg + 1; i < iter->nr_segs; i++) {
8552 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8553 goto out;
8554 }
5a5f79b5
CM
8555 }
8556 retval = 0;
8557out:
8558 return retval;
8559}
eb838e73 8560
c8b8e32d 8561static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8562{
4b46fce2
JB
8563 struct file *file = iocb->ki_filp;
8564 struct inode *inode = file->f_mapping->host;
0b246afa 8565 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8566 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8567 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8568 loff_t offset = iocb->ki_pos;
0934856d 8569 size_t count = 0;
2e60a51e 8570 int flags = 0;
38851cc1
MX
8571 bool wakeup = true;
8572 bool relock = false;
0934856d 8573 ssize_t ret;
4b46fce2 8574
8c70c9f8 8575 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8576 return 0;
3f7c579c 8577
fe0f07d0 8578 inode_dio_begin(inode);
38851cc1 8579
0e267c44 8580 /*
41bd9ca4
MX
8581 * The generic stuff only does filemap_write_and_wait_range, which
8582 * isn't enough if we've written compressed pages to this area, so
8583 * we need to flush the dirty pages again to make absolutely sure
8584 * that any outstanding dirty pages are on disk.
0e267c44 8585 */
a6cbcd4a 8586 count = iov_iter_count(iter);
41bd9ca4
MX
8587 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8588 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8589 filemap_fdatawrite_range(inode->i_mapping, offset,
8590 offset + count - 1);
0e267c44 8591
6f673763 8592 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8593 /*
8594 * If the write DIO is beyond the EOF, we need update
8595 * the isize, but it is protected by i_mutex. So we can
8596 * not unlock the i_mutex at this case.
8597 */
8598 if (offset + count <= inode->i_size) {
4aaedfb0 8599 dio_data.overwrite = 1;
5955102c 8600 inode_unlock(inode);
38851cc1 8601 relock = true;
edf064e7
GR
8602 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8603 ret = -EAGAIN;
8604 goto out;
38851cc1 8605 }
364ecf36
QW
8606 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8607 offset, count);
0934856d 8608 if (ret)
38851cc1 8609 goto out;
e1cbbfa5
JB
8610
8611 /*
8612 * We need to know how many extents we reserved so that we can
8613 * do the accounting properly if we go over the number we
8614 * originally calculated. Abuse current->journal_info for this.
8615 */
da17066c 8616 dio_data.reserve = round_up(count,
0b246afa 8617 fs_info->sectorsize);
f28a4928
FM
8618 dio_data.unsubmitted_oe_range_start = (u64)offset;
8619 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8620 current->journal_info = &dio_data;
97dcdea0 8621 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8622 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8623 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8624 inode_dio_end(inode);
38851cc1
MX
8625 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8626 wakeup = false;
0934856d
MX
8627 }
8628
17f8c842 8629 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8630 fs_info->fs_devices->latest_bdev,
c8b8e32d 8631 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8632 btrfs_submit_direct, flags);
6f673763 8633 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8634 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8635 current->journal_info = NULL;
ddba1bfc 8636 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8637 if (dio_data.reserve)
bc42bda2 8638 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8639 offset, dio_data.reserve, true);
f28a4928
FM
8640 /*
8641 * On error we might have left some ordered extents
8642 * without submitting corresponding bios for them, so
8643 * cleanup them up to avoid other tasks getting them
8644 * and waiting for them to complete forever.
8645 */
8646 if (dio_data.unsubmitted_oe_range_start <
8647 dio_data.unsubmitted_oe_range_end)
52427260 8648 __endio_write_update_ordered(inode,
f28a4928
FM
8649 dio_data.unsubmitted_oe_range_start,
8650 dio_data.unsubmitted_oe_range_end -
8651 dio_data.unsubmitted_oe_range_start,
52427260 8652 false);
ddba1bfc 8653 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8654 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8655 offset, count - (size_t)ret, true);
8656 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8657 }
38851cc1 8658out:
2e60a51e 8659 if (wakeup)
fe0f07d0 8660 inode_dio_end(inode);
38851cc1 8661 if (relock)
5955102c 8662 inode_lock(inode);
0934856d 8663
364ecf36 8664 extent_changeset_free(data_reserved);
0934856d 8665 return ret;
16432985
CM
8666}
8667
05dadc09
TI
8668#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8669
1506fcc8
YS
8670static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8671 __u64 start, __u64 len)
8672{
05dadc09
TI
8673 int ret;
8674
8675 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8676 if (ret)
8677 return ret;
8678
2135fb9b 8679 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8680}
8681
a52d9a80 8682int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8683{
d1310b2e
CM
8684 struct extent_io_tree *tree;
8685 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8686 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8687}
1832a6d5 8688
a52d9a80 8689static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8690{
be7bd730
JB
8691 struct inode *inode = page->mapping->host;
8692 int ret;
b888db2b
CM
8693
8694 if (current->flags & PF_MEMALLOC) {
8695 redirty_page_for_writepage(wbc, page);
8696 unlock_page(page);
8697 return 0;
8698 }
be7bd730
JB
8699
8700 /*
8701 * If we are under memory pressure we will call this directly from the
8702 * VM, we need to make sure we have the inode referenced for the ordered
8703 * extent. If not just return like we didn't do anything.
8704 */
8705 if (!igrab(inode)) {
8706 redirty_page_for_writepage(wbc, page);
8707 return AOP_WRITEPAGE_ACTIVATE;
8708 }
0a9b0e53 8709 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8710 btrfs_add_delayed_iput(inode);
8711 return ret;
9ebefb18
CM
8712}
8713
48a3b636
ES
8714static int btrfs_writepages(struct address_space *mapping,
8715 struct writeback_control *wbc)
b293f02e 8716{
8ae225a8 8717 return extent_writepages(mapping, wbc);
b293f02e
CM
8718}
8719
3ab2fb5a
CM
8720static int
8721btrfs_readpages(struct file *file, struct address_space *mapping,
8722 struct list_head *pages, unsigned nr_pages)
8723{
2a3ff0ad 8724 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8725}
2a3ff0ad 8726
e6dcd2dc 8727static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8728{
477a30ba 8729 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8730 if (ret == 1) {
8731 ClearPagePrivate(page);
8732 set_page_private(page, 0);
09cbfeaf 8733 put_page(page);
39279cc3 8734 }
a52d9a80 8735 return ret;
39279cc3
CM
8736}
8737
e6dcd2dc
CM
8738static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8739{
98509cfc
CM
8740 if (PageWriteback(page) || PageDirty(page))
8741 return 0;
3ba7ab22 8742 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8743}
8744
d47992f8
LC
8745static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8746 unsigned int length)
39279cc3 8747{
5fd02043 8748 struct inode *inode = page->mapping->host;
d1310b2e 8749 struct extent_io_tree *tree;
e6dcd2dc 8750 struct btrfs_ordered_extent *ordered;
2ac55d41 8751 struct extent_state *cached_state = NULL;
e6dcd2dc 8752 u64 page_start = page_offset(page);
09cbfeaf 8753 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8754 u64 start;
8755 u64 end;
131e404a 8756 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8757
8b62b72b
CM
8758 /*
8759 * we have the page locked, so new writeback can't start,
8760 * and the dirty bit won't be cleared while we are here.
8761 *
8762 * Wait for IO on this page so that we can safely clear
8763 * the PagePrivate2 bit and do ordered accounting
8764 */
e6dcd2dc 8765 wait_on_page_writeback(page);
8b62b72b 8766
5fd02043 8767 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8768 if (offset) {
8769 btrfs_releasepage(page, GFP_NOFS);
8770 return;
8771 }
131e404a
FDBM
8772
8773 if (!inode_evicting)
ff13db41 8774 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8775again:
8776 start = page_start;
a776c6fa 8777 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8778 page_end - start + 1);
e6dcd2dc 8779 if (ordered) {
dbfdb6d1 8780 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8781 /*
8782 * IO on this page will never be started, so we need
8783 * to account for any ordered extents now
8784 */
131e404a 8785 if (!inode_evicting)
dbfdb6d1 8786 clear_extent_bit(tree, start, end,
131e404a 8787 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8788 EXTENT_DELALLOC_NEW |
131e404a 8789 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8790 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8791 /*
8792 * whoever cleared the private bit is responsible
8793 * for the finish_ordered_io
8794 */
77cef2ec
JB
8795 if (TestClearPagePrivate2(page)) {
8796 struct btrfs_ordered_inode_tree *tree;
8797 u64 new_len;
8798
8799 tree = &BTRFS_I(inode)->ordered_tree;
8800
8801 spin_lock_irq(&tree->lock);
8802 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8803 new_len = start - ordered->file_offset;
77cef2ec
JB
8804 if (new_len < ordered->truncated_len)
8805 ordered->truncated_len = new_len;
8806 spin_unlock_irq(&tree->lock);
8807
8808 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8809 start,
8810 end - start + 1, 1))
77cef2ec 8811 btrfs_finish_ordered_io(ordered);
8b62b72b 8812 }
e6dcd2dc 8813 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8814 if (!inode_evicting) {
8815 cached_state = NULL;
dbfdb6d1 8816 lock_extent_bits(tree, start, end,
131e404a
FDBM
8817 &cached_state);
8818 }
dbfdb6d1
CR
8819
8820 start = end + 1;
8821 if (start < page_end)
8822 goto again;
131e404a
FDBM
8823 }
8824
b9d0b389
QW
8825 /*
8826 * Qgroup reserved space handler
8827 * Page here will be either
8828 * 1) Already written to disk
8829 * In this case, its reserved space is released from data rsv map
8830 * and will be freed by delayed_ref handler finally.
8831 * So even we call qgroup_free_data(), it won't decrease reserved
8832 * space.
8833 * 2) Not written to disk
0b34c261
GR
8834 * This means the reserved space should be freed here. However,
8835 * if a truncate invalidates the page (by clearing PageDirty)
8836 * and the page is accounted for while allocating extent
8837 * in btrfs_check_data_free_space() we let delayed_ref to
8838 * free the entire extent.
b9d0b389 8839 */
0b34c261 8840 if (PageDirty(page))
bc42bda2 8841 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8842 if (!inode_evicting) {
8843 clear_extent_bit(tree, page_start, page_end,
8844 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8845 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8846 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8847 &cached_state);
131e404a
FDBM
8848
8849 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8850 }
e6dcd2dc 8851
4a096752 8852 ClearPageChecked(page);
9ad6b7bc 8853 if (PagePrivate(page)) {
9ad6b7bc
CM
8854 ClearPagePrivate(page);
8855 set_page_private(page, 0);
09cbfeaf 8856 put_page(page);
9ad6b7bc 8857 }
39279cc3
CM
8858}
8859
9ebefb18
CM
8860/*
8861 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8862 * called from a page fault handler when a page is first dirtied. Hence we must
8863 * be careful to check for EOF conditions here. We set the page up correctly
8864 * for a written page which means we get ENOSPC checking when writing into
8865 * holes and correct delalloc and unwritten extent mapping on filesystems that
8866 * support these features.
8867 *
8868 * We are not allowed to take the i_mutex here so we have to play games to
8869 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8870 * truncate_setsize() writes the inode size before removing pages, once we have
8871 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8872 * beyond EOF, then the page is guaranteed safe against truncation until we
8873 * unlock the page.
8874 */
11bac800 8875int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8876{
c2ec175c 8877 struct page *page = vmf->page;
11bac800 8878 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8880 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8881 struct btrfs_ordered_extent *ordered;
2ac55d41 8882 struct extent_state *cached_state = NULL;
364ecf36 8883 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8884 char *kaddr;
8885 unsigned long zero_start;
9ebefb18 8886 loff_t size;
1832a6d5 8887 int ret;
9998eb70 8888 int reserved = 0;
d0b7da88 8889 u64 reserved_space;
a52d9a80 8890 u64 page_start;
e6dcd2dc 8891 u64 page_end;
d0b7da88
CR
8892 u64 end;
8893
09cbfeaf 8894 reserved_space = PAGE_SIZE;
9ebefb18 8895
b2b5ef5c 8896 sb_start_pagefault(inode->i_sb);
df480633 8897 page_start = page_offset(page);
09cbfeaf 8898 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8899 end = page_end;
df480633 8900
d0b7da88
CR
8901 /*
8902 * Reserving delalloc space after obtaining the page lock can lead to
8903 * deadlock. For example, if a dirty page is locked by this function
8904 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8905 * dirty page write out, then the btrfs_writepage() function could
8906 * end up waiting indefinitely to get a lock on the page currently
8907 * being processed by btrfs_page_mkwrite() function.
8908 */
364ecf36 8909 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8910 reserved_space);
9998eb70 8911 if (!ret) {
11bac800 8912 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8913 reserved = 1;
8914 }
56a76f82
NP
8915 if (ret) {
8916 if (ret == -ENOMEM)
8917 ret = VM_FAULT_OOM;
8918 else /* -ENOSPC, -EIO, etc */
8919 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8920 if (reserved)
8921 goto out;
8922 goto out_noreserve;
56a76f82 8923 }
1832a6d5 8924
56a76f82 8925 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8926again:
9ebefb18 8927 lock_page(page);
9ebefb18 8928 size = i_size_read(inode);
a52d9a80 8929
9ebefb18 8930 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8931 (page_start >= size)) {
9ebefb18
CM
8932 /* page got truncated out from underneath us */
8933 goto out_unlock;
8934 }
e6dcd2dc
CM
8935 wait_on_page_writeback(page);
8936
ff13db41 8937 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8938 set_page_extent_mapped(page);
8939
eb84ae03
CM
8940 /*
8941 * we can't set the delalloc bits if there are pending ordered
8942 * extents. Drop our locks and wait for them to finish
8943 */
a776c6fa
NB
8944 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8945 PAGE_SIZE);
e6dcd2dc 8946 if (ordered) {
2ac55d41 8947 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8948 &cached_state);
e6dcd2dc 8949 unlock_page(page);
eb84ae03 8950 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8951 btrfs_put_ordered_extent(ordered);
8952 goto again;
8953 }
8954
09cbfeaf 8955 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8956 reserved_space = round_up(size - page_start,
0b246afa 8957 fs_info->sectorsize);
09cbfeaf 8958 if (reserved_space < PAGE_SIZE) {
d0b7da88 8959 end = page_start + reserved_space - 1;
bc42bda2 8960 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8961 page_start, PAGE_SIZE - reserved_space,
8962 true);
d0b7da88
CR
8963 }
8964 }
8965
fbf19087 8966 /*
5416034f
LB
8967 * page_mkwrite gets called when the page is firstly dirtied after it's
8968 * faulted in, but write(2) could also dirty a page and set delalloc
8969 * bits, thus in this case for space account reason, we still need to
8970 * clear any delalloc bits within this page range since we have to
8971 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8972 */
d0b7da88 8973 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8974 EXTENT_DIRTY | EXTENT_DELALLOC |
8975 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8976 0, 0, &cached_state);
fbf19087 8977
e3b8a485 8978 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8979 &cached_state, 0);
9ed74f2d 8980 if (ret) {
2ac55d41 8981 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8982 &cached_state);
9ed74f2d
JB
8983 ret = VM_FAULT_SIGBUS;
8984 goto out_unlock;
8985 }
e6dcd2dc 8986 ret = 0;
9ebefb18
CM
8987
8988 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8989 if (page_start + PAGE_SIZE > size)
8990 zero_start = size & ~PAGE_MASK;
9ebefb18 8991 else
09cbfeaf 8992 zero_start = PAGE_SIZE;
9ebefb18 8993
09cbfeaf 8994 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8995 kaddr = kmap(page);
09cbfeaf 8996 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8997 flush_dcache_page(page);
8998 kunmap(page);
8999 }
247e743c 9000 ClearPageChecked(page);
e6dcd2dc 9001 set_page_dirty(page);
50a9b214 9002 SetPageUptodate(page);
5a3f23d5 9003
0b246afa 9004 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9005 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9006 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9007
e43bbe5e 9008 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
9009
9010out_unlock:
b2b5ef5c 9011 if (!ret) {
43b18595 9012 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 9013 sb_end_pagefault(inode->i_sb);
364ecf36 9014 extent_changeset_free(data_reserved);
50a9b214 9015 return VM_FAULT_LOCKED;
b2b5ef5c 9016 }
9ebefb18 9017 unlock_page(page);
1832a6d5 9018out:
43b18595 9019 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 9020 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9021 reserved_space, (ret != 0));
9998eb70 9022out_noreserve:
b2b5ef5c 9023 sb_end_pagefault(inode->i_sb);
364ecf36 9024 extent_changeset_free(data_reserved);
9ebefb18
CM
9025 return ret;
9026}
9027
213e8c55 9028static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9029{
0b246afa 9030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9031 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9032 struct btrfs_block_rsv *rsv;
ad7e1a74 9033 int ret;
39279cc3 9034 struct btrfs_trans_handle *trans;
0b246afa
JM
9035 u64 mask = fs_info->sectorsize - 1;
9036 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9037
213e8c55
FM
9038 if (!skip_writeback) {
9039 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9040 (u64)-1);
9041 if (ret)
9042 return ret;
9043 }
39279cc3 9044
fcb80c2a 9045 /*
f7e9e8fc
OS
9046 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9047 * things going on here:
fcb80c2a 9048 *
f7e9e8fc 9049 * 1) We need to reserve space to update our inode.
fcb80c2a 9050 *
f7e9e8fc 9051 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9052 * be free'd up by the truncate operation, but also have some slack
9053 * space reserved in case it uses space during the truncate (thank you
9054 * very much snapshotting).
9055 *
f7e9e8fc 9056 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9057 * space doing the truncate, and we have no earthly idea how much space
01327610 9058 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9059 * doesn't end up using space reserved for updating the inode. We also
9060 * need to be able to stop the transaction and start a new one, which
9061 * means we need to be able to update the inode several times, and we
9062 * have no idea of knowing how many times that will be, so we can't just
9063 * reserve 1 item for the entirety of the operation, so that has to be
9064 * done separately as well.
fcb80c2a
JB
9065 *
9066 * So that leaves us with
9067 *
f7e9e8fc 9068 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9069 * transaction reservation.
f7e9e8fc 9070 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9071 * updating the inode.
9072 */
2ff7e61e 9073 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9074 if (!rsv)
9075 return -ENOMEM;
4a338542 9076 rsv->size = min_size;
ca7e70f5 9077 rsv->failfast = 1;
f0cd846e 9078
907cbceb 9079 /*
07127184 9080 * 1 for the truncate slack space
907cbceb
JB
9081 * 1 for updating the inode.
9082 */
f3fe820c 9083 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9084 if (IS_ERR(trans)) {
ad7e1a74 9085 ret = PTR_ERR(trans);
fcb80c2a
JB
9086 goto out;
9087 }
f0cd846e 9088
907cbceb 9089 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9090 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9091 min_size, 0);
fcb80c2a 9092 BUG_ON(ret);
f0cd846e 9093
5dc562c5
JB
9094 /*
9095 * So if we truncate and then write and fsync we normally would just
9096 * write the extents that changed, which is a problem if we need to
9097 * first truncate that entire inode. So set this flag so we write out
9098 * all of the extents in the inode to the sync log so we're completely
9099 * safe.
9100 */
9101 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9102 trans->block_rsv = rsv;
907cbceb 9103
8082510e
YZ
9104 while (1) {
9105 ret = btrfs_truncate_inode_items(trans, root, inode,
9106 inode->i_size,
9107 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9108 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9109 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9110 break;
39279cc3 9111
8082510e 9112 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9113 if (ret)
3893e33b 9114 break;
ca7e70f5 9115
3a45bb20 9116 btrfs_end_transaction(trans);
2ff7e61e 9117 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9118
9119 trans = btrfs_start_transaction(root, 2);
9120 if (IS_ERR(trans)) {
ad7e1a74 9121 ret = PTR_ERR(trans);
ca7e70f5
JB
9122 trans = NULL;
9123 break;
9124 }
9125
47b5d646 9126 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9127 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9128 rsv, min_size, 0);
ca7e70f5
JB
9129 BUG_ON(ret); /* shouldn't happen */
9130 trans->block_rsv = rsv;
8082510e
YZ
9131 }
9132
ddfae63c
JB
9133 /*
9134 * We can't call btrfs_truncate_block inside a trans handle as we could
9135 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9136 * we've truncated everything except the last little bit, and can do
9137 * btrfs_truncate_block and then update the disk_i_size.
9138 */
9139 if (ret == NEED_TRUNCATE_BLOCK) {
9140 btrfs_end_transaction(trans);
9141 btrfs_btree_balance_dirty(fs_info);
9142
9143 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9144 if (ret)
9145 goto out;
9146 trans = btrfs_start_transaction(root, 1);
9147 if (IS_ERR(trans)) {
9148 ret = PTR_ERR(trans);
9149 goto out;
9150 }
9151 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9152 }
9153
917c16b2 9154 if (trans) {
ad7e1a74
OS
9155 int ret2;
9156
0b246afa 9157 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9158 ret2 = btrfs_update_inode(trans, root, inode);
9159 if (ret2 && !ret)
9160 ret = ret2;
7b128766 9161
ad7e1a74
OS
9162 ret2 = btrfs_end_transaction(trans);
9163 if (ret2 && !ret)
9164 ret = ret2;
2ff7e61e 9165 btrfs_btree_balance_dirty(fs_info);
917c16b2 9166 }
fcb80c2a 9167out:
2ff7e61e 9168 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9169
ad7e1a74 9170 return ret;
39279cc3
CM
9171}
9172
d352ac68
CM
9173/*
9174 * create a new subvolume directory/inode (helper for the ioctl).
9175 */
d2fb3437 9176int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9177 struct btrfs_root *new_root,
9178 struct btrfs_root *parent_root,
9179 u64 new_dirid)
39279cc3 9180{
39279cc3 9181 struct inode *inode;
76dda93c 9182 int err;
00e4e6b3 9183 u64 index = 0;
39279cc3 9184
12fc9d09
FA
9185 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9186 new_dirid, new_dirid,
9187 S_IFDIR | (~current_umask() & S_IRWXUGO),
9188 &index);
54aa1f4d 9189 if (IS_ERR(inode))
f46b5a66 9190 return PTR_ERR(inode);
39279cc3
CM
9191 inode->i_op = &btrfs_dir_inode_operations;
9192 inode->i_fop = &btrfs_dir_file_operations;
9193
bfe86848 9194 set_nlink(inode, 1);
6ef06d27 9195 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9196 unlock_new_inode(inode);
3b96362c 9197
63541927
FDBM
9198 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9199 if (err)
9200 btrfs_err(new_root->fs_info,
351fd353 9201 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9202 new_root->root_key.objectid, err);
9203
76dda93c 9204 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9205
76dda93c 9206 iput(inode);
ce598979 9207 return err;
39279cc3
CM
9208}
9209
39279cc3
CM
9210struct inode *btrfs_alloc_inode(struct super_block *sb)
9211{
69fe2d75 9212 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9213 struct btrfs_inode *ei;
2ead6ae7 9214 struct inode *inode;
39279cc3 9215
712e36c5 9216 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9217 if (!ei)
9218 return NULL;
2ead6ae7
YZ
9219
9220 ei->root = NULL;
2ead6ae7 9221 ei->generation = 0;
15ee9bc7 9222 ei->last_trans = 0;
257c62e1 9223 ei->last_sub_trans = 0;
e02119d5 9224 ei->logged_trans = 0;
2ead6ae7 9225 ei->delalloc_bytes = 0;
a7e3b975 9226 ei->new_delalloc_bytes = 0;
47059d93 9227 ei->defrag_bytes = 0;
2ead6ae7
YZ
9228 ei->disk_i_size = 0;
9229 ei->flags = 0;
7709cde3 9230 ei->csum_bytes = 0;
2ead6ae7 9231 ei->index_cnt = (u64)-1;
67de1176 9232 ei->dir_index = 0;
2ead6ae7 9233 ei->last_unlink_trans = 0;
46d8bc34 9234 ei->last_log_commit = 0;
2ead6ae7 9235
9e0baf60
JB
9236 spin_lock_init(&ei->lock);
9237 ei->outstanding_extents = 0;
69fe2d75
JB
9238 if (sb->s_magic != BTRFS_TEST_MAGIC)
9239 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9240 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9241 ei->runtime_flags = 0;
b52aa8c9 9242 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9243 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9244
16cdcec7
MX
9245 ei->delayed_node = NULL;
9246
9cc97d64 9247 ei->i_otime.tv_sec = 0;
9248 ei->i_otime.tv_nsec = 0;
9249
2ead6ae7 9250 inode = &ei->vfs_inode;
a8067e02 9251 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9252 extent_io_tree_init(&ei->io_tree, inode);
9253 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9254 ei->io_tree.track_uptodate = 1;
9255 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9256 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9257 mutex_init(&ei->log_mutex);
f248679e 9258 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9259 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9260 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9261 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9262 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9263 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9264
9265 return inode;
39279cc3
CM
9266}
9267
aaedb55b
JB
9268#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9269void btrfs_test_destroy_inode(struct inode *inode)
9270{
dcdbc059 9271 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9272 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9273}
9274#endif
9275
fa0d7e3d
NP
9276static void btrfs_i_callback(struct rcu_head *head)
9277{
9278 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9279 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9280}
9281
39279cc3
CM
9282void btrfs_destroy_inode(struct inode *inode)
9283{
0b246afa 9284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9285 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9286 struct btrfs_root *root = BTRFS_I(inode)->root;
9287
b3d9b7a3 9288 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9289 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9290 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9291 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9292 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9293 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9294 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9295 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9296 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9297
a6dbd429
JB
9298 /*
9299 * This can happen where we create an inode, but somebody else also
9300 * created the same inode and we need to destroy the one we already
9301 * created.
9302 */
9303 if (!root)
9304 goto free;
9305
d397712b 9306 while (1) {
e6dcd2dc
CM
9307 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9308 if (!ordered)
9309 break;
9310 else {
0b246afa 9311 btrfs_err(fs_info,
5d163e0e
JM
9312 "found ordered extent %llu %llu on inode cleanup",
9313 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9314 btrfs_remove_ordered_extent(inode, ordered);
9315 btrfs_put_ordered_extent(ordered);
9316 btrfs_put_ordered_extent(ordered);
9317 }
9318 }
56fa9d07 9319 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9320 inode_tree_del(inode);
dcdbc059 9321 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9322free:
fa0d7e3d 9323 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9324}
9325
45321ac5 9326int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9327{
9328 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9329
6379ef9f
NA
9330 if (root == NULL)
9331 return 1;
9332
fa6ac876 9333 /* the snap/subvol tree is on deleting */
69e9c6c6 9334 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9335 return 1;
76dda93c 9336 else
45321ac5 9337 return generic_drop_inode(inode);
76dda93c
YZ
9338}
9339
0ee0fda0 9340static void init_once(void *foo)
39279cc3
CM
9341{
9342 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9343
9344 inode_init_once(&ei->vfs_inode);
9345}
9346
e67c718b 9347void __cold btrfs_destroy_cachep(void)
39279cc3 9348{
8c0a8537
KS
9349 /*
9350 * Make sure all delayed rcu free inodes are flushed before we
9351 * destroy cache.
9352 */
9353 rcu_barrier();
5598e900
KM
9354 kmem_cache_destroy(btrfs_inode_cachep);
9355 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9356 kmem_cache_destroy(btrfs_path_cachep);
9357 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9358}
9359
f5c29bd9 9360int __init btrfs_init_cachep(void)
39279cc3 9361{
837e1972 9362 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9363 sizeof(struct btrfs_inode), 0,
5d097056
VD
9364 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9365 init_once);
39279cc3
CM
9366 if (!btrfs_inode_cachep)
9367 goto fail;
9601e3f6 9368
837e1972 9369 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9370 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9371 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9372 if (!btrfs_trans_handle_cachep)
9373 goto fail;
9601e3f6 9374
837e1972 9375 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9376 sizeof(struct btrfs_path), 0,
fba4b697 9377 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9378 if (!btrfs_path_cachep)
9379 goto fail;
9601e3f6 9380
837e1972 9381 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9382 sizeof(struct btrfs_free_space), 0,
fba4b697 9383 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9384 if (!btrfs_free_space_cachep)
9385 goto fail;
9386
39279cc3
CM
9387 return 0;
9388fail:
9389 btrfs_destroy_cachep();
9390 return -ENOMEM;
9391}
9392
a528d35e
DH
9393static int btrfs_getattr(const struct path *path, struct kstat *stat,
9394 u32 request_mask, unsigned int flags)
39279cc3 9395{
df0af1a5 9396 u64 delalloc_bytes;
a528d35e 9397 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9398 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9399 u32 bi_flags = BTRFS_I(inode)->flags;
9400
9401 stat->result_mask |= STATX_BTIME;
9402 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9403 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9404 if (bi_flags & BTRFS_INODE_APPEND)
9405 stat->attributes |= STATX_ATTR_APPEND;
9406 if (bi_flags & BTRFS_INODE_COMPRESS)
9407 stat->attributes |= STATX_ATTR_COMPRESSED;
9408 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9409 stat->attributes |= STATX_ATTR_IMMUTABLE;
9410 if (bi_flags & BTRFS_INODE_NODUMP)
9411 stat->attributes |= STATX_ATTR_NODUMP;
9412
9413 stat->attributes_mask |= (STATX_ATTR_APPEND |
9414 STATX_ATTR_COMPRESSED |
9415 STATX_ATTR_IMMUTABLE |
9416 STATX_ATTR_NODUMP);
fadc0d8b 9417
39279cc3 9418 generic_fillattr(inode, stat);
0ee5dc67 9419 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9420
9421 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9422 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9423 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9424 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9425 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9426 return 0;
9427}
9428
cdd1fedf
DF
9429static int btrfs_rename_exchange(struct inode *old_dir,
9430 struct dentry *old_dentry,
9431 struct inode *new_dir,
9432 struct dentry *new_dentry)
9433{
0b246afa 9434 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9435 struct btrfs_trans_handle *trans;
9436 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9437 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9438 struct inode *new_inode = new_dentry->d_inode;
9439 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9440 struct timespec ctime = current_time(old_inode);
cdd1fedf 9441 struct dentry *parent;
4a0cc7ca
NB
9442 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9443 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9444 u64 old_idx = 0;
9445 u64 new_idx = 0;
9446 u64 root_objectid;
9447 int ret;
86e8aa0e
FM
9448 bool root_log_pinned = false;
9449 bool dest_log_pinned = false;
cdd1fedf
DF
9450
9451 /* we only allow rename subvolume link between subvolumes */
9452 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9453 return -EXDEV;
9454
9455 /* close the race window with snapshot create/destroy ioctl */
9456 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9457 down_read(&fs_info->subvol_sem);
cdd1fedf 9458 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9459 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9460
9461 /*
9462 * We want to reserve the absolute worst case amount of items. So if
9463 * both inodes are subvols and we need to unlink them then that would
9464 * require 4 item modifications, but if they are both normal inodes it
9465 * would require 5 item modifications, so we'll assume their normal
9466 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9467 * should cover the worst case number of items we'll modify.
9468 */
9469 trans = btrfs_start_transaction(root, 12);
9470 if (IS_ERR(trans)) {
9471 ret = PTR_ERR(trans);
9472 goto out_notrans;
9473 }
9474
9475 /*
9476 * We need to find a free sequence number both in the source and
9477 * in the destination directory for the exchange.
9478 */
877574e2 9479 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9480 if (ret)
9481 goto out_fail;
877574e2 9482 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9483 if (ret)
9484 goto out_fail;
9485
9486 BTRFS_I(old_inode)->dir_index = 0ULL;
9487 BTRFS_I(new_inode)->dir_index = 0ULL;
9488
9489 /* Reference for the source. */
9490 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9491 /* force full log commit if subvolume involved. */
0b246afa 9492 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9493 } else {
376e5a57
FM
9494 btrfs_pin_log_trans(root);
9495 root_log_pinned = true;
cdd1fedf
DF
9496 ret = btrfs_insert_inode_ref(trans, dest,
9497 new_dentry->d_name.name,
9498 new_dentry->d_name.len,
9499 old_ino,
f85b7379
DS
9500 btrfs_ino(BTRFS_I(new_dir)),
9501 old_idx);
cdd1fedf
DF
9502 if (ret)
9503 goto out_fail;
cdd1fedf
DF
9504 }
9505
9506 /* And now for the dest. */
9507 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9508 /* force full log commit if subvolume involved. */
0b246afa 9509 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9510 } else {
376e5a57
FM
9511 btrfs_pin_log_trans(dest);
9512 dest_log_pinned = true;
cdd1fedf
DF
9513 ret = btrfs_insert_inode_ref(trans, root,
9514 old_dentry->d_name.name,
9515 old_dentry->d_name.len,
9516 new_ino,
f85b7379
DS
9517 btrfs_ino(BTRFS_I(old_dir)),
9518 new_idx);
cdd1fedf
DF
9519 if (ret)
9520 goto out_fail;
cdd1fedf
DF
9521 }
9522
9523 /* Update inode version and ctime/mtime. */
9524 inode_inc_iversion(old_dir);
9525 inode_inc_iversion(new_dir);
9526 inode_inc_iversion(old_inode);
9527 inode_inc_iversion(new_inode);
9528 old_dir->i_ctime = old_dir->i_mtime = ctime;
9529 new_dir->i_ctime = new_dir->i_mtime = ctime;
9530 old_inode->i_ctime = ctime;
9531 new_inode->i_ctime = ctime;
9532
9533 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9534 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9535 BTRFS_I(old_inode), 1);
9536 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9537 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9538 }
9539
9540 /* src is a subvolume */
9541 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9542 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9543 ret = btrfs_unlink_subvol(trans, root, old_dir,
9544 root_objectid,
9545 old_dentry->d_name.name,
9546 old_dentry->d_name.len);
9547 } else { /* src is an inode */
4ec5934e
NB
9548 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9549 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9550 old_dentry->d_name.name,
9551 old_dentry->d_name.len);
9552 if (!ret)
9553 ret = btrfs_update_inode(trans, root, old_inode);
9554 }
9555 if (ret) {
66642832 9556 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9557 goto out_fail;
9558 }
9559
9560 /* dest is a subvolume */
9561 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9562 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9563 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9564 root_objectid,
9565 new_dentry->d_name.name,
9566 new_dentry->d_name.len);
9567 } else { /* dest is an inode */
4ec5934e
NB
9568 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9569 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9570 new_dentry->d_name.name,
9571 new_dentry->d_name.len);
9572 if (!ret)
9573 ret = btrfs_update_inode(trans, dest, new_inode);
9574 }
9575 if (ret) {
66642832 9576 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9577 goto out_fail;
9578 }
9579
db0a669f 9580 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9581 new_dentry->d_name.name,
9582 new_dentry->d_name.len, 0, old_idx);
9583 if (ret) {
66642832 9584 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9585 goto out_fail;
9586 }
9587
db0a669f 9588 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9589 old_dentry->d_name.name,
9590 old_dentry->d_name.len, 0, new_idx);
9591 if (ret) {
66642832 9592 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9593 goto out_fail;
9594 }
9595
9596 if (old_inode->i_nlink == 1)
9597 BTRFS_I(old_inode)->dir_index = old_idx;
9598 if (new_inode->i_nlink == 1)
9599 BTRFS_I(new_inode)->dir_index = new_idx;
9600
86e8aa0e 9601 if (root_log_pinned) {
cdd1fedf 9602 parent = new_dentry->d_parent;
f85b7379
DS
9603 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9604 parent);
cdd1fedf 9605 btrfs_end_log_trans(root);
86e8aa0e 9606 root_log_pinned = false;
cdd1fedf 9607 }
86e8aa0e 9608 if (dest_log_pinned) {
cdd1fedf 9609 parent = old_dentry->d_parent;
f85b7379
DS
9610 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9611 parent);
cdd1fedf 9612 btrfs_end_log_trans(dest);
86e8aa0e 9613 dest_log_pinned = false;
cdd1fedf
DF
9614 }
9615out_fail:
86e8aa0e
FM
9616 /*
9617 * If we have pinned a log and an error happened, we unpin tasks
9618 * trying to sync the log and force them to fallback to a transaction
9619 * commit if the log currently contains any of the inodes involved in
9620 * this rename operation (to ensure we do not persist a log with an
9621 * inconsistent state for any of these inodes or leading to any
9622 * inconsistencies when replayed). If the transaction was aborted, the
9623 * abortion reason is propagated to userspace when attempting to commit
9624 * the transaction. If the log does not contain any of these inodes, we
9625 * allow the tasks to sync it.
9626 */
9627 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9628 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9629 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9630 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9631 (new_inode &&
0f8939b8 9632 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9633 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9634
9635 if (root_log_pinned) {
9636 btrfs_end_log_trans(root);
9637 root_log_pinned = false;
9638 }
9639 if (dest_log_pinned) {
9640 btrfs_end_log_trans(dest);
9641 dest_log_pinned = false;
9642 }
9643 }
3a45bb20 9644 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9645out_notrans:
9646 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9647 up_read(&fs_info->subvol_sem);
cdd1fedf 9648 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9649 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9650
9651 return ret;
9652}
9653
9654static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9655 struct btrfs_root *root,
9656 struct inode *dir,
9657 struct dentry *dentry)
9658{
9659 int ret;
9660 struct inode *inode;
9661 u64 objectid;
9662 u64 index;
9663
9664 ret = btrfs_find_free_ino(root, &objectid);
9665 if (ret)
9666 return ret;
9667
9668 inode = btrfs_new_inode(trans, root, dir,
9669 dentry->d_name.name,
9670 dentry->d_name.len,
4a0cc7ca 9671 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9672 objectid,
9673 S_IFCHR | WHITEOUT_MODE,
9674 &index);
9675
9676 if (IS_ERR(inode)) {
9677 ret = PTR_ERR(inode);
9678 return ret;
9679 }
9680
9681 inode->i_op = &btrfs_special_inode_operations;
9682 init_special_inode(inode, inode->i_mode,
9683 WHITEOUT_DEV);
9684
9685 ret = btrfs_init_inode_security(trans, inode, dir,
9686 &dentry->d_name);
9687 if (ret)
c9901618 9688 goto out;
cdd1fedf 9689
cef415af
NB
9690 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9691 BTRFS_I(inode), 0, index);
cdd1fedf 9692 if (ret)
c9901618 9693 goto out;
cdd1fedf
DF
9694
9695 ret = btrfs_update_inode(trans, root, inode);
c9901618 9696out:
cdd1fedf 9697 unlock_new_inode(inode);
c9901618
FM
9698 if (ret)
9699 inode_dec_link_count(inode);
cdd1fedf
DF
9700 iput(inode);
9701
c9901618 9702 return ret;
cdd1fedf
DF
9703}
9704
d397712b 9705static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9706 struct inode *new_dir, struct dentry *new_dentry,
9707 unsigned int flags)
39279cc3 9708{
0b246afa 9709 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9710 struct btrfs_trans_handle *trans;
5062af35 9711 unsigned int trans_num_items;
39279cc3 9712 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9713 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9714 struct inode *new_inode = d_inode(new_dentry);
9715 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9716 u64 index = 0;
4df27c4d 9717 u64 root_objectid;
39279cc3 9718 int ret;
4a0cc7ca 9719 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9720 bool log_pinned = false;
39279cc3 9721
4a0cc7ca 9722 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9723 return -EPERM;
9724
4df27c4d 9725 /* we only allow rename subvolume link between subvolumes */
33345d01 9726 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9727 return -EXDEV;
9728
33345d01 9729 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9730 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9731 return -ENOTEMPTY;
5f39d397 9732
4df27c4d
YZ
9733 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9734 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9735 return -ENOTEMPTY;
9c52057c
CM
9736
9737
9738 /* check for collisions, even if the name isn't there */
4871c158 9739 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9740 new_dentry->d_name.name,
9741 new_dentry->d_name.len);
9742
9743 if (ret) {
9744 if (ret == -EEXIST) {
9745 /* we shouldn't get
9746 * eexist without a new_inode */
fae7f21c 9747 if (WARN_ON(!new_inode)) {
9c52057c
CM
9748 return ret;
9749 }
9750 } else {
9751 /* maybe -EOVERFLOW */
9752 return ret;
9753 }
9754 }
9755 ret = 0;
9756
5a3f23d5 9757 /*
8d875f95
CM
9758 * we're using rename to replace one file with another. Start IO on it
9759 * now so we don't add too much work to the end of the transaction
5a3f23d5 9760 */
8d875f95 9761 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9762 filemap_flush(old_inode->i_mapping);
9763
76dda93c 9764 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9765 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9766 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9767 /*
9768 * We want to reserve the absolute worst case amount of items. So if
9769 * both inodes are subvols and we need to unlink them then that would
9770 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9771 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9772 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9773 * should cover the worst case number of items we'll modify.
5062af35
FM
9774 * If our rename has the whiteout flag, we need more 5 units for the
9775 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9776 * when selinux is enabled).
a22285a6 9777 */
5062af35
FM
9778 trans_num_items = 11;
9779 if (flags & RENAME_WHITEOUT)
9780 trans_num_items += 5;
9781 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9782 if (IS_ERR(trans)) {
cdd1fedf
DF
9783 ret = PTR_ERR(trans);
9784 goto out_notrans;
9785 }
76dda93c 9786
4df27c4d
YZ
9787 if (dest != root)
9788 btrfs_record_root_in_trans(trans, dest);
5f39d397 9789
877574e2 9790 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9791 if (ret)
9792 goto out_fail;
5a3f23d5 9793
67de1176 9794 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9795 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9796 /* force full log commit if subvolume involved. */
0b246afa 9797 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9798 } else {
c4aba954
FM
9799 btrfs_pin_log_trans(root);
9800 log_pinned = true;
a5719521
YZ
9801 ret = btrfs_insert_inode_ref(trans, dest,
9802 new_dentry->d_name.name,
9803 new_dentry->d_name.len,
33345d01 9804 old_ino,
4a0cc7ca 9805 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9806 if (ret)
9807 goto out_fail;
4df27c4d 9808 }
5a3f23d5 9809
0c4d2d95
JB
9810 inode_inc_iversion(old_dir);
9811 inode_inc_iversion(new_dir);
9812 inode_inc_iversion(old_inode);
04b285f3
DD
9813 old_dir->i_ctime = old_dir->i_mtime =
9814 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9815 old_inode->i_ctime = current_time(old_dir);
5f39d397 9816
12fcfd22 9817 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9818 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9819 BTRFS_I(old_inode), 1);
12fcfd22 9820
33345d01 9821 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9822 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9823 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9824 old_dentry->d_name.name,
9825 old_dentry->d_name.len);
9826 } else {
4ec5934e
NB
9827 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9828 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9829 old_dentry->d_name.name,
9830 old_dentry->d_name.len);
9831 if (!ret)
9832 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9833 }
79787eaa 9834 if (ret) {
66642832 9835 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9836 goto out_fail;
9837 }
39279cc3
CM
9838
9839 if (new_inode) {
0c4d2d95 9840 inode_inc_iversion(new_inode);
c2050a45 9841 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9842 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9843 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9844 root_objectid = BTRFS_I(new_inode)->location.objectid;
9845 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9846 root_objectid,
9847 new_dentry->d_name.name,
9848 new_dentry->d_name.len);
9849 BUG_ON(new_inode->i_nlink == 0);
9850 } else {
4ec5934e
NB
9851 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9852 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9853 new_dentry->d_name.name,
9854 new_dentry->d_name.len);
9855 }
4ef31a45 9856 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9857 ret = btrfs_orphan_add(trans,
9858 BTRFS_I(d_inode(new_dentry)));
79787eaa 9859 if (ret) {
66642832 9860 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9861 goto out_fail;
9862 }
39279cc3 9863 }
aec7477b 9864
db0a669f 9865 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9866 new_dentry->d_name.name,
a5719521 9867 new_dentry->d_name.len, 0, index);
79787eaa 9868 if (ret) {
66642832 9869 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9870 goto out_fail;
9871 }
39279cc3 9872
67de1176
MX
9873 if (old_inode->i_nlink == 1)
9874 BTRFS_I(old_inode)->dir_index = index;
9875
3dc9e8f7 9876 if (log_pinned) {
10d9f309 9877 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9878
f85b7379
DS
9879 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9880 parent);
4df27c4d 9881 btrfs_end_log_trans(root);
3dc9e8f7 9882 log_pinned = false;
4df27c4d 9883 }
cdd1fedf
DF
9884
9885 if (flags & RENAME_WHITEOUT) {
9886 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9887 old_dentry);
9888
9889 if (ret) {
66642832 9890 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9891 goto out_fail;
9892 }
4df27c4d 9893 }
39279cc3 9894out_fail:
3dc9e8f7
FM
9895 /*
9896 * If we have pinned the log and an error happened, we unpin tasks
9897 * trying to sync the log and force them to fallback to a transaction
9898 * commit if the log currently contains any of the inodes involved in
9899 * this rename operation (to ensure we do not persist a log with an
9900 * inconsistent state for any of these inodes or leading to any
9901 * inconsistencies when replayed). If the transaction was aborted, the
9902 * abortion reason is propagated to userspace when attempting to commit
9903 * the transaction. If the log does not contain any of these inodes, we
9904 * allow the tasks to sync it.
9905 */
9906 if (ret && log_pinned) {
0f8939b8
NB
9907 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9908 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9909 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9910 (new_inode &&
0f8939b8 9911 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9912 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9913
9914 btrfs_end_log_trans(root);
9915 log_pinned = false;
9916 }
3a45bb20 9917 btrfs_end_transaction(trans);
b44c59a8 9918out_notrans:
33345d01 9919 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9920 up_read(&fs_info->subvol_sem);
9ed74f2d 9921
39279cc3
CM
9922 return ret;
9923}
9924
80ace85c
MS
9925static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9926 struct inode *new_dir, struct dentry *new_dentry,
9927 unsigned int flags)
9928{
cdd1fedf 9929 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9930 return -EINVAL;
9931
cdd1fedf
DF
9932 if (flags & RENAME_EXCHANGE)
9933 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9934 new_dentry);
9935
9936 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9937}
9938
3a2f8c07
NB
9939struct btrfs_delalloc_work {
9940 struct inode *inode;
9941 struct completion completion;
9942 struct list_head list;
9943 struct btrfs_work work;
9944};
9945
8ccf6f19
MX
9946static void btrfs_run_delalloc_work(struct btrfs_work *work)
9947{
9948 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9949 struct inode *inode;
8ccf6f19
MX
9950
9951 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9952 work);
9f23e289 9953 inode = delalloc_work->inode;
30424601
DS
9954 filemap_flush(inode->i_mapping);
9955 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9956 &BTRFS_I(inode)->runtime_flags))
9f23e289 9957 filemap_flush(inode->i_mapping);
8ccf6f19 9958
076da91c 9959 iput(inode);
8ccf6f19
MX
9960 complete(&delalloc_work->completion);
9961}
9962
3a2f8c07 9963static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9964{
9965 struct btrfs_delalloc_work *work;
9966
100d5702 9967 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9968 if (!work)
9969 return NULL;
9970
9971 init_completion(&work->completion);
9972 INIT_LIST_HEAD(&work->list);
9973 work->inode = inode;
9e0af237
LB
9974 WARN_ON_ONCE(!inode);
9975 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9976 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9977
9978 return work;
9979}
9980
d352ac68
CM
9981/*
9982 * some fairly slow code that needs optimization. This walks the list
9983 * of all the inodes with pending delalloc and forces them to disk.
9984 */
4fbb5147 9985static int start_delalloc_inodes(struct btrfs_root *root, int nr)
ea8c2819 9986{
ea8c2819 9987 struct btrfs_inode *binode;
5b21f2ed 9988 struct inode *inode;
8ccf6f19
MX
9989 struct btrfs_delalloc_work *work, *next;
9990 struct list_head works;
1eafa6c7 9991 struct list_head splice;
8ccf6f19 9992 int ret = 0;
ea8c2819 9993
8ccf6f19 9994 INIT_LIST_HEAD(&works);
1eafa6c7 9995 INIT_LIST_HEAD(&splice);
63607cc8 9996
573bfb72 9997 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9998 spin_lock(&root->delalloc_lock);
9999 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10000 while (!list_empty(&splice)) {
10001 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10002 delalloc_inodes);
1eafa6c7 10003
eb73c1b7
MX
10004 list_move_tail(&binode->delalloc_inodes,
10005 &root->delalloc_inodes);
5b21f2ed 10006 inode = igrab(&binode->vfs_inode);
df0af1a5 10007 if (!inode) {
eb73c1b7 10008 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10009 continue;
df0af1a5 10010 }
eb73c1b7 10011 spin_unlock(&root->delalloc_lock);
1eafa6c7 10012
076da91c 10013 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10014 if (!work) {
4fbb5147 10015 iput(inode);
1eafa6c7 10016 ret = -ENOMEM;
a1ecaabb 10017 goto out;
5b21f2ed 10018 }
1eafa6c7 10019 list_add_tail(&work->list, &works);
a44903ab
QW
10020 btrfs_queue_work(root->fs_info->flush_workers,
10021 &work->work);
6c255e67
MX
10022 ret++;
10023 if (nr != -1 && ret >= nr)
a1ecaabb 10024 goto out;
5b21f2ed 10025 cond_resched();
eb73c1b7 10026 spin_lock(&root->delalloc_lock);
ea8c2819 10027 }
eb73c1b7 10028 spin_unlock(&root->delalloc_lock);
8c8bee1d 10029
a1ecaabb 10030out:
eb73c1b7
MX
10031 list_for_each_entry_safe(work, next, &works, list) {
10032 list_del_init(&work->list);
40012f96
NB
10033 wait_for_completion(&work->completion);
10034 kfree(work);
eb73c1b7
MX
10035 }
10036
81f1d390 10037 if (!list_empty(&splice)) {
eb73c1b7
MX
10038 spin_lock(&root->delalloc_lock);
10039 list_splice_tail(&splice, &root->delalloc_inodes);
10040 spin_unlock(&root->delalloc_lock);
10041 }
573bfb72 10042 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10043 return ret;
10044}
1eafa6c7 10045
76f32e24 10046int btrfs_start_delalloc_inodes(struct btrfs_root *root)
eb73c1b7 10047{
0b246afa 10048 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10049 int ret;
1eafa6c7 10050
0b246afa 10051 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10052 return -EROFS;
10053
4fbb5147 10054 ret = start_delalloc_inodes(root, -1);
6c255e67
MX
10055 if (ret > 0)
10056 ret = 0;
eb73c1b7
MX
10057 return ret;
10058}
10059
82b3e53b 10060int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10061{
10062 struct btrfs_root *root;
10063 struct list_head splice;
10064 int ret;
10065
2c21b4d7 10066 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10067 return -EROFS;
10068
10069 INIT_LIST_HEAD(&splice);
10070
573bfb72 10071 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10072 spin_lock(&fs_info->delalloc_root_lock);
10073 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10074 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10075 root = list_first_entry(&splice, struct btrfs_root,
10076 delalloc_root);
10077 root = btrfs_grab_fs_root(root);
10078 BUG_ON(!root);
10079 list_move_tail(&root->delalloc_root,
10080 &fs_info->delalloc_roots);
10081 spin_unlock(&fs_info->delalloc_root_lock);
10082
4fbb5147 10083 ret = start_delalloc_inodes(root, nr);
eb73c1b7 10084 btrfs_put_fs_root(root);
6c255e67 10085 if (ret < 0)
eb73c1b7
MX
10086 goto out;
10087
6c255e67
MX
10088 if (nr != -1) {
10089 nr -= ret;
10090 WARN_ON(nr < 0);
10091 }
eb73c1b7 10092 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10093 }
eb73c1b7 10094 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10095
6c255e67 10096 ret = 0;
eb73c1b7 10097out:
81f1d390 10098 if (!list_empty(&splice)) {
eb73c1b7
MX
10099 spin_lock(&fs_info->delalloc_root_lock);
10100 list_splice_tail(&splice, &fs_info->delalloc_roots);
10101 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10102 }
573bfb72 10103 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10104 return ret;
ea8c2819
CM
10105}
10106
39279cc3
CM
10107static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10108 const char *symname)
10109{
0b246afa 10110 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10111 struct btrfs_trans_handle *trans;
10112 struct btrfs_root *root = BTRFS_I(dir)->root;
10113 struct btrfs_path *path;
10114 struct btrfs_key key;
1832a6d5 10115 struct inode *inode = NULL;
39279cc3
CM
10116 int err;
10117 int drop_inode = 0;
10118 u64 objectid;
67871254 10119 u64 index = 0;
39279cc3
CM
10120 int name_len;
10121 int datasize;
5f39d397 10122 unsigned long ptr;
39279cc3 10123 struct btrfs_file_extent_item *ei;
5f39d397 10124 struct extent_buffer *leaf;
39279cc3 10125
f06becc4 10126 name_len = strlen(symname);
0b246afa 10127 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10128 return -ENAMETOOLONG;
1832a6d5 10129
9ed74f2d
JB
10130 /*
10131 * 2 items for inode item and ref
10132 * 2 items for dir items
9269d12b
FM
10133 * 1 item for updating parent inode item
10134 * 1 item for the inline extent item
9ed74f2d
JB
10135 * 1 item for xattr if selinux is on
10136 */
9269d12b 10137 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10138 if (IS_ERR(trans))
10139 return PTR_ERR(trans);
1832a6d5 10140
581bb050
LZ
10141 err = btrfs_find_free_ino(root, &objectid);
10142 if (err)
10143 goto out_unlock;
10144
aec7477b 10145 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10146 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10147 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10148 if (IS_ERR(inode)) {
10149 err = PTR_ERR(inode);
39279cc3 10150 goto out_unlock;
7cf96da3 10151 }
39279cc3 10152
ad19db71
CS
10153 /*
10154 * If the active LSM wants to access the inode during
10155 * d_instantiate it needs these. Smack checks to see
10156 * if the filesystem supports xattrs by looking at the
10157 * ops vector.
10158 */
10159 inode->i_fop = &btrfs_file_operations;
10160 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10161 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10162 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10163
10164 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10165 if (err)
10166 goto out_unlock_inode;
ad19db71 10167
39279cc3 10168 path = btrfs_alloc_path();
d8926bb3
MF
10169 if (!path) {
10170 err = -ENOMEM;
b0d5d10f 10171 goto out_unlock_inode;
d8926bb3 10172 }
4a0cc7ca 10173 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10174 key.offset = 0;
962a298f 10175 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10176 datasize = btrfs_file_extent_calc_inline_size(name_len);
10177 err = btrfs_insert_empty_item(trans, root, path, &key,
10178 datasize);
54aa1f4d 10179 if (err) {
b0839166 10180 btrfs_free_path(path);
b0d5d10f 10181 goto out_unlock_inode;
54aa1f4d 10182 }
5f39d397
CM
10183 leaf = path->nodes[0];
10184 ei = btrfs_item_ptr(leaf, path->slots[0],
10185 struct btrfs_file_extent_item);
10186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10187 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10188 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10189 btrfs_set_file_extent_encryption(leaf, ei, 0);
10190 btrfs_set_file_extent_compression(leaf, ei, 0);
10191 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10192 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10193
39279cc3 10194 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10195 write_extent_buffer(leaf, symname, ptr, name_len);
10196 btrfs_mark_buffer_dirty(leaf);
39279cc3 10197 btrfs_free_path(path);
5f39d397 10198
39279cc3 10199 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10200 inode_nohighmem(inode);
39279cc3 10201 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10202 inode_set_bytes(inode, name_len);
6ef06d27 10203 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10204 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10205 /*
10206 * Last step, add directory indexes for our symlink inode. This is the
10207 * last step to avoid extra cleanup of these indexes if an error happens
10208 * elsewhere above.
10209 */
10210 if (!err)
cef415af
NB
10211 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10212 BTRFS_I(inode), 0, index);
b0d5d10f 10213 if (err) {
54aa1f4d 10214 drop_inode = 1;
b0d5d10f
CM
10215 goto out_unlock_inode;
10216 }
10217
1e2e547a 10218 d_instantiate_new(dentry, inode);
39279cc3
CM
10219
10220out_unlock:
3a45bb20 10221 btrfs_end_transaction(trans);
39279cc3
CM
10222 if (drop_inode) {
10223 inode_dec_link_count(inode);
10224 iput(inode);
10225 }
2ff7e61e 10226 btrfs_btree_balance_dirty(fs_info);
39279cc3 10227 return err;
b0d5d10f
CM
10228
10229out_unlock_inode:
10230 drop_inode = 1;
10231 unlock_new_inode(inode);
10232 goto out_unlock;
39279cc3 10233}
16432985 10234
0af3d00b
JB
10235static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10236 u64 start, u64 num_bytes, u64 min_size,
10237 loff_t actual_len, u64 *alloc_hint,
10238 struct btrfs_trans_handle *trans)
d899e052 10239{
0b246afa 10240 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10241 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10242 struct extent_map *em;
d899e052
YZ
10243 struct btrfs_root *root = BTRFS_I(inode)->root;
10244 struct btrfs_key ins;
d899e052 10245 u64 cur_offset = start;
55a61d1d 10246 u64 i_size;
154ea289 10247 u64 cur_bytes;
0b670dc4 10248 u64 last_alloc = (u64)-1;
d899e052 10249 int ret = 0;
0af3d00b 10250 bool own_trans = true;
18513091 10251 u64 end = start + num_bytes - 1;
d899e052 10252
0af3d00b
JB
10253 if (trans)
10254 own_trans = false;
d899e052 10255 while (num_bytes > 0) {
0af3d00b
JB
10256 if (own_trans) {
10257 trans = btrfs_start_transaction(root, 3);
10258 if (IS_ERR(trans)) {
10259 ret = PTR_ERR(trans);
10260 break;
10261 }
5a303d5d
YZ
10262 }
10263
ee22184b 10264 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10265 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10266 /*
10267 * If we are severely fragmented we could end up with really
10268 * small allocations, so if the allocator is returning small
10269 * chunks lets make its job easier by only searching for those
10270 * sized chunks.
10271 */
10272 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10273 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10274 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10275 if (ret) {
0af3d00b 10276 if (own_trans)
3a45bb20 10277 btrfs_end_transaction(trans);
a22285a6 10278 break;
d899e052 10279 }
0b246afa 10280 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10281
0b670dc4 10282 last_alloc = ins.offset;
d899e052
YZ
10283 ret = insert_reserved_file_extent(trans, inode,
10284 cur_offset, ins.objectid,
10285 ins.offset, ins.offset,
920bbbfb 10286 ins.offset, 0, 0, 0,
d899e052 10287 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10288 if (ret) {
2ff7e61e 10289 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10290 ins.offset, 0);
66642832 10291 btrfs_abort_transaction(trans, ret);
79787eaa 10292 if (own_trans)
3a45bb20 10293 btrfs_end_transaction(trans);
79787eaa
JM
10294 break;
10295 }
31193213 10296
dcdbc059 10297 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10298 cur_offset + ins.offset -1, 0);
5a303d5d 10299
5dc562c5
JB
10300 em = alloc_extent_map();
10301 if (!em) {
10302 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10303 &BTRFS_I(inode)->runtime_flags);
10304 goto next;
10305 }
10306
10307 em->start = cur_offset;
10308 em->orig_start = cur_offset;
10309 em->len = ins.offset;
10310 em->block_start = ins.objectid;
10311 em->block_len = ins.offset;
b4939680 10312 em->orig_block_len = ins.offset;
cc95bef6 10313 em->ram_bytes = ins.offset;
0b246afa 10314 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10315 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10316 em->generation = trans->transid;
10317
10318 while (1) {
10319 write_lock(&em_tree->lock);
09a2a8f9 10320 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10321 write_unlock(&em_tree->lock);
10322 if (ret != -EEXIST)
10323 break;
dcdbc059 10324 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10325 cur_offset + ins.offset - 1,
10326 0);
10327 }
10328 free_extent_map(em);
10329next:
d899e052
YZ
10330 num_bytes -= ins.offset;
10331 cur_offset += ins.offset;
efa56464 10332 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10333
0c4d2d95 10334 inode_inc_iversion(inode);
c2050a45 10335 inode->i_ctime = current_time(inode);
6cbff00f 10336 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10337 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10338 (actual_len > inode->i_size) &&
10339 (cur_offset > inode->i_size)) {
d1ea6a61 10340 if (cur_offset > actual_len)
55a61d1d 10341 i_size = actual_len;
d1ea6a61 10342 else
55a61d1d
JB
10343 i_size = cur_offset;
10344 i_size_write(inode, i_size);
10345 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10346 }
10347
d899e052 10348 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10349
10350 if (ret) {
66642832 10351 btrfs_abort_transaction(trans, ret);
79787eaa 10352 if (own_trans)
3a45bb20 10353 btrfs_end_transaction(trans);
79787eaa
JM
10354 break;
10355 }
d899e052 10356
0af3d00b 10357 if (own_trans)
3a45bb20 10358 btrfs_end_transaction(trans);
5a303d5d 10359 }
18513091 10360 if (cur_offset < end)
bc42bda2 10361 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10362 end - cur_offset + 1);
d899e052
YZ
10363 return ret;
10364}
10365
0af3d00b
JB
10366int btrfs_prealloc_file_range(struct inode *inode, int mode,
10367 u64 start, u64 num_bytes, u64 min_size,
10368 loff_t actual_len, u64 *alloc_hint)
10369{
10370 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10371 min_size, actual_len, alloc_hint,
10372 NULL);
10373}
10374
10375int btrfs_prealloc_file_range_trans(struct inode *inode,
10376 struct btrfs_trans_handle *trans, int mode,
10377 u64 start, u64 num_bytes, u64 min_size,
10378 loff_t actual_len, u64 *alloc_hint)
10379{
10380 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10381 min_size, actual_len, alloc_hint, trans);
10382}
10383
e6dcd2dc
CM
10384static int btrfs_set_page_dirty(struct page *page)
10385{
e6dcd2dc
CM
10386 return __set_page_dirty_nobuffers(page);
10387}
10388
10556cb2 10389static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10390{
b83cc969 10391 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10392 umode_t mode = inode->i_mode;
b83cc969 10393
cb6db4e5
JM
10394 if (mask & MAY_WRITE &&
10395 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10396 if (btrfs_root_readonly(root))
10397 return -EROFS;
10398 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10399 return -EACCES;
10400 }
2830ba7f 10401 return generic_permission(inode, mask);
fdebe2bd 10402}
39279cc3 10403
ef3b9af5
FM
10404static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10405{
2ff7e61e 10406 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10407 struct btrfs_trans_handle *trans;
10408 struct btrfs_root *root = BTRFS_I(dir)->root;
10409 struct inode *inode = NULL;
10410 u64 objectid;
10411 u64 index;
10412 int ret = 0;
10413
10414 /*
10415 * 5 units required for adding orphan entry
10416 */
10417 trans = btrfs_start_transaction(root, 5);
10418 if (IS_ERR(trans))
10419 return PTR_ERR(trans);
10420
10421 ret = btrfs_find_free_ino(root, &objectid);
10422 if (ret)
10423 goto out;
10424
10425 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10426 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10427 if (IS_ERR(inode)) {
10428 ret = PTR_ERR(inode);
10429 inode = NULL;
10430 goto out;
10431 }
10432
ef3b9af5
FM
10433 inode->i_fop = &btrfs_file_operations;
10434 inode->i_op = &btrfs_file_inode_operations;
10435
10436 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10437 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10438
b0d5d10f
CM
10439 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10440 if (ret)
10441 goto out_inode;
10442
10443 ret = btrfs_update_inode(trans, root, inode);
10444 if (ret)
10445 goto out_inode;
73f2e545 10446 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10447 if (ret)
b0d5d10f 10448 goto out_inode;
ef3b9af5 10449
5762b5c9
FM
10450 /*
10451 * We set number of links to 0 in btrfs_new_inode(), and here we set
10452 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10453 * through:
10454 *
10455 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10456 */
10457 set_nlink(inode, 1);
b0d5d10f 10458 unlock_new_inode(inode);
ef3b9af5
FM
10459 d_tmpfile(dentry, inode);
10460 mark_inode_dirty(inode);
10461
10462out:
3a45bb20 10463 btrfs_end_transaction(trans);
ef3b9af5
FM
10464 if (ret)
10465 iput(inode);
2ff7e61e 10466 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10467 return ret;
b0d5d10f
CM
10468
10469out_inode:
10470 unlock_new_inode(inode);
10471 goto out;
10472
ef3b9af5
FM
10473}
10474
20a7db8a 10475__attribute__((const))
9d0d1c8b 10476static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10477{
9d0d1c8b 10478 return -EAGAIN;
20a7db8a
DS
10479}
10480
c6100a4b
JB
10481static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10482{
10483 struct inode *inode = private_data;
10484 return btrfs_sb(inode->i_sb);
10485}
10486
10487static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10488 u64 start, u64 end)
10489{
10490 struct inode *inode = private_data;
10491 u64 isize;
10492
10493 isize = i_size_read(inode);
10494 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10495 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10496 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10497 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10498 }
10499}
10500
10501void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10502{
10503 struct inode *inode = private_data;
10504 unsigned long index = start >> PAGE_SHIFT;
10505 unsigned long end_index = end >> PAGE_SHIFT;
10506 struct page *page;
10507
10508 while (index <= end_index) {
10509 page = find_get_page(inode->i_mapping, index);
10510 ASSERT(page); /* Pages should be in the extent_io_tree */
10511 set_page_writeback(page);
10512 put_page(page);
10513 index++;
10514 }
10515}
10516
6e1d5dcc 10517static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10518 .getattr = btrfs_getattr,
39279cc3
CM
10519 .lookup = btrfs_lookup,
10520 .create = btrfs_create,
10521 .unlink = btrfs_unlink,
10522 .link = btrfs_link,
10523 .mkdir = btrfs_mkdir,
10524 .rmdir = btrfs_rmdir,
2773bf00 10525 .rename = btrfs_rename2,
39279cc3
CM
10526 .symlink = btrfs_symlink,
10527 .setattr = btrfs_setattr,
618e21d5 10528 .mknod = btrfs_mknod,
5103e947 10529 .listxattr = btrfs_listxattr,
fdebe2bd 10530 .permission = btrfs_permission,
4e34e719 10531 .get_acl = btrfs_get_acl,
996a710d 10532 .set_acl = btrfs_set_acl,
93fd63c2 10533 .update_time = btrfs_update_time,
ef3b9af5 10534 .tmpfile = btrfs_tmpfile,
39279cc3 10535};
6e1d5dcc 10536static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10537 .lookup = btrfs_lookup,
fdebe2bd 10538 .permission = btrfs_permission,
93fd63c2 10539 .update_time = btrfs_update_time,
39279cc3 10540};
76dda93c 10541
828c0950 10542static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10543 .llseek = generic_file_llseek,
10544 .read = generic_read_dir,
02dbfc99 10545 .iterate_shared = btrfs_real_readdir,
23b5ec74 10546 .open = btrfs_opendir,
34287aa3 10547 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10548#ifdef CONFIG_COMPAT
4c63c245 10549 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10550#endif
6bf13c0c 10551 .release = btrfs_release_file,
e02119d5 10552 .fsync = btrfs_sync_file,
39279cc3
CM
10553};
10554
20e5506b 10555static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10556 /* mandatory callbacks */
065631f6 10557 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10558 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10559 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10560 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10561 .tree_fs_info = iotree_fs_info,
10562 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10563
10564 /* optional callbacks */
10565 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10566 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10567 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10568 .set_bit_hook = btrfs_set_bit_hook,
10569 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10570 .merge_extent_hook = btrfs_merge_extent_hook,
10571 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10572 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10573};
10574
35054394
CM
10575/*
10576 * btrfs doesn't support the bmap operation because swapfiles
10577 * use bmap to make a mapping of extents in the file. They assume
10578 * these extents won't change over the life of the file and they
10579 * use the bmap result to do IO directly to the drive.
10580 *
10581 * the btrfs bmap call would return logical addresses that aren't
10582 * suitable for IO and they also will change frequently as COW
10583 * operations happen. So, swapfile + btrfs == corruption.
10584 *
10585 * For now we're avoiding this by dropping bmap.
10586 */
7f09410b 10587static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10588 .readpage = btrfs_readpage,
10589 .writepage = btrfs_writepage,
b293f02e 10590 .writepages = btrfs_writepages,
3ab2fb5a 10591 .readpages = btrfs_readpages,
16432985 10592 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10593 .invalidatepage = btrfs_invalidatepage,
10594 .releasepage = btrfs_releasepage,
e6dcd2dc 10595 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10596 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10597};
10598
7f09410b 10599static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10600 .readpage = btrfs_readpage,
10601 .writepage = btrfs_writepage,
2bf5a725
CM
10602 .invalidatepage = btrfs_invalidatepage,
10603 .releasepage = btrfs_releasepage,
39279cc3
CM
10604};
10605
6e1d5dcc 10606static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10607 .getattr = btrfs_getattr,
10608 .setattr = btrfs_setattr,
5103e947 10609 .listxattr = btrfs_listxattr,
fdebe2bd 10610 .permission = btrfs_permission,
1506fcc8 10611 .fiemap = btrfs_fiemap,
4e34e719 10612 .get_acl = btrfs_get_acl,
996a710d 10613 .set_acl = btrfs_set_acl,
e41f941a 10614 .update_time = btrfs_update_time,
39279cc3 10615};
6e1d5dcc 10616static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10617 .getattr = btrfs_getattr,
10618 .setattr = btrfs_setattr,
fdebe2bd 10619 .permission = btrfs_permission,
33268eaf 10620 .listxattr = btrfs_listxattr,
4e34e719 10621 .get_acl = btrfs_get_acl,
996a710d 10622 .set_acl = btrfs_set_acl,
e41f941a 10623 .update_time = btrfs_update_time,
618e21d5 10624};
6e1d5dcc 10625static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10626 .get_link = page_get_link,
f209561a 10627 .getattr = btrfs_getattr,
22c44fe6 10628 .setattr = btrfs_setattr,
fdebe2bd 10629 .permission = btrfs_permission,
0279b4cd 10630 .listxattr = btrfs_listxattr,
e41f941a 10631 .update_time = btrfs_update_time,
39279cc3 10632};
76dda93c 10633
82d339d9 10634const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10635 .d_delete = btrfs_dentry_delete,
10636};