]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: un-deprecate ioctls START_SYNC and WAIT_SYNC
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
b1c16ac9 31#include <linux/sched/mm.h>
92d32170 32#include <asm/unaligned.h>
602cbe91 33#include "misc.h"
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e6dcd2dc 39#include "ordered-data.h"
95819c05 40#include "xattr.h"
e02119d5 41#include "tree-log.h"
4a54c8c1 42#include "volumes.h"
c8b97818 43#include "compression.h"
b4ce94de 44#include "locking.h"
dc89e982 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
38c227d8 47#include "backref.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
83static noinline int cow_file_range(struct inode *inode,
84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
6f9994db
LB
87static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
52427260
QW
93static void __endio_write_update_ordered(struct inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260
QW
106 */
107static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
119 page = find_get_page(inode->i_mapping, index);
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
c2167754
YZ
246 /*
247 * we're an inline extent, so nobody can
248 * extend the file past i_size without locking
249 * a page we already have locked.
250 *
251 * We must do any isize and inode updates
252 * before we unlock the pages. Otherwise we
253 * could end up racing with unlink.
254 */
c8b97818 255 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 256 ret = btrfs_update_inode(trans, root, inode);
c2167754 257
c8b97818 258fail:
79b4f4c6 259 return ret;
c8b97818
CM
260}
261
262
263/*
264 * conditionally insert an inline extent into the file. This
265 * does the checks required to make sure the data is small enough
266 * to fit as an inline extent.
267 */
d02c0e20 268static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
c8b97818 272{
d02c0e20 273 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 274 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 275 struct btrfs_trans_handle *trans;
c8b97818
CM
276 u64 isize = i_size_read(inode);
277 u64 actual_end = min(end + 1, isize);
278 u64 inline_len = actual_end - start;
0b246afa 279 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
280 u64 data_len = inline_len;
281 int ret;
1acae57b
FDBM
282 struct btrfs_path *path;
283 int extent_inserted = 0;
284 u32 extent_item_size;
c8b97818
CM
285
286 if (compressed_size)
287 data_len = compressed_size;
288
289 if (start > 0 ||
0b246afa
JM
290 actual_end > fs_info->sectorsize ||
291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 292 (!compressed_size &&
0b246afa 293 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 294 end + 1 < isize ||
0b246afa 295 data_len > fs_info->max_inline) {
c8b97818
CM
296 return 1;
297 }
298
1acae57b
FDBM
299 path = btrfs_alloc_path();
300 if (!path)
301 return -ENOMEM;
302
00361589 303 trans = btrfs_join_transaction(root);
1acae57b
FDBM
304 if (IS_ERR(trans)) {
305 btrfs_free_path(path);
00361589 306 return PTR_ERR(trans);
1acae57b 307 }
69fe2d75 308 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 309
1acae57b
FDBM
310 if (compressed_size && compressed_pages)
311 extent_item_size = btrfs_file_extent_calc_inline_size(
312 compressed_size);
313 else
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 inline_len);
316
317 ret = __btrfs_drop_extents(trans, root, inode, path,
318 start, aligned_end, NULL,
319 1, 1, extent_item_size, &extent_inserted);
00361589 320 if (ret) {
66642832 321 btrfs_abort_transaction(trans, ret);
00361589
JB
322 goto out;
323 }
c8b97818
CM
324
325 if (isize > actual_end)
326 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
327 ret = insert_inline_extent(trans, path, extent_inserted,
328 root, inode, start,
c8b97818 329 inline_len, compressed_size,
fe3f566c 330 compress_type, compressed_pages);
2adcac1a 331 if (ret && ret != -ENOSPC) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589 333 goto out;
2adcac1a 334 } else if (ret == -ENOSPC) {
00361589
JB
335 ret = 1;
336 goto out;
79787eaa 337 }
2adcac1a 338
bdc20e67 339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 341out:
94ed938a
QW
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
bc42bda2 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 349 btrfs_free_path(path);
3a45bb20 350 btrfs_end_transaction(trans);
00361589 351 return ret;
c8b97818
CM
352}
353
771ed689
CM
354struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
261507a0 360 int compress_type;
771ed689
CM
361 struct list_head list;
362};
363
97db1204 364struct async_chunk {
771ed689 365 struct inode *inode;
771ed689
CM
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689
CM
370 struct list_head extents;
371 struct btrfs_work work;
97db1204 372 atomic_t *pending;
771ed689
CM
373};
374
97db1204
NB
375struct async_cow {
376 /* Number of chunks in flight; must be first in the structure */
377 atomic_t num_chunks;
378 struct async_chunk chunks[];
771ed689
CM
379};
380
97db1204 381static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
382 u64 start, u64 ram_size,
383 u64 compressed_size,
384 struct page **pages,
261507a0
LZ
385 unsigned long nr_pages,
386 int compress_type)
771ed689
CM
387{
388 struct async_extent *async_extent;
389
390 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 391 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
392 async_extent->start = start;
393 async_extent->ram_size = ram_size;
394 async_extent->compressed_size = compressed_size;
395 async_extent->pages = pages;
396 async_extent->nr_pages = nr_pages;
261507a0 397 async_extent->compress_type = compress_type;
771ed689
CM
398 list_add_tail(&async_extent->list, &cow->extents);
399 return 0;
400}
401
42c16da6
QW
402/*
403 * Check if the inode has flags compatible with compression
404 */
405static inline bool inode_can_compress(struct inode *inode)
406{
407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 return false;
410 return true;
411}
412
413/*
414 * Check if the inode needs to be submitted to compression, based on mount
415 * options, defragmentation, properties or heuristics.
416 */
c2fcdcdf 417static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 418{
0b246afa 419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0 420
42c16da6
QW
421 if (!inode_can_compress(inode)) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 btrfs_ino(BTRFS_I(inode)));
425 return 0;
426 }
f79707b0 427 /* force compress */
0b246afa 428 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 429 return 1;
eec63c65
DS
430 /* defrag ioctl */
431 if (BTRFS_I(inode)->defrag_compress)
432 return 1;
f79707b0
WS
433 /* bad compression ratios */
434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 return 0;
0b246afa 436 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 437 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 438 BTRFS_I(inode)->prop_compress)
c2fcdcdf 439 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
440 return 0;
441}
442
6158e1ce 443static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
444 u64 start, u64 end, u64 num_bytes, u64 small_write)
445{
446 /* If this is a small write inside eof, kick off a defrag */
447 if (num_bytes < small_write &&
6158e1ce 448 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
449 btrfs_add_inode_defrag(NULL, inode);
450}
451
d352ac68 452/*
771ed689
CM
453 * we create compressed extents in two phases. The first
454 * phase compresses a range of pages that have already been
455 * locked (both pages and state bits are locked).
c8b97818 456 *
771ed689
CM
457 * This is done inside an ordered work queue, and the compression
458 * is spread across many cpus. The actual IO submission is step
459 * two, and the ordered work queue takes care of making sure that
460 * happens in the same order things were put onto the queue by
461 * writepages and friends.
c8b97818 462 *
771ed689
CM
463 * If this code finds it can't get good compression, it puts an
464 * entry onto the work queue to write the uncompressed bytes. This
465 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
466 * are written in the same order that the flusher thread sent them
467 * down.
d352ac68 468 */
ac3e9933 469static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 470{
1368c6da 471 struct inode *inode = async_chunk->inode;
0b246afa 472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 473 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
474 u64 start = async_chunk->start;
475 u64 end = async_chunk->end;
c8b97818 476 u64 actual_end;
d98da499 477 u64 i_size;
e6dcd2dc 478 int ret = 0;
c8b97818
CM
479 struct page **pages = NULL;
480 unsigned long nr_pages;
c8b97818
CM
481 unsigned long total_compressed = 0;
482 unsigned long total_in = 0;
c8b97818
CM
483 int i;
484 int will_compress;
0b246afa 485 int compress_type = fs_info->compress_type;
ac3e9933 486 int compressed_extents = 0;
4adaa611 487 int redirty = 0;
b888db2b 488
6158e1ce
NB
489 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 SZ_16K);
4cb5300b 491
d98da499
JB
492 /*
493 * We need to save i_size before now because it could change in between
494 * us evaluating the size and assigning it. This is because we lock and
495 * unlock the page in truncate and fallocate, and then modify the i_size
496 * later on.
497 *
498 * The barriers are to emulate READ_ONCE, remove that once i_size_read
499 * does that for us.
500 */
501 barrier();
502 i_size = i_size_read(inode);
503 barrier();
504 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
505again:
506 will_compress = 0;
09cbfeaf 507 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
508 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
509 nr_pages = min_t(unsigned long, nr_pages,
510 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 511
f03d9301
CM
512 /*
513 * we don't want to send crud past the end of i_size through
514 * compression, that's just a waste of CPU time. So, if the
515 * end of the file is before the start of our current
516 * requested range of bytes, we bail out to the uncompressed
517 * cleanup code that can deal with all of this.
518 *
519 * It isn't really the fastest way to fix things, but this is a
520 * very uncommon corner.
521 */
522 if (actual_end <= start)
523 goto cleanup_and_bail_uncompressed;
524
c8b97818
CM
525 total_compressed = actual_end - start;
526
4bcbb332
SW
527 /*
528 * skip compression for a small file range(<=blocksize) that
01327610 529 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
530 */
531 if (total_compressed <= blocksize &&
532 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
533 goto cleanup_and_bail_uncompressed;
534
069eac78
DS
535 total_compressed = min_t(unsigned long, total_compressed,
536 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
537 total_in = 0;
538 ret = 0;
db94535d 539
771ed689
CM
540 /*
541 * we do compression for mount -o compress and when the
542 * inode has not been flagged as nocompress. This flag can
543 * change at any time if we discover bad compression ratios.
c8b97818 544 */
c2fcdcdf 545 if (inode_need_compress(inode, start, end)) {
c8b97818 546 WARN_ON(pages);
31e818fe 547 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
548 if (!pages) {
549 /* just bail out to the uncompressed code */
3527a018 550 nr_pages = 0;
560f7d75
LZ
551 goto cont;
552 }
c8b97818 553
eec63c65
DS
554 if (BTRFS_I(inode)->defrag_compress)
555 compress_type = BTRFS_I(inode)->defrag_compress;
556 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 557 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 558
4adaa611
CM
559 /*
560 * we need to call clear_page_dirty_for_io on each
561 * page in the range. Otherwise applications with the file
562 * mmap'd can wander in and change the page contents while
563 * we are compressing them.
564 *
565 * If the compression fails for any reason, we set the pages
566 * dirty again later on.
e9679de3
TT
567 *
568 * Note that the remaining part is redirtied, the start pointer
569 * has moved, the end is the original one.
4adaa611 570 */
e9679de3
TT
571 if (!redirty) {
572 extent_range_clear_dirty_for_io(inode, start, end);
573 redirty = 1;
574 }
f51d2b59
DS
575
576 /* Compression level is applied here and only here */
577 ret = btrfs_compress_pages(
578 compress_type | (fs_info->compress_level << 4),
261507a0 579 inode->i_mapping, start,
38c31464 580 pages,
4d3a800e 581 &nr_pages,
261507a0 582 &total_in,
e5d74902 583 &total_compressed);
c8b97818
CM
584
585 if (!ret) {
7073017a 586 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 587 struct page *page = pages[nr_pages - 1];
c8b97818
CM
588 char *kaddr;
589
590 /* zero the tail end of the last page, we might be
591 * sending it down to disk
592 */
593 if (offset) {
7ac687d9 594 kaddr = kmap_atomic(page);
c8b97818 595 memset(kaddr + offset, 0,
09cbfeaf 596 PAGE_SIZE - offset);
7ac687d9 597 kunmap_atomic(kaddr);
c8b97818
CM
598 }
599 will_compress = 1;
600 }
601 }
560f7d75 602cont:
c8b97818
CM
603 if (start == 0) {
604 /* lets try to make an inline extent */
6018ba0a 605 if (ret || total_in < actual_end) {
c8b97818 606 /* we didn't compress the entire range, try
771ed689 607 * to make an uncompressed inline extent.
c8b97818 608 */
d02c0e20
NB
609 ret = cow_file_range_inline(inode, start, end, 0,
610 BTRFS_COMPRESS_NONE, NULL);
c8b97818 611 } else {
771ed689 612 /* try making a compressed inline extent */
d02c0e20 613 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
614 total_compressed,
615 compress_type, pages);
c8b97818 616 }
79787eaa 617 if (ret <= 0) {
151a41bc 618 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
619 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
620 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
621 unsigned long page_error_op;
622
e6eb4314 623 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 624
771ed689 625 /*
79787eaa
JM
626 * inline extent creation worked or returned error,
627 * we don't need to create any more async work items.
628 * Unlock and free up our temp pages.
8b62f87b
JB
629 *
630 * We use DO_ACCOUNTING here because we need the
631 * delalloc_release_metadata to be done _after_ we drop
632 * our outstanding extent for clearing delalloc for this
633 * range.
771ed689 634 */
74e9194a
NB
635 extent_clear_unlock_delalloc(inode, start, end, NULL,
636 clear_flags,
ba8b04c1 637 PAGE_UNLOCK |
c2790a2e
JB
638 PAGE_CLEAR_DIRTY |
639 PAGE_SET_WRITEBACK |
e6eb4314 640 page_error_op |
c2790a2e 641 PAGE_END_WRITEBACK);
cecc8d90
NB
642
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
645 put_page(pages[i]);
646 }
647 kfree(pages);
648
649 return 0;
c8b97818
CM
650 }
651 }
652
653 if (will_compress) {
654 /*
655 * we aren't doing an inline extent round the compressed size
656 * up to a block size boundary so the allocator does sane
657 * things
658 */
fda2832f 659 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
660
661 /*
662 * one last check to make sure the compression is really a
170607eb
TT
663 * win, compare the page count read with the blocks on disk,
664 * compression must free at least one sector size
c8b97818 665 */
09cbfeaf 666 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 667 if (total_compressed + blocksize <= total_in) {
ac3e9933 668 compressed_extents++;
c8bb0c8b
AS
669
670 /*
671 * The async work queues will take care of doing actual
672 * allocation on disk for these compressed pages, and
673 * will submit them to the elevator.
674 */
b5326271 675 add_async_extent(async_chunk, start, total_in,
4d3a800e 676 total_compressed, pages, nr_pages,
c8bb0c8b
AS
677 compress_type);
678
1170862d
TT
679 if (start + total_in < end) {
680 start += total_in;
c8bb0c8b
AS
681 pages = NULL;
682 cond_resched();
683 goto again;
684 }
ac3e9933 685 return compressed_extents;
c8b97818
CM
686 }
687 }
c8bb0c8b 688 if (pages) {
c8b97818
CM
689 /*
690 * the compression code ran but failed to make things smaller,
691 * free any pages it allocated and our page pointer array
692 */
4d3a800e 693 for (i = 0; i < nr_pages; i++) {
70b99e69 694 WARN_ON(pages[i]->mapping);
09cbfeaf 695 put_page(pages[i]);
c8b97818
CM
696 }
697 kfree(pages);
698 pages = NULL;
699 total_compressed = 0;
4d3a800e 700 nr_pages = 0;
c8b97818
CM
701
702 /* flag the file so we don't compress in the future */
0b246afa 703 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 704 !(BTRFS_I(inode)->prop_compress)) {
a555f810 705 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 706 }
c8b97818 707 }
f03d9301 708cleanup_and_bail_uncompressed:
c8bb0c8b
AS
709 /*
710 * No compression, but we still need to write the pages in the file
711 * we've been given so far. redirty the locked page if it corresponds
712 * to our extent and set things up for the async work queue to run
713 * cow_file_range to do the normal delalloc dance.
714 */
1368c6da
NB
715 if (page_offset(async_chunk->locked_page) >= start &&
716 page_offset(async_chunk->locked_page) <= end)
717 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b
AS
718 /* unlocked later on in the async handlers */
719
720 if (redirty)
721 extent_range_redirty_for_io(inode, start, end);
b5326271 722 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 723 BTRFS_COMPRESS_NONE);
ac3e9933 724 compressed_extents++;
3b951516 725
ac3e9933 726 return compressed_extents;
771ed689 727}
771ed689 728
40ae837b
FM
729static void free_async_extent_pages(struct async_extent *async_extent)
730{
731 int i;
732
733 if (!async_extent->pages)
734 return;
735
736 for (i = 0; i < async_extent->nr_pages; i++) {
737 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 738 put_page(async_extent->pages[i]);
40ae837b
FM
739 }
740 kfree(async_extent->pages);
741 async_extent->nr_pages = 0;
742 async_extent->pages = NULL;
771ed689
CM
743}
744
745/*
746 * phase two of compressed writeback. This is the ordered portion
747 * of the code, which only gets called in the order the work was
748 * queued. We walk all the async extents created by compress_file_range
749 * and send them down to the disk.
750 */
b5326271 751static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 752{
b5326271 753 struct inode *inode = async_chunk->inode;
0b246afa 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
755 struct async_extent *async_extent;
756 u64 alloc_hint = 0;
771ed689
CM
757 struct btrfs_key ins;
758 struct extent_map *em;
759 struct btrfs_root *root = BTRFS_I(inode)->root;
4336650a 760 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
f5a84ee3 761 int ret = 0;
771ed689 762
3e04e7f1 763again:
b5326271
NB
764 while (!list_empty(&async_chunk->extents)) {
765 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
766 struct async_extent, list);
767 list_del(&async_extent->list);
c8b97818 768
f5a84ee3 769retry:
7447555f
NB
770 lock_extent(io_tree, async_extent->start,
771 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
772 /* did the compression code fall back to uncompressed IO? */
773 if (!async_extent->pages) {
774 int page_started = 0;
775 unsigned long nr_written = 0;
776
771ed689 777 /* allocate blocks */
b5326271 778 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
779 async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1,
330a5827 782 &page_started, &nr_written, 0);
771ed689 783
79787eaa
JM
784 /* JDM XXX */
785
771ed689
CM
786 /*
787 * if page_started, cow_file_range inserted an
788 * inline extent and took care of all the unlocking
789 * and IO for us. Otherwise, we need to submit
790 * all those pages down to the drive.
791 */
f5a84ee3 792 if (!page_started && !ret)
5e3ee236
NB
793 extent_write_locked_range(inode,
794 async_extent->start,
d397712b 795 async_extent->start +
771ed689 796 async_extent->ram_size - 1,
771ed689 797 WB_SYNC_ALL);
3e04e7f1 798 else if (ret)
b5326271 799 unlock_page(async_chunk->locked_page);
771ed689
CM
800 kfree(async_extent);
801 cond_resched();
802 continue;
803 }
804
18513091 805 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
806 async_extent->compressed_size,
807 async_extent->compressed_size,
e570fd27 808 0, alloc_hint, &ins, 1, 1);
f5a84ee3 809 if (ret) {
40ae837b 810 free_async_extent_pages(async_extent);
3e04e7f1 811
fdf8e2ea
JB
812 if (ret == -ENOSPC) {
813 unlock_extent(io_tree, async_extent->start,
814 async_extent->start +
815 async_extent->ram_size - 1);
ce62003f
LB
816
817 /*
818 * we need to redirty the pages if we decide to
819 * fallback to uncompressed IO, otherwise we
820 * will not submit these pages down to lower
821 * layers.
822 */
823 extent_range_redirty_for_io(inode,
824 async_extent->start,
825 async_extent->start +
826 async_extent->ram_size - 1);
827
79787eaa 828 goto retry;
fdf8e2ea 829 }
3e04e7f1 830 goto out_free;
f5a84ee3 831 }
c2167754
YZ
832 /*
833 * here we're doing allocation and writeback of the
834 * compressed pages
835 */
6f9994db
LB
836 em = create_io_em(inode, async_extent->start,
837 async_extent->ram_size, /* len */
838 async_extent->start, /* orig_start */
839 ins.objectid, /* block_start */
840 ins.offset, /* block_len */
841 ins.offset, /* orig_block_len */
842 async_extent->ram_size, /* ram_bytes */
843 async_extent->compress_type,
844 BTRFS_ORDERED_COMPRESSED);
845 if (IS_ERR(em))
846 /* ret value is not necessary due to void function */
3e04e7f1 847 goto out_free_reserve;
6f9994db 848 free_extent_map(em);
3e04e7f1 849
261507a0
LZ
850 ret = btrfs_add_ordered_extent_compress(inode,
851 async_extent->start,
852 ins.objectid,
853 async_extent->ram_size,
854 ins.offset,
855 BTRFS_ORDERED_COMPRESSED,
856 async_extent->compress_type);
d9f85963 857 if (ret) {
dcdbc059
NB
858 btrfs_drop_extent_cache(BTRFS_I(inode),
859 async_extent->start,
d9f85963
FM
860 async_extent->start +
861 async_extent->ram_size - 1, 0);
3e04e7f1 862 goto out_free_reserve;
d9f85963 863 }
0b246afa 864 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 865
771ed689
CM
866 /*
867 * clear dirty, set writeback and unlock the pages.
868 */
c2790a2e 869 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
870 async_extent->start +
871 async_extent->ram_size - 1,
151a41bc
JB
872 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 874 PAGE_SET_WRITEBACK);
4e4cbee9 875 if (btrfs_submit_compressed_write(inode,
d397712b
CM
876 async_extent->start,
877 async_extent->ram_size,
878 ins.objectid,
879 ins.offset, async_extent->pages,
f82b7359 880 async_extent->nr_pages,
b5326271 881 async_chunk->write_flags)) {
fce2a4e6
FM
882 struct page *p = async_extent->pages[0];
883 const u64 start = async_extent->start;
884 const u64 end = start + async_extent->ram_size - 1;
885
886 p->mapping = inode->i_mapping;
c629732d 887 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 888
fce2a4e6 889 p->mapping = NULL;
74e9194a 890 extent_clear_unlock_delalloc(inode, start, end,
ba8b04c1 891 NULL, 0,
fce2a4e6
FM
892 PAGE_END_WRITEBACK |
893 PAGE_SET_ERROR);
40ae837b 894 free_async_extent_pages(async_extent);
fce2a4e6 895 }
771ed689
CM
896 alloc_hint = ins.objectid + ins.offset;
897 kfree(async_extent);
898 cond_resched();
899 }
dec8f175 900 return;
3e04e7f1 901out_free_reserve:
0b246afa 902 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 903 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 904out_free:
c2790a2e 905 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
906 async_extent->start +
907 async_extent->ram_size - 1,
c2790a2e 908 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 909 EXTENT_DELALLOC_NEW |
151a41bc
JB
910 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
911 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
912 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
913 PAGE_SET_ERROR);
40ae837b 914 free_async_extent_pages(async_extent);
79787eaa 915 kfree(async_extent);
3e04e7f1 916 goto again;
771ed689
CM
917}
918
4b46fce2
JB
919static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
920 u64 num_bytes)
921{
922 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
923 struct extent_map *em;
924 u64 alloc_hint = 0;
925
926 read_lock(&em_tree->lock);
927 em = search_extent_mapping(em_tree, start, num_bytes);
928 if (em) {
929 /*
930 * if block start isn't an actual block number then find the
931 * first block in this inode and use that as a hint. If that
932 * block is also bogus then just don't worry about it.
933 */
934 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
935 free_extent_map(em);
936 em = search_extent_mapping(em_tree, 0, 0);
937 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
938 alloc_hint = em->block_start;
939 if (em)
940 free_extent_map(em);
941 } else {
942 alloc_hint = em->block_start;
943 free_extent_map(em);
944 }
945 }
946 read_unlock(&em_tree->lock);
947
948 return alloc_hint;
949}
950
771ed689
CM
951/*
952 * when extent_io.c finds a delayed allocation range in the file,
953 * the call backs end up in this code. The basic idea is to
954 * allocate extents on disk for the range, and create ordered data structs
955 * in ram to track those extents.
956 *
957 * locked_page is the page that writepage had locked already. We use
958 * it to make sure we don't do extra locks or unlocks.
959 *
960 * *page_started is set to one if we unlock locked_page and do everything
961 * required to start IO on it. It may be clean and already done with
962 * IO when we return.
963 */
00361589
JB
964static noinline int cow_file_range(struct inode *inode,
965 struct page *locked_page,
74e9194a 966 u64 start, u64 end, int *page_started,
330a5827 967 unsigned long *nr_written, int unlock)
771ed689 968{
0b246afa 969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 970 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
971 u64 alloc_hint = 0;
972 u64 num_bytes;
973 unsigned long ram_size;
a315e68f 974 u64 cur_alloc_size = 0;
0b246afa 975 u64 blocksize = fs_info->sectorsize;
771ed689
CM
976 struct btrfs_key ins;
977 struct extent_map *em;
a315e68f
FM
978 unsigned clear_bits;
979 unsigned long page_ops;
980 bool extent_reserved = false;
771ed689
CM
981 int ret = 0;
982
70ddc553 983 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 984 WARN_ON_ONCE(1);
29bce2f3
JB
985 ret = -EINVAL;
986 goto out_unlock;
02ecd2c2 987 }
771ed689 988
fda2832f 989 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 990 num_bytes = max(blocksize, num_bytes);
566b1760 991 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 992
6158e1ce 993 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 994
771ed689
CM
995 if (start == 0) {
996 /* lets try to make an inline extent */
d02c0e20
NB
997 ret = cow_file_range_inline(inode, start, end, 0,
998 BTRFS_COMPRESS_NONE, NULL);
771ed689 999 if (ret == 0) {
8b62f87b
JB
1000 /*
1001 * We use DO_ACCOUNTING here because we need the
1002 * delalloc_release_metadata to be run _after_ we drop
1003 * our outstanding extent for clearing delalloc for this
1004 * range.
1005 */
74e9194a 1006 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1007 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1008 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1009 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1010 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1011 PAGE_END_WRITEBACK);
771ed689 1012 *nr_written = *nr_written +
09cbfeaf 1013 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1014 *page_started = 1;
771ed689 1015 goto out;
79787eaa 1016 } else if (ret < 0) {
79787eaa 1017 goto out_unlock;
771ed689
CM
1018 }
1019 }
1020
4b46fce2 1021 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1022 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1023 start + num_bytes - 1, 0);
771ed689 1024
3752d22f
AJ
1025 while (num_bytes > 0) {
1026 cur_alloc_size = num_bytes;
18513091 1027 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1028 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1029 &ins, 1, 1);
00361589 1030 if (ret < 0)
79787eaa 1031 goto out_unlock;
a315e68f
FM
1032 cur_alloc_size = ins.offset;
1033 extent_reserved = true;
d397712b 1034
771ed689 1035 ram_size = ins.offset;
6f9994db
LB
1036 em = create_io_em(inode, start, ins.offset, /* len */
1037 start, /* orig_start */
1038 ins.objectid, /* block_start */
1039 ins.offset, /* block_len */
1040 ins.offset, /* orig_block_len */
1041 ram_size, /* ram_bytes */
1042 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1043 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1044 if (IS_ERR(em)) {
1045 ret = PTR_ERR(em);
ace68bac 1046 goto out_reserve;
090a127a 1047 }
6f9994db 1048 free_extent_map(em);
e6dcd2dc 1049
e6dcd2dc 1050 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1051 ram_size, cur_alloc_size, 0);
ace68bac 1052 if (ret)
d9f85963 1053 goto out_drop_extent_cache;
c8b97818 1054
17d217fe
YZ
1055 if (root->root_key.objectid ==
1056 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1057 ret = btrfs_reloc_clone_csums(inode, start,
1058 cur_alloc_size);
4dbd80fb
QW
1059 /*
1060 * Only drop cache here, and process as normal.
1061 *
1062 * We must not allow extent_clear_unlock_delalloc()
1063 * at out_unlock label to free meta of this ordered
1064 * extent, as its meta should be freed by
1065 * btrfs_finish_ordered_io().
1066 *
1067 * So we must continue until @start is increased to
1068 * skip current ordered extent.
1069 */
00361589 1070 if (ret)
4dbd80fb
QW
1071 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1072 start + ram_size - 1, 0);
17d217fe
YZ
1073 }
1074
0b246afa 1075 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1076
c8b97818
CM
1077 /* we're not doing compressed IO, don't unlock the first
1078 * page (which the caller expects to stay locked), don't
1079 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1080 *
1081 * Do set the Private2 bit so we know this page was properly
1082 * setup for writepage
c8b97818 1083 */
a315e68f
FM
1084 page_ops = unlock ? PAGE_UNLOCK : 0;
1085 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1086
c2790a2e 1087 extent_clear_unlock_delalloc(inode, start,
ba8b04c1 1088 start + ram_size - 1,
74e9194a 1089 locked_page,
c2790a2e 1090 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1091 page_ops);
3752d22f
AJ
1092 if (num_bytes < cur_alloc_size)
1093 num_bytes = 0;
4dbd80fb 1094 else
3752d22f 1095 num_bytes -= cur_alloc_size;
c59f8951
CM
1096 alloc_hint = ins.objectid + ins.offset;
1097 start += cur_alloc_size;
a315e68f 1098 extent_reserved = false;
4dbd80fb
QW
1099
1100 /*
1101 * btrfs_reloc_clone_csums() error, since start is increased
1102 * extent_clear_unlock_delalloc() at out_unlock label won't
1103 * free metadata of current ordered extent, we're OK to exit.
1104 */
1105 if (ret)
1106 goto out_unlock;
b888db2b 1107 }
79787eaa 1108out:
be20aa9d 1109 return ret;
b7d5b0a8 1110
d9f85963 1111out_drop_extent_cache:
dcdbc059 1112 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1113out_reserve:
0b246afa 1114 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1115 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1116out_unlock:
a7e3b975
FM
1117 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1118 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1119 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1120 PAGE_END_WRITEBACK;
1121 /*
1122 * If we reserved an extent for our delalloc range (or a subrange) and
1123 * failed to create the respective ordered extent, then it means that
1124 * when we reserved the extent we decremented the extent's size from
1125 * the data space_info's bytes_may_use counter and incremented the
1126 * space_info's bytes_reserved counter by the same amount. We must make
1127 * sure extent_clear_unlock_delalloc() does not try to decrement again
1128 * the data space_info's bytes_may_use counter, therefore we do not pass
1129 * it the flag EXTENT_CLEAR_DATA_RESV.
1130 */
1131 if (extent_reserved) {
1132 extent_clear_unlock_delalloc(inode, start,
a315e68f
FM
1133 start + cur_alloc_size,
1134 locked_page,
1135 clear_bits,
1136 page_ops);
1137 start += cur_alloc_size;
1138 if (start >= end)
1139 goto out;
1140 }
74e9194a 1141 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1142 clear_bits | EXTENT_CLEAR_DATA_RESV,
1143 page_ops);
79787eaa 1144 goto out;
771ed689 1145}
c8b97818 1146
771ed689
CM
1147/*
1148 * work queue call back to started compression on a file and pages
1149 */
1150static noinline void async_cow_start(struct btrfs_work *work)
1151{
b5326271 1152 struct async_chunk *async_chunk;
ac3e9933 1153 int compressed_extents;
771ed689 1154
b5326271 1155 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1156
ac3e9933
NB
1157 compressed_extents = compress_file_range(async_chunk);
1158 if (compressed_extents == 0) {
b5326271
NB
1159 btrfs_add_delayed_iput(async_chunk->inode);
1160 async_chunk->inode = NULL;
8180ef88 1161 }
771ed689
CM
1162}
1163
1164/*
1165 * work queue call back to submit previously compressed pages
1166 */
1167static noinline void async_cow_submit(struct btrfs_work *work)
1168{
c5a68aec
NB
1169 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1170 work);
1171 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1172 unsigned long nr_pages;
1173
b5326271 1174 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1175 PAGE_SHIFT;
771ed689 1176
093258e6 1177 /* atomic_sub_return implies a barrier */
0b246afa 1178 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1179 5 * SZ_1M)
1180 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1181
4546d178 1182 /*
b5326271 1183 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1184 * in which case we don't have anything to submit, yet we need to
1185 * always adjust ->async_delalloc_pages as its paired with the init
1186 * happening in cow_file_range_async
1187 */
b5326271
NB
1188 if (async_chunk->inode)
1189 submit_compressed_extents(async_chunk);
771ed689 1190}
c8b97818 1191
771ed689
CM
1192static noinline void async_cow_free(struct btrfs_work *work)
1193{
b5326271 1194 struct async_chunk *async_chunk;
97db1204 1195
b5326271
NB
1196 async_chunk = container_of(work, struct async_chunk, work);
1197 if (async_chunk->inode)
1198 btrfs_add_delayed_iput(async_chunk->inode);
97db1204
NB
1199 /*
1200 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1201 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1202 */
b5326271 1203 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1204 kvfree(async_chunk->pending);
771ed689
CM
1205}
1206
1207static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1208 u64 start, u64 end, int *page_started,
f82b7359
LB
1209 unsigned long *nr_written,
1210 unsigned int write_flags)
771ed689 1211{
0b246afa 1212 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
97db1204
NB
1213 struct async_cow *ctx;
1214 struct async_chunk *async_chunk;
771ed689
CM
1215 unsigned long nr_pages;
1216 u64 cur_end;
97db1204
NB
1217 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1218 int i;
1219 bool should_compress;
b1c16ac9 1220 unsigned nofs_flag;
771ed689 1221
69684c5a 1222 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
97db1204
NB
1223
1224 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1225 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1226 num_chunks = 1;
1227 should_compress = false;
1228 } else {
1229 should_compress = true;
1230 }
1231
b1c16ac9
NB
1232 nofs_flag = memalloc_nofs_save();
1233 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1234 memalloc_nofs_restore(nofs_flag);
1235
97db1204
NB
1236 if (!ctx) {
1237 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1238 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1239 EXTENT_DO_ACCOUNTING;
1240 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1241 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1242 PAGE_SET_ERROR;
1243
74e9194a 1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
97db1204
NB
1245 clear_bits, page_ops);
1246 return -ENOMEM;
1247 }
1248
1249 async_chunk = ctx->chunks;
1250 atomic_set(&ctx->num_chunks, num_chunks);
1251
1252 for (i = 0; i < num_chunks; i++) {
1253 if (should_compress)
1254 cur_end = min(end, start + SZ_512K - 1);
1255 else
1256 cur_end = end;
771ed689 1257
bd4691a0
NB
1258 /*
1259 * igrab is called higher up in the call chain, take only the
1260 * lightweight reference for the callback lifetime
1261 */
1262 ihold(inode);
97db1204
NB
1263 async_chunk[i].pending = &ctx->num_chunks;
1264 async_chunk[i].inode = inode;
1265 async_chunk[i].start = start;
1266 async_chunk[i].end = cur_end;
97db1204
NB
1267 async_chunk[i].locked_page = locked_page;
1268 async_chunk[i].write_flags = write_flags;
1269 INIT_LIST_HEAD(&async_chunk[i].extents);
1270
1271 btrfs_init_work(&async_chunk[i].work,
9e0af237
LB
1272 btrfs_delalloc_helper,
1273 async_cow_start, async_cow_submit,
1274 async_cow_free);
771ed689 1275
97db1204 1276 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1277 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1278
97db1204 1279 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1280
771ed689
CM
1281 *nr_written += nr_pages;
1282 start = cur_end + 1;
1283 }
1284 *page_started = 1;
1285 return 0;
be20aa9d
CM
1286}
1287
2ff7e61e 1288static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1289 u64 bytenr, u64 num_bytes)
1290{
1291 int ret;
1292 struct btrfs_ordered_sum *sums;
1293 LIST_HEAD(list);
1294
0b246afa 1295 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1296 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1297 if (ret == 0 && list_empty(&list))
1298 return 0;
1299
1300 while (!list_empty(&list)) {
1301 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1302 list_del(&sums->list);
1303 kfree(sums);
1304 }
58113753
LB
1305 if (ret < 0)
1306 return ret;
17d217fe
YZ
1307 return 1;
1308}
1309
d352ac68
CM
1310/*
1311 * when nowcow writeback call back. This checks for snapshots or COW copies
1312 * of the extents that exist in the file, and COWs the file as required.
1313 *
1314 * If no cow copies or snapshots exist, we write directly to the existing
1315 * blocks on disk
1316 */
7f366cfe
CM
1317static noinline int run_delalloc_nocow(struct inode *inode,
1318 struct page *locked_page,
3e024846
NB
1319 const u64 start, const u64 end,
1320 int *page_started, int force,
1321 unsigned long *nr_written)
be20aa9d 1322{
0b246afa 1323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d 1324 struct btrfs_root *root = BTRFS_I(inode)->root;
be20aa9d 1325 struct btrfs_path *path;
3e024846
NB
1326 u64 cow_start = (u64)-1;
1327 u64 cur_offset = start;
8ecebf4d 1328 int ret;
3e024846
NB
1329 bool check_prev = true;
1330 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
4a0cc7ca 1331 u64 ino = btrfs_ino(BTRFS_I(inode));
762bf098
NB
1332 bool nocow = false;
1333 u64 disk_bytenr = 0;
be20aa9d
CM
1334
1335 path = btrfs_alloc_path();
17ca04af 1336 if (!path) {
74e9194a 1337 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1338 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1339 EXTENT_DO_ACCOUNTING |
1340 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1341 PAGE_CLEAR_DIRTY |
1342 PAGE_SET_WRITEBACK |
1343 PAGE_END_WRITEBACK);
d8926bb3 1344 return -ENOMEM;
17ca04af 1345 }
82d5902d 1346
80ff3856 1347 while (1) {
3e024846
NB
1348 struct btrfs_key found_key;
1349 struct btrfs_file_extent_item *fi;
1350 struct extent_buffer *leaf;
1351 u64 extent_end;
1352 u64 extent_offset;
3e024846
NB
1353 u64 num_bytes = 0;
1354 u64 disk_num_bytes;
3e024846
NB
1355 u64 ram_bytes;
1356 int extent_type;
762bf098
NB
1357
1358 nocow = false;
3e024846 1359
e4c3b2dc 1360 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1361 cur_offset, 0);
d788a349 1362 if (ret < 0)
79787eaa 1363 goto error;
a6bd9cd1
NB
1364
1365 /*
1366 * If there is no extent for our range when doing the initial
1367 * search, then go back to the previous slot as it will be the
1368 * one containing the search offset
1369 */
80ff3856
YZ
1370 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1371 leaf = path->nodes[0];
1372 btrfs_item_key_to_cpu(leaf, &found_key,
1373 path->slots[0] - 1);
33345d01 1374 if (found_key.objectid == ino &&
80ff3856
YZ
1375 found_key.type == BTRFS_EXTENT_DATA_KEY)
1376 path->slots[0]--;
1377 }
3e024846 1378 check_prev = false;
80ff3856 1379next_slot:
a6bd9cd1 1380 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1381 leaf = path->nodes[0];
1382 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1383 ret = btrfs_next_leaf(root, path);
e8916699
LB
1384 if (ret < 0) {
1385 if (cow_start != (u64)-1)
1386 cur_offset = cow_start;
79787eaa 1387 goto error;
e8916699 1388 }
80ff3856
YZ
1389 if (ret > 0)
1390 break;
1391 leaf = path->nodes[0];
1392 }
be20aa9d 1393
80ff3856
YZ
1394 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1395
a6bd9cd1 1396 /* Didn't find anything for our INO */
1d512cb7
FM
1397 if (found_key.objectid > ino)
1398 break;
a6bd9cd1
NB
1399 /*
1400 * Keep searching until we find an EXTENT_ITEM or there are no
1401 * more extents for this inode
1402 */
1d512cb7
FM
1403 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1404 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1405 path->slots[0]++;
1406 goto next_slot;
1407 }
a6bd9cd1
NB
1408
1409 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1410 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1411 found_key.offset > end)
1412 break;
1413
a6bd9cd1
NB
1414 /*
1415 * If the found extent starts after requested offset, then
1416 * adjust extent_end to be right before this extent begins
1417 */
80ff3856
YZ
1418 if (found_key.offset > cur_offset) {
1419 extent_end = found_key.offset;
e9061e21 1420 extent_type = 0;
80ff3856
YZ
1421 goto out_check;
1422 }
1423
a6bd9cd1
NB
1424 /*
1425 * Found extent which begins before our range and potentially
1426 * intersect it
1427 */
80ff3856
YZ
1428 fi = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_file_extent_item);
1430 extent_type = btrfs_file_extent_type(leaf, fi);
1431
cc95bef6 1432 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1433 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1434 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1435 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1436 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1437 extent_end = found_key.offset +
1438 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1439 disk_num_bytes =
1440 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1
NB
1441 /*
1442 * If extent we got ends before our range starts, skip
1443 * to next extent
1444 */
80ff3856
YZ
1445 if (extent_end <= start) {
1446 path->slots[0]++;
1447 goto next_slot;
1448 }
a6bd9cd1 1449 /* Skip holes */
17d217fe
YZ
1450 if (disk_bytenr == 0)
1451 goto out_check;
a6bd9cd1 1452 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1453 if (btrfs_file_extent_compression(leaf, fi) ||
1454 btrfs_file_extent_encryption(leaf, fi) ||
1455 btrfs_file_extent_other_encoding(leaf, fi))
1456 goto out_check;
78d4295b 1457 /*
a6bd9cd1
NB
1458 * If extent is created before the last volume's snapshot
1459 * this implies the extent is shared, hence we can't do
1460 * nocow. This is the same check as in
1461 * btrfs_cross_ref_exist but without calling
1462 * btrfs_search_slot.
78d4295b 1463 */
3e024846 1464 if (!freespace_inode &&
27a7ff55 1465 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1466 btrfs_root_last_snapshot(&root->root_item))
1467 goto out_check;
d899e052
YZ
1468 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1469 goto out_check;
a6bd9cd1 1470 /* If extent is RO, we must COW it */
2ff7e61e 1471 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1472 goto out_check;
58113753
LB
1473 ret = btrfs_cross_ref_exist(root, ino,
1474 found_key.offset -
1475 extent_offset, disk_bytenr);
1476 if (ret) {
1477 /*
1478 * ret could be -EIO if the above fails to read
1479 * metadata.
1480 */
1481 if (ret < 0) {
1482 if (cow_start != (u64)-1)
1483 cur_offset = cow_start;
1484 goto error;
1485 }
1486
3e024846 1487 WARN_ON_ONCE(freespace_inode);
17d217fe 1488 goto out_check;
58113753 1489 }
5d4f98a2 1490 disk_bytenr += extent_offset;
17d217fe
YZ
1491 disk_bytenr += cur_offset - found_key.offset;
1492 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1493 /*
a6bd9cd1
NB
1494 * If there are pending snapshots for this root, we
1495 * fall into common COW way
e9894fd3 1496 */
3e024846 1497 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1498 goto out_check;
17d217fe
YZ
1499 /*
1500 * force cow if csum exists in the range.
1501 * this ensure that csum for a given extent are
1502 * either valid or do not exist.
1503 */
58113753
LB
1504 ret = csum_exist_in_range(fs_info, disk_bytenr,
1505 num_bytes);
1506 if (ret) {
58113753
LB
1507 /*
1508 * ret could be -EIO if the above fails to read
1509 * metadata.
1510 */
1511 if (ret < 0) {
1512 if (cow_start != (u64)-1)
1513 cur_offset = cow_start;
1514 goto error;
1515 }
3e024846 1516 WARN_ON_ONCE(freespace_inode);
17d217fe 1517 goto out_check;
91e1f56a 1518 }
8ecebf4d 1519 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1520 goto out_check;
3e024846 1521 nocow = true;
80ff3856 1522 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1523 extent_end = found_key.offset + ram_bytes;
1524 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1525 /* Skip extents outside of our requested range */
1526 if (extent_end <= start) {
1527 path->slots[0]++;
1528 goto next_slot;
1529 }
80ff3856 1530 } else {
e8e21007 1531 /* If this triggers then we have a memory corruption */
290342f6 1532 BUG();
80ff3856
YZ
1533 }
1534out_check:
a6bd9cd1
NB
1535 /*
1536 * If nocow is false then record the beginning of the range
1537 * that needs to be COWed
1538 */
80ff3856
YZ
1539 if (!nocow) {
1540 if (cow_start == (u64)-1)
1541 cow_start = cur_offset;
1542 cur_offset = extent_end;
1543 if (cur_offset > end)
1544 break;
1545 path->slots[0]++;
1546 goto next_slot;
7ea394f1
YZ
1547 }
1548
b3b4aa74 1549 btrfs_release_path(path);
a6bd9cd1
NB
1550
1551 /*
1552 * COW range from cow_start to found_key.offset - 1. As the key
1553 * will contain the beginning of the first extent that can be
1554 * NOCOW, following one which needs to be COW'ed
1555 */
80ff3856 1556 if (cow_start != (u64)-1) {
00361589
JB
1557 ret = cow_file_range(inode, locked_page,
1558 cow_start, found_key.offset - 1,
330a5827 1559 page_started, nr_written, 1);
e9894fd3 1560 if (ret) {
f78c436c 1561 if (nocow)
0b246afa 1562 btrfs_dec_nocow_writers(fs_info,
f78c436c 1563 disk_bytenr);
79787eaa 1564 goto error;
e9894fd3 1565 }
80ff3856 1566 cow_start = (u64)-1;
7ea394f1 1567 }
80ff3856 1568
d899e052 1569 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1570 u64 orig_start = found_key.offset - extent_offset;
3e024846 1571 struct extent_map *em;
6f9994db
LB
1572
1573 em = create_io_em(inode, cur_offset, num_bytes,
1574 orig_start,
1575 disk_bytenr, /* block_start */
1576 num_bytes, /* block_len */
1577 disk_num_bytes, /* orig_block_len */
1578 ram_bytes, BTRFS_COMPRESS_NONE,
1579 BTRFS_ORDERED_PREALLOC);
1580 if (IS_ERR(em)) {
6f9994db
LB
1581 if (nocow)
1582 btrfs_dec_nocow_writers(fs_info,
1583 disk_bytenr);
1584 ret = PTR_ERR(em);
1585 goto error;
d899e052 1586 }
6f9994db 1587 free_extent_map(em);
bb55f626
NB
1588 ret = btrfs_add_ordered_extent(inode, cur_offset,
1589 disk_bytenr, num_bytes,
1590 num_bytes,
1591 BTRFS_ORDERED_PREALLOC);
762bf098
NB
1592 if (ret) {
1593 btrfs_drop_extent_cache(BTRFS_I(inode),
1594 cur_offset,
1595 cur_offset + num_bytes - 1,
1596 0);
1597 goto error;
1598 }
d899e052 1599 } else {
bb55f626
NB
1600 ret = btrfs_add_ordered_extent(inode, cur_offset,
1601 disk_bytenr, num_bytes,
1602 num_bytes,
1603 BTRFS_ORDERED_NOCOW);
762bf098
NB
1604 if (ret)
1605 goto error;
d899e052 1606 }
80ff3856 1607
f78c436c 1608 if (nocow)
0b246afa 1609 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1610 nocow = false;
771ed689 1611
efa56464 1612 if (root->root_key.objectid ==
4dbd80fb
QW
1613 BTRFS_DATA_RELOC_TREE_OBJECTID)
1614 /*
1615 * Error handled later, as we must prevent
1616 * extent_clear_unlock_delalloc() in error handler
1617 * from freeing metadata of created ordered extent.
1618 */
efa56464
YZ
1619 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1620 num_bytes);
efa56464 1621
c2790a2e 1622 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1623 cur_offset + num_bytes - 1,
c2790a2e 1624 locked_page, EXTENT_LOCKED |
18513091
WX
1625 EXTENT_DELALLOC |
1626 EXTENT_CLEAR_DATA_RESV,
1627 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1628
80ff3856 1629 cur_offset = extent_end;
4dbd80fb
QW
1630
1631 /*
1632 * btrfs_reloc_clone_csums() error, now we're OK to call error
1633 * handler, as metadata for created ordered extent will only
1634 * be freed by btrfs_finish_ordered_io().
1635 */
1636 if (ret)
1637 goto error;
80ff3856
YZ
1638 if (cur_offset > end)
1639 break;
be20aa9d 1640 }
b3b4aa74 1641 btrfs_release_path(path);
80ff3856 1642
506481b2 1643 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1644 cow_start = cur_offset;
17ca04af 1645
80ff3856 1646 if (cow_start != (u64)-1) {
506481b2 1647 cur_offset = end;
74e9194a 1648 ret = cow_file_range(inode, locked_page, cow_start, end,
330a5827 1649 page_started, nr_written, 1);
d788a349 1650 if (ret)
79787eaa 1651 goto error;
80ff3856
YZ
1652 }
1653
79787eaa 1654error:
762bf098
NB
1655 if (nocow)
1656 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1657
17ca04af 1658 if (ret && cur_offset < end)
74e9194a 1659 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1660 locked_page, EXTENT_LOCKED |
151a41bc
JB
1661 EXTENT_DELALLOC | EXTENT_DEFRAG |
1662 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1663 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1664 PAGE_SET_WRITEBACK |
1665 PAGE_END_WRITEBACK);
7ea394f1 1666 btrfs_free_path(path);
79787eaa 1667 return ret;
be20aa9d
CM
1668}
1669
47059d93
WS
1670static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1671{
1672
1673 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1674 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1675 return 0;
1676
1677 /*
1678 * @defrag_bytes is a hint value, no spinlock held here,
1679 * if is not zero, it means the file is defragging.
1680 * Force cow if given extent needs to be defragged.
1681 */
1682 if (BTRFS_I(inode)->defrag_bytes &&
1683 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1684 EXTENT_DEFRAG, 0, NULL))
1685 return 1;
1686
1687 return 0;
1688}
1689
d352ac68 1690/*
5eaad97a
NB
1691 * Function to process delayed allocation (create CoW) for ranges which are
1692 * being touched for the first time.
d352ac68 1693 */
bc9a8bf7 1694int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
5eaad97a
NB
1695 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1696 struct writeback_control *wbc)
be20aa9d 1697{
be20aa9d 1698 int ret;
47059d93 1699 int force_cow = need_force_cow(inode, start, end);
f82b7359 1700 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1701
47059d93 1702 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1703 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1704 page_started, 1, nr_written);
47059d93 1705 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1706 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1707 page_started, 0, nr_written);
42c16da6
QW
1708 } else if (!inode_can_compress(inode) ||
1709 !inode_need_compress(inode, start, end)) {
74e9194a 1710 ret = cow_file_range(inode, locked_page, start, end,
330a5827 1711 page_started, nr_written, 1);
7ddf5a42
JB
1712 } else {
1713 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1714 &BTRFS_I(inode)->runtime_flags);
771ed689 1715 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1716 page_started, nr_written,
1717 write_flags);
7ddf5a42 1718 }
52427260 1719 if (ret)
d1051d6e
NB
1720 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1721 end - start + 1);
b888db2b
CM
1722 return ret;
1723}
1724
abbb55f4
NB
1725void btrfs_split_delalloc_extent(struct inode *inode,
1726 struct extent_state *orig, u64 split)
9ed74f2d 1727{
dcab6a3b
JB
1728 u64 size;
1729
0ca1f7ce 1730 /* not delalloc, ignore it */
9ed74f2d 1731 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1732 return;
9ed74f2d 1733
dcab6a3b
JB
1734 size = orig->end - orig->start + 1;
1735 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1736 u32 num_extents;
dcab6a3b
JB
1737 u64 new_size;
1738
1739 /*
5c848198 1740 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1741 * applies here, just in reverse.
dcab6a3b
JB
1742 */
1743 new_size = orig->end - split + 1;
823bb20a 1744 num_extents = count_max_extents(new_size);
ba117213 1745 new_size = split - orig->start;
823bb20a
DS
1746 num_extents += count_max_extents(new_size);
1747 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1748 return;
1749 }
1750
9e0baf60 1751 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1752 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1753 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1754}
1755
1756/*
5c848198
NB
1757 * Handle merged delayed allocation extents so we can keep track of new extents
1758 * that are just merged onto old extents, such as when we are doing sequential
1759 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1760 */
5c848198
NB
1761void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1762 struct extent_state *other)
9ed74f2d 1763{
dcab6a3b 1764 u64 new_size, old_size;
823bb20a 1765 u32 num_extents;
dcab6a3b 1766
9ed74f2d
JB
1767 /* not delalloc, ignore it */
1768 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1769 return;
9ed74f2d 1770
8461a3de
JB
1771 if (new->start > other->start)
1772 new_size = new->end - other->start + 1;
1773 else
1774 new_size = other->end - new->start + 1;
dcab6a3b
JB
1775
1776 /* we're not bigger than the max, unreserve the space and go */
1777 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1778 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1779 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1780 spin_unlock(&BTRFS_I(inode)->lock);
1781 return;
1782 }
1783
1784 /*
ba117213
JB
1785 * We have to add up either side to figure out how many extents were
1786 * accounted for before we merged into one big extent. If the number of
1787 * extents we accounted for is <= the amount we need for the new range
1788 * then we can return, otherwise drop. Think of it like this
1789 *
1790 * [ 4k][MAX_SIZE]
1791 *
1792 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1793 * need 2 outstanding extents, on one side we have 1 and the other side
1794 * we have 1 so they are == and we can return. But in this case
1795 *
1796 * [MAX_SIZE+4k][MAX_SIZE+4k]
1797 *
1798 * Each range on their own accounts for 2 extents, but merged together
1799 * they are only 3 extents worth of accounting, so we need to drop in
1800 * this case.
dcab6a3b 1801 */
ba117213 1802 old_size = other->end - other->start + 1;
823bb20a 1803 num_extents = count_max_extents(old_size);
ba117213 1804 old_size = new->end - new->start + 1;
823bb20a
DS
1805 num_extents += count_max_extents(old_size);
1806 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1807 return;
1808
9e0baf60 1809 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1810 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1811 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1812}
1813
eb73c1b7
MX
1814static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1815 struct inode *inode)
1816{
0b246afa
JM
1817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1818
eb73c1b7
MX
1819 spin_lock(&root->delalloc_lock);
1820 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1821 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1822 &root->delalloc_inodes);
1823 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1824 &BTRFS_I(inode)->runtime_flags);
1825 root->nr_delalloc_inodes++;
1826 if (root->nr_delalloc_inodes == 1) {
0b246afa 1827 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1828 BUG_ON(!list_empty(&root->delalloc_root));
1829 list_add_tail(&root->delalloc_root,
0b246afa
JM
1830 &fs_info->delalloc_roots);
1831 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1832 }
1833 }
1834 spin_unlock(&root->delalloc_lock);
1835}
1836
2b877331
NB
1837
1838void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1839 struct btrfs_inode *inode)
eb73c1b7 1840{
3ffbd68c 1841 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1842
9e3e97f4
NB
1843 if (!list_empty(&inode->delalloc_inodes)) {
1844 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1845 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1846 &inode->runtime_flags);
eb73c1b7
MX
1847 root->nr_delalloc_inodes--;
1848 if (!root->nr_delalloc_inodes) {
7c8a0d36 1849 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1850 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1851 BUG_ON(list_empty(&root->delalloc_root));
1852 list_del_init(&root->delalloc_root);
0b246afa 1853 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1854 }
1855 }
2b877331
NB
1856}
1857
1858static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1859 struct btrfs_inode *inode)
1860{
1861 spin_lock(&root->delalloc_lock);
1862 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1863 spin_unlock(&root->delalloc_lock);
1864}
1865
d352ac68 1866/*
e06a1fc9
NB
1867 * Properly track delayed allocation bytes in the inode and to maintain the
1868 * list of inodes that have pending delalloc work to be done.
d352ac68 1869 */
e06a1fc9
NB
1870void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1871 unsigned *bits)
291d673e 1872{
0b246afa
JM
1873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1874
47059d93
WS
1875 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1876 WARN_ON(1);
75eff68e
CM
1877 /*
1878 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1879 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1880 * bit, which is only set or cleared with irqs on
1881 */
0ca1f7ce 1882 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1883 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1884 u64 len = state->end + 1 - state->start;
8b62f87b 1885 u32 num_extents = count_max_extents(len);
70ddc553 1886 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1887
8b62f87b
JB
1888 spin_lock(&BTRFS_I(inode)->lock);
1889 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1890 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1891
6a3891c5 1892 /* For sanity tests */
0b246afa 1893 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1894 return;
1895
104b4e51
NB
1896 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1897 fs_info->delalloc_batch);
df0af1a5 1898 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1899 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1900 if (*bits & EXTENT_DEFRAG)
1901 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1902 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1903 &BTRFS_I(inode)->runtime_flags))
1904 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1905 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1906 }
a7e3b975
FM
1907
1908 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1909 (*bits & EXTENT_DELALLOC_NEW)) {
1910 spin_lock(&BTRFS_I(inode)->lock);
1911 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1912 state->start;
1913 spin_unlock(&BTRFS_I(inode)->lock);
1914 }
291d673e
CM
1915}
1916
d352ac68 1917/*
a36bb5f9
NB
1918 * Once a range is no longer delalloc this function ensures that proper
1919 * accounting happens.
d352ac68 1920 */
a36bb5f9
NB
1921void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1922 struct extent_state *state, unsigned *bits)
291d673e 1923{
a36bb5f9
NB
1924 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1925 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 1926 u64 len = state->end + 1 - state->start;
823bb20a 1927 u32 num_extents = count_max_extents(len);
47059d93 1928
4a4b964f
FM
1929 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1930 spin_lock(&inode->lock);
6fc0ef68 1931 inode->defrag_bytes -= len;
4a4b964f
FM
1932 spin_unlock(&inode->lock);
1933 }
47059d93 1934
75eff68e
CM
1935 /*
1936 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1937 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1938 * bit, which is only set or cleared with irqs on
1939 */
0ca1f7ce 1940 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1941 struct btrfs_root *root = inode->root;
83eea1f1 1942 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1943
8b62f87b
JB
1944 spin_lock(&inode->lock);
1945 btrfs_mod_outstanding_extents(inode, -num_extents);
1946 spin_unlock(&inode->lock);
0ca1f7ce 1947
b6d08f06
JB
1948 /*
1949 * We don't reserve metadata space for space cache inodes so we
52042d8e 1950 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
1951 * error.
1952 */
a315e68f 1953 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1954 root != fs_info->tree_root)
43b18595 1955 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1956
6a3891c5 1957 /* For sanity tests. */
0b246afa 1958 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1959 return;
1960
a315e68f
FM
1961 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1962 do_list && !(state->state & EXTENT_NORESERVE) &&
1963 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1964 btrfs_free_reserved_data_space_noquota(
1965 &inode->vfs_inode,
51773bec 1966 state->start, len);
9ed74f2d 1967
104b4e51
NB
1968 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1969 fs_info->delalloc_batch);
6fc0ef68
NB
1970 spin_lock(&inode->lock);
1971 inode->delalloc_bytes -= len;
1972 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1973 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1974 &inode->runtime_flags))
eb73c1b7 1975 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1976 spin_unlock(&inode->lock);
291d673e 1977 }
a7e3b975
FM
1978
1979 if ((state->state & EXTENT_DELALLOC_NEW) &&
1980 (*bits & EXTENT_DELALLOC_NEW)) {
1981 spin_lock(&inode->lock);
1982 ASSERT(inode->new_delalloc_bytes >= len);
1983 inode->new_delalloc_bytes -= len;
1984 spin_unlock(&inode->lock);
1985 }
291d673e
CM
1986}
1987
d352ac68 1988/*
da12fe54
NB
1989 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1990 * in a chunk's stripe. This function ensures that bios do not span a
1991 * stripe/chunk
6f034ece 1992 *
da12fe54
NB
1993 * @page - The page we are about to add to the bio
1994 * @size - size we want to add to the bio
1995 * @bio - bio we want to ensure is smaller than a stripe
1996 * @bio_flags - flags of the bio
1997 *
1998 * return 1 if page cannot be added to the bio
1999 * return 0 if page can be added to the bio
6f034ece 2000 * return error otherwise
d352ac68 2001 */
da12fe54
NB
2002int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2003 unsigned long bio_flags)
239b14b3 2004{
0b246afa
JM
2005 struct inode *inode = page->mapping->host;
2006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2007 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2008 u64 length = 0;
2009 u64 map_length;
239b14b3 2010 int ret;
89b798ad 2011 struct btrfs_io_geometry geom;
239b14b3 2012
771ed689
CM
2013 if (bio_flags & EXTENT_BIO_COMPRESSED)
2014 return 0;
2015
4f024f37 2016 length = bio->bi_iter.bi_size;
239b14b3 2017 map_length = length;
89b798ad
NB
2018 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2019 &geom);
6f034ece
LB
2020 if (ret < 0)
2021 return ret;
89b798ad
NB
2022
2023 if (geom.len < length + size)
239b14b3 2024 return 1;
3444a972 2025 return 0;
239b14b3
CM
2026}
2027
d352ac68
CM
2028/*
2029 * in order to insert checksums into the metadata in large chunks,
2030 * we wait until bio submission time. All the pages in the bio are
2031 * checksummed and sums are attached onto the ordered extent record.
2032 *
2033 * At IO completion time the cums attached on the ordered extent record
2034 * are inserted into the btree
2035 */
d0ee3934 2036static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2037 u64 bio_offset)
065631f6 2038{
c6100a4b 2039 struct inode *inode = private_data;
4e4cbee9 2040 blk_status_t ret = 0;
e015640f 2041
2ff7e61e 2042 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 2043 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2044 return 0;
2045}
e015640f 2046
d352ac68 2047/*
cad321ad 2048 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2049 * on write, or reading the csums from the tree before a read.
2050 *
2051 * Rules about async/sync submit,
2052 * a) read: sync submit
2053 *
2054 * b) write without checksum: sync submit
2055 *
2056 * c) write with checksum:
2057 * c-1) if bio is issued by fsync: sync submit
2058 * (sync_writers != 0)
2059 *
2060 * c-2) if root is reloc root: sync submit
2061 * (only in case of buffered IO)
2062 *
2063 * c-3) otherwise: async submit
d352ac68 2064 */
a56b1c7b 2065static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2066 int mirror_num,
2067 unsigned long bio_flags)
2068
44b8bd7e 2069{
0b246afa 2070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2071 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2072 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2073 blk_status_t ret = 0;
19b9bdb0 2074 int skip_sum;
b812ce28 2075 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2076
6cbff00f 2077 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2078
70ddc553 2079 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2080 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2081
37226b21 2082 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2083 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2084 if (ret)
61891923 2085 goto out;
5fd02043 2086
d20f7043 2087 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2088 ret = btrfs_submit_compressed_read(inode, bio,
2089 mirror_num,
2090 bio_flags);
2091 goto out;
c2db1073 2092 } else if (!skip_sum) {
2ff7e61e 2093 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2094 if (ret)
61891923 2095 goto out;
c2db1073 2096 }
4d1b5fb4 2097 goto mapit;
b812ce28 2098 } else if (async && !skip_sum) {
17d217fe
YZ
2099 /* csum items have already been cloned */
2100 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2101 goto mapit;
19b9bdb0 2102 /* we're doing a write, do the async checksumming */
c6100a4b 2103 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2104 0, inode, btrfs_submit_bio_start);
61891923 2105 goto out;
b812ce28 2106 } else if (!skip_sum) {
2ff7e61e 2107 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2108 if (ret)
2109 goto out;
19b9bdb0
CM
2110 }
2111
0b86a832 2112mapit:
2ff7e61e 2113 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2114
2115out:
4e4cbee9
CH
2116 if (ret) {
2117 bio->bi_status = ret;
4246a0b6
CH
2118 bio_endio(bio);
2119 }
61891923 2120 return ret;
065631f6 2121}
6885f308 2122
d352ac68
CM
2123/*
2124 * given a list of ordered sums record them in the inode. This happens
2125 * at IO completion time based on sums calculated at bio submission time.
2126 */
ba1da2f4 2127static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2128 struct inode *inode, struct list_head *list)
e6dcd2dc 2129{
e6dcd2dc 2130 struct btrfs_ordered_sum *sum;
ac01f26a 2131 int ret;
e6dcd2dc 2132
c6e30871 2133 list_for_each_entry(sum, list, list) {
7c2871a2 2134 trans->adding_csums = true;
ac01f26a 2135 ret = btrfs_csum_file_blocks(trans,
d20f7043 2136 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2137 trans->adding_csums = false;
ac01f26a
NB
2138 if (ret)
2139 return ret;
e6dcd2dc
CM
2140 }
2141 return 0;
2142}
2143
2ac55d41 2144int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2145 unsigned int extra_bits,
330a5827 2146 struct extent_state **cached_state)
ea8c2819 2147{
fdb1e121 2148 WARN_ON(PAGE_ALIGNED(end));
ea8c2819 2149 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2150 extra_bits, cached_state);
ea8c2819
CM
2151}
2152
d352ac68 2153/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2154struct btrfs_writepage_fixup {
2155 struct page *page;
2156 struct btrfs_work work;
2157};
2158
b2950863 2159static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2160{
2161 struct btrfs_writepage_fixup *fixup;
2162 struct btrfs_ordered_extent *ordered;
2ac55d41 2163 struct extent_state *cached_state = NULL;
364ecf36 2164 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2165 struct page *page;
2166 struct inode *inode;
2167 u64 page_start;
2168 u64 page_end;
87826df0 2169 int ret;
247e743c
CM
2170
2171 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2172 page = fixup->page;
4a096752 2173again:
247e743c
CM
2174 lock_page(page);
2175 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2176 ClearPageChecked(page);
2177 goto out_page;
2178 }
2179
2180 inode = page->mapping->host;
2181 page_start = page_offset(page);
09cbfeaf 2182 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2183
ff13db41 2184 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2185 &cached_state);
4a096752
CM
2186
2187 /* already ordered? We're done */
8b62b72b 2188 if (PagePrivate2(page))
247e743c 2189 goto out;
4a096752 2190
a776c6fa 2191 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2192 PAGE_SIZE);
4a096752 2193 if (ordered) {
2ac55d41 2194 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2195 page_end, &cached_state);
4a096752
CM
2196 unlock_page(page);
2197 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2198 btrfs_put_ordered_extent(ordered);
4a096752
CM
2199 goto again;
2200 }
247e743c 2201
364ecf36 2202 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2203 PAGE_SIZE);
87826df0
JM
2204 if (ret) {
2205 mapping_set_error(page->mapping, ret);
2206 end_extent_writepage(page, ret, page_start, page_end);
2207 ClearPageChecked(page);
2208 goto out;
2209 }
2210
f3038ee3 2211 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2212 &cached_state);
f3038ee3
NB
2213 if (ret) {
2214 mapping_set_error(page->mapping, ret);
2215 end_extent_writepage(page, ret, page_start, page_end);
2216 ClearPageChecked(page);
2217 goto out;
2218 }
2219
247e743c 2220 ClearPageChecked(page);
87826df0 2221 set_page_dirty(page);
8702ba93 2222 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2223out:
2ac55d41 2224 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2225 &cached_state);
247e743c
CM
2226out_page:
2227 unlock_page(page);
09cbfeaf 2228 put_page(page);
b897abec 2229 kfree(fixup);
364ecf36 2230 extent_changeset_free(data_reserved);
247e743c
CM
2231}
2232
2233/*
2234 * There are a few paths in the higher layers of the kernel that directly
2235 * set the page dirty bit without asking the filesystem if it is a
2236 * good idea. This causes problems because we want to make sure COW
2237 * properly happens and the data=ordered rules are followed.
2238 *
c8b97818 2239 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2240 * hasn't been properly setup for IO. We kick off an async process
2241 * to fix it up. The async helper will wait for ordered extents, set
2242 * the delalloc bit and make it safe to write the page.
2243 */
d75855b4 2244int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2245{
2246 struct inode *inode = page->mapping->host;
0b246afa 2247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2248 struct btrfs_writepage_fixup *fixup;
247e743c 2249
8b62b72b
CM
2250 /* this page is properly in the ordered list */
2251 if (TestClearPagePrivate2(page))
247e743c
CM
2252 return 0;
2253
2254 if (PageChecked(page))
2255 return -EAGAIN;
2256
2257 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2258 if (!fixup)
2259 return -EAGAIN;
f421950f 2260
247e743c 2261 SetPageChecked(page);
09cbfeaf 2262 get_page(page);
9e0af237
LB
2263 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2264 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2265 fixup->page = page;
0b246afa 2266 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2267 return -EBUSY;
247e743c
CM
2268}
2269
d899e052
YZ
2270static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2271 struct inode *inode, u64 file_pos,
2272 u64 disk_bytenr, u64 disk_num_bytes,
2273 u64 num_bytes, u64 ram_bytes,
2274 u8 compression, u8 encryption,
2275 u16 other_encoding, int extent_type)
2276{
2277 struct btrfs_root *root = BTRFS_I(inode)->root;
2278 struct btrfs_file_extent_item *fi;
2279 struct btrfs_path *path;
2280 struct extent_buffer *leaf;
2281 struct btrfs_key ins;
a12b877b 2282 u64 qg_released;
1acae57b 2283 int extent_inserted = 0;
d899e052
YZ
2284 int ret;
2285
2286 path = btrfs_alloc_path();
d8926bb3
MF
2287 if (!path)
2288 return -ENOMEM;
d899e052 2289
a1ed835e
CM
2290 /*
2291 * we may be replacing one extent in the tree with another.
2292 * The new extent is pinned in the extent map, and we don't want
2293 * to drop it from the cache until it is completely in the btree.
2294 *
2295 * So, tell btrfs_drop_extents to leave this extent in the cache.
2296 * the caller is expected to unpin it and allow it to be merged
2297 * with the others.
2298 */
1acae57b
FDBM
2299 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2300 file_pos + num_bytes, NULL, 0,
2301 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2302 if (ret)
2303 goto out;
d899e052 2304
1acae57b 2305 if (!extent_inserted) {
4a0cc7ca 2306 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2307 ins.offset = file_pos;
2308 ins.type = BTRFS_EXTENT_DATA_KEY;
2309
2310 path->leave_spinning = 1;
2311 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2312 sizeof(*fi));
2313 if (ret)
2314 goto out;
2315 }
d899e052
YZ
2316 leaf = path->nodes[0];
2317 fi = btrfs_item_ptr(leaf, path->slots[0],
2318 struct btrfs_file_extent_item);
2319 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2320 btrfs_set_file_extent_type(leaf, fi, extent_type);
2321 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2322 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2323 btrfs_set_file_extent_offset(leaf, fi, 0);
2324 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2325 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2326 btrfs_set_file_extent_compression(leaf, fi, compression);
2327 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2328 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2329
d899e052 2330 btrfs_mark_buffer_dirty(leaf);
ce195332 2331 btrfs_release_path(path);
d899e052
YZ
2332
2333 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2334
2335 ins.objectid = disk_bytenr;
2336 ins.offset = disk_num_bytes;
2337 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2338
297d750b 2339 /*
5846a3c2
QW
2340 * Release the reserved range from inode dirty range map, as it is
2341 * already moved into delayed_ref_head
297d750b 2342 */
a12b877b
QW
2343 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2344 if (ret < 0)
2345 goto out;
2346 qg_released = ret;
84f7d8e6
JB
2347 ret = btrfs_alloc_reserved_file_extent(trans, root,
2348 btrfs_ino(BTRFS_I(inode)),
2349 file_pos, qg_released, &ins);
79787eaa 2350out:
d899e052 2351 btrfs_free_path(path);
b9473439 2352
79787eaa 2353 return ret;
d899e052
YZ
2354}
2355
38c227d8
LB
2356/* snapshot-aware defrag */
2357struct sa_defrag_extent_backref {
2358 struct rb_node node;
2359 struct old_sa_defrag_extent *old;
2360 u64 root_id;
2361 u64 inum;
2362 u64 file_pos;
2363 u64 extent_offset;
2364 u64 num_bytes;
2365 u64 generation;
2366};
2367
2368struct old_sa_defrag_extent {
2369 struct list_head list;
2370 struct new_sa_defrag_extent *new;
2371
2372 u64 extent_offset;
2373 u64 bytenr;
2374 u64 offset;
2375 u64 len;
2376 int count;
2377};
2378
2379struct new_sa_defrag_extent {
2380 struct rb_root root;
2381 struct list_head head;
2382 struct btrfs_path *path;
2383 struct inode *inode;
2384 u64 file_pos;
2385 u64 len;
2386 u64 bytenr;
2387 u64 disk_len;
2388 u8 compress_type;
2389};
2390
2391static int backref_comp(struct sa_defrag_extent_backref *b1,
2392 struct sa_defrag_extent_backref *b2)
2393{
2394 if (b1->root_id < b2->root_id)
2395 return -1;
2396 else if (b1->root_id > b2->root_id)
2397 return 1;
2398
2399 if (b1->inum < b2->inum)
2400 return -1;
2401 else if (b1->inum > b2->inum)
2402 return 1;
2403
2404 if (b1->file_pos < b2->file_pos)
2405 return -1;
2406 else if (b1->file_pos > b2->file_pos)
2407 return 1;
2408
2409 /*
2410 * [------------------------------] ===> (a range of space)
2411 * |<--->| |<---->| =============> (fs/file tree A)
2412 * |<---------------------------->| ===> (fs/file tree B)
2413 *
2414 * A range of space can refer to two file extents in one tree while
2415 * refer to only one file extent in another tree.
2416 *
2417 * So we may process a disk offset more than one time(two extents in A)
2418 * and locate at the same extent(one extent in B), then insert two same
2419 * backrefs(both refer to the extent in B).
2420 */
2421 return 0;
2422}
2423
2424static void backref_insert(struct rb_root *root,
2425 struct sa_defrag_extent_backref *backref)
2426{
2427 struct rb_node **p = &root->rb_node;
2428 struct rb_node *parent = NULL;
2429 struct sa_defrag_extent_backref *entry;
2430 int ret;
2431
2432 while (*p) {
2433 parent = *p;
2434 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2435
2436 ret = backref_comp(backref, entry);
2437 if (ret < 0)
2438 p = &(*p)->rb_left;
2439 else
2440 p = &(*p)->rb_right;
2441 }
2442
2443 rb_link_node(&backref->node, parent, p);
2444 rb_insert_color(&backref->node, root);
2445}
2446
2447/*
2448 * Note the backref might has changed, and in this case we just return 0.
2449 */
2450static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2451 void *ctx)
2452{
2453 struct btrfs_file_extent_item *extent;
38c227d8
LB
2454 struct old_sa_defrag_extent *old = ctx;
2455 struct new_sa_defrag_extent *new = old->new;
2456 struct btrfs_path *path = new->path;
2457 struct btrfs_key key;
2458 struct btrfs_root *root;
2459 struct sa_defrag_extent_backref *backref;
2460 struct extent_buffer *leaf;
2461 struct inode *inode = new->inode;
0b246afa 2462 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2463 int slot;
2464 int ret;
2465 u64 extent_offset;
2466 u64 num_bytes;
2467
2468 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2469 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2470 return 0;
2471
2472 key.objectid = root_id;
2473 key.type = BTRFS_ROOT_ITEM_KEY;
2474 key.offset = (u64)-1;
2475
38c227d8
LB
2476 root = btrfs_read_fs_root_no_name(fs_info, &key);
2477 if (IS_ERR(root)) {
2478 if (PTR_ERR(root) == -ENOENT)
2479 return 0;
2480 WARN_ON(1);
ab8d0fc4 2481 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2482 inum, offset, root_id);
2483 return PTR_ERR(root);
2484 }
2485
2486 key.objectid = inum;
2487 key.type = BTRFS_EXTENT_DATA_KEY;
2488 if (offset > (u64)-1 << 32)
2489 key.offset = 0;
2490 else
2491 key.offset = offset;
2492
2493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2494 if (WARN_ON(ret < 0))
38c227d8 2495 return ret;
50f1319c 2496 ret = 0;
38c227d8
LB
2497
2498 while (1) {
2499 cond_resched();
2500
2501 leaf = path->nodes[0];
2502 slot = path->slots[0];
2503
2504 if (slot >= btrfs_header_nritems(leaf)) {
2505 ret = btrfs_next_leaf(root, path);
2506 if (ret < 0) {
2507 goto out;
2508 } else if (ret > 0) {
2509 ret = 0;
2510 goto out;
2511 }
2512 continue;
2513 }
2514
2515 path->slots[0]++;
2516
2517 btrfs_item_key_to_cpu(leaf, &key, slot);
2518
2519 if (key.objectid > inum)
2520 goto out;
2521
2522 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2523 continue;
2524
2525 extent = btrfs_item_ptr(leaf, slot,
2526 struct btrfs_file_extent_item);
2527
2528 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2529 continue;
2530
e68afa49
LB
2531 /*
2532 * 'offset' refers to the exact key.offset,
2533 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2534 * (key.offset - extent_offset).
2535 */
2536 if (key.offset != offset)
38c227d8
LB
2537 continue;
2538
e68afa49 2539 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2540 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2541
38c227d8
LB
2542 if (extent_offset >= old->extent_offset + old->offset +
2543 old->len || extent_offset + num_bytes <=
2544 old->extent_offset + old->offset)
2545 continue;
38c227d8
LB
2546 break;
2547 }
2548
2549 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2550 if (!backref) {
2551 ret = -ENOENT;
2552 goto out;
2553 }
2554
2555 backref->root_id = root_id;
2556 backref->inum = inum;
e68afa49 2557 backref->file_pos = offset;
38c227d8
LB
2558 backref->num_bytes = num_bytes;
2559 backref->extent_offset = extent_offset;
2560 backref->generation = btrfs_file_extent_generation(leaf, extent);
2561 backref->old = old;
2562 backref_insert(&new->root, backref);
2563 old->count++;
2564out:
2565 btrfs_release_path(path);
2566 WARN_ON(ret);
2567 return ret;
2568}
2569
2570static noinline bool record_extent_backrefs(struct btrfs_path *path,
2571 struct new_sa_defrag_extent *new)
2572{
0b246afa 2573 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2574 struct old_sa_defrag_extent *old, *tmp;
2575 int ret;
2576
2577 new->path = path;
2578
2579 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2580 ret = iterate_inodes_from_logical(old->bytenr +
2581 old->extent_offset, fs_info,
38c227d8 2582 path, record_one_backref,
c995ab3c 2583 old, false);
4724b106
JB
2584 if (ret < 0 && ret != -ENOENT)
2585 return false;
38c227d8
LB
2586
2587 /* no backref to be processed for this extent */
2588 if (!old->count) {
2589 list_del(&old->list);
2590 kfree(old);
2591 }
2592 }
2593
2594 if (list_empty(&new->head))
2595 return false;
2596
2597 return true;
2598}
2599
2600static int relink_is_mergable(struct extent_buffer *leaf,
2601 struct btrfs_file_extent_item *fi,
116e0024 2602 struct new_sa_defrag_extent *new)
38c227d8 2603{
116e0024 2604 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2605 return 0;
2606
2607 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2608 return 0;
2609
116e0024
LB
2610 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2611 return 0;
2612
2613 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2614 btrfs_file_extent_other_encoding(leaf, fi))
2615 return 0;
2616
2617 return 1;
2618}
2619
2620/*
2621 * Note the backref might has changed, and in this case we just return 0.
2622 */
2623static noinline int relink_extent_backref(struct btrfs_path *path,
2624 struct sa_defrag_extent_backref *prev,
2625 struct sa_defrag_extent_backref *backref)
2626{
2627 struct btrfs_file_extent_item *extent;
2628 struct btrfs_file_extent_item *item;
2629 struct btrfs_ordered_extent *ordered;
2630 struct btrfs_trans_handle *trans;
82fa113f 2631 struct btrfs_ref ref = { 0 };
38c227d8
LB
2632 struct btrfs_root *root;
2633 struct btrfs_key key;
2634 struct extent_buffer *leaf;
2635 struct old_sa_defrag_extent *old = backref->old;
2636 struct new_sa_defrag_extent *new = old->new;
0b246afa 2637 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2638 struct inode *inode;
2639 struct extent_state *cached = NULL;
2640 int ret = 0;
2641 u64 start;
2642 u64 len;
2643 u64 lock_start;
2644 u64 lock_end;
2645 bool merge = false;
2646 int index;
2647
2648 if (prev && prev->root_id == backref->root_id &&
2649 prev->inum == backref->inum &&
2650 prev->file_pos + prev->num_bytes == backref->file_pos)
2651 merge = true;
2652
2653 /* step 1: get root */
2654 key.objectid = backref->root_id;
2655 key.type = BTRFS_ROOT_ITEM_KEY;
2656 key.offset = (u64)-1;
2657
38c227d8
LB
2658 index = srcu_read_lock(&fs_info->subvol_srcu);
2659
2660 root = btrfs_read_fs_root_no_name(fs_info, &key);
2661 if (IS_ERR(root)) {
2662 srcu_read_unlock(&fs_info->subvol_srcu, index);
2663 if (PTR_ERR(root) == -ENOENT)
2664 return 0;
2665 return PTR_ERR(root);
2666 }
38c227d8 2667
bcbba5e6
WS
2668 if (btrfs_root_readonly(root)) {
2669 srcu_read_unlock(&fs_info->subvol_srcu, index);
2670 return 0;
2671 }
2672
38c227d8
LB
2673 /* step 2: get inode */
2674 key.objectid = backref->inum;
2675 key.type = BTRFS_INODE_ITEM_KEY;
2676 key.offset = 0;
2677
2678 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2679 if (IS_ERR(inode)) {
2680 srcu_read_unlock(&fs_info->subvol_srcu, index);
2681 return 0;
2682 }
2683
2684 srcu_read_unlock(&fs_info->subvol_srcu, index);
2685
2686 /* step 3: relink backref */
2687 lock_start = backref->file_pos;
2688 lock_end = backref->file_pos + backref->num_bytes - 1;
2689 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2690 &cached);
38c227d8
LB
2691
2692 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2693 if (ordered) {
2694 btrfs_put_ordered_extent(ordered);
2695 goto out_unlock;
2696 }
2697
2698 trans = btrfs_join_transaction(root);
2699 if (IS_ERR(trans)) {
2700 ret = PTR_ERR(trans);
2701 goto out_unlock;
2702 }
2703
2704 key.objectid = backref->inum;
2705 key.type = BTRFS_EXTENT_DATA_KEY;
2706 key.offset = backref->file_pos;
2707
2708 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2709 if (ret < 0) {
2710 goto out_free_path;
2711 } else if (ret > 0) {
2712 ret = 0;
2713 goto out_free_path;
2714 }
2715
2716 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2717 struct btrfs_file_extent_item);
2718
2719 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2720 backref->generation)
2721 goto out_free_path;
2722
2723 btrfs_release_path(path);
2724
2725 start = backref->file_pos;
2726 if (backref->extent_offset < old->extent_offset + old->offset)
2727 start += old->extent_offset + old->offset -
2728 backref->extent_offset;
2729
2730 len = min(backref->extent_offset + backref->num_bytes,
2731 old->extent_offset + old->offset + old->len);
2732 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2733
2734 ret = btrfs_drop_extents(trans, root, inode, start,
2735 start + len, 1);
2736 if (ret)
2737 goto out_free_path;
2738again:
4a0cc7ca 2739 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2740 key.type = BTRFS_EXTENT_DATA_KEY;
2741 key.offset = start;
2742
a09a0a70 2743 path->leave_spinning = 1;
38c227d8
LB
2744 if (merge) {
2745 struct btrfs_file_extent_item *fi;
2746 u64 extent_len;
2747 struct btrfs_key found_key;
2748
3c9665df 2749 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2750 if (ret < 0)
2751 goto out_free_path;
2752
2753 path->slots[0]--;
2754 leaf = path->nodes[0];
2755 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2756
2757 fi = btrfs_item_ptr(leaf, path->slots[0],
2758 struct btrfs_file_extent_item);
2759 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2760
116e0024
LB
2761 if (extent_len + found_key.offset == start &&
2762 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2763 btrfs_set_file_extent_num_bytes(leaf, fi,
2764 extent_len + len);
2765 btrfs_mark_buffer_dirty(leaf);
2766 inode_add_bytes(inode, len);
2767
2768 ret = 1;
2769 goto out_free_path;
2770 } else {
2771 merge = false;
2772 btrfs_release_path(path);
2773 goto again;
2774 }
2775 }
2776
2777 ret = btrfs_insert_empty_item(trans, root, path, &key,
2778 sizeof(*extent));
2779 if (ret) {
66642832 2780 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2781 goto out_free_path;
2782 }
2783
2784 leaf = path->nodes[0];
2785 item = btrfs_item_ptr(leaf, path->slots[0],
2786 struct btrfs_file_extent_item);
2787 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2788 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2789 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2790 btrfs_set_file_extent_num_bytes(leaf, item, len);
2791 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2792 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2793 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2794 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2795 btrfs_set_file_extent_encryption(leaf, item, 0);
2796 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2797
2798 btrfs_mark_buffer_dirty(leaf);
2799 inode_add_bytes(inode, len);
a09a0a70 2800 btrfs_release_path(path);
38c227d8 2801
82fa113f
QW
2802 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2803 new->disk_len, 0);
2804 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2805 new->file_pos); /* start - extent_offset */
2806 ret = btrfs_inc_extent_ref(trans, &ref);
38c227d8 2807 if (ret) {
66642832 2808 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2809 goto out_free_path;
2810 }
2811
2812 ret = 1;
2813out_free_path:
2814 btrfs_release_path(path);
a09a0a70 2815 path->leave_spinning = 0;
3a45bb20 2816 btrfs_end_transaction(trans);
38c227d8
LB
2817out_unlock:
2818 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2819 &cached);
38c227d8
LB
2820 iput(inode);
2821 return ret;
2822}
2823
6f519564
LB
2824static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2825{
2826 struct old_sa_defrag_extent *old, *tmp;
2827
2828 if (!new)
2829 return;
2830
2831 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2832 kfree(old);
2833 }
2834 kfree(new);
2835}
2836
38c227d8
LB
2837static void relink_file_extents(struct new_sa_defrag_extent *new)
2838{
0b246afa 2839 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2840 struct btrfs_path *path;
38c227d8
LB
2841 struct sa_defrag_extent_backref *backref;
2842 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2843 struct rb_node *node;
2844 int ret;
2845
38c227d8
LB
2846 path = btrfs_alloc_path();
2847 if (!path)
2848 return;
2849
2850 if (!record_extent_backrefs(path, new)) {
2851 btrfs_free_path(path);
2852 goto out;
2853 }
2854 btrfs_release_path(path);
2855
2856 while (1) {
2857 node = rb_first(&new->root);
2858 if (!node)
2859 break;
2860 rb_erase(node, &new->root);
2861
2862 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2863
2864 ret = relink_extent_backref(path, prev, backref);
2865 WARN_ON(ret < 0);
2866
2867 kfree(prev);
2868
2869 if (ret == 1)
2870 prev = backref;
2871 else
2872 prev = NULL;
2873 cond_resched();
2874 }
2875 kfree(prev);
2876
2877 btrfs_free_path(path);
38c227d8 2878out:
6f519564
LB
2879 free_sa_defrag_extent(new);
2880
0b246afa
JM
2881 atomic_dec(&fs_info->defrag_running);
2882 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2883}
2884
2885static struct new_sa_defrag_extent *
2886record_old_file_extents(struct inode *inode,
2887 struct btrfs_ordered_extent *ordered)
2888{
0b246afa 2889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2890 struct btrfs_root *root = BTRFS_I(inode)->root;
2891 struct btrfs_path *path;
2892 struct btrfs_key key;
6f519564 2893 struct old_sa_defrag_extent *old;
38c227d8
LB
2894 struct new_sa_defrag_extent *new;
2895 int ret;
2896
2897 new = kmalloc(sizeof(*new), GFP_NOFS);
2898 if (!new)
2899 return NULL;
2900
2901 new->inode = inode;
2902 new->file_pos = ordered->file_offset;
2903 new->len = ordered->len;
2904 new->bytenr = ordered->start;
2905 new->disk_len = ordered->disk_len;
2906 new->compress_type = ordered->compress_type;
2907 new->root = RB_ROOT;
2908 INIT_LIST_HEAD(&new->head);
2909
2910 path = btrfs_alloc_path();
2911 if (!path)
2912 goto out_kfree;
2913
4a0cc7ca 2914 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2915 key.type = BTRFS_EXTENT_DATA_KEY;
2916 key.offset = new->file_pos;
2917
2918 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2919 if (ret < 0)
2920 goto out_free_path;
2921 if (ret > 0 && path->slots[0] > 0)
2922 path->slots[0]--;
2923
2924 /* find out all the old extents for the file range */
2925 while (1) {
2926 struct btrfs_file_extent_item *extent;
2927 struct extent_buffer *l;
2928 int slot;
2929 u64 num_bytes;
2930 u64 offset;
2931 u64 end;
2932 u64 disk_bytenr;
2933 u64 extent_offset;
2934
2935 l = path->nodes[0];
2936 slot = path->slots[0];
2937
2938 if (slot >= btrfs_header_nritems(l)) {
2939 ret = btrfs_next_leaf(root, path);
2940 if (ret < 0)
6f519564 2941 goto out_free_path;
38c227d8
LB
2942 else if (ret > 0)
2943 break;
2944 continue;
2945 }
2946
2947 btrfs_item_key_to_cpu(l, &key, slot);
2948
4a0cc7ca 2949 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2950 break;
2951 if (key.type != BTRFS_EXTENT_DATA_KEY)
2952 break;
2953 if (key.offset >= new->file_pos + new->len)
2954 break;
2955
2956 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2957
2958 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2959 if (key.offset + num_bytes < new->file_pos)
2960 goto next;
2961
2962 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2963 if (!disk_bytenr)
2964 goto next;
2965
2966 extent_offset = btrfs_file_extent_offset(l, extent);
2967
2968 old = kmalloc(sizeof(*old), GFP_NOFS);
2969 if (!old)
6f519564 2970 goto out_free_path;
38c227d8
LB
2971
2972 offset = max(new->file_pos, key.offset);
2973 end = min(new->file_pos + new->len, key.offset + num_bytes);
2974
2975 old->bytenr = disk_bytenr;
2976 old->extent_offset = extent_offset;
2977 old->offset = offset - key.offset;
2978 old->len = end - offset;
2979 old->new = new;
2980 old->count = 0;
2981 list_add_tail(&old->list, &new->head);
2982next:
2983 path->slots[0]++;
2984 cond_resched();
2985 }
2986
2987 btrfs_free_path(path);
0b246afa 2988 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2989
2990 return new;
2991
38c227d8
LB
2992out_free_path:
2993 btrfs_free_path(path);
2994out_kfree:
6f519564 2995 free_sa_defrag_extent(new);
38c227d8
LB
2996 return NULL;
2997}
2998
2ff7e61e 2999static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
3000 u64 start, u64 len)
3001{
3002 struct btrfs_block_group_cache *cache;
3003
0b246afa 3004 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
3005 ASSERT(cache);
3006
3007 spin_lock(&cache->lock);
3008 cache->delalloc_bytes -= len;
3009 spin_unlock(&cache->lock);
3010
3011 btrfs_put_block_group(cache);
3012}
3013
d352ac68
CM
3014/* as ordered data IO finishes, this gets called so we can finish
3015 * an ordered extent if the range of bytes in the file it covers are
3016 * fully written.
3017 */
5fd02043 3018static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3019{
5fd02043 3020 struct inode *inode = ordered_extent->inode;
0b246afa 3021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 3022 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 3023 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 3024 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 3025 struct extent_state *cached_state = NULL;
38c227d8 3026 struct new_sa_defrag_extent *new = NULL;
261507a0 3027 int compress_type = 0;
77cef2ec
JB
3028 int ret = 0;
3029 u64 logical_len = ordered_extent->len;
82d5902d 3030 bool nolock;
77cef2ec 3031 bool truncated = false;
a7e3b975
FM
3032 bool range_locked = false;
3033 bool clear_new_delalloc_bytes = false;
49940bdd 3034 bool clear_reserved_extent = true;
a7e3b975
FM
3035
3036 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3037 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3038 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3039 clear_new_delalloc_bytes = true;
e6dcd2dc 3040
70ddc553 3041 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 3042
5fd02043
JB
3043 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3044 ret = -EIO;
3045 goto out;
3046 }
3047
7ab7956e
NB
3048 btrfs_free_io_failure_record(BTRFS_I(inode),
3049 ordered_extent->file_offset,
3050 ordered_extent->file_offset +
3051 ordered_extent->len - 1);
f612496b 3052
77cef2ec
JB
3053 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3054 truncated = true;
3055 logical_len = ordered_extent->truncated_len;
3056 /* Truncated the entire extent, don't bother adding */
3057 if (!logical_len)
3058 goto out;
3059 }
3060
c2167754 3061 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3062 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
3063
3064 /*
3065 * For mwrite(mmap + memset to write) case, we still reserve
3066 * space for NOCOW range.
3067 * As NOCOW won't cause a new delayed ref, just free the space
3068 */
bc42bda2 3069 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 3070 ordered_extent->len);
6c760c07
JB
3071 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3072 if (nolock)
3073 trans = btrfs_join_transaction_nolock(root);
3074 else
3075 trans = btrfs_join_transaction(root);
3076 if (IS_ERR(trans)) {
3077 ret = PTR_ERR(trans);
3078 trans = NULL;
3079 goto out;
c2167754 3080 }
69fe2d75 3081 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3082 ret = btrfs_update_inode_fallback(trans, root, inode);
3083 if (ret) /* -ENOMEM or corruption */
66642832 3084 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3085 goto out;
3086 }
e6dcd2dc 3087
a7e3b975 3088 range_locked = true;
2ac55d41
JB
3089 lock_extent_bits(io_tree, ordered_extent->file_offset,
3090 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3091 &cached_state);
e6dcd2dc 3092
38c227d8
LB
3093 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3094 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3095 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3096 if (ret) {
3097 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3098 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3099 /* the inode is shared */
3100 new = record_old_file_extents(inode, ordered_extent);
3101
3102 clear_extent_bit(io_tree, ordered_extent->file_offset,
3103 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3104 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3105 }
3106
0cb59c99 3107 if (nolock)
7a7eaa40 3108 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3109 else
7a7eaa40 3110 trans = btrfs_join_transaction(root);
79787eaa
JM
3111 if (IS_ERR(trans)) {
3112 ret = PTR_ERR(trans);
3113 trans = NULL;
a7e3b975 3114 goto out;
79787eaa 3115 }
a79b7d4b 3116
69fe2d75 3117 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3118
c8b97818 3119 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3120 compress_type = ordered_extent->compress_type;
d899e052 3121 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3122 BUG_ON(compress_type);
b430b775
JM
3123 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3124 ordered_extent->len);
7a6d7067 3125 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3126 ordered_extent->file_offset,
3127 ordered_extent->file_offset +
77cef2ec 3128 logical_len);
d899e052 3129 } else {
0b246afa 3130 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3131 ret = insert_reserved_file_extent(trans, inode,
3132 ordered_extent->file_offset,
3133 ordered_extent->start,
3134 ordered_extent->disk_len,
77cef2ec 3135 logical_len, logical_len,
261507a0 3136 compress_type, 0, 0,
d899e052 3137 BTRFS_FILE_EXTENT_REG);
49940bdd
JB
3138 if (!ret) {
3139 clear_reserved_extent = false;
2ff7e61e 3140 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3141 ordered_extent->start,
3142 ordered_extent->disk_len);
49940bdd 3143 }
d899e052 3144 }
5dc562c5
JB
3145 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3146 ordered_extent->file_offset, ordered_extent->len,
3147 trans->transid);
79787eaa 3148 if (ret < 0) {
66642832 3149 btrfs_abort_transaction(trans, ret);
a7e3b975 3150 goto out;
79787eaa 3151 }
2ac55d41 3152
ac01f26a
NB
3153 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3154 if (ret) {
3155 btrfs_abort_transaction(trans, ret);
3156 goto out;
3157 }
e6dcd2dc 3158
6c760c07
JB
3159 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3160 ret = btrfs_update_inode_fallback(trans, root, inode);
3161 if (ret) { /* -ENOMEM or corruption */
66642832 3162 btrfs_abort_transaction(trans, ret);
a7e3b975 3163 goto out;
1ef30be1
JB
3164 }
3165 ret = 0;
c2167754 3166out:
a7e3b975
FM
3167 if (range_locked || clear_new_delalloc_bytes) {
3168 unsigned int clear_bits = 0;
3169
3170 if (range_locked)
3171 clear_bits |= EXTENT_LOCKED;
3172 if (clear_new_delalloc_bytes)
3173 clear_bits |= EXTENT_DELALLOC_NEW;
3174 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3175 ordered_extent->file_offset,
3176 ordered_extent->file_offset +
3177 ordered_extent->len - 1,
3178 clear_bits,
3179 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3180 0, &cached_state);
a7e3b975
FM
3181 }
3182
a698d075 3183 if (trans)
3a45bb20 3184 btrfs_end_transaction(trans);
0cb59c99 3185
77cef2ec
JB
3186 if (ret || truncated) {
3187 u64 start, end;
3188
3189 if (truncated)
3190 start = ordered_extent->file_offset + logical_len;
3191 else
3192 start = ordered_extent->file_offset;
3193 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3194 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3195
3196 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3197 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3198
0bec9ef5
JB
3199 /*
3200 * If the ordered extent had an IOERR or something else went
3201 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3202 * back to the allocator. We only free the extent in the
3203 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3204 *
3205 * If we made it past insert_reserved_file_extent before we
3206 * errored out then we don't need to do this as the accounting
3207 * has already been done.
0bec9ef5 3208 */
77cef2ec 3209 if ((ret || !logical_len) &&
49940bdd 3210 clear_reserved_extent &&
77cef2ec 3211 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3212 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3213 btrfs_free_reserved_extent(fs_info,
3214 ordered_extent->start,
e570fd27 3215 ordered_extent->disk_len, 1);
0bec9ef5
JB
3216 }
3217
3218
5fd02043 3219 /*
8bad3c02
LB
3220 * This needs to be done to make sure anybody waiting knows we are done
3221 * updating everything for this ordered extent.
5fd02043
JB
3222 */
3223 btrfs_remove_ordered_extent(inode, ordered_extent);
3224
38c227d8 3225 /* for snapshot-aware defrag */
6f519564
LB
3226 if (new) {
3227 if (ret) {
3228 free_sa_defrag_extent(new);
0b246afa 3229 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3230 } else {
3231 relink_file_extents(new);
3232 }
3233 }
38c227d8 3234
e6dcd2dc
CM
3235 /* once for us */
3236 btrfs_put_ordered_extent(ordered_extent);
3237 /* once for the tree */
3238 btrfs_put_ordered_extent(ordered_extent);
3239
5fd02043
JB
3240 return ret;
3241}
3242
3243static void finish_ordered_fn(struct btrfs_work *work)
3244{
3245 struct btrfs_ordered_extent *ordered_extent;
3246 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3247 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3248}
3249
c629732d
NB
3250void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3251 u64 end, int uptodate)
211f90e6 3252{
5fd02043 3253 struct inode *inode = page->mapping->host;
0b246afa 3254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3255 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3256 struct btrfs_workqueue *wq;
3257 btrfs_work_func_t func;
5fd02043 3258
1abe9b8a 3259 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3260
8b62b72b 3261 ClearPagePrivate2(page);
5fd02043
JB
3262 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3263 end - start + 1, uptodate))
c3988d63 3264 return;
5fd02043 3265
70ddc553 3266 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3267 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3268 func = btrfs_freespace_write_helper;
3269 } else {
0b246afa 3270 wq = fs_info->endio_write_workers;
9e0af237
LB
3271 func = btrfs_endio_write_helper;
3272 }
5fd02043 3273
9e0af237
LB
3274 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3275 NULL);
3276 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3277}
3278
dc380aea
MX
3279static int __readpage_endio_check(struct inode *inode,
3280 struct btrfs_io_bio *io_bio,
3281 int icsum, struct page *page,
3282 int pgoff, u64 start, size_t len)
3283{
d5178578
JT
3284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3285 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 3286 char *kaddr;
d5178578
JT
3287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3288 u8 *csum_expected;
3289 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3290
d5178578 3291 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
3292
3293 kaddr = kmap_atomic(page);
d5178578
JT
3294 shash->tfm = fs_info->csum_shash;
3295
3296 crypto_shash_init(shash);
3297 crypto_shash_update(shash, kaddr + pgoff, len);
3298 crypto_shash_final(shash, csum);
3299
3300 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
3301 goto zeroit;
3302
3303 kunmap_atomic(kaddr);
3304 return 0;
3305zeroit:
ea41d6b2
JT
3306 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3307 io_bio->mirror_num);
dc380aea
MX
3308 memset(kaddr + pgoff, 1, len);
3309 flush_dcache_page(page);
3310 kunmap_atomic(kaddr);
dc380aea
MX
3311 return -EIO;
3312}
3313
d352ac68
CM
3314/*
3315 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3316 * if there's a match, we allow the bio to finish. If not, the code in
3317 * extent_io.c will try to find good copies for us.
d352ac68 3318 */
facc8a22
MX
3319static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3320 u64 phy_offset, struct page *page,
3321 u64 start, u64 end, int mirror)
07157aac 3322{
4eee4fa4 3323 size_t offset = start - page_offset(page);
07157aac 3324 struct inode *inode = page->mapping->host;
d1310b2e 3325 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3326 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3327
d20f7043
CM
3328 if (PageChecked(page)) {
3329 ClearPageChecked(page);
dc380aea 3330 return 0;
d20f7043 3331 }
6cbff00f
CH
3332
3333 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3334 return 0;
17d217fe
YZ
3335
3336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3337 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3338 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3339 return 0;
17d217fe 3340 }
d20f7043 3341
facc8a22 3342 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3343 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3344 start, (size_t)(end - start + 1));
07157aac 3345}
b888db2b 3346
c1c3fac2
NB
3347/*
3348 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3349 *
3350 * @inode: The inode we want to perform iput on
3351 *
3352 * This function uses the generic vfs_inode::i_count to track whether we should
3353 * just decrement it (in case it's > 1) or if this is the last iput then link
3354 * the inode to the delayed iput machinery. Delayed iputs are processed at
3355 * transaction commit time/superblock commit/cleaner kthread.
3356 */
24bbcf04
YZ
3357void btrfs_add_delayed_iput(struct inode *inode)
3358{
0b246afa 3359 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3360 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3361
3362 if (atomic_add_unless(&inode->i_count, -1, 1))
3363 return;
3364
034f784d 3365 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 3366 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3367 ASSERT(list_empty(&binode->delayed_iput));
3368 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3369 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3370 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3371 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3372}
3373
63611e73
JB
3374static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3375 struct btrfs_inode *inode)
3376{
3377 list_del_init(&inode->delayed_iput);
3378 spin_unlock(&fs_info->delayed_iput_lock);
3379 iput(&inode->vfs_inode);
3380 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3381 wake_up(&fs_info->delayed_iputs_wait);
3382 spin_lock(&fs_info->delayed_iput_lock);
3383}
3384
3385static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3386 struct btrfs_inode *inode)
3387{
3388 if (!list_empty(&inode->delayed_iput)) {
3389 spin_lock(&fs_info->delayed_iput_lock);
3390 if (!list_empty(&inode->delayed_iput))
3391 run_delayed_iput_locked(fs_info, inode);
3392 spin_unlock(&fs_info->delayed_iput_lock);
3393 }
3394}
3395
2ff7e61e 3396void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3397{
24bbcf04 3398
24bbcf04 3399 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3400 while (!list_empty(&fs_info->delayed_iputs)) {
3401 struct btrfs_inode *inode;
3402
3403 inode = list_first_entry(&fs_info->delayed_iputs,
3404 struct btrfs_inode, delayed_iput);
63611e73 3405 run_delayed_iput_locked(fs_info, inode);
24bbcf04 3406 }
8089fe62 3407 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3408}
3409
034f784d
JB
3410/**
3411 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3412 * @fs_info - the fs_info for this fs
3413 * @return - EINTR if we were killed, 0 if nothing's pending
3414 *
3415 * This will wait on any delayed iputs that are currently running with KILLABLE
3416 * set. Once they are all done running we will return, unless we are killed in
3417 * which case we return EINTR. This helps in user operations like fallocate etc
3418 * that might get blocked on the iputs.
3419 */
3420int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3421{
3422 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3423 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3424 if (ret)
3425 return -EINTR;
3426 return 0;
3427}
3428
7b128766 3429/*
f7e9e8fc
OS
3430 * This creates an orphan entry for the given inode in case something goes wrong
3431 * in the middle of an unlink.
7b128766 3432 */
73f2e545 3433int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3434 struct btrfs_inode *inode)
7b128766 3435{
d68fc57b 3436 int ret;
7b128766 3437
27919067
OS
3438 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3439 if (ret && ret != -EEXIST) {
3440 btrfs_abort_transaction(trans, ret);
3441 return ret;
d68fc57b
YZ
3442 }
3443
d68fc57b 3444 return 0;
7b128766
JB
3445}
3446
3447/*
f7e9e8fc
OS
3448 * We have done the delete so we can go ahead and remove the orphan item for
3449 * this particular inode.
7b128766 3450 */
48a3b636 3451static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3452 struct btrfs_inode *inode)
7b128766 3453{
27919067 3454 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3455}
3456
3457/*
3458 * this cleans up any orphans that may be left on the list from the last use
3459 * of this root.
3460 */
66b4ffd1 3461int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3462{
0b246afa 3463 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3464 struct btrfs_path *path;
3465 struct extent_buffer *leaf;
7b128766
JB
3466 struct btrfs_key key, found_key;
3467 struct btrfs_trans_handle *trans;
3468 struct inode *inode;
8f6d7f4f 3469 u64 last_objectid = 0;
f7e9e8fc 3470 int ret = 0, nr_unlink = 0;
7b128766 3471
d68fc57b 3472 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3473 return 0;
c71bf099
YZ
3474
3475 path = btrfs_alloc_path();
66b4ffd1
JB
3476 if (!path) {
3477 ret = -ENOMEM;
3478 goto out;
3479 }
e4058b54 3480 path->reada = READA_BACK;
7b128766
JB
3481
3482 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3483 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3484 key.offset = (u64)-1;
3485
7b128766
JB
3486 while (1) {
3487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3488 if (ret < 0)
3489 goto out;
7b128766
JB
3490
3491 /*
3492 * if ret == 0 means we found what we were searching for, which
25985edc 3493 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3494 * find the key and see if we have stuff that matches
3495 */
3496 if (ret > 0) {
66b4ffd1 3497 ret = 0;
7b128766
JB
3498 if (path->slots[0] == 0)
3499 break;
3500 path->slots[0]--;
3501 }
3502
3503 /* pull out the item */
3504 leaf = path->nodes[0];
7b128766
JB
3505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3506
3507 /* make sure the item matches what we want */
3508 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3509 break;
962a298f 3510 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3511 break;
3512
3513 /* release the path since we're done with it */
b3b4aa74 3514 btrfs_release_path(path);
7b128766
JB
3515
3516 /*
3517 * this is where we are basically btrfs_lookup, without the
3518 * crossing root thing. we store the inode number in the
3519 * offset of the orphan item.
3520 */
8f6d7f4f
JB
3521
3522 if (found_key.offset == last_objectid) {
0b246afa
JM
3523 btrfs_err(fs_info,
3524 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3525 ret = -EINVAL;
3526 goto out;
3527 }
3528
3529 last_objectid = found_key.offset;
3530
5d4f98a2
YZ
3531 found_key.objectid = found_key.offset;
3532 found_key.type = BTRFS_INODE_ITEM_KEY;
3533 found_key.offset = 0;
0b246afa 3534 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3535 ret = PTR_ERR_OR_ZERO(inode);
67710892 3536 if (ret && ret != -ENOENT)
66b4ffd1 3537 goto out;
7b128766 3538
0b246afa 3539 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3540 struct btrfs_root *dead_root;
3541 struct btrfs_fs_info *fs_info = root->fs_info;
3542 int is_dead_root = 0;
3543
3544 /*
3545 * this is an orphan in the tree root. Currently these
3546 * could come from 2 sources:
3547 * a) a snapshot deletion in progress
3548 * b) a free space cache inode
3549 * We need to distinguish those two, as the snapshot
3550 * orphan must not get deleted.
3551 * find_dead_roots already ran before us, so if this
3552 * is a snapshot deletion, we should find the root
3553 * in the dead_roots list
3554 */
3555 spin_lock(&fs_info->trans_lock);
3556 list_for_each_entry(dead_root, &fs_info->dead_roots,
3557 root_list) {
3558 if (dead_root->root_key.objectid ==
3559 found_key.objectid) {
3560 is_dead_root = 1;
3561 break;
3562 }
3563 }
3564 spin_unlock(&fs_info->trans_lock);
3565 if (is_dead_root) {
3566 /* prevent this orphan from being found again */
3567 key.offset = found_key.objectid - 1;
3568 continue;
3569 }
f7e9e8fc 3570
f8e9e0b0 3571 }
f7e9e8fc 3572
7b128766 3573 /*
f7e9e8fc
OS
3574 * If we have an inode with links, there are a couple of
3575 * possibilities. Old kernels (before v3.12) used to create an
3576 * orphan item for truncate indicating that there were possibly
3577 * extent items past i_size that needed to be deleted. In v3.12,
3578 * truncate was changed to update i_size in sync with the extent
3579 * items, but the (useless) orphan item was still created. Since
3580 * v4.18, we don't create the orphan item for truncate at all.
3581 *
3582 * So, this item could mean that we need to do a truncate, but
3583 * only if this filesystem was last used on a pre-v3.12 kernel
3584 * and was not cleanly unmounted. The odds of that are quite
3585 * slim, and it's a pain to do the truncate now, so just delete
3586 * the orphan item.
3587 *
3588 * It's also possible that this orphan item was supposed to be
3589 * deleted but wasn't. The inode number may have been reused,
3590 * but either way, we can delete the orphan item.
7b128766 3591 */
f7e9e8fc
OS
3592 if (ret == -ENOENT || inode->i_nlink) {
3593 if (!ret)
3594 iput(inode);
a8c9e576 3595 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3596 if (IS_ERR(trans)) {
3597 ret = PTR_ERR(trans);
3598 goto out;
3599 }
0b246afa
JM
3600 btrfs_debug(fs_info, "auto deleting %Lu",
3601 found_key.objectid);
a8c9e576
JB
3602 ret = btrfs_del_orphan_item(trans, root,
3603 found_key.objectid);
3a45bb20 3604 btrfs_end_transaction(trans);
4ef31a45
JB
3605 if (ret)
3606 goto out;
7b128766
JB
3607 continue;
3608 }
3609
f7e9e8fc 3610 nr_unlink++;
7b128766
JB
3611
3612 /* this will do delete_inode and everything for us */
3613 iput(inode);
3614 }
3254c876
MX
3615 /* release the path since we're done with it */
3616 btrfs_release_path(path);
3617
d68fc57b
YZ
3618 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3619
a575ceeb 3620 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3621 trans = btrfs_join_transaction(root);
66b4ffd1 3622 if (!IS_ERR(trans))
3a45bb20 3623 btrfs_end_transaction(trans);
d68fc57b 3624 }
7b128766
JB
3625
3626 if (nr_unlink)
0b246afa 3627 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3628
3629out:
3630 if (ret)
0b246afa 3631 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3632 btrfs_free_path(path);
3633 return ret;
7b128766
JB
3634}
3635
46a53cca
CM
3636/*
3637 * very simple check to peek ahead in the leaf looking for xattrs. If we
3638 * don't find any xattrs, we know there can't be any acls.
3639 *
3640 * slot is the slot the inode is in, objectid is the objectid of the inode
3641 */
3642static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3643 int slot, u64 objectid,
3644 int *first_xattr_slot)
46a53cca
CM
3645{
3646 u32 nritems = btrfs_header_nritems(leaf);
3647 struct btrfs_key found_key;
f23b5a59
JB
3648 static u64 xattr_access = 0;
3649 static u64 xattr_default = 0;
46a53cca
CM
3650 int scanned = 0;
3651
f23b5a59 3652 if (!xattr_access) {
97d79299
AG
3653 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3654 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3655 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3656 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3657 }
3658
46a53cca 3659 slot++;
63541927 3660 *first_xattr_slot = -1;
46a53cca
CM
3661 while (slot < nritems) {
3662 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3663
3664 /* we found a different objectid, there must not be acls */
3665 if (found_key.objectid != objectid)
3666 return 0;
3667
3668 /* we found an xattr, assume we've got an acl */
f23b5a59 3669 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3670 if (*first_xattr_slot == -1)
3671 *first_xattr_slot = slot;
f23b5a59
JB
3672 if (found_key.offset == xattr_access ||
3673 found_key.offset == xattr_default)
3674 return 1;
3675 }
46a53cca
CM
3676
3677 /*
3678 * we found a key greater than an xattr key, there can't
3679 * be any acls later on
3680 */
3681 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3682 return 0;
3683
3684 slot++;
3685 scanned++;
3686
3687 /*
3688 * it goes inode, inode backrefs, xattrs, extents,
3689 * so if there are a ton of hard links to an inode there can
3690 * be a lot of backrefs. Don't waste time searching too hard,
3691 * this is just an optimization
3692 */
3693 if (scanned >= 8)
3694 break;
3695 }
3696 /* we hit the end of the leaf before we found an xattr or
3697 * something larger than an xattr. We have to assume the inode
3698 * has acls
3699 */
63541927
FDBM
3700 if (*first_xattr_slot == -1)
3701 *first_xattr_slot = slot;
46a53cca
CM
3702 return 1;
3703}
3704
d352ac68
CM
3705/*
3706 * read an inode from the btree into the in-memory inode
3707 */
4222ea71
FM
3708static int btrfs_read_locked_inode(struct inode *inode,
3709 struct btrfs_path *in_path)
39279cc3 3710{
0b246afa 3711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3712 struct btrfs_path *path = in_path;
5f39d397 3713 struct extent_buffer *leaf;
39279cc3
CM
3714 struct btrfs_inode_item *inode_item;
3715 struct btrfs_root *root = BTRFS_I(inode)->root;
3716 struct btrfs_key location;
67de1176 3717 unsigned long ptr;
46a53cca 3718 int maybe_acls;
618e21d5 3719 u32 rdev;
39279cc3 3720 int ret;
2f7e33d4 3721 bool filled = false;
63541927 3722 int first_xattr_slot;
2f7e33d4
MX
3723
3724 ret = btrfs_fill_inode(inode, &rdev);
3725 if (!ret)
3726 filled = true;
39279cc3 3727
4222ea71
FM
3728 if (!path) {
3729 path = btrfs_alloc_path();
3730 if (!path)
3731 return -ENOMEM;
3732 }
1748f843 3733
39279cc3 3734 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3735
39279cc3 3736 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3737 if (ret) {
4222ea71
FM
3738 if (path != in_path)
3739 btrfs_free_path(path);
f5b3a417 3740 return ret;
67710892 3741 }
39279cc3 3742
5f39d397 3743 leaf = path->nodes[0];
2f7e33d4
MX
3744
3745 if (filled)
67de1176 3746 goto cache_index;
2f7e33d4 3747
5f39d397
CM
3748 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3749 struct btrfs_inode_item);
5f39d397 3750 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3751 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3752 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3753 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3754 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3755
a937b979
DS
3756 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3757 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3758
a937b979
DS
3759 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3760 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3761
a937b979
DS
3762 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3763 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3764
9cc97d64 3765 BTRFS_I(inode)->i_otime.tv_sec =
3766 btrfs_timespec_sec(leaf, &inode_item->otime);
3767 BTRFS_I(inode)->i_otime.tv_nsec =
3768 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3769
a76a3cd4 3770 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3771 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3772 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3773
c7f88c4e
JL
3774 inode_set_iversion_queried(inode,
3775 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3776 inode->i_generation = BTRFS_I(inode)->generation;
3777 inode->i_rdev = 0;
3778 rdev = btrfs_inode_rdev(leaf, inode_item);
3779
3780 BTRFS_I(inode)->index_cnt = (u64)-1;
3781 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3782
3783cache_index:
5dc562c5
JB
3784 /*
3785 * If we were modified in the current generation and evicted from memory
3786 * and then re-read we need to do a full sync since we don't have any
3787 * idea about which extents were modified before we were evicted from
3788 * cache.
6e17d30b
YD
3789 *
3790 * This is required for both inode re-read from disk and delayed inode
3791 * in delayed_nodes_tree.
5dc562c5 3792 */
0b246afa 3793 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3794 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3795 &BTRFS_I(inode)->runtime_flags);
3796
bde6c242
FM
3797 /*
3798 * We don't persist the id of the transaction where an unlink operation
3799 * against the inode was last made. So here we assume the inode might
3800 * have been evicted, and therefore the exact value of last_unlink_trans
3801 * lost, and set it to last_trans to avoid metadata inconsistencies
3802 * between the inode and its parent if the inode is fsync'ed and the log
3803 * replayed. For example, in the scenario:
3804 *
3805 * touch mydir/foo
3806 * ln mydir/foo mydir/bar
3807 * sync
3808 * unlink mydir/bar
3809 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3810 * xfs_io -c fsync mydir/foo
3811 * <power failure>
3812 * mount fs, triggers fsync log replay
3813 *
3814 * We must make sure that when we fsync our inode foo we also log its
3815 * parent inode, otherwise after log replay the parent still has the
3816 * dentry with the "bar" name but our inode foo has a link count of 1
3817 * and doesn't have an inode ref with the name "bar" anymore.
3818 *
3819 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3820 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3821 * transaction commits on fsync if our inode is a directory, or if our
3822 * inode is not a directory, logging its parent unnecessarily.
3823 */
3824 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3825
67de1176
MX
3826 path->slots[0]++;
3827 if (inode->i_nlink != 1 ||
3828 path->slots[0] >= btrfs_header_nritems(leaf))
3829 goto cache_acl;
3830
3831 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3832 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3833 goto cache_acl;
3834
3835 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3836 if (location.type == BTRFS_INODE_REF_KEY) {
3837 struct btrfs_inode_ref *ref;
3838
3839 ref = (struct btrfs_inode_ref *)ptr;
3840 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3841 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3842 struct btrfs_inode_extref *extref;
3843
3844 extref = (struct btrfs_inode_extref *)ptr;
3845 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3846 extref);
3847 }
2f7e33d4 3848cache_acl:
46a53cca
CM
3849 /*
3850 * try to precache a NULL acl entry for files that don't have
3851 * any xattrs or acls
3852 */
33345d01 3853 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3854 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3855 if (first_xattr_slot != -1) {
3856 path->slots[0] = first_xattr_slot;
3857 ret = btrfs_load_inode_props(inode, path);
3858 if (ret)
0b246afa 3859 btrfs_err(fs_info,
351fd353 3860 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3861 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3862 root->root_key.objectid, ret);
3863 }
4222ea71
FM
3864 if (path != in_path)
3865 btrfs_free_path(path);
63541927 3866
72c04902
AV
3867 if (!maybe_acls)
3868 cache_no_acl(inode);
46a53cca 3869
39279cc3 3870 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3871 case S_IFREG:
3872 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3873 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3874 inode->i_fop = &btrfs_file_operations;
3875 inode->i_op = &btrfs_file_inode_operations;
3876 break;
3877 case S_IFDIR:
3878 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3879 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3880 break;
3881 case S_IFLNK:
3882 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3883 inode_nohighmem(inode);
4779cc04 3884 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3885 break;
618e21d5 3886 default:
0279b4cd 3887 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3888 init_special_inode(inode, inode->i_mode, rdev);
3889 break;
39279cc3 3890 }
6cbff00f 3891
7b6a221e 3892 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3893 return 0;
39279cc3
CM
3894}
3895
d352ac68
CM
3896/*
3897 * given a leaf and an inode, copy the inode fields into the leaf
3898 */
e02119d5
CM
3899static void fill_inode_item(struct btrfs_trans_handle *trans,
3900 struct extent_buffer *leaf,
5f39d397 3901 struct btrfs_inode_item *item,
39279cc3
CM
3902 struct inode *inode)
3903{
51fab693
LB
3904 struct btrfs_map_token token;
3905
c82f823c 3906 btrfs_init_map_token(&token, leaf);
5f39d397 3907
51fab693
LB
3908 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3909 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3910 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3911 &token);
3912 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3913 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3914
a937b979 3915 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3916 inode->i_atime.tv_sec, &token);
a937b979 3917 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3918 inode->i_atime.tv_nsec, &token);
5f39d397 3919
a937b979 3920 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3921 inode->i_mtime.tv_sec, &token);
a937b979 3922 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3923 inode->i_mtime.tv_nsec, &token);
5f39d397 3924
a937b979 3925 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3926 inode->i_ctime.tv_sec, &token);
a937b979 3927 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3928 inode->i_ctime.tv_nsec, &token);
5f39d397 3929
9cc97d64 3930 btrfs_set_token_timespec_sec(leaf, &item->otime,
3931 BTRFS_I(inode)->i_otime.tv_sec, &token);
3932 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3933 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3934
51fab693
LB
3935 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3936 &token);
3937 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3938 &token);
c7f88c4e
JL
3939 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3940 &token);
51fab693
LB
3941 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3942 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3943 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3944 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3945}
3946
d352ac68
CM
3947/*
3948 * copy everything in the in-memory inode into the btree.
3949 */
2115133f 3950static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3951 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3952{
3953 struct btrfs_inode_item *inode_item;
3954 struct btrfs_path *path;
5f39d397 3955 struct extent_buffer *leaf;
39279cc3
CM
3956 int ret;
3957
3958 path = btrfs_alloc_path();
16cdcec7
MX
3959 if (!path)
3960 return -ENOMEM;
3961
b9473439 3962 path->leave_spinning = 1;
16cdcec7
MX
3963 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3964 1);
39279cc3
CM
3965 if (ret) {
3966 if (ret > 0)
3967 ret = -ENOENT;
3968 goto failed;
3969 }
3970
5f39d397
CM
3971 leaf = path->nodes[0];
3972 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3973 struct btrfs_inode_item);
39279cc3 3974
e02119d5 3975 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3976 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3977 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3978 ret = 0;
3979failed:
39279cc3
CM
3980 btrfs_free_path(path);
3981 return ret;
3982}
3983
2115133f
CM
3984/*
3985 * copy everything in the in-memory inode into the btree.
3986 */
3987noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3988 struct btrfs_root *root, struct inode *inode)
3989{
0b246afa 3990 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3991 int ret;
3992
3993 /*
3994 * If the inode is a free space inode, we can deadlock during commit
3995 * if we put it into the delayed code.
3996 *
3997 * The data relocation inode should also be directly updated
3998 * without delay
3999 */
70ddc553 4000 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4001 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4002 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4003 btrfs_update_root_times(trans, root);
4004
2115133f
CM
4005 ret = btrfs_delayed_update_inode(trans, root, inode);
4006 if (!ret)
4007 btrfs_set_inode_last_trans(trans, inode);
4008 return ret;
4009 }
4010
4011 return btrfs_update_inode_item(trans, root, inode);
4012}
4013
be6aef60
JB
4014noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4015 struct btrfs_root *root,
4016 struct inode *inode)
2115133f
CM
4017{
4018 int ret;
4019
4020 ret = btrfs_update_inode(trans, root, inode);
4021 if (ret == -ENOSPC)
4022 return btrfs_update_inode_item(trans, root, inode);
4023 return ret;
4024}
4025
d352ac68
CM
4026/*
4027 * unlink helper that gets used here in inode.c and in the tree logging
4028 * recovery code. It remove a link in a directory with a given name, and
4029 * also drops the back refs in the inode to the directory
4030 */
92986796
AV
4031static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4032 struct btrfs_root *root,
4ec5934e
NB
4033 struct btrfs_inode *dir,
4034 struct btrfs_inode *inode,
92986796 4035 const char *name, int name_len)
39279cc3 4036{
0b246afa 4037 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4038 struct btrfs_path *path;
39279cc3 4039 int ret = 0;
39279cc3 4040 struct btrfs_dir_item *di;
aec7477b 4041 u64 index;
33345d01
LZ
4042 u64 ino = btrfs_ino(inode);
4043 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4044
4045 path = btrfs_alloc_path();
54aa1f4d
CM
4046 if (!path) {
4047 ret = -ENOMEM;
554233a6 4048 goto out;
54aa1f4d
CM
4049 }
4050
b9473439 4051 path->leave_spinning = 1;
33345d01 4052 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 4053 name, name_len, -1);
3cf5068f
LB
4054 if (IS_ERR_OR_NULL(di)) {
4055 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4056 goto err;
4057 }
39279cc3 4058 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4059 if (ret)
4060 goto err;
b3b4aa74 4061 btrfs_release_path(path);
39279cc3 4062
67de1176
MX
4063 /*
4064 * If we don't have dir index, we have to get it by looking up
4065 * the inode ref, since we get the inode ref, remove it directly,
4066 * it is unnecessary to do delayed deletion.
4067 *
4068 * But if we have dir index, needn't search inode ref to get it.
4069 * Since the inode ref is close to the inode item, it is better
4070 * that we delay to delete it, and just do this deletion when
4071 * we update the inode item.
4072 */
4ec5934e 4073 if (inode->dir_index) {
67de1176
MX
4074 ret = btrfs_delayed_delete_inode_ref(inode);
4075 if (!ret) {
4ec5934e 4076 index = inode->dir_index;
67de1176
MX
4077 goto skip_backref;
4078 }
4079 }
4080
33345d01
LZ
4081 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4082 dir_ino, &index);
aec7477b 4083 if (ret) {
0b246afa 4084 btrfs_info(fs_info,
c2cf52eb 4085 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4086 name_len, name, ino, dir_ino);
66642832 4087 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4088 goto err;
4089 }
67de1176 4090skip_backref:
9add2945 4091 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4092 if (ret) {
66642832 4093 btrfs_abort_transaction(trans, ret);
39279cc3 4094 goto err;
79787eaa 4095 }
39279cc3 4096
4ec5934e
NB
4097 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4098 dir_ino);
79787eaa 4099 if (ret != 0 && ret != -ENOENT) {
66642832 4100 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4101 goto err;
4102 }
e02119d5 4103
4ec5934e
NB
4104 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4105 index);
6418c961
CM
4106 if (ret == -ENOENT)
4107 ret = 0;
d4e3991b 4108 else if (ret)
66642832 4109 btrfs_abort_transaction(trans, ret);
63611e73
JB
4110
4111 /*
4112 * If we have a pending delayed iput we could end up with the final iput
4113 * being run in btrfs-cleaner context. If we have enough of these built
4114 * up we can end up burning a lot of time in btrfs-cleaner without any
4115 * way to throttle the unlinks. Since we're currently holding a ref on
4116 * the inode we can run the delayed iput here without any issues as the
4117 * final iput won't be done until after we drop the ref we're currently
4118 * holding.
4119 */
4120 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4121err:
4122 btrfs_free_path(path);
e02119d5
CM
4123 if (ret)
4124 goto out;
4125
6ef06d27 4126 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4127 inode_inc_iversion(&inode->vfs_inode);
4128 inode_inc_iversion(&dir->vfs_inode);
4129 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4130 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4131 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4132out:
39279cc3
CM
4133 return ret;
4134}
4135
92986796
AV
4136int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4137 struct btrfs_root *root,
4ec5934e 4138 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4139 const char *name, int name_len)
4140{
4141 int ret;
4142 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4143 if (!ret) {
4ec5934e
NB
4144 drop_nlink(&inode->vfs_inode);
4145 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4146 }
4147 return ret;
4148}
39279cc3 4149
a22285a6
YZ
4150/*
4151 * helper to start transaction for unlink and rmdir.
4152 *
d52be818
JB
4153 * unlink and rmdir are special in btrfs, they do not always free space, so
4154 * if we cannot make our reservations the normal way try and see if there is
4155 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4156 * allow the unlink to occur.
a22285a6 4157 */
d52be818 4158static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4159{
a22285a6 4160 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4161
e70bea5f
JB
4162 /*
4163 * 1 for the possible orphan item
4164 * 1 for the dir item
4165 * 1 for the dir index
4166 * 1 for the inode ref
e70bea5f
JB
4167 * 1 for the inode
4168 */
8eab77ff 4169 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4170}
4171
4172static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4173{
4174 struct btrfs_root *root = BTRFS_I(dir)->root;
4175 struct btrfs_trans_handle *trans;
2b0143b5 4176 struct inode *inode = d_inode(dentry);
a22285a6 4177 int ret;
a22285a6 4178
d52be818 4179 trans = __unlink_start_trans(dir);
a22285a6
YZ
4180 if (IS_ERR(trans))
4181 return PTR_ERR(trans);
5f39d397 4182
4ec5934e
NB
4183 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4184 0);
12fcfd22 4185
4ec5934e
NB
4186 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4187 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4188 dentry->d_name.len);
b532402e
TI
4189 if (ret)
4190 goto out;
7b128766 4191
a22285a6 4192 if (inode->i_nlink == 0) {
73f2e545 4193 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4194 if (ret)
4195 goto out;
a22285a6 4196 }
7b128766 4197
b532402e 4198out:
3a45bb20 4199 btrfs_end_transaction(trans);
2ff7e61e 4200 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4201 return ret;
4202}
4203
f60a2364 4204static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4205 struct inode *dir, u64 objectid,
4206 const char *name, int name_len)
4df27c4d 4207{
401b3b19 4208 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4209 struct btrfs_path *path;
4210 struct extent_buffer *leaf;
4211 struct btrfs_dir_item *di;
4212 struct btrfs_key key;
4213 u64 index;
4214 int ret;
4a0cc7ca 4215 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4216
4217 path = btrfs_alloc_path();
4218 if (!path)
4219 return -ENOMEM;
4220
33345d01 4221 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4222 name, name_len, -1);
79787eaa 4223 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4224 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4225 goto out;
4226 }
4df27c4d
YZ
4227
4228 leaf = path->nodes[0];
4229 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4230 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4231 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4232 if (ret) {
66642832 4233 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4234 goto out;
4235 }
b3b4aa74 4236 btrfs_release_path(path);
4df27c4d 4237
3ee1c553
LF
4238 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4239 dir_ino, &index, name, name_len);
4df27c4d 4240 if (ret < 0) {
79787eaa 4241 if (ret != -ENOENT) {
66642832 4242 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4243 goto out;
4244 }
33345d01 4245 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4246 name, name_len);
79787eaa
JM
4247 if (IS_ERR_OR_NULL(di)) {
4248 if (!di)
4249 ret = -ENOENT;
4250 else
4251 ret = PTR_ERR(di);
66642832 4252 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4253 goto out;
4254 }
4df27c4d
YZ
4255
4256 leaf = path->nodes[0];
4257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4258 index = key.offset;
4259 }
945d8962 4260 btrfs_release_path(path);
4df27c4d 4261
9add2945 4262 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4263 if (ret) {
66642832 4264 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4265 goto out;
4266 }
4df27c4d 4267
6ef06d27 4268 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4269 inode_inc_iversion(dir);
c2050a45 4270 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4271 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4272 if (ret)
66642832 4273 btrfs_abort_transaction(trans, ret);
79787eaa 4274out:
71d7aed0 4275 btrfs_free_path(path);
79787eaa 4276 return ret;
4df27c4d
YZ
4277}
4278
ec42f167
MT
4279/*
4280 * Helper to check if the subvolume references other subvolumes or if it's
4281 * default.
4282 */
f60a2364 4283static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4284{
4285 struct btrfs_fs_info *fs_info = root->fs_info;
4286 struct btrfs_path *path;
4287 struct btrfs_dir_item *di;
4288 struct btrfs_key key;
4289 u64 dir_id;
4290 int ret;
4291
4292 path = btrfs_alloc_path();
4293 if (!path)
4294 return -ENOMEM;
4295
4296 /* Make sure this root isn't set as the default subvol */
4297 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4298 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4299 dir_id, "default", 7, 0);
4300 if (di && !IS_ERR(di)) {
4301 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4302 if (key.objectid == root->root_key.objectid) {
4303 ret = -EPERM;
4304 btrfs_err(fs_info,
4305 "deleting default subvolume %llu is not allowed",
4306 key.objectid);
4307 goto out;
4308 }
4309 btrfs_release_path(path);
4310 }
4311
4312 key.objectid = root->root_key.objectid;
4313 key.type = BTRFS_ROOT_REF_KEY;
4314 key.offset = (u64)-1;
4315
4316 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4317 if (ret < 0)
4318 goto out;
4319 BUG_ON(ret == 0);
4320
4321 ret = 0;
4322 if (path->slots[0] > 0) {
4323 path->slots[0]--;
4324 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4325 if (key.objectid == root->root_key.objectid &&
4326 key.type == BTRFS_ROOT_REF_KEY)
4327 ret = -ENOTEMPTY;
4328 }
4329out:
4330 btrfs_free_path(path);
4331 return ret;
4332}
4333
20a68004
NB
4334/* Delete all dentries for inodes belonging to the root */
4335static void btrfs_prune_dentries(struct btrfs_root *root)
4336{
4337 struct btrfs_fs_info *fs_info = root->fs_info;
4338 struct rb_node *node;
4339 struct rb_node *prev;
4340 struct btrfs_inode *entry;
4341 struct inode *inode;
4342 u64 objectid = 0;
4343
4344 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4345 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4346
4347 spin_lock(&root->inode_lock);
4348again:
4349 node = root->inode_tree.rb_node;
4350 prev = NULL;
4351 while (node) {
4352 prev = node;
4353 entry = rb_entry(node, struct btrfs_inode, rb_node);
4354
37508515 4355 if (objectid < btrfs_ino(entry))
20a68004 4356 node = node->rb_left;
37508515 4357 else if (objectid > btrfs_ino(entry))
20a68004
NB
4358 node = node->rb_right;
4359 else
4360 break;
4361 }
4362 if (!node) {
4363 while (prev) {
4364 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4365 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4366 node = prev;
4367 break;
4368 }
4369 prev = rb_next(prev);
4370 }
4371 }
4372 while (node) {
4373 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4374 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4375 inode = igrab(&entry->vfs_inode);
4376 if (inode) {
4377 spin_unlock(&root->inode_lock);
4378 if (atomic_read(&inode->i_count) > 1)
4379 d_prune_aliases(inode);
4380 /*
4381 * btrfs_drop_inode will have it removed from the inode
4382 * cache when its usage count hits zero.
4383 */
4384 iput(inode);
4385 cond_resched();
4386 spin_lock(&root->inode_lock);
4387 goto again;
4388 }
4389
4390 if (cond_resched_lock(&root->inode_lock))
4391 goto again;
4392
4393 node = rb_next(node);
4394 }
4395 spin_unlock(&root->inode_lock);
4396}
4397
f60a2364
MT
4398int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4399{
4400 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4401 struct btrfs_root *root = BTRFS_I(dir)->root;
4402 struct inode *inode = d_inode(dentry);
4403 struct btrfs_root *dest = BTRFS_I(inode)->root;
4404 struct btrfs_trans_handle *trans;
4405 struct btrfs_block_rsv block_rsv;
4406 u64 root_flags;
f60a2364
MT
4407 int ret;
4408 int err;
4409
4410 /*
4411 * Don't allow to delete a subvolume with send in progress. This is
4412 * inside the inode lock so the error handling that has to drop the bit
4413 * again is not run concurrently.
4414 */
4415 spin_lock(&dest->root_item_lock);
a7176f74 4416 if (dest->send_in_progress) {
f60a2364
MT
4417 spin_unlock(&dest->root_item_lock);
4418 btrfs_warn(fs_info,
4419 "attempt to delete subvolume %llu during send",
4420 dest->root_key.objectid);
4421 return -EPERM;
4422 }
a7176f74
LF
4423 root_flags = btrfs_root_flags(&dest->root_item);
4424 btrfs_set_root_flags(&dest->root_item,
4425 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4426 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4427
4428 down_write(&fs_info->subvol_sem);
4429
4430 err = may_destroy_subvol(dest);
4431 if (err)
4432 goto out_up_write;
4433
4434 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4435 /*
4436 * One for dir inode,
4437 * two for dir entries,
4438 * two for root ref/backref.
4439 */
c4c129db 4440 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4441 if (err)
4442 goto out_up_write;
4443
4444 trans = btrfs_start_transaction(root, 0);
4445 if (IS_ERR(trans)) {
4446 err = PTR_ERR(trans);
4447 goto out_release;
4448 }
4449 trans->block_rsv = &block_rsv;
4450 trans->bytes_reserved = block_rsv.size;
4451
4452 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4453
401b3b19
LF
4454 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4455 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4456 if (ret) {
4457 err = ret;
4458 btrfs_abort_transaction(trans, ret);
4459 goto out_end_trans;
4460 }
4461
4462 btrfs_record_root_in_trans(trans, dest);
4463
4464 memset(&dest->root_item.drop_progress, 0,
4465 sizeof(dest->root_item.drop_progress));
4466 dest->root_item.drop_level = 0;
4467 btrfs_set_root_refs(&dest->root_item, 0);
4468
4469 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4470 ret = btrfs_insert_orphan_item(trans,
4471 fs_info->tree_root,
4472 dest->root_key.objectid);
4473 if (ret) {
4474 btrfs_abort_transaction(trans, ret);
4475 err = ret;
4476 goto out_end_trans;
4477 }
4478 }
4479
d1957791 4480 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4481 BTRFS_UUID_KEY_SUBVOL,
4482 dest->root_key.objectid);
4483 if (ret && ret != -ENOENT) {
4484 btrfs_abort_transaction(trans, ret);
4485 err = ret;
4486 goto out_end_trans;
4487 }
4488 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4489 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4490 dest->root_item.received_uuid,
4491 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4492 dest->root_key.objectid);
4493 if (ret && ret != -ENOENT) {
4494 btrfs_abort_transaction(trans, ret);
4495 err = ret;
4496 goto out_end_trans;
4497 }
4498 }
4499
4500out_end_trans:
4501 trans->block_rsv = NULL;
4502 trans->bytes_reserved = 0;
4503 ret = btrfs_end_transaction(trans);
4504 if (ret && !err)
4505 err = ret;
4506 inode->i_flags |= S_DEAD;
4507out_release:
4508 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4509out_up_write:
4510 up_write(&fs_info->subvol_sem);
4511 if (err) {
4512 spin_lock(&dest->root_item_lock);
4513 root_flags = btrfs_root_flags(&dest->root_item);
4514 btrfs_set_root_flags(&dest->root_item,
4515 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4516 spin_unlock(&dest->root_item_lock);
4517 } else {
4518 d_invalidate(dentry);
20a68004 4519 btrfs_prune_dentries(dest);
f60a2364
MT
4520 ASSERT(dest->send_in_progress == 0);
4521
4522 /* the last ref */
4523 if (dest->ino_cache_inode) {
4524 iput(dest->ino_cache_inode);
4525 dest->ino_cache_inode = NULL;
4526 }
4527 }
4528
4529 return err;
4530}
4531
39279cc3
CM
4532static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4533{
2b0143b5 4534 struct inode *inode = d_inode(dentry);
1832a6d5 4535 int err = 0;
39279cc3 4536 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4537 struct btrfs_trans_handle *trans;
44f714da 4538 u64 last_unlink_trans;
39279cc3 4539
b3ae244e 4540 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4541 return -ENOTEMPTY;
4a0cc7ca 4542 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4543 return btrfs_delete_subvolume(dir, dentry);
134d4512 4544
d52be818 4545 trans = __unlink_start_trans(dir);
a22285a6 4546 if (IS_ERR(trans))
5df6a9f6 4547 return PTR_ERR(trans);
5df6a9f6 4548
4a0cc7ca 4549 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4550 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4551 BTRFS_I(inode)->location.objectid,
4552 dentry->d_name.name,
4553 dentry->d_name.len);
4554 goto out;
4555 }
4556
73f2e545 4557 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4558 if (err)
4df27c4d 4559 goto out;
7b128766 4560
44f714da
FM
4561 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4562
39279cc3 4563 /* now the directory is empty */
4ec5934e
NB
4564 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4565 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4566 dentry->d_name.len);
44f714da 4567 if (!err) {
6ef06d27 4568 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4569 /*
4570 * Propagate the last_unlink_trans value of the deleted dir to
4571 * its parent directory. This is to prevent an unrecoverable
4572 * log tree in the case we do something like this:
4573 * 1) create dir foo
4574 * 2) create snapshot under dir foo
4575 * 3) delete the snapshot
4576 * 4) rmdir foo
4577 * 5) mkdir foo
4578 * 6) fsync foo or some file inside foo
4579 */
4580 if (last_unlink_trans >= trans->transid)
4581 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4582 }
4df27c4d 4583out:
3a45bb20 4584 btrfs_end_transaction(trans);
2ff7e61e 4585 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4586
39279cc3
CM
4587 return err;
4588}
4589
ddfae63c
JB
4590/*
4591 * Return this if we need to call truncate_block for the last bit of the
4592 * truncate.
4593 */
4594#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4595
39279cc3
CM
4596/*
4597 * this can truncate away extent items, csum items and directory items.
4598 * It starts at a high offset and removes keys until it can't find
d352ac68 4599 * any higher than new_size
39279cc3
CM
4600 *
4601 * csum items that cross the new i_size are truncated to the new size
4602 * as well.
7b128766
JB
4603 *
4604 * min_type is the minimum key type to truncate down to. If set to 0, this
4605 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4606 */
8082510e
YZ
4607int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4608 struct btrfs_root *root,
4609 struct inode *inode,
4610 u64 new_size, u32 min_type)
39279cc3 4611{
0b246afa 4612 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4613 struct btrfs_path *path;
5f39d397 4614 struct extent_buffer *leaf;
39279cc3 4615 struct btrfs_file_extent_item *fi;
8082510e
YZ
4616 struct btrfs_key key;
4617 struct btrfs_key found_key;
39279cc3 4618 u64 extent_start = 0;
db94535d 4619 u64 extent_num_bytes = 0;
5d4f98a2 4620 u64 extent_offset = 0;
39279cc3 4621 u64 item_end = 0;
c1aa4575 4622 u64 last_size = new_size;
8082510e 4623 u32 found_type = (u8)-1;
39279cc3
CM
4624 int found_extent;
4625 int del_item;
85e21bac
CM
4626 int pending_del_nr = 0;
4627 int pending_del_slot = 0;
179e29e4 4628 int extent_type = -1;
8082510e 4629 int ret;
4a0cc7ca 4630 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4631 u64 bytes_deleted = 0;
897ca819
TM
4632 bool be_nice = false;
4633 bool should_throttle = false;
8082510e
YZ
4634
4635 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4636
28ed1345
CM
4637 /*
4638 * for non-free space inodes and ref cows, we want to back off from
4639 * time to time
4640 */
70ddc553 4641 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4642 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4643 be_nice = true;
28ed1345 4644
0eb0e19c
MF
4645 path = btrfs_alloc_path();
4646 if (!path)
4647 return -ENOMEM;
e4058b54 4648 path->reada = READA_BACK;
0eb0e19c 4649
5dc562c5
JB
4650 /*
4651 * We want to drop from the next block forward in case this new size is
4652 * not block aligned since we will be keeping the last block of the
4653 * extent just the way it is.
4654 */
27cdeb70 4655 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4656 root == fs_info->tree_root)
dcdbc059 4657 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4658 fs_info->sectorsize),
da17066c 4659 (u64)-1, 0);
8082510e 4660
16cdcec7
MX
4661 /*
4662 * This function is also used to drop the items in the log tree before
4663 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4664 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4665 * items.
4666 */
4667 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4668 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4669
33345d01 4670 key.objectid = ino;
39279cc3 4671 key.offset = (u64)-1;
5f39d397
CM
4672 key.type = (u8)-1;
4673
85e21bac 4674search_again:
28ed1345
CM
4675 /*
4676 * with a 16K leaf size and 128MB extents, you can actually queue
4677 * up a huge file in a single leaf. Most of the time that
4678 * bytes_deleted is > 0, it will be huge by the time we get here
4679 */
fd86a3a3
OS
4680 if (be_nice && bytes_deleted > SZ_32M &&
4681 btrfs_should_end_transaction(trans)) {
4682 ret = -EAGAIN;
4683 goto out;
28ed1345
CM
4684 }
4685
b9473439 4686 path->leave_spinning = 1;
85e21bac 4687 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4688 if (ret < 0)
8082510e 4689 goto out;
d397712b 4690
85e21bac 4691 if (ret > 0) {
fd86a3a3 4692 ret = 0;
e02119d5
CM
4693 /* there are no items in the tree for us to truncate, we're
4694 * done
4695 */
8082510e
YZ
4696 if (path->slots[0] == 0)
4697 goto out;
85e21bac
CM
4698 path->slots[0]--;
4699 }
4700
d397712b 4701 while (1) {
39279cc3 4702 fi = NULL;
5f39d397
CM
4703 leaf = path->nodes[0];
4704 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4705 found_type = found_key.type;
39279cc3 4706
33345d01 4707 if (found_key.objectid != ino)
39279cc3 4708 break;
5f39d397 4709
85e21bac 4710 if (found_type < min_type)
39279cc3
CM
4711 break;
4712
5f39d397 4713 item_end = found_key.offset;
39279cc3 4714 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4715 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4716 struct btrfs_file_extent_item);
179e29e4
CM
4717 extent_type = btrfs_file_extent_type(leaf, fi);
4718 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4719 item_end +=
db94535d 4720 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4721
4722 trace_btrfs_truncate_show_fi_regular(
4723 BTRFS_I(inode), leaf, fi,
4724 found_key.offset);
179e29e4 4725 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4726 item_end += btrfs_file_extent_ram_bytes(leaf,
4727 fi);
09ed2f16
LB
4728
4729 trace_btrfs_truncate_show_fi_inline(
4730 BTRFS_I(inode), leaf, fi, path->slots[0],
4731 found_key.offset);
39279cc3 4732 }
008630c1 4733 item_end--;
39279cc3 4734 }
8082510e
YZ
4735 if (found_type > min_type) {
4736 del_item = 1;
4737 } else {
76b42abb 4738 if (item_end < new_size)
b888db2b 4739 break;
8082510e
YZ
4740 if (found_key.offset >= new_size)
4741 del_item = 1;
4742 else
4743 del_item = 0;
39279cc3 4744 }
39279cc3 4745 found_extent = 0;
39279cc3 4746 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4747 if (found_type != BTRFS_EXTENT_DATA_KEY)
4748 goto delete;
4749
4750 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4751 u64 num_dec;
db94535d 4752 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4753 if (!del_item) {
db94535d
CM
4754 u64 orig_num_bytes =
4755 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4756 extent_num_bytes = ALIGN(new_size -
4757 found_key.offset,
0b246afa 4758 fs_info->sectorsize);
db94535d
CM
4759 btrfs_set_file_extent_num_bytes(leaf, fi,
4760 extent_num_bytes);
4761 num_dec = (orig_num_bytes -
9069218d 4762 extent_num_bytes);
27cdeb70
MX
4763 if (test_bit(BTRFS_ROOT_REF_COWS,
4764 &root->state) &&
4765 extent_start != 0)
a76a3cd4 4766 inode_sub_bytes(inode, num_dec);
5f39d397 4767 btrfs_mark_buffer_dirty(leaf);
39279cc3 4768 } else {
db94535d
CM
4769 extent_num_bytes =
4770 btrfs_file_extent_disk_num_bytes(leaf,
4771 fi);
5d4f98a2
YZ
4772 extent_offset = found_key.offset -
4773 btrfs_file_extent_offset(leaf, fi);
4774
39279cc3 4775 /* FIXME blocksize != 4096 */
9069218d 4776 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4777 if (extent_start != 0) {
4778 found_extent = 1;
27cdeb70
MX
4779 if (test_bit(BTRFS_ROOT_REF_COWS,
4780 &root->state))
a76a3cd4 4781 inode_sub_bytes(inode, num_dec);
e02119d5 4782 }
39279cc3 4783 }
9069218d 4784 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4785 /*
4786 * we can't truncate inline items that have had
4787 * special encodings
4788 */
4789 if (!del_item &&
c8b97818 4790 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4791 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4792 btrfs_file_extent_compression(leaf, fi) == 0) {
4793 u32 size = (u32)(new_size - found_key.offset);
4794
4795 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4796 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4797 btrfs_truncate_item(path, size, 1);
ddfae63c 4798 } else if (!del_item) {
514ac8ad 4799 /*
ddfae63c
JB
4800 * We have to bail so the last_size is set to
4801 * just before this extent.
514ac8ad 4802 */
fd86a3a3 4803 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4804 break;
4805 }
0305cd5f 4806
ddfae63c 4807 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4808 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4809 }
179e29e4 4810delete:
ddfae63c
JB
4811 if (del_item)
4812 last_size = found_key.offset;
4813 else
4814 last_size = new_size;
39279cc3 4815 if (del_item) {
85e21bac
CM
4816 if (!pending_del_nr) {
4817 /* no pending yet, add ourselves */
4818 pending_del_slot = path->slots[0];
4819 pending_del_nr = 1;
4820 } else if (pending_del_nr &&
4821 path->slots[0] + 1 == pending_del_slot) {
4822 /* hop on the pending chunk */
4823 pending_del_nr++;
4824 pending_del_slot = path->slots[0];
4825 } else {
d397712b 4826 BUG();
85e21bac 4827 }
39279cc3
CM
4828 } else {
4829 break;
4830 }
897ca819 4831 should_throttle = false;
28f75a0e 4832
27cdeb70
MX
4833 if (found_extent &&
4834 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4835 root == fs_info->tree_root)) {
ffd4bb2a
QW
4836 struct btrfs_ref ref = { 0 };
4837
b9473439 4838 btrfs_set_path_blocking(path);
28ed1345 4839 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4840
4841 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4842 extent_start, extent_num_bytes, 0);
4843 ref.real_root = root->root_key.objectid;
4844 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4845 ino, extent_offset);
4846 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4847 if (ret) {
4848 btrfs_abort_transaction(trans, ret);
4849 break;
4850 }
28f75a0e 4851 if (be_nice) {
7c861627 4852 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4853 should_throttle = true;
28f75a0e 4854 }
39279cc3 4855 }
85e21bac 4856
8082510e
YZ
4857 if (found_type == BTRFS_INODE_ITEM_KEY)
4858 break;
4859
4860 if (path->slots[0] == 0 ||
1262133b 4861 path->slots[0] != pending_del_slot ||
28bad212 4862 should_throttle) {
8082510e
YZ
4863 if (pending_del_nr) {
4864 ret = btrfs_del_items(trans, root, path,
4865 pending_del_slot,
4866 pending_del_nr);
79787eaa 4867 if (ret) {
66642832 4868 btrfs_abort_transaction(trans, ret);
fd86a3a3 4869 break;
79787eaa 4870 }
8082510e
YZ
4871 pending_del_nr = 0;
4872 }
b3b4aa74 4873 btrfs_release_path(path);
28bad212 4874
28f75a0e 4875 /*
28bad212
JB
4876 * We can generate a lot of delayed refs, so we need to
4877 * throttle every once and a while and make sure we're
4878 * adding enough space to keep up with the work we are
4879 * generating. Since we hold a transaction here we
4880 * can't flush, and we don't want to FLUSH_LIMIT because
4881 * we could have generated too many delayed refs to
4882 * actually allocate, so just bail if we're short and
4883 * let the normal reservation dance happen higher up.
28f75a0e 4884 */
28bad212
JB
4885 if (should_throttle) {
4886 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4887 BTRFS_RESERVE_NO_FLUSH);
4888 if (ret) {
4889 ret = -EAGAIN;
4890 break;
4891 }
28f75a0e 4892 }
85e21bac 4893 goto search_again;
8082510e
YZ
4894 } else {
4895 path->slots[0]--;
85e21bac 4896 }
39279cc3 4897 }
8082510e 4898out:
fd86a3a3
OS
4899 if (ret >= 0 && pending_del_nr) {
4900 int err;
4901
4902 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4903 pending_del_nr);
fd86a3a3
OS
4904 if (err) {
4905 btrfs_abort_transaction(trans, err);
4906 ret = err;
4907 }
85e21bac 4908 }
76b42abb
FM
4909 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4910 ASSERT(last_size >= new_size);
fd86a3a3 4911 if (!ret && last_size > new_size)
76b42abb 4912 last_size = new_size;
7f4f6e0a 4913 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4914 }
28ed1345 4915
39279cc3 4916 btrfs_free_path(path);
fd86a3a3 4917 return ret;
39279cc3
CM
4918}
4919
4920/*
9703fefe 4921 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4922 * @inode - inode that we're zeroing
4923 * @from - the offset to start zeroing
4924 * @len - the length to zero, 0 to zero the entire range respective to the
4925 * offset
4926 * @front - zero up to the offset instead of from the offset on
4927 *
9703fefe 4928 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4929 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4930 */
9703fefe 4931int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4932 int front)
39279cc3 4933{
0b246afa 4934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4935 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4937 struct btrfs_ordered_extent *ordered;
2ac55d41 4938 struct extent_state *cached_state = NULL;
364ecf36 4939 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4940 char *kaddr;
0b246afa 4941 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4942 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4943 unsigned offset = from & (blocksize - 1);
39279cc3 4944 struct page *page;
3b16a4e3 4945 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4946 int ret = 0;
9703fefe
CR
4947 u64 block_start;
4948 u64 block_end;
39279cc3 4949
b03ebd99
NB
4950 if (IS_ALIGNED(offset, blocksize) &&
4951 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4952 goto out;
9703fefe 4953
8b62f87b
JB
4954 block_start = round_down(from, blocksize);
4955 block_end = block_start + blocksize - 1;
4956
364ecf36 4957 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4958 block_start, blocksize);
5d5e103a
JB
4959 if (ret)
4960 goto out;
39279cc3 4961
211c17f5 4962again:
3b16a4e3 4963 page = find_or_create_page(mapping, index, mask);
5d5e103a 4964 if (!page) {
bc42bda2 4965 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 4966 block_start, blocksize, true);
8702ba93 4967 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4968 ret = -ENOMEM;
39279cc3 4969 goto out;
5d5e103a 4970 }
e6dcd2dc 4971
39279cc3 4972 if (!PageUptodate(page)) {
9ebefb18 4973 ret = btrfs_readpage(NULL, page);
39279cc3 4974 lock_page(page);
211c17f5
CM
4975 if (page->mapping != mapping) {
4976 unlock_page(page);
09cbfeaf 4977 put_page(page);
211c17f5
CM
4978 goto again;
4979 }
39279cc3
CM
4980 if (!PageUptodate(page)) {
4981 ret = -EIO;
89642229 4982 goto out_unlock;
39279cc3
CM
4983 }
4984 }
211c17f5 4985 wait_on_page_writeback(page);
e6dcd2dc 4986
9703fefe 4987 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4988 set_page_extent_mapped(page);
4989
9703fefe 4990 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4991 if (ordered) {
9703fefe 4992 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4993 &cached_state);
e6dcd2dc 4994 unlock_page(page);
09cbfeaf 4995 put_page(page);
eb84ae03 4996 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4997 btrfs_put_ordered_extent(ordered);
4998 goto again;
4999 }
5000
9703fefe 5001 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
5002 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5003 0, 0, &cached_state);
5d5e103a 5004
e3b8a485 5005 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 5006 &cached_state);
9ed74f2d 5007 if (ret) {
9703fefe 5008 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5009 &cached_state);
9ed74f2d
JB
5010 goto out_unlock;
5011 }
5012
9703fefe 5013 if (offset != blocksize) {
2aaa6655 5014 if (!len)
9703fefe 5015 len = blocksize - offset;
e6dcd2dc 5016 kaddr = kmap(page);
2aaa6655 5017 if (front)
9703fefe
CR
5018 memset(kaddr + (block_start - page_offset(page)),
5019 0, offset);
2aaa6655 5020 else
9703fefe
CR
5021 memset(kaddr + (block_start - page_offset(page)) + offset,
5022 0, len);
e6dcd2dc
CM
5023 flush_dcache_page(page);
5024 kunmap(page);
5025 }
247e743c 5026 ClearPageChecked(page);
e6dcd2dc 5027 set_page_dirty(page);
e43bbe5e 5028 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 5029
89642229 5030out_unlock:
5d5e103a 5031 if (ret)
bc42bda2 5032 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595 5033 blocksize, true);
8702ba93 5034 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 5035 unlock_page(page);
09cbfeaf 5036 put_page(page);
39279cc3 5037out:
364ecf36 5038 extent_changeset_free(data_reserved);
39279cc3
CM
5039 return ret;
5040}
5041
16e7549f
JB
5042static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5043 u64 offset, u64 len)
5044{
0b246afa 5045 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
5046 struct btrfs_trans_handle *trans;
5047 int ret;
5048
5049 /*
5050 * Still need to make sure the inode looks like it's been updated so
5051 * that any holes get logged if we fsync.
5052 */
0b246afa
JM
5053 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5054 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
5055 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5056 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5057 return 0;
5058 }
5059
5060 /*
5061 * 1 - for the one we're dropping
5062 * 1 - for the one we're adding
5063 * 1 - for updating the inode.
5064 */
5065 trans = btrfs_start_transaction(root, 3);
5066 if (IS_ERR(trans))
5067 return PTR_ERR(trans);
5068
5069 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5070 if (ret) {
66642832 5071 btrfs_abort_transaction(trans, ret);
3a45bb20 5072 btrfs_end_transaction(trans);
16e7549f
JB
5073 return ret;
5074 }
5075
f85b7379
DS
5076 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5077 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5078 if (ret)
66642832 5079 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5080 else
5081 btrfs_update_inode(trans, root, inode);
3a45bb20 5082 btrfs_end_transaction(trans);
16e7549f
JB
5083 return ret;
5084}
5085
695a0d0d
JB
5086/*
5087 * This function puts in dummy file extents for the area we're creating a hole
5088 * for. So if we are truncating this file to a larger size we need to insert
5089 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5090 * the range between oldsize and size
5091 */
a41ad394 5092int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5093{
0b246afa 5094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5095 struct btrfs_root *root = BTRFS_I(inode)->root;
5096 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5097 struct extent_map *em = NULL;
2ac55d41 5098 struct extent_state *cached_state = NULL;
5dc562c5 5099 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5100 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5101 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5102 u64 last_byte;
5103 u64 cur_offset;
5104 u64 hole_size;
9ed74f2d 5105 int err = 0;
39279cc3 5106
a71754fc 5107 /*
9703fefe
CR
5108 * If our size started in the middle of a block we need to zero out the
5109 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5110 * expose stale data.
5111 */
9703fefe 5112 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5113 if (err)
5114 return err;
5115
9036c102
YZ
5116 if (size <= hole_start)
5117 return 0;
5118
23d31bd4
NB
5119 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5120 block_end - 1, &cached_state);
9036c102
YZ
5121 cur_offset = hole_start;
5122 while (1) {
fc4f21b1 5123 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5124 block_end - cur_offset, 0);
79787eaa
JM
5125 if (IS_ERR(em)) {
5126 err = PTR_ERR(em);
f2767956 5127 em = NULL;
79787eaa
JM
5128 break;
5129 }
9036c102 5130 last_byte = min(extent_map_end(em), block_end);
0b246afa 5131 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5132 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5133 struct extent_map *hole_em;
9036c102 5134 hole_size = last_byte - cur_offset;
9ed74f2d 5135
16e7549f
JB
5136 err = maybe_insert_hole(root, inode, cur_offset,
5137 hole_size);
5138 if (err)
3893e33b 5139 break;
dcdbc059 5140 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5141 cur_offset + hole_size - 1, 0);
5142 hole_em = alloc_extent_map();
5143 if (!hole_em) {
5144 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5145 &BTRFS_I(inode)->runtime_flags);
5146 goto next;
5147 }
5148 hole_em->start = cur_offset;
5149 hole_em->len = hole_size;
5150 hole_em->orig_start = cur_offset;
8082510e 5151
5dc562c5
JB
5152 hole_em->block_start = EXTENT_MAP_HOLE;
5153 hole_em->block_len = 0;
b4939680 5154 hole_em->orig_block_len = 0;
cc95bef6 5155 hole_em->ram_bytes = hole_size;
0b246afa 5156 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5157 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5158 hole_em->generation = fs_info->generation;
8082510e 5159
5dc562c5
JB
5160 while (1) {
5161 write_lock(&em_tree->lock);
09a2a8f9 5162 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5163 write_unlock(&em_tree->lock);
5164 if (err != -EEXIST)
5165 break;
dcdbc059
NB
5166 btrfs_drop_extent_cache(BTRFS_I(inode),
5167 cur_offset,
5dc562c5
JB
5168 cur_offset +
5169 hole_size - 1, 0);
5170 }
5171 free_extent_map(hole_em);
9036c102 5172 }
16e7549f 5173next:
9036c102 5174 free_extent_map(em);
a22285a6 5175 em = NULL;
9036c102 5176 cur_offset = last_byte;
8082510e 5177 if (cur_offset >= block_end)
9036c102
YZ
5178 break;
5179 }
a22285a6 5180 free_extent_map(em);
e43bbe5e 5181 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5182 return err;
5183}
39279cc3 5184
3972f260 5185static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5186{
f4a2f4c5
MX
5187 struct btrfs_root *root = BTRFS_I(inode)->root;
5188 struct btrfs_trans_handle *trans;
a41ad394 5189 loff_t oldsize = i_size_read(inode);
3972f260
ES
5190 loff_t newsize = attr->ia_size;
5191 int mask = attr->ia_valid;
8082510e
YZ
5192 int ret;
5193
3972f260
ES
5194 /*
5195 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5196 * special case where we need to update the times despite not having
5197 * these flags set. For all other operations the VFS set these flags
5198 * explicitly if it wants a timestamp update.
5199 */
dff6efc3
CH
5200 if (newsize != oldsize) {
5201 inode_inc_iversion(inode);
5202 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5203 inode->i_ctime = inode->i_mtime =
c2050a45 5204 current_time(inode);
dff6efc3 5205 }
3972f260 5206
a41ad394 5207 if (newsize > oldsize) {
9ea24bbe 5208 /*
ea14b57f 5209 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5210 * This is to ensure the snapshot captures a fully consistent
5211 * state of this file - if the snapshot captures this expanding
5212 * truncation, it must capture all writes that happened before
5213 * this truncation.
5214 */
0bc19f90 5215 btrfs_wait_for_snapshot_creation(root);
a41ad394 5216 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5217 if (ret) {
ea14b57f 5218 btrfs_end_write_no_snapshotting(root);
8082510e 5219 return ret;
9ea24bbe 5220 }
8082510e 5221
f4a2f4c5 5222 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5223 if (IS_ERR(trans)) {
ea14b57f 5224 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5225 return PTR_ERR(trans);
9ea24bbe 5226 }
f4a2f4c5
MX
5227
5228 i_size_write(inode, newsize);
5229 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5230 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5231 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5232 btrfs_end_write_no_snapshotting(root);
3a45bb20 5233 btrfs_end_transaction(trans);
a41ad394 5234 } else {
8082510e 5235
a41ad394
JB
5236 /*
5237 * We're truncating a file that used to have good data down to
5238 * zero. Make sure it gets into the ordered flush list so that
5239 * any new writes get down to disk quickly.
5240 */
5241 if (newsize == 0)
72ac3c0d
JB
5242 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5243 &BTRFS_I(inode)->runtime_flags);
8082510e 5244
a41ad394 5245 truncate_setsize(inode, newsize);
2e60a51e 5246
52042d8e 5247 /* Disable nonlocked read DIO to avoid the endless truncate */
abcefb1e 5248 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5249 inode_dio_wait(inode);
0b581701 5250 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5251
213e8c55 5252 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5253 if (ret && inode->i_nlink) {
5254 int err;
5255
5256 /*
f7e9e8fc
OS
5257 * Truncate failed, so fix up the in-memory size. We
5258 * adjusted disk_i_size down as we removed extents, so
5259 * wait for disk_i_size to be stable and then update the
5260 * in-memory size to match.
7f4f6e0a 5261 */
f7e9e8fc 5262 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5263 if (err)
f7e9e8fc
OS
5264 return err;
5265 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5266 }
8082510e
YZ
5267 }
5268
a41ad394 5269 return ret;
8082510e
YZ
5270}
5271
9036c102
YZ
5272static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5273{
2b0143b5 5274 struct inode *inode = d_inode(dentry);
b83cc969 5275 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5276 int err;
39279cc3 5277
b83cc969
LZ
5278 if (btrfs_root_readonly(root))
5279 return -EROFS;
5280
31051c85 5281 err = setattr_prepare(dentry, attr);
9036c102
YZ
5282 if (err)
5283 return err;
2bf5a725 5284
5a3f23d5 5285 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5286 err = btrfs_setsize(inode, attr);
8082510e
YZ
5287 if (err)
5288 return err;
39279cc3 5289 }
9036c102 5290
1025774c
CH
5291 if (attr->ia_valid) {
5292 setattr_copy(inode, attr);
0c4d2d95 5293 inode_inc_iversion(inode);
22c44fe6 5294 err = btrfs_dirty_inode(inode);
1025774c 5295
22c44fe6 5296 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5297 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5298 }
33268eaf 5299
39279cc3
CM
5300 return err;
5301}
61295eb8 5302
131e404a
FDBM
5303/*
5304 * While truncating the inode pages during eviction, we get the VFS calling
5305 * btrfs_invalidatepage() against each page of the inode. This is slow because
5306 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5307 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5308 * extent_state structures over and over, wasting lots of time.
5309 *
5310 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5311 * those expensive operations on a per page basis and do only the ordered io
5312 * finishing, while we release here the extent_map and extent_state structures,
5313 * without the excessive merging and splitting.
5314 */
5315static void evict_inode_truncate_pages(struct inode *inode)
5316{
5317 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5318 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5319 struct rb_node *node;
5320
5321 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5322 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5323
5324 write_lock(&map_tree->lock);
07e1ce09 5325 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5326 struct extent_map *em;
5327
07e1ce09 5328 node = rb_first_cached(&map_tree->map);
131e404a 5329 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5330 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5331 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5332 remove_extent_mapping(map_tree, em);
5333 free_extent_map(em);
7064dd5c
FM
5334 if (need_resched()) {
5335 write_unlock(&map_tree->lock);
5336 cond_resched();
5337 write_lock(&map_tree->lock);
5338 }
131e404a
FDBM
5339 }
5340 write_unlock(&map_tree->lock);
5341
6ca07097
FM
5342 /*
5343 * Keep looping until we have no more ranges in the io tree.
5344 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5345 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5346 * still in progress (unlocked the pages in the bio but did not yet
5347 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5348 * ranges can still be locked and eviction started because before
5349 * submitting those bios, which are executed by a separate task (work
5350 * queue kthread), inode references (inode->i_count) were not taken
5351 * (which would be dropped in the end io callback of each bio).
5352 * Therefore here we effectively end up waiting for those bios and
5353 * anyone else holding locked ranges without having bumped the inode's
5354 * reference count - if we don't do it, when they access the inode's
5355 * io_tree to unlock a range it may be too late, leading to an
5356 * use-after-free issue.
5357 */
131e404a
FDBM
5358 spin_lock(&io_tree->lock);
5359 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5360 struct extent_state *state;
5361 struct extent_state *cached_state = NULL;
6ca07097
FM
5362 u64 start;
5363 u64 end;
421f0922 5364 unsigned state_flags;
131e404a
FDBM
5365
5366 node = rb_first(&io_tree->state);
5367 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5368 start = state->start;
5369 end = state->end;
421f0922 5370 state_flags = state->state;
131e404a
FDBM
5371 spin_unlock(&io_tree->lock);
5372
ff13db41 5373 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5374
5375 /*
5376 * If still has DELALLOC flag, the extent didn't reach disk,
5377 * and its reserved space won't be freed by delayed_ref.
5378 * So we need to free its reserved space here.
5379 * (Refer to comment in btrfs_invalidatepage, case 2)
5380 *
5381 * Note, end is the bytenr of last byte, so we need + 1 here.
5382 */
421f0922 5383 if (state_flags & EXTENT_DELALLOC)
bc42bda2 5384 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5385
6ca07097 5386 clear_extent_bit(io_tree, start, end,
e182163d
OS
5387 EXTENT_LOCKED | EXTENT_DELALLOC |
5388 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5389 &cached_state);
131e404a 5390
7064dd5c 5391 cond_resched();
131e404a
FDBM
5392 spin_lock(&io_tree->lock);
5393 }
5394 spin_unlock(&io_tree->lock);
5395}
5396
4b9d7b59 5397static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5398 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5399{
5400 struct btrfs_fs_info *fs_info = root->fs_info;
5401 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5402 struct btrfs_trans_handle *trans;
2bd36e7b 5403 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5404 int ret;
4b9d7b59 5405
d3984c90
JB
5406 /*
5407 * Eviction should be taking place at some place safe because of our
5408 * delayed iputs. However the normal flushing code will run delayed
5409 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5410 *
5411 * We reserve the delayed_refs_extra here again because we can't use
5412 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5413 * above. We reserve our extra bit here because we generate a ton of
5414 * delayed refs activity by truncating.
5415 *
5416 * If we cannot make our reservation we'll attempt to steal from the
5417 * global reserve, because we really want to be able to free up space.
5418 */
5419 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5420 BTRFS_RESERVE_FLUSH_EVICT);
5421 if (ret) {
4b9d7b59
OS
5422 /*
5423 * Try to steal from the global reserve if there is space for
5424 * it.
5425 */
d3984c90
JB
5426 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5427 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5428 btrfs_warn(fs_info,
5429 "could not allocate space for delete; will truncate on mount");
5430 return ERR_PTR(-ENOSPC);
5431 }
5432 delayed_refs_extra = 0;
5433 }
4b9d7b59 5434
d3984c90
JB
5435 trans = btrfs_join_transaction(root);
5436 if (IS_ERR(trans))
5437 return trans;
5438
5439 if (delayed_refs_extra) {
5440 trans->block_rsv = &fs_info->trans_block_rsv;
5441 trans->bytes_reserved = delayed_refs_extra;
5442 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5443 delayed_refs_extra, 1);
4b9d7b59 5444 }
d3984c90 5445 return trans;
4b9d7b59
OS
5446}
5447
bd555975 5448void btrfs_evict_inode(struct inode *inode)
39279cc3 5449{
0b246afa 5450 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5451 struct btrfs_trans_handle *trans;
5452 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5453 struct btrfs_block_rsv *rsv;
39279cc3
CM
5454 int ret;
5455
1abe9b8a 5456 trace_btrfs_inode_evict(inode);
5457
3d48d981 5458 if (!root) {
e8f1bc14 5459 clear_inode(inode);
3d48d981
NB
5460 return;
5461 }
5462
131e404a
FDBM
5463 evict_inode_truncate_pages(inode);
5464
69e9c6c6
SB
5465 if (inode->i_nlink &&
5466 ((btrfs_root_refs(&root->root_item) != 0 &&
5467 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5468 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5469 goto no_delete;
5470
27919067 5471 if (is_bad_inode(inode))
39279cc3 5472 goto no_delete;
5f39d397 5473
7ab7956e 5474 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5475
7b40b695 5476 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5477 goto no_delete;
c71bf099 5478
76dda93c 5479 if (inode->i_nlink > 0) {
69e9c6c6
SB
5480 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5481 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5482 goto no_delete;
5483 }
5484
aa79021f 5485 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5486 if (ret)
0e8c36a9 5487 goto no_delete;
0e8c36a9 5488
2ff7e61e 5489 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5490 if (!rsv)
4289a667 5491 goto no_delete;
2bd36e7b 5492 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5493 rsv->failfast = 1;
4289a667 5494
6ef06d27 5495 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5496
8082510e 5497 while (1) {
ad80cf50 5498 trans = evict_refill_and_join(root, rsv);
27919067
OS
5499 if (IS_ERR(trans))
5500 goto free_rsv;
7b128766 5501
4289a667
JB
5502 trans->block_rsv = rsv;
5503
d68fc57b 5504 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5505 trans->block_rsv = &fs_info->trans_block_rsv;
5506 btrfs_end_transaction(trans);
5507 btrfs_btree_balance_dirty(fs_info);
5508 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5509 goto free_rsv;
5510 else if (!ret)
8082510e 5511 break;
8082510e 5512 }
5f39d397 5513
4ef31a45 5514 /*
27919067
OS
5515 * Errors here aren't a big deal, it just means we leave orphan items in
5516 * the tree. They will be cleaned up on the next mount. If the inode
5517 * number gets reused, cleanup deletes the orphan item without doing
5518 * anything, and unlink reuses the existing orphan item.
5519 *
5520 * If it turns out that we are dropping too many of these, we might want
5521 * to add a mechanism for retrying these after a commit.
4ef31a45 5522 */
ad80cf50 5523 trans = evict_refill_and_join(root, rsv);
27919067
OS
5524 if (!IS_ERR(trans)) {
5525 trans->block_rsv = rsv;
5526 btrfs_orphan_del(trans, BTRFS_I(inode));
5527 trans->block_rsv = &fs_info->trans_block_rsv;
5528 btrfs_end_transaction(trans);
5529 }
54aa1f4d 5530
0b246afa 5531 if (!(root == fs_info->tree_root ||
581bb050 5532 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5533 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5534
27919067
OS
5535free_rsv:
5536 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5537no_delete:
27919067
OS
5538 /*
5539 * If we didn't successfully delete, the orphan item will still be in
5540 * the tree and we'll retry on the next mount. Again, we might also want
5541 * to retry these periodically in the future.
5542 */
f48d1cf5 5543 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5544 clear_inode(inode);
39279cc3
CM
5545}
5546
5547/*
6bf9e4bd
QW
5548 * Return the key found in the dir entry in the location pointer, fill @type
5549 * with BTRFS_FT_*, and return 0.
5550 *
005d6712
SY
5551 * If no dir entries were found, returns -ENOENT.
5552 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5553 */
5554static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5555 struct btrfs_key *location, u8 *type)
39279cc3
CM
5556{
5557 const char *name = dentry->d_name.name;
5558 int namelen = dentry->d_name.len;
5559 struct btrfs_dir_item *di;
5560 struct btrfs_path *path;
5561 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5562 int ret = 0;
39279cc3
CM
5563
5564 path = btrfs_alloc_path();
d8926bb3
MF
5565 if (!path)
5566 return -ENOMEM;
3954401f 5567
f85b7379
DS
5568 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5569 name, namelen, 0);
3cf5068f
LB
5570 if (IS_ERR_OR_NULL(di)) {
5571 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5572 goto out;
5573 }
d397712b 5574
5f39d397 5575 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5576 if (location->type != BTRFS_INODE_ITEM_KEY &&
5577 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5578 ret = -EUCLEAN;
56a0e706
LB
5579 btrfs_warn(root->fs_info,
5580"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5581 __func__, name, btrfs_ino(BTRFS_I(dir)),
5582 location->objectid, location->type, location->offset);
56a0e706 5583 }
6bf9e4bd
QW
5584 if (!ret)
5585 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5586out:
39279cc3
CM
5587 btrfs_free_path(path);
5588 return ret;
5589}
5590
5591/*
5592 * when we hit a tree root in a directory, the btrfs part of the inode
5593 * needs to be changed to reflect the root directory of the tree root. This
5594 * is kind of like crossing a mount point.
5595 */
2ff7e61e 5596static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5597 struct inode *dir,
5598 struct dentry *dentry,
5599 struct btrfs_key *location,
5600 struct btrfs_root **sub_root)
39279cc3 5601{
4df27c4d
YZ
5602 struct btrfs_path *path;
5603 struct btrfs_root *new_root;
5604 struct btrfs_root_ref *ref;
5605 struct extent_buffer *leaf;
1d4c08e0 5606 struct btrfs_key key;
4df27c4d
YZ
5607 int ret;
5608 int err = 0;
39279cc3 5609
4df27c4d
YZ
5610 path = btrfs_alloc_path();
5611 if (!path) {
5612 err = -ENOMEM;
5613 goto out;
5614 }
39279cc3 5615
4df27c4d 5616 err = -ENOENT;
1d4c08e0
DS
5617 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5618 key.type = BTRFS_ROOT_REF_KEY;
5619 key.offset = location->objectid;
5620
0b246afa 5621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5622 if (ret) {
5623 if (ret < 0)
5624 err = ret;
5625 goto out;
5626 }
39279cc3 5627
4df27c4d
YZ
5628 leaf = path->nodes[0];
5629 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5630 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5631 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5632 goto out;
39279cc3 5633
4df27c4d
YZ
5634 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5635 (unsigned long)(ref + 1),
5636 dentry->d_name.len);
5637 if (ret)
5638 goto out;
5639
b3b4aa74 5640 btrfs_release_path(path);
4df27c4d 5641
0b246afa 5642 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5643 if (IS_ERR(new_root)) {
5644 err = PTR_ERR(new_root);
5645 goto out;
5646 }
5647
4df27c4d
YZ
5648 *sub_root = new_root;
5649 location->objectid = btrfs_root_dirid(&new_root->root_item);
5650 location->type = BTRFS_INODE_ITEM_KEY;
5651 location->offset = 0;
5652 err = 0;
5653out:
5654 btrfs_free_path(path);
5655 return err;
39279cc3
CM
5656}
5657
5d4f98a2
YZ
5658static void inode_tree_add(struct inode *inode)
5659{
5660 struct btrfs_root *root = BTRFS_I(inode)->root;
5661 struct btrfs_inode *entry;
03e860bd
NP
5662 struct rb_node **p;
5663 struct rb_node *parent;
cef21937 5664 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5665 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5666
1d3382cb 5667 if (inode_unhashed(inode))
76dda93c 5668 return;
e1409cef 5669 parent = NULL;
5d4f98a2 5670 spin_lock(&root->inode_lock);
e1409cef 5671 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5672 while (*p) {
5673 parent = *p;
5674 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5675
37508515 5676 if (ino < btrfs_ino(entry))
03e860bd 5677 p = &parent->rb_left;
37508515 5678 else if (ino > btrfs_ino(entry))
03e860bd 5679 p = &parent->rb_right;
5d4f98a2
YZ
5680 else {
5681 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5682 (I_WILL_FREE | I_FREEING)));
cef21937 5683 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5684 RB_CLEAR_NODE(parent);
5685 spin_unlock(&root->inode_lock);
cef21937 5686 return;
5d4f98a2
YZ
5687 }
5688 }
cef21937
FDBM
5689 rb_link_node(new, parent, p);
5690 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5691 spin_unlock(&root->inode_lock);
5692}
5693
5694static void inode_tree_del(struct inode *inode)
5695{
0b246afa 5696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5697 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5698 int empty = 0;
5d4f98a2 5699
03e860bd 5700 spin_lock(&root->inode_lock);
5d4f98a2 5701 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5702 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5703 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5704 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5705 }
03e860bd 5706 spin_unlock(&root->inode_lock);
76dda93c 5707
69e9c6c6 5708 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5709 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5710 spin_lock(&root->inode_lock);
5711 empty = RB_EMPTY_ROOT(&root->inode_tree);
5712 spin_unlock(&root->inode_lock);
5713 if (empty)
5714 btrfs_add_dead_root(root);
5715 }
5716}
5717
5d4f98a2 5718
e02119d5
CM
5719static int btrfs_init_locked_inode(struct inode *inode, void *p)
5720{
5721 struct btrfs_iget_args *args = p;
90d3e592
CM
5722 inode->i_ino = args->location->objectid;
5723 memcpy(&BTRFS_I(inode)->location, args->location,
5724 sizeof(*args->location));
e02119d5 5725 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5726 return 0;
5727}
5728
5729static int btrfs_find_actor(struct inode *inode, void *opaque)
5730{
5731 struct btrfs_iget_args *args = opaque;
90d3e592 5732 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5733 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5734}
5735
5d4f98a2 5736static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5737 struct btrfs_key *location,
5d4f98a2 5738 struct btrfs_root *root)
39279cc3
CM
5739{
5740 struct inode *inode;
5741 struct btrfs_iget_args args;
90d3e592 5742 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5743
90d3e592 5744 args.location = location;
39279cc3
CM
5745 args.root = root;
5746
778ba82b 5747 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5748 btrfs_init_locked_inode,
5749 (void *)&args);
5750 return inode;
5751}
5752
1a54ef8c
BR
5753/* Get an inode object given its location and corresponding root.
5754 * Returns in *is_new if the inode was read from disk
5755 */
4222ea71
FM
5756struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5757 struct btrfs_root *root, int *new,
5758 struct btrfs_path *path)
1a54ef8c
BR
5759{
5760 struct inode *inode;
5761
90d3e592 5762 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5763 if (!inode)
5d4f98a2 5764 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5765
5766 if (inode->i_state & I_NEW) {
67710892
FM
5767 int ret;
5768
4222ea71 5769 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5770 if (!ret) {
1748f843
MF
5771 inode_tree_add(inode);
5772 unlock_new_inode(inode);
5773 if (new)
5774 *new = 1;
5775 } else {
f5b3a417
AV
5776 iget_failed(inode);
5777 /*
5778 * ret > 0 can come from btrfs_search_slot called by
5779 * btrfs_read_locked_inode, this means the inode item
5780 * was not found.
5781 */
5782 if (ret > 0)
5783 ret = -ENOENT;
5784 inode = ERR_PTR(ret);
1748f843
MF
5785 }
5786 }
5787
1a54ef8c
BR
5788 return inode;
5789}
5790
4222ea71
FM
5791struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5792 struct btrfs_root *root, int *new)
5793{
5794 return btrfs_iget_path(s, location, root, new, NULL);
5795}
5796
4df27c4d
YZ
5797static struct inode *new_simple_dir(struct super_block *s,
5798 struct btrfs_key *key,
5799 struct btrfs_root *root)
5800{
5801 struct inode *inode = new_inode(s);
5802
5803 if (!inode)
5804 return ERR_PTR(-ENOMEM);
5805
4df27c4d
YZ
5806 BTRFS_I(inode)->root = root;
5807 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5808 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5809
5810 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5811 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5812 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5813 inode->i_fop = &simple_dir_operations;
5814 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5815 inode->i_mtime = current_time(inode);
9cc97d64 5816 inode->i_atime = inode->i_mtime;
5817 inode->i_ctime = inode->i_mtime;
d3c6be6f 5818 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5819
5820 return inode;
5821}
5822
6bf9e4bd
QW
5823static inline u8 btrfs_inode_type(struct inode *inode)
5824{
5825 /*
5826 * Compile-time asserts that generic FT_* types still match
5827 * BTRFS_FT_* types
5828 */
5829 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5830 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5831 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5832 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5833 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5834 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5835 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5836 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5837
5838 return fs_umode_to_ftype(inode->i_mode);
5839}
5840
3de4586c 5841struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5842{
0b246afa 5843 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5844 struct inode *inode;
4df27c4d 5845 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5846 struct btrfs_root *sub_root = root;
5847 struct btrfs_key location;
6bf9e4bd 5848 u8 di_type = 0;
76dda93c 5849 int index;
b4aff1f8 5850 int ret = 0;
39279cc3
CM
5851
5852 if (dentry->d_name.len > BTRFS_NAME_LEN)
5853 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5854
6bf9e4bd 5855 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5856 if (ret < 0)
5857 return ERR_PTR(ret);
5f39d397 5858
4df27c4d 5859 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5860 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
6bf9e4bd
QW
5861 if (IS_ERR(inode))
5862 return inode;
5863
5864 /* Do extra check against inode mode with di_type */
5865 if (btrfs_inode_type(inode) != di_type) {
5866 btrfs_crit(fs_info,
5867"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5868 inode->i_mode, btrfs_inode_type(inode),
5869 di_type);
5870 iput(inode);
5871 return ERR_PTR(-EUCLEAN);
5872 }
4df27c4d
YZ
5873 return inode;
5874 }
5875
0b246afa 5876 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5877 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5878 &location, &sub_root);
5879 if (ret < 0) {
5880 if (ret != -ENOENT)
5881 inode = ERR_PTR(ret);
5882 else
5883 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5884 } else {
73f73415 5885 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5886 }
0b246afa 5887 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5888
34d19bad 5889 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5890 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5891 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5892 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5893 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5894 if (ret) {
5895 iput(inode);
66b4ffd1 5896 inode = ERR_PTR(ret);
01cd3367 5897 }
c71bf099
YZ
5898 }
5899
3de4586c
CM
5900 return inode;
5901}
5902
fe15ce44 5903static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5904{
5905 struct btrfs_root *root;
2b0143b5 5906 struct inode *inode = d_inode(dentry);
76dda93c 5907
848cce0d 5908 if (!inode && !IS_ROOT(dentry))
2b0143b5 5909 inode = d_inode(dentry->d_parent);
76dda93c 5910
848cce0d
LZ
5911 if (inode) {
5912 root = BTRFS_I(inode)->root;
efefb143
YZ
5913 if (btrfs_root_refs(&root->root_item) == 0)
5914 return 1;
848cce0d 5915
4a0cc7ca 5916 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5917 return 1;
efefb143 5918 }
76dda93c
YZ
5919 return 0;
5920}
5921
3de4586c 5922static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5923 unsigned int flags)
3de4586c 5924{
3837d208 5925 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5926
3837d208
AV
5927 if (inode == ERR_PTR(-ENOENT))
5928 inode = NULL;
41d28bca 5929 return d_splice_alias(inode, dentry);
39279cc3
CM
5930}
5931
23b5ec74
JB
5932/*
5933 * All this infrastructure exists because dir_emit can fault, and we are holding
5934 * the tree lock when doing readdir. For now just allocate a buffer and copy
5935 * our information into that, and then dir_emit from the buffer. This is
5936 * similar to what NFS does, only we don't keep the buffer around in pagecache
5937 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5938 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5939 * tree lock.
5940 */
5941static int btrfs_opendir(struct inode *inode, struct file *file)
5942{
5943 struct btrfs_file_private *private;
5944
5945 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5946 if (!private)
5947 return -ENOMEM;
5948 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5949 if (!private->filldir_buf) {
5950 kfree(private);
5951 return -ENOMEM;
5952 }
5953 file->private_data = private;
5954 return 0;
5955}
5956
5957struct dir_entry {
5958 u64 ino;
5959 u64 offset;
5960 unsigned type;
5961 int name_len;
5962};
5963
5964static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5965{
5966 while (entries--) {
5967 struct dir_entry *entry = addr;
5968 char *name = (char *)(entry + 1);
5969
92d32170
DS
5970 ctx->pos = get_unaligned(&entry->offset);
5971 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5972 get_unaligned(&entry->ino),
5973 get_unaligned(&entry->type)))
23b5ec74 5974 return 1;
92d32170
DS
5975 addr += sizeof(struct dir_entry) +
5976 get_unaligned(&entry->name_len);
23b5ec74
JB
5977 ctx->pos++;
5978 }
5979 return 0;
5980}
5981
9cdda8d3 5982static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5983{
9cdda8d3 5984 struct inode *inode = file_inode(file);
39279cc3 5985 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5986 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5987 struct btrfs_dir_item *di;
5988 struct btrfs_key key;
5f39d397 5989 struct btrfs_key found_key;
39279cc3 5990 struct btrfs_path *path;
23b5ec74 5991 void *addr;
16cdcec7
MX
5992 struct list_head ins_list;
5993 struct list_head del_list;
39279cc3 5994 int ret;
5f39d397 5995 struct extent_buffer *leaf;
39279cc3 5996 int slot;
5f39d397
CM
5997 char *name_ptr;
5998 int name_len;
23b5ec74
JB
5999 int entries = 0;
6000 int total_len = 0;
02dbfc99 6001 bool put = false;
c2951f32 6002 struct btrfs_key location;
5f39d397 6003
9cdda8d3
AV
6004 if (!dir_emit_dots(file, ctx))
6005 return 0;
6006
49593bfa 6007 path = btrfs_alloc_path();
16cdcec7
MX
6008 if (!path)
6009 return -ENOMEM;
ff5714cc 6010
23b5ec74 6011 addr = private->filldir_buf;
e4058b54 6012 path->reada = READA_FORWARD;
49593bfa 6013
c2951f32
JM
6014 INIT_LIST_HEAD(&ins_list);
6015 INIT_LIST_HEAD(&del_list);
6016 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 6017
23b5ec74 6018again:
c2951f32 6019 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 6020 key.offset = ctx->pos;
4a0cc7ca 6021 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 6022
39279cc3
CM
6023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6024 if (ret < 0)
6025 goto err;
49593bfa
DW
6026
6027 while (1) {
23b5ec74
JB
6028 struct dir_entry *entry;
6029
5f39d397 6030 leaf = path->nodes[0];
39279cc3 6031 slot = path->slots[0];
b9e03af0
LZ
6032 if (slot >= btrfs_header_nritems(leaf)) {
6033 ret = btrfs_next_leaf(root, path);
6034 if (ret < 0)
6035 goto err;
6036 else if (ret > 0)
6037 break;
6038 continue;
39279cc3 6039 }
3de4586c 6040
5f39d397
CM
6041 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6042
6043 if (found_key.objectid != key.objectid)
39279cc3 6044 break;
c2951f32 6045 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6046 break;
9cdda8d3 6047 if (found_key.offset < ctx->pos)
b9e03af0 6048 goto next;
c2951f32 6049 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 6050 goto next;
39279cc3 6051 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 6052 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6053 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6054 PAGE_SIZE) {
6055 btrfs_release_path(path);
6056 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6057 if (ret)
6058 goto nopos;
6059 addr = private->filldir_buf;
6060 entries = 0;
6061 total_len = 0;
6062 goto again;
c2951f32 6063 }
23b5ec74
JB
6064
6065 entry = addr;
92d32170 6066 put_unaligned(name_len, &entry->name_len);
23b5ec74 6067 name_ptr = (char *)(entry + 1);
c2951f32
JM
6068 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6069 name_len);
7d157c3d 6070 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 6071 &entry->type);
c2951f32 6072 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6073 put_unaligned(location.objectid, &entry->ino);
6074 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6075 entries++;
6076 addr += sizeof(struct dir_entry) + name_len;
6077 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6078next:
6079 path->slots[0]++;
39279cc3 6080 }
23b5ec74
JB
6081 btrfs_release_path(path);
6082
6083 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6084 if (ret)
6085 goto nopos;
49593bfa 6086
d2fbb2b5 6087 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6088 if (ret)
bc4ef759
DS
6089 goto nopos;
6090
db62efbb
ZB
6091 /*
6092 * Stop new entries from being returned after we return the last
6093 * entry.
6094 *
6095 * New directory entries are assigned a strictly increasing
6096 * offset. This means that new entries created during readdir
6097 * are *guaranteed* to be seen in the future by that readdir.
6098 * This has broken buggy programs which operate on names as
6099 * they're returned by readdir. Until we re-use freed offsets
6100 * we have this hack to stop new entries from being returned
6101 * under the assumption that they'll never reach this huge
6102 * offset.
6103 *
6104 * This is being careful not to overflow 32bit loff_t unless the
6105 * last entry requires it because doing so has broken 32bit apps
6106 * in the past.
6107 */
c2951f32
JM
6108 if (ctx->pos >= INT_MAX)
6109 ctx->pos = LLONG_MAX;
6110 else
6111 ctx->pos = INT_MAX;
39279cc3
CM
6112nopos:
6113 ret = 0;
6114err:
02dbfc99
OS
6115 if (put)
6116 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6117 btrfs_free_path(path);
39279cc3
CM
6118 return ret;
6119}
6120
39279cc3 6121/*
54aa1f4d 6122 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6123 * inode changes. But, it is most likely to find the inode in cache.
6124 * FIXME, needs more benchmarking...there are no reasons other than performance
6125 * to keep or drop this code.
6126 */
48a3b636 6127static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6128{
2ff7e61e 6129 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6130 struct btrfs_root *root = BTRFS_I(inode)->root;
6131 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6132 int ret;
6133
72ac3c0d 6134 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6135 return 0;
39279cc3 6136
7a7eaa40 6137 trans = btrfs_join_transaction(root);
22c44fe6
JB
6138 if (IS_ERR(trans))
6139 return PTR_ERR(trans);
8929ecfa
YZ
6140
6141 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6142 if (ret && ret == -ENOSPC) {
6143 /* whoops, lets try again with the full transaction */
3a45bb20 6144 btrfs_end_transaction(trans);
94b60442 6145 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6146 if (IS_ERR(trans))
6147 return PTR_ERR(trans);
8929ecfa 6148
94b60442 6149 ret = btrfs_update_inode(trans, root, inode);
94b60442 6150 }
3a45bb20 6151 btrfs_end_transaction(trans);
16cdcec7 6152 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6153 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6154
6155 return ret;
6156}
6157
6158/*
6159 * This is a copy of file_update_time. We need this so we can return error on
6160 * ENOSPC for updating the inode in the case of file write and mmap writes.
6161 */
95582b00 6162static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6163 int flags)
22c44fe6 6164{
2bc55652 6165 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6166 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6167
6168 if (btrfs_root_readonly(root))
6169 return -EROFS;
6170
e41f941a 6171 if (flags & S_VERSION)
3a8c7231 6172 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6173 if (flags & S_CTIME)
6174 inode->i_ctime = *now;
6175 if (flags & S_MTIME)
6176 inode->i_mtime = *now;
6177 if (flags & S_ATIME)
6178 inode->i_atime = *now;
3a8c7231 6179 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6180}
6181
d352ac68
CM
6182/*
6183 * find the highest existing sequence number in a directory
6184 * and then set the in-memory index_cnt variable to reflect
6185 * free sequence numbers
6186 */
4c570655 6187static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6188{
4c570655 6189 struct btrfs_root *root = inode->root;
aec7477b
JB
6190 struct btrfs_key key, found_key;
6191 struct btrfs_path *path;
6192 struct extent_buffer *leaf;
6193 int ret;
6194
4c570655 6195 key.objectid = btrfs_ino(inode);
962a298f 6196 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6197 key.offset = (u64)-1;
6198
6199 path = btrfs_alloc_path();
6200 if (!path)
6201 return -ENOMEM;
6202
6203 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6204 if (ret < 0)
6205 goto out;
6206 /* FIXME: we should be able to handle this */
6207 if (ret == 0)
6208 goto out;
6209 ret = 0;
6210
6211 /*
6212 * MAGIC NUMBER EXPLANATION:
6213 * since we search a directory based on f_pos we have to start at 2
6214 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6215 * else has to start at 2
6216 */
6217 if (path->slots[0] == 0) {
4c570655 6218 inode->index_cnt = 2;
aec7477b
JB
6219 goto out;
6220 }
6221
6222 path->slots[0]--;
6223
6224 leaf = path->nodes[0];
6225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6226
4c570655 6227 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6228 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6229 inode->index_cnt = 2;
aec7477b
JB
6230 goto out;
6231 }
6232
4c570655 6233 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6234out:
6235 btrfs_free_path(path);
6236 return ret;
6237}
6238
d352ac68
CM
6239/*
6240 * helper to find a free sequence number in a given directory. This current
6241 * code is very simple, later versions will do smarter things in the btree
6242 */
877574e2 6243int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6244{
6245 int ret = 0;
6246
877574e2
NB
6247 if (dir->index_cnt == (u64)-1) {
6248 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6249 if (ret) {
6250 ret = btrfs_set_inode_index_count(dir);
6251 if (ret)
6252 return ret;
6253 }
aec7477b
JB
6254 }
6255
877574e2
NB
6256 *index = dir->index_cnt;
6257 dir->index_cnt++;
aec7477b
JB
6258
6259 return ret;
6260}
6261
b0d5d10f
CM
6262static int btrfs_insert_inode_locked(struct inode *inode)
6263{
6264 struct btrfs_iget_args args;
6265 args.location = &BTRFS_I(inode)->location;
6266 args.root = BTRFS_I(inode)->root;
6267
6268 return insert_inode_locked4(inode,
6269 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6270 btrfs_find_actor, &args);
6271}
6272
19aee8de
AJ
6273/*
6274 * Inherit flags from the parent inode.
6275 *
6276 * Currently only the compression flags and the cow flags are inherited.
6277 */
6278static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6279{
6280 unsigned int flags;
6281
6282 if (!dir)
6283 return;
6284
6285 flags = BTRFS_I(dir)->flags;
6286
6287 if (flags & BTRFS_INODE_NOCOMPRESS) {
6288 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6290 } else if (flags & BTRFS_INODE_COMPRESS) {
6291 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6292 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6293 }
6294
6295 if (flags & BTRFS_INODE_NODATACOW) {
6296 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6297 if (S_ISREG(inode->i_mode))
6298 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6299 }
6300
7b6a221e 6301 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6302}
6303
39279cc3
CM
6304static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6305 struct btrfs_root *root,
aec7477b 6306 struct inode *dir,
9c58309d 6307 const char *name, int name_len,
175a4eb7
AV
6308 u64 ref_objectid, u64 objectid,
6309 umode_t mode, u64 *index)
39279cc3 6310{
0b246afa 6311 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6312 struct inode *inode;
5f39d397 6313 struct btrfs_inode_item *inode_item;
39279cc3 6314 struct btrfs_key *location;
5f39d397 6315 struct btrfs_path *path;
9c58309d
CM
6316 struct btrfs_inode_ref *ref;
6317 struct btrfs_key key[2];
6318 u32 sizes[2];
ef3b9af5 6319 int nitems = name ? 2 : 1;
9c58309d 6320 unsigned long ptr;
11a19a90 6321 unsigned int nofs_flag;
39279cc3 6322 int ret;
39279cc3 6323
5f39d397 6324 path = btrfs_alloc_path();
d8926bb3
MF
6325 if (!path)
6326 return ERR_PTR(-ENOMEM);
5f39d397 6327
11a19a90 6328 nofs_flag = memalloc_nofs_save();
0b246afa 6329 inode = new_inode(fs_info->sb);
11a19a90 6330 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
6331 if (!inode) {
6332 btrfs_free_path(path);
39279cc3 6333 return ERR_PTR(-ENOMEM);
8fb27640 6334 }
39279cc3 6335
5762b5c9
FM
6336 /*
6337 * O_TMPFILE, set link count to 0, so that after this point,
6338 * we fill in an inode item with the correct link count.
6339 */
6340 if (!name)
6341 set_nlink(inode, 0);
6342
581bb050
LZ
6343 /*
6344 * we have to initialize this early, so we can reclaim the inode
6345 * number if we fail afterwards in this function.
6346 */
6347 inode->i_ino = objectid;
6348
ef3b9af5 6349 if (dir && name) {
1abe9b8a 6350 trace_btrfs_inode_request(dir);
6351
877574e2 6352 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6353 if (ret) {
8fb27640 6354 btrfs_free_path(path);
09771430 6355 iput(inode);
aec7477b 6356 return ERR_PTR(ret);
09771430 6357 }
ef3b9af5
FM
6358 } else if (dir) {
6359 *index = 0;
aec7477b
JB
6360 }
6361 /*
6362 * index_cnt is ignored for everything but a dir,
df6703e1 6363 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6364 * number
6365 */
6366 BTRFS_I(inode)->index_cnt = 2;
67de1176 6367 BTRFS_I(inode)->dir_index = *index;
39279cc3 6368 BTRFS_I(inode)->root = root;
e02119d5 6369 BTRFS_I(inode)->generation = trans->transid;
76195853 6370 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6371
5dc562c5
JB
6372 /*
6373 * We could have gotten an inode number from somebody who was fsynced
6374 * and then removed in this same transaction, so let's just set full
6375 * sync since it will be a full sync anyway and this will blow away the
6376 * old info in the log.
6377 */
6378 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6379
9c58309d 6380 key[0].objectid = objectid;
962a298f 6381 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6382 key[0].offset = 0;
6383
9c58309d 6384 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6385
6386 if (name) {
6387 /*
6388 * Start new inodes with an inode_ref. This is slightly more
6389 * efficient for small numbers of hard links since they will
6390 * be packed into one item. Extended refs will kick in if we
6391 * add more hard links than can fit in the ref item.
6392 */
6393 key[1].objectid = objectid;
962a298f 6394 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6395 key[1].offset = ref_objectid;
6396
6397 sizes[1] = name_len + sizeof(*ref);
6398 }
9c58309d 6399
b0d5d10f
CM
6400 location = &BTRFS_I(inode)->location;
6401 location->objectid = objectid;
6402 location->offset = 0;
962a298f 6403 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6404
6405 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6406 if (ret < 0) {
6407 iput(inode);
b0d5d10f 6408 goto fail;
32955c54 6409 }
b0d5d10f 6410
b9473439 6411 path->leave_spinning = 1;
ef3b9af5 6412 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6413 if (ret != 0)
b0d5d10f 6414 goto fail_unlock;
5f39d397 6415
ecc11fab 6416 inode_init_owner(inode, dir, mode);
a76a3cd4 6417 inode_set_bytes(inode, 0);
9cc97d64 6418
c2050a45 6419 inode->i_mtime = current_time(inode);
9cc97d64 6420 inode->i_atime = inode->i_mtime;
6421 inode->i_ctime = inode->i_mtime;
d3c6be6f 6422 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6423
5f39d397
CM
6424 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6425 struct btrfs_inode_item);
b159fa28 6426 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6427 sizeof(*inode_item));
e02119d5 6428 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6429
ef3b9af5
FM
6430 if (name) {
6431 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6432 struct btrfs_inode_ref);
6433 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6434 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6435 ptr = (unsigned long)(ref + 1);
6436 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6437 }
9c58309d 6438
5f39d397
CM
6439 btrfs_mark_buffer_dirty(path->nodes[0]);
6440 btrfs_free_path(path);
6441
6cbff00f
CH
6442 btrfs_inherit_iflags(inode, dir);
6443
569254b0 6444 if (S_ISREG(mode)) {
0b246afa 6445 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6446 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6447 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6448 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6449 BTRFS_INODE_NODATASUM;
94272164
CM
6450 }
6451
5d4f98a2 6452 inode_tree_add(inode);
1abe9b8a 6453
6454 trace_btrfs_inode_new(inode);
1973f0fa 6455 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6456
8ea05e3a
AB
6457 btrfs_update_root_times(trans, root);
6458
63541927
FDBM
6459 ret = btrfs_inode_inherit_props(trans, inode, dir);
6460 if (ret)
0b246afa 6461 btrfs_err(fs_info,
63541927 6462 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6463 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6464
39279cc3 6465 return inode;
b0d5d10f
CM
6466
6467fail_unlock:
32955c54 6468 discard_new_inode(inode);
5f39d397 6469fail:
ef3b9af5 6470 if (dir && name)
aec7477b 6471 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6472 btrfs_free_path(path);
6473 return ERR_PTR(ret);
39279cc3
CM
6474}
6475
d352ac68
CM
6476/*
6477 * utility function to add 'inode' into 'parent_inode' with
6478 * a give name and a given sequence number.
6479 * if 'add_backref' is true, also insert a backref from the
6480 * inode to the parent directory.
6481 */
e02119d5 6482int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6483 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6484 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6485{
4df27c4d 6486 int ret = 0;
39279cc3 6487 struct btrfs_key key;
db0a669f
NB
6488 struct btrfs_root *root = parent_inode->root;
6489 u64 ino = btrfs_ino(inode);
6490 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6491
33345d01 6492 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6493 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6494 } else {
33345d01 6495 key.objectid = ino;
962a298f 6496 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6497 key.offset = 0;
6498 }
6499
33345d01 6500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6501 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6502 root->root_key.objectid, parent_ino,
6503 index, name, name_len);
4df27c4d 6504 } else if (add_backref) {
33345d01
LZ
6505 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6506 parent_ino, index);
4df27c4d 6507 }
39279cc3 6508
79787eaa
JM
6509 /* Nothing to clean up yet */
6510 if (ret)
6511 return ret;
4df27c4d 6512
684572df 6513 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6514 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6515 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6516 goto fail_dir_item;
6517 else if (ret) {
66642832 6518 btrfs_abort_transaction(trans, ret);
79787eaa 6519 return ret;
39279cc3 6520 }
79787eaa 6521
db0a669f 6522 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6523 name_len * 2);
db0a669f 6524 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6525 /*
6526 * If we are replaying a log tree, we do not want to update the mtime
6527 * and ctime of the parent directory with the current time, since the
6528 * log replay procedure is responsible for setting them to their correct
6529 * values (the ones it had when the fsync was done).
6530 */
6531 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6532 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6533
6534 parent_inode->vfs_inode.i_mtime = now;
6535 parent_inode->vfs_inode.i_ctime = now;
6536 }
db0a669f 6537 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6538 if (ret)
66642832 6539 btrfs_abort_transaction(trans, ret);
39279cc3 6540 return ret;
fe66a05a
CM
6541
6542fail_dir_item:
6543 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6544 u64 local_index;
6545 int err;
3ee1c553 6546 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6547 root->root_key.objectid, parent_ino,
6548 &local_index, name, name_len);
1690dd41
JT
6549 if (err)
6550 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6551 } else if (add_backref) {
6552 u64 local_index;
6553 int err;
6554
6555 err = btrfs_del_inode_ref(trans, root, name, name_len,
6556 ino, parent_ino, &local_index);
1690dd41
JT
6557 if (err)
6558 btrfs_abort_transaction(trans, err);
fe66a05a 6559 }
1690dd41
JT
6560
6561 /* Return the original error code */
fe66a05a 6562 return ret;
39279cc3
CM
6563}
6564
6565static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6566 struct btrfs_inode *dir, struct dentry *dentry,
6567 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6568{
a1b075d2
JB
6569 int err = btrfs_add_link(trans, dir, inode,
6570 dentry->d_name.name, dentry->d_name.len,
6571 backref, index);
39279cc3
CM
6572 if (err > 0)
6573 err = -EEXIST;
6574 return err;
6575}
6576
618e21d5 6577static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6578 umode_t mode, dev_t rdev)
618e21d5 6579{
2ff7e61e 6580 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6581 struct btrfs_trans_handle *trans;
6582 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6583 struct inode *inode = NULL;
618e21d5 6584 int err;
618e21d5 6585 u64 objectid;
00e4e6b3 6586 u64 index = 0;
618e21d5 6587
9ed74f2d
JB
6588 /*
6589 * 2 for inode item and ref
6590 * 2 for dir items
6591 * 1 for xattr if selinux is on
6592 */
a22285a6
YZ
6593 trans = btrfs_start_transaction(root, 5);
6594 if (IS_ERR(trans))
6595 return PTR_ERR(trans);
1832a6d5 6596
581bb050
LZ
6597 err = btrfs_find_free_ino(root, &objectid);
6598 if (err)
6599 goto out_unlock;
6600
aec7477b 6601 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6602 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6603 mode, &index);
7cf96da3
TI
6604 if (IS_ERR(inode)) {
6605 err = PTR_ERR(inode);
32955c54 6606 inode = NULL;
618e21d5 6607 goto out_unlock;
7cf96da3 6608 }
618e21d5 6609
ad19db71
CS
6610 /*
6611 * If the active LSM wants to access the inode during
6612 * d_instantiate it needs these. Smack checks to see
6613 * if the filesystem supports xattrs by looking at the
6614 * ops vector.
6615 */
ad19db71 6616 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6617 init_special_inode(inode, inode->i_mode, rdev);
6618
6619 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6620 if (err)
32955c54 6621 goto out_unlock;
b0d5d10f 6622
cef415af
NB
6623 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6624 0, index);
32955c54
AV
6625 if (err)
6626 goto out_unlock;
6627
6628 btrfs_update_inode(trans, root, inode);
6629 d_instantiate_new(dentry, inode);
b0d5d10f 6630
618e21d5 6631out_unlock:
3a45bb20 6632 btrfs_end_transaction(trans);
2ff7e61e 6633 btrfs_btree_balance_dirty(fs_info);
32955c54 6634 if (err && inode) {
618e21d5 6635 inode_dec_link_count(inode);
32955c54 6636 discard_new_inode(inode);
618e21d5 6637 }
618e21d5
JB
6638 return err;
6639}
6640
39279cc3 6641static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6642 umode_t mode, bool excl)
39279cc3 6643{
2ff7e61e 6644 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6645 struct btrfs_trans_handle *trans;
6646 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6647 struct inode *inode = NULL;
a22285a6 6648 int err;
39279cc3 6649 u64 objectid;
00e4e6b3 6650 u64 index = 0;
39279cc3 6651
9ed74f2d
JB
6652 /*
6653 * 2 for inode item and ref
6654 * 2 for dir items
6655 * 1 for xattr if selinux is on
6656 */
a22285a6
YZ
6657 trans = btrfs_start_transaction(root, 5);
6658 if (IS_ERR(trans))
6659 return PTR_ERR(trans);
9ed74f2d 6660
581bb050
LZ
6661 err = btrfs_find_free_ino(root, &objectid);
6662 if (err)
6663 goto out_unlock;
6664
aec7477b 6665 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6666 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6667 mode, &index);
7cf96da3
TI
6668 if (IS_ERR(inode)) {
6669 err = PTR_ERR(inode);
32955c54 6670 inode = NULL;
39279cc3 6671 goto out_unlock;
7cf96da3 6672 }
ad19db71
CS
6673 /*
6674 * If the active LSM wants to access the inode during
6675 * d_instantiate it needs these. Smack checks to see
6676 * if the filesystem supports xattrs by looking at the
6677 * ops vector.
6678 */
6679 inode->i_fop = &btrfs_file_operations;
6680 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6681 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6682
6683 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6684 if (err)
32955c54 6685 goto out_unlock;
b0d5d10f
CM
6686
6687 err = btrfs_update_inode(trans, root, inode);
6688 if (err)
32955c54 6689 goto out_unlock;
ad19db71 6690
cef415af
NB
6691 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6692 0, index);
39279cc3 6693 if (err)
32955c54 6694 goto out_unlock;
43baa579 6695
43baa579 6696 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6697 d_instantiate_new(dentry, inode);
43baa579 6698
39279cc3 6699out_unlock:
3a45bb20 6700 btrfs_end_transaction(trans);
32955c54 6701 if (err && inode) {
39279cc3 6702 inode_dec_link_count(inode);
32955c54 6703 discard_new_inode(inode);
39279cc3 6704 }
2ff7e61e 6705 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6706 return err;
6707}
6708
6709static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6710 struct dentry *dentry)
6711{
271dba45 6712 struct btrfs_trans_handle *trans = NULL;
39279cc3 6713 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6714 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6716 u64 index;
39279cc3
CM
6717 int err;
6718 int drop_inode = 0;
6719
4a8be425 6720 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6721 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6722 return -EXDEV;
4a8be425 6723
f186373f 6724 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6725 return -EMLINK;
4a8be425 6726
877574e2 6727 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6728 if (err)
6729 goto fail;
6730
a22285a6 6731 /*
7e6b6465 6732 * 2 items for inode and inode ref
a22285a6 6733 * 2 items for dir items
7e6b6465 6734 * 1 item for parent inode
399b0bbf 6735 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6736 */
399b0bbf 6737 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6738 if (IS_ERR(trans)) {
6739 err = PTR_ERR(trans);
271dba45 6740 trans = NULL;
a22285a6
YZ
6741 goto fail;
6742 }
5f39d397 6743
67de1176
MX
6744 /* There are several dir indexes for this inode, clear the cache. */
6745 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6746 inc_nlink(inode);
0c4d2d95 6747 inode_inc_iversion(inode);
c2050a45 6748 inode->i_ctime = current_time(inode);
7de9c6ee 6749 ihold(inode);
e9976151 6750 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6751
cef415af
NB
6752 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6753 1, index);
5f39d397 6754
a5719521 6755 if (err) {
54aa1f4d 6756 drop_inode = 1;
a5719521 6757 } else {
10d9f309 6758 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6759 int ret;
6760
a5719521 6761 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6762 if (err)
6763 goto fail;
ef3b9af5
FM
6764 if (inode->i_nlink == 1) {
6765 /*
6766 * If new hard link count is 1, it's a file created
6767 * with open(2) O_TMPFILE flag.
6768 */
3d6ae7bb 6769 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6770 if (err)
6771 goto fail;
6772 }
08c422c2 6773 d_instantiate(dentry, inode);
d4682ba0
FM
6774 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6775 true, NULL);
6776 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6777 err = btrfs_commit_transaction(trans);
6778 trans = NULL;
6779 }
a5719521 6780 }
39279cc3 6781
1832a6d5 6782fail:
271dba45 6783 if (trans)
3a45bb20 6784 btrfs_end_transaction(trans);
39279cc3
CM
6785 if (drop_inode) {
6786 inode_dec_link_count(inode);
6787 iput(inode);
6788 }
2ff7e61e 6789 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6790 return err;
6791}
6792
18bb1db3 6793static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6794{
2ff7e61e 6795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6796 struct inode *inode = NULL;
39279cc3
CM
6797 struct btrfs_trans_handle *trans;
6798 struct btrfs_root *root = BTRFS_I(dir)->root;
6799 int err = 0;
b9d86667 6800 u64 objectid = 0;
00e4e6b3 6801 u64 index = 0;
39279cc3 6802
9ed74f2d
JB
6803 /*
6804 * 2 items for inode and ref
6805 * 2 items for dir items
6806 * 1 for xattr if selinux is on
6807 */
a22285a6
YZ
6808 trans = btrfs_start_transaction(root, 5);
6809 if (IS_ERR(trans))
6810 return PTR_ERR(trans);
39279cc3 6811
581bb050
LZ
6812 err = btrfs_find_free_ino(root, &objectid);
6813 if (err)
6814 goto out_fail;
6815
aec7477b 6816 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6817 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6818 S_IFDIR | mode, &index);
39279cc3
CM
6819 if (IS_ERR(inode)) {
6820 err = PTR_ERR(inode);
32955c54 6821 inode = NULL;
39279cc3
CM
6822 goto out_fail;
6823 }
5f39d397 6824
b0d5d10f
CM
6825 /* these must be set before we unlock the inode */
6826 inode->i_op = &btrfs_dir_inode_operations;
6827 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6828
2a7dba39 6829 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6830 if (err)
32955c54 6831 goto out_fail;
39279cc3 6832
6ef06d27 6833 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6834 err = btrfs_update_inode(trans, root, inode);
6835 if (err)
32955c54 6836 goto out_fail;
5f39d397 6837
db0a669f
NB
6838 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6839 dentry->d_name.name,
6840 dentry->d_name.len, 0, index);
39279cc3 6841 if (err)
32955c54 6842 goto out_fail;
5f39d397 6843
1e2e547a 6844 d_instantiate_new(dentry, inode);
39279cc3
CM
6845
6846out_fail:
3a45bb20 6847 btrfs_end_transaction(trans);
32955c54 6848 if (err && inode) {
c7cfb8a5 6849 inode_dec_link_count(inode);
32955c54 6850 discard_new_inode(inode);
c7cfb8a5 6851 }
2ff7e61e 6852 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6853 return err;
6854}
6855
c8b97818 6856static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6857 struct page *page,
c8b97818
CM
6858 size_t pg_offset, u64 extent_offset,
6859 struct btrfs_file_extent_item *item)
6860{
6861 int ret;
6862 struct extent_buffer *leaf = path->nodes[0];
6863 char *tmp;
6864 size_t max_size;
6865 unsigned long inline_size;
6866 unsigned long ptr;
261507a0 6867 int compress_type;
c8b97818
CM
6868
6869 WARN_ON(pg_offset != 0);
261507a0 6870 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6871 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6872 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6873 btrfs_item_nr(path->slots[0]));
c8b97818 6874 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6875 if (!tmp)
6876 return -ENOMEM;
c8b97818
CM
6877 ptr = btrfs_file_extent_inline_start(item);
6878
6879 read_extent_buffer(leaf, tmp, ptr, inline_size);
6880
09cbfeaf 6881 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6882 ret = btrfs_decompress(compress_type, tmp, page,
6883 extent_offset, inline_size, max_size);
e1699d2d
ZB
6884
6885 /*
6886 * decompression code contains a memset to fill in any space between the end
6887 * of the uncompressed data and the end of max_size in case the decompressed
6888 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6889 * the end of an inline extent and the beginning of the next block, so we
6890 * cover that region here.
6891 */
6892
6893 if (max_size + pg_offset < PAGE_SIZE) {
6894 char *map = kmap(page);
6895 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6896 kunmap(page);
6897 }
c8b97818 6898 kfree(tmp);
166ae5a4 6899 return ret;
c8b97818
CM
6900}
6901
d352ac68
CM
6902/*
6903 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6904 * the ugly parts come from merging extents from the disk with the in-ram
6905 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6906 * where the in-ram extents might be locked pending data=ordered completion.
6907 *
6908 * This also copies inline extents directly into the page.
6909 */
fc4f21b1 6910struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6911 struct page *page,
6912 size_t pg_offset, u64 start, u64 len,
6913 int create)
a52d9a80 6914{
3ffbd68c 6915 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6916 int ret;
6917 int err = 0;
a52d9a80
CM
6918 u64 extent_start = 0;
6919 u64 extent_end = 0;
fc4f21b1 6920 u64 objectid = btrfs_ino(inode);
7e74e235 6921 int extent_type = -1;
f421950f 6922 struct btrfs_path *path = NULL;
fc4f21b1 6923 struct btrfs_root *root = inode->root;
a52d9a80 6924 struct btrfs_file_extent_item *item;
5f39d397
CM
6925 struct extent_buffer *leaf;
6926 struct btrfs_key found_key;
a52d9a80 6927 struct extent_map *em = NULL;
fc4f21b1
NB
6928 struct extent_map_tree *em_tree = &inode->extent_tree;
6929 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6930 const bool new_inline = !page || create;
a52d9a80 6931
890871be 6932 read_lock(&em_tree->lock);
d1310b2e 6933 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6934 if (em)
0b246afa 6935 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6936 read_unlock(&em_tree->lock);
d1310b2e 6937
a52d9a80 6938 if (em) {
e1c4b745
CM
6939 if (em->start > start || em->start + em->len <= start)
6940 free_extent_map(em);
6941 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6942 free_extent_map(em);
6943 else
6944 goto out;
a52d9a80 6945 }
172ddd60 6946 em = alloc_extent_map();
a52d9a80 6947 if (!em) {
d1310b2e
CM
6948 err = -ENOMEM;
6949 goto out;
a52d9a80 6950 }
0b246afa 6951 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6952 em->start = EXTENT_MAP_HOLE;
445a6944 6953 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6954 em->len = (u64)-1;
c8b97818 6955 em->block_len = (u64)-1;
f421950f 6956
bee6ec82 6957 path = btrfs_alloc_path();
f421950f 6958 if (!path) {
bee6ec82
LB
6959 err = -ENOMEM;
6960 goto out;
f421950f
CM
6961 }
6962
bee6ec82
LB
6963 /* Chances are we'll be called again, so go ahead and do readahead */
6964 path->reada = READA_FORWARD;
6965
e49aabd9
LB
6966 /*
6967 * Unless we're going to uncompress the inline extent, no sleep would
6968 * happen.
6969 */
6970 path->leave_spinning = 1;
6971
5c9a702e 6972 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6973 if (ret < 0) {
6974 err = ret;
6975 goto out;
b8eeab7f 6976 } else if (ret > 0) {
a52d9a80
CM
6977 if (path->slots[0] == 0)
6978 goto not_found;
6979 path->slots[0]--;
6980 }
6981
5f39d397
CM
6982 leaf = path->nodes[0];
6983 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6984 struct btrfs_file_extent_item);
5f39d397 6985 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6986 if (found_key.objectid != objectid ||
694c12ed 6987 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6988 /*
6989 * If we backup past the first extent we want to move forward
6990 * and see if there is an extent in front of us, otherwise we'll
6991 * say there is a hole for our whole search range which can
6992 * cause problems.
6993 */
6994 extent_end = start;
6995 goto next;
a52d9a80
CM
6996 }
6997
694c12ed 6998 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6999 extent_start = found_key.offset;
694c12ed
NB
7000 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7001 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
7002 /* Only regular file could have regular/prealloc extent */
7003 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7004 ret = -EUCLEAN;
7005 btrfs_crit(fs_info,
7006 "regular/prealloc extent found for non-regular inode %llu",
7007 btrfs_ino(inode));
7008 goto out;
7009 }
a52d9a80 7010 extent_end = extent_start +
db94535d 7011 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7012
7013 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7014 extent_start);
694c12ed 7015 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
9036c102 7016 size_t size;
e41ca589
QW
7017
7018 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 7019 extent_end = ALIGN(extent_start + size,
0b246afa 7020 fs_info->sectorsize);
09ed2f16
LB
7021
7022 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7023 path->slots[0],
7024 extent_start);
9036c102 7025 }
25a50341 7026next:
9036c102
YZ
7027 if (start >= extent_end) {
7028 path->slots[0]++;
7029 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7030 ret = btrfs_next_leaf(root, path);
7031 if (ret < 0) {
7032 err = ret;
7033 goto out;
b8eeab7f 7034 } else if (ret > 0) {
9036c102 7035 goto not_found;
b8eeab7f 7036 }
9036c102 7037 leaf = path->nodes[0];
a52d9a80 7038 }
9036c102
YZ
7039 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7040 if (found_key.objectid != objectid ||
7041 found_key.type != BTRFS_EXTENT_DATA_KEY)
7042 goto not_found;
7043 if (start + len <= found_key.offset)
7044 goto not_found;
e2eca69d
WS
7045 if (start > found_key.offset)
7046 goto next;
02a033df
NB
7047
7048 /* New extent overlaps with existing one */
9036c102 7049 em->start = start;
70c8a91c 7050 em->orig_start = start;
9036c102 7051 em->len = found_key.offset - start;
02a033df
NB
7052 em->block_start = EXTENT_MAP_HOLE;
7053 goto insert;
9036c102
YZ
7054 }
7055
fc4f21b1 7056 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7057 new_inline, em);
7ffbb598 7058
694c12ed
NB
7059 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7060 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7061 goto insert;
694c12ed 7062 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7063 unsigned long ptr;
a52d9a80 7064 char *map;
3326d1b0
CM
7065 size_t size;
7066 size_t extent_offset;
7067 size_t copy_size;
a52d9a80 7068
7ffbb598 7069 if (new_inline)
689f9346 7070 goto out;
5f39d397 7071
e41ca589 7072 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 7073 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7074 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7075 size - extent_offset);
3326d1b0 7076 em->start = extent_start + extent_offset;
0b246afa 7077 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7078 em->orig_block_len = em->len;
70c8a91c 7079 em->orig_start = em->start;
689f9346 7080 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
7081
7082 btrfs_set_path_blocking(path);
bf46f52d 7083 if (!PageUptodate(page)) {
261507a0
LZ
7084 if (btrfs_file_extent_compression(leaf, item) !=
7085 BTRFS_COMPRESS_NONE) {
e40da0e5 7086 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7087 extent_offset, item);
166ae5a4
ZB
7088 if (ret) {
7089 err = ret;
7090 goto out;
7091 }
c8b97818
CM
7092 } else {
7093 map = kmap(page);
7094 read_extent_buffer(leaf, map + pg_offset, ptr,
7095 copy_size);
09cbfeaf 7096 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7097 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7098 PAGE_SIZE - pg_offset -
93c82d57
CM
7099 copy_size);
7100 }
c8b97818
CM
7101 kunmap(page);
7102 }
179e29e4 7103 flush_dcache_page(page);
a52d9a80 7104 }
d1310b2e 7105 set_extent_uptodate(io_tree, em->start,
507903b8 7106 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7107 goto insert;
a52d9a80
CM
7108 }
7109not_found:
7110 em->start = start;
70c8a91c 7111 em->orig_start = start;
d1310b2e 7112 em->len = len;
5f39d397 7113 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7114insert:
b3b4aa74 7115 btrfs_release_path(path);
d1310b2e 7116 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7117 btrfs_err(fs_info,
5d163e0e
JM
7118 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7119 em->start, em->len, start, len);
a52d9a80
CM
7120 err = -EIO;
7121 goto out;
7122 }
d1310b2e
CM
7123
7124 err = 0;
890871be 7125 write_lock(&em_tree->lock);
f46b24c9 7126 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7127 write_unlock(&em_tree->lock);
a52d9a80 7128out:
c6414280 7129 btrfs_free_path(path);
1abe9b8a 7130
fc4f21b1 7131 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7132
a52d9a80
CM
7133 if (err) {
7134 free_extent_map(em);
a52d9a80
CM
7135 return ERR_PTR(err);
7136 }
79787eaa 7137 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7138 return em;
7139}
7140
fc4f21b1 7141struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 7142 u64 start, u64 len)
ec29ed5b
CM
7143{
7144 struct extent_map *em;
7145 struct extent_map *hole_em = NULL;
f3714ef4 7146 u64 delalloc_start = start;
ec29ed5b 7147 u64 end;
f3714ef4
NB
7148 u64 delalloc_len;
7149 u64 delalloc_end;
ec29ed5b
CM
7150 int err = 0;
7151
4ab47a8d 7152 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
ec29ed5b
CM
7153 if (IS_ERR(em))
7154 return em;
9986277e
DC
7155 /*
7156 * If our em maps to:
7157 * - a hole or
7158 * - a pre-alloc extent,
7159 * there might actually be delalloc bytes behind it.
7160 */
7161 if (em->block_start != EXTENT_MAP_HOLE &&
7162 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7163 return em;
7164 else
7165 hole_em = em;
ec29ed5b
CM
7166
7167 /* check to see if we've wrapped (len == -1 or similar) */
7168 end = start + len;
7169 if (end < start)
7170 end = (u64)-1;
7171 else
7172 end -= 1;
7173
7174 em = NULL;
7175
7176 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 7177 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 7178 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
7179 delalloc_end = delalloc_start + delalloc_len;
7180 if (delalloc_end < delalloc_start)
7181 delalloc_end = (u64)-1;
ec29ed5b
CM
7182
7183 /*
f3714ef4
NB
7184 * We didn't find anything useful, return the original results from
7185 * get_extent()
ec29ed5b 7186 */
f3714ef4 7187 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
7188 em = hole_em;
7189 hole_em = NULL;
7190 goto out;
7191 }
7192
f3714ef4
NB
7193 /*
7194 * Adjust the delalloc_start to make sure it doesn't go backwards from
7195 * the start they passed in
ec29ed5b 7196 */
f3714ef4
NB
7197 delalloc_start = max(start, delalloc_start);
7198 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 7199
f3714ef4
NB
7200 if (delalloc_len > 0) {
7201 u64 hole_start;
02950af4 7202 u64 hole_len;
f3714ef4 7203 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 7204
172ddd60 7205 em = alloc_extent_map();
ec29ed5b
CM
7206 if (!em) {
7207 err = -ENOMEM;
7208 goto out;
7209 }
f3714ef4
NB
7210 em->bdev = NULL;
7211
7212 ASSERT(hole_em);
ec29ed5b 7213 /*
f3714ef4
NB
7214 * When btrfs_get_extent can't find anything it returns one
7215 * huge hole
ec29ed5b 7216 *
f3714ef4
NB
7217 * Make sure what it found really fits our range, and adjust to
7218 * make sure it is based on the start from the caller
ec29ed5b 7219 */
f3714ef4
NB
7220 if (hole_end <= start || hole_em->start > end) {
7221 free_extent_map(hole_em);
7222 hole_em = NULL;
7223 } else {
7224 hole_start = max(hole_em->start, start);
7225 hole_len = hole_end - hole_start;
ec29ed5b 7226 }
f3714ef4
NB
7227
7228 if (hole_em && delalloc_start > hole_start) {
7229 /*
7230 * Our hole starts before our delalloc, so we have to
7231 * return just the parts of the hole that go until the
7232 * delalloc starts
ec29ed5b 7233 */
f3714ef4 7234 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
7235 em->start = hole_start;
7236 em->orig_start = hole_start;
7237 /*
f3714ef4
NB
7238 * Don't adjust block start at all, it is fixed at
7239 * EXTENT_MAP_HOLE
ec29ed5b
CM
7240 */
7241 em->block_start = hole_em->block_start;
7242 em->block_len = hole_len;
f9e4fb53
LB
7243 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7244 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 7245 } else {
f3714ef4
NB
7246 /*
7247 * Hole is out of passed range or it starts after
7248 * delalloc range
7249 */
7250 em->start = delalloc_start;
7251 em->len = delalloc_len;
7252 em->orig_start = delalloc_start;
ec29ed5b 7253 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 7254 em->block_len = delalloc_len;
ec29ed5b 7255 }
bf8d32b9 7256 } else {
ec29ed5b
CM
7257 return hole_em;
7258 }
7259out:
7260
7261 free_extent_map(hole_em);
7262 if (err) {
7263 free_extent_map(em);
7264 return ERR_PTR(err);
7265 }
7266 return em;
7267}
7268
5f9a8a51
FM
7269static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7270 const u64 start,
7271 const u64 len,
7272 const u64 orig_start,
7273 const u64 block_start,
7274 const u64 block_len,
7275 const u64 orig_block_len,
7276 const u64 ram_bytes,
7277 const int type)
7278{
7279 struct extent_map *em = NULL;
7280 int ret;
7281
5f9a8a51 7282 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7283 em = create_io_em(inode, start, len, orig_start,
7284 block_start, block_len, orig_block_len,
7285 ram_bytes,
7286 BTRFS_COMPRESS_NONE, /* compress_type */
7287 type);
5f9a8a51
FM
7288 if (IS_ERR(em))
7289 goto out;
7290 }
7291 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7292 len, block_len, type);
7293 if (ret) {
7294 if (em) {
7295 free_extent_map(em);
dcdbc059 7296 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7297 start + len - 1, 0);
7298 }
7299 em = ERR_PTR(ret);
7300 }
7301 out:
5f9a8a51
FM
7302
7303 return em;
7304}
7305
4b46fce2
JB
7306static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7307 u64 start, u64 len)
7308{
0b246afa 7309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7310 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7311 struct extent_map *em;
4b46fce2
JB
7312 struct btrfs_key ins;
7313 u64 alloc_hint;
7314 int ret;
4b46fce2 7315
4b46fce2 7316 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7317 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7318 0, alloc_hint, &ins, 1, 1);
00361589
JB
7319 if (ret)
7320 return ERR_PTR(ret);
4b46fce2 7321
5f9a8a51
FM
7322 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7323 ins.objectid, ins.offset, ins.offset,
6288d6ea 7324 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7325 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7326 if (IS_ERR(em))
2ff7e61e
JM
7327 btrfs_free_reserved_extent(fs_info, ins.objectid,
7328 ins.offset, 1);
de0ee0ed 7329
4b46fce2
JB
7330 return em;
7331}
7332
46bfbb5c
CM
7333/*
7334 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7335 * block must be cow'd
7336 */
00361589 7337noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7338 u64 *orig_start, u64 *orig_block_len,
7339 u64 *ram_bytes)
46bfbb5c 7340{
2ff7e61e 7341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7342 struct btrfs_path *path;
7343 int ret;
7344 struct extent_buffer *leaf;
7345 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7346 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7347 struct btrfs_file_extent_item *fi;
7348 struct btrfs_key key;
7349 u64 disk_bytenr;
7350 u64 backref_offset;
7351 u64 extent_end;
7352 u64 num_bytes;
7353 int slot;
7354 int found_type;
7ee9e440 7355 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7356
46bfbb5c
CM
7357 path = btrfs_alloc_path();
7358 if (!path)
7359 return -ENOMEM;
7360
f85b7379
DS
7361 ret = btrfs_lookup_file_extent(NULL, root, path,
7362 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7363 if (ret < 0)
7364 goto out;
7365
7366 slot = path->slots[0];
7367 if (ret == 1) {
7368 if (slot == 0) {
7369 /* can't find the item, must cow */
7370 ret = 0;
7371 goto out;
7372 }
7373 slot--;
7374 }
7375 ret = 0;
7376 leaf = path->nodes[0];
7377 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7378 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7379 key.type != BTRFS_EXTENT_DATA_KEY) {
7380 /* not our file or wrong item type, must cow */
7381 goto out;
7382 }
7383
7384 if (key.offset > offset) {
7385 /* Wrong offset, must cow */
7386 goto out;
7387 }
7388
7389 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7390 found_type = btrfs_file_extent_type(leaf, fi);
7391 if (found_type != BTRFS_FILE_EXTENT_REG &&
7392 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7393 /* not a regular extent, must cow */
7394 goto out;
7395 }
7ee9e440
JB
7396
7397 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7398 goto out;
7399
e77751aa
MX
7400 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7401 if (extent_end <= offset)
7402 goto out;
7403
46bfbb5c 7404 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7405 if (disk_bytenr == 0)
7406 goto out;
7407
7408 if (btrfs_file_extent_compression(leaf, fi) ||
7409 btrfs_file_extent_encryption(leaf, fi) ||
7410 btrfs_file_extent_other_encoding(leaf, fi))
7411 goto out;
7412
78d4295b
EL
7413 /*
7414 * Do the same check as in btrfs_cross_ref_exist but without the
7415 * unnecessary search.
7416 */
7417 if (btrfs_file_extent_generation(leaf, fi) <=
7418 btrfs_root_last_snapshot(&root->root_item))
7419 goto out;
7420
46bfbb5c
CM
7421 backref_offset = btrfs_file_extent_offset(leaf, fi);
7422
7ee9e440
JB
7423 if (orig_start) {
7424 *orig_start = key.offset - backref_offset;
7425 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7426 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7427 }
eb384b55 7428
2ff7e61e 7429 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7430 goto out;
7b2b7085
MX
7431
7432 num_bytes = min(offset + *len, extent_end) - offset;
7433 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7434 u64 range_end;
7435
da17066c
JM
7436 range_end = round_up(offset + num_bytes,
7437 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7438 ret = test_range_bit(io_tree, offset, range_end,
7439 EXTENT_DELALLOC, 0, NULL);
7440 if (ret) {
7441 ret = -EAGAIN;
7442 goto out;
7443 }
7444 }
7445
1bda19eb 7446 btrfs_release_path(path);
46bfbb5c
CM
7447
7448 /*
7449 * look for other files referencing this extent, if we
7450 * find any we must cow
7451 */
00361589 7452
e4c3b2dc 7453 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7454 key.offset - backref_offset, disk_bytenr);
00361589
JB
7455 if (ret) {
7456 ret = 0;
7457 goto out;
7458 }
46bfbb5c
CM
7459
7460 /*
7461 * adjust disk_bytenr and num_bytes to cover just the bytes
7462 * in this extent we are about to write. If there
7463 * are any csums in that range we have to cow in order
7464 * to keep the csums correct
7465 */
7466 disk_bytenr += backref_offset;
7467 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7468 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7469 goto out;
46bfbb5c
CM
7470 /*
7471 * all of the above have passed, it is safe to overwrite this extent
7472 * without cow
7473 */
eb384b55 7474 *len = num_bytes;
46bfbb5c
CM
7475 ret = 1;
7476out:
7477 btrfs_free_path(path);
7478 return ret;
7479}
7480
eb838e73
JB
7481static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7482 struct extent_state **cached_state, int writing)
7483{
7484 struct btrfs_ordered_extent *ordered;
7485 int ret = 0;
7486
7487 while (1) {
7488 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7489 cached_state);
eb838e73
JB
7490 /*
7491 * We're concerned with the entire range that we're going to be
01327610 7492 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7493 * extents in this range.
7494 */
a776c6fa 7495 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7496 lockend - lockstart + 1);
7497
7498 /*
7499 * We need to make sure there are no buffered pages in this
7500 * range either, we could have raced between the invalidate in
7501 * generic_file_direct_write and locking the extent. The
7502 * invalidate needs to happen so that reads after a write do not
7503 * get stale data.
7504 */
fc4adbff 7505 if (!ordered &&
051c98eb
DS
7506 (!writing || !filemap_range_has_page(inode->i_mapping,
7507 lockstart, lockend)))
eb838e73
JB
7508 break;
7509
7510 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7511 cached_state);
eb838e73
JB
7512
7513 if (ordered) {
ade77029
FM
7514 /*
7515 * If we are doing a DIO read and the ordered extent we
7516 * found is for a buffered write, we can not wait for it
7517 * to complete and retry, because if we do so we can
7518 * deadlock with concurrent buffered writes on page
7519 * locks. This happens only if our DIO read covers more
7520 * than one extent map, if at this point has already
7521 * created an ordered extent for a previous extent map
7522 * and locked its range in the inode's io tree, and a
7523 * concurrent write against that previous extent map's
7524 * range and this range started (we unlock the ranges
7525 * in the io tree only when the bios complete and
7526 * buffered writes always lock pages before attempting
7527 * to lock range in the io tree).
7528 */
7529 if (writing ||
7530 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7531 btrfs_start_ordered_extent(inode, ordered, 1);
7532 else
7533 ret = -ENOTBLK;
eb838e73
JB
7534 btrfs_put_ordered_extent(ordered);
7535 } else {
eb838e73 7536 /*
b850ae14
FM
7537 * We could trigger writeback for this range (and wait
7538 * for it to complete) and then invalidate the pages for
7539 * this range (through invalidate_inode_pages2_range()),
7540 * but that can lead us to a deadlock with a concurrent
7541 * call to readpages() (a buffered read or a defrag call
7542 * triggered a readahead) on a page lock due to an
7543 * ordered dio extent we created before but did not have
7544 * yet a corresponding bio submitted (whence it can not
7545 * complete), which makes readpages() wait for that
7546 * ordered extent to complete while holding a lock on
7547 * that page.
eb838e73 7548 */
b850ae14 7549 ret = -ENOTBLK;
eb838e73
JB
7550 }
7551
ade77029
FM
7552 if (ret)
7553 break;
7554
eb838e73
JB
7555 cond_resched();
7556 }
7557
7558 return ret;
7559}
7560
6f9994db
LB
7561/* The callers of this must take lock_extent() */
7562static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7563 u64 orig_start, u64 block_start,
7564 u64 block_len, u64 orig_block_len,
7565 u64 ram_bytes, int compress_type,
7566 int type)
69ffb543
JB
7567{
7568 struct extent_map_tree *em_tree;
7569 struct extent_map *em;
7570 struct btrfs_root *root = BTRFS_I(inode)->root;
7571 int ret;
7572
6f9994db
LB
7573 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7574 type == BTRFS_ORDERED_COMPRESSED ||
7575 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7576 type == BTRFS_ORDERED_REGULAR);
6f9994db 7577
69ffb543
JB
7578 em_tree = &BTRFS_I(inode)->extent_tree;
7579 em = alloc_extent_map();
7580 if (!em)
7581 return ERR_PTR(-ENOMEM);
7582
7583 em->start = start;
7584 em->orig_start = orig_start;
7585 em->len = len;
7586 em->block_len = block_len;
7587 em->block_start = block_start;
7588 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7589 em->orig_block_len = orig_block_len;
cc95bef6 7590 em->ram_bytes = ram_bytes;
70c8a91c 7591 em->generation = -1;
69ffb543 7592 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7593 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7594 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7595 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7596 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7597 em->compress_type = compress_type;
7598 }
69ffb543
JB
7599
7600 do {
dcdbc059 7601 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7602 em->start + em->len - 1, 0);
7603 write_lock(&em_tree->lock);
09a2a8f9 7604 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7605 write_unlock(&em_tree->lock);
6f9994db
LB
7606 /*
7607 * The caller has taken lock_extent(), who could race with us
7608 * to add em?
7609 */
69ffb543
JB
7610 } while (ret == -EEXIST);
7611
7612 if (ret) {
7613 free_extent_map(em);
7614 return ERR_PTR(ret);
7615 }
7616
6f9994db 7617 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7618 return em;
7619}
7620
1c8d0175
NB
7621
7622static int btrfs_get_blocks_direct_read(struct extent_map *em,
7623 struct buffer_head *bh_result,
7624 struct inode *inode,
7625 u64 start, u64 len)
7626{
7627 if (em->block_start == EXTENT_MAP_HOLE ||
7628 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7629 return -ENOENT;
7630
7631 len = min(len, em->len - (start - em->start));
7632
7633 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7634 inode->i_blkbits;
7635 bh_result->b_size = len;
7636 bh_result->b_bdev = em->bdev;
7637 set_buffer_mapped(bh_result);
7638
7639 return 0;
7640}
7641
c5794e51
NB
7642static int btrfs_get_blocks_direct_write(struct extent_map **map,
7643 struct buffer_head *bh_result,
7644 struct inode *inode,
7645 struct btrfs_dio_data *dio_data,
7646 u64 start, u64 len)
7647{
7648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7649 struct extent_map *em = *map;
7650 int ret = 0;
7651
7652 /*
7653 * We don't allocate a new extent in the following cases
7654 *
7655 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7656 * existing extent.
7657 * 2) The extent is marked as PREALLOC. We're good to go here and can
7658 * just use the extent.
7659 *
7660 */
7661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7662 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7663 em->block_start != EXTENT_MAP_HOLE)) {
7664 int type;
7665 u64 block_start, orig_start, orig_block_len, ram_bytes;
7666
7667 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7668 type = BTRFS_ORDERED_PREALLOC;
7669 else
7670 type = BTRFS_ORDERED_NOCOW;
7671 len = min(len, em->len - (start - em->start));
7672 block_start = em->block_start + (start - em->start);
7673
7674 if (can_nocow_extent(inode, start, &len, &orig_start,
7675 &orig_block_len, &ram_bytes) == 1 &&
7676 btrfs_inc_nocow_writers(fs_info, block_start)) {
7677 struct extent_map *em2;
7678
7679 em2 = btrfs_create_dio_extent(inode, start, len,
7680 orig_start, block_start,
7681 len, orig_block_len,
7682 ram_bytes, type);
7683 btrfs_dec_nocow_writers(fs_info, block_start);
7684 if (type == BTRFS_ORDERED_PREALLOC) {
7685 free_extent_map(em);
7686 *map = em = em2;
7687 }
7688
7689 if (em2 && IS_ERR(em2)) {
7690 ret = PTR_ERR(em2);
7691 goto out;
7692 }
7693 /*
7694 * For inode marked NODATACOW or extent marked PREALLOC,
7695 * use the existing or preallocated extent, so does not
7696 * need to adjust btrfs_space_info's bytes_may_use.
7697 */
7698 btrfs_free_reserved_data_space_noquota(inode, start,
7699 len);
7700 goto skip_cow;
7701 }
7702 }
7703
7704 /* this will cow the extent */
7705 len = bh_result->b_size;
7706 free_extent_map(em);
7707 *map = em = btrfs_new_extent_direct(inode, start, len);
7708 if (IS_ERR(em)) {
7709 ret = PTR_ERR(em);
7710 goto out;
7711 }
7712
7713 len = min(len, em->len - (start - em->start));
7714
7715skip_cow:
7716 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7717 inode->i_blkbits;
7718 bh_result->b_size = len;
7719 bh_result->b_bdev = em->bdev;
7720 set_buffer_mapped(bh_result);
7721
7722 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723 set_buffer_new(bh_result);
7724
7725 /*
7726 * Need to update the i_size under the extent lock so buffered
7727 * readers will get the updated i_size when we unlock.
7728 */
7729 if (!dio_data->overwrite && start + len > i_size_read(inode))
7730 i_size_write(inode, start + len);
7731
7732 WARN_ON(dio_data->reserve < len);
7733 dio_data->reserve -= len;
7734 dio_data->unsubmitted_oe_range_end = start + len;
7735 current->journal_info = dio_data;
7736out:
7737 return ret;
7738}
7739
4b46fce2
JB
7740static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7741 struct buffer_head *bh_result, int create)
7742{
0b246afa 7743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7744 struct extent_map *em;
eb838e73 7745 struct extent_state *cached_state = NULL;
50745b0a 7746 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7747 u64 start = iblock << inode->i_blkbits;
eb838e73 7748 u64 lockstart, lockend;
4b46fce2 7749 u64 len = bh_result->b_size;
0934856d 7750 int ret = 0;
eb838e73 7751
e182163d 7752 if (!create)
0b246afa 7753 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7754
c329861d
JB
7755 lockstart = start;
7756 lockend = start + len - 1;
7757
e1cbbfa5
JB
7758 if (current->journal_info) {
7759 /*
7760 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7761 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7762 * confused.
7763 */
50745b0a 7764 dio_data = current->journal_info;
e1cbbfa5
JB
7765 current->journal_info = NULL;
7766 }
7767
eb838e73
JB
7768 /*
7769 * If this errors out it's because we couldn't invalidate pagecache for
7770 * this range and we need to fallback to buffered.
7771 */
9c9464cc
FM
7772 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7773 create)) {
7774 ret = -ENOTBLK;
7775 goto err;
7776 }
eb838e73 7777
fc4f21b1 7778 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7779 if (IS_ERR(em)) {
7780 ret = PTR_ERR(em);
7781 goto unlock_err;
7782 }
4b46fce2
JB
7783
7784 /*
7785 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7786 * io. INLINE is special, and we could probably kludge it in here, but
7787 * it's still buffered so for safety lets just fall back to the generic
7788 * buffered path.
7789 *
7790 * For COMPRESSED we _have_ to read the entire extent in so we can
7791 * decompress it, so there will be buffering required no matter what we
7792 * do, so go ahead and fallback to buffered.
7793 *
01327610 7794 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7795 * to buffered IO. Don't blame me, this is the price we pay for using
7796 * the generic code.
7797 */
7798 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7799 em->block_start == EXTENT_MAP_INLINE) {
7800 free_extent_map(em);
eb838e73
JB
7801 ret = -ENOTBLK;
7802 goto unlock_err;
4b46fce2
JB
7803 }
7804
c5794e51
NB
7805 if (create) {
7806 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7807 dio_data, start, len);
7808 if (ret < 0)
7809 goto unlock_err;
7810
e182163d
OS
7811 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7812 lockend, &cached_state);
c5794e51 7813 } else {
1c8d0175
NB
7814 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7815 start, len);
7816 /* Can be negative only if we read from a hole */
7817 if (ret < 0) {
7818 ret = 0;
7819 free_extent_map(em);
7820 goto unlock_err;
7821 }
7822 /*
7823 * We need to unlock only the end area that we aren't using.
7824 * The rest is going to be unlocked by the endio routine.
7825 */
7826 lockstart = start + bh_result->b_size;
7827 if (lockstart < lockend) {
e182163d
OS
7828 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7829 lockstart, lockend, &cached_state);
1c8d0175
NB
7830 } else {
7831 free_extent_state(cached_state);
7832 }
4b46fce2
JB
7833 }
7834
4b46fce2
JB
7835 free_extent_map(em);
7836
7837 return 0;
eb838e73
JB
7838
7839unlock_err:
e182163d
OS
7840 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7841 &cached_state);
9c9464cc 7842err:
50745b0a 7843 if (dio_data)
7844 current->journal_info = dio_data;
eb838e73 7845 return ret;
4b46fce2
JB
7846}
7847
58efbc9f
OS
7848static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7849 struct bio *bio,
7850 int mirror_num)
8b110e39 7851{
2ff7e61e 7852 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7853 blk_status_t ret;
8b110e39 7854
37226b21 7855 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7856
2ff7e61e 7857 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7858 if (ret)
ea057f6d 7859 return ret;
8b110e39 7860
2ff7e61e 7861 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7862
8b110e39
MX
7863 return ret;
7864}
7865
7866static int btrfs_check_dio_repairable(struct inode *inode,
7867 struct bio *failed_bio,
7868 struct io_failure_record *failrec,
7869 int failed_mirror)
7870{
ab8d0fc4 7871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7872 int num_copies;
7873
ab8d0fc4 7874 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7875 if (num_copies == 1) {
7876 /*
7877 * we only have a single copy of the data, so don't bother with
7878 * all the retry and error correction code that follows. no
7879 * matter what the error is, it is very likely to persist.
7880 */
ab8d0fc4
JM
7881 btrfs_debug(fs_info,
7882 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7883 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7884 return 0;
7885 }
7886
7887 failrec->failed_mirror = failed_mirror;
7888 failrec->this_mirror++;
7889 if (failrec->this_mirror == failed_mirror)
7890 failrec->this_mirror++;
7891
7892 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7893 btrfs_debug(fs_info,
7894 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7895 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7896 return 0;
7897 }
7898
7899 return 1;
7900}
7901
58efbc9f
OS
7902static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7903 struct page *page, unsigned int pgoff,
7904 u64 start, u64 end, int failed_mirror,
7905 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7906{
7907 struct io_failure_record *failrec;
7870d082
JB
7908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7909 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7910 struct bio *bio;
7911 int isector;
f1c77c55 7912 unsigned int read_mode = 0;
17347cec 7913 int segs;
8b110e39 7914 int ret;
58efbc9f 7915 blk_status_t status;
c16a8ac3 7916 struct bio_vec bvec;
8b110e39 7917
37226b21 7918 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7919
7920 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7921 if (ret)
58efbc9f 7922 return errno_to_blk_status(ret);
8b110e39
MX
7923
7924 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7925 failed_mirror);
7926 if (!ret) {
7870d082 7927 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7928 return BLK_STS_IOERR;
8b110e39
MX
7929 }
7930
17347cec 7931 segs = bio_segments(failed_bio);
c16a8ac3 7932 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7933 if (segs > 1 ||
c16a8ac3 7934 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7935 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7936
7937 isector = start - btrfs_io_bio(failed_bio)->logical;
7938 isector >>= inode->i_sb->s_blocksize_bits;
7939 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7940 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7941 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7942
7943 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7944 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7945 read_mode, failrec->this_mirror, failrec->in_validation);
7946
58efbc9f
OS
7947 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7948 if (status) {
7870d082 7949 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7950 bio_put(bio);
7951 }
7952
58efbc9f 7953 return status;
8b110e39
MX
7954}
7955
7956struct btrfs_retry_complete {
7957 struct completion done;
7958 struct inode *inode;
7959 u64 start;
7960 int uptodate;
7961};
7962
4246a0b6 7963static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7964{
7965 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7966 struct inode *inode = done->inode;
8b110e39 7967 struct bio_vec *bvec;
7870d082 7968 struct extent_io_tree *io_tree, *failure_tree;
6dc4f100 7969 struct bvec_iter_all iter_all;
8b110e39 7970
4e4cbee9 7971 if (bio->bi_status)
8b110e39
MX
7972 goto end;
7973
2dabb324 7974 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7975 io_tree = &BTRFS_I(inode)->io_tree;
7976 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7977 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7978
8b110e39 7979 done->uptodate = 1;
c09abff8 7980 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 7981 bio_for_each_segment_all(bvec, bio, iter_all)
7870d082
JB
7982 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7983 io_tree, done->start, bvec->bv_page,
7984 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7985end:
7986 complete(&done->done);
7987 bio_put(bio);
7988}
7989
58efbc9f
OS
7990static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7991 struct btrfs_io_bio *io_bio)
4b46fce2 7992{
2dabb324 7993 struct btrfs_fs_info *fs_info;
17347cec
LB
7994 struct bio_vec bvec;
7995 struct bvec_iter iter;
8b110e39 7996 struct btrfs_retry_complete done;
4b46fce2 7997 u64 start;
2dabb324
CR
7998 unsigned int pgoff;
7999 u32 sectorsize;
8000 int nr_sectors;
58efbc9f
OS
8001 blk_status_t ret;
8002 blk_status_t err = BLK_STS_OK;
4b46fce2 8003
2dabb324 8004 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8005 sectorsize = fs_info->sectorsize;
2dabb324 8006
8b110e39
MX
8007 start = io_bio->logical;
8008 done.inode = inode;
17347cec 8009 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8010
17347cec
LB
8011 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8012 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8013 pgoff = bvec.bv_offset;
2dabb324
CR
8014
8015next_block_or_try_again:
8b110e39
MX
8016 done.uptodate = 0;
8017 done.start = start;
8018 init_completion(&done.done);
8019
17347cec 8020 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8021 pgoff, start, start + sectorsize - 1,
8022 io_bio->mirror_num,
8023 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8024 if (ret) {
8025 err = ret;
8026 goto next;
8027 }
8b110e39 8028
9c17f6cd 8029 wait_for_completion_io(&done.done);
8b110e39
MX
8030
8031 if (!done.uptodate) {
8032 /* We might have another mirror, so try again */
2dabb324 8033 goto next_block_or_try_again;
8b110e39
MX
8034 }
8035
629ebf4f 8036next:
2dabb324
CR
8037 start += sectorsize;
8038
97bf5a55
LB
8039 nr_sectors--;
8040 if (nr_sectors) {
2dabb324 8041 pgoff += sectorsize;
97bf5a55 8042 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8043 goto next_block_or_try_again;
8044 }
8b110e39
MX
8045 }
8046
629ebf4f 8047 return err;
8b110e39
MX
8048}
8049
4246a0b6 8050static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8051{
8052 struct btrfs_retry_complete *done = bio->bi_private;
8053 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8054 struct extent_io_tree *io_tree, *failure_tree;
8055 struct inode *inode = done->inode;
8b110e39
MX
8056 struct bio_vec *bvec;
8057 int uptodate;
8058 int ret;
2b070cfe 8059 int i = 0;
6dc4f100 8060 struct bvec_iter_all iter_all;
8b110e39 8061
4e4cbee9 8062 if (bio->bi_status)
8b110e39
MX
8063 goto end;
8064
8065 uptodate = 1;
2dabb324 8066
2dabb324 8067 ASSERT(bio->bi_vcnt == 1);
263663cd 8068 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8069
7870d082
JB
8070 io_tree = &BTRFS_I(inode)->io_tree;
8071 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8072
c09abff8 8073 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 8074 bio_for_each_segment_all(bvec, bio, iter_all) {
7870d082
JB
8075 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8076 bvec->bv_offset, done->start,
8077 bvec->bv_len);
8b110e39 8078 if (!ret)
7870d082
JB
8079 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8080 failure_tree, io_tree, done->start,
8081 bvec->bv_page,
8082 btrfs_ino(BTRFS_I(inode)),
8083 bvec->bv_offset);
8b110e39
MX
8084 else
8085 uptodate = 0;
2b070cfe 8086 i++;
8b110e39
MX
8087 }
8088
8089 done->uptodate = uptodate;
8090end:
8091 complete(&done->done);
8092 bio_put(bio);
8093}
8094
4e4cbee9
CH
8095static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8096 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8097{
2dabb324 8098 struct btrfs_fs_info *fs_info;
17347cec
LB
8099 struct bio_vec bvec;
8100 struct bvec_iter iter;
8b110e39
MX
8101 struct btrfs_retry_complete done;
8102 u64 start;
8103 u64 offset = 0;
2dabb324
CR
8104 u32 sectorsize;
8105 int nr_sectors;
8106 unsigned int pgoff;
8107 int csum_pos;
ef7cdac1 8108 bool uptodate = (err == 0);
8b110e39 8109 int ret;
58efbc9f 8110 blk_status_t status;
dc380aea 8111
2dabb324 8112 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8113 sectorsize = fs_info->sectorsize;
2dabb324 8114
58efbc9f 8115 err = BLK_STS_OK;
c1dc0896 8116 start = io_bio->logical;
8b110e39 8117 done.inode = inode;
17347cec 8118 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8119
17347cec
LB
8120 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8121 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8122
17347cec 8123 pgoff = bvec.bv_offset;
2dabb324 8124next_block:
ef7cdac1
LB
8125 if (uptodate) {
8126 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8127 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8128 bvec.bv_page, pgoff, start, sectorsize);
8129 if (likely(!ret))
8130 goto next;
8131 }
8b110e39
MX
8132try_again:
8133 done.uptodate = 0;
8134 done.start = start;
8135 init_completion(&done.done);
8136
58efbc9f
OS
8137 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8138 pgoff, start, start + sectorsize - 1,
8139 io_bio->mirror_num, btrfs_retry_endio,
8140 &done);
8141 if (status) {
8142 err = status;
8b110e39
MX
8143 goto next;
8144 }
8145
9c17f6cd 8146 wait_for_completion_io(&done.done);
8b110e39
MX
8147
8148 if (!done.uptodate) {
8149 /* We might have another mirror, so try again */
8150 goto try_again;
8151 }
8152next:
2dabb324
CR
8153 offset += sectorsize;
8154 start += sectorsize;
8155
8156 ASSERT(nr_sectors);
8157
97bf5a55
LB
8158 nr_sectors--;
8159 if (nr_sectors) {
2dabb324 8160 pgoff += sectorsize;
97bf5a55 8161 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8162 goto next_block;
8163 }
2c30c71b 8164 }
c1dc0896
MX
8165
8166 return err;
8167}
8168
4e4cbee9
CH
8169static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8170 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8171{
8172 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8173
8174 if (skip_csum) {
8175 if (unlikely(err))
8176 return __btrfs_correct_data_nocsum(inode, io_bio);
8177 else
58efbc9f 8178 return BLK_STS_OK;
8b110e39
MX
8179 } else {
8180 return __btrfs_subio_endio_read(inode, io_bio, err);
8181 }
8182}
8183
4246a0b6 8184static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8185{
8186 struct btrfs_dio_private *dip = bio->bi_private;
8187 struct inode *inode = dip->inode;
8188 struct bio *dio_bio;
8189 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8190 blk_status_t err = bio->bi_status;
c1dc0896 8191
99c4e3b9 8192 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8193 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8194
4b46fce2 8195 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8196 dip->logical_offset + dip->bytes - 1);
9be3395b 8197 dio_bio = dip->dio_bio;
4b46fce2 8198
4b46fce2 8199 kfree(dip);
c0da7aa1 8200
99c4e3b9 8201 dio_bio->bi_status = err;
4055351c 8202 dio_end_io(dio_bio);
b3a0dd50 8203 btrfs_io_bio_free_csum(io_bio);
9be3395b 8204 bio_put(bio);
4b46fce2
JB
8205}
8206
52427260
QW
8207static void __endio_write_update_ordered(struct inode *inode,
8208 const u64 offset, const u64 bytes,
8209 const bool uptodate)
4b46fce2 8210{
0b246afa 8211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8212 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8213 struct btrfs_workqueue *wq;
8214 btrfs_work_func_t func;
14543774
FM
8215 u64 ordered_offset = offset;
8216 u64 ordered_bytes = bytes;
67c003f9 8217 u64 last_offset;
4b46fce2 8218
52427260
QW
8219 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8220 wq = fs_info->endio_freespace_worker;
8221 func = btrfs_freespace_write_helper;
8222 } else {
8223 wq = fs_info->endio_write_workers;
8224 func = btrfs_endio_write_helper;
8225 }
8226
b25f0d00
NB
8227 while (ordered_offset < offset + bytes) {
8228 last_offset = ordered_offset;
8229 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8230 &ordered_offset,
8231 ordered_bytes,
8232 uptodate)) {
8233 btrfs_init_work(&ordered->work, func,
8234 finish_ordered_fn,
8235 NULL, NULL);
8236 btrfs_queue_work(wq, &ordered->work);
8237 }
8238 /*
8239 * If btrfs_dec_test_ordered_pending does not find any ordered
8240 * extent in the range, we can exit.
8241 */
8242 if (ordered_offset == last_offset)
8243 return;
8244 /*
8245 * Our bio might span multiple ordered extents. In this case
52042d8e 8246 * we keep going until we have accounted the whole dio.
b25f0d00
NB
8247 */
8248 if (ordered_offset < offset + bytes) {
8249 ordered_bytes = offset + bytes - ordered_offset;
8250 ordered = NULL;
8251 }
163cf09c 8252 }
14543774
FM
8253}
8254
8255static void btrfs_endio_direct_write(struct bio *bio)
8256{
8257 struct btrfs_dio_private *dip = bio->bi_private;
8258 struct bio *dio_bio = dip->dio_bio;
8259
52427260 8260 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8261 dip->bytes, !bio->bi_status);
4b46fce2 8262
4b46fce2 8263 kfree(dip);
c0da7aa1 8264
4e4cbee9 8265 dio_bio->bi_status = bio->bi_status;
4055351c 8266 dio_end_io(dio_bio);
9be3395b 8267 bio_put(bio);
4b46fce2
JB
8268}
8269
d0ee3934 8270static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8271 struct bio *bio, u64 offset)
eaf25d93 8272{
c6100a4b 8273 struct inode *inode = private_data;
4e4cbee9 8274 blk_status_t ret;
2ff7e61e 8275 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8276 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8277 return 0;
8278}
8279
4246a0b6 8280static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8281{
8282 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8283 blk_status_t err = bio->bi_status;
e65e1535 8284
8b110e39
MX
8285 if (err)
8286 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8287 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8288 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8289 bio->bi_opf,
8b110e39
MX
8290 (unsigned long long)bio->bi_iter.bi_sector,
8291 bio->bi_iter.bi_size, err);
8292
8293 if (dip->subio_endio)
8294 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8295
8296 if (err) {
e65e1535 8297 /*
de224b7c
NB
8298 * We want to perceive the errors flag being set before
8299 * decrementing the reference count. We don't need a barrier
8300 * since atomic operations with a return value are fully
8301 * ordered as per atomic_t.txt
e65e1535 8302 */
de224b7c 8303 dip->errors = 1;
e65e1535
MX
8304 }
8305
8306 /* if there are more bios still pending for this dio, just exit */
8307 if (!atomic_dec_and_test(&dip->pending_bios))
8308 goto out;
8309
9be3395b 8310 if (dip->errors) {
e65e1535 8311 bio_io_error(dip->orig_bio);
9be3395b 8312 } else {
2dbe0c77 8313 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8314 bio_endio(dip->orig_bio);
e65e1535
MX
8315 }
8316out:
8317 bio_put(bio);
8318}
8319
4e4cbee9 8320static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8321 struct btrfs_dio_private *dip,
8322 struct bio *bio,
8323 u64 file_offset)
8324{
8325 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8326 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8327 blk_status_t ret;
c1dc0896
MX
8328
8329 /*
8330 * We load all the csum data we need when we submit
8331 * the first bio to reduce the csum tree search and
8332 * contention.
8333 */
8334 if (dip->logical_offset == file_offset) {
2ff7e61e 8335 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8336 file_offset);
8337 if (ret)
8338 return ret;
8339 }
8340
8341 if (bio == dip->orig_bio)
8342 return 0;
8343
8344 file_offset -= dip->logical_offset;
8345 file_offset >>= inode->i_sb->s_blocksize_bits;
8346 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8347
8348 return 0;
8349}
8350
d0ee3934
DS
8351static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8352 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8353{
0b246afa 8354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8355 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8356 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8357 blk_status_t ret;
e65e1535 8358
4c274bc6 8359 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8360 if (async_submit)
8361 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8362
5fd02043 8363 if (!write) {
0b246afa 8364 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8365 if (ret)
8366 goto err;
8367 }
e65e1535 8368
e6961cac 8369 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8370 goto map;
8371
8372 if (write && async_submit) {
c6100a4b
JB
8373 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8374 file_offset, inode,
e288c080 8375 btrfs_submit_bio_start_direct_io);
e65e1535 8376 goto err;
1ae39938
JB
8377 } else if (write) {
8378 /*
8379 * If we aren't doing async submit, calculate the csum of the
8380 * bio now.
8381 */
2ff7e61e 8382 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8383 if (ret)
8384 goto err;
23ea8e5a 8385 } else {
2ff7e61e 8386 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8387 file_offset);
c2db1073
TI
8388 if (ret)
8389 goto err;
8390 }
1ae39938 8391map:
9b4a9b28 8392 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8393err:
e65e1535
MX
8394 return ret;
8395}
8396
e6961cac 8397static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8398{
8399 struct inode *inode = dip->inode;
0b246afa 8400 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8401 struct bio *bio;
8402 struct bio *orig_bio = dip->orig_bio;
4f024f37 8403 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8404 u64 file_offset = dip->logical_offset;
1ae39938 8405 int async_submit = 0;
725130ba
LB
8406 u64 submit_len;
8407 int clone_offset = 0;
8408 int clone_len;
5f4dc8fc 8409 int ret;
58efbc9f 8410 blk_status_t status;
89b798ad 8411 struct btrfs_io_geometry geom;
e65e1535 8412
89b798ad
NB
8413 submit_len = orig_bio->bi_iter.bi_size;
8414 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8415 start_sector << 9, submit_len, &geom);
7a5c3c9b 8416 if (ret)
e65e1535 8417 return -EIO;
facc8a22 8418
89b798ad 8419 if (geom.len >= submit_len) {
02f57c7a 8420 bio = orig_bio;
c1dc0896 8421 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8422 goto submit;
8423 }
8424
53b381b3 8425 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8426 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8427 async_submit = 0;
8428 else
8429 async_submit = 1;
8430
725130ba 8431 /* bio split */
89b798ad 8432 ASSERT(geom.len <= INT_MAX);
02f57c7a 8433 atomic_inc(&dip->pending_bios);
3c91ee69 8434 do {
89b798ad 8435 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 8436
725130ba
LB
8437 /*
8438 * This will never fail as it's passing GPF_NOFS and
8439 * the allocation is backed by btrfs_bioset.
8440 */
e477094f 8441 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8442 clone_len);
8443 bio->bi_private = dip;
8444 bio->bi_end_io = btrfs_end_dio_bio;
8445 btrfs_io_bio(bio)->logical = file_offset;
8446
8447 ASSERT(submit_len >= clone_len);
8448 submit_len -= clone_len;
8449 if (submit_len == 0)
8450 break;
e65e1535 8451
725130ba
LB
8452 /*
8453 * Increase the count before we submit the bio so we know
8454 * the end IO handler won't happen before we increase the
8455 * count. Otherwise, the dip might get freed before we're
8456 * done setting it up.
8457 */
8458 atomic_inc(&dip->pending_bios);
e65e1535 8459
d0ee3934 8460 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8461 async_submit);
8462 if (status) {
725130ba
LB
8463 bio_put(bio);
8464 atomic_dec(&dip->pending_bios);
8465 goto out_err;
8466 }
e65e1535 8467
725130ba
LB
8468 clone_offset += clone_len;
8469 start_sector += clone_len >> 9;
8470 file_offset += clone_len;
5f4dc8fc 8471
89b798ad
NB
8472 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8473 start_sector << 9, submit_len, &geom);
725130ba
LB
8474 if (ret)
8475 goto out_err;
3c91ee69 8476 } while (submit_len > 0);
e65e1535 8477
02f57c7a 8478submit:
d0ee3934 8479 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8480 if (!status)
e65e1535
MX
8481 return 0;
8482
8483 bio_put(bio);
8484out_err:
8485 dip->errors = 1;
8486 /*
de224b7c
NB
8487 * Before atomic variable goto zero, we must make sure dip->errors is
8488 * perceived to be set. This ordering is ensured by the fact that an
8489 * atomic operations with a return value are fully ordered as per
8490 * atomic_t.txt
e65e1535 8491 */
e65e1535
MX
8492 if (atomic_dec_and_test(&dip->pending_bios))
8493 bio_io_error(dip->orig_bio);
8494
8495 /* bio_end_io() will handle error, so we needn't return it */
8496 return 0;
8497}
8498
8a4c1e42
MC
8499static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8500 loff_t file_offset)
4b46fce2 8501{
61de718f 8502 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8503 struct bio *bio = NULL;
8504 struct btrfs_io_bio *io_bio;
8a4c1e42 8505 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8506 int ret = 0;
8507
8b6c1d56 8508 bio = btrfs_bio_clone(dio_bio);
9be3395b 8509
c1dc0896 8510 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8511 if (!dip) {
8512 ret = -ENOMEM;
61de718f 8513 goto free_ordered;
4b46fce2 8514 }
4b46fce2 8515
9be3395b 8516 dip->private = dio_bio->bi_private;
4b46fce2
JB
8517 dip->inode = inode;
8518 dip->logical_offset = file_offset;
4f024f37
KO
8519 dip->bytes = dio_bio->bi_iter.bi_size;
8520 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8521 bio->bi_private = dip;
8522 dip->orig_bio = bio;
9be3395b 8523 dip->dio_bio = dio_bio;
e65e1535 8524 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8525 io_bio = btrfs_io_bio(bio);
8526 io_bio->logical = file_offset;
4b46fce2 8527
c1dc0896 8528 if (write) {
3892ac90 8529 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8530 } else {
3892ac90 8531 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8532 dip->subio_endio = btrfs_subio_endio_read;
8533 }
4b46fce2 8534
f28a4928
FM
8535 /*
8536 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8537 * even if we fail to submit a bio, because in such case we do the
8538 * corresponding error handling below and it must not be done a second
8539 * time by btrfs_direct_IO().
8540 */
8541 if (write) {
8542 struct btrfs_dio_data *dio_data = current->journal_info;
8543
8544 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8545 dip->bytes;
8546 dio_data->unsubmitted_oe_range_start =
8547 dio_data->unsubmitted_oe_range_end;
8548 }
8549
e6961cac 8550 ret = btrfs_submit_direct_hook(dip);
e65e1535 8551 if (!ret)
eaf25d93 8552 return;
9be3395b 8553
b3a0dd50 8554 btrfs_io_bio_free_csum(io_bio);
9be3395b 8555
4b46fce2
JB
8556free_ordered:
8557 /*
61de718f
FM
8558 * If we arrived here it means either we failed to submit the dip
8559 * or we either failed to clone the dio_bio or failed to allocate the
8560 * dip. If we cloned the dio_bio and allocated the dip, we can just
8561 * call bio_endio against our io_bio so that we get proper resource
8562 * cleanup if we fail to submit the dip, otherwise, we must do the
8563 * same as btrfs_endio_direct_[write|read] because we can't call these
8564 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8565 */
3892ac90 8566 if (bio && dip) {
054ec2f6 8567 bio_io_error(bio);
61de718f 8568 /*
3892ac90 8569 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8570 * and all the cleanup and final put for dio_bio (through
8571 * dio_end_io()).
8572 */
8573 dip = NULL;
3892ac90 8574 bio = NULL;
61de718f 8575 } else {
14543774 8576 if (write)
52427260 8577 __endio_write_update_ordered(inode,
14543774
FM
8578 file_offset,
8579 dio_bio->bi_iter.bi_size,
52427260 8580 false);
14543774 8581 else
61de718f
FM
8582 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8583 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8584
4e4cbee9 8585 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8586 /*
8587 * Releases and cleans up our dio_bio, no need to bio_put()
8588 * nor bio_endio()/bio_io_error() against dio_bio.
8589 */
4055351c 8590 dio_end_io(dio_bio);
4b46fce2 8591 }
3892ac90
LB
8592 if (bio)
8593 bio_put(bio);
61de718f 8594 kfree(dip);
4b46fce2
JB
8595}
8596
2ff7e61e 8597static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8598 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8599{
8600 int seg;
a1b75f7d 8601 int i;
0b246afa 8602 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8603 ssize_t retval = -EINVAL;
5a5f79b5
CM
8604
8605 if (offset & blocksize_mask)
8606 goto out;
8607
28060d5d
AV
8608 if (iov_iter_alignment(iter) & blocksize_mask)
8609 goto out;
a1b75f7d 8610
28060d5d 8611 /* If this is a write we don't need to check anymore */
cd27e455 8612 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8613 return 0;
8614 /*
8615 * Check to make sure we don't have duplicate iov_base's in this
8616 * iovec, if so return EINVAL, otherwise we'll get csum errors
8617 * when reading back.
8618 */
8619 for (seg = 0; seg < iter->nr_segs; seg++) {
8620 for (i = seg + 1; i < iter->nr_segs; i++) {
8621 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8622 goto out;
8623 }
5a5f79b5
CM
8624 }
8625 retval = 0;
8626out:
8627 return retval;
8628}
eb838e73 8629
c8b8e32d 8630static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8631{
4b46fce2
JB
8632 struct file *file = iocb->ki_filp;
8633 struct inode *inode = file->f_mapping->host;
0b246afa 8634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8635 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8636 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8637 loff_t offset = iocb->ki_pos;
0934856d 8638 size_t count = 0;
2e60a51e 8639 int flags = 0;
38851cc1
MX
8640 bool wakeup = true;
8641 bool relock = false;
0934856d 8642 ssize_t ret;
4b46fce2 8643
8c70c9f8 8644 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8645 return 0;
3f7c579c 8646
fe0f07d0 8647 inode_dio_begin(inode);
38851cc1 8648
0e267c44 8649 /*
41bd9ca4
MX
8650 * The generic stuff only does filemap_write_and_wait_range, which
8651 * isn't enough if we've written compressed pages to this area, so
8652 * we need to flush the dirty pages again to make absolutely sure
8653 * that any outstanding dirty pages are on disk.
0e267c44 8654 */
a6cbcd4a 8655 count = iov_iter_count(iter);
41bd9ca4
MX
8656 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8657 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8658 filemap_fdatawrite_range(inode->i_mapping, offset,
8659 offset + count - 1);
0e267c44 8660
6f673763 8661 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8662 /*
8663 * If the write DIO is beyond the EOF, we need update
8664 * the isize, but it is protected by i_mutex. So we can
8665 * not unlock the i_mutex at this case.
8666 */
8667 if (offset + count <= inode->i_size) {
4aaedfb0 8668 dio_data.overwrite = 1;
5955102c 8669 inode_unlock(inode);
38851cc1 8670 relock = true;
edf064e7
GR
8671 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8672 ret = -EAGAIN;
8673 goto out;
38851cc1 8674 }
364ecf36
QW
8675 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8676 offset, count);
0934856d 8677 if (ret)
38851cc1 8678 goto out;
e1cbbfa5
JB
8679
8680 /*
8681 * We need to know how many extents we reserved so that we can
8682 * do the accounting properly if we go over the number we
8683 * originally calculated. Abuse current->journal_info for this.
8684 */
da17066c 8685 dio_data.reserve = round_up(count,
0b246afa 8686 fs_info->sectorsize);
f28a4928
FM
8687 dio_data.unsubmitted_oe_range_start = (u64)offset;
8688 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8689 current->journal_info = &dio_data;
97dcdea0 8690 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8691 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8692 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8693 inode_dio_end(inode);
38851cc1
MX
8694 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8695 wakeup = false;
0934856d
MX
8696 }
8697
17f8c842 8698 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8699 fs_info->fs_devices->latest_bdev,
c8b8e32d 8700 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8701 btrfs_submit_direct, flags);
6f673763 8702 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8703 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8704 current->journal_info = NULL;
ddba1bfc 8705 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8706 if (dio_data.reserve)
bc42bda2 8707 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8708 offset, dio_data.reserve, true);
f28a4928
FM
8709 /*
8710 * On error we might have left some ordered extents
8711 * without submitting corresponding bios for them, so
8712 * cleanup them up to avoid other tasks getting them
8713 * and waiting for them to complete forever.
8714 */
8715 if (dio_data.unsubmitted_oe_range_start <
8716 dio_data.unsubmitted_oe_range_end)
52427260 8717 __endio_write_update_ordered(inode,
f28a4928
FM
8718 dio_data.unsubmitted_oe_range_start,
8719 dio_data.unsubmitted_oe_range_end -
8720 dio_data.unsubmitted_oe_range_start,
52427260 8721 false);
ddba1bfc 8722 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8723 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8724 offset, count - (size_t)ret, true);
8702ba93 8725 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8726 }
38851cc1 8727out:
2e60a51e 8728 if (wakeup)
fe0f07d0 8729 inode_dio_end(inode);
38851cc1 8730 if (relock)
5955102c 8731 inode_lock(inode);
0934856d 8732
364ecf36 8733 extent_changeset_free(data_reserved);
0934856d 8734 return ret;
16432985
CM
8735}
8736
05dadc09
TI
8737#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8738
1506fcc8
YS
8739static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8740 __u64 start, __u64 len)
8741{
05dadc09
TI
8742 int ret;
8743
8744 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8745 if (ret)
8746 return ret;
8747
2135fb9b 8748 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8749}
8750
a52d9a80 8751int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8752{
d1310b2e
CM
8753 struct extent_io_tree *tree;
8754 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8755 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8756}
1832a6d5 8757
a52d9a80 8758static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8759{
be7bd730
JB
8760 struct inode *inode = page->mapping->host;
8761 int ret;
b888db2b
CM
8762
8763 if (current->flags & PF_MEMALLOC) {
8764 redirty_page_for_writepage(wbc, page);
8765 unlock_page(page);
8766 return 0;
8767 }
be7bd730
JB
8768
8769 /*
8770 * If we are under memory pressure we will call this directly from the
8771 * VM, we need to make sure we have the inode referenced for the ordered
8772 * extent. If not just return like we didn't do anything.
8773 */
8774 if (!igrab(inode)) {
8775 redirty_page_for_writepage(wbc, page);
8776 return AOP_WRITEPAGE_ACTIVATE;
8777 }
0a9b0e53 8778 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8779 btrfs_add_delayed_iput(inode);
8780 return ret;
9ebefb18
CM
8781}
8782
48a3b636
ES
8783static int btrfs_writepages(struct address_space *mapping,
8784 struct writeback_control *wbc)
b293f02e 8785{
8ae225a8 8786 return extent_writepages(mapping, wbc);
b293f02e
CM
8787}
8788
3ab2fb5a
CM
8789static int
8790btrfs_readpages(struct file *file, struct address_space *mapping,
8791 struct list_head *pages, unsigned nr_pages)
8792{
2a3ff0ad 8793 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8794}
2a3ff0ad 8795
e6dcd2dc 8796static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8797{
477a30ba 8798 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8799 if (ret == 1) {
8800 ClearPagePrivate(page);
8801 set_page_private(page, 0);
09cbfeaf 8802 put_page(page);
39279cc3 8803 }
a52d9a80 8804 return ret;
39279cc3
CM
8805}
8806
e6dcd2dc
CM
8807static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8808{
98509cfc
CM
8809 if (PageWriteback(page) || PageDirty(page))
8810 return 0;
3ba7ab22 8811 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8812}
8813
d47992f8
LC
8814static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8815 unsigned int length)
39279cc3 8816{
5fd02043 8817 struct inode *inode = page->mapping->host;
d1310b2e 8818 struct extent_io_tree *tree;
e6dcd2dc 8819 struct btrfs_ordered_extent *ordered;
2ac55d41 8820 struct extent_state *cached_state = NULL;
e6dcd2dc 8821 u64 page_start = page_offset(page);
09cbfeaf 8822 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8823 u64 start;
8824 u64 end;
131e404a 8825 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8826
8b62b72b
CM
8827 /*
8828 * we have the page locked, so new writeback can't start,
8829 * and the dirty bit won't be cleared while we are here.
8830 *
8831 * Wait for IO on this page so that we can safely clear
8832 * the PagePrivate2 bit and do ordered accounting
8833 */
e6dcd2dc 8834 wait_on_page_writeback(page);
8b62b72b 8835
5fd02043 8836 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8837 if (offset) {
8838 btrfs_releasepage(page, GFP_NOFS);
8839 return;
8840 }
131e404a
FDBM
8841
8842 if (!inode_evicting)
ff13db41 8843 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8844again:
8845 start = page_start;
a776c6fa 8846 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8847 page_end - start + 1);
e6dcd2dc 8848 if (ordered) {
dbfdb6d1 8849 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8850 /*
8851 * IO on this page will never be started, so we need
8852 * to account for any ordered extents now
8853 */
131e404a 8854 if (!inode_evicting)
dbfdb6d1 8855 clear_extent_bit(tree, start, end,
e182163d 8856 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8857 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8858 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8859 /*
8860 * whoever cleared the private bit is responsible
8861 * for the finish_ordered_io
8862 */
77cef2ec
JB
8863 if (TestClearPagePrivate2(page)) {
8864 struct btrfs_ordered_inode_tree *tree;
8865 u64 new_len;
8866
8867 tree = &BTRFS_I(inode)->ordered_tree;
8868
8869 spin_lock_irq(&tree->lock);
8870 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8871 new_len = start - ordered->file_offset;
77cef2ec
JB
8872 if (new_len < ordered->truncated_len)
8873 ordered->truncated_len = new_len;
8874 spin_unlock_irq(&tree->lock);
8875
8876 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8877 start,
8878 end - start + 1, 1))
77cef2ec 8879 btrfs_finish_ordered_io(ordered);
8b62b72b 8880 }
e6dcd2dc 8881 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8882 if (!inode_evicting) {
8883 cached_state = NULL;
dbfdb6d1 8884 lock_extent_bits(tree, start, end,
131e404a
FDBM
8885 &cached_state);
8886 }
dbfdb6d1
CR
8887
8888 start = end + 1;
8889 if (start < page_end)
8890 goto again;
131e404a
FDBM
8891 }
8892
b9d0b389
QW
8893 /*
8894 * Qgroup reserved space handler
8895 * Page here will be either
8896 * 1) Already written to disk
8897 * In this case, its reserved space is released from data rsv map
8898 * and will be freed by delayed_ref handler finally.
8899 * So even we call qgroup_free_data(), it won't decrease reserved
8900 * space.
8901 * 2) Not written to disk
0b34c261
GR
8902 * This means the reserved space should be freed here. However,
8903 * if a truncate invalidates the page (by clearing PageDirty)
8904 * and the page is accounted for while allocating extent
8905 * in btrfs_check_data_free_space() we let delayed_ref to
8906 * free the entire extent.
b9d0b389 8907 */
0b34c261 8908 if (PageDirty(page))
bc42bda2 8909 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a 8910 if (!inode_evicting) {
e182163d 8911 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8912 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8913 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8914 &cached_state);
131e404a
FDBM
8915
8916 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8917 }
e6dcd2dc 8918
4a096752 8919 ClearPageChecked(page);
9ad6b7bc 8920 if (PagePrivate(page)) {
9ad6b7bc
CM
8921 ClearPagePrivate(page);
8922 set_page_private(page, 0);
09cbfeaf 8923 put_page(page);
9ad6b7bc 8924 }
39279cc3
CM
8925}
8926
9ebefb18
CM
8927/*
8928 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8929 * called from a page fault handler when a page is first dirtied. Hence we must
8930 * be careful to check for EOF conditions here. We set the page up correctly
8931 * for a written page which means we get ENOSPC checking when writing into
8932 * holes and correct delalloc and unwritten extent mapping on filesystems that
8933 * support these features.
8934 *
8935 * We are not allowed to take the i_mutex here so we have to play games to
8936 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8937 * truncate_setsize() writes the inode size before removing pages, once we have
8938 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8939 * beyond EOF, then the page is guaranteed safe against truncation until we
8940 * unlock the page.
8941 */
a528a241 8942vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8943{
c2ec175c 8944 struct page *page = vmf->page;
11bac800 8945 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8947 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8948 struct btrfs_ordered_extent *ordered;
2ac55d41 8949 struct extent_state *cached_state = NULL;
364ecf36 8950 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8951 char *kaddr;
8952 unsigned long zero_start;
9ebefb18 8953 loff_t size;
a528a241
SJ
8954 vm_fault_t ret;
8955 int ret2;
9998eb70 8956 int reserved = 0;
d0b7da88 8957 u64 reserved_space;
a52d9a80 8958 u64 page_start;
e6dcd2dc 8959 u64 page_end;
d0b7da88
CR
8960 u64 end;
8961
09cbfeaf 8962 reserved_space = PAGE_SIZE;
9ebefb18 8963
b2b5ef5c 8964 sb_start_pagefault(inode->i_sb);
df480633 8965 page_start = page_offset(page);
09cbfeaf 8966 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8967 end = page_end;
df480633 8968
d0b7da88
CR
8969 /*
8970 * Reserving delalloc space after obtaining the page lock can lead to
8971 * deadlock. For example, if a dirty page is locked by this function
8972 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8973 * dirty page write out, then the btrfs_writepage() function could
8974 * end up waiting indefinitely to get a lock on the page currently
8975 * being processed by btrfs_page_mkwrite() function.
8976 */
a528a241 8977 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8978 reserved_space);
a528a241
SJ
8979 if (!ret2) {
8980 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8981 reserved = 1;
8982 }
a528a241
SJ
8983 if (ret2) {
8984 ret = vmf_error(ret2);
9998eb70
CM
8985 if (reserved)
8986 goto out;
8987 goto out_noreserve;
56a76f82 8988 }
1832a6d5 8989
56a76f82 8990 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8991again:
9ebefb18 8992 lock_page(page);
9ebefb18 8993 size = i_size_read(inode);
a52d9a80 8994
9ebefb18 8995 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8996 (page_start >= size)) {
9ebefb18
CM
8997 /* page got truncated out from underneath us */
8998 goto out_unlock;
8999 }
e6dcd2dc
CM
9000 wait_on_page_writeback(page);
9001
ff13db41 9002 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9003 set_page_extent_mapped(page);
9004
eb84ae03
CM
9005 /*
9006 * we can't set the delalloc bits if there are pending ordered
9007 * extents. Drop our locks and wait for them to finish
9008 */
a776c6fa
NB
9009 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9010 PAGE_SIZE);
e6dcd2dc 9011 if (ordered) {
2ac55d41 9012 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9013 &cached_state);
e6dcd2dc 9014 unlock_page(page);
eb84ae03 9015 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9016 btrfs_put_ordered_extent(ordered);
9017 goto again;
9018 }
9019
09cbfeaf 9020 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9021 reserved_space = round_up(size - page_start,
0b246afa 9022 fs_info->sectorsize);
09cbfeaf 9023 if (reserved_space < PAGE_SIZE) {
d0b7da88 9024 end = page_start + reserved_space - 1;
bc42bda2 9025 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
9026 page_start, PAGE_SIZE - reserved_space,
9027 true);
d0b7da88
CR
9028 }
9029 }
9030
fbf19087 9031 /*
5416034f
LB
9032 * page_mkwrite gets called when the page is firstly dirtied after it's
9033 * faulted in, but write(2) could also dirty a page and set delalloc
9034 * bits, thus in this case for space account reason, we still need to
9035 * clear any delalloc bits within this page range since we have to
9036 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9037 */
d0b7da88 9038 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
9039 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9040 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 9041
a528a241 9042 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
330a5827 9043 &cached_state);
a528a241 9044 if (ret2) {
2ac55d41 9045 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9046 &cached_state);
9ed74f2d
JB
9047 ret = VM_FAULT_SIGBUS;
9048 goto out_unlock;
9049 }
a528a241 9050 ret2 = 0;
9ebefb18
CM
9051
9052 /* page is wholly or partially inside EOF */
09cbfeaf 9053 if (page_start + PAGE_SIZE > size)
7073017a 9054 zero_start = offset_in_page(size);
9ebefb18 9055 else
09cbfeaf 9056 zero_start = PAGE_SIZE;
9ebefb18 9057
09cbfeaf 9058 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9059 kaddr = kmap(page);
09cbfeaf 9060 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9061 flush_dcache_page(page);
9062 kunmap(page);
9063 }
247e743c 9064 ClearPageChecked(page);
e6dcd2dc 9065 set_page_dirty(page);
50a9b214 9066 SetPageUptodate(page);
5a3f23d5 9067
0b246afa 9068 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9069 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9070 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9071
e43bbe5e 9072 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 9073
a528a241 9074 if (!ret2) {
8702ba93 9075 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9076 sb_end_pagefault(inode->i_sb);
364ecf36 9077 extent_changeset_free(data_reserved);
50a9b214 9078 return VM_FAULT_LOCKED;
b2b5ef5c 9079 }
717beb96
CM
9080
9081out_unlock:
9ebefb18 9082 unlock_page(page);
1832a6d5 9083out:
8702ba93 9084 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2 9085 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9086 reserved_space, (ret != 0));
9998eb70 9087out_noreserve:
b2b5ef5c 9088 sb_end_pagefault(inode->i_sb);
364ecf36 9089 extent_changeset_free(data_reserved);
9ebefb18
CM
9090 return ret;
9091}
9092
213e8c55 9093static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9094{
0b246afa 9095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9096 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9097 struct btrfs_block_rsv *rsv;
ad7e1a74 9098 int ret;
39279cc3 9099 struct btrfs_trans_handle *trans;
0b246afa 9100 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 9101 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 9102
213e8c55
FM
9103 if (!skip_writeback) {
9104 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9105 (u64)-1);
9106 if (ret)
9107 return ret;
9108 }
39279cc3 9109
fcb80c2a 9110 /*
f7e9e8fc
OS
9111 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9112 * things going on here:
fcb80c2a 9113 *
f7e9e8fc 9114 * 1) We need to reserve space to update our inode.
fcb80c2a 9115 *
f7e9e8fc 9116 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9117 * be free'd up by the truncate operation, but also have some slack
9118 * space reserved in case it uses space during the truncate (thank you
9119 * very much snapshotting).
9120 *
f7e9e8fc 9121 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9122 * space doing the truncate, and we have no earthly idea how much space
01327610 9123 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9124 * doesn't end up using space reserved for updating the inode. We also
9125 * need to be able to stop the transaction and start a new one, which
9126 * means we need to be able to update the inode several times, and we
9127 * have no idea of knowing how many times that will be, so we can't just
9128 * reserve 1 item for the entirety of the operation, so that has to be
9129 * done separately as well.
fcb80c2a
JB
9130 *
9131 * So that leaves us with
9132 *
f7e9e8fc 9133 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9134 * transaction reservation.
f7e9e8fc 9135 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9136 * updating the inode.
9137 */
2ff7e61e 9138 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9139 if (!rsv)
9140 return -ENOMEM;
4a338542 9141 rsv->size = min_size;
ca7e70f5 9142 rsv->failfast = 1;
f0cd846e 9143
907cbceb 9144 /*
07127184 9145 * 1 for the truncate slack space
907cbceb
JB
9146 * 1 for updating the inode.
9147 */
f3fe820c 9148 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9149 if (IS_ERR(trans)) {
ad7e1a74 9150 ret = PTR_ERR(trans);
fcb80c2a
JB
9151 goto out;
9152 }
f0cd846e 9153
907cbceb 9154 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9155 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 9156 min_size, false);
fcb80c2a 9157 BUG_ON(ret);
f0cd846e 9158
5dc562c5
JB
9159 /*
9160 * So if we truncate and then write and fsync we normally would just
9161 * write the extents that changed, which is a problem if we need to
9162 * first truncate that entire inode. So set this flag so we write out
9163 * all of the extents in the inode to the sync log so we're completely
9164 * safe.
9165 */
9166 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9167 trans->block_rsv = rsv;
907cbceb 9168
8082510e
YZ
9169 while (1) {
9170 ret = btrfs_truncate_inode_items(trans, root, inode,
9171 inode->i_size,
9172 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9173 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9174 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9175 break;
39279cc3 9176
8082510e 9177 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9178 if (ret)
3893e33b 9179 break;
ca7e70f5 9180
3a45bb20 9181 btrfs_end_transaction(trans);
2ff7e61e 9182 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9183
9184 trans = btrfs_start_transaction(root, 2);
9185 if (IS_ERR(trans)) {
ad7e1a74 9186 ret = PTR_ERR(trans);
ca7e70f5
JB
9187 trans = NULL;
9188 break;
9189 }
9190
47b5d646 9191 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9192 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9193 rsv, min_size, false);
ca7e70f5
JB
9194 BUG_ON(ret); /* shouldn't happen */
9195 trans->block_rsv = rsv;
8082510e
YZ
9196 }
9197
ddfae63c
JB
9198 /*
9199 * We can't call btrfs_truncate_block inside a trans handle as we could
9200 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9201 * we've truncated everything except the last little bit, and can do
9202 * btrfs_truncate_block and then update the disk_i_size.
9203 */
9204 if (ret == NEED_TRUNCATE_BLOCK) {
9205 btrfs_end_transaction(trans);
9206 btrfs_btree_balance_dirty(fs_info);
9207
9208 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9209 if (ret)
9210 goto out;
9211 trans = btrfs_start_transaction(root, 1);
9212 if (IS_ERR(trans)) {
9213 ret = PTR_ERR(trans);
9214 goto out;
9215 }
9216 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9217 }
9218
917c16b2 9219 if (trans) {
ad7e1a74
OS
9220 int ret2;
9221
0b246afa 9222 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9223 ret2 = btrfs_update_inode(trans, root, inode);
9224 if (ret2 && !ret)
9225 ret = ret2;
7b128766 9226
ad7e1a74
OS
9227 ret2 = btrfs_end_transaction(trans);
9228 if (ret2 && !ret)
9229 ret = ret2;
2ff7e61e 9230 btrfs_btree_balance_dirty(fs_info);
917c16b2 9231 }
fcb80c2a 9232out:
2ff7e61e 9233 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9234
ad7e1a74 9235 return ret;
39279cc3
CM
9236}
9237
d352ac68
CM
9238/*
9239 * create a new subvolume directory/inode (helper for the ioctl).
9240 */
d2fb3437 9241int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9242 struct btrfs_root *new_root,
9243 struct btrfs_root *parent_root,
9244 u64 new_dirid)
39279cc3 9245{
39279cc3 9246 struct inode *inode;
76dda93c 9247 int err;
00e4e6b3 9248 u64 index = 0;
39279cc3 9249
12fc9d09
FA
9250 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9251 new_dirid, new_dirid,
9252 S_IFDIR | (~current_umask() & S_IRWXUGO),
9253 &index);
54aa1f4d 9254 if (IS_ERR(inode))
f46b5a66 9255 return PTR_ERR(inode);
39279cc3
CM
9256 inode->i_op = &btrfs_dir_inode_operations;
9257 inode->i_fop = &btrfs_dir_file_operations;
9258
bfe86848 9259 set_nlink(inode, 1);
6ef06d27 9260 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9261 unlock_new_inode(inode);
3b96362c 9262
63541927
FDBM
9263 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9264 if (err)
9265 btrfs_err(new_root->fs_info,
351fd353 9266 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9267 new_root->root_key.objectid, err);
9268
76dda93c 9269 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9270
76dda93c 9271 iput(inode);
ce598979 9272 return err;
39279cc3
CM
9273}
9274
39279cc3
CM
9275struct inode *btrfs_alloc_inode(struct super_block *sb)
9276{
69fe2d75 9277 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9278 struct btrfs_inode *ei;
2ead6ae7 9279 struct inode *inode;
39279cc3 9280
712e36c5 9281 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9282 if (!ei)
9283 return NULL;
2ead6ae7
YZ
9284
9285 ei->root = NULL;
2ead6ae7 9286 ei->generation = 0;
15ee9bc7 9287 ei->last_trans = 0;
257c62e1 9288 ei->last_sub_trans = 0;
e02119d5 9289 ei->logged_trans = 0;
2ead6ae7 9290 ei->delalloc_bytes = 0;
a7e3b975 9291 ei->new_delalloc_bytes = 0;
47059d93 9292 ei->defrag_bytes = 0;
2ead6ae7
YZ
9293 ei->disk_i_size = 0;
9294 ei->flags = 0;
7709cde3 9295 ei->csum_bytes = 0;
2ead6ae7 9296 ei->index_cnt = (u64)-1;
67de1176 9297 ei->dir_index = 0;
2ead6ae7 9298 ei->last_unlink_trans = 0;
46d8bc34 9299 ei->last_log_commit = 0;
2ead6ae7 9300
9e0baf60
JB
9301 spin_lock_init(&ei->lock);
9302 ei->outstanding_extents = 0;
69fe2d75
JB
9303 if (sb->s_magic != BTRFS_TEST_MAGIC)
9304 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9305 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9306 ei->runtime_flags = 0;
b52aa8c9 9307 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9308 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9309
16cdcec7
MX
9310 ei->delayed_node = NULL;
9311
9cc97d64 9312 ei->i_otime.tv_sec = 0;
9313 ei->i_otime.tv_nsec = 0;
9314
2ead6ae7 9315 inode = &ei->vfs_inode;
a8067e02 9316 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
9317 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9318 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9319 IO_TREE_INODE_IO_FAILURE, inode);
7b439738
DS
9320 ei->io_tree.track_uptodate = true;
9321 ei->io_failure_tree.track_uptodate = true;
b812ce28 9322 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9323 mutex_init(&ei->log_mutex);
f248679e 9324 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9325 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9326 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9327 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9328 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9329 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9330
9331 return inode;
39279cc3
CM
9332}
9333
aaedb55b
JB
9334#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9335void btrfs_test_destroy_inode(struct inode *inode)
9336{
dcdbc059 9337 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9338 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9339}
9340#endif
9341
26602cab 9342void btrfs_free_inode(struct inode *inode)
fa0d7e3d 9343{
fa0d7e3d
NP
9344 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9345}
9346
39279cc3
CM
9347void btrfs_destroy_inode(struct inode *inode)
9348{
0b246afa 9349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9350 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9351 struct btrfs_root *root = BTRFS_I(inode)->root;
9352
b3d9b7a3 9353 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9354 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9355 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9356 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9357 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9358 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9359 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9360 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9361 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9362
a6dbd429
JB
9363 /*
9364 * This can happen where we create an inode, but somebody else also
9365 * created the same inode and we need to destroy the one we already
9366 * created.
9367 */
9368 if (!root)
26602cab 9369 return;
a6dbd429 9370
d397712b 9371 while (1) {
e6dcd2dc
CM
9372 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9373 if (!ordered)
9374 break;
9375 else {
0b246afa 9376 btrfs_err(fs_info,
5d163e0e
JM
9377 "found ordered extent %llu %llu on inode cleanup",
9378 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9379 btrfs_remove_ordered_extent(inode, ordered);
9380 btrfs_put_ordered_extent(ordered);
9381 btrfs_put_ordered_extent(ordered);
9382 }
9383 }
56fa9d07 9384 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9385 inode_tree_del(inode);
dcdbc059 9386 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
39279cc3
CM
9387}
9388
45321ac5 9389int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9390{
9391 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9392
6379ef9f
NA
9393 if (root == NULL)
9394 return 1;
9395
fa6ac876 9396 /* the snap/subvol tree is on deleting */
69e9c6c6 9397 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9398 return 1;
76dda93c 9399 else
45321ac5 9400 return generic_drop_inode(inode);
76dda93c
YZ
9401}
9402
0ee0fda0 9403static void init_once(void *foo)
39279cc3
CM
9404{
9405 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9406
9407 inode_init_once(&ei->vfs_inode);
9408}
9409
e67c718b 9410void __cold btrfs_destroy_cachep(void)
39279cc3 9411{
8c0a8537
KS
9412 /*
9413 * Make sure all delayed rcu free inodes are flushed before we
9414 * destroy cache.
9415 */
9416 rcu_barrier();
5598e900
KM
9417 kmem_cache_destroy(btrfs_inode_cachep);
9418 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9419 kmem_cache_destroy(btrfs_path_cachep);
9420 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 9421 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
9422}
9423
f5c29bd9 9424int __init btrfs_init_cachep(void)
39279cc3 9425{
837e1972 9426 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9427 sizeof(struct btrfs_inode), 0,
5d097056
VD
9428 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9429 init_once);
39279cc3
CM
9430 if (!btrfs_inode_cachep)
9431 goto fail;
9601e3f6 9432
837e1972 9433 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9434 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9435 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9436 if (!btrfs_trans_handle_cachep)
9437 goto fail;
9601e3f6 9438
837e1972 9439 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9440 sizeof(struct btrfs_path), 0,
fba4b697 9441 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9442 if (!btrfs_path_cachep)
9443 goto fail;
9601e3f6 9444
837e1972 9445 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9446 sizeof(struct btrfs_free_space), 0,
fba4b697 9447 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9448 if (!btrfs_free_space_cachep)
9449 goto fail;
9450
3acd4850
CL
9451 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9452 PAGE_SIZE, PAGE_SIZE,
9453 SLAB_RED_ZONE, NULL);
9454 if (!btrfs_free_space_bitmap_cachep)
9455 goto fail;
9456
39279cc3
CM
9457 return 0;
9458fail:
9459 btrfs_destroy_cachep();
9460 return -ENOMEM;
9461}
9462
a528d35e
DH
9463static int btrfs_getattr(const struct path *path, struct kstat *stat,
9464 u32 request_mask, unsigned int flags)
39279cc3 9465{
df0af1a5 9466 u64 delalloc_bytes;
a528d35e 9467 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9468 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9469 u32 bi_flags = BTRFS_I(inode)->flags;
9470
9471 stat->result_mask |= STATX_BTIME;
9472 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9473 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9474 if (bi_flags & BTRFS_INODE_APPEND)
9475 stat->attributes |= STATX_ATTR_APPEND;
9476 if (bi_flags & BTRFS_INODE_COMPRESS)
9477 stat->attributes |= STATX_ATTR_COMPRESSED;
9478 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9479 stat->attributes |= STATX_ATTR_IMMUTABLE;
9480 if (bi_flags & BTRFS_INODE_NODUMP)
9481 stat->attributes |= STATX_ATTR_NODUMP;
9482
9483 stat->attributes_mask |= (STATX_ATTR_APPEND |
9484 STATX_ATTR_COMPRESSED |
9485 STATX_ATTR_IMMUTABLE |
9486 STATX_ATTR_NODUMP);
fadc0d8b 9487
39279cc3 9488 generic_fillattr(inode, stat);
0ee5dc67 9489 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9490
9491 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9492 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9493 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9494 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9495 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9496 return 0;
9497}
9498
cdd1fedf
DF
9499static int btrfs_rename_exchange(struct inode *old_dir,
9500 struct dentry *old_dentry,
9501 struct inode *new_dir,
9502 struct dentry *new_dentry)
9503{
0b246afa 9504 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9505 struct btrfs_trans_handle *trans;
9506 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9507 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9508 struct inode *new_inode = new_dentry->d_inode;
9509 struct inode *old_inode = old_dentry->d_inode;
95582b00 9510 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9511 struct dentry *parent;
4a0cc7ca
NB
9512 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9513 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9514 u64 old_idx = 0;
9515 u64 new_idx = 0;
9516 u64 root_objectid;
9517 int ret;
86e8aa0e
FM
9518 bool root_log_pinned = false;
9519 bool dest_log_pinned = false;
d4682ba0
FM
9520 struct btrfs_log_ctx ctx_root;
9521 struct btrfs_log_ctx ctx_dest;
9522 bool sync_log_root = false;
9523 bool sync_log_dest = false;
9524 bool commit_transaction = false;
cdd1fedf
DF
9525
9526 /* we only allow rename subvolume link between subvolumes */
9527 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9528 return -EXDEV;
9529
d4682ba0
FM
9530 btrfs_init_log_ctx(&ctx_root, old_inode);
9531 btrfs_init_log_ctx(&ctx_dest, new_inode);
9532
cdd1fedf
DF
9533 /* close the race window with snapshot create/destroy ioctl */
9534 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9535 down_read(&fs_info->subvol_sem);
cdd1fedf 9536 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9537 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9538
9539 /*
9540 * We want to reserve the absolute worst case amount of items. So if
9541 * both inodes are subvols and we need to unlink them then that would
9542 * require 4 item modifications, but if they are both normal inodes it
9543 * would require 5 item modifications, so we'll assume their normal
9544 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9545 * should cover the worst case number of items we'll modify.
9546 */
9547 trans = btrfs_start_transaction(root, 12);
9548 if (IS_ERR(trans)) {
9549 ret = PTR_ERR(trans);
9550 goto out_notrans;
9551 }
9552
9553 /*
9554 * We need to find a free sequence number both in the source and
9555 * in the destination directory for the exchange.
9556 */
877574e2 9557 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9558 if (ret)
9559 goto out_fail;
877574e2 9560 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9561 if (ret)
9562 goto out_fail;
9563
9564 BTRFS_I(old_inode)->dir_index = 0ULL;
9565 BTRFS_I(new_inode)->dir_index = 0ULL;
9566
9567 /* Reference for the source. */
9568 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9569 /* force full log commit if subvolume involved. */
90787766 9570 btrfs_set_log_full_commit(trans);
cdd1fedf 9571 } else {
376e5a57
FM
9572 btrfs_pin_log_trans(root);
9573 root_log_pinned = true;
cdd1fedf
DF
9574 ret = btrfs_insert_inode_ref(trans, dest,
9575 new_dentry->d_name.name,
9576 new_dentry->d_name.len,
9577 old_ino,
f85b7379
DS
9578 btrfs_ino(BTRFS_I(new_dir)),
9579 old_idx);
cdd1fedf
DF
9580 if (ret)
9581 goto out_fail;
cdd1fedf
DF
9582 }
9583
9584 /* And now for the dest. */
9585 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9586 /* force full log commit if subvolume involved. */
90787766 9587 btrfs_set_log_full_commit(trans);
cdd1fedf 9588 } else {
376e5a57
FM
9589 btrfs_pin_log_trans(dest);
9590 dest_log_pinned = true;
cdd1fedf
DF
9591 ret = btrfs_insert_inode_ref(trans, root,
9592 old_dentry->d_name.name,
9593 old_dentry->d_name.len,
9594 new_ino,
f85b7379
DS
9595 btrfs_ino(BTRFS_I(old_dir)),
9596 new_idx);
cdd1fedf
DF
9597 if (ret)
9598 goto out_fail;
cdd1fedf
DF
9599 }
9600
9601 /* Update inode version and ctime/mtime. */
9602 inode_inc_iversion(old_dir);
9603 inode_inc_iversion(new_dir);
9604 inode_inc_iversion(old_inode);
9605 inode_inc_iversion(new_inode);
9606 old_dir->i_ctime = old_dir->i_mtime = ctime;
9607 new_dir->i_ctime = new_dir->i_mtime = ctime;
9608 old_inode->i_ctime = ctime;
9609 new_inode->i_ctime = ctime;
9610
9611 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9612 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9613 BTRFS_I(old_inode), 1);
9614 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9615 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9616 }
9617
9618 /* src is a subvolume */
9619 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9620 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9621 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9622 old_dentry->d_name.name,
9623 old_dentry->d_name.len);
9624 } else { /* src is an inode */
4ec5934e
NB
9625 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9626 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9627 old_dentry->d_name.name,
9628 old_dentry->d_name.len);
9629 if (!ret)
9630 ret = btrfs_update_inode(trans, root, old_inode);
9631 }
9632 if (ret) {
66642832 9633 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9634 goto out_fail;
9635 }
9636
9637 /* dest is a subvolume */
9638 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9639 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9640 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9641 new_dentry->d_name.name,
9642 new_dentry->d_name.len);
9643 } else { /* dest is an inode */
4ec5934e
NB
9644 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9645 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9646 new_dentry->d_name.name,
9647 new_dentry->d_name.len);
9648 if (!ret)
9649 ret = btrfs_update_inode(trans, dest, new_inode);
9650 }
9651 if (ret) {
66642832 9652 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9653 goto out_fail;
9654 }
9655
db0a669f 9656 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9657 new_dentry->d_name.name,
9658 new_dentry->d_name.len, 0, old_idx);
9659 if (ret) {
66642832 9660 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9661 goto out_fail;
9662 }
9663
db0a669f 9664 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9665 old_dentry->d_name.name,
9666 old_dentry->d_name.len, 0, new_idx);
9667 if (ret) {
66642832 9668 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9669 goto out_fail;
9670 }
9671
9672 if (old_inode->i_nlink == 1)
9673 BTRFS_I(old_inode)->dir_index = old_idx;
9674 if (new_inode->i_nlink == 1)
9675 BTRFS_I(new_inode)->dir_index = new_idx;
9676
86e8aa0e 9677 if (root_log_pinned) {
cdd1fedf 9678 parent = new_dentry->d_parent;
d4682ba0
FM
9679 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9680 BTRFS_I(old_dir), parent,
9681 false, &ctx_root);
9682 if (ret == BTRFS_NEED_LOG_SYNC)
9683 sync_log_root = true;
9684 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9685 commit_transaction = true;
9686 ret = 0;
cdd1fedf 9687 btrfs_end_log_trans(root);
86e8aa0e 9688 root_log_pinned = false;
cdd1fedf 9689 }
86e8aa0e 9690 if (dest_log_pinned) {
d4682ba0
FM
9691 if (!commit_transaction) {
9692 parent = old_dentry->d_parent;
9693 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9694 BTRFS_I(new_dir), parent,
9695 false, &ctx_dest);
9696 if (ret == BTRFS_NEED_LOG_SYNC)
9697 sync_log_dest = true;
9698 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9699 commit_transaction = true;
9700 ret = 0;
9701 }
cdd1fedf 9702 btrfs_end_log_trans(dest);
86e8aa0e 9703 dest_log_pinned = false;
cdd1fedf
DF
9704 }
9705out_fail:
86e8aa0e
FM
9706 /*
9707 * If we have pinned a log and an error happened, we unpin tasks
9708 * trying to sync the log and force them to fallback to a transaction
9709 * commit if the log currently contains any of the inodes involved in
9710 * this rename operation (to ensure we do not persist a log with an
9711 * inconsistent state for any of these inodes or leading to any
9712 * inconsistencies when replayed). If the transaction was aborted, the
9713 * abortion reason is propagated to userspace when attempting to commit
9714 * the transaction. If the log does not contain any of these inodes, we
9715 * allow the tasks to sync it.
9716 */
9717 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9718 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9719 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9720 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9721 (new_inode &&
0f8939b8 9722 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9723 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
9724
9725 if (root_log_pinned) {
9726 btrfs_end_log_trans(root);
9727 root_log_pinned = false;
9728 }
9729 if (dest_log_pinned) {
9730 btrfs_end_log_trans(dest);
9731 dest_log_pinned = false;
9732 }
9733 }
d4682ba0
FM
9734 if (!ret && sync_log_root && !commit_transaction) {
9735 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9736 &ctx_root);
9737 if (ret)
9738 commit_transaction = true;
9739 }
9740 if (!ret && sync_log_dest && !commit_transaction) {
9741 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9742 &ctx_dest);
9743 if (ret)
9744 commit_transaction = true;
9745 }
9746 if (commit_transaction) {
9747 ret = btrfs_commit_transaction(trans);
9748 } else {
9749 int ret2;
9750
9751 ret2 = btrfs_end_transaction(trans);
9752 ret = ret ? ret : ret2;
9753 }
cdd1fedf
DF
9754out_notrans:
9755 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9756 up_read(&fs_info->subvol_sem);
cdd1fedf 9757 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9758 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9759
9760 return ret;
9761}
9762
9763static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9764 struct btrfs_root *root,
9765 struct inode *dir,
9766 struct dentry *dentry)
9767{
9768 int ret;
9769 struct inode *inode;
9770 u64 objectid;
9771 u64 index;
9772
9773 ret = btrfs_find_free_ino(root, &objectid);
9774 if (ret)
9775 return ret;
9776
9777 inode = btrfs_new_inode(trans, root, dir,
9778 dentry->d_name.name,
9779 dentry->d_name.len,
4a0cc7ca 9780 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9781 objectid,
9782 S_IFCHR | WHITEOUT_MODE,
9783 &index);
9784
9785 if (IS_ERR(inode)) {
9786 ret = PTR_ERR(inode);
9787 return ret;
9788 }
9789
9790 inode->i_op = &btrfs_special_inode_operations;
9791 init_special_inode(inode, inode->i_mode,
9792 WHITEOUT_DEV);
9793
9794 ret = btrfs_init_inode_security(trans, inode, dir,
9795 &dentry->d_name);
9796 if (ret)
c9901618 9797 goto out;
cdd1fedf 9798
cef415af
NB
9799 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9800 BTRFS_I(inode), 0, index);
cdd1fedf 9801 if (ret)
c9901618 9802 goto out;
cdd1fedf
DF
9803
9804 ret = btrfs_update_inode(trans, root, inode);
c9901618 9805out:
cdd1fedf 9806 unlock_new_inode(inode);
c9901618
FM
9807 if (ret)
9808 inode_dec_link_count(inode);
cdd1fedf
DF
9809 iput(inode);
9810
c9901618 9811 return ret;
cdd1fedf
DF
9812}
9813
d397712b 9814static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9815 struct inode *new_dir, struct dentry *new_dentry,
9816 unsigned int flags)
39279cc3 9817{
0b246afa 9818 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9819 struct btrfs_trans_handle *trans;
5062af35 9820 unsigned int trans_num_items;
39279cc3 9821 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9822 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9823 struct inode *new_inode = d_inode(new_dentry);
9824 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9825 u64 index = 0;
4df27c4d 9826 u64 root_objectid;
39279cc3 9827 int ret;
4a0cc7ca 9828 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9829 bool log_pinned = false;
d4682ba0
FM
9830 struct btrfs_log_ctx ctx;
9831 bool sync_log = false;
9832 bool commit_transaction = false;
39279cc3 9833
4a0cc7ca 9834 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9835 return -EPERM;
9836
4df27c4d 9837 /* we only allow rename subvolume link between subvolumes */
33345d01 9838 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9839 return -EXDEV;
9840
33345d01 9841 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9842 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9843 return -ENOTEMPTY;
5f39d397 9844
4df27c4d
YZ
9845 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9846 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9847 return -ENOTEMPTY;
9c52057c
CM
9848
9849
9850 /* check for collisions, even if the name isn't there */
4871c158 9851 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9852 new_dentry->d_name.name,
9853 new_dentry->d_name.len);
9854
9855 if (ret) {
9856 if (ret == -EEXIST) {
9857 /* we shouldn't get
9858 * eexist without a new_inode */
fae7f21c 9859 if (WARN_ON(!new_inode)) {
9c52057c
CM
9860 return ret;
9861 }
9862 } else {
9863 /* maybe -EOVERFLOW */
9864 return ret;
9865 }
9866 }
9867 ret = 0;
9868
5a3f23d5 9869 /*
8d875f95
CM
9870 * we're using rename to replace one file with another. Start IO on it
9871 * now so we don't add too much work to the end of the transaction
5a3f23d5 9872 */
8d875f95 9873 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9874 filemap_flush(old_inode->i_mapping);
9875
76dda93c 9876 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9877 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9878 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9879 /*
9880 * We want to reserve the absolute worst case amount of items. So if
9881 * both inodes are subvols and we need to unlink them then that would
9882 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9883 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9884 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9885 * should cover the worst case number of items we'll modify.
5062af35
FM
9886 * If our rename has the whiteout flag, we need more 5 units for the
9887 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9888 * when selinux is enabled).
a22285a6 9889 */
5062af35
FM
9890 trans_num_items = 11;
9891 if (flags & RENAME_WHITEOUT)
9892 trans_num_items += 5;
9893 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9894 if (IS_ERR(trans)) {
cdd1fedf
DF
9895 ret = PTR_ERR(trans);
9896 goto out_notrans;
9897 }
76dda93c 9898
4df27c4d
YZ
9899 if (dest != root)
9900 btrfs_record_root_in_trans(trans, dest);
5f39d397 9901
877574e2 9902 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9903 if (ret)
9904 goto out_fail;
5a3f23d5 9905
67de1176 9906 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9907 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9908 /* force full log commit if subvolume involved. */
90787766 9909 btrfs_set_log_full_commit(trans);
4df27c4d 9910 } else {
c4aba954
FM
9911 btrfs_pin_log_trans(root);
9912 log_pinned = true;
a5719521
YZ
9913 ret = btrfs_insert_inode_ref(trans, dest,
9914 new_dentry->d_name.name,
9915 new_dentry->d_name.len,
33345d01 9916 old_ino,
4a0cc7ca 9917 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9918 if (ret)
9919 goto out_fail;
4df27c4d 9920 }
5a3f23d5 9921
0c4d2d95
JB
9922 inode_inc_iversion(old_dir);
9923 inode_inc_iversion(new_dir);
9924 inode_inc_iversion(old_inode);
04b285f3
DD
9925 old_dir->i_ctime = old_dir->i_mtime =
9926 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9927 old_inode->i_ctime = current_time(old_dir);
5f39d397 9928
12fcfd22 9929 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9930 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9931 BTRFS_I(old_inode), 1);
12fcfd22 9932
33345d01 9933 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9934 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9935 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9936 old_dentry->d_name.name,
9937 old_dentry->d_name.len);
9938 } else {
4ec5934e
NB
9939 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9940 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9941 old_dentry->d_name.name,
9942 old_dentry->d_name.len);
9943 if (!ret)
9944 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9945 }
79787eaa 9946 if (ret) {
66642832 9947 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9948 goto out_fail;
9949 }
39279cc3
CM
9950
9951 if (new_inode) {
0c4d2d95 9952 inode_inc_iversion(new_inode);
c2050a45 9953 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9954 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9955 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9956 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 9957 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
9958 new_dentry->d_name.name,
9959 new_dentry->d_name.len);
9960 BUG_ON(new_inode->i_nlink == 0);
9961 } else {
4ec5934e
NB
9962 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9963 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9964 new_dentry->d_name.name,
9965 new_dentry->d_name.len);
9966 }
4ef31a45 9967 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9968 ret = btrfs_orphan_add(trans,
9969 BTRFS_I(d_inode(new_dentry)));
79787eaa 9970 if (ret) {
66642832 9971 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9972 goto out_fail;
9973 }
39279cc3 9974 }
aec7477b 9975
db0a669f 9976 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9977 new_dentry->d_name.name,
a5719521 9978 new_dentry->d_name.len, 0, index);
79787eaa 9979 if (ret) {
66642832 9980 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9981 goto out_fail;
9982 }
39279cc3 9983
67de1176
MX
9984 if (old_inode->i_nlink == 1)
9985 BTRFS_I(old_inode)->dir_index = index;
9986
3dc9e8f7 9987 if (log_pinned) {
10d9f309 9988 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9989
d4682ba0
FM
9990 btrfs_init_log_ctx(&ctx, old_inode);
9991 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9992 BTRFS_I(old_dir), parent,
9993 false, &ctx);
9994 if (ret == BTRFS_NEED_LOG_SYNC)
9995 sync_log = true;
9996 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9997 commit_transaction = true;
9998 ret = 0;
4df27c4d 9999 btrfs_end_log_trans(root);
3dc9e8f7 10000 log_pinned = false;
4df27c4d 10001 }
cdd1fedf
DF
10002
10003 if (flags & RENAME_WHITEOUT) {
10004 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10005 old_dentry);
10006
10007 if (ret) {
66642832 10008 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10009 goto out_fail;
10010 }
4df27c4d 10011 }
39279cc3 10012out_fail:
3dc9e8f7
FM
10013 /*
10014 * If we have pinned the log and an error happened, we unpin tasks
10015 * trying to sync the log and force them to fallback to a transaction
10016 * commit if the log currently contains any of the inodes involved in
10017 * this rename operation (to ensure we do not persist a log with an
10018 * inconsistent state for any of these inodes or leading to any
10019 * inconsistencies when replayed). If the transaction was aborted, the
10020 * abortion reason is propagated to userspace when attempting to commit
10021 * the transaction. If the log does not contain any of these inodes, we
10022 * allow the tasks to sync it.
10023 */
10024 if (ret && log_pinned) {
0f8939b8
NB
10025 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10026 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10027 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10028 (new_inode &&
0f8939b8 10029 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 10030 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
10031
10032 btrfs_end_log_trans(root);
10033 log_pinned = false;
10034 }
d4682ba0
FM
10035 if (!ret && sync_log) {
10036 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10037 if (ret)
10038 commit_transaction = true;
10039 }
10040 if (commit_transaction) {
10041 ret = btrfs_commit_transaction(trans);
10042 } else {
10043 int ret2;
10044
10045 ret2 = btrfs_end_transaction(trans);
10046 ret = ret ? ret : ret2;
10047 }
b44c59a8 10048out_notrans:
33345d01 10049 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10050 up_read(&fs_info->subvol_sem);
9ed74f2d 10051
39279cc3
CM
10052 return ret;
10053}
10054
80ace85c
MS
10055static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10056 struct inode *new_dir, struct dentry *new_dentry,
10057 unsigned int flags)
10058{
cdd1fedf 10059 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10060 return -EINVAL;
10061
cdd1fedf
DF
10062 if (flags & RENAME_EXCHANGE)
10063 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10064 new_dentry);
10065
10066 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10067}
10068
3a2f8c07
NB
10069struct btrfs_delalloc_work {
10070 struct inode *inode;
10071 struct completion completion;
10072 struct list_head list;
10073 struct btrfs_work work;
10074};
10075
8ccf6f19
MX
10076static void btrfs_run_delalloc_work(struct btrfs_work *work)
10077{
10078 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10079 struct inode *inode;
8ccf6f19
MX
10080
10081 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10082 work);
9f23e289 10083 inode = delalloc_work->inode;
30424601
DS
10084 filemap_flush(inode->i_mapping);
10085 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10086 &BTRFS_I(inode)->runtime_flags))
9f23e289 10087 filemap_flush(inode->i_mapping);
8ccf6f19 10088
076da91c 10089 iput(inode);
8ccf6f19
MX
10090 complete(&delalloc_work->completion);
10091}
10092
3a2f8c07 10093static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
10094{
10095 struct btrfs_delalloc_work *work;
10096
100d5702 10097 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10098 if (!work)
10099 return NULL;
10100
10101 init_completion(&work->completion);
10102 INIT_LIST_HEAD(&work->list);
10103 work->inode = inode;
9e0af237
LB
10104 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10105 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10106
10107 return work;
10108}
10109
d352ac68
CM
10110/*
10111 * some fairly slow code that needs optimization. This walks the list
10112 * of all the inodes with pending delalloc and forces them to disk.
10113 */
3cd24c69 10114static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 10115{
ea8c2819 10116 struct btrfs_inode *binode;
5b21f2ed 10117 struct inode *inode;
8ccf6f19
MX
10118 struct btrfs_delalloc_work *work, *next;
10119 struct list_head works;
1eafa6c7 10120 struct list_head splice;
8ccf6f19 10121 int ret = 0;
ea8c2819 10122
8ccf6f19 10123 INIT_LIST_HEAD(&works);
1eafa6c7 10124 INIT_LIST_HEAD(&splice);
63607cc8 10125
573bfb72 10126 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10127 spin_lock(&root->delalloc_lock);
10128 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10129 while (!list_empty(&splice)) {
10130 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10131 delalloc_inodes);
1eafa6c7 10132
eb73c1b7
MX
10133 list_move_tail(&binode->delalloc_inodes,
10134 &root->delalloc_inodes);
5b21f2ed 10135 inode = igrab(&binode->vfs_inode);
df0af1a5 10136 if (!inode) {
eb73c1b7 10137 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10138 continue;
df0af1a5 10139 }
eb73c1b7 10140 spin_unlock(&root->delalloc_lock);
1eafa6c7 10141
3cd24c69
EL
10142 if (snapshot)
10143 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10144 &binode->runtime_flags);
076da91c 10145 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10146 if (!work) {
4fbb5147 10147 iput(inode);
1eafa6c7 10148 ret = -ENOMEM;
a1ecaabb 10149 goto out;
5b21f2ed 10150 }
1eafa6c7 10151 list_add_tail(&work->list, &works);
a44903ab
QW
10152 btrfs_queue_work(root->fs_info->flush_workers,
10153 &work->work);
6c255e67
MX
10154 ret++;
10155 if (nr != -1 && ret >= nr)
a1ecaabb 10156 goto out;
5b21f2ed 10157 cond_resched();
eb73c1b7 10158 spin_lock(&root->delalloc_lock);
ea8c2819 10159 }
eb73c1b7 10160 spin_unlock(&root->delalloc_lock);
8c8bee1d 10161
a1ecaabb 10162out:
eb73c1b7
MX
10163 list_for_each_entry_safe(work, next, &works, list) {
10164 list_del_init(&work->list);
40012f96
NB
10165 wait_for_completion(&work->completion);
10166 kfree(work);
eb73c1b7
MX
10167 }
10168
81f1d390 10169 if (!list_empty(&splice)) {
eb73c1b7
MX
10170 spin_lock(&root->delalloc_lock);
10171 list_splice_tail(&splice, &root->delalloc_inodes);
10172 spin_unlock(&root->delalloc_lock);
10173 }
573bfb72 10174 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10175 return ret;
10176}
1eafa6c7 10177
3cd24c69 10178int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 10179{
0b246afa 10180 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10181 int ret;
1eafa6c7 10182
0b246afa 10183 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10184 return -EROFS;
10185
3cd24c69 10186 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
10187 if (ret > 0)
10188 ret = 0;
eb73c1b7
MX
10189 return ret;
10190}
10191
82b3e53b 10192int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10193{
10194 struct btrfs_root *root;
10195 struct list_head splice;
10196 int ret;
10197
2c21b4d7 10198 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10199 return -EROFS;
10200
10201 INIT_LIST_HEAD(&splice);
10202
573bfb72 10203 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10204 spin_lock(&fs_info->delalloc_root_lock);
10205 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10206 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10207 root = list_first_entry(&splice, struct btrfs_root,
10208 delalloc_root);
10209 root = btrfs_grab_fs_root(root);
10210 BUG_ON(!root);
10211 list_move_tail(&root->delalloc_root,
10212 &fs_info->delalloc_roots);
10213 spin_unlock(&fs_info->delalloc_root_lock);
10214
3cd24c69 10215 ret = start_delalloc_inodes(root, nr, false);
eb73c1b7 10216 btrfs_put_fs_root(root);
6c255e67 10217 if (ret < 0)
eb73c1b7
MX
10218 goto out;
10219
6c255e67
MX
10220 if (nr != -1) {
10221 nr -= ret;
10222 WARN_ON(nr < 0);
10223 }
eb73c1b7 10224 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10225 }
eb73c1b7 10226 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10227
6c255e67 10228 ret = 0;
eb73c1b7 10229out:
81f1d390 10230 if (!list_empty(&splice)) {
eb73c1b7
MX
10231 spin_lock(&fs_info->delalloc_root_lock);
10232 list_splice_tail(&splice, &fs_info->delalloc_roots);
10233 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10234 }
573bfb72 10235 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10236 return ret;
ea8c2819
CM
10237}
10238
39279cc3
CM
10239static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10240 const char *symname)
10241{
0b246afa 10242 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10243 struct btrfs_trans_handle *trans;
10244 struct btrfs_root *root = BTRFS_I(dir)->root;
10245 struct btrfs_path *path;
10246 struct btrfs_key key;
1832a6d5 10247 struct inode *inode = NULL;
39279cc3 10248 int err;
39279cc3 10249 u64 objectid;
67871254 10250 u64 index = 0;
39279cc3
CM
10251 int name_len;
10252 int datasize;
5f39d397 10253 unsigned long ptr;
39279cc3 10254 struct btrfs_file_extent_item *ei;
5f39d397 10255 struct extent_buffer *leaf;
39279cc3 10256
f06becc4 10257 name_len = strlen(symname);
0b246afa 10258 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10259 return -ENAMETOOLONG;
1832a6d5 10260
9ed74f2d
JB
10261 /*
10262 * 2 items for inode item and ref
10263 * 2 items for dir items
9269d12b
FM
10264 * 1 item for updating parent inode item
10265 * 1 item for the inline extent item
9ed74f2d
JB
10266 * 1 item for xattr if selinux is on
10267 */
9269d12b 10268 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10269 if (IS_ERR(trans))
10270 return PTR_ERR(trans);
1832a6d5 10271
581bb050
LZ
10272 err = btrfs_find_free_ino(root, &objectid);
10273 if (err)
10274 goto out_unlock;
10275
aec7477b 10276 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10277 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10278 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10279 if (IS_ERR(inode)) {
10280 err = PTR_ERR(inode);
32955c54 10281 inode = NULL;
39279cc3 10282 goto out_unlock;
7cf96da3 10283 }
39279cc3 10284
ad19db71
CS
10285 /*
10286 * If the active LSM wants to access the inode during
10287 * d_instantiate it needs these. Smack checks to see
10288 * if the filesystem supports xattrs by looking at the
10289 * ops vector.
10290 */
10291 inode->i_fop = &btrfs_file_operations;
10292 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10293 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10294 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10295
10296 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10297 if (err)
32955c54 10298 goto out_unlock;
ad19db71 10299
39279cc3 10300 path = btrfs_alloc_path();
d8926bb3
MF
10301 if (!path) {
10302 err = -ENOMEM;
32955c54 10303 goto out_unlock;
d8926bb3 10304 }
4a0cc7ca 10305 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10306 key.offset = 0;
962a298f 10307 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10308 datasize = btrfs_file_extent_calc_inline_size(name_len);
10309 err = btrfs_insert_empty_item(trans, root, path, &key,
10310 datasize);
54aa1f4d 10311 if (err) {
b0839166 10312 btrfs_free_path(path);
32955c54 10313 goto out_unlock;
54aa1f4d 10314 }
5f39d397
CM
10315 leaf = path->nodes[0];
10316 ei = btrfs_item_ptr(leaf, path->slots[0],
10317 struct btrfs_file_extent_item);
10318 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10319 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10320 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10321 btrfs_set_file_extent_encryption(leaf, ei, 0);
10322 btrfs_set_file_extent_compression(leaf, ei, 0);
10323 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10324 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10325
39279cc3 10326 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10327 write_extent_buffer(leaf, symname, ptr, name_len);
10328 btrfs_mark_buffer_dirty(leaf);
39279cc3 10329 btrfs_free_path(path);
5f39d397 10330
39279cc3 10331 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10332 inode_nohighmem(inode);
d899e052 10333 inode_set_bytes(inode, name_len);
6ef06d27 10334 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10335 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10336 /*
10337 * Last step, add directory indexes for our symlink inode. This is the
10338 * last step to avoid extra cleanup of these indexes if an error happens
10339 * elsewhere above.
10340 */
10341 if (!err)
cef415af
NB
10342 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10343 BTRFS_I(inode), 0, index);
32955c54
AV
10344 if (err)
10345 goto out_unlock;
b0d5d10f 10346
1e2e547a 10347 d_instantiate_new(dentry, inode);
39279cc3
CM
10348
10349out_unlock:
3a45bb20 10350 btrfs_end_transaction(trans);
32955c54 10351 if (err && inode) {
39279cc3 10352 inode_dec_link_count(inode);
32955c54 10353 discard_new_inode(inode);
39279cc3 10354 }
2ff7e61e 10355 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10356 return err;
10357}
16432985 10358
0af3d00b
JB
10359static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10360 u64 start, u64 num_bytes, u64 min_size,
10361 loff_t actual_len, u64 *alloc_hint,
10362 struct btrfs_trans_handle *trans)
d899e052 10363{
0b246afa 10364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10365 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10366 struct extent_map *em;
d899e052
YZ
10367 struct btrfs_root *root = BTRFS_I(inode)->root;
10368 struct btrfs_key ins;
d899e052 10369 u64 cur_offset = start;
55a61d1d 10370 u64 i_size;
154ea289 10371 u64 cur_bytes;
0b670dc4 10372 u64 last_alloc = (u64)-1;
d899e052 10373 int ret = 0;
0af3d00b 10374 bool own_trans = true;
18513091 10375 u64 end = start + num_bytes - 1;
d899e052 10376
0af3d00b
JB
10377 if (trans)
10378 own_trans = false;
d899e052 10379 while (num_bytes > 0) {
0af3d00b
JB
10380 if (own_trans) {
10381 trans = btrfs_start_transaction(root, 3);
10382 if (IS_ERR(trans)) {
10383 ret = PTR_ERR(trans);
10384 break;
10385 }
5a303d5d
YZ
10386 }
10387
ee22184b 10388 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10389 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10390 /*
10391 * If we are severely fragmented we could end up with really
10392 * small allocations, so if the allocator is returning small
10393 * chunks lets make its job easier by only searching for those
10394 * sized chunks.
10395 */
10396 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10397 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10398 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10399 if (ret) {
0af3d00b 10400 if (own_trans)
3a45bb20 10401 btrfs_end_transaction(trans);
a22285a6 10402 break;
d899e052 10403 }
0b246afa 10404 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10405
0b670dc4 10406 last_alloc = ins.offset;
d899e052
YZ
10407 ret = insert_reserved_file_extent(trans, inode,
10408 cur_offset, ins.objectid,
10409 ins.offset, ins.offset,
920bbbfb 10410 ins.offset, 0, 0, 0,
d899e052 10411 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10412 if (ret) {
2ff7e61e 10413 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10414 ins.offset, 0);
66642832 10415 btrfs_abort_transaction(trans, ret);
79787eaa 10416 if (own_trans)
3a45bb20 10417 btrfs_end_transaction(trans);
79787eaa
JM
10418 break;
10419 }
31193213 10420
dcdbc059 10421 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10422 cur_offset + ins.offset -1, 0);
5a303d5d 10423
5dc562c5
JB
10424 em = alloc_extent_map();
10425 if (!em) {
10426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10427 &BTRFS_I(inode)->runtime_flags);
10428 goto next;
10429 }
10430
10431 em->start = cur_offset;
10432 em->orig_start = cur_offset;
10433 em->len = ins.offset;
10434 em->block_start = ins.objectid;
10435 em->block_len = ins.offset;
b4939680 10436 em->orig_block_len = ins.offset;
cc95bef6 10437 em->ram_bytes = ins.offset;
0b246afa 10438 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10439 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10440 em->generation = trans->transid;
10441
10442 while (1) {
10443 write_lock(&em_tree->lock);
09a2a8f9 10444 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10445 write_unlock(&em_tree->lock);
10446 if (ret != -EEXIST)
10447 break;
dcdbc059 10448 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10449 cur_offset + ins.offset - 1,
10450 0);
10451 }
10452 free_extent_map(em);
10453next:
d899e052
YZ
10454 num_bytes -= ins.offset;
10455 cur_offset += ins.offset;
efa56464 10456 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10457
0c4d2d95 10458 inode_inc_iversion(inode);
c2050a45 10459 inode->i_ctime = current_time(inode);
6cbff00f 10460 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10461 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10462 (actual_len > inode->i_size) &&
10463 (cur_offset > inode->i_size)) {
d1ea6a61 10464 if (cur_offset > actual_len)
55a61d1d 10465 i_size = actual_len;
d1ea6a61 10466 else
55a61d1d
JB
10467 i_size = cur_offset;
10468 i_size_write(inode, i_size);
10469 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10470 }
10471
d899e052 10472 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10473
10474 if (ret) {
66642832 10475 btrfs_abort_transaction(trans, ret);
79787eaa 10476 if (own_trans)
3a45bb20 10477 btrfs_end_transaction(trans);
79787eaa
JM
10478 break;
10479 }
d899e052 10480
0af3d00b 10481 if (own_trans)
3a45bb20 10482 btrfs_end_transaction(trans);
5a303d5d 10483 }
18513091 10484 if (cur_offset < end)
bc42bda2 10485 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10486 end - cur_offset + 1);
d899e052
YZ
10487 return ret;
10488}
10489
0af3d00b
JB
10490int btrfs_prealloc_file_range(struct inode *inode, int mode,
10491 u64 start, u64 num_bytes, u64 min_size,
10492 loff_t actual_len, u64 *alloc_hint)
10493{
10494 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10495 min_size, actual_len, alloc_hint,
10496 NULL);
10497}
10498
10499int btrfs_prealloc_file_range_trans(struct inode *inode,
10500 struct btrfs_trans_handle *trans, int mode,
10501 u64 start, u64 num_bytes, u64 min_size,
10502 loff_t actual_len, u64 *alloc_hint)
10503{
10504 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10505 min_size, actual_len, alloc_hint, trans);
10506}
10507
e6dcd2dc
CM
10508static int btrfs_set_page_dirty(struct page *page)
10509{
e6dcd2dc
CM
10510 return __set_page_dirty_nobuffers(page);
10511}
10512
10556cb2 10513static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10514{
b83cc969 10515 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10516 umode_t mode = inode->i_mode;
b83cc969 10517
cb6db4e5
JM
10518 if (mask & MAY_WRITE &&
10519 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10520 if (btrfs_root_readonly(root))
10521 return -EROFS;
10522 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10523 return -EACCES;
10524 }
2830ba7f 10525 return generic_permission(inode, mask);
fdebe2bd 10526}
39279cc3 10527
ef3b9af5
FM
10528static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10529{
2ff7e61e 10530 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10531 struct btrfs_trans_handle *trans;
10532 struct btrfs_root *root = BTRFS_I(dir)->root;
10533 struct inode *inode = NULL;
10534 u64 objectid;
10535 u64 index;
10536 int ret = 0;
10537
10538 /*
10539 * 5 units required for adding orphan entry
10540 */
10541 trans = btrfs_start_transaction(root, 5);
10542 if (IS_ERR(trans))
10543 return PTR_ERR(trans);
10544
10545 ret = btrfs_find_free_ino(root, &objectid);
10546 if (ret)
10547 goto out;
10548
10549 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10550 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10551 if (IS_ERR(inode)) {
10552 ret = PTR_ERR(inode);
10553 inode = NULL;
10554 goto out;
10555 }
10556
ef3b9af5
FM
10557 inode->i_fop = &btrfs_file_operations;
10558 inode->i_op = &btrfs_file_inode_operations;
10559
10560 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10561 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10562
b0d5d10f
CM
10563 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10564 if (ret)
32955c54 10565 goto out;
b0d5d10f
CM
10566
10567 ret = btrfs_update_inode(trans, root, inode);
10568 if (ret)
32955c54 10569 goto out;
73f2e545 10570 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10571 if (ret)
32955c54 10572 goto out;
ef3b9af5 10573
5762b5c9
FM
10574 /*
10575 * We set number of links to 0 in btrfs_new_inode(), and here we set
10576 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10577 * through:
10578 *
10579 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10580 */
10581 set_nlink(inode, 1);
ef3b9af5 10582 d_tmpfile(dentry, inode);
32955c54 10583 unlock_new_inode(inode);
ef3b9af5 10584 mark_inode_dirty(inode);
ef3b9af5 10585out:
3a45bb20 10586 btrfs_end_transaction(trans);
32955c54
AV
10587 if (ret && inode)
10588 discard_new_inode(inode);
2ff7e61e 10589 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10590 return ret;
10591}
10592
5cdc84bf 10593void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10594{
5cdc84bf 10595 struct inode *inode = tree->private_data;
c6100a4b
JB
10596 unsigned long index = start >> PAGE_SHIFT;
10597 unsigned long end_index = end >> PAGE_SHIFT;
10598 struct page *page;
10599
10600 while (index <= end_index) {
10601 page = find_get_page(inode->i_mapping, index);
10602 ASSERT(page); /* Pages should be in the extent_io_tree */
10603 set_page_writeback(page);
10604 put_page(page);
10605 index++;
10606 }
10607}
10608
ed46ff3d
OS
10609#ifdef CONFIG_SWAP
10610/*
10611 * Add an entry indicating a block group or device which is pinned by a
10612 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10613 * negative errno on failure.
10614 */
10615static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10616 bool is_block_group)
10617{
10618 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10619 struct btrfs_swapfile_pin *sp, *entry;
10620 struct rb_node **p;
10621 struct rb_node *parent = NULL;
10622
10623 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10624 if (!sp)
10625 return -ENOMEM;
10626 sp->ptr = ptr;
10627 sp->inode = inode;
10628 sp->is_block_group = is_block_group;
10629
10630 spin_lock(&fs_info->swapfile_pins_lock);
10631 p = &fs_info->swapfile_pins.rb_node;
10632 while (*p) {
10633 parent = *p;
10634 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10635 if (sp->ptr < entry->ptr ||
10636 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10637 p = &(*p)->rb_left;
10638 } else if (sp->ptr > entry->ptr ||
10639 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10640 p = &(*p)->rb_right;
10641 } else {
10642 spin_unlock(&fs_info->swapfile_pins_lock);
10643 kfree(sp);
10644 return 1;
10645 }
10646 }
10647 rb_link_node(&sp->node, parent, p);
10648 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10649 spin_unlock(&fs_info->swapfile_pins_lock);
10650 return 0;
10651}
10652
10653/* Free all of the entries pinned by this swapfile. */
10654static void btrfs_free_swapfile_pins(struct inode *inode)
10655{
10656 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10657 struct btrfs_swapfile_pin *sp;
10658 struct rb_node *node, *next;
10659
10660 spin_lock(&fs_info->swapfile_pins_lock);
10661 node = rb_first(&fs_info->swapfile_pins);
10662 while (node) {
10663 next = rb_next(node);
10664 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10665 if (sp->inode == inode) {
10666 rb_erase(&sp->node, &fs_info->swapfile_pins);
10667 if (sp->is_block_group)
10668 btrfs_put_block_group(sp->ptr);
10669 kfree(sp);
10670 }
10671 node = next;
10672 }
10673 spin_unlock(&fs_info->swapfile_pins_lock);
10674}
10675
10676struct btrfs_swap_info {
10677 u64 start;
10678 u64 block_start;
10679 u64 block_len;
10680 u64 lowest_ppage;
10681 u64 highest_ppage;
10682 unsigned long nr_pages;
10683 int nr_extents;
10684};
10685
10686static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10687 struct btrfs_swap_info *bsi)
10688{
10689 unsigned long nr_pages;
10690 u64 first_ppage, first_ppage_reported, next_ppage;
10691 int ret;
10692
10693 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10694 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10695 PAGE_SIZE) >> PAGE_SHIFT;
10696
10697 if (first_ppage >= next_ppage)
10698 return 0;
10699 nr_pages = next_ppage - first_ppage;
10700
10701 first_ppage_reported = first_ppage;
10702 if (bsi->start == 0)
10703 first_ppage_reported++;
10704 if (bsi->lowest_ppage > first_ppage_reported)
10705 bsi->lowest_ppage = first_ppage_reported;
10706 if (bsi->highest_ppage < (next_ppage - 1))
10707 bsi->highest_ppage = next_ppage - 1;
10708
10709 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10710 if (ret < 0)
10711 return ret;
10712 bsi->nr_extents += ret;
10713 bsi->nr_pages += nr_pages;
10714 return 0;
10715}
10716
10717static void btrfs_swap_deactivate(struct file *file)
10718{
10719 struct inode *inode = file_inode(file);
10720
10721 btrfs_free_swapfile_pins(inode);
10722 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10723}
10724
10725static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10726 sector_t *span)
10727{
10728 struct inode *inode = file_inode(file);
10729 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10730 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10731 struct extent_state *cached_state = NULL;
10732 struct extent_map *em = NULL;
10733 struct btrfs_device *device = NULL;
10734 struct btrfs_swap_info bsi = {
10735 .lowest_ppage = (sector_t)-1ULL,
10736 };
10737 int ret = 0;
10738 u64 isize;
10739 u64 start;
10740
10741 /*
10742 * If the swap file was just created, make sure delalloc is done. If the
10743 * file changes again after this, the user is doing something stupid and
10744 * we don't really care.
10745 */
10746 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10747 if (ret)
10748 return ret;
10749
10750 /*
10751 * The inode is locked, so these flags won't change after we check them.
10752 */
10753 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10754 btrfs_warn(fs_info, "swapfile must not be compressed");
10755 return -EINVAL;
10756 }
10757 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10758 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10759 return -EINVAL;
10760 }
10761 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10762 btrfs_warn(fs_info, "swapfile must not be checksummed");
10763 return -EINVAL;
10764 }
10765
10766 /*
10767 * Balance or device remove/replace/resize can move stuff around from
10768 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10769 * concurrently while we are mapping the swap extents, and
10770 * fs_info->swapfile_pins prevents them from running while the swap file
10771 * is active and moving the extents. Note that this also prevents a
10772 * concurrent device add which isn't actually necessary, but it's not
10773 * really worth the trouble to allow it.
10774 */
10775 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10776 btrfs_warn(fs_info,
10777 "cannot activate swapfile while exclusive operation is running");
10778 return -EBUSY;
10779 }
10780 /*
10781 * Snapshots can create extents which require COW even if NODATACOW is
10782 * set. We use this counter to prevent snapshots. We must increment it
10783 * before walking the extents because we don't want a concurrent
10784 * snapshot to run after we've already checked the extents.
10785 */
10786 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10787
10788 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10789
10790 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10791 start = 0;
10792 while (start < isize) {
10793 u64 logical_block_start, physical_block_start;
10794 struct btrfs_block_group_cache *bg;
10795 u64 len = isize - start;
10796
10797 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10798 if (IS_ERR(em)) {
10799 ret = PTR_ERR(em);
10800 goto out;
10801 }
10802
10803 if (em->block_start == EXTENT_MAP_HOLE) {
10804 btrfs_warn(fs_info, "swapfile must not have holes");
10805 ret = -EINVAL;
10806 goto out;
10807 }
10808 if (em->block_start == EXTENT_MAP_INLINE) {
10809 /*
10810 * It's unlikely we'll ever actually find ourselves
10811 * here, as a file small enough to fit inline won't be
10812 * big enough to store more than the swap header, but in
10813 * case something changes in the future, let's catch it
10814 * here rather than later.
10815 */
10816 btrfs_warn(fs_info, "swapfile must not be inline");
10817 ret = -EINVAL;
10818 goto out;
10819 }
10820 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10821 btrfs_warn(fs_info, "swapfile must not be compressed");
10822 ret = -EINVAL;
10823 goto out;
10824 }
10825
10826 logical_block_start = em->block_start + (start - em->start);
10827 len = min(len, em->len - (start - em->start));
10828 free_extent_map(em);
10829 em = NULL;
10830
10831 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10832 if (ret < 0) {
10833 goto out;
10834 } else if (ret) {
10835 ret = 0;
10836 } else {
10837 btrfs_warn(fs_info,
10838 "swapfile must not be copy-on-write");
10839 ret = -EINVAL;
10840 goto out;
10841 }
10842
10843 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10844 if (IS_ERR(em)) {
10845 ret = PTR_ERR(em);
10846 goto out;
10847 }
10848
10849 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10850 btrfs_warn(fs_info,
10851 "swapfile must have single data profile");
10852 ret = -EINVAL;
10853 goto out;
10854 }
10855
10856 if (device == NULL) {
10857 device = em->map_lookup->stripes[0].dev;
10858 ret = btrfs_add_swapfile_pin(inode, device, false);
10859 if (ret == 1)
10860 ret = 0;
10861 else if (ret)
10862 goto out;
10863 } else if (device != em->map_lookup->stripes[0].dev) {
10864 btrfs_warn(fs_info, "swapfile must be on one device");
10865 ret = -EINVAL;
10866 goto out;
10867 }
10868
10869 physical_block_start = (em->map_lookup->stripes[0].physical +
10870 (logical_block_start - em->start));
10871 len = min(len, em->len - (logical_block_start - em->start));
10872 free_extent_map(em);
10873 em = NULL;
10874
10875 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10876 if (!bg) {
10877 btrfs_warn(fs_info,
10878 "could not find block group containing swapfile");
10879 ret = -EINVAL;
10880 goto out;
10881 }
10882
10883 ret = btrfs_add_swapfile_pin(inode, bg, true);
10884 if (ret) {
10885 btrfs_put_block_group(bg);
10886 if (ret == 1)
10887 ret = 0;
10888 else
10889 goto out;
10890 }
10891
10892 if (bsi.block_len &&
10893 bsi.block_start + bsi.block_len == physical_block_start) {
10894 bsi.block_len += len;
10895 } else {
10896 if (bsi.block_len) {
10897 ret = btrfs_add_swap_extent(sis, &bsi);
10898 if (ret)
10899 goto out;
10900 }
10901 bsi.start = start;
10902 bsi.block_start = physical_block_start;
10903 bsi.block_len = len;
10904 }
10905
10906 start += len;
10907 }
10908
10909 if (bsi.block_len)
10910 ret = btrfs_add_swap_extent(sis, &bsi);
10911
10912out:
10913 if (!IS_ERR_OR_NULL(em))
10914 free_extent_map(em);
10915
10916 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10917
10918 if (ret)
10919 btrfs_swap_deactivate(file);
10920
10921 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10922
10923 if (ret)
10924 return ret;
10925
10926 if (device)
10927 sis->bdev = device->bdev;
10928 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10929 sis->max = bsi.nr_pages;
10930 sis->pages = bsi.nr_pages - 1;
10931 sis->highest_bit = bsi.nr_pages - 1;
10932 return bsi.nr_extents;
10933}
10934#else
10935static void btrfs_swap_deactivate(struct file *file)
10936{
10937}
10938
10939static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10940 sector_t *span)
10941{
10942 return -EOPNOTSUPP;
10943}
10944#endif
10945
6e1d5dcc 10946static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10947 .getattr = btrfs_getattr,
39279cc3
CM
10948 .lookup = btrfs_lookup,
10949 .create = btrfs_create,
10950 .unlink = btrfs_unlink,
10951 .link = btrfs_link,
10952 .mkdir = btrfs_mkdir,
10953 .rmdir = btrfs_rmdir,
2773bf00 10954 .rename = btrfs_rename2,
39279cc3
CM
10955 .symlink = btrfs_symlink,
10956 .setattr = btrfs_setattr,
618e21d5 10957 .mknod = btrfs_mknod,
5103e947 10958 .listxattr = btrfs_listxattr,
fdebe2bd 10959 .permission = btrfs_permission,
4e34e719 10960 .get_acl = btrfs_get_acl,
996a710d 10961 .set_acl = btrfs_set_acl,
93fd63c2 10962 .update_time = btrfs_update_time,
ef3b9af5 10963 .tmpfile = btrfs_tmpfile,
39279cc3 10964};
6e1d5dcc 10965static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10966 .lookup = btrfs_lookup,
fdebe2bd 10967 .permission = btrfs_permission,
93fd63c2 10968 .update_time = btrfs_update_time,
39279cc3 10969};
76dda93c 10970
828c0950 10971static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10972 .llseek = generic_file_llseek,
10973 .read = generic_read_dir,
02dbfc99 10974 .iterate_shared = btrfs_real_readdir,
23b5ec74 10975 .open = btrfs_opendir,
34287aa3 10976 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10977#ifdef CONFIG_COMPAT
4c63c245 10978 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10979#endif
6bf13c0c 10980 .release = btrfs_release_file,
e02119d5 10981 .fsync = btrfs_sync_file,
39279cc3
CM
10982};
10983
20e5506b 10984static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10985 /* mandatory callbacks */
065631f6 10986 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10987 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10988};
10989
35054394
CM
10990/*
10991 * btrfs doesn't support the bmap operation because swapfiles
10992 * use bmap to make a mapping of extents in the file. They assume
10993 * these extents won't change over the life of the file and they
10994 * use the bmap result to do IO directly to the drive.
10995 *
10996 * the btrfs bmap call would return logical addresses that aren't
10997 * suitable for IO and they also will change frequently as COW
10998 * operations happen. So, swapfile + btrfs == corruption.
10999 *
11000 * For now we're avoiding this by dropping bmap.
11001 */
7f09410b 11002static const struct address_space_operations btrfs_aops = {
39279cc3
CM
11003 .readpage = btrfs_readpage,
11004 .writepage = btrfs_writepage,
b293f02e 11005 .writepages = btrfs_writepages,
3ab2fb5a 11006 .readpages = btrfs_readpages,
16432985 11007 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
11008 .invalidatepage = btrfs_invalidatepage,
11009 .releasepage = btrfs_releasepage,
e6dcd2dc 11010 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 11011 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
11012 .swap_activate = btrfs_swap_activate,
11013 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
11014};
11015
6e1d5dcc 11016static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
11017 .getattr = btrfs_getattr,
11018 .setattr = btrfs_setattr,
5103e947 11019 .listxattr = btrfs_listxattr,
fdebe2bd 11020 .permission = btrfs_permission,
1506fcc8 11021 .fiemap = btrfs_fiemap,
4e34e719 11022 .get_acl = btrfs_get_acl,
996a710d 11023 .set_acl = btrfs_set_acl,
e41f941a 11024 .update_time = btrfs_update_time,
39279cc3 11025};
6e1d5dcc 11026static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
11027 .getattr = btrfs_getattr,
11028 .setattr = btrfs_setattr,
fdebe2bd 11029 .permission = btrfs_permission,
33268eaf 11030 .listxattr = btrfs_listxattr,
4e34e719 11031 .get_acl = btrfs_get_acl,
996a710d 11032 .set_acl = btrfs_set_acl,
e41f941a 11033 .update_time = btrfs_update_time,
618e21d5 11034};
6e1d5dcc 11035static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 11036 .get_link = page_get_link,
f209561a 11037 .getattr = btrfs_getattr,
22c44fe6 11038 .setattr = btrfs_setattr,
fdebe2bd 11039 .permission = btrfs_permission,
0279b4cd 11040 .listxattr = btrfs_listxattr,
e41f941a 11041 .update_time = btrfs_update_time,
39279cc3 11042};
76dda93c 11043
82d339d9 11044const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11045 .d_delete = btrfs_dentry_delete,
11046};