]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
Btrfs: adjust len of writes if following a preallocated extent
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
111static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
112 u64 len, u64 orig_start,
113 u64 block_start, u64 block_len,
cc95bef6
JB
114 u64 orig_block_len, u64 ram_bytes,
115 int type);
7b128766 116
48a3b636 117static int btrfs_dirty_inode(struct inode *inode);
7b128766 118
6a3891c5
JB
119#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
120void btrfs_test_inode_set_ops(struct inode *inode)
121{
122 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
123}
124#endif
125
f34f57a3 126static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
127 struct inode *inode, struct inode *dir,
128 const struct qstr *qstr)
0279b4cd
JO
129{
130 int err;
131
f34f57a3 132 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 133 if (!err)
2a7dba39 134 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
135 return err;
136}
137
c8b97818
CM
138/*
139 * this does all the hard work for inserting an inline extent into
140 * the btree. The caller should have done a btrfs_drop_extents so that
141 * no overlapping inline items exist in the btree
142 */
40f76580 143static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 144 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
145 struct btrfs_root *root, struct inode *inode,
146 u64 start, size_t size, size_t compressed_size,
fe3f566c 147 int compress_type,
c8b97818
CM
148 struct page **compressed_pages)
149{
c8b97818
CM
150 struct extent_buffer *leaf;
151 struct page *page = NULL;
152 char *kaddr;
153 unsigned long ptr;
154 struct btrfs_file_extent_item *ei;
155 int err = 0;
156 int ret;
157 size_t cur_size = size;
c8b97818 158 unsigned long offset;
c8b97818 159
fe3f566c 160 if (compressed_size && compressed_pages)
c8b97818 161 cur_size = compressed_size;
c8b97818 162
1acae57b 163 inode_add_bytes(inode, size);
c8b97818 164
1acae57b
FDBM
165 if (!extent_inserted) {
166 struct btrfs_key key;
167 size_t datasize;
c8b97818 168
1acae57b
FDBM
169 key.objectid = btrfs_ino(inode);
170 key.offset = start;
962a298f 171 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 172
1acae57b
FDBM
173 datasize = btrfs_file_extent_calc_inline_size(cur_size);
174 path->leave_spinning = 1;
175 ret = btrfs_insert_empty_item(trans, root, path, &key,
176 datasize);
177 if (ret) {
178 err = ret;
179 goto fail;
180 }
c8b97818
CM
181 }
182 leaf = path->nodes[0];
183 ei = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_file_extent_item);
185 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
186 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
187 btrfs_set_file_extent_encryption(leaf, ei, 0);
188 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
189 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
190 ptr = btrfs_file_extent_inline_start(ei);
191
261507a0 192 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
193 struct page *cpage;
194 int i = 0;
d397712b 195 while (compressed_size > 0) {
c8b97818 196 cpage = compressed_pages[i];
5b050f04 197 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 198 PAGE_SIZE);
c8b97818 199
7ac687d9 200 kaddr = kmap_atomic(cpage);
c8b97818 201 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203
204 i++;
205 ptr += cur_size;
206 compressed_size -= cur_size;
207 }
208 btrfs_set_file_extent_compression(leaf, ei,
261507a0 209 compress_type);
c8b97818
CM
210 } else {
211 page = find_get_page(inode->i_mapping,
09cbfeaf 212 start >> PAGE_SHIFT);
c8b97818 213 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 214 kaddr = kmap_atomic(page);
09cbfeaf 215 offset = start & (PAGE_SIZE - 1);
c8b97818 216 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 217 kunmap_atomic(kaddr);
09cbfeaf 218 put_page(page);
c8b97818
CM
219 }
220 btrfs_mark_buffer_dirty(leaf);
1acae57b 221 btrfs_release_path(path);
c8b97818 222
c2167754
YZ
223 /*
224 * we're an inline extent, so nobody can
225 * extend the file past i_size without locking
226 * a page we already have locked.
227 *
228 * We must do any isize and inode updates
229 * before we unlock the pages. Otherwise we
230 * could end up racing with unlink.
231 */
c8b97818 232 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 233 ret = btrfs_update_inode(trans, root, inode);
c2167754 234
79787eaa 235 return ret;
c8b97818 236fail:
c8b97818
CM
237 return err;
238}
239
240
241/*
242 * conditionally insert an inline extent into the file. This
243 * does the checks required to make sure the data is small enough
244 * to fit as an inline extent.
245 */
00361589
JB
246static noinline int cow_file_range_inline(struct btrfs_root *root,
247 struct inode *inode, u64 start,
248 u64 end, size_t compressed_size,
249 int compress_type,
250 struct page **compressed_pages)
c8b97818 251{
00361589 252 struct btrfs_trans_handle *trans;
c8b97818
CM
253 u64 isize = i_size_read(inode);
254 u64 actual_end = min(end + 1, isize);
255 u64 inline_len = actual_end - start;
fda2832f 256 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
257 u64 data_len = inline_len;
258 int ret;
1acae57b
FDBM
259 struct btrfs_path *path;
260 int extent_inserted = 0;
261 u32 extent_item_size;
c8b97818
CM
262
263 if (compressed_size)
264 data_len = compressed_size;
265
266 if (start > 0 ||
0c29ba99 267 actual_end > root->sectorsize ||
354877be 268 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
269 (!compressed_size &&
270 (actual_end & (root->sectorsize - 1)) == 0) ||
271 end + 1 < isize ||
272 data_len > root->fs_info->max_inline) {
273 return 1;
274 }
275
1acae57b
FDBM
276 path = btrfs_alloc_path();
277 if (!path)
278 return -ENOMEM;
279
00361589 280 trans = btrfs_join_transaction(root);
1acae57b
FDBM
281 if (IS_ERR(trans)) {
282 btrfs_free_path(path);
00361589 283 return PTR_ERR(trans);
1acae57b 284 }
00361589
JB
285 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
286
1acae57b
FDBM
287 if (compressed_size && compressed_pages)
288 extent_item_size = btrfs_file_extent_calc_inline_size(
289 compressed_size);
290 else
291 extent_item_size = btrfs_file_extent_calc_inline_size(
292 inline_len);
293
294 ret = __btrfs_drop_extents(trans, root, inode, path,
295 start, aligned_end, NULL,
296 1, 1, extent_item_size, &extent_inserted);
00361589 297 if (ret) {
66642832 298 btrfs_abort_transaction(trans, ret);
00361589
JB
299 goto out;
300 }
c8b97818
CM
301
302 if (isize > actual_end)
303 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
304 ret = insert_inline_extent(trans, path, extent_inserted,
305 root, inode, start,
c8b97818 306 inline_len, compressed_size,
fe3f566c 307 compress_type, compressed_pages);
2adcac1a 308 if (ret && ret != -ENOSPC) {
66642832 309 btrfs_abort_transaction(trans, ret);
00361589 310 goto out;
2adcac1a 311 } else if (ret == -ENOSPC) {
00361589
JB
312 ret = 1;
313 goto out;
79787eaa 314 }
2adcac1a 315
bdc20e67 316 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 317 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 318 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 319out:
94ed938a
QW
320 /*
321 * Don't forget to free the reserved space, as for inlined extent
322 * it won't count as data extent, free them directly here.
323 * And at reserve time, it's always aligned to page size, so
324 * just free one page here.
325 */
09cbfeaf 326 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 327 btrfs_free_path(path);
00361589
JB
328 btrfs_end_transaction(trans, root);
329 return ret;
c8b97818
CM
330}
331
771ed689
CM
332struct async_extent {
333 u64 start;
334 u64 ram_size;
335 u64 compressed_size;
336 struct page **pages;
337 unsigned long nr_pages;
261507a0 338 int compress_type;
771ed689
CM
339 struct list_head list;
340};
341
342struct async_cow {
343 struct inode *inode;
344 struct btrfs_root *root;
345 struct page *locked_page;
346 u64 start;
347 u64 end;
348 struct list_head extents;
349 struct btrfs_work work;
350};
351
352static noinline int add_async_extent(struct async_cow *cow,
353 u64 start, u64 ram_size,
354 u64 compressed_size,
355 struct page **pages,
261507a0
LZ
356 unsigned long nr_pages,
357 int compress_type)
771ed689
CM
358{
359 struct async_extent *async_extent;
360
361 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 362 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
363 async_extent->start = start;
364 async_extent->ram_size = ram_size;
365 async_extent->compressed_size = compressed_size;
366 async_extent->pages = pages;
367 async_extent->nr_pages = nr_pages;
261507a0 368 async_extent->compress_type = compress_type;
771ed689
CM
369 list_add_tail(&async_extent->list, &cow->extents);
370 return 0;
371}
372
f79707b0
WS
373static inline int inode_need_compress(struct inode *inode)
374{
375 struct btrfs_root *root = BTRFS_I(inode)->root;
376
377 /* force compress */
3cdde224 378 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
f79707b0
WS
379 return 1;
380 /* bad compression ratios */
381 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
382 return 0;
3cdde224 383 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
f79707b0
WS
384 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
385 BTRFS_I(inode)->force_compress)
386 return 1;
387 return 0;
388}
389
d352ac68 390/*
771ed689
CM
391 * we create compressed extents in two phases. The first
392 * phase compresses a range of pages that have already been
393 * locked (both pages and state bits are locked).
c8b97818 394 *
771ed689
CM
395 * This is done inside an ordered work queue, and the compression
396 * is spread across many cpus. The actual IO submission is step
397 * two, and the ordered work queue takes care of making sure that
398 * happens in the same order things were put onto the queue by
399 * writepages and friends.
c8b97818 400 *
771ed689
CM
401 * If this code finds it can't get good compression, it puts an
402 * entry onto the work queue to write the uncompressed bytes. This
403 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
404 * are written in the same order that the flusher thread sent them
405 * down.
d352ac68 406 */
c44f649e 407static noinline void compress_file_range(struct inode *inode,
771ed689
CM
408 struct page *locked_page,
409 u64 start, u64 end,
410 struct async_cow *async_cow,
411 int *num_added)
b888db2b
CM
412{
413 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 414 u64 num_bytes;
db94535d 415 u64 blocksize = root->sectorsize;
c8b97818 416 u64 actual_end;
42dc7bab 417 u64 isize = i_size_read(inode);
e6dcd2dc 418 int ret = 0;
c8b97818
CM
419 struct page **pages = NULL;
420 unsigned long nr_pages;
421 unsigned long nr_pages_ret = 0;
422 unsigned long total_compressed = 0;
423 unsigned long total_in = 0;
ee22184b
BL
424 unsigned long max_compressed = SZ_128K;
425 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
426 int i;
427 int will_compress;
261507a0 428 int compress_type = root->fs_info->compress_type;
4adaa611 429 int redirty = 0;
b888db2b 430
4cb13e5d 431 /* if this is a small write inside eof, kick off a defrag */
ee22184b 432 if ((end - start + 1) < SZ_16K &&
4cb13e5d 433 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
434 btrfs_add_inode_defrag(NULL, inode);
435
42dc7bab 436 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
437again:
438 will_compress = 0;
09cbfeaf
KS
439 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
440 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 441
f03d9301
CM
442 /*
443 * we don't want to send crud past the end of i_size through
444 * compression, that's just a waste of CPU time. So, if the
445 * end of the file is before the start of our current
446 * requested range of bytes, we bail out to the uncompressed
447 * cleanup code that can deal with all of this.
448 *
449 * It isn't really the fastest way to fix things, but this is a
450 * very uncommon corner.
451 */
452 if (actual_end <= start)
453 goto cleanup_and_bail_uncompressed;
454
c8b97818
CM
455 total_compressed = actual_end - start;
456
4bcbb332
SW
457 /*
458 * skip compression for a small file range(<=blocksize) that
01327610 459 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
460 */
461 if (total_compressed <= blocksize &&
462 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
463 goto cleanup_and_bail_uncompressed;
464
c8b97818
CM
465 /* we want to make sure that amount of ram required to uncompress
466 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
467 * of a compressed extent to 128k. This is a crucial number
468 * because it also controls how easily we can spread reads across
469 * cpus for decompression.
470 *
471 * We also want to make sure the amount of IO required to do
472 * a random read is reasonably small, so we limit the size of
473 * a compressed extent to 128k.
c8b97818
CM
474 */
475 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 476 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 477 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
478 total_in = 0;
479 ret = 0;
db94535d 480
771ed689
CM
481 /*
482 * we do compression for mount -o compress and when the
483 * inode has not been flagged as nocompress. This flag can
484 * change at any time if we discover bad compression ratios.
c8b97818 485 */
f79707b0 486 if (inode_need_compress(inode)) {
c8b97818 487 WARN_ON(pages);
31e818fe 488 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
489 if (!pages) {
490 /* just bail out to the uncompressed code */
491 goto cont;
492 }
c8b97818 493
261507a0
LZ
494 if (BTRFS_I(inode)->force_compress)
495 compress_type = BTRFS_I(inode)->force_compress;
496
4adaa611
CM
497 /*
498 * we need to call clear_page_dirty_for_io on each
499 * page in the range. Otherwise applications with the file
500 * mmap'd can wander in and change the page contents while
501 * we are compressing them.
502 *
503 * If the compression fails for any reason, we set the pages
504 * dirty again later on.
505 */
506 extent_range_clear_dirty_for_io(inode, start, end);
507 redirty = 1;
261507a0
LZ
508 ret = btrfs_compress_pages(compress_type,
509 inode->i_mapping, start,
510 total_compressed, pages,
511 nr_pages, &nr_pages_ret,
512 &total_in,
513 &total_compressed,
514 max_compressed);
c8b97818
CM
515
516 if (!ret) {
517 unsigned long offset = total_compressed &
09cbfeaf 518 (PAGE_SIZE - 1);
c8b97818
CM
519 struct page *page = pages[nr_pages_ret - 1];
520 char *kaddr;
521
522 /* zero the tail end of the last page, we might be
523 * sending it down to disk
524 */
525 if (offset) {
7ac687d9 526 kaddr = kmap_atomic(page);
c8b97818 527 memset(kaddr + offset, 0,
09cbfeaf 528 PAGE_SIZE - offset);
7ac687d9 529 kunmap_atomic(kaddr);
c8b97818
CM
530 }
531 will_compress = 1;
532 }
533 }
560f7d75 534cont:
c8b97818
CM
535 if (start == 0) {
536 /* lets try to make an inline extent */
771ed689 537 if (ret || total_in < (actual_end - start)) {
c8b97818 538 /* we didn't compress the entire range, try
771ed689 539 * to make an uncompressed inline extent.
c8b97818 540 */
00361589
JB
541 ret = cow_file_range_inline(root, inode, start, end,
542 0, 0, NULL);
c8b97818 543 } else {
771ed689 544 /* try making a compressed inline extent */
00361589 545 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
546 total_compressed,
547 compress_type, pages);
c8b97818 548 }
79787eaa 549 if (ret <= 0) {
151a41bc
JB
550 unsigned long clear_flags = EXTENT_DELALLOC |
551 EXTENT_DEFRAG;
e6eb4314
FM
552 unsigned long page_error_op;
553
151a41bc 554 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 555 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 556
771ed689 557 /*
79787eaa
JM
558 * inline extent creation worked or returned error,
559 * we don't need to create any more async work items.
560 * Unlock and free up our temp pages.
771ed689 561 */
ba8b04c1
QW
562 extent_clear_unlock_delalloc(inode, start, end, end,
563 NULL, clear_flags,
564 PAGE_UNLOCK |
c2790a2e
JB
565 PAGE_CLEAR_DIRTY |
566 PAGE_SET_WRITEBACK |
e6eb4314 567 page_error_op |
c2790a2e 568 PAGE_END_WRITEBACK);
18513091
WX
569 btrfs_free_reserved_data_space_noquota(inode, start,
570 end - start + 1);
c8b97818
CM
571 goto free_pages_out;
572 }
573 }
574
575 if (will_compress) {
576 /*
577 * we aren't doing an inline extent round the compressed size
578 * up to a block size boundary so the allocator does sane
579 * things
580 */
fda2832f 581 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
582
583 /*
584 * one last check to make sure the compression is really a
585 * win, compare the page count read with the blocks on disk
586 */
09cbfeaf 587 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
588 if (total_compressed >= total_in) {
589 will_compress = 0;
590 } else {
c8b97818 591 num_bytes = total_in;
c8bb0c8b
AS
592 *num_added += 1;
593
594 /*
595 * The async work queues will take care of doing actual
596 * allocation on disk for these compressed pages, and
597 * will submit them to the elevator.
598 */
599 add_async_extent(async_cow, start, num_bytes,
600 total_compressed, pages, nr_pages_ret,
601 compress_type);
602
603 if (start + num_bytes < end) {
604 start += num_bytes;
605 pages = NULL;
606 cond_resched();
607 goto again;
608 }
609 return;
c8b97818
CM
610 }
611 }
c8bb0c8b 612 if (pages) {
c8b97818
CM
613 /*
614 * the compression code ran but failed to make things smaller,
615 * free any pages it allocated and our page pointer array
616 */
617 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 618 WARN_ON(pages[i]->mapping);
09cbfeaf 619 put_page(pages[i]);
c8b97818
CM
620 }
621 kfree(pages);
622 pages = NULL;
623 total_compressed = 0;
624 nr_pages_ret = 0;
625
626 /* flag the file so we don't compress in the future */
3cdde224 627 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
1e701a32 628 !(BTRFS_I(inode)->force_compress)) {
a555f810 629 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 630 }
c8b97818 631 }
f03d9301 632cleanup_and_bail_uncompressed:
c8bb0c8b
AS
633 /*
634 * No compression, but we still need to write the pages in the file
635 * we've been given so far. redirty the locked page if it corresponds
636 * to our extent and set things up for the async work queue to run
637 * cow_file_range to do the normal delalloc dance.
638 */
639 if (page_offset(locked_page) >= start &&
640 page_offset(locked_page) <= end)
641 __set_page_dirty_nobuffers(locked_page);
642 /* unlocked later on in the async handlers */
643
644 if (redirty)
645 extent_range_redirty_for_io(inode, start, end);
646 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
647 BTRFS_COMPRESS_NONE);
648 *num_added += 1;
3b951516 649
c44f649e 650 return;
771ed689
CM
651
652free_pages_out:
653 for (i = 0; i < nr_pages_ret; i++) {
654 WARN_ON(pages[i]->mapping);
09cbfeaf 655 put_page(pages[i]);
771ed689 656 }
d397712b 657 kfree(pages);
771ed689 658}
771ed689 659
40ae837b
FM
660static void free_async_extent_pages(struct async_extent *async_extent)
661{
662 int i;
663
664 if (!async_extent->pages)
665 return;
666
667 for (i = 0; i < async_extent->nr_pages; i++) {
668 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 669 put_page(async_extent->pages[i]);
40ae837b
FM
670 }
671 kfree(async_extent->pages);
672 async_extent->nr_pages = 0;
673 async_extent->pages = NULL;
771ed689
CM
674}
675
676/*
677 * phase two of compressed writeback. This is the ordered portion
678 * of the code, which only gets called in the order the work was
679 * queued. We walk all the async extents created by compress_file_range
680 * and send them down to the disk.
681 */
dec8f175 682static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
683 struct async_cow *async_cow)
684{
685 struct async_extent *async_extent;
686 u64 alloc_hint = 0;
771ed689
CM
687 struct btrfs_key ins;
688 struct extent_map *em;
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
691 struct extent_io_tree *io_tree;
f5a84ee3 692 int ret = 0;
771ed689 693
3e04e7f1 694again:
d397712b 695 while (!list_empty(&async_cow->extents)) {
771ed689
CM
696 async_extent = list_entry(async_cow->extents.next,
697 struct async_extent, list);
698 list_del(&async_extent->list);
c8b97818 699
771ed689
CM
700 io_tree = &BTRFS_I(inode)->io_tree;
701
f5a84ee3 702retry:
771ed689
CM
703 /* did the compression code fall back to uncompressed IO? */
704 if (!async_extent->pages) {
705 int page_started = 0;
706 unsigned long nr_written = 0;
707
708 lock_extent(io_tree, async_extent->start,
2ac55d41 709 async_extent->start +
d0082371 710 async_extent->ram_size - 1);
771ed689
CM
711
712 /* allocate blocks */
f5a84ee3
JB
713 ret = cow_file_range(inode, async_cow->locked_page,
714 async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1,
dda3245e
WX
717 async_extent->start +
718 async_extent->ram_size - 1,
719 &page_started, &nr_written, 0,
720 NULL);
771ed689 721
79787eaa
JM
722 /* JDM XXX */
723
771ed689
CM
724 /*
725 * if page_started, cow_file_range inserted an
726 * inline extent and took care of all the unlocking
727 * and IO for us. Otherwise, we need to submit
728 * all those pages down to the drive.
729 */
f5a84ee3 730 if (!page_started && !ret)
771ed689
CM
731 extent_write_locked_range(io_tree,
732 inode, async_extent->start,
d397712b 733 async_extent->start +
771ed689
CM
734 async_extent->ram_size - 1,
735 btrfs_get_extent,
736 WB_SYNC_ALL);
3e04e7f1
JB
737 else if (ret)
738 unlock_page(async_cow->locked_page);
771ed689
CM
739 kfree(async_extent);
740 cond_resched();
741 continue;
742 }
743
744 lock_extent(io_tree, async_extent->start,
d0082371 745 async_extent->start + async_extent->ram_size - 1);
771ed689 746
18513091 747 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
748 async_extent->compressed_size,
749 async_extent->compressed_size,
e570fd27 750 0, alloc_hint, &ins, 1, 1);
f5a84ee3 751 if (ret) {
40ae837b 752 free_async_extent_pages(async_extent);
3e04e7f1 753
fdf8e2ea
JB
754 if (ret == -ENOSPC) {
755 unlock_extent(io_tree, async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
ce62003f
LB
758
759 /*
760 * we need to redirty the pages if we decide to
761 * fallback to uncompressed IO, otherwise we
762 * will not submit these pages down to lower
763 * layers.
764 */
765 extent_range_redirty_for_io(inode,
766 async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1);
769
79787eaa 770 goto retry;
fdf8e2ea 771 }
3e04e7f1 772 goto out_free;
f5a84ee3 773 }
c2167754
YZ
774 /*
775 * here we're doing allocation and writeback of the
776 * compressed pages
777 */
778 btrfs_drop_extent_cache(inode, async_extent->start,
779 async_extent->start +
780 async_extent->ram_size - 1, 0);
781
172ddd60 782 em = alloc_extent_map();
b9aa55be
LB
783 if (!em) {
784 ret = -ENOMEM;
3e04e7f1 785 goto out_free_reserve;
b9aa55be 786 }
771ed689
CM
787 em->start = async_extent->start;
788 em->len = async_extent->ram_size;
445a6944 789 em->orig_start = em->start;
2ab28f32
JB
790 em->mod_start = em->start;
791 em->mod_len = em->len;
c8b97818 792
771ed689
CM
793 em->block_start = ins.objectid;
794 em->block_len = ins.offset;
b4939680 795 em->orig_block_len = ins.offset;
cc95bef6 796 em->ram_bytes = async_extent->ram_size;
771ed689 797 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 798 em->compress_type = async_extent->compress_type;
771ed689
CM
799 set_bit(EXTENT_FLAG_PINNED, &em->flags);
800 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 801 em->generation = -1;
771ed689 802
d397712b 803 while (1) {
890871be 804 write_lock(&em_tree->lock);
09a2a8f9 805 ret = add_extent_mapping(em_tree, em, 1);
890871be 806 write_unlock(&em_tree->lock);
771ed689
CM
807 if (ret != -EEXIST) {
808 free_extent_map(em);
809 break;
810 }
811 btrfs_drop_extent_cache(inode, async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1, 0);
814 }
815
3e04e7f1
JB
816 if (ret)
817 goto out_free_reserve;
818
261507a0
LZ
819 ret = btrfs_add_ordered_extent_compress(inode,
820 async_extent->start,
821 ins.objectid,
822 async_extent->ram_size,
823 ins.offset,
824 BTRFS_ORDERED_COMPRESSED,
825 async_extent->compress_type);
d9f85963
FM
826 if (ret) {
827 btrfs_drop_extent_cache(inode, async_extent->start,
828 async_extent->start +
829 async_extent->ram_size - 1, 0);
3e04e7f1 830 goto out_free_reserve;
d9f85963 831 }
9cfa3e34 832 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 833
771ed689
CM
834 /*
835 * clear dirty, set writeback and unlock the pages.
836 */
c2790a2e 837 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
838 async_extent->start +
839 async_extent->ram_size - 1,
a791e35e
CM
840 async_extent->start +
841 async_extent->ram_size - 1,
151a41bc
JB
842 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
843 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 844 PAGE_SET_WRITEBACK);
771ed689 845 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
846 async_extent->start,
847 async_extent->ram_size,
848 ins.objectid,
849 ins.offset, async_extent->pages,
850 async_extent->nr_pages);
fce2a4e6
FM
851 if (ret) {
852 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
853 struct page *p = async_extent->pages[0];
854 const u64 start = async_extent->start;
855 const u64 end = start + async_extent->ram_size - 1;
856
857 p->mapping = inode->i_mapping;
858 tree->ops->writepage_end_io_hook(p, start, end,
859 NULL, 0);
860 p->mapping = NULL;
ba8b04c1
QW
861 extent_clear_unlock_delalloc(inode, start, end, end,
862 NULL, 0,
fce2a4e6
FM
863 PAGE_END_WRITEBACK |
864 PAGE_SET_ERROR);
40ae837b 865 free_async_extent_pages(async_extent);
fce2a4e6 866 }
771ed689
CM
867 alloc_hint = ins.objectid + ins.offset;
868 kfree(async_extent);
869 cond_resched();
870 }
dec8f175 871 return;
3e04e7f1 872out_free_reserve:
9cfa3e34 873 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 874 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 875out_free:
c2790a2e 876 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
877 async_extent->start +
878 async_extent->ram_size - 1,
3e04e7f1
JB
879 async_extent->start +
880 async_extent->ram_size - 1,
c2790a2e 881 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
882 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
883 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
884 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 PAGE_SET_ERROR);
40ae837b 886 free_async_extent_pages(async_extent);
79787eaa 887 kfree(async_extent);
3e04e7f1 888 goto again;
771ed689
CM
889}
890
4b46fce2
JB
891static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
892 u64 num_bytes)
893{
894 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
895 struct extent_map *em;
896 u64 alloc_hint = 0;
897
898 read_lock(&em_tree->lock);
899 em = search_extent_mapping(em_tree, start, num_bytes);
900 if (em) {
901 /*
902 * if block start isn't an actual block number then find the
903 * first block in this inode and use that as a hint. If that
904 * block is also bogus then just don't worry about it.
905 */
906 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 free_extent_map(em);
908 em = search_extent_mapping(em_tree, 0, 0);
909 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
910 alloc_hint = em->block_start;
911 if (em)
912 free_extent_map(em);
913 } else {
914 alloc_hint = em->block_start;
915 free_extent_map(em);
916 }
917 }
918 read_unlock(&em_tree->lock);
919
920 return alloc_hint;
921}
922
771ed689
CM
923/*
924 * when extent_io.c finds a delayed allocation range in the file,
925 * the call backs end up in this code. The basic idea is to
926 * allocate extents on disk for the range, and create ordered data structs
927 * in ram to track those extents.
928 *
929 * locked_page is the page that writepage had locked already. We use
930 * it to make sure we don't do extra locks or unlocks.
931 *
932 * *page_started is set to one if we unlock locked_page and do everything
933 * required to start IO on it. It may be clean and already done with
934 * IO when we return.
935 */
00361589
JB
936static noinline int cow_file_range(struct inode *inode,
937 struct page *locked_page,
dda3245e
WX
938 u64 start, u64 end, u64 delalloc_end,
939 int *page_started, unsigned long *nr_written,
940 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 941{
00361589 942 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
943 u64 alloc_hint = 0;
944 u64 num_bytes;
945 unsigned long ram_size;
946 u64 disk_num_bytes;
947 u64 cur_alloc_size;
948 u64 blocksize = root->sectorsize;
771ed689
CM
949 struct btrfs_key ins;
950 struct extent_map *em;
951 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
952 int ret = 0;
953
02ecd2c2
JB
954 if (btrfs_is_free_space_inode(inode)) {
955 WARN_ON_ONCE(1);
29bce2f3
JB
956 ret = -EINVAL;
957 goto out_unlock;
02ecd2c2 958 }
771ed689 959
fda2832f 960 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
961 num_bytes = max(blocksize, num_bytes);
962 disk_num_bytes = num_bytes;
771ed689 963
4cb5300b 964 /* if this is a small write inside eof, kick off defrag */
ee22184b 965 if (num_bytes < SZ_64K &&
4cb13e5d 966 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 967 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 968
771ed689
CM
969 if (start == 0) {
970 /* lets try to make an inline extent */
00361589
JB
971 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
972 NULL);
771ed689 973 if (ret == 0) {
ba8b04c1
QW
974 extent_clear_unlock_delalloc(inode, start, end,
975 delalloc_end, NULL,
c2790a2e 976 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 977 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
978 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
979 PAGE_END_WRITEBACK);
18513091
WX
980 btrfs_free_reserved_data_space_noquota(inode, start,
981 end - start + 1);
771ed689 982 *nr_written = *nr_written +
09cbfeaf 983 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 984 *page_started = 1;
771ed689 985 goto out;
79787eaa 986 } else if (ret < 0) {
79787eaa 987 goto out_unlock;
771ed689
CM
988 }
989 }
990
991 BUG_ON(disk_num_bytes >
6c41761f 992 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 993
4b46fce2 994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
995 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
996
d397712b 997 while (disk_num_bytes > 0) {
a791e35e
CM
998 unsigned long op;
999
287a0ab9 1000 cur_alloc_size = disk_num_bytes;
18513091 1001 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
771ed689 1002 root->sectorsize, 0, alloc_hint,
e570fd27 1003 &ins, 1, 1);
00361589 1004 if (ret < 0)
79787eaa 1005 goto out_unlock;
d397712b 1006
172ddd60 1007 em = alloc_extent_map();
b9aa55be
LB
1008 if (!em) {
1009 ret = -ENOMEM;
ace68bac 1010 goto out_reserve;
b9aa55be 1011 }
e6dcd2dc 1012 em->start = start;
445a6944 1013 em->orig_start = em->start;
771ed689
CM
1014 ram_size = ins.offset;
1015 em->len = ins.offset;
2ab28f32
JB
1016 em->mod_start = em->start;
1017 em->mod_len = em->len;
c8b97818 1018
e6dcd2dc 1019 em->block_start = ins.objectid;
c8b97818 1020 em->block_len = ins.offset;
b4939680 1021 em->orig_block_len = ins.offset;
cc95bef6 1022 em->ram_bytes = ram_size;
e6dcd2dc 1023 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1024 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1025 em->generation = -1;
c8b97818 1026
d397712b 1027 while (1) {
890871be 1028 write_lock(&em_tree->lock);
09a2a8f9 1029 ret = add_extent_mapping(em_tree, em, 1);
890871be 1030 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1031 if (ret != -EEXIST) {
1032 free_extent_map(em);
1033 break;
1034 }
1035 btrfs_drop_extent_cache(inode, start,
c8b97818 1036 start + ram_size - 1, 0);
e6dcd2dc 1037 }
ace68bac
LB
1038 if (ret)
1039 goto out_reserve;
e6dcd2dc 1040
98d20f67 1041 cur_alloc_size = ins.offset;
e6dcd2dc 1042 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1043 ram_size, cur_alloc_size, 0);
ace68bac 1044 if (ret)
d9f85963 1045 goto out_drop_extent_cache;
c8b97818 1046
17d217fe
YZ
1047 if (root->root_key.objectid ==
1048 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1049 ret = btrfs_reloc_clone_csums(inode, start,
1050 cur_alloc_size);
00361589 1051 if (ret)
d9f85963 1052 goto out_drop_extent_cache;
17d217fe
YZ
1053 }
1054
9cfa3e34
FM
1055 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1056
d397712b 1057 if (disk_num_bytes < cur_alloc_size)
3b951516 1058 break;
d397712b 1059
c8b97818
CM
1060 /* we're not doing compressed IO, don't unlock the first
1061 * page (which the caller expects to stay locked), don't
1062 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1063 *
1064 * Do set the Private2 bit so we know this page was properly
1065 * setup for writepage
c8b97818 1066 */
c2790a2e
JB
1067 op = unlock ? PAGE_UNLOCK : 0;
1068 op |= PAGE_SET_PRIVATE2;
a791e35e 1069
c2790a2e 1070 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1071 start + ram_size - 1,
1072 delalloc_end, locked_page,
c2790a2e
JB
1073 EXTENT_LOCKED | EXTENT_DELALLOC,
1074 op);
c8b97818 1075 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1076 num_bytes -= cur_alloc_size;
1077 alloc_hint = ins.objectid + ins.offset;
1078 start += cur_alloc_size;
b888db2b 1079 }
79787eaa 1080out:
be20aa9d 1081 return ret;
b7d5b0a8 1082
d9f85963
FM
1083out_drop_extent_cache:
1084 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1085out_reserve:
9cfa3e34 1086 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1087 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1088out_unlock:
ba8b04c1
QW
1089 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1090 locked_page,
151a41bc
JB
1091 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1092 EXTENT_DELALLOC | EXTENT_DEFRAG,
1093 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1094 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1095 goto out;
771ed689 1096}
c8b97818 1097
771ed689
CM
1098/*
1099 * work queue call back to started compression on a file and pages
1100 */
1101static noinline void async_cow_start(struct btrfs_work *work)
1102{
1103 struct async_cow *async_cow;
1104 int num_added = 0;
1105 async_cow = container_of(work, struct async_cow, work);
1106
1107 compress_file_range(async_cow->inode, async_cow->locked_page,
1108 async_cow->start, async_cow->end, async_cow,
1109 &num_added);
8180ef88 1110 if (num_added == 0) {
cb77fcd8 1111 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1112 async_cow->inode = NULL;
8180ef88 1113 }
771ed689
CM
1114}
1115
1116/*
1117 * work queue call back to submit previously compressed pages
1118 */
1119static noinline void async_cow_submit(struct btrfs_work *work)
1120{
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root;
1123 unsigned long nr_pages;
1124
1125 async_cow = container_of(work, struct async_cow, work);
1126
1127 root = async_cow->root;
09cbfeaf
KS
1128 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1129 PAGE_SHIFT;
771ed689 1130
ee863954
DS
1131 /*
1132 * atomic_sub_return implies a barrier for waitqueue_active
1133 */
66657b31 1134 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1135 5 * SZ_1M &&
771ed689
CM
1136 waitqueue_active(&root->fs_info->async_submit_wait))
1137 wake_up(&root->fs_info->async_submit_wait);
1138
d397712b 1139 if (async_cow->inode)
771ed689 1140 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1141}
c8b97818 1142
771ed689
CM
1143static noinline void async_cow_free(struct btrfs_work *work)
1144{
1145 struct async_cow *async_cow;
1146 async_cow = container_of(work, struct async_cow, work);
8180ef88 1147 if (async_cow->inode)
cb77fcd8 1148 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1149 kfree(async_cow);
1150}
1151
1152static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1153 u64 start, u64 end, int *page_started,
1154 unsigned long *nr_written)
1155{
1156 struct async_cow *async_cow;
1157 struct btrfs_root *root = BTRFS_I(inode)->root;
1158 unsigned long nr_pages;
1159 u64 cur_end;
ee22184b 1160 int limit = 10 * SZ_1M;
771ed689 1161
a3429ab7
CM
1162 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1163 1, 0, NULL, GFP_NOFS);
d397712b 1164 while (start < end) {
771ed689 1165 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1166 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1167 async_cow->inode = igrab(inode);
771ed689
CM
1168 async_cow->root = root;
1169 async_cow->locked_page = locked_page;
1170 async_cow->start = start;
1171
f79707b0 1172 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
3cdde224 1173 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
771ed689
CM
1174 cur_end = end;
1175 else
ee22184b 1176 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1177
1178 async_cow->end = cur_end;
1179 INIT_LIST_HEAD(&async_cow->extents);
1180
9e0af237
LB
1181 btrfs_init_work(&async_cow->work,
1182 btrfs_delalloc_helper,
1183 async_cow_start, async_cow_submit,
1184 async_cow_free);
771ed689 1185
09cbfeaf
KS
1186 nr_pages = (cur_end - start + PAGE_SIZE) >>
1187 PAGE_SHIFT;
771ed689
CM
1188 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1189
afe3d242
QW
1190 btrfs_queue_work(root->fs_info->delalloc_workers,
1191 &async_cow->work);
771ed689
CM
1192
1193 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1194 wait_event(root->fs_info->async_submit_wait,
1195 (atomic_read(&root->fs_info->async_delalloc_pages) <
1196 limit));
1197 }
1198
d397712b 1199 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1200 atomic_read(&root->fs_info->async_delalloc_pages)) {
1201 wait_event(root->fs_info->async_submit_wait,
1202 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1203 0));
1204 }
1205
1206 *nr_written += nr_pages;
1207 start = cur_end + 1;
1208 }
1209 *page_started = 1;
1210 return 0;
be20aa9d
CM
1211}
1212
d397712b 1213static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1214 u64 bytenr, u64 num_bytes)
1215{
1216 int ret;
1217 struct btrfs_ordered_sum *sums;
1218 LIST_HEAD(list);
1219
07d400a6 1220 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1221 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1222 if (ret == 0 && list_empty(&list))
1223 return 0;
1224
1225 while (!list_empty(&list)) {
1226 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1227 list_del(&sums->list);
1228 kfree(sums);
1229 }
1230 return 1;
1231}
1232
d352ac68
CM
1233/*
1234 * when nowcow writeback call back. This checks for snapshots or COW copies
1235 * of the extents that exist in the file, and COWs the file as required.
1236 *
1237 * If no cow copies or snapshots exist, we write directly to the existing
1238 * blocks on disk
1239 */
7f366cfe
CM
1240static noinline int run_delalloc_nocow(struct inode *inode,
1241 struct page *locked_page,
771ed689
CM
1242 u64 start, u64 end, int *page_started, int force,
1243 unsigned long *nr_written)
be20aa9d 1244{
be20aa9d 1245 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1246 struct btrfs_trans_handle *trans;
be20aa9d 1247 struct extent_buffer *leaf;
be20aa9d 1248 struct btrfs_path *path;
80ff3856 1249 struct btrfs_file_extent_item *fi;
be20aa9d 1250 struct btrfs_key found_key;
80ff3856
YZ
1251 u64 cow_start;
1252 u64 cur_offset;
1253 u64 extent_end;
5d4f98a2 1254 u64 extent_offset;
80ff3856
YZ
1255 u64 disk_bytenr;
1256 u64 num_bytes;
b4939680 1257 u64 disk_num_bytes;
cc95bef6 1258 u64 ram_bytes;
80ff3856 1259 int extent_type;
79787eaa 1260 int ret, err;
d899e052 1261 int type;
80ff3856
YZ
1262 int nocow;
1263 int check_prev = 1;
82d5902d 1264 bool nolock;
33345d01 1265 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1266
1267 path = btrfs_alloc_path();
17ca04af 1268 if (!path) {
ba8b04c1
QW
1269 extent_clear_unlock_delalloc(inode, start, end, end,
1270 locked_page,
c2790a2e 1271 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1272 EXTENT_DO_ACCOUNTING |
1273 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1274 PAGE_CLEAR_DIRTY |
1275 PAGE_SET_WRITEBACK |
1276 PAGE_END_WRITEBACK);
d8926bb3 1277 return -ENOMEM;
17ca04af 1278 }
82d5902d 1279
83eea1f1 1280 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1281
1282 if (nolock)
7a7eaa40 1283 trans = btrfs_join_transaction_nolock(root);
82d5902d 1284 else
7a7eaa40 1285 trans = btrfs_join_transaction(root);
ff5714cc 1286
79787eaa 1287 if (IS_ERR(trans)) {
ba8b04c1
QW
1288 extent_clear_unlock_delalloc(inode, start, end, end,
1289 locked_page,
c2790a2e 1290 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1291 EXTENT_DO_ACCOUNTING |
1292 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1293 PAGE_CLEAR_DIRTY |
1294 PAGE_SET_WRITEBACK |
1295 PAGE_END_WRITEBACK);
79787eaa
JM
1296 btrfs_free_path(path);
1297 return PTR_ERR(trans);
1298 }
1299
74b21075 1300 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1301
80ff3856
YZ
1302 cow_start = (u64)-1;
1303 cur_offset = start;
1304 while (1) {
33345d01 1305 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1306 cur_offset, 0);
d788a349 1307 if (ret < 0)
79787eaa 1308 goto error;
80ff3856
YZ
1309 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 leaf = path->nodes[0];
1311 btrfs_item_key_to_cpu(leaf, &found_key,
1312 path->slots[0] - 1);
33345d01 1313 if (found_key.objectid == ino &&
80ff3856
YZ
1314 found_key.type == BTRFS_EXTENT_DATA_KEY)
1315 path->slots[0]--;
1316 }
1317 check_prev = 0;
1318next_slot:
1319 leaf = path->nodes[0];
1320 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 ret = btrfs_next_leaf(root, path);
d788a349 1322 if (ret < 0)
79787eaa 1323 goto error;
80ff3856
YZ
1324 if (ret > 0)
1325 break;
1326 leaf = path->nodes[0];
1327 }
be20aa9d 1328
80ff3856
YZ
1329 nocow = 0;
1330 disk_bytenr = 0;
17d217fe 1331 num_bytes = 0;
80ff3856
YZ
1332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1333
1d512cb7
FM
1334 if (found_key.objectid > ino)
1335 break;
1336 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1337 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1338 path->slots[0]++;
1339 goto next_slot;
1340 }
1341 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1342 found_key.offset > end)
1343 break;
1344
1345 if (found_key.offset > cur_offset) {
1346 extent_end = found_key.offset;
e9061e21 1347 extent_type = 0;
80ff3856
YZ
1348 goto out_check;
1349 }
1350
1351 fi = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_file_extent_item);
1353 extent_type = btrfs_file_extent_type(leaf, fi);
1354
cc95bef6 1355 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1356 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1357 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1358 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1359 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1360 extent_end = found_key.offset +
1361 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1362 disk_num_bytes =
1363 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1364 if (extent_end <= start) {
1365 path->slots[0]++;
1366 goto next_slot;
1367 }
17d217fe
YZ
1368 if (disk_bytenr == 0)
1369 goto out_check;
80ff3856
YZ
1370 if (btrfs_file_extent_compression(leaf, fi) ||
1371 btrfs_file_extent_encryption(leaf, fi) ||
1372 btrfs_file_extent_other_encoding(leaf, fi))
1373 goto out_check;
d899e052
YZ
1374 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1375 goto out_check;
d2fb3437 1376 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1377 goto out_check;
33345d01 1378 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1379 found_key.offset -
1380 extent_offset, disk_bytenr))
17d217fe 1381 goto out_check;
5d4f98a2 1382 disk_bytenr += extent_offset;
17d217fe
YZ
1383 disk_bytenr += cur_offset - found_key.offset;
1384 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1385 /*
1386 * if there are pending snapshots for this root,
1387 * we fall into common COW way.
1388 */
1389 if (!nolock) {
9ea24bbe 1390 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1391 if (!err)
1392 goto out_check;
1393 }
17d217fe
YZ
1394 /*
1395 * force cow if csum exists in the range.
1396 * this ensure that csum for a given extent are
1397 * either valid or do not exist.
1398 */
1399 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1400 goto out_check;
f78c436c
FM
1401 if (!btrfs_inc_nocow_writers(root->fs_info,
1402 disk_bytenr))
1403 goto out_check;
80ff3856
YZ
1404 nocow = 1;
1405 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1406 extent_end = found_key.offset +
514ac8ad
CM
1407 btrfs_file_extent_inline_len(leaf,
1408 path->slots[0], fi);
80ff3856
YZ
1409 extent_end = ALIGN(extent_end, root->sectorsize);
1410 } else {
1411 BUG_ON(1);
1412 }
1413out_check:
1414 if (extent_end <= start) {
1415 path->slots[0]++;
e9894fd3 1416 if (!nolock && nocow)
9ea24bbe 1417 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1418 if (nocow)
1419 btrfs_dec_nocow_writers(root->fs_info,
1420 disk_bytenr);
80ff3856
YZ
1421 goto next_slot;
1422 }
1423 if (!nocow) {
1424 if (cow_start == (u64)-1)
1425 cow_start = cur_offset;
1426 cur_offset = extent_end;
1427 if (cur_offset > end)
1428 break;
1429 path->slots[0]++;
1430 goto next_slot;
7ea394f1
YZ
1431 }
1432
b3b4aa74 1433 btrfs_release_path(path);
80ff3856 1434 if (cow_start != (u64)-1) {
00361589
JB
1435 ret = cow_file_range(inode, locked_page,
1436 cow_start, found_key.offset - 1,
dda3245e
WX
1437 end, page_started, nr_written, 1,
1438 NULL);
e9894fd3
WS
1439 if (ret) {
1440 if (!nolock && nocow)
9ea24bbe 1441 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1442 if (nocow)
1443 btrfs_dec_nocow_writers(root->fs_info,
1444 disk_bytenr);
79787eaa 1445 goto error;
e9894fd3 1446 }
80ff3856 1447 cow_start = (u64)-1;
7ea394f1 1448 }
80ff3856 1449
d899e052
YZ
1450 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1451 struct extent_map *em;
1452 struct extent_map_tree *em_tree;
1453 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1454 em = alloc_extent_map();
79787eaa 1455 BUG_ON(!em); /* -ENOMEM */
d899e052 1456 em->start = cur_offset;
70c8a91c 1457 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1458 em->len = num_bytes;
1459 em->block_len = num_bytes;
1460 em->block_start = disk_bytenr;
b4939680 1461 em->orig_block_len = disk_num_bytes;
cc95bef6 1462 em->ram_bytes = ram_bytes;
d899e052 1463 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1464 em->mod_start = em->start;
1465 em->mod_len = em->len;
d899e052 1466 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1467 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1468 em->generation = -1;
d899e052 1469 while (1) {
890871be 1470 write_lock(&em_tree->lock);
09a2a8f9 1471 ret = add_extent_mapping(em_tree, em, 1);
890871be 1472 write_unlock(&em_tree->lock);
d899e052
YZ
1473 if (ret != -EEXIST) {
1474 free_extent_map(em);
1475 break;
1476 }
1477 btrfs_drop_extent_cache(inode, em->start,
1478 em->start + em->len - 1, 0);
1479 }
1480 type = BTRFS_ORDERED_PREALLOC;
1481 } else {
1482 type = BTRFS_ORDERED_NOCOW;
1483 }
80ff3856
YZ
1484
1485 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1486 num_bytes, num_bytes, type);
f78c436c
FM
1487 if (nocow)
1488 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1489 BUG_ON(ret); /* -ENOMEM */
771ed689 1490
efa56464
YZ
1491 if (root->root_key.objectid ==
1492 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1493 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1494 num_bytes);
e9894fd3
WS
1495 if (ret) {
1496 if (!nolock && nocow)
9ea24bbe 1497 btrfs_end_write_no_snapshoting(root);
79787eaa 1498 goto error;
e9894fd3 1499 }
efa56464
YZ
1500 }
1501
c2790a2e 1502 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1503 cur_offset + num_bytes - 1, end,
c2790a2e 1504 locked_page, EXTENT_LOCKED |
18513091
WX
1505 EXTENT_DELALLOC |
1506 EXTENT_CLEAR_DATA_RESV,
1507 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1508
e9894fd3 1509 if (!nolock && nocow)
9ea24bbe 1510 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1511 cur_offset = extent_end;
1512 if (cur_offset > end)
1513 break;
be20aa9d 1514 }
b3b4aa74 1515 btrfs_release_path(path);
80ff3856 1516
17ca04af 1517 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1518 cow_start = cur_offset;
17ca04af
JB
1519 cur_offset = end;
1520 }
1521
80ff3856 1522 if (cow_start != (u64)-1) {
dda3245e
WX
1523 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1524 page_started, nr_written, 1, NULL);
d788a349 1525 if (ret)
79787eaa 1526 goto error;
80ff3856
YZ
1527 }
1528
79787eaa 1529error:
a698d075 1530 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1531 if (!ret)
1532 ret = err;
1533
17ca04af 1534 if (ret && cur_offset < end)
ba8b04c1 1535 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1536 locked_page, EXTENT_LOCKED |
151a41bc
JB
1537 EXTENT_DELALLOC | EXTENT_DEFRAG |
1538 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1539 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1540 PAGE_SET_WRITEBACK |
1541 PAGE_END_WRITEBACK);
7ea394f1 1542 btrfs_free_path(path);
79787eaa 1543 return ret;
be20aa9d
CM
1544}
1545
47059d93
WS
1546static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1547{
1548
1549 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1550 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1551 return 0;
1552
1553 /*
1554 * @defrag_bytes is a hint value, no spinlock held here,
1555 * if is not zero, it means the file is defragging.
1556 * Force cow if given extent needs to be defragged.
1557 */
1558 if (BTRFS_I(inode)->defrag_bytes &&
1559 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1560 EXTENT_DEFRAG, 0, NULL))
1561 return 1;
1562
1563 return 0;
1564}
1565
d352ac68
CM
1566/*
1567 * extent_io.c call back to do delayed allocation processing
1568 */
c8b97818 1569static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1570 u64 start, u64 end, int *page_started,
1571 unsigned long *nr_written)
be20aa9d 1572{
be20aa9d 1573 int ret;
47059d93 1574 int force_cow = need_force_cow(inode, start, end);
a2135011 1575
47059d93 1576 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1577 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1578 page_started, 1, nr_written);
47059d93 1579 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1580 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1581 page_started, 0, nr_written);
7816030e 1582 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1583 ret = cow_file_range(inode, locked_page, start, end, end,
1584 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1585 } else {
1586 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1587 &BTRFS_I(inode)->runtime_flags);
771ed689 1588 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1589 page_started, nr_written);
7ddf5a42 1590 }
b888db2b
CM
1591 return ret;
1592}
1593
1bf85046
JM
1594static void btrfs_split_extent_hook(struct inode *inode,
1595 struct extent_state *orig, u64 split)
9ed74f2d 1596{
dcab6a3b
JB
1597 u64 size;
1598
0ca1f7ce 1599 /* not delalloc, ignore it */
9ed74f2d 1600 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1601 return;
9ed74f2d 1602
dcab6a3b
JB
1603 size = orig->end - orig->start + 1;
1604 if (size > BTRFS_MAX_EXTENT_SIZE) {
1605 u64 num_extents;
1606 u64 new_size;
1607
1608 /*
ba117213
JB
1609 * See the explanation in btrfs_merge_extent_hook, the same
1610 * applies here, just in reverse.
dcab6a3b
JB
1611 */
1612 new_size = orig->end - split + 1;
ba117213 1613 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1614 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1615 new_size = split - orig->start;
1616 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1617 BTRFS_MAX_EXTENT_SIZE);
1618 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1619 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1620 return;
1621 }
1622
9e0baf60
JB
1623 spin_lock(&BTRFS_I(inode)->lock);
1624 BTRFS_I(inode)->outstanding_extents++;
1625 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1626}
1627
1628/*
1629 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1630 * extents so we can keep track of new extents that are just merged onto old
1631 * extents, such as when we are doing sequential writes, so we can properly
1632 * account for the metadata space we'll need.
1633 */
1bf85046
JM
1634static void btrfs_merge_extent_hook(struct inode *inode,
1635 struct extent_state *new,
1636 struct extent_state *other)
9ed74f2d 1637{
dcab6a3b
JB
1638 u64 new_size, old_size;
1639 u64 num_extents;
1640
9ed74f2d
JB
1641 /* not delalloc, ignore it */
1642 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1643 return;
9ed74f2d 1644
8461a3de
JB
1645 if (new->start > other->start)
1646 new_size = new->end - other->start + 1;
1647 else
1648 new_size = other->end - new->start + 1;
dcab6a3b
JB
1649
1650 /* we're not bigger than the max, unreserve the space and go */
1651 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 BTRFS_I(inode)->outstanding_extents--;
1654 spin_unlock(&BTRFS_I(inode)->lock);
1655 return;
1656 }
1657
1658 /*
ba117213
JB
1659 * We have to add up either side to figure out how many extents were
1660 * accounted for before we merged into one big extent. If the number of
1661 * extents we accounted for is <= the amount we need for the new range
1662 * then we can return, otherwise drop. Think of it like this
1663 *
1664 * [ 4k][MAX_SIZE]
1665 *
1666 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1667 * need 2 outstanding extents, on one side we have 1 and the other side
1668 * we have 1 so they are == and we can return. But in this case
1669 *
1670 * [MAX_SIZE+4k][MAX_SIZE+4k]
1671 *
1672 * Each range on their own accounts for 2 extents, but merged together
1673 * they are only 3 extents worth of accounting, so we need to drop in
1674 * this case.
dcab6a3b 1675 */
ba117213 1676 old_size = other->end - other->start + 1;
dcab6a3b
JB
1677 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1678 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1679 old_size = new->end - new->start + 1;
1680 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1681 BTRFS_MAX_EXTENT_SIZE);
1682
dcab6a3b 1683 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1684 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1685 return;
1686
9e0baf60
JB
1687 spin_lock(&BTRFS_I(inode)->lock);
1688 BTRFS_I(inode)->outstanding_extents--;
1689 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1690}
1691
eb73c1b7
MX
1692static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1693 struct inode *inode)
1694{
1695 spin_lock(&root->delalloc_lock);
1696 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1697 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1698 &root->delalloc_inodes);
1699 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1700 &BTRFS_I(inode)->runtime_flags);
1701 root->nr_delalloc_inodes++;
1702 if (root->nr_delalloc_inodes == 1) {
1703 spin_lock(&root->fs_info->delalloc_root_lock);
1704 BUG_ON(!list_empty(&root->delalloc_root));
1705 list_add_tail(&root->delalloc_root,
1706 &root->fs_info->delalloc_roots);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711}
1712
1713static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1714 struct inode *inode)
1715{
1716 spin_lock(&root->delalloc_lock);
1717 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1718 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1719 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1720 &BTRFS_I(inode)->runtime_flags);
1721 root->nr_delalloc_inodes--;
1722 if (!root->nr_delalloc_inodes) {
1723 spin_lock(&root->fs_info->delalloc_root_lock);
1724 BUG_ON(list_empty(&root->delalloc_root));
1725 list_del_init(&root->delalloc_root);
1726 spin_unlock(&root->fs_info->delalloc_root_lock);
1727 }
1728 }
1729 spin_unlock(&root->delalloc_lock);
1730}
1731
d352ac68
CM
1732/*
1733 * extent_io.c set_bit_hook, used to track delayed allocation
1734 * bytes in this file, and to maintain the list of inodes that
1735 * have pending delalloc work to be done.
1736 */
1bf85046 1737static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1738 struct extent_state *state, unsigned *bits)
291d673e 1739{
9ed74f2d 1740
47059d93
WS
1741 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1742 WARN_ON(1);
75eff68e
CM
1743 /*
1744 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1745 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1746 * bit, which is only set or cleared with irqs on
1747 */
0ca1f7ce 1748 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1749 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1750 u64 len = state->end + 1 - state->start;
83eea1f1 1751 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1752
9e0baf60 1753 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1754 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1755 } else {
1756 spin_lock(&BTRFS_I(inode)->lock);
1757 BTRFS_I(inode)->outstanding_extents++;
1758 spin_unlock(&BTRFS_I(inode)->lock);
1759 }
287a0ab9 1760
6a3891c5 1761 /* For sanity tests */
f5ee5c9a 1762 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1763 return;
1764
963d678b
MX
1765 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1766 root->fs_info->delalloc_batch);
df0af1a5 1767 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1768 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1769 if (*bits & EXTENT_DEFRAG)
1770 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1771 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1772 &BTRFS_I(inode)->runtime_flags))
1773 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1774 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1775 }
291d673e
CM
1776}
1777
d352ac68
CM
1778/*
1779 * extent_io.c clear_bit_hook, see set_bit_hook for why
1780 */
1bf85046 1781static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1782 struct extent_state *state,
9ee49a04 1783 unsigned *bits)
291d673e 1784{
47059d93 1785 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1786 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1787 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1788
1789 spin_lock(&BTRFS_I(inode)->lock);
1790 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1791 BTRFS_I(inode)->defrag_bytes -= len;
1792 spin_unlock(&BTRFS_I(inode)->lock);
1793
75eff68e
CM
1794 /*
1795 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1796 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1797 * bit, which is only set or cleared with irqs on
1798 */
0ca1f7ce 1799 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1800 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1801 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1802
9e0baf60 1803 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1804 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1805 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1806 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1807 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1808 spin_unlock(&BTRFS_I(inode)->lock);
1809 }
0ca1f7ce 1810
b6d08f06
JB
1811 /*
1812 * We don't reserve metadata space for space cache inodes so we
1813 * don't need to call dellalloc_release_metadata if there is an
1814 * error.
1815 */
1816 if (*bits & EXTENT_DO_ACCOUNTING &&
1817 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1818 btrfs_delalloc_release_metadata(inode, len);
1819
6a3891c5 1820 /* For sanity tests. */
f5ee5c9a 1821 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
1822 return;
1823
0cb59c99 1824 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
18513091
WX
1825 && do_list && !(state->state & EXTENT_NORESERVE)
1826 && (*bits & (EXTENT_DO_ACCOUNTING |
1827 EXTENT_CLEAR_DATA_RESV)))
51773bec
QW
1828 btrfs_free_reserved_data_space_noquota(inode,
1829 state->start, len);
9ed74f2d 1830
963d678b
MX
1831 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1832 root->fs_info->delalloc_batch);
df0af1a5 1833 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1834 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1835 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1836 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1837 &BTRFS_I(inode)->runtime_flags))
1838 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1839 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1840 }
291d673e
CM
1841}
1842
d352ac68
CM
1843/*
1844 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1845 * we don't create bios that span stripes or chunks
6f034ece
LB
1846 *
1847 * return 1 if page cannot be merged to bio
1848 * return 0 if page can be merged to bio
1849 * return error otherwise
d352ac68 1850 */
81a75f67 1851int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1852 size_t size, struct bio *bio,
1853 unsigned long bio_flags)
239b14b3
CM
1854{
1855 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1856 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1857 u64 length = 0;
1858 u64 map_length;
239b14b3
CM
1859 int ret;
1860
771ed689
CM
1861 if (bio_flags & EXTENT_BIO_COMPRESSED)
1862 return 0;
1863
4f024f37 1864 length = bio->bi_iter.bi_size;
239b14b3 1865 map_length = length;
cf8cddd3 1866 ret = btrfs_map_block(root->fs_info, btrfs_op(bio), logical,
f188591e 1867 &map_length, NULL, 0);
6f034ece
LB
1868 if (ret < 0)
1869 return ret;
d397712b 1870 if (map_length < length + size)
239b14b3 1871 return 1;
3444a972 1872 return 0;
239b14b3
CM
1873}
1874
d352ac68
CM
1875/*
1876 * in order to insert checksums into the metadata in large chunks,
1877 * we wait until bio submission time. All the pages in the bio are
1878 * checksummed and sums are attached onto the ordered extent record.
1879 *
1880 * At IO completion time the cums attached on the ordered extent record
1881 * are inserted into the btree
1882 */
81a75f67
MC
1883static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1884 int mirror_num, unsigned long bio_flags,
eaf25d93 1885 u64 bio_offset)
065631f6 1886{
065631f6 1887 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1888 int ret = 0;
e015640f 1889
d20f7043 1890 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1891 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1892 return 0;
1893}
e015640f 1894
4a69a410
CM
1895/*
1896 * in order to insert checksums into the metadata in large chunks,
1897 * we wait until bio submission time. All the pages in the bio are
1898 * checksummed and sums are attached onto the ordered extent record.
1899 *
1900 * At IO completion time the cums attached on the ordered extent record
1901 * are inserted into the btree
1902 */
81a75f67 1903static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
1904 int mirror_num, unsigned long bio_flags,
1905 u64 bio_offset)
4a69a410
CM
1906{
1907 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1908 int ret;
1909
81a75f67 1910 ret = btrfs_map_bio(root, bio, mirror_num, 1);
4246a0b6
CH
1911 if (ret) {
1912 bio->bi_error = ret;
1913 bio_endio(bio);
1914 }
61891923 1915 return ret;
44b8bd7e
CM
1916}
1917
d352ac68 1918/*
cad321ad
CM
1919 * extent_io.c submission hook. This does the right thing for csum calculation
1920 * on write, or reading the csums from the tree before a read
d352ac68 1921 */
81a75f67 1922static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1923 int mirror_num, unsigned long bio_flags,
1924 u64 bio_offset)
44b8bd7e
CM
1925{
1926 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1927 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1928 int ret = 0;
19b9bdb0 1929 int skip_sum;
b812ce28 1930 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1931
6cbff00f 1932 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1933
83eea1f1 1934 if (btrfs_is_free_space_inode(inode))
0d51e28a 1935 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1936
37226b21 1937 if (bio_op(bio) != REQ_OP_WRITE) {
5fd02043
JB
1938 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1939 if (ret)
61891923 1940 goto out;
5fd02043 1941
d20f7043 1942 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1943 ret = btrfs_submit_compressed_read(inode, bio,
1944 mirror_num,
1945 bio_flags);
1946 goto out;
c2db1073
TI
1947 } else if (!skip_sum) {
1948 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1949 if (ret)
61891923 1950 goto out;
c2db1073 1951 }
4d1b5fb4 1952 goto mapit;
b812ce28 1953 } else if (async && !skip_sum) {
17d217fe
YZ
1954 /* csum items have already been cloned */
1955 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1956 goto mapit;
19b9bdb0 1957 /* we're doing a write, do the async checksumming */
61891923 1958 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 1959 inode, bio, mirror_num,
eaf25d93
CM
1960 bio_flags, bio_offset,
1961 __btrfs_submit_bio_start,
4a69a410 1962 __btrfs_submit_bio_done);
61891923 1963 goto out;
b812ce28
JB
1964 } else if (!skip_sum) {
1965 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1966 if (ret)
1967 goto out;
19b9bdb0
CM
1968 }
1969
0b86a832 1970mapit:
81a75f67 1971 ret = btrfs_map_bio(root, bio, mirror_num, 0);
61891923
SB
1972
1973out:
4246a0b6
CH
1974 if (ret < 0) {
1975 bio->bi_error = ret;
1976 bio_endio(bio);
1977 }
61891923 1978 return ret;
065631f6 1979}
6885f308 1980
d352ac68
CM
1981/*
1982 * given a list of ordered sums record them in the inode. This happens
1983 * at IO completion time based on sums calculated at bio submission time.
1984 */
ba1da2f4 1985static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1986 struct inode *inode, u64 file_offset,
1987 struct list_head *list)
1988{
e6dcd2dc
CM
1989 struct btrfs_ordered_sum *sum;
1990
c6e30871 1991 list_for_each_entry(sum, list, list) {
39847c4d 1992 trans->adding_csums = 1;
d20f7043
CM
1993 btrfs_csum_file_blocks(trans,
1994 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1995 trans->adding_csums = 0;
e6dcd2dc
CM
1996 }
1997 return 0;
1998}
1999
2ac55d41 2000int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2001 struct extent_state **cached_state, int dedupe)
ea8c2819 2002{
09cbfeaf 2003 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2004 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2005 cached_state);
ea8c2819
CM
2006}
2007
d352ac68 2008/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2009struct btrfs_writepage_fixup {
2010 struct page *page;
2011 struct btrfs_work work;
2012};
2013
b2950863 2014static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2015{
2016 struct btrfs_writepage_fixup *fixup;
2017 struct btrfs_ordered_extent *ordered;
2ac55d41 2018 struct extent_state *cached_state = NULL;
247e743c
CM
2019 struct page *page;
2020 struct inode *inode;
2021 u64 page_start;
2022 u64 page_end;
87826df0 2023 int ret;
247e743c
CM
2024
2025 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2026 page = fixup->page;
4a096752 2027again:
247e743c
CM
2028 lock_page(page);
2029 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2030 ClearPageChecked(page);
2031 goto out_page;
2032 }
2033
2034 inode = page->mapping->host;
2035 page_start = page_offset(page);
09cbfeaf 2036 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2037
ff13db41 2038 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2039 &cached_state);
4a096752
CM
2040
2041 /* already ordered? We're done */
8b62b72b 2042 if (PagePrivate2(page))
247e743c 2043 goto out;
4a096752 2044
dbfdb6d1 2045 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2046 PAGE_SIZE);
4a096752 2047 if (ordered) {
2ac55d41
JB
2048 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2049 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2050 unlock_page(page);
2051 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2052 btrfs_put_ordered_extent(ordered);
4a096752
CM
2053 goto again;
2054 }
247e743c 2055
7cf5b976 2056 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2057 PAGE_SIZE);
87826df0
JM
2058 if (ret) {
2059 mapping_set_error(page->mapping, ret);
2060 end_extent_writepage(page, ret, page_start, page_end);
2061 ClearPageChecked(page);
2062 goto out;
2063 }
2064
ba8b04c1
QW
2065 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2066 0);
247e743c 2067 ClearPageChecked(page);
87826df0 2068 set_page_dirty(page);
247e743c 2069out:
2ac55d41
JB
2070 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2071 &cached_state, GFP_NOFS);
247e743c
CM
2072out_page:
2073 unlock_page(page);
09cbfeaf 2074 put_page(page);
b897abec 2075 kfree(fixup);
247e743c
CM
2076}
2077
2078/*
2079 * There are a few paths in the higher layers of the kernel that directly
2080 * set the page dirty bit without asking the filesystem if it is a
2081 * good idea. This causes problems because we want to make sure COW
2082 * properly happens and the data=ordered rules are followed.
2083 *
c8b97818 2084 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2085 * hasn't been properly setup for IO. We kick off an async process
2086 * to fix it up. The async helper will wait for ordered extents, set
2087 * the delalloc bit and make it safe to write the page.
2088 */
b2950863 2089static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2090{
2091 struct inode *inode = page->mapping->host;
2092 struct btrfs_writepage_fixup *fixup;
2093 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2094
8b62b72b
CM
2095 /* this page is properly in the ordered list */
2096 if (TestClearPagePrivate2(page))
247e743c
CM
2097 return 0;
2098
2099 if (PageChecked(page))
2100 return -EAGAIN;
2101
2102 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2103 if (!fixup)
2104 return -EAGAIN;
f421950f 2105
247e743c 2106 SetPageChecked(page);
09cbfeaf 2107 get_page(page);
9e0af237
LB
2108 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2109 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2110 fixup->page = page;
dc6e3209 2111 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2112 return -EBUSY;
247e743c
CM
2113}
2114
d899e052
YZ
2115static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2116 struct inode *inode, u64 file_pos,
2117 u64 disk_bytenr, u64 disk_num_bytes,
2118 u64 num_bytes, u64 ram_bytes,
2119 u8 compression, u8 encryption,
2120 u16 other_encoding, int extent_type)
2121{
2122 struct btrfs_root *root = BTRFS_I(inode)->root;
2123 struct btrfs_file_extent_item *fi;
2124 struct btrfs_path *path;
2125 struct extent_buffer *leaf;
2126 struct btrfs_key ins;
1acae57b 2127 int extent_inserted = 0;
d899e052
YZ
2128 int ret;
2129
2130 path = btrfs_alloc_path();
d8926bb3
MF
2131 if (!path)
2132 return -ENOMEM;
d899e052 2133
a1ed835e
CM
2134 /*
2135 * we may be replacing one extent in the tree with another.
2136 * The new extent is pinned in the extent map, and we don't want
2137 * to drop it from the cache until it is completely in the btree.
2138 *
2139 * So, tell btrfs_drop_extents to leave this extent in the cache.
2140 * the caller is expected to unpin it and allow it to be merged
2141 * with the others.
2142 */
1acae57b
FDBM
2143 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2144 file_pos + num_bytes, NULL, 0,
2145 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2146 if (ret)
2147 goto out;
d899e052 2148
1acae57b
FDBM
2149 if (!extent_inserted) {
2150 ins.objectid = btrfs_ino(inode);
2151 ins.offset = file_pos;
2152 ins.type = BTRFS_EXTENT_DATA_KEY;
2153
2154 path->leave_spinning = 1;
2155 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2156 sizeof(*fi));
2157 if (ret)
2158 goto out;
2159 }
d899e052
YZ
2160 leaf = path->nodes[0];
2161 fi = btrfs_item_ptr(leaf, path->slots[0],
2162 struct btrfs_file_extent_item);
2163 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2164 btrfs_set_file_extent_type(leaf, fi, extent_type);
2165 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2166 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2167 btrfs_set_file_extent_offset(leaf, fi, 0);
2168 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2169 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2170 btrfs_set_file_extent_compression(leaf, fi, compression);
2171 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2172 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2173
d899e052 2174 btrfs_mark_buffer_dirty(leaf);
ce195332 2175 btrfs_release_path(path);
d899e052
YZ
2176
2177 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2178
2179 ins.objectid = disk_bytenr;
2180 ins.offset = disk_num_bytes;
2181 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2182 ret = btrfs_alloc_reserved_file_extent(trans, root,
2183 root->root_key.objectid,
5846a3c2
QW
2184 btrfs_ino(inode), file_pos,
2185 ram_bytes, &ins);
297d750b 2186 /*
5846a3c2
QW
2187 * Release the reserved range from inode dirty range map, as it is
2188 * already moved into delayed_ref_head
297d750b
QW
2189 */
2190 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2191out:
d899e052 2192 btrfs_free_path(path);
b9473439 2193
79787eaa 2194 return ret;
d899e052
YZ
2195}
2196
38c227d8
LB
2197/* snapshot-aware defrag */
2198struct sa_defrag_extent_backref {
2199 struct rb_node node;
2200 struct old_sa_defrag_extent *old;
2201 u64 root_id;
2202 u64 inum;
2203 u64 file_pos;
2204 u64 extent_offset;
2205 u64 num_bytes;
2206 u64 generation;
2207};
2208
2209struct old_sa_defrag_extent {
2210 struct list_head list;
2211 struct new_sa_defrag_extent *new;
2212
2213 u64 extent_offset;
2214 u64 bytenr;
2215 u64 offset;
2216 u64 len;
2217 int count;
2218};
2219
2220struct new_sa_defrag_extent {
2221 struct rb_root root;
2222 struct list_head head;
2223 struct btrfs_path *path;
2224 struct inode *inode;
2225 u64 file_pos;
2226 u64 len;
2227 u64 bytenr;
2228 u64 disk_len;
2229 u8 compress_type;
2230};
2231
2232static int backref_comp(struct sa_defrag_extent_backref *b1,
2233 struct sa_defrag_extent_backref *b2)
2234{
2235 if (b1->root_id < b2->root_id)
2236 return -1;
2237 else if (b1->root_id > b2->root_id)
2238 return 1;
2239
2240 if (b1->inum < b2->inum)
2241 return -1;
2242 else if (b1->inum > b2->inum)
2243 return 1;
2244
2245 if (b1->file_pos < b2->file_pos)
2246 return -1;
2247 else if (b1->file_pos > b2->file_pos)
2248 return 1;
2249
2250 /*
2251 * [------------------------------] ===> (a range of space)
2252 * |<--->| |<---->| =============> (fs/file tree A)
2253 * |<---------------------------->| ===> (fs/file tree B)
2254 *
2255 * A range of space can refer to two file extents in one tree while
2256 * refer to only one file extent in another tree.
2257 *
2258 * So we may process a disk offset more than one time(two extents in A)
2259 * and locate at the same extent(one extent in B), then insert two same
2260 * backrefs(both refer to the extent in B).
2261 */
2262 return 0;
2263}
2264
2265static void backref_insert(struct rb_root *root,
2266 struct sa_defrag_extent_backref *backref)
2267{
2268 struct rb_node **p = &root->rb_node;
2269 struct rb_node *parent = NULL;
2270 struct sa_defrag_extent_backref *entry;
2271 int ret;
2272
2273 while (*p) {
2274 parent = *p;
2275 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2276
2277 ret = backref_comp(backref, entry);
2278 if (ret < 0)
2279 p = &(*p)->rb_left;
2280 else
2281 p = &(*p)->rb_right;
2282 }
2283
2284 rb_link_node(&backref->node, parent, p);
2285 rb_insert_color(&backref->node, root);
2286}
2287
2288/*
2289 * Note the backref might has changed, and in this case we just return 0.
2290 */
2291static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2292 void *ctx)
2293{
2294 struct btrfs_file_extent_item *extent;
2295 struct btrfs_fs_info *fs_info;
2296 struct old_sa_defrag_extent *old = ctx;
2297 struct new_sa_defrag_extent *new = old->new;
2298 struct btrfs_path *path = new->path;
2299 struct btrfs_key key;
2300 struct btrfs_root *root;
2301 struct sa_defrag_extent_backref *backref;
2302 struct extent_buffer *leaf;
2303 struct inode *inode = new->inode;
2304 int slot;
2305 int ret;
2306 u64 extent_offset;
2307 u64 num_bytes;
2308
2309 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2310 inum == btrfs_ino(inode))
2311 return 0;
2312
2313 key.objectid = root_id;
2314 key.type = BTRFS_ROOT_ITEM_KEY;
2315 key.offset = (u64)-1;
2316
2317 fs_info = BTRFS_I(inode)->root->fs_info;
2318 root = btrfs_read_fs_root_no_name(fs_info, &key);
2319 if (IS_ERR(root)) {
2320 if (PTR_ERR(root) == -ENOENT)
2321 return 0;
2322 WARN_ON(1);
ab8d0fc4 2323 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2324 inum, offset, root_id);
2325 return PTR_ERR(root);
2326 }
2327
2328 key.objectid = inum;
2329 key.type = BTRFS_EXTENT_DATA_KEY;
2330 if (offset > (u64)-1 << 32)
2331 key.offset = 0;
2332 else
2333 key.offset = offset;
2334
2335 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2336 if (WARN_ON(ret < 0))
38c227d8 2337 return ret;
50f1319c 2338 ret = 0;
38c227d8
LB
2339
2340 while (1) {
2341 cond_resched();
2342
2343 leaf = path->nodes[0];
2344 slot = path->slots[0];
2345
2346 if (slot >= btrfs_header_nritems(leaf)) {
2347 ret = btrfs_next_leaf(root, path);
2348 if (ret < 0) {
2349 goto out;
2350 } else if (ret > 0) {
2351 ret = 0;
2352 goto out;
2353 }
2354 continue;
2355 }
2356
2357 path->slots[0]++;
2358
2359 btrfs_item_key_to_cpu(leaf, &key, slot);
2360
2361 if (key.objectid > inum)
2362 goto out;
2363
2364 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2365 continue;
2366
2367 extent = btrfs_item_ptr(leaf, slot,
2368 struct btrfs_file_extent_item);
2369
2370 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2371 continue;
2372
e68afa49
LB
2373 /*
2374 * 'offset' refers to the exact key.offset,
2375 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2376 * (key.offset - extent_offset).
2377 */
2378 if (key.offset != offset)
38c227d8
LB
2379 continue;
2380
e68afa49 2381 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2382 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2383
38c227d8
LB
2384 if (extent_offset >= old->extent_offset + old->offset +
2385 old->len || extent_offset + num_bytes <=
2386 old->extent_offset + old->offset)
2387 continue;
38c227d8
LB
2388 break;
2389 }
2390
2391 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2392 if (!backref) {
2393 ret = -ENOENT;
2394 goto out;
2395 }
2396
2397 backref->root_id = root_id;
2398 backref->inum = inum;
e68afa49 2399 backref->file_pos = offset;
38c227d8
LB
2400 backref->num_bytes = num_bytes;
2401 backref->extent_offset = extent_offset;
2402 backref->generation = btrfs_file_extent_generation(leaf, extent);
2403 backref->old = old;
2404 backref_insert(&new->root, backref);
2405 old->count++;
2406out:
2407 btrfs_release_path(path);
2408 WARN_ON(ret);
2409 return ret;
2410}
2411
2412static noinline bool record_extent_backrefs(struct btrfs_path *path,
2413 struct new_sa_defrag_extent *new)
2414{
2415 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2416 struct old_sa_defrag_extent *old, *tmp;
2417 int ret;
2418
2419 new->path = path;
2420
2421 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2422 ret = iterate_inodes_from_logical(old->bytenr +
2423 old->extent_offset, fs_info,
38c227d8
LB
2424 path, record_one_backref,
2425 old);
4724b106
JB
2426 if (ret < 0 && ret != -ENOENT)
2427 return false;
38c227d8
LB
2428
2429 /* no backref to be processed for this extent */
2430 if (!old->count) {
2431 list_del(&old->list);
2432 kfree(old);
2433 }
2434 }
2435
2436 if (list_empty(&new->head))
2437 return false;
2438
2439 return true;
2440}
2441
2442static int relink_is_mergable(struct extent_buffer *leaf,
2443 struct btrfs_file_extent_item *fi,
116e0024 2444 struct new_sa_defrag_extent *new)
38c227d8 2445{
116e0024 2446 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2447 return 0;
2448
2449 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2450 return 0;
2451
116e0024
LB
2452 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2453 return 0;
2454
2455 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2456 btrfs_file_extent_other_encoding(leaf, fi))
2457 return 0;
2458
2459 return 1;
2460}
2461
2462/*
2463 * Note the backref might has changed, and in this case we just return 0.
2464 */
2465static noinline int relink_extent_backref(struct btrfs_path *path,
2466 struct sa_defrag_extent_backref *prev,
2467 struct sa_defrag_extent_backref *backref)
2468{
2469 struct btrfs_file_extent_item *extent;
2470 struct btrfs_file_extent_item *item;
2471 struct btrfs_ordered_extent *ordered;
2472 struct btrfs_trans_handle *trans;
2473 struct btrfs_fs_info *fs_info;
2474 struct btrfs_root *root;
2475 struct btrfs_key key;
2476 struct extent_buffer *leaf;
2477 struct old_sa_defrag_extent *old = backref->old;
2478 struct new_sa_defrag_extent *new = old->new;
2479 struct inode *src_inode = new->inode;
2480 struct inode *inode;
2481 struct extent_state *cached = NULL;
2482 int ret = 0;
2483 u64 start;
2484 u64 len;
2485 u64 lock_start;
2486 u64 lock_end;
2487 bool merge = false;
2488 int index;
2489
2490 if (prev && prev->root_id == backref->root_id &&
2491 prev->inum == backref->inum &&
2492 prev->file_pos + prev->num_bytes == backref->file_pos)
2493 merge = true;
2494
2495 /* step 1: get root */
2496 key.objectid = backref->root_id;
2497 key.type = BTRFS_ROOT_ITEM_KEY;
2498 key.offset = (u64)-1;
2499
2500 fs_info = BTRFS_I(src_inode)->root->fs_info;
2501 index = srcu_read_lock(&fs_info->subvol_srcu);
2502
2503 root = btrfs_read_fs_root_no_name(fs_info, &key);
2504 if (IS_ERR(root)) {
2505 srcu_read_unlock(&fs_info->subvol_srcu, index);
2506 if (PTR_ERR(root) == -ENOENT)
2507 return 0;
2508 return PTR_ERR(root);
2509 }
38c227d8 2510
bcbba5e6
WS
2511 if (btrfs_root_readonly(root)) {
2512 srcu_read_unlock(&fs_info->subvol_srcu, index);
2513 return 0;
2514 }
2515
38c227d8
LB
2516 /* step 2: get inode */
2517 key.objectid = backref->inum;
2518 key.type = BTRFS_INODE_ITEM_KEY;
2519 key.offset = 0;
2520
2521 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2522 if (IS_ERR(inode)) {
2523 srcu_read_unlock(&fs_info->subvol_srcu, index);
2524 return 0;
2525 }
2526
2527 srcu_read_unlock(&fs_info->subvol_srcu, index);
2528
2529 /* step 3: relink backref */
2530 lock_start = backref->file_pos;
2531 lock_end = backref->file_pos + backref->num_bytes - 1;
2532 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2533 &cached);
38c227d8
LB
2534
2535 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2536 if (ordered) {
2537 btrfs_put_ordered_extent(ordered);
2538 goto out_unlock;
2539 }
2540
2541 trans = btrfs_join_transaction(root);
2542 if (IS_ERR(trans)) {
2543 ret = PTR_ERR(trans);
2544 goto out_unlock;
2545 }
2546
2547 key.objectid = backref->inum;
2548 key.type = BTRFS_EXTENT_DATA_KEY;
2549 key.offset = backref->file_pos;
2550
2551 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2552 if (ret < 0) {
2553 goto out_free_path;
2554 } else if (ret > 0) {
2555 ret = 0;
2556 goto out_free_path;
2557 }
2558
2559 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2560 struct btrfs_file_extent_item);
2561
2562 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2563 backref->generation)
2564 goto out_free_path;
2565
2566 btrfs_release_path(path);
2567
2568 start = backref->file_pos;
2569 if (backref->extent_offset < old->extent_offset + old->offset)
2570 start += old->extent_offset + old->offset -
2571 backref->extent_offset;
2572
2573 len = min(backref->extent_offset + backref->num_bytes,
2574 old->extent_offset + old->offset + old->len);
2575 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2576
2577 ret = btrfs_drop_extents(trans, root, inode, start,
2578 start + len, 1);
2579 if (ret)
2580 goto out_free_path;
2581again:
2582 key.objectid = btrfs_ino(inode);
2583 key.type = BTRFS_EXTENT_DATA_KEY;
2584 key.offset = start;
2585
a09a0a70 2586 path->leave_spinning = 1;
38c227d8
LB
2587 if (merge) {
2588 struct btrfs_file_extent_item *fi;
2589 u64 extent_len;
2590 struct btrfs_key found_key;
2591
3c9665df 2592 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2593 if (ret < 0)
2594 goto out_free_path;
2595
2596 path->slots[0]--;
2597 leaf = path->nodes[0];
2598 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2599
2600 fi = btrfs_item_ptr(leaf, path->slots[0],
2601 struct btrfs_file_extent_item);
2602 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2603
116e0024
LB
2604 if (extent_len + found_key.offset == start &&
2605 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2606 btrfs_set_file_extent_num_bytes(leaf, fi,
2607 extent_len + len);
2608 btrfs_mark_buffer_dirty(leaf);
2609 inode_add_bytes(inode, len);
2610
2611 ret = 1;
2612 goto out_free_path;
2613 } else {
2614 merge = false;
2615 btrfs_release_path(path);
2616 goto again;
2617 }
2618 }
2619
2620 ret = btrfs_insert_empty_item(trans, root, path, &key,
2621 sizeof(*extent));
2622 if (ret) {
66642832 2623 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2624 goto out_free_path;
2625 }
2626
2627 leaf = path->nodes[0];
2628 item = btrfs_item_ptr(leaf, path->slots[0],
2629 struct btrfs_file_extent_item);
2630 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2631 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2632 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2633 btrfs_set_file_extent_num_bytes(leaf, item, len);
2634 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2635 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2636 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2637 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2638 btrfs_set_file_extent_encryption(leaf, item, 0);
2639 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2640
2641 btrfs_mark_buffer_dirty(leaf);
2642 inode_add_bytes(inode, len);
a09a0a70 2643 btrfs_release_path(path);
38c227d8
LB
2644
2645 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2646 new->disk_len, 0,
2647 backref->root_id, backref->inum,
b06c4bf5 2648 new->file_pos); /* start - extent_offset */
38c227d8 2649 if (ret) {
66642832 2650 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2651 goto out_free_path;
2652 }
2653
2654 ret = 1;
2655out_free_path:
2656 btrfs_release_path(path);
a09a0a70 2657 path->leave_spinning = 0;
38c227d8
LB
2658 btrfs_end_transaction(trans, root);
2659out_unlock:
2660 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2661 &cached, GFP_NOFS);
2662 iput(inode);
2663 return ret;
2664}
2665
6f519564
LB
2666static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2667{
2668 struct old_sa_defrag_extent *old, *tmp;
2669
2670 if (!new)
2671 return;
2672
2673 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2674 kfree(old);
2675 }
2676 kfree(new);
2677}
2678
38c227d8
LB
2679static void relink_file_extents(struct new_sa_defrag_extent *new)
2680{
2681 struct btrfs_path *path;
38c227d8
LB
2682 struct sa_defrag_extent_backref *backref;
2683 struct sa_defrag_extent_backref *prev = NULL;
2684 struct inode *inode;
2685 struct btrfs_root *root;
2686 struct rb_node *node;
2687 int ret;
2688
2689 inode = new->inode;
2690 root = BTRFS_I(inode)->root;
2691
2692 path = btrfs_alloc_path();
2693 if (!path)
2694 return;
2695
2696 if (!record_extent_backrefs(path, new)) {
2697 btrfs_free_path(path);
2698 goto out;
2699 }
2700 btrfs_release_path(path);
2701
2702 while (1) {
2703 node = rb_first(&new->root);
2704 if (!node)
2705 break;
2706 rb_erase(node, &new->root);
2707
2708 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2709
2710 ret = relink_extent_backref(path, prev, backref);
2711 WARN_ON(ret < 0);
2712
2713 kfree(prev);
2714
2715 if (ret == 1)
2716 prev = backref;
2717 else
2718 prev = NULL;
2719 cond_resched();
2720 }
2721 kfree(prev);
2722
2723 btrfs_free_path(path);
38c227d8 2724out:
6f519564
LB
2725 free_sa_defrag_extent(new);
2726
38c227d8
LB
2727 atomic_dec(&root->fs_info->defrag_running);
2728 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2729}
2730
2731static struct new_sa_defrag_extent *
2732record_old_file_extents(struct inode *inode,
2733 struct btrfs_ordered_extent *ordered)
2734{
2735 struct btrfs_root *root = BTRFS_I(inode)->root;
2736 struct btrfs_path *path;
2737 struct btrfs_key key;
6f519564 2738 struct old_sa_defrag_extent *old;
38c227d8
LB
2739 struct new_sa_defrag_extent *new;
2740 int ret;
2741
2742 new = kmalloc(sizeof(*new), GFP_NOFS);
2743 if (!new)
2744 return NULL;
2745
2746 new->inode = inode;
2747 new->file_pos = ordered->file_offset;
2748 new->len = ordered->len;
2749 new->bytenr = ordered->start;
2750 new->disk_len = ordered->disk_len;
2751 new->compress_type = ordered->compress_type;
2752 new->root = RB_ROOT;
2753 INIT_LIST_HEAD(&new->head);
2754
2755 path = btrfs_alloc_path();
2756 if (!path)
2757 goto out_kfree;
2758
2759 key.objectid = btrfs_ino(inode);
2760 key.type = BTRFS_EXTENT_DATA_KEY;
2761 key.offset = new->file_pos;
2762
2763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2764 if (ret < 0)
2765 goto out_free_path;
2766 if (ret > 0 && path->slots[0] > 0)
2767 path->slots[0]--;
2768
2769 /* find out all the old extents for the file range */
2770 while (1) {
2771 struct btrfs_file_extent_item *extent;
2772 struct extent_buffer *l;
2773 int slot;
2774 u64 num_bytes;
2775 u64 offset;
2776 u64 end;
2777 u64 disk_bytenr;
2778 u64 extent_offset;
2779
2780 l = path->nodes[0];
2781 slot = path->slots[0];
2782
2783 if (slot >= btrfs_header_nritems(l)) {
2784 ret = btrfs_next_leaf(root, path);
2785 if (ret < 0)
6f519564 2786 goto out_free_path;
38c227d8
LB
2787 else if (ret > 0)
2788 break;
2789 continue;
2790 }
2791
2792 btrfs_item_key_to_cpu(l, &key, slot);
2793
2794 if (key.objectid != btrfs_ino(inode))
2795 break;
2796 if (key.type != BTRFS_EXTENT_DATA_KEY)
2797 break;
2798 if (key.offset >= new->file_pos + new->len)
2799 break;
2800
2801 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2802
2803 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2804 if (key.offset + num_bytes < new->file_pos)
2805 goto next;
2806
2807 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2808 if (!disk_bytenr)
2809 goto next;
2810
2811 extent_offset = btrfs_file_extent_offset(l, extent);
2812
2813 old = kmalloc(sizeof(*old), GFP_NOFS);
2814 if (!old)
6f519564 2815 goto out_free_path;
38c227d8
LB
2816
2817 offset = max(new->file_pos, key.offset);
2818 end = min(new->file_pos + new->len, key.offset + num_bytes);
2819
2820 old->bytenr = disk_bytenr;
2821 old->extent_offset = extent_offset;
2822 old->offset = offset - key.offset;
2823 old->len = end - offset;
2824 old->new = new;
2825 old->count = 0;
2826 list_add_tail(&old->list, &new->head);
2827next:
2828 path->slots[0]++;
2829 cond_resched();
2830 }
2831
2832 btrfs_free_path(path);
2833 atomic_inc(&root->fs_info->defrag_running);
2834
2835 return new;
2836
38c227d8
LB
2837out_free_path:
2838 btrfs_free_path(path);
2839out_kfree:
6f519564 2840 free_sa_defrag_extent(new);
38c227d8
LB
2841 return NULL;
2842}
2843
e570fd27
MX
2844static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2845 u64 start, u64 len)
2846{
2847 struct btrfs_block_group_cache *cache;
2848
2849 cache = btrfs_lookup_block_group(root->fs_info, start);
2850 ASSERT(cache);
2851
2852 spin_lock(&cache->lock);
2853 cache->delalloc_bytes -= len;
2854 spin_unlock(&cache->lock);
2855
2856 btrfs_put_block_group(cache);
2857}
2858
d352ac68
CM
2859/* as ordered data IO finishes, this gets called so we can finish
2860 * an ordered extent if the range of bytes in the file it covers are
2861 * fully written.
2862 */
5fd02043 2863static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2864{
5fd02043 2865 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2866 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2867 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2868 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2869 struct extent_state *cached_state = NULL;
38c227d8 2870 struct new_sa_defrag_extent *new = NULL;
261507a0 2871 int compress_type = 0;
77cef2ec
JB
2872 int ret = 0;
2873 u64 logical_len = ordered_extent->len;
82d5902d 2874 bool nolock;
77cef2ec 2875 bool truncated = false;
e6dcd2dc 2876
83eea1f1 2877 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2878
5fd02043
JB
2879 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2880 ret = -EIO;
2881 goto out;
2882 }
2883
f612496b
MX
2884 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2885 ordered_extent->file_offset +
2886 ordered_extent->len - 1);
2887
77cef2ec
JB
2888 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2889 truncated = true;
2890 logical_len = ordered_extent->truncated_len;
2891 /* Truncated the entire extent, don't bother adding */
2892 if (!logical_len)
2893 goto out;
2894 }
2895
c2167754 2896 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2897 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2898
2899 /*
2900 * For mwrite(mmap + memset to write) case, we still reserve
2901 * space for NOCOW range.
2902 * As NOCOW won't cause a new delayed ref, just free the space
2903 */
2904 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2905 ordered_extent->len);
6c760c07
JB
2906 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2907 if (nolock)
2908 trans = btrfs_join_transaction_nolock(root);
2909 else
2910 trans = btrfs_join_transaction(root);
2911 if (IS_ERR(trans)) {
2912 ret = PTR_ERR(trans);
2913 trans = NULL;
2914 goto out;
c2167754 2915 }
6c760c07
JB
2916 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2917 ret = btrfs_update_inode_fallback(trans, root, inode);
2918 if (ret) /* -ENOMEM or corruption */
66642832 2919 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2920 goto out;
2921 }
e6dcd2dc 2922
2ac55d41
JB
2923 lock_extent_bits(io_tree, ordered_extent->file_offset,
2924 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2925 &cached_state);
e6dcd2dc 2926
38c227d8
LB
2927 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2928 ordered_extent->file_offset + ordered_extent->len - 1,
2929 EXTENT_DEFRAG, 1, cached_state);
2930 if (ret) {
2931 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2932 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2933 /* the inode is shared */
2934 new = record_old_file_extents(inode, ordered_extent);
2935
2936 clear_extent_bit(io_tree, ordered_extent->file_offset,
2937 ordered_extent->file_offset + ordered_extent->len - 1,
2938 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2939 }
2940
0cb59c99 2941 if (nolock)
7a7eaa40 2942 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2943 else
7a7eaa40 2944 trans = btrfs_join_transaction(root);
79787eaa
JM
2945 if (IS_ERR(trans)) {
2946 ret = PTR_ERR(trans);
2947 trans = NULL;
2948 goto out_unlock;
2949 }
a79b7d4b 2950
0ca1f7ce 2951 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2952
c8b97818 2953 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2954 compress_type = ordered_extent->compress_type;
d899e052 2955 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2956 BUG_ON(compress_type);
920bbbfb 2957 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2958 ordered_extent->file_offset,
2959 ordered_extent->file_offset +
77cef2ec 2960 logical_len);
d899e052 2961 } else {
0af3d00b 2962 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2963 ret = insert_reserved_file_extent(trans, inode,
2964 ordered_extent->file_offset,
2965 ordered_extent->start,
2966 ordered_extent->disk_len,
77cef2ec 2967 logical_len, logical_len,
261507a0 2968 compress_type, 0, 0,
d899e052 2969 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2970 if (!ret)
2971 btrfs_release_delalloc_bytes(root,
2972 ordered_extent->start,
2973 ordered_extent->disk_len);
d899e052 2974 }
5dc562c5
JB
2975 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2976 ordered_extent->file_offset, ordered_extent->len,
2977 trans->transid);
79787eaa 2978 if (ret < 0) {
66642832 2979 btrfs_abort_transaction(trans, ret);
5fd02043 2980 goto out_unlock;
79787eaa 2981 }
2ac55d41 2982
e6dcd2dc
CM
2983 add_pending_csums(trans, inode, ordered_extent->file_offset,
2984 &ordered_extent->list);
2985
6c760c07
JB
2986 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2987 ret = btrfs_update_inode_fallback(trans, root, inode);
2988 if (ret) { /* -ENOMEM or corruption */
66642832 2989 btrfs_abort_transaction(trans, ret);
6c760c07 2990 goto out_unlock;
1ef30be1
JB
2991 }
2992 ret = 0;
5fd02043
JB
2993out_unlock:
2994 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2995 ordered_extent->file_offset +
2996 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2997out:
5b0e95bf 2998 if (root != root->fs_info->tree_root)
0cb59c99 2999 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
3000 if (trans)
3001 btrfs_end_transaction(trans, root);
0cb59c99 3002
77cef2ec
JB
3003 if (ret || truncated) {
3004 u64 start, end;
3005
3006 if (truncated)
3007 start = ordered_extent->file_offset + logical_len;
3008 else
3009 start = ordered_extent->file_offset;
3010 end = ordered_extent->file_offset + ordered_extent->len - 1;
3011 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3012
3013 /* Drop the cache for the part of the extent we didn't write. */
3014 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 3015
0bec9ef5
JB
3016 /*
3017 * If the ordered extent had an IOERR or something else went
3018 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3019 * back to the allocator. We only free the extent in the
3020 * truncated case if we didn't write out the extent at all.
0bec9ef5 3021 */
77cef2ec
JB
3022 if ((ret || !logical_len) &&
3023 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
3024 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3025 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3026 ordered_extent->disk_len, 1);
0bec9ef5
JB
3027 }
3028
3029
5fd02043 3030 /*
8bad3c02
LB
3031 * This needs to be done to make sure anybody waiting knows we are done
3032 * updating everything for this ordered extent.
5fd02043
JB
3033 */
3034 btrfs_remove_ordered_extent(inode, ordered_extent);
3035
38c227d8 3036 /* for snapshot-aware defrag */
6f519564
LB
3037 if (new) {
3038 if (ret) {
3039 free_sa_defrag_extent(new);
3040 atomic_dec(&root->fs_info->defrag_running);
3041 } else {
3042 relink_file_extents(new);
3043 }
3044 }
38c227d8 3045
e6dcd2dc
CM
3046 /* once for us */
3047 btrfs_put_ordered_extent(ordered_extent);
3048 /* once for the tree */
3049 btrfs_put_ordered_extent(ordered_extent);
3050
5fd02043
JB
3051 return ret;
3052}
3053
3054static void finish_ordered_fn(struct btrfs_work *work)
3055{
3056 struct btrfs_ordered_extent *ordered_extent;
3057 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3058 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3059}
3060
b2950863 3061static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3062 struct extent_state *state, int uptodate)
3063{
5fd02043
JB
3064 struct inode *inode = page->mapping->host;
3065 struct btrfs_root *root = BTRFS_I(inode)->root;
3066 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3067 struct btrfs_workqueue *wq;
3068 btrfs_work_func_t func;
5fd02043 3069
1abe9b8a 3070 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3071
8b62b72b 3072 ClearPagePrivate2(page);
5fd02043
JB
3073 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3074 end - start + 1, uptodate))
3075 return 0;
3076
9e0af237
LB
3077 if (btrfs_is_free_space_inode(inode)) {
3078 wq = root->fs_info->endio_freespace_worker;
3079 func = btrfs_freespace_write_helper;
3080 } else {
3081 wq = root->fs_info->endio_write_workers;
3082 func = btrfs_endio_write_helper;
3083 }
5fd02043 3084
9e0af237
LB
3085 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3086 NULL);
3087 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3088
3089 return 0;
211f90e6
CM
3090}
3091
dc380aea
MX
3092static int __readpage_endio_check(struct inode *inode,
3093 struct btrfs_io_bio *io_bio,
3094 int icsum, struct page *page,
3095 int pgoff, u64 start, size_t len)
3096{
3097 char *kaddr;
3098 u32 csum_expected;
3099 u32 csum = ~(u32)0;
dc380aea
MX
3100
3101 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3102
3103 kaddr = kmap_atomic(page);
3104 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3105 btrfs_csum_final(csum, (char *)&csum);
3106 if (csum != csum_expected)
3107 goto zeroit;
3108
3109 kunmap_atomic(kaddr);
3110 return 0;
3111zeroit:
94647322
DS
3112 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3113 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3114 btrfs_ino(inode), start, csum, csum_expected);
3115 memset(kaddr + pgoff, 1, len);
3116 flush_dcache_page(page);
3117 kunmap_atomic(kaddr);
3118 if (csum_expected == 0)
3119 return 0;
3120 return -EIO;
3121}
3122
d352ac68
CM
3123/*
3124 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3125 * if there's a match, we allow the bio to finish. If not, the code in
3126 * extent_io.c will try to find good copies for us.
d352ac68 3127 */
facc8a22
MX
3128static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3129 u64 phy_offset, struct page *page,
3130 u64 start, u64 end, int mirror)
07157aac 3131{
4eee4fa4 3132 size_t offset = start - page_offset(page);
07157aac 3133 struct inode *inode = page->mapping->host;
d1310b2e 3134 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3135 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3136
d20f7043
CM
3137 if (PageChecked(page)) {
3138 ClearPageChecked(page);
dc380aea 3139 return 0;
d20f7043 3140 }
6cbff00f
CH
3141
3142 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3143 return 0;
17d217fe
YZ
3144
3145 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3146 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3147 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3148 return 0;
17d217fe 3149 }
d20f7043 3150
facc8a22 3151 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3152 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3153 start, (size_t)(end - start + 1));
07157aac 3154}
b888db2b 3155
24bbcf04
YZ
3156void btrfs_add_delayed_iput(struct inode *inode)
3157{
3158 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3159 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3160
3161 if (atomic_add_unless(&inode->i_count, -1, 1))
3162 return;
3163
24bbcf04 3164 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3165 if (binode->delayed_iput_count == 0) {
3166 ASSERT(list_empty(&binode->delayed_iput));
3167 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3168 } else {
3169 binode->delayed_iput_count++;
3170 }
24bbcf04
YZ
3171 spin_unlock(&fs_info->delayed_iput_lock);
3172}
3173
3174void btrfs_run_delayed_iputs(struct btrfs_root *root)
3175{
24bbcf04 3176 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3177
24bbcf04 3178 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3179 while (!list_empty(&fs_info->delayed_iputs)) {
3180 struct btrfs_inode *inode;
3181
3182 inode = list_first_entry(&fs_info->delayed_iputs,
3183 struct btrfs_inode, delayed_iput);
3184 if (inode->delayed_iput_count) {
3185 inode->delayed_iput_count--;
3186 list_move_tail(&inode->delayed_iput,
3187 &fs_info->delayed_iputs);
3188 } else {
3189 list_del_init(&inode->delayed_iput);
3190 }
3191 spin_unlock(&fs_info->delayed_iput_lock);
3192 iput(&inode->vfs_inode);
3193 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3194 }
8089fe62 3195 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3196}
3197
d68fc57b 3198/*
42b2aa86 3199 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3200 * files in the subvolume, it removes orphan item and frees block_rsv
3201 * structure.
3202 */
3203void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3204 struct btrfs_root *root)
3205{
90290e19 3206 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3207 int ret;
3208
8a35d95f 3209 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3210 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3211 return;
3212
90290e19 3213 spin_lock(&root->orphan_lock);
8a35d95f 3214 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3215 spin_unlock(&root->orphan_lock);
3216 return;
3217 }
3218
3219 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3220 spin_unlock(&root->orphan_lock);
3221 return;
3222 }
3223
3224 block_rsv = root->orphan_block_rsv;
3225 root->orphan_block_rsv = NULL;
3226 spin_unlock(&root->orphan_lock);
3227
27cdeb70 3228 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3229 btrfs_root_refs(&root->root_item) > 0) {
3230 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3231 root->root_key.objectid);
4ef31a45 3232 if (ret)
66642832 3233 btrfs_abort_transaction(trans, ret);
4ef31a45 3234 else
27cdeb70
MX
3235 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3236 &root->state);
d68fc57b
YZ
3237 }
3238
90290e19
JB
3239 if (block_rsv) {
3240 WARN_ON(block_rsv->size > 0);
3241 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3242 }
3243}
3244
7b128766
JB
3245/*
3246 * This creates an orphan entry for the given inode in case something goes
3247 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3248 *
3249 * NOTE: caller of this function should reserve 5 units of metadata for
3250 * this function.
7b128766
JB
3251 */
3252int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3253{
3254 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3255 struct btrfs_block_rsv *block_rsv = NULL;
3256 int reserve = 0;
3257 int insert = 0;
3258 int ret;
7b128766 3259
d68fc57b 3260 if (!root->orphan_block_rsv) {
66d8f3dd 3261 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3262 if (!block_rsv)
3263 return -ENOMEM;
d68fc57b 3264 }
7b128766 3265
d68fc57b
YZ
3266 spin_lock(&root->orphan_lock);
3267 if (!root->orphan_block_rsv) {
3268 root->orphan_block_rsv = block_rsv;
3269 } else if (block_rsv) {
3270 btrfs_free_block_rsv(root, block_rsv);
3271 block_rsv = NULL;
7b128766 3272 }
7b128766 3273
8a35d95f
JB
3274 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3276#if 0
3277 /*
3278 * For proper ENOSPC handling, we should do orphan
3279 * cleanup when mounting. But this introduces backward
3280 * compatibility issue.
3281 */
3282 if (!xchg(&root->orphan_item_inserted, 1))
3283 insert = 2;
3284 else
3285 insert = 1;
3286#endif
3287 insert = 1;
321f0e70 3288 atomic_inc(&root->orphan_inodes);
7b128766
JB
3289 }
3290
72ac3c0d
JB
3291 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3292 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3293 reserve = 1;
d68fc57b 3294 spin_unlock(&root->orphan_lock);
7b128766 3295
d68fc57b
YZ
3296 /* grab metadata reservation from transaction handle */
3297 if (reserve) {
3298 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3299 ASSERT(!ret);
3300 if (ret) {
3301 atomic_dec(&root->orphan_inodes);
3302 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3303 &BTRFS_I(inode)->runtime_flags);
3304 if (insert)
3305 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3306 &BTRFS_I(inode)->runtime_flags);
3307 return ret;
3308 }
d68fc57b 3309 }
7b128766 3310
d68fc57b
YZ
3311 /* insert an orphan item to track this unlinked/truncated file */
3312 if (insert >= 1) {
33345d01 3313 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3314 if (ret) {
703c88e0 3315 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3316 if (reserve) {
3317 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3318 &BTRFS_I(inode)->runtime_flags);
3319 btrfs_orphan_release_metadata(inode);
3320 }
3321 if (ret != -EEXIST) {
e8e7cff6
JB
3322 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3323 &BTRFS_I(inode)->runtime_flags);
66642832 3324 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3325 return ret;
3326 }
79787eaa
JM
3327 }
3328 ret = 0;
d68fc57b
YZ
3329 }
3330
3331 /* insert an orphan item to track subvolume contains orphan files */
3332 if (insert >= 2) {
3333 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3334 root->root_key.objectid);
79787eaa 3335 if (ret && ret != -EEXIST) {
66642832 3336 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3337 return ret;
3338 }
d68fc57b
YZ
3339 }
3340 return 0;
7b128766
JB
3341}
3342
3343/*
3344 * We have done the truncate/delete so we can go ahead and remove the orphan
3345 * item for this particular inode.
3346 */
48a3b636
ES
3347static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3348 struct inode *inode)
7b128766
JB
3349{
3350 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3351 int delete_item = 0;
3352 int release_rsv = 0;
7b128766
JB
3353 int ret = 0;
3354
d68fc57b 3355 spin_lock(&root->orphan_lock);
8a35d95f
JB
3356 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3357 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3358 delete_item = 1;
7b128766 3359
72ac3c0d
JB
3360 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3361 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3362 release_rsv = 1;
d68fc57b 3363 spin_unlock(&root->orphan_lock);
7b128766 3364
703c88e0 3365 if (delete_item) {
8a35d95f 3366 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3367 if (trans)
3368 ret = btrfs_del_orphan_item(trans, root,
3369 btrfs_ino(inode));
8a35d95f 3370 }
7b128766 3371
703c88e0
FDBM
3372 if (release_rsv)
3373 btrfs_orphan_release_metadata(inode);
3374
4ef31a45 3375 return ret;
7b128766
JB
3376}
3377
3378/*
3379 * this cleans up any orphans that may be left on the list from the last use
3380 * of this root.
3381 */
66b4ffd1 3382int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3383{
3384 struct btrfs_path *path;
3385 struct extent_buffer *leaf;
7b128766
JB
3386 struct btrfs_key key, found_key;
3387 struct btrfs_trans_handle *trans;
3388 struct inode *inode;
8f6d7f4f 3389 u64 last_objectid = 0;
7b128766
JB
3390 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3391
d68fc57b 3392 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3393 return 0;
c71bf099
YZ
3394
3395 path = btrfs_alloc_path();
66b4ffd1
JB
3396 if (!path) {
3397 ret = -ENOMEM;
3398 goto out;
3399 }
e4058b54 3400 path->reada = READA_BACK;
7b128766
JB
3401
3402 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3403 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3404 key.offset = (u64)-1;
3405
7b128766
JB
3406 while (1) {
3407 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3408 if (ret < 0)
3409 goto out;
7b128766
JB
3410
3411 /*
3412 * if ret == 0 means we found what we were searching for, which
25985edc 3413 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3414 * find the key and see if we have stuff that matches
3415 */
3416 if (ret > 0) {
66b4ffd1 3417 ret = 0;
7b128766
JB
3418 if (path->slots[0] == 0)
3419 break;
3420 path->slots[0]--;
3421 }
3422
3423 /* pull out the item */
3424 leaf = path->nodes[0];
7b128766
JB
3425 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3426
3427 /* make sure the item matches what we want */
3428 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3429 break;
962a298f 3430 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3431 break;
3432
3433 /* release the path since we're done with it */
b3b4aa74 3434 btrfs_release_path(path);
7b128766
JB
3435
3436 /*
3437 * this is where we are basically btrfs_lookup, without the
3438 * crossing root thing. we store the inode number in the
3439 * offset of the orphan item.
3440 */
8f6d7f4f
JB
3441
3442 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3443 btrfs_err(root->fs_info,
3444 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3445 ret = -EINVAL;
3446 goto out;
3447 }
3448
3449 last_objectid = found_key.offset;
3450
5d4f98a2
YZ
3451 found_key.objectid = found_key.offset;
3452 found_key.type = BTRFS_INODE_ITEM_KEY;
3453 found_key.offset = 0;
73f73415 3454 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3455 ret = PTR_ERR_OR_ZERO(inode);
67710892 3456 if (ret && ret != -ENOENT)
66b4ffd1 3457 goto out;
7b128766 3458
67710892 3459 if (ret == -ENOENT && root == root->fs_info->tree_root) {
f8e9e0b0
AJ
3460 struct btrfs_root *dead_root;
3461 struct btrfs_fs_info *fs_info = root->fs_info;
3462 int is_dead_root = 0;
3463
3464 /*
3465 * this is an orphan in the tree root. Currently these
3466 * could come from 2 sources:
3467 * a) a snapshot deletion in progress
3468 * b) a free space cache inode
3469 * We need to distinguish those two, as the snapshot
3470 * orphan must not get deleted.
3471 * find_dead_roots already ran before us, so if this
3472 * is a snapshot deletion, we should find the root
3473 * in the dead_roots list
3474 */
3475 spin_lock(&fs_info->trans_lock);
3476 list_for_each_entry(dead_root, &fs_info->dead_roots,
3477 root_list) {
3478 if (dead_root->root_key.objectid ==
3479 found_key.objectid) {
3480 is_dead_root = 1;
3481 break;
3482 }
3483 }
3484 spin_unlock(&fs_info->trans_lock);
3485 if (is_dead_root) {
3486 /* prevent this orphan from being found again */
3487 key.offset = found_key.objectid - 1;
3488 continue;
3489 }
3490 }
7b128766 3491 /*
a8c9e576
JB
3492 * Inode is already gone but the orphan item is still there,
3493 * kill the orphan item.
7b128766 3494 */
67710892 3495 if (ret == -ENOENT) {
a8c9e576 3496 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3497 if (IS_ERR(trans)) {
3498 ret = PTR_ERR(trans);
3499 goto out;
3500 }
c2cf52eb
SK
3501 btrfs_debug(root->fs_info, "auto deleting %Lu",
3502 found_key.objectid);
a8c9e576
JB
3503 ret = btrfs_del_orphan_item(trans, root,
3504 found_key.objectid);
5b21f2ed 3505 btrfs_end_transaction(trans, root);
4ef31a45
JB
3506 if (ret)
3507 goto out;
7b128766
JB
3508 continue;
3509 }
3510
a8c9e576
JB
3511 /*
3512 * add this inode to the orphan list so btrfs_orphan_del does
3513 * the proper thing when we hit it
3514 */
8a35d95f
JB
3515 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3516 &BTRFS_I(inode)->runtime_flags);
925396ec 3517 atomic_inc(&root->orphan_inodes);
a8c9e576 3518
7b128766
JB
3519 /* if we have links, this was a truncate, lets do that */
3520 if (inode->i_nlink) {
fae7f21c 3521 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3522 iput(inode);
3523 continue;
3524 }
7b128766 3525 nr_truncate++;
f3fe820c
JB
3526
3527 /* 1 for the orphan item deletion. */
3528 trans = btrfs_start_transaction(root, 1);
3529 if (IS_ERR(trans)) {
c69b26b0 3530 iput(inode);
f3fe820c
JB
3531 ret = PTR_ERR(trans);
3532 goto out;
3533 }
3534 ret = btrfs_orphan_add(trans, inode);
3535 btrfs_end_transaction(trans, root);
c69b26b0
JB
3536 if (ret) {
3537 iput(inode);
f3fe820c 3538 goto out;
c69b26b0 3539 }
f3fe820c 3540
66b4ffd1 3541 ret = btrfs_truncate(inode);
4a7d0f68
JB
3542 if (ret)
3543 btrfs_orphan_del(NULL, inode);
7b128766
JB
3544 } else {
3545 nr_unlink++;
3546 }
3547
3548 /* this will do delete_inode and everything for us */
3549 iput(inode);
66b4ffd1
JB
3550 if (ret)
3551 goto out;
7b128766 3552 }
3254c876
MX
3553 /* release the path since we're done with it */
3554 btrfs_release_path(path);
3555
d68fc57b
YZ
3556 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3557
3558 if (root->orphan_block_rsv)
3559 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3560 (u64)-1);
3561
27cdeb70
MX
3562 if (root->orphan_block_rsv ||
3563 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3564 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3565 if (!IS_ERR(trans))
3566 btrfs_end_transaction(trans, root);
d68fc57b 3567 }
7b128766
JB
3568
3569 if (nr_unlink)
4884b476 3570 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3571 if (nr_truncate)
4884b476 3572 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3573
3574out:
3575 if (ret)
68b663d1 3576 btrfs_err(root->fs_info,
c2cf52eb 3577 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3578 btrfs_free_path(path);
3579 return ret;
7b128766
JB
3580}
3581
46a53cca
CM
3582/*
3583 * very simple check to peek ahead in the leaf looking for xattrs. If we
3584 * don't find any xattrs, we know there can't be any acls.
3585 *
3586 * slot is the slot the inode is in, objectid is the objectid of the inode
3587 */
3588static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3589 int slot, u64 objectid,
3590 int *first_xattr_slot)
46a53cca
CM
3591{
3592 u32 nritems = btrfs_header_nritems(leaf);
3593 struct btrfs_key found_key;
f23b5a59
JB
3594 static u64 xattr_access = 0;
3595 static u64 xattr_default = 0;
46a53cca
CM
3596 int scanned = 0;
3597
f23b5a59 3598 if (!xattr_access) {
97d79299
AG
3599 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3600 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3601 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3602 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3603 }
3604
46a53cca 3605 slot++;
63541927 3606 *first_xattr_slot = -1;
46a53cca
CM
3607 while (slot < nritems) {
3608 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3609
3610 /* we found a different objectid, there must not be acls */
3611 if (found_key.objectid != objectid)
3612 return 0;
3613
3614 /* we found an xattr, assume we've got an acl */
f23b5a59 3615 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3616 if (*first_xattr_slot == -1)
3617 *first_xattr_slot = slot;
f23b5a59
JB
3618 if (found_key.offset == xattr_access ||
3619 found_key.offset == xattr_default)
3620 return 1;
3621 }
46a53cca
CM
3622
3623 /*
3624 * we found a key greater than an xattr key, there can't
3625 * be any acls later on
3626 */
3627 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3628 return 0;
3629
3630 slot++;
3631 scanned++;
3632
3633 /*
3634 * it goes inode, inode backrefs, xattrs, extents,
3635 * so if there are a ton of hard links to an inode there can
3636 * be a lot of backrefs. Don't waste time searching too hard,
3637 * this is just an optimization
3638 */
3639 if (scanned >= 8)
3640 break;
3641 }
3642 /* we hit the end of the leaf before we found an xattr or
3643 * something larger than an xattr. We have to assume the inode
3644 * has acls
3645 */
63541927
FDBM
3646 if (*first_xattr_slot == -1)
3647 *first_xattr_slot = slot;
46a53cca
CM
3648 return 1;
3649}
3650
d352ac68
CM
3651/*
3652 * read an inode from the btree into the in-memory inode
3653 */
67710892 3654static int btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3655{
3656 struct btrfs_path *path;
5f39d397 3657 struct extent_buffer *leaf;
39279cc3
CM
3658 struct btrfs_inode_item *inode_item;
3659 struct btrfs_root *root = BTRFS_I(inode)->root;
3660 struct btrfs_key location;
67de1176 3661 unsigned long ptr;
46a53cca 3662 int maybe_acls;
618e21d5 3663 u32 rdev;
39279cc3 3664 int ret;
2f7e33d4 3665 bool filled = false;
63541927 3666 int first_xattr_slot;
2f7e33d4
MX
3667
3668 ret = btrfs_fill_inode(inode, &rdev);
3669 if (!ret)
3670 filled = true;
39279cc3
CM
3671
3672 path = btrfs_alloc_path();
67710892
FM
3673 if (!path) {
3674 ret = -ENOMEM;
1748f843 3675 goto make_bad;
67710892 3676 }
1748f843 3677
39279cc3 3678 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3679
39279cc3 3680 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3681 if (ret) {
3682 if (ret > 0)
3683 ret = -ENOENT;
39279cc3 3684 goto make_bad;
67710892 3685 }
39279cc3 3686
5f39d397 3687 leaf = path->nodes[0];
2f7e33d4
MX
3688
3689 if (filled)
67de1176 3690 goto cache_index;
2f7e33d4 3691
5f39d397
CM
3692 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3693 struct btrfs_inode_item);
5f39d397 3694 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3695 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3696 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3697 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3698 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3699
a937b979
DS
3700 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3701 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3702
a937b979
DS
3703 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3704 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3705
a937b979
DS
3706 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3707 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3708
9cc97d64 3709 BTRFS_I(inode)->i_otime.tv_sec =
3710 btrfs_timespec_sec(leaf, &inode_item->otime);
3711 BTRFS_I(inode)->i_otime.tv_nsec =
3712 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3713
a76a3cd4 3714 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3715 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3716 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3717
6e17d30b
YD
3718 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3719 inode->i_generation = BTRFS_I(inode)->generation;
3720 inode->i_rdev = 0;
3721 rdev = btrfs_inode_rdev(leaf, inode_item);
3722
3723 BTRFS_I(inode)->index_cnt = (u64)-1;
3724 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3725
3726cache_index:
5dc562c5
JB
3727 /*
3728 * If we were modified in the current generation and evicted from memory
3729 * and then re-read we need to do a full sync since we don't have any
3730 * idea about which extents were modified before we were evicted from
3731 * cache.
6e17d30b
YD
3732 *
3733 * This is required for both inode re-read from disk and delayed inode
3734 * in delayed_nodes_tree.
5dc562c5
JB
3735 */
3736 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3737 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3738 &BTRFS_I(inode)->runtime_flags);
3739
bde6c242
FM
3740 /*
3741 * We don't persist the id of the transaction where an unlink operation
3742 * against the inode was last made. So here we assume the inode might
3743 * have been evicted, and therefore the exact value of last_unlink_trans
3744 * lost, and set it to last_trans to avoid metadata inconsistencies
3745 * between the inode and its parent if the inode is fsync'ed and the log
3746 * replayed. For example, in the scenario:
3747 *
3748 * touch mydir/foo
3749 * ln mydir/foo mydir/bar
3750 * sync
3751 * unlink mydir/bar
3752 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3753 * xfs_io -c fsync mydir/foo
3754 * <power failure>
3755 * mount fs, triggers fsync log replay
3756 *
3757 * We must make sure that when we fsync our inode foo we also log its
3758 * parent inode, otherwise after log replay the parent still has the
3759 * dentry with the "bar" name but our inode foo has a link count of 1
3760 * and doesn't have an inode ref with the name "bar" anymore.
3761 *
3762 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3763 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3764 * transaction commits on fsync if our inode is a directory, or if our
3765 * inode is not a directory, logging its parent unnecessarily.
3766 */
3767 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3768
67de1176
MX
3769 path->slots[0]++;
3770 if (inode->i_nlink != 1 ||
3771 path->slots[0] >= btrfs_header_nritems(leaf))
3772 goto cache_acl;
3773
3774 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3775 if (location.objectid != btrfs_ino(inode))
3776 goto cache_acl;
3777
3778 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3779 if (location.type == BTRFS_INODE_REF_KEY) {
3780 struct btrfs_inode_ref *ref;
3781
3782 ref = (struct btrfs_inode_ref *)ptr;
3783 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3784 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3785 struct btrfs_inode_extref *extref;
3786
3787 extref = (struct btrfs_inode_extref *)ptr;
3788 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3789 extref);
3790 }
2f7e33d4 3791cache_acl:
46a53cca
CM
3792 /*
3793 * try to precache a NULL acl entry for files that don't have
3794 * any xattrs or acls
3795 */
33345d01 3796 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3797 btrfs_ino(inode), &first_xattr_slot);
3798 if (first_xattr_slot != -1) {
3799 path->slots[0] = first_xattr_slot;
3800 ret = btrfs_load_inode_props(inode, path);
3801 if (ret)
3802 btrfs_err(root->fs_info,
351fd353 3803 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3804 btrfs_ino(inode),
3805 root->root_key.objectid, ret);
3806 }
3807 btrfs_free_path(path);
3808
72c04902
AV
3809 if (!maybe_acls)
3810 cache_no_acl(inode);
46a53cca 3811
39279cc3 3812 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3813 case S_IFREG:
3814 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3815 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3816 inode->i_fop = &btrfs_file_operations;
3817 inode->i_op = &btrfs_file_inode_operations;
3818 break;
3819 case S_IFDIR:
3820 inode->i_fop = &btrfs_dir_file_operations;
3821 if (root == root->fs_info->tree_root)
3822 inode->i_op = &btrfs_dir_ro_inode_operations;
3823 else
3824 inode->i_op = &btrfs_dir_inode_operations;
3825 break;
3826 case S_IFLNK:
3827 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3828 inode_nohighmem(inode);
39279cc3
CM
3829 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3830 break;
618e21d5 3831 default:
0279b4cd 3832 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3833 init_special_inode(inode, inode->i_mode, rdev);
3834 break;
39279cc3 3835 }
6cbff00f
CH
3836
3837 btrfs_update_iflags(inode);
67710892 3838 return 0;
39279cc3
CM
3839
3840make_bad:
39279cc3 3841 btrfs_free_path(path);
39279cc3 3842 make_bad_inode(inode);
67710892 3843 return ret;
39279cc3
CM
3844}
3845
d352ac68
CM
3846/*
3847 * given a leaf and an inode, copy the inode fields into the leaf
3848 */
e02119d5
CM
3849static void fill_inode_item(struct btrfs_trans_handle *trans,
3850 struct extent_buffer *leaf,
5f39d397 3851 struct btrfs_inode_item *item,
39279cc3
CM
3852 struct inode *inode)
3853{
51fab693
LB
3854 struct btrfs_map_token token;
3855
3856 btrfs_init_map_token(&token);
5f39d397 3857
51fab693
LB
3858 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3859 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3860 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3861 &token);
3862 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3863 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3864
a937b979 3865 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3866 inode->i_atime.tv_sec, &token);
a937b979 3867 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3868 inode->i_atime.tv_nsec, &token);
5f39d397 3869
a937b979 3870 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3871 inode->i_mtime.tv_sec, &token);
a937b979 3872 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3873 inode->i_mtime.tv_nsec, &token);
5f39d397 3874
a937b979 3875 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3876 inode->i_ctime.tv_sec, &token);
a937b979 3877 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3878 inode->i_ctime.tv_nsec, &token);
5f39d397 3879
9cc97d64 3880 btrfs_set_token_timespec_sec(leaf, &item->otime,
3881 BTRFS_I(inode)->i_otime.tv_sec, &token);
3882 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3883 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3884
51fab693
LB
3885 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3886 &token);
3887 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3888 &token);
3889 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3890 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3891 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3892 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3893 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3894}
3895
d352ac68
CM
3896/*
3897 * copy everything in the in-memory inode into the btree.
3898 */
2115133f 3899static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3900 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3901{
3902 struct btrfs_inode_item *inode_item;
3903 struct btrfs_path *path;
5f39d397 3904 struct extent_buffer *leaf;
39279cc3
CM
3905 int ret;
3906
3907 path = btrfs_alloc_path();
16cdcec7
MX
3908 if (!path)
3909 return -ENOMEM;
3910
b9473439 3911 path->leave_spinning = 1;
16cdcec7
MX
3912 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3913 1);
39279cc3
CM
3914 if (ret) {
3915 if (ret > 0)
3916 ret = -ENOENT;
3917 goto failed;
3918 }
3919
5f39d397
CM
3920 leaf = path->nodes[0];
3921 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3922 struct btrfs_inode_item);
39279cc3 3923
e02119d5 3924 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3925 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3926 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3927 ret = 0;
3928failed:
39279cc3
CM
3929 btrfs_free_path(path);
3930 return ret;
3931}
3932
2115133f
CM
3933/*
3934 * copy everything in the in-memory inode into the btree.
3935 */
3936noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3937 struct btrfs_root *root, struct inode *inode)
3938{
3939 int ret;
3940
3941 /*
3942 * If the inode is a free space inode, we can deadlock during commit
3943 * if we put it into the delayed code.
3944 *
3945 * The data relocation inode should also be directly updated
3946 * without delay
3947 */
83eea1f1 3948 if (!btrfs_is_free_space_inode(inode)
1d52c78a 3949 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
afcdd129 3950 && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
8ea05e3a
AB
3951 btrfs_update_root_times(trans, root);
3952
2115133f
CM
3953 ret = btrfs_delayed_update_inode(trans, root, inode);
3954 if (!ret)
3955 btrfs_set_inode_last_trans(trans, inode);
3956 return ret;
3957 }
3958
3959 return btrfs_update_inode_item(trans, root, inode);
3960}
3961
be6aef60
JB
3962noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3963 struct btrfs_root *root,
3964 struct inode *inode)
2115133f
CM
3965{
3966 int ret;
3967
3968 ret = btrfs_update_inode(trans, root, inode);
3969 if (ret == -ENOSPC)
3970 return btrfs_update_inode_item(trans, root, inode);
3971 return ret;
3972}
3973
d352ac68
CM
3974/*
3975 * unlink helper that gets used here in inode.c and in the tree logging
3976 * recovery code. It remove a link in a directory with a given name, and
3977 * also drops the back refs in the inode to the directory
3978 */
92986796
AV
3979static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3980 struct btrfs_root *root,
3981 struct inode *dir, struct inode *inode,
3982 const char *name, int name_len)
39279cc3
CM
3983{
3984 struct btrfs_path *path;
39279cc3 3985 int ret = 0;
5f39d397 3986 struct extent_buffer *leaf;
39279cc3 3987 struct btrfs_dir_item *di;
5f39d397 3988 struct btrfs_key key;
aec7477b 3989 u64 index;
33345d01
LZ
3990 u64 ino = btrfs_ino(inode);
3991 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3992
3993 path = btrfs_alloc_path();
54aa1f4d
CM
3994 if (!path) {
3995 ret = -ENOMEM;
554233a6 3996 goto out;
54aa1f4d
CM
3997 }
3998
b9473439 3999 path->leave_spinning = 1;
33345d01 4000 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4001 name, name_len, -1);
4002 if (IS_ERR(di)) {
4003 ret = PTR_ERR(di);
4004 goto err;
4005 }
4006 if (!di) {
4007 ret = -ENOENT;
4008 goto err;
4009 }
5f39d397
CM
4010 leaf = path->nodes[0];
4011 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4012 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4013 if (ret)
4014 goto err;
b3b4aa74 4015 btrfs_release_path(path);
39279cc3 4016
67de1176
MX
4017 /*
4018 * If we don't have dir index, we have to get it by looking up
4019 * the inode ref, since we get the inode ref, remove it directly,
4020 * it is unnecessary to do delayed deletion.
4021 *
4022 * But if we have dir index, needn't search inode ref to get it.
4023 * Since the inode ref is close to the inode item, it is better
4024 * that we delay to delete it, and just do this deletion when
4025 * we update the inode item.
4026 */
4027 if (BTRFS_I(inode)->dir_index) {
4028 ret = btrfs_delayed_delete_inode_ref(inode);
4029 if (!ret) {
4030 index = BTRFS_I(inode)->dir_index;
4031 goto skip_backref;
4032 }
4033 }
4034
33345d01
LZ
4035 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4036 dir_ino, &index);
aec7477b 4037 if (ret) {
c2cf52eb
SK
4038 btrfs_info(root->fs_info,
4039 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4040 name_len, name, ino, dir_ino);
66642832 4041 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4042 goto err;
4043 }
67de1176 4044skip_backref:
16cdcec7 4045 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4046 if (ret) {
66642832 4047 btrfs_abort_transaction(trans, ret);
39279cc3 4048 goto err;
79787eaa 4049 }
39279cc3 4050
e02119d5 4051 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4052 inode, dir_ino);
79787eaa 4053 if (ret != 0 && ret != -ENOENT) {
66642832 4054 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4055 goto err;
4056 }
e02119d5
CM
4057
4058 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4059 dir, index);
6418c961
CM
4060 if (ret == -ENOENT)
4061 ret = 0;
d4e3991b 4062 else if (ret)
66642832 4063 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4064err:
4065 btrfs_free_path(path);
e02119d5
CM
4066 if (ret)
4067 goto out;
4068
4069 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4070 inode_inc_iversion(inode);
4071 inode_inc_iversion(dir);
04b285f3 4072 inode->i_ctime = dir->i_mtime =
c2050a45 4073 dir->i_ctime = current_time(inode);
b9959295 4074 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4075out:
39279cc3
CM
4076 return ret;
4077}
4078
92986796
AV
4079int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4080 struct btrfs_root *root,
4081 struct inode *dir, struct inode *inode,
4082 const char *name, int name_len)
4083{
4084 int ret;
4085 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4086 if (!ret) {
8b558c5f 4087 drop_nlink(inode);
92986796
AV
4088 ret = btrfs_update_inode(trans, root, inode);
4089 }
4090 return ret;
4091}
39279cc3 4092
a22285a6
YZ
4093/*
4094 * helper to start transaction for unlink and rmdir.
4095 *
d52be818
JB
4096 * unlink and rmdir are special in btrfs, they do not always free space, so
4097 * if we cannot make our reservations the normal way try and see if there is
4098 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4099 * allow the unlink to occur.
a22285a6 4100 */
d52be818 4101static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4102{
a22285a6 4103 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4104
e70bea5f
JB
4105 /*
4106 * 1 for the possible orphan item
4107 * 1 for the dir item
4108 * 1 for the dir index
4109 * 1 for the inode ref
e70bea5f
JB
4110 * 1 for the inode
4111 */
8eab77ff 4112 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4113}
4114
4115static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4116{
4117 struct btrfs_root *root = BTRFS_I(dir)->root;
4118 struct btrfs_trans_handle *trans;
2b0143b5 4119 struct inode *inode = d_inode(dentry);
a22285a6 4120 int ret;
a22285a6 4121
d52be818 4122 trans = __unlink_start_trans(dir);
a22285a6
YZ
4123 if (IS_ERR(trans))
4124 return PTR_ERR(trans);
5f39d397 4125
2b0143b5 4126 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4127
2b0143b5 4128 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4129 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4130 if (ret)
4131 goto out;
7b128766 4132
a22285a6 4133 if (inode->i_nlink == 0) {
7b128766 4134 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4135 if (ret)
4136 goto out;
a22285a6 4137 }
7b128766 4138
b532402e 4139out:
d52be818 4140 btrfs_end_transaction(trans, root);
b53d3f5d 4141 btrfs_btree_balance_dirty(root);
39279cc3
CM
4142 return ret;
4143}
4144
4df27c4d
YZ
4145int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4146 struct btrfs_root *root,
4147 struct inode *dir, u64 objectid,
4148 const char *name, int name_len)
4149{
4150 struct btrfs_path *path;
4151 struct extent_buffer *leaf;
4152 struct btrfs_dir_item *di;
4153 struct btrfs_key key;
4154 u64 index;
4155 int ret;
33345d01 4156 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4157
4158 path = btrfs_alloc_path();
4159 if (!path)
4160 return -ENOMEM;
4161
33345d01 4162 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4163 name, name_len, -1);
79787eaa
JM
4164 if (IS_ERR_OR_NULL(di)) {
4165 if (!di)
4166 ret = -ENOENT;
4167 else
4168 ret = PTR_ERR(di);
4169 goto out;
4170 }
4df27c4d
YZ
4171
4172 leaf = path->nodes[0];
4173 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4174 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4175 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4176 if (ret) {
66642832 4177 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4178 goto out;
4179 }
b3b4aa74 4180 btrfs_release_path(path);
4df27c4d
YZ
4181
4182 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4183 objectid, root->root_key.objectid,
33345d01 4184 dir_ino, &index, name, name_len);
4df27c4d 4185 if (ret < 0) {
79787eaa 4186 if (ret != -ENOENT) {
66642832 4187 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4188 goto out;
4189 }
33345d01 4190 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4191 name, name_len);
79787eaa
JM
4192 if (IS_ERR_OR_NULL(di)) {
4193 if (!di)
4194 ret = -ENOENT;
4195 else
4196 ret = PTR_ERR(di);
66642832 4197 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4198 goto out;
4199 }
4df27c4d
YZ
4200
4201 leaf = path->nodes[0];
4202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4203 btrfs_release_path(path);
4df27c4d
YZ
4204 index = key.offset;
4205 }
945d8962 4206 btrfs_release_path(path);
4df27c4d 4207
16cdcec7 4208 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa 4209 if (ret) {
66642832 4210 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4211 goto out;
4212 }
4df27c4d
YZ
4213
4214 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4215 inode_inc_iversion(dir);
c2050a45 4216 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4217 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4218 if (ret)
66642832 4219 btrfs_abort_transaction(trans, ret);
79787eaa 4220out:
71d7aed0 4221 btrfs_free_path(path);
79787eaa 4222 return ret;
4df27c4d
YZ
4223}
4224
39279cc3
CM
4225static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4226{
2b0143b5 4227 struct inode *inode = d_inode(dentry);
1832a6d5 4228 int err = 0;
39279cc3 4229 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4230 struct btrfs_trans_handle *trans;
44f714da 4231 u64 last_unlink_trans;
39279cc3 4232
b3ae244e 4233 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4234 return -ENOTEMPTY;
b3ae244e
DS
4235 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4236 return -EPERM;
134d4512 4237
d52be818 4238 trans = __unlink_start_trans(dir);
a22285a6 4239 if (IS_ERR(trans))
5df6a9f6 4240 return PTR_ERR(trans);
5df6a9f6 4241
33345d01 4242 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4243 err = btrfs_unlink_subvol(trans, root, dir,
4244 BTRFS_I(inode)->location.objectid,
4245 dentry->d_name.name,
4246 dentry->d_name.len);
4247 goto out;
4248 }
4249
7b128766
JB
4250 err = btrfs_orphan_add(trans, inode);
4251 if (err)
4df27c4d 4252 goto out;
7b128766 4253
44f714da
FM
4254 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4255
39279cc3 4256 /* now the directory is empty */
2b0143b5 4257 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4258 dentry->d_name.name, dentry->d_name.len);
44f714da 4259 if (!err) {
dbe674a9 4260 btrfs_i_size_write(inode, 0);
44f714da
FM
4261 /*
4262 * Propagate the last_unlink_trans value of the deleted dir to
4263 * its parent directory. This is to prevent an unrecoverable
4264 * log tree in the case we do something like this:
4265 * 1) create dir foo
4266 * 2) create snapshot under dir foo
4267 * 3) delete the snapshot
4268 * 4) rmdir foo
4269 * 5) mkdir foo
4270 * 6) fsync foo or some file inside foo
4271 */
4272 if (last_unlink_trans >= trans->transid)
4273 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4274 }
4df27c4d 4275out:
d52be818 4276 btrfs_end_transaction(trans, root);
b53d3f5d 4277 btrfs_btree_balance_dirty(root);
3954401f 4278
39279cc3
CM
4279 return err;
4280}
4281
28f75a0e
CM
4282static int truncate_space_check(struct btrfs_trans_handle *trans,
4283 struct btrfs_root *root,
4284 u64 bytes_deleted)
4285{
4286 int ret;
4287
dc95f7bf
JB
4288 /*
4289 * This is only used to apply pressure to the enospc system, we don't
4290 * intend to use this reservation at all.
4291 */
28f75a0e 4292 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4293 bytes_deleted *= root->nodesize;
28f75a0e
CM
4294 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4295 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4296 if (!ret) {
4297 trace_btrfs_space_reservation(root->fs_info, "transaction",
4298 trans->transid,
4299 bytes_deleted, 1);
28f75a0e 4300 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4301 }
28f75a0e
CM
4302 return ret;
4303
4304}
4305
0305cd5f
FM
4306static int truncate_inline_extent(struct inode *inode,
4307 struct btrfs_path *path,
4308 struct btrfs_key *found_key,
4309 const u64 item_end,
4310 const u64 new_size)
4311{
4312 struct extent_buffer *leaf = path->nodes[0];
4313 int slot = path->slots[0];
4314 struct btrfs_file_extent_item *fi;
4315 u32 size = (u32)(new_size - found_key->offset);
4316 struct btrfs_root *root = BTRFS_I(inode)->root;
4317
4318 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4319
4320 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4321 loff_t offset = new_size;
09cbfeaf 4322 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4323
4324 /*
4325 * Zero out the remaining of the last page of our inline extent,
4326 * instead of directly truncating our inline extent here - that
4327 * would be much more complex (decompressing all the data, then
4328 * compressing the truncated data, which might be bigger than
4329 * the size of the inline extent, resize the extent, etc).
4330 * We release the path because to get the page we might need to
4331 * read the extent item from disk (data not in the page cache).
4332 */
4333 btrfs_release_path(path);
9703fefe
CR
4334 return btrfs_truncate_block(inode, offset, page_end - offset,
4335 0);
0305cd5f
FM
4336 }
4337
4338 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4339 size = btrfs_file_extent_calc_inline_size(size);
4340 btrfs_truncate_item(root, path, size, 1);
4341
4342 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4343 inode_sub_bytes(inode, item_end + 1 - new_size);
4344
4345 return 0;
4346}
4347
39279cc3
CM
4348/*
4349 * this can truncate away extent items, csum items and directory items.
4350 * It starts at a high offset and removes keys until it can't find
d352ac68 4351 * any higher than new_size
39279cc3
CM
4352 *
4353 * csum items that cross the new i_size are truncated to the new size
4354 * as well.
7b128766
JB
4355 *
4356 * min_type is the minimum key type to truncate down to. If set to 0, this
4357 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4358 */
8082510e
YZ
4359int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4360 struct btrfs_root *root,
4361 struct inode *inode,
4362 u64 new_size, u32 min_type)
39279cc3 4363{
39279cc3 4364 struct btrfs_path *path;
5f39d397 4365 struct extent_buffer *leaf;
39279cc3 4366 struct btrfs_file_extent_item *fi;
8082510e
YZ
4367 struct btrfs_key key;
4368 struct btrfs_key found_key;
39279cc3 4369 u64 extent_start = 0;
db94535d 4370 u64 extent_num_bytes = 0;
5d4f98a2 4371 u64 extent_offset = 0;
39279cc3 4372 u64 item_end = 0;
c1aa4575 4373 u64 last_size = new_size;
8082510e 4374 u32 found_type = (u8)-1;
39279cc3
CM
4375 int found_extent;
4376 int del_item;
85e21bac
CM
4377 int pending_del_nr = 0;
4378 int pending_del_slot = 0;
179e29e4 4379 int extent_type = -1;
8082510e
YZ
4380 int ret;
4381 int err = 0;
33345d01 4382 u64 ino = btrfs_ino(inode);
28ed1345 4383 u64 bytes_deleted = 0;
1262133b
JB
4384 bool be_nice = 0;
4385 bool should_throttle = 0;
28f75a0e 4386 bool should_end = 0;
8082510e
YZ
4387
4388 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4389
28ed1345
CM
4390 /*
4391 * for non-free space inodes and ref cows, we want to back off from
4392 * time to time
4393 */
4394 if (!btrfs_is_free_space_inode(inode) &&
4395 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4396 be_nice = 1;
4397
0eb0e19c
MF
4398 path = btrfs_alloc_path();
4399 if (!path)
4400 return -ENOMEM;
e4058b54 4401 path->reada = READA_BACK;
0eb0e19c 4402
5dc562c5
JB
4403 /*
4404 * We want to drop from the next block forward in case this new size is
4405 * not block aligned since we will be keeping the last block of the
4406 * extent just the way it is.
4407 */
27cdeb70
MX
4408 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4409 root == root->fs_info->tree_root)
fda2832f
QW
4410 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4411 root->sectorsize), (u64)-1, 0);
8082510e 4412
16cdcec7
MX
4413 /*
4414 * This function is also used to drop the items in the log tree before
4415 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4416 * it is used to drop the loged items. So we shouldn't kill the delayed
4417 * items.
4418 */
4419 if (min_type == 0 && root == BTRFS_I(inode)->root)
4420 btrfs_kill_delayed_inode_items(inode);
4421
33345d01 4422 key.objectid = ino;
39279cc3 4423 key.offset = (u64)-1;
5f39d397
CM
4424 key.type = (u8)-1;
4425
85e21bac 4426search_again:
28ed1345
CM
4427 /*
4428 * with a 16K leaf size and 128MB extents, you can actually queue
4429 * up a huge file in a single leaf. Most of the time that
4430 * bytes_deleted is > 0, it will be huge by the time we get here
4431 */
ee22184b 4432 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4433 if (btrfs_should_end_transaction(trans, root)) {
4434 err = -EAGAIN;
4435 goto error;
4436 }
4437 }
4438
4439
b9473439 4440 path->leave_spinning = 1;
85e21bac 4441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4442 if (ret < 0) {
4443 err = ret;
4444 goto out;
4445 }
d397712b 4446
85e21bac 4447 if (ret > 0) {
e02119d5
CM
4448 /* there are no items in the tree for us to truncate, we're
4449 * done
4450 */
8082510e
YZ
4451 if (path->slots[0] == 0)
4452 goto out;
85e21bac
CM
4453 path->slots[0]--;
4454 }
4455
d397712b 4456 while (1) {
39279cc3 4457 fi = NULL;
5f39d397
CM
4458 leaf = path->nodes[0];
4459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4460 found_type = found_key.type;
39279cc3 4461
33345d01 4462 if (found_key.objectid != ino)
39279cc3 4463 break;
5f39d397 4464
85e21bac 4465 if (found_type < min_type)
39279cc3
CM
4466 break;
4467
5f39d397 4468 item_end = found_key.offset;
39279cc3 4469 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4470 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4471 struct btrfs_file_extent_item);
179e29e4
CM
4472 extent_type = btrfs_file_extent_type(leaf, fi);
4473 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4474 item_end +=
db94535d 4475 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4476 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4477 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4478 path->slots[0], fi);
39279cc3 4479 }
008630c1 4480 item_end--;
39279cc3 4481 }
8082510e
YZ
4482 if (found_type > min_type) {
4483 del_item = 1;
4484 } else {
4485 if (item_end < new_size)
b888db2b 4486 break;
8082510e
YZ
4487 if (found_key.offset >= new_size)
4488 del_item = 1;
4489 else
4490 del_item = 0;
39279cc3 4491 }
39279cc3 4492 found_extent = 0;
39279cc3 4493 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4494 if (found_type != BTRFS_EXTENT_DATA_KEY)
4495 goto delete;
4496
7f4f6e0a
JB
4497 if (del_item)
4498 last_size = found_key.offset;
4499 else
4500 last_size = new_size;
4501
179e29e4 4502 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4503 u64 num_dec;
db94535d 4504 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4505 if (!del_item) {
db94535d
CM
4506 u64 orig_num_bytes =
4507 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4508 extent_num_bytes = ALIGN(new_size -
4509 found_key.offset,
4510 root->sectorsize);
db94535d
CM
4511 btrfs_set_file_extent_num_bytes(leaf, fi,
4512 extent_num_bytes);
4513 num_dec = (orig_num_bytes -
9069218d 4514 extent_num_bytes);
27cdeb70
MX
4515 if (test_bit(BTRFS_ROOT_REF_COWS,
4516 &root->state) &&
4517 extent_start != 0)
a76a3cd4 4518 inode_sub_bytes(inode, num_dec);
5f39d397 4519 btrfs_mark_buffer_dirty(leaf);
39279cc3 4520 } else {
db94535d
CM
4521 extent_num_bytes =
4522 btrfs_file_extent_disk_num_bytes(leaf,
4523 fi);
5d4f98a2
YZ
4524 extent_offset = found_key.offset -
4525 btrfs_file_extent_offset(leaf, fi);
4526
39279cc3 4527 /* FIXME blocksize != 4096 */
9069218d 4528 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4529 if (extent_start != 0) {
4530 found_extent = 1;
27cdeb70
MX
4531 if (test_bit(BTRFS_ROOT_REF_COWS,
4532 &root->state))
a76a3cd4 4533 inode_sub_bytes(inode, num_dec);
e02119d5 4534 }
39279cc3 4535 }
9069218d 4536 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4537 /*
4538 * we can't truncate inline items that have had
4539 * special encodings
4540 */
4541 if (!del_item &&
c8b97818
CM
4542 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4543 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4544
4545 /*
0305cd5f
FM
4546 * Need to release path in order to truncate a
4547 * compressed extent. So delete any accumulated
4548 * extent items so far.
514ac8ad 4549 */
0305cd5f
FM
4550 if (btrfs_file_extent_compression(leaf, fi) !=
4551 BTRFS_COMPRESS_NONE && pending_del_nr) {
4552 err = btrfs_del_items(trans, root, path,
4553 pending_del_slot,
4554 pending_del_nr);
4555 if (err) {
4556 btrfs_abort_transaction(trans,
0305cd5f
FM
4557 err);
4558 goto error;
4559 }
4560 pending_del_nr = 0;
4561 }
4562
4563 err = truncate_inline_extent(inode, path,
4564 &found_key,
4565 item_end,
4566 new_size);
4567 if (err) {
66642832 4568 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4569 goto error;
4570 }
27cdeb70
MX
4571 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4572 &root->state)) {
0305cd5f 4573 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4574 }
39279cc3 4575 }
179e29e4 4576delete:
39279cc3 4577 if (del_item) {
85e21bac
CM
4578 if (!pending_del_nr) {
4579 /* no pending yet, add ourselves */
4580 pending_del_slot = path->slots[0];
4581 pending_del_nr = 1;
4582 } else if (pending_del_nr &&
4583 path->slots[0] + 1 == pending_del_slot) {
4584 /* hop on the pending chunk */
4585 pending_del_nr++;
4586 pending_del_slot = path->slots[0];
4587 } else {
d397712b 4588 BUG();
85e21bac 4589 }
39279cc3
CM
4590 } else {
4591 break;
4592 }
28f75a0e
CM
4593 should_throttle = 0;
4594
27cdeb70
MX
4595 if (found_extent &&
4596 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4597 root == root->fs_info->tree_root)) {
b9473439 4598 btrfs_set_path_blocking(path);
28ed1345 4599 bytes_deleted += extent_num_bytes;
39279cc3 4600 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4601 extent_num_bytes, 0,
4602 btrfs_header_owner(leaf),
b06c4bf5 4603 ino, extent_offset);
39279cc3 4604 BUG_ON(ret);
1262133b 4605 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4606 btrfs_async_run_delayed_refs(root,
dd4b857a
WX
4607 trans->delayed_ref_updates * 2,
4608 trans->transid, 0);
28f75a0e
CM
4609 if (be_nice) {
4610 if (truncate_space_check(trans, root,
4611 extent_num_bytes)) {
4612 should_end = 1;
4613 }
4614 if (btrfs_should_throttle_delayed_refs(trans,
4615 root)) {
4616 should_throttle = 1;
4617 }
4618 }
39279cc3 4619 }
85e21bac 4620
8082510e
YZ
4621 if (found_type == BTRFS_INODE_ITEM_KEY)
4622 break;
4623
4624 if (path->slots[0] == 0 ||
1262133b 4625 path->slots[0] != pending_del_slot ||
28f75a0e 4626 should_throttle || should_end) {
8082510e
YZ
4627 if (pending_del_nr) {
4628 ret = btrfs_del_items(trans, root, path,
4629 pending_del_slot,
4630 pending_del_nr);
79787eaa 4631 if (ret) {
66642832 4632 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4633 goto error;
4634 }
8082510e
YZ
4635 pending_del_nr = 0;
4636 }
b3b4aa74 4637 btrfs_release_path(path);
28f75a0e 4638 if (should_throttle) {
1262133b
JB
4639 unsigned long updates = trans->delayed_ref_updates;
4640 if (updates) {
4641 trans->delayed_ref_updates = 0;
4642 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4643 if (ret && !err)
4644 err = ret;
4645 }
4646 }
28f75a0e
CM
4647 /*
4648 * if we failed to refill our space rsv, bail out
4649 * and let the transaction restart
4650 */
4651 if (should_end) {
4652 err = -EAGAIN;
4653 goto error;
4654 }
85e21bac 4655 goto search_again;
8082510e
YZ
4656 } else {
4657 path->slots[0]--;
85e21bac 4658 }
39279cc3 4659 }
8082510e 4660out:
85e21bac
CM
4661 if (pending_del_nr) {
4662 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4663 pending_del_nr);
79787eaa 4664 if (ret)
66642832 4665 btrfs_abort_transaction(trans, ret);
85e21bac 4666 }
79787eaa 4667error:
c1aa4575 4668 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4669 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4670
39279cc3 4671 btrfs_free_path(path);
28ed1345 4672
ee22184b 4673 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4674 unsigned long updates = trans->delayed_ref_updates;
4675 if (updates) {
4676 trans->delayed_ref_updates = 0;
4677 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4678 if (ret && !err)
4679 err = ret;
4680 }
4681 }
8082510e 4682 return err;
39279cc3
CM
4683}
4684
4685/*
9703fefe 4686 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4687 * @inode - inode that we're zeroing
4688 * @from - the offset to start zeroing
4689 * @len - the length to zero, 0 to zero the entire range respective to the
4690 * offset
4691 * @front - zero up to the offset instead of from the offset on
4692 *
9703fefe 4693 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4694 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4695 */
9703fefe 4696int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4697 int front)
39279cc3 4698{
2aaa6655 4699 struct address_space *mapping = inode->i_mapping;
db94535d 4700 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4702 struct btrfs_ordered_extent *ordered;
2ac55d41 4703 struct extent_state *cached_state = NULL;
e6dcd2dc 4704 char *kaddr;
db94535d 4705 u32 blocksize = root->sectorsize;
09cbfeaf 4706 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4707 unsigned offset = from & (blocksize - 1);
39279cc3 4708 struct page *page;
3b16a4e3 4709 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4710 int ret = 0;
9703fefe
CR
4711 u64 block_start;
4712 u64 block_end;
39279cc3 4713
2aaa6655
JB
4714 if ((offset & (blocksize - 1)) == 0 &&
4715 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4716 goto out;
9703fefe 4717
7cf5b976 4718 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4719 round_down(from, blocksize), blocksize);
5d5e103a
JB
4720 if (ret)
4721 goto out;
39279cc3 4722
211c17f5 4723again:
3b16a4e3 4724 page = find_or_create_page(mapping, index, mask);
5d5e103a 4725 if (!page) {
7cf5b976 4726 btrfs_delalloc_release_space(inode,
9703fefe
CR
4727 round_down(from, blocksize),
4728 blocksize);
ac6a2b36 4729 ret = -ENOMEM;
39279cc3 4730 goto out;
5d5e103a 4731 }
e6dcd2dc 4732
9703fefe
CR
4733 block_start = round_down(from, blocksize);
4734 block_end = block_start + blocksize - 1;
e6dcd2dc 4735
39279cc3 4736 if (!PageUptodate(page)) {
9ebefb18 4737 ret = btrfs_readpage(NULL, page);
39279cc3 4738 lock_page(page);
211c17f5
CM
4739 if (page->mapping != mapping) {
4740 unlock_page(page);
09cbfeaf 4741 put_page(page);
211c17f5
CM
4742 goto again;
4743 }
39279cc3
CM
4744 if (!PageUptodate(page)) {
4745 ret = -EIO;
89642229 4746 goto out_unlock;
39279cc3
CM
4747 }
4748 }
211c17f5 4749 wait_on_page_writeback(page);
e6dcd2dc 4750
9703fefe 4751 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4752 set_page_extent_mapped(page);
4753
9703fefe 4754 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4755 if (ordered) {
9703fefe 4756 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4757 &cached_state, GFP_NOFS);
e6dcd2dc 4758 unlock_page(page);
09cbfeaf 4759 put_page(page);
eb84ae03 4760 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4761 btrfs_put_ordered_extent(ordered);
4762 goto again;
4763 }
4764
9703fefe 4765 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4766 EXTENT_DIRTY | EXTENT_DELALLOC |
4767 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4768 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4769
9703fefe 4770 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4771 &cached_state, 0);
9ed74f2d 4772 if (ret) {
9703fefe 4773 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4774 &cached_state, GFP_NOFS);
9ed74f2d
JB
4775 goto out_unlock;
4776 }
4777
9703fefe 4778 if (offset != blocksize) {
2aaa6655 4779 if (!len)
9703fefe 4780 len = blocksize - offset;
e6dcd2dc 4781 kaddr = kmap(page);
2aaa6655 4782 if (front)
9703fefe
CR
4783 memset(kaddr + (block_start - page_offset(page)),
4784 0, offset);
2aaa6655 4785 else
9703fefe
CR
4786 memset(kaddr + (block_start - page_offset(page)) + offset,
4787 0, len);
e6dcd2dc
CM
4788 flush_dcache_page(page);
4789 kunmap(page);
4790 }
247e743c 4791 ClearPageChecked(page);
e6dcd2dc 4792 set_page_dirty(page);
9703fefe 4793 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4794 GFP_NOFS);
39279cc3 4795
89642229 4796out_unlock:
5d5e103a 4797 if (ret)
9703fefe
CR
4798 btrfs_delalloc_release_space(inode, block_start,
4799 blocksize);
39279cc3 4800 unlock_page(page);
09cbfeaf 4801 put_page(page);
39279cc3
CM
4802out:
4803 return ret;
4804}
4805
16e7549f
JB
4806static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4807 u64 offset, u64 len)
4808{
4809 struct btrfs_trans_handle *trans;
4810 int ret;
4811
4812 /*
4813 * Still need to make sure the inode looks like it's been updated so
4814 * that any holes get logged if we fsync.
4815 */
4816 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4817 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4818 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4819 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4820 return 0;
4821 }
4822
4823 /*
4824 * 1 - for the one we're dropping
4825 * 1 - for the one we're adding
4826 * 1 - for updating the inode.
4827 */
4828 trans = btrfs_start_transaction(root, 3);
4829 if (IS_ERR(trans))
4830 return PTR_ERR(trans);
4831
4832 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4833 if (ret) {
66642832 4834 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4835 btrfs_end_transaction(trans, root);
4836 return ret;
4837 }
4838
4839 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4840 0, 0, len, 0, len, 0, 0, 0);
4841 if (ret)
66642832 4842 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4843 else
4844 btrfs_update_inode(trans, root, inode);
4845 btrfs_end_transaction(trans, root);
4846 return ret;
4847}
4848
695a0d0d
JB
4849/*
4850 * This function puts in dummy file extents for the area we're creating a hole
4851 * for. So if we are truncating this file to a larger size we need to insert
4852 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4853 * the range between oldsize and size
4854 */
a41ad394 4855int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4856{
9036c102
YZ
4857 struct btrfs_root *root = BTRFS_I(inode)->root;
4858 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4859 struct extent_map *em = NULL;
2ac55d41 4860 struct extent_state *cached_state = NULL;
5dc562c5 4861 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4862 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4863 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4864 u64 last_byte;
4865 u64 cur_offset;
4866 u64 hole_size;
9ed74f2d 4867 int err = 0;
39279cc3 4868
a71754fc 4869 /*
9703fefe
CR
4870 * If our size started in the middle of a block we need to zero out the
4871 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4872 * expose stale data.
4873 */
9703fefe 4874 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4875 if (err)
4876 return err;
4877
9036c102
YZ
4878 if (size <= hole_start)
4879 return 0;
4880
9036c102
YZ
4881 while (1) {
4882 struct btrfs_ordered_extent *ordered;
fa7c1494 4883
ff13db41 4884 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4885 &cached_state);
fa7c1494
MX
4886 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4887 block_end - hole_start);
9036c102
YZ
4888 if (!ordered)
4889 break;
2ac55d41
JB
4890 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4891 &cached_state, GFP_NOFS);
fa7c1494 4892 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4893 btrfs_put_ordered_extent(ordered);
4894 }
39279cc3 4895
9036c102
YZ
4896 cur_offset = hole_start;
4897 while (1) {
4898 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4899 block_end - cur_offset, 0);
79787eaa
JM
4900 if (IS_ERR(em)) {
4901 err = PTR_ERR(em);
f2767956 4902 em = NULL;
79787eaa
JM
4903 break;
4904 }
9036c102 4905 last_byte = min(extent_map_end(em), block_end);
fda2832f 4906 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4907 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4908 struct extent_map *hole_em;
9036c102 4909 hole_size = last_byte - cur_offset;
9ed74f2d 4910
16e7549f
JB
4911 err = maybe_insert_hole(root, inode, cur_offset,
4912 hole_size);
4913 if (err)
3893e33b 4914 break;
5dc562c5
JB
4915 btrfs_drop_extent_cache(inode, cur_offset,
4916 cur_offset + hole_size - 1, 0);
4917 hole_em = alloc_extent_map();
4918 if (!hole_em) {
4919 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4920 &BTRFS_I(inode)->runtime_flags);
4921 goto next;
4922 }
4923 hole_em->start = cur_offset;
4924 hole_em->len = hole_size;
4925 hole_em->orig_start = cur_offset;
8082510e 4926
5dc562c5
JB
4927 hole_em->block_start = EXTENT_MAP_HOLE;
4928 hole_em->block_len = 0;
b4939680 4929 hole_em->orig_block_len = 0;
cc95bef6 4930 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4931 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4932 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4933 hole_em->generation = root->fs_info->generation;
8082510e 4934
5dc562c5
JB
4935 while (1) {
4936 write_lock(&em_tree->lock);
09a2a8f9 4937 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4938 write_unlock(&em_tree->lock);
4939 if (err != -EEXIST)
4940 break;
4941 btrfs_drop_extent_cache(inode, cur_offset,
4942 cur_offset +
4943 hole_size - 1, 0);
4944 }
4945 free_extent_map(hole_em);
9036c102 4946 }
16e7549f 4947next:
9036c102 4948 free_extent_map(em);
a22285a6 4949 em = NULL;
9036c102 4950 cur_offset = last_byte;
8082510e 4951 if (cur_offset >= block_end)
9036c102
YZ
4952 break;
4953 }
a22285a6 4954 free_extent_map(em);
2ac55d41
JB
4955 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4956 GFP_NOFS);
9036c102
YZ
4957 return err;
4958}
39279cc3 4959
3972f260 4960static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4961{
f4a2f4c5
MX
4962 struct btrfs_root *root = BTRFS_I(inode)->root;
4963 struct btrfs_trans_handle *trans;
a41ad394 4964 loff_t oldsize = i_size_read(inode);
3972f260
ES
4965 loff_t newsize = attr->ia_size;
4966 int mask = attr->ia_valid;
8082510e
YZ
4967 int ret;
4968
3972f260
ES
4969 /*
4970 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4971 * special case where we need to update the times despite not having
4972 * these flags set. For all other operations the VFS set these flags
4973 * explicitly if it wants a timestamp update.
4974 */
dff6efc3
CH
4975 if (newsize != oldsize) {
4976 inode_inc_iversion(inode);
4977 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4978 inode->i_ctime = inode->i_mtime =
c2050a45 4979 current_time(inode);
dff6efc3 4980 }
3972f260 4981
a41ad394 4982 if (newsize > oldsize) {
9ea24bbe
FM
4983 /*
4984 * Don't do an expanding truncate while snapshoting is ongoing.
4985 * This is to ensure the snapshot captures a fully consistent
4986 * state of this file - if the snapshot captures this expanding
4987 * truncation, it must capture all writes that happened before
4988 * this truncation.
4989 */
0bc19f90 4990 btrfs_wait_for_snapshot_creation(root);
a41ad394 4991 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4992 if (ret) {
4993 btrfs_end_write_no_snapshoting(root);
8082510e 4994 return ret;
9ea24bbe 4995 }
8082510e 4996
f4a2f4c5 4997 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4998 if (IS_ERR(trans)) {
4999 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 5000 return PTR_ERR(trans);
9ea24bbe 5001 }
f4a2f4c5
MX
5002
5003 i_size_write(inode, newsize);
5004 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5005 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5006 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 5007 btrfs_end_write_no_snapshoting(root);
7ad85bb7 5008 btrfs_end_transaction(trans, root);
a41ad394 5009 } else {
8082510e 5010
a41ad394
JB
5011 /*
5012 * We're truncating a file that used to have good data down to
5013 * zero. Make sure it gets into the ordered flush list so that
5014 * any new writes get down to disk quickly.
5015 */
5016 if (newsize == 0)
72ac3c0d
JB
5017 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5018 &BTRFS_I(inode)->runtime_flags);
8082510e 5019
f3fe820c
JB
5020 /*
5021 * 1 for the orphan item we're going to add
5022 * 1 for the orphan item deletion.
5023 */
5024 trans = btrfs_start_transaction(root, 2);
5025 if (IS_ERR(trans))
5026 return PTR_ERR(trans);
5027
5028 /*
5029 * We need to do this in case we fail at _any_ point during the
5030 * actual truncate. Once we do the truncate_setsize we could
5031 * invalidate pages which forces any outstanding ordered io to
5032 * be instantly completed which will give us extents that need
5033 * to be truncated. If we fail to get an orphan inode down we
5034 * could have left over extents that were never meant to live,
01327610 5035 * so we need to guarantee from this point on that everything
f3fe820c
JB
5036 * will be consistent.
5037 */
5038 ret = btrfs_orphan_add(trans, inode);
5039 btrfs_end_transaction(trans, root);
5040 if (ret)
5041 return ret;
5042
a41ad394
JB
5043 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5044 truncate_setsize(inode, newsize);
2e60a51e
MX
5045
5046 /* Disable nonlocked read DIO to avoid the end less truncate */
5047 btrfs_inode_block_unlocked_dio(inode);
5048 inode_dio_wait(inode);
5049 btrfs_inode_resume_unlocked_dio(inode);
5050
a41ad394 5051 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5052 if (ret && inode->i_nlink) {
5053 int err;
5054
5055 /*
5056 * failed to truncate, disk_i_size is only adjusted down
5057 * as we remove extents, so it should represent the true
5058 * size of the inode, so reset the in memory size and
5059 * delete our orphan entry.
5060 */
5061 trans = btrfs_join_transaction(root);
5062 if (IS_ERR(trans)) {
5063 btrfs_orphan_del(NULL, inode);
5064 return ret;
5065 }
5066 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5067 err = btrfs_orphan_del(trans, inode);
5068 if (err)
66642832 5069 btrfs_abort_transaction(trans, err);
7f4f6e0a
JB
5070 btrfs_end_transaction(trans, root);
5071 }
8082510e
YZ
5072 }
5073
a41ad394 5074 return ret;
8082510e
YZ
5075}
5076
9036c102
YZ
5077static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5078{
2b0143b5 5079 struct inode *inode = d_inode(dentry);
b83cc969 5080 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5081 int err;
39279cc3 5082
b83cc969
LZ
5083 if (btrfs_root_readonly(root))
5084 return -EROFS;
5085
31051c85 5086 err = setattr_prepare(dentry, attr);
9036c102
YZ
5087 if (err)
5088 return err;
2bf5a725 5089
5a3f23d5 5090 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5091 err = btrfs_setsize(inode, attr);
8082510e
YZ
5092 if (err)
5093 return err;
39279cc3 5094 }
9036c102 5095
1025774c
CH
5096 if (attr->ia_valid) {
5097 setattr_copy(inode, attr);
0c4d2d95 5098 inode_inc_iversion(inode);
22c44fe6 5099 err = btrfs_dirty_inode(inode);
1025774c 5100
22c44fe6 5101 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5102 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5103 }
33268eaf 5104
39279cc3
CM
5105 return err;
5106}
61295eb8 5107
131e404a
FDBM
5108/*
5109 * While truncating the inode pages during eviction, we get the VFS calling
5110 * btrfs_invalidatepage() against each page of the inode. This is slow because
5111 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5112 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5113 * extent_state structures over and over, wasting lots of time.
5114 *
5115 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5116 * those expensive operations on a per page basis and do only the ordered io
5117 * finishing, while we release here the extent_map and extent_state structures,
5118 * without the excessive merging and splitting.
5119 */
5120static void evict_inode_truncate_pages(struct inode *inode)
5121{
5122 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5123 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5124 struct rb_node *node;
5125
5126 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5127 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5128
5129 write_lock(&map_tree->lock);
5130 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5131 struct extent_map *em;
5132
5133 node = rb_first(&map_tree->map);
5134 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5135 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5136 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5137 remove_extent_mapping(map_tree, em);
5138 free_extent_map(em);
7064dd5c
FM
5139 if (need_resched()) {
5140 write_unlock(&map_tree->lock);
5141 cond_resched();
5142 write_lock(&map_tree->lock);
5143 }
131e404a
FDBM
5144 }
5145 write_unlock(&map_tree->lock);
5146
6ca07097
FM
5147 /*
5148 * Keep looping until we have no more ranges in the io tree.
5149 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5150 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5151 * still in progress (unlocked the pages in the bio but did not yet
5152 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5153 * ranges can still be locked and eviction started because before
5154 * submitting those bios, which are executed by a separate task (work
5155 * queue kthread), inode references (inode->i_count) were not taken
5156 * (which would be dropped in the end io callback of each bio).
5157 * Therefore here we effectively end up waiting for those bios and
5158 * anyone else holding locked ranges without having bumped the inode's
5159 * reference count - if we don't do it, when they access the inode's
5160 * io_tree to unlock a range it may be too late, leading to an
5161 * use-after-free issue.
5162 */
131e404a
FDBM
5163 spin_lock(&io_tree->lock);
5164 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5165 struct extent_state *state;
5166 struct extent_state *cached_state = NULL;
6ca07097
FM
5167 u64 start;
5168 u64 end;
131e404a
FDBM
5169
5170 node = rb_first(&io_tree->state);
5171 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5172 start = state->start;
5173 end = state->end;
131e404a
FDBM
5174 spin_unlock(&io_tree->lock);
5175
ff13db41 5176 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5177
5178 /*
5179 * If still has DELALLOC flag, the extent didn't reach disk,
5180 * and its reserved space won't be freed by delayed_ref.
5181 * So we need to free its reserved space here.
5182 * (Refer to comment in btrfs_invalidatepage, case 2)
5183 *
5184 * Note, end is the bytenr of last byte, so we need + 1 here.
5185 */
5186 if (state->state & EXTENT_DELALLOC)
5187 btrfs_qgroup_free_data(inode, start, end - start + 1);
5188
6ca07097 5189 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5190 EXTENT_LOCKED | EXTENT_DIRTY |
5191 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5192 EXTENT_DEFRAG, 1, 1,
5193 &cached_state, GFP_NOFS);
131e404a 5194
7064dd5c 5195 cond_resched();
131e404a
FDBM
5196 spin_lock(&io_tree->lock);
5197 }
5198 spin_unlock(&io_tree->lock);
5199}
5200
bd555975 5201void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5202{
5203 struct btrfs_trans_handle *trans;
5204 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5205 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5206 int steal_from_global = 0;
3d48d981 5207 u64 min_size;
39279cc3
CM
5208 int ret;
5209
1abe9b8a 5210 trace_btrfs_inode_evict(inode);
5211
3d48d981
NB
5212 if (!root) {
5213 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5214 return;
5215 }
5216
5217 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5218
131e404a
FDBM
5219 evict_inode_truncate_pages(inode);
5220
69e9c6c6
SB
5221 if (inode->i_nlink &&
5222 ((btrfs_root_refs(&root->root_item) != 0 &&
5223 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5224 btrfs_is_free_space_inode(inode)))
bd555975
AV
5225 goto no_delete;
5226
39279cc3 5227 if (is_bad_inode(inode)) {
7b128766 5228 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5229 goto no_delete;
5230 }
bd555975 5231 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5232 if (!special_file(inode->i_mode))
5233 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5234
f612496b
MX
5235 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5236
afcdd129 5237 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6bf02314 5238 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5239 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5240 goto no_delete;
5241 }
5242
76dda93c 5243 if (inode->i_nlink > 0) {
69e9c6c6
SB
5244 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5245 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5246 goto no_delete;
5247 }
5248
0e8c36a9
MX
5249 ret = btrfs_commit_inode_delayed_inode(inode);
5250 if (ret) {
5251 btrfs_orphan_del(NULL, inode);
5252 goto no_delete;
5253 }
5254
66d8f3dd 5255 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5256 if (!rsv) {
5257 btrfs_orphan_del(NULL, inode);
5258 goto no_delete;
5259 }
4a338542 5260 rsv->size = min_size;
ca7e70f5 5261 rsv->failfast = 1;
726c35fa 5262 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5263
dbe674a9 5264 btrfs_i_size_write(inode, 0);
5f39d397 5265
4289a667 5266 /*
8407aa46
MX
5267 * This is a bit simpler than btrfs_truncate since we've already
5268 * reserved our space for our orphan item in the unlink, so we just
5269 * need to reserve some slack space in case we add bytes and update
5270 * inode item when doing the truncate.
4289a667 5271 */
8082510e 5272 while (1) {
08e007d2
MX
5273 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5274 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5275
5276 /*
5277 * Try and steal from the global reserve since we will
5278 * likely not use this space anyway, we want to try as
5279 * hard as possible to get this to work.
5280 */
5281 if (ret)
3bce876f
JB
5282 steal_from_global++;
5283 else
5284 steal_from_global = 0;
5285 ret = 0;
d68fc57b 5286
3bce876f
JB
5287 /*
5288 * steal_from_global == 0: we reserved stuff, hooray!
5289 * steal_from_global == 1: we didn't reserve stuff, boo!
5290 * steal_from_global == 2: we've committed, still not a lot of
5291 * room but maybe we'll have room in the global reserve this
5292 * time.
5293 * steal_from_global == 3: abandon all hope!
5294 */
5295 if (steal_from_global > 2) {
c2cf52eb
SK
5296 btrfs_warn(root->fs_info,
5297 "Could not get space for a delete, will truncate on mount %d",
5298 ret);
4289a667
JB
5299 btrfs_orphan_del(NULL, inode);
5300 btrfs_free_block_rsv(root, rsv);
5301 goto no_delete;
d68fc57b 5302 }
7b128766 5303
0e8c36a9 5304 trans = btrfs_join_transaction(root);
4289a667
JB
5305 if (IS_ERR(trans)) {
5306 btrfs_orphan_del(NULL, inode);
5307 btrfs_free_block_rsv(root, rsv);
5308 goto no_delete;
d68fc57b 5309 }
7b128766 5310
3bce876f 5311 /*
01327610 5312 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5313 * sure there is room to do it, if not we need to commit and try
5314 * again.
5315 */
5316 if (steal_from_global) {
5317 if (!btrfs_check_space_for_delayed_refs(trans, root))
5318 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5319 min_size, 0);
3bce876f
JB
5320 else
5321 ret = -ENOSPC;
5322 }
5323
5324 /*
5325 * Couldn't steal from the global reserve, we have too much
5326 * pending stuff built up, commit the transaction and try it
5327 * again.
5328 */
5329 if (ret) {
5330 ret = btrfs_commit_transaction(trans, root);
5331 if (ret) {
5332 btrfs_orphan_del(NULL, inode);
5333 btrfs_free_block_rsv(root, rsv);
5334 goto no_delete;
5335 }
5336 continue;
5337 } else {
5338 steal_from_global = 0;
5339 }
5340
4289a667
JB
5341 trans->block_rsv = rsv;
5342
d68fc57b 5343 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5344 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5345 break;
85e21bac 5346
8407aa46 5347 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5348 btrfs_end_transaction(trans, root);
5349 trans = NULL;
b53d3f5d 5350 btrfs_btree_balance_dirty(root);
8082510e 5351 }
5f39d397 5352
4289a667
JB
5353 btrfs_free_block_rsv(root, rsv);
5354
4ef31a45
JB
5355 /*
5356 * Errors here aren't a big deal, it just means we leave orphan items
5357 * in the tree. They will be cleaned up on the next mount.
5358 */
8082510e 5359 if (ret == 0) {
4289a667 5360 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5361 btrfs_orphan_del(trans, inode);
5362 } else {
5363 btrfs_orphan_del(NULL, inode);
8082510e 5364 }
54aa1f4d 5365
4289a667 5366 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5367 if (!(root == root->fs_info->tree_root ||
5368 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5369 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5370
54aa1f4d 5371 btrfs_end_transaction(trans, root);
b53d3f5d 5372 btrfs_btree_balance_dirty(root);
39279cc3 5373no_delete:
89042e5a 5374 btrfs_remove_delayed_node(inode);
dbd5768f 5375 clear_inode(inode);
39279cc3
CM
5376}
5377
5378/*
5379 * this returns the key found in the dir entry in the location pointer.
5380 * If no dir entries were found, location->objectid is 0.
5381 */
5382static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5383 struct btrfs_key *location)
5384{
5385 const char *name = dentry->d_name.name;
5386 int namelen = dentry->d_name.len;
5387 struct btrfs_dir_item *di;
5388 struct btrfs_path *path;
5389 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5390 int ret = 0;
39279cc3
CM
5391
5392 path = btrfs_alloc_path();
d8926bb3
MF
5393 if (!path)
5394 return -ENOMEM;
3954401f 5395
33345d01 5396 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5397 namelen, 0);
0d9f7f3e
Y
5398 if (IS_ERR(di))
5399 ret = PTR_ERR(di);
d397712b 5400
c704005d 5401 if (IS_ERR_OR_NULL(di))
3954401f 5402 goto out_err;
d397712b 5403
5f39d397 5404 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5405out:
39279cc3
CM
5406 btrfs_free_path(path);
5407 return ret;
3954401f
CM
5408out_err:
5409 location->objectid = 0;
5410 goto out;
39279cc3
CM
5411}
5412
5413/*
5414 * when we hit a tree root in a directory, the btrfs part of the inode
5415 * needs to be changed to reflect the root directory of the tree root. This
5416 * is kind of like crossing a mount point.
5417 */
5418static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5419 struct inode *dir,
5420 struct dentry *dentry,
5421 struct btrfs_key *location,
5422 struct btrfs_root **sub_root)
39279cc3 5423{
4df27c4d
YZ
5424 struct btrfs_path *path;
5425 struct btrfs_root *new_root;
5426 struct btrfs_root_ref *ref;
5427 struct extent_buffer *leaf;
1d4c08e0 5428 struct btrfs_key key;
4df27c4d
YZ
5429 int ret;
5430 int err = 0;
39279cc3 5431
4df27c4d
YZ
5432 path = btrfs_alloc_path();
5433 if (!path) {
5434 err = -ENOMEM;
5435 goto out;
5436 }
39279cc3 5437
4df27c4d 5438 err = -ENOENT;
1d4c08e0
DS
5439 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5440 key.type = BTRFS_ROOT_REF_KEY;
5441 key.offset = location->objectid;
5442
5443 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5444 0, 0);
4df27c4d
YZ
5445 if (ret) {
5446 if (ret < 0)
5447 err = ret;
5448 goto out;
5449 }
39279cc3 5450
4df27c4d
YZ
5451 leaf = path->nodes[0];
5452 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5453 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5454 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5455 goto out;
39279cc3 5456
4df27c4d
YZ
5457 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5458 (unsigned long)(ref + 1),
5459 dentry->d_name.len);
5460 if (ret)
5461 goto out;
5462
b3b4aa74 5463 btrfs_release_path(path);
4df27c4d
YZ
5464
5465 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5466 if (IS_ERR(new_root)) {
5467 err = PTR_ERR(new_root);
5468 goto out;
5469 }
5470
4df27c4d
YZ
5471 *sub_root = new_root;
5472 location->objectid = btrfs_root_dirid(&new_root->root_item);
5473 location->type = BTRFS_INODE_ITEM_KEY;
5474 location->offset = 0;
5475 err = 0;
5476out:
5477 btrfs_free_path(path);
5478 return err;
39279cc3
CM
5479}
5480
5d4f98a2
YZ
5481static void inode_tree_add(struct inode *inode)
5482{
5483 struct btrfs_root *root = BTRFS_I(inode)->root;
5484 struct btrfs_inode *entry;
03e860bd
FNP
5485 struct rb_node **p;
5486 struct rb_node *parent;
cef21937 5487 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5488 u64 ino = btrfs_ino(inode);
5d4f98a2 5489
1d3382cb 5490 if (inode_unhashed(inode))
76dda93c 5491 return;
e1409cef 5492 parent = NULL;
5d4f98a2 5493 spin_lock(&root->inode_lock);
e1409cef 5494 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5495 while (*p) {
5496 parent = *p;
5497 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5498
33345d01 5499 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5500 p = &parent->rb_left;
33345d01 5501 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5502 p = &parent->rb_right;
5d4f98a2
YZ
5503 else {
5504 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5505 (I_WILL_FREE | I_FREEING)));
cef21937 5506 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5507 RB_CLEAR_NODE(parent);
5508 spin_unlock(&root->inode_lock);
cef21937 5509 return;
5d4f98a2
YZ
5510 }
5511 }
cef21937
FDBM
5512 rb_link_node(new, parent, p);
5513 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5514 spin_unlock(&root->inode_lock);
5515}
5516
5517static void inode_tree_del(struct inode *inode)
5518{
5519 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5520 int empty = 0;
5d4f98a2 5521
03e860bd 5522 spin_lock(&root->inode_lock);
5d4f98a2 5523 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5524 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5525 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5526 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5527 }
03e860bd 5528 spin_unlock(&root->inode_lock);
76dda93c 5529
69e9c6c6 5530 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5531 synchronize_srcu(&root->fs_info->subvol_srcu);
5532 spin_lock(&root->inode_lock);
5533 empty = RB_EMPTY_ROOT(&root->inode_tree);
5534 spin_unlock(&root->inode_lock);
5535 if (empty)
5536 btrfs_add_dead_root(root);
5537 }
5538}
5539
143bede5 5540void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5541{
5542 struct rb_node *node;
5543 struct rb_node *prev;
5544 struct btrfs_inode *entry;
5545 struct inode *inode;
5546 u64 objectid = 0;
5547
7813b3db
LB
5548 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5549 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5550
5551 spin_lock(&root->inode_lock);
5552again:
5553 node = root->inode_tree.rb_node;
5554 prev = NULL;
5555 while (node) {
5556 prev = node;
5557 entry = rb_entry(node, struct btrfs_inode, rb_node);
5558
33345d01 5559 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5560 node = node->rb_left;
33345d01 5561 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5562 node = node->rb_right;
5563 else
5564 break;
5565 }
5566 if (!node) {
5567 while (prev) {
5568 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5569 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5570 node = prev;
5571 break;
5572 }
5573 prev = rb_next(prev);
5574 }
5575 }
5576 while (node) {
5577 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5578 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5579 inode = igrab(&entry->vfs_inode);
5580 if (inode) {
5581 spin_unlock(&root->inode_lock);
5582 if (atomic_read(&inode->i_count) > 1)
5583 d_prune_aliases(inode);
5584 /*
45321ac5 5585 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5586 * the inode cache when its usage count
5587 * hits zero.
5588 */
5589 iput(inode);
5590 cond_resched();
5591 spin_lock(&root->inode_lock);
5592 goto again;
5593 }
5594
5595 if (cond_resched_lock(&root->inode_lock))
5596 goto again;
5597
5598 node = rb_next(node);
5599 }
5600 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5601}
5602
e02119d5
CM
5603static int btrfs_init_locked_inode(struct inode *inode, void *p)
5604{
5605 struct btrfs_iget_args *args = p;
90d3e592
CM
5606 inode->i_ino = args->location->objectid;
5607 memcpy(&BTRFS_I(inode)->location, args->location,
5608 sizeof(*args->location));
e02119d5 5609 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5610 return 0;
5611}
5612
5613static int btrfs_find_actor(struct inode *inode, void *opaque)
5614{
5615 struct btrfs_iget_args *args = opaque;
90d3e592 5616 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5617 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5618}
5619
5d4f98a2 5620static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5621 struct btrfs_key *location,
5d4f98a2 5622 struct btrfs_root *root)
39279cc3
CM
5623{
5624 struct inode *inode;
5625 struct btrfs_iget_args args;
90d3e592 5626 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5627
90d3e592 5628 args.location = location;
39279cc3
CM
5629 args.root = root;
5630
778ba82b 5631 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5632 btrfs_init_locked_inode,
5633 (void *)&args);
5634 return inode;
5635}
5636
1a54ef8c
BR
5637/* Get an inode object given its location and corresponding root.
5638 * Returns in *is_new if the inode was read from disk
5639 */
5640struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5641 struct btrfs_root *root, int *new)
1a54ef8c
BR
5642{
5643 struct inode *inode;
5644
90d3e592 5645 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5646 if (!inode)
5d4f98a2 5647 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5648
5649 if (inode->i_state & I_NEW) {
67710892
FM
5650 int ret;
5651
5652 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5653 if (!is_bad_inode(inode)) {
5654 inode_tree_add(inode);
5655 unlock_new_inode(inode);
5656 if (new)
5657 *new = 1;
5658 } else {
e0b6d65b
ST
5659 unlock_new_inode(inode);
5660 iput(inode);
67710892
FM
5661 ASSERT(ret < 0);
5662 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5663 }
5664 }
5665
1a54ef8c
BR
5666 return inode;
5667}
5668
4df27c4d
YZ
5669static struct inode *new_simple_dir(struct super_block *s,
5670 struct btrfs_key *key,
5671 struct btrfs_root *root)
5672{
5673 struct inode *inode = new_inode(s);
5674
5675 if (!inode)
5676 return ERR_PTR(-ENOMEM);
5677
4df27c4d
YZ
5678 BTRFS_I(inode)->root = root;
5679 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5680 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5681
5682 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5683 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5684 inode->i_fop = &simple_dir_operations;
5685 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5686 inode->i_mtime = current_time(inode);
9cc97d64 5687 inode->i_atime = inode->i_mtime;
5688 inode->i_ctime = inode->i_mtime;
5689 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5690
5691 return inode;
5692}
5693
3de4586c 5694struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5695{
d397712b 5696 struct inode *inode;
4df27c4d 5697 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5698 struct btrfs_root *sub_root = root;
5699 struct btrfs_key location;
76dda93c 5700 int index;
b4aff1f8 5701 int ret = 0;
39279cc3
CM
5702
5703 if (dentry->d_name.len > BTRFS_NAME_LEN)
5704 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5705
39e3c955 5706 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5707 if (ret < 0)
5708 return ERR_PTR(ret);
5f39d397 5709
4df27c4d 5710 if (location.objectid == 0)
5662344b 5711 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5712
5713 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5714 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5715 return inode;
5716 }
5717
5718 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5719
76dda93c 5720 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5721 ret = fixup_tree_root_location(root, dir, dentry,
5722 &location, &sub_root);
5723 if (ret < 0) {
5724 if (ret != -ENOENT)
5725 inode = ERR_PTR(ret);
5726 else
5727 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5728 } else {
73f73415 5729 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5730 }
76dda93c
YZ
5731 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5732
34d19bad 5733 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5734 down_read(&root->fs_info->cleanup_work_sem);
5735 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5736 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5737 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5738 if (ret) {
5739 iput(inode);
66b4ffd1 5740 inode = ERR_PTR(ret);
01cd3367 5741 }
c71bf099
YZ
5742 }
5743
3de4586c
CM
5744 return inode;
5745}
5746
fe15ce44 5747static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5748{
5749 struct btrfs_root *root;
2b0143b5 5750 struct inode *inode = d_inode(dentry);
76dda93c 5751
848cce0d 5752 if (!inode && !IS_ROOT(dentry))
2b0143b5 5753 inode = d_inode(dentry->d_parent);
76dda93c 5754
848cce0d
LZ
5755 if (inode) {
5756 root = BTRFS_I(inode)->root;
efefb143
YZ
5757 if (btrfs_root_refs(&root->root_item) == 0)
5758 return 1;
848cce0d
LZ
5759
5760 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5761 return 1;
efefb143 5762 }
76dda93c
YZ
5763 return 0;
5764}
5765
b4aff1f8
JB
5766static void btrfs_dentry_release(struct dentry *dentry)
5767{
944a4515 5768 kfree(dentry->d_fsdata);
b4aff1f8
JB
5769}
5770
3de4586c 5771static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5772 unsigned int flags)
3de4586c 5773{
5662344b 5774 struct inode *inode;
a66e7cc6 5775
5662344b
TI
5776 inode = btrfs_lookup_dentry(dir, dentry);
5777 if (IS_ERR(inode)) {
5778 if (PTR_ERR(inode) == -ENOENT)
5779 inode = NULL;
5780 else
5781 return ERR_CAST(inode);
5782 }
5783
41d28bca 5784 return d_splice_alias(inode, dentry);
39279cc3
CM
5785}
5786
16cdcec7 5787unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5788 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5789};
5790
9cdda8d3 5791static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5792{
9cdda8d3 5793 struct inode *inode = file_inode(file);
39279cc3
CM
5794 struct btrfs_root *root = BTRFS_I(inode)->root;
5795 struct btrfs_item *item;
5796 struct btrfs_dir_item *di;
5797 struct btrfs_key key;
5f39d397 5798 struct btrfs_key found_key;
39279cc3 5799 struct btrfs_path *path;
16cdcec7
MX
5800 struct list_head ins_list;
5801 struct list_head del_list;
39279cc3 5802 int ret;
5f39d397 5803 struct extent_buffer *leaf;
39279cc3 5804 int slot;
39279cc3
CM
5805 unsigned char d_type;
5806 int over = 0;
5807 u32 di_cur;
5808 u32 di_total;
5809 u32 di_len;
5810 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5811 char tmp_name[32];
5812 char *name_ptr;
5813 int name_len;
9cdda8d3 5814 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5815 bool emitted;
02dbfc99 5816 bool put = false;
39279cc3
CM
5817
5818 /* FIXME, use a real flag for deciding about the key type */
5819 if (root->fs_info->tree_root == root)
5820 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5821
9cdda8d3
AV
5822 if (!dir_emit_dots(file, ctx))
5823 return 0;
5824
49593bfa 5825 path = btrfs_alloc_path();
16cdcec7
MX
5826 if (!path)
5827 return -ENOMEM;
ff5714cc 5828
e4058b54 5829 path->reada = READA_FORWARD;
49593bfa 5830
16cdcec7
MX
5831 if (key_type == BTRFS_DIR_INDEX_KEY) {
5832 INIT_LIST_HEAD(&ins_list);
5833 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5834 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5835 &del_list);
16cdcec7
MX
5836 }
5837
962a298f 5838 key.type = key_type;
9cdda8d3 5839 key.offset = ctx->pos;
33345d01 5840 key.objectid = btrfs_ino(inode);
5f39d397 5841
39279cc3
CM
5842 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5843 if (ret < 0)
5844 goto err;
49593bfa 5845
bc4ef759 5846 emitted = false;
49593bfa 5847 while (1) {
5f39d397 5848 leaf = path->nodes[0];
39279cc3 5849 slot = path->slots[0];
b9e03af0
LZ
5850 if (slot >= btrfs_header_nritems(leaf)) {
5851 ret = btrfs_next_leaf(root, path);
5852 if (ret < 0)
5853 goto err;
5854 else if (ret > 0)
5855 break;
5856 continue;
39279cc3 5857 }
3de4586c 5858
dd3cc16b 5859 item = btrfs_item_nr(slot);
5f39d397
CM
5860 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5861
5862 if (found_key.objectid != key.objectid)
39279cc3 5863 break;
962a298f 5864 if (found_key.type != key_type)
39279cc3 5865 break;
9cdda8d3 5866 if (found_key.offset < ctx->pos)
b9e03af0 5867 goto next;
16cdcec7
MX
5868 if (key_type == BTRFS_DIR_INDEX_KEY &&
5869 btrfs_should_delete_dir_index(&del_list,
5870 found_key.offset))
5871 goto next;
5f39d397 5872
9cdda8d3 5873 ctx->pos = found_key.offset;
16cdcec7 5874 is_curr = 1;
49593bfa 5875
39279cc3
CM
5876 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5877 di_cur = 0;
5f39d397 5878 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5879
5880 while (di_cur < di_total) {
5f39d397
CM
5881 struct btrfs_key location;
5882
22a94d44
JB
5883 if (verify_dir_item(root, leaf, di))
5884 break;
5885
5f39d397 5886 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5887 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5888 name_ptr = tmp_name;
5889 } else {
49e350a4 5890 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5891 if (!name_ptr) {
5892 ret = -ENOMEM;
5893 goto err;
5894 }
5f39d397
CM
5895 }
5896 read_extent_buffer(leaf, name_ptr,
5897 (unsigned long)(di + 1), name_len);
5898
5899 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5900 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5901
fede766f 5902
3de4586c 5903 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5904 * skip it.
5905 *
5906 * In contrast to old kernels, we insert the snapshot's
5907 * dir item and dir index after it has been created, so
5908 * we won't find a reference to our own snapshot. We
5909 * still keep the following code for backward
5910 * compatibility.
3de4586c
CM
5911 */
5912 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5913 location.objectid == root->root_key.objectid) {
5914 over = 0;
5915 goto skip;
5916 }
9cdda8d3
AV
5917 over = !dir_emit(ctx, name_ptr, name_len,
5918 location.objectid, d_type);
5f39d397 5919
3de4586c 5920skip:
5f39d397
CM
5921 if (name_ptr != tmp_name)
5922 kfree(name_ptr);
5923
39279cc3
CM
5924 if (over)
5925 goto nopos;
bc4ef759 5926 emitted = true;
5103e947 5927 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5928 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5929 di_cur += di_len;
5930 di = (struct btrfs_dir_item *)((char *)di + di_len);
5931 }
b9e03af0
LZ
5932next:
5933 path->slots[0]++;
39279cc3 5934 }
49593bfa 5935
16cdcec7
MX
5936 if (key_type == BTRFS_DIR_INDEX_KEY) {
5937 if (is_curr)
9cdda8d3 5938 ctx->pos++;
bc4ef759 5939 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5940 if (ret)
5941 goto nopos;
5942 }
5943
bc4ef759
DS
5944 /*
5945 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5946 * it was was set to the termination value in previous call. We assume
5947 * that "." and ".." were emitted if we reach this point and set the
5948 * termination value as well for an empty directory.
5949 */
5950 if (ctx->pos > 2 && !emitted)
5951 goto nopos;
5952
49593bfa 5953 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5954 ctx->pos++;
5955
5956 /*
5957 * Stop new entries from being returned after we return the last
5958 * entry.
5959 *
5960 * New directory entries are assigned a strictly increasing
5961 * offset. This means that new entries created during readdir
5962 * are *guaranteed* to be seen in the future by that readdir.
5963 * This has broken buggy programs which operate on names as
5964 * they're returned by readdir. Until we re-use freed offsets
5965 * we have this hack to stop new entries from being returned
5966 * under the assumption that they'll never reach this huge
5967 * offset.
5968 *
5969 * This is being careful not to overflow 32bit loff_t unless the
5970 * last entry requires it because doing so has broken 32bit apps
5971 * in the past.
5972 */
5973 if (key_type == BTRFS_DIR_INDEX_KEY) {
5974 if (ctx->pos >= INT_MAX)
5975 ctx->pos = LLONG_MAX;
5976 else
5977 ctx->pos = INT_MAX;
5978 }
39279cc3
CM
5979nopos:
5980 ret = 0;
5981err:
02dbfc99
OS
5982 if (put)
5983 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5984 btrfs_free_path(path);
39279cc3
CM
5985 return ret;
5986}
5987
a9185b41 5988int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5989{
5990 struct btrfs_root *root = BTRFS_I(inode)->root;
5991 struct btrfs_trans_handle *trans;
5992 int ret = 0;
0af3d00b 5993 bool nolock = false;
39279cc3 5994
72ac3c0d 5995 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5996 return 0;
5997
83eea1f1 5998 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5999 nolock = true;
0af3d00b 6000
a9185b41 6001 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6002 if (nolock)
7a7eaa40 6003 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6004 else
7a7eaa40 6005 trans = btrfs_join_transaction(root);
3612b495
TI
6006 if (IS_ERR(trans))
6007 return PTR_ERR(trans);
a698d075 6008 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
6009 }
6010 return ret;
6011}
6012
6013/*
54aa1f4d 6014 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6015 * inode changes. But, it is most likely to find the inode in cache.
6016 * FIXME, needs more benchmarking...there are no reasons other than performance
6017 * to keep or drop this code.
6018 */
48a3b636 6019static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
6020{
6021 struct btrfs_root *root = BTRFS_I(inode)->root;
6022 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6023 int ret;
6024
72ac3c0d 6025 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6026 return 0;
39279cc3 6027
7a7eaa40 6028 trans = btrfs_join_transaction(root);
22c44fe6
JB
6029 if (IS_ERR(trans))
6030 return PTR_ERR(trans);
8929ecfa
YZ
6031
6032 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6033 if (ret && ret == -ENOSPC) {
6034 /* whoops, lets try again with the full transaction */
6035 btrfs_end_transaction(trans, root);
6036 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6037 if (IS_ERR(trans))
6038 return PTR_ERR(trans);
8929ecfa 6039
94b60442 6040 ret = btrfs_update_inode(trans, root, inode);
94b60442 6041 }
39279cc3 6042 btrfs_end_transaction(trans, root);
16cdcec7
MX
6043 if (BTRFS_I(inode)->delayed_node)
6044 btrfs_balance_delayed_items(root);
22c44fe6
JB
6045
6046 return ret;
6047}
6048
6049/*
6050 * This is a copy of file_update_time. We need this so we can return error on
6051 * ENOSPC for updating the inode in the case of file write and mmap writes.
6052 */
e41f941a
JB
6053static int btrfs_update_time(struct inode *inode, struct timespec *now,
6054 int flags)
22c44fe6 6055{
2bc55652
AB
6056 struct btrfs_root *root = BTRFS_I(inode)->root;
6057
6058 if (btrfs_root_readonly(root))
6059 return -EROFS;
6060
e41f941a 6061 if (flags & S_VERSION)
22c44fe6 6062 inode_inc_iversion(inode);
e41f941a
JB
6063 if (flags & S_CTIME)
6064 inode->i_ctime = *now;
6065 if (flags & S_MTIME)
6066 inode->i_mtime = *now;
6067 if (flags & S_ATIME)
6068 inode->i_atime = *now;
6069 return btrfs_dirty_inode(inode);
39279cc3
CM
6070}
6071
d352ac68
CM
6072/*
6073 * find the highest existing sequence number in a directory
6074 * and then set the in-memory index_cnt variable to reflect
6075 * free sequence numbers
6076 */
aec7477b
JB
6077static int btrfs_set_inode_index_count(struct inode *inode)
6078{
6079 struct btrfs_root *root = BTRFS_I(inode)->root;
6080 struct btrfs_key key, found_key;
6081 struct btrfs_path *path;
6082 struct extent_buffer *leaf;
6083 int ret;
6084
33345d01 6085 key.objectid = btrfs_ino(inode);
962a298f 6086 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6087 key.offset = (u64)-1;
6088
6089 path = btrfs_alloc_path();
6090 if (!path)
6091 return -ENOMEM;
6092
6093 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6094 if (ret < 0)
6095 goto out;
6096 /* FIXME: we should be able to handle this */
6097 if (ret == 0)
6098 goto out;
6099 ret = 0;
6100
6101 /*
6102 * MAGIC NUMBER EXPLANATION:
6103 * since we search a directory based on f_pos we have to start at 2
6104 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6105 * else has to start at 2
6106 */
6107 if (path->slots[0] == 0) {
6108 BTRFS_I(inode)->index_cnt = 2;
6109 goto out;
6110 }
6111
6112 path->slots[0]--;
6113
6114 leaf = path->nodes[0];
6115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6116
33345d01 6117 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6118 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6119 BTRFS_I(inode)->index_cnt = 2;
6120 goto out;
6121 }
6122
6123 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6124out:
6125 btrfs_free_path(path);
6126 return ret;
6127}
6128
d352ac68
CM
6129/*
6130 * helper to find a free sequence number in a given directory. This current
6131 * code is very simple, later versions will do smarter things in the btree
6132 */
3de4586c 6133int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6134{
6135 int ret = 0;
6136
6137 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6138 ret = btrfs_inode_delayed_dir_index_count(dir);
6139 if (ret) {
6140 ret = btrfs_set_inode_index_count(dir);
6141 if (ret)
6142 return ret;
6143 }
aec7477b
JB
6144 }
6145
00e4e6b3 6146 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6147 BTRFS_I(dir)->index_cnt++;
6148
6149 return ret;
6150}
6151
b0d5d10f
CM
6152static int btrfs_insert_inode_locked(struct inode *inode)
6153{
6154 struct btrfs_iget_args args;
6155 args.location = &BTRFS_I(inode)->location;
6156 args.root = BTRFS_I(inode)->root;
6157
6158 return insert_inode_locked4(inode,
6159 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6160 btrfs_find_actor, &args);
6161}
6162
39279cc3
CM
6163static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6164 struct btrfs_root *root,
aec7477b 6165 struct inode *dir,
9c58309d 6166 const char *name, int name_len,
175a4eb7
AV
6167 u64 ref_objectid, u64 objectid,
6168 umode_t mode, u64 *index)
39279cc3
CM
6169{
6170 struct inode *inode;
5f39d397 6171 struct btrfs_inode_item *inode_item;
39279cc3 6172 struct btrfs_key *location;
5f39d397 6173 struct btrfs_path *path;
9c58309d
CM
6174 struct btrfs_inode_ref *ref;
6175 struct btrfs_key key[2];
6176 u32 sizes[2];
ef3b9af5 6177 int nitems = name ? 2 : 1;
9c58309d 6178 unsigned long ptr;
39279cc3 6179 int ret;
39279cc3 6180
5f39d397 6181 path = btrfs_alloc_path();
d8926bb3
MF
6182 if (!path)
6183 return ERR_PTR(-ENOMEM);
5f39d397 6184
39279cc3 6185 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6186 if (!inode) {
6187 btrfs_free_path(path);
39279cc3 6188 return ERR_PTR(-ENOMEM);
8fb27640 6189 }
39279cc3 6190
5762b5c9
FM
6191 /*
6192 * O_TMPFILE, set link count to 0, so that after this point,
6193 * we fill in an inode item with the correct link count.
6194 */
6195 if (!name)
6196 set_nlink(inode, 0);
6197
581bb050
LZ
6198 /*
6199 * we have to initialize this early, so we can reclaim the inode
6200 * number if we fail afterwards in this function.
6201 */
6202 inode->i_ino = objectid;
6203
ef3b9af5 6204 if (dir && name) {
1abe9b8a 6205 trace_btrfs_inode_request(dir);
6206
3de4586c 6207 ret = btrfs_set_inode_index(dir, index);
09771430 6208 if (ret) {
8fb27640 6209 btrfs_free_path(path);
09771430 6210 iput(inode);
aec7477b 6211 return ERR_PTR(ret);
09771430 6212 }
ef3b9af5
FM
6213 } else if (dir) {
6214 *index = 0;
aec7477b
JB
6215 }
6216 /*
6217 * index_cnt is ignored for everything but a dir,
6218 * btrfs_get_inode_index_count has an explanation for the magic
6219 * number
6220 */
6221 BTRFS_I(inode)->index_cnt = 2;
67de1176 6222 BTRFS_I(inode)->dir_index = *index;
39279cc3 6223 BTRFS_I(inode)->root = root;
e02119d5 6224 BTRFS_I(inode)->generation = trans->transid;
76195853 6225 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6226
5dc562c5
JB
6227 /*
6228 * We could have gotten an inode number from somebody who was fsynced
6229 * and then removed in this same transaction, so let's just set full
6230 * sync since it will be a full sync anyway and this will blow away the
6231 * old info in the log.
6232 */
6233 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6234
9c58309d 6235 key[0].objectid = objectid;
962a298f 6236 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6237 key[0].offset = 0;
6238
9c58309d 6239 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6240
6241 if (name) {
6242 /*
6243 * Start new inodes with an inode_ref. This is slightly more
6244 * efficient for small numbers of hard links since they will
6245 * be packed into one item. Extended refs will kick in if we
6246 * add more hard links than can fit in the ref item.
6247 */
6248 key[1].objectid = objectid;
962a298f 6249 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6250 key[1].offset = ref_objectid;
6251
6252 sizes[1] = name_len + sizeof(*ref);
6253 }
9c58309d 6254
b0d5d10f
CM
6255 location = &BTRFS_I(inode)->location;
6256 location->objectid = objectid;
6257 location->offset = 0;
962a298f 6258 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6259
6260 ret = btrfs_insert_inode_locked(inode);
6261 if (ret < 0)
6262 goto fail;
6263
b9473439 6264 path->leave_spinning = 1;
ef3b9af5 6265 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6266 if (ret != 0)
b0d5d10f 6267 goto fail_unlock;
5f39d397 6268
ecc11fab 6269 inode_init_owner(inode, dir, mode);
a76a3cd4 6270 inode_set_bytes(inode, 0);
9cc97d64 6271
c2050a45 6272 inode->i_mtime = current_time(inode);
9cc97d64 6273 inode->i_atime = inode->i_mtime;
6274 inode->i_ctime = inode->i_mtime;
6275 BTRFS_I(inode)->i_otime = inode->i_mtime;
6276
5f39d397
CM
6277 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6278 struct btrfs_inode_item);
b159fa28 6279 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6280 sizeof(*inode_item));
e02119d5 6281 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6282
ef3b9af5
FM
6283 if (name) {
6284 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6285 struct btrfs_inode_ref);
6286 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6287 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6288 ptr = (unsigned long)(ref + 1);
6289 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6290 }
9c58309d 6291
5f39d397
CM
6292 btrfs_mark_buffer_dirty(path->nodes[0]);
6293 btrfs_free_path(path);
6294
6cbff00f
CH
6295 btrfs_inherit_iflags(inode, dir);
6296
569254b0 6297 if (S_ISREG(mode)) {
3cdde224 6298 if (btrfs_test_opt(root->fs_info, NODATASUM))
94272164 6299 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3cdde224 6300 if (btrfs_test_opt(root->fs_info, NODATACOW))
f2bdf9a8
JB
6301 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6302 BTRFS_INODE_NODATASUM;
94272164
CM
6303 }
6304
5d4f98a2 6305 inode_tree_add(inode);
1abe9b8a 6306
6307 trace_btrfs_inode_new(inode);
1973f0fa 6308 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6309
8ea05e3a
AB
6310 btrfs_update_root_times(trans, root);
6311
63541927
FDBM
6312 ret = btrfs_inode_inherit_props(trans, inode, dir);
6313 if (ret)
6314 btrfs_err(root->fs_info,
6315 "error inheriting props for ino %llu (root %llu): %d",
6316 btrfs_ino(inode), root->root_key.objectid, ret);
6317
39279cc3 6318 return inode;
b0d5d10f
CM
6319
6320fail_unlock:
6321 unlock_new_inode(inode);
5f39d397 6322fail:
ef3b9af5 6323 if (dir && name)
aec7477b 6324 BTRFS_I(dir)->index_cnt--;
5f39d397 6325 btrfs_free_path(path);
09771430 6326 iput(inode);
5f39d397 6327 return ERR_PTR(ret);
39279cc3
CM
6328}
6329
6330static inline u8 btrfs_inode_type(struct inode *inode)
6331{
6332 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6333}
6334
d352ac68
CM
6335/*
6336 * utility function to add 'inode' into 'parent_inode' with
6337 * a give name and a given sequence number.
6338 * if 'add_backref' is true, also insert a backref from the
6339 * inode to the parent directory.
6340 */
e02119d5
CM
6341int btrfs_add_link(struct btrfs_trans_handle *trans,
6342 struct inode *parent_inode, struct inode *inode,
6343 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6344{
4df27c4d 6345 int ret = 0;
39279cc3 6346 struct btrfs_key key;
e02119d5 6347 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6348 u64 ino = btrfs_ino(inode);
6349 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6350
33345d01 6351 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6352 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6353 } else {
33345d01 6354 key.objectid = ino;
962a298f 6355 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6356 key.offset = 0;
6357 }
6358
33345d01 6359 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6360 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6361 key.objectid, root->root_key.objectid,
33345d01 6362 parent_ino, index, name, name_len);
4df27c4d 6363 } else if (add_backref) {
33345d01
LZ
6364 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6365 parent_ino, index);
4df27c4d 6366 }
39279cc3 6367
79787eaa
JM
6368 /* Nothing to clean up yet */
6369 if (ret)
6370 return ret;
4df27c4d 6371
79787eaa
JM
6372 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6373 parent_inode, &key,
6374 btrfs_inode_type(inode), index);
9c52057c 6375 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6376 goto fail_dir_item;
6377 else if (ret) {
66642832 6378 btrfs_abort_transaction(trans, ret);
79787eaa 6379 return ret;
39279cc3 6380 }
79787eaa
JM
6381
6382 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6383 name_len * 2);
0c4d2d95 6384 inode_inc_iversion(parent_inode);
04b285f3 6385 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 6386 current_time(parent_inode);
79787eaa
JM
6387 ret = btrfs_update_inode(trans, root, parent_inode);
6388 if (ret)
66642832 6389 btrfs_abort_transaction(trans, ret);
39279cc3 6390 return ret;
fe66a05a
CM
6391
6392fail_dir_item:
6393 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6394 u64 local_index;
6395 int err;
6396 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6397 key.objectid, root->root_key.objectid,
6398 parent_ino, &local_index, name, name_len);
6399
6400 } else if (add_backref) {
6401 u64 local_index;
6402 int err;
6403
6404 err = btrfs_del_inode_ref(trans, root, name, name_len,
6405 ino, parent_ino, &local_index);
6406 }
6407 return ret;
39279cc3
CM
6408}
6409
6410static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6411 struct inode *dir, struct dentry *dentry,
6412 struct inode *inode, int backref, u64 index)
39279cc3 6413{
a1b075d2
JB
6414 int err = btrfs_add_link(trans, dir, inode,
6415 dentry->d_name.name, dentry->d_name.len,
6416 backref, index);
39279cc3
CM
6417 if (err > 0)
6418 err = -EEXIST;
6419 return err;
6420}
6421
618e21d5 6422static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6423 umode_t mode, dev_t rdev)
618e21d5
JB
6424{
6425 struct btrfs_trans_handle *trans;
6426 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6427 struct inode *inode = NULL;
618e21d5
JB
6428 int err;
6429 int drop_inode = 0;
6430 u64 objectid;
00e4e6b3 6431 u64 index = 0;
618e21d5 6432
9ed74f2d
JB
6433 /*
6434 * 2 for inode item and ref
6435 * 2 for dir items
6436 * 1 for xattr if selinux is on
6437 */
a22285a6
YZ
6438 trans = btrfs_start_transaction(root, 5);
6439 if (IS_ERR(trans))
6440 return PTR_ERR(trans);
1832a6d5 6441
581bb050
LZ
6442 err = btrfs_find_free_ino(root, &objectid);
6443 if (err)
6444 goto out_unlock;
6445
aec7477b 6446 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6447 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6448 mode, &index);
7cf96da3
TI
6449 if (IS_ERR(inode)) {
6450 err = PTR_ERR(inode);
618e21d5 6451 goto out_unlock;
7cf96da3 6452 }
618e21d5 6453
ad19db71
CS
6454 /*
6455 * If the active LSM wants to access the inode during
6456 * d_instantiate it needs these. Smack checks to see
6457 * if the filesystem supports xattrs by looking at the
6458 * ops vector.
6459 */
ad19db71 6460 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6461 init_special_inode(inode, inode->i_mode, rdev);
6462
6463 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6464 if (err)
b0d5d10f
CM
6465 goto out_unlock_inode;
6466
6467 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6468 if (err) {
6469 goto out_unlock_inode;
6470 } else {
1b4ab1bb 6471 btrfs_update_inode(trans, root, inode);
b0d5d10f 6472 unlock_new_inode(inode);
08c422c2 6473 d_instantiate(dentry, inode);
618e21d5 6474 }
b0d5d10f 6475
618e21d5 6476out_unlock:
7ad85bb7 6477 btrfs_end_transaction(trans, root);
c581afc8 6478 btrfs_balance_delayed_items(root);
b53d3f5d 6479 btrfs_btree_balance_dirty(root);
618e21d5
JB
6480 if (drop_inode) {
6481 inode_dec_link_count(inode);
6482 iput(inode);
6483 }
618e21d5 6484 return err;
b0d5d10f
CM
6485
6486out_unlock_inode:
6487 drop_inode = 1;
6488 unlock_new_inode(inode);
6489 goto out_unlock;
6490
618e21d5
JB
6491}
6492
39279cc3 6493static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6494 umode_t mode, bool excl)
39279cc3
CM
6495{
6496 struct btrfs_trans_handle *trans;
6497 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6498 struct inode *inode = NULL;
43baa579 6499 int drop_inode_on_err = 0;
a22285a6 6500 int err;
39279cc3 6501 u64 objectid;
00e4e6b3 6502 u64 index = 0;
39279cc3 6503
9ed74f2d
JB
6504 /*
6505 * 2 for inode item and ref
6506 * 2 for dir items
6507 * 1 for xattr if selinux is on
6508 */
a22285a6
YZ
6509 trans = btrfs_start_transaction(root, 5);
6510 if (IS_ERR(trans))
6511 return PTR_ERR(trans);
9ed74f2d 6512
581bb050
LZ
6513 err = btrfs_find_free_ino(root, &objectid);
6514 if (err)
6515 goto out_unlock;
6516
aec7477b 6517 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6518 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6519 mode, &index);
7cf96da3
TI
6520 if (IS_ERR(inode)) {
6521 err = PTR_ERR(inode);
39279cc3 6522 goto out_unlock;
7cf96da3 6523 }
43baa579 6524 drop_inode_on_err = 1;
ad19db71
CS
6525 /*
6526 * If the active LSM wants to access the inode during
6527 * d_instantiate it needs these. Smack checks to see
6528 * if the filesystem supports xattrs by looking at the
6529 * ops vector.
6530 */
6531 inode->i_fop = &btrfs_file_operations;
6532 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6533 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6534
6535 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6536 if (err)
6537 goto out_unlock_inode;
6538
6539 err = btrfs_update_inode(trans, root, inode);
6540 if (err)
6541 goto out_unlock_inode;
ad19db71 6542
a1b075d2 6543 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6544 if (err)
b0d5d10f 6545 goto out_unlock_inode;
43baa579 6546
43baa579 6547 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6548 unlock_new_inode(inode);
43baa579
FB
6549 d_instantiate(dentry, inode);
6550
39279cc3 6551out_unlock:
7ad85bb7 6552 btrfs_end_transaction(trans, root);
43baa579 6553 if (err && drop_inode_on_err) {
39279cc3
CM
6554 inode_dec_link_count(inode);
6555 iput(inode);
6556 }
c581afc8 6557 btrfs_balance_delayed_items(root);
b53d3f5d 6558 btrfs_btree_balance_dirty(root);
39279cc3 6559 return err;
b0d5d10f
CM
6560
6561out_unlock_inode:
6562 unlock_new_inode(inode);
6563 goto out_unlock;
6564
39279cc3
CM
6565}
6566
6567static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6568 struct dentry *dentry)
6569{
271dba45 6570 struct btrfs_trans_handle *trans = NULL;
39279cc3 6571 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6572 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6573 u64 index;
39279cc3
CM
6574 int err;
6575 int drop_inode = 0;
6576
4a8be425
TH
6577 /* do not allow sys_link's with other subvols of the same device */
6578 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6579 return -EXDEV;
4a8be425 6580
f186373f 6581 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6582 return -EMLINK;
4a8be425 6583
3de4586c 6584 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6585 if (err)
6586 goto fail;
6587
a22285a6 6588 /*
7e6b6465 6589 * 2 items for inode and inode ref
a22285a6 6590 * 2 items for dir items
7e6b6465 6591 * 1 item for parent inode
a22285a6 6592 */
7e6b6465 6593 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6594 if (IS_ERR(trans)) {
6595 err = PTR_ERR(trans);
271dba45 6596 trans = NULL;
a22285a6
YZ
6597 goto fail;
6598 }
5f39d397 6599
67de1176
MX
6600 /* There are several dir indexes for this inode, clear the cache. */
6601 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6602 inc_nlink(inode);
0c4d2d95 6603 inode_inc_iversion(inode);
c2050a45 6604 inode->i_ctime = current_time(inode);
7de9c6ee 6605 ihold(inode);
e9976151 6606 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6607
a1b075d2 6608 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6609
a5719521 6610 if (err) {
54aa1f4d 6611 drop_inode = 1;
a5719521 6612 } else {
10d9f309 6613 struct dentry *parent = dentry->d_parent;
a5719521 6614 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6615 if (err)
6616 goto fail;
ef3b9af5
FM
6617 if (inode->i_nlink == 1) {
6618 /*
6619 * If new hard link count is 1, it's a file created
6620 * with open(2) O_TMPFILE flag.
6621 */
6622 err = btrfs_orphan_del(trans, inode);
6623 if (err)
6624 goto fail;
6625 }
08c422c2 6626 d_instantiate(dentry, inode);
6a912213 6627 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6628 }
39279cc3 6629
c581afc8 6630 btrfs_balance_delayed_items(root);
1832a6d5 6631fail:
271dba45
FM
6632 if (trans)
6633 btrfs_end_transaction(trans, root);
39279cc3
CM
6634 if (drop_inode) {
6635 inode_dec_link_count(inode);
6636 iput(inode);
6637 }
b53d3f5d 6638 btrfs_btree_balance_dirty(root);
39279cc3
CM
6639 return err;
6640}
6641
18bb1db3 6642static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6643{
b9d86667 6644 struct inode *inode = NULL;
39279cc3
CM
6645 struct btrfs_trans_handle *trans;
6646 struct btrfs_root *root = BTRFS_I(dir)->root;
6647 int err = 0;
6648 int drop_on_err = 0;
b9d86667 6649 u64 objectid = 0;
00e4e6b3 6650 u64 index = 0;
39279cc3 6651
9ed74f2d
JB
6652 /*
6653 * 2 items for inode and ref
6654 * 2 items for dir items
6655 * 1 for xattr if selinux is on
6656 */
a22285a6
YZ
6657 trans = btrfs_start_transaction(root, 5);
6658 if (IS_ERR(trans))
6659 return PTR_ERR(trans);
39279cc3 6660
581bb050
LZ
6661 err = btrfs_find_free_ino(root, &objectid);
6662 if (err)
6663 goto out_fail;
6664
aec7477b 6665 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6666 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6667 S_IFDIR | mode, &index);
39279cc3
CM
6668 if (IS_ERR(inode)) {
6669 err = PTR_ERR(inode);
6670 goto out_fail;
6671 }
5f39d397 6672
39279cc3 6673 drop_on_err = 1;
b0d5d10f
CM
6674 /* these must be set before we unlock the inode */
6675 inode->i_op = &btrfs_dir_inode_operations;
6676 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6677
2a7dba39 6678 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6679 if (err)
b0d5d10f 6680 goto out_fail_inode;
39279cc3 6681
dbe674a9 6682 btrfs_i_size_write(inode, 0);
39279cc3
CM
6683 err = btrfs_update_inode(trans, root, inode);
6684 if (err)
b0d5d10f 6685 goto out_fail_inode;
5f39d397 6686
a1b075d2
JB
6687 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6688 dentry->d_name.len, 0, index);
39279cc3 6689 if (err)
b0d5d10f 6690 goto out_fail_inode;
5f39d397 6691
39279cc3 6692 d_instantiate(dentry, inode);
b0d5d10f
CM
6693 /*
6694 * mkdir is special. We're unlocking after we call d_instantiate
6695 * to avoid a race with nfsd calling d_instantiate.
6696 */
6697 unlock_new_inode(inode);
39279cc3 6698 drop_on_err = 0;
39279cc3
CM
6699
6700out_fail:
7ad85bb7 6701 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6702 if (drop_on_err) {
6703 inode_dec_link_count(inode);
39279cc3 6704 iput(inode);
c7cfb8a5 6705 }
c581afc8 6706 btrfs_balance_delayed_items(root);
b53d3f5d 6707 btrfs_btree_balance_dirty(root);
39279cc3 6708 return err;
b0d5d10f
CM
6709
6710out_fail_inode:
6711 unlock_new_inode(inode);
6712 goto out_fail;
39279cc3
CM
6713}
6714
e6c4efd8
QW
6715/* Find next extent map of a given extent map, caller needs to ensure locks */
6716static struct extent_map *next_extent_map(struct extent_map *em)
6717{
6718 struct rb_node *next;
6719
6720 next = rb_next(&em->rb_node);
6721 if (!next)
6722 return NULL;
6723 return container_of(next, struct extent_map, rb_node);
6724}
6725
6726static struct extent_map *prev_extent_map(struct extent_map *em)
6727{
6728 struct rb_node *prev;
6729
6730 prev = rb_prev(&em->rb_node);
6731 if (!prev)
6732 return NULL;
6733 return container_of(prev, struct extent_map, rb_node);
6734}
6735
d352ac68 6736/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6737 * the existing extent is the nearest extent to map_start,
d352ac68 6738 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6739 * the best fitted new extent into the tree.
d352ac68 6740 */
3b951516
CM
6741static int merge_extent_mapping(struct extent_map_tree *em_tree,
6742 struct extent_map *existing,
e6dcd2dc 6743 struct extent_map *em,
51f395ad 6744 u64 map_start)
3b951516 6745{
e6c4efd8
QW
6746 struct extent_map *prev;
6747 struct extent_map *next;
6748 u64 start;
6749 u64 end;
3b951516 6750 u64 start_diff;
3b951516 6751
e6dcd2dc 6752 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6753
6754 if (existing->start > map_start) {
6755 next = existing;
6756 prev = prev_extent_map(next);
6757 } else {
6758 prev = existing;
6759 next = next_extent_map(prev);
6760 }
6761
6762 start = prev ? extent_map_end(prev) : em->start;
6763 start = max_t(u64, start, em->start);
6764 end = next ? next->start : extent_map_end(em);
6765 end = min_t(u64, end, extent_map_end(em));
6766 start_diff = start - em->start;
6767 em->start = start;
6768 em->len = end - start;
c8b97818
CM
6769 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6770 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6771 em->block_start += start_diff;
c8b97818
CM
6772 em->block_len -= start_diff;
6773 }
09a2a8f9 6774 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6775}
6776
c8b97818 6777static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6778 struct page *page,
c8b97818
CM
6779 size_t pg_offset, u64 extent_offset,
6780 struct btrfs_file_extent_item *item)
6781{
6782 int ret;
6783 struct extent_buffer *leaf = path->nodes[0];
6784 char *tmp;
6785 size_t max_size;
6786 unsigned long inline_size;
6787 unsigned long ptr;
261507a0 6788 int compress_type;
c8b97818
CM
6789
6790 WARN_ON(pg_offset != 0);
261507a0 6791 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6792 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6793 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6794 btrfs_item_nr(path->slots[0]));
c8b97818 6795 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6796 if (!tmp)
6797 return -ENOMEM;
c8b97818
CM
6798 ptr = btrfs_file_extent_inline_start(item);
6799
6800 read_extent_buffer(leaf, tmp, ptr, inline_size);
6801
09cbfeaf 6802 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6803 ret = btrfs_decompress(compress_type, tmp, page,
6804 extent_offset, inline_size, max_size);
c8b97818 6805 kfree(tmp);
166ae5a4 6806 return ret;
c8b97818
CM
6807}
6808
d352ac68
CM
6809/*
6810 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6811 * the ugly parts come from merging extents from the disk with the in-ram
6812 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6813 * where the in-ram extents might be locked pending data=ordered completion.
6814 *
6815 * This also copies inline extents directly into the page.
6816 */
d397712b 6817
a52d9a80 6818struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6819 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6820 int create)
6821{
6822 int ret;
6823 int err = 0;
a52d9a80
CM
6824 u64 extent_start = 0;
6825 u64 extent_end = 0;
33345d01 6826 u64 objectid = btrfs_ino(inode);
a52d9a80 6827 u32 found_type;
f421950f 6828 struct btrfs_path *path = NULL;
a52d9a80
CM
6829 struct btrfs_root *root = BTRFS_I(inode)->root;
6830 struct btrfs_file_extent_item *item;
5f39d397
CM
6831 struct extent_buffer *leaf;
6832 struct btrfs_key found_key;
a52d9a80
CM
6833 struct extent_map *em = NULL;
6834 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6836 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6837 const bool new_inline = !page || create;
a52d9a80 6838
a52d9a80 6839again:
890871be 6840 read_lock(&em_tree->lock);
d1310b2e 6841 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6842 if (em)
6843 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6844 read_unlock(&em_tree->lock);
d1310b2e 6845
a52d9a80 6846 if (em) {
e1c4b745
CM
6847 if (em->start > start || em->start + em->len <= start)
6848 free_extent_map(em);
6849 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6850 free_extent_map(em);
6851 else
6852 goto out;
a52d9a80 6853 }
172ddd60 6854 em = alloc_extent_map();
a52d9a80 6855 if (!em) {
d1310b2e
CM
6856 err = -ENOMEM;
6857 goto out;
a52d9a80 6858 }
e6dcd2dc 6859 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6860 em->start = EXTENT_MAP_HOLE;
445a6944 6861 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6862 em->len = (u64)-1;
c8b97818 6863 em->block_len = (u64)-1;
f421950f
CM
6864
6865 if (!path) {
6866 path = btrfs_alloc_path();
026fd317
JB
6867 if (!path) {
6868 err = -ENOMEM;
6869 goto out;
6870 }
6871 /*
6872 * Chances are we'll be called again, so go ahead and do
6873 * readahead
6874 */
e4058b54 6875 path->reada = READA_FORWARD;
f421950f
CM
6876 }
6877
179e29e4
CM
6878 ret = btrfs_lookup_file_extent(trans, root, path,
6879 objectid, start, trans != NULL);
a52d9a80
CM
6880 if (ret < 0) {
6881 err = ret;
6882 goto out;
6883 }
6884
6885 if (ret != 0) {
6886 if (path->slots[0] == 0)
6887 goto not_found;
6888 path->slots[0]--;
6889 }
6890
5f39d397
CM
6891 leaf = path->nodes[0];
6892 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6893 struct btrfs_file_extent_item);
a52d9a80 6894 /* are we inside the extent that was found? */
5f39d397 6895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6896 found_type = found_key.type;
5f39d397 6897 if (found_key.objectid != objectid ||
a52d9a80 6898 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6899 /*
6900 * If we backup past the first extent we want to move forward
6901 * and see if there is an extent in front of us, otherwise we'll
6902 * say there is a hole for our whole search range which can
6903 * cause problems.
6904 */
6905 extent_end = start;
6906 goto next;
a52d9a80
CM
6907 }
6908
5f39d397
CM
6909 found_type = btrfs_file_extent_type(leaf, item);
6910 extent_start = found_key.offset;
d899e052
YZ
6911 if (found_type == BTRFS_FILE_EXTENT_REG ||
6912 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6913 extent_end = extent_start +
db94535d 6914 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6915 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6916 size_t size;
514ac8ad 6917 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6918 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6919 }
25a50341 6920next:
9036c102
YZ
6921 if (start >= extent_end) {
6922 path->slots[0]++;
6923 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6924 ret = btrfs_next_leaf(root, path);
6925 if (ret < 0) {
6926 err = ret;
6927 goto out;
a52d9a80 6928 }
9036c102
YZ
6929 if (ret > 0)
6930 goto not_found;
6931 leaf = path->nodes[0];
a52d9a80 6932 }
9036c102
YZ
6933 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6934 if (found_key.objectid != objectid ||
6935 found_key.type != BTRFS_EXTENT_DATA_KEY)
6936 goto not_found;
6937 if (start + len <= found_key.offset)
6938 goto not_found;
e2eca69d
WS
6939 if (start > found_key.offset)
6940 goto next;
9036c102 6941 em->start = start;
70c8a91c 6942 em->orig_start = start;
9036c102
YZ
6943 em->len = found_key.offset - start;
6944 goto not_found_em;
6945 }
6946
7ffbb598
FM
6947 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6948
d899e052
YZ
6949 if (found_type == BTRFS_FILE_EXTENT_REG ||
6950 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6951 goto insert;
6952 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6953 unsigned long ptr;
a52d9a80 6954 char *map;
3326d1b0
CM
6955 size_t size;
6956 size_t extent_offset;
6957 size_t copy_size;
a52d9a80 6958
7ffbb598 6959 if (new_inline)
689f9346 6960 goto out;
5f39d397 6961
514ac8ad 6962 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6963 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6964 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6965 size - extent_offset);
3326d1b0 6966 em->start = extent_start + extent_offset;
fda2832f 6967 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6968 em->orig_block_len = em->len;
70c8a91c 6969 em->orig_start = em->start;
689f9346 6970 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6971 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6972 if (btrfs_file_extent_compression(leaf, item) !=
6973 BTRFS_COMPRESS_NONE) {
e40da0e5 6974 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6975 extent_offset, item);
166ae5a4
ZB
6976 if (ret) {
6977 err = ret;
6978 goto out;
6979 }
c8b97818
CM
6980 } else {
6981 map = kmap(page);
6982 read_extent_buffer(leaf, map + pg_offset, ptr,
6983 copy_size);
09cbfeaf 6984 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6985 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6986 PAGE_SIZE - pg_offset -
93c82d57
CM
6987 copy_size);
6988 }
c8b97818
CM
6989 kunmap(page);
6990 }
179e29e4
CM
6991 flush_dcache_page(page);
6992 } else if (create && PageUptodate(page)) {
6bf7e080 6993 BUG();
179e29e4
CM
6994 if (!trans) {
6995 kunmap(page);
6996 free_extent_map(em);
6997 em = NULL;
ff5714cc 6998
b3b4aa74 6999 btrfs_release_path(path);
7a7eaa40 7000 trans = btrfs_join_transaction(root);
ff5714cc 7001
3612b495
TI
7002 if (IS_ERR(trans))
7003 return ERR_CAST(trans);
179e29e4
CM
7004 goto again;
7005 }
c8b97818 7006 map = kmap(page);
70dec807 7007 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7008 copy_size);
c8b97818 7009 kunmap(page);
179e29e4 7010 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7011 }
d1310b2e 7012 set_extent_uptodate(io_tree, em->start,
507903b8 7013 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7014 goto insert;
a52d9a80
CM
7015 }
7016not_found:
7017 em->start = start;
70c8a91c 7018 em->orig_start = start;
d1310b2e 7019 em->len = len;
a52d9a80 7020not_found_em:
5f39d397 7021 em->block_start = EXTENT_MAP_HOLE;
9036c102 7022 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7023insert:
b3b4aa74 7024 btrfs_release_path(path);
d1310b2e 7025 if (em->start > start || extent_map_end(em) <= start) {
5d163e0e
JM
7026 btrfs_err(root->fs_info,
7027 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7028 em->start, em->len, start, len);
a52d9a80
CM
7029 err = -EIO;
7030 goto out;
7031 }
d1310b2e
CM
7032
7033 err = 0;
890871be 7034 write_lock(&em_tree->lock);
09a2a8f9 7035 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7036 /* it is possible that someone inserted the extent into the tree
7037 * while we had the lock dropped. It is also possible that
7038 * an overlapping map exists in the tree
7039 */
a52d9a80 7040 if (ret == -EEXIST) {
3b951516 7041 struct extent_map *existing;
e6dcd2dc
CM
7042
7043 ret = 0;
7044
e6c4efd8
QW
7045 existing = search_extent_mapping(em_tree, start, len);
7046 /*
7047 * existing will always be non-NULL, since there must be
7048 * extent causing the -EEXIST.
7049 */
8dff9c85 7050 if (existing->start == em->start &&
8e2bd3b7 7051 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7052 em->block_start == existing->block_start) {
7053 /*
8e2bd3b7
OS
7054 * The existing extent map already encompasses the
7055 * entire extent map we tried to add.
8dff9c85
CM
7056 */
7057 free_extent_map(em);
7058 em = existing;
7059 err = 0;
7060
7061 } else if (start >= extent_map_end(existing) ||
32be3a1a 7062 start <= existing->start) {
e6c4efd8
QW
7063 /*
7064 * The existing extent map is the one nearest to
7065 * the [start, start + len) range which overlaps
7066 */
7067 err = merge_extent_mapping(em_tree, existing,
7068 em, start);
e1c4b745 7069 free_extent_map(existing);
e6c4efd8 7070 if (err) {
3b951516
CM
7071 free_extent_map(em);
7072 em = NULL;
7073 }
7074 } else {
7075 free_extent_map(em);
7076 em = existing;
e6dcd2dc 7077 err = 0;
a52d9a80 7078 }
a52d9a80 7079 }
890871be 7080 write_unlock(&em_tree->lock);
a52d9a80 7081out:
1abe9b8a 7082
4cd8587c 7083 trace_btrfs_get_extent(root, em);
1abe9b8a 7084
527afb44 7085 btrfs_free_path(path);
a52d9a80
CM
7086 if (trans) {
7087 ret = btrfs_end_transaction(trans, root);
d397712b 7088 if (!err)
a52d9a80
CM
7089 err = ret;
7090 }
a52d9a80
CM
7091 if (err) {
7092 free_extent_map(em);
a52d9a80
CM
7093 return ERR_PTR(err);
7094 }
79787eaa 7095 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7096 return em;
7097}
7098
ec29ed5b
CM
7099struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7100 size_t pg_offset, u64 start, u64 len,
7101 int create)
7102{
7103 struct extent_map *em;
7104 struct extent_map *hole_em = NULL;
7105 u64 range_start = start;
7106 u64 end;
7107 u64 found;
7108 u64 found_end;
7109 int err = 0;
7110
7111 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7112 if (IS_ERR(em))
7113 return em;
7114 if (em) {
7115 /*
f9e4fb53
LB
7116 * if our em maps to
7117 * - a hole or
7118 * - a pre-alloc extent,
7119 * there might actually be delalloc bytes behind it.
ec29ed5b 7120 */
f9e4fb53
LB
7121 if (em->block_start != EXTENT_MAP_HOLE &&
7122 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7123 return em;
7124 else
7125 hole_em = em;
7126 }
7127
7128 /* check to see if we've wrapped (len == -1 or similar) */
7129 end = start + len;
7130 if (end < start)
7131 end = (u64)-1;
7132 else
7133 end -= 1;
7134
7135 em = NULL;
7136
7137 /* ok, we didn't find anything, lets look for delalloc */
7138 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7139 end, len, EXTENT_DELALLOC, 1);
7140 found_end = range_start + found;
7141 if (found_end < range_start)
7142 found_end = (u64)-1;
7143
7144 /*
7145 * we didn't find anything useful, return
7146 * the original results from get_extent()
7147 */
7148 if (range_start > end || found_end <= start) {
7149 em = hole_em;
7150 hole_em = NULL;
7151 goto out;
7152 }
7153
7154 /* adjust the range_start to make sure it doesn't
7155 * go backwards from the start they passed in
7156 */
67871254 7157 range_start = max(start, range_start);
ec29ed5b
CM
7158 found = found_end - range_start;
7159
7160 if (found > 0) {
7161 u64 hole_start = start;
7162 u64 hole_len = len;
7163
172ddd60 7164 em = alloc_extent_map();
ec29ed5b
CM
7165 if (!em) {
7166 err = -ENOMEM;
7167 goto out;
7168 }
7169 /*
7170 * when btrfs_get_extent can't find anything it
7171 * returns one huge hole
7172 *
7173 * make sure what it found really fits our range, and
7174 * adjust to make sure it is based on the start from
7175 * the caller
7176 */
7177 if (hole_em) {
7178 u64 calc_end = extent_map_end(hole_em);
7179
7180 if (calc_end <= start || (hole_em->start > end)) {
7181 free_extent_map(hole_em);
7182 hole_em = NULL;
7183 } else {
7184 hole_start = max(hole_em->start, start);
7185 hole_len = calc_end - hole_start;
7186 }
7187 }
7188 em->bdev = NULL;
7189 if (hole_em && range_start > hole_start) {
7190 /* our hole starts before our delalloc, so we
7191 * have to return just the parts of the hole
7192 * that go until the delalloc starts
7193 */
7194 em->len = min(hole_len,
7195 range_start - hole_start);
7196 em->start = hole_start;
7197 em->orig_start = hole_start;
7198 /*
7199 * don't adjust block start at all,
7200 * it is fixed at EXTENT_MAP_HOLE
7201 */
7202 em->block_start = hole_em->block_start;
7203 em->block_len = hole_len;
f9e4fb53
LB
7204 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7205 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7206 } else {
7207 em->start = range_start;
7208 em->len = found;
7209 em->orig_start = range_start;
7210 em->block_start = EXTENT_MAP_DELALLOC;
7211 em->block_len = found;
7212 }
7213 } else if (hole_em) {
7214 return hole_em;
7215 }
7216out:
7217
7218 free_extent_map(hole_em);
7219 if (err) {
7220 free_extent_map(em);
7221 return ERR_PTR(err);
7222 }
7223 return em;
7224}
7225
5f9a8a51
FM
7226static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7227 const u64 start,
7228 const u64 len,
7229 const u64 orig_start,
7230 const u64 block_start,
7231 const u64 block_len,
7232 const u64 orig_block_len,
7233 const u64 ram_bytes,
7234 const int type)
7235{
7236 struct extent_map *em = NULL;
7237 int ret;
7238
7239 down_read(&BTRFS_I(inode)->dio_sem);
7240 if (type != BTRFS_ORDERED_NOCOW) {
7241 em = create_pinned_em(inode, start, len, orig_start,
7242 block_start, block_len, orig_block_len,
7243 ram_bytes, type);
7244 if (IS_ERR(em))
7245 goto out;
7246 }
7247 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7248 len, block_len, type);
7249 if (ret) {
7250 if (em) {
7251 free_extent_map(em);
7252 btrfs_drop_extent_cache(inode, start,
7253 start + len - 1, 0);
7254 }
7255 em = ERR_PTR(ret);
7256 }
7257 out:
7258 up_read(&BTRFS_I(inode)->dio_sem);
7259
7260 return em;
7261}
7262
4b46fce2
JB
7263static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7264 u64 start, u64 len)
7265{
7266 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7267 struct extent_map *em;
4b46fce2
JB
7268 struct btrfs_key ins;
7269 u64 alloc_hint;
7270 int ret;
4b46fce2 7271
4b46fce2 7272 alloc_hint = get_extent_allocation_hint(inode, start, len);
18513091 7273 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
e570fd27 7274 alloc_hint, &ins, 1, 1);
00361589
JB
7275 if (ret)
7276 return ERR_PTR(ret);
4b46fce2 7277
5f9a8a51
FM
7278 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7279 ins.objectid, ins.offset, ins.offset,
7280 ins.offset, 0);
9cfa3e34 7281 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7282 if (IS_ERR(em))
e570fd27 7283 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7284
4b46fce2
JB
7285 return em;
7286}
7287
46bfbb5c
CM
7288/*
7289 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7290 * block must be cow'd
7291 */
00361589 7292noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7293 u64 *orig_start, u64 *orig_block_len,
7294 u64 *ram_bytes)
46bfbb5c 7295{
00361589 7296 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7297 struct btrfs_path *path;
7298 int ret;
7299 struct extent_buffer *leaf;
7300 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7301 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7302 struct btrfs_file_extent_item *fi;
7303 struct btrfs_key key;
7304 u64 disk_bytenr;
7305 u64 backref_offset;
7306 u64 extent_end;
7307 u64 num_bytes;
7308 int slot;
7309 int found_type;
7ee9e440 7310 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7311
46bfbb5c
CM
7312 path = btrfs_alloc_path();
7313 if (!path)
7314 return -ENOMEM;
7315
00361589 7316 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7317 offset, 0);
7318 if (ret < 0)
7319 goto out;
7320
7321 slot = path->slots[0];
7322 if (ret == 1) {
7323 if (slot == 0) {
7324 /* can't find the item, must cow */
7325 ret = 0;
7326 goto out;
7327 }
7328 slot--;
7329 }
7330 ret = 0;
7331 leaf = path->nodes[0];
7332 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7333 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7334 key.type != BTRFS_EXTENT_DATA_KEY) {
7335 /* not our file or wrong item type, must cow */
7336 goto out;
7337 }
7338
7339 if (key.offset > offset) {
7340 /* Wrong offset, must cow */
7341 goto out;
7342 }
7343
7344 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7345 found_type = btrfs_file_extent_type(leaf, fi);
7346 if (found_type != BTRFS_FILE_EXTENT_REG &&
7347 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7348 /* not a regular extent, must cow */
7349 goto out;
7350 }
7ee9e440
JB
7351
7352 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7353 goto out;
7354
e77751aa
MX
7355 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7356 if (extent_end <= offset)
7357 goto out;
7358
46bfbb5c 7359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7360 if (disk_bytenr == 0)
7361 goto out;
7362
7363 if (btrfs_file_extent_compression(leaf, fi) ||
7364 btrfs_file_extent_encryption(leaf, fi) ||
7365 btrfs_file_extent_other_encoding(leaf, fi))
7366 goto out;
7367
46bfbb5c
CM
7368 backref_offset = btrfs_file_extent_offset(leaf, fi);
7369
7ee9e440
JB
7370 if (orig_start) {
7371 *orig_start = key.offset - backref_offset;
7372 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7373 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7374 }
eb384b55 7375
46bfbb5c
CM
7376 if (btrfs_extent_readonly(root, disk_bytenr))
7377 goto out;
7b2b7085
MX
7378
7379 num_bytes = min(offset + *len, extent_end) - offset;
7380 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7381 u64 range_end;
7382
7383 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7384 ret = test_range_bit(io_tree, offset, range_end,
7385 EXTENT_DELALLOC, 0, NULL);
7386 if (ret) {
7387 ret = -EAGAIN;
7388 goto out;
7389 }
7390 }
7391
1bda19eb 7392 btrfs_release_path(path);
46bfbb5c
CM
7393
7394 /*
7395 * look for other files referencing this extent, if we
7396 * find any we must cow
7397 */
00361589
JB
7398 trans = btrfs_join_transaction(root);
7399 if (IS_ERR(trans)) {
7400 ret = 0;
46bfbb5c 7401 goto out;
00361589
JB
7402 }
7403
7404 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7405 key.offset - backref_offset, disk_bytenr);
7406 btrfs_end_transaction(trans, root);
7407 if (ret) {
7408 ret = 0;
7409 goto out;
7410 }
46bfbb5c
CM
7411
7412 /*
7413 * adjust disk_bytenr and num_bytes to cover just the bytes
7414 * in this extent we are about to write. If there
7415 * are any csums in that range we have to cow in order
7416 * to keep the csums correct
7417 */
7418 disk_bytenr += backref_offset;
7419 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7420 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7421 goto out;
7422 /*
7423 * all of the above have passed, it is safe to overwrite this extent
7424 * without cow
7425 */
eb384b55 7426 *len = num_bytes;
46bfbb5c
CM
7427 ret = 1;
7428out:
7429 btrfs_free_path(path);
7430 return ret;
7431}
7432
fc4adbff
AG
7433bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7434{
7435 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7436 int found = false;
7437 void **pagep = NULL;
7438 struct page *page = NULL;
7439 int start_idx;
7440 int end_idx;
7441
09cbfeaf 7442 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7443
7444 /*
7445 * end is the last byte in the last page. end == start is legal
7446 */
09cbfeaf 7447 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7448
7449 rcu_read_lock();
7450
7451 /* Most of the code in this while loop is lifted from
7452 * find_get_page. It's been modified to begin searching from a
7453 * page and return just the first page found in that range. If the
7454 * found idx is less than or equal to the end idx then we know that
7455 * a page exists. If no pages are found or if those pages are
7456 * outside of the range then we're fine (yay!) */
7457 while (page == NULL &&
7458 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7459 page = radix_tree_deref_slot(pagep);
7460 if (unlikely(!page))
7461 break;
7462
7463 if (radix_tree_exception(page)) {
809f9016
FM
7464 if (radix_tree_deref_retry(page)) {
7465 page = NULL;
fc4adbff 7466 continue;
809f9016 7467 }
fc4adbff
AG
7468 /*
7469 * Otherwise, shmem/tmpfs must be storing a swap entry
7470 * here as an exceptional entry: so return it without
7471 * attempting to raise page count.
7472 */
6fdef6d4 7473 page = NULL;
fc4adbff
AG
7474 break; /* TODO: Is this relevant for this use case? */
7475 }
7476
91405151
FM
7477 if (!page_cache_get_speculative(page)) {
7478 page = NULL;
fc4adbff 7479 continue;
91405151 7480 }
fc4adbff
AG
7481
7482 /*
7483 * Has the page moved?
7484 * This is part of the lockless pagecache protocol. See
7485 * include/linux/pagemap.h for details.
7486 */
7487 if (unlikely(page != *pagep)) {
09cbfeaf 7488 put_page(page);
fc4adbff
AG
7489 page = NULL;
7490 }
7491 }
7492
7493 if (page) {
7494 if (page->index <= end_idx)
7495 found = true;
09cbfeaf 7496 put_page(page);
fc4adbff
AG
7497 }
7498
7499 rcu_read_unlock();
7500 return found;
7501}
7502
eb838e73
JB
7503static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7504 struct extent_state **cached_state, int writing)
7505{
7506 struct btrfs_ordered_extent *ordered;
7507 int ret = 0;
7508
7509 while (1) {
7510 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7511 cached_state);
eb838e73
JB
7512 /*
7513 * We're concerned with the entire range that we're going to be
01327610 7514 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7515 * extents in this range.
7516 */
7517 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7518 lockend - lockstart + 1);
7519
7520 /*
7521 * We need to make sure there are no buffered pages in this
7522 * range either, we could have raced between the invalidate in
7523 * generic_file_direct_write and locking the extent. The
7524 * invalidate needs to happen so that reads after a write do not
7525 * get stale data.
7526 */
fc4adbff
AG
7527 if (!ordered &&
7528 (!writing ||
7529 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7530 break;
7531
7532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7533 cached_state, GFP_NOFS);
7534
7535 if (ordered) {
ade77029
FM
7536 /*
7537 * If we are doing a DIO read and the ordered extent we
7538 * found is for a buffered write, we can not wait for it
7539 * to complete and retry, because if we do so we can
7540 * deadlock with concurrent buffered writes on page
7541 * locks. This happens only if our DIO read covers more
7542 * than one extent map, if at this point has already
7543 * created an ordered extent for a previous extent map
7544 * and locked its range in the inode's io tree, and a
7545 * concurrent write against that previous extent map's
7546 * range and this range started (we unlock the ranges
7547 * in the io tree only when the bios complete and
7548 * buffered writes always lock pages before attempting
7549 * to lock range in the io tree).
7550 */
7551 if (writing ||
7552 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7553 btrfs_start_ordered_extent(inode, ordered, 1);
7554 else
7555 ret = -ENOTBLK;
eb838e73
JB
7556 btrfs_put_ordered_extent(ordered);
7557 } else {
eb838e73 7558 /*
b850ae14
FM
7559 * We could trigger writeback for this range (and wait
7560 * for it to complete) and then invalidate the pages for
7561 * this range (through invalidate_inode_pages2_range()),
7562 * but that can lead us to a deadlock with a concurrent
7563 * call to readpages() (a buffered read or a defrag call
7564 * triggered a readahead) on a page lock due to an
7565 * ordered dio extent we created before but did not have
7566 * yet a corresponding bio submitted (whence it can not
7567 * complete), which makes readpages() wait for that
7568 * ordered extent to complete while holding a lock on
7569 * that page.
eb838e73 7570 */
b850ae14 7571 ret = -ENOTBLK;
eb838e73
JB
7572 }
7573
ade77029
FM
7574 if (ret)
7575 break;
7576
eb838e73
JB
7577 cond_resched();
7578 }
7579
7580 return ret;
7581}
7582
69ffb543
JB
7583static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7584 u64 len, u64 orig_start,
7585 u64 block_start, u64 block_len,
cc95bef6
JB
7586 u64 orig_block_len, u64 ram_bytes,
7587 int type)
69ffb543
JB
7588{
7589 struct extent_map_tree *em_tree;
7590 struct extent_map *em;
7591 struct btrfs_root *root = BTRFS_I(inode)->root;
7592 int ret;
7593
7594 em_tree = &BTRFS_I(inode)->extent_tree;
7595 em = alloc_extent_map();
7596 if (!em)
7597 return ERR_PTR(-ENOMEM);
7598
7599 em->start = start;
7600 em->orig_start = orig_start;
2ab28f32
JB
7601 em->mod_start = start;
7602 em->mod_len = len;
69ffb543
JB
7603 em->len = len;
7604 em->block_len = block_len;
7605 em->block_start = block_start;
7606 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7607 em->orig_block_len = orig_block_len;
cc95bef6 7608 em->ram_bytes = ram_bytes;
70c8a91c 7609 em->generation = -1;
69ffb543
JB
7610 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7611 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7612 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7613
7614 do {
7615 btrfs_drop_extent_cache(inode, em->start,
7616 em->start + em->len - 1, 0);
7617 write_lock(&em_tree->lock);
09a2a8f9 7618 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7619 write_unlock(&em_tree->lock);
7620 } while (ret == -EEXIST);
7621
7622 if (ret) {
7623 free_extent_map(em);
7624 return ERR_PTR(ret);
7625 }
7626
7627 return em;
7628}
7629
9c9464cc
FM
7630static void adjust_dio_outstanding_extents(struct inode *inode,
7631 struct btrfs_dio_data *dio_data,
7632 const u64 len)
7633{
7634 unsigned num_extents;
7635
7636 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7637 BTRFS_MAX_EXTENT_SIZE);
7638 /*
7639 * If we have an outstanding_extents count still set then we're
7640 * within our reservation, otherwise we need to adjust our inode
7641 * counter appropriately.
7642 */
7643 if (dio_data->outstanding_extents) {
7644 dio_data->outstanding_extents -= num_extents;
7645 } else {
7646 spin_lock(&BTRFS_I(inode)->lock);
7647 BTRFS_I(inode)->outstanding_extents += num_extents;
7648 spin_unlock(&BTRFS_I(inode)->lock);
7649 }
7650}
7651
4b46fce2
JB
7652static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7653 struct buffer_head *bh_result, int create)
7654{
7655 struct extent_map *em;
7656 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7657 struct extent_state *cached_state = NULL;
50745b0a 7658 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7659 u64 start = iblock << inode->i_blkbits;
eb838e73 7660 u64 lockstart, lockend;
4b46fce2 7661 u64 len = bh_result->b_size;
eb838e73 7662 int unlock_bits = EXTENT_LOCKED;
0934856d 7663 int ret = 0;
eb838e73 7664
172a5049 7665 if (create)
3266789f 7666 unlock_bits |= EXTENT_DIRTY;
172a5049 7667 else
c329861d 7668 len = min_t(u64, len, root->sectorsize);
eb838e73 7669
c329861d
JB
7670 lockstart = start;
7671 lockend = start + len - 1;
7672
e1cbbfa5
JB
7673 if (current->journal_info) {
7674 /*
7675 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7676 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7677 * confused.
7678 */
50745b0a 7679 dio_data = current->journal_info;
e1cbbfa5
JB
7680 current->journal_info = NULL;
7681 }
7682
eb838e73
JB
7683 /*
7684 * If this errors out it's because we couldn't invalidate pagecache for
7685 * this range and we need to fallback to buffered.
7686 */
9c9464cc
FM
7687 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7688 create)) {
7689 ret = -ENOTBLK;
7690 goto err;
7691 }
eb838e73 7692
4b46fce2 7693 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7694 if (IS_ERR(em)) {
7695 ret = PTR_ERR(em);
7696 goto unlock_err;
7697 }
4b46fce2
JB
7698
7699 /*
7700 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7701 * io. INLINE is special, and we could probably kludge it in here, but
7702 * it's still buffered so for safety lets just fall back to the generic
7703 * buffered path.
7704 *
7705 * For COMPRESSED we _have_ to read the entire extent in so we can
7706 * decompress it, so there will be buffering required no matter what we
7707 * do, so go ahead and fallback to buffered.
7708 *
01327610 7709 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7710 * to buffered IO. Don't blame me, this is the price we pay for using
7711 * the generic code.
7712 */
7713 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7714 em->block_start == EXTENT_MAP_INLINE) {
7715 free_extent_map(em);
eb838e73
JB
7716 ret = -ENOTBLK;
7717 goto unlock_err;
4b46fce2
JB
7718 }
7719
7720 /* Just a good old fashioned hole, return */
7721 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7722 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7723 free_extent_map(em);
eb838e73 7724 goto unlock_err;
4b46fce2
JB
7725 }
7726
7727 /*
7728 * We don't allocate a new extent in the following cases
7729 *
7730 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7731 * existing extent.
7732 * 2) The extent is marked as PREALLOC. We're good to go here and can
7733 * just use the extent.
7734 *
7735 */
46bfbb5c 7736 if (!create) {
eb838e73
JB
7737 len = min(len, em->len - (start - em->start));
7738 lockstart = start + len;
7739 goto unlock;
46bfbb5c 7740 }
4b46fce2
JB
7741
7742 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7743 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7744 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7745 int type;
eb384b55 7746 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7747
7748 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7749 type = BTRFS_ORDERED_PREALLOC;
7750 else
7751 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7752 len = min(len, em->len - (start - em->start));
4b46fce2 7753 block_start = em->block_start + (start - em->start);
46bfbb5c 7754
00361589 7755 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7756 &orig_block_len, &ram_bytes) == 1 &&
7757 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7758 struct extent_map *em2;
0b901916 7759
5f9a8a51
FM
7760 em2 = btrfs_create_dio_extent(inode, start, len,
7761 orig_start, block_start,
7762 len, orig_block_len,
7763 ram_bytes, type);
f78c436c 7764 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7765 if (type == BTRFS_ORDERED_PREALLOC) {
7766 free_extent_map(em);
5f9a8a51 7767 em = em2;
69ffb543 7768 }
5f9a8a51
FM
7769 if (em2 && IS_ERR(em2)) {
7770 ret = PTR_ERR(em2);
eb838e73 7771 goto unlock_err;
46bfbb5c 7772 }
18513091
WX
7773 /*
7774 * For inode marked NODATACOW or extent marked PREALLOC,
7775 * use the existing or preallocated extent, so does not
7776 * need to adjust btrfs_space_info's bytes_may_use.
7777 */
7778 btrfs_free_reserved_data_space_noquota(inode,
7779 start, len);
46bfbb5c 7780 goto unlock;
4b46fce2 7781 }
4b46fce2 7782 }
00361589 7783
46bfbb5c 7784 /*
a23eaa87
LB
7785 * this will cow the extent, if em is within [start, len], then
7786 * probably we've found a preallocated/existing extent, let's
7787 * give it a chance to use preallocated space.
46bfbb5c 7788 */
a23eaa87
LB
7789 len = min_t(u64, bh_result->b_size, em->len - (start - em->start));
7790 len = ALIGN(len, root->sectorsize);
70c8a91c
JB
7791 free_extent_map(em);
7792 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7793 if (IS_ERR(em)) {
7794 ret = PTR_ERR(em);
7795 goto unlock_err;
7796 }
46bfbb5c
CM
7797 len = min(len, em->len - (start - em->start));
7798unlock:
4b46fce2
JB
7799 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7800 inode->i_blkbits;
46bfbb5c 7801 bh_result->b_size = len;
4b46fce2
JB
7802 bh_result->b_bdev = em->bdev;
7803 set_buffer_mapped(bh_result);
c3473e83
JB
7804 if (create) {
7805 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7806 set_buffer_new(bh_result);
7807
7808 /*
7809 * Need to update the i_size under the extent lock so buffered
7810 * readers will get the updated i_size when we unlock.
7811 */
7812 if (start + len > i_size_read(inode))
7813 i_size_write(inode, start + len);
0934856d 7814
9c9464cc 7815 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7816 WARN_ON(dio_data->reserve < len);
7817 dio_data->reserve -= len;
f28a4928 7818 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7819 current->journal_info = dio_data;
c3473e83 7820 }
4b46fce2 7821
eb838e73
JB
7822 /*
7823 * In the case of write we need to clear and unlock the entire range,
7824 * in the case of read we need to unlock only the end area that we
7825 * aren't using if there is any left over space.
7826 */
24c03fa5 7827 if (lockstart < lockend) {
0934856d
MX
7828 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7829 lockend, unlock_bits, 1, 0,
7830 &cached_state, GFP_NOFS);
24c03fa5 7831 } else {
eb838e73 7832 free_extent_state(cached_state);
24c03fa5 7833 }
eb838e73 7834
4b46fce2
JB
7835 free_extent_map(em);
7836
7837 return 0;
eb838e73
JB
7838
7839unlock_err:
eb838e73
JB
7840 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7841 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7842err:
50745b0a 7843 if (dio_data)
7844 current->journal_info = dio_data;
9c9464cc
FM
7845 /*
7846 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7847 * write less data then expected, so that we don't underflow our inode's
7848 * outstanding extents counter.
7849 */
7850 if (create && dio_data)
7851 adjust_dio_outstanding_extents(inode, dio_data, len);
7852
eb838e73 7853 return ret;
4b46fce2
JB
7854}
7855
8b110e39 7856static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
81a75f67 7857 int mirror_num)
8b110e39
MX
7858{
7859 struct btrfs_root *root = BTRFS_I(inode)->root;
7860 int ret;
7861
37226b21 7862 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7863
7864 bio_get(bio);
7865
7866 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7867 BTRFS_WQ_ENDIO_DIO_REPAIR);
7868 if (ret)
7869 goto err;
7870
81a75f67 7871 ret = btrfs_map_bio(root, bio, mirror_num, 0);
8b110e39
MX
7872err:
7873 bio_put(bio);
7874 return ret;
7875}
7876
7877static int btrfs_check_dio_repairable(struct inode *inode,
7878 struct bio *failed_bio,
7879 struct io_failure_record *failrec,
7880 int failed_mirror)
7881{
ab8d0fc4 7882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7883 int num_copies;
7884
ab8d0fc4 7885 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7886 if (num_copies == 1) {
7887 /*
7888 * we only have a single copy of the data, so don't bother with
7889 * all the retry and error correction code that follows. no
7890 * matter what the error is, it is very likely to persist.
7891 */
ab8d0fc4
JM
7892 btrfs_debug(fs_info,
7893 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7894 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7895 return 0;
7896 }
7897
7898 failrec->failed_mirror = failed_mirror;
7899 failrec->this_mirror++;
7900 if (failrec->this_mirror == failed_mirror)
7901 failrec->this_mirror++;
7902
7903 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7904 btrfs_debug(fs_info,
7905 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7906 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7907 return 0;
7908 }
7909
7910 return 1;
7911}
7912
7913static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7914 struct page *page, unsigned int pgoff,
7915 u64 start, u64 end, int failed_mirror,
7916 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7917{
7918 struct io_failure_record *failrec;
7919 struct bio *bio;
7920 int isector;
7921 int read_mode;
7922 int ret;
7923
37226b21 7924 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7925
7926 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7927 if (ret)
7928 return ret;
7929
7930 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7931 failed_mirror);
7932 if (!ret) {
7933 free_io_failure(inode, failrec);
7934 return -EIO;
7935 }
7936
2dabb324
CR
7937 if ((failed_bio->bi_vcnt > 1)
7938 || (failed_bio->bi_io_vec->bv_len
7939 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7940 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7941 else
7942 read_mode = READ_SYNC;
7943
7944 isector = start - btrfs_io_bio(failed_bio)->logical;
7945 isector >>= inode->i_sb->s_blocksize_bits;
7946 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7947 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7948 if (!bio) {
7949 free_io_failure(inode, failrec);
7950 return -EIO;
7951 }
37226b21 7952 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7953
7954 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7955 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7956 read_mode, failrec->this_mirror, failrec->in_validation);
7957
81a75f67 7958 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8b110e39
MX
7959 if (ret) {
7960 free_io_failure(inode, failrec);
7961 bio_put(bio);
7962 }
7963
7964 return ret;
7965}
7966
7967struct btrfs_retry_complete {
7968 struct completion done;
7969 struct inode *inode;
7970 u64 start;
7971 int uptodate;
7972};
7973
4246a0b6 7974static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7975{
7976 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7977 struct inode *inode;
8b110e39
MX
7978 struct bio_vec *bvec;
7979 int i;
7980
4246a0b6 7981 if (bio->bi_error)
8b110e39
MX
7982 goto end;
7983
2dabb324
CR
7984 ASSERT(bio->bi_vcnt == 1);
7985 inode = bio->bi_io_vec->bv_page->mapping->host;
7986 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7987
8b110e39
MX
7988 done->uptodate = 1;
7989 bio_for_each_segment_all(bvec, bio, i)
7990 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7991end:
7992 complete(&done->done);
7993 bio_put(bio);
7994}
7995
7996static int __btrfs_correct_data_nocsum(struct inode *inode,
7997 struct btrfs_io_bio *io_bio)
4b46fce2 7998{
2dabb324 7999 struct btrfs_fs_info *fs_info;
2c30c71b 8000 struct bio_vec *bvec;
8b110e39 8001 struct btrfs_retry_complete done;
4b46fce2 8002 u64 start;
2dabb324
CR
8003 unsigned int pgoff;
8004 u32 sectorsize;
8005 int nr_sectors;
2c30c71b 8006 int i;
c1dc0896 8007 int ret;
4b46fce2 8008
2dabb324
CR
8009 fs_info = BTRFS_I(inode)->root->fs_info;
8010 sectorsize = BTRFS_I(inode)->root->sectorsize;
8011
8b110e39
MX
8012 start = io_bio->logical;
8013 done.inode = inode;
8014
8015 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8016 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8017 pgoff = bvec->bv_offset;
8018
8019next_block_or_try_again:
8b110e39
MX
8020 done.uptodate = 0;
8021 done.start = start;
8022 init_completion(&done.done);
8023
2dabb324
CR
8024 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8025 pgoff, start, start + sectorsize - 1,
8026 io_bio->mirror_num,
8027 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
8028 if (ret)
8029 return ret;
8030
8031 wait_for_completion(&done.done);
8032
8033 if (!done.uptodate) {
8034 /* We might have another mirror, so try again */
2dabb324 8035 goto next_block_or_try_again;
8b110e39
MX
8036 }
8037
2dabb324
CR
8038 start += sectorsize;
8039
8040 if (nr_sectors--) {
8041 pgoff += sectorsize;
8042 goto next_block_or_try_again;
8043 }
8b110e39
MX
8044 }
8045
8046 return 0;
8047}
8048
4246a0b6 8049static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8050{
8051 struct btrfs_retry_complete *done = bio->bi_private;
8052 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 8053 struct inode *inode;
8b110e39 8054 struct bio_vec *bvec;
2dabb324 8055 u64 start;
8b110e39
MX
8056 int uptodate;
8057 int ret;
8058 int i;
8059
4246a0b6 8060 if (bio->bi_error)
8b110e39
MX
8061 goto end;
8062
8063 uptodate = 1;
2dabb324
CR
8064
8065 start = done->start;
8066
8067 ASSERT(bio->bi_vcnt == 1);
8068 inode = bio->bi_io_vec->bv_page->mapping->host;
8069 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8070
8b110e39
MX
8071 bio_for_each_segment_all(bvec, bio, i) {
8072 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8073 bvec->bv_page, bvec->bv_offset,
8074 done->start, bvec->bv_len);
8b110e39
MX
8075 if (!ret)
8076 clean_io_failure(done->inode, done->start,
2dabb324 8077 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8078 else
8079 uptodate = 0;
8080 }
8081
8082 done->uptodate = uptodate;
8083end:
8084 complete(&done->done);
8085 bio_put(bio);
8086}
8087
8088static int __btrfs_subio_endio_read(struct inode *inode,
8089 struct btrfs_io_bio *io_bio, int err)
8090{
2dabb324 8091 struct btrfs_fs_info *fs_info;
8b110e39
MX
8092 struct bio_vec *bvec;
8093 struct btrfs_retry_complete done;
8094 u64 start;
8095 u64 offset = 0;
2dabb324
CR
8096 u32 sectorsize;
8097 int nr_sectors;
8098 unsigned int pgoff;
8099 int csum_pos;
8b110e39
MX
8100 int i;
8101 int ret;
dc380aea 8102
2dabb324
CR
8103 fs_info = BTRFS_I(inode)->root->fs_info;
8104 sectorsize = BTRFS_I(inode)->root->sectorsize;
8105
8b110e39 8106 err = 0;
c1dc0896 8107 start = io_bio->logical;
8b110e39
MX
8108 done.inode = inode;
8109
c1dc0896 8110 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8111 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8112
8113 pgoff = bvec->bv_offset;
8114next_block:
8115 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8116 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8117 bvec->bv_page, pgoff, start,
8118 sectorsize);
8b110e39
MX
8119 if (likely(!ret))
8120 goto next;
8121try_again:
8122 done.uptodate = 0;
8123 done.start = start;
8124 init_completion(&done.done);
8125
2dabb324
CR
8126 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8127 pgoff, start, start + sectorsize - 1,
8128 io_bio->mirror_num,
8129 btrfs_retry_endio, &done);
8b110e39
MX
8130 if (ret) {
8131 err = ret;
8132 goto next;
8133 }
8134
8135 wait_for_completion(&done.done);
8136
8137 if (!done.uptodate) {
8138 /* We might have another mirror, so try again */
8139 goto try_again;
8140 }
8141next:
2dabb324
CR
8142 offset += sectorsize;
8143 start += sectorsize;
8144
8145 ASSERT(nr_sectors);
8146
8147 if (--nr_sectors) {
8148 pgoff += sectorsize;
8149 goto next_block;
8150 }
2c30c71b 8151 }
c1dc0896
MX
8152
8153 return err;
8154}
8155
8b110e39
MX
8156static int btrfs_subio_endio_read(struct inode *inode,
8157 struct btrfs_io_bio *io_bio, int err)
8158{
8159 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8160
8161 if (skip_csum) {
8162 if (unlikely(err))
8163 return __btrfs_correct_data_nocsum(inode, io_bio);
8164 else
8165 return 0;
8166 } else {
8167 return __btrfs_subio_endio_read(inode, io_bio, err);
8168 }
8169}
8170
4246a0b6 8171static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8172{
8173 struct btrfs_dio_private *dip = bio->bi_private;
8174 struct inode *inode = dip->inode;
8175 struct bio *dio_bio;
8176 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8177 int err = bio->bi_error;
c1dc0896 8178
8b110e39
MX
8179 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8180 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8181
4b46fce2 8182 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8183 dip->logical_offset + dip->bytes - 1);
9be3395b 8184 dio_bio = dip->dio_bio;
4b46fce2 8185
4b46fce2 8186 kfree(dip);
c0da7aa1 8187
1636d1d7 8188 dio_bio->bi_error = bio->bi_error;
4246a0b6 8189 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8190
8191 if (io_bio->end_io)
8192 io_bio->end_io(io_bio, err);
9be3395b 8193 bio_put(bio);
4b46fce2
JB
8194}
8195
14543774
FM
8196static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8197 const u64 offset,
8198 const u64 bytes,
8199 const int uptodate)
4b46fce2 8200{
4b46fce2 8201 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8202 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8203 u64 ordered_offset = offset;
8204 u64 ordered_bytes = bytes;
4b46fce2
JB
8205 int ret;
8206
163cf09c
CM
8207again:
8208 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8209 &ordered_offset,
4246a0b6 8210 ordered_bytes,
14543774 8211 uptodate);
4b46fce2 8212 if (!ret)
163cf09c 8213 goto out_test;
4b46fce2 8214
9e0af237
LB
8215 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8216 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8217 btrfs_queue_work(root->fs_info->endio_write_workers,
8218 &ordered->work);
163cf09c
CM
8219out_test:
8220 /*
8221 * our bio might span multiple ordered extents. If we haven't
8222 * completed the accounting for the whole dio, go back and try again
8223 */
14543774
FM
8224 if (ordered_offset < offset + bytes) {
8225 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8226 ordered = NULL;
163cf09c
CM
8227 goto again;
8228 }
14543774
FM
8229}
8230
8231static void btrfs_endio_direct_write(struct bio *bio)
8232{
8233 struct btrfs_dio_private *dip = bio->bi_private;
8234 struct bio *dio_bio = dip->dio_bio;
8235
8236 btrfs_endio_direct_write_update_ordered(dip->inode,
8237 dip->logical_offset,
8238 dip->bytes,
8239 !bio->bi_error);
4b46fce2 8240
4b46fce2 8241 kfree(dip);
c0da7aa1 8242
1636d1d7 8243 dio_bio->bi_error = bio->bi_error;
4246a0b6 8244 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8245 bio_put(bio);
4b46fce2
JB
8246}
8247
81a75f67 8248static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
eaf25d93
CM
8249 struct bio *bio, int mirror_num,
8250 unsigned long bio_flags, u64 offset)
8251{
8252 int ret;
8253 struct btrfs_root *root = BTRFS_I(inode)->root;
8254 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8255 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8256 return 0;
8257}
8258
4246a0b6 8259static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8260{
8261 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8262 int err = bio->bi_error;
e65e1535 8263
8b110e39
MX
8264 if (err)
8265 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8266 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
1eff9d32 8267 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8b110e39
MX
8268 (unsigned long long)bio->bi_iter.bi_sector,
8269 bio->bi_iter.bi_size, err);
8270
8271 if (dip->subio_endio)
8272 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8273
8274 if (err) {
e65e1535
MX
8275 dip->errors = 1;
8276
8277 /*
8278 * before atomic variable goto zero, we must make sure
8279 * dip->errors is perceived to be set.
8280 */
4e857c58 8281 smp_mb__before_atomic();
e65e1535
MX
8282 }
8283
8284 /* if there are more bios still pending for this dio, just exit */
8285 if (!atomic_dec_and_test(&dip->pending_bios))
8286 goto out;
8287
9be3395b 8288 if (dip->errors) {
e65e1535 8289 bio_io_error(dip->orig_bio);
9be3395b 8290 } else {
4246a0b6
CH
8291 dip->dio_bio->bi_error = 0;
8292 bio_endio(dip->orig_bio);
e65e1535
MX
8293 }
8294out:
8295 bio_put(bio);
8296}
8297
8298static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8299 u64 first_sector, gfp_t gfp_flags)
8300{
da2f0f74 8301 struct bio *bio;
22365979 8302 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8303 if (bio)
8304 bio_associate_current(bio);
8305 return bio;
e65e1535
MX
8306}
8307
c1dc0896
MX
8308static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8309 struct inode *inode,
8310 struct btrfs_dio_private *dip,
8311 struct bio *bio,
8312 u64 file_offset)
8313{
8314 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8315 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8316 int ret;
8317
8318 /*
8319 * We load all the csum data we need when we submit
8320 * the first bio to reduce the csum tree search and
8321 * contention.
8322 */
8323 if (dip->logical_offset == file_offset) {
8324 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8325 file_offset);
8326 if (ret)
8327 return ret;
8328 }
8329
8330 if (bio == dip->orig_bio)
8331 return 0;
8332
8333 file_offset -= dip->logical_offset;
8334 file_offset >>= inode->i_sb->s_blocksize_bits;
8335 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8336
8337 return 0;
8338}
8339
e65e1535 8340static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
81a75f67 8341 u64 file_offset, int skip_sum,
c329861d 8342 int async_submit)
e65e1535 8343{
facc8a22 8344 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8345 bool write = bio_op(bio) == REQ_OP_WRITE;
e65e1535
MX
8346 struct btrfs_root *root = BTRFS_I(inode)->root;
8347 int ret;
8348
b812ce28
JB
8349 if (async_submit)
8350 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8351
e65e1535 8352 bio_get(bio);
5fd02043
JB
8353
8354 if (!write) {
bfebd8b5
DS
8355 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8356 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8357 if (ret)
8358 goto err;
8359 }
e65e1535 8360
1ae39938
JB
8361 if (skip_sum)
8362 goto map;
8363
8364 if (write && async_submit) {
e65e1535 8365 ret = btrfs_wq_submit_bio(root->fs_info,
81a75f67 8366 inode, bio, 0, 0, file_offset,
e65e1535
MX
8367 __btrfs_submit_bio_start_direct_io,
8368 __btrfs_submit_bio_done);
8369 goto err;
1ae39938
JB
8370 } else if (write) {
8371 /*
8372 * If we aren't doing async submit, calculate the csum of the
8373 * bio now.
8374 */
8375 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8376 if (ret)
8377 goto err;
23ea8e5a 8378 } else {
c1dc0896
MX
8379 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8380 file_offset);
c2db1073
TI
8381 if (ret)
8382 goto err;
8383 }
1ae39938 8384map:
81a75f67 8385 ret = btrfs_map_bio(root, bio, 0, async_submit);
e65e1535
MX
8386err:
8387 bio_put(bio);
8388 return ret;
8389}
8390
81a75f67 8391static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
e65e1535
MX
8392 int skip_sum)
8393{
8394 struct inode *inode = dip->inode;
8395 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8396 struct bio *bio;
8397 struct bio *orig_bio = dip->orig_bio;
8398 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8399 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8400 u64 file_offset = dip->logical_offset;
8401 u64 submit_len = 0;
8402 u64 map_length;
5f4dc8fc 8403 u32 blocksize = root->sectorsize;
1ae39938 8404 int async_submit = 0;
5f4dc8fc
CR
8405 int nr_sectors;
8406 int ret;
8407 int i;
e65e1535 8408
4f024f37 8409 map_length = orig_bio->bi_iter.bi_size;
cf8cddd3 8410 ret = btrfs_map_block(root->fs_info, btrfs_op(orig_bio),
37226b21 8411 start_sector << 9, &map_length, NULL, 0);
7a5c3c9b 8412 if (ret)
e65e1535 8413 return -EIO;
facc8a22 8414
4f024f37 8415 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8416 bio = orig_bio;
c1dc0896 8417 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8418 goto submit;
8419 }
8420
53b381b3 8421 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8422 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8423 async_submit = 0;
8424 else
8425 async_submit = 1;
8426
02f57c7a
JB
8427 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8428 if (!bio)
8429 return -ENOMEM;
7a5c3c9b 8430
4382e33a 8431 bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
02f57c7a
JB
8432 bio->bi_private = dip;
8433 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8434 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8435 atomic_inc(&dip->pending_bios);
8436
e65e1535 8437 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8438 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8439 i = 0;
8440next_block:
8441 if (unlikely(map_length < submit_len + blocksize ||
8442 bio_add_page(bio, bvec->bv_page, blocksize,
8443 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8444 /*
8445 * inc the count before we submit the bio so
8446 * we know the end IO handler won't happen before
8447 * we inc the count. Otherwise, the dip might get freed
8448 * before we're done setting it up
8449 */
8450 atomic_inc(&dip->pending_bios);
81a75f67 8451 ret = __btrfs_submit_dio_bio(bio, inode,
e65e1535 8452 file_offset, skip_sum,
c329861d 8453 async_submit);
e65e1535
MX
8454 if (ret) {
8455 bio_put(bio);
8456 atomic_dec(&dip->pending_bios);
8457 goto out_err;
8458 }
8459
e65e1535
MX
8460 start_sector += submit_len >> 9;
8461 file_offset += submit_len;
8462
8463 submit_len = 0;
e65e1535
MX
8464
8465 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8466 start_sector, GFP_NOFS);
8467 if (!bio)
8468 goto out_err;
4382e33a
BVA
8469 bio_set_op_attrs(bio, bio_op(orig_bio),
8470 bio_flags(orig_bio));
e65e1535
MX
8471 bio->bi_private = dip;
8472 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8473 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8474
4f024f37 8475 map_length = orig_bio->bi_iter.bi_size;
cf8cddd3 8476 ret = btrfs_map_block(root->fs_info, btrfs_op(orig_bio),
3ec706c8 8477 start_sector << 9,
e65e1535
MX
8478 &map_length, NULL, 0);
8479 if (ret) {
8480 bio_put(bio);
8481 goto out_err;
8482 }
5f4dc8fc
CR
8483
8484 goto next_block;
e65e1535 8485 } else {
5f4dc8fc
CR
8486 submit_len += blocksize;
8487 if (--nr_sectors) {
8488 i++;
8489 goto next_block;
8490 }
e65e1535
MX
8491 bvec++;
8492 }
8493 }
8494
02f57c7a 8495submit:
81a75f67 8496 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
c329861d 8497 async_submit);
e65e1535
MX
8498 if (!ret)
8499 return 0;
8500
8501 bio_put(bio);
8502out_err:
8503 dip->errors = 1;
8504 /*
8505 * before atomic variable goto zero, we must
8506 * make sure dip->errors is perceived to be set.
8507 */
4e857c58 8508 smp_mb__before_atomic();
e65e1535
MX
8509 if (atomic_dec_and_test(&dip->pending_bios))
8510 bio_io_error(dip->orig_bio);
8511
8512 /* bio_end_io() will handle error, so we needn't return it */
8513 return 0;
8514}
8515
8a4c1e42
MC
8516static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8517 loff_t file_offset)
4b46fce2 8518{
61de718f
FM
8519 struct btrfs_dio_private *dip = NULL;
8520 struct bio *io_bio = NULL;
23ea8e5a 8521 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8522 int skip_sum;
8a4c1e42 8523 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8524 int ret = 0;
8525
8526 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8527
9be3395b 8528 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8529 if (!io_bio) {
8530 ret = -ENOMEM;
8531 goto free_ordered;
8532 }
8533
c1dc0896 8534 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8535 if (!dip) {
8536 ret = -ENOMEM;
61de718f 8537 goto free_ordered;
4b46fce2 8538 }
4b46fce2 8539
9be3395b 8540 dip->private = dio_bio->bi_private;
4b46fce2
JB
8541 dip->inode = inode;
8542 dip->logical_offset = file_offset;
4f024f37
KO
8543 dip->bytes = dio_bio->bi_iter.bi_size;
8544 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8545 io_bio->bi_private = dip;
9be3395b
CM
8546 dip->orig_bio = io_bio;
8547 dip->dio_bio = dio_bio;
e65e1535 8548 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8549 btrfs_bio = btrfs_io_bio(io_bio);
8550 btrfs_bio->logical = file_offset;
4b46fce2 8551
c1dc0896 8552 if (write) {
9be3395b 8553 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8554 } else {
9be3395b 8555 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8556 dip->subio_endio = btrfs_subio_endio_read;
8557 }
4b46fce2 8558
f28a4928
FM
8559 /*
8560 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8561 * even if we fail to submit a bio, because in such case we do the
8562 * corresponding error handling below and it must not be done a second
8563 * time by btrfs_direct_IO().
8564 */
8565 if (write) {
8566 struct btrfs_dio_data *dio_data = current->journal_info;
8567
8568 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8569 dip->bytes;
8570 dio_data->unsubmitted_oe_range_start =
8571 dio_data->unsubmitted_oe_range_end;
8572 }
8573
81a75f67 8574 ret = btrfs_submit_direct_hook(dip, skip_sum);
e65e1535 8575 if (!ret)
eaf25d93 8576 return;
9be3395b 8577
23ea8e5a
MX
8578 if (btrfs_bio->end_io)
8579 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8580
4b46fce2
JB
8581free_ordered:
8582 /*
61de718f
FM
8583 * If we arrived here it means either we failed to submit the dip
8584 * or we either failed to clone the dio_bio or failed to allocate the
8585 * dip. If we cloned the dio_bio and allocated the dip, we can just
8586 * call bio_endio against our io_bio so that we get proper resource
8587 * cleanup if we fail to submit the dip, otherwise, we must do the
8588 * same as btrfs_endio_direct_[write|read] because we can't call these
8589 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8590 */
61de718f 8591 if (io_bio && dip) {
4246a0b6
CH
8592 io_bio->bi_error = -EIO;
8593 bio_endio(io_bio);
61de718f
FM
8594 /*
8595 * The end io callbacks free our dip, do the final put on io_bio
8596 * and all the cleanup and final put for dio_bio (through
8597 * dio_end_io()).
8598 */
8599 dip = NULL;
8600 io_bio = NULL;
8601 } else {
14543774
FM
8602 if (write)
8603 btrfs_endio_direct_write_update_ordered(inode,
8604 file_offset,
8605 dio_bio->bi_iter.bi_size,
8606 0);
8607 else
61de718f
FM
8608 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8609 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8610
4246a0b6 8611 dio_bio->bi_error = -EIO;
61de718f
FM
8612 /*
8613 * Releases and cleans up our dio_bio, no need to bio_put()
8614 * nor bio_endio()/bio_io_error() against dio_bio.
8615 */
8616 dio_end_io(dio_bio, ret);
4b46fce2 8617 }
61de718f
FM
8618 if (io_bio)
8619 bio_put(io_bio);
8620 kfree(dip);
4b46fce2
JB
8621}
8622
6f673763 8623static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8624 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8625{
8626 int seg;
a1b75f7d 8627 int i;
5a5f79b5
CM
8628 unsigned blocksize_mask = root->sectorsize - 1;
8629 ssize_t retval = -EINVAL;
5a5f79b5
CM
8630
8631 if (offset & blocksize_mask)
8632 goto out;
8633
28060d5d
AV
8634 if (iov_iter_alignment(iter) & blocksize_mask)
8635 goto out;
a1b75f7d 8636
28060d5d 8637 /* If this is a write we don't need to check anymore */
cd27e455 8638 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8639 return 0;
8640 /*
8641 * Check to make sure we don't have duplicate iov_base's in this
8642 * iovec, if so return EINVAL, otherwise we'll get csum errors
8643 * when reading back.
8644 */
8645 for (seg = 0; seg < iter->nr_segs; seg++) {
8646 for (i = seg + 1; i < iter->nr_segs; i++) {
8647 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8648 goto out;
8649 }
5a5f79b5
CM
8650 }
8651 retval = 0;
8652out:
8653 return retval;
8654}
eb838e73 8655
c8b8e32d 8656static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8657{
4b46fce2
JB
8658 struct file *file = iocb->ki_filp;
8659 struct inode *inode = file->f_mapping->host;
50745b0a 8660 struct btrfs_root *root = BTRFS_I(inode)->root;
8661 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8662 loff_t offset = iocb->ki_pos;
0934856d 8663 size_t count = 0;
2e60a51e 8664 int flags = 0;
38851cc1
MX
8665 bool wakeup = true;
8666 bool relock = false;
0934856d 8667 ssize_t ret;
4b46fce2 8668
6f673763 8669 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8670 return 0;
3f7c579c 8671
fe0f07d0 8672 inode_dio_begin(inode);
4e857c58 8673 smp_mb__after_atomic();
38851cc1 8674
0e267c44 8675 /*
41bd9ca4
MX
8676 * The generic stuff only does filemap_write_and_wait_range, which
8677 * isn't enough if we've written compressed pages to this area, so
8678 * we need to flush the dirty pages again to make absolutely sure
8679 * that any outstanding dirty pages are on disk.
0e267c44 8680 */
a6cbcd4a 8681 count = iov_iter_count(iter);
41bd9ca4
MX
8682 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8683 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8684 filemap_fdatawrite_range(inode->i_mapping, offset,
8685 offset + count - 1);
0e267c44 8686
6f673763 8687 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8688 /*
8689 * If the write DIO is beyond the EOF, we need update
8690 * the isize, but it is protected by i_mutex. So we can
8691 * not unlock the i_mutex at this case.
8692 */
8693 if (offset + count <= inode->i_size) {
5955102c 8694 inode_unlock(inode);
38851cc1
MX
8695 relock = true;
8696 }
7cf5b976 8697 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8698 if (ret)
38851cc1 8699 goto out;
50745b0a 8700 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8701 BTRFS_MAX_EXTENT_SIZE - 1,
8702 BTRFS_MAX_EXTENT_SIZE);
8703
8704 /*
8705 * We need to know how many extents we reserved so that we can
8706 * do the accounting properly if we go over the number we
8707 * originally calculated. Abuse current->journal_info for this.
8708 */
50745b0a 8709 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8710 dio_data.unsubmitted_oe_range_start = (u64)offset;
8711 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8712 current->journal_info = &dio_data;
ee39b432
DS
8713 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8714 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8715 inode_dio_end(inode);
38851cc1
MX
8716 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8717 wakeup = false;
0934856d
MX
8718 }
8719
17f8c842
OS
8720 ret = __blockdev_direct_IO(iocb, inode,
8721 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8722 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8723 btrfs_submit_direct, flags);
6f673763 8724 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8725 current->journal_info = NULL;
ddba1bfc 8726 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8727 if (dio_data.reserve)
7cf5b976
QW
8728 btrfs_delalloc_release_space(inode, offset,
8729 dio_data.reserve);
f28a4928
FM
8730 /*
8731 * On error we might have left some ordered extents
8732 * without submitting corresponding bios for them, so
8733 * cleanup them up to avoid other tasks getting them
8734 * and waiting for them to complete forever.
8735 */
8736 if (dio_data.unsubmitted_oe_range_start <
8737 dio_data.unsubmitted_oe_range_end)
8738 btrfs_endio_direct_write_update_ordered(inode,
8739 dio_data.unsubmitted_oe_range_start,
8740 dio_data.unsubmitted_oe_range_end -
8741 dio_data.unsubmitted_oe_range_start,
8742 0);
ddba1bfc 8743 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8744 btrfs_delalloc_release_space(inode, offset,
8745 count - (size_t)ret);
0934856d 8746 }
38851cc1 8747out:
2e60a51e 8748 if (wakeup)
fe0f07d0 8749 inode_dio_end(inode);
38851cc1 8750 if (relock)
5955102c 8751 inode_lock(inode);
0934856d
MX
8752
8753 return ret;
16432985
CM
8754}
8755
05dadc09
TI
8756#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8757
1506fcc8
YS
8758static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8759 __u64 start, __u64 len)
8760{
05dadc09
TI
8761 int ret;
8762
8763 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8764 if (ret)
8765 return ret;
8766
ec29ed5b 8767 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8768}
8769
a52d9a80 8770int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8771{
d1310b2e
CM
8772 struct extent_io_tree *tree;
8773 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8774 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8775}
1832a6d5 8776
a52d9a80 8777static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8778{
d1310b2e 8779 struct extent_io_tree *tree;
be7bd730
JB
8780 struct inode *inode = page->mapping->host;
8781 int ret;
b888db2b
CM
8782
8783 if (current->flags & PF_MEMALLOC) {
8784 redirty_page_for_writepage(wbc, page);
8785 unlock_page(page);
8786 return 0;
8787 }
be7bd730
JB
8788
8789 /*
8790 * If we are under memory pressure we will call this directly from the
8791 * VM, we need to make sure we have the inode referenced for the ordered
8792 * extent. If not just return like we didn't do anything.
8793 */
8794 if (!igrab(inode)) {
8795 redirty_page_for_writepage(wbc, page);
8796 return AOP_WRITEPAGE_ACTIVATE;
8797 }
d1310b2e 8798 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8799 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8800 btrfs_add_delayed_iput(inode);
8801 return ret;
9ebefb18
CM
8802}
8803
48a3b636
ES
8804static int btrfs_writepages(struct address_space *mapping,
8805 struct writeback_control *wbc)
b293f02e 8806{
d1310b2e 8807 struct extent_io_tree *tree;
771ed689 8808
d1310b2e 8809 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8810 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8811}
8812
3ab2fb5a
CM
8813static int
8814btrfs_readpages(struct file *file, struct address_space *mapping,
8815 struct list_head *pages, unsigned nr_pages)
8816{
d1310b2e
CM
8817 struct extent_io_tree *tree;
8818 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8819 return extent_readpages(tree, mapping, pages, nr_pages,
8820 btrfs_get_extent);
8821}
e6dcd2dc 8822static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8823{
d1310b2e
CM
8824 struct extent_io_tree *tree;
8825 struct extent_map_tree *map;
a52d9a80 8826 int ret;
8c2383c3 8827
d1310b2e
CM
8828 tree = &BTRFS_I(page->mapping->host)->io_tree;
8829 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8830 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8831 if (ret == 1) {
8832 ClearPagePrivate(page);
8833 set_page_private(page, 0);
09cbfeaf 8834 put_page(page);
39279cc3 8835 }
a52d9a80 8836 return ret;
39279cc3
CM
8837}
8838
e6dcd2dc
CM
8839static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8840{
98509cfc
CM
8841 if (PageWriteback(page) || PageDirty(page))
8842 return 0;
b335b003 8843 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8844}
8845
d47992f8
LC
8846static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8847 unsigned int length)
39279cc3 8848{
5fd02043 8849 struct inode *inode = page->mapping->host;
d1310b2e 8850 struct extent_io_tree *tree;
e6dcd2dc 8851 struct btrfs_ordered_extent *ordered;
2ac55d41 8852 struct extent_state *cached_state = NULL;
e6dcd2dc 8853 u64 page_start = page_offset(page);
09cbfeaf 8854 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8855 u64 start;
8856 u64 end;
131e404a 8857 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8858
8b62b72b
CM
8859 /*
8860 * we have the page locked, so new writeback can't start,
8861 * and the dirty bit won't be cleared while we are here.
8862 *
8863 * Wait for IO on this page so that we can safely clear
8864 * the PagePrivate2 bit and do ordered accounting
8865 */
e6dcd2dc 8866 wait_on_page_writeback(page);
8b62b72b 8867
5fd02043 8868 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8869 if (offset) {
8870 btrfs_releasepage(page, GFP_NOFS);
8871 return;
8872 }
131e404a
FDBM
8873
8874 if (!inode_evicting)
ff13db41 8875 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8876again:
8877 start = page_start;
8878 ordered = btrfs_lookup_ordered_range(inode, start,
8879 page_end - start + 1);
e6dcd2dc 8880 if (ordered) {
dbfdb6d1 8881 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8882 /*
8883 * IO on this page will never be started, so we need
8884 * to account for any ordered extents now
8885 */
131e404a 8886 if (!inode_evicting)
dbfdb6d1 8887 clear_extent_bit(tree, start, end,
131e404a
FDBM
8888 EXTENT_DIRTY | EXTENT_DELALLOC |
8889 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8890 EXTENT_DEFRAG, 1, 0, &cached_state,
8891 GFP_NOFS);
8b62b72b
CM
8892 /*
8893 * whoever cleared the private bit is responsible
8894 * for the finish_ordered_io
8895 */
77cef2ec
JB
8896 if (TestClearPagePrivate2(page)) {
8897 struct btrfs_ordered_inode_tree *tree;
8898 u64 new_len;
8899
8900 tree = &BTRFS_I(inode)->ordered_tree;
8901
8902 spin_lock_irq(&tree->lock);
8903 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8904 new_len = start - ordered->file_offset;
77cef2ec
JB
8905 if (new_len < ordered->truncated_len)
8906 ordered->truncated_len = new_len;
8907 spin_unlock_irq(&tree->lock);
8908
8909 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8910 start,
8911 end - start + 1, 1))
77cef2ec 8912 btrfs_finish_ordered_io(ordered);
8b62b72b 8913 }
e6dcd2dc 8914 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8915 if (!inode_evicting) {
8916 cached_state = NULL;
dbfdb6d1 8917 lock_extent_bits(tree, start, end,
131e404a
FDBM
8918 &cached_state);
8919 }
dbfdb6d1
CR
8920
8921 start = end + 1;
8922 if (start < page_end)
8923 goto again;
131e404a
FDBM
8924 }
8925
b9d0b389
QW
8926 /*
8927 * Qgroup reserved space handler
8928 * Page here will be either
8929 * 1) Already written to disk
8930 * In this case, its reserved space is released from data rsv map
8931 * and will be freed by delayed_ref handler finally.
8932 * So even we call qgroup_free_data(), it won't decrease reserved
8933 * space.
8934 * 2) Not written to disk
0b34c261
GR
8935 * This means the reserved space should be freed here. However,
8936 * if a truncate invalidates the page (by clearing PageDirty)
8937 * and the page is accounted for while allocating extent
8938 * in btrfs_check_data_free_space() we let delayed_ref to
8939 * free the entire extent.
b9d0b389 8940 */
0b34c261
GR
8941 if (PageDirty(page))
8942 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8943 if (!inode_evicting) {
8944 clear_extent_bit(tree, page_start, page_end,
8945 EXTENT_LOCKED | EXTENT_DIRTY |
8946 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8947 EXTENT_DEFRAG, 1, 1,
8948 &cached_state, GFP_NOFS);
8949
8950 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8951 }
e6dcd2dc 8952
4a096752 8953 ClearPageChecked(page);
9ad6b7bc 8954 if (PagePrivate(page)) {
9ad6b7bc
CM
8955 ClearPagePrivate(page);
8956 set_page_private(page, 0);
09cbfeaf 8957 put_page(page);
9ad6b7bc 8958 }
39279cc3
CM
8959}
8960
9ebefb18
CM
8961/*
8962 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8963 * called from a page fault handler when a page is first dirtied. Hence we must
8964 * be careful to check for EOF conditions here. We set the page up correctly
8965 * for a written page which means we get ENOSPC checking when writing into
8966 * holes and correct delalloc and unwritten extent mapping on filesystems that
8967 * support these features.
8968 *
8969 * We are not allowed to take the i_mutex here so we have to play games to
8970 * protect against truncate races as the page could now be beyond EOF. Because
8971 * vmtruncate() writes the inode size before removing pages, once we have the
8972 * page lock we can determine safely if the page is beyond EOF. If it is not
8973 * beyond EOF, then the page is guaranteed safe against truncation until we
8974 * unlock the page.
8975 */
c2ec175c 8976int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8977{
c2ec175c 8978 struct page *page = vmf->page;
496ad9aa 8979 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8980 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8981 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8982 struct btrfs_ordered_extent *ordered;
2ac55d41 8983 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8984 char *kaddr;
8985 unsigned long zero_start;
9ebefb18 8986 loff_t size;
1832a6d5 8987 int ret;
9998eb70 8988 int reserved = 0;
d0b7da88 8989 u64 reserved_space;
a52d9a80 8990 u64 page_start;
e6dcd2dc 8991 u64 page_end;
d0b7da88
CR
8992 u64 end;
8993
09cbfeaf 8994 reserved_space = PAGE_SIZE;
9ebefb18 8995
b2b5ef5c 8996 sb_start_pagefault(inode->i_sb);
df480633 8997 page_start = page_offset(page);
09cbfeaf 8998 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8999 end = page_end;
df480633 9000
d0b7da88
CR
9001 /*
9002 * Reserving delalloc space after obtaining the page lock can lead to
9003 * deadlock. For example, if a dirty page is locked by this function
9004 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9005 * dirty page write out, then the btrfs_writepage() function could
9006 * end up waiting indefinitely to get a lock on the page currently
9007 * being processed by btrfs_page_mkwrite() function.
9008 */
7cf5b976 9009 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 9010 reserved_space);
9998eb70 9011 if (!ret) {
e41f941a 9012 ret = file_update_time(vma->vm_file);
9998eb70
CM
9013 reserved = 1;
9014 }
56a76f82
NP
9015 if (ret) {
9016 if (ret == -ENOMEM)
9017 ret = VM_FAULT_OOM;
9018 else /* -ENOSPC, -EIO, etc */
9019 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9020 if (reserved)
9021 goto out;
9022 goto out_noreserve;
56a76f82 9023 }
1832a6d5 9024
56a76f82 9025 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9026again:
9ebefb18 9027 lock_page(page);
9ebefb18 9028 size = i_size_read(inode);
a52d9a80 9029
9ebefb18 9030 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9031 (page_start >= size)) {
9ebefb18
CM
9032 /* page got truncated out from underneath us */
9033 goto out_unlock;
9034 }
e6dcd2dc
CM
9035 wait_on_page_writeback(page);
9036
ff13db41 9037 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9038 set_page_extent_mapped(page);
9039
eb84ae03
CM
9040 /*
9041 * we can't set the delalloc bits if there are pending ordered
9042 * extents. Drop our locks and wait for them to finish
9043 */
d0b7da88 9044 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 9045 if (ordered) {
2ac55d41
JB
9046 unlock_extent_cached(io_tree, page_start, page_end,
9047 &cached_state, GFP_NOFS);
e6dcd2dc 9048 unlock_page(page);
eb84ae03 9049 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9050 btrfs_put_ordered_extent(ordered);
9051 goto again;
9052 }
9053
09cbfeaf 9054 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 9055 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 9056 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9057 end = page_start + reserved_space - 1;
9058 spin_lock(&BTRFS_I(inode)->lock);
9059 BTRFS_I(inode)->outstanding_extents++;
9060 spin_unlock(&BTRFS_I(inode)->lock);
9061 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9062 PAGE_SIZE - reserved_space);
d0b7da88
CR
9063 }
9064 }
9065
fbf19087
JB
9066 /*
9067 * XXX - page_mkwrite gets called every time the page is dirtied, even
9068 * if it was already dirty, so for space accounting reasons we need to
9069 * clear any delalloc bits for the range we are fixing to save. There
9070 * is probably a better way to do this, but for now keep consistent with
9071 * prepare_pages in the normal write path.
9072 */
d0b7da88 9073 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9074 EXTENT_DIRTY | EXTENT_DELALLOC |
9075 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9076 0, 0, &cached_state, GFP_NOFS);
fbf19087 9077
d0b7da88 9078 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9079 &cached_state, 0);
9ed74f2d 9080 if (ret) {
2ac55d41
JB
9081 unlock_extent_cached(io_tree, page_start, page_end,
9082 &cached_state, GFP_NOFS);
9ed74f2d
JB
9083 ret = VM_FAULT_SIGBUS;
9084 goto out_unlock;
9085 }
e6dcd2dc 9086 ret = 0;
9ebefb18
CM
9087
9088 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9089 if (page_start + PAGE_SIZE > size)
9090 zero_start = size & ~PAGE_MASK;
9ebefb18 9091 else
09cbfeaf 9092 zero_start = PAGE_SIZE;
9ebefb18 9093
09cbfeaf 9094 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9095 kaddr = kmap(page);
09cbfeaf 9096 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9097 flush_dcache_page(page);
9098 kunmap(page);
9099 }
247e743c 9100 ClearPageChecked(page);
e6dcd2dc 9101 set_page_dirty(page);
50a9b214 9102 SetPageUptodate(page);
5a3f23d5 9103
257c62e1
CM
9104 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9105 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9106 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9107
2ac55d41 9108 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9109
9110out_unlock:
b2b5ef5c
JK
9111 if (!ret) {
9112 sb_end_pagefault(inode->i_sb);
50a9b214 9113 return VM_FAULT_LOCKED;
b2b5ef5c 9114 }
9ebefb18 9115 unlock_page(page);
1832a6d5 9116out:
d0b7da88 9117 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9118out_noreserve:
b2b5ef5c 9119 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9120 return ret;
9121}
9122
a41ad394 9123static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9124{
9125 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9126 struct btrfs_block_rsv *rsv;
a71754fc 9127 int ret = 0;
3893e33b 9128 int err = 0;
39279cc3 9129 struct btrfs_trans_handle *trans;
dbe674a9 9130 u64 mask = root->sectorsize - 1;
07127184 9131 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9132
0ef8b726
JB
9133 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9134 (u64)-1);
9135 if (ret)
9136 return ret;
39279cc3 9137
fcb80c2a 9138 /*
01327610 9139 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9140 * 3 things going on here
9141 *
9142 * 1) We need to reserve space for our orphan item and the space to
9143 * delete our orphan item. Lord knows we don't want to have a dangling
9144 * orphan item because we didn't reserve space to remove it.
9145 *
9146 * 2) We need to reserve space to update our inode.
9147 *
9148 * 3) We need to have something to cache all the space that is going to
9149 * be free'd up by the truncate operation, but also have some slack
9150 * space reserved in case it uses space during the truncate (thank you
9151 * very much snapshotting).
9152 *
01327610 9153 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9154 * space doing the truncate, and we have no earthly idea how much space
01327610 9155 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9156 * doesn't end up using space reserved for updating the inode or
9157 * removing the orphan item. We also need to be able to stop the
9158 * transaction and start a new one, which means we need to be able to
9159 * update the inode several times, and we have no idea of knowing how
9160 * many times that will be, so we can't just reserve 1 item for the
01327610 9161 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9162 * Then there is the orphan item, which does indeed need to be held on
9163 * to for the whole operation, and we need nobody to touch this reserved
9164 * space except the orphan code.
9165 *
9166 * So that leaves us with
9167 *
9168 * 1) root->orphan_block_rsv - for the orphan deletion.
9169 * 2) rsv - for the truncate reservation, which we will steal from the
9170 * transaction reservation.
9171 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9172 * updating the inode.
9173 */
66d8f3dd 9174 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9175 if (!rsv)
9176 return -ENOMEM;
4a338542 9177 rsv->size = min_size;
ca7e70f5 9178 rsv->failfast = 1;
f0cd846e 9179
907cbceb 9180 /*
07127184 9181 * 1 for the truncate slack space
907cbceb
JB
9182 * 1 for updating the inode.
9183 */
f3fe820c 9184 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9185 if (IS_ERR(trans)) {
9186 err = PTR_ERR(trans);
9187 goto out;
9188 }
f0cd846e 9189
907cbceb
JB
9190 /* Migrate the slack space for the truncate to our reserve */
9191 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9192 min_size, 0);
fcb80c2a 9193 BUG_ON(ret);
f0cd846e 9194
5dc562c5
JB
9195 /*
9196 * So if we truncate and then write and fsync we normally would just
9197 * write the extents that changed, which is a problem if we need to
9198 * first truncate that entire inode. So set this flag so we write out
9199 * all of the extents in the inode to the sync log so we're completely
9200 * safe.
9201 */
9202 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9203 trans->block_rsv = rsv;
907cbceb 9204
8082510e
YZ
9205 while (1) {
9206 ret = btrfs_truncate_inode_items(trans, root, inode,
9207 inode->i_size,
9208 BTRFS_EXTENT_DATA_KEY);
28ed1345 9209 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9210 err = ret;
8082510e 9211 break;
3893e33b 9212 }
39279cc3 9213
fcb80c2a 9214 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9215 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9216 if (ret) {
9217 err = ret;
9218 break;
9219 }
ca7e70f5 9220
8082510e 9221 btrfs_end_transaction(trans, root);
b53d3f5d 9222 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9223
9224 trans = btrfs_start_transaction(root, 2);
9225 if (IS_ERR(trans)) {
9226 ret = err = PTR_ERR(trans);
9227 trans = NULL;
9228 break;
9229 }
9230
9231 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9232 rsv, min_size, 0);
ca7e70f5
JB
9233 BUG_ON(ret); /* shouldn't happen */
9234 trans->block_rsv = rsv;
8082510e
YZ
9235 }
9236
9237 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9238 trans->block_rsv = root->orphan_block_rsv;
8082510e 9239 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9240 if (ret)
9241 err = ret;
8082510e
YZ
9242 }
9243
917c16b2
CM
9244 if (trans) {
9245 trans->block_rsv = &root->fs_info->trans_block_rsv;
9246 ret = btrfs_update_inode(trans, root, inode);
9247 if (ret && !err)
9248 err = ret;
7b128766 9249
7ad85bb7 9250 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9251 btrfs_btree_balance_dirty(root);
917c16b2 9252 }
fcb80c2a
JB
9253out:
9254 btrfs_free_block_rsv(root, rsv);
9255
3893e33b
JB
9256 if (ret && !err)
9257 err = ret;
a41ad394 9258
3893e33b 9259 return err;
39279cc3
CM
9260}
9261
d352ac68
CM
9262/*
9263 * create a new subvolume directory/inode (helper for the ioctl).
9264 */
d2fb3437 9265int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9266 struct btrfs_root *new_root,
9267 struct btrfs_root *parent_root,
9268 u64 new_dirid)
39279cc3 9269{
39279cc3 9270 struct inode *inode;
76dda93c 9271 int err;
00e4e6b3 9272 u64 index = 0;
39279cc3 9273
12fc9d09
FA
9274 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9275 new_dirid, new_dirid,
9276 S_IFDIR | (~current_umask() & S_IRWXUGO),
9277 &index);
54aa1f4d 9278 if (IS_ERR(inode))
f46b5a66 9279 return PTR_ERR(inode);
39279cc3
CM
9280 inode->i_op = &btrfs_dir_inode_operations;
9281 inode->i_fop = &btrfs_dir_file_operations;
9282
bfe86848 9283 set_nlink(inode, 1);
dbe674a9 9284 btrfs_i_size_write(inode, 0);
b0d5d10f 9285 unlock_new_inode(inode);
3b96362c 9286
63541927
FDBM
9287 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9288 if (err)
9289 btrfs_err(new_root->fs_info,
351fd353 9290 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9291 new_root->root_key.objectid, err);
9292
76dda93c 9293 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9294
76dda93c 9295 iput(inode);
ce598979 9296 return err;
39279cc3
CM
9297}
9298
39279cc3
CM
9299struct inode *btrfs_alloc_inode(struct super_block *sb)
9300{
9301 struct btrfs_inode *ei;
2ead6ae7 9302 struct inode *inode;
39279cc3
CM
9303
9304 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9305 if (!ei)
9306 return NULL;
2ead6ae7
YZ
9307
9308 ei->root = NULL;
2ead6ae7 9309 ei->generation = 0;
15ee9bc7 9310 ei->last_trans = 0;
257c62e1 9311 ei->last_sub_trans = 0;
e02119d5 9312 ei->logged_trans = 0;
2ead6ae7 9313 ei->delalloc_bytes = 0;
47059d93 9314 ei->defrag_bytes = 0;
2ead6ae7
YZ
9315 ei->disk_i_size = 0;
9316 ei->flags = 0;
7709cde3 9317 ei->csum_bytes = 0;
2ead6ae7 9318 ei->index_cnt = (u64)-1;
67de1176 9319 ei->dir_index = 0;
2ead6ae7 9320 ei->last_unlink_trans = 0;
46d8bc34 9321 ei->last_log_commit = 0;
8089fe62 9322 ei->delayed_iput_count = 0;
2ead6ae7 9323
9e0baf60
JB
9324 spin_lock_init(&ei->lock);
9325 ei->outstanding_extents = 0;
9326 ei->reserved_extents = 0;
2ead6ae7 9327
72ac3c0d 9328 ei->runtime_flags = 0;
261507a0 9329 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9330
16cdcec7
MX
9331 ei->delayed_node = NULL;
9332
9cc97d64 9333 ei->i_otime.tv_sec = 0;
9334 ei->i_otime.tv_nsec = 0;
9335
2ead6ae7 9336 inode = &ei->vfs_inode;
a8067e02 9337 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9338 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9339 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9340 ei->io_tree.track_uptodate = 1;
9341 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9342 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9343 mutex_init(&ei->log_mutex);
f248679e 9344 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9345 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9346 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9347 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9348 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9349 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9350
9351 return inode;
39279cc3
CM
9352}
9353
aaedb55b
JB
9354#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9355void btrfs_test_destroy_inode(struct inode *inode)
9356{
9357 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9358 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9359}
9360#endif
9361
fa0d7e3d
NP
9362static void btrfs_i_callback(struct rcu_head *head)
9363{
9364 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9365 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9366}
9367
39279cc3
CM
9368void btrfs_destroy_inode(struct inode *inode)
9369{
e6dcd2dc 9370 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9371 struct btrfs_root *root = BTRFS_I(inode)->root;
9372
b3d9b7a3 9373 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9374 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9375 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9376 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9377 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9378 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9379 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9380
a6dbd429
JB
9381 /*
9382 * This can happen where we create an inode, but somebody else also
9383 * created the same inode and we need to destroy the one we already
9384 * created.
9385 */
9386 if (!root)
9387 goto free;
9388
8a35d95f
JB
9389 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9390 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9391 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9392 btrfs_ino(inode));
8a35d95f 9393 atomic_dec(&root->orphan_inodes);
7b128766 9394 }
7b128766 9395
d397712b 9396 while (1) {
e6dcd2dc
CM
9397 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9398 if (!ordered)
9399 break;
9400 else {
5d163e0e
JM
9401 btrfs_err(root->fs_info,
9402 "found ordered extent %llu %llu on inode cleanup",
9403 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9404 btrfs_remove_ordered_extent(inode, ordered);
9405 btrfs_put_ordered_extent(ordered);
9406 btrfs_put_ordered_extent(ordered);
9407 }
9408 }
56fa9d07 9409 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9410 inode_tree_del(inode);
5b21f2ed 9411 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9412free:
fa0d7e3d 9413 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9414}
9415
45321ac5 9416int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9417{
9418 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9419
6379ef9f
NA
9420 if (root == NULL)
9421 return 1;
9422
fa6ac876 9423 /* the snap/subvol tree is on deleting */
69e9c6c6 9424 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9425 return 1;
76dda93c 9426 else
45321ac5 9427 return generic_drop_inode(inode);
76dda93c
YZ
9428}
9429
0ee0fda0 9430static void init_once(void *foo)
39279cc3
CM
9431{
9432 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9433
9434 inode_init_once(&ei->vfs_inode);
9435}
9436
9437void btrfs_destroy_cachep(void)
9438{
8c0a8537
KS
9439 /*
9440 * Make sure all delayed rcu free inodes are flushed before we
9441 * destroy cache.
9442 */
9443 rcu_barrier();
5598e900
KM
9444 kmem_cache_destroy(btrfs_inode_cachep);
9445 kmem_cache_destroy(btrfs_trans_handle_cachep);
9446 kmem_cache_destroy(btrfs_transaction_cachep);
9447 kmem_cache_destroy(btrfs_path_cachep);
9448 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9449}
9450
9451int btrfs_init_cachep(void)
9452{
837e1972 9453 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9454 sizeof(struct btrfs_inode), 0,
5d097056
VD
9455 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9456 init_once);
39279cc3
CM
9457 if (!btrfs_inode_cachep)
9458 goto fail;
9601e3f6 9459
837e1972 9460 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9461 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9462 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9463 if (!btrfs_trans_handle_cachep)
9464 goto fail;
9601e3f6 9465
837e1972 9466 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9467 sizeof(struct btrfs_transaction), 0,
fba4b697 9468 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9469 if (!btrfs_transaction_cachep)
9470 goto fail;
9601e3f6 9471
837e1972 9472 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9473 sizeof(struct btrfs_path), 0,
fba4b697 9474 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9475 if (!btrfs_path_cachep)
9476 goto fail;
9601e3f6 9477
837e1972 9478 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9479 sizeof(struct btrfs_free_space), 0,
fba4b697 9480 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9481 if (!btrfs_free_space_cachep)
9482 goto fail;
9483
39279cc3
CM
9484 return 0;
9485fail:
9486 btrfs_destroy_cachep();
9487 return -ENOMEM;
9488}
9489
9490static int btrfs_getattr(struct vfsmount *mnt,
9491 struct dentry *dentry, struct kstat *stat)
9492{
df0af1a5 9493 u64 delalloc_bytes;
2b0143b5 9494 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9495 u32 blocksize = inode->i_sb->s_blocksize;
9496
39279cc3 9497 generic_fillattr(inode, stat);
0ee5dc67 9498 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9499
9500 spin_lock(&BTRFS_I(inode)->lock);
9501 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9502 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9503 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9504 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9505 return 0;
9506}
9507
cdd1fedf
DF
9508static int btrfs_rename_exchange(struct inode *old_dir,
9509 struct dentry *old_dentry,
9510 struct inode *new_dir,
9511 struct dentry *new_dentry)
9512{
9513 struct btrfs_trans_handle *trans;
9514 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9515 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9516 struct inode *new_inode = new_dentry->d_inode;
9517 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9518 struct timespec ctime = current_time(old_inode);
cdd1fedf
DF
9519 struct dentry *parent;
9520 u64 old_ino = btrfs_ino(old_inode);
9521 u64 new_ino = btrfs_ino(new_inode);
9522 u64 old_idx = 0;
9523 u64 new_idx = 0;
9524 u64 root_objectid;
9525 int ret;
86e8aa0e
FM
9526 bool root_log_pinned = false;
9527 bool dest_log_pinned = false;
cdd1fedf
DF
9528
9529 /* we only allow rename subvolume link between subvolumes */
9530 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9531 return -EXDEV;
9532
9533 /* close the race window with snapshot create/destroy ioctl */
9534 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9535 down_read(&root->fs_info->subvol_sem);
9536 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9537 down_read(&dest->fs_info->subvol_sem);
9538
9539 /*
9540 * We want to reserve the absolute worst case amount of items. So if
9541 * both inodes are subvols and we need to unlink them then that would
9542 * require 4 item modifications, but if they are both normal inodes it
9543 * would require 5 item modifications, so we'll assume their normal
9544 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9545 * should cover the worst case number of items we'll modify.
9546 */
9547 trans = btrfs_start_transaction(root, 12);
9548 if (IS_ERR(trans)) {
9549 ret = PTR_ERR(trans);
9550 goto out_notrans;
9551 }
9552
9553 /*
9554 * We need to find a free sequence number both in the source and
9555 * in the destination directory for the exchange.
9556 */
9557 ret = btrfs_set_inode_index(new_dir, &old_idx);
9558 if (ret)
9559 goto out_fail;
9560 ret = btrfs_set_inode_index(old_dir, &new_idx);
9561 if (ret)
9562 goto out_fail;
9563
9564 BTRFS_I(old_inode)->dir_index = 0ULL;
9565 BTRFS_I(new_inode)->dir_index = 0ULL;
9566
9567 /* Reference for the source. */
9568 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9569 /* force full log commit if subvolume involved. */
9570 btrfs_set_log_full_commit(root->fs_info, trans);
9571 } else {
376e5a57
FM
9572 btrfs_pin_log_trans(root);
9573 root_log_pinned = true;
cdd1fedf
DF
9574 ret = btrfs_insert_inode_ref(trans, dest,
9575 new_dentry->d_name.name,
9576 new_dentry->d_name.len,
9577 old_ino,
9578 btrfs_ino(new_dir), old_idx);
9579 if (ret)
9580 goto out_fail;
cdd1fedf
DF
9581 }
9582
9583 /* And now for the dest. */
9584 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9585 /* force full log commit if subvolume involved. */
9586 btrfs_set_log_full_commit(dest->fs_info, trans);
9587 } else {
376e5a57
FM
9588 btrfs_pin_log_trans(dest);
9589 dest_log_pinned = true;
cdd1fedf
DF
9590 ret = btrfs_insert_inode_ref(trans, root,
9591 old_dentry->d_name.name,
9592 old_dentry->d_name.len,
9593 new_ino,
9594 btrfs_ino(old_dir), new_idx);
9595 if (ret)
9596 goto out_fail;
cdd1fedf
DF
9597 }
9598
9599 /* Update inode version and ctime/mtime. */
9600 inode_inc_iversion(old_dir);
9601 inode_inc_iversion(new_dir);
9602 inode_inc_iversion(old_inode);
9603 inode_inc_iversion(new_inode);
9604 old_dir->i_ctime = old_dir->i_mtime = ctime;
9605 new_dir->i_ctime = new_dir->i_mtime = ctime;
9606 old_inode->i_ctime = ctime;
9607 new_inode->i_ctime = ctime;
9608
9609 if (old_dentry->d_parent != new_dentry->d_parent) {
9610 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9611 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9612 }
9613
9614 /* src is a subvolume */
9615 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9616 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9617 ret = btrfs_unlink_subvol(trans, root, old_dir,
9618 root_objectid,
9619 old_dentry->d_name.name,
9620 old_dentry->d_name.len);
9621 } else { /* src is an inode */
9622 ret = __btrfs_unlink_inode(trans, root, old_dir,
9623 old_dentry->d_inode,
9624 old_dentry->d_name.name,
9625 old_dentry->d_name.len);
9626 if (!ret)
9627 ret = btrfs_update_inode(trans, root, old_inode);
9628 }
9629 if (ret) {
66642832 9630 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9631 goto out_fail;
9632 }
9633
9634 /* dest is a subvolume */
9635 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9636 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9637 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9638 root_objectid,
9639 new_dentry->d_name.name,
9640 new_dentry->d_name.len);
9641 } else { /* dest is an inode */
9642 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9643 new_dentry->d_inode,
9644 new_dentry->d_name.name,
9645 new_dentry->d_name.len);
9646 if (!ret)
9647 ret = btrfs_update_inode(trans, dest, new_inode);
9648 }
9649 if (ret) {
66642832 9650 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9651 goto out_fail;
9652 }
9653
9654 ret = btrfs_add_link(trans, new_dir, old_inode,
9655 new_dentry->d_name.name,
9656 new_dentry->d_name.len, 0, old_idx);
9657 if (ret) {
66642832 9658 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9659 goto out_fail;
9660 }
9661
9662 ret = btrfs_add_link(trans, old_dir, new_inode,
9663 old_dentry->d_name.name,
9664 old_dentry->d_name.len, 0, new_idx);
9665 if (ret) {
66642832 9666 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9667 goto out_fail;
9668 }
9669
9670 if (old_inode->i_nlink == 1)
9671 BTRFS_I(old_inode)->dir_index = old_idx;
9672 if (new_inode->i_nlink == 1)
9673 BTRFS_I(new_inode)->dir_index = new_idx;
9674
86e8aa0e 9675 if (root_log_pinned) {
cdd1fedf
DF
9676 parent = new_dentry->d_parent;
9677 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9678 btrfs_end_log_trans(root);
86e8aa0e 9679 root_log_pinned = false;
cdd1fedf 9680 }
86e8aa0e 9681 if (dest_log_pinned) {
cdd1fedf
DF
9682 parent = old_dentry->d_parent;
9683 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9684 btrfs_end_log_trans(dest);
86e8aa0e 9685 dest_log_pinned = false;
cdd1fedf
DF
9686 }
9687out_fail:
86e8aa0e
FM
9688 /*
9689 * If we have pinned a log and an error happened, we unpin tasks
9690 * trying to sync the log and force them to fallback to a transaction
9691 * commit if the log currently contains any of the inodes involved in
9692 * this rename operation (to ensure we do not persist a log with an
9693 * inconsistent state for any of these inodes or leading to any
9694 * inconsistencies when replayed). If the transaction was aborted, the
9695 * abortion reason is propagated to userspace when attempting to commit
9696 * the transaction. If the log does not contain any of these inodes, we
9697 * allow the tasks to sync it.
9698 */
9699 if (ret && (root_log_pinned || dest_log_pinned)) {
9700 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9701 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9702 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9703 (new_inode &&
9704 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9705 btrfs_set_log_full_commit(root->fs_info, trans);
9706
9707 if (root_log_pinned) {
9708 btrfs_end_log_trans(root);
9709 root_log_pinned = false;
9710 }
9711 if (dest_log_pinned) {
9712 btrfs_end_log_trans(dest);
9713 dest_log_pinned = false;
9714 }
9715 }
cdd1fedf
DF
9716 ret = btrfs_end_transaction(trans, root);
9717out_notrans:
9718 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9719 up_read(&dest->fs_info->subvol_sem);
9720 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9721 up_read(&root->fs_info->subvol_sem);
9722
9723 return ret;
9724}
9725
9726static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9727 struct btrfs_root *root,
9728 struct inode *dir,
9729 struct dentry *dentry)
9730{
9731 int ret;
9732 struct inode *inode;
9733 u64 objectid;
9734 u64 index;
9735
9736 ret = btrfs_find_free_ino(root, &objectid);
9737 if (ret)
9738 return ret;
9739
9740 inode = btrfs_new_inode(trans, root, dir,
9741 dentry->d_name.name,
9742 dentry->d_name.len,
9743 btrfs_ino(dir),
9744 objectid,
9745 S_IFCHR | WHITEOUT_MODE,
9746 &index);
9747
9748 if (IS_ERR(inode)) {
9749 ret = PTR_ERR(inode);
9750 return ret;
9751 }
9752
9753 inode->i_op = &btrfs_special_inode_operations;
9754 init_special_inode(inode, inode->i_mode,
9755 WHITEOUT_DEV);
9756
9757 ret = btrfs_init_inode_security(trans, inode, dir,
9758 &dentry->d_name);
9759 if (ret)
c9901618 9760 goto out;
cdd1fedf
DF
9761
9762 ret = btrfs_add_nondir(trans, dir, dentry,
9763 inode, 0, index);
9764 if (ret)
c9901618 9765 goto out;
cdd1fedf
DF
9766
9767 ret = btrfs_update_inode(trans, root, inode);
c9901618 9768out:
cdd1fedf 9769 unlock_new_inode(inode);
c9901618
FM
9770 if (ret)
9771 inode_dec_link_count(inode);
cdd1fedf
DF
9772 iput(inode);
9773
c9901618 9774 return ret;
cdd1fedf
DF
9775}
9776
d397712b 9777static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9778 struct inode *new_dir, struct dentry *new_dentry,
9779 unsigned int flags)
39279cc3
CM
9780{
9781 struct btrfs_trans_handle *trans;
5062af35 9782 unsigned int trans_num_items;
39279cc3 9783 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9784 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9785 struct inode *new_inode = d_inode(new_dentry);
9786 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9787 u64 index = 0;
4df27c4d 9788 u64 root_objectid;
39279cc3 9789 int ret;
33345d01 9790 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9791 bool log_pinned = false;
39279cc3 9792
33345d01 9793 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9794 return -EPERM;
9795
4df27c4d 9796 /* we only allow rename subvolume link between subvolumes */
33345d01 9797 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9798 return -EXDEV;
9799
33345d01
LZ
9800 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9801 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9802 return -ENOTEMPTY;
5f39d397 9803
4df27c4d
YZ
9804 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9805 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9806 return -ENOTEMPTY;
9c52057c
CM
9807
9808
9809 /* check for collisions, even if the name isn't there */
4871c158 9810 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9811 new_dentry->d_name.name,
9812 new_dentry->d_name.len);
9813
9814 if (ret) {
9815 if (ret == -EEXIST) {
9816 /* we shouldn't get
9817 * eexist without a new_inode */
fae7f21c 9818 if (WARN_ON(!new_inode)) {
9c52057c
CM
9819 return ret;
9820 }
9821 } else {
9822 /* maybe -EOVERFLOW */
9823 return ret;
9824 }
9825 }
9826 ret = 0;
9827
5a3f23d5 9828 /*
8d875f95
CM
9829 * we're using rename to replace one file with another. Start IO on it
9830 * now so we don't add too much work to the end of the transaction
5a3f23d5 9831 */
8d875f95 9832 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9833 filemap_flush(old_inode->i_mapping);
9834
76dda93c 9835 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9836 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9837 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9838 /*
9839 * We want to reserve the absolute worst case amount of items. So if
9840 * both inodes are subvols and we need to unlink them then that would
9841 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9842 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9843 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9844 * should cover the worst case number of items we'll modify.
5062af35
FM
9845 * If our rename has the whiteout flag, we need more 5 units for the
9846 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9847 * when selinux is enabled).
a22285a6 9848 */
5062af35
FM
9849 trans_num_items = 11;
9850 if (flags & RENAME_WHITEOUT)
9851 trans_num_items += 5;
9852 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9853 if (IS_ERR(trans)) {
cdd1fedf
DF
9854 ret = PTR_ERR(trans);
9855 goto out_notrans;
9856 }
76dda93c 9857
4df27c4d
YZ
9858 if (dest != root)
9859 btrfs_record_root_in_trans(trans, dest);
5f39d397 9860
a5719521
YZ
9861 ret = btrfs_set_inode_index(new_dir, &index);
9862 if (ret)
9863 goto out_fail;
5a3f23d5 9864
67de1176 9865 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9866 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9867 /* force full log commit if subvolume involved. */
995946dd 9868 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9869 } else {
c4aba954
FM
9870 btrfs_pin_log_trans(root);
9871 log_pinned = true;
a5719521
YZ
9872 ret = btrfs_insert_inode_ref(trans, dest,
9873 new_dentry->d_name.name,
9874 new_dentry->d_name.len,
33345d01
LZ
9875 old_ino,
9876 btrfs_ino(new_dir), index);
a5719521
YZ
9877 if (ret)
9878 goto out_fail;
4df27c4d 9879 }
5a3f23d5 9880
0c4d2d95
JB
9881 inode_inc_iversion(old_dir);
9882 inode_inc_iversion(new_dir);
9883 inode_inc_iversion(old_inode);
04b285f3
DD
9884 old_dir->i_ctime = old_dir->i_mtime =
9885 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9886 old_inode->i_ctime = current_time(old_dir);
5f39d397 9887
12fcfd22
CM
9888 if (old_dentry->d_parent != new_dentry->d_parent)
9889 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9890
33345d01 9891 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9892 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9893 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9894 old_dentry->d_name.name,
9895 old_dentry->d_name.len);
9896 } else {
92986796 9897 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9898 d_inode(old_dentry),
92986796
AV
9899 old_dentry->d_name.name,
9900 old_dentry->d_name.len);
9901 if (!ret)
9902 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9903 }
79787eaa 9904 if (ret) {
66642832 9905 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9906 goto out_fail;
9907 }
39279cc3
CM
9908
9909 if (new_inode) {
0c4d2d95 9910 inode_inc_iversion(new_inode);
c2050a45 9911 new_inode->i_ctime = current_time(new_inode);
33345d01 9912 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9913 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9914 root_objectid = BTRFS_I(new_inode)->location.objectid;
9915 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9916 root_objectid,
9917 new_dentry->d_name.name,
9918 new_dentry->d_name.len);
9919 BUG_ON(new_inode->i_nlink == 0);
9920 } else {
9921 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9922 d_inode(new_dentry),
4df27c4d
YZ
9923 new_dentry->d_name.name,
9924 new_dentry->d_name.len);
9925 }
4ef31a45 9926 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9927 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa 9928 if (ret) {
66642832 9929 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9930 goto out_fail;
9931 }
39279cc3 9932 }
aec7477b 9933
4df27c4d
YZ
9934 ret = btrfs_add_link(trans, new_dir, old_inode,
9935 new_dentry->d_name.name,
a5719521 9936 new_dentry->d_name.len, 0, index);
79787eaa 9937 if (ret) {
66642832 9938 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9939 goto out_fail;
9940 }
39279cc3 9941
67de1176
MX
9942 if (old_inode->i_nlink == 1)
9943 BTRFS_I(old_inode)->dir_index = index;
9944
3dc9e8f7 9945 if (log_pinned) {
10d9f309 9946 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9947
6a912213 9948 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9949 btrfs_end_log_trans(root);
3dc9e8f7 9950 log_pinned = false;
4df27c4d 9951 }
cdd1fedf
DF
9952
9953 if (flags & RENAME_WHITEOUT) {
9954 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9955 old_dentry);
9956
9957 if (ret) {
66642832 9958 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9959 goto out_fail;
9960 }
4df27c4d 9961 }
39279cc3 9962out_fail:
3dc9e8f7
FM
9963 /*
9964 * If we have pinned the log and an error happened, we unpin tasks
9965 * trying to sync the log and force them to fallback to a transaction
9966 * commit if the log currently contains any of the inodes involved in
9967 * this rename operation (to ensure we do not persist a log with an
9968 * inconsistent state for any of these inodes or leading to any
9969 * inconsistencies when replayed). If the transaction was aborted, the
9970 * abortion reason is propagated to userspace when attempting to commit
9971 * the transaction. If the log does not contain any of these inodes, we
9972 * allow the tasks to sync it.
9973 */
9974 if (ret && log_pinned) {
9975 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9976 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9977 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9978 (new_inode &&
9979 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9980 btrfs_set_log_full_commit(root->fs_info, trans);
9981
9982 btrfs_end_log_trans(root);
9983 log_pinned = false;
9984 }
7ad85bb7 9985 btrfs_end_transaction(trans, root);
b44c59a8 9986out_notrans:
33345d01 9987 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9988 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9989
39279cc3
CM
9990 return ret;
9991}
9992
80ace85c
MS
9993static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9994 struct inode *new_dir, struct dentry *new_dentry,
9995 unsigned int flags)
9996{
cdd1fedf 9997 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9998 return -EINVAL;
9999
cdd1fedf
DF
10000 if (flags & RENAME_EXCHANGE)
10001 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10002 new_dentry);
10003
10004 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10005}
10006
8ccf6f19
MX
10007static void btrfs_run_delalloc_work(struct btrfs_work *work)
10008{
10009 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10010 struct inode *inode;
8ccf6f19
MX
10011
10012 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10013 work);
9f23e289 10014 inode = delalloc_work->inode;
30424601
DS
10015 filemap_flush(inode->i_mapping);
10016 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10017 &BTRFS_I(inode)->runtime_flags))
9f23e289 10018 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10019
10020 if (delalloc_work->delay_iput)
9f23e289 10021 btrfs_add_delayed_iput(inode);
8ccf6f19 10022 else
9f23e289 10023 iput(inode);
8ccf6f19
MX
10024 complete(&delalloc_work->completion);
10025}
10026
10027struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10028 int delay_iput)
8ccf6f19
MX
10029{
10030 struct btrfs_delalloc_work *work;
10031
100d5702 10032 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10033 if (!work)
10034 return NULL;
10035
10036 init_completion(&work->completion);
10037 INIT_LIST_HEAD(&work->list);
10038 work->inode = inode;
8ccf6f19 10039 work->delay_iput = delay_iput;
9e0af237
LB
10040 WARN_ON_ONCE(!inode);
10041 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10042 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10043
10044 return work;
10045}
10046
10047void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10048{
10049 wait_for_completion(&work->completion);
100d5702 10050 kfree(work);
8ccf6f19
MX
10051}
10052
d352ac68
CM
10053/*
10054 * some fairly slow code that needs optimization. This walks the list
10055 * of all the inodes with pending delalloc and forces them to disk.
10056 */
6c255e67
MX
10057static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10058 int nr)
ea8c2819 10059{
ea8c2819 10060 struct btrfs_inode *binode;
5b21f2ed 10061 struct inode *inode;
8ccf6f19
MX
10062 struct btrfs_delalloc_work *work, *next;
10063 struct list_head works;
1eafa6c7 10064 struct list_head splice;
8ccf6f19 10065 int ret = 0;
ea8c2819 10066
8ccf6f19 10067 INIT_LIST_HEAD(&works);
1eafa6c7 10068 INIT_LIST_HEAD(&splice);
63607cc8 10069
573bfb72 10070 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10071 spin_lock(&root->delalloc_lock);
10072 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10073 while (!list_empty(&splice)) {
10074 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10075 delalloc_inodes);
1eafa6c7 10076
eb73c1b7
MX
10077 list_move_tail(&binode->delalloc_inodes,
10078 &root->delalloc_inodes);
5b21f2ed 10079 inode = igrab(&binode->vfs_inode);
df0af1a5 10080 if (!inode) {
eb73c1b7 10081 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10082 continue;
df0af1a5 10083 }
eb73c1b7 10084 spin_unlock(&root->delalloc_lock);
1eafa6c7 10085
651d494a 10086 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10087 if (!work) {
f4ab9ea7
JB
10088 if (delay_iput)
10089 btrfs_add_delayed_iput(inode);
10090 else
10091 iput(inode);
1eafa6c7 10092 ret = -ENOMEM;
a1ecaabb 10093 goto out;
5b21f2ed 10094 }
1eafa6c7 10095 list_add_tail(&work->list, &works);
a44903ab
QW
10096 btrfs_queue_work(root->fs_info->flush_workers,
10097 &work->work);
6c255e67
MX
10098 ret++;
10099 if (nr != -1 && ret >= nr)
a1ecaabb 10100 goto out;
5b21f2ed 10101 cond_resched();
eb73c1b7 10102 spin_lock(&root->delalloc_lock);
ea8c2819 10103 }
eb73c1b7 10104 spin_unlock(&root->delalloc_lock);
8c8bee1d 10105
a1ecaabb 10106out:
eb73c1b7
MX
10107 list_for_each_entry_safe(work, next, &works, list) {
10108 list_del_init(&work->list);
10109 btrfs_wait_and_free_delalloc_work(work);
10110 }
10111
10112 if (!list_empty_careful(&splice)) {
10113 spin_lock(&root->delalloc_lock);
10114 list_splice_tail(&splice, &root->delalloc_inodes);
10115 spin_unlock(&root->delalloc_lock);
10116 }
573bfb72 10117 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10118 return ret;
10119}
1eafa6c7 10120
eb73c1b7
MX
10121int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10122{
10123 int ret;
1eafa6c7 10124
2c21b4d7 10125 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10126 return -EROFS;
10127
6c255e67
MX
10128 ret = __start_delalloc_inodes(root, delay_iput, -1);
10129 if (ret > 0)
10130 ret = 0;
eb73c1b7
MX
10131 /*
10132 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10133 * we have to make sure the IO is actually started and that
10134 * ordered extents get created before we return
10135 */
10136 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10137 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10138 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10139 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10140 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10141 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10142 }
10143 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10144 return ret;
10145}
10146
6c255e67
MX
10147int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10148 int nr)
eb73c1b7
MX
10149{
10150 struct btrfs_root *root;
10151 struct list_head splice;
10152 int ret;
10153
2c21b4d7 10154 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10155 return -EROFS;
10156
10157 INIT_LIST_HEAD(&splice);
10158
573bfb72 10159 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10160 spin_lock(&fs_info->delalloc_root_lock);
10161 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10162 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10163 root = list_first_entry(&splice, struct btrfs_root,
10164 delalloc_root);
10165 root = btrfs_grab_fs_root(root);
10166 BUG_ON(!root);
10167 list_move_tail(&root->delalloc_root,
10168 &fs_info->delalloc_roots);
10169 spin_unlock(&fs_info->delalloc_root_lock);
10170
6c255e67 10171 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10172 btrfs_put_fs_root(root);
6c255e67 10173 if (ret < 0)
eb73c1b7
MX
10174 goto out;
10175
6c255e67
MX
10176 if (nr != -1) {
10177 nr -= ret;
10178 WARN_ON(nr < 0);
10179 }
eb73c1b7 10180 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10181 }
eb73c1b7 10182 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10183
6c255e67 10184 ret = 0;
eb73c1b7
MX
10185 atomic_inc(&fs_info->async_submit_draining);
10186 while (atomic_read(&fs_info->nr_async_submits) ||
10187 atomic_read(&fs_info->async_delalloc_pages)) {
10188 wait_event(fs_info->async_submit_wait,
10189 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10190 atomic_read(&fs_info->async_delalloc_pages) == 0));
10191 }
10192 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10193out:
1eafa6c7 10194 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10195 spin_lock(&fs_info->delalloc_root_lock);
10196 list_splice_tail(&splice, &fs_info->delalloc_roots);
10197 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10198 }
573bfb72 10199 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10200 return ret;
ea8c2819
CM
10201}
10202
39279cc3
CM
10203static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10204 const char *symname)
10205{
10206 struct btrfs_trans_handle *trans;
10207 struct btrfs_root *root = BTRFS_I(dir)->root;
10208 struct btrfs_path *path;
10209 struct btrfs_key key;
1832a6d5 10210 struct inode *inode = NULL;
39279cc3
CM
10211 int err;
10212 int drop_inode = 0;
10213 u64 objectid;
67871254 10214 u64 index = 0;
39279cc3
CM
10215 int name_len;
10216 int datasize;
5f39d397 10217 unsigned long ptr;
39279cc3 10218 struct btrfs_file_extent_item *ei;
5f39d397 10219 struct extent_buffer *leaf;
39279cc3 10220
f06becc4 10221 name_len = strlen(symname);
39279cc3
CM
10222 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10223 return -ENAMETOOLONG;
1832a6d5 10224
9ed74f2d
JB
10225 /*
10226 * 2 items for inode item and ref
10227 * 2 items for dir items
9269d12b
FM
10228 * 1 item for updating parent inode item
10229 * 1 item for the inline extent item
9ed74f2d
JB
10230 * 1 item for xattr if selinux is on
10231 */
9269d12b 10232 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10233 if (IS_ERR(trans))
10234 return PTR_ERR(trans);
1832a6d5 10235
581bb050
LZ
10236 err = btrfs_find_free_ino(root, &objectid);
10237 if (err)
10238 goto out_unlock;
10239
aec7477b 10240 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10241 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10242 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10243 if (IS_ERR(inode)) {
10244 err = PTR_ERR(inode);
39279cc3 10245 goto out_unlock;
7cf96da3 10246 }
39279cc3 10247
ad19db71
CS
10248 /*
10249 * If the active LSM wants to access the inode during
10250 * d_instantiate it needs these. Smack checks to see
10251 * if the filesystem supports xattrs by looking at the
10252 * ops vector.
10253 */
10254 inode->i_fop = &btrfs_file_operations;
10255 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10256 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10257 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10258
10259 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10260 if (err)
10261 goto out_unlock_inode;
ad19db71 10262
39279cc3 10263 path = btrfs_alloc_path();
d8926bb3
MF
10264 if (!path) {
10265 err = -ENOMEM;
b0d5d10f 10266 goto out_unlock_inode;
d8926bb3 10267 }
33345d01 10268 key.objectid = btrfs_ino(inode);
39279cc3 10269 key.offset = 0;
962a298f 10270 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10271 datasize = btrfs_file_extent_calc_inline_size(name_len);
10272 err = btrfs_insert_empty_item(trans, root, path, &key,
10273 datasize);
54aa1f4d 10274 if (err) {
b0839166 10275 btrfs_free_path(path);
b0d5d10f 10276 goto out_unlock_inode;
54aa1f4d 10277 }
5f39d397
CM
10278 leaf = path->nodes[0];
10279 ei = btrfs_item_ptr(leaf, path->slots[0],
10280 struct btrfs_file_extent_item);
10281 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10282 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10283 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10284 btrfs_set_file_extent_encryption(leaf, ei, 0);
10285 btrfs_set_file_extent_compression(leaf, ei, 0);
10286 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10287 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10288
39279cc3 10289 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10290 write_extent_buffer(leaf, symname, ptr, name_len);
10291 btrfs_mark_buffer_dirty(leaf);
39279cc3 10292 btrfs_free_path(path);
5f39d397 10293
39279cc3 10294 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10295 inode_nohighmem(inode);
39279cc3 10296 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10297 inode_set_bytes(inode, name_len);
f06becc4 10298 btrfs_i_size_write(inode, name_len);
54aa1f4d 10299 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10300 /*
10301 * Last step, add directory indexes for our symlink inode. This is the
10302 * last step to avoid extra cleanup of these indexes if an error happens
10303 * elsewhere above.
10304 */
10305 if (!err)
10306 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10307 if (err) {
54aa1f4d 10308 drop_inode = 1;
b0d5d10f
CM
10309 goto out_unlock_inode;
10310 }
10311
10312 unlock_new_inode(inode);
10313 d_instantiate(dentry, inode);
39279cc3
CM
10314
10315out_unlock:
7ad85bb7 10316 btrfs_end_transaction(trans, root);
39279cc3
CM
10317 if (drop_inode) {
10318 inode_dec_link_count(inode);
10319 iput(inode);
10320 }
b53d3f5d 10321 btrfs_btree_balance_dirty(root);
39279cc3 10322 return err;
b0d5d10f
CM
10323
10324out_unlock_inode:
10325 drop_inode = 1;
10326 unlock_new_inode(inode);
10327 goto out_unlock;
39279cc3 10328}
16432985 10329
0af3d00b
JB
10330static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10331 u64 start, u64 num_bytes, u64 min_size,
10332 loff_t actual_len, u64 *alloc_hint,
10333 struct btrfs_trans_handle *trans)
d899e052 10334{
5dc562c5
JB
10335 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10336 struct extent_map *em;
d899e052
YZ
10337 struct btrfs_root *root = BTRFS_I(inode)->root;
10338 struct btrfs_key ins;
d899e052 10339 u64 cur_offset = start;
55a61d1d 10340 u64 i_size;
154ea289 10341 u64 cur_bytes;
0b670dc4 10342 u64 last_alloc = (u64)-1;
d899e052 10343 int ret = 0;
0af3d00b 10344 bool own_trans = true;
18513091 10345 u64 end = start + num_bytes - 1;
d899e052 10346
0af3d00b
JB
10347 if (trans)
10348 own_trans = false;
d899e052 10349 while (num_bytes > 0) {
0af3d00b
JB
10350 if (own_trans) {
10351 trans = btrfs_start_transaction(root, 3);
10352 if (IS_ERR(trans)) {
10353 ret = PTR_ERR(trans);
10354 break;
10355 }
5a303d5d
YZ
10356 }
10357
ee22184b 10358 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10359 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10360 /*
10361 * If we are severely fragmented we could end up with really
10362 * small allocations, so if the allocator is returning small
10363 * chunks lets make its job easier by only searching for those
10364 * sized chunks.
10365 */
10366 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10367 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10368 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10369 if (ret) {
0af3d00b
JB
10370 if (own_trans)
10371 btrfs_end_transaction(trans, root);
a22285a6 10372 break;
d899e052 10373 }
9cfa3e34 10374 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10375
0b670dc4 10376 last_alloc = ins.offset;
d899e052
YZ
10377 ret = insert_reserved_file_extent(trans, inode,
10378 cur_offset, ins.objectid,
10379 ins.offset, ins.offset,
920bbbfb 10380 ins.offset, 0, 0, 0,
d899e052 10381 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10382 if (ret) {
857cc2fc 10383 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10384 ins.offset, 0);
66642832 10385 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10386 if (own_trans)
10387 btrfs_end_transaction(trans, root);
10388 break;
10389 }
31193213 10390
a1ed835e
CM
10391 btrfs_drop_extent_cache(inode, cur_offset,
10392 cur_offset + ins.offset -1, 0);
5a303d5d 10393
5dc562c5
JB
10394 em = alloc_extent_map();
10395 if (!em) {
10396 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10397 &BTRFS_I(inode)->runtime_flags);
10398 goto next;
10399 }
10400
10401 em->start = cur_offset;
10402 em->orig_start = cur_offset;
10403 em->len = ins.offset;
10404 em->block_start = ins.objectid;
10405 em->block_len = ins.offset;
b4939680 10406 em->orig_block_len = ins.offset;
cc95bef6 10407 em->ram_bytes = ins.offset;
5dc562c5
JB
10408 em->bdev = root->fs_info->fs_devices->latest_bdev;
10409 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10410 em->generation = trans->transid;
10411
10412 while (1) {
10413 write_lock(&em_tree->lock);
09a2a8f9 10414 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10415 write_unlock(&em_tree->lock);
10416 if (ret != -EEXIST)
10417 break;
10418 btrfs_drop_extent_cache(inode, cur_offset,
10419 cur_offset + ins.offset - 1,
10420 0);
10421 }
10422 free_extent_map(em);
10423next:
d899e052
YZ
10424 num_bytes -= ins.offset;
10425 cur_offset += ins.offset;
efa56464 10426 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10427
0c4d2d95 10428 inode_inc_iversion(inode);
c2050a45 10429 inode->i_ctime = current_time(inode);
6cbff00f 10430 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10431 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10432 (actual_len > inode->i_size) &&
10433 (cur_offset > inode->i_size)) {
d1ea6a61 10434 if (cur_offset > actual_len)
55a61d1d 10435 i_size = actual_len;
d1ea6a61 10436 else
55a61d1d
JB
10437 i_size = cur_offset;
10438 i_size_write(inode, i_size);
10439 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10440 }
10441
d899e052 10442 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10443
10444 if (ret) {
66642832 10445 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10446 if (own_trans)
10447 btrfs_end_transaction(trans, root);
10448 break;
10449 }
d899e052 10450
0af3d00b
JB
10451 if (own_trans)
10452 btrfs_end_transaction(trans, root);
5a303d5d 10453 }
18513091
WX
10454 if (cur_offset < end)
10455 btrfs_free_reserved_data_space(inode, cur_offset,
10456 end - cur_offset + 1);
d899e052
YZ
10457 return ret;
10458}
10459
0af3d00b
JB
10460int btrfs_prealloc_file_range(struct inode *inode, int mode,
10461 u64 start, u64 num_bytes, u64 min_size,
10462 loff_t actual_len, u64 *alloc_hint)
10463{
10464 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10465 min_size, actual_len, alloc_hint,
10466 NULL);
10467}
10468
10469int btrfs_prealloc_file_range_trans(struct inode *inode,
10470 struct btrfs_trans_handle *trans, int mode,
10471 u64 start, u64 num_bytes, u64 min_size,
10472 loff_t actual_len, u64 *alloc_hint)
10473{
10474 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10475 min_size, actual_len, alloc_hint, trans);
10476}
10477
e6dcd2dc
CM
10478static int btrfs_set_page_dirty(struct page *page)
10479{
e6dcd2dc
CM
10480 return __set_page_dirty_nobuffers(page);
10481}
10482
10556cb2 10483static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10484{
b83cc969 10485 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10486 umode_t mode = inode->i_mode;
b83cc969 10487
cb6db4e5
JM
10488 if (mask & MAY_WRITE &&
10489 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10490 if (btrfs_root_readonly(root))
10491 return -EROFS;
10492 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10493 return -EACCES;
10494 }
2830ba7f 10495 return generic_permission(inode, mask);
fdebe2bd 10496}
39279cc3 10497
ef3b9af5
FM
10498static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10499{
10500 struct btrfs_trans_handle *trans;
10501 struct btrfs_root *root = BTRFS_I(dir)->root;
10502 struct inode *inode = NULL;
10503 u64 objectid;
10504 u64 index;
10505 int ret = 0;
10506
10507 /*
10508 * 5 units required for adding orphan entry
10509 */
10510 trans = btrfs_start_transaction(root, 5);
10511 if (IS_ERR(trans))
10512 return PTR_ERR(trans);
10513
10514 ret = btrfs_find_free_ino(root, &objectid);
10515 if (ret)
10516 goto out;
10517
10518 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10519 btrfs_ino(dir), objectid, mode, &index);
10520 if (IS_ERR(inode)) {
10521 ret = PTR_ERR(inode);
10522 inode = NULL;
10523 goto out;
10524 }
10525
ef3b9af5
FM
10526 inode->i_fop = &btrfs_file_operations;
10527 inode->i_op = &btrfs_file_inode_operations;
10528
10529 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10530 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10531
b0d5d10f
CM
10532 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10533 if (ret)
10534 goto out_inode;
10535
10536 ret = btrfs_update_inode(trans, root, inode);
10537 if (ret)
10538 goto out_inode;
ef3b9af5
FM
10539 ret = btrfs_orphan_add(trans, inode);
10540 if (ret)
b0d5d10f 10541 goto out_inode;
ef3b9af5 10542
5762b5c9
FM
10543 /*
10544 * We set number of links to 0 in btrfs_new_inode(), and here we set
10545 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10546 * through:
10547 *
10548 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10549 */
10550 set_nlink(inode, 1);
b0d5d10f 10551 unlock_new_inode(inode);
ef3b9af5
FM
10552 d_tmpfile(dentry, inode);
10553 mark_inode_dirty(inode);
10554
10555out:
10556 btrfs_end_transaction(trans, root);
10557 if (ret)
10558 iput(inode);
10559 btrfs_balance_delayed_items(root);
10560 btrfs_btree_balance_dirty(root);
ef3b9af5 10561 return ret;
b0d5d10f
CM
10562
10563out_inode:
10564 unlock_new_inode(inode);
10565 goto out;
10566
ef3b9af5
FM
10567}
10568
6e1d5dcc 10569static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10570 .getattr = btrfs_getattr,
39279cc3
CM
10571 .lookup = btrfs_lookup,
10572 .create = btrfs_create,
10573 .unlink = btrfs_unlink,
10574 .link = btrfs_link,
10575 .mkdir = btrfs_mkdir,
10576 .rmdir = btrfs_rmdir,
2773bf00 10577 .rename = btrfs_rename2,
39279cc3
CM
10578 .symlink = btrfs_symlink,
10579 .setattr = btrfs_setattr,
618e21d5 10580 .mknod = btrfs_mknod,
5103e947 10581 .listxattr = btrfs_listxattr,
fdebe2bd 10582 .permission = btrfs_permission,
4e34e719 10583 .get_acl = btrfs_get_acl,
996a710d 10584 .set_acl = btrfs_set_acl,
93fd63c2 10585 .update_time = btrfs_update_time,
ef3b9af5 10586 .tmpfile = btrfs_tmpfile,
39279cc3 10587};
6e1d5dcc 10588static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10589 .lookup = btrfs_lookup,
fdebe2bd 10590 .permission = btrfs_permission,
4e34e719 10591 .get_acl = btrfs_get_acl,
996a710d 10592 .set_acl = btrfs_set_acl,
93fd63c2 10593 .update_time = btrfs_update_time,
39279cc3 10594};
76dda93c 10595
828c0950 10596static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10597 .llseek = generic_file_llseek,
10598 .read = generic_read_dir,
02dbfc99 10599 .iterate_shared = btrfs_real_readdir,
34287aa3 10600 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10601#ifdef CONFIG_COMPAT
4c63c245 10602 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10603#endif
6bf13c0c 10604 .release = btrfs_release_file,
e02119d5 10605 .fsync = btrfs_sync_file,
39279cc3
CM
10606};
10607
20e5506b 10608static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10609 .fill_delalloc = run_delalloc_range,
065631f6 10610 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10611 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10612 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10613 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10614 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10615 .set_bit_hook = btrfs_set_bit_hook,
10616 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10617 .merge_extent_hook = btrfs_merge_extent_hook,
10618 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10619};
10620
35054394
CM
10621/*
10622 * btrfs doesn't support the bmap operation because swapfiles
10623 * use bmap to make a mapping of extents in the file. They assume
10624 * these extents won't change over the life of the file and they
10625 * use the bmap result to do IO directly to the drive.
10626 *
10627 * the btrfs bmap call would return logical addresses that aren't
10628 * suitable for IO and they also will change frequently as COW
10629 * operations happen. So, swapfile + btrfs == corruption.
10630 *
10631 * For now we're avoiding this by dropping bmap.
10632 */
7f09410b 10633static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10634 .readpage = btrfs_readpage,
10635 .writepage = btrfs_writepage,
b293f02e 10636 .writepages = btrfs_writepages,
3ab2fb5a 10637 .readpages = btrfs_readpages,
16432985 10638 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10639 .invalidatepage = btrfs_invalidatepage,
10640 .releasepage = btrfs_releasepage,
e6dcd2dc 10641 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10642 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10643};
10644
7f09410b 10645static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10646 .readpage = btrfs_readpage,
10647 .writepage = btrfs_writepage,
2bf5a725
CM
10648 .invalidatepage = btrfs_invalidatepage,
10649 .releasepage = btrfs_releasepage,
39279cc3
CM
10650};
10651
6e1d5dcc 10652static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10653 .getattr = btrfs_getattr,
10654 .setattr = btrfs_setattr,
5103e947 10655 .listxattr = btrfs_listxattr,
fdebe2bd 10656 .permission = btrfs_permission,
1506fcc8 10657 .fiemap = btrfs_fiemap,
4e34e719 10658 .get_acl = btrfs_get_acl,
996a710d 10659 .set_acl = btrfs_set_acl,
e41f941a 10660 .update_time = btrfs_update_time,
39279cc3 10661};
6e1d5dcc 10662static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10663 .getattr = btrfs_getattr,
10664 .setattr = btrfs_setattr,
fdebe2bd 10665 .permission = btrfs_permission,
33268eaf 10666 .listxattr = btrfs_listxattr,
4e34e719 10667 .get_acl = btrfs_get_acl,
996a710d 10668 .set_acl = btrfs_set_acl,
e41f941a 10669 .update_time = btrfs_update_time,
618e21d5 10670};
6e1d5dcc 10671static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10672 .readlink = generic_readlink,
6b255391 10673 .get_link = page_get_link,
f209561a 10674 .getattr = btrfs_getattr,
22c44fe6 10675 .setattr = btrfs_setattr,
fdebe2bd 10676 .permission = btrfs_permission,
0279b4cd 10677 .listxattr = btrfs_listxattr,
e41f941a 10678 .update_time = btrfs_update_time,
39279cc3 10679};
76dda93c 10680
82d339d9 10681const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10682 .d_delete = btrfs_dentry_delete,
b4aff1f8 10683 .d_release = btrfs_dentry_release,
76dda93c 10684};