]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
Btrfs: setup a nofs context for memory allocation at __btrfs_set_acl
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
92d32170 31#include <asm/unaligned.h>
39279cc3
CM
32#include "ctree.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "btrfs_inode.h"
39279cc3 36#include "print-tree.h"
e6dcd2dc 37#include "ordered-data.h"
95819c05 38#include "xattr.h"
e02119d5 39#include "tree-log.h"
4a54c8c1 40#include "volumes.h"
c8b97818 41#include "compression.h"
b4ce94de 42#include "locking.h"
dc89e982 43#include "free-space-cache.h"
581bb050 44#include "inode-map.h"
38c227d8 45#include "backref.h"
63541927 46#include "props.h"
31193213 47#include "qgroup.h"
dda3245e 48#include "dedupe.h"
39279cc3
CM
49
50struct btrfs_iget_args {
90d3e592 51 struct btrfs_key *location;
39279cc3
CM
52 struct btrfs_root *root;
53};
54
f28a4928 55struct btrfs_dio_data {
f28a4928
FM
56 u64 reserve;
57 u64 unsubmitted_oe_range_start;
58 u64 unsubmitted_oe_range_end;
4aaedfb0 59 int overwrite;
f28a4928
FM
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b 67static const struct address_space_operations btrfs_aops;
828c0950 68static const struct file_operations btrfs_dir_file_operations;
20e5506b 69static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
4d4ab6d6 77static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
3972f260 87static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 88static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 89static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
dda3245e
WX
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
95static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
99 int type);
7b128766 100
52427260
QW
101static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
104
105/*
106 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 107 * from the btrfs_run_delalloc_range() callback.
52427260
QW
108 *
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
d1051d6e 113 * extent (btrfs_finish_ordered_io()).
52427260
QW
114 */
115static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
116 struct page *locked_page,
117 u64 offset, u64 bytes)
52427260 118{
63d71450
NA
119 unsigned long index = offset >> PAGE_SHIFT;
120 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
121 u64 page_start = page_offset(locked_page);
122 u64 page_end = page_start + PAGE_SIZE - 1;
123
63d71450
NA
124 struct page *page;
125
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
128 index++;
129 if (!page)
130 continue;
131 ClearPagePrivate2(page);
132 put_page(page);
133 }
d1051d6e
NB
134
135 /*
136 * In case this page belongs to the delalloc range being instantiated
137 * then skip it, since the first page of a range is going to be
138 * properly cleaned up by the caller of run_delalloc_range
139 */
140 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
141 offset += PAGE_SIZE;
142 bytes -= PAGE_SIZE;
143 }
144
145 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
146}
147
48a3b636 148static int btrfs_dirty_inode(struct inode *inode);
7b128766 149
6a3891c5
JB
150#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
151void btrfs_test_inode_set_ops(struct inode *inode)
152{
153 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
154}
155#endif
156
f34f57a3 157static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
158 struct inode *inode, struct inode *dir,
159 const struct qstr *qstr)
0279b4cd
JO
160{
161 int err;
162
f34f57a3 163 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 164 if (!err)
2a7dba39 165 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
166 return err;
167}
168
c8b97818
CM
169/*
170 * this does all the hard work for inserting an inline extent into
171 * the btree. The caller should have done a btrfs_drop_extents so that
172 * no overlapping inline items exist in the btree
173 */
40f76580 174static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 175 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
176 struct btrfs_root *root, struct inode *inode,
177 u64 start, size_t size, size_t compressed_size,
fe3f566c 178 int compress_type,
c8b97818
CM
179 struct page **compressed_pages)
180{
c8b97818
CM
181 struct extent_buffer *leaf;
182 struct page *page = NULL;
183 char *kaddr;
184 unsigned long ptr;
185 struct btrfs_file_extent_item *ei;
c8b97818
CM
186 int ret;
187 size_t cur_size = size;
c8b97818 188 unsigned long offset;
c8b97818 189
fe3f566c 190 if (compressed_size && compressed_pages)
c8b97818 191 cur_size = compressed_size;
c8b97818 192
1acae57b 193 inode_add_bytes(inode, size);
c8b97818 194
1acae57b
FDBM
195 if (!extent_inserted) {
196 struct btrfs_key key;
197 size_t datasize;
c8b97818 198
4a0cc7ca 199 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 200 key.offset = start;
962a298f 201 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 202
1acae57b
FDBM
203 datasize = btrfs_file_extent_calc_inline_size(cur_size);
204 path->leave_spinning = 1;
205 ret = btrfs_insert_empty_item(trans, root, path, &key,
206 datasize);
79b4f4c6 207 if (ret)
1acae57b 208 goto fail;
c8b97818
CM
209 }
210 leaf = path->nodes[0];
211 ei = btrfs_item_ptr(leaf, path->slots[0],
212 struct btrfs_file_extent_item);
213 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
214 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
215 btrfs_set_file_extent_encryption(leaf, ei, 0);
216 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
217 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
218 ptr = btrfs_file_extent_inline_start(ei);
219
261507a0 220 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
221 struct page *cpage;
222 int i = 0;
d397712b 223 while (compressed_size > 0) {
c8b97818 224 cpage = compressed_pages[i];
5b050f04 225 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 226 PAGE_SIZE);
c8b97818 227
7ac687d9 228 kaddr = kmap_atomic(cpage);
c8b97818 229 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 230 kunmap_atomic(kaddr);
c8b97818
CM
231
232 i++;
233 ptr += cur_size;
234 compressed_size -= cur_size;
235 }
236 btrfs_set_file_extent_compression(leaf, ei,
261507a0 237 compress_type);
c8b97818
CM
238 } else {
239 page = find_get_page(inode->i_mapping,
09cbfeaf 240 start >> PAGE_SHIFT);
c8b97818 241 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 242 kaddr = kmap_atomic(page);
7073017a 243 offset = offset_in_page(start);
c8b97818 244 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 245 kunmap_atomic(kaddr);
09cbfeaf 246 put_page(page);
c8b97818
CM
247 }
248 btrfs_mark_buffer_dirty(leaf);
1acae57b 249 btrfs_release_path(path);
c8b97818 250
c2167754
YZ
251 /*
252 * we're an inline extent, so nobody can
253 * extend the file past i_size without locking
254 * a page we already have locked.
255 *
256 * We must do any isize and inode updates
257 * before we unlock the pages. Otherwise we
258 * could end up racing with unlink.
259 */
c8b97818 260 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 261 ret = btrfs_update_inode(trans, root, inode);
c2167754 262
c8b97818 263fail:
79b4f4c6 264 return ret;
c8b97818
CM
265}
266
267
268/*
269 * conditionally insert an inline extent into the file. This
270 * does the checks required to make sure the data is small enough
271 * to fit as an inline extent.
272 */
d02c0e20 273static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
274 u64 end, size_t compressed_size,
275 int compress_type,
276 struct page **compressed_pages)
c8b97818 277{
d02c0e20 278 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 279 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 280 struct btrfs_trans_handle *trans;
c8b97818
CM
281 u64 isize = i_size_read(inode);
282 u64 actual_end = min(end + 1, isize);
283 u64 inline_len = actual_end - start;
0b246afa 284 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
285 u64 data_len = inline_len;
286 int ret;
1acae57b
FDBM
287 struct btrfs_path *path;
288 int extent_inserted = 0;
289 u32 extent_item_size;
c8b97818
CM
290
291 if (compressed_size)
292 data_len = compressed_size;
293
294 if (start > 0 ||
0b246afa
JM
295 actual_end > fs_info->sectorsize ||
296 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 297 (!compressed_size &&
0b246afa 298 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 299 end + 1 < isize ||
0b246afa 300 data_len > fs_info->max_inline) {
c8b97818
CM
301 return 1;
302 }
303
1acae57b
FDBM
304 path = btrfs_alloc_path();
305 if (!path)
306 return -ENOMEM;
307
00361589 308 trans = btrfs_join_transaction(root);
1acae57b
FDBM
309 if (IS_ERR(trans)) {
310 btrfs_free_path(path);
00361589 311 return PTR_ERR(trans);
1acae57b 312 }
69fe2d75 313 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 314
1acae57b
FDBM
315 if (compressed_size && compressed_pages)
316 extent_item_size = btrfs_file_extent_calc_inline_size(
317 compressed_size);
318 else
319 extent_item_size = btrfs_file_extent_calc_inline_size(
320 inline_len);
321
322 ret = __btrfs_drop_extents(trans, root, inode, path,
323 start, aligned_end, NULL,
324 1, 1, extent_item_size, &extent_inserted);
00361589 325 if (ret) {
66642832 326 btrfs_abort_transaction(trans, ret);
00361589
JB
327 goto out;
328 }
c8b97818
CM
329
330 if (isize > actual_end)
331 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
332 ret = insert_inline_extent(trans, path, extent_inserted,
333 root, inode, start,
c8b97818 334 inline_len, compressed_size,
fe3f566c 335 compress_type, compressed_pages);
2adcac1a 336 if (ret && ret != -ENOSPC) {
66642832 337 btrfs_abort_transaction(trans, ret);
00361589 338 goto out;
2adcac1a 339 } else if (ret == -ENOSPC) {
00361589
JB
340 ret = 1;
341 goto out;
79787eaa 342 }
2adcac1a 343
bdc20e67 344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 346out:
94ed938a
QW
347 /*
348 * Don't forget to free the reserved space, as for inlined extent
349 * it won't count as data extent, free them directly here.
350 * And at reserve time, it's always aligned to page size, so
351 * just free one page here.
352 */
bc42bda2 353 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 354 btrfs_free_path(path);
3a45bb20 355 btrfs_end_transaction(trans);
00361589 356 return ret;
c8b97818
CM
357}
358
771ed689
CM
359struct async_extent {
360 u64 start;
361 u64 ram_size;
362 u64 compressed_size;
363 struct page **pages;
364 unsigned long nr_pages;
261507a0 365 int compress_type;
771ed689
CM
366 struct list_head list;
367};
368
369struct async_cow {
370 struct inode *inode;
600b6cf4 371 struct btrfs_fs_info *fs_info;
771ed689
CM
372 struct page *locked_page;
373 u64 start;
374 u64 end;
f82b7359 375 unsigned int write_flags;
771ed689
CM
376 struct list_head extents;
377 struct btrfs_work work;
378};
379
380static noinline int add_async_extent(struct async_cow *cow,
381 u64 start, u64 ram_size,
382 u64 compressed_size,
383 struct page **pages,
261507a0
LZ
384 unsigned long nr_pages,
385 int compress_type)
771ed689
CM
386{
387 struct async_extent *async_extent;
388
389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 390 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
391 async_extent->start = start;
392 async_extent->ram_size = ram_size;
393 async_extent->compressed_size = compressed_size;
394 async_extent->pages = pages;
395 async_extent->nr_pages = nr_pages;
261507a0 396 async_extent->compress_type = compress_type;
771ed689
CM
397 list_add_tail(&async_extent->list, &cow->extents);
398 return 0;
399}
400
c2fcdcdf 401static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 402{
0b246afa 403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
404
405 /* force compress */
0b246afa 406 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 407 return 1;
eec63c65
DS
408 /* defrag ioctl */
409 if (BTRFS_I(inode)->defrag_compress)
410 return 1;
f79707b0
WS
411 /* bad compression ratios */
412 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
413 return 0;
0b246afa 414 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 415 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 416 BTRFS_I(inode)->prop_compress)
c2fcdcdf 417 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
418 return 0;
419}
420
6158e1ce 421static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
422 u64 start, u64 end, u64 num_bytes, u64 small_write)
423{
424 /* If this is a small write inside eof, kick off a defrag */
425 if (num_bytes < small_write &&
6158e1ce 426 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
427 btrfs_add_inode_defrag(NULL, inode);
428}
429
d352ac68 430/*
771ed689
CM
431 * we create compressed extents in two phases. The first
432 * phase compresses a range of pages that have already been
433 * locked (both pages and state bits are locked).
c8b97818 434 *
771ed689
CM
435 * This is done inside an ordered work queue, and the compression
436 * is spread across many cpus. The actual IO submission is step
437 * two, and the ordered work queue takes care of making sure that
438 * happens in the same order things were put onto the queue by
439 * writepages and friends.
c8b97818 440 *
771ed689
CM
441 * If this code finds it can't get good compression, it puts an
442 * entry onto the work queue to write the uncompressed bytes. This
443 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
444 * are written in the same order that the flusher thread sent them
445 * down.
d352ac68 446 */
c44f649e 447static noinline void compress_file_range(struct inode *inode,
771ed689
CM
448 struct page *locked_page,
449 u64 start, u64 end,
450 struct async_cow *async_cow,
451 int *num_added)
b888db2b 452{
0b246afa 453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 454 u64 blocksize = fs_info->sectorsize;
c8b97818 455 u64 actual_end;
42dc7bab 456 u64 isize = i_size_read(inode);
e6dcd2dc 457 int ret = 0;
c8b97818
CM
458 struct page **pages = NULL;
459 unsigned long nr_pages;
c8b97818
CM
460 unsigned long total_compressed = 0;
461 unsigned long total_in = 0;
c8b97818
CM
462 int i;
463 int will_compress;
0b246afa 464 int compress_type = fs_info->compress_type;
4adaa611 465 int redirty = 0;
b888db2b 466
6158e1ce
NB
467 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
468 SZ_16K);
4cb5300b 469
42dc7bab 470 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
471again:
472 will_compress = 0;
09cbfeaf 473 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
474 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
475 nr_pages = min_t(unsigned long, nr_pages,
476 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 477
f03d9301
CM
478 /*
479 * we don't want to send crud past the end of i_size through
480 * compression, that's just a waste of CPU time. So, if the
481 * end of the file is before the start of our current
482 * requested range of bytes, we bail out to the uncompressed
483 * cleanup code that can deal with all of this.
484 *
485 * It isn't really the fastest way to fix things, but this is a
486 * very uncommon corner.
487 */
488 if (actual_end <= start)
489 goto cleanup_and_bail_uncompressed;
490
c8b97818
CM
491 total_compressed = actual_end - start;
492
4bcbb332
SW
493 /*
494 * skip compression for a small file range(<=blocksize) that
01327610 495 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
496 */
497 if (total_compressed <= blocksize &&
498 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
499 goto cleanup_and_bail_uncompressed;
500
069eac78
DS
501 total_compressed = min_t(unsigned long, total_compressed,
502 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
503 total_in = 0;
504 ret = 0;
db94535d 505
771ed689
CM
506 /*
507 * we do compression for mount -o compress and when the
508 * inode has not been flagged as nocompress. This flag can
509 * change at any time if we discover bad compression ratios.
c8b97818 510 */
c2fcdcdf 511 if (inode_need_compress(inode, start, end)) {
c8b97818 512 WARN_ON(pages);
31e818fe 513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
514 if (!pages) {
515 /* just bail out to the uncompressed code */
3527a018 516 nr_pages = 0;
560f7d75
LZ
517 goto cont;
518 }
c8b97818 519
eec63c65
DS
520 if (BTRFS_I(inode)->defrag_compress)
521 compress_type = BTRFS_I(inode)->defrag_compress;
522 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 523 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 524
4adaa611
CM
525 /*
526 * we need to call clear_page_dirty_for_io on each
527 * page in the range. Otherwise applications with the file
528 * mmap'd can wander in and change the page contents while
529 * we are compressing them.
530 *
531 * If the compression fails for any reason, we set the pages
532 * dirty again later on.
e9679de3
TT
533 *
534 * Note that the remaining part is redirtied, the start pointer
535 * has moved, the end is the original one.
4adaa611 536 */
e9679de3
TT
537 if (!redirty) {
538 extent_range_clear_dirty_for_io(inode, start, end);
539 redirty = 1;
540 }
f51d2b59
DS
541
542 /* Compression level is applied here and only here */
543 ret = btrfs_compress_pages(
544 compress_type | (fs_info->compress_level << 4),
261507a0 545 inode->i_mapping, start,
38c31464 546 pages,
4d3a800e 547 &nr_pages,
261507a0 548 &total_in,
e5d74902 549 &total_compressed);
c8b97818
CM
550
551 if (!ret) {
7073017a 552 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 553 struct page *page = pages[nr_pages - 1];
c8b97818
CM
554 char *kaddr;
555
556 /* zero the tail end of the last page, we might be
557 * sending it down to disk
558 */
559 if (offset) {
7ac687d9 560 kaddr = kmap_atomic(page);
c8b97818 561 memset(kaddr + offset, 0,
09cbfeaf 562 PAGE_SIZE - offset);
7ac687d9 563 kunmap_atomic(kaddr);
c8b97818
CM
564 }
565 will_compress = 1;
566 }
567 }
560f7d75 568cont:
c8b97818
CM
569 if (start == 0) {
570 /* lets try to make an inline extent */
6018ba0a 571 if (ret || total_in < actual_end) {
c8b97818 572 /* we didn't compress the entire range, try
771ed689 573 * to make an uncompressed inline extent.
c8b97818 574 */
d02c0e20
NB
575 ret = cow_file_range_inline(inode, start, end, 0,
576 BTRFS_COMPRESS_NONE, NULL);
c8b97818 577 } else {
771ed689 578 /* try making a compressed inline extent */
d02c0e20 579 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
580 total_compressed,
581 compress_type, pages);
c8b97818 582 }
79787eaa 583 if (ret <= 0) {
151a41bc 584 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
585 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
586 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
587 unsigned long page_error_op;
588
e6eb4314 589 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 590
771ed689 591 /*
79787eaa
JM
592 * inline extent creation worked or returned error,
593 * we don't need to create any more async work items.
594 * Unlock and free up our temp pages.
8b62f87b
JB
595 *
596 * We use DO_ACCOUNTING here because we need the
597 * delalloc_release_metadata to be done _after_ we drop
598 * our outstanding extent for clearing delalloc for this
599 * range.
771ed689 600 */
ba8b04c1
QW
601 extent_clear_unlock_delalloc(inode, start, end, end,
602 NULL, clear_flags,
603 PAGE_UNLOCK |
c2790a2e
JB
604 PAGE_CLEAR_DIRTY |
605 PAGE_SET_WRITEBACK |
e6eb4314 606 page_error_op |
c2790a2e 607 PAGE_END_WRITEBACK);
c8b97818
CM
608 goto free_pages_out;
609 }
610 }
611
612 if (will_compress) {
613 /*
614 * we aren't doing an inline extent round the compressed size
615 * up to a block size boundary so the allocator does sane
616 * things
617 */
fda2832f 618 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
619
620 /*
621 * one last check to make sure the compression is really a
170607eb
TT
622 * win, compare the page count read with the blocks on disk,
623 * compression must free at least one sector size
c8b97818 624 */
09cbfeaf 625 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 626 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
627 *num_added += 1;
628
629 /*
630 * The async work queues will take care of doing actual
631 * allocation on disk for these compressed pages, and
632 * will submit them to the elevator.
633 */
1170862d 634 add_async_extent(async_cow, start, total_in,
4d3a800e 635 total_compressed, pages, nr_pages,
c8bb0c8b
AS
636 compress_type);
637
1170862d
TT
638 if (start + total_in < end) {
639 start += total_in;
c8bb0c8b
AS
640 pages = NULL;
641 cond_resched();
642 goto again;
643 }
644 return;
c8b97818
CM
645 }
646 }
c8bb0c8b 647 if (pages) {
c8b97818
CM
648 /*
649 * the compression code ran but failed to make things smaller,
650 * free any pages it allocated and our page pointer array
651 */
4d3a800e 652 for (i = 0; i < nr_pages; i++) {
70b99e69 653 WARN_ON(pages[i]->mapping);
09cbfeaf 654 put_page(pages[i]);
c8b97818
CM
655 }
656 kfree(pages);
657 pages = NULL;
658 total_compressed = 0;
4d3a800e 659 nr_pages = 0;
c8b97818
CM
660
661 /* flag the file so we don't compress in the future */
0b246afa 662 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 663 !(BTRFS_I(inode)->prop_compress)) {
a555f810 664 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 665 }
c8b97818 666 }
f03d9301 667cleanup_and_bail_uncompressed:
c8bb0c8b
AS
668 /*
669 * No compression, but we still need to write the pages in the file
670 * we've been given so far. redirty the locked page if it corresponds
671 * to our extent and set things up for the async work queue to run
672 * cow_file_range to do the normal delalloc dance.
673 */
674 if (page_offset(locked_page) >= start &&
675 page_offset(locked_page) <= end)
676 __set_page_dirty_nobuffers(locked_page);
677 /* unlocked later on in the async handlers */
678
679 if (redirty)
680 extent_range_redirty_for_io(inode, start, end);
681 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
682 BTRFS_COMPRESS_NONE);
683 *num_added += 1;
3b951516 684
c44f649e 685 return;
771ed689
CM
686
687free_pages_out:
4d3a800e 688 for (i = 0; i < nr_pages; i++) {
771ed689 689 WARN_ON(pages[i]->mapping);
09cbfeaf 690 put_page(pages[i]);
771ed689 691 }
d397712b 692 kfree(pages);
771ed689 693}
771ed689 694
40ae837b
FM
695static void free_async_extent_pages(struct async_extent *async_extent)
696{
697 int i;
698
699 if (!async_extent->pages)
700 return;
701
702 for (i = 0; i < async_extent->nr_pages; i++) {
703 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 704 put_page(async_extent->pages[i]);
40ae837b
FM
705 }
706 kfree(async_extent->pages);
707 async_extent->nr_pages = 0;
708 async_extent->pages = NULL;
771ed689
CM
709}
710
711/*
712 * phase two of compressed writeback. This is the ordered portion
713 * of the code, which only gets called in the order the work was
714 * queued. We walk all the async extents created by compress_file_range
715 * and send them down to the disk.
716 */
dec8f175 717static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
718 struct async_cow *async_cow)
719{
0b246afa 720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
721 struct async_extent *async_extent;
722 u64 alloc_hint = 0;
771ed689
CM
723 struct btrfs_key ins;
724 struct extent_map *em;
725 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 726 struct extent_io_tree *io_tree;
f5a84ee3 727 int ret = 0;
771ed689 728
3e04e7f1 729again:
d397712b 730 while (!list_empty(&async_cow->extents)) {
771ed689
CM
731 async_extent = list_entry(async_cow->extents.next,
732 struct async_extent, list);
733 list_del(&async_extent->list);
c8b97818 734
771ed689
CM
735 io_tree = &BTRFS_I(inode)->io_tree;
736
f5a84ee3 737retry:
771ed689
CM
738 /* did the compression code fall back to uncompressed IO? */
739 if (!async_extent->pages) {
740 int page_started = 0;
741 unsigned long nr_written = 0;
742
743 lock_extent(io_tree, async_extent->start,
2ac55d41 744 async_extent->start +
d0082371 745 async_extent->ram_size - 1);
771ed689
CM
746
747 /* allocate blocks */
f5a84ee3
JB
748 ret = cow_file_range(inode, async_cow->locked_page,
749 async_extent->start,
750 async_extent->start +
751 async_extent->ram_size - 1,
dda3245e
WX
752 async_extent->start +
753 async_extent->ram_size - 1,
754 &page_started, &nr_written, 0,
755 NULL);
771ed689 756
79787eaa
JM
757 /* JDM XXX */
758
771ed689
CM
759 /*
760 * if page_started, cow_file_range inserted an
761 * inline extent and took care of all the unlocking
762 * and IO for us. Otherwise, we need to submit
763 * all those pages down to the drive.
764 */
f5a84ee3 765 if (!page_started && !ret)
5e3ee236
NB
766 extent_write_locked_range(inode,
767 async_extent->start,
d397712b 768 async_extent->start +
771ed689 769 async_extent->ram_size - 1,
771ed689 770 WB_SYNC_ALL);
3e04e7f1
JB
771 else if (ret)
772 unlock_page(async_cow->locked_page);
771ed689
CM
773 kfree(async_extent);
774 cond_resched();
775 continue;
776 }
777
778 lock_extent(io_tree, async_extent->start,
d0082371 779 async_extent->start + async_extent->ram_size - 1);
771ed689 780
18513091 781 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
782 async_extent->compressed_size,
783 async_extent->compressed_size,
e570fd27 784 0, alloc_hint, &ins, 1, 1);
f5a84ee3 785 if (ret) {
40ae837b 786 free_async_extent_pages(async_extent);
3e04e7f1 787
fdf8e2ea
JB
788 if (ret == -ENOSPC) {
789 unlock_extent(io_tree, async_extent->start,
790 async_extent->start +
791 async_extent->ram_size - 1);
ce62003f
LB
792
793 /*
794 * we need to redirty the pages if we decide to
795 * fallback to uncompressed IO, otherwise we
796 * will not submit these pages down to lower
797 * layers.
798 */
799 extent_range_redirty_for_io(inode,
800 async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1);
803
79787eaa 804 goto retry;
fdf8e2ea 805 }
3e04e7f1 806 goto out_free;
f5a84ee3 807 }
c2167754
YZ
808 /*
809 * here we're doing allocation and writeback of the
810 * compressed pages
811 */
6f9994db
LB
812 em = create_io_em(inode, async_extent->start,
813 async_extent->ram_size, /* len */
814 async_extent->start, /* orig_start */
815 ins.objectid, /* block_start */
816 ins.offset, /* block_len */
817 ins.offset, /* orig_block_len */
818 async_extent->ram_size, /* ram_bytes */
819 async_extent->compress_type,
820 BTRFS_ORDERED_COMPRESSED);
821 if (IS_ERR(em))
822 /* ret value is not necessary due to void function */
3e04e7f1 823 goto out_free_reserve;
6f9994db 824 free_extent_map(em);
3e04e7f1 825
261507a0
LZ
826 ret = btrfs_add_ordered_extent_compress(inode,
827 async_extent->start,
828 ins.objectid,
829 async_extent->ram_size,
830 ins.offset,
831 BTRFS_ORDERED_COMPRESSED,
832 async_extent->compress_type);
d9f85963 833 if (ret) {
dcdbc059
NB
834 btrfs_drop_extent_cache(BTRFS_I(inode),
835 async_extent->start,
d9f85963
FM
836 async_extent->start +
837 async_extent->ram_size - 1, 0);
3e04e7f1 838 goto out_free_reserve;
d9f85963 839 }
0b246afa 840 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 841
771ed689
CM
842 /*
843 * clear dirty, set writeback and unlock the pages.
844 */
c2790a2e 845 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
846 async_extent->start +
847 async_extent->ram_size - 1,
a791e35e
CM
848 async_extent->start +
849 async_extent->ram_size - 1,
151a41bc
JB
850 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 852 PAGE_SET_WRITEBACK);
4e4cbee9 853 if (btrfs_submit_compressed_write(inode,
d397712b
CM
854 async_extent->start,
855 async_extent->ram_size,
856 ins.objectid,
857 ins.offset, async_extent->pages,
f82b7359
LB
858 async_extent->nr_pages,
859 async_cow->write_flags)) {
fce2a4e6
FM
860 struct page *p = async_extent->pages[0];
861 const u64 start = async_extent->start;
862 const u64 end = start + async_extent->ram_size - 1;
863
864 p->mapping = inode->i_mapping;
c629732d 865 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 866
fce2a4e6 867 p->mapping = NULL;
ba8b04c1
QW
868 extent_clear_unlock_delalloc(inode, start, end, end,
869 NULL, 0,
fce2a4e6
FM
870 PAGE_END_WRITEBACK |
871 PAGE_SET_ERROR);
40ae837b 872 free_async_extent_pages(async_extent);
fce2a4e6 873 }
771ed689
CM
874 alloc_hint = ins.objectid + ins.offset;
875 kfree(async_extent);
876 cond_resched();
877 }
dec8f175 878 return;
3e04e7f1 879out_free_reserve:
0b246afa 880 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 881 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 882out_free:
c2790a2e 883 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
884 async_extent->start +
885 async_extent->ram_size - 1,
3e04e7f1
JB
886 async_extent->start +
887 async_extent->ram_size - 1,
c2790a2e 888 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 889 EXTENT_DELALLOC_NEW |
151a41bc
JB
890 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
891 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
892 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
893 PAGE_SET_ERROR);
40ae837b 894 free_async_extent_pages(async_extent);
79787eaa 895 kfree(async_extent);
3e04e7f1 896 goto again;
771ed689
CM
897}
898
4b46fce2
JB
899static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
900 u64 num_bytes)
901{
902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 struct extent_map *em;
904 u64 alloc_hint = 0;
905
906 read_lock(&em_tree->lock);
907 em = search_extent_mapping(em_tree, start, num_bytes);
908 if (em) {
909 /*
910 * if block start isn't an actual block number then find the
911 * first block in this inode and use that as a hint. If that
912 * block is also bogus then just don't worry about it.
913 */
914 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
915 free_extent_map(em);
916 em = search_extent_mapping(em_tree, 0, 0);
917 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
918 alloc_hint = em->block_start;
919 if (em)
920 free_extent_map(em);
921 } else {
922 alloc_hint = em->block_start;
923 free_extent_map(em);
924 }
925 }
926 read_unlock(&em_tree->lock);
927
928 return alloc_hint;
929}
930
771ed689
CM
931/*
932 * when extent_io.c finds a delayed allocation range in the file,
933 * the call backs end up in this code. The basic idea is to
934 * allocate extents on disk for the range, and create ordered data structs
935 * in ram to track those extents.
936 *
937 * locked_page is the page that writepage had locked already. We use
938 * it to make sure we don't do extra locks or unlocks.
939 *
940 * *page_started is set to one if we unlock locked_page and do everything
941 * required to start IO on it. It may be clean and already done with
942 * IO when we return.
943 */
00361589
JB
944static noinline int cow_file_range(struct inode *inode,
945 struct page *locked_page,
dda3245e
WX
946 u64 start, u64 end, u64 delalloc_end,
947 int *page_started, unsigned long *nr_written,
948 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 949{
0b246afa 950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 951 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
952 u64 alloc_hint = 0;
953 u64 num_bytes;
954 unsigned long ram_size;
a315e68f 955 u64 cur_alloc_size = 0;
0b246afa 956 u64 blocksize = fs_info->sectorsize;
771ed689
CM
957 struct btrfs_key ins;
958 struct extent_map *em;
a315e68f
FM
959 unsigned clear_bits;
960 unsigned long page_ops;
961 bool extent_reserved = false;
771ed689
CM
962 int ret = 0;
963
70ddc553 964 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 965 WARN_ON_ONCE(1);
29bce2f3
JB
966 ret = -EINVAL;
967 goto out_unlock;
02ecd2c2 968 }
771ed689 969
fda2832f 970 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 971 num_bytes = max(blocksize, num_bytes);
566b1760 972 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 973
6158e1ce 974 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 975
771ed689
CM
976 if (start == 0) {
977 /* lets try to make an inline extent */
d02c0e20
NB
978 ret = cow_file_range_inline(inode, start, end, 0,
979 BTRFS_COMPRESS_NONE, NULL);
771ed689 980 if (ret == 0) {
8b62f87b
JB
981 /*
982 * We use DO_ACCOUNTING here because we need the
983 * delalloc_release_metadata to be run _after_ we drop
984 * our outstanding extent for clearing delalloc for this
985 * range.
986 */
ba8b04c1
QW
987 extent_clear_unlock_delalloc(inode, start, end,
988 delalloc_end, NULL,
c2790a2e 989 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
990 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
991 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
992 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
993 PAGE_END_WRITEBACK);
771ed689 994 *nr_written = *nr_written +
09cbfeaf 995 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 996 *page_started = 1;
771ed689 997 goto out;
79787eaa 998 } else if (ret < 0) {
79787eaa 999 goto out_unlock;
771ed689
CM
1000 }
1001 }
1002
4b46fce2 1003 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1004 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1005 start + num_bytes - 1, 0);
771ed689 1006
3752d22f
AJ
1007 while (num_bytes > 0) {
1008 cur_alloc_size = num_bytes;
18513091 1009 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1010 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1011 &ins, 1, 1);
00361589 1012 if (ret < 0)
79787eaa 1013 goto out_unlock;
a315e68f
FM
1014 cur_alloc_size = ins.offset;
1015 extent_reserved = true;
d397712b 1016
771ed689 1017 ram_size = ins.offset;
6f9994db
LB
1018 em = create_io_em(inode, start, ins.offset, /* len */
1019 start, /* orig_start */
1020 ins.objectid, /* block_start */
1021 ins.offset, /* block_len */
1022 ins.offset, /* orig_block_len */
1023 ram_size, /* ram_bytes */
1024 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1025 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1026 if (IS_ERR(em)) {
1027 ret = PTR_ERR(em);
ace68bac 1028 goto out_reserve;
090a127a 1029 }
6f9994db 1030 free_extent_map(em);
e6dcd2dc 1031
e6dcd2dc 1032 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1033 ram_size, cur_alloc_size, 0);
ace68bac 1034 if (ret)
d9f85963 1035 goto out_drop_extent_cache;
c8b97818 1036
17d217fe
YZ
1037 if (root->root_key.objectid ==
1038 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1039 ret = btrfs_reloc_clone_csums(inode, start,
1040 cur_alloc_size);
4dbd80fb
QW
1041 /*
1042 * Only drop cache here, and process as normal.
1043 *
1044 * We must not allow extent_clear_unlock_delalloc()
1045 * at out_unlock label to free meta of this ordered
1046 * extent, as its meta should be freed by
1047 * btrfs_finish_ordered_io().
1048 *
1049 * So we must continue until @start is increased to
1050 * skip current ordered extent.
1051 */
00361589 1052 if (ret)
4dbd80fb
QW
1053 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1054 start + ram_size - 1, 0);
17d217fe
YZ
1055 }
1056
0b246afa 1057 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1058
c8b97818
CM
1059 /* we're not doing compressed IO, don't unlock the first
1060 * page (which the caller expects to stay locked), don't
1061 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1062 *
1063 * Do set the Private2 bit so we know this page was properly
1064 * setup for writepage
c8b97818 1065 */
a315e68f
FM
1066 page_ops = unlock ? PAGE_UNLOCK : 0;
1067 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1068
c2790a2e 1069 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1070 start + ram_size - 1,
1071 delalloc_end, locked_page,
c2790a2e 1072 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1073 page_ops);
3752d22f
AJ
1074 if (num_bytes < cur_alloc_size)
1075 num_bytes = 0;
4dbd80fb 1076 else
3752d22f 1077 num_bytes -= cur_alloc_size;
c59f8951
CM
1078 alloc_hint = ins.objectid + ins.offset;
1079 start += cur_alloc_size;
a315e68f 1080 extent_reserved = false;
4dbd80fb
QW
1081
1082 /*
1083 * btrfs_reloc_clone_csums() error, since start is increased
1084 * extent_clear_unlock_delalloc() at out_unlock label won't
1085 * free metadata of current ordered extent, we're OK to exit.
1086 */
1087 if (ret)
1088 goto out_unlock;
b888db2b 1089 }
79787eaa 1090out:
be20aa9d 1091 return ret;
b7d5b0a8 1092
d9f85963 1093out_drop_extent_cache:
dcdbc059 1094 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1095out_reserve:
0b246afa 1096 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1097 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1098out_unlock:
a7e3b975
FM
1099 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1100 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1101 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1102 PAGE_END_WRITEBACK;
1103 /*
1104 * If we reserved an extent for our delalloc range (or a subrange) and
1105 * failed to create the respective ordered extent, then it means that
1106 * when we reserved the extent we decremented the extent's size from
1107 * the data space_info's bytes_may_use counter and incremented the
1108 * space_info's bytes_reserved counter by the same amount. We must make
1109 * sure extent_clear_unlock_delalloc() does not try to decrement again
1110 * the data space_info's bytes_may_use counter, therefore we do not pass
1111 * it the flag EXTENT_CLEAR_DATA_RESV.
1112 */
1113 if (extent_reserved) {
1114 extent_clear_unlock_delalloc(inode, start,
1115 start + cur_alloc_size,
1116 start + cur_alloc_size,
1117 locked_page,
1118 clear_bits,
1119 page_ops);
1120 start += cur_alloc_size;
1121 if (start >= end)
1122 goto out;
1123 }
ba8b04c1
QW
1124 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1125 locked_page,
a315e68f
FM
1126 clear_bits | EXTENT_CLEAR_DATA_RESV,
1127 page_ops);
79787eaa 1128 goto out;
771ed689 1129}
c8b97818 1130
771ed689
CM
1131/*
1132 * work queue call back to started compression on a file and pages
1133 */
1134static noinline void async_cow_start(struct btrfs_work *work)
1135{
1136 struct async_cow *async_cow;
1137 int num_added = 0;
1138 async_cow = container_of(work, struct async_cow, work);
1139
1140 compress_file_range(async_cow->inode, async_cow->locked_page,
1141 async_cow->start, async_cow->end, async_cow,
1142 &num_added);
8180ef88 1143 if (num_added == 0) {
cb77fcd8 1144 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1145 async_cow->inode = NULL;
8180ef88 1146 }
771ed689
CM
1147}
1148
1149/*
1150 * work queue call back to submit previously compressed pages
1151 */
1152static noinline void async_cow_submit(struct btrfs_work *work)
1153{
0b246afa 1154 struct btrfs_fs_info *fs_info;
771ed689 1155 struct async_cow *async_cow;
771ed689
CM
1156 unsigned long nr_pages;
1157
1158 async_cow = container_of(work, struct async_cow, work);
1159
600b6cf4 1160 fs_info = async_cow->fs_info;
09cbfeaf
KS
1161 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1162 PAGE_SHIFT;
771ed689 1163
093258e6 1164 /* atomic_sub_return implies a barrier */
0b246afa 1165 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1166 5 * SZ_1M)
1167 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1168
d397712b 1169 if (async_cow->inode)
771ed689 1170 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1171}
c8b97818 1172
771ed689
CM
1173static noinline void async_cow_free(struct btrfs_work *work)
1174{
1175 struct async_cow *async_cow;
1176 async_cow = container_of(work, struct async_cow, work);
8180ef88 1177 if (async_cow->inode)
cb77fcd8 1178 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1179 kfree(async_cow);
1180}
1181
1182static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1183 u64 start, u64 end, int *page_started,
f82b7359
LB
1184 unsigned long *nr_written,
1185 unsigned int write_flags)
771ed689 1186{
0b246afa 1187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689 1188 struct async_cow *async_cow;
771ed689
CM
1189 unsigned long nr_pages;
1190 u64 cur_end;
771ed689 1191
a3429ab7 1192 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1193 1, 0, NULL);
d397712b 1194 while (start < end) {
771ed689 1195 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1196 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1197 async_cow->inode = igrab(inode);
600b6cf4 1198 async_cow->fs_info = fs_info;
771ed689
CM
1199 async_cow->locked_page = locked_page;
1200 async_cow->start = start;
f82b7359 1201 async_cow->write_flags = write_flags;
771ed689 1202
f79707b0 1203 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1204 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1205 cur_end = end;
1206 else
ee22184b 1207 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1208
1209 async_cow->end = cur_end;
1210 INIT_LIST_HEAD(&async_cow->extents);
1211
9e0af237
LB
1212 btrfs_init_work(&async_cow->work,
1213 btrfs_delalloc_helper,
1214 async_cow_start, async_cow_submit,
1215 async_cow_free);
771ed689 1216
09cbfeaf
KS
1217 nr_pages = (cur_end - start + PAGE_SIZE) >>
1218 PAGE_SHIFT;
0b246afa 1219 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1220
0b246afa 1221 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1222
771ed689
CM
1223 *nr_written += nr_pages;
1224 start = cur_end + 1;
1225 }
1226 *page_started = 1;
1227 return 0;
be20aa9d
CM
1228}
1229
2ff7e61e 1230static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1231 u64 bytenr, u64 num_bytes)
1232{
1233 int ret;
1234 struct btrfs_ordered_sum *sums;
1235 LIST_HEAD(list);
1236
0b246afa 1237 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1238 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1239 if (ret == 0 && list_empty(&list))
1240 return 0;
1241
1242 while (!list_empty(&list)) {
1243 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1244 list_del(&sums->list);
1245 kfree(sums);
1246 }
58113753
LB
1247 if (ret < 0)
1248 return ret;
17d217fe
YZ
1249 return 1;
1250}
1251
d352ac68
CM
1252/*
1253 * when nowcow writeback call back. This checks for snapshots or COW copies
1254 * of the extents that exist in the file, and COWs the file as required.
1255 *
1256 * If no cow copies or snapshots exist, we write directly to the existing
1257 * blocks on disk
1258 */
7f366cfe
CM
1259static noinline int run_delalloc_nocow(struct inode *inode,
1260 struct page *locked_page,
771ed689
CM
1261 u64 start, u64 end, int *page_started, int force,
1262 unsigned long *nr_written)
be20aa9d 1263{
0b246afa 1264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1265 struct btrfs_root *root = BTRFS_I(inode)->root;
1266 struct extent_buffer *leaf;
be20aa9d 1267 struct btrfs_path *path;
80ff3856 1268 struct btrfs_file_extent_item *fi;
be20aa9d 1269 struct btrfs_key found_key;
6f9994db 1270 struct extent_map *em;
80ff3856
YZ
1271 u64 cow_start;
1272 u64 cur_offset;
1273 u64 extent_end;
5d4f98a2 1274 u64 extent_offset;
80ff3856
YZ
1275 u64 disk_bytenr;
1276 u64 num_bytes;
b4939680 1277 u64 disk_num_bytes;
cc95bef6 1278 u64 ram_bytes;
80ff3856 1279 int extent_type;
8ecebf4d 1280 int ret;
d899e052 1281 int type;
80ff3856
YZ
1282 int nocow;
1283 int check_prev = 1;
82d5902d 1284 bool nolock;
4a0cc7ca 1285 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1286
1287 path = btrfs_alloc_path();
17ca04af 1288 if (!path) {
ba8b04c1
QW
1289 extent_clear_unlock_delalloc(inode, start, end, end,
1290 locked_page,
c2790a2e 1291 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1292 EXTENT_DO_ACCOUNTING |
1293 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1294 PAGE_CLEAR_DIRTY |
1295 PAGE_SET_WRITEBACK |
1296 PAGE_END_WRITEBACK);
d8926bb3 1297 return -ENOMEM;
17ca04af 1298 }
82d5902d 1299
70ddc553 1300 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1301
80ff3856
YZ
1302 cow_start = (u64)-1;
1303 cur_offset = start;
1304 while (1) {
e4c3b2dc 1305 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1306 cur_offset, 0);
d788a349 1307 if (ret < 0)
79787eaa 1308 goto error;
80ff3856
YZ
1309 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 leaf = path->nodes[0];
1311 btrfs_item_key_to_cpu(leaf, &found_key,
1312 path->slots[0] - 1);
33345d01 1313 if (found_key.objectid == ino &&
80ff3856
YZ
1314 found_key.type == BTRFS_EXTENT_DATA_KEY)
1315 path->slots[0]--;
1316 }
1317 check_prev = 0;
1318next_slot:
1319 leaf = path->nodes[0];
1320 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 ret = btrfs_next_leaf(root, path);
e8916699
LB
1322 if (ret < 0) {
1323 if (cow_start != (u64)-1)
1324 cur_offset = cow_start;
79787eaa 1325 goto error;
e8916699 1326 }
80ff3856
YZ
1327 if (ret > 0)
1328 break;
1329 leaf = path->nodes[0];
1330 }
be20aa9d 1331
80ff3856
YZ
1332 nocow = 0;
1333 disk_bytenr = 0;
17d217fe 1334 num_bytes = 0;
80ff3856
YZ
1335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1336
1d512cb7
FM
1337 if (found_key.objectid > ino)
1338 break;
1339 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1340 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1341 path->slots[0]++;
1342 goto next_slot;
1343 }
1344 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1345 found_key.offset > end)
1346 break;
1347
1348 if (found_key.offset > cur_offset) {
1349 extent_end = found_key.offset;
e9061e21 1350 extent_type = 0;
80ff3856
YZ
1351 goto out_check;
1352 }
1353
1354 fi = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_file_extent_item);
1356 extent_type = btrfs_file_extent_type(leaf, fi);
1357
cc95bef6 1358 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1359 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1360 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1361 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1362 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1363 extent_end = found_key.offset +
1364 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1365 disk_num_bytes =
1366 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1367 if (extent_end <= start) {
1368 path->slots[0]++;
1369 goto next_slot;
1370 }
17d217fe
YZ
1371 if (disk_bytenr == 0)
1372 goto out_check;
80ff3856
YZ
1373 if (btrfs_file_extent_compression(leaf, fi) ||
1374 btrfs_file_extent_encryption(leaf, fi) ||
1375 btrfs_file_extent_other_encoding(leaf, fi))
1376 goto out_check;
78d4295b
EL
1377 /*
1378 * Do the same check as in btrfs_cross_ref_exist but
1379 * without the unnecessary search.
1380 */
27a7ff55
LF
1381 if (!nolock &&
1382 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1383 btrfs_root_last_snapshot(&root->root_item))
1384 goto out_check;
d899e052
YZ
1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 goto out_check;
2ff7e61e 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1388 goto out_check;
58113753
LB
1389 ret = btrfs_cross_ref_exist(root, ino,
1390 found_key.offset -
1391 extent_offset, disk_bytenr);
1392 if (ret) {
1393 /*
1394 * ret could be -EIO if the above fails to read
1395 * metadata.
1396 */
1397 if (ret < 0) {
1398 if (cow_start != (u64)-1)
1399 cur_offset = cow_start;
1400 goto error;
1401 }
1402
1403 WARN_ON_ONCE(nolock);
17d217fe 1404 goto out_check;
58113753 1405 }
5d4f98a2 1406 disk_bytenr += extent_offset;
17d217fe
YZ
1407 disk_bytenr += cur_offset - found_key.offset;
1408 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1409 /*
1410 * if there are pending snapshots for this root,
1411 * we fall into common COW way.
1412 */
8ecebf4d
RK
1413 if (!nolock && atomic_read(&root->snapshot_force_cow))
1414 goto out_check;
17d217fe
YZ
1415 /*
1416 * force cow if csum exists in the range.
1417 * this ensure that csum for a given extent are
1418 * either valid or do not exist.
1419 */
58113753
LB
1420 ret = csum_exist_in_range(fs_info, disk_bytenr,
1421 num_bytes);
1422 if (ret) {
58113753
LB
1423 /*
1424 * ret could be -EIO if the above fails to read
1425 * metadata.
1426 */
1427 if (ret < 0) {
1428 if (cow_start != (u64)-1)
1429 cur_offset = cow_start;
1430 goto error;
1431 }
1432 WARN_ON_ONCE(nolock);
17d217fe 1433 goto out_check;
91e1f56a 1434 }
8ecebf4d 1435 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1436 goto out_check;
80ff3856
YZ
1437 nocow = 1;
1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 extent_end = found_key.offset +
e41ca589 1440 btrfs_file_extent_ram_bytes(leaf, fi);
da17066c 1441 extent_end = ALIGN(extent_end,
0b246afa 1442 fs_info->sectorsize);
80ff3856
YZ
1443 } else {
1444 BUG_ON(1);
1445 }
1446out_check:
1447 if (extent_end <= start) {
1448 path->slots[0]++;
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1451 goto next_slot;
1452 }
1453 if (!nocow) {
1454 if (cow_start == (u64)-1)
1455 cow_start = cur_offset;
1456 cur_offset = extent_end;
1457 if (cur_offset > end)
1458 break;
1459 path->slots[0]++;
1460 goto next_slot;
7ea394f1
YZ
1461 }
1462
b3b4aa74 1463 btrfs_release_path(path);
80ff3856 1464 if (cow_start != (u64)-1) {
00361589
JB
1465 ret = cow_file_range(inode, locked_page,
1466 cow_start, found_key.offset - 1,
dda3245e
WX
1467 end, page_started, nr_written, 1,
1468 NULL);
e9894fd3 1469 if (ret) {
f78c436c 1470 if (nocow)
0b246afa 1471 btrfs_dec_nocow_writers(fs_info,
f78c436c 1472 disk_bytenr);
79787eaa 1473 goto error;
e9894fd3 1474 }
80ff3856 1475 cow_start = (u64)-1;
7ea394f1 1476 }
80ff3856 1477
d899e052 1478 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1479 u64 orig_start = found_key.offset - extent_offset;
1480
1481 em = create_io_em(inode, cur_offset, num_bytes,
1482 orig_start,
1483 disk_bytenr, /* block_start */
1484 num_bytes, /* block_len */
1485 disk_num_bytes, /* orig_block_len */
1486 ram_bytes, BTRFS_COMPRESS_NONE,
1487 BTRFS_ORDERED_PREALLOC);
1488 if (IS_ERR(em)) {
6f9994db
LB
1489 if (nocow)
1490 btrfs_dec_nocow_writers(fs_info,
1491 disk_bytenr);
1492 ret = PTR_ERR(em);
1493 goto error;
d899e052 1494 }
6f9994db
LB
1495 free_extent_map(em);
1496 }
1497
1498 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1499 type = BTRFS_ORDERED_PREALLOC;
1500 } else {
1501 type = BTRFS_ORDERED_NOCOW;
1502 }
80ff3856
YZ
1503
1504 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1505 num_bytes, num_bytes, type);
f78c436c 1506 if (nocow)
0b246afa 1507 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1508 BUG_ON(ret); /* -ENOMEM */
771ed689 1509
efa56464 1510 if (root->root_key.objectid ==
4dbd80fb
QW
1511 BTRFS_DATA_RELOC_TREE_OBJECTID)
1512 /*
1513 * Error handled later, as we must prevent
1514 * extent_clear_unlock_delalloc() in error handler
1515 * from freeing metadata of created ordered extent.
1516 */
efa56464
YZ
1517 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1518 num_bytes);
efa56464 1519
c2790a2e 1520 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1521 cur_offset + num_bytes - 1, end,
c2790a2e 1522 locked_page, EXTENT_LOCKED |
18513091
WX
1523 EXTENT_DELALLOC |
1524 EXTENT_CLEAR_DATA_RESV,
1525 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1526
80ff3856 1527 cur_offset = extent_end;
4dbd80fb
QW
1528
1529 /*
1530 * btrfs_reloc_clone_csums() error, now we're OK to call error
1531 * handler, as metadata for created ordered extent will only
1532 * be freed by btrfs_finish_ordered_io().
1533 */
1534 if (ret)
1535 goto error;
80ff3856
YZ
1536 if (cur_offset > end)
1537 break;
be20aa9d 1538 }
b3b4aa74 1539 btrfs_release_path(path);
80ff3856 1540
506481b2 1541 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1542 cow_start = cur_offset;
17ca04af 1543
80ff3856 1544 if (cow_start != (u64)-1) {
506481b2 1545 cur_offset = end;
dda3245e
WX
1546 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1547 page_started, nr_written, 1, NULL);
d788a349 1548 if (ret)
79787eaa 1549 goto error;
80ff3856
YZ
1550 }
1551
79787eaa 1552error:
17ca04af 1553 if (ret && cur_offset < end)
ba8b04c1 1554 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1555 locked_page, EXTENT_LOCKED |
151a41bc
JB
1556 EXTENT_DELALLOC | EXTENT_DEFRAG |
1557 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1558 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1559 PAGE_SET_WRITEBACK |
1560 PAGE_END_WRITEBACK);
7ea394f1 1561 btrfs_free_path(path);
79787eaa 1562 return ret;
be20aa9d
CM
1563}
1564
47059d93
WS
1565static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1566{
1567
1568 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1569 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1570 return 0;
1571
1572 /*
1573 * @defrag_bytes is a hint value, no spinlock held here,
1574 * if is not zero, it means the file is defragging.
1575 * Force cow if given extent needs to be defragged.
1576 */
1577 if (BTRFS_I(inode)->defrag_bytes &&
1578 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1579 EXTENT_DEFRAG, 0, NULL))
1580 return 1;
1581
1582 return 0;
1583}
1584
d352ac68 1585/*
5eaad97a
NB
1586 * Function to process delayed allocation (create CoW) for ranges which are
1587 * being touched for the first time.
d352ac68 1588 */
bc9a8bf7 1589int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
5eaad97a
NB
1590 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1591 struct writeback_control *wbc)
be20aa9d 1592{
be20aa9d 1593 int ret;
47059d93 1594 int force_cow = need_force_cow(inode, start, end);
f82b7359 1595 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1596
47059d93 1597 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1598 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1599 page_started, 1, nr_written);
47059d93 1600 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1601 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1602 page_started, 0, nr_written);
c2fcdcdf 1603 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1604 ret = cow_file_range(inode, locked_page, start, end, end,
1605 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1606 } else {
1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1608 &BTRFS_I(inode)->runtime_flags);
771ed689 1609 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1610 page_started, nr_written,
1611 write_flags);
7ddf5a42 1612 }
52427260 1613 if (ret)
d1051d6e
NB
1614 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1615 end - start + 1);
b888db2b
CM
1616 return ret;
1617}
1618
abbb55f4
NB
1619void btrfs_split_delalloc_extent(struct inode *inode,
1620 struct extent_state *orig, u64 split)
9ed74f2d 1621{
dcab6a3b
JB
1622 u64 size;
1623
0ca1f7ce 1624 /* not delalloc, ignore it */
9ed74f2d 1625 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1626 return;
9ed74f2d 1627
dcab6a3b
JB
1628 size = orig->end - orig->start + 1;
1629 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1630 u32 num_extents;
dcab6a3b
JB
1631 u64 new_size;
1632
1633 /*
5c848198 1634 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1635 * applies here, just in reverse.
dcab6a3b
JB
1636 */
1637 new_size = orig->end - split + 1;
823bb20a 1638 num_extents = count_max_extents(new_size);
ba117213 1639 new_size = split - orig->start;
823bb20a
DS
1640 num_extents += count_max_extents(new_size);
1641 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1642 return;
1643 }
1644
9e0baf60 1645 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1646 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1647 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1648}
1649
1650/*
5c848198
NB
1651 * Handle merged delayed allocation extents so we can keep track of new extents
1652 * that are just merged onto old extents, such as when we are doing sequential
1653 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1654 */
5c848198
NB
1655void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1656 struct extent_state *other)
9ed74f2d 1657{
dcab6a3b 1658 u64 new_size, old_size;
823bb20a 1659 u32 num_extents;
dcab6a3b 1660
9ed74f2d
JB
1661 /* not delalloc, ignore it */
1662 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1663 return;
9ed74f2d 1664
8461a3de
JB
1665 if (new->start > other->start)
1666 new_size = new->end - other->start + 1;
1667 else
1668 new_size = other->end - new->start + 1;
dcab6a3b
JB
1669
1670 /* we're not bigger than the max, unreserve the space and go */
1671 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1672 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1673 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1674 spin_unlock(&BTRFS_I(inode)->lock);
1675 return;
1676 }
1677
1678 /*
ba117213
JB
1679 * We have to add up either side to figure out how many extents were
1680 * accounted for before we merged into one big extent. If the number of
1681 * extents we accounted for is <= the amount we need for the new range
1682 * then we can return, otherwise drop. Think of it like this
1683 *
1684 * [ 4k][MAX_SIZE]
1685 *
1686 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1687 * need 2 outstanding extents, on one side we have 1 and the other side
1688 * we have 1 so they are == and we can return. But in this case
1689 *
1690 * [MAX_SIZE+4k][MAX_SIZE+4k]
1691 *
1692 * Each range on their own accounts for 2 extents, but merged together
1693 * they are only 3 extents worth of accounting, so we need to drop in
1694 * this case.
dcab6a3b 1695 */
ba117213 1696 old_size = other->end - other->start + 1;
823bb20a 1697 num_extents = count_max_extents(old_size);
ba117213 1698 old_size = new->end - new->start + 1;
823bb20a
DS
1699 num_extents += count_max_extents(old_size);
1700 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1701 return;
1702
9e0baf60 1703 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1704 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1705 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1706}
1707
eb73c1b7
MX
1708static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1709 struct inode *inode)
1710{
0b246afa
JM
1711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1712
eb73c1b7
MX
1713 spin_lock(&root->delalloc_lock);
1714 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1715 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1716 &root->delalloc_inodes);
1717 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1718 &BTRFS_I(inode)->runtime_flags);
1719 root->nr_delalloc_inodes++;
1720 if (root->nr_delalloc_inodes == 1) {
0b246afa 1721 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1722 BUG_ON(!list_empty(&root->delalloc_root));
1723 list_add_tail(&root->delalloc_root,
0b246afa
JM
1724 &fs_info->delalloc_roots);
1725 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1726 }
1727 }
1728 spin_unlock(&root->delalloc_lock);
1729}
1730
2b877331
NB
1731
1732void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1733 struct btrfs_inode *inode)
eb73c1b7 1734{
3ffbd68c 1735 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1736
9e3e97f4
NB
1737 if (!list_empty(&inode->delalloc_inodes)) {
1738 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1739 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1740 &inode->runtime_flags);
eb73c1b7
MX
1741 root->nr_delalloc_inodes--;
1742 if (!root->nr_delalloc_inodes) {
7c8a0d36 1743 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1744 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1745 BUG_ON(list_empty(&root->delalloc_root));
1746 list_del_init(&root->delalloc_root);
0b246afa 1747 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1748 }
1749 }
2b877331
NB
1750}
1751
1752static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1753 struct btrfs_inode *inode)
1754{
1755 spin_lock(&root->delalloc_lock);
1756 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1757 spin_unlock(&root->delalloc_lock);
1758}
1759
d352ac68 1760/*
e06a1fc9
NB
1761 * Properly track delayed allocation bytes in the inode and to maintain the
1762 * list of inodes that have pending delalloc work to be done.
d352ac68 1763 */
e06a1fc9
NB
1764void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1765 unsigned *bits)
291d673e 1766{
0b246afa
JM
1767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1768
47059d93
WS
1769 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1770 WARN_ON(1);
75eff68e
CM
1771 /*
1772 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1773 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1774 * bit, which is only set or cleared with irqs on
1775 */
0ca1f7ce 1776 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1777 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1778 u64 len = state->end + 1 - state->start;
8b62f87b 1779 u32 num_extents = count_max_extents(len);
70ddc553 1780 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1781
8b62f87b
JB
1782 spin_lock(&BTRFS_I(inode)->lock);
1783 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1784 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1785
6a3891c5 1786 /* For sanity tests */
0b246afa 1787 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1788 return;
1789
104b4e51
NB
1790 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1791 fs_info->delalloc_batch);
df0af1a5 1792 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1793 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1794 if (*bits & EXTENT_DEFRAG)
1795 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1796 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1797 &BTRFS_I(inode)->runtime_flags))
1798 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1799 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1800 }
a7e3b975
FM
1801
1802 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1803 (*bits & EXTENT_DELALLOC_NEW)) {
1804 spin_lock(&BTRFS_I(inode)->lock);
1805 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1806 state->start;
1807 spin_unlock(&BTRFS_I(inode)->lock);
1808 }
291d673e
CM
1809}
1810
d352ac68 1811/*
a36bb5f9
NB
1812 * Once a range is no longer delalloc this function ensures that proper
1813 * accounting happens.
d352ac68 1814 */
a36bb5f9
NB
1815void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1816 struct extent_state *state, unsigned *bits)
291d673e 1817{
a36bb5f9
NB
1818 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1819 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 1820 u64 len = state->end + 1 - state->start;
823bb20a 1821 u32 num_extents = count_max_extents(len);
47059d93 1822
4a4b964f
FM
1823 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1824 spin_lock(&inode->lock);
6fc0ef68 1825 inode->defrag_bytes -= len;
4a4b964f
FM
1826 spin_unlock(&inode->lock);
1827 }
47059d93 1828
75eff68e
CM
1829 /*
1830 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1831 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1832 * bit, which is only set or cleared with irqs on
1833 */
0ca1f7ce 1834 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1835 struct btrfs_root *root = inode->root;
83eea1f1 1836 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1837
8b62f87b
JB
1838 spin_lock(&inode->lock);
1839 btrfs_mod_outstanding_extents(inode, -num_extents);
1840 spin_unlock(&inode->lock);
0ca1f7ce 1841
b6d08f06
JB
1842 /*
1843 * We don't reserve metadata space for space cache inodes so we
52042d8e 1844 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
1845 * error.
1846 */
a315e68f 1847 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1848 root != fs_info->tree_root)
43b18595 1849 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1850
6a3891c5 1851 /* For sanity tests. */
0b246afa 1852 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1853 return;
1854
a315e68f
FM
1855 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1856 do_list && !(state->state & EXTENT_NORESERVE) &&
1857 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1858 btrfs_free_reserved_data_space_noquota(
1859 &inode->vfs_inode,
51773bec 1860 state->start, len);
9ed74f2d 1861
104b4e51
NB
1862 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1863 fs_info->delalloc_batch);
6fc0ef68
NB
1864 spin_lock(&inode->lock);
1865 inode->delalloc_bytes -= len;
1866 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1867 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1868 &inode->runtime_flags))
eb73c1b7 1869 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1870 spin_unlock(&inode->lock);
291d673e 1871 }
a7e3b975
FM
1872
1873 if ((state->state & EXTENT_DELALLOC_NEW) &&
1874 (*bits & EXTENT_DELALLOC_NEW)) {
1875 spin_lock(&inode->lock);
1876 ASSERT(inode->new_delalloc_bytes >= len);
1877 inode->new_delalloc_bytes -= len;
1878 spin_unlock(&inode->lock);
1879 }
291d673e
CM
1880}
1881
d352ac68 1882/*
da12fe54
NB
1883 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1884 * in a chunk's stripe. This function ensures that bios do not span a
1885 * stripe/chunk
6f034ece 1886 *
da12fe54
NB
1887 * @page - The page we are about to add to the bio
1888 * @size - size we want to add to the bio
1889 * @bio - bio we want to ensure is smaller than a stripe
1890 * @bio_flags - flags of the bio
1891 *
1892 * return 1 if page cannot be added to the bio
1893 * return 0 if page can be added to the bio
6f034ece 1894 * return error otherwise
d352ac68 1895 */
da12fe54
NB
1896int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1897 unsigned long bio_flags)
239b14b3 1898{
0b246afa
JM
1899 struct inode *inode = page->mapping->host;
1900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1901 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1902 u64 length = 0;
1903 u64 map_length;
239b14b3
CM
1904 int ret;
1905
771ed689
CM
1906 if (bio_flags & EXTENT_BIO_COMPRESSED)
1907 return 0;
1908
4f024f37 1909 length = bio->bi_iter.bi_size;
239b14b3 1910 map_length = length;
0b246afa
JM
1911 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1912 NULL, 0);
6f034ece
LB
1913 if (ret < 0)
1914 return ret;
d397712b 1915 if (map_length < length + size)
239b14b3 1916 return 1;
3444a972 1917 return 0;
239b14b3
CM
1918}
1919
d352ac68
CM
1920/*
1921 * in order to insert checksums into the metadata in large chunks,
1922 * we wait until bio submission time. All the pages in the bio are
1923 * checksummed and sums are attached onto the ordered extent record.
1924 *
1925 * At IO completion time the cums attached on the ordered extent record
1926 * are inserted into the btree
1927 */
d0ee3934 1928static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1929 u64 bio_offset)
065631f6 1930{
c6100a4b 1931 struct inode *inode = private_data;
4e4cbee9 1932 blk_status_t ret = 0;
e015640f 1933
2ff7e61e 1934 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1935 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1936 return 0;
1937}
e015640f 1938
d352ac68 1939/*
cad321ad 1940 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1941 * on write, or reading the csums from the tree before a read.
1942 *
1943 * Rules about async/sync submit,
1944 * a) read: sync submit
1945 *
1946 * b) write without checksum: sync submit
1947 *
1948 * c) write with checksum:
1949 * c-1) if bio is issued by fsync: sync submit
1950 * (sync_writers != 0)
1951 *
1952 * c-2) if root is reloc root: sync submit
1953 * (only in case of buffered IO)
1954 *
1955 * c-3) otherwise: async submit
d352ac68 1956 */
8c27cb35 1957static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1958 int mirror_num, unsigned long bio_flags,
1959 u64 bio_offset)
44b8bd7e 1960{
c6100a4b 1961 struct inode *inode = private_data;
0b246afa 1962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1963 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1964 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1965 blk_status_t ret = 0;
19b9bdb0 1966 int skip_sum;
b812ce28 1967 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1968
6cbff00f 1969 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1970
70ddc553 1971 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1972 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1973
37226b21 1974 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1975 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1976 if (ret)
61891923 1977 goto out;
5fd02043 1978
d20f7043 1979 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1980 ret = btrfs_submit_compressed_read(inode, bio,
1981 mirror_num,
1982 bio_flags);
1983 goto out;
c2db1073 1984 } else if (!skip_sum) {
2ff7e61e 1985 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1986 if (ret)
61891923 1987 goto out;
c2db1073 1988 }
4d1b5fb4 1989 goto mapit;
b812ce28 1990 } else if (async && !skip_sum) {
17d217fe
YZ
1991 /* csum items have already been cloned */
1992 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1993 goto mapit;
19b9bdb0 1994 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1995 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1996 bio_offset, inode,
e288c080 1997 btrfs_submit_bio_start);
61891923 1998 goto out;
b812ce28 1999 } else if (!skip_sum) {
2ff7e61e 2000 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2001 if (ret)
2002 goto out;
19b9bdb0
CM
2003 }
2004
0b86a832 2005mapit:
2ff7e61e 2006 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2007
2008out:
4e4cbee9
CH
2009 if (ret) {
2010 bio->bi_status = ret;
4246a0b6
CH
2011 bio_endio(bio);
2012 }
61891923 2013 return ret;
065631f6 2014}
6885f308 2015
d352ac68
CM
2016/*
2017 * given a list of ordered sums record them in the inode. This happens
2018 * at IO completion time based on sums calculated at bio submission time.
2019 */
ba1da2f4 2020static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2021 struct inode *inode, struct list_head *list)
e6dcd2dc 2022{
e6dcd2dc 2023 struct btrfs_ordered_sum *sum;
ac01f26a 2024 int ret;
e6dcd2dc 2025
c6e30871 2026 list_for_each_entry(sum, list, list) {
7c2871a2 2027 trans->adding_csums = true;
ac01f26a 2028 ret = btrfs_csum_file_blocks(trans,
d20f7043 2029 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2030 trans->adding_csums = false;
ac01f26a
NB
2031 if (ret)
2032 return ret;
e6dcd2dc
CM
2033 }
2034 return 0;
2035}
2036
2ac55d41 2037int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2038 unsigned int extra_bits,
ba8b04c1 2039 struct extent_state **cached_state, int dedupe)
ea8c2819 2040{
fdb1e121 2041 WARN_ON(PAGE_ALIGNED(end));
ea8c2819 2042 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2043 extra_bits, cached_state);
ea8c2819
CM
2044}
2045
d352ac68 2046/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2047struct btrfs_writepage_fixup {
2048 struct page *page;
2049 struct btrfs_work work;
2050};
2051
b2950863 2052static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2053{
2054 struct btrfs_writepage_fixup *fixup;
2055 struct btrfs_ordered_extent *ordered;
2ac55d41 2056 struct extent_state *cached_state = NULL;
364ecf36 2057 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2058 struct page *page;
2059 struct inode *inode;
2060 u64 page_start;
2061 u64 page_end;
87826df0 2062 int ret;
247e743c
CM
2063
2064 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2065 page = fixup->page;
4a096752 2066again:
247e743c
CM
2067 lock_page(page);
2068 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2069 ClearPageChecked(page);
2070 goto out_page;
2071 }
2072
2073 inode = page->mapping->host;
2074 page_start = page_offset(page);
09cbfeaf 2075 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2076
ff13db41 2077 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2078 &cached_state);
4a096752
CM
2079
2080 /* already ordered? We're done */
8b62b72b 2081 if (PagePrivate2(page))
247e743c 2082 goto out;
4a096752 2083
a776c6fa 2084 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2085 PAGE_SIZE);
4a096752 2086 if (ordered) {
2ac55d41 2087 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2088 page_end, &cached_state);
4a096752
CM
2089 unlock_page(page);
2090 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2091 btrfs_put_ordered_extent(ordered);
4a096752
CM
2092 goto again;
2093 }
247e743c 2094
364ecf36 2095 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2096 PAGE_SIZE);
87826df0
JM
2097 if (ret) {
2098 mapping_set_error(page->mapping, ret);
2099 end_extent_writepage(page, ret, page_start, page_end);
2100 ClearPageChecked(page);
2101 goto out;
2102 }
2103
f3038ee3
NB
2104 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2105 &cached_state, 0);
2106 if (ret) {
2107 mapping_set_error(page->mapping, ret);
2108 end_extent_writepage(page, ret, page_start, page_end);
2109 ClearPageChecked(page);
2110 goto out;
2111 }
2112
247e743c 2113 ClearPageChecked(page);
87826df0 2114 set_page_dirty(page);
43b18595 2115 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2116out:
2ac55d41 2117 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2118 &cached_state);
247e743c
CM
2119out_page:
2120 unlock_page(page);
09cbfeaf 2121 put_page(page);
b897abec 2122 kfree(fixup);
364ecf36 2123 extent_changeset_free(data_reserved);
247e743c
CM
2124}
2125
2126/*
2127 * There are a few paths in the higher layers of the kernel that directly
2128 * set the page dirty bit without asking the filesystem if it is a
2129 * good idea. This causes problems because we want to make sure COW
2130 * properly happens and the data=ordered rules are followed.
2131 *
c8b97818 2132 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2133 * hasn't been properly setup for IO. We kick off an async process
2134 * to fix it up. The async helper will wait for ordered extents, set
2135 * the delalloc bit and make it safe to write the page.
2136 */
d75855b4 2137int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2138{
2139 struct inode *inode = page->mapping->host;
0b246afa 2140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2141 struct btrfs_writepage_fixup *fixup;
247e743c 2142
8b62b72b
CM
2143 /* this page is properly in the ordered list */
2144 if (TestClearPagePrivate2(page))
247e743c
CM
2145 return 0;
2146
2147 if (PageChecked(page))
2148 return -EAGAIN;
2149
2150 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2151 if (!fixup)
2152 return -EAGAIN;
f421950f 2153
247e743c 2154 SetPageChecked(page);
09cbfeaf 2155 get_page(page);
9e0af237
LB
2156 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2157 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2158 fixup->page = page;
0b246afa 2159 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2160 return -EBUSY;
247e743c
CM
2161}
2162
d899e052
YZ
2163static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2164 struct inode *inode, u64 file_pos,
2165 u64 disk_bytenr, u64 disk_num_bytes,
2166 u64 num_bytes, u64 ram_bytes,
2167 u8 compression, u8 encryption,
2168 u16 other_encoding, int extent_type)
2169{
2170 struct btrfs_root *root = BTRFS_I(inode)->root;
2171 struct btrfs_file_extent_item *fi;
2172 struct btrfs_path *path;
2173 struct extent_buffer *leaf;
2174 struct btrfs_key ins;
a12b877b 2175 u64 qg_released;
1acae57b 2176 int extent_inserted = 0;
d899e052
YZ
2177 int ret;
2178
2179 path = btrfs_alloc_path();
d8926bb3
MF
2180 if (!path)
2181 return -ENOMEM;
d899e052 2182
a1ed835e
CM
2183 /*
2184 * we may be replacing one extent in the tree with another.
2185 * The new extent is pinned in the extent map, and we don't want
2186 * to drop it from the cache until it is completely in the btree.
2187 *
2188 * So, tell btrfs_drop_extents to leave this extent in the cache.
2189 * the caller is expected to unpin it and allow it to be merged
2190 * with the others.
2191 */
1acae57b
FDBM
2192 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2193 file_pos + num_bytes, NULL, 0,
2194 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2195 if (ret)
2196 goto out;
d899e052 2197
1acae57b 2198 if (!extent_inserted) {
4a0cc7ca 2199 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2200 ins.offset = file_pos;
2201 ins.type = BTRFS_EXTENT_DATA_KEY;
2202
2203 path->leave_spinning = 1;
2204 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2205 sizeof(*fi));
2206 if (ret)
2207 goto out;
2208 }
d899e052
YZ
2209 leaf = path->nodes[0];
2210 fi = btrfs_item_ptr(leaf, path->slots[0],
2211 struct btrfs_file_extent_item);
2212 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2213 btrfs_set_file_extent_type(leaf, fi, extent_type);
2214 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2215 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2216 btrfs_set_file_extent_offset(leaf, fi, 0);
2217 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2218 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2219 btrfs_set_file_extent_compression(leaf, fi, compression);
2220 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2221 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2222
d899e052 2223 btrfs_mark_buffer_dirty(leaf);
ce195332 2224 btrfs_release_path(path);
d899e052
YZ
2225
2226 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2227
2228 ins.objectid = disk_bytenr;
2229 ins.offset = disk_num_bytes;
2230 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2231
297d750b 2232 /*
5846a3c2
QW
2233 * Release the reserved range from inode dirty range map, as it is
2234 * already moved into delayed_ref_head
297d750b 2235 */
a12b877b
QW
2236 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2237 if (ret < 0)
2238 goto out;
2239 qg_released = ret;
84f7d8e6
JB
2240 ret = btrfs_alloc_reserved_file_extent(trans, root,
2241 btrfs_ino(BTRFS_I(inode)),
2242 file_pos, qg_released, &ins);
79787eaa 2243out:
d899e052 2244 btrfs_free_path(path);
b9473439 2245
79787eaa 2246 return ret;
d899e052
YZ
2247}
2248
38c227d8
LB
2249/* snapshot-aware defrag */
2250struct sa_defrag_extent_backref {
2251 struct rb_node node;
2252 struct old_sa_defrag_extent *old;
2253 u64 root_id;
2254 u64 inum;
2255 u64 file_pos;
2256 u64 extent_offset;
2257 u64 num_bytes;
2258 u64 generation;
2259};
2260
2261struct old_sa_defrag_extent {
2262 struct list_head list;
2263 struct new_sa_defrag_extent *new;
2264
2265 u64 extent_offset;
2266 u64 bytenr;
2267 u64 offset;
2268 u64 len;
2269 int count;
2270};
2271
2272struct new_sa_defrag_extent {
2273 struct rb_root root;
2274 struct list_head head;
2275 struct btrfs_path *path;
2276 struct inode *inode;
2277 u64 file_pos;
2278 u64 len;
2279 u64 bytenr;
2280 u64 disk_len;
2281 u8 compress_type;
2282};
2283
2284static int backref_comp(struct sa_defrag_extent_backref *b1,
2285 struct sa_defrag_extent_backref *b2)
2286{
2287 if (b1->root_id < b2->root_id)
2288 return -1;
2289 else if (b1->root_id > b2->root_id)
2290 return 1;
2291
2292 if (b1->inum < b2->inum)
2293 return -1;
2294 else if (b1->inum > b2->inum)
2295 return 1;
2296
2297 if (b1->file_pos < b2->file_pos)
2298 return -1;
2299 else if (b1->file_pos > b2->file_pos)
2300 return 1;
2301
2302 /*
2303 * [------------------------------] ===> (a range of space)
2304 * |<--->| |<---->| =============> (fs/file tree A)
2305 * |<---------------------------->| ===> (fs/file tree B)
2306 *
2307 * A range of space can refer to two file extents in one tree while
2308 * refer to only one file extent in another tree.
2309 *
2310 * So we may process a disk offset more than one time(two extents in A)
2311 * and locate at the same extent(one extent in B), then insert two same
2312 * backrefs(both refer to the extent in B).
2313 */
2314 return 0;
2315}
2316
2317static void backref_insert(struct rb_root *root,
2318 struct sa_defrag_extent_backref *backref)
2319{
2320 struct rb_node **p = &root->rb_node;
2321 struct rb_node *parent = NULL;
2322 struct sa_defrag_extent_backref *entry;
2323 int ret;
2324
2325 while (*p) {
2326 parent = *p;
2327 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2328
2329 ret = backref_comp(backref, entry);
2330 if (ret < 0)
2331 p = &(*p)->rb_left;
2332 else
2333 p = &(*p)->rb_right;
2334 }
2335
2336 rb_link_node(&backref->node, parent, p);
2337 rb_insert_color(&backref->node, root);
2338}
2339
2340/*
2341 * Note the backref might has changed, and in this case we just return 0.
2342 */
2343static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2344 void *ctx)
2345{
2346 struct btrfs_file_extent_item *extent;
38c227d8
LB
2347 struct old_sa_defrag_extent *old = ctx;
2348 struct new_sa_defrag_extent *new = old->new;
2349 struct btrfs_path *path = new->path;
2350 struct btrfs_key key;
2351 struct btrfs_root *root;
2352 struct sa_defrag_extent_backref *backref;
2353 struct extent_buffer *leaf;
2354 struct inode *inode = new->inode;
0b246afa 2355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2356 int slot;
2357 int ret;
2358 u64 extent_offset;
2359 u64 num_bytes;
2360
2361 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2362 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2363 return 0;
2364
2365 key.objectid = root_id;
2366 key.type = BTRFS_ROOT_ITEM_KEY;
2367 key.offset = (u64)-1;
2368
38c227d8
LB
2369 root = btrfs_read_fs_root_no_name(fs_info, &key);
2370 if (IS_ERR(root)) {
2371 if (PTR_ERR(root) == -ENOENT)
2372 return 0;
2373 WARN_ON(1);
ab8d0fc4 2374 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2375 inum, offset, root_id);
2376 return PTR_ERR(root);
2377 }
2378
2379 key.objectid = inum;
2380 key.type = BTRFS_EXTENT_DATA_KEY;
2381 if (offset > (u64)-1 << 32)
2382 key.offset = 0;
2383 else
2384 key.offset = offset;
2385
2386 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2387 if (WARN_ON(ret < 0))
38c227d8 2388 return ret;
50f1319c 2389 ret = 0;
38c227d8
LB
2390
2391 while (1) {
2392 cond_resched();
2393
2394 leaf = path->nodes[0];
2395 slot = path->slots[0];
2396
2397 if (slot >= btrfs_header_nritems(leaf)) {
2398 ret = btrfs_next_leaf(root, path);
2399 if (ret < 0) {
2400 goto out;
2401 } else if (ret > 0) {
2402 ret = 0;
2403 goto out;
2404 }
2405 continue;
2406 }
2407
2408 path->slots[0]++;
2409
2410 btrfs_item_key_to_cpu(leaf, &key, slot);
2411
2412 if (key.objectid > inum)
2413 goto out;
2414
2415 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2416 continue;
2417
2418 extent = btrfs_item_ptr(leaf, slot,
2419 struct btrfs_file_extent_item);
2420
2421 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2422 continue;
2423
e68afa49
LB
2424 /*
2425 * 'offset' refers to the exact key.offset,
2426 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2427 * (key.offset - extent_offset).
2428 */
2429 if (key.offset != offset)
38c227d8
LB
2430 continue;
2431
e68afa49 2432 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2433 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2434
38c227d8
LB
2435 if (extent_offset >= old->extent_offset + old->offset +
2436 old->len || extent_offset + num_bytes <=
2437 old->extent_offset + old->offset)
2438 continue;
38c227d8
LB
2439 break;
2440 }
2441
2442 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2443 if (!backref) {
2444 ret = -ENOENT;
2445 goto out;
2446 }
2447
2448 backref->root_id = root_id;
2449 backref->inum = inum;
e68afa49 2450 backref->file_pos = offset;
38c227d8
LB
2451 backref->num_bytes = num_bytes;
2452 backref->extent_offset = extent_offset;
2453 backref->generation = btrfs_file_extent_generation(leaf, extent);
2454 backref->old = old;
2455 backref_insert(&new->root, backref);
2456 old->count++;
2457out:
2458 btrfs_release_path(path);
2459 WARN_ON(ret);
2460 return ret;
2461}
2462
2463static noinline bool record_extent_backrefs(struct btrfs_path *path,
2464 struct new_sa_defrag_extent *new)
2465{
0b246afa 2466 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2467 struct old_sa_defrag_extent *old, *tmp;
2468 int ret;
2469
2470 new->path = path;
2471
2472 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2473 ret = iterate_inodes_from_logical(old->bytenr +
2474 old->extent_offset, fs_info,
38c227d8 2475 path, record_one_backref,
c995ab3c 2476 old, false);
4724b106
JB
2477 if (ret < 0 && ret != -ENOENT)
2478 return false;
38c227d8
LB
2479
2480 /* no backref to be processed for this extent */
2481 if (!old->count) {
2482 list_del(&old->list);
2483 kfree(old);
2484 }
2485 }
2486
2487 if (list_empty(&new->head))
2488 return false;
2489
2490 return true;
2491}
2492
2493static int relink_is_mergable(struct extent_buffer *leaf,
2494 struct btrfs_file_extent_item *fi,
116e0024 2495 struct new_sa_defrag_extent *new)
38c227d8 2496{
116e0024 2497 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2498 return 0;
2499
2500 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2501 return 0;
2502
116e0024
LB
2503 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2504 return 0;
2505
2506 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2507 btrfs_file_extent_other_encoding(leaf, fi))
2508 return 0;
2509
2510 return 1;
2511}
2512
2513/*
2514 * Note the backref might has changed, and in this case we just return 0.
2515 */
2516static noinline int relink_extent_backref(struct btrfs_path *path,
2517 struct sa_defrag_extent_backref *prev,
2518 struct sa_defrag_extent_backref *backref)
2519{
2520 struct btrfs_file_extent_item *extent;
2521 struct btrfs_file_extent_item *item;
2522 struct btrfs_ordered_extent *ordered;
2523 struct btrfs_trans_handle *trans;
38c227d8
LB
2524 struct btrfs_root *root;
2525 struct btrfs_key key;
2526 struct extent_buffer *leaf;
2527 struct old_sa_defrag_extent *old = backref->old;
2528 struct new_sa_defrag_extent *new = old->new;
0b246afa 2529 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2530 struct inode *inode;
2531 struct extent_state *cached = NULL;
2532 int ret = 0;
2533 u64 start;
2534 u64 len;
2535 u64 lock_start;
2536 u64 lock_end;
2537 bool merge = false;
2538 int index;
2539
2540 if (prev && prev->root_id == backref->root_id &&
2541 prev->inum == backref->inum &&
2542 prev->file_pos + prev->num_bytes == backref->file_pos)
2543 merge = true;
2544
2545 /* step 1: get root */
2546 key.objectid = backref->root_id;
2547 key.type = BTRFS_ROOT_ITEM_KEY;
2548 key.offset = (u64)-1;
2549
38c227d8
LB
2550 index = srcu_read_lock(&fs_info->subvol_srcu);
2551
2552 root = btrfs_read_fs_root_no_name(fs_info, &key);
2553 if (IS_ERR(root)) {
2554 srcu_read_unlock(&fs_info->subvol_srcu, index);
2555 if (PTR_ERR(root) == -ENOENT)
2556 return 0;
2557 return PTR_ERR(root);
2558 }
38c227d8 2559
bcbba5e6
WS
2560 if (btrfs_root_readonly(root)) {
2561 srcu_read_unlock(&fs_info->subvol_srcu, index);
2562 return 0;
2563 }
2564
38c227d8
LB
2565 /* step 2: get inode */
2566 key.objectid = backref->inum;
2567 key.type = BTRFS_INODE_ITEM_KEY;
2568 key.offset = 0;
2569
2570 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2571 if (IS_ERR(inode)) {
2572 srcu_read_unlock(&fs_info->subvol_srcu, index);
2573 return 0;
2574 }
2575
2576 srcu_read_unlock(&fs_info->subvol_srcu, index);
2577
2578 /* step 3: relink backref */
2579 lock_start = backref->file_pos;
2580 lock_end = backref->file_pos + backref->num_bytes - 1;
2581 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2582 &cached);
38c227d8
LB
2583
2584 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2585 if (ordered) {
2586 btrfs_put_ordered_extent(ordered);
2587 goto out_unlock;
2588 }
2589
2590 trans = btrfs_join_transaction(root);
2591 if (IS_ERR(trans)) {
2592 ret = PTR_ERR(trans);
2593 goto out_unlock;
2594 }
2595
2596 key.objectid = backref->inum;
2597 key.type = BTRFS_EXTENT_DATA_KEY;
2598 key.offset = backref->file_pos;
2599
2600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2601 if (ret < 0) {
2602 goto out_free_path;
2603 } else if (ret > 0) {
2604 ret = 0;
2605 goto out_free_path;
2606 }
2607
2608 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2609 struct btrfs_file_extent_item);
2610
2611 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2612 backref->generation)
2613 goto out_free_path;
2614
2615 btrfs_release_path(path);
2616
2617 start = backref->file_pos;
2618 if (backref->extent_offset < old->extent_offset + old->offset)
2619 start += old->extent_offset + old->offset -
2620 backref->extent_offset;
2621
2622 len = min(backref->extent_offset + backref->num_bytes,
2623 old->extent_offset + old->offset + old->len);
2624 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2625
2626 ret = btrfs_drop_extents(trans, root, inode, start,
2627 start + len, 1);
2628 if (ret)
2629 goto out_free_path;
2630again:
4a0cc7ca 2631 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2632 key.type = BTRFS_EXTENT_DATA_KEY;
2633 key.offset = start;
2634
a09a0a70 2635 path->leave_spinning = 1;
38c227d8
LB
2636 if (merge) {
2637 struct btrfs_file_extent_item *fi;
2638 u64 extent_len;
2639 struct btrfs_key found_key;
2640
3c9665df 2641 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2642 if (ret < 0)
2643 goto out_free_path;
2644
2645 path->slots[0]--;
2646 leaf = path->nodes[0];
2647 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2648
2649 fi = btrfs_item_ptr(leaf, path->slots[0],
2650 struct btrfs_file_extent_item);
2651 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2652
116e0024
LB
2653 if (extent_len + found_key.offset == start &&
2654 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2655 btrfs_set_file_extent_num_bytes(leaf, fi,
2656 extent_len + len);
2657 btrfs_mark_buffer_dirty(leaf);
2658 inode_add_bytes(inode, len);
2659
2660 ret = 1;
2661 goto out_free_path;
2662 } else {
2663 merge = false;
2664 btrfs_release_path(path);
2665 goto again;
2666 }
2667 }
2668
2669 ret = btrfs_insert_empty_item(trans, root, path, &key,
2670 sizeof(*extent));
2671 if (ret) {
66642832 2672 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2673 goto out_free_path;
2674 }
2675
2676 leaf = path->nodes[0];
2677 item = btrfs_item_ptr(leaf, path->slots[0],
2678 struct btrfs_file_extent_item);
2679 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2680 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2681 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2682 btrfs_set_file_extent_num_bytes(leaf, item, len);
2683 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2684 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2685 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2686 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2687 btrfs_set_file_extent_encryption(leaf, item, 0);
2688 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2689
2690 btrfs_mark_buffer_dirty(leaf);
2691 inode_add_bytes(inode, len);
a09a0a70 2692 btrfs_release_path(path);
38c227d8 2693
84f7d8e6 2694 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2695 new->disk_len, 0,
2696 backref->root_id, backref->inum,
b06c4bf5 2697 new->file_pos); /* start - extent_offset */
38c227d8 2698 if (ret) {
66642832 2699 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2700 goto out_free_path;
2701 }
2702
2703 ret = 1;
2704out_free_path:
2705 btrfs_release_path(path);
a09a0a70 2706 path->leave_spinning = 0;
3a45bb20 2707 btrfs_end_transaction(trans);
38c227d8
LB
2708out_unlock:
2709 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2710 &cached);
38c227d8
LB
2711 iput(inode);
2712 return ret;
2713}
2714
6f519564
LB
2715static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2716{
2717 struct old_sa_defrag_extent *old, *tmp;
2718
2719 if (!new)
2720 return;
2721
2722 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2723 kfree(old);
2724 }
2725 kfree(new);
2726}
2727
38c227d8
LB
2728static void relink_file_extents(struct new_sa_defrag_extent *new)
2729{
0b246afa 2730 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2731 struct btrfs_path *path;
38c227d8
LB
2732 struct sa_defrag_extent_backref *backref;
2733 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2734 struct rb_node *node;
2735 int ret;
2736
38c227d8
LB
2737 path = btrfs_alloc_path();
2738 if (!path)
2739 return;
2740
2741 if (!record_extent_backrefs(path, new)) {
2742 btrfs_free_path(path);
2743 goto out;
2744 }
2745 btrfs_release_path(path);
2746
2747 while (1) {
2748 node = rb_first(&new->root);
2749 if (!node)
2750 break;
2751 rb_erase(node, &new->root);
2752
2753 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2754
2755 ret = relink_extent_backref(path, prev, backref);
2756 WARN_ON(ret < 0);
2757
2758 kfree(prev);
2759
2760 if (ret == 1)
2761 prev = backref;
2762 else
2763 prev = NULL;
2764 cond_resched();
2765 }
2766 kfree(prev);
2767
2768 btrfs_free_path(path);
38c227d8 2769out:
6f519564
LB
2770 free_sa_defrag_extent(new);
2771
0b246afa
JM
2772 atomic_dec(&fs_info->defrag_running);
2773 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2774}
2775
2776static struct new_sa_defrag_extent *
2777record_old_file_extents(struct inode *inode,
2778 struct btrfs_ordered_extent *ordered)
2779{
0b246afa 2780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2781 struct btrfs_root *root = BTRFS_I(inode)->root;
2782 struct btrfs_path *path;
2783 struct btrfs_key key;
6f519564 2784 struct old_sa_defrag_extent *old;
38c227d8
LB
2785 struct new_sa_defrag_extent *new;
2786 int ret;
2787
2788 new = kmalloc(sizeof(*new), GFP_NOFS);
2789 if (!new)
2790 return NULL;
2791
2792 new->inode = inode;
2793 new->file_pos = ordered->file_offset;
2794 new->len = ordered->len;
2795 new->bytenr = ordered->start;
2796 new->disk_len = ordered->disk_len;
2797 new->compress_type = ordered->compress_type;
2798 new->root = RB_ROOT;
2799 INIT_LIST_HEAD(&new->head);
2800
2801 path = btrfs_alloc_path();
2802 if (!path)
2803 goto out_kfree;
2804
4a0cc7ca 2805 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2806 key.type = BTRFS_EXTENT_DATA_KEY;
2807 key.offset = new->file_pos;
2808
2809 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2810 if (ret < 0)
2811 goto out_free_path;
2812 if (ret > 0 && path->slots[0] > 0)
2813 path->slots[0]--;
2814
2815 /* find out all the old extents for the file range */
2816 while (1) {
2817 struct btrfs_file_extent_item *extent;
2818 struct extent_buffer *l;
2819 int slot;
2820 u64 num_bytes;
2821 u64 offset;
2822 u64 end;
2823 u64 disk_bytenr;
2824 u64 extent_offset;
2825
2826 l = path->nodes[0];
2827 slot = path->slots[0];
2828
2829 if (slot >= btrfs_header_nritems(l)) {
2830 ret = btrfs_next_leaf(root, path);
2831 if (ret < 0)
6f519564 2832 goto out_free_path;
38c227d8
LB
2833 else if (ret > 0)
2834 break;
2835 continue;
2836 }
2837
2838 btrfs_item_key_to_cpu(l, &key, slot);
2839
4a0cc7ca 2840 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2841 break;
2842 if (key.type != BTRFS_EXTENT_DATA_KEY)
2843 break;
2844 if (key.offset >= new->file_pos + new->len)
2845 break;
2846
2847 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2848
2849 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2850 if (key.offset + num_bytes < new->file_pos)
2851 goto next;
2852
2853 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2854 if (!disk_bytenr)
2855 goto next;
2856
2857 extent_offset = btrfs_file_extent_offset(l, extent);
2858
2859 old = kmalloc(sizeof(*old), GFP_NOFS);
2860 if (!old)
6f519564 2861 goto out_free_path;
38c227d8
LB
2862
2863 offset = max(new->file_pos, key.offset);
2864 end = min(new->file_pos + new->len, key.offset + num_bytes);
2865
2866 old->bytenr = disk_bytenr;
2867 old->extent_offset = extent_offset;
2868 old->offset = offset - key.offset;
2869 old->len = end - offset;
2870 old->new = new;
2871 old->count = 0;
2872 list_add_tail(&old->list, &new->head);
2873next:
2874 path->slots[0]++;
2875 cond_resched();
2876 }
2877
2878 btrfs_free_path(path);
0b246afa 2879 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2880
2881 return new;
2882
38c227d8
LB
2883out_free_path:
2884 btrfs_free_path(path);
2885out_kfree:
6f519564 2886 free_sa_defrag_extent(new);
38c227d8
LB
2887 return NULL;
2888}
2889
2ff7e61e 2890static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2891 u64 start, u64 len)
2892{
2893 struct btrfs_block_group_cache *cache;
2894
0b246afa 2895 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2896 ASSERT(cache);
2897
2898 spin_lock(&cache->lock);
2899 cache->delalloc_bytes -= len;
2900 spin_unlock(&cache->lock);
2901
2902 btrfs_put_block_group(cache);
2903}
2904
d352ac68
CM
2905/* as ordered data IO finishes, this gets called so we can finish
2906 * an ordered extent if the range of bytes in the file it covers are
2907 * fully written.
2908 */
5fd02043 2909static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2910{
5fd02043 2911 struct inode *inode = ordered_extent->inode;
0b246afa 2912 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2913 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2914 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2915 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2916 struct extent_state *cached_state = NULL;
38c227d8 2917 struct new_sa_defrag_extent *new = NULL;
261507a0 2918 int compress_type = 0;
77cef2ec
JB
2919 int ret = 0;
2920 u64 logical_len = ordered_extent->len;
82d5902d 2921 bool nolock;
77cef2ec 2922 bool truncated = false;
a7e3b975
FM
2923 bool range_locked = false;
2924 bool clear_new_delalloc_bytes = false;
49940bdd 2925 bool clear_reserved_extent = true;
a7e3b975
FM
2926
2927 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2928 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2929 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2930 clear_new_delalloc_bytes = true;
e6dcd2dc 2931
70ddc553 2932 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2933
5fd02043
JB
2934 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2935 ret = -EIO;
2936 goto out;
2937 }
2938
7ab7956e
NB
2939 btrfs_free_io_failure_record(BTRFS_I(inode),
2940 ordered_extent->file_offset,
2941 ordered_extent->file_offset +
2942 ordered_extent->len - 1);
f612496b 2943
77cef2ec
JB
2944 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2945 truncated = true;
2946 logical_len = ordered_extent->truncated_len;
2947 /* Truncated the entire extent, don't bother adding */
2948 if (!logical_len)
2949 goto out;
2950 }
2951
c2167754 2952 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2953 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2954
2955 /*
2956 * For mwrite(mmap + memset to write) case, we still reserve
2957 * space for NOCOW range.
2958 * As NOCOW won't cause a new delayed ref, just free the space
2959 */
bc42bda2 2960 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2961 ordered_extent->len);
6c760c07
JB
2962 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2963 if (nolock)
2964 trans = btrfs_join_transaction_nolock(root);
2965 else
2966 trans = btrfs_join_transaction(root);
2967 if (IS_ERR(trans)) {
2968 ret = PTR_ERR(trans);
2969 trans = NULL;
2970 goto out;
c2167754 2971 }
69fe2d75 2972 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2973 ret = btrfs_update_inode_fallback(trans, root, inode);
2974 if (ret) /* -ENOMEM or corruption */
66642832 2975 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2976 goto out;
2977 }
e6dcd2dc 2978
a7e3b975 2979 range_locked = true;
2ac55d41
JB
2980 lock_extent_bits(io_tree, ordered_extent->file_offset,
2981 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2982 &cached_state);
e6dcd2dc 2983
38c227d8
LB
2984 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2985 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2986 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2987 if (ret) {
2988 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2989 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2990 /* the inode is shared */
2991 new = record_old_file_extents(inode, ordered_extent);
2992
2993 clear_extent_bit(io_tree, ordered_extent->file_offset,
2994 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 2995 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
2996 }
2997
0cb59c99 2998 if (nolock)
7a7eaa40 2999 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3000 else
7a7eaa40 3001 trans = btrfs_join_transaction(root);
79787eaa
JM
3002 if (IS_ERR(trans)) {
3003 ret = PTR_ERR(trans);
3004 trans = NULL;
a7e3b975 3005 goto out;
79787eaa 3006 }
a79b7d4b 3007
69fe2d75 3008 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3009
c8b97818 3010 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3011 compress_type = ordered_extent->compress_type;
d899e052 3012 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3013 BUG_ON(compress_type);
b430b775
JM
3014 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3015 ordered_extent->len);
7a6d7067 3016 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3017 ordered_extent->file_offset,
3018 ordered_extent->file_offset +
77cef2ec 3019 logical_len);
d899e052 3020 } else {
0b246afa 3021 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3022 ret = insert_reserved_file_extent(trans, inode,
3023 ordered_extent->file_offset,
3024 ordered_extent->start,
3025 ordered_extent->disk_len,
77cef2ec 3026 logical_len, logical_len,
261507a0 3027 compress_type, 0, 0,
d899e052 3028 BTRFS_FILE_EXTENT_REG);
49940bdd
JB
3029 if (!ret) {
3030 clear_reserved_extent = false;
2ff7e61e 3031 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3032 ordered_extent->start,
3033 ordered_extent->disk_len);
49940bdd 3034 }
d899e052 3035 }
5dc562c5
JB
3036 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3037 ordered_extent->file_offset, ordered_extent->len,
3038 trans->transid);
79787eaa 3039 if (ret < 0) {
66642832 3040 btrfs_abort_transaction(trans, ret);
a7e3b975 3041 goto out;
79787eaa 3042 }
2ac55d41 3043
ac01f26a
NB
3044 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3045 if (ret) {
3046 btrfs_abort_transaction(trans, ret);
3047 goto out;
3048 }
e6dcd2dc 3049
6c760c07
JB
3050 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3051 ret = btrfs_update_inode_fallback(trans, root, inode);
3052 if (ret) { /* -ENOMEM or corruption */
66642832 3053 btrfs_abort_transaction(trans, ret);
a7e3b975 3054 goto out;
1ef30be1
JB
3055 }
3056 ret = 0;
c2167754 3057out:
a7e3b975
FM
3058 if (range_locked || clear_new_delalloc_bytes) {
3059 unsigned int clear_bits = 0;
3060
3061 if (range_locked)
3062 clear_bits |= EXTENT_LOCKED;
3063 if (clear_new_delalloc_bytes)
3064 clear_bits |= EXTENT_DELALLOC_NEW;
3065 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3066 ordered_extent->file_offset,
3067 ordered_extent->file_offset +
3068 ordered_extent->len - 1,
3069 clear_bits,
3070 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3071 0, &cached_state);
a7e3b975
FM
3072 }
3073
a698d075 3074 if (trans)
3a45bb20 3075 btrfs_end_transaction(trans);
0cb59c99 3076
77cef2ec
JB
3077 if (ret || truncated) {
3078 u64 start, end;
3079
3080 if (truncated)
3081 start = ordered_extent->file_offset + logical_len;
3082 else
3083 start = ordered_extent->file_offset;
3084 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3085 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3086
3087 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3088 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3089
0bec9ef5
JB
3090 /*
3091 * If the ordered extent had an IOERR or something else went
3092 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3093 * back to the allocator. We only free the extent in the
3094 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3095 *
3096 * If we made it past insert_reserved_file_extent before we
3097 * errored out then we don't need to do this as the accounting
3098 * has already been done.
0bec9ef5 3099 */
77cef2ec 3100 if ((ret || !logical_len) &&
49940bdd 3101 clear_reserved_extent &&
77cef2ec 3102 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3103 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3104 btrfs_free_reserved_extent(fs_info,
3105 ordered_extent->start,
e570fd27 3106 ordered_extent->disk_len, 1);
0bec9ef5
JB
3107 }
3108
3109
5fd02043 3110 /*
8bad3c02
LB
3111 * This needs to be done to make sure anybody waiting knows we are done
3112 * updating everything for this ordered extent.
5fd02043
JB
3113 */
3114 btrfs_remove_ordered_extent(inode, ordered_extent);
3115
38c227d8 3116 /* for snapshot-aware defrag */
6f519564
LB
3117 if (new) {
3118 if (ret) {
3119 free_sa_defrag_extent(new);
0b246afa 3120 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3121 } else {
3122 relink_file_extents(new);
3123 }
3124 }
38c227d8 3125
e6dcd2dc
CM
3126 /* once for us */
3127 btrfs_put_ordered_extent(ordered_extent);
3128 /* once for the tree */
3129 btrfs_put_ordered_extent(ordered_extent);
3130
5fd02043
JB
3131 return ret;
3132}
3133
3134static void finish_ordered_fn(struct btrfs_work *work)
3135{
3136 struct btrfs_ordered_extent *ordered_extent;
3137 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3138 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3139}
3140
c629732d
NB
3141void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3142 u64 end, int uptodate)
211f90e6 3143{
5fd02043 3144 struct inode *inode = page->mapping->host;
0b246afa 3145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3146 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3147 struct btrfs_workqueue *wq;
3148 btrfs_work_func_t func;
5fd02043 3149
1abe9b8a 3150 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3151
8b62b72b 3152 ClearPagePrivate2(page);
5fd02043
JB
3153 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3154 end - start + 1, uptodate))
c3988d63 3155 return;
5fd02043 3156
70ddc553 3157 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3158 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3159 func = btrfs_freespace_write_helper;
3160 } else {
0b246afa 3161 wq = fs_info->endio_write_workers;
9e0af237
LB
3162 func = btrfs_endio_write_helper;
3163 }
5fd02043 3164
9e0af237
LB
3165 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3166 NULL);
3167 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3168}
3169
dc380aea
MX
3170static int __readpage_endio_check(struct inode *inode,
3171 struct btrfs_io_bio *io_bio,
3172 int icsum, struct page *page,
3173 int pgoff, u64 start, size_t len)
3174{
3175 char *kaddr;
3176 u32 csum_expected;
3177 u32 csum = ~(u32)0;
dc380aea
MX
3178
3179 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3180
3181 kaddr = kmap_atomic(page);
3182 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3183 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3184 if (csum != csum_expected)
3185 goto zeroit;
3186
3187 kunmap_atomic(kaddr);
3188 return 0;
3189zeroit:
0970a22e 3190 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3191 io_bio->mirror_num);
dc380aea
MX
3192 memset(kaddr + pgoff, 1, len);
3193 flush_dcache_page(page);
3194 kunmap_atomic(kaddr);
dc380aea
MX
3195 return -EIO;
3196}
3197
d352ac68
CM
3198/*
3199 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3200 * if there's a match, we allow the bio to finish. If not, the code in
3201 * extent_io.c will try to find good copies for us.
d352ac68 3202 */
facc8a22
MX
3203static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3204 u64 phy_offset, struct page *page,
3205 u64 start, u64 end, int mirror)
07157aac 3206{
4eee4fa4 3207 size_t offset = start - page_offset(page);
07157aac 3208 struct inode *inode = page->mapping->host;
d1310b2e 3209 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3210 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3211
d20f7043
CM
3212 if (PageChecked(page)) {
3213 ClearPageChecked(page);
dc380aea 3214 return 0;
d20f7043 3215 }
6cbff00f
CH
3216
3217 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3218 return 0;
17d217fe
YZ
3219
3220 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3221 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3222 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3223 return 0;
17d217fe 3224 }
d20f7043 3225
facc8a22 3226 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3227 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3228 start, (size_t)(end - start + 1));
07157aac 3229}
b888db2b 3230
c1c3fac2
NB
3231/*
3232 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3233 *
3234 * @inode: The inode we want to perform iput on
3235 *
3236 * This function uses the generic vfs_inode::i_count to track whether we should
3237 * just decrement it (in case it's > 1) or if this is the last iput then link
3238 * the inode to the delayed iput machinery. Delayed iputs are processed at
3239 * transaction commit time/superblock commit/cleaner kthread.
3240 */
24bbcf04
YZ
3241void btrfs_add_delayed_iput(struct inode *inode)
3242{
0b246afa 3243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3244 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3245
3246 if (atomic_add_unless(&inode->i_count, -1, 1))
3247 return;
3248
24bbcf04 3249 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3250 ASSERT(list_empty(&binode->delayed_iput));
3251 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3252 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3253 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3254 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3255}
3256
2ff7e61e 3257void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3258{
24bbcf04 3259
24bbcf04 3260 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3261 while (!list_empty(&fs_info->delayed_iputs)) {
3262 struct btrfs_inode *inode;
3263
3264 inode = list_first_entry(&fs_info->delayed_iputs,
3265 struct btrfs_inode, delayed_iput);
c1c3fac2 3266 list_del_init(&inode->delayed_iput);
8089fe62
DS
3267 spin_unlock(&fs_info->delayed_iput_lock);
3268 iput(&inode->vfs_inode);
3269 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3270 }
8089fe62 3271 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3272}
3273
7b128766 3274/*
f7e9e8fc
OS
3275 * This creates an orphan entry for the given inode in case something goes wrong
3276 * in the middle of an unlink.
7b128766 3277 */
73f2e545 3278int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3279 struct btrfs_inode *inode)
7b128766 3280{
d68fc57b 3281 int ret;
7b128766 3282
27919067
OS
3283 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3284 if (ret && ret != -EEXIST) {
3285 btrfs_abort_transaction(trans, ret);
3286 return ret;
d68fc57b
YZ
3287 }
3288
d68fc57b 3289 return 0;
7b128766
JB
3290}
3291
3292/*
f7e9e8fc
OS
3293 * We have done the delete so we can go ahead and remove the orphan item for
3294 * this particular inode.
7b128766 3295 */
48a3b636 3296static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3297 struct btrfs_inode *inode)
7b128766 3298{
27919067 3299 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3300}
3301
3302/*
3303 * this cleans up any orphans that may be left on the list from the last use
3304 * of this root.
3305 */
66b4ffd1 3306int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3307{
0b246afa 3308 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3309 struct btrfs_path *path;
3310 struct extent_buffer *leaf;
7b128766
JB
3311 struct btrfs_key key, found_key;
3312 struct btrfs_trans_handle *trans;
3313 struct inode *inode;
8f6d7f4f 3314 u64 last_objectid = 0;
f7e9e8fc 3315 int ret = 0, nr_unlink = 0;
7b128766 3316
d68fc57b 3317 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3318 return 0;
c71bf099
YZ
3319
3320 path = btrfs_alloc_path();
66b4ffd1
JB
3321 if (!path) {
3322 ret = -ENOMEM;
3323 goto out;
3324 }
e4058b54 3325 path->reada = READA_BACK;
7b128766
JB
3326
3327 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3328 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3329 key.offset = (u64)-1;
3330
7b128766
JB
3331 while (1) {
3332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3333 if (ret < 0)
3334 goto out;
7b128766
JB
3335
3336 /*
3337 * if ret == 0 means we found what we were searching for, which
25985edc 3338 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3339 * find the key and see if we have stuff that matches
3340 */
3341 if (ret > 0) {
66b4ffd1 3342 ret = 0;
7b128766
JB
3343 if (path->slots[0] == 0)
3344 break;
3345 path->slots[0]--;
3346 }
3347
3348 /* pull out the item */
3349 leaf = path->nodes[0];
7b128766
JB
3350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3351
3352 /* make sure the item matches what we want */
3353 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3354 break;
962a298f 3355 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3356 break;
3357
3358 /* release the path since we're done with it */
b3b4aa74 3359 btrfs_release_path(path);
7b128766
JB
3360
3361 /*
3362 * this is where we are basically btrfs_lookup, without the
3363 * crossing root thing. we store the inode number in the
3364 * offset of the orphan item.
3365 */
8f6d7f4f
JB
3366
3367 if (found_key.offset == last_objectid) {
0b246afa
JM
3368 btrfs_err(fs_info,
3369 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3370 ret = -EINVAL;
3371 goto out;
3372 }
3373
3374 last_objectid = found_key.offset;
3375
5d4f98a2
YZ
3376 found_key.objectid = found_key.offset;
3377 found_key.type = BTRFS_INODE_ITEM_KEY;
3378 found_key.offset = 0;
0b246afa 3379 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3380 ret = PTR_ERR_OR_ZERO(inode);
67710892 3381 if (ret && ret != -ENOENT)
66b4ffd1 3382 goto out;
7b128766 3383
0b246afa 3384 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3385 struct btrfs_root *dead_root;
3386 struct btrfs_fs_info *fs_info = root->fs_info;
3387 int is_dead_root = 0;
3388
3389 /*
3390 * this is an orphan in the tree root. Currently these
3391 * could come from 2 sources:
3392 * a) a snapshot deletion in progress
3393 * b) a free space cache inode
3394 * We need to distinguish those two, as the snapshot
3395 * orphan must not get deleted.
3396 * find_dead_roots already ran before us, so if this
3397 * is a snapshot deletion, we should find the root
3398 * in the dead_roots list
3399 */
3400 spin_lock(&fs_info->trans_lock);
3401 list_for_each_entry(dead_root, &fs_info->dead_roots,
3402 root_list) {
3403 if (dead_root->root_key.objectid ==
3404 found_key.objectid) {
3405 is_dead_root = 1;
3406 break;
3407 }
3408 }
3409 spin_unlock(&fs_info->trans_lock);
3410 if (is_dead_root) {
3411 /* prevent this orphan from being found again */
3412 key.offset = found_key.objectid - 1;
3413 continue;
3414 }
f7e9e8fc 3415
f8e9e0b0 3416 }
f7e9e8fc 3417
7b128766 3418 /*
f7e9e8fc
OS
3419 * If we have an inode with links, there are a couple of
3420 * possibilities. Old kernels (before v3.12) used to create an
3421 * orphan item for truncate indicating that there were possibly
3422 * extent items past i_size that needed to be deleted. In v3.12,
3423 * truncate was changed to update i_size in sync with the extent
3424 * items, but the (useless) orphan item was still created. Since
3425 * v4.18, we don't create the orphan item for truncate at all.
3426 *
3427 * So, this item could mean that we need to do a truncate, but
3428 * only if this filesystem was last used on a pre-v3.12 kernel
3429 * and was not cleanly unmounted. The odds of that are quite
3430 * slim, and it's a pain to do the truncate now, so just delete
3431 * the orphan item.
3432 *
3433 * It's also possible that this orphan item was supposed to be
3434 * deleted but wasn't. The inode number may have been reused,
3435 * but either way, we can delete the orphan item.
7b128766 3436 */
f7e9e8fc
OS
3437 if (ret == -ENOENT || inode->i_nlink) {
3438 if (!ret)
3439 iput(inode);
a8c9e576 3440 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3441 if (IS_ERR(trans)) {
3442 ret = PTR_ERR(trans);
3443 goto out;
3444 }
0b246afa
JM
3445 btrfs_debug(fs_info, "auto deleting %Lu",
3446 found_key.objectid);
a8c9e576
JB
3447 ret = btrfs_del_orphan_item(trans, root,
3448 found_key.objectid);
3a45bb20 3449 btrfs_end_transaction(trans);
4ef31a45
JB
3450 if (ret)
3451 goto out;
7b128766
JB
3452 continue;
3453 }
3454
f7e9e8fc 3455 nr_unlink++;
7b128766
JB
3456
3457 /* this will do delete_inode and everything for us */
3458 iput(inode);
3459 }
3254c876
MX
3460 /* release the path since we're done with it */
3461 btrfs_release_path(path);
3462
d68fc57b
YZ
3463 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3464
a575ceeb 3465 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3466 trans = btrfs_join_transaction(root);
66b4ffd1 3467 if (!IS_ERR(trans))
3a45bb20 3468 btrfs_end_transaction(trans);
d68fc57b 3469 }
7b128766
JB
3470
3471 if (nr_unlink)
0b246afa 3472 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3473
3474out:
3475 if (ret)
0b246afa 3476 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3477 btrfs_free_path(path);
3478 return ret;
7b128766
JB
3479}
3480
46a53cca
CM
3481/*
3482 * very simple check to peek ahead in the leaf looking for xattrs. If we
3483 * don't find any xattrs, we know there can't be any acls.
3484 *
3485 * slot is the slot the inode is in, objectid is the objectid of the inode
3486 */
3487static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3488 int slot, u64 objectid,
3489 int *first_xattr_slot)
46a53cca
CM
3490{
3491 u32 nritems = btrfs_header_nritems(leaf);
3492 struct btrfs_key found_key;
f23b5a59
JB
3493 static u64 xattr_access = 0;
3494 static u64 xattr_default = 0;
46a53cca
CM
3495 int scanned = 0;
3496
f23b5a59 3497 if (!xattr_access) {
97d79299
AG
3498 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3499 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3500 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3501 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3502 }
3503
46a53cca 3504 slot++;
63541927 3505 *first_xattr_slot = -1;
46a53cca
CM
3506 while (slot < nritems) {
3507 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3508
3509 /* we found a different objectid, there must not be acls */
3510 if (found_key.objectid != objectid)
3511 return 0;
3512
3513 /* we found an xattr, assume we've got an acl */
f23b5a59 3514 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3515 if (*first_xattr_slot == -1)
3516 *first_xattr_slot = slot;
f23b5a59
JB
3517 if (found_key.offset == xattr_access ||
3518 found_key.offset == xattr_default)
3519 return 1;
3520 }
46a53cca
CM
3521
3522 /*
3523 * we found a key greater than an xattr key, there can't
3524 * be any acls later on
3525 */
3526 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3527 return 0;
3528
3529 slot++;
3530 scanned++;
3531
3532 /*
3533 * it goes inode, inode backrefs, xattrs, extents,
3534 * so if there are a ton of hard links to an inode there can
3535 * be a lot of backrefs. Don't waste time searching too hard,
3536 * this is just an optimization
3537 */
3538 if (scanned >= 8)
3539 break;
3540 }
3541 /* we hit the end of the leaf before we found an xattr or
3542 * something larger than an xattr. We have to assume the inode
3543 * has acls
3544 */
63541927
FDBM
3545 if (*first_xattr_slot == -1)
3546 *first_xattr_slot = slot;
46a53cca
CM
3547 return 1;
3548}
3549
d352ac68
CM
3550/*
3551 * read an inode from the btree into the in-memory inode
3552 */
4222ea71
FM
3553static int btrfs_read_locked_inode(struct inode *inode,
3554 struct btrfs_path *in_path)
39279cc3 3555{
0b246afa 3556 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3557 struct btrfs_path *path = in_path;
5f39d397 3558 struct extent_buffer *leaf;
39279cc3
CM
3559 struct btrfs_inode_item *inode_item;
3560 struct btrfs_root *root = BTRFS_I(inode)->root;
3561 struct btrfs_key location;
67de1176 3562 unsigned long ptr;
46a53cca 3563 int maybe_acls;
618e21d5 3564 u32 rdev;
39279cc3 3565 int ret;
2f7e33d4 3566 bool filled = false;
63541927 3567 int first_xattr_slot;
2f7e33d4
MX
3568
3569 ret = btrfs_fill_inode(inode, &rdev);
3570 if (!ret)
3571 filled = true;
39279cc3 3572
4222ea71
FM
3573 if (!path) {
3574 path = btrfs_alloc_path();
3575 if (!path)
3576 return -ENOMEM;
3577 }
1748f843 3578
39279cc3 3579 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3580
39279cc3 3581 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3582 if (ret) {
4222ea71
FM
3583 if (path != in_path)
3584 btrfs_free_path(path);
f5b3a417 3585 return ret;
67710892 3586 }
39279cc3 3587
5f39d397 3588 leaf = path->nodes[0];
2f7e33d4
MX
3589
3590 if (filled)
67de1176 3591 goto cache_index;
2f7e33d4 3592
5f39d397
CM
3593 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3594 struct btrfs_inode_item);
5f39d397 3595 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3596 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3597 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3598 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3599 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3600
a937b979
DS
3601 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3602 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3603
a937b979
DS
3604 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3605 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3606
a937b979
DS
3607 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3608 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3609
9cc97d64 3610 BTRFS_I(inode)->i_otime.tv_sec =
3611 btrfs_timespec_sec(leaf, &inode_item->otime);
3612 BTRFS_I(inode)->i_otime.tv_nsec =
3613 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3614
a76a3cd4 3615 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3616 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3617 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3618
c7f88c4e
JL
3619 inode_set_iversion_queried(inode,
3620 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3621 inode->i_generation = BTRFS_I(inode)->generation;
3622 inode->i_rdev = 0;
3623 rdev = btrfs_inode_rdev(leaf, inode_item);
3624
3625 BTRFS_I(inode)->index_cnt = (u64)-1;
3626 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3627
3628cache_index:
5dc562c5
JB
3629 /*
3630 * If we were modified in the current generation and evicted from memory
3631 * and then re-read we need to do a full sync since we don't have any
3632 * idea about which extents were modified before we were evicted from
3633 * cache.
6e17d30b
YD
3634 *
3635 * This is required for both inode re-read from disk and delayed inode
3636 * in delayed_nodes_tree.
5dc562c5 3637 */
0b246afa 3638 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3639 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3640 &BTRFS_I(inode)->runtime_flags);
3641
bde6c242
FM
3642 /*
3643 * We don't persist the id of the transaction where an unlink operation
3644 * against the inode was last made. So here we assume the inode might
3645 * have been evicted, and therefore the exact value of last_unlink_trans
3646 * lost, and set it to last_trans to avoid metadata inconsistencies
3647 * between the inode and its parent if the inode is fsync'ed and the log
3648 * replayed. For example, in the scenario:
3649 *
3650 * touch mydir/foo
3651 * ln mydir/foo mydir/bar
3652 * sync
3653 * unlink mydir/bar
3654 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3655 * xfs_io -c fsync mydir/foo
3656 * <power failure>
3657 * mount fs, triggers fsync log replay
3658 *
3659 * We must make sure that when we fsync our inode foo we also log its
3660 * parent inode, otherwise after log replay the parent still has the
3661 * dentry with the "bar" name but our inode foo has a link count of 1
3662 * and doesn't have an inode ref with the name "bar" anymore.
3663 *
3664 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3665 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3666 * transaction commits on fsync if our inode is a directory, or if our
3667 * inode is not a directory, logging its parent unnecessarily.
3668 */
3669 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
41bd6067
FM
3670 /*
3671 * Similar reasoning for last_link_trans, needs to be set otherwise
3672 * for a case like the following:
3673 *
3674 * mkdir A
3675 * touch foo
3676 * ln foo A/bar
3677 * echo 2 > /proc/sys/vm/drop_caches
3678 * fsync foo
3679 * <power failure>
3680 *
3681 * Would result in link bar and directory A not existing after the power
3682 * failure.
3683 */
3684 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
bde6c242 3685
67de1176
MX
3686 path->slots[0]++;
3687 if (inode->i_nlink != 1 ||
3688 path->slots[0] >= btrfs_header_nritems(leaf))
3689 goto cache_acl;
3690
3691 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3692 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3693 goto cache_acl;
3694
3695 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3696 if (location.type == BTRFS_INODE_REF_KEY) {
3697 struct btrfs_inode_ref *ref;
3698
3699 ref = (struct btrfs_inode_ref *)ptr;
3700 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3701 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3702 struct btrfs_inode_extref *extref;
3703
3704 extref = (struct btrfs_inode_extref *)ptr;
3705 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3706 extref);
3707 }
2f7e33d4 3708cache_acl:
46a53cca
CM
3709 /*
3710 * try to precache a NULL acl entry for files that don't have
3711 * any xattrs or acls
3712 */
33345d01 3713 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3714 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3715 if (first_xattr_slot != -1) {
3716 path->slots[0] = first_xattr_slot;
3717 ret = btrfs_load_inode_props(inode, path);
3718 if (ret)
0b246afa 3719 btrfs_err(fs_info,
351fd353 3720 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3721 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3722 root->root_key.objectid, ret);
3723 }
4222ea71
FM
3724 if (path != in_path)
3725 btrfs_free_path(path);
63541927 3726
72c04902
AV
3727 if (!maybe_acls)
3728 cache_no_acl(inode);
46a53cca 3729
39279cc3 3730 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3731 case S_IFREG:
3732 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3733 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3734 inode->i_fop = &btrfs_file_operations;
3735 inode->i_op = &btrfs_file_inode_operations;
3736 break;
3737 case S_IFDIR:
3738 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3739 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3740 break;
3741 case S_IFLNK:
3742 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3743 inode_nohighmem(inode);
4779cc04 3744 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3745 break;
618e21d5 3746 default:
0279b4cd 3747 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3748 init_special_inode(inode, inode->i_mode, rdev);
3749 break;
39279cc3 3750 }
6cbff00f 3751
7b6a221e 3752 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3753 return 0;
39279cc3
CM
3754}
3755
d352ac68
CM
3756/*
3757 * given a leaf and an inode, copy the inode fields into the leaf
3758 */
e02119d5
CM
3759static void fill_inode_item(struct btrfs_trans_handle *trans,
3760 struct extent_buffer *leaf,
5f39d397 3761 struct btrfs_inode_item *item,
39279cc3
CM
3762 struct inode *inode)
3763{
51fab693
LB
3764 struct btrfs_map_token token;
3765
3766 btrfs_init_map_token(&token);
5f39d397 3767
51fab693
LB
3768 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3769 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3770 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3771 &token);
3772 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3773 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3774
a937b979 3775 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3776 inode->i_atime.tv_sec, &token);
a937b979 3777 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3778 inode->i_atime.tv_nsec, &token);
5f39d397 3779
a937b979 3780 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3781 inode->i_mtime.tv_sec, &token);
a937b979 3782 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3783 inode->i_mtime.tv_nsec, &token);
5f39d397 3784
a937b979 3785 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3786 inode->i_ctime.tv_sec, &token);
a937b979 3787 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3788 inode->i_ctime.tv_nsec, &token);
5f39d397 3789
9cc97d64 3790 btrfs_set_token_timespec_sec(leaf, &item->otime,
3791 BTRFS_I(inode)->i_otime.tv_sec, &token);
3792 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3793 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3794
51fab693
LB
3795 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3796 &token);
3797 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3798 &token);
c7f88c4e
JL
3799 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3800 &token);
51fab693
LB
3801 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3802 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3803 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3804 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3805}
3806
d352ac68
CM
3807/*
3808 * copy everything in the in-memory inode into the btree.
3809 */
2115133f 3810static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3811 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3812{
3813 struct btrfs_inode_item *inode_item;
3814 struct btrfs_path *path;
5f39d397 3815 struct extent_buffer *leaf;
39279cc3
CM
3816 int ret;
3817
3818 path = btrfs_alloc_path();
16cdcec7
MX
3819 if (!path)
3820 return -ENOMEM;
3821
b9473439 3822 path->leave_spinning = 1;
16cdcec7
MX
3823 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3824 1);
39279cc3
CM
3825 if (ret) {
3826 if (ret > 0)
3827 ret = -ENOENT;
3828 goto failed;
3829 }
3830
5f39d397
CM
3831 leaf = path->nodes[0];
3832 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3833 struct btrfs_inode_item);
39279cc3 3834
e02119d5 3835 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3836 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3837 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3838 ret = 0;
3839failed:
39279cc3
CM
3840 btrfs_free_path(path);
3841 return ret;
3842}
3843
2115133f
CM
3844/*
3845 * copy everything in the in-memory inode into the btree.
3846 */
3847noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3848 struct btrfs_root *root, struct inode *inode)
3849{
0b246afa 3850 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3851 int ret;
3852
3853 /*
3854 * If the inode is a free space inode, we can deadlock during commit
3855 * if we put it into the delayed code.
3856 *
3857 * The data relocation inode should also be directly updated
3858 * without delay
3859 */
70ddc553 3860 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3861 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3862 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3863 btrfs_update_root_times(trans, root);
3864
2115133f
CM
3865 ret = btrfs_delayed_update_inode(trans, root, inode);
3866 if (!ret)
3867 btrfs_set_inode_last_trans(trans, inode);
3868 return ret;
3869 }
3870
3871 return btrfs_update_inode_item(trans, root, inode);
3872}
3873
be6aef60
JB
3874noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3875 struct btrfs_root *root,
3876 struct inode *inode)
2115133f
CM
3877{
3878 int ret;
3879
3880 ret = btrfs_update_inode(trans, root, inode);
3881 if (ret == -ENOSPC)
3882 return btrfs_update_inode_item(trans, root, inode);
3883 return ret;
3884}
3885
d352ac68
CM
3886/*
3887 * unlink helper that gets used here in inode.c and in the tree logging
3888 * recovery code. It remove a link in a directory with a given name, and
3889 * also drops the back refs in the inode to the directory
3890 */
92986796
AV
3891static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3892 struct btrfs_root *root,
4ec5934e
NB
3893 struct btrfs_inode *dir,
3894 struct btrfs_inode *inode,
92986796 3895 const char *name, int name_len)
39279cc3 3896{
0b246afa 3897 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3898 struct btrfs_path *path;
39279cc3 3899 int ret = 0;
5f39d397 3900 struct extent_buffer *leaf;
39279cc3 3901 struct btrfs_dir_item *di;
5f39d397 3902 struct btrfs_key key;
aec7477b 3903 u64 index;
33345d01
LZ
3904 u64 ino = btrfs_ino(inode);
3905 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3906
3907 path = btrfs_alloc_path();
54aa1f4d
CM
3908 if (!path) {
3909 ret = -ENOMEM;
554233a6 3910 goto out;
54aa1f4d
CM
3911 }
3912
b9473439 3913 path->leave_spinning = 1;
33345d01 3914 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3915 name, name_len, -1);
3cf5068f
LB
3916 if (IS_ERR_OR_NULL(di)) {
3917 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3918 goto err;
3919 }
5f39d397
CM
3920 leaf = path->nodes[0];
3921 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3922 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3923 if (ret)
3924 goto err;
b3b4aa74 3925 btrfs_release_path(path);
39279cc3 3926
67de1176
MX
3927 /*
3928 * If we don't have dir index, we have to get it by looking up
3929 * the inode ref, since we get the inode ref, remove it directly,
3930 * it is unnecessary to do delayed deletion.
3931 *
3932 * But if we have dir index, needn't search inode ref to get it.
3933 * Since the inode ref is close to the inode item, it is better
3934 * that we delay to delete it, and just do this deletion when
3935 * we update the inode item.
3936 */
4ec5934e 3937 if (inode->dir_index) {
67de1176
MX
3938 ret = btrfs_delayed_delete_inode_ref(inode);
3939 if (!ret) {
4ec5934e 3940 index = inode->dir_index;
67de1176
MX
3941 goto skip_backref;
3942 }
3943 }
3944
33345d01
LZ
3945 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3946 dir_ino, &index);
aec7477b 3947 if (ret) {
0b246afa 3948 btrfs_info(fs_info,
c2cf52eb 3949 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3950 name_len, name, ino, dir_ino);
66642832 3951 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3952 goto err;
3953 }
67de1176 3954skip_backref:
9add2945 3955 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3956 if (ret) {
66642832 3957 btrfs_abort_transaction(trans, ret);
39279cc3 3958 goto err;
79787eaa 3959 }
39279cc3 3960
4ec5934e
NB
3961 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3962 dir_ino);
79787eaa 3963 if (ret != 0 && ret != -ENOENT) {
66642832 3964 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3965 goto err;
3966 }
e02119d5 3967
4ec5934e
NB
3968 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3969 index);
6418c961
CM
3970 if (ret == -ENOENT)
3971 ret = 0;
d4e3991b 3972 else if (ret)
66642832 3973 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3974err:
3975 btrfs_free_path(path);
e02119d5
CM
3976 if (ret)
3977 goto out;
3978
6ef06d27 3979 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3980 inode_inc_iversion(&inode->vfs_inode);
3981 inode_inc_iversion(&dir->vfs_inode);
3982 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3983 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3984 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3985out:
39279cc3
CM
3986 return ret;
3987}
3988
92986796
AV
3989int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3990 struct btrfs_root *root,
4ec5934e 3991 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3992 const char *name, int name_len)
3993{
3994 int ret;
3995 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3996 if (!ret) {
4ec5934e
NB
3997 drop_nlink(&inode->vfs_inode);
3998 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3999 }
4000 return ret;
4001}
39279cc3 4002
a22285a6
YZ
4003/*
4004 * helper to start transaction for unlink and rmdir.
4005 *
d52be818
JB
4006 * unlink and rmdir are special in btrfs, they do not always free space, so
4007 * if we cannot make our reservations the normal way try and see if there is
4008 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4009 * allow the unlink to occur.
a22285a6 4010 */
d52be818 4011static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4012{
a22285a6 4013 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4014
e70bea5f
JB
4015 /*
4016 * 1 for the possible orphan item
4017 * 1 for the dir item
4018 * 1 for the dir index
4019 * 1 for the inode ref
e70bea5f
JB
4020 * 1 for the inode
4021 */
8eab77ff 4022 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4023}
4024
4025static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4026{
4027 struct btrfs_root *root = BTRFS_I(dir)->root;
4028 struct btrfs_trans_handle *trans;
2b0143b5 4029 struct inode *inode = d_inode(dentry);
a22285a6 4030 int ret;
a22285a6 4031
d52be818 4032 trans = __unlink_start_trans(dir);
a22285a6
YZ
4033 if (IS_ERR(trans))
4034 return PTR_ERR(trans);
5f39d397 4035
4ec5934e
NB
4036 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4037 0);
12fcfd22 4038
4ec5934e
NB
4039 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4040 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4041 dentry->d_name.len);
b532402e
TI
4042 if (ret)
4043 goto out;
7b128766 4044
a22285a6 4045 if (inode->i_nlink == 0) {
73f2e545 4046 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4047 if (ret)
4048 goto out;
a22285a6 4049 }
7b128766 4050
b532402e 4051out:
3a45bb20 4052 btrfs_end_transaction(trans);
2ff7e61e 4053 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4054 return ret;
4055}
4056
f60a2364 4057static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4058 struct inode *dir, u64 objectid,
4059 const char *name, int name_len)
4df27c4d 4060{
401b3b19 4061 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4062 struct btrfs_path *path;
4063 struct extent_buffer *leaf;
4064 struct btrfs_dir_item *di;
4065 struct btrfs_key key;
4066 u64 index;
4067 int ret;
4a0cc7ca 4068 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4069
4070 path = btrfs_alloc_path();
4071 if (!path)
4072 return -ENOMEM;
4073
33345d01 4074 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4075 name, name_len, -1);
79787eaa 4076 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4077 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4078 goto out;
4079 }
4df27c4d
YZ
4080
4081 leaf = path->nodes[0];
4082 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4083 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4084 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4085 if (ret) {
66642832 4086 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4087 goto out;
4088 }
b3b4aa74 4089 btrfs_release_path(path);
4df27c4d 4090
3ee1c553
LF
4091 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4092 dir_ino, &index, name, name_len);
4df27c4d 4093 if (ret < 0) {
79787eaa 4094 if (ret != -ENOENT) {
66642832 4095 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4096 goto out;
4097 }
33345d01 4098 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4099 name, name_len);
79787eaa
JM
4100 if (IS_ERR_OR_NULL(di)) {
4101 if (!di)
4102 ret = -ENOENT;
4103 else
4104 ret = PTR_ERR(di);
66642832 4105 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4106 goto out;
4107 }
4df27c4d
YZ
4108
4109 leaf = path->nodes[0];
4110 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4111 index = key.offset;
4112 }
945d8962 4113 btrfs_release_path(path);
4df27c4d 4114
9add2945 4115 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4116 if (ret) {
66642832 4117 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4118 goto out;
4119 }
4df27c4d 4120
6ef06d27 4121 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4122 inode_inc_iversion(dir);
c2050a45 4123 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4124 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4125 if (ret)
66642832 4126 btrfs_abort_transaction(trans, ret);
79787eaa 4127out:
71d7aed0 4128 btrfs_free_path(path);
79787eaa 4129 return ret;
4df27c4d
YZ
4130}
4131
ec42f167
MT
4132/*
4133 * Helper to check if the subvolume references other subvolumes or if it's
4134 * default.
4135 */
f60a2364 4136static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4137{
4138 struct btrfs_fs_info *fs_info = root->fs_info;
4139 struct btrfs_path *path;
4140 struct btrfs_dir_item *di;
4141 struct btrfs_key key;
4142 u64 dir_id;
4143 int ret;
4144
4145 path = btrfs_alloc_path();
4146 if (!path)
4147 return -ENOMEM;
4148
4149 /* Make sure this root isn't set as the default subvol */
4150 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4151 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4152 dir_id, "default", 7, 0);
4153 if (di && !IS_ERR(di)) {
4154 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4155 if (key.objectid == root->root_key.objectid) {
4156 ret = -EPERM;
4157 btrfs_err(fs_info,
4158 "deleting default subvolume %llu is not allowed",
4159 key.objectid);
4160 goto out;
4161 }
4162 btrfs_release_path(path);
4163 }
4164
4165 key.objectid = root->root_key.objectid;
4166 key.type = BTRFS_ROOT_REF_KEY;
4167 key.offset = (u64)-1;
4168
4169 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4170 if (ret < 0)
4171 goto out;
4172 BUG_ON(ret == 0);
4173
4174 ret = 0;
4175 if (path->slots[0] > 0) {
4176 path->slots[0]--;
4177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4178 if (key.objectid == root->root_key.objectid &&
4179 key.type == BTRFS_ROOT_REF_KEY)
4180 ret = -ENOTEMPTY;
4181 }
4182out:
4183 btrfs_free_path(path);
4184 return ret;
4185}
4186
20a68004
NB
4187/* Delete all dentries for inodes belonging to the root */
4188static void btrfs_prune_dentries(struct btrfs_root *root)
4189{
4190 struct btrfs_fs_info *fs_info = root->fs_info;
4191 struct rb_node *node;
4192 struct rb_node *prev;
4193 struct btrfs_inode *entry;
4194 struct inode *inode;
4195 u64 objectid = 0;
4196
4197 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4198 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4199
4200 spin_lock(&root->inode_lock);
4201again:
4202 node = root->inode_tree.rb_node;
4203 prev = NULL;
4204 while (node) {
4205 prev = node;
4206 entry = rb_entry(node, struct btrfs_inode, rb_node);
4207
37508515 4208 if (objectid < btrfs_ino(entry))
20a68004 4209 node = node->rb_left;
37508515 4210 else if (objectid > btrfs_ino(entry))
20a68004
NB
4211 node = node->rb_right;
4212 else
4213 break;
4214 }
4215 if (!node) {
4216 while (prev) {
4217 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4218 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4219 node = prev;
4220 break;
4221 }
4222 prev = rb_next(prev);
4223 }
4224 }
4225 while (node) {
4226 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4227 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4228 inode = igrab(&entry->vfs_inode);
4229 if (inode) {
4230 spin_unlock(&root->inode_lock);
4231 if (atomic_read(&inode->i_count) > 1)
4232 d_prune_aliases(inode);
4233 /*
4234 * btrfs_drop_inode will have it removed from the inode
4235 * cache when its usage count hits zero.
4236 */
4237 iput(inode);
4238 cond_resched();
4239 spin_lock(&root->inode_lock);
4240 goto again;
4241 }
4242
4243 if (cond_resched_lock(&root->inode_lock))
4244 goto again;
4245
4246 node = rb_next(node);
4247 }
4248 spin_unlock(&root->inode_lock);
4249}
4250
f60a2364
MT
4251int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4252{
4253 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4254 struct btrfs_root *root = BTRFS_I(dir)->root;
4255 struct inode *inode = d_inode(dentry);
4256 struct btrfs_root *dest = BTRFS_I(inode)->root;
4257 struct btrfs_trans_handle *trans;
4258 struct btrfs_block_rsv block_rsv;
4259 u64 root_flags;
f60a2364
MT
4260 int ret;
4261 int err;
4262
4263 /*
4264 * Don't allow to delete a subvolume with send in progress. This is
4265 * inside the inode lock so the error handling that has to drop the bit
4266 * again is not run concurrently.
4267 */
4268 spin_lock(&dest->root_item_lock);
a7176f74 4269 if (dest->send_in_progress) {
f60a2364
MT
4270 spin_unlock(&dest->root_item_lock);
4271 btrfs_warn(fs_info,
4272 "attempt to delete subvolume %llu during send",
4273 dest->root_key.objectid);
4274 return -EPERM;
4275 }
a7176f74
LF
4276 root_flags = btrfs_root_flags(&dest->root_item);
4277 btrfs_set_root_flags(&dest->root_item,
4278 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4279 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4280
4281 down_write(&fs_info->subvol_sem);
4282
4283 err = may_destroy_subvol(dest);
4284 if (err)
4285 goto out_up_write;
4286
4287 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4288 /*
4289 * One for dir inode,
4290 * two for dir entries,
4291 * two for root ref/backref.
4292 */
c4c129db 4293 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4294 if (err)
4295 goto out_up_write;
4296
4297 trans = btrfs_start_transaction(root, 0);
4298 if (IS_ERR(trans)) {
4299 err = PTR_ERR(trans);
4300 goto out_release;
4301 }
4302 trans->block_rsv = &block_rsv;
4303 trans->bytes_reserved = block_rsv.size;
4304
4305 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4306
401b3b19
LF
4307 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4308 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4309 if (ret) {
4310 err = ret;
4311 btrfs_abort_transaction(trans, ret);
4312 goto out_end_trans;
4313 }
4314
4315 btrfs_record_root_in_trans(trans, dest);
4316
4317 memset(&dest->root_item.drop_progress, 0,
4318 sizeof(dest->root_item.drop_progress));
4319 dest->root_item.drop_level = 0;
4320 btrfs_set_root_refs(&dest->root_item, 0);
4321
4322 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4323 ret = btrfs_insert_orphan_item(trans,
4324 fs_info->tree_root,
4325 dest->root_key.objectid);
4326 if (ret) {
4327 btrfs_abort_transaction(trans, ret);
4328 err = ret;
4329 goto out_end_trans;
4330 }
4331 }
4332
d1957791 4333 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4334 BTRFS_UUID_KEY_SUBVOL,
4335 dest->root_key.objectid);
4336 if (ret && ret != -ENOENT) {
4337 btrfs_abort_transaction(trans, ret);
4338 err = ret;
4339 goto out_end_trans;
4340 }
4341 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4342 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4343 dest->root_item.received_uuid,
4344 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4345 dest->root_key.objectid);
4346 if (ret && ret != -ENOENT) {
4347 btrfs_abort_transaction(trans, ret);
4348 err = ret;
4349 goto out_end_trans;
4350 }
4351 }
4352
4353out_end_trans:
4354 trans->block_rsv = NULL;
4355 trans->bytes_reserved = 0;
4356 ret = btrfs_end_transaction(trans);
4357 if (ret && !err)
4358 err = ret;
4359 inode->i_flags |= S_DEAD;
4360out_release:
4361 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4362out_up_write:
4363 up_write(&fs_info->subvol_sem);
4364 if (err) {
4365 spin_lock(&dest->root_item_lock);
4366 root_flags = btrfs_root_flags(&dest->root_item);
4367 btrfs_set_root_flags(&dest->root_item,
4368 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4369 spin_unlock(&dest->root_item_lock);
4370 } else {
4371 d_invalidate(dentry);
20a68004 4372 btrfs_prune_dentries(dest);
f60a2364
MT
4373 ASSERT(dest->send_in_progress == 0);
4374
4375 /* the last ref */
4376 if (dest->ino_cache_inode) {
4377 iput(dest->ino_cache_inode);
4378 dest->ino_cache_inode = NULL;
4379 }
4380 }
4381
4382 return err;
4383}
4384
39279cc3
CM
4385static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4386{
2b0143b5 4387 struct inode *inode = d_inode(dentry);
1832a6d5 4388 int err = 0;
39279cc3 4389 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4390 struct btrfs_trans_handle *trans;
44f714da 4391 u64 last_unlink_trans;
39279cc3 4392
b3ae244e 4393 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4394 return -ENOTEMPTY;
4a0cc7ca 4395 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4396 return btrfs_delete_subvolume(dir, dentry);
134d4512 4397
d52be818 4398 trans = __unlink_start_trans(dir);
a22285a6 4399 if (IS_ERR(trans))
5df6a9f6 4400 return PTR_ERR(trans);
5df6a9f6 4401
4a0cc7ca 4402 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4403 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4404 BTRFS_I(inode)->location.objectid,
4405 dentry->d_name.name,
4406 dentry->d_name.len);
4407 goto out;
4408 }
4409
73f2e545 4410 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4411 if (err)
4df27c4d 4412 goto out;
7b128766 4413
44f714da
FM
4414 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4415
39279cc3 4416 /* now the directory is empty */
4ec5934e
NB
4417 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4418 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4419 dentry->d_name.len);
44f714da 4420 if (!err) {
6ef06d27 4421 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4422 /*
4423 * Propagate the last_unlink_trans value of the deleted dir to
4424 * its parent directory. This is to prevent an unrecoverable
4425 * log tree in the case we do something like this:
4426 * 1) create dir foo
4427 * 2) create snapshot under dir foo
4428 * 3) delete the snapshot
4429 * 4) rmdir foo
4430 * 5) mkdir foo
4431 * 6) fsync foo or some file inside foo
4432 */
4433 if (last_unlink_trans >= trans->transid)
4434 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4435 }
4df27c4d 4436out:
3a45bb20 4437 btrfs_end_transaction(trans);
2ff7e61e 4438 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4439
39279cc3
CM
4440 return err;
4441}
4442
ddfae63c
JB
4443/*
4444 * Return this if we need to call truncate_block for the last bit of the
4445 * truncate.
4446 */
4447#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4448
39279cc3
CM
4449/*
4450 * this can truncate away extent items, csum items and directory items.
4451 * It starts at a high offset and removes keys until it can't find
d352ac68 4452 * any higher than new_size
39279cc3
CM
4453 *
4454 * csum items that cross the new i_size are truncated to the new size
4455 * as well.
7b128766
JB
4456 *
4457 * min_type is the minimum key type to truncate down to. If set to 0, this
4458 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4459 */
8082510e
YZ
4460int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4461 struct btrfs_root *root,
4462 struct inode *inode,
4463 u64 new_size, u32 min_type)
39279cc3 4464{
0b246afa 4465 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4466 struct btrfs_path *path;
5f39d397 4467 struct extent_buffer *leaf;
39279cc3 4468 struct btrfs_file_extent_item *fi;
8082510e
YZ
4469 struct btrfs_key key;
4470 struct btrfs_key found_key;
39279cc3 4471 u64 extent_start = 0;
db94535d 4472 u64 extent_num_bytes = 0;
5d4f98a2 4473 u64 extent_offset = 0;
39279cc3 4474 u64 item_end = 0;
c1aa4575 4475 u64 last_size = new_size;
8082510e 4476 u32 found_type = (u8)-1;
39279cc3
CM
4477 int found_extent;
4478 int del_item;
85e21bac
CM
4479 int pending_del_nr = 0;
4480 int pending_del_slot = 0;
179e29e4 4481 int extent_type = -1;
8082510e 4482 int ret;
4a0cc7ca 4483 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4484 u64 bytes_deleted = 0;
897ca819
TM
4485 bool be_nice = false;
4486 bool should_throttle = false;
8082510e
YZ
4487
4488 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4489
28ed1345
CM
4490 /*
4491 * for non-free space inodes and ref cows, we want to back off from
4492 * time to time
4493 */
70ddc553 4494 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4495 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4496 be_nice = true;
28ed1345 4497
0eb0e19c
MF
4498 path = btrfs_alloc_path();
4499 if (!path)
4500 return -ENOMEM;
e4058b54 4501 path->reada = READA_BACK;
0eb0e19c 4502
5dc562c5
JB
4503 /*
4504 * We want to drop from the next block forward in case this new size is
4505 * not block aligned since we will be keeping the last block of the
4506 * extent just the way it is.
4507 */
27cdeb70 4508 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4509 root == fs_info->tree_root)
dcdbc059 4510 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4511 fs_info->sectorsize),
da17066c 4512 (u64)-1, 0);
8082510e 4513
16cdcec7
MX
4514 /*
4515 * This function is also used to drop the items in the log tree before
4516 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4517 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4518 * items.
4519 */
4520 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4521 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4522
33345d01 4523 key.objectid = ino;
39279cc3 4524 key.offset = (u64)-1;
5f39d397
CM
4525 key.type = (u8)-1;
4526
85e21bac 4527search_again:
28ed1345
CM
4528 /*
4529 * with a 16K leaf size and 128MB extents, you can actually queue
4530 * up a huge file in a single leaf. Most of the time that
4531 * bytes_deleted is > 0, it will be huge by the time we get here
4532 */
fd86a3a3
OS
4533 if (be_nice && bytes_deleted > SZ_32M &&
4534 btrfs_should_end_transaction(trans)) {
4535 ret = -EAGAIN;
4536 goto out;
28ed1345
CM
4537 }
4538
b9473439 4539 path->leave_spinning = 1;
85e21bac 4540 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4541 if (ret < 0)
8082510e 4542 goto out;
d397712b 4543
85e21bac 4544 if (ret > 0) {
fd86a3a3 4545 ret = 0;
e02119d5
CM
4546 /* there are no items in the tree for us to truncate, we're
4547 * done
4548 */
8082510e
YZ
4549 if (path->slots[0] == 0)
4550 goto out;
85e21bac
CM
4551 path->slots[0]--;
4552 }
4553
d397712b 4554 while (1) {
39279cc3 4555 fi = NULL;
5f39d397
CM
4556 leaf = path->nodes[0];
4557 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4558 found_type = found_key.type;
39279cc3 4559
33345d01 4560 if (found_key.objectid != ino)
39279cc3 4561 break;
5f39d397 4562
85e21bac 4563 if (found_type < min_type)
39279cc3
CM
4564 break;
4565
5f39d397 4566 item_end = found_key.offset;
39279cc3 4567 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4568 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4569 struct btrfs_file_extent_item);
179e29e4
CM
4570 extent_type = btrfs_file_extent_type(leaf, fi);
4571 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4572 item_end +=
db94535d 4573 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4574
4575 trace_btrfs_truncate_show_fi_regular(
4576 BTRFS_I(inode), leaf, fi,
4577 found_key.offset);
179e29e4 4578 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4579 item_end += btrfs_file_extent_ram_bytes(leaf,
4580 fi);
09ed2f16
LB
4581
4582 trace_btrfs_truncate_show_fi_inline(
4583 BTRFS_I(inode), leaf, fi, path->slots[0],
4584 found_key.offset);
39279cc3 4585 }
008630c1 4586 item_end--;
39279cc3 4587 }
8082510e
YZ
4588 if (found_type > min_type) {
4589 del_item = 1;
4590 } else {
76b42abb 4591 if (item_end < new_size)
b888db2b 4592 break;
8082510e
YZ
4593 if (found_key.offset >= new_size)
4594 del_item = 1;
4595 else
4596 del_item = 0;
39279cc3 4597 }
39279cc3 4598 found_extent = 0;
39279cc3 4599 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4600 if (found_type != BTRFS_EXTENT_DATA_KEY)
4601 goto delete;
4602
4603 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4604 u64 num_dec;
db94535d 4605 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4606 if (!del_item) {
db94535d
CM
4607 u64 orig_num_bytes =
4608 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4609 extent_num_bytes = ALIGN(new_size -
4610 found_key.offset,
0b246afa 4611 fs_info->sectorsize);
db94535d
CM
4612 btrfs_set_file_extent_num_bytes(leaf, fi,
4613 extent_num_bytes);
4614 num_dec = (orig_num_bytes -
9069218d 4615 extent_num_bytes);
27cdeb70
MX
4616 if (test_bit(BTRFS_ROOT_REF_COWS,
4617 &root->state) &&
4618 extent_start != 0)
a76a3cd4 4619 inode_sub_bytes(inode, num_dec);
5f39d397 4620 btrfs_mark_buffer_dirty(leaf);
39279cc3 4621 } else {
db94535d
CM
4622 extent_num_bytes =
4623 btrfs_file_extent_disk_num_bytes(leaf,
4624 fi);
5d4f98a2
YZ
4625 extent_offset = found_key.offset -
4626 btrfs_file_extent_offset(leaf, fi);
4627
39279cc3 4628 /* FIXME blocksize != 4096 */
9069218d 4629 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4630 if (extent_start != 0) {
4631 found_extent = 1;
27cdeb70
MX
4632 if (test_bit(BTRFS_ROOT_REF_COWS,
4633 &root->state))
a76a3cd4 4634 inode_sub_bytes(inode, num_dec);
e02119d5 4635 }
39279cc3 4636 }
9069218d 4637 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4638 /*
4639 * we can't truncate inline items that have had
4640 * special encodings
4641 */
4642 if (!del_item &&
c8b97818 4643 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4644 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4645 btrfs_file_extent_compression(leaf, fi) == 0) {
4646 u32 size = (u32)(new_size - found_key.offset);
4647
4648 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4649 size = btrfs_file_extent_calc_inline_size(size);
4650 btrfs_truncate_item(root->fs_info, path, size, 1);
4651 } else if (!del_item) {
514ac8ad 4652 /*
ddfae63c
JB
4653 * We have to bail so the last_size is set to
4654 * just before this extent.
514ac8ad 4655 */
fd86a3a3 4656 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4657 break;
4658 }
0305cd5f 4659
ddfae63c 4660 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4661 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4662 }
179e29e4 4663delete:
ddfae63c
JB
4664 if (del_item)
4665 last_size = found_key.offset;
4666 else
4667 last_size = new_size;
39279cc3 4668 if (del_item) {
85e21bac
CM
4669 if (!pending_del_nr) {
4670 /* no pending yet, add ourselves */
4671 pending_del_slot = path->slots[0];
4672 pending_del_nr = 1;
4673 } else if (pending_del_nr &&
4674 path->slots[0] + 1 == pending_del_slot) {
4675 /* hop on the pending chunk */
4676 pending_del_nr++;
4677 pending_del_slot = path->slots[0];
4678 } else {
d397712b 4679 BUG();
85e21bac 4680 }
39279cc3
CM
4681 } else {
4682 break;
4683 }
897ca819 4684 should_throttle = false;
28f75a0e 4685
27cdeb70
MX
4686 if (found_extent &&
4687 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4688 root == fs_info->tree_root)) {
b9473439 4689 btrfs_set_path_blocking(path);
28ed1345 4690 bytes_deleted += extent_num_bytes;
84f7d8e6 4691 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4692 extent_num_bytes, 0,
4693 btrfs_header_owner(leaf),
b06c4bf5 4694 ino, extent_offset);
05522109
OS
4695 if (ret) {
4696 btrfs_abort_transaction(trans, ret);
4697 break;
4698 }
28f75a0e 4699 if (be_nice) {
7c861627 4700 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4701 should_throttle = true;
28f75a0e 4702 }
39279cc3 4703 }
85e21bac 4704
8082510e
YZ
4705 if (found_type == BTRFS_INODE_ITEM_KEY)
4706 break;
4707
4708 if (path->slots[0] == 0 ||
1262133b 4709 path->slots[0] != pending_del_slot ||
28bad212 4710 should_throttle) {
8082510e
YZ
4711 if (pending_del_nr) {
4712 ret = btrfs_del_items(trans, root, path,
4713 pending_del_slot,
4714 pending_del_nr);
79787eaa 4715 if (ret) {
66642832 4716 btrfs_abort_transaction(trans, ret);
fd86a3a3 4717 break;
79787eaa 4718 }
8082510e
YZ
4719 pending_del_nr = 0;
4720 }
b3b4aa74 4721 btrfs_release_path(path);
28bad212 4722
28f75a0e 4723 /*
28bad212
JB
4724 * We can generate a lot of delayed refs, so we need to
4725 * throttle every once and a while and make sure we're
4726 * adding enough space to keep up with the work we are
4727 * generating. Since we hold a transaction here we
4728 * can't flush, and we don't want to FLUSH_LIMIT because
4729 * we could have generated too many delayed refs to
4730 * actually allocate, so just bail if we're short and
4731 * let the normal reservation dance happen higher up.
28f75a0e 4732 */
28bad212
JB
4733 if (should_throttle) {
4734 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4735 BTRFS_RESERVE_NO_FLUSH);
4736 if (ret) {
4737 ret = -EAGAIN;
4738 break;
4739 }
28f75a0e 4740 }
85e21bac 4741 goto search_again;
8082510e
YZ
4742 } else {
4743 path->slots[0]--;
85e21bac 4744 }
39279cc3 4745 }
8082510e 4746out:
fd86a3a3
OS
4747 if (ret >= 0 && pending_del_nr) {
4748 int err;
4749
4750 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4751 pending_del_nr);
fd86a3a3
OS
4752 if (err) {
4753 btrfs_abort_transaction(trans, err);
4754 ret = err;
4755 }
85e21bac 4756 }
76b42abb
FM
4757 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4758 ASSERT(last_size >= new_size);
fd86a3a3 4759 if (!ret && last_size > new_size)
76b42abb 4760 last_size = new_size;
7f4f6e0a 4761 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4762 }
28ed1345 4763
39279cc3 4764 btrfs_free_path(path);
fd86a3a3 4765 return ret;
39279cc3
CM
4766}
4767
4768/*
9703fefe 4769 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4770 * @inode - inode that we're zeroing
4771 * @from - the offset to start zeroing
4772 * @len - the length to zero, 0 to zero the entire range respective to the
4773 * offset
4774 * @front - zero up to the offset instead of from the offset on
4775 *
9703fefe 4776 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4777 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4778 */
9703fefe 4779int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4780 int front)
39279cc3 4781{
0b246afa 4782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4783 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4784 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4785 struct btrfs_ordered_extent *ordered;
2ac55d41 4786 struct extent_state *cached_state = NULL;
364ecf36 4787 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4788 char *kaddr;
0b246afa 4789 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4790 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4791 unsigned offset = from & (blocksize - 1);
39279cc3 4792 struct page *page;
3b16a4e3 4793 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4794 int ret = 0;
9703fefe
CR
4795 u64 block_start;
4796 u64 block_end;
39279cc3 4797
b03ebd99
NB
4798 if (IS_ALIGNED(offset, blocksize) &&
4799 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4800 goto out;
9703fefe 4801
8b62f87b
JB
4802 block_start = round_down(from, blocksize);
4803 block_end = block_start + blocksize - 1;
4804
364ecf36 4805 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4806 block_start, blocksize);
5d5e103a
JB
4807 if (ret)
4808 goto out;
39279cc3 4809
211c17f5 4810again:
3b16a4e3 4811 page = find_or_create_page(mapping, index, mask);
5d5e103a 4812 if (!page) {
bc42bda2 4813 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4814 block_start, blocksize, true);
4815 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4816 ret = -ENOMEM;
39279cc3 4817 goto out;
5d5e103a 4818 }
e6dcd2dc 4819
39279cc3 4820 if (!PageUptodate(page)) {
9ebefb18 4821 ret = btrfs_readpage(NULL, page);
39279cc3 4822 lock_page(page);
211c17f5
CM
4823 if (page->mapping != mapping) {
4824 unlock_page(page);
09cbfeaf 4825 put_page(page);
211c17f5
CM
4826 goto again;
4827 }
39279cc3
CM
4828 if (!PageUptodate(page)) {
4829 ret = -EIO;
89642229 4830 goto out_unlock;
39279cc3
CM
4831 }
4832 }
211c17f5 4833 wait_on_page_writeback(page);
e6dcd2dc 4834
9703fefe 4835 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4836 set_page_extent_mapped(page);
4837
9703fefe 4838 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4839 if (ordered) {
9703fefe 4840 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4841 &cached_state);
e6dcd2dc 4842 unlock_page(page);
09cbfeaf 4843 put_page(page);
eb84ae03 4844 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4845 btrfs_put_ordered_extent(ordered);
4846 goto again;
4847 }
4848
9703fefe 4849 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4850 EXTENT_DIRTY | EXTENT_DELALLOC |
4851 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4852 0, 0, &cached_state);
5d5e103a 4853
e3b8a485 4854 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4855 &cached_state, 0);
9ed74f2d 4856 if (ret) {
9703fefe 4857 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4858 &cached_state);
9ed74f2d
JB
4859 goto out_unlock;
4860 }
4861
9703fefe 4862 if (offset != blocksize) {
2aaa6655 4863 if (!len)
9703fefe 4864 len = blocksize - offset;
e6dcd2dc 4865 kaddr = kmap(page);
2aaa6655 4866 if (front)
9703fefe
CR
4867 memset(kaddr + (block_start - page_offset(page)),
4868 0, offset);
2aaa6655 4869 else
9703fefe
CR
4870 memset(kaddr + (block_start - page_offset(page)) + offset,
4871 0, len);
e6dcd2dc
CM
4872 flush_dcache_page(page);
4873 kunmap(page);
4874 }
247e743c 4875 ClearPageChecked(page);
e6dcd2dc 4876 set_page_dirty(page);
e43bbe5e 4877 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4878
89642229 4879out_unlock:
5d5e103a 4880 if (ret)
bc42bda2 4881 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4882 blocksize, true);
4883 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4884 unlock_page(page);
09cbfeaf 4885 put_page(page);
39279cc3 4886out:
364ecf36 4887 extent_changeset_free(data_reserved);
39279cc3
CM
4888 return ret;
4889}
4890
16e7549f
JB
4891static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4892 u64 offset, u64 len)
4893{
0b246afa 4894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4895 struct btrfs_trans_handle *trans;
4896 int ret;
4897
4898 /*
4899 * Still need to make sure the inode looks like it's been updated so
4900 * that any holes get logged if we fsync.
4901 */
0b246afa
JM
4902 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4903 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4904 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4905 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4906 return 0;
4907 }
4908
4909 /*
4910 * 1 - for the one we're dropping
4911 * 1 - for the one we're adding
4912 * 1 - for updating the inode.
4913 */
4914 trans = btrfs_start_transaction(root, 3);
4915 if (IS_ERR(trans))
4916 return PTR_ERR(trans);
4917
4918 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4919 if (ret) {
66642832 4920 btrfs_abort_transaction(trans, ret);
3a45bb20 4921 btrfs_end_transaction(trans);
16e7549f
JB
4922 return ret;
4923 }
4924
f85b7379
DS
4925 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4926 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4927 if (ret)
66642832 4928 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4929 else
4930 btrfs_update_inode(trans, root, inode);
3a45bb20 4931 btrfs_end_transaction(trans);
16e7549f
JB
4932 return ret;
4933}
4934
695a0d0d
JB
4935/*
4936 * This function puts in dummy file extents for the area we're creating a hole
4937 * for. So if we are truncating this file to a larger size we need to insert
4938 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4939 * the range between oldsize and size
4940 */
a41ad394 4941int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4942{
0b246afa 4943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4944 struct btrfs_root *root = BTRFS_I(inode)->root;
4945 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4946 struct extent_map *em = NULL;
2ac55d41 4947 struct extent_state *cached_state = NULL;
5dc562c5 4948 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4949 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4950 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4951 u64 last_byte;
4952 u64 cur_offset;
4953 u64 hole_size;
9ed74f2d 4954 int err = 0;
39279cc3 4955
a71754fc 4956 /*
9703fefe
CR
4957 * If our size started in the middle of a block we need to zero out the
4958 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4959 * expose stale data.
4960 */
9703fefe 4961 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4962 if (err)
4963 return err;
4964
9036c102
YZ
4965 if (size <= hole_start)
4966 return 0;
4967
9036c102
YZ
4968 while (1) {
4969 struct btrfs_ordered_extent *ordered;
fa7c1494 4970
ff13db41 4971 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4972 &cached_state);
a776c6fa 4973 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4974 block_end - hole_start);
9036c102
YZ
4975 if (!ordered)
4976 break;
2ac55d41 4977 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 4978 &cached_state);
fa7c1494 4979 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4980 btrfs_put_ordered_extent(ordered);
4981 }
39279cc3 4982
9036c102
YZ
4983 cur_offset = hole_start;
4984 while (1) {
fc4f21b1 4985 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4986 block_end - cur_offset, 0);
79787eaa
JM
4987 if (IS_ERR(em)) {
4988 err = PTR_ERR(em);
f2767956 4989 em = NULL;
79787eaa
JM
4990 break;
4991 }
9036c102 4992 last_byte = min(extent_map_end(em), block_end);
0b246afa 4993 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4994 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4995 struct extent_map *hole_em;
9036c102 4996 hole_size = last_byte - cur_offset;
9ed74f2d 4997
16e7549f
JB
4998 err = maybe_insert_hole(root, inode, cur_offset,
4999 hole_size);
5000 if (err)
3893e33b 5001 break;
dcdbc059 5002 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5003 cur_offset + hole_size - 1, 0);
5004 hole_em = alloc_extent_map();
5005 if (!hole_em) {
5006 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5007 &BTRFS_I(inode)->runtime_flags);
5008 goto next;
5009 }
5010 hole_em->start = cur_offset;
5011 hole_em->len = hole_size;
5012 hole_em->orig_start = cur_offset;
8082510e 5013
5dc562c5
JB
5014 hole_em->block_start = EXTENT_MAP_HOLE;
5015 hole_em->block_len = 0;
b4939680 5016 hole_em->orig_block_len = 0;
cc95bef6 5017 hole_em->ram_bytes = hole_size;
0b246afa 5018 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5019 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5020 hole_em->generation = fs_info->generation;
8082510e 5021
5dc562c5
JB
5022 while (1) {
5023 write_lock(&em_tree->lock);
09a2a8f9 5024 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5025 write_unlock(&em_tree->lock);
5026 if (err != -EEXIST)
5027 break;
dcdbc059
NB
5028 btrfs_drop_extent_cache(BTRFS_I(inode),
5029 cur_offset,
5dc562c5
JB
5030 cur_offset +
5031 hole_size - 1, 0);
5032 }
5033 free_extent_map(hole_em);
9036c102 5034 }
16e7549f 5035next:
9036c102 5036 free_extent_map(em);
a22285a6 5037 em = NULL;
9036c102 5038 cur_offset = last_byte;
8082510e 5039 if (cur_offset >= block_end)
9036c102
YZ
5040 break;
5041 }
a22285a6 5042 free_extent_map(em);
e43bbe5e 5043 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5044 return err;
5045}
39279cc3 5046
3972f260 5047static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5048{
f4a2f4c5
MX
5049 struct btrfs_root *root = BTRFS_I(inode)->root;
5050 struct btrfs_trans_handle *trans;
a41ad394 5051 loff_t oldsize = i_size_read(inode);
3972f260
ES
5052 loff_t newsize = attr->ia_size;
5053 int mask = attr->ia_valid;
8082510e
YZ
5054 int ret;
5055
3972f260
ES
5056 /*
5057 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5058 * special case where we need to update the times despite not having
5059 * these flags set. For all other operations the VFS set these flags
5060 * explicitly if it wants a timestamp update.
5061 */
dff6efc3
CH
5062 if (newsize != oldsize) {
5063 inode_inc_iversion(inode);
5064 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5065 inode->i_ctime = inode->i_mtime =
c2050a45 5066 current_time(inode);
dff6efc3 5067 }
3972f260 5068
a41ad394 5069 if (newsize > oldsize) {
9ea24bbe 5070 /*
ea14b57f 5071 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5072 * This is to ensure the snapshot captures a fully consistent
5073 * state of this file - if the snapshot captures this expanding
5074 * truncation, it must capture all writes that happened before
5075 * this truncation.
5076 */
0bc19f90 5077 btrfs_wait_for_snapshot_creation(root);
a41ad394 5078 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5079 if (ret) {
ea14b57f 5080 btrfs_end_write_no_snapshotting(root);
8082510e 5081 return ret;
9ea24bbe 5082 }
8082510e 5083
f4a2f4c5 5084 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5085 if (IS_ERR(trans)) {
ea14b57f 5086 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5087 return PTR_ERR(trans);
9ea24bbe 5088 }
f4a2f4c5
MX
5089
5090 i_size_write(inode, newsize);
5091 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5092 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5093 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5094 btrfs_end_write_no_snapshotting(root);
3a45bb20 5095 btrfs_end_transaction(trans);
a41ad394 5096 } else {
8082510e 5097
a41ad394
JB
5098 /*
5099 * We're truncating a file that used to have good data down to
5100 * zero. Make sure it gets into the ordered flush list so that
5101 * any new writes get down to disk quickly.
5102 */
5103 if (newsize == 0)
72ac3c0d
JB
5104 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5105 &BTRFS_I(inode)->runtime_flags);
8082510e 5106
a41ad394 5107 truncate_setsize(inode, newsize);
2e60a51e 5108
52042d8e 5109 /* Disable nonlocked read DIO to avoid the endless truncate */
abcefb1e 5110 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5111 inode_dio_wait(inode);
0b581701 5112 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5113
213e8c55 5114 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5115 if (ret && inode->i_nlink) {
5116 int err;
5117
5118 /*
f7e9e8fc
OS
5119 * Truncate failed, so fix up the in-memory size. We
5120 * adjusted disk_i_size down as we removed extents, so
5121 * wait for disk_i_size to be stable and then update the
5122 * in-memory size to match.
7f4f6e0a 5123 */
f7e9e8fc 5124 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5125 if (err)
f7e9e8fc
OS
5126 return err;
5127 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5128 }
8082510e
YZ
5129 }
5130
a41ad394 5131 return ret;
8082510e
YZ
5132}
5133
9036c102
YZ
5134static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5135{
2b0143b5 5136 struct inode *inode = d_inode(dentry);
b83cc969 5137 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5138 int err;
39279cc3 5139
b83cc969
LZ
5140 if (btrfs_root_readonly(root))
5141 return -EROFS;
5142
31051c85 5143 err = setattr_prepare(dentry, attr);
9036c102
YZ
5144 if (err)
5145 return err;
2bf5a725 5146
5a3f23d5 5147 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5148 err = btrfs_setsize(inode, attr);
8082510e
YZ
5149 if (err)
5150 return err;
39279cc3 5151 }
9036c102 5152
1025774c
CH
5153 if (attr->ia_valid) {
5154 setattr_copy(inode, attr);
0c4d2d95 5155 inode_inc_iversion(inode);
22c44fe6 5156 err = btrfs_dirty_inode(inode);
1025774c 5157
22c44fe6 5158 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5159 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5160 }
33268eaf 5161
39279cc3
CM
5162 return err;
5163}
61295eb8 5164
131e404a
FDBM
5165/*
5166 * While truncating the inode pages during eviction, we get the VFS calling
5167 * btrfs_invalidatepage() against each page of the inode. This is slow because
5168 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5169 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5170 * extent_state structures over and over, wasting lots of time.
5171 *
5172 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5173 * those expensive operations on a per page basis and do only the ordered io
5174 * finishing, while we release here the extent_map and extent_state structures,
5175 * without the excessive merging and splitting.
5176 */
5177static void evict_inode_truncate_pages(struct inode *inode)
5178{
5179 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5180 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5181 struct rb_node *node;
5182
5183 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5184 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5185
5186 write_lock(&map_tree->lock);
07e1ce09 5187 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5188 struct extent_map *em;
5189
07e1ce09 5190 node = rb_first_cached(&map_tree->map);
131e404a 5191 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5192 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5193 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5194 remove_extent_mapping(map_tree, em);
5195 free_extent_map(em);
7064dd5c
FM
5196 if (need_resched()) {
5197 write_unlock(&map_tree->lock);
5198 cond_resched();
5199 write_lock(&map_tree->lock);
5200 }
131e404a
FDBM
5201 }
5202 write_unlock(&map_tree->lock);
5203
6ca07097
FM
5204 /*
5205 * Keep looping until we have no more ranges in the io tree.
5206 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5207 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5208 * still in progress (unlocked the pages in the bio but did not yet
5209 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5210 * ranges can still be locked and eviction started because before
5211 * submitting those bios, which are executed by a separate task (work
5212 * queue kthread), inode references (inode->i_count) were not taken
5213 * (which would be dropped in the end io callback of each bio).
5214 * Therefore here we effectively end up waiting for those bios and
5215 * anyone else holding locked ranges without having bumped the inode's
5216 * reference count - if we don't do it, when they access the inode's
5217 * io_tree to unlock a range it may be too late, leading to an
5218 * use-after-free issue.
5219 */
131e404a
FDBM
5220 spin_lock(&io_tree->lock);
5221 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5222 struct extent_state *state;
5223 struct extent_state *cached_state = NULL;
6ca07097
FM
5224 u64 start;
5225 u64 end;
421f0922 5226 unsigned state_flags;
131e404a
FDBM
5227
5228 node = rb_first(&io_tree->state);
5229 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5230 start = state->start;
5231 end = state->end;
421f0922 5232 state_flags = state->state;
131e404a
FDBM
5233 spin_unlock(&io_tree->lock);
5234
ff13db41 5235 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5236
5237 /*
5238 * If still has DELALLOC flag, the extent didn't reach disk,
5239 * and its reserved space won't be freed by delayed_ref.
5240 * So we need to free its reserved space here.
5241 * (Refer to comment in btrfs_invalidatepage, case 2)
5242 *
5243 * Note, end is the bytenr of last byte, so we need + 1 here.
5244 */
421f0922 5245 if (state_flags & EXTENT_DELALLOC)
bc42bda2 5246 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5247
6ca07097 5248 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5249 EXTENT_LOCKED | EXTENT_DIRTY |
5250 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5251 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5252
7064dd5c 5253 cond_resched();
131e404a
FDBM
5254 spin_lock(&io_tree->lock);
5255 }
5256 spin_unlock(&io_tree->lock);
5257}
5258
4b9d7b59 5259static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5260 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5261{
5262 struct btrfs_fs_info *fs_info = root->fs_info;
5263 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5264 int failures = 0;
5265
5266 for (;;) {
5267 struct btrfs_trans_handle *trans;
5268 int ret;
5269
ad80cf50 5270 ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
4b9d7b59
OS
5271 BTRFS_RESERVE_FLUSH_LIMIT);
5272
5273 if (ret && ++failures > 2) {
5274 btrfs_warn(fs_info,
5275 "could not allocate space for a delete; will truncate on mount");
5276 return ERR_PTR(-ENOSPC);
5277 }
5278
5279 trans = btrfs_join_transaction(root);
5280 if (IS_ERR(trans) || !ret)
5281 return trans;
5282
5283 /*
5284 * Try to steal from the global reserve if there is space for
5285 * it.
5286 */
64403612
JB
5287 if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5288 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
4b9d7b59
OS
5289 return trans;
5290
5291 /* If not, commit and try again. */
5292 ret = btrfs_commit_transaction(trans);
5293 if (ret)
5294 return ERR_PTR(ret);
5295 }
5296}
5297
bd555975 5298void btrfs_evict_inode(struct inode *inode)
39279cc3 5299{
0b246afa 5300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5301 struct btrfs_trans_handle *trans;
5302 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5303 struct btrfs_block_rsv *rsv;
39279cc3
CM
5304 int ret;
5305
1abe9b8a 5306 trace_btrfs_inode_evict(inode);
5307
3d48d981 5308 if (!root) {
e8f1bc14 5309 clear_inode(inode);
3d48d981
NB
5310 return;
5311 }
5312
131e404a
FDBM
5313 evict_inode_truncate_pages(inode);
5314
69e9c6c6
SB
5315 if (inode->i_nlink &&
5316 ((btrfs_root_refs(&root->root_item) != 0 &&
5317 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5318 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5319 goto no_delete;
5320
27919067 5321 if (is_bad_inode(inode))
39279cc3 5322 goto no_delete;
5f39d397 5323
7ab7956e 5324 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5325
7b40b695 5326 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5327 goto no_delete;
c71bf099 5328
76dda93c 5329 if (inode->i_nlink > 0) {
69e9c6c6
SB
5330 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5331 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5332 goto no_delete;
5333 }
5334
aa79021f 5335 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5336 if (ret)
0e8c36a9 5337 goto no_delete;
0e8c36a9 5338
2ff7e61e 5339 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5340 if (!rsv)
4289a667 5341 goto no_delete;
ad80cf50 5342 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
ca7e70f5 5343 rsv->failfast = 1;
4289a667 5344
6ef06d27 5345 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5346
8082510e 5347 while (1) {
ad80cf50 5348 trans = evict_refill_and_join(root, rsv);
27919067
OS
5349 if (IS_ERR(trans))
5350 goto free_rsv;
7b128766 5351
4289a667
JB
5352 trans->block_rsv = rsv;
5353
d68fc57b 5354 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5355 trans->block_rsv = &fs_info->trans_block_rsv;
5356 btrfs_end_transaction(trans);
5357 btrfs_btree_balance_dirty(fs_info);
5358 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5359 goto free_rsv;
5360 else if (!ret)
8082510e 5361 break;
8082510e 5362 }
5f39d397 5363
4ef31a45 5364 /*
27919067
OS
5365 * Errors here aren't a big deal, it just means we leave orphan items in
5366 * the tree. They will be cleaned up on the next mount. If the inode
5367 * number gets reused, cleanup deletes the orphan item without doing
5368 * anything, and unlink reuses the existing orphan item.
5369 *
5370 * If it turns out that we are dropping too many of these, we might want
5371 * to add a mechanism for retrying these after a commit.
4ef31a45 5372 */
ad80cf50 5373 trans = evict_refill_and_join(root, rsv);
27919067
OS
5374 if (!IS_ERR(trans)) {
5375 trans->block_rsv = rsv;
5376 btrfs_orphan_del(trans, BTRFS_I(inode));
5377 trans->block_rsv = &fs_info->trans_block_rsv;
5378 btrfs_end_transaction(trans);
5379 }
54aa1f4d 5380
0b246afa 5381 if (!(root == fs_info->tree_root ||
581bb050 5382 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5383 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5384
27919067
OS
5385free_rsv:
5386 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5387no_delete:
27919067
OS
5388 /*
5389 * If we didn't successfully delete, the orphan item will still be in
5390 * the tree and we'll retry on the next mount. Again, we might also want
5391 * to retry these periodically in the future.
5392 */
f48d1cf5 5393 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5394 clear_inode(inode);
39279cc3
CM
5395}
5396
5397/*
5398 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5399 * If no dir entries were found, returns -ENOENT.
5400 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5401 */
5402static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5403 struct btrfs_key *location)
5404{
5405 const char *name = dentry->d_name.name;
5406 int namelen = dentry->d_name.len;
5407 struct btrfs_dir_item *di;
5408 struct btrfs_path *path;
5409 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5410 int ret = 0;
39279cc3
CM
5411
5412 path = btrfs_alloc_path();
d8926bb3
MF
5413 if (!path)
5414 return -ENOMEM;
3954401f 5415
f85b7379
DS
5416 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5417 name, namelen, 0);
3cf5068f
LB
5418 if (IS_ERR_OR_NULL(di)) {
5419 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5420 goto out;
5421 }
d397712b 5422
5f39d397 5423 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5424 if (location->type != BTRFS_INODE_ITEM_KEY &&
5425 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5426 ret = -EUCLEAN;
56a0e706
LB
5427 btrfs_warn(root->fs_info,
5428"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5429 __func__, name, btrfs_ino(BTRFS_I(dir)),
5430 location->objectid, location->type, location->offset);
56a0e706 5431 }
39279cc3 5432out:
39279cc3
CM
5433 btrfs_free_path(path);
5434 return ret;
5435}
5436
5437/*
5438 * when we hit a tree root in a directory, the btrfs part of the inode
5439 * needs to be changed to reflect the root directory of the tree root. This
5440 * is kind of like crossing a mount point.
5441 */
2ff7e61e 5442static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5443 struct inode *dir,
5444 struct dentry *dentry,
5445 struct btrfs_key *location,
5446 struct btrfs_root **sub_root)
39279cc3 5447{
4df27c4d
YZ
5448 struct btrfs_path *path;
5449 struct btrfs_root *new_root;
5450 struct btrfs_root_ref *ref;
5451 struct extent_buffer *leaf;
1d4c08e0 5452 struct btrfs_key key;
4df27c4d
YZ
5453 int ret;
5454 int err = 0;
39279cc3 5455
4df27c4d
YZ
5456 path = btrfs_alloc_path();
5457 if (!path) {
5458 err = -ENOMEM;
5459 goto out;
5460 }
39279cc3 5461
4df27c4d 5462 err = -ENOENT;
1d4c08e0
DS
5463 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5464 key.type = BTRFS_ROOT_REF_KEY;
5465 key.offset = location->objectid;
5466
0b246afa 5467 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5468 if (ret) {
5469 if (ret < 0)
5470 err = ret;
5471 goto out;
5472 }
39279cc3 5473
4df27c4d
YZ
5474 leaf = path->nodes[0];
5475 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5476 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5477 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5478 goto out;
39279cc3 5479
4df27c4d
YZ
5480 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5481 (unsigned long)(ref + 1),
5482 dentry->d_name.len);
5483 if (ret)
5484 goto out;
5485
b3b4aa74 5486 btrfs_release_path(path);
4df27c4d 5487
0b246afa 5488 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5489 if (IS_ERR(new_root)) {
5490 err = PTR_ERR(new_root);
5491 goto out;
5492 }
5493
4df27c4d
YZ
5494 *sub_root = new_root;
5495 location->objectid = btrfs_root_dirid(&new_root->root_item);
5496 location->type = BTRFS_INODE_ITEM_KEY;
5497 location->offset = 0;
5498 err = 0;
5499out:
5500 btrfs_free_path(path);
5501 return err;
39279cc3
CM
5502}
5503
5d4f98a2
YZ
5504static void inode_tree_add(struct inode *inode)
5505{
5506 struct btrfs_root *root = BTRFS_I(inode)->root;
5507 struct btrfs_inode *entry;
03e860bd
NP
5508 struct rb_node **p;
5509 struct rb_node *parent;
cef21937 5510 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5511 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5512
1d3382cb 5513 if (inode_unhashed(inode))
76dda93c 5514 return;
e1409cef 5515 parent = NULL;
5d4f98a2 5516 spin_lock(&root->inode_lock);
e1409cef 5517 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5518 while (*p) {
5519 parent = *p;
5520 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5521
37508515 5522 if (ino < btrfs_ino(entry))
03e860bd 5523 p = &parent->rb_left;
37508515 5524 else if (ino > btrfs_ino(entry))
03e860bd 5525 p = &parent->rb_right;
5d4f98a2
YZ
5526 else {
5527 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5528 (I_WILL_FREE | I_FREEING)));
cef21937 5529 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5530 RB_CLEAR_NODE(parent);
5531 spin_unlock(&root->inode_lock);
cef21937 5532 return;
5d4f98a2
YZ
5533 }
5534 }
cef21937
FDBM
5535 rb_link_node(new, parent, p);
5536 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5537 spin_unlock(&root->inode_lock);
5538}
5539
5540static void inode_tree_del(struct inode *inode)
5541{
0b246afa 5542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5543 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5544 int empty = 0;
5d4f98a2 5545
03e860bd 5546 spin_lock(&root->inode_lock);
5d4f98a2 5547 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5548 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5549 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5550 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5551 }
03e860bd 5552 spin_unlock(&root->inode_lock);
76dda93c 5553
69e9c6c6 5554 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5555 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5556 spin_lock(&root->inode_lock);
5557 empty = RB_EMPTY_ROOT(&root->inode_tree);
5558 spin_unlock(&root->inode_lock);
5559 if (empty)
5560 btrfs_add_dead_root(root);
5561 }
5562}
5563
5d4f98a2 5564
e02119d5
CM
5565static int btrfs_init_locked_inode(struct inode *inode, void *p)
5566{
5567 struct btrfs_iget_args *args = p;
90d3e592
CM
5568 inode->i_ino = args->location->objectid;
5569 memcpy(&BTRFS_I(inode)->location, args->location,
5570 sizeof(*args->location));
e02119d5 5571 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5572 return 0;
5573}
5574
5575static int btrfs_find_actor(struct inode *inode, void *opaque)
5576{
5577 struct btrfs_iget_args *args = opaque;
90d3e592 5578 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5579 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5580}
5581
5d4f98a2 5582static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5583 struct btrfs_key *location,
5d4f98a2 5584 struct btrfs_root *root)
39279cc3
CM
5585{
5586 struct inode *inode;
5587 struct btrfs_iget_args args;
90d3e592 5588 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5589
90d3e592 5590 args.location = location;
39279cc3
CM
5591 args.root = root;
5592
778ba82b 5593 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5594 btrfs_init_locked_inode,
5595 (void *)&args);
5596 return inode;
5597}
5598
1a54ef8c
BR
5599/* Get an inode object given its location and corresponding root.
5600 * Returns in *is_new if the inode was read from disk
5601 */
4222ea71
FM
5602struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5603 struct btrfs_root *root, int *new,
5604 struct btrfs_path *path)
1a54ef8c
BR
5605{
5606 struct inode *inode;
5607
90d3e592 5608 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5609 if (!inode)
5d4f98a2 5610 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5611
5612 if (inode->i_state & I_NEW) {
67710892
FM
5613 int ret;
5614
4222ea71 5615 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5616 if (!ret) {
1748f843
MF
5617 inode_tree_add(inode);
5618 unlock_new_inode(inode);
5619 if (new)
5620 *new = 1;
5621 } else {
f5b3a417
AV
5622 iget_failed(inode);
5623 /*
5624 * ret > 0 can come from btrfs_search_slot called by
5625 * btrfs_read_locked_inode, this means the inode item
5626 * was not found.
5627 */
5628 if (ret > 0)
5629 ret = -ENOENT;
5630 inode = ERR_PTR(ret);
1748f843
MF
5631 }
5632 }
5633
1a54ef8c
BR
5634 return inode;
5635}
5636
4222ea71
FM
5637struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5638 struct btrfs_root *root, int *new)
5639{
5640 return btrfs_iget_path(s, location, root, new, NULL);
5641}
5642
4df27c4d
YZ
5643static struct inode *new_simple_dir(struct super_block *s,
5644 struct btrfs_key *key,
5645 struct btrfs_root *root)
5646{
5647 struct inode *inode = new_inode(s);
5648
5649 if (!inode)
5650 return ERR_PTR(-ENOMEM);
5651
4df27c4d
YZ
5652 BTRFS_I(inode)->root = root;
5653 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5654 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5655
5656 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5657 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5658 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5659 inode->i_fop = &simple_dir_operations;
5660 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5661 inode->i_mtime = current_time(inode);
9cc97d64 5662 inode->i_atime = inode->i_mtime;
5663 inode->i_ctime = inode->i_mtime;
d3c6be6f 5664 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5665
5666 return inode;
5667}
5668
3de4586c 5669struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5670{
0b246afa 5671 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5672 struct inode *inode;
4df27c4d 5673 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5674 struct btrfs_root *sub_root = root;
5675 struct btrfs_key location;
76dda93c 5676 int index;
b4aff1f8 5677 int ret = 0;
39279cc3
CM
5678
5679 if (dentry->d_name.len > BTRFS_NAME_LEN)
5680 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5681
39e3c955 5682 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5683 if (ret < 0)
5684 return ERR_PTR(ret);
5f39d397 5685
4df27c4d 5686 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5687 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5688 return inode;
5689 }
5690
0b246afa 5691 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5692 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5693 &location, &sub_root);
5694 if (ret < 0) {
5695 if (ret != -ENOENT)
5696 inode = ERR_PTR(ret);
5697 else
5698 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5699 } else {
73f73415 5700 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5701 }
0b246afa 5702 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5703
34d19bad 5704 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5705 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5706 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5707 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5708 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5709 if (ret) {
5710 iput(inode);
66b4ffd1 5711 inode = ERR_PTR(ret);
01cd3367 5712 }
c71bf099
YZ
5713 }
5714
3de4586c
CM
5715 return inode;
5716}
5717
fe15ce44 5718static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5719{
5720 struct btrfs_root *root;
2b0143b5 5721 struct inode *inode = d_inode(dentry);
76dda93c 5722
848cce0d 5723 if (!inode && !IS_ROOT(dentry))
2b0143b5 5724 inode = d_inode(dentry->d_parent);
76dda93c 5725
848cce0d
LZ
5726 if (inode) {
5727 root = BTRFS_I(inode)->root;
efefb143
YZ
5728 if (btrfs_root_refs(&root->root_item) == 0)
5729 return 1;
848cce0d 5730
4a0cc7ca 5731 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5732 return 1;
efefb143 5733 }
76dda93c
YZ
5734 return 0;
5735}
5736
3de4586c 5737static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5738 unsigned int flags)
3de4586c 5739{
3837d208 5740 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5741
3837d208
AV
5742 if (inode == ERR_PTR(-ENOENT))
5743 inode = NULL;
41d28bca 5744 return d_splice_alias(inode, dentry);
39279cc3
CM
5745}
5746
16cdcec7 5747unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5748 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5749};
5750
23b5ec74
JB
5751/*
5752 * All this infrastructure exists because dir_emit can fault, and we are holding
5753 * the tree lock when doing readdir. For now just allocate a buffer and copy
5754 * our information into that, and then dir_emit from the buffer. This is
5755 * similar to what NFS does, only we don't keep the buffer around in pagecache
5756 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5757 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5758 * tree lock.
5759 */
5760static int btrfs_opendir(struct inode *inode, struct file *file)
5761{
5762 struct btrfs_file_private *private;
5763
5764 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5765 if (!private)
5766 return -ENOMEM;
5767 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5768 if (!private->filldir_buf) {
5769 kfree(private);
5770 return -ENOMEM;
5771 }
5772 file->private_data = private;
5773 return 0;
5774}
5775
5776struct dir_entry {
5777 u64 ino;
5778 u64 offset;
5779 unsigned type;
5780 int name_len;
5781};
5782
5783static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5784{
5785 while (entries--) {
5786 struct dir_entry *entry = addr;
5787 char *name = (char *)(entry + 1);
5788
92d32170
DS
5789 ctx->pos = get_unaligned(&entry->offset);
5790 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5791 get_unaligned(&entry->ino),
5792 get_unaligned(&entry->type)))
23b5ec74 5793 return 1;
92d32170
DS
5794 addr += sizeof(struct dir_entry) +
5795 get_unaligned(&entry->name_len);
23b5ec74
JB
5796 ctx->pos++;
5797 }
5798 return 0;
5799}
5800
9cdda8d3 5801static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5802{
9cdda8d3 5803 struct inode *inode = file_inode(file);
39279cc3 5804 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5805 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5806 struct btrfs_dir_item *di;
5807 struct btrfs_key key;
5f39d397 5808 struct btrfs_key found_key;
39279cc3 5809 struct btrfs_path *path;
23b5ec74 5810 void *addr;
16cdcec7
MX
5811 struct list_head ins_list;
5812 struct list_head del_list;
39279cc3 5813 int ret;
5f39d397 5814 struct extent_buffer *leaf;
39279cc3 5815 int slot;
5f39d397
CM
5816 char *name_ptr;
5817 int name_len;
23b5ec74
JB
5818 int entries = 0;
5819 int total_len = 0;
02dbfc99 5820 bool put = false;
c2951f32 5821 struct btrfs_key location;
5f39d397 5822
9cdda8d3
AV
5823 if (!dir_emit_dots(file, ctx))
5824 return 0;
5825
49593bfa 5826 path = btrfs_alloc_path();
16cdcec7
MX
5827 if (!path)
5828 return -ENOMEM;
ff5714cc 5829
23b5ec74 5830 addr = private->filldir_buf;
e4058b54 5831 path->reada = READA_FORWARD;
49593bfa 5832
c2951f32
JM
5833 INIT_LIST_HEAD(&ins_list);
5834 INIT_LIST_HEAD(&del_list);
5835 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5836
23b5ec74 5837again:
c2951f32 5838 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5839 key.offset = ctx->pos;
4a0cc7ca 5840 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5841
39279cc3
CM
5842 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5843 if (ret < 0)
5844 goto err;
49593bfa
DW
5845
5846 while (1) {
23b5ec74
JB
5847 struct dir_entry *entry;
5848
5f39d397 5849 leaf = path->nodes[0];
39279cc3 5850 slot = path->slots[0];
b9e03af0
LZ
5851 if (slot >= btrfs_header_nritems(leaf)) {
5852 ret = btrfs_next_leaf(root, path);
5853 if (ret < 0)
5854 goto err;
5855 else if (ret > 0)
5856 break;
5857 continue;
39279cc3 5858 }
3de4586c 5859
5f39d397
CM
5860 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5861
5862 if (found_key.objectid != key.objectid)
39279cc3 5863 break;
c2951f32 5864 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5865 break;
9cdda8d3 5866 if (found_key.offset < ctx->pos)
b9e03af0 5867 goto next;
c2951f32 5868 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5869 goto next;
39279cc3 5870 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5871 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5872 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5873 PAGE_SIZE) {
5874 btrfs_release_path(path);
5875 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5876 if (ret)
5877 goto nopos;
5878 addr = private->filldir_buf;
5879 entries = 0;
5880 total_len = 0;
5881 goto again;
c2951f32 5882 }
23b5ec74
JB
5883
5884 entry = addr;
92d32170 5885 put_unaligned(name_len, &entry->name_len);
23b5ec74 5886 name_ptr = (char *)(entry + 1);
c2951f32
JM
5887 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5888 name_len);
92d32170
DS
5889 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5890 &entry->type);
c2951f32 5891 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5892 put_unaligned(location.objectid, &entry->ino);
5893 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5894 entries++;
5895 addr += sizeof(struct dir_entry) + name_len;
5896 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5897next:
5898 path->slots[0]++;
39279cc3 5899 }
23b5ec74
JB
5900 btrfs_release_path(path);
5901
5902 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5903 if (ret)
5904 goto nopos;
49593bfa 5905
d2fbb2b5 5906 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5907 if (ret)
bc4ef759
DS
5908 goto nopos;
5909
db62efbb
ZB
5910 /*
5911 * Stop new entries from being returned after we return the last
5912 * entry.
5913 *
5914 * New directory entries are assigned a strictly increasing
5915 * offset. This means that new entries created during readdir
5916 * are *guaranteed* to be seen in the future by that readdir.
5917 * This has broken buggy programs which operate on names as
5918 * they're returned by readdir. Until we re-use freed offsets
5919 * we have this hack to stop new entries from being returned
5920 * under the assumption that they'll never reach this huge
5921 * offset.
5922 *
5923 * This is being careful not to overflow 32bit loff_t unless the
5924 * last entry requires it because doing so has broken 32bit apps
5925 * in the past.
5926 */
c2951f32
JM
5927 if (ctx->pos >= INT_MAX)
5928 ctx->pos = LLONG_MAX;
5929 else
5930 ctx->pos = INT_MAX;
39279cc3
CM
5931nopos:
5932 ret = 0;
5933err:
02dbfc99
OS
5934 if (put)
5935 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5936 btrfs_free_path(path);
39279cc3
CM
5937 return ret;
5938}
5939
39279cc3 5940/*
54aa1f4d 5941 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5942 * inode changes. But, it is most likely to find the inode in cache.
5943 * FIXME, needs more benchmarking...there are no reasons other than performance
5944 * to keep or drop this code.
5945 */
48a3b636 5946static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5947{
2ff7e61e 5948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5949 struct btrfs_root *root = BTRFS_I(inode)->root;
5950 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5951 int ret;
5952
72ac3c0d 5953 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5954 return 0;
39279cc3 5955
7a7eaa40 5956 trans = btrfs_join_transaction(root);
22c44fe6
JB
5957 if (IS_ERR(trans))
5958 return PTR_ERR(trans);
8929ecfa
YZ
5959
5960 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5961 if (ret && ret == -ENOSPC) {
5962 /* whoops, lets try again with the full transaction */
3a45bb20 5963 btrfs_end_transaction(trans);
94b60442 5964 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5965 if (IS_ERR(trans))
5966 return PTR_ERR(trans);
8929ecfa 5967
94b60442 5968 ret = btrfs_update_inode(trans, root, inode);
94b60442 5969 }
3a45bb20 5970 btrfs_end_transaction(trans);
16cdcec7 5971 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5972 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5973
5974 return ret;
5975}
5976
5977/*
5978 * This is a copy of file_update_time. We need this so we can return error on
5979 * ENOSPC for updating the inode in the case of file write and mmap writes.
5980 */
95582b00 5981static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5982 int flags)
22c44fe6 5983{
2bc55652 5984 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5985 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5986
5987 if (btrfs_root_readonly(root))
5988 return -EROFS;
5989
e41f941a 5990 if (flags & S_VERSION)
3a8c7231 5991 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5992 if (flags & S_CTIME)
5993 inode->i_ctime = *now;
5994 if (flags & S_MTIME)
5995 inode->i_mtime = *now;
5996 if (flags & S_ATIME)
5997 inode->i_atime = *now;
3a8c7231 5998 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5999}
6000
d352ac68
CM
6001/*
6002 * find the highest existing sequence number in a directory
6003 * and then set the in-memory index_cnt variable to reflect
6004 * free sequence numbers
6005 */
4c570655 6006static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6007{
4c570655 6008 struct btrfs_root *root = inode->root;
aec7477b
JB
6009 struct btrfs_key key, found_key;
6010 struct btrfs_path *path;
6011 struct extent_buffer *leaf;
6012 int ret;
6013
4c570655 6014 key.objectid = btrfs_ino(inode);
962a298f 6015 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6016 key.offset = (u64)-1;
6017
6018 path = btrfs_alloc_path();
6019 if (!path)
6020 return -ENOMEM;
6021
6022 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6023 if (ret < 0)
6024 goto out;
6025 /* FIXME: we should be able to handle this */
6026 if (ret == 0)
6027 goto out;
6028 ret = 0;
6029
6030 /*
6031 * MAGIC NUMBER EXPLANATION:
6032 * since we search a directory based on f_pos we have to start at 2
6033 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6034 * else has to start at 2
6035 */
6036 if (path->slots[0] == 0) {
4c570655 6037 inode->index_cnt = 2;
aec7477b
JB
6038 goto out;
6039 }
6040
6041 path->slots[0]--;
6042
6043 leaf = path->nodes[0];
6044 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6045
4c570655 6046 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6047 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6048 inode->index_cnt = 2;
aec7477b
JB
6049 goto out;
6050 }
6051
4c570655 6052 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6053out:
6054 btrfs_free_path(path);
6055 return ret;
6056}
6057
d352ac68
CM
6058/*
6059 * helper to find a free sequence number in a given directory. This current
6060 * code is very simple, later versions will do smarter things in the btree
6061 */
877574e2 6062int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6063{
6064 int ret = 0;
6065
877574e2
NB
6066 if (dir->index_cnt == (u64)-1) {
6067 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6068 if (ret) {
6069 ret = btrfs_set_inode_index_count(dir);
6070 if (ret)
6071 return ret;
6072 }
aec7477b
JB
6073 }
6074
877574e2
NB
6075 *index = dir->index_cnt;
6076 dir->index_cnt++;
aec7477b
JB
6077
6078 return ret;
6079}
6080
b0d5d10f
CM
6081static int btrfs_insert_inode_locked(struct inode *inode)
6082{
6083 struct btrfs_iget_args args;
6084 args.location = &BTRFS_I(inode)->location;
6085 args.root = BTRFS_I(inode)->root;
6086
6087 return insert_inode_locked4(inode,
6088 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6089 btrfs_find_actor, &args);
6090}
6091
19aee8de
AJ
6092/*
6093 * Inherit flags from the parent inode.
6094 *
6095 * Currently only the compression flags and the cow flags are inherited.
6096 */
6097static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6098{
6099 unsigned int flags;
6100
6101 if (!dir)
6102 return;
6103
6104 flags = BTRFS_I(dir)->flags;
6105
6106 if (flags & BTRFS_INODE_NOCOMPRESS) {
6107 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6108 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6109 } else if (flags & BTRFS_INODE_COMPRESS) {
6110 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6111 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6112 }
6113
6114 if (flags & BTRFS_INODE_NODATACOW) {
6115 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6116 if (S_ISREG(inode->i_mode))
6117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6118 }
6119
7b6a221e 6120 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6121}
6122
39279cc3
CM
6123static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6124 struct btrfs_root *root,
aec7477b 6125 struct inode *dir,
9c58309d 6126 const char *name, int name_len,
175a4eb7
AV
6127 u64 ref_objectid, u64 objectid,
6128 umode_t mode, u64 *index)
39279cc3 6129{
0b246afa 6130 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6131 struct inode *inode;
5f39d397 6132 struct btrfs_inode_item *inode_item;
39279cc3 6133 struct btrfs_key *location;
5f39d397 6134 struct btrfs_path *path;
9c58309d
CM
6135 struct btrfs_inode_ref *ref;
6136 struct btrfs_key key[2];
6137 u32 sizes[2];
ef3b9af5 6138 int nitems = name ? 2 : 1;
9c58309d 6139 unsigned long ptr;
39279cc3 6140 int ret;
39279cc3 6141
5f39d397 6142 path = btrfs_alloc_path();
d8926bb3
MF
6143 if (!path)
6144 return ERR_PTR(-ENOMEM);
5f39d397 6145
0b246afa 6146 inode = new_inode(fs_info->sb);
8fb27640
YS
6147 if (!inode) {
6148 btrfs_free_path(path);
39279cc3 6149 return ERR_PTR(-ENOMEM);
8fb27640 6150 }
39279cc3 6151
5762b5c9
FM
6152 /*
6153 * O_TMPFILE, set link count to 0, so that after this point,
6154 * we fill in an inode item with the correct link count.
6155 */
6156 if (!name)
6157 set_nlink(inode, 0);
6158
581bb050
LZ
6159 /*
6160 * we have to initialize this early, so we can reclaim the inode
6161 * number if we fail afterwards in this function.
6162 */
6163 inode->i_ino = objectid;
6164
ef3b9af5 6165 if (dir && name) {
1abe9b8a 6166 trace_btrfs_inode_request(dir);
6167
877574e2 6168 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6169 if (ret) {
8fb27640 6170 btrfs_free_path(path);
09771430 6171 iput(inode);
aec7477b 6172 return ERR_PTR(ret);
09771430 6173 }
ef3b9af5
FM
6174 } else if (dir) {
6175 *index = 0;
aec7477b
JB
6176 }
6177 /*
6178 * index_cnt is ignored for everything but a dir,
df6703e1 6179 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6180 * number
6181 */
6182 BTRFS_I(inode)->index_cnt = 2;
67de1176 6183 BTRFS_I(inode)->dir_index = *index;
39279cc3 6184 BTRFS_I(inode)->root = root;
e02119d5 6185 BTRFS_I(inode)->generation = trans->transid;
76195853 6186 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6187
5dc562c5
JB
6188 /*
6189 * We could have gotten an inode number from somebody who was fsynced
6190 * and then removed in this same transaction, so let's just set full
6191 * sync since it will be a full sync anyway and this will blow away the
6192 * old info in the log.
6193 */
6194 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6195
9c58309d 6196 key[0].objectid = objectid;
962a298f 6197 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6198 key[0].offset = 0;
6199
9c58309d 6200 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6201
6202 if (name) {
6203 /*
6204 * Start new inodes with an inode_ref. This is slightly more
6205 * efficient for small numbers of hard links since they will
6206 * be packed into one item. Extended refs will kick in if we
6207 * add more hard links than can fit in the ref item.
6208 */
6209 key[1].objectid = objectid;
962a298f 6210 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6211 key[1].offset = ref_objectid;
6212
6213 sizes[1] = name_len + sizeof(*ref);
6214 }
9c58309d 6215
b0d5d10f
CM
6216 location = &BTRFS_I(inode)->location;
6217 location->objectid = objectid;
6218 location->offset = 0;
962a298f 6219 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6220
6221 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6222 if (ret < 0) {
6223 iput(inode);
b0d5d10f 6224 goto fail;
32955c54 6225 }
b0d5d10f 6226
b9473439 6227 path->leave_spinning = 1;
ef3b9af5 6228 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6229 if (ret != 0)
b0d5d10f 6230 goto fail_unlock;
5f39d397 6231
ecc11fab 6232 inode_init_owner(inode, dir, mode);
a76a3cd4 6233 inode_set_bytes(inode, 0);
9cc97d64 6234
c2050a45 6235 inode->i_mtime = current_time(inode);
9cc97d64 6236 inode->i_atime = inode->i_mtime;
6237 inode->i_ctime = inode->i_mtime;
d3c6be6f 6238 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6239
5f39d397
CM
6240 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6241 struct btrfs_inode_item);
b159fa28 6242 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6243 sizeof(*inode_item));
e02119d5 6244 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6245
ef3b9af5
FM
6246 if (name) {
6247 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6248 struct btrfs_inode_ref);
6249 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6250 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6251 ptr = (unsigned long)(ref + 1);
6252 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6253 }
9c58309d 6254
5f39d397
CM
6255 btrfs_mark_buffer_dirty(path->nodes[0]);
6256 btrfs_free_path(path);
6257
6cbff00f
CH
6258 btrfs_inherit_iflags(inode, dir);
6259
569254b0 6260 if (S_ISREG(mode)) {
0b246afa 6261 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6262 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6263 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6264 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6265 BTRFS_INODE_NODATASUM;
94272164
CM
6266 }
6267
5d4f98a2 6268 inode_tree_add(inode);
1abe9b8a 6269
6270 trace_btrfs_inode_new(inode);
1973f0fa 6271 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6272
8ea05e3a
AB
6273 btrfs_update_root_times(trans, root);
6274
63541927
FDBM
6275 ret = btrfs_inode_inherit_props(trans, inode, dir);
6276 if (ret)
0b246afa 6277 btrfs_err(fs_info,
63541927 6278 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6279 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6280
39279cc3 6281 return inode;
b0d5d10f
CM
6282
6283fail_unlock:
32955c54 6284 discard_new_inode(inode);
5f39d397 6285fail:
ef3b9af5 6286 if (dir && name)
aec7477b 6287 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6288 btrfs_free_path(path);
6289 return ERR_PTR(ret);
39279cc3
CM
6290}
6291
6292static inline u8 btrfs_inode_type(struct inode *inode)
6293{
6294 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6295}
6296
d352ac68
CM
6297/*
6298 * utility function to add 'inode' into 'parent_inode' with
6299 * a give name and a given sequence number.
6300 * if 'add_backref' is true, also insert a backref from the
6301 * inode to the parent directory.
6302 */
e02119d5 6303int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6304 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6305 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6306{
4df27c4d 6307 int ret = 0;
39279cc3 6308 struct btrfs_key key;
db0a669f
NB
6309 struct btrfs_root *root = parent_inode->root;
6310 u64 ino = btrfs_ino(inode);
6311 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6312
33345d01 6313 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6314 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6315 } else {
33345d01 6316 key.objectid = ino;
962a298f 6317 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6318 key.offset = 0;
6319 }
6320
33345d01 6321 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6322 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6323 root->root_key.objectid, parent_ino,
6324 index, name, name_len);
4df27c4d 6325 } else if (add_backref) {
33345d01
LZ
6326 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6327 parent_ino, index);
4df27c4d 6328 }
39279cc3 6329
79787eaa
JM
6330 /* Nothing to clean up yet */
6331 if (ret)
6332 return ret;
4df27c4d 6333
684572df 6334 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6335 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6336 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6337 goto fail_dir_item;
6338 else if (ret) {
66642832 6339 btrfs_abort_transaction(trans, ret);
79787eaa 6340 return ret;
39279cc3 6341 }
79787eaa 6342
db0a669f 6343 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6344 name_len * 2);
db0a669f
NB
6345 inode_inc_iversion(&parent_inode->vfs_inode);
6346 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6347 current_time(&parent_inode->vfs_inode);
6348 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6349 if (ret)
66642832 6350 btrfs_abort_transaction(trans, ret);
39279cc3 6351 return ret;
fe66a05a
CM
6352
6353fail_dir_item:
6354 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6355 u64 local_index;
6356 int err;
3ee1c553 6357 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6358 root->root_key.objectid, parent_ino,
6359 &local_index, name, name_len);
1690dd41
JT
6360 if (err)
6361 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6362 } else if (add_backref) {
6363 u64 local_index;
6364 int err;
6365
6366 err = btrfs_del_inode_ref(trans, root, name, name_len,
6367 ino, parent_ino, &local_index);
1690dd41
JT
6368 if (err)
6369 btrfs_abort_transaction(trans, err);
fe66a05a 6370 }
1690dd41
JT
6371
6372 /* Return the original error code */
fe66a05a 6373 return ret;
39279cc3
CM
6374}
6375
6376static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6377 struct btrfs_inode *dir, struct dentry *dentry,
6378 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6379{
a1b075d2
JB
6380 int err = btrfs_add_link(trans, dir, inode,
6381 dentry->d_name.name, dentry->d_name.len,
6382 backref, index);
39279cc3
CM
6383 if (err > 0)
6384 err = -EEXIST;
6385 return err;
6386}
6387
618e21d5 6388static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6389 umode_t mode, dev_t rdev)
618e21d5 6390{
2ff7e61e 6391 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6392 struct btrfs_trans_handle *trans;
6393 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6394 struct inode *inode = NULL;
618e21d5 6395 int err;
618e21d5 6396 u64 objectid;
00e4e6b3 6397 u64 index = 0;
618e21d5 6398
9ed74f2d
JB
6399 /*
6400 * 2 for inode item and ref
6401 * 2 for dir items
6402 * 1 for xattr if selinux is on
6403 */
a22285a6
YZ
6404 trans = btrfs_start_transaction(root, 5);
6405 if (IS_ERR(trans))
6406 return PTR_ERR(trans);
1832a6d5 6407
581bb050
LZ
6408 err = btrfs_find_free_ino(root, &objectid);
6409 if (err)
6410 goto out_unlock;
6411
aec7477b 6412 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6413 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6414 mode, &index);
7cf96da3
TI
6415 if (IS_ERR(inode)) {
6416 err = PTR_ERR(inode);
32955c54 6417 inode = NULL;
618e21d5 6418 goto out_unlock;
7cf96da3 6419 }
618e21d5 6420
ad19db71
CS
6421 /*
6422 * If the active LSM wants to access the inode during
6423 * d_instantiate it needs these. Smack checks to see
6424 * if the filesystem supports xattrs by looking at the
6425 * ops vector.
6426 */
ad19db71 6427 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6428 init_special_inode(inode, inode->i_mode, rdev);
6429
6430 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6431 if (err)
32955c54 6432 goto out_unlock;
b0d5d10f 6433
cef415af
NB
6434 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6435 0, index);
32955c54
AV
6436 if (err)
6437 goto out_unlock;
6438
6439 btrfs_update_inode(trans, root, inode);
6440 d_instantiate_new(dentry, inode);
b0d5d10f 6441
618e21d5 6442out_unlock:
3a45bb20 6443 btrfs_end_transaction(trans);
2ff7e61e 6444 btrfs_btree_balance_dirty(fs_info);
32955c54 6445 if (err && inode) {
618e21d5 6446 inode_dec_link_count(inode);
32955c54 6447 discard_new_inode(inode);
618e21d5 6448 }
618e21d5
JB
6449 return err;
6450}
6451
39279cc3 6452static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6453 umode_t mode, bool excl)
39279cc3 6454{
2ff7e61e 6455 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6456 struct btrfs_trans_handle *trans;
6457 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6458 struct inode *inode = NULL;
a22285a6 6459 int err;
39279cc3 6460 u64 objectid;
00e4e6b3 6461 u64 index = 0;
39279cc3 6462
9ed74f2d
JB
6463 /*
6464 * 2 for inode item and ref
6465 * 2 for dir items
6466 * 1 for xattr if selinux is on
6467 */
a22285a6
YZ
6468 trans = btrfs_start_transaction(root, 5);
6469 if (IS_ERR(trans))
6470 return PTR_ERR(trans);
9ed74f2d 6471
581bb050
LZ
6472 err = btrfs_find_free_ino(root, &objectid);
6473 if (err)
6474 goto out_unlock;
6475
aec7477b 6476 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6477 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6478 mode, &index);
7cf96da3
TI
6479 if (IS_ERR(inode)) {
6480 err = PTR_ERR(inode);
32955c54 6481 inode = NULL;
39279cc3 6482 goto out_unlock;
7cf96da3 6483 }
ad19db71
CS
6484 /*
6485 * If the active LSM wants to access the inode during
6486 * d_instantiate it needs these. Smack checks to see
6487 * if the filesystem supports xattrs by looking at the
6488 * ops vector.
6489 */
6490 inode->i_fop = &btrfs_file_operations;
6491 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6492 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6493
6494 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6495 if (err)
32955c54 6496 goto out_unlock;
b0d5d10f
CM
6497
6498 err = btrfs_update_inode(trans, root, inode);
6499 if (err)
32955c54 6500 goto out_unlock;
ad19db71 6501
cef415af
NB
6502 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6503 0, index);
39279cc3 6504 if (err)
32955c54 6505 goto out_unlock;
43baa579 6506
43baa579 6507 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6508 d_instantiate_new(dentry, inode);
43baa579 6509
39279cc3 6510out_unlock:
3a45bb20 6511 btrfs_end_transaction(trans);
32955c54 6512 if (err && inode) {
39279cc3 6513 inode_dec_link_count(inode);
32955c54 6514 discard_new_inode(inode);
39279cc3 6515 }
2ff7e61e 6516 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6517 return err;
6518}
6519
6520static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6521 struct dentry *dentry)
6522{
271dba45 6523 struct btrfs_trans_handle *trans = NULL;
39279cc3 6524 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6525 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6526 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6527 u64 index;
39279cc3
CM
6528 int err;
6529 int drop_inode = 0;
6530
4a8be425 6531 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6532 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6533 return -EXDEV;
4a8be425 6534
f186373f 6535 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6536 return -EMLINK;
4a8be425 6537
877574e2 6538 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6539 if (err)
6540 goto fail;
6541
a22285a6 6542 /*
7e6b6465 6543 * 2 items for inode and inode ref
a22285a6 6544 * 2 items for dir items
7e6b6465 6545 * 1 item for parent inode
399b0bbf 6546 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6547 */
399b0bbf 6548 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6549 if (IS_ERR(trans)) {
6550 err = PTR_ERR(trans);
271dba45 6551 trans = NULL;
a22285a6
YZ
6552 goto fail;
6553 }
5f39d397 6554
67de1176
MX
6555 /* There are several dir indexes for this inode, clear the cache. */
6556 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6557 inc_nlink(inode);
0c4d2d95 6558 inode_inc_iversion(inode);
c2050a45 6559 inode->i_ctime = current_time(inode);
7de9c6ee 6560 ihold(inode);
e9976151 6561 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6562
cef415af
NB
6563 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6564 1, index);
5f39d397 6565
a5719521 6566 if (err) {
54aa1f4d 6567 drop_inode = 1;
a5719521 6568 } else {
10d9f309 6569 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6570 int ret;
6571
a5719521 6572 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6573 if (err)
6574 goto fail;
ef3b9af5
FM
6575 if (inode->i_nlink == 1) {
6576 /*
6577 * If new hard link count is 1, it's a file created
6578 * with open(2) O_TMPFILE flag.
6579 */
3d6ae7bb 6580 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6581 if (err)
6582 goto fail;
6583 }
41bd6067 6584 BTRFS_I(inode)->last_link_trans = trans->transid;
08c422c2 6585 d_instantiate(dentry, inode);
d4682ba0
FM
6586 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6587 true, NULL);
6588 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6589 err = btrfs_commit_transaction(trans);
6590 trans = NULL;
6591 }
a5719521 6592 }
39279cc3 6593
1832a6d5 6594fail:
271dba45 6595 if (trans)
3a45bb20 6596 btrfs_end_transaction(trans);
39279cc3
CM
6597 if (drop_inode) {
6598 inode_dec_link_count(inode);
6599 iput(inode);
6600 }
2ff7e61e 6601 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6602 return err;
6603}
6604
18bb1db3 6605static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6606{
2ff7e61e 6607 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6608 struct inode *inode = NULL;
39279cc3
CM
6609 struct btrfs_trans_handle *trans;
6610 struct btrfs_root *root = BTRFS_I(dir)->root;
6611 int err = 0;
b9d86667 6612 u64 objectid = 0;
00e4e6b3 6613 u64 index = 0;
39279cc3 6614
9ed74f2d
JB
6615 /*
6616 * 2 items for inode and ref
6617 * 2 items for dir items
6618 * 1 for xattr if selinux is on
6619 */
a22285a6
YZ
6620 trans = btrfs_start_transaction(root, 5);
6621 if (IS_ERR(trans))
6622 return PTR_ERR(trans);
39279cc3 6623
581bb050
LZ
6624 err = btrfs_find_free_ino(root, &objectid);
6625 if (err)
6626 goto out_fail;
6627
aec7477b 6628 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6629 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6630 S_IFDIR | mode, &index);
39279cc3
CM
6631 if (IS_ERR(inode)) {
6632 err = PTR_ERR(inode);
32955c54 6633 inode = NULL;
39279cc3
CM
6634 goto out_fail;
6635 }
5f39d397 6636
b0d5d10f
CM
6637 /* these must be set before we unlock the inode */
6638 inode->i_op = &btrfs_dir_inode_operations;
6639 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6640
2a7dba39 6641 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6642 if (err)
32955c54 6643 goto out_fail;
39279cc3 6644
6ef06d27 6645 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6646 err = btrfs_update_inode(trans, root, inode);
6647 if (err)
32955c54 6648 goto out_fail;
5f39d397 6649
db0a669f
NB
6650 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6651 dentry->d_name.name,
6652 dentry->d_name.len, 0, index);
39279cc3 6653 if (err)
32955c54 6654 goto out_fail;
5f39d397 6655
1e2e547a 6656 d_instantiate_new(dentry, inode);
39279cc3
CM
6657
6658out_fail:
3a45bb20 6659 btrfs_end_transaction(trans);
32955c54 6660 if (err && inode) {
c7cfb8a5 6661 inode_dec_link_count(inode);
32955c54 6662 discard_new_inode(inode);
c7cfb8a5 6663 }
2ff7e61e 6664 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6665 return err;
6666}
6667
c8b97818 6668static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6669 struct page *page,
c8b97818
CM
6670 size_t pg_offset, u64 extent_offset,
6671 struct btrfs_file_extent_item *item)
6672{
6673 int ret;
6674 struct extent_buffer *leaf = path->nodes[0];
6675 char *tmp;
6676 size_t max_size;
6677 unsigned long inline_size;
6678 unsigned long ptr;
261507a0 6679 int compress_type;
c8b97818
CM
6680
6681 WARN_ON(pg_offset != 0);
261507a0 6682 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6683 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6684 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6685 btrfs_item_nr(path->slots[0]));
c8b97818 6686 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6687 if (!tmp)
6688 return -ENOMEM;
c8b97818
CM
6689 ptr = btrfs_file_extent_inline_start(item);
6690
6691 read_extent_buffer(leaf, tmp, ptr, inline_size);
6692
09cbfeaf 6693 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6694 ret = btrfs_decompress(compress_type, tmp, page,
6695 extent_offset, inline_size, max_size);
e1699d2d
ZB
6696
6697 /*
6698 * decompression code contains a memset to fill in any space between the end
6699 * of the uncompressed data and the end of max_size in case the decompressed
6700 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6701 * the end of an inline extent and the beginning of the next block, so we
6702 * cover that region here.
6703 */
6704
6705 if (max_size + pg_offset < PAGE_SIZE) {
6706 char *map = kmap(page);
6707 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6708 kunmap(page);
6709 }
c8b97818 6710 kfree(tmp);
166ae5a4 6711 return ret;
c8b97818
CM
6712}
6713
d352ac68
CM
6714/*
6715 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6716 * the ugly parts come from merging extents from the disk with the in-ram
6717 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6718 * where the in-ram extents might be locked pending data=ordered completion.
6719 *
6720 * This also copies inline extents directly into the page.
6721 */
fc4f21b1 6722struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6723 struct page *page,
6724 size_t pg_offset, u64 start, u64 len,
6725 int create)
a52d9a80 6726{
3ffbd68c 6727 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6728 int ret;
6729 int err = 0;
a52d9a80
CM
6730 u64 extent_start = 0;
6731 u64 extent_end = 0;
fc4f21b1 6732 u64 objectid = btrfs_ino(inode);
a52d9a80 6733 u32 found_type;
f421950f 6734 struct btrfs_path *path = NULL;
fc4f21b1 6735 struct btrfs_root *root = inode->root;
a52d9a80 6736 struct btrfs_file_extent_item *item;
5f39d397
CM
6737 struct extent_buffer *leaf;
6738 struct btrfs_key found_key;
a52d9a80 6739 struct extent_map *em = NULL;
fc4f21b1
NB
6740 struct extent_map_tree *em_tree = &inode->extent_tree;
6741 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6742 const bool new_inline = !page || create;
a52d9a80 6743
890871be 6744 read_lock(&em_tree->lock);
d1310b2e 6745 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6746 if (em)
0b246afa 6747 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6748 read_unlock(&em_tree->lock);
d1310b2e 6749
a52d9a80 6750 if (em) {
e1c4b745
CM
6751 if (em->start > start || em->start + em->len <= start)
6752 free_extent_map(em);
6753 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6754 free_extent_map(em);
6755 else
6756 goto out;
a52d9a80 6757 }
172ddd60 6758 em = alloc_extent_map();
a52d9a80 6759 if (!em) {
d1310b2e
CM
6760 err = -ENOMEM;
6761 goto out;
a52d9a80 6762 }
0b246afa 6763 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6764 em->start = EXTENT_MAP_HOLE;
445a6944 6765 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6766 em->len = (u64)-1;
c8b97818 6767 em->block_len = (u64)-1;
f421950f 6768
bee6ec82 6769 path = btrfs_alloc_path();
f421950f 6770 if (!path) {
bee6ec82
LB
6771 err = -ENOMEM;
6772 goto out;
f421950f
CM
6773 }
6774
bee6ec82
LB
6775 /* Chances are we'll be called again, so go ahead and do readahead */
6776 path->reada = READA_FORWARD;
6777
e49aabd9
LB
6778 /*
6779 * Unless we're going to uncompress the inline extent, no sleep would
6780 * happen.
6781 */
6782 path->leave_spinning = 1;
6783
5c9a702e 6784 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6785 if (ret < 0) {
6786 err = ret;
6787 goto out;
6788 }
6789
6790 if (ret != 0) {
6791 if (path->slots[0] == 0)
6792 goto not_found;
6793 path->slots[0]--;
6794 }
6795
5f39d397
CM
6796 leaf = path->nodes[0];
6797 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6798 struct btrfs_file_extent_item);
a52d9a80 6799 /* are we inside the extent that was found? */
5f39d397 6800 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6801 found_type = found_key.type;
5f39d397 6802 if (found_key.objectid != objectid ||
a52d9a80 6803 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6804 /*
6805 * If we backup past the first extent we want to move forward
6806 * and see if there is an extent in front of us, otherwise we'll
6807 * say there is a hole for our whole search range which can
6808 * cause problems.
6809 */
6810 extent_end = start;
6811 goto next;
a52d9a80
CM
6812 }
6813
5f39d397
CM
6814 found_type = btrfs_file_extent_type(leaf, item);
6815 extent_start = found_key.offset;
d899e052
YZ
6816 if (found_type == BTRFS_FILE_EXTENT_REG ||
6817 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6818 extent_end = extent_start +
db94535d 6819 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6820
6821 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6822 extent_start);
9036c102
YZ
6823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6824 size_t size;
e41ca589
QW
6825
6826 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 6827 extent_end = ALIGN(extent_start + size,
0b246afa 6828 fs_info->sectorsize);
09ed2f16
LB
6829
6830 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6831 path->slots[0],
6832 extent_start);
9036c102 6833 }
25a50341 6834next:
9036c102
YZ
6835 if (start >= extent_end) {
6836 path->slots[0]++;
6837 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6838 ret = btrfs_next_leaf(root, path);
6839 if (ret < 0) {
6840 err = ret;
6841 goto out;
a52d9a80 6842 }
9036c102
YZ
6843 if (ret > 0)
6844 goto not_found;
6845 leaf = path->nodes[0];
a52d9a80 6846 }
9036c102
YZ
6847 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6848 if (found_key.objectid != objectid ||
6849 found_key.type != BTRFS_EXTENT_DATA_KEY)
6850 goto not_found;
6851 if (start + len <= found_key.offset)
6852 goto not_found;
e2eca69d
WS
6853 if (start > found_key.offset)
6854 goto next;
9036c102 6855 em->start = start;
70c8a91c 6856 em->orig_start = start;
9036c102
YZ
6857 em->len = found_key.offset - start;
6858 goto not_found_em;
6859 }
6860
fc4f21b1 6861 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6862 new_inline, em);
7ffbb598 6863
d899e052
YZ
6864 if (found_type == BTRFS_FILE_EXTENT_REG ||
6865 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6866 goto insert;
6867 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6868 unsigned long ptr;
a52d9a80 6869 char *map;
3326d1b0
CM
6870 size_t size;
6871 size_t extent_offset;
6872 size_t copy_size;
a52d9a80 6873
7ffbb598 6874 if (new_inline)
689f9346 6875 goto out;
5f39d397 6876
e41ca589 6877 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6878 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6879 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6880 size - extent_offset);
3326d1b0 6881 em->start = extent_start + extent_offset;
0b246afa 6882 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6883 em->orig_block_len = em->len;
70c8a91c 6884 em->orig_start = em->start;
689f9346 6885 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6886
6887 btrfs_set_path_blocking(path);
bf46f52d 6888 if (!PageUptodate(page)) {
261507a0
LZ
6889 if (btrfs_file_extent_compression(leaf, item) !=
6890 BTRFS_COMPRESS_NONE) {
e40da0e5 6891 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6892 extent_offset, item);
166ae5a4
ZB
6893 if (ret) {
6894 err = ret;
6895 goto out;
6896 }
c8b97818
CM
6897 } else {
6898 map = kmap(page);
6899 read_extent_buffer(leaf, map + pg_offset, ptr,
6900 copy_size);
09cbfeaf 6901 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6902 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6903 PAGE_SIZE - pg_offset -
93c82d57
CM
6904 copy_size);
6905 }
c8b97818
CM
6906 kunmap(page);
6907 }
179e29e4 6908 flush_dcache_page(page);
a52d9a80 6909 }
d1310b2e 6910 set_extent_uptodate(io_tree, em->start,
507903b8 6911 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6912 goto insert;
a52d9a80
CM
6913 }
6914not_found:
6915 em->start = start;
70c8a91c 6916 em->orig_start = start;
d1310b2e 6917 em->len = len;
a52d9a80 6918not_found_em:
5f39d397 6919 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6920insert:
b3b4aa74 6921 btrfs_release_path(path);
d1310b2e 6922 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6923 btrfs_err(fs_info,
5d163e0e
JM
6924 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6925 em->start, em->len, start, len);
a52d9a80
CM
6926 err = -EIO;
6927 goto out;
6928 }
d1310b2e
CM
6929
6930 err = 0;
890871be 6931 write_lock(&em_tree->lock);
f46b24c9 6932 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6933 write_unlock(&em_tree->lock);
a52d9a80 6934out:
c6414280 6935 btrfs_free_path(path);
1abe9b8a 6936
fc4f21b1 6937 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6938
a52d9a80
CM
6939 if (err) {
6940 free_extent_map(em);
a52d9a80
CM
6941 return ERR_PTR(err);
6942 }
79787eaa 6943 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6944 return em;
6945}
6946
fc4f21b1
NB
6947struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6948 struct page *page,
6949 size_t pg_offset, u64 start, u64 len,
6950 int create)
ec29ed5b
CM
6951{
6952 struct extent_map *em;
6953 struct extent_map *hole_em = NULL;
6954 u64 range_start = start;
6955 u64 end;
6956 u64 found;
6957 u64 found_end;
6958 int err = 0;
6959
6960 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6961 if (IS_ERR(em))
6962 return em;
9986277e
DC
6963 /*
6964 * If our em maps to:
6965 * - a hole or
6966 * - a pre-alloc extent,
6967 * there might actually be delalloc bytes behind it.
6968 */
6969 if (em->block_start != EXTENT_MAP_HOLE &&
6970 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6971 return em;
6972 else
6973 hole_em = em;
ec29ed5b
CM
6974
6975 /* check to see if we've wrapped (len == -1 or similar) */
6976 end = start + len;
6977 if (end < start)
6978 end = (u64)-1;
6979 else
6980 end -= 1;
6981
6982 em = NULL;
6983
6984 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 6985 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
6986 end, len, EXTENT_DELALLOC, 1);
6987 found_end = range_start + found;
6988 if (found_end < range_start)
6989 found_end = (u64)-1;
6990
6991 /*
6992 * we didn't find anything useful, return
6993 * the original results from get_extent()
6994 */
6995 if (range_start > end || found_end <= start) {
6996 em = hole_em;
6997 hole_em = NULL;
6998 goto out;
6999 }
7000
7001 /* adjust the range_start to make sure it doesn't
7002 * go backwards from the start they passed in
7003 */
67871254 7004 range_start = max(start, range_start);
ec29ed5b
CM
7005 found = found_end - range_start;
7006
7007 if (found > 0) {
7008 u64 hole_start = start;
7009 u64 hole_len = len;
7010
172ddd60 7011 em = alloc_extent_map();
ec29ed5b
CM
7012 if (!em) {
7013 err = -ENOMEM;
7014 goto out;
7015 }
7016 /*
7017 * when btrfs_get_extent can't find anything it
7018 * returns one huge hole
7019 *
7020 * make sure what it found really fits our range, and
7021 * adjust to make sure it is based on the start from
7022 * the caller
7023 */
7024 if (hole_em) {
7025 u64 calc_end = extent_map_end(hole_em);
7026
7027 if (calc_end <= start || (hole_em->start > end)) {
7028 free_extent_map(hole_em);
7029 hole_em = NULL;
7030 } else {
7031 hole_start = max(hole_em->start, start);
7032 hole_len = calc_end - hole_start;
7033 }
7034 }
7035 em->bdev = NULL;
7036 if (hole_em && range_start > hole_start) {
7037 /* our hole starts before our delalloc, so we
7038 * have to return just the parts of the hole
7039 * that go until the delalloc starts
7040 */
7041 em->len = min(hole_len,
7042 range_start - hole_start);
7043 em->start = hole_start;
7044 em->orig_start = hole_start;
7045 /*
7046 * don't adjust block start at all,
7047 * it is fixed at EXTENT_MAP_HOLE
7048 */
7049 em->block_start = hole_em->block_start;
7050 em->block_len = hole_len;
f9e4fb53
LB
7051 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7052 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7053 } else {
7054 em->start = range_start;
7055 em->len = found;
7056 em->orig_start = range_start;
7057 em->block_start = EXTENT_MAP_DELALLOC;
7058 em->block_len = found;
7059 }
bf8d32b9 7060 } else {
ec29ed5b
CM
7061 return hole_em;
7062 }
7063out:
7064
7065 free_extent_map(hole_em);
7066 if (err) {
7067 free_extent_map(em);
7068 return ERR_PTR(err);
7069 }
7070 return em;
7071}
7072
5f9a8a51
FM
7073static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7074 const u64 start,
7075 const u64 len,
7076 const u64 orig_start,
7077 const u64 block_start,
7078 const u64 block_len,
7079 const u64 orig_block_len,
7080 const u64 ram_bytes,
7081 const int type)
7082{
7083 struct extent_map *em = NULL;
7084 int ret;
7085
5f9a8a51 7086 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7087 em = create_io_em(inode, start, len, orig_start,
7088 block_start, block_len, orig_block_len,
7089 ram_bytes,
7090 BTRFS_COMPRESS_NONE, /* compress_type */
7091 type);
5f9a8a51
FM
7092 if (IS_ERR(em))
7093 goto out;
7094 }
7095 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7096 len, block_len, type);
7097 if (ret) {
7098 if (em) {
7099 free_extent_map(em);
dcdbc059 7100 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7101 start + len - 1, 0);
7102 }
7103 em = ERR_PTR(ret);
7104 }
7105 out:
5f9a8a51
FM
7106
7107 return em;
7108}
7109
4b46fce2
JB
7110static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7111 u64 start, u64 len)
7112{
0b246afa 7113 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7114 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7115 struct extent_map *em;
4b46fce2
JB
7116 struct btrfs_key ins;
7117 u64 alloc_hint;
7118 int ret;
4b46fce2 7119
4b46fce2 7120 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7121 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7122 0, alloc_hint, &ins, 1, 1);
00361589
JB
7123 if (ret)
7124 return ERR_PTR(ret);
4b46fce2 7125
5f9a8a51
FM
7126 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7127 ins.objectid, ins.offset, ins.offset,
6288d6ea 7128 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7129 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7130 if (IS_ERR(em))
2ff7e61e
JM
7131 btrfs_free_reserved_extent(fs_info, ins.objectid,
7132 ins.offset, 1);
de0ee0ed 7133
4b46fce2
JB
7134 return em;
7135}
7136
46bfbb5c
CM
7137/*
7138 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7139 * block must be cow'd
7140 */
00361589 7141noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7142 u64 *orig_start, u64 *orig_block_len,
7143 u64 *ram_bytes)
46bfbb5c 7144{
2ff7e61e 7145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7146 struct btrfs_path *path;
7147 int ret;
7148 struct extent_buffer *leaf;
7149 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7150 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7151 struct btrfs_file_extent_item *fi;
7152 struct btrfs_key key;
7153 u64 disk_bytenr;
7154 u64 backref_offset;
7155 u64 extent_end;
7156 u64 num_bytes;
7157 int slot;
7158 int found_type;
7ee9e440 7159 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7160
46bfbb5c
CM
7161 path = btrfs_alloc_path();
7162 if (!path)
7163 return -ENOMEM;
7164
f85b7379
DS
7165 ret = btrfs_lookup_file_extent(NULL, root, path,
7166 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7167 if (ret < 0)
7168 goto out;
7169
7170 slot = path->slots[0];
7171 if (ret == 1) {
7172 if (slot == 0) {
7173 /* can't find the item, must cow */
7174 ret = 0;
7175 goto out;
7176 }
7177 slot--;
7178 }
7179 ret = 0;
7180 leaf = path->nodes[0];
7181 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7182 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7183 key.type != BTRFS_EXTENT_DATA_KEY) {
7184 /* not our file or wrong item type, must cow */
7185 goto out;
7186 }
7187
7188 if (key.offset > offset) {
7189 /* Wrong offset, must cow */
7190 goto out;
7191 }
7192
7193 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7194 found_type = btrfs_file_extent_type(leaf, fi);
7195 if (found_type != BTRFS_FILE_EXTENT_REG &&
7196 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7197 /* not a regular extent, must cow */
7198 goto out;
7199 }
7ee9e440
JB
7200
7201 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7202 goto out;
7203
e77751aa
MX
7204 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7205 if (extent_end <= offset)
7206 goto out;
7207
46bfbb5c 7208 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7209 if (disk_bytenr == 0)
7210 goto out;
7211
7212 if (btrfs_file_extent_compression(leaf, fi) ||
7213 btrfs_file_extent_encryption(leaf, fi) ||
7214 btrfs_file_extent_other_encoding(leaf, fi))
7215 goto out;
7216
78d4295b
EL
7217 /*
7218 * Do the same check as in btrfs_cross_ref_exist but without the
7219 * unnecessary search.
7220 */
7221 if (btrfs_file_extent_generation(leaf, fi) <=
7222 btrfs_root_last_snapshot(&root->root_item))
7223 goto out;
7224
46bfbb5c
CM
7225 backref_offset = btrfs_file_extent_offset(leaf, fi);
7226
7ee9e440
JB
7227 if (orig_start) {
7228 *orig_start = key.offset - backref_offset;
7229 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7230 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7231 }
eb384b55 7232
2ff7e61e 7233 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7234 goto out;
7b2b7085
MX
7235
7236 num_bytes = min(offset + *len, extent_end) - offset;
7237 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7238 u64 range_end;
7239
da17066c
JM
7240 range_end = round_up(offset + num_bytes,
7241 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7242 ret = test_range_bit(io_tree, offset, range_end,
7243 EXTENT_DELALLOC, 0, NULL);
7244 if (ret) {
7245 ret = -EAGAIN;
7246 goto out;
7247 }
7248 }
7249
1bda19eb 7250 btrfs_release_path(path);
46bfbb5c
CM
7251
7252 /*
7253 * look for other files referencing this extent, if we
7254 * find any we must cow
7255 */
00361589 7256
e4c3b2dc 7257 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7258 key.offset - backref_offset, disk_bytenr);
00361589
JB
7259 if (ret) {
7260 ret = 0;
7261 goto out;
7262 }
46bfbb5c
CM
7263
7264 /*
7265 * adjust disk_bytenr and num_bytes to cover just the bytes
7266 * in this extent we are about to write. If there
7267 * are any csums in that range we have to cow in order
7268 * to keep the csums correct
7269 */
7270 disk_bytenr += backref_offset;
7271 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7272 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7273 goto out;
46bfbb5c
CM
7274 /*
7275 * all of the above have passed, it is safe to overwrite this extent
7276 * without cow
7277 */
eb384b55 7278 *len = num_bytes;
46bfbb5c
CM
7279 ret = 1;
7280out:
7281 btrfs_free_path(path);
7282 return ret;
7283}
7284
eb838e73
JB
7285static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7286 struct extent_state **cached_state, int writing)
7287{
7288 struct btrfs_ordered_extent *ordered;
7289 int ret = 0;
7290
7291 while (1) {
7292 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7293 cached_state);
eb838e73
JB
7294 /*
7295 * We're concerned with the entire range that we're going to be
01327610 7296 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7297 * extents in this range.
7298 */
a776c6fa 7299 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7300 lockend - lockstart + 1);
7301
7302 /*
7303 * We need to make sure there are no buffered pages in this
7304 * range either, we could have raced between the invalidate in
7305 * generic_file_direct_write and locking the extent. The
7306 * invalidate needs to happen so that reads after a write do not
7307 * get stale data.
7308 */
fc4adbff 7309 if (!ordered &&
051c98eb
DS
7310 (!writing || !filemap_range_has_page(inode->i_mapping,
7311 lockstart, lockend)))
eb838e73
JB
7312 break;
7313
7314 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7315 cached_state);
eb838e73
JB
7316
7317 if (ordered) {
ade77029
FM
7318 /*
7319 * If we are doing a DIO read and the ordered extent we
7320 * found is for a buffered write, we can not wait for it
7321 * to complete and retry, because if we do so we can
7322 * deadlock with concurrent buffered writes on page
7323 * locks. This happens only if our DIO read covers more
7324 * than one extent map, if at this point has already
7325 * created an ordered extent for a previous extent map
7326 * and locked its range in the inode's io tree, and a
7327 * concurrent write against that previous extent map's
7328 * range and this range started (we unlock the ranges
7329 * in the io tree only when the bios complete and
7330 * buffered writes always lock pages before attempting
7331 * to lock range in the io tree).
7332 */
7333 if (writing ||
7334 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7335 btrfs_start_ordered_extent(inode, ordered, 1);
7336 else
7337 ret = -ENOTBLK;
eb838e73
JB
7338 btrfs_put_ordered_extent(ordered);
7339 } else {
eb838e73 7340 /*
b850ae14
FM
7341 * We could trigger writeback for this range (and wait
7342 * for it to complete) and then invalidate the pages for
7343 * this range (through invalidate_inode_pages2_range()),
7344 * but that can lead us to a deadlock with a concurrent
7345 * call to readpages() (a buffered read or a defrag call
7346 * triggered a readahead) on a page lock due to an
7347 * ordered dio extent we created before but did not have
7348 * yet a corresponding bio submitted (whence it can not
7349 * complete), which makes readpages() wait for that
7350 * ordered extent to complete while holding a lock on
7351 * that page.
eb838e73 7352 */
b850ae14 7353 ret = -ENOTBLK;
eb838e73
JB
7354 }
7355
ade77029
FM
7356 if (ret)
7357 break;
7358
eb838e73
JB
7359 cond_resched();
7360 }
7361
7362 return ret;
7363}
7364
6f9994db
LB
7365/* The callers of this must take lock_extent() */
7366static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7367 u64 orig_start, u64 block_start,
7368 u64 block_len, u64 orig_block_len,
7369 u64 ram_bytes, int compress_type,
7370 int type)
69ffb543
JB
7371{
7372 struct extent_map_tree *em_tree;
7373 struct extent_map *em;
7374 struct btrfs_root *root = BTRFS_I(inode)->root;
7375 int ret;
7376
6f9994db
LB
7377 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7378 type == BTRFS_ORDERED_COMPRESSED ||
7379 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7380 type == BTRFS_ORDERED_REGULAR);
6f9994db 7381
69ffb543
JB
7382 em_tree = &BTRFS_I(inode)->extent_tree;
7383 em = alloc_extent_map();
7384 if (!em)
7385 return ERR_PTR(-ENOMEM);
7386
7387 em->start = start;
7388 em->orig_start = orig_start;
7389 em->len = len;
7390 em->block_len = block_len;
7391 em->block_start = block_start;
7392 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7393 em->orig_block_len = orig_block_len;
cc95bef6 7394 em->ram_bytes = ram_bytes;
70c8a91c 7395 em->generation = -1;
69ffb543 7396 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7397 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7398 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7399 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7400 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7401 em->compress_type = compress_type;
7402 }
69ffb543
JB
7403
7404 do {
dcdbc059 7405 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7406 em->start + em->len - 1, 0);
7407 write_lock(&em_tree->lock);
09a2a8f9 7408 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7409 write_unlock(&em_tree->lock);
6f9994db
LB
7410 /*
7411 * The caller has taken lock_extent(), who could race with us
7412 * to add em?
7413 */
69ffb543
JB
7414 } while (ret == -EEXIST);
7415
7416 if (ret) {
7417 free_extent_map(em);
7418 return ERR_PTR(ret);
7419 }
7420
6f9994db 7421 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7422 return em;
7423}
7424
1c8d0175
NB
7425
7426static int btrfs_get_blocks_direct_read(struct extent_map *em,
7427 struct buffer_head *bh_result,
7428 struct inode *inode,
7429 u64 start, u64 len)
7430{
7431 if (em->block_start == EXTENT_MAP_HOLE ||
7432 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7433 return -ENOENT;
7434
7435 len = min(len, em->len - (start - em->start));
7436
7437 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7438 inode->i_blkbits;
7439 bh_result->b_size = len;
7440 bh_result->b_bdev = em->bdev;
7441 set_buffer_mapped(bh_result);
7442
7443 return 0;
7444}
7445
c5794e51
NB
7446static int btrfs_get_blocks_direct_write(struct extent_map **map,
7447 struct buffer_head *bh_result,
7448 struct inode *inode,
7449 struct btrfs_dio_data *dio_data,
7450 u64 start, u64 len)
7451{
7452 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7453 struct extent_map *em = *map;
7454 int ret = 0;
7455
7456 /*
7457 * We don't allocate a new extent in the following cases
7458 *
7459 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7460 * existing extent.
7461 * 2) The extent is marked as PREALLOC. We're good to go here and can
7462 * just use the extent.
7463 *
7464 */
7465 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7466 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7467 em->block_start != EXTENT_MAP_HOLE)) {
7468 int type;
7469 u64 block_start, orig_start, orig_block_len, ram_bytes;
7470
7471 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7472 type = BTRFS_ORDERED_PREALLOC;
7473 else
7474 type = BTRFS_ORDERED_NOCOW;
7475 len = min(len, em->len - (start - em->start));
7476 block_start = em->block_start + (start - em->start);
7477
7478 if (can_nocow_extent(inode, start, &len, &orig_start,
7479 &orig_block_len, &ram_bytes) == 1 &&
7480 btrfs_inc_nocow_writers(fs_info, block_start)) {
7481 struct extent_map *em2;
7482
7483 em2 = btrfs_create_dio_extent(inode, start, len,
7484 orig_start, block_start,
7485 len, orig_block_len,
7486 ram_bytes, type);
7487 btrfs_dec_nocow_writers(fs_info, block_start);
7488 if (type == BTRFS_ORDERED_PREALLOC) {
7489 free_extent_map(em);
7490 *map = em = em2;
7491 }
7492
7493 if (em2 && IS_ERR(em2)) {
7494 ret = PTR_ERR(em2);
7495 goto out;
7496 }
7497 /*
7498 * For inode marked NODATACOW or extent marked PREALLOC,
7499 * use the existing or preallocated extent, so does not
7500 * need to adjust btrfs_space_info's bytes_may_use.
7501 */
7502 btrfs_free_reserved_data_space_noquota(inode, start,
7503 len);
7504 goto skip_cow;
7505 }
7506 }
7507
7508 /* this will cow the extent */
7509 len = bh_result->b_size;
7510 free_extent_map(em);
7511 *map = em = btrfs_new_extent_direct(inode, start, len);
7512 if (IS_ERR(em)) {
7513 ret = PTR_ERR(em);
7514 goto out;
7515 }
7516
7517 len = min(len, em->len - (start - em->start));
7518
7519skip_cow:
7520 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7521 inode->i_blkbits;
7522 bh_result->b_size = len;
7523 bh_result->b_bdev = em->bdev;
7524 set_buffer_mapped(bh_result);
7525
7526 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7527 set_buffer_new(bh_result);
7528
7529 /*
7530 * Need to update the i_size under the extent lock so buffered
7531 * readers will get the updated i_size when we unlock.
7532 */
7533 if (!dio_data->overwrite && start + len > i_size_read(inode))
7534 i_size_write(inode, start + len);
7535
7536 WARN_ON(dio_data->reserve < len);
7537 dio_data->reserve -= len;
7538 dio_data->unsubmitted_oe_range_end = start + len;
7539 current->journal_info = dio_data;
7540out:
7541 return ret;
7542}
7543
4b46fce2
JB
7544static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7545 struct buffer_head *bh_result, int create)
7546{
0b246afa 7547 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7548 struct extent_map *em;
eb838e73 7549 struct extent_state *cached_state = NULL;
50745b0a 7550 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7551 u64 start = iblock << inode->i_blkbits;
eb838e73 7552 u64 lockstart, lockend;
4b46fce2 7553 u64 len = bh_result->b_size;
eb838e73 7554 int unlock_bits = EXTENT_LOCKED;
0934856d 7555 int ret = 0;
eb838e73 7556
172a5049 7557 if (create)
3266789f 7558 unlock_bits |= EXTENT_DIRTY;
172a5049 7559 else
0b246afa 7560 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7561
c329861d
JB
7562 lockstart = start;
7563 lockend = start + len - 1;
7564
e1cbbfa5
JB
7565 if (current->journal_info) {
7566 /*
7567 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7568 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7569 * confused.
7570 */
50745b0a 7571 dio_data = current->journal_info;
e1cbbfa5
JB
7572 current->journal_info = NULL;
7573 }
7574
eb838e73
JB
7575 /*
7576 * If this errors out it's because we couldn't invalidate pagecache for
7577 * this range and we need to fallback to buffered.
7578 */
9c9464cc
FM
7579 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7580 create)) {
7581 ret = -ENOTBLK;
7582 goto err;
7583 }
eb838e73 7584
fc4f21b1 7585 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7586 if (IS_ERR(em)) {
7587 ret = PTR_ERR(em);
7588 goto unlock_err;
7589 }
4b46fce2
JB
7590
7591 /*
7592 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7593 * io. INLINE is special, and we could probably kludge it in here, but
7594 * it's still buffered so for safety lets just fall back to the generic
7595 * buffered path.
7596 *
7597 * For COMPRESSED we _have_ to read the entire extent in so we can
7598 * decompress it, so there will be buffering required no matter what we
7599 * do, so go ahead and fallback to buffered.
7600 *
01327610 7601 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7602 * to buffered IO. Don't blame me, this is the price we pay for using
7603 * the generic code.
7604 */
7605 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7606 em->block_start == EXTENT_MAP_INLINE) {
7607 free_extent_map(em);
eb838e73
JB
7608 ret = -ENOTBLK;
7609 goto unlock_err;
4b46fce2
JB
7610 }
7611
c5794e51
NB
7612 if (create) {
7613 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7614 dio_data, start, len);
7615 if (ret < 0)
7616 goto unlock_err;
7617
7618 /* clear and unlock the entire range */
7619 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7620 unlock_bits, 1, 0, &cached_state);
7621 } else {
1c8d0175
NB
7622 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7623 start, len);
7624 /* Can be negative only if we read from a hole */
7625 if (ret < 0) {
7626 ret = 0;
7627 free_extent_map(em);
7628 goto unlock_err;
7629 }
7630 /*
7631 * We need to unlock only the end area that we aren't using.
7632 * The rest is going to be unlocked by the endio routine.
7633 */
7634 lockstart = start + bh_result->b_size;
7635 if (lockstart < lockend) {
7636 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7637 lockend, unlock_bits, 1, 0,
7638 &cached_state);
7639 } else {
7640 free_extent_state(cached_state);
7641 }
4b46fce2
JB
7642 }
7643
4b46fce2
JB
7644 free_extent_map(em);
7645
7646 return 0;
eb838e73
JB
7647
7648unlock_err:
eb838e73 7649 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7650 unlock_bits, 1, 0, &cached_state);
9c9464cc 7651err:
50745b0a 7652 if (dio_data)
7653 current->journal_info = dio_data;
eb838e73 7654 return ret;
4b46fce2
JB
7655}
7656
58efbc9f
OS
7657static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7658 struct bio *bio,
7659 int mirror_num)
8b110e39 7660{
2ff7e61e 7661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7662 blk_status_t ret;
8b110e39 7663
37226b21 7664 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7665
2ff7e61e 7666 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7667 if (ret)
ea057f6d 7668 return ret;
8b110e39 7669
2ff7e61e 7670 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7671
8b110e39
MX
7672 return ret;
7673}
7674
7675static int btrfs_check_dio_repairable(struct inode *inode,
7676 struct bio *failed_bio,
7677 struct io_failure_record *failrec,
7678 int failed_mirror)
7679{
ab8d0fc4 7680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7681 int num_copies;
7682
ab8d0fc4 7683 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7684 if (num_copies == 1) {
7685 /*
7686 * we only have a single copy of the data, so don't bother with
7687 * all the retry and error correction code that follows. no
7688 * matter what the error is, it is very likely to persist.
7689 */
ab8d0fc4
JM
7690 btrfs_debug(fs_info,
7691 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7692 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7693 return 0;
7694 }
7695
7696 failrec->failed_mirror = failed_mirror;
7697 failrec->this_mirror++;
7698 if (failrec->this_mirror == failed_mirror)
7699 failrec->this_mirror++;
7700
7701 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7702 btrfs_debug(fs_info,
7703 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7704 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7705 return 0;
7706 }
7707
7708 return 1;
7709}
7710
58efbc9f
OS
7711static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7712 struct page *page, unsigned int pgoff,
7713 u64 start, u64 end, int failed_mirror,
7714 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7715{
7716 struct io_failure_record *failrec;
7870d082
JB
7717 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7718 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7719 struct bio *bio;
7720 int isector;
f1c77c55 7721 unsigned int read_mode = 0;
17347cec 7722 int segs;
8b110e39 7723 int ret;
58efbc9f 7724 blk_status_t status;
c16a8ac3 7725 struct bio_vec bvec;
8b110e39 7726
37226b21 7727 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7728
7729 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7730 if (ret)
58efbc9f 7731 return errno_to_blk_status(ret);
8b110e39
MX
7732
7733 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7734 failed_mirror);
7735 if (!ret) {
7870d082 7736 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7737 return BLK_STS_IOERR;
8b110e39
MX
7738 }
7739
17347cec 7740 segs = bio_segments(failed_bio);
c16a8ac3 7741 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7742 if (segs > 1 ||
c16a8ac3 7743 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7744 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7745
7746 isector = start - btrfs_io_bio(failed_bio)->logical;
7747 isector >>= inode->i_sb->s_blocksize_bits;
7748 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7749 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7750 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7751
7752 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7753 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7754 read_mode, failrec->this_mirror, failrec->in_validation);
7755
58efbc9f
OS
7756 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7757 if (status) {
7870d082 7758 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7759 bio_put(bio);
7760 }
7761
58efbc9f 7762 return status;
8b110e39
MX
7763}
7764
7765struct btrfs_retry_complete {
7766 struct completion done;
7767 struct inode *inode;
7768 u64 start;
7769 int uptodate;
7770};
7771
4246a0b6 7772static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7773{
7774 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7775 struct inode *inode = done->inode;
8b110e39 7776 struct bio_vec *bvec;
7870d082 7777 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7778 int i;
7779
4e4cbee9 7780 if (bio->bi_status)
8b110e39
MX
7781 goto end;
7782
2dabb324 7783 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7784 io_tree = &BTRFS_I(inode)->io_tree;
7785 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7786 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7787
8b110e39 7788 done->uptodate = 1;
c09abff8 7789 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7790 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7791 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7792 io_tree, done->start, bvec->bv_page,
7793 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7794end:
7795 complete(&done->done);
7796 bio_put(bio);
7797}
7798
58efbc9f
OS
7799static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7800 struct btrfs_io_bio *io_bio)
4b46fce2 7801{
2dabb324 7802 struct btrfs_fs_info *fs_info;
17347cec
LB
7803 struct bio_vec bvec;
7804 struct bvec_iter iter;
8b110e39 7805 struct btrfs_retry_complete done;
4b46fce2 7806 u64 start;
2dabb324
CR
7807 unsigned int pgoff;
7808 u32 sectorsize;
7809 int nr_sectors;
58efbc9f
OS
7810 blk_status_t ret;
7811 blk_status_t err = BLK_STS_OK;
4b46fce2 7812
2dabb324 7813 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7814 sectorsize = fs_info->sectorsize;
2dabb324 7815
8b110e39
MX
7816 start = io_bio->logical;
7817 done.inode = inode;
17347cec 7818 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7819
17347cec
LB
7820 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7821 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7822 pgoff = bvec.bv_offset;
2dabb324
CR
7823
7824next_block_or_try_again:
8b110e39
MX
7825 done.uptodate = 0;
7826 done.start = start;
7827 init_completion(&done.done);
7828
17347cec 7829 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7830 pgoff, start, start + sectorsize - 1,
7831 io_bio->mirror_num,
7832 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7833 if (ret) {
7834 err = ret;
7835 goto next;
7836 }
8b110e39 7837
9c17f6cd 7838 wait_for_completion_io(&done.done);
8b110e39
MX
7839
7840 if (!done.uptodate) {
7841 /* We might have another mirror, so try again */
2dabb324 7842 goto next_block_or_try_again;
8b110e39
MX
7843 }
7844
629ebf4f 7845next:
2dabb324
CR
7846 start += sectorsize;
7847
97bf5a55
LB
7848 nr_sectors--;
7849 if (nr_sectors) {
2dabb324 7850 pgoff += sectorsize;
97bf5a55 7851 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7852 goto next_block_or_try_again;
7853 }
8b110e39
MX
7854 }
7855
629ebf4f 7856 return err;
8b110e39
MX
7857}
7858
4246a0b6 7859static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7860{
7861 struct btrfs_retry_complete *done = bio->bi_private;
7862 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7863 struct extent_io_tree *io_tree, *failure_tree;
7864 struct inode *inode = done->inode;
8b110e39
MX
7865 struct bio_vec *bvec;
7866 int uptodate;
7867 int ret;
7868 int i;
7869
4e4cbee9 7870 if (bio->bi_status)
8b110e39
MX
7871 goto end;
7872
7873 uptodate = 1;
2dabb324 7874
2dabb324 7875 ASSERT(bio->bi_vcnt == 1);
263663cd 7876 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7877
7870d082
JB
7878 io_tree = &BTRFS_I(inode)->io_tree;
7879 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7880
c09abff8 7881 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7882 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
7883 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7884 bvec->bv_offset, done->start,
7885 bvec->bv_len);
8b110e39 7886 if (!ret)
7870d082
JB
7887 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7888 failure_tree, io_tree, done->start,
7889 bvec->bv_page,
7890 btrfs_ino(BTRFS_I(inode)),
7891 bvec->bv_offset);
8b110e39
MX
7892 else
7893 uptodate = 0;
7894 }
7895
7896 done->uptodate = uptodate;
7897end:
7898 complete(&done->done);
7899 bio_put(bio);
7900}
7901
4e4cbee9
CH
7902static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7903 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 7904{
2dabb324 7905 struct btrfs_fs_info *fs_info;
17347cec
LB
7906 struct bio_vec bvec;
7907 struct bvec_iter iter;
8b110e39
MX
7908 struct btrfs_retry_complete done;
7909 u64 start;
7910 u64 offset = 0;
2dabb324
CR
7911 u32 sectorsize;
7912 int nr_sectors;
7913 unsigned int pgoff;
7914 int csum_pos;
ef7cdac1 7915 bool uptodate = (err == 0);
8b110e39 7916 int ret;
58efbc9f 7917 blk_status_t status;
dc380aea 7918
2dabb324 7919 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7920 sectorsize = fs_info->sectorsize;
2dabb324 7921
58efbc9f 7922 err = BLK_STS_OK;
c1dc0896 7923 start = io_bio->logical;
8b110e39 7924 done.inode = inode;
17347cec 7925 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7926
17347cec
LB
7927 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7928 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 7929
17347cec 7930 pgoff = bvec.bv_offset;
2dabb324 7931next_block:
ef7cdac1
LB
7932 if (uptodate) {
7933 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7934 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7935 bvec.bv_page, pgoff, start, sectorsize);
7936 if (likely(!ret))
7937 goto next;
7938 }
8b110e39
MX
7939try_again:
7940 done.uptodate = 0;
7941 done.start = start;
7942 init_completion(&done.done);
7943
58efbc9f
OS
7944 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7945 pgoff, start, start + sectorsize - 1,
7946 io_bio->mirror_num, btrfs_retry_endio,
7947 &done);
7948 if (status) {
7949 err = status;
8b110e39
MX
7950 goto next;
7951 }
7952
9c17f6cd 7953 wait_for_completion_io(&done.done);
8b110e39
MX
7954
7955 if (!done.uptodate) {
7956 /* We might have another mirror, so try again */
7957 goto try_again;
7958 }
7959next:
2dabb324
CR
7960 offset += sectorsize;
7961 start += sectorsize;
7962
7963 ASSERT(nr_sectors);
7964
97bf5a55
LB
7965 nr_sectors--;
7966 if (nr_sectors) {
2dabb324 7967 pgoff += sectorsize;
97bf5a55 7968 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7969 goto next_block;
7970 }
2c30c71b 7971 }
c1dc0896
MX
7972
7973 return err;
7974}
7975
4e4cbee9
CH
7976static blk_status_t btrfs_subio_endio_read(struct inode *inode,
7977 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
7978{
7979 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7980
7981 if (skip_csum) {
7982 if (unlikely(err))
7983 return __btrfs_correct_data_nocsum(inode, io_bio);
7984 else
58efbc9f 7985 return BLK_STS_OK;
8b110e39
MX
7986 } else {
7987 return __btrfs_subio_endio_read(inode, io_bio, err);
7988 }
7989}
7990
4246a0b6 7991static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7992{
7993 struct btrfs_dio_private *dip = bio->bi_private;
7994 struct inode *inode = dip->inode;
7995 struct bio *dio_bio;
7996 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 7997 blk_status_t err = bio->bi_status;
c1dc0896 7998
99c4e3b9 7999 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8000 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8001
4b46fce2 8002 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8003 dip->logical_offset + dip->bytes - 1);
9be3395b 8004 dio_bio = dip->dio_bio;
4b46fce2 8005
4b46fce2 8006 kfree(dip);
c0da7aa1 8007
99c4e3b9 8008 dio_bio->bi_status = err;
4055351c 8009 dio_end_io(dio_bio);
b3a0dd50 8010 btrfs_io_bio_free_csum(io_bio);
9be3395b 8011 bio_put(bio);
4b46fce2
JB
8012}
8013
52427260
QW
8014static void __endio_write_update_ordered(struct inode *inode,
8015 const u64 offset, const u64 bytes,
8016 const bool uptodate)
4b46fce2 8017{
0b246afa 8018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8019 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8020 struct btrfs_workqueue *wq;
8021 btrfs_work_func_t func;
14543774
FM
8022 u64 ordered_offset = offset;
8023 u64 ordered_bytes = bytes;
67c003f9 8024 u64 last_offset;
4b46fce2 8025
52427260
QW
8026 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8027 wq = fs_info->endio_freespace_worker;
8028 func = btrfs_freespace_write_helper;
8029 } else {
8030 wq = fs_info->endio_write_workers;
8031 func = btrfs_endio_write_helper;
8032 }
8033
b25f0d00
NB
8034 while (ordered_offset < offset + bytes) {
8035 last_offset = ordered_offset;
8036 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8037 &ordered_offset,
8038 ordered_bytes,
8039 uptodate)) {
8040 btrfs_init_work(&ordered->work, func,
8041 finish_ordered_fn,
8042 NULL, NULL);
8043 btrfs_queue_work(wq, &ordered->work);
8044 }
8045 /*
8046 * If btrfs_dec_test_ordered_pending does not find any ordered
8047 * extent in the range, we can exit.
8048 */
8049 if (ordered_offset == last_offset)
8050 return;
8051 /*
8052 * Our bio might span multiple ordered extents. In this case
52042d8e 8053 * we keep going until we have accounted the whole dio.
b25f0d00
NB
8054 */
8055 if (ordered_offset < offset + bytes) {
8056 ordered_bytes = offset + bytes - ordered_offset;
8057 ordered = NULL;
8058 }
163cf09c 8059 }
14543774
FM
8060}
8061
8062static void btrfs_endio_direct_write(struct bio *bio)
8063{
8064 struct btrfs_dio_private *dip = bio->bi_private;
8065 struct bio *dio_bio = dip->dio_bio;
8066
52427260 8067 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8068 dip->bytes, !bio->bi_status);
4b46fce2 8069
4b46fce2 8070 kfree(dip);
c0da7aa1 8071
4e4cbee9 8072 dio_bio->bi_status = bio->bi_status;
4055351c 8073 dio_end_io(dio_bio);
9be3395b 8074 bio_put(bio);
4b46fce2
JB
8075}
8076
d0ee3934 8077static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8078 struct bio *bio, u64 offset)
eaf25d93 8079{
c6100a4b 8080 struct inode *inode = private_data;
4e4cbee9 8081 blk_status_t ret;
2ff7e61e 8082 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8083 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8084 return 0;
8085}
8086
4246a0b6 8087static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8088{
8089 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8090 blk_status_t err = bio->bi_status;
e65e1535 8091
8b110e39
MX
8092 if (err)
8093 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8094 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8095 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8096 bio->bi_opf,
8b110e39
MX
8097 (unsigned long long)bio->bi_iter.bi_sector,
8098 bio->bi_iter.bi_size, err);
8099
8100 if (dip->subio_endio)
8101 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8102
8103 if (err) {
e65e1535 8104 /*
de224b7c
NB
8105 * We want to perceive the errors flag being set before
8106 * decrementing the reference count. We don't need a barrier
8107 * since atomic operations with a return value are fully
8108 * ordered as per atomic_t.txt
e65e1535 8109 */
de224b7c 8110 dip->errors = 1;
e65e1535
MX
8111 }
8112
8113 /* if there are more bios still pending for this dio, just exit */
8114 if (!atomic_dec_and_test(&dip->pending_bios))
8115 goto out;
8116
9be3395b 8117 if (dip->errors) {
e65e1535 8118 bio_io_error(dip->orig_bio);
9be3395b 8119 } else {
2dbe0c77 8120 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8121 bio_endio(dip->orig_bio);
e65e1535
MX
8122 }
8123out:
8124 bio_put(bio);
8125}
8126
4e4cbee9 8127static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8128 struct btrfs_dio_private *dip,
8129 struct bio *bio,
8130 u64 file_offset)
8131{
8132 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8133 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8134 blk_status_t ret;
c1dc0896
MX
8135
8136 /*
8137 * We load all the csum data we need when we submit
8138 * the first bio to reduce the csum tree search and
8139 * contention.
8140 */
8141 if (dip->logical_offset == file_offset) {
2ff7e61e 8142 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8143 file_offset);
8144 if (ret)
8145 return ret;
8146 }
8147
8148 if (bio == dip->orig_bio)
8149 return 0;
8150
8151 file_offset -= dip->logical_offset;
8152 file_offset >>= inode->i_sb->s_blocksize_bits;
8153 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8154
8155 return 0;
8156}
8157
d0ee3934
DS
8158static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8159 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8160{
0b246afa 8161 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8162 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8163 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8164 blk_status_t ret;
e65e1535 8165
4c274bc6 8166 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8167 if (async_submit)
8168 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8169
5fd02043 8170 if (!write) {
0b246afa 8171 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8172 if (ret)
8173 goto err;
8174 }
e65e1535 8175
e6961cac 8176 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8177 goto map;
8178
8179 if (write && async_submit) {
c6100a4b
JB
8180 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8181 file_offset, inode,
e288c080 8182 btrfs_submit_bio_start_direct_io);
e65e1535 8183 goto err;
1ae39938
JB
8184 } else if (write) {
8185 /*
8186 * If we aren't doing async submit, calculate the csum of the
8187 * bio now.
8188 */
2ff7e61e 8189 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8190 if (ret)
8191 goto err;
23ea8e5a 8192 } else {
2ff7e61e 8193 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8194 file_offset);
c2db1073
TI
8195 if (ret)
8196 goto err;
8197 }
1ae39938 8198map:
9b4a9b28 8199 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8200err:
e65e1535
MX
8201 return ret;
8202}
8203
e6961cac 8204static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8205{
8206 struct inode *inode = dip->inode;
0b246afa 8207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8208 struct bio *bio;
8209 struct bio *orig_bio = dip->orig_bio;
4f024f37 8210 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8211 u64 file_offset = dip->logical_offset;
e65e1535 8212 u64 map_length;
1ae39938 8213 int async_submit = 0;
725130ba
LB
8214 u64 submit_len;
8215 int clone_offset = 0;
8216 int clone_len;
5f4dc8fc 8217 int ret;
58efbc9f 8218 blk_status_t status;
e65e1535 8219
4f024f37 8220 map_length = orig_bio->bi_iter.bi_size;
725130ba 8221 submit_len = map_length;
0b246afa
JM
8222 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8223 &map_length, NULL, 0);
7a5c3c9b 8224 if (ret)
e65e1535 8225 return -EIO;
facc8a22 8226
725130ba 8227 if (map_length >= submit_len) {
02f57c7a 8228 bio = orig_bio;
c1dc0896 8229 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8230 goto submit;
8231 }
8232
53b381b3 8233 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8234 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8235 async_submit = 0;
8236 else
8237 async_submit = 1;
8238
725130ba
LB
8239 /* bio split */
8240 ASSERT(map_length <= INT_MAX);
02f57c7a 8241 atomic_inc(&dip->pending_bios);
3c91ee69 8242 do {
725130ba 8243 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8244
725130ba
LB
8245 /*
8246 * This will never fail as it's passing GPF_NOFS and
8247 * the allocation is backed by btrfs_bioset.
8248 */
e477094f 8249 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8250 clone_len);
8251 bio->bi_private = dip;
8252 bio->bi_end_io = btrfs_end_dio_bio;
8253 btrfs_io_bio(bio)->logical = file_offset;
8254
8255 ASSERT(submit_len >= clone_len);
8256 submit_len -= clone_len;
8257 if (submit_len == 0)
8258 break;
e65e1535 8259
725130ba
LB
8260 /*
8261 * Increase the count before we submit the bio so we know
8262 * the end IO handler won't happen before we increase the
8263 * count. Otherwise, the dip might get freed before we're
8264 * done setting it up.
8265 */
8266 atomic_inc(&dip->pending_bios);
e65e1535 8267
d0ee3934 8268 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8269 async_submit);
8270 if (status) {
725130ba
LB
8271 bio_put(bio);
8272 atomic_dec(&dip->pending_bios);
8273 goto out_err;
8274 }
e65e1535 8275
725130ba
LB
8276 clone_offset += clone_len;
8277 start_sector += clone_len >> 9;
8278 file_offset += clone_len;
5f4dc8fc 8279
725130ba
LB
8280 map_length = submit_len;
8281 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8282 start_sector << 9, &map_length, NULL, 0);
8283 if (ret)
8284 goto out_err;
3c91ee69 8285 } while (submit_len > 0);
e65e1535 8286
02f57c7a 8287submit:
d0ee3934 8288 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8289 if (!status)
e65e1535
MX
8290 return 0;
8291
8292 bio_put(bio);
8293out_err:
8294 dip->errors = 1;
8295 /*
de224b7c
NB
8296 * Before atomic variable goto zero, we must make sure dip->errors is
8297 * perceived to be set. This ordering is ensured by the fact that an
8298 * atomic operations with a return value are fully ordered as per
8299 * atomic_t.txt
e65e1535 8300 */
e65e1535
MX
8301 if (atomic_dec_and_test(&dip->pending_bios))
8302 bio_io_error(dip->orig_bio);
8303
8304 /* bio_end_io() will handle error, so we needn't return it */
8305 return 0;
8306}
8307
8a4c1e42
MC
8308static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8309 loff_t file_offset)
4b46fce2 8310{
61de718f 8311 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8312 struct bio *bio = NULL;
8313 struct btrfs_io_bio *io_bio;
8a4c1e42 8314 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8315 int ret = 0;
8316
8b6c1d56 8317 bio = btrfs_bio_clone(dio_bio);
9be3395b 8318
c1dc0896 8319 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8320 if (!dip) {
8321 ret = -ENOMEM;
61de718f 8322 goto free_ordered;
4b46fce2 8323 }
4b46fce2 8324
9be3395b 8325 dip->private = dio_bio->bi_private;
4b46fce2
JB
8326 dip->inode = inode;
8327 dip->logical_offset = file_offset;
4f024f37
KO
8328 dip->bytes = dio_bio->bi_iter.bi_size;
8329 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8330 bio->bi_private = dip;
8331 dip->orig_bio = bio;
9be3395b 8332 dip->dio_bio = dio_bio;
e65e1535 8333 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8334 io_bio = btrfs_io_bio(bio);
8335 io_bio->logical = file_offset;
4b46fce2 8336
c1dc0896 8337 if (write) {
3892ac90 8338 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8339 } else {
3892ac90 8340 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8341 dip->subio_endio = btrfs_subio_endio_read;
8342 }
4b46fce2 8343
f28a4928
FM
8344 /*
8345 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8346 * even if we fail to submit a bio, because in such case we do the
8347 * corresponding error handling below and it must not be done a second
8348 * time by btrfs_direct_IO().
8349 */
8350 if (write) {
8351 struct btrfs_dio_data *dio_data = current->journal_info;
8352
8353 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8354 dip->bytes;
8355 dio_data->unsubmitted_oe_range_start =
8356 dio_data->unsubmitted_oe_range_end;
8357 }
8358
e6961cac 8359 ret = btrfs_submit_direct_hook(dip);
e65e1535 8360 if (!ret)
eaf25d93 8361 return;
9be3395b 8362
b3a0dd50 8363 btrfs_io_bio_free_csum(io_bio);
9be3395b 8364
4b46fce2
JB
8365free_ordered:
8366 /*
61de718f
FM
8367 * If we arrived here it means either we failed to submit the dip
8368 * or we either failed to clone the dio_bio or failed to allocate the
8369 * dip. If we cloned the dio_bio and allocated the dip, we can just
8370 * call bio_endio against our io_bio so that we get proper resource
8371 * cleanup if we fail to submit the dip, otherwise, we must do the
8372 * same as btrfs_endio_direct_[write|read] because we can't call these
8373 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8374 */
3892ac90 8375 if (bio && dip) {
054ec2f6 8376 bio_io_error(bio);
61de718f 8377 /*
3892ac90 8378 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8379 * and all the cleanup and final put for dio_bio (through
8380 * dio_end_io()).
8381 */
8382 dip = NULL;
3892ac90 8383 bio = NULL;
61de718f 8384 } else {
14543774 8385 if (write)
52427260 8386 __endio_write_update_ordered(inode,
14543774
FM
8387 file_offset,
8388 dio_bio->bi_iter.bi_size,
52427260 8389 false);
14543774 8390 else
61de718f
FM
8391 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8392 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8393
4e4cbee9 8394 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8395 /*
8396 * Releases and cleans up our dio_bio, no need to bio_put()
8397 * nor bio_endio()/bio_io_error() against dio_bio.
8398 */
4055351c 8399 dio_end_io(dio_bio);
4b46fce2 8400 }
3892ac90
LB
8401 if (bio)
8402 bio_put(bio);
61de718f 8403 kfree(dip);
4b46fce2
JB
8404}
8405
2ff7e61e 8406static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8407 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8408{
8409 int seg;
a1b75f7d 8410 int i;
0b246afa 8411 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8412 ssize_t retval = -EINVAL;
5a5f79b5
CM
8413
8414 if (offset & blocksize_mask)
8415 goto out;
8416
28060d5d
AV
8417 if (iov_iter_alignment(iter) & blocksize_mask)
8418 goto out;
a1b75f7d 8419
28060d5d 8420 /* If this is a write we don't need to check anymore */
cd27e455 8421 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8422 return 0;
8423 /*
8424 * Check to make sure we don't have duplicate iov_base's in this
8425 * iovec, if so return EINVAL, otherwise we'll get csum errors
8426 * when reading back.
8427 */
8428 for (seg = 0; seg < iter->nr_segs; seg++) {
8429 for (i = seg + 1; i < iter->nr_segs; i++) {
8430 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8431 goto out;
8432 }
5a5f79b5
CM
8433 }
8434 retval = 0;
8435out:
8436 return retval;
8437}
eb838e73 8438
c8b8e32d 8439static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8440{
4b46fce2
JB
8441 struct file *file = iocb->ki_filp;
8442 struct inode *inode = file->f_mapping->host;
0b246afa 8443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8444 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8445 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8446 loff_t offset = iocb->ki_pos;
0934856d 8447 size_t count = 0;
2e60a51e 8448 int flags = 0;
38851cc1
MX
8449 bool wakeup = true;
8450 bool relock = false;
0934856d 8451 ssize_t ret;
4b46fce2 8452
8c70c9f8 8453 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8454 return 0;
3f7c579c 8455
fe0f07d0 8456 inode_dio_begin(inode);
38851cc1 8457
0e267c44 8458 /*
41bd9ca4
MX
8459 * The generic stuff only does filemap_write_and_wait_range, which
8460 * isn't enough if we've written compressed pages to this area, so
8461 * we need to flush the dirty pages again to make absolutely sure
8462 * that any outstanding dirty pages are on disk.
0e267c44 8463 */
a6cbcd4a 8464 count = iov_iter_count(iter);
41bd9ca4
MX
8465 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8466 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8467 filemap_fdatawrite_range(inode->i_mapping, offset,
8468 offset + count - 1);
0e267c44 8469
6f673763 8470 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8471 /*
8472 * If the write DIO is beyond the EOF, we need update
8473 * the isize, but it is protected by i_mutex. So we can
8474 * not unlock the i_mutex at this case.
8475 */
8476 if (offset + count <= inode->i_size) {
4aaedfb0 8477 dio_data.overwrite = 1;
5955102c 8478 inode_unlock(inode);
38851cc1 8479 relock = true;
edf064e7
GR
8480 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8481 ret = -EAGAIN;
8482 goto out;
38851cc1 8483 }
364ecf36
QW
8484 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8485 offset, count);
0934856d 8486 if (ret)
38851cc1 8487 goto out;
e1cbbfa5
JB
8488
8489 /*
8490 * We need to know how many extents we reserved so that we can
8491 * do the accounting properly if we go over the number we
8492 * originally calculated. Abuse current->journal_info for this.
8493 */
da17066c 8494 dio_data.reserve = round_up(count,
0b246afa 8495 fs_info->sectorsize);
f28a4928
FM
8496 dio_data.unsubmitted_oe_range_start = (u64)offset;
8497 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8498 current->journal_info = &dio_data;
97dcdea0 8499 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8500 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8501 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8502 inode_dio_end(inode);
38851cc1
MX
8503 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8504 wakeup = false;
0934856d
MX
8505 }
8506
17f8c842 8507 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8508 fs_info->fs_devices->latest_bdev,
c8b8e32d 8509 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8510 btrfs_submit_direct, flags);
6f673763 8511 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8512 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8513 current->journal_info = NULL;
ddba1bfc 8514 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8515 if (dio_data.reserve)
bc42bda2 8516 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8517 offset, dio_data.reserve, true);
f28a4928
FM
8518 /*
8519 * On error we might have left some ordered extents
8520 * without submitting corresponding bios for them, so
8521 * cleanup them up to avoid other tasks getting them
8522 * and waiting for them to complete forever.
8523 */
8524 if (dio_data.unsubmitted_oe_range_start <
8525 dio_data.unsubmitted_oe_range_end)
52427260 8526 __endio_write_update_ordered(inode,
f28a4928
FM
8527 dio_data.unsubmitted_oe_range_start,
8528 dio_data.unsubmitted_oe_range_end -
8529 dio_data.unsubmitted_oe_range_start,
52427260 8530 false);
ddba1bfc 8531 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8532 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8533 offset, count - (size_t)ret, true);
8534 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8535 }
38851cc1 8536out:
2e60a51e 8537 if (wakeup)
fe0f07d0 8538 inode_dio_end(inode);
38851cc1 8539 if (relock)
5955102c 8540 inode_lock(inode);
0934856d 8541
364ecf36 8542 extent_changeset_free(data_reserved);
0934856d 8543 return ret;
16432985
CM
8544}
8545
05dadc09
TI
8546#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8547
1506fcc8
YS
8548static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8549 __u64 start, __u64 len)
8550{
05dadc09
TI
8551 int ret;
8552
8553 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8554 if (ret)
8555 return ret;
8556
2135fb9b 8557 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8558}
8559
a52d9a80 8560int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8561{
d1310b2e
CM
8562 struct extent_io_tree *tree;
8563 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8564 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8565}
1832a6d5 8566
a52d9a80 8567static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8568{
be7bd730
JB
8569 struct inode *inode = page->mapping->host;
8570 int ret;
b888db2b
CM
8571
8572 if (current->flags & PF_MEMALLOC) {
8573 redirty_page_for_writepage(wbc, page);
8574 unlock_page(page);
8575 return 0;
8576 }
be7bd730
JB
8577
8578 /*
8579 * If we are under memory pressure we will call this directly from the
8580 * VM, we need to make sure we have the inode referenced for the ordered
8581 * extent. If not just return like we didn't do anything.
8582 */
8583 if (!igrab(inode)) {
8584 redirty_page_for_writepage(wbc, page);
8585 return AOP_WRITEPAGE_ACTIVATE;
8586 }
0a9b0e53 8587 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8588 btrfs_add_delayed_iput(inode);
8589 return ret;
9ebefb18
CM
8590}
8591
48a3b636
ES
8592static int btrfs_writepages(struct address_space *mapping,
8593 struct writeback_control *wbc)
b293f02e 8594{
8ae225a8 8595 return extent_writepages(mapping, wbc);
b293f02e
CM
8596}
8597
3ab2fb5a
CM
8598static int
8599btrfs_readpages(struct file *file, struct address_space *mapping,
8600 struct list_head *pages, unsigned nr_pages)
8601{
2a3ff0ad 8602 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8603}
2a3ff0ad 8604
e6dcd2dc 8605static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8606{
477a30ba 8607 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8608 if (ret == 1) {
8609 ClearPagePrivate(page);
8610 set_page_private(page, 0);
09cbfeaf 8611 put_page(page);
39279cc3 8612 }
a52d9a80 8613 return ret;
39279cc3
CM
8614}
8615
e6dcd2dc
CM
8616static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8617{
98509cfc
CM
8618 if (PageWriteback(page) || PageDirty(page))
8619 return 0;
3ba7ab22 8620 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8621}
8622
d47992f8
LC
8623static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8624 unsigned int length)
39279cc3 8625{
5fd02043 8626 struct inode *inode = page->mapping->host;
d1310b2e 8627 struct extent_io_tree *tree;
e6dcd2dc 8628 struct btrfs_ordered_extent *ordered;
2ac55d41 8629 struct extent_state *cached_state = NULL;
e6dcd2dc 8630 u64 page_start = page_offset(page);
09cbfeaf 8631 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8632 u64 start;
8633 u64 end;
131e404a 8634 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8635
8b62b72b
CM
8636 /*
8637 * we have the page locked, so new writeback can't start,
8638 * and the dirty bit won't be cleared while we are here.
8639 *
8640 * Wait for IO on this page so that we can safely clear
8641 * the PagePrivate2 bit and do ordered accounting
8642 */
e6dcd2dc 8643 wait_on_page_writeback(page);
8b62b72b 8644
5fd02043 8645 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8646 if (offset) {
8647 btrfs_releasepage(page, GFP_NOFS);
8648 return;
8649 }
131e404a
FDBM
8650
8651 if (!inode_evicting)
ff13db41 8652 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8653again:
8654 start = page_start;
a776c6fa 8655 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8656 page_end - start + 1);
e6dcd2dc 8657 if (ordered) {
dbfdb6d1 8658 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8659 /*
8660 * IO on this page will never be started, so we need
8661 * to account for any ordered extents now
8662 */
131e404a 8663 if (!inode_evicting)
dbfdb6d1 8664 clear_extent_bit(tree, start, end,
131e404a 8665 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8666 EXTENT_DELALLOC_NEW |
131e404a 8667 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8668 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8669 /*
8670 * whoever cleared the private bit is responsible
8671 * for the finish_ordered_io
8672 */
77cef2ec
JB
8673 if (TestClearPagePrivate2(page)) {
8674 struct btrfs_ordered_inode_tree *tree;
8675 u64 new_len;
8676
8677 tree = &BTRFS_I(inode)->ordered_tree;
8678
8679 spin_lock_irq(&tree->lock);
8680 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8681 new_len = start - ordered->file_offset;
77cef2ec
JB
8682 if (new_len < ordered->truncated_len)
8683 ordered->truncated_len = new_len;
8684 spin_unlock_irq(&tree->lock);
8685
8686 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8687 start,
8688 end - start + 1, 1))
77cef2ec 8689 btrfs_finish_ordered_io(ordered);
8b62b72b 8690 }
e6dcd2dc 8691 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8692 if (!inode_evicting) {
8693 cached_state = NULL;
dbfdb6d1 8694 lock_extent_bits(tree, start, end,
131e404a
FDBM
8695 &cached_state);
8696 }
dbfdb6d1
CR
8697
8698 start = end + 1;
8699 if (start < page_end)
8700 goto again;
131e404a
FDBM
8701 }
8702
b9d0b389
QW
8703 /*
8704 * Qgroup reserved space handler
8705 * Page here will be either
8706 * 1) Already written to disk
8707 * In this case, its reserved space is released from data rsv map
8708 * and will be freed by delayed_ref handler finally.
8709 * So even we call qgroup_free_data(), it won't decrease reserved
8710 * space.
8711 * 2) Not written to disk
0b34c261
GR
8712 * This means the reserved space should be freed here. However,
8713 * if a truncate invalidates the page (by clearing PageDirty)
8714 * and the page is accounted for while allocating extent
8715 * in btrfs_check_data_free_space() we let delayed_ref to
8716 * free the entire extent.
b9d0b389 8717 */
0b34c261 8718 if (PageDirty(page))
bc42bda2 8719 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8720 if (!inode_evicting) {
8721 clear_extent_bit(tree, page_start, page_end,
8722 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8723 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8724 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8725 &cached_state);
131e404a
FDBM
8726
8727 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8728 }
e6dcd2dc 8729
4a096752 8730 ClearPageChecked(page);
9ad6b7bc 8731 if (PagePrivate(page)) {
9ad6b7bc
CM
8732 ClearPagePrivate(page);
8733 set_page_private(page, 0);
09cbfeaf 8734 put_page(page);
9ad6b7bc 8735 }
39279cc3
CM
8736}
8737
9ebefb18
CM
8738/*
8739 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8740 * called from a page fault handler when a page is first dirtied. Hence we must
8741 * be careful to check for EOF conditions here. We set the page up correctly
8742 * for a written page which means we get ENOSPC checking when writing into
8743 * holes and correct delalloc and unwritten extent mapping on filesystems that
8744 * support these features.
8745 *
8746 * We are not allowed to take the i_mutex here so we have to play games to
8747 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8748 * truncate_setsize() writes the inode size before removing pages, once we have
8749 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8750 * beyond EOF, then the page is guaranteed safe against truncation until we
8751 * unlock the page.
8752 */
a528a241 8753vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8754{
c2ec175c 8755 struct page *page = vmf->page;
11bac800 8756 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8759 struct btrfs_ordered_extent *ordered;
2ac55d41 8760 struct extent_state *cached_state = NULL;
364ecf36 8761 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8762 char *kaddr;
8763 unsigned long zero_start;
9ebefb18 8764 loff_t size;
a528a241
SJ
8765 vm_fault_t ret;
8766 int ret2;
9998eb70 8767 int reserved = 0;
d0b7da88 8768 u64 reserved_space;
a52d9a80 8769 u64 page_start;
e6dcd2dc 8770 u64 page_end;
d0b7da88
CR
8771 u64 end;
8772
09cbfeaf 8773 reserved_space = PAGE_SIZE;
9ebefb18 8774
b2b5ef5c 8775 sb_start_pagefault(inode->i_sb);
df480633 8776 page_start = page_offset(page);
09cbfeaf 8777 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8778 end = page_end;
df480633 8779
d0b7da88
CR
8780 /*
8781 * Reserving delalloc space after obtaining the page lock can lead to
8782 * deadlock. For example, if a dirty page is locked by this function
8783 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8784 * dirty page write out, then the btrfs_writepage() function could
8785 * end up waiting indefinitely to get a lock on the page currently
8786 * being processed by btrfs_page_mkwrite() function.
8787 */
a528a241 8788 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8789 reserved_space);
a528a241
SJ
8790 if (!ret2) {
8791 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8792 reserved = 1;
8793 }
a528a241
SJ
8794 if (ret2) {
8795 ret = vmf_error(ret2);
9998eb70
CM
8796 if (reserved)
8797 goto out;
8798 goto out_noreserve;
56a76f82 8799 }
1832a6d5 8800
56a76f82 8801 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8802again:
9ebefb18 8803 lock_page(page);
9ebefb18 8804 size = i_size_read(inode);
a52d9a80 8805
9ebefb18 8806 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8807 (page_start >= size)) {
9ebefb18
CM
8808 /* page got truncated out from underneath us */
8809 goto out_unlock;
8810 }
e6dcd2dc
CM
8811 wait_on_page_writeback(page);
8812
ff13db41 8813 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8814 set_page_extent_mapped(page);
8815
eb84ae03
CM
8816 /*
8817 * we can't set the delalloc bits if there are pending ordered
8818 * extents. Drop our locks and wait for them to finish
8819 */
a776c6fa
NB
8820 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8821 PAGE_SIZE);
e6dcd2dc 8822 if (ordered) {
2ac55d41 8823 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8824 &cached_state);
e6dcd2dc 8825 unlock_page(page);
eb84ae03 8826 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8827 btrfs_put_ordered_extent(ordered);
8828 goto again;
8829 }
8830
09cbfeaf 8831 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8832 reserved_space = round_up(size - page_start,
0b246afa 8833 fs_info->sectorsize);
09cbfeaf 8834 if (reserved_space < PAGE_SIZE) {
d0b7da88 8835 end = page_start + reserved_space - 1;
bc42bda2 8836 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8837 page_start, PAGE_SIZE - reserved_space,
8838 true);
d0b7da88
CR
8839 }
8840 }
8841
fbf19087 8842 /*
5416034f
LB
8843 * page_mkwrite gets called when the page is firstly dirtied after it's
8844 * faulted in, but write(2) could also dirty a page and set delalloc
8845 * bits, thus in this case for space account reason, we still need to
8846 * clear any delalloc bits within this page range since we have to
8847 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8848 */
d0b7da88 8849 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8850 EXTENT_DIRTY | EXTENT_DELALLOC |
8851 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8852 0, 0, &cached_state);
fbf19087 8853
a528a241 8854 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8855 &cached_state, 0);
a528a241 8856 if (ret2) {
2ac55d41 8857 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8858 &cached_state);
9ed74f2d
JB
8859 ret = VM_FAULT_SIGBUS;
8860 goto out_unlock;
8861 }
a528a241 8862 ret2 = 0;
9ebefb18
CM
8863
8864 /* page is wholly or partially inside EOF */
09cbfeaf 8865 if (page_start + PAGE_SIZE > size)
7073017a 8866 zero_start = offset_in_page(size);
9ebefb18 8867 else
09cbfeaf 8868 zero_start = PAGE_SIZE;
9ebefb18 8869
09cbfeaf 8870 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8871 kaddr = kmap(page);
09cbfeaf 8872 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8873 flush_dcache_page(page);
8874 kunmap(page);
8875 }
247e743c 8876 ClearPageChecked(page);
e6dcd2dc 8877 set_page_dirty(page);
50a9b214 8878 SetPageUptodate(page);
5a3f23d5 8879
0b246afa 8880 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8881 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8882 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8883
e43bbe5e 8884 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8885
a528a241 8886 if (!ret2) {
43b18595 8887 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 8888 sb_end_pagefault(inode->i_sb);
364ecf36 8889 extent_changeset_free(data_reserved);
50a9b214 8890 return VM_FAULT_LOCKED;
b2b5ef5c 8891 }
717beb96
CM
8892
8893out_unlock:
9ebefb18 8894 unlock_page(page);
1832a6d5 8895out:
43b18595 8896 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 8897 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 8898 reserved_space, (ret != 0));
9998eb70 8899out_noreserve:
b2b5ef5c 8900 sb_end_pagefault(inode->i_sb);
364ecf36 8901 extent_changeset_free(data_reserved);
9ebefb18
CM
8902 return ret;
8903}
8904
213e8c55 8905static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8906{
0b246afa 8907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8908 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8909 struct btrfs_block_rsv *rsv;
ad7e1a74 8910 int ret;
39279cc3 8911 struct btrfs_trans_handle *trans;
0b246afa
JM
8912 u64 mask = fs_info->sectorsize - 1;
8913 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 8914
213e8c55
FM
8915 if (!skip_writeback) {
8916 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8917 (u64)-1);
8918 if (ret)
8919 return ret;
8920 }
39279cc3 8921
fcb80c2a 8922 /*
f7e9e8fc
OS
8923 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8924 * things going on here:
fcb80c2a 8925 *
f7e9e8fc 8926 * 1) We need to reserve space to update our inode.
fcb80c2a 8927 *
f7e9e8fc 8928 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8929 * be free'd up by the truncate operation, but also have some slack
8930 * space reserved in case it uses space during the truncate (thank you
8931 * very much snapshotting).
8932 *
f7e9e8fc 8933 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8934 * space doing the truncate, and we have no earthly idea how much space
01327610 8935 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8936 * doesn't end up using space reserved for updating the inode. We also
8937 * need to be able to stop the transaction and start a new one, which
8938 * means we need to be able to update the inode several times, and we
8939 * have no idea of knowing how many times that will be, so we can't just
8940 * reserve 1 item for the entirety of the operation, so that has to be
8941 * done separately as well.
fcb80c2a
JB
8942 *
8943 * So that leaves us with
8944 *
f7e9e8fc 8945 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8946 * transaction reservation.
f7e9e8fc 8947 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8948 * updating the inode.
8949 */
2ff7e61e 8950 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8951 if (!rsv)
8952 return -ENOMEM;
4a338542 8953 rsv->size = min_size;
ca7e70f5 8954 rsv->failfast = 1;
f0cd846e 8955
907cbceb 8956 /*
07127184 8957 * 1 for the truncate slack space
907cbceb
JB
8958 * 1 for updating the inode.
8959 */
f3fe820c 8960 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8961 if (IS_ERR(trans)) {
ad7e1a74 8962 ret = PTR_ERR(trans);
fcb80c2a
JB
8963 goto out;
8964 }
f0cd846e 8965
907cbceb 8966 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8967 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8968 min_size, false);
fcb80c2a 8969 BUG_ON(ret);
f0cd846e 8970
5dc562c5
JB
8971 /*
8972 * So if we truncate and then write and fsync we normally would just
8973 * write the extents that changed, which is a problem if we need to
8974 * first truncate that entire inode. So set this flag so we write out
8975 * all of the extents in the inode to the sync log so we're completely
8976 * safe.
8977 */
8978 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8979 trans->block_rsv = rsv;
907cbceb 8980
8082510e
YZ
8981 while (1) {
8982 ret = btrfs_truncate_inode_items(trans, root, inode,
8983 inode->i_size,
8984 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8985 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8986 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8987 break;
39279cc3 8988
8082510e 8989 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8990 if (ret)
3893e33b 8991 break;
ca7e70f5 8992
3a45bb20 8993 btrfs_end_transaction(trans);
2ff7e61e 8994 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8995
8996 trans = btrfs_start_transaction(root, 2);
8997 if (IS_ERR(trans)) {
ad7e1a74 8998 ret = PTR_ERR(trans);
ca7e70f5
JB
8999 trans = NULL;
9000 break;
9001 }
9002
47b5d646 9003 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9004 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9005 rsv, min_size, false);
ca7e70f5
JB
9006 BUG_ON(ret); /* shouldn't happen */
9007 trans->block_rsv = rsv;
8082510e
YZ
9008 }
9009
ddfae63c
JB
9010 /*
9011 * We can't call btrfs_truncate_block inside a trans handle as we could
9012 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9013 * we've truncated everything except the last little bit, and can do
9014 * btrfs_truncate_block and then update the disk_i_size.
9015 */
9016 if (ret == NEED_TRUNCATE_BLOCK) {
9017 btrfs_end_transaction(trans);
9018 btrfs_btree_balance_dirty(fs_info);
9019
9020 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9021 if (ret)
9022 goto out;
9023 trans = btrfs_start_transaction(root, 1);
9024 if (IS_ERR(trans)) {
9025 ret = PTR_ERR(trans);
9026 goto out;
9027 }
9028 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9029 }
9030
917c16b2 9031 if (trans) {
ad7e1a74
OS
9032 int ret2;
9033
0b246afa 9034 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9035 ret2 = btrfs_update_inode(trans, root, inode);
9036 if (ret2 && !ret)
9037 ret = ret2;
7b128766 9038
ad7e1a74
OS
9039 ret2 = btrfs_end_transaction(trans);
9040 if (ret2 && !ret)
9041 ret = ret2;
2ff7e61e 9042 btrfs_btree_balance_dirty(fs_info);
917c16b2 9043 }
fcb80c2a 9044out:
2ff7e61e 9045 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9046
ad7e1a74 9047 return ret;
39279cc3
CM
9048}
9049
d352ac68
CM
9050/*
9051 * create a new subvolume directory/inode (helper for the ioctl).
9052 */
d2fb3437 9053int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9054 struct btrfs_root *new_root,
9055 struct btrfs_root *parent_root,
9056 u64 new_dirid)
39279cc3 9057{
39279cc3 9058 struct inode *inode;
76dda93c 9059 int err;
00e4e6b3 9060 u64 index = 0;
39279cc3 9061
12fc9d09
FA
9062 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9063 new_dirid, new_dirid,
9064 S_IFDIR | (~current_umask() & S_IRWXUGO),
9065 &index);
54aa1f4d 9066 if (IS_ERR(inode))
f46b5a66 9067 return PTR_ERR(inode);
39279cc3
CM
9068 inode->i_op = &btrfs_dir_inode_operations;
9069 inode->i_fop = &btrfs_dir_file_operations;
9070
bfe86848 9071 set_nlink(inode, 1);
6ef06d27 9072 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9073 unlock_new_inode(inode);
3b96362c 9074
63541927
FDBM
9075 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9076 if (err)
9077 btrfs_err(new_root->fs_info,
351fd353 9078 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9079 new_root->root_key.objectid, err);
9080
76dda93c 9081 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9082
76dda93c 9083 iput(inode);
ce598979 9084 return err;
39279cc3
CM
9085}
9086
39279cc3
CM
9087struct inode *btrfs_alloc_inode(struct super_block *sb)
9088{
69fe2d75 9089 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9090 struct btrfs_inode *ei;
2ead6ae7 9091 struct inode *inode;
39279cc3 9092
712e36c5 9093 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9094 if (!ei)
9095 return NULL;
2ead6ae7
YZ
9096
9097 ei->root = NULL;
2ead6ae7 9098 ei->generation = 0;
15ee9bc7 9099 ei->last_trans = 0;
257c62e1 9100 ei->last_sub_trans = 0;
e02119d5 9101 ei->logged_trans = 0;
2ead6ae7 9102 ei->delalloc_bytes = 0;
a7e3b975 9103 ei->new_delalloc_bytes = 0;
47059d93 9104 ei->defrag_bytes = 0;
2ead6ae7
YZ
9105 ei->disk_i_size = 0;
9106 ei->flags = 0;
7709cde3 9107 ei->csum_bytes = 0;
2ead6ae7 9108 ei->index_cnt = (u64)-1;
67de1176 9109 ei->dir_index = 0;
2ead6ae7 9110 ei->last_unlink_trans = 0;
41bd6067 9111 ei->last_link_trans = 0;
46d8bc34 9112 ei->last_log_commit = 0;
2ead6ae7 9113
9e0baf60
JB
9114 spin_lock_init(&ei->lock);
9115 ei->outstanding_extents = 0;
69fe2d75
JB
9116 if (sb->s_magic != BTRFS_TEST_MAGIC)
9117 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9118 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9119 ei->runtime_flags = 0;
b52aa8c9 9120 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9121 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9122
16cdcec7
MX
9123 ei->delayed_node = NULL;
9124
9cc97d64 9125 ei->i_otime.tv_sec = 0;
9126 ei->i_otime.tv_nsec = 0;
9127
2ead6ae7 9128 inode = &ei->vfs_inode;
a8067e02 9129 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9130 extent_io_tree_init(&ei->io_tree, inode);
9131 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9132 ei->io_tree.track_uptodate = 1;
9133 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9134 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9135 mutex_init(&ei->log_mutex);
f248679e 9136 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9137 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9138 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9139 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9140 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9141 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9142
9143 return inode;
39279cc3
CM
9144}
9145
aaedb55b
JB
9146#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9147void btrfs_test_destroy_inode(struct inode *inode)
9148{
dcdbc059 9149 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9150 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9151}
9152#endif
9153
fa0d7e3d
NP
9154static void btrfs_i_callback(struct rcu_head *head)
9155{
9156 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9157 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9158}
9159
39279cc3
CM
9160void btrfs_destroy_inode(struct inode *inode)
9161{
0b246afa 9162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9163 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9164 struct btrfs_root *root = BTRFS_I(inode)->root;
9165
b3d9b7a3 9166 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9167 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9168 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9169 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9170 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9171 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9172 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9173 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9174 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9175
a6dbd429
JB
9176 /*
9177 * This can happen where we create an inode, but somebody else also
9178 * created the same inode and we need to destroy the one we already
9179 * created.
9180 */
9181 if (!root)
9182 goto free;
9183
d397712b 9184 while (1) {
e6dcd2dc
CM
9185 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9186 if (!ordered)
9187 break;
9188 else {
0b246afa 9189 btrfs_err(fs_info,
5d163e0e
JM
9190 "found ordered extent %llu %llu on inode cleanup",
9191 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9192 btrfs_remove_ordered_extent(inode, ordered);
9193 btrfs_put_ordered_extent(ordered);
9194 btrfs_put_ordered_extent(ordered);
9195 }
9196 }
56fa9d07 9197 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9198 inode_tree_del(inode);
dcdbc059 9199 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9200free:
fa0d7e3d 9201 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9202}
9203
45321ac5 9204int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9205{
9206 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9207
6379ef9f
NA
9208 if (root == NULL)
9209 return 1;
9210
fa6ac876 9211 /* the snap/subvol tree is on deleting */
69e9c6c6 9212 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9213 return 1;
76dda93c 9214 else
45321ac5 9215 return generic_drop_inode(inode);
76dda93c
YZ
9216}
9217
0ee0fda0 9218static void init_once(void *foo)
39279cc3
CM
9219{
9220 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9221
9222 inode_init_once(&ei->vfs_inode);
9223}
9224
e67c718b 9225void __cold btrfs_destroy_cachep(void)
39279cc3 9226{
8c0a8537
KS
9227 /*
9228 * Make sure all delayed rcu free inodes are flushed before we
9229 * destroy cache.
9230 */
9231 rcu_barrier();
5598e900
KM
9232 kmem_cache_destroy(btrfs_inode_cachep);
9233 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9234 kmem_cache_destroy(btrfs_path_cachep);
9235 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9236}
9237
f5c29bd9 9238int __init btrfs_init_cachep(void)
39279cc3 9239{
837e1972 9240 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9241 sizeof(struct btrfs_inode), 0,
5d097056
VD
9242 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9243 init_once);
39279cc3
CM
9244 if (!btrfs_inode_cachep)
9245 goto fail;
9601e3f6 9246
837e1972 9247 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9248 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9249 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9250 if (!btrfs_trans_handle_cachep)
9251 goto fail;
9601e3f6 9252
837e1972 9253 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9254 sizeof(struct btrfs_path), 0,
fba4b697 9255 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9256 if (!btrfs_path_cachep)
9257 goto fail;
9601e3f6 9258
837e1972 9259 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9260 sizeof(struct btrfs_free_space), 0,
fba4b697 9261 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9262 if (!btrfs_free_space_cachep)
9263 goto fail;
9264
39279cc3
CM
9265 return 0;
9266fail:
9267 btrfs_destroy_cachep();
9268 return -ENOMEM;
9269}
9270
a528d35e
DH
9271static int btrfs_getattr(const struct path *path, struct kstat *stat,
9272 u32 request_mask, unsigned int flags)
39279cc3 9273{
df0af1a5 9274 u64 delalloc_bytes;
a528d35e 9275 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9276 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9277 u32 bi_flags = BTRFS_I(inode)->flags;
9278
9279 stat->result_mask |= STATX_BTIME;
9280 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9281 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9282 if (bi_flags & BTRFS_INODE_APPEND)
9283 stat->attributes |= STATX_ATTR_APPEND;
9284 if (bi_flags & BTRFS_INODE_COMPRESS)
9285 stat->attributes |= STATX_ATTR_COMPRESSED;
9286 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9287 stat->attributes |= STATX_ATTR_IMMUTABLE;
9288 if (bi_flags & BTRFS_INODE_NODUMP)
9289 stat->attributes |= STATX_ATTR_NODUMP;
9290
9291 stat->attributes_mask |= (STATX_ATTR_APPEND |
9292 STATX_ATTR_COMPRESSED |
9293 STATX_ATTR_IMMUTABLE |
9294 STATX_ATTR_NODUMP);
fadc0d8b 9295
39279cc3 9296 generic_fillattr(inode, stat);
0ee5dc67 9297 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9298
9299 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9300 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9301 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9302 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9303 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9304 return 0;
9305}
9306
cdd1fedf
DF
9307static int btrfs_rename_exchange(struct inode *old_dir,
9308 struct dentry *old_dentry,
9309 struct inode *new_dir,
9310 struct dentry *new_dentry)
9311{
0b246afa 9312 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9313 struct btrfs_trans_handle *trans;
9314 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9315 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9316 struct inode *new_inode = new_dentry->d_inode;
9317 struct inode *old_inode = old_dentry->d_inode;
95582b00 9318 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9319 struct dentry *parent;
4a0cc7ca
NB
9320 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9321 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9322 u64 old_idx = 0;
9323 u64 new_idx = 0;
9324 u64 root_objectid;
9325 int ret;
86e8aa0e
FM
9326 bool root_log_pinned = false;
9327 bool dest_log_pinned = false;
d4682ba0
FM
9328 struct btrfs_log_ctx ctx_root;
9329 struct btrfs_log_ctx ctx_dest;
9330 bool sync_log_root = false;
9331 bool sync_log_dest = false;
9332 bool commit_transaction = false;
cdd1fedf
DF
9333
9334 /* we only allow rename subvolume link between subvolumes */
9335 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9336 return -EXDEV;
9337
d4682ba0
FM
9338 btrfs_init_log_ctx(&ctx_root, old_inode);
9339 btrfs_init_log_ctx(&ctx_dest, new_inode);
9340
cdd1fedf
DF
9341 /* close the race window with snapshot create/destroy ioctl */
9342 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9343 down_read(&fs_info->subvol_sem);
cdd1fedf 9344 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9345 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9346
9347 /*
9348 * We want to reserve the absolute worst case amount of items. So if
9349 * both inodes are subvols and we need to unlink them then that would
9350 * require 4 item modifications, but if they are both normal inodes it
9351 * would require 5 item modifications, so we'll assume their normal
9352 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9353 * should cover the worst case number of items we'll modify.
9354 */
9355 trans = btrfs_start_transaction(root, 12);
9356 if (IS_ERR(trans)) {
9357 ret = PTR_ERR(trans);
9358 goto out_notrans;
9359 }
9360
9361 /*
9362 * We need to find a free sequence number both in the source and
9363 * in the destination directory for the exchange.
9364 */
877574e2 9365 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9366 if (ret)
9367 goto out_fail;
877574e2 9368 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9369 if (ret)
9370 goto out_fail;
9371
9372 BTRFS_I(old_inode)->dir_index = 0ULL;
9373 BTRFS_I(new_inode)->dir_index = 0ULL;
9374
9375 /* Reference for the source. */
9376 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9377 /* force full log commit if subvolume involved. */
0b246afa 9378 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9379 } else {
376e5a57
FM
9380 btrfs_pin_log_trans(root);
9381 root_log_pinned = true;
cdd1fedf
DF
9382 ret = btrfs_insert_inode_ref(trans, dest,
9383 new_dentry->d_name.name,
9384 new_dentry->d_name.len,
9385 old_ino,
f85b7379
DS
9386 btrfs_ino(BTRFS_I(new_dir)),
9387 old_idx);
cdd1fedf
DF
9388 if (ret)
9389 goto out_fail;
cdd1fedf
DF
9390 }
9391
9392 /* And now for the dest. */
9393 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9394 /* force full log commit if subvolume involved. */
0b246afa 9395 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9396 } else {
376e5a57
FM
9397 btrfs_pin_log_trans(dest);
9398 dest_log_pinned = true;
cdd1fedf
DF
9399 ret = btrfs_insert_inode_ref(trans, root,
9400 old_dentry->d_name.name,
9401 old_dentry->d_name.len,
9402 new_ino,
f85b7379
DS
9403 btrfs_ino(BTRFS_I(old_dir)),
9404 new_idx);
cdd1fedf
DF
9405 if (ret)
9406 goto out_fail;
cdd1fedf
DF
9407 }
9408
9409 /* Update inode version and ctime/mtime. */
9410 inode_inc_iversion(old_dir);
9411 inode_inc_iversion(new_dir);
9412 inode_inc_iversion(old_inode);
9413 inode_inc_iversion(new_inode);
9414 old_dir->i_ctime = old_dir->i_mtime = ctime;
9415 new_dir->i_ctime = new_dir->i_mtime = ctime;
9416 old_inode->i_ctime = ctime;
9417 new_inode->i_ctime = ctime;
9418
9419 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9420 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9421 BTRFS_I(old_inode), 1);
9422 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9423 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9424 }
9425
9426 /* src is a subvolume */
9427 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9428 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9429 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9430 old_dentry->d_name.name,
9431 old_dentry->d_name.len);
9432 } else { /* src is an inode */
4ec5934e
NB
9433 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9434 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9435 old_dentry->d_name.name,
9436 old_dentry->d_name.len);
9437 if (!ret)
9438 ret = btrfs_update_inode(trans, root, old_inode);
9439 }
9440 if (ret) {
66642832 9441 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9442 goto out_fail;
9443 }
9444
9445 /* dest is a subvolume */
9446 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9447 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9448 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9449 new_dentry->d_name.name,
9450 new_dentry->d_name.len);
9451 } else { /* dest is an inode */
4ec5934e
NB
9452 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9453 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9454 new_dentry->d_name.name,
9455 new_dentry->d_name.len);
9456 if (!ret)
9457 ret = btrfs_update_inode(trans, dest, new_inode);
9458 }
9459 if (ret) {
66642832 9460 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9461 goto out_fail;
9462 }
9463
db0a669f 9464 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9465 new_dentry->d_name.name,
9466 new_dentry->d_name.len, 0, old_idx);
9467 if (ret) {
66642832 9468 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9469 goto out_fail;
9470 }
9471
db0a669f 9472 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9473 old_dentry->d_name.name,
9474 old_dentry->d_name.len, 0, new_idx);
9475 if (ret) {
66642832 9476 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9477 goto out_fail;
9478 }
9479
9480 if (old_inode->i_nlink == 1)
9481 BTRFS_I(old_inode)->dir_index = old_idx;
9482 if (new_inode->i_nlink == 1)
9483 BTRFS_I(new_inode)->dir_index = new_idx;
9484
86e8aa0e 9485 if (root_log_pinned) {
cdd1fedf 9486 parent = new_dentry->d_parent;
d4682ba0
FM
9487 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9488 BTRFS_I(old_dir), parent,
9489 false, &ctx_root);
9490 if (ret == BTRFS_NEED_LOG_SYNC)
9491 sync_log_root = true;
9492 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9493 commit_transaction = true;
9494 ret = 0;
cdd1fedf 9495 btrfs_end_log_trans(root);
86e8aa0e 9496 root_log_pinned = false;
cdd1fedf 9497 }
86e8aa0e 9498 if (dest_log_pinned) {
d4682ba0
FM
9499 if (!commit_transaction) {
9500 parent = old_dentry->d_parent;
9501 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9502 BTRFS_I(new_dir), parent,
9503 false, &ctx_dest);
9504 if (ret == BTRFS_NEED_LOG_SYNC)
9505 sync_log_dest = true;
9506 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9507 commit_transaction = true;
9508 ret = 0;
9509 }
cdd1fedf 9510 btrfs_end_log_trans(dest);
86e8aa0e 9511 dest_log_pinned = false;
cdd1fedf
DF
9512 }
9513out_fail:
86e8aa0e
FM
9514 /*
9515 * If we have pinned a log and an error happened, we unpin tasks
9516 * trying to sync the log and force them to fallback to a transaction
9517 * commit if the log currently contains any of the inodes involved in
9518 * this rename operation (to ensure we do not persist a log with an
9519 * inconsistent state for any of these inodes or leading to any
9520 * inconsistencies when replayed). If the transaction was aborted, the
9521 * abortion reason is propagated to userspace when attempting to commit
9522 * the transaction. If the log does not contain any of these inodes, we
9523 * allow the tasks to sync it.
9524 */
9525 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9526 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9527 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9528 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9529 (new_inode &&
0f8939b8 9530 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9531 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9532
9533 if (root_log_pinned) {
9534 btrfs_end_log_trans(root);
9535 root_log_pinned = false;
9536 }
9537 if (dest_log_pinned) {
9538 btrfs_end_log_trans(dest);
9539 dest_log_pinned = false;
9540 }
9541 }
d4682ba0
FM
9542 if (!ret && sync_log_root && !commit_transaction) {
9543 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9544 &ctx_root);
9545 if (ret)
9546 commit_transaction = true;
9547 }
9548 if (!ret && sync_log_dest && !commit_transaction) {
9549 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9550 &ctx_dest);
9551 if (ret)
9552 commit_transaction = true;
9553 }
9554 if (commit_transaction) {
9555 ret = btrfs_commit_transaction(trans);
9556 } else {
9557 int ret2;
9558
9559 ret2 = btrfs_end_transaction(trans);
9560 ret = ret ? ret : ret2;
9561 }
cdd1fedf
DF
9562out_notrans:
9563 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9564 up_read(&fs_info->subvol_sem);
cdd1fedf 9565 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9566 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9567
9568 return ret;
9569}
9570
9571static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9572 struct btrfs_root *root,
9573 struct inode *dir,
9574 struct dentry *dentry)
9575{
9576 int ret;
9577 struct inode *inode;
9578 u64 objectid;
9579 u64 index;
9580
9581 ret = btrfs_find_free_ino(root, &objectid);
9582 if (ret)
9583 return ret;
9584
9585 inode = btrfs_new_inode(trans, root, dir,
9586 dentry->d_name.name,
9587 dentry->d_name.len,
4a0cc7ca 9588 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9589 objectid,
9590 S_IFCHR | WHITEOUT_MODE,
9591 &index);
9592
9593 if (IS_ERR(inode)) {
9594 ret = PTR_ERR(inode);
9595 return ret;
9596 }
9597
9598 inode->i_op = &btrfs_special_inode_operations;
9599 init_special_inode(inode, inode->i_mode,
9600 WHITEOUT_DEV);
9601
9602 ret = btrfs_init_inode_security(trans, inode, dir,
9603 &dentry->d_name);
9604 if (ret)
c9901618 9605 goto out;
cdd1fedf 9606
cef415af
NB
9607 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9608 BTRFS_I(inode), 0, index);
cdd1fedf 9609 if (ret)
c9901618 9610 goto out;
cdd1fedf
DF
9611
9612 ret = btrfs_update_inode(trans, root, inode);
c9901618 9613out:
cdd1fedf 9614 unlock_new_inode(inode);
c9901618
FM
9615 if (ret)
9616 inode_dec_link_count(inode);
cdd1fedf
DF
9617 iput(inode);
9618
c9901618 9619 return ret;
cdd1fedf
DF
9620}
9621
d397712b 9622static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9623 struct inode *new_dir, struct dentry *new_dentry,
9624 unsigned int flags)
39279cc3 9625{
0b246afa 9626 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9627 struct btrfs_trans_handle *trans;
5062af35 9628 unsigned int trans_num_items;
39279cc3 9629 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9630 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9631 struct inode *new_inode = d_inode(new_dentry);
9632 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9633 u64 index = 0;
4df27c4d 9634 u64 root_objectid;
39279cc3 9635 int ret;
4a0cc7ca 9636 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9637 bool log_pinned = false;
d4682ba0
FM
9638 struct btrfs_log_ctx ctx;
9639 bool sync_log = false;
9640 bool commit_transaction = false;
39279cc3 9641
4a0cc7ca 9642 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9643 return -EPERM;
9644
4df27c4d 9645 /* we only allow rename subvolume link between subvolumes */
33345d01 9646 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9647 return -EXDEV;
9648
33345d01 9649 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9650 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9651 return -ENOTEMPTY;
5f39d397 9652
4df27c4d
YZ
9653 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9654 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9655 return -ENOTEMPTY;
9c52057c
CM
9656
9657
9658 /* check for collisions, even if the name isn't there */
4871c158 9659 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9660 new_dentry->d_name.name,
9661 new_dentry->d_name.len);
9662
9663 if (ret) {
9664 if (ret == -EEXIST) {
9665 /* we shouldn't get
9666 * eexist without a new_inode */
fae7f21c 9667 if (WARN_ON(!new_inode)) {
9c52057c
CM
9668 return ret;
9669 }
9670 } else {
9671 /* maybe -EOVERFLOW */
9672 return ret;
9673 }
9674 }
9675 ret = 0;
9676
5a3f23d5 9677 /*
8d875f95
CM
9678 * we're using rename to replace one file with another. Start IO on it
9679 * now so we don't add too much work to the end of the transaction
5a3f23d5 9680 */
8d875f95 9681 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9682 filemap_flush(old_inode->i_mapping);
9683
76dda93c 9684 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9685 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9686 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9687 /*
9688 * We want to reserve the absolute worst case amount of items. So if
9689 * both inodes are subvols and we need to unlink them then that would
9690 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9691 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9692 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9693 * should cover the worst case number of items we'll modify.
5062af35
FM
9694 * If our rename has the whiteout flag, we need more 5 units for the
9695 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9696 * when selinux is enabled).
a22285a6 9697 */
5062af35
FM
9698 trans_num_items = 11;
9699 if (flags & RENAME_WHITEOUT)
9700 trans_num_items += 5;
9701 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9702 if (IS_ERR(trans)) {
cdd1fedf
DF
9703 ret = PTR_ERR(trans);
9704 goto out_notrans;
9705 }
76dda93c 9706
4df27c4d
YZ
9707 if (dest != root)
9708 btrfs_record_root_in_trans(trans, dest);
5f39d397 9709
877574e2 9710 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9711 if (ret)
9712 goto out_fail;
5a3f23d5 9713
67de1176 9714 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9715 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9716 /* force full log commit if subvolume involved. */
0b246afa 9717 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9718 } else {
c4aba954
FM
9719 btrfs_pin_log_trans(root);
9720 log_pinned = true;
a5719521
YZ
9721 ret = btrfs_insert_inode_ref(trans, dest,
9722 new_dentry->d_name.name,
9723 new_dentry->d_name.len,
33345d01 9724 old_ino,
4a0cc7ca 9725 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9726 if (ret)
9727 goto out_fail;
4df27c4d 9728 }
5a3f23d5 9729
0c4d2d95
JB
9730 inode_inc_iversion(old_dir);
9731 inode_inc_iversion(new_dir);
9732 inode_inc_iversion(old_inode);
04b285f3
DD
9733 old_dir->i_ctime = old_dir->i_mtime =
9734 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9735 old_inode->i_ctime = current_time(old_dir);
5f39d397 9736
12fcfd22 9737 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9738 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9739 BTRFS_I(old_inode), 1);
12fcfd22 9740
33345d01 9741 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9742 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9743 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9744 old_dentry->d_name.name,
9745 old_dentry->d_name.len);
9746 } else {
4ec5934e
NB
9747 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9748 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9749 old_dentry->d_name.name,
9750 old_dentry->d_name.len);
9751 if (!ret)
9752 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9753 }
79787eaa 9754 if (ret) {
66642832 9755 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9756 goto out_fail;
9757 }
39279cc3
CM
9758
9759 if (new_inode) {
0c4d2d95 9760 inode_inc_iversion(new_inode);
c2050a45 9761 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9762 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9763 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9764 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 9765 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
9766 new_dentry->d_name.name,
9767 new_dentry->d_name.len);
9768 BUG_ON(new_inode->i_nlink == 0);
9769 } else {
4ec5934e
NB
9770 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9771 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9772 new_dentry->d_name.name,
9773 new_dentry->d_name.len);
9774 }
4ef31a45 9775 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9776 ret = btrfs_orphan_add(trans,
9777 BTRFS_I(d_inode(new_dentry)));
79787eaa 9778 if (ret) {
66642832 9779 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9780 goto out_fail;
9781 }
39279cc3 9782 }
aec7477b 9783
db0a669f 9784 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9785 new_dentry->d_name.name,
a5719521 9786 new_dentry->d_name.len, 0, index);
79787eaa 9787 if (ret) {
66642832 9788 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9789 goto out_fail;
9790 }
39279cc3 9791
67de1176
MX
9792 if (old_inode->i_nlink == 1)
9793 BTRFS_I(old_inode)->dir_index = index;
9794
3dc9e8f7 9795 if (log_pinned) {
10d9f309 9796 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9797
d4682ba0
FM
9798 btrfs_init_log_ctx(&ctx, old_inode);
9799 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9800 BTRFS_I(old_dir), parent,
9801 false, &ctx);
9802 if (ret == BTRFS_NEED_LOG_SYNC)
9803 sync_log = true;
9804 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9805 commit_transaction = true;
9806 ret = 0;
4df27c4d 9807 btrfs_end_log_trans(root);
3dc9e8f7 9808 log_pinned = false;
4df27c4d 9809 }
cdd1fedf
DF
9810
9811 if (flags & RENAME_WHITEOUT) {
9812 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9813 old_dentry);
9814
9815 if (ret) {
66642832 9816 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9817 goto out_fail;
9818 }
4df27c4d 9819 }
39279cc3 9820out_fail:
3dc9e8f7
FM
9821 /*
9822 * If we have pinned the log and an error happened, we unpin tasks
9823 * trying to sync the log and force them to fallback to a transaction
9824 * commit if the log currently contains any of the inodes involved in
9825 * this rename operation (to ensure we do not persist a log with an
9826 * inconsistent state for any of these inodes or leading to any
9827 * inconsistencies when replayed). If the transaction was aborted, the
9828 * abortion reason is propagated to userspace when attempting to commit
9829 * the transaction. If the log does not contain any of these inodes, we
9830 * allow the tasks to sync it.
9831 */
9832 if (ret && log_pinned) {
0f8939b8
NB
9833 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9834 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9835 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9836 (new_inode &&
0f8939b8 9837 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9838 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9839
9840 btrfs_end_log_trans(root);
9841 log_pinned = false;
9842 }
d4682ba0
FM
9843 if (!ret && sync_log) {
9844 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9845 if (ret)
9846 commit_transaction = true;
9847 }
9848 if (commit_transaction) {
9849 ret = btrfs_commit_transaction(trans);
9850 } else {
9851 int ret2;
9852
9853 ret2 = btrfs_end_transaction(trans);
9854 ret = ret ? ret : ret2;
9855 }
b44c59a8 9856out_notrans:
33345d01 9857 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9858 up_read(&fs_info->subvol_sem);
9ed74f2d 9859
39279cc3
CM
9860 return ret;
9861}
9862
80ace85c
MS
9863static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9864 struct inode *new_dir, struct dentry *new_dentry,
9865 unsigned int flags)
9866{
cdd1fedf 9867 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9868 return -EINVAL;
9869
cdd1fedf
DF
9870 if (flags & RENAME_EXCHANGE)
9871 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9872 new_dentry);
9873
9874 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9875}
9876
3a2f8c07
NB
9877struct btrfs_delalloc_work {
9878 struct inode *inode;
9879 struct completion completion;
9880 struct list_head list;
9881 struct btrfs_work work;
9882};
9883
8ccf6f19
MX
9884static void btrfs_run_delalloc_work(struct btrfs_work *work)
9885{
9886 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9887 struct inode *inode;
8ccf6f19
MX
9888
9889 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9890 work);
9f23e289 9891 inode = delalloc_work->inode;
30424601
DS
9892 filemap_flush(inode->i_mapping);
9893 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9894 &BTRFS_I(inode)->runtime_flags))
9f23e289 9895 filemap_flush(inode->i_mapping);
8ccf6f19 9896
076da91c 9897 iput(inode);
8ccf6f19
MX
9898 complete(&delalloc_work->completion);
9899}
9900
3a2f8c07 9901static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9902{
9903 struct btrfs_delalloc_work *work;
9904
100d5702 9905 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9906 if (!work)
9907 return NULL;
9908
9909 init_completion(&work->completion);
9910 INIT_LIST_HEAD(&work->list);
9911 work->inode = inode;
9e0af237
LB
9912 WARN_ON_ONCE(!inode);
9913 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9914 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9915
9916 return work;
9917}
9918
d352ac68
CM
9919/*
9920 * some fairly slow code that needs optimization. This walks the list
9921 * of all the inodes with pending delalloc and forces them to disk.
9922 */
3cd24c69 9923static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 9924{
ea8c2819 9925 struct btrfs_inode *binode;
5b21f2ed 9926 struct inode *inode;
8ccf6f19
MX
9927 struct btrfs_delalloc_work *work, *next;
9928 struct list_head works;
1eafa6c7 9929 struct list_head splice;
8ccf6f19 9930 int ret = 0;
ea8c2819 9931
8ccf6f19 9932 INIT_LIST_HEAD(&works);
1eafa6c7 9933 INIT_LIST_HEAD(&splice);
63607cc8 9934
573bfb72 9935 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9936 spin_lock(&root->delalloc_lock);
9937 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9938 while (!list_empty(&splice)) {
9939 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9940 delalloc_inodes);
1eafa6c7 9941
eb73c1b7
MX
9942 list_move_tail(&binode->delalloc_inodes,
9943 &root->delalloc_inodes);
5b21f2ed 9944 inode = igrab(&binode->vfs_inode);
df0af1a5 9945 if (!inode) {
eb73c1b7 9946 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9947 continue;
df0af1a5 9948 }
eb73c1b7 9949 spin_unlock(&root->delalloc_lock);
1eafa6c7 9950
3cd24c69
EL
9951 if (snapshot)
9952 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9953 &binode->runtime_flags);
076da91c 9954 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9955 if (!work) {
4fbb5147 9956 iput(inode);
1eafa6c7 9957 ret = -ENOMEM;
a1ecaabb 9958 goto out;
5b21f2ed 9959 }
1eafa6c7 9960 list_add_tail(&work->list, &works);
a44903ab
QW
9961 btrfs_queue_work(root->fs_info->flush_workers,
9962 &work->work);
6c255e67
MX
9963 ret++;
9964 if (nr != -1 && ret >= nr)
a1ecaabb 9965 goto out;
5b21f2ed 9966 cond_resched();
eb73c1b7 9967 spin_lock(&root->delalloc_lock);
ea8c2819 9968 }
eb73c1b7 9969 spin_unlock(&root->delalloc_lock);
8c8bee1d 9970
a1ecaabb 9971out:
eb73c1b7
MX
9972 list_for_each_entry_safe(work, next, &works, list) {
9973 list_del_init(&work->list);
40012f96
NB
9974 wait_for_completion(&work->completion);
9975 kfree(work);
eb73c1b7
MX
9976 }
9977
81f1d390 9978 if (!list_empty(&splice)) {
eb73c1b7
MX
9979 spin_lock(&root->delalloc_lock);
9980 list_splice_tail(&splice, &root->delalloc_inodes);
9981 spin_unlock(&root->delalloc_lock);
9982 }
573bfb72 9983 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9984 return ret;
9985}
1eafa6c7 9986
3cd24c69 9987int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9988{
0b246afa 9989 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 9990 int ret;
1eafa6c7 9991
0b246afa 9992 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9993 return -EROFS;
9994
3cd24c69 9995 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
9996 if (ret > 0)
9997 ret = 0;
eb73c1b7
MX
9998 return ret;
9999}
10000
82b3e53b 10001int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10002{
10003 struct btrfs_root *root;
10004 struct list_head splice;
10005 int ret;
10006
2c21b4d7 10007 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10008 return -EROFS;
10009
10010 INIT_LIST_HEAD(&splice);
10011
573bfb72 10012 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10013 spin_lock(&fs_info->delalloc_root_lock);
10014 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10015 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10016 root = list_first_entry(&splice, struct btrfs_root,
10017 delalloc_root);
10018 root = btrfs_grab_fs_root(root);
10019 BUG_ON(!root);
10020 list_move_tail(&root->delalloc_root,
10021 &fs_info->delalloc_roots);
10022 spin_unlock(&fs_info->delalloc_root_lock);
10023
3cd24c69 10024 ret = start_delalloc_inodes(root, nr, false);
eb73c1b7 10025 btrfs_put_fs_root(root);
6c255e67 10026 if (ret < 0)
eb73c1b7
MX
10027 goto out;
10028
6c255e67
MX
10029 if (nr != -1) {
10030 nr -= ret;
10031 WARN_ON(nr < 0);
10032 }
eb73c1b7 10033 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10034 }
eb73c1b7 10035 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10036
6c255e67 10037 ret = 0;
eb73c1b7 10038out:
81f1d390 10039 if (!list_empty(&splice)) {
eb73c1b7
MX
10040 spin_lock(&fs_info->delalloc_root_lock);
10041 list_splice_tail(&splice, &fs_info->delalloc_roots);
10042 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10043 }
573bfb72 10044 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10045 return ret;
ea8c2819
CM
10046}
10047
39279cc3
CM
10048static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10049 const char *symname)
10050{
0b246afa 10051 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10052 struct btrfs_trans_handle *trans;
10053 struct btrfs_root *root = BTRFS_I(dir)->root;
10054 struct btrfs_path *path;
10055 struct btrfs_key key;
1832a6d5 10056 struct inode *inode = NULL;
39279cc3 10057 int err;
39279cc3 10058 u64 objectid;
67871254 10059 u64 index = 0;
39279cc3
CM
10060 int name_len;
10061 int datasize;
5f39d397 10062 unsigned long ptr;
39279cc3 10063 struct btrfs_file_extent_item *ei;
5f39d397 10064 struct extent_buffer *leaf;
39279cc3 10065
f06becc4 10066 name_len = strlen(symname);
0b246afa 10067 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10068 return -ENAMETOOLONG;
1832a6d5 10069
9ed74f2d
JB
10070 /*
10071 * 2 items for inode item and ref
10072 * 2 items for dir items
9269d12b
FM
10073 * 1 item for updating parent inode item
10074 * 1 item for the inline extent item
9ed74f2d
JB
10075 * 1 item for xattr if selinux is on
10076 */
9269d12b 10077 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10078 if (IS_ERR(trans))
10079 return PTR_ERR(trans);
1832a6d5 10080
581bb050
LZ
10081 err = btrfs_find_free_ino(root, &objectid);
10082 if (err)
10083 goto out_unlock;
10084
aec7477b 10085 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10086 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10087 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10088 if (IS_ERR(inode)) {
10089 err = PTR_ERR(inode);
32955c54 10090 inode = NULL;
39279cc3 10091 goto out_unlock;
7cf96da3 10092 }
39279cc3 10093
ad19db71
CS
10094 /*
10095 * If the active LSM wants to access the inode during
10096 * d_instantiate it needs these. Smack checks to see
10097 * if the filesystem supports xattrs by looking at the
10098 * ops vector.
10099 */
10100 inode->i_fop = &btrfs_file_operations;
10101 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10102 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10103 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10104
10105 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10106 if (err)
32955c54 10107 goto out_unlock;
ad19db71 10108
39279cc3 10109 path = btrfs_alloc_path();
d8926bb3
MF
10110 if (!path) {
10111 err = -ENOMEM;
32955c54 10112 goto out_unlock;
d8926bb3 10113 }
4a0cc7ca 10114 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10115 key.offset = 0;
962a298f 10116 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10117 datasize = btrfs_file_extent_calc_inline_size(name_len);
10118 err = btrfs_insert_empty_item(trans, root, path, &key,
10119 datasize);
54aa1f4d 10120 if (err) {
b0839166 10121 btrfs_free_path(path);
32955c54 10122 goto out_unlock;
54aa1f4d 10123 }
5f39d397
CM
10124 leaf = path->nodes[0];
10125 ei = btrfs_item_ptr(leaf, path->slots[0],
10126 struct btrfs_file_extent_item);
10127 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10128 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10129 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10130 btrfs_set_file_extent_encryption(leaf, ei, 0);
10131 btrfs_set_file_extent_compression(leaf, ei, 0);
10132 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10133 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10134
39279cc3 10135 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10136 write_extent_buffer(leaf, symname, ptr, name_len);
10137 btrfs_mark_buffer_dirty(leaf);
39279cc3 10138 btrfs_free_path(path);
5f39d397 10139
39279cc3 10140 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10141 inode_nohighmem(inode);
4779cc04 10142 inode->i_mapping->a_ops = &btrfs_aops;
d899e052 10143 inode_set_bytes(inode, name_len);
6ef06d27 10144 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10145 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10146 /*
10147 * Last step, add directory indexes for our symlink inode. This is the
10148 * last step to avoid extra cleanup of these indexes if an error happens
10149 * elsewhere above.
10150 */
10151 if (!err)
cef415af
NB
10152 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10153 BTRFS_I(inode), 0, index);
32955c54
AV
10154 if (err)
10155 goto out_unlock;
b0d5d10f 10156
1e2e547a 10157 d_instantiate_new(dentry, inode);
39279cc3
CM
10158
10159out_unlock:
3a45bb20 10160 btrfs_end_transaction(trans);
32955c54 10161 if (err && inode) {
39279cc3 10162 inode_dec_link_count(inode);
32955c54 10163 discard_new_inode(inode);
39279cc3 10164 }
2ff7e61e 10165 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10166 return err;
10167}
16432985 10168
0af3d00b
JB
10169static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10170 u64 start, u64 num_bytes, u64 min_size,
10171 loff_t actual_len, u64 *alloc_hint,
10172 struct btrfs_trans_handle *trans)
d899e052 10173{
0b246afa 10174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10175 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10176 struct extent_map *em;
d899e052
YZ
10177 struct btrfs_root *root = BTRFS_I(inode)->root;
10178 struct btrfs_key ins;
d899e052 10179 u64 cur_offset = start;
55a61d1d 10180 u64 i_size;
154ea289 10181 u64 cur_bytes;
0b670dc4 10182 u64 last_alloc = (u64)-1;
d899e052 10183 int ret = 0;
0af3d00b 10184 bool own_trans = true;
18513091 10185 u64 end = start + num_bytes - 1;
d899e052 10186
0af3d00b
JB
10187 if (trans)
10188 own_trans = false;
d899e052 10189 while (num_bytes > 0) {
0af3d00b
JB
10190 if (own_trans) {
10191 trans = btrfs_start_transaction(root, 3);
10192 if (IS_ERR(trans)) {
10193 ret = PTR_ERR(trans);
10194 break;
10195 }
5a303d5d
YZ
10196 }
10197
ee22184b 10198 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10199 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10200 /*
10201 * If we are severely fragmented we could end up with really
10202 * small allocations, so if the allocator is returning small
10203 * chunks lets make its job easier by only searching for those
10204 * sized chunks.
10205 */
10206 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10207 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10208 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10209 if (ret) {
0af3d00b 10210 if (own_trans)
3a45bb20 10211 btrfs_end_transaction(trans);
a22285a6 10212 break;
d899e052 10213 }
0b246afa 10214 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10215
0b670dc4 10216 last_alloc = ins.offset;
d899e052
YZ
10217 ret = insert_reserved_file_extent(trans, inode,
10218 cur_offset, ins.objectid,
10219 ins.offset, ins.offset,
920bbbfb 10220 ins.offset, 0, 0, 0,
d899e052 10221 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10222 if (ret) {
2ff7e61e 10223 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10224 ins.offset, 0);
66642832 10225 btrfs_abort_transaction(trans, ret);
79787eaa 10226 if (own_trans)
3a45bb20 10227 btrfs_end_transaction(trans);
79787eaa
JM
10228 break;
10229 }
31193213 10230
dcdbc059 10231 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10232 cur_offset + ins.offset -1, 0);
5a303d5d 10233
5dc562c5
JB
10234 em = alloc_extent_map();
10235 if (!em) {
10236 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10237 &BTRFS_I(inode)->runtime_flags);
10238 goto next;
10239 }
10240
10241 em->start = cur_offset;
10242 em->orig_start = cur_offset;
10243 em->len = ins.offset;
10244 em->block_start = ins.objectid;
10245 em->block_len = ins.offset;
b4939680 10246 em->orig_block_len = ins.offset;
cc95bef6 10247 em->ram_bytes = ins.offset;
0b246afa 10248 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10249 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10250 em->generation = trans->transid;
10251
10252 while (1) {
10253 write_lock(&em_tree->lock);
09a2a8f9 10254 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10255 write_unlock(&em_tree->lock);
10256 if (ret != -EEXIST)
10257 break;
dcdbc059 10258 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10259 cur_offset + ins.offset - 1,
10260 0);
10261 }
10262 free_extent_map(em);
10263next:
d899e052
YZ
10264 num_bytes -= ins.offset;
10265 cur_offset += ins.offset;
efa56464 10266 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10267
0c4d2d95 10268 inode_inc_iversion(inode);
c2050a45 10269 inode->i_ctime = current_time(inode);
6cbff00f 10270 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10271 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10272 (actual_len > inode->i_size) &&
10273 (cur_offset > inode->i_size)) {
d1ea6a61 10274 if (cur_offset > actual_len)
55a61d1d 10275 i_size = actual_len;
d1ea6a61 10276 else
55a61d1d
JB
10277 i_size = cur_offset;
10278 i_size_write(inode, i_size);
10279 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10280 }
10281
d899e052 10282 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10283
10284 if (ret) {
66642832 10285 btrfs_abort_transaction(trans, ret);
79787eaa 10286 if (own_trans)
3a45bb20 10287 btrfs_end_transaction(trans);
79787eaa
JM
10288 break;
10289 }
d899e052 10290
0af3d00b 10291 if (own_trans)
3a45bb20 10292 btrfs_end_transaction(trans);
5a303d5d 10293 }
18513091 10294 if (cur_offset < end)
bc42bda2 10295 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10296 end - cur_offset + 1);
d899e052
YZ
10297 return ret;
10298}
10299
0af3d00b
JB
10300int btrfs_prealloc_file_range(struct inode *inode, int mode,
10301 u64 start, u64 num_bytes, u64 min_size,
10302 loff_t actual_len, u64 *alloc_hint)
10303{
10304 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10305 min_size, actual_len, alloc_hint,
10306 NULL);
10307}
10308
10309int btrfs_prealloc_file_range_trans(struct inode *inode,
10310 struct btrfs_trans_handle *trans, int mode,
10311 u64 start, u64 num_bytes, u64 min_size,
10312 loff_t actual_len, u64 *alloc_hint)
10313{
10314 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10315 min_size, actual_len, alloc_hint, trans);
10316}
10317
e6dcd2dc
CM
10318static int btrfs_set_page_dirty(struct page *page)
10319{
e6dcd2dc
CM
10320 return __set_page_dirty_nobuffers(page);
10321}
10322
10556cb2 10323static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10324{
b83cc969 10325 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10326 umode_t mode = inode->i_mode;
b83cc969 10327
cb6db4e5
JM
10328 if (mask & MAY_WRITE &&
10329 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10330 if (btrfs_root_readonly(root))
10331 return -EROFS;
10332 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10333 return -EACCES;
10334 }
2830ba7f 10335 return generic_permission(inode, mask);
fdebe2bd 10336}
39279cc3 10337
ef3b9af5
FM
10338static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10339{
2ff7e61e 10340 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10341 struct btrfs_trans_handle *trans;
10342 struct btrfs_root *root = BTRFS_I(dir)->root;
10343 struct inode *inode = NULL;
10344 u64 objectid;
10345 u64 index;
10346 int ret = 0;
10347
10348 /*
10349 * 5 units required for adding orphan entry
10350 */
10351 trans = btrfs_start_transaction(root, 5);
10352 if (IS_ERR(trans))
10353 return PTR_ERR(trans);
10354
10355 ret = btrfs_find_free_ino(root, &objectid);
10356 if (ret)
10357 goto out;
10358
10359 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10360 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10361 if (IS_ERR(inode)) {
10362 ret = PTR_ERR(inode);
10363 inode = NULL;
10364 goto out;
10365 }
10366
ef3b9af5
FM
10367 inode->i_fop = &btrfs_file_operations;
10368 inode->i_op = &btrfs_file_inode_operations;
10369
10370 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10371 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10372
b0d5d10f
CM
10373 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10374 if (ret)
32955c54 10375 goto out;
b0d5d10f
CM
10376
10377 ret = btrfs_update_inode(trans, root, inode);
10378 if (ret)
32955c54 10379 goto out;
73f2e545 10380 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10381 if (ret)
32955c54 10382 goto out;
ef3b9af5 10383
5762b5c9
FM
10384 /*
10385 * We set number of links to 0 in btrfs_new_inode(), and here we set
10386 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10387 * through:
10388 *
10389 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10390 */
10391 set_nlink(inode, 1);
ef3b9af5 10392 d_tmpfile(dentry, inode);
32955c54 10393 unlock_new_inode(inode);
ef3b9af5 10394 mark_inode_dirty(inode);
ef3b9af5 10395out:
3a45bb20 10396 btrfs_end_transaction(trans);
32955c54
AV
10397 if (ret && inode)
10398 discard_new_inode(inode);
2ff7e61e 10399 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10400 return ret;
10401}
10402
5cdc84bf 10403void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10404{
5cdc84bf 10405 struct inode *inode = tree->private_data;
c6100a4b
JB
10406 unsigned long index = start >> PAGE_SHIFT;
10407 unsigned long end_index = end >> PAGE_SHIFT;
10408 struct page *page;
10409
10410 while (index <= end_index) {
10411 page = find_get_page(inode->i_mapping, index);
10412 ASSERT(page); /* Pages should be in the extent_io_tree */
10413 set_page_writeback(page);
10414 put_page(page);
10415 index++;
10416 }
10417}
10418
ed46ff3d
OS
10419#ifdef CONFIG_SWAP
10420/*
10421 * Add an entry indicating a block group or device which is pinned by a
10422 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10423 * negative errno on failure.
10424 */
10425static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10426 bool is_block_group)
10427{
10428 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10429 struct btrfs_swapfile_pin *sp, *entry;
10430 struct rb_node **p;
10431 struct rb_node *parent = NULL;
10432
10433 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10434 if (!sp)
10435 return -ENOMEM;
10436 sp->ptr = ptr;
10437 sp->inode = inode;
10438 sp->is_block_group = is_block_group;
10439
10440 spin_lock(&fs_info->swapfile_pins_lock);
10441 p = &fs_info->swapfile_pins.rb_node;
10442 while (*p) {
10443 parent = *p;
10444 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10445 if (sp->ptr < entry->ptr ||
10446 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10447 p = &(*p)->rb_left;
10448 } else if (sp->ptr > entry->ptr ||
10449 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10450 p = &(*p)->rb_right;
10451 } else {
10452 spin_unlock(&fs_info->swapfile_pins_lock);
10453 kfree(sp);
10454 return 1;
10455 }
10456 }
10457 rb_link_node(&sp->node, parent, p);
10458 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10459 spin_unlock(&fs_info->swapfile_pins_lock);
10460 return 0;
10461}
10462
10463/* Free all of the entries pinned by this swapfile. */
10464static void btrfs_free_swapfile_pins(struct inode *inode)
10465{
10466 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10467 struct btrfs_swapfile_pin *sp;
10468 struct rb_node *node, *next;
10469
10470 spin_lock(&fs_info->swapfile_pins_lock);
10471 node = rb_first(&fs_info->swapfile_pins);
10472 while (node) {
10473 next = rb_next(node);
10474 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10475 if (sp->inode == inode) {
10476 rb_erase(&sp->node, &fs_info->swapfile_pins);
10477 if (sp->is_block_group)
10478 btrfs_put_block_group(sp->ptr);
10479 kfree(sp);
10480 }
10481 node = next;
10482 }
10483 spin_unlock(&fs_info->swapfile_pins_lock);
10484}
10485
10486struct btrfs_swap_info {
10487 u64 start;
10488 u64 block_start;
10489 u64 block_len;
10490 u64 lowest_ppage;
10491 u64 highest_ppage;
10492 unsigned long nr_pages;
10493 int nr_extents;
10494};
10495
10496static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10497 struct btrfs_swap_info *bsi)
10498{
10499 unsigned long nr_pages;
10500 u64 first_ppage, first_ppage_reported, next_ppage;
10501 int ret;
10502
10503 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10504 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10505 PAGE_SIZE) >> PAGE_SHIFT;
10506
10507 if (first_ppage >= next_ppage)
10508 return 0;
10509 nr_pages = next_ppage - first_ppage;
10510
10511 first_ppage_reported = first_ppage;
10512 if (bsi->start == 0)
10513 first_ppage_reported++;
10514 if (bsi->lowest_ppage > first_ppage_reported)
10515 bsi->lowest_ppage = first_ppage_reported;
10516 if (bsi->highest_ppage < (next_ppage - 1))
10517 bsi->highest_ppage = next_ppage - 1;
10518
10519 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10520 if (ret < 0)
10521 return ret;
10522 bsi->nr_extents += ret;
10523 bsi->nr_pages += nr_pages;
10524 return 0;
10525}
10526
10527static void btrfs_swap_deactivate(struct file *file)
10528{
10529 struct inode *inode = file_inode(file);
10530
10531 btrfs_free_swapfile_pins(inode);
10532 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10533}
10534
10535static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10536 sector_t *span)
10537{
10538 struct inode *inode = file_inode(file);
10539 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10540 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10541 struct extent_state *cached_state = NULL;
10542 struct extent_map *em = NULL;
10543 struct btrfs_device *device = NULL;
10544 struct btrfs_swap_info bsi = {
10545 .lowest_ppage = (sector_t)-1ULL,
10546 };
10547 int ret = 0;
10548 u64 isize;
10549 u64 start;
10550
10551 /*
10552 * If the swap file was just created, make sure delalloc is done. If the
10553 * file changes again after this, the user is doing something stupid and
10554 * we don't really care.
10555 */
10556 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10557 if (ret)
10558 return ret;
10559
10560 /*
10561 * The inode is locked, so these flags won't change after we check them.
10562 */
10563 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10564 btrfs_warn(fs_info, "swapfile must not be compressed");
10565 return -EINVAL;
10566 }
10567 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10568 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10569 return -EINVAL;
10570 }
10571 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10572 btrfs_warn(fs_info, "swapfile must not be checksummed");
10573 return -EINVAL;
10574 }
10575
10576 /*
10577 * Balance or device remove/replace/resize can move stuff around from
10578 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10579 * concurrently while we are mapping the swap extents, and
10580 * fs_info->swapfile_pins prevents them from running while the swap file
10581 * is active and moving the extents. Note that this also prevents a
10582 * concurrent device add which isn't actually necessary, but it's not
10583 * really worth the trouble to allow it.
10584 */
10585 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10586 btrfs_warn(fs_info,
10587 "cannot activate swapfile while exclusive operation is running");
10588 return -EBUSY;
10589 }
10590 /*
10591 * Snapshots can create extents which require COW even if NODATACOW is
10592 * set. We use this counter to prevent snapshots. We must increment it
10593 * before walking the extents because we don't want a concurrent
10594 * snapshot to run after we've already checked the extents.
10595 */
10596 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10597
10598 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10599
10600 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10601 start = 0;
10602 while (start < isize) {
10603 u64 logical_block_start, physical_block_start;
10604 struct btrfs_block_group_cache *bg;
10605 u64 len = isize - start;
10606
10607 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10608 if (IS_ERR(em)) {
10609 ret = PTR_ERR(em);
10610 goto out;
10611 }
10612
10613 if (em->block_start == EXTENT_MAP_HOLE) {
10614 btrfs_warn(fs_info, "swapfile must not have holes");
10615 ret = -EINVAL;
10616 goto out;
10617 }
10618 if (em->block_start == EXTENT_MAP_INLINE) {
10619 /*
10620 * It's unlikely we'll ever actually find ourselves
10621 * here, as a file small enough to fit inline won't be
10622 * big enough to store more than the swap header, but in
10623 * case something changes in the future, let's catch it
10624 * here rather than later.
10625 */
10626 btrfs_warn(fs_info, "swapfile must not be inline");
10627 ret = -EINVAL;
10628 goto out;
10629 }
10630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10631 btrfs_warn(fs_info, "swapfile must not be compressed");
10632 ret = -EINVAL;
10633 goto out;
10634 }
10635
10636 logical_block_start = em->block_start + (start - em->start);
10637 len = min(len, em->len - (start - em->start));
10638 free_extent_map(em);
10639 em = NULL;
10640
10641 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10642 if (ret < 0) {
10643 goto out;
10644 } else if (ret) {
10645 ret = 0;
10646 } else {
10647 btrfs_warn(fs_info,
10648 "swapfile must not be copy-on-write");
10649 ret = -EINVAL;
10650 goto out;
10651 }
10652
10653 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10654 if (IS_ERR(em)) {
10655 ret = PTR_ERR(em);
10656 goto out;
10657 }
10658
10659 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10660 btrfs_warn(fs_info,
10661 "swapfile must have single data profile");
10662 ret = -EINVAL;
10663 goto out;
10664 }
10665
10666 if (device == NULL) {
10667 device = em->map_lookup->stripes[0].dev;
10668 ret = btrfs_add_swapfile_pin(inode, device, false);
10669 if (ret == 1)
10670 ret = 0;
10671 else if (ret)
10672 goto out;
10673 } else if (device != em->map_lookup->stripes[0].dev) {
10674 btrfs_warn(fs_info, "swapfile must be on one device");
10675 ret = -EINVAL;
10676 goto out;
10677 }
10678
10679 physical_block_start = (em->map_lookup->stripes[0].physical +
10680 (logical_block_start - em->start));
10681 len = min(len, em->len - (logical_block_start - em->start));
10682 free_extent_map(em);
10683 em = NULL;
10684
10685 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10686 if (!bg) {
10687 btrfs_warn(fs_info,
10688 "could not find block group containing swapfile");
10689 ret = -EINVAL;
10690 goto out;
10691 }
10692
10693 ret = btrfs_add_swapfile_pin(inode, bg, true);
10694 if (ret) {
10695 btrfs_put_block_group(bg);
10696 if (ret == 1)
10697 ret = 0;
10698 else
10699 goto out;
10700 }
10701
10702 if (bsi.block_len &&
10703 bsi.block_start + bsi.block_len == physical_block_start) {
10704 bsi.block_len += len;
10705 } else {
10706 if (bsi.block_len) {
10707 ret = btrfs_add_swap_extent(sis, &bsi);
10708 if (ret)
10709 goto out;
10710 }
10711 bsi.start = start;
10712 bsi.block_start = physical_block_start;
10713 bsi.block_len = len;
10714 }
10715
10716 start += len;
10717 }
10718
10719 if (bsi.block_len)
10720 ret = btrfs_add_swap_extent(sis, &bsi);
10721
10722out:
10723 if (!IS_ERR_OR_NULL(em))
10724 free_extent_map(em);
10725
10726 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10727
10728 if (ret)
10729 btrfs_swap_deactivate(file);
10730
10731 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10732
10733 if (ret)
10734 return ret;
10735
10736 if (device)
10737 sis->bdev = device->bdev;
10738 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10739 sis->max = bsi.nr_pages;
10740 sis->pages = bsi.nr_pages - 1;
10741 sis->highest_bit = bsi.nr_pages - 1;
10742 return bsi.nr_extents;
10743}
10744#else
10745static void btrfs_swap_deactivate(struct file *file)
10746{
10747}
10748
10749static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10750 sector_t *span)
10751{
10752 return -EOPNOTSUPP;
10753}
10754#endif
10755
6e1d5dcc 10756static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10757 .getattr = btrfs_getattr,
39279cc3
CM
10758 .lookup = btrfs_lookup,
10759 .create = btrfs_create,
10760 .unlink = btrfs_unlink,
10761 .link = btrfs_link,
10762 .mkdir = btrfs_mkdir,
10763 .rmdir = btrfs_rmdir,
2773bf00 10764 .rename = btrfs_rename2,
39279cc3
CM
10765 .symlink = btrfs_symlink,
10766 .setattr = btrfs_setattr,
618e21d5 10767 .mknod = btrfs_mknod,
5103e947 10768 .listxattr = btrfs_listxattr,
fdebe2bd 10769 .permission = btrfs_permission,
4e34e719 10770 .get_acl = btrfs_get_acl,
996a710d 10771 .set_acl = btrfs_set_acl,
93fd63c2 10772 .update_time = btrfs_update_time,
ef3b9af5 10773 .tmpfile = btrfs_tmpfile,
39279cc3 10774};
6e1d5dcc 10775static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10776 .lookup = btrfs_lookup,
fdebe2bd 10777 .permission = btrfs_permission,
93fd63c2 10778 .update_time = btrfs_update_time,
39279cc3 10779};
76dda93c 10780
828c0950 10781static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10782 .llseek = generic_file_llseek,
10783 .read = generic_read_dir,
02dbfc99 10784 .iterate_shared = btrfs_real_readdir,
23b5ec74 10785 .open = btrfs_opendir,
34287aa3 10786 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10787#ifdef CONFIG_COMPAT
4c63c245 10788 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10789#endif
6bf13c0c 10790 .release = btrfs_release_file,
e02119d5 10791 .fsync = btrfs_sync_file,
39279cc3
CM
10792};
10793
20e5506b 10794static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10795 /* mandatory callbacks */
065631f6 10796 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10797 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10798};
10799
35054394
CM
10800/*
10801 * btrfs doesn't support the bmap operation because swapfiles
10802 * use bmap to make a mapping of extents in the file. They assume
10803 * these extents won't change over the life of the file and they
10804 * use the bmap result to do IO directly to the drive.
10805 *
10806 * the btrfs bmap call would return logical addresses that aren't
10807 * suitable for IO and they also will change frequently as COW
10808 * operations happen. So, swapfile + btrfs == corruption.
10809 *
10810 * For now we're avoiding this by dropping bmap.
10811 */
7f09410b 10812static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10813 .readpage = btrfs_readpage,
10814 .writepage = btrfs_writepage,
b293f02e 10815 .writepages = btrfs_writepages,
3ab2fb5a 10816 .readpages = btrfs_readpages,
16432985 10817 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10818 .invalidatepage = btrfs_invalidatepage,
10819 .releasepage = btrfs_releasepage,
e6dcd2dc 10820 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10821 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10822 .swap_activate = btrfs_swap_activate,
10823 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10824};
10825
6e1d5dcc 10826static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10827 .getattr = btrfs_getattr,
10828 .setattr = btrfs_setattr,
5103e947 10829 .listxattr = btrfs_listxattr,
fdebe2bd 10830 .permission = btrfs_permission,
1506fcc8 10831 .fiemap = btrfs_fiemap,
4e34e719 10832 .get_acl = btrfs_get_acl,
996a710d 10833 .set_acl = btrfs_set_acl,
e41f941a 10834 .update_time = btrfs_update_time,
39279cc3 10835};
6e1d5dcc 10836static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10837 .getattr = btrfs_getattr,
10838 .setattr = btrfs_setattr,
fdebe2bd 10839 .permission = btrfs_permission,
33268eaf 10840 .listxattr = btrfs_listxattr,
4e34e719 10841 .get_acl = btrfs_get_acl,
996a710d 10842 .set_acl = btrfs_set_acl,
e41f941a 10843 .update_time = btrfs_update_time,
618e21d5 10844};
6e1d5dcc 10845static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10846 .get_link = page_get_link,
f209561a 10847 .getattr = btrfs_getattr,
22c44fe6 10848 .setattr = btrfs_setattr,
fdebe2bd 10849 .permission = btrfs_permission,
0279b4cd 10850 .listxattr = btrfs_listxattr,
e41f941a 10851 .update_time = btrfs_update_time,
39279cc3 10852};
76dda93c 10853
82d339d9 10854const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10855 .d_delete = btrfs_dentry_delete,
10856};