]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: sink gfp parameter to clear_extent_bit
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f28a4928
FM
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
63d71450
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
00361589
JB
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
c8b97818 284{
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
69fe2d75 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
bc42bda2 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
375struct async_cow {
376 struct inode *inode;
377 struct btrfs_root *root;
378 struct page *locked_page;
379 u64 start;
380 u64 end;
f82b7359 381 unsigned int write_flags;
771ed689
CM
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
261507a0
LZ
390 unsigned long nr_pages,
391 int compress_type)
771ed689
CM
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 396 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
261507a0 402 async_extent->compress_type = compress_type;
771ed689
CM
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
c2fcdcdf 407static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 408{
0b246afa 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
410
411 /* force compress */
0b246afa 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 413 return 1;
eec63c65
DS
414 /* defrag ioctl */
415 if (BTRFS_I(inode)->defrag_compress)
416 return 1;
f79707b0
WS
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 return 0;
0b246afa 420 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 422 BTRFS_I(inode)->prop_compress)
c2fcdcdf 423 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
424 return 0;
425}
426
6158e1ce 427static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
429{
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
6158e1ce 432 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
433 btrfs_add_inode_defrag(NULL, inode);
434}
435
d352ac68 436/*
771ed689
CM
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
c8b97818 440 *
771ed689
CM
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
c8b97818 446 *
771ed689
CM
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
450 * are written in the same order that the flusher thread sent them
451 * down.
d352ac68 452 */
c44f649e 453static noinline void compress_file_range(struct inode *inode,
771ed689
CM
454 struct page *locked_page,
455 u64 start, u64 end,
456 struct async_cow *async_cow,
457 int *num_added)
b888db2b 458{
0b246afa 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 460 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 461 u64 blocksize = fs_info->sectorsize;
c8b97818 462 u64 actual_end;
42dc7bab 463 u64 isize = i_size_read(inode);
e6dcd2dc 464 int ret = 0;
c8b97818
CM
465 struct page **pages = NULL;
466 unsigned long nr_pages;
c8b97818
CM
467 unsigned long total_compressed = 0;
468 unsigned long total_in = 0;
c8b97818
CM
469 int i;
470 int will_compress;
0b246afa 471 int compress_type = fs_info->compress_type;
4adaa611 472 int redirty = 0;
b888db2b 473
6158e1ce
NB
474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
475 SZ_16K);
4cb5300b 476
42dc7bab 477 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
478again:
479 will_compress = 0;
09cbfeaf 480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 nr_pages = min_t(unsigned long, nr_pages,
483 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 484
f03d9301
CM
485 /*
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
491 *
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
494 */
495 if (actual_end <= start)
496 goto cleanup_and_bail_uncompressed;
497
c8b97818
CM
498 total_compressed = actual_end - start;
499
4bcbb332
SW
500 /*
501 * skip compression for a small file range(<=blocksize) that
01327610 502 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
503 */
504 if (total_compressed <= blocksize &&
505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 goto cleanup_and_bail_uncompressed;
507
069eac78
DS
508 total_compressed = min_t(unsigned long, total_compressed,
509 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
510 total_in = 0;
511 ret = 0;
db94535d 512
771ed689
CM
513 /*
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
c8b97818 517 */
c2fcdcdf 518 if (inode_need_compress(inode, start, end)) {
c8b97818 519 WARN_ON(pages);
31e818fe 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
521 if (!pages) {
522 /* just bail out to the uncompressed code */
523 goto cont;
524 }
c8b97818 525
eec63c65
DS
526 if (BTRFS_I(inode)->defrag_compress)
527 compress_type = BTRFS_I(inode)->defrag_compress;
528 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 529 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 530
4adaa611
CM
531 /*
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
536 *
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
539 */
540 extent_range_clear_dirty_for_io(inode, start, end);
541 redirty = 1;
f51d2b59
DS
542
543 /* Compression level is applied here and only here */
544 ret = btrfs_compress_pages(
545 compress_type | (fs_info->compress_level << 4),
261507a0 546 inode->i_mapping, start,
38c31464 547 pages,
4d3a800e 548 &nr_pages,
261507a0 549 &total_in,
e5d74902 550 &total_compressed);
c8b97818
CM
551
552 if (!ret) {
553 unsigned long offset = total_compressed &
09cbfeaf 554 (PAGE_SIZE - 1);
4d3a800e 555 struct page *page = pages[nr_pages - 1];
c8b97818
CM
556 char *kaddr;
557
558 /* zero the tail end of the last page, we might be
559 * sending it down to disk
560 */
561 if (offset) {
7ac687d9 562 kaddr = kmap_atomic(page);
c8b97818 563 memset(kaddr + offset, 0,
09cbfeaf 564 PAGE_SIZE - offset);
7ac687d9 565 kunmap_atomic(kaddr);
c8b97818
CM
566 }
567 will_compress = 1;
568 }
569 }
560f7d75 570cont:
c8b97818
CM
571 if (start == 0) {
572 /* lets try to make an inline extent */
6018ba0a 573 if (ret || total_in < actual_end) {
c8b97818 574 /* we didn't compress the entire range, try
771ed689 575 * to make an uncompressed inline extent.
c8b97818 576 */
00361589 577 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 578 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 579 } else {
771ed689 580 /* try making a compressed inline extent */
00361589 581 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
582 total_compressed,
583 compress_type, pages);
c8b97818 584 }
79787eaa 585 if (ret <= 0) {
151a41bc 586 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
588 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
589 unsigned long page_error_op;
590
e6eb4314 591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 592
771ed689 593 /*
79787eaa
JM
594 * inline extent creation worked or returned error,
595 * we don't need to create any more async work items.
596 * Unlock and free up our temp pages.
8b62f87b
JB
597 *
598 * We use DO_ACCOUNTING here because we need the
599 * delalloc_release_metadata to be done _after_ we drop
600 * our outstanding extent for clearing delalloc for this
601 * range.
771ed689 602 */
ba8b04c1
QW
603 extent_clear_unlock_delalloc(inode, start, end, end,
604 NULL, clear_flags,
605 PAGE_UNLOCK |
c2790a2e
JB
606 PAGE_CLEAR_DIRTY |
607 PAGE_SET_WRITEBACK |
e6eb4314 608 page_error_op |
c2790a2e 609 PAGE_END_WRITEBACK);
c8b97818
CM
610 goto free_pages_out;
611 }
612 }
613
614 if (will_compress) {
615 /*
616 * we aren't doing an inline extent round the compressed size
617 * up to a block size boundary so the allocator does sane
618 * things
619 */
fda2832f 620 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
621
622 /*
623 * one last check to make sure the compression is really a
170607eb
TT
624 * win, compare the page count read with the blocks on disk,
625 * compression must free at least one sector size
c8b97818 626 */
09cbfeaf 627 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 628 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
629 *num_added += 1;
630
631 /*
632 * The async work queues will take care of doing actual
633 * allocation on disk for these compressed pages, and
634 * will submit them to the elevator.
635 */
1170862d 636 add_async_extent(async_cow, start, total_in,
4d3a800e 637 total_compressed, pages, nr_pages,
c8bb0c8b
AS
638 compress_type);
639
1170862d
TT
640 if (start + total_in < end) {
641 start += total_in;
c8bb0c8b
AS
642 pages = NULL;
643 cond_resched();
644 goto again;
645 }
646 return;
c8b97818
CM
647 }
648 }
c8bb0c8b 649 if (pages) {
c8b97818
CM
650 /*
651 * the compression code ran but failed to make things smaller,
652 * free any pages it allocated and our page pointer array
653 */
4d3a800e 654 for (i = 0; i < nr_pages; i++) {
70b99e69 655 WARN_ON(pages[i]->mapping);
09cbfeaf 656 put_page(pages[i]);
c8b97818
CM
657 }
658 kfree(pages);
659 pages = NULL;
660 total_compressed = 0;
4d3a800e 661 nr_pages = 0;
c8b97818
CM
662
663 /* flag the file so we don't compress in the future */
0b246afa 664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 665 !(BTRFS_I(inode)->prop_compress)) {
a555f810 666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 667 }
c8b97818 668 }
f03d9301 669cleanup_and_bail_uncompressed:
c8bb0c8b
AS
670 /*
671 * No compression, but we still need to write the pages in the file
672 * we've been given so far. redirty the locked page if it corresponds
673 * to our extent and set things up for the async work queue to run
674 * cow_file_range to do the normal delalloc dance.
675 */
676 if (page_offset(locked_page) >= start &&
677 page_offset(locked_page) <= end)
678 __set_page_dirty_nobuffers(locked_page);
679 /* unlocked later on in the async handlers */
680
681 if (redirty)
682 extent_range_redirty_for_io(inode, start, end);
683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
684 BTRFS_COMPRESS_NONE);
685 *num_added += 1;
3b951516 686
c44f649e 687 return;
771ed689
CM
688
689free_pages_out:
4d3a800e 690 for (i = 0; i < nr_pages; i++) {
771ed689 691 WARN_ON(pages[i]->mapping);
09cbfeaf 692 put_page(pages[i]);
771ed689 693 }
d397712b 694 kfree(pages);
771ed689 695}
771ed689 696
40ae837b
FM
697static void free_async_extent_pages(struct async_extent *async_extent)
698{
699 int i;
700
701 if (!async_extent->pages)
702 return;
703
704 for (i = 0; i < async_extent->nr_pages; i++) {
705 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 706 put_page(async_extent->pages[i]);
40ae837b
FM
707 }
708 kfree(async_extent->pages);
709 async_extent->nr_pages = 0;
710 async_extent->pages = NULL;
771ed689
CM
711}
712
713/*
714 * phase two of compressed writeback. This is the ordered portion
715 * of the code, which only gets called in the order the work was
716 * queued. We walk all the async extents created by compress_file_range
717 * and send them down to the disk.
718 */
dec8f175 719static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
720 struct async_cow *async_cow)
721{
0b246afa 722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
723 struct async_extent *async_extent;
724 u64 alloc_hint = 0;
771ed689
CM
725 struct btrfs_key ins;
726 struct extent_map *em;
727 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 728 struct extent_io_tree *io_tree;
f5a84ee3 729 int ret = 0;
771ed689 730
3e04e7f1 731again:
d397712b 732 while (!list_empty(&async_cow->extents)) {
771ed689
CM
733 async_extent = list_entry(async_cow->extents.next,
734 struct async_extent, list);
735 list_del(&async_extent->list);
c8b97818 736
771ed689
CM
737 io_tree = &BTRFS_I(inode)->io_tree;
738
f5a84ee3 739retry:
771ed689
CM
740 /* did the compression code fall back to uncompressed IO? */
741 if (!async_extent->pages) {
742 int page_started = 0;
743 unsigned long nr_written = 0;
744
745 lock_extent(io_tree, async_extent->start,
2ac55d41 746 async_extent->start +
d0082371 747 async_extent->ram_size - 1);
771ed689
CM
748
749 /* allocate blocks */
f5a84ee3
JB
750 ret = cow_file_range(inode, async_cow->locked_page,
751 async_extent->start,
752 async_extent->start +
753 async_extent->ram_size - 1,
dda3245e
WX
754 async_extent->start +
755 async_extent->ram_size - 1,
756 &page_started, &nr_written, 0,
757 NULL);
771ed689 758
79787eaa
JM
759 /* JDM XXX */
760
771ed689
CM
761 /*
762 * if page_started, cow_file_range inserted an
763 * inline extent and took care of all the unlocking
764 * and IO for us. Otherwise, we need to submit
765 * all those pages down to the drive.
766 */
f5a84ee3 767 if (!page_started && !ret)
771ed689
CM
768 extent_write_locked_range(io_tree,
769 inode, async_extent->start,
d397712b 770 async_extent->start +
771ed689
CM
771 async_extent->ram_size - 1,
772 btrfs_get_extent,
773 WB_SYNC_ALL);
3e04e7f1
JB
774 else if (ret)
775 unlock_page(async_cow->locked_page);
771ed689
CM
776 kfree(async_extent);
777 cond_resched();
778 continue;
779 }
780
781 lock_extent(io_tree, async_extent->start,
d0082371 782 async_extent->start + async_extent->ram_size - 1);
771ed689 783
18513091 784 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
785 async_extent->compressed_size,
786 async_extent->compressed_size,
e570fd27 787 0, alloc_hint, &ins, 1, 1);
f5a84ee3 788 if (ret) {
40ae837b 789 free_async_extent_pages(async_extent);
3e04e7f1 790
fdf8e2ea
JB
791 if (ret == -ENOSPC) {
792 unlock_extent(io_tree, async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1);
ce62003f
LB
795
796 /*
797 * we need to redirty the pages if we decide to
798 * fallback to uncompressed IO, otherwise we
799 * will not submit these pages down to lower
800 * layers.
801 */
802 extent_range_redirty_for_io(inode,
803 async_extent->start,
804 async_extent->start +
805 async_extent->ram_size - 1);
806
79787eaa 807 goto retry;
fdf8e2ea 808 }
3e04e7f1 809 goto out_free;
f5a84ee3 810 }
c2167754
YZ
811 /*
812 * here we're doing allocation and writeback of the
813 * compressed pages
814 */
6f9994db
LB
815 em = create_io_em(inode, async_extent->start,
816 async_extent->ram_size, /* len */
817 async_extent->start, /* orig_start */
818 ins.objectid, /* block_start */
819 ins.offset, /* block_len */
820 ins.offset, /* orig_block_len */
821 async_extent->ram_size, /* ram_bytes */
822 async_extent->compress_type,
823 BTRFS_ORDERED_COMPRESSED);
824 if (IS_ERR(em))
825 /* ret value is not necessary due to void function */
3e04e7f1 826 goto out_free_reserve;
6f9994db 827 free_extent_map(em);
3e04e7f1 828
261507a0
LZ
829 ret = btrfs_add_ordered_extent_compress(inode,
830 async_extent->start,
831 ins.objectid,
832 async_extent->ram_size,
833 ins.offset,
834 BTRFS_ORDERED_COMPRESSED,
835 async_extent->compress_type);
d9f85963 836 if (ret) {
dcdbc059
NB
837 btrfs_drop_extent_cache(BTRFS_I(inode),
838 async_extent->start,
d9f85963
FM
839 async_extent->start +
840 async_extent->ram_size - 1, 0);
3e04e7f1 841 goto out_free_reserve;
d9f85963 842 }
0b246afa 843 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 844
771ed689
CM
845 /*
846 * clear dirty, set writeback and unlock the pages.
847 */
c2790a2e 848 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
849 async_extent->start +
850 async_extent->ram_size - 1,
a791e35e
CM
851 async_extent->start +
852 async_extent->ram_size - 1,
151a41bc
JB
853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 855 PAGE_SET_WRITEBACK);
4e4cbee9 856 if (btrfs_submit_compressed_write(inode,
d397712b
CM
857 async_extent->start,
858 async_extent->ram_size,
859 ins.objectid,
860 ins.offset, async_extent->pages,
f82b7359
LB
861 async_extent->nr_pages,
862 async_cow->write_flags)) {
fce2a4e6
FM
863 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
864 struct page *p = async_extent->pages[0];
865 const u64 start = async_extent->start;
866 const u64 end = start + async_extent->ram_size - 1;
867
868 p->mapping = inode->i_mapping;
869 tree->ops->writepage_end_io_hook(p, start, end,
870 NULL, 0);
871 p->mapping = NULL;
ba8b04c1
QW
872 extent_clear_unlock_delalloc(inode, start, end, end,
873 NULL, 0,
fce2a4e6
FM
874 PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
fce2a4e6 877 }
771ed689
CM
878 alloc_hint = ins.objectid + ins.offset;
879 kfree(async_extent);
880 cond_resched();
881 }
dec8f175 882 return;
3e04e7f1 883out_free_reserve:
0b246afa 884 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 885 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 886out_free:
c2790a2e 887 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
888 async_extent->start +
889 async_extent->ram_size - 1,
3e04e7f1
JB
890 async_extent->start +
891 async_extent->ram_size - 1,
c2790a2e 892 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 893 EXTENT_DELALLOC_NEW |
151a41bc
JB
894 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
895 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
896 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
897 PAGE_SET_ERROR);
40ae837b 898 free_async_extent_pages(async_extent);
79787eaa 899 kfree(async_extent);
3e04e7f1 900 goto again;
771ed689
CM
901}
902
4b46fce2
JB
903static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
904 u64 num_bytes)
905{
906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 struct extent_map *em;
908 u64 alloc_hint = 0;
909
910 read_lock(&em_tree->lock);
911 em = search_extent_mapping(em_tree, start, num_bytes);
912 if (em) {
913 /*
914 * if block start isn't an actual block number then find the
915 * first block in this inode and use that as a hint. If that
916 * block is also bogus then just don't worry about it.
917 */
918 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
919 free_extent_map(em);
920 em = search_extent_mapping(em_tree, 0, 0);
921 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
922 alloc_hint = em->block_start;
923 if (em)
924 free_extent_map(em);
925 } else {
926 alloc_hint = em->block_start;
927 free_extent_map(em);
928 }
929 }
930 read_unlock(&em_tree->lock);
931
932 return alloc_hint;
933}
934
771ed689
CM
935/*
936 * when extent_io.c finds a delayed allocation range in the file,
937 * the call backs end up in this code. The basic idea is to
938 * allocate extents on disk for the range, and create ordered data structs
939 * in ram to track those extents.
940 *
941 * locked_page is the page that writepage had locked already. We use
942 * it to make sure we don't do extra locks or unlocks.
943 *
944 * *page_started is set to one if we unlock locked_page and do everything
945 * required to start IO on it. It may be clean and already done with
946 * IO when we return.
947 */
00361589
JB
948static noinline int cow_file_range(struct inode *inode,
949 struct page *locked_page,
dda3245e
WX
950 u64 start, u64 end, u64 delalloc_end,
951 int *page_started, unsigned long *nr_written,
952 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 953{
0b246afa 954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 955 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
956 u64 alloc_hint = 0;
957 u64 num_bytes;
958 unsigned long ram_size;
959 u64 disk_num_bytes;
a315e68f 960 u64 cur_alloc_size = 0;
0b246afa 961 u64 blocksize = fs_info->sectorsize;
771ed689
CM
962 struct btrfs_key ins;
963 struct extent_map *em;
a315e68f
FM
964 unsigned clear_bits;
965 unsigned long page_ops;
966 bool extent_reserved = false;
771ed689
CM
967 int ret = 0;
968
70ddc553 969 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 970 WARN_ON_ONCE(1);
29bce2f3
JB
971 ret = -EINVAL;
972 goto out_unlock;
02ecd2c2 973 }
771ed689 974
fda2832f 975 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
976 num_bytes = max(blocksize, num_bytes);
977 disk_num_bytes = num_bytes;
771ed689 978
6158e1ce 979 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 980
771ed689
CM
981 if (start == 0) {
982 /* lets try to make an inline extent */
f74670f7
AJ
983 ret = cow_file_range_inline(root, inode, start, end, 0,
984 BTRFS_COMPRESS_NONE, NULL);
771ed689 985 if (ret == 0) {
8b62f87b
JB
986 /*
987 * We use DO_ACCOUNTING here because we need the
988 * delalloc_release_metadata to be run _after_ we drop
989 * our outstanding extent for clearing delalloc for this
990 * range.
991 */
ba8b04c1
QW
992 extent_clear_unlock_delalloc(inode, start, end,
993 delalloc_end, NULL,
c2790a2e 994 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
995 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
996 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
997 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
998 PAGE_END_WRITEBACK);
771ed689 999 *nr_written = *nr_written +
09cbfeaf 1000 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1001 *page_started = 1;
771ed689 1002 goto out;
79787eaa 1003 } else if (ret < 0) {
79787eaa 1004 goto out_unlock;
771ed689
CM
1005 }
1006 }
1007
1008 BUG_ON(disk_num_bytes >
0b246afa 1009 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1010
4b46fce2 1011 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1012 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1013 start + num_bytes - 1, 0);
771ed689 1014
d397712b 1015 while (disk_num_bytes > 0) {
287a0ab9 1016 cur_alloc_size = disk_num_bytes;
18513091 1017 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1018 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1019 &ins, 1, 1);
00361589 1020 if (ret < 0)
79787eaa 1021 goto out_unlock;
a315e68f
FM
1022 cur_alloc_size = ins.offset;
1023 extent_reserved = true;
d397712b 1024
771ed689 1025 ram_size = ins.offset;
6f9994db
LB
1026 em = create_io_em(inode, start, ins.offset, /* len */
1027 start, /* orig_start */
1028 ins.objectid, /* block_start */
1029 ins.offset, /* block_len */
1030 ins.offset, /* orig_block_len */
1031 ram_size, /* ram_bytes */
1032 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1033 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1034 if (IS_ERR(em))
ace68bac 1035 goto out_reserve;
6f9994db 1036 free_extent_map(em);
e6dcd2dc 1037
e6dcd2dc 1038 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1039 ram_size, cur_alloc_size, 0);
ace68bac 1040 if (ret)
d9f85963 1041 goto out_drop_extent_cache;
c8b97818 1042
17d217fe
YZ
1043 if (root->root_key.objectid ==
1044 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1045 ret = btrfs_reloc_clone_csums(inode, start,
1046 cur_alloc_size);
4dbd80fb
QW
1047 /*
1048 * Only drop cache here, and process as normal.
1049 *
1050 * We must not allow extent_clear_unlock_delalloc()
1051 * at out_unlock label to free meta of this ordered
1052 * extent, as its meta should be freed by
1053 * btrfs_finish_ordered_io().
1054 *
1055 * So we must continue until @start is increased to
1056 * skip current ordered extent.
1057 */
00361589 1058 if (ret)
4dbd80fb
QW
1059 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1060 start + ram_size - 1, 0);
17d217fe
YZ
1061 }
1062
0b246afa 1063 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1064
c8b97818
CM
1065 /* we're not doing compressed IO, don't unlock the first
1066 * page (which the caller expects to stay locked), don't
1067 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1068 *
1069 * Do set the Private2 bit so we know this page was properly
1070 * setup for writepage
c8b97818 1071 */
a315e68f
FM
1072 page_ops = unlock ? PAGE_UNLOCK : 0;
1073 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1074
c2790a2e 1075 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1076 start + ram_size - 1,
1077 delalloc_end, locked_page,
c2790a2e 1078 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1079 page_ops);
4dbd80fb
QW
1080 if (disk_num_bytes < cur_alloc_size)
1081 disk_num_bytes = 0;
1082 else
1083 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1084 num_bytes -= cur_alloc_size;
1085 alloc_hint = ins.objectid + ins.offset;
1086 start += cur_alloc_size;
a315e68f 1087 extent_reserved = false;
4dbd80fb
QW
1088
1089 /*
1090 * btrfs_reloc_clone_csums() error, since start is increased
1091 * extent_clear_unlock_delalloc() at out_unlock label won't
1092 * free metadata of current ordered extent, we're OK to exit.
1093 */
1094 if (ret)
1095 goto out_unlock;
b888db2b 1096 }
79787eaa 1097out:
be20aa9d 1098 return ret;
b7d5b0a8 1099
d9f85963 1100out_drop_extent_cache:
dcdbc059 1101 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1102out_reserve:
0b246afa 1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1104 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1105out_unlock:
a7e3b975
FM
1106 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1107 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1108 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1109 PAGE_END_WRITEBACK;
1110 /*
1111 * If we reserved an extent for our delalloc range (or a subrange) and
1112 * failed to create the respective ordered extent, then it means that
1113 * when we reserved the extent we decremented the extent's size from
1114 * the data space_info's bytes_may_use counter and incremented the
1115 * space_info's bytes_reserved counter by the same amount. We must make
1116 * sure extent_clear_unlock_delalloc() does not try to decrement again
1117 * the data space_info's bytes_may_use counter, therefore we do not pass
1118 * it the flag EXTENT_CLEAR_DATA_RESV.
1119 */
1120 if (extent_reserved) {
1121 extent_clear_unlock_delalloc(inode, start,
1122 start + cur_alloc_size,
1123 start + cur_alloc_size,
1124 locked_page,
1125 clear_bits,
1126 page_ops);
1127 start += cur_alloc_size;
1128 if (start >= end)
1129 goto out;
1130 }
ba8b04c1
QW
1131 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1132 locked_page,
a315e68f
FM
1133 clear_bits | EXTENT_CLEAR_DATA_RESV,
1134 page_ops);
79787eaa 1135 goto out;
771ed689 1136}
c8b97818 1137
771ed689
CM
1138/*
1139 * work queue call back to started compression on a file and pages
1140 */
1141static noinline void async_cow_start(struct btrfs_work *work)
1142{
1143 struct async_cow *async_cow;
1144 int num_added = 0;
1145 async_cow = container_of(work, struct async_cow, work);
1146
1147 compress_file_range(async_cow->inode, async_cow->locked_page,
1148 async_cow->start, async_cow->end, async_cow,
1149 &num_added);
8180ef88 1150 if (num_added == 0) {
cb77fcd8 1151 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1152 async_cow->inode = NULL;
8180ef88 1153 }
771ed689
CM
1154}
1155
1156/*
1157 * work queue call back to submit previously compressed pages
1158 */
1159static noinline void async_cow_submit(struct btrfs_work *work)
1160{
0b246afa 1161 struct btrfs_fs_info *fs_info;
771ed689
CM
1162 struct async_cow *async_cow;
1163 struct btrfs_root *root;
1164 unsigned long nr_pages;
1165
1166 async_cow = container_of(work, struct async_cow, work);
1167
1168 root = async_cow->root;
0b246afa 1169 fs_info = root->fs_info;
09cbfeaf
KS
1170 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1171 PAGE_SHIFT;
771ed689 1172
ee863954
DS
1173 /*
1174 * atomic_sub_return implies a barrier for waitqueue_active
1175 */
0b246afa 1176 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1177 5 * SZ_1M &&
0b246afa
JM
1178 waitqueue_active(&fs_info->async_submit_wait))
1179 wake_up(&fs_info->async_submit_wait);
771ed689 1180
d397712b 1181 if (async_cow->inode)
771ed689 1182 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1183}
c8b97818 1184
771ed689
CM
1185static noinline void async_cow_free(struct btrfs_work *work)
1186{
1187 struct async_cow *async_cow;
1188 async_cow = container_of(work, struct async_cow, work);
8180ef88 1189 if (async_cow->inode)
cb77fcd8 1190 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1191 kfree(async_cow);
1192}
1193
1194static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1195 u64 start, u64 end, int *page_started,
f82b7359
LB
1196 unsigned long *nr_written,
1197 unsigned int write_flags)
771ed689 1198{
0b246afa 1199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1200 struct async_cow *async_cow;
1201 struct btrfs_root *root = BTRFS_I(inode)->root;
1202 unsigned long nr_pages;
1203 u64 cur_end;
771ed689 1204
a3429ab7 1205 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1206 1, 0, NULL);
d397712b 1207 while (start < end) {
771ed689 1208 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1209 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1210 async_cow->inode = igrab(inode);
771ed689
CM
1211 async_cow->root = root;
1212 async_cow->locked_page = locked_page;
1213 async_cow->start = start;
f82b7359 1214 async_cow->write_flags = write_flags;
771ed689 1215
f79707b0 1216 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1217 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1218 cur_end = end;
1219 else
ee22184b 1220 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1221
1222 async_cow->end = cur_end;
1223 INIT_LIST_HEAD(&async_cow->extents);
1224
9e0af237
LB
1225 btrfs_init_work(&async_cow->work,
1226 btrfs_delalloc_helper,
1227 async_cow_start, async_cow_submit,
1228 async_cow_free);
771ed689 1229
09cbfeaf
KS
1230 nr_pages = (cur_end - start + PAGE_SIZE) >>
1231 PAGE_SHIFT;
0b246afa 1232 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1233
0b246afa 1234 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1235
771ed689
CM
1236 *nr_written += nr_pages;
1237 start = cur_end + 1;
1238 }
1239 *page_started = 1;
1240 return 0;
be20aa9d
CM
1241}
1242
2ff7e61e 1243static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1244 u64 bytenr, u64 num_bytes)
1245{
1246 int ret;
1247 struct btrfs_ordered_sum *sums;
1248 LIST_HEAD(list);
1249
0b246afa 1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1251 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1252 if (ret == 0 && list_empty(&list))
1253 return 0;
1254
1255 while (!list_empty(&list)) {
1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1257 list_del(&sums->list);
1258 kfree(sums);
1259 }
1260 return 1;
1261}
1262
d352ac68
CM
1263/*
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1266 *
1267 * If no cow copies or snapshots exist, we write directly to the existing
1268 * blocks on disk
1269 */
7f366cfe
CM
1270static noinline int run_delalloc_nocow(struct inode *inode,
1271 struct page *locked_page,
771ed689
CM
1272 u64 start, u64 end, int *page_started, int force,
1273 unsigned long *nr_written)
be20aa9d 1274{
0b246afa 1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 struct extent_buffer *leaf;
be20aa9d 1278 struct btrfs_path *path;
80ff3856 1279 struct btrfs_file_extent_item *fi;
be20aa9d 1280 struct btrfs_key found_key;
6f9994db 1281 struct extent_map *em;
80ff3856
YZ
1282 u64 cow_start;
1283 u64 cur_offset;
1284 u64 extent_end;
5d4f98a2 1285 u64 extent_offset;
80ff3856
YZ
1286 u64 disk_bytenr;
1287 u64 num_bytes;
b4939680 1288 u64 disk_num_bytes;
cc95bef6 1289 u64 ram_bytes;
80ff3856 1290 int extent_type;
79787eaa 1291 int ret, err;
d899e052 1292 int type;
80ff3856
YZ
1293 int nocow;
1294 int check_prev = 1;
82d5902d 1295 bool nolock;
4a0cc7ca 1296 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1297
1298 path = btrfs_alloc_path();
17ca04af 1299 if (!path) {
ba8b04c1
QW
1300 extent_clear_unlock_delalloc(inode, start, end, end,
1301 locked_page,
c2790a2e 1302 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1303 EXTENT_DO_ACCOUNTING |
1304 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1305 PAGE_CLEAR_DIRTY |
1306 PAGE_SET_WRITEBACK |
1307 PAGE_END_WRITEBACK);
d8926bb3 1308 return -ENOMEM;
17ca04af 1309 }
82d5902d 1310
70ddc553 1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1312
80ff3856
YZ
1313 cow_start = (u64)-1;
1314 cur_offset = start;
1315 while (1) {
e4c3b2dc 1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1317 cur_offset, 0);
d788a349 1318 if (ret < 0)
79787eaa 1319 goto error;
80ff3856
YZ
1320 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 leaf = path->nodes[0];
1322 btrfs_item_key_to_cpu(leaf, &found_key,
1323 path->slots[0] - 1);
33345d01 1324 if (found_key.objectid == ino &&
80ff3856
YZ
1325 found_key.type == BTRFS_EXTENT_DATA_KEY)
1326 path->slots[0]--;
1327 }
1328 check_prev = 0;
1329next_slot:
1330 leaf = path->nodes[0];
1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 ret = btrfs_next_leaf(root, path);
d788a349 1333 if (ret < 0)
79787eaa 1334 goto error;
80ff3856
YZ
1335 if (ret > 0)
1336 break;
1337 leaf = path->nodes[0];
1338 }
be20aa9d 1339
80ff3856
YZ
1340 nocow = 0;
1341 disk_bytenr = 0;
17d217fe 1342 num_bytes = 0;
80ff3856
YZ
1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1344
1d512cb7
FM
1345 if (found_key.objectid > ino)
1346 break;
1347 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1348 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1353 found_key.offset > end)
1354 break;
1355
1356 if (found_key.offset > cur_offset) {
1357 extent_end = found_key.offset;
e9061e21 1358 extent_type = 0;
80ff3856
YZ
1359 goto out_check;
1360 }
1361
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
1364 extent_type = btrfs_file_extent_type(leaf, fi);
1365
cc95bef6 1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1367 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1370 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1371 extent_end = found_key.offset +
1372 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1373 disk_num_bytes =
1374 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1375 if (extent_end <= start) {
1376 path->slots[0]++;
1377 goto next_slot;
1378 }
17d217fe
YZ
1379 if (disk_bytenr == 0)
1380 goto out_check;
80ff3856
YZ
1381 if (btrfs_file_extent_compression(leaf, fi) ||
1382 btrfs_file_extent_encryption(leaf, fi) ||
1383 btrfs_file_extent_other_encoding(leaf, fi))
1384 goto out_check;
d899e052
YZ
1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 goto out_check;
2ff7e61e 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1388 goto out_check;
e4c3b2dc 1389 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1390 found_key.offset -
1391 extent_offset, disk_bytenr))
17d217fe 1392 goto out_check;
5d4f98a2 1393 disk_bytenr += extent_offset;
17d217fe
YZ
1394 disk_bytenr += cur_offset - found_key.offset;
1395 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1396 /*
1397 * if there are pending snapshots for this root,
1398 * we fall into common COW way.
1399 */
1400 if (!nolock) {
ea14b57f 1401 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1402 if (!err)
1403 goto out_check;
1404 }
17d217fe
YZ
1405 /*
1406 * force cow if csum exists in the range.
1407 * this ensure that csum for a given extent are
1408 * either valid or do not exist.
1409 */
2ff7e61e 1410 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1411 num_bytes)) {
1412 if (!nolock)
ea14b57f 1413 btrfs_end_write_no_snapshotting(root);
17d217fe 1414 goto out_check;
91e1f56a
RK
1415 }
1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1417 if (!nolock)
ea14b57f 1418 btrfs_end_write_no_snapshotting(root);
f78c436c 1419 goto out_check;
91e1f56a 1420 }
80ff3856
YZ
1421 nocow = 1;
1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 extent_end = found_key.offset +
514ac8ad
CM
1424 btrfs_file_extent_inline_len(leaf,
1425 path->slots[0], fi);
da17066c 1426 extent_end = ALIGN(extent_end,
0b246afa 1427 fs_info->sectorsize);
80ff3856
YZ
1428 } else {
1429 BUG_ON(1);
1430 }
1431out_check:
1432 if (extent_end <= start) {
1433 path->slots[0]++;
e9894fd3 1434 if (!nolock && nocow)
ea14b57f 1435 btrfs_end_write_no_snapshotting(root);
f78c436c 1436 if (nocow)
0b246afa 1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1438 goto next_slot;
1439 }
1440 if (!nocow) {
1441 if (cow_start == (u64)-1)
1442 cow_start = cur_offset;
1443 cur_offset = extent_end;
1444 if (cur_offset > end)
1445 break;
1446 path->slots[0]++;
1447 goto next_slot;
7ea394f1
YZ
1448 }
1449
b3b4aa74 1450 btrfs_release_path(path);
80ff3856 1451 if (cow_start != (u64)-1) {
00361589
JB
1452 ret = cow_file_range(inode, locked_page,
1453 cow_start, found_key.offset - 1,
dda3245e
WX
1454 end, page_started, nr_written, 1,
1455 NULL);
e9894fd3
WS
1456 if (ret) {
1457 if (!nolock && nocow)
ea14b57f 1458 btrfs_end_write_no_snapshotting(root);
f78c436c 1459 if (nocow)
0b246afa 1460 btrfs_dec_nocow_writers(fs_info,
f78c436c 1461 disk_bytenr);
79787eaa 1462 goto error;
e9894fd3 1463 }
80ff3856 1464 cow_start = (u64)-1;
7ea394f1 1465 }
80ff3856 1466
d899e052 1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1468 u64 orig_start = found_key.offset - extent_offset;
1469
1470 em = create_io_em(inode, cur_offset, num_bytes,
1471 orig_start,
1472 disk_bytenr, /* block_start */
1473 num_bytes, /* block_len */
1474 disk_num_bytes, /* orig_block_len */
1475 ram_bytes, BTRFS_COMPRESS_NONE,
1476 BTRFS_ORDERED_PREALLOC);
1477 if (IS_ERR(em)) {
1478 if (!nolock && nocow)
ea14b57f 1479 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1480 if (nocow)
1481 btrfs_dec_nocow_writers(fs_info,
1482 disk_bytenr);
1483 ret = PTR_ERR(em);
1484 goto error;
d899e052 1485 }
6f9994db
LB
1486 free_extent_map(em);
1487 }
1488
1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1490 type = BTRFS_ORDERED_PREALLOC;
1491 } else {
1492 type = BTRFS_ORDERED_NOCOW;
1493 }
80ff3856
YZ
1494
1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1496 num_bytes, num_bytes, type);
f78c436c 1497 if (nocow)
0b246afa 1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1499 BUG_ON(ret); /* -ENOMEM */
771ed689 1500
efa56464 1501 if (root->root_key.objectid ==
4dbd80fb
QW
1502 BTRFS_DATA_RELOC_TREE_OBJECTID)
1503 /*
1504 * Error handled later, as we must prevent
1505 * extent_clear_unlock_delalloc() in error handler
1506 * from freeing metadata of created ordered extent.
1507 */
efa56464
YZ
1508 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1509 num_bytes);
efa56464 1510
c2790a2e 1511 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1512 cur_offset + num_bytes - 1, end,
c2790a2e 1513 locked_page, EXTENT_LOCKED |
18513091
WX
1514 EXTENT_DELALLOC |
1515 EXTENT_CLEAR_DATA_RESV,
1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1517
e9894fd3 1518 if (!nolock && nocow)
ea14b57f 1519 btrfs_end_write_no_snapshotting(root);
80ff3856 1520 cur_offset = extent_end;
4dbd80fb
QW
1521
1522 /*
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1526 */
1527 if (ret)
1528 goto error;
80ff3856
YZ
1529 if (cur_offset > end)
1530 break;
be20aa9d 1531 }
b3b4aa74 1532 btrfs_release_path(path);
80ff3856 1533
17ca04af 1534 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1535 cow_start = cur_offset;
17ca04af
JB
1536 cur_offset = end;
1537 }
1538
80ff3856 1539 if (cow_start != (u64)-1) {
dda3245e
WX
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
d788a349 1542 if (ret)
79787eaa 1543 goto error;
80ff3856
YZ
1544 }
1545
79787eaa 1546error:
17ca04af 1547 if (ret && cur_offset < end)
ba8b04c1 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1549 locked_page, EXTENT_LOCKED |
151a41bc
JB
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
7ea394f1 1555 btrfs_free_path(path);
79787eaa 1556 return ret;
be20aa9d
CM
1557}
1558
47059d93
WS
1559static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560{
1561
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 return 0;
1565
1566 /*
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1570 */
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1574 return 1;
1575
1576 return 0;
1577}
1578
d352ac68
CM
1579/*
1580 * extent_io.c call back to do delayed allocation processing
1581 */
c6100a4b 1582static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1583 u64 start, u64 end, int *page_started,
f82b7359
LB
1584 unsigned long *nr_written,
1585 struct writeback_control *wbc)
be20aa9d 1586{
c6100a4b 1587 struct inode *inode = private_data;
be20aa9d 1588 int ret;
47059d93 1589 int force_cow = need_force_cow(inode, start, end);
f82b7359 1590 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1591
47059d93 1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1593 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1594 page_started, 1, nr_written);
47059d93 1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1596 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1597 page_started, 0, nr_written);
c2fcdcdf 1598 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1599 ret = cow_file_range(inode, locked_page, start, end, end,
1600 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1601 } else {
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags);
771ed689 1604 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1605 page_started, nr_written,
1606 write_flags);
7ddf5a42 1607 }
52427260
QW
1608 if (ret)
1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1610 return ret;
1611}
1612
c6100a4b 1613static void btrfs_split_extent_hook(void *private_data,
1bf85046 1614 struct extent_state *orig, u64 split)
9ed74f2d 1615{
c6100a4b 1616 struct inode *inode = private_data;
dcab6a3b
JB
1617 u64 size;
1618
0ca1f7ce 1619 /* not delalloc, ignore it */
9ed74f2d 1620 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1621 return;
9ed74f2d 1622
dcab6a3b
JB
1623 size = orig->end - orig->start + 1;
1624 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1625 u32 num_extents;
dcab6a3b
JB
1626 u64 new_size;
1627
1628 /*
ba117213
JB
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
dcab6a3b
JB
1631 */
1632 new_size = orig->end - split + 1;
823bb20a 1633 num_extents = count_max_extents(new_size);
ba117213 1634 new_size = split - orig->start;
823bb20a
DS
1635 num_extents += count_max_extents(new_size);
1636 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1637 return;
1638 }
1639
9e0baf60 1640 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1642 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1643}
1644
1645/*
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1650 */
c6100a4b 1651static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1652 struct extent_state *new,
1653 struct extent_state *other)
9ed74f2d 1654{
c6100a4b 1655 struct inode *inode = private_data;
dcab6a3b 1656 u64 new_size, old_size;
823bb20a 1657 u32 num_extents;
dcab6a3b 1658
9ed74f2d
JB
1659 /* not delalloc, ignore it */
1660 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1661 return;
9ed74f2d 1662
8461a3de
JB
1663 if (new->start > other->start)
1664 new_size = new->end - other->start + 1;
1665 else
1666 new_size = other->end - new->start + 1;
dcab6a3b
JB
1667
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1672 spin_unlock(&BTRFS_I(inode)->lock);
1673 return;
1674 }
1675
1676 /*
ba117213
JB
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1681 *
1682 * [ 4k][MAX_SIZE]
1683 *
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1687 *
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 *
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1692 * this case.
dcab6a3b 1693 */
ba117213 1694 old_size = other->end - other->start + 1;
823bb20a 1695 num_extents = count_max_extents(old_size);
ba117213 1696 old_size = new->end - new->start + 1;
823bb20a
DS
1697 num_extents += count_max_extents(old_size);
1698 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1699 return;
1700
9e0baf60 1701 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1703 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1704}
1705
eb73c1b7
MX
1706static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 struct inode *inode)
1708{
0b246afa
JM
1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710
eb73c1b7
MX
1711 spin_lock(&root->delalloc_lock);
1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 &root->delalloc_inodes);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 &BTRFS_I(inode)->runtime_flags);
1717 root->nr_delalloc_inodes++;
1718 if (root->nr_delalloc_inodes == 1) {
0b246afa 1719 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1720 BUG_ON(!list_empty(&root->delalloc_root));
1721 list_add_tail(&root->delalloc_root,
0b246afa
JM
1722 &fs_info->delalloc_roots);
1723 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1724 }
1725 }
1726 spin_unlock(&root->delalloc_lock);
1727}
1728
1729static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1730 struct btrfs_inode *inode)
eb73c1b7 1731{
9e3e97f4 1732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1733
eb73c1b7 1734 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1735 if (!list_empty(&inode->delalloc_inodes)) {
1736 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1738 &inode->runtime_flags);
eb73c1b7
MX
1739 root->nr_delalloc_inodes--;
1740 if (!root->nr_delalloc_inodes) {
0b246afa 1741 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1742 BUG_ON(list_empty(&root->delalloc_root));
1743 list_del_init(&root->delalloc_root);
0b246afa 1744 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1745 }
1746 }
1747 spin_unlock(&root->delalloc_lock);
1748}
1749
d352ac68
CM
1750/*
1751 * extent_io.c set_bit_hook, used to track delayed allocation
1752 * bytes in this file, and to maintain the list of inodes that
1753 * have pending delalloc work to be done.
1754 */
c6100a4b 1755static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1756 struct extent_state *state, unsigned *bits)
291d673e 1757{
c6100a4b 1758 struct inode *inode = private_data;
9ed74f2d 1759
0b246afa
JM
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1761
47059d93
WS
1762 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1763 WARN_ON(1);
75eff68e
CM
1764 /*
1765 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1766 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1767 * bit, which is only set or cleared with irqs on
1768 */
0ca1f7ce 1769 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1770 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1771 u64 len = state->end + 1 - state->start;
8b62f87b 1772 u32 num_extents = count_max_extents(len);
70ddc553 1773 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1774
8b62f87b
JB
1775 spin_lock(&BTRFS_I(inode)->lock);
1776 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1777 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1778
6a3891c5 1779 /* For sanity tests */
0b246afa 1780 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1781 return;
1782
104b4e51
NB
1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 fs_info->delalloc_batch);
df0af1a5 1785 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1786 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1787 if (*bits & EXTENT_DEFRAG)
1788 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1790 &BTRFS_I(inode)->runtime_flags))
1791 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1792 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1793 }
a7e3b975
FM
1794
1795 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 (*bits & EXTENT_DELALLOC_NEW)) {
1797 spin_lock(&BTRFS_I(inode)->lock);
1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1799 state->start;
1800 spin_unlock(&BTRFS_I(inode)->lock);
1801 }
291d673e
CM
1802}
1803
d352ac68
CM
1804/*
1805 * extent_io.c clear_bit_hook, see set_bit_hook for why
1806 */
c6100a4b 1807static void btrfs_clear_bit_hook(void *private_data,
41074888 1808 struct extent_state *state,
9ee49a04 1809 unsigned *bits)
291d673e 1810{
c6100a4b 1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1813 u64 len = state->end + 1 - state->start;
823bb20a 1814 u32 num_extents = count_max_extents(len);
47059d93 1815
4a4b964f
FM
1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 spin_lock(&inode->lock);
6fc0ef68 1818 inode->defrag_bytes -= len;
4a4b964f
FM
1819 spin_unlock(&inode->lock);
1820 }
47059d93 1821
75eff68e
CM
1822 /*
1823 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1824 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1825 * bit, which is only set or cleared with irqs on
1826 */
0ca1f7ce 1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1828 struct btrfs_root *root = inode->root;
83eea1f1 1829 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1830
8b62f87b
JB
1831 spin_lock(&inode->lock);
1832 btrfs_mod_outstanding_extents(inode, -num_extents);
1833 spin_unlock(&inode->lock);
0ca1f7ce 1834
b6d08f06
JB
1835 /*
1836 * We don't reserve metadata space for space cache inodes so we
1837 * don't need to call dellalloc_release_metadata if there is an
1838 * error.
1839 */
a315e68f 1840 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1841 root != fs_info->tree_root)
0ca1f7ce
YZ
1842 btrfs_delalloc_release_metadata(inode, len);
1843
6a3891c5 1844 /* For sanity tests. */
0b246afa 1845 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1846 return;
1847
a315e68f
FM
1848 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1849 do_list && !(state->state & EXTENT_NORESERVE) &&
1850 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1851 btrfs_free_reserved_data_space_noquota(
1852 &inode->vfs_inode,
51773bec 1853 state->start, len);
9ed74f2d 1854
104b4e51
NB
1855 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1856 fs_info->delalloc_batch);
6fc0ef68
NB
1857 spin_lock(&inode->lock);
1858 inode->delalloc_bytes -= len;
1859 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1861 &inode->runtime_flags))
eb73c1b7 1862 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1863 spin_unlock(&inode->lock);
291d673e 1864 }
a7e3b975
FM
1865
1866 if ((state->state & EXTENT_DELALLOC_NEW) &&
1867 (*bits & EXTENT_DELALLOC_NEW)) {
1868 spin_lock(&inode->lock);
1869 ASSERT(inode->new_delalloc_bytes >= len);
1870 inode->new_delalloc_bytes -= len;
1871 spin_unlock(&inode->lock);
1872 }
291d673e
CM
1873}
1874
d352ac68
CM
1875/*
1876 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1877 * we don't create bios that span stripes or chunks
6f034ece
LB
1878 *
1879 * return 1 if page cannot be merged to bio
1880 * return 0 if page can be merged to bio
1881 * return error otherwise
d352ac68 1882 */
81a75f67 1883int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1884 size_t size, struct bio *bio,
1885 unsigned long bio_flags)
239b14b3 1886{
0b246afa
JM
1887 struct inode *inode = page->mapping->host;
1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1889 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1890 u64 length = 0;
1891 u64 map_length;
239b14b3
CM
1892 int ret;
1893
771ed689
CM
1894 if (bio_flags & EXTENT_BIO_COMPRESSED)
1895 return 0;
1896
4f024f37 1897 length = bio->bi_iter.bi_size;
239b14b3 1898 map_length = length;
0b246afa
JM
1899 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1900 NULL, 0);
6f034ece
LB
1901 if (ret < 0)
1902 return ret;
d397712b 1903 if (map_length < length + size)
239b14b3 1904 return 1;
3444a972 1905 return 0;
239b14b3
CM
1906}
1907
d352ac68
CM
1908/*
1909 * in order to insert checksums into the metadata in large chunks,
1910 * we wait until bio submission time. All the pages in the bio are
1911 * checksummed and sums are attached onto the ordered extent record.
1912 *
1913 * At IO completion time the cums attached on the ordered extent record
1914 * are inserted into the btree
1915 */
8c27cb35 1916static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1917 int mirror_num, unsigned long bio_flags,
eaf25d93 1918 u64 bio_offset)
065631f6 1919{
c6100a4b 1920 struct inode *inode = private_data;
4e4cbee9 1921 blk_status_t ret = 0;
e015640f 1922
2ff7e61e 1923 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1924 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1925 return 0;
1926}
e015640f 1927
4a69a410
CM
1928/*
1929 * in order to insert checksums into the metadata in large chunks,
1930 * we wait until bio submission time. All the pages in the bio are
1931 * checksummed and sums are attached onto the ordered extent record.
1932 *
1933 * At IO completion time the cums attached on the ordered extent record
1934 * are inserted into the btree
1935 */
8c27cb35 1936static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1937 int mirror_num, unsigned long bio_flags,
1938 u64 bio_offset)
4a69a410 1939{
c6100a4b 1940 struct inode *inode = private_data;
2ff7e61e 1941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1942 blk_status_t ret;
61891923 1943
2ff7e61e 1944 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1945 if (ret) {
4e4cbee9 1946 bio->bi_status = ret;
4246a0b6
CH
1947 bio_endio(bio);
1948 }
61891923 1949 return ret;
44b8bd7e
CM
1950}
1951
d352ac68 1952/*
cad321ad 1953 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1954 * on write, or reading the csums from the tree before a read.
1955 *
1956 * Rules about async/sync submit,
1957 * a) read: sync submit
1958 *
1959 * b) write without checksum: sync submit
1960 *
1961 * c) write with checksum:
1962 * c-1) if bio is issued by fsync: sync submit
1963 * (sync_writers != 0)
1964 *
1965 * c-2) if root is reloc root: sync submit
1966 * (only in case of buffered IO)
1967 *
1968 * c-3) otherwise: async submit
d352ac68 1969 */
8c27cb35 1970static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1971 int mirror_num, unsigned long bio_flags,
1972 u64 bio_offset)
44b8bd7e 1973{
c6100a4b 1974 struct inode *inode = private_data;
0b246afa 1975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1976 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1977 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1978 blk_status_t ret = 0;
19b9bdb0 1979 int skip_sum;
b812ce28 1980 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1981
6cbff00f 1982 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1983
70ddc553 1984 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1985 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1986
37226b21 1987 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1988 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1989 if (ret)
61891923 1990 goto out;
5fd02043 1991
d20f7043 1992 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1993 ret = btrfs_submit_compressed_read(inode, bio,
1994 mirror_num,
1995 bio_flags);
1996 goto out;
c2db1073 1997 } else if (!skip_sum) {
2ff7e61e 1998 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1999 if (ret)
61891923 2000 goto out;
c2db1073 2001 }
4d1b5fb4 2002 goto mapit;
b812ce28 2003 } else if (async && !skip_sum) {
17d217fe
YZ
2004 /* csum items have already been cloned */
2005 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2006 goto mapit;
19b9bdb0 2007 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2008 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2009 bio_offset, inode,
0b246afa
JM
2010 __btrfs_submit_bio_start,
2011 __btrfs_submit_bio_done);
61891923 2012 goto out;
b812ce28 2013 } else if (!skip_sum) {
2ff7e61e 2014 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2015 if (ret)
2016 goto out;
19b9bdb0
CM
2017 }
2018
0b86a832 2019mapit:
2ff7e61e 2020 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2021
2022out:
4e4cbee9
CH
2023 if (ret) {
2024 bio->bi_status = ret;
4246a0b6
CH
2025 bio_endio(bio);
2026 }
61891923 2027 return ret;
065631f6 2028}
6885f308 2029
d352ac68
CM
2030/*
2031 * given a list of ordered sums record them in the inode. This happens
2032 * at IO completion time based on sums calculated at bio submission time.
2033 */
ba1da2f4 2034static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2035 struct inode *inode, struct list_head *list)
e6dcd2dc 2036{
e6dcd2dc
CM
2037 struct btrfs_ordered_sum *sum;
2038
c6e30871 2039 list_for_each_entry(sum, list, list) {
39847c4d 2040 trans->adding_csums = 1;
d20f7043
CM
2041 btrfs_csum_file_blocks(trans,
2042 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2043 trans->adding_csums = 0;
e6dcd2dc
CM
2044 }
2045 return 0;
2046}
2047
2ac55d41 2048int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2049 unsigned int extra_bits,
ba8b04c1 2050 struct extent_state **cached_state, int dedupe)
ea8c2819 2051{
09cbfeaf 2052 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2053 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2054 extra_bits, cached_state);
ea8c2819
CM
2055}
2056
d352ac68 2057/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2058struct btrfs_writepage_fixup {
2059 struct page *page;
2060 struct btrfs_work work;
2061};
2062
b2950863 2063static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2064{
2065 struct btrfs_writepage_fixup *fixup;
2066 struct btrfs_ordered_extent *ordered;
2ac55d41 2067 struct extent_state *cached_state = NULL;
364ecf36 2068 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2069 struct page *page;
2070 struct inode *inode;
2071 u64 page_start;
2072 u64 page_end;
87826df0 2073 int ret;
247e743c
CM
2074
2075 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2076 page = fixup->page;
4a096752 2077again:
247e743c
CM
2078 lock_page(page);
2079 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2080 ClearPageChecked(page);
2081 goto out_page;
2082 }
2083
2084 inode = page->mapping->host;
2085 page_start = page_offset(page);
09cbfeaf 2086 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2087
ff13db41 2088 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2089 &cached_state);
4a096752
CM
2090
2091 /* already ordered? We're done */
8b62b72b 2092 if (PagePrivate2(page))
247e743c 2093 goto out;
4a096752 2094
a776c6fa 2095 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2096 PAGE_SIZE);
4a096752 2097 if (ordered) {
2ac55d41
JB
2098 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2099 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2100 unlock_page(page);
2101 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2102 btrfs_put_ordered_extent(ordered);
4a096752
CM
2103 goto again;
2104 }
247e743c 2105
364ecf36 2106 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2107 PAGE_SIZE);
87826df0
JM
2108 if (ret) {
2109 mapping_set_error(page->mapping, ret);
2110 end_extent_writepage(page, ret, page_start, page_end);
2111 ClearPageChecked(page);
2112 goto out;
2113 }
2114
e3b8a485 2115 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
ba8b04c1 2116 0);
247e743c 2117 ClearPageChecked(page);
87826df0 2118 set_page_dirty(page);
8b62f87b 2119 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2120out:
2ac55d41
JB
2121 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2122 &cached_state, GFP_NOFS);
247e743c
CM
2123out_page:
2124 unlock_page(page);
09cbfeaf 2125 put_page(page);
b897abec 2126 kfree(fixup);
364ecf36 2127 extent_changeset_free(data_reserved);
247e743c
CM
2128}
2129
2130/*
2131 * There are a few paths in the higher layers of the kernel that directly
2132 * set the page dirty bit without asking the filesystem if it is a
2133 * good idea. This causes problems because we want to make sure COW
2134 * properly happens and the data=ordered rules are followed.
2135 *
c8b97818 2136 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2137 * hasn't been properly setup for IO. We kick off an async process
2138 * to fix it up. The async helper will wait for ordered extents, set
2139 * the delalloc bit and make it safe to write the page.
2140 */
b2950863 2141static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2142{
2143 struct inode *inode = page->mapping->host;
0b246afa 2144 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2145 struct btrfs_writepage_fixup *fixup;
247e743c 2146
8b62b72b
CM
2147 /* this page is properly in the ordered list */
2148 if (TestClearPagePrivate2(page))
247e743c
CM
2149 return 0;
2150
2151 if (PageChecked(page))
2152 return -EAGAIN;
2153
2154 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2155 if (!fixup)
2156 return -EAGAIN;
f421950f 2157
247e743c 2158 SetPageChecked(page);
09cbfeaf 2159 get_page(page);
9e0af237
LB
2160 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2161 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2162 fixup->page = page;
0b246afa 2163 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2164 return -EBUSY;
247e743c
CM
2165}
2166
d899e052
YZ
2167static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2168 struct inode *inode, u64 file_pos,
2169 u64 disk_bytenr, u64 disk_num_bytes,
2170 u64 num_bytes, u64 ram_bytes,
2171 u8 compression, u8 encryption,
2172 u16 other_encoding, int extent_type)
2173{
2174 struct btrfs_root *root = BTRFS_I(inode)->root;
2175 struct btrfs_file_extent_item *fi;
2176 struct btrfs_path *path;
2177 struct extent_buffer *leaf;
2178 struct btrfs_key ins;
a12b877b 2179 u64 qg_released;
1acae57b 2180 int extent_inserted = 0;
d899e052
YZ
2181 int ret;
2182
2183 path = btrfs_alloc_path();
d8926bb3
MF
2184 if (!path)
2185 return -ENOMEM;
d899e052 2186
a1ed835e
CM
2187 /*
2188 * we may be replacing one extent in the tree with another.
2189 * The new extent is pinned in the extent map, and we don't want
2190 * to drop it from the cache until it is completely in the btree.
2191 *
2192 * So, tell btrfs_drop_extents to leave this extent in the cache.
2193 * the caller is expected to unpin it and allow it to be merged
2194 * with the others.
2195 */
1acae57b
FDBM
2196 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2197 file_pos + num_bytes, NULL, 0,
2198 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2199 if (ret)
2200 goto out;
d899e052 2201
1acae57b 2202 if (!extent_inserted) {
4a0cc7ca 2203 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2204 ins.offset = file_pos;
2205 ins.type = BTRFS_EXTENT_DATA_KEY;
2206
2207 path->leave_spinning = 1;
2208 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2209 sizeof(*fi));
2210 if (ret)
2211 goto out;
2212 }
d899e052
YZ
2213 leaf = path->nodes[0];
2214 fi = btrfs_item_ptr(leaf, path->slots[0],
2215 struct btrfs_file_extent_item);
2216 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2217 btrfs_set_file_extent_type(leaf, fi, extent_type);
2218 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2219 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2220 btrfs_set_file_extent_offset(leaf, fi, 0);
2221 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2222 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2223 btrfs_set_file_extent_compression(leaf, fi, compression);
2224 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2225 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2226
d899e052 2227 btrfs_mark_buffer_dirty(leaf);
ce195332 2228 btrfs_release_path(path);
d899e052
YZ
2229
2230 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2231
2232 ins.objectid = disk_bytenr;
2233 ins.offset = disk_num_bytes;
2234 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2235
297d750b 2236 /*
5846a3c2
QW
2237 * Release the reserved range from inode dirty range map, as it is
2238 * already moved into delayed_ref_head
297d750b 2239 */
a12b877b
QW
2240 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2241 if (ret < 0)
2242 goto out;
2243 qg_released = ret;
84f7d8e6
JB
2244 ret = btrfs_alloc_reserved_file_extent(trans, root,
2245 btrfs_ino(BTRFS_I(inode)),
2246 file_pos, qg_released, &ins);
79787eaa 2247out:
d899e052 2248 btrfs_free_path(path);
b9473439 2249
79787eaa 2250 return ret;
d899e052
YZ
2251}
2252
38c227d8
LB
2253/* snapshot-aware defrag */
2254struct sa_defrag_extent_backref {
2255 struct rb_node node;
2256 struct old_sa_defrag_extent *old;
2257 u64 root_id;
2258 u64 inum;
2259 u64 file_pos;
2260 u64 extent_offset;
2261 u64 num_bytes;
2262 u64 generation;
2263};
2264
2265struct old_sa_defrag_extent {
2266 struct list_head list;
2267 struct new_sa_defrag_extent *new;
2268
2269 u64 extent_offset;
2270 u64 bytenr;
2271 u64 offset;
2272 u64 len;
2273 int count;
2274};
2275
2276struct new_sa_defrag_extent {
2277 struct rb_root root;
2278 struct list_head head;
2279 struct btrfs_path *path;
2280 struct inode *inode;
2281 u64 file_pos;
2282 u64 len;
2283 u64 bytenr;
2284 u64 disk_len;
2285 u8 compress_type;
2286};
2287
2288static int backref_comp(struct sa_defrag_extent_backref *b1,
2289 struct sa_defrag_extent_backref *b2)
2290{
2291 if (b1->root_id < b2->root_id)
2292 return -1;
2293 else if (b1->root_id > b2->root_id)
2294 return 1;
2295
2296 if (b1->inum < b2->inum)
2297 return -1;
2298 else if (b1->inum > b2->inum)
2299 return 1;
2300
2301 if (b1->file_pos < b2->file_pos)
2302 return -1;
2303 else if (b1->file_pos > b2->file_pos)
2304 return 1;
2305
2306 /*
2307 * [------------------------------] ===> (a range of space)
2308 * |<--->| |<---->| =============> (fs/file tree A)
2309 * |<---------------------------->| ===> (fs/file tree B)
2310 *
2311 * A range of space can refer to two file extents in one tree while
2312 * refer to only one file extent in another tree.
2313 *
2314 * So we may process a disk offset more than one time(two extents in A)
2315 * and locate at the same extent(one extent in B), then insert two same
2316 * backrefs(both refer to the extent in B).
2317 */
2318 return 0;
2319}
2320
2321static void backref_insert(struct rb_root *root,
2322 struct sa_defrag_extent_backref *backref)
2323{
2324 struct rb_node **p = &root->rb_node;
2325 struct rb_node *parent = NULL;
2326 struct sa_defrag_extent_backref *entry;
2327 int ret;
2328
2329 while (*p) {
2330 parent = *p;
2331 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2332
2333 ret = backref_comp(backref, entry);
2334 if (ret < 0)
2335 p = &(*p)->rb_left;
2336 else
2337 p = &(*p)->rb_right;
2338 }
2339
2340 rb_link_node(&backref->node, parent, p);
2341 rb_insert_color(&backref->node, root);
2342}
2343
2344/*
2345 * Note the backref might has changed, and in this case we just return 0.
2346 */
2347static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2348 void *ctx)
2349{
2350 struct btrfs_file_extent_item *extent;
38c227d8
LB
2351 struct old_sa_defrag_extent *old = ctx;
2352 struct new_sa_defrag_extent *new = old->new;
2353 struct btrfs_path *path = new->path;
2354 struct btrfs_key key;
2355 struct btrfs_root *root;
2356 struct sa_defrag_extent_backref *backref;
2357 struct extent_buffer *leaf;
2358 struct inode *inode = new->inode;
0b246afa 2359 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2360 int slot;
2361 int ret;
2362 u64 extent_offset;
2363 u64 num_bytes;
2364
2365 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2366 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2367 return 0;
2368
2369 key.objectid = root_id;
2370 key.type = BTRFS_ROOT_ITEM_KEY;
2371 key.offset = (u64)-1;
2372
38c227d8
LB
2373 root = btrfs_read_fs_root_no_name(fs_info, &key);
2374 if (IS_ERR(root)) {
2375 if (PTR_ERR(root) == -ENOENT)
2376 return 0;
2377 WARN_ON(1);
ab8d0fc4 2378 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2379 inum, offset, root_id);
2380 return PTR_ERR(root);
2381 }
2382
2383 key.objectid = inum;
2384 key.type = BTRFS_EXTENT_DATA_KEY;
2385 if (offset > (u64)-1 << 32)
2386 key.offset = 0;
2387 else
2388 key.offset = offset;
2389
2390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2391 if (WARN_ON(ret < 0))
38c227d8 2392 return ret;
50f1319c 2393 ret = 0;
38c227d8
LB
2394
2395 while (1) {
2396 cond_resched();
2397
2398 leaf = path->nodes[0];
2399 slot = path->slots[0];
2400
2401 if (slot >= btrfs_header_nritems(leaf)) {
2402 ret = btrfs_next_leaf(root, path);
2403 if (ret < 0) {
2404 goto out;
2405 } else if (ret > 0) {
2406 ret = 0;
2407 goto out;
2408 }
2409 continue;
2410 }
2411
2412 path->slots[0]++;
2413
2414 btrfs_item_key_to_cpu(leaf, &key, slot);
2415
2416 if (key.objectid > inum)
2417 goto out;
2418
2419 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2420 continue;
2421
2422 extent = btrfs_item_ptr(leaf, slot,
2423 struct btrfs_file_extent_item);
2424
2425 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2426 continue;
2427
e68afa49
LB
2428 /*
2429 * 'offset' refers to the exact key.offset,
2430 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2431 * (key.offset - extent_offset).
2432 */
2433 if (key.offset != offset)
38c227d8
LB
2434 continue;
2435
e68afa49 2436 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2437 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2438
38c227d8
LB
2439 if (extent_offset >= old->extent_offset + old->offset +
2440 old->len || extent_offset + num_bytes <=
2441 old->extent_offset + old->offset)
2442 continue;
38c227d8
LB
2443 break;
2444 }
2445
2446 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2447 if (!backref) {
2448 ret = -ENOENT;
2449 goto out;
2450 }
2451
2452 backref->root_id = root_id;
2453 backref->inum = inum;
e68afa49 2454 backref->file_pos = offset;
38c227d8
LB
2455 backref->num_bytes = num_bytes;
2456 backref->extent_offset = extent_offset;
2457 backref->generation = btrfs_file_extent_generation(leaf, extent);
2458 backref->old = old;
2459 backref_insert(&new->root, backref);
2460 old->count++;
2461out:
2462 btrfs_release_path(path);
2463 WARN_ON(ret);
2464 return ret;
2465}
2466
2467static noinline bool record_extent_backrefs(struct btrfs_path *path,
2468 struct new_sa_defrag_extent *new)
2469{
0b246afa 2470 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2471 struct old_sa_defrag_extent *old, *tmp;
2472 int ret;
2473
2474 new->path = path;
2475
2476 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2477 ret = iterate_inodes_from_logical(old->bytenr +
2478 old->extent_offset, fs_info,
38c227d8 2479 path, record_one_backref,
c995ab3c 2480 old, false);
4724b106
JB
2481 if (ret < 0 && ret != -ENOENT)
2482 return false;
38c227d8
LB
2483
2484 /* no backref to be processed for this extent */
2485 if (!old->count) {
2486 list_del(&old->list);
2487 kfree(old);
2488 }
2489 }
2490
2491 if (list_empty(&new->head))
2492 return false;
2493
2494 return true;
2495}
2496
2497static int relink_is_mergable(struct extent_buffer *leaf,
2498 struct btrfs_file_extent_item *fi,
116e0024 2499 struct new_sa_defrag_extent *new)
38c227d8 2500{
116e0024 2501 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2502 return 0;
2503
2504 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2505 return 0;
2506
116e0024
LB
2507 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2508 return 0;
2509
2510 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2511 btrfs_file_extent_other_encoding(leaf, fi))
2512 return 0;
2513
2514 return 1;
2515}
2516
2517/*
2518 * Note the backref might has changed, and in this case we just return 0.
2519 */
2520static noinline int relink_extent_backref(struct btrfs_path *path,
2521 struct sa_defrag_extent_backref *prev,
2522 struct sa_defrag_extent_backref *backref)
2523{
2524 struct btrfs_file_extent_item *extent;
2525 struct btrfs_file_extent_item *item;
2526 struct btrfs_ordered_extent *ordered;
2527 struct btrfs_trans_handle *trans;
38c227d8
LB
2528 struct btrfs_root *root;
2529 struct btrfs_key key;
2530 struct extent_buffer *leaf;
2531 struct old_sa_defrag_extent *old = backref->old;
2532 struct new_sa_defrag_extent *new = old->new;
0b246afa 2533 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2534 struct inode *inode;
2535 struct extent_state *cached = NULL;
2536 int ret = 0;
2537 u64 start;
2538 u64 len;
2539 u64 lock_start;
2540 u64 lock_end;
2541 bool merge = false;
2542 int index;
2543
2544 if (prev && prev->root_id == backref->root_id &&
2545 prev->inum == backref->inum &&
2546 prev->file_pos + prev->num_bytes == backref->file_pos)
2547 merge = true;
2548
2549 /* step 1: get root */
2550 key.objectid = backref->root_id;
2551 key.type = BTRFS_ROOT_ITEM_KEY;
2552 key.offset = (u64)-1;
2553
38c227d8
LB
2554 index = srcu_read_lock(&fs_info->subvol_srcu);
2555
2556 root = btrfs_read_fs_root_no_name(fs_info, &key);
2557 if (IS_ERR(root)) {
2558 srcu_read_unlock(&fs_info->subvol_srcu, index);
2559 if (PTR_ERR(root) == -ENOENT)
2560 return 0;
2561 return PTR_ERR(root);
2562 }
38c227d8 2563
bcbba5e6
WS
2564 if (btrfs_root_readonly(root)) {
2565 srcu_read_unlock(&fs_info->subvol_srcu, index);
2566 return 0;
2567 }
2568
38c227d8
LB
2569 /* step 2: get inode */
2570 key.objectid = backref->inum;
2571 key.type = BTRFS_INODE_ITEM_KEY;
2572 key.offset = 0;
2573
2574 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2575 if (IS_ERR(inode)) {
2576 srcu_read_unlock(&fs_info->subvol_srcu, index);
2577 return 0;
2578 }
2579
2580 srcu_read_unlock(&fs_info->subvol_srcu, index);
2581
2582 /* step 3: relink backref */
2583 lock_start = backref->file_pos;
2584 lock_end = backref->file_pos + backref->num_bytes - 1;
2585 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2586 &cached);
38c227d8
LB
2587
2588 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2589 if (ordered) {
2590 btrfs_put_ordered_extent(ordered);
2591 goto out_unlock;
2592 }
2593
2594 trans = btrfs_join_transaction(root);
2595 if (IS_ERR(trans)) {
2596 ret = PTR_ERR(trans);
2597 goto out_unlock;
2598 }
2599
2600 key.objectid = backref->inum;
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2602 key.offset = backref->file_pos;
2603
2604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2605 if (ret < 0) {
2606 goto out_free_path;
2607 } else if (ret > 0) {
2608 ret = 0;
2609 goto out_free_path;
2610 }
2611
2612 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2613 struct btrfs_file_extent_item);
2614
2615 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2616 backref->generation)
2617 goto out_free_path;
2618
2619 btrfs_release_path(path);
2620
2621 start = backref->file_pos;
2622 if (backref->extent_offset < old->extent_offset + old->offset)
2623 start += old->extent_offset + old->offset -
2624 backref->extent_offset;
2625
2626 len = min(backref->extent_offset + backref->num_bytes,
2627 old->extent_offset + old->offset + old->len);
2628 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2629
2630 ret = btrfs_drop_extents(trans, root, inode, start,
2631 start + len, 1);
2632 if (ret)
2633 goto out_free_path;
2634again:
4a0cc7ca 2635 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2636 key.type = BTRFS_EXTENT_DATA_KEY;
2637 key.offset = start;
2638
a09a0a70 2639 path->leave_spinning = 1;
38c227d8
LB
2640 if (merge) {
2641 struct btrfs_file_extent_item *fi;
2642 u64 extent_len;
2643 struct btrfs_key found_key;
2644
3c9665df 2645 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2646 if (ret < 0)
2647 goto out_free_path;
2648
2649 path->slots[0]--;
2650 leaf = path->nodes[0];
2651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2652
2653 fi = btrfs_item_ptr(leaf, path->slots[0],
2654 struct btrfs_file_extent_item);
2655 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2656
116e0024
LB
2657 if (extent_len + found_key.offset == start &&
2658 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2659 btrfs_set_file_extent_num_bytes(leaf, fi,
2660 extent_len + len);
2661 btrfs_mark_buffer_dirty(leaf);
2662 inode_add_bytes(inode, len);
2663
2664 ret = 1;
2665 goto out_free_path;
2666 } else {
2667 merge = false;
2668 btrfs_release_path(path);
2669 goto again;
2670 }
2671 }
2672
2673 ret = btrfs_insert_empty_item(trans, root, path, &key,
2674 sizeof(*extent));
2675 if (ret) {
66642832 2676 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2677 goto out_free_path;
2678 }
2679
2680 leaf = path->nodes[0];
2681 item = btrfs_item_ptr(leaf, path->slots[0],
2682 struct btrfs_file_extent_item);
2683 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2684 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2685 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2686 btrfs_set_file_extent_num_bytes(leaf, item, len);
2687 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2688 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2689 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2690 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2691 btrfs_set_file_extent_encryption(leaf, item, 0);
2692 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2693
2694 btrfs_mark_buffer_dirty(leaf);
2695 inode_add_bytes(inode, len);
a09a0a70 2696 btrfs_release_path(path);
38c227d8 2697
84f7d8e6 2698 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2699 new->disk_len, 0,
2700 backref->root_id, backref->inum,
b06c4bf5 2701 new->file_pos); /* start - extent_offset */
38c227d8 2702 if (ret) {
66642832 2703 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2704 goto out_free_path;
2705 }
2706
2707 ret = 1;
2708out_free_path:
2709 btrfs_release_path(path);
a09a0a70 2710 path->leave_spinning = 0;
3a45bb20 2711 btrfs_end_transaction(trans);
38c227d8
LB
2712out_unlock:
2713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2714 &cached, GFP_NOFS);
2715 iput(inode);
2716 return ret;
2717}
2718
6f519564
LB
2719static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2720{
2721 struct old_sa_defrag_extent *old, *tmp;
2722
2723 if (!new)
2724 return;
2725
2726 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2727 kfree(old);
2728 }
2729 kfree(new);
2730}
2731
38c227d8
LB
2732static void relink_file_extents(struct new_sa_defrag_extent *new)
2733{
0b246afa 2734 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2735 struct btrfs_path *path;
38c227d8
LB
2736 struct sa_defrag_extent_backref *backref;
2737 struct sa_defrag_extent_backref *prev = NULL;
2738 struct inode *inode;
2739 struct btrfs_root *root;
2740 struct rb_node *node;
2741 int ret;
2742
2743 inode = new->inode;
2744 root = BTRFS_I(inode)->root;
2745
2746 path = btrfs_alloc_path();
2747 if (!path)
2748 return;
2749
2750 if (!record_extent_backrefs(path, new)) {
2751 btrfs_free_path(path);
2752 goto out;
2753 }
2754 btrfs_release_path(path);
2755
2756 while (1) {
2757 node = rb_first(&new->root);
2758 if (!node)
2759 break;
2760 rb_erase(node, &new->root);
2761
2762 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2763
2764 ret = relink_extent_backref(path, prev, backref);
2765 WARN_ON(ret < 0);
2766
2767 kfree(prev);
2768
2769 if (ret == 1)
2770 prev = backref;
2771 else
2772 prev = NULL;
2773 cond_resched();
2774 }
2775 kfree(prev);
2776
2777 btrfs_free_path(path);
38c227d8 2778out:
6f519564
LB
2779 free_sa_defrag_extent(new);
2780
0b246afa
JM
2781 atomic_dec(&fs_info->defrag_running);
2782 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2783}
2784
2785static struct new_sa_defrag_extent *
2786record_old_file_extents(struct inode *inode,
2787 struct btrfs_ordered_extent *ordered)
2788{
0b246afa 2789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2790 struct btrfs_root *root = BTRFS_I(inode)->root;
2791 struct btrfs_path *path;
2792 struct btrfs_key key;
6f519564 2793 struct old_sa_defrag_extent *old;
38c227d8
LB
2794 struct new_sa_defrag_extent *new;
2795 int ret;
2796
2797 new = kmalloc(sizeof(*new), GFP_NOFS);
2798 if (!new)
2799 return NULL;
2800
2801 new->inode = inode;
2802 new->file_pos = ordered->file_offset;
2803 new->len = ordered->len;
2804 new->bytenr = ordered->start;
2805 new->disk_len = ordered->disk_len;
2806 new->compress_type = ordered->compress_type;
2807 new->root = RB_ROOT;
2808 INIT_LIST_HEAD(&new->head);
2809
2810 path = btrfs_alloc_path();
2811 if (!path)
2812 goto out_kfree;
2813
4a0cc7ca 2814 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2815 key.type = BTRFS_EXTENT_DATA_KEY;
2816 key.offset = new->file_pos;
2817
2818 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2819 if (ret < 0)
2820 goto out_free_path;
2821 if (ret > 0 && path->slots[0] > 0)
2822 path->slots[0]--;
2823
2824 /* find out all the old extents for the file range */
2825 while (1) {
2826 struct btrfs_file_extent_item *extent;
2827 struct extent_buffer *l;
2828 int slot;
2829 u64 num_bytes;
2830 u64 offset;
2831 u64 end;
2832 u64 disk_bytenr;
2833 u64 extent_offset;
2834
2835 l = path->nodes[0];
2836 slot = path->slots[0];
2837
2838 if (slot >= btrfs_header_nritems(l)) {
2839 ret = btrfs_next_leaf(root, path);
2840 if (ret < 0)
6f519564 2841 goto out_free_path;
38c227d8
LB
2842 else if (ret > 0)
2843 break;
2844 continue;
2845 }
2846
2847 btrfs_item_key_to_cpu(l, &key, slot);
2848
4a0cc7ca 2849 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2850 break;
2851 if (key.type != BTRFS_EXTENT_DATA_KEY)
2852 break;
2853 if (key.offset >= new->file_pos + new->len)
2854 break;
2855
2856 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2857
2858 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2859 if (key.offset + num_bytes < new->file_pos)
2860 goto next;
2861
2862 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2863 if (!disk_bytenr)
2864 goto next;
2865
2866 extent_offset = btrfs_file_extent_offset(l, extent);
2867
2868 old = kmalloc(sizeof(*old), GFP_NOFS);
2869 if (!old)
6f519564 2870 goto out_free_path;
38c227d8
LB
2871
2872 offset = max(new->file_pos, key.offset);
2873 end = min(new->file_pos + new->len, key.offset + num_bytes);
2874
2875 old->bytenr = disk_bytenr;
2876 old->extent_offset = extent_offset;
2877 old->offset = offset - key.offset;
2878 old->len = end - offset;
2879 old->new = new;
2880 old->count = 0;
2881 list_add_tail(&old->list, &new->head);
2882next:
2883 path->slots[0]++;
2884 cond_resched();
2885 }
2886
2887 btrfs_free_path(path);
0b246afa 2888 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2889
2890 return new;
2891
38c227d8
LB
2892out_free_path:
2893 btrfs_free_path(path);
2894out_kfree:
6f519564 2895 free_sa_defrag_extent(new);
38c227d8
LB
2896 return NULL;
2897}
2898
2ff7e61e 2899static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2900 u64 start, u64 len)
2901{
2902 struct btrfs_block_group_cache *cache;
2903
0b246afa 2904 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2905 ASSERT(cache);
2906
2907 spin_lock(&cache->lock);
2908 cache->delalloc_bytes -= len;
2909 spin_unlock(&cache->lock);
2910
2911 btrfs_put_block_group(cache);
2912}
2913
d352ac68
CM
2914/* as ordered data IO finishes, this gets called so we can finish
2915 * an ordered extent if the range of bytes in the file it covers are
2916 * fully written.
2917 */
5fd02043 2918static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2919{
5fd02043 2920 struct inode *inode = ordered_extent->inode;
0b246afa 2921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2922 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2923 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2925 struct extent_state *cached_state = NULL;
38c227d8 2926 struct new_sa_defrag_extent *new = NULL;
261507a0 2927 int compress_type = 0;
77cef2ec
JB
2928 int ret = 0;
2929 u64 logical_len = ordered_extent->len;
82d5902d 2930 bool nolock;
77cef2ec 2931 bool truncated = false;
a7e3b975
FM
2932 bool range_locked = false;
2933 bool clear_new_delalloc_bytes = false;
2934
2935 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2936 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2937 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2938 clear_new_delalloc_bytes = true;
e6dcd2dc 2939
70ddc553 2940 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2941
5fd02043
JB
2942 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2943 ret = -EIO;
2944 goto out;
2945 }
2946
7ab7956e
NB
2947 btrfs_free_io_failure_record(BTRFS_I(inode),
2948 ordered_extent->file_offset,
2949 ordered_extent->file_offset +
2950 ordered_extent->len - 1);
f612496b 2951
77cef2ec
JB
2952 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2953 truncated = true;
2954 logical_len = ordered_extent->truncated_len;
2955 /* Truncated the entire extent, don't bother adding */
2956 if (!logical_len)
2957 goto out;
2958 }
2959
c2167754 2960 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2961 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2962
2963 /*
2964 * For mwrite(mmap + memset to write) case, we still reserve
2965 * space for NOCOW range.
2966 * As NOCOW won't cause a new delayed ref, just free the space
2967 */
bc42bda2 2968 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2969 ordered_extent->len);
6c760c07
JB
2970 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2971 if (nolock)
2972 trans = btrfs_join_transaction_nolock(root);
2973 else
2974 trans = btrfs_join_transaction(root);
2975 if (IS_ERR(trans)) {
2976 ret = PTR_ERR(trans);
2977 trans = NULL;
2978 goto out;
c2167754 2979 }
69fe2d75 2980 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2981 ret = btrfs_update_inode_fallback(trans, root, inode);
2982 if (ret) /* -ENOMEM or corruption */
66642832 2983 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2984 goto out;
2985 }
e6dcd2dc 2986
a7e3b975 2987 range_locked = true;
2ac55d41
JB
2988 lock_extent_bits(io_tree, ordered_extent->file_offset,
2989 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2990 &cached_state);
e6dcd2dc 2991
38c227d8
LB
2992 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2993 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2994 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2995 if (ret) {
2996 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2997 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2998 /* the inode is shared */
2999 new = record_old_file_extents(inode, ordered_extent);
3000
3001 clear_extent_bit(io_tree, ordered_extent->file_offset,
3002 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3003 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3004 }
3005
0cb59c99 3006 if (nolock)
7a7eaa40 3007 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3008 else
7a7eaa40 3009 trans = btrfs_join_transaction(root);
79787eaa
JM
3010 if (IS_ERR(trans)) {
3011 ret = PTR_ERR(trans);
3012 trans = NULL;
a7e3b975 3013 goto out;
79787eaa 3014 }
a79b7d4b 3015
69fe2d75 3016 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3017
c8b97818 3018 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3019 compress_type = ordered_extent->compress_type;
d899e052 3020 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3021 BUG_ON(compress_type);
b430b775
JM
3022 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3023 ordered_extent->len);
7a6d7067 3024 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3025 ordered_extent->file_offset,
3026 ordered_extent->file_offset +
77cef2ec 3027 logical_len);
d899e052 3028 } else {
0b246afa 3029 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3030 ret = insert_reserved_file_extent(trans, inode,
3031 ordered_extent->file_offset,
3032 ordered_extent->start,
3033 ordered_extent->disk_len,
77cef2ec 3034 logical_len, logical_len,
261507a0 3035 compress_type, 0, 0,
d899e052 3036 BTRFS_FILE_EXTENT_REG);
e570fd27 3037 if (!ret)
2ff7e61e 3038 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3039 ordered_extent->start,
3040 ordered_extent->disk_len);
d899e052 3041 }
5dc562c5
JB
3042 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3043 ordered_extent->file_offset, ordered_extent->len,
3044 trans->transid);
79787eaa 3045 if (ret < 0) {
66642832 3046 btrfs_abort_transaction(trans, ret);
a7e3b975 3047 goto out;
79787eaa 3048 }
2ac55d41 3049
df9f628e 3050 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3051
6c760c07
JB
3052 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3053 ret = btrfs_update_inode_fallback(trans, root, inode);
3054 if (ret) { /* -ENOMEM or corruption */
66642832 3055 btrfs_abort_transaction(trans, ret);
a7e3b975 3056 goto out;
1ef30be1
JB
3057 }
3058 ret = 0;
c2167754 3059out:
a7e3b975
FM
3060 if (range_locked || clear_new_delalloc_bytes) {
3061 unsigned int clear_bits = 0;
3062
3063 if (range_locked)
3064 clear_bits |= EXTENT_LOCKED;
3065 if (clear_new_delalloc_bytes)
3066 clear_bits |= EXTENT_DELALLOC_NEW;
3067 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3068 ordered_extent->file_offset,
3069 ordered_extent->file_offset +
3070 ordered_extent->len - 1,
3071 clear_bits,
3072 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3073 0, &cached_state);
a7e3b975
FM
3074 }
3075
a698d075 3076 if (trans)
3a45bb20 3077 btrfs_end_transaction(trans);
0cb59c99 3078
77cef2ec
JB
3079 if (ret || truncated) {
3080 u64 start, end;
3081
3082 if (truncated)
3083 start = ordered_extent->file_offset + logical_len;
3084 else
3085 start = ordered_extent->file_offset;
3086 end = ordered_extent->file_offset + ordered_extent->len - 1;
3087 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3088
3089 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3090 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3091
0bec9ef5
JB
3092 /*
3093 * If the ordered extent had an IOERR or something else went
3094 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3095 * back to the allocator. We only free the extent in the
3096 * truncated case if we didn't write out the extent at all.
0bec9ef5 3097 */
77cef2ec
JB
3098 if ((ret || !logical_len) &&
3099 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3100 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3101 btrfs_free_reserved_extent(fs_info,
3102 ordered_extent->start,
e570fd27 3103 ordered_extent->disk_len, 1);
0bec9ef5
JB
3104 }
3105
3106
5fd02043 3107 /*
8bad3c02
LB
3108 * This needs to be done to make sure anybody waiting knows we are done
3109 * updating everything for this ordered extent.
5fd02043
JB
3110 */
3111 btrfs_remove_ordered_extent(inode, ordered_extent);
3112
38c227d8 3113 /* for snapshot-aware defrag */
6f519564
LB
3114 if (new) {
3115 if (ret) {
3116 free_sa_defrag_extent(new);
0b246afa 3117 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3118 } else {
3119 relink_file_extents(new);
3120 }
3121 }
38c227d8 3122
e6dcd2dc
CM
3123 /* once for us */
3124 btrfs_put_ordered_extent(ordered_extent);
3125 /* once for the tree */
3126 btrfs_put_ordered_extent(ordered_extent);
3127
5fd02043
JB
3128 return ret;
3129}
3130
3131static void finish_ordered_fn(struct btrfs_work *work)
3132{
3133 struct btrfs_ordered_extent *ordered_extent;
3134 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3135 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3136}
3137
c3988d63 3138static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3139 struct extent_state *state, int uptodate)
3140{
5fd02043 3141 struct inode *inode = page->mapping->host;
0b246afa 3142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3143 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3144 struct btrfs_workqueue *wq;
3145 btrfs_work_func_t func;
5fd02043 3146
1abe9b8a 3147 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3148
8b62b72b 3149 ClearPagePrivate2(page);
5fd02043
JB
3150 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3151 end - start + 1, uptodate))
c3988d63 3152 return;
5fd02043 3153
70ddc553 3154 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3155 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3156 func = btrfs_freespace_write_helper;
3157 } else {
0b246afa 3158 wq = fs_info->endio_write_workers;
9e0af237
LB
3159 func = btrfs_endio_write_helper;
3160 }
5fd02043 3161
9e0af237
LB
3162 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3163 NULL);
3164 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3165}
3166
dc380aea
MX
3167static int __readpage_endio_check(struct inode *inode,
3168 struct btrfs_io_bio *io_bio,
3169 int icsum, struct page *page,
3170 int pgoff, u64 start, size_t len)
3171{
3172 char *kaddr;
3173 u32 csum_expected;
3174 u32 csum = ~(u32)0;
dc380aea
MX
3175
3176 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3177
3178 kaddr = kmap_atomic(page);
3179 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3180 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3181 if (csum != csum_expected)
3182 goto zeroit;
3183
3184 kunmap_atomic(kaddr);
3185 return 0;
3186zeroit:
0970a22e 3187 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3188 io_bio->mirror_num);
dc380aea
MX
3189 memset(kaddr + pgoff, 1, len);
3190 flush_dcache_page(page);
3191 kunmap_atomic(kaddr);
dc380aea
MX
3192 return -EIO;
3193}
3194
d352ac68
CM
3195/*
3196 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3197 * if there's a match, we allow the bio to finish. If not, the code in
3198 * extent_io.c will try to find good copies for us.
d352ac68 3199 */
facc8a22
MX
3200static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3201 u64 phy_offset, struct page *page,
3202 u64 start, u64 end, int mirror)
07157aac 3203{
4eee4fa4 3204 size_t offset = start - page_offset(page);
07157aac 3205 struct inode *inode = page->mapping->host;
d1310b2e 3206 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3207 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3208
d20f7043
CM
3209 if (PageChecked(page)) {
3210 ClearPageChecked(page);
dc380aea 3211 return 0;
d20f7043 3212 }
6cbff00f
CH
3213
3214 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3215 return 0;
17d217fe
YZ
3216
3217 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3218 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3219 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3220 return 0;
17d217fe 3221 }
d20f7043 3222
facc8a22 3223 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3224 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3225 start, (size_t)(end - start + 1));
07157aac 3226}
b888db2b 3227
24bbcf04
YZ
3228void btrfs_add_delayed_iput(struct inode *inode)
3229{
0b246afa 3230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3231 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3232
3233 if (atomic_add_unless(&inode->i_count, -1, 1))
3234 return;
3235
24bbcf04 3236 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3237 if (binode->delayed_iput_count == 0) {
3238 ASSERT(list_empty(&binode->delayed_iput));
3239 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3240 } else {
3241 binode->delayed_iput_count++;
3242 }
24bbcf04
YZ
3243 spin_unlock(&fs_info->delayed_iput_lock);
3244}
3245
2ff7e61e 3246void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3247{
24bbcf04 3248
24bbcf04 3249 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3250 while (!list_empty(&fs_info->delayed_iputs)) {
3251 struct btrfs_inode *inode;
3252
3253 inode = list_first_entry(&fs_info->delayed_iputs,
3254 struct btrfs_inode, delayed_iput);
3255 if (inode->delayed_iput_count) {
3256 inode->delayed_iput_count--;
3257 list_move_tail(&inode->delayed_iput,
3258 &fs_info->delayed_iputs);
3259 } else {
3260 list_del_init(&inode->delayed_iput);
3261 }
3262 spin_unlock(&fs_info->delayed_iput_lock);
3263 iput(&inode->vfs_inode);
3264 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3265 }
8089fe62 3266 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3267}
3268
d68fc57b 3269/*
42b2aa86 3270 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3271 * files in the subvolume, it removes orphan item and frees block_rsv
3272 * structure.
3273 */
3274void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3275 struct btrfs_root *root)
3276{
0b246afa 3277 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3278 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3279 int ret;
3280
8a35d95f 3281 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3282 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3283 return;
3284
90290e19 3285 spin_lock(&root->orphan_lock);
8a35d95f 3286 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3287 spin_unlock(&root->orphan_lock);
3288 return;
3289 }
3290
3291 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3292 spin_unlock(&root->orphan_lock);
3293 return;
3294 }
3295
3296 block_rsv = root->orphan_block_rsv;
3297 root->orphan_block_rsv = NULL;
3298 spin_unlock(&root->orphan_lock);
3299
27cdeb70 3300 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3301 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3302 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3303 root->root_key.objectid);
4ef31a45 3304 if (ret)
66642832 3305 btrfs_abort_transaction(trans, ret);
4ef31a45 3306 else
27cdeb70
MX
3307 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3308 &root->state);
d68fc57b
YZ
3309 }
3310
90290e19
JB
3311 if (block_rsv) {
3312 WARN_ON(block_rsv->size > 0);
2ff7e61e 3313 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3314 }
3315}
3316
7b128766
JB
3317/*
3318 * This creates an orphan entry for the given inode in case something goes
3319 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3320 *
3321 * NOTE: caller of this function should reserve 5 units of metadata for
3322 * this function.
7b128766 3323 */
73f2e545
NB
3324int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3325 struct btrfs_inode *inode)
7b128766 3326{
73f2e545
NB
3327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3328 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3329 struct btrfs_block_rsv *block_rsv = NULL;
3330 int reserve = 0;
3331 int insert = 0;
3332 int ret;
7b128766 3333
d68fc57b 3334 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3335 block_rsv = btrfs_alloc_block_rsv(fs_info,
3336 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3337 if (!block_rsv)
3338 return -ENOMEM;
d68fc57b 3339 }
7b128766 3340
d68fc57b
YZ
3341 spin_lock(&root->orphan_lock);
3342 if (!root->orphan_block_rsv) {
3343 root->orphan_block_rsv = block_rsv;
3344 } else if (block_rsv) {
2ff7e61e 3345 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3346 block_rsv = NULL;
7b128766 3347 }
7b128766 3348
8a35d95f 3349 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3350 &inode->runtime_flags)) {
d68fc57b
YZ
3351#if 0
3352 /*
3353 * For proper ENOSPC handling, we should do orphan
3354 * cleanup when mounting. But this introduces backward
3355 * compatibility issue.
3356 */
3357 if (!xchg(&root->orphan_item_inserted, 1))
3358 insert = 2;
3359 else
3360 insert = 1;
3361#endif
3362 insert = 1;
321f0e70 3363 atomic_inc(&root->orphan_inodes);
7b128766
JB
3364 }
3365
72ac3c0d 3366 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3367 &inode->runtime_flags))
d68fc57b 3368 reserve = 1;
d68fc57b 3369 spin_unlock(&root->orphan_lock);
7b128766 3370
d68fc57b
YZ
3371 /* grab metadata reservation from transaction handle */
3372 if (reserve) {
3373 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3374 ASSERT(!ret);
3375 if (ret) {
3376 atomic_dec(&root->orphan_inodes);
3377 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3378 &inode->runtime_flags);
3b6571c1
JB
3379 if (insert)
3380 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3381 &inode->runtime_flags);
3b6571c1
JB
3382 return ret;
3383 }
d68fc57b 3384 }
7b128766 3385
d68fc57b
YZ
3386 /* insert an orphan item to track this unlinked/truncated file */
3387 if (insert >= 1) {
73f2e545 3388 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3389 if (ret) {
703c88e0 3390 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3391 if (reserve) {
3392 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3393 &inode->runtime_flags);
4ef31a45
JB
3394 btrfs_orphan_release_metadata(inode);
3395 }
3396 if (ret != -EEXIST) {
e8e7cff6 3397 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3398 &inode->runtime_flags);
66642832 3399 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3400 return ret;
3401 }
79787eaa
JM
3402 }
3403 ret = 0;
d68fc57b
YZ
3404 }
3405
3406 /* insert an orphan item to track subvolume contains orphan files */
3407 if (insert >= 2) {
0b246afa 3408 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3409 root->root_key.objectid);
79787eaa 3410 if (ret && ret != -EEXIST) {
66642832 3411 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3412 return ret;
3413 }
d68fc57b
YZ
3414 }
3415 return 0;
7b128766
JB
3416}
3417
3418/*
3419 * We have done the truncate/delete so we can go ahead and remove the orphan
3420 * item for this particular inode.
3421 */
48a3b636 3422static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3423 struct btrfs_inode *inode)
7b128766 3424{
3d6ae7bb 3425 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3426 int delete_item = 0;
3427 int release_rsv = 0;
7b128766
JB
3428 int ret = 0;
3429
d68fc57b 3430 spin_lock(&root->orphan_lock);
8a35d95f 3431 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3432 &inode->runtime_flags))
d68fc57b 3433 delete_item = 1;
7b128766 3434
72ac3c0d 3435 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3436 &inode->runtime_flags))
d68fc57b 3437 release_rsv = 1;
d68fc57b 3438 spin_unlock(&root->orphan_lock);
7b128766 3439
703c88e0 3440 if (delete_item) {
8a35d95f 3441 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3442 if (trans)
3443 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3444 btrfs_ino(inode));
8a35d95f 3445 }
7b128766 3446
703c88e0
FDBM
3447 if (release_rsv)
3448 btrfs_orphan_release_metadata(inode);
3449
4ef31a45 3450 return ret;
7b128766
JB
3451}
3452
3453/*
3454 * this cleans up any orphans that may be left on the list from the last use
3455 * of this root.
3456 */
66b4ffd1 3457int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3458{
0b246afa 3459 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3460 struct btrfs_path *path;
3461 struct extent_buffer *leaf;
7b128766
JB
3462 struct btrfs_key key, found_key;
3463 struct btrfs_trans_handle *trans;
3464 struct inode *inode;
8f6d7f4f 3465 u64 last_objectid = 0;
7b128766
JB
3466 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3467
d68fc57b 3468 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3469 return 0;
c71bf099
YZ
3470
3471 path = btrfs_alloc_path();
66b4ffd1
JB
3472 if (!path) {
3473 ret = -ENOMEM;
3474 goto out;
3475 }
e4058b54 3476 path->reada = READA_BACK;
7b128766
JB
3477
3478 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3479 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3480 key.offset = (u64)-1;
3481
7b128766
JB
3482 while (1) {
3483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3484 if (ret < 0)
3485 goto out;
7b128766
JB
3486
3487 /*
3488 * if ret == 0 means we found what we were searching for, which
25985edc 3489 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3490 * find the key and see if we have stuff that matches
3491 */
3492 if (ret > 0) {
66b4ffd1 3493 ret = 0;
7b128766
JB
3494 if (path->slots[0] == 0)
3495 break;
3496 path->slots[0]--;
3497 }
3498
3499 /* pull out the item */
3500 leaf = path->nodes[0];
7b128766
JB
3501 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3502
3503 /* make sure the item matches what we want */
3504 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3505 break;
962a298f 3506 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3507 break;
3508
3509 /* release the path since we're done with it */
b3b4aa74 3510 btrfs_release_path(path);
7b128766
JB
3511
3512 /*
3513 * this is where we are basically btrfs_lookup, without the
3514 * crossing root thing. we store the inode number in the
3515 * offset of the orphan item.
3516 */
8f6d7f4f
JB
3517
3518 if (found_key.offset == last_objectid) {
0b246afa
JM
3519 btrfs_err(fs_info,
3520 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3521 ret = -EINVAL;
3522 goto out;
3523 }
3524
3525 last_objectid = found_key.offset;
3526
5d4f98a2
YZ
3527 found_key.objectid = found_key.offset;
3528 found_key.type = BTRFS_INODE_ITEM_KEY;
3529 found_key.offset = 0;
0b246afa 3530 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3531 ret = PTR_ERR_OR_ZERO(inode);
67710892 3532 if (ret && ret != -ENOENT)
66b4ffd1 3533 goto out;
7b128766 3534
0b246afa 3535 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3536 struct btrfs_root *dead_root;
3537 struct btrfs_fs_info *fs_info = root->fs_info;
3538 int is_dead_root = 0;
3539
3540 /*
3541 * this is an orphan in the tree root. Currently these
3542 * could come from 2 sources:
3543 * a) a snapshot deletion in progress
3544 * b) a free space cache inode
3545 * We need to distinguish those two, as the snapshot
3546 * orphan must not get deleted.
3547 * find_dead_roots already ran before us, so if this
3548 * is a snapshot deletion, we should find the root
3549 * in the dead_roots list
3550 */
3551 spin_lock(&fs_info->trans_lock);
3552 list_for_each_entry(dead_root, &fs_info->dead_roots,
3553 root_list) {
3554 if (dead_root->root_key.objectid ==
3555 found_key.objectid) {
3556 is_dead_root = 1;
3557 break;
3558 }
3559 }
3560 spin_unlock(&fs_info->trans_lock);
3561 if (is_dead_root) {
3562 /* prevent this orphan from being found again */
3563 key.offset = found_key.objectid - 1;
3564 continue;
3565 }
3566 }
7b128766 3567 /*
a8c9e576
JB
3568 * Inode is already gone but the orphan item is still there,
3569 * kill the orphan item.
7b128766 3570 */
67710892 3571 if (ret == -ENOENT) {
a8c9e576 3572 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3573 if (IS_ERR(trans)) {
3574 ret = PTR_ERR(trans);
3575 goto out;
3576 }
0b246afa
JM
3577 btrfs_debug(fs_info, "auto deleting %Lu",
3578 found_key.objectid);
a8c9e576
JB
3579 ret = btrfs_del_orphan_item(trans, root,
3580 found_key.objectid);
3a45bb20 3581 btrfs_end_transaction(trans);
4ef31a45
JB
3582 if (ret)
3583 goto out;
7b128766
JB
3584 continue;
3585 }
3586
a8c9e576
JB
3587 /*
3588 * add this inode to the orphan list so btrfs_orphan_del does
3589 * the proper thing when we hit it
3590 */
8a35d95f
JB
3591 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3592 &BTRFS_I(inode)->runtime_flags);
925396ec 3593 atomic_inc(&root->orphan_inodes);
a8c9e576 3594
7b128766
JB
3595 /* if we have links, this was a truncate, lets do that */
3596 if (inode->i_nlink) {
fae7f21c 3597 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3598 iput(inode);
3599 continue;
3600 }
7b128766 3601 nr_truncate++;
f3fe820c
JB
3602
3603 /* 1 for the orphan item deletion. */
3604 trans = btrfs_start_transaction(root, 1);
3605 if (IS_ERR(trans)) {
c69b26b0 3606 iput(inode);
f3fe820c
JB
3607 ret = PTR_ERR(trans);
3608 goto out;
3609 }
73f2e545 3610 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3611 btrfs_end_transaction(trans);
c69b26b0
JB
3612 if (ret) {
3613 iput(inode);
f3fe820c 3614 goto out;
c69b26b0 3615 }
f3fe820c 3616
66b4ffd1 3617 ret = btrfs_truncate(inode);
4a7d0f68 3618 if (ret)
3d6ae7bb 3619 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3620 } else {
3621 nr_unlink++;
3622 }
3623
3624 /* this will do delete_inode and everything for us */
3625 iput(inode);
66b4ffd1
JB
3626 if (ret)
3627 goto out;
7b128766 3628 }
3254c876
MX
3629 /* release the path since we're done with it */
3630 btrfs_release_path(path);
3631
d68fc57b
YZ
3632 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3633
3634 if (root->orphan_block_rsv)
2ff7e61e 3635 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3636 (u64)-1);
3637
27cdeb70
MX
3638 if (root->orphan_block_rsv ||
3639 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3640 trans = btrfs_join_transaction(root);
66b4ffd1 3641 if (!IS_ERR(trans))
3a45bb20 3642 btrfs_end_transaction(trans);
d68fc57b 3643 }
7b128766
JB
3644
3645 if (nr_unlink)
0b246afa 3646 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3647 if (nr_truncate)
0b246afa 3648 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3649
3650out:
3651 if (ret)
0b246afa 3652 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3653 btrfs_free_path(path);
3654 return ret;
7b128766
JB
3655}
3656
46a53cca
CM
3657/*
3658 * very simple check to peek ahead in the leaf looking for xattrs. If we
3659 * don't find any xattrs, we know there can't be any acls.
3660 *
3661 * slot is the slot the inode is in, objectid is the objectid of the inode
3662 */
3663static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3664 int slot, u64 objectid,
3665 int *first_xattr_slot)
46a53cca
CM
3666{
3667 u32 nritems = btrfs_header_nritems(leaf);
3668 struct btrfs_key found_key;
f23b5a59
JB
3669 static u64 xattr_access = 0;
3670 static u64 xattr_default = 0;
46a53cca
CM
3671 int scanned = 0;
3672
f23b5a59 3673 if (!xattr_access) {
97d79299
AG
3674 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3675 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3676 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3677 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3678 }
3679
46a53cca 3680 slot++;
63541927 3681 *first_xattr_slot = -1;
46a53cca
CM
3682 while (slot < nritems) {
3683 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3684
3685 /* we found a different objectid, there must not be acls */
3686 if (found_key.objectid != objectid)
3687 return 0;
3688
3689 /* we found an xattr, assume we've got an acl */
f23b5a59 3690 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3691 if (*first_xattr_slot == -1)
3692 *first_xattr_slot = slot;
f23b5a59
JB
3693 if (found_key.offset == xattr_access ||
3694 found_key.offset == xattr_default)
3695 return 1;
3696 }
46a53cca
CM
3697
3698 /*
3699 * we found a key greater than an xattr key, there can't
3700 * be any acls later on
3701 */
3702 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3703 return 0;
3704
3705 slot++;
3706 scanned++;
3707
3708 /*
3709 * it goes inode, inode backrefs, xattrs, extents,
3710 * so if there are a ton of hard links to an inode there can
3711 * be a lot of backrefs. Don't waste time searching too hard,
3712 * this is just an optimization
3713 */
3714 if (scanned >= 8)
3715 break;
3716 }
3717 /* we hit the end of the leaf before we found an xattr or
3718 * something larger than an xattr. We have to assume the inode
3719 * has acls
3720 */
63541927
FDBM
3721 if (*first_xattr_slot == -1)
3722 *first_xattr_slot = slot;
46a53cca
CM
3723 return 1;
3724}
3725
d352ac68
CM
3726/*
3727 * read an inode from the btree into the in-memory inode
3728 */
67710892 3729static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3730{
0b246afa 3731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3732 struct btrfs_path *path;
5f39d397 3733 struct extent_buffer *leaf;
39279cc3
CM
3734 struct btrfs_inode_item *inode_item;
3735 struct btrfs_root *root = BTRFS_I(inode)->root;
3736 struct btrfs_key location;
67de1176 3737 unsigned long ptr;
46a53cca 3738 int maybe_acls;
618e21d5 3739 u32 rdev;
39279cc3 3740 int ret;
2f7e33d4 3741 bool filled = false;
63541927 3742 int first_xattr_slot;
2f7e33d4
MX
3743
3744 ret = btrfs_fill_inode(inode, &rdev);
3745 if (!ret)
3746 filled = true;
39279cc3
CM
3747
3748 path = btrfs_alloc_path();
67710892
FM
3749 if (!path) {
3750 ret = -ENOMEM;
1748f843 3751 goto make_bad;
67710892 3752 }
1748f843 3753
39279cc3 3754 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3755
39279cc3 3756 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3757 if (ret) {
3758 if (ret > 0)
3759 ret = -ENOENT;
39279cc3 3760 goto make_bad;
67710892 3761 }
39279cc3 3762
5f39d397 3763 leaf = path->nodes[0];
2f7e33d4
MX
3764
3765 if (filled)
67de1176 3766 goto cache_index;
2f7e33d4 3767
5f39d397
CM
3768 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3769 struct btrfs_inode_item);
5f39d397 3770 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3771 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3772 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3773 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3774 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3775
a937b979
DS
3776 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3777 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3778
a937b979
DS
3779 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3780 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3781
a937b979
DS
3782 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3783 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3784
9cc97d64 3785 BTRFS_I(inode)->i_otime.tv_sec =
3786 btrfs_timespec_sec(leaf, &inode_item->otime);
3787 BTRFS_I(inode)->i_otime.tv_nsec =
3788 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3789
a76a3cd4 3790 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3791 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3792 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3793
6e17d30b
YD
3794 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3795 inode->i_generation = BTRFS_I(inode)->generation;
3796 inode->i_rdev = 0;
3797 rdev = btrfs_inode_rdev(leaf, inode_item);
3798
3799 BTRFS_I(inode)->index_cnt = (u64)-1;
3800 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3801
3802cache_index:
5dc562c5
JB
3803 /*
3804 * If we were modified in the current generation and evicted from memory
3805 * and then re-read we need to do a full sync since we don't have any
3806 * idea about which extents were modified before we were evicted from
3807 * cache.
6e17d30b
YD
3808 *
3809 * This is required for both inode re-read from disk and delayed inode
3810 * in delayed_nodes_tree.
5dc562c5 3811 */
0b246afa 3812 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3813 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3814 &BTRFS_I(inode)->runtime_flags);
3815
bde6c242
FM
3816 /*
3817 * We don't persist the id of the transaction where an unlink operation
3818 * against the inode was last made. So here we assume the inode might
3819 * have been evicted, and therefore the exact value of last_unlink_trans
3820 * lost, and set it to last_trans to avoid metadata inconsistencies
3821 * between the inode and its parent if the inode is fsync'ed and the log
3822 * replayed. For example, in the scenario:
3823 *
3824 * touch mydir/foo
3825 * ln mydir/foo mydir/bar
3826 * sync
3827 * unlink mydir/bar
3828 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3829 * xfs_io -c fsync mydir/foo
3830 * <power failure>
3831 * mount fs, triggers fsync log replay
3832 *
3833 * We must make sure that when we fsync our inode foo we also log its
3834 * parent inode, otherwise after log replay the parent still has the
3835 * dentry with the "bar" name but our inode foo has a link count of 1
3836 * and doesn't have an inode ref with the name "bar" anymore.
3837 *
3838 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3839 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3840 * transaction commits on fsync if our inode is a directory, or if our
3841 * inode is not a directory, logging its parent unnecessarily.
3842 */
3843 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3844
67de1176
MX
3845 path->slots[0]++;
3846 if (inode->i_nlink != 1 ||
3847 path->slots[0] >= btrfs_header_nritems(leaf))
3848 goto cache_acl;
3849
3850 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3851 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3852 goto cache_acl;
3853
3854 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3855 if (location.type == BTRFS_INODE_REF_KEY) {
3856 struct btrfs_inode_ref *ref;
3857
3858 ref = (struct btrfs_inode_ref *)ptr;
3859 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3860 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3861 struct btrfs_inode_extref *extref;
3862
3863 extref = (struct btrfs_inode_extref *)ptr;
3864 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3865 extref);
3866 }
2f7e33d4 3867cache_acl:
46a53cca
CM
3868 /*
3869 * try to precache a NULL acl entry for files that don't have
3870 * any xattrs or acls
3871 */
33345d01 3872 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3873 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3874 if (first_xattr_slot != -1) {
3875 path->slots[0] = first_xattr_slot;
3876 ret = btrfs_load_inode_props(inode, path);
3877 if (ret)
0b246afa 3878 btrfs_err(fs_info,
351fd353 3879 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3880 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3881 root->root_key.objectid, ret);
3882 }
3883 btrfs_free_path(path);
3884
72c04902
AV
3885 if (!maybe_acls)
3886 cache_no_acl(inode);
46a53cca 3887
39279cc3 3888 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3889 case S_IFREG:
3890 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3891 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3892 inode->i_fop = &btrfs_file_operations;
3893 inode->i_op = &btrfs_file_inode_operations;
3894 break;
3895 case S_IFDIR:
3896 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3897 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3898 break;
3899 case S_IFLNK:
3900 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3901 inode_nohighmem(inode);
39279cc3
CM
3902 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3903 break;
618e21d5 3904 default:
0279b4cd 3905 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3906 init_special_inode(inode, inode->i_mode, rdev);
3907 break;
39279cc3 3908 }
6cbff00f
CH
3909
3910 btrfs_update_iflags(inode);
67710892 3911 return 0;
39279cc3
CM
3912
3913make_bad:
39279cc3 3914 btrfs_free_path(path);
39279cc3 3915 make_bad_inode(inode);
67710892 3916 return ret;
39279cc3
CM
3917}
3918
d352ac68
CM
3919/*
3920 * given a leaf and an inode, copy the inode fields into the leaf
3921 */
e02119d5
CM
3922static void fill_inode_item(struct btrfs_trans_handle *trans,
3923 struct extent_buffer *leaf,
5f39d397 3924 struct btrfs_inode_item *item,
39279cc3
CM
3925 struct inode *inode)
3926{
51fab693
LB
3927 struct btrfs_map_token token;
3928
3929 btrfs_init_map_token(&token);
5f39d397 3930
51fab693
LB
3931 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3932 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3933 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3934 &token);
3935 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3936 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3937
a937b979 3938 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3939 inode->i_atime.tv_sec, &token);
a937b979 3940 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3941 inode->i_atime.tv_nsec, &token);
5f39d397 3942
a937b979 3943 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3944 inode->i_mtime.tv_sec, &token);
a937b979 3945 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3946 inode->i_mtime.tv_nsec, &token);
5f39d397 3947
a937b979 3948 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3949 inode->i_ctime.tv_sec, &token);
a937b979 3950 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3951 inode->i_ctime.tv_nsec, &token);
5f39d397 3952
9cc97d64 3953 btrfs_set_token_timespec_sec(leaf, &item->otime,
3954 BTRFS_I(inode)->i_otime.tv_sec, &token);
3955 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3956 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3957
51fab693
LB
3958 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3959 &token);
3960 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3961 &token);
3962 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3963 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3964 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3965 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3966 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3967}
3968
d352ac68
CM
3969/*
3970 * copy everything in the in-memory inode into the btree.
3971 */
2115133f 3972static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3973 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3974{
3975 struct btrfs_inode_item *inode_item;
3976 struct btrfs_path *path;
5f39d397 3977 struct extent_buffer *leaf;
39279cc3
CM
3978 int ret;
3979
3980 path = btrfs_alloc_path();
16cdcec7
MX
3981 if (!path)
3982 return -ENOMEM;
3983
b9473439 3984 path->leave_spinning = 1;
16cdcec7
MX
3985 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3986 1);
39279cc3
CM
3987 if (ret) {
3988 if (ret > 0)
3989 ret = -ENOENT;
3990 goto failed;
3991 }
3992
5f39d397
CM
3993 leaf = path->nodes[0];
3994 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3995 struct btrfs_inode_item);
39279cc3 3996
e02119d5 3997 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3998 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3999 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4000 ret = 0;
4001failed:
39279cc3
CM
4002 btrfs_free_path(path);
4003 return ret;
4004}
4005
2115133f
CM
4006/*
4007 * copy everything in the in-memory inode into the btree.
4008 */
4009noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4010 struct btrfs_root *root, struct inode *inode)
4011{
0b246afa 4012 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4013 int ret;
4014
4015 /*
4016 * If the inode is a free space inode, we can deadlock during commit
4017 * if we put it into the delayed code.
4018 *
4019 * The data relocation inode should also be directly updated
4020 * without delay
4021 */
70ddc553 4022 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4023 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4024 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4025 btrfs_update_root_times(trans, root);
4026
2115133f
CM
4027 ret = btrfs_delayed_update_inode(trans, root, inode);
4028 if (!ret)
4029 btrfs_set_inode_last_trans(trans, inode);
4030 return ret;
4031 }
4032
4033 return btrfs_update_inode_item(trans, root, inode);
4034}
4035
be6aef60
JB
4036noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4037 struct btrfs_root *root,
4038 struct inode *inode)
2115133f
CM
4039{
4040 int ret;
4041
4042 ret = btrfs_update_inode(trans, root, inode);
4043 if (ret == -ENOSPC)
4044 return btrfs_update_inode_item(trans, root, inode);
4045 return ret;
4046}
4047
d352ac68
CM
4048/*
4049 * unlink helper that gets used here in inode.c and in the tree logging
4050 * recovery code. It remove a link in a directory with a given name, and
4051 * also drops the back refs in the inode to the directory
4052 */
92986796
AV
4053static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4054 struct btrfs_root *root,
4ec5934e
NB
4055 struct btrfs_inode *dir,
4056 struct btrfs_inode *inode,
92986796 4057 const char *name, int name_len)
39279cc3 4058{
0b246afa 4059 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4060 struct btrfs_path *path;
39279cc3 4061 int ret = 0;
5f39d397 4062 struct extent_buffer *leaf;
39279cc3 4063 struct btrfs_dir_item *di;
5f39d397 4064 struct btrfs_key key;
aec7477b 4065 u64 index;
33345d01
LZ
4066 u64 ino = btrfs_ino(inode);
4067 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4068
4069 path = btrfs_alloc_path();
54aa1f4d
CM
4070 if (!path) {
4071 ret = -ENOMEM;
554233a6 4072 goto out;
54aa1f4d
CM
4073 }
4074
b9473439 4075 path->leave_spinning = 1;
33345d01 4076 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4077 name, name_len, -1);
4078 if (IS_ERR(di)) {
4079 ret = PTR_ERR(di);
4080 goto err;
4081 }
4082 if (!di) {
4083 ret = -ENOENT;
4084 goto err;
4085 }
5f39d397
CM
4086 leaf = path->nodes[0];
4087 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4088 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4089 if (ret)
4090 goto err;
b3b4aa74 4091 btrfs_release_path(path);
39279cc3 4092
67de1176
MX
4093 /*
4094 * If we don't have dir index, we have to get it by looking up
4095 * the inode ref, since we get the inode ref, remove it directly,
4096 * it is unnecessary to do delayed deletion.
4097 *
4098 * But if we have dir index, needn't search inode ref to get it.
4099 * Since the inode ref is close to the inode item, it is better
4100 * that we delay to delete it, and just do this deletion when
4101 * we update the inode item.
4102 */
4ec5934e 4103 if (inode->dir_index) {
67de1176
MX
4104 ret = btrfs_delayed_delete_inode_ref(inode);
4105 if (!ret) {
4ec5934e 4106 index = inode->dir_index;
67de1176
MX
4107 goto skip_backref;
4108 }
4109 }
4110
33345d01
LZ
4111 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4112 dir_ino, &index);
aec7477b 4113 if (ret) {
0b246afa 4114 btrfs_info(fs_info,
c2cf52eb 4115 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4116 name_len, name, ino, dir_ino);
66642832 4117 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4118 goto err;
4119 }
67de1176 4120skip_backref:
2ff7e61e 4121 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4122 if (ret) {
66642832 4123 btrfs_abort_transaction(trans, ret);
39279cc3 4124 goto err;
79787eaa 4125 }
39279cc3 4126
4ec5934e
NB
4127 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4128 dir_ino);
79787eaa 4129 if (ret != 0 && ret != -ENOENT) {
66642832 4130 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4131 goto err;
4132 }
e02119d5 4133
4ec5934e
NB
4134 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4135 index);
6418c961
CM
4136 if (ret == -ENOENT)
4137 ret = 0;
d4e3991b 4138 else if (ret)
66642832 4139 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4140err:
4141 btrfs_free_path(path);
e02119d5
CM
4142 if (ret)
4143 goto out;
4144
6ef06d27 4145 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4146 inode_inc_iversion(&inode->vfs_inode);
4147 inode_inc_iversion(&dir->vfs_inode);
4148 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4149 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4150 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4151out:
39279cc3
CM
4152 return ret;
4153}
4154
92986796
AV
4155int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4156 struct btrfs_root *root,
4ec5934e 4157 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4158 const char *name, int name_len)
4159{
4160 int ret;
4161 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4162 if (!ret) {
4ec5934e
NB
4163 drop_nlink(&inode->vfs_inode);
4164 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4165 }
4166 return ret;
4167}
39279cc3 4168
a22285a6
YZ
4169/*
4170 * helper to start transaction for unlink and rmdir.
4171 *
d52be818
JB
4172 * unlink and rmdir are special in btrfs, they do not always free space, so
4173 * if we cannot make our reservations the normal way try and see if there is
4174 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4175 * allow the unlink to occur.
a22285a6 4176 */
d52be818 4177static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4178{
a22285a6 4179 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4180
e70bea5f
JB
4181 /*
4182 * 1 for the possible orphan item
4183 * 1 for the dir item
4184 * 1 for the dir index
4185 * 1 for the inode ref
e70bea5f
JB
4186 * 1 for the inode
4187 */
8eab77ff 4188 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4189}
4190
4191static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4192{
4193 struct btrfs_root *root = BTRFS_I(dir)->root;
4194 struct btrfs_trans_handle *trans;
2b0143b5 4195 struct inode *inode = d_inode(dentry);
a22285a6 4196 int ret;
a22285a6 4197
d52be818 4198 trans = __unlink_start_trans(dir);
a22285a6
YZ
4199 if (IS_ERR(trans))
4200 return PTR_ERR(trans);
5f39d397 4201
4ec5934e
NB
4202 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4203 0);
12fcfd22 4204
4ec5934e
NB
4205 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4206 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4207 dentry->d_name.len);
b532402e
TI
4208 if (ret)
4209 goto out;
7b128766 4210
a22285a6 4211 if (inode->i_nlink == 0) {
73f2e545 4212 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4213 if (ret)
4214 goto out;
a22285a6 4215 }
7b128766 4216
b532402e 4217out:
3a45bb20 4218 btrfs_end_transaction(trans);
2ff7e61e 4219 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4220 return ret;
4221}
4222
4df27c4d
YZ
4223int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4224 struct btrfs_root *root,
4225 struct inode *dir, u64 objectid,
4226 const char *name, int name_len)
4227{
0b246afa 4228 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4229 struct btrfs_path *path;
4230 struct extent_buffer *leaf;
4231 struct btrfs_dir_item *di;
4232 struct btrfs_key key;
4233 u64 index;
4234 int ret;
4a0cc7ca 4235 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4236
4237 path = btrfs_alloc_path();
4238 if (!path)
4239 return -ENOMEM;
4240
33345d01 4241 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4242 name, name_len, -1);
79787eaa
JM
4243 if (IS_ERR_OR_NULL(di)) {
4244 if (!di)
4245 ret = -ENOENT;
4246 else
4247 ret = PTR_ERR(di);
4248 goto out;
4249 }
4df27c4d
YZ
4250
4251 leaf = path->nodes[0];
4252 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4253 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4254 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4255 if (ret) {
66642832 4256 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4257 goto out;
4258 }
b3b4aa74 4259 btrfs_release_path(path);
4df27c4d 4260
0b246afa
JM
4261 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4262 root->root_key.objectid, dir_ino,
4263 &index, name, name_len);
4df27c4d 4264 if (ret < 0) {
79787eaa 4265 if (ret != -ENOENT) {
66642832 4266 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4267 goto out;
4268 }
33345d01 4269 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4270 name, name_len);
79787eaa
JM
4271 if (IS_ERR_OR_NULL(di)) {
4272 if (!di)
4273 ret = -ENOENT;
4274 else
4275 ret = PTR_ERR(di);
66642832 4276 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4277 goto out;
4278 }
4df27c4d
YZ
4279
4280 leaf = path->nodes[0];
4281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4282 btrfs_release_path(path);
4df27c4d
YZ
4283 index = key.offset;
4284 }
945d8962 4285 btrfs_release_path(path);
4df27c4d 4286
e67bbbb9 4287 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4288 if (ret) {
66642832 4289 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4290 goto out;
4291 }
4df27c4d 4292
6ef06d27 4293 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4294 inode_inc_iversion(dir);
c2050a45 4295 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4296 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4297 if (ret)
66642832 4298 btrfs_abort_transaction(trans, ret);
79787eaa 4299out:
71d7aed0 4300 btrfs_free_path(path);
79787eaa 4301 return ret;
4df27c4d
YZ
4302}
4303
39279cc3
CM
4304static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4305{
2b0143b5 4306 struct inode *inode = d_inode(dentry);
1832a6d5 4307 int err = 0;
39279cc3 4308 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4309 struct btrfs_trans_handle *trans;
44f714da 4310 u64 last_unlink_trans;
39279cc3 4311
b3ae244e 4312 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4313 return -ENOTEMPTY;
4a0cc7ca 4314 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4315 return -EPERM;
134d4512 4316
d52be818 4317 trans = __unlink_start_trans(dir);
a22285a6 4318 if (IS_ERR(trans))
5df6a9f6 4319 return PTR_ERR(trans);
5df6a9f6 4320
4a0cc7ca 4321 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4322 err = btrfs_unlink_subvol(trans, root, dir,
4323 BTRFS_I(inode)->location.objectid,
4324 dentry->d_name.name,
4325 dentry->d_name.len);
4326 goto out;
4327 }
4328
73f2e545 4329 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4330 if (err)
4df27c4d 4331 goto out;
7b128766 4332
44f714da
FM
4333 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4334
39279cc3 4335 /* now the directory is empty */
4ec5934e
NB
4336 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4337 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4338 dentry->d_name.len);
44f714da 4339 if (!err) {
6ef06d27 4340 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4341 /*
4342 * Propagate the last_unlink_trans value of the deleted dir to
4343 * its parent directory. This is to prevent an unrecoverable
4344 * log tree in the case we do something like this:
4345 * 1) create dir foo
4346 * 2) create snapshot under dir foo
4347 * 3) delete the snapshot
4348 * 4) rmdir foo
4349 * 5) mkdir foo
4350 * 6) fsync foo or some file inside foo
4351 */
4352 if (last_unlink_trans >= trans->transid)
4353 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4354 }
4df27c4d 4355out:
3a45bb20 4356 btrfs_end_transaction(trans);
2ff7e61e 4357 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4358
39279cc3
CM
4359 return err;
4360}
4361
28f75a0e
CM
4362static int truncate_space_check(struct btrfs_trans_handle *trans,
4363 struct btrfs_root *root,
4364 u64 bytes_deleted)
4365{
0b246afa 4366 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4367 int ret;
4368
dc95f7bf
JB
4369 /*
4370 * This is only used to apply pressure to the enospc system, we don't
4371 * intend to use this reservation at all.
4372 */
2ff7e61e 4373 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4374 bytes_deleted *= fs_info->nodesize;
4375 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4376 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4377 if (!ret) {
0b246afa 4378 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4379 trans->transid,
4380 bytes_deleted, 1);
28f75a0e 4381 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4382 }
28f75a0e
CM
4383 return ret;
4384
4385}
4386
ddfae63c
JB
4387/*
4388 * Return this if we need to call truncate_block for the last bit of the
4389 * truncate.
4390 */
4391#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4392
39279cc3
CM
4393/*
4394 * this can truncate away extent items, csum items and directory items.
4395 * It starts at a high offset and removes keys until it can't find
d352ac68 4396 * any higher than new_size
39279cc3
CM
4397 *
4398 * csum items that cross the new i_size are truncated to the new size
4399 * as well.
7b128766
JB
4400 *
4401 * min_type is the minimum key type to truncate down to. If set to 0, this
4402 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4403 */
8082510e
YZ
4404int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4405 struct btrfs_root *root,
4406 struct inode *inode,
4407 u64 new_size, u32 min_type)
39279cc3 4408{
0b246afa 4409 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4410 struct btrfs_path *path;
5f39d397 4411 struct extent_buffer *leaf;
39279cc3 4412 struct btrfs_file_extent_item *fi;
8082510e
YZ
4413 struct btrfs_key key;
4414 struct btrfs_key found_key;
39279cc3 4415 u64 extent_start = 0;
db94535d 4416 u64 extent_num_bytes = 0;
5d4f98a2 4417 u64 extent_offset = 0;
39279cc3 4418 u64 item_end = 0;
c1aa4575 4419 u64 last_size = new_size;
8082510e 4420 u32 found_type = (u8)-1;
39279cc3
CM
4421 int found_extent;
4422 int del_item;
85e21bac
CM
4423 int pending_del_nr = 0;
4424 int pending_del_slot = 0;
179e29e4 4425 int extent_type = -1;
8082510e
YZ
4426 int ret;
4427 int err = 0;
4a0cc7ca 4428 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4429 u64 bytes_deleted = 0;
897ca819
TM
4430 bool be_nice = false;
4431 bool should_throttle = false;
4432 bool should_end = false;
8082510e
YZ
4433
4434 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4435
28ed1345
CM
4436 /*
4437 * for non-free space inodes and ref cows, we want to back off from
4438 * time to time
4439 */
70ddc553 4440 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4441 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4442 be_nice = true;
28ed1345 4443
0eb0e19c
MF
4444 path = btrfs_alloc_path();
4445 if (!path)
4446 return -ENOMEM;
e4058b54 4447 path->reada = READA_BACK;
0eb0e19c 4448
5dc562c5
JB
4449 /*
4450 * We want to drop from the next block forward in case this new size is
4451 * not block aligned since we will be keeping the last block of the
4452 * extent just the way it is.
4453 */
27cdeb70 4454 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4455 root == fs_info->tree_root)
dcdbc059 4456 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4457 fs_info->sectorsize),
da17066c 4458 (u64)-1, 0);
8082510e 4459
16cdcec7
MX
4460 /*
4461 * This function is also used to drop the items in the log tree before
4462 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4463 * it is used to drop the loged items. So we shouldn't kill the delayed
4464 * items.
4465 */
4466 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4467 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4468
33345d01 4469 key.objectid = ino;
39279cc3 4470 key.offset = (u64)-1;
5f39d397
CM
4471 key.type = (u8)-1;
4472
85e21bac 4473search_again:
28ed1345
CM
4474 /*
4475 * with a 16K leaf size and 128MB extents, you can actually queue
4476 * up a huge file in a single leaf. Most of the time that
4477 * bytes_deleted is > 0, it will be huge by the time we get here
4478 */
ee22184b 4479 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4480 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4481 err = -EAGAIN;
4482 goto error;
4483 }
4484 }
4485
4486
b9473439 4487 path->leave_spinning = 1;
85e21bac 4488 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4489 if (ret < 0) {
4490 err = ret;
4491 goto out;
4492 }
d397712b 4493
85e21bac 4494 if (ret > 0) {
e02119d5
CM
4495 /* there are no items in the tree for us to truncate, we're
4496 * done
4497 */
8082510e
YZ
4498 if (path->slots[0] == 0)
4499 goto out;
85e21bac
CM
4500 path->slots[0]--;
4501 }
4502
d397712b 4503 while (1) {
39279cc3 4504 fi = NULL;
5f39d397
CM
4505 leaf = path->nodes[0];
4506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4507 found_type = found_key.type;
39279cc3 4508
33345d01 4509 if (found_key.objectid != ino)
39279cc3 4510 break;
5f39d397 4511
85e21bac 4512 if (found_type < min_type)
39279cc3
CM
4513 break;
4514
5f39d397 4515 item_end = found_key.offset;
39279cc3 4516 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4517 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4518 struct btrfs_file_extent_item);
179e29e4
CM
4519 extent_type = btrfs_file_extent_type(leaf, fi);
4520 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4521 item_end +=
db94535d 4522 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4523
4524 trace_btrfs_truncate_show_fi_regular(
4525 BTRFS_I(inode), leaf, fi,
4526 found_key.offset);
179e29e4 4527 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4528 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4529 path->slots[0], fi);
09ed2f16
LB
4530
4531 trace_btrfs_truncate_show_fi_inline(
4532 BTRFS_I(inode), leaf, fi, path->slots[0],
4533 found_key.offset);
39279cc3 4534 }
008630c1 4535 item_end--;
39279cc3 4536 }
8082510e
YZ
4537 if (found_type > min_type) {
4538 del_item = 1;
4539 } else {
76b42abb 4540 if (item_end < new_size)
b888db2b 4541 break;
8082510e
YZ
4542 if (found_key.offset >= new_size)
4543 del_item = 1;
4544 else
4545 del_item = 0;
39279cc3 4546 }
39279cc3 4547 found_extent = 0;
39279cc3 4548 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4549 if (found_type != BTRFS_EXTENT_DATA_KEY)
4550 goto delete;
4551
4552 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4553 u64 num_dec;
db94535d 4554 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4555 if (!del_item) {
db94535d
CM
4556 u64 orig_num_bytes =
4557 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4558 extent_num_bytes = ALIGN(new_size -
4559 found_key.offset,
0b246afa 4560 fs_info->sectorsize);
db94535d
CM
4561 btrfs_set_file_extent_num_bytes(leaf, fi,
4562 extent_num_bytes);
4563 num_dec = (orig_num_bytes -
9069218d 4564 extent_num_bytes);
27cdeb70
MX
4565 if (test_bit(BTRFS_ROOT_REF_COWS,
4566 &root->state) &&
4567 extent_start != 0)
a76a3cd4 4568 inode_sub_bytes(inode, num_dec);
5f39d397 4569 btrfs_mark_buffer_dirty(leaf);
39279cc3 4570 } else {
db94535d
CM
4571 extent_num_bytes =
4572 btrfs_file_extent_disk_num_bytes(leaf,
4573 fi);
5d4f98a2
YZ
4574 extent_offset = found_key.offset -
4575 btrfs_file_extent_offset(leaf, fi);
4576
39279cc3 4577 /* FIXME blocksize != 4096 */
9069218d 4578 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4579 if (extent_start != 0) {
4580 found_extent = 1;
27cdeb70
MX
4581 if (test_bit(BTRFS_ROOT_REF_COWS,
4582 &root->state))
a76a3cd4 4583 inode_sub_bytes(inode, num_dec);
e02119d5 4584 }
39279cc3 4585 }
9069218d 4586 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4587 /*
4588 * we can't truncate inline items that have had
4589 * special encodings
4590 */
4591 if (!del_item &&
c8b97818 4592 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4593 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4594 btrfs_file_extent_compression(leaf, fi) == 0) {
4595 u32 size = (u32)(new_size - found_key.offset);
4596
4597 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4598 size = btrfs_file_extent_calc_inline_size(size);
4599 btrfs_truncate_item(root->fs_info, path, size, 1);
4600 } else if (!del_item) {
514ac8ad 4601 /*
ddfae63c
JB
4602 * We have to bail so the last_size is set to
4603 * just before this extent.
514ac8ad 4604 */
ddfae63c
JB
4605 err = NEED_TRUNCATE_BLOCK;
4606 break;
4607 }
0305cd5f 4608
ddfae63c 4609 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4610 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4611 }
179e29e4 4612delete:
ddfae63c
JB
4613 if (del_item)
4614 last_size = found_key.offset;
4615 else
4616 last_size = new_size;
39279cc3 4617 if (del_item) {
85e21bac
CM
4618 if (!pending_del_nr) {
4619 /* no pending yet, add ourselves */
4620 pending_del_slot = path->slots[0];
4621 pending_del_nr = 1;
4622 } else if (pending_del_nr &&
4623 path->slots[0] + 1 == pending_del_slot) {
4624 /* hop on the pending chunk */
4625 pending_del_nr++;
4626 pending_del_slot = path->slots[0];
4627 } else {
d397712b 4628 BUG();
85e21bac 4629 }
39279cc3
CM
4630 } else {
4631 break;
4632 }
897ca819 4633 should_throttle = false;
28f75a0e 4634
27cdeb70
MX
4635 if (found_extent &&
4636 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4637 root == fs_info->tree_root)) {
b9473439 4638 btrfs_set_path_blocking(path);
28ed1345 4639 bytes_deleted += extent_num_bytes;
84f7d8e6 4640 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4641 extent_num_bytes, 0,
4642 btrfs_header_owner(leaf),
b06c4bf5 4643 ino, extent_offset);
39279cc3 4644 BUG_ON(ret);
2ff7e61e
JM
4645 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4646 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4647 trans->delayed_ref_updates * 2,
4648 trans->transid, 0);
28f75a0e
CM
4649 if (be_nice) {
4650 if (truncate_space_check(trans, root,
4651 extent_num_bytes)) {
897ca819 4652 should_end = true;
28f75a0e
CM
4653 }
4654 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4655 fs_info))
897ca819 4656 should_throttle = true;
28f75a0e 4657 }
39279cc3 4658 }
85e21bac 4659
8082510e
YZ
4660 if (found_type == BTRFS_INODE_ITEM_KEY)
4661 break;
4662
4663 if (path->slots[0] == 0 ||
1262133b 4664 path->slots[0] != pending_del_slot ||
28f75a0e 4665 should_throttle || should_end) {
8082510e
YZ
4666 if (pending_del_nr) {
4667 ret = btrfs_del_items(trans, root, path,
4668 pending_del_slot,
4669 pending_del_nr);
79787eaa 4670 if (ret) {
66642832 4671 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4672 goto error;
4673 }
8082510e
YZ
4674 pending_del_nr = 0;
4675 }
b3b4aa74 4676 btrfs_release_path(path);
28f75a0e 4677 if (should_throttle) {
1262133b
JB
4678 unsigned long updates = trans->delayed_ref_updates;
4679 if (updates) {
4680 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4681 ret = btrfs_run_delayed_refs(trans,
4682 fs_info,
4683 updates * 2);
1262133b
JB
4684 if (ret && !err)
4685 err = ret;
4686 }
4687 }
28f75a0e
CM
4688 /*
4689 * if we failed to refill our space rsv, bail out
4690 * and let the transaction restart
4691 */
4692 if (should_end) {
4693 err = -EAGAIN;
4694 goto error;
4695 }
85e21bac 4696 goto search_again;
8082510e
YZ
4697 } else {
4698 path->slots[0]--;
85e21bac 4699 }
39279cc3 4700 }
8082510e 4701out:
85e21bac
CM
4702 if (pending_del_nr) {
4703 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4704 pending_del_nr);
79787eaa 4705 if (ret)
66642832 4706 btrfs_abort_transaction(trans, ret);
85e21bac 4707 }
79787eaa 4708error:
76b42abb
FM
4709 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4710 ASSERT(last_size >= new_size);
4711 if (!err && last_size > new_size)
4712 last_size = new_size;
7f4f6e0a 4713 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4714 }
28ed1345 4715
39279cc3 4716 btrfs_free_path(path);
28ed1345 4717
ee22184b 4718 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4719 unsigned long updates = trans->delayed_ref_updates;
4720 if (updates) {
4721 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4722 ret = btrfs_run_delayed_refs(trans, fs_info,
4723 updates * 2);
28ed1345
CM
4724 if (ret && !err)
4725 err = ret;
4726 }
4727 }
8082510e 4728 return err;
39279cc3
CM
4729}
4730
4731/*
9703fefe 4732 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4733 * @inode - inode that we're zeroing
4734 * @from - the offset to start zeroing
4735 * @len - the length to zero, 0 to zero the entire range respective to the
4736 * offset
4737 * @front - zero up to the offset instead of from the offset on
4738 *
9703fefe 4739 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4740 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4741 */
9703fefe 4742int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4743 int front)
39279cc3 4744{
0b246afa 4745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4746 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4747 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4748 struct btrfs_ordered_extent *ordered;
2ac55d41 4749 struct extent_state *cached_state = NULL;
364ecf36 4750 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4751 char *kaddr;
0b246afa 4752 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4753 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4754 unsigned offset = from & (blocksize - 1);
39279cc3 4755 struct page *page;
3b16a4e3 4756 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4757 int ret = 0;
9703fefe
CR
4758 u64 block_start;
4759 u64 block_end;
39279cc3 4760
2aaa6655
JB
4761 if ((offset & (blocksize - 1)) == 0 &&
4762 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4763 goto out;
9703fefe 4764
8b62f87b
JB
4765 block_start = round_down(from, blocksize);
4766 block_end = block_start + blocksize - 1;
4767
364ecf36 4768 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4769 block_start, blocksize);
5d5e103a
JB
4770 if (ret)
4771 goto out;
39279cc3 4772
211c17f5 4773again:
3b16a4e3 4774 page = find_or_create_page(mapping, index, mask);
5d5e103a 4775 if (!page) {
bc42bda2 4776 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4777 block_start, blocksize);
4778 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4779 ret = -ENOMEM;
39279cc3 4780 goto out;
5d5e103a 4781 }
e6dcd2dc 4782
39279cc3 4783 if (!PageUptodate(page)) {
9ebefb18 4784 ret = btrfs_readpage(NULL, page);
39279cc3 4785 lock_page(page);
211c17f5
CM
4786 if (page->mapping != mapping) {
4787 unlock_page(page);
09cbfeaf 4788 put_page(page);
211c17f5
CM
4789 goto again;
4790 }
39279cc3
CM
4791 if (!PageUptodate(page)) {
4792 ret = -EIO;
89642229 4793 goto out_unlock;
39279cc3
CM
4794 }
4795 }
211c17f5 4796 wait_on_page_writeback(page);
e6dcd2dc 4797
9703fefe 4798 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4799 set_page_extent_mapped(page);
4800
9703fefe 4801 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4802 if (ordered) {
9703fefe 4803 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4804 &cached_state, GFP_NOFS);
e6dcd2dc 4805 unlock_page(page);
09cbfeaf 4806 put_page(page);
eb84ae03 4807 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4808 btrfs_put_ordered_extent(ordered);
4809 goto again;
4810 }
4811
9703fefe 4812 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4813 EXTENT_DIRTY | EXTENT_DELALLOC |
4814 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4815 0, 0, &cached_state);
5d5e103a 4816
e3b8a485 4817 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4818 &cached_state, 0);
9ed74f2d 4819 if (ret) {
9703fefe 4820 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4821 &cached_state, GFP_NOFS);
9ed74f2d
JB
4822 goto out_unlock;
4823 }
4824
9703fefe 4825 if (offset != blocksize) {
2aaa6655 4826 if (!len)
9703fefe 4827 len = blocksize - offset;
e6dcd2dc 4828 kaddr = kmap(page);
2aaa6655 4829 if (front)
9703fefe
CR
4830 memset(kaddr + (block_start - page_offset(page)),
4831 0, offset);
2aaa6655 4832 else
9703fefe
CR
4833 memset(kaddr + (block_start - page_offset(page)) + offset,
4834 0, len);
e6dcd2dc
CM
4835 flush_dcache_page(page);
4836 kunmap(page);
4837 }
247e743c 4838 ClearPageChecked(page);
e6dcd2dc 4839 set_page_dirty(page);
9703fefe 4840 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4841 GFP_NOFS);
39279cc3 4842
89642229 4843out_unlock:
5d5e103a 4844 if (ret)
bc42bda2 4845 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4846 blocksize);
8b62f87b 4847 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4848 unlock_page(page);
09cbfeaf 4849 put_page(page);
39279cc3 4850out:
364ecf36 4851 extent_changeset_free(data_reserved);
39279cc3
CM
4852 return ret;
4853}
4854
16e7549f
JB
4855static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4856 u64 offset, u64 len)
4857{
0b246afa 4858 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4859 struct btrfs_trans_handle *trans;
4860 int ret;
4861
4862 /*
4863 * Still need to make sure the inode looks like it's been updated so
4864 * that any holes get logged if we fsync.
4865 */
0b246afa
JM
4866 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4867 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4868 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4869 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4870 return 0;
4871 }
4872
4873 /*
4874 * 1 - for the one we're dropping
4875 * 1 - for the one we're adding
4876 * 1 - for updating the inode.
4877 */
4878 trans = btrfs_start_transaction(root, 3);
4879 if (IS_ERR(trans))
4880 return PTR_ERR(trans);
4881
4882 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4883 if (ret) {
66642832 4884 btrfs_abort_transaction(trans, ret);
3a45bb20 4885 btrfs_end_transaction(trans);
16e7549f
JB
4886 return ret;
4887 }
4888
f85b7379
DS
4889 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4890 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4891 if (ret)
66642832 4892 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4893 else
4894 btrfs_update_inode(trans, root, inode);
3a45bb20 4895 btrfs_end_transaction(trans);
16e7549f
JB
4896 return ret;
4897}
4898
695a0d0d
JB
4899/*
4900 * This function puts in dummy file extents for the area we're creating a hole
4901 * for. So if we are truncating this file to a larger size we need to insert
4902 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4903 * the range between oldsize and size
4904 */
a41ad394 4905int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4906{
0b246afa 4907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4908 struct btrfs_root *root = BTRFS_I(inode)->root;
4909 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4910 struct extent_map *em = NULL;
2ac55d41 4911 struct extent_state *cached_state = NULL;
5dc562c5 4912 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4913 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4914 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4915 u64 last_byte;
4916 u64 cur_offset;
4917 u64 hole_size;
9ed74f2d 4918 int err = 0;
39279cc3 4919
a71754fc 4920 /*
9703fefe
CR
4921 * If our size started in the middle of a block we need to zero out the
4922 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4923 * expose stale data.
4924 */
9703fefe 4925 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4926 if (err)
4927 return err;
4928
9036c102
YZ
4929 if (size <= hole_start)
4930 return 0;
4931
9036c102
YZ
4932 while (1) {
4933 struct btrfs_ordered_extent *ordered;
fa7c1494 4934
ff13db41 4935 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4936 &cached_state);
a776c6fa 4937 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4938 block_end - hole_start);
9036c102
YZ
4939 if (!ordered)
4940 break;
2ac55d41
JB
4941 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4942 &cached_state, GFP_NOFS);
fa7c1494 4943 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4944 btrfs_put_ordered_extent(ordered);
4945 }
39279cc3 4946
9036c102
YZ
4947 cur_offset = hole_start;
4948 while (1) {
fc4f21b1 4949 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4950 block_end - cur_offset, 0);
79787eaa
JM
4951 if (IS_ERR(em)) {
4952 err = PTR_ERR(em);
f2767956 4953 em = NULL;
79787eaa
JM
4954 break;
4955 }
9036c102 4956 last_byte = min(extent_map_end(em), block_end);
0b246afa 4957 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4958 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4959 struct extent_map *hole_em;
9036c102 4960 hole_size = last_byte - cur_offset;
9ed74f2d 4961
16e7549f
JB
4962 err = maybe_insert_hole(root, inode, cur_offset,
4963 hole_size);
4964 if (err)
3893e33b 4965 break;
dcdbc059 4966 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4967 cur_offset + hole_size - 1, 0);
4968 hole_em = alloc_extent_map();
4969 if (!hole_em) {
4970 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4971 &BTRFS_I(inode)->runtime_flags);
4972 goto next;
4973 }
4974 hole_em->start = cur_offset;
4975 hole_em->len = hole_size;
4976 hole_em->orig_start = cur_offset;
8082510e 4977
5dc562c5
JB
4978 hole_em->block_start = EXTENT_MAP_HOLE;
4979 hole_em->block_len = 0;
b4939680 4980 hole_em->orig_block_len = 0;
cc95bef6 4981 hole_em->ram_bytes = hole_size;
0b246afa 4982 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4983 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4984 hole_em->generation = fs_info->generation;
8082510e 4985
5dc562c5
JB
4986 while (1) {
4987 write_lock(&em_tree->lock);
09a2a8f9 4988 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4989 write_unlock(&em_tree->lock);
4990 if (err != -EEXIST)
4991 break;
dcdbc059
NB
4992 btrfs_drop_extent_cache(BTRFS_I(inode),
4993 cur_offset,
5dc562c5
JB
4994 cur_offset +
4995 hole_size - 1, 0);
4996 }
4997 free_extent_map(hole_em);
9036c102 4998 }
16e7549f 4999next:
9036c102 5000 free_extent_map(em);
a22285a6 5001 em = NULL;
9036c102 5002 cur_offset = last_byte;
8082510e 5003 if (cur_offset >= block_end)
9036c102
YZ
5004 break;
5005 }
a22285a6 5006 free_extent_map(em);
2ac55d41
JB
5007 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5008 GFP_NOFS);
9036c102
YZ
5009 return err;
5010}
39279cc3 5011
3972f260 5012static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5013{
f4a2f4c5
MX
5014 struct btrfs_root *root = BTRFS_I(inode)->root;
5015 struct btrfs_trans_handle *trans;
a41ad394 5016 loff_t oldsize = i_size_read(inode);
3972f260
ES
5017 loff_t newsize = attr->ia_size;
5018 int mask = attr->ia_valid;
8082510e
YZ
5019 int ret;
5020
3972f260
ES
5021 /*
5022 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5023 * special case where we need to update the times despite not having
5024 * these flags set. For all other operations the VFS set these flags
5025 * explicitly if it wants a timestamp update.
5026 */
dff6efc3
CH
5027 if (newsize != oldsize) {
5028 inode_inc_iversion(inode);
5029 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5030 inode->i_ctime = inode->i_mtime =
c2050a45 5031 current_time(inode);
dff6efc3 5032 }
3972f260 5033
a41ad394 5034 if (newsize > oldsize) {
9ea24bbe 5035 /*
ea14b57f 5036 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5037 * This is to ensure the snapshot captures a fully consistent
5038 * state of this file - if the snapshot captures this expanding
5039 * truncation, it must capture all writes that happened before
5040 * this truncation.
5041 */
0bc19f90 5042 btrfs_wait_for_snapshot_creation(root);
a41ad394 5043 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5044 if (ret) {
ea14b57f 5045 btrfs_end_write_no_snapshotting(root);
8082510e 5046 return ret;
9ea24bbe 5047 }
8082510e 5048
f4a2f4c5 5049 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5050 if (IS_ERR(trans)) {
ea14b57f 5051 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5052 return PTR_ERR(trans);
9ea24bbe 5053 }
f4a2f4c5
MX
5054
5055 i_size_write(inode, newsize);
5056 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5057 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5058 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5059 btrfs_end_write_no_snapshotting(root);
3a45bb20 5060 btrfs_end_transaction(trans);
a41ad394 5061 } else {
8082510e 5062
a41ad394
JB
5063 /*
5064 * We're truncating a file that used to have good data down to
5065 * zero. Make sure it gets into the ordered flush list so that
5066 * any new writes get down to disk quickly.
5067 */
5068 if (newsize == 0)
72ac3c0d
JB
5069 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5070 &BTRFS_I(inode)->runtime_flags);
8082510e 5071
f3fe820c
JB
5072 /*
5073 * 1 for the orphan item we're going to add
5074 * 1 for the orphan item deletion.
5075 */
5076 trans = btrfs_start_transaction(root, 2);
5077 if (IS_ERR(trans))
5078 return PTR_ERR(trans);
5079
5080 /*
5081 * We need to do this in case we fail at _any_ point during the
5082 * actual truncate. Once we do the truncate_setsize we could
5083 * invalidate pages which forces any outstanding ordered io to
5084 * be instantly completed which will give us extents that need
5085 * to be truncated. If we fail to get an orphan inode down we
5086 * could have left over extents that were never meant to live,
01327610 5087 * so we need to guarantee from this point on that everything
f3fe820c
JB
5088 * will be consistent.
5089 */
73f2e545 5090 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5091 btrfs_end_transaction(trans);
f3fe820c
JB
5092 if (ret)
5093 return ret;
5094
a41ad394
JB
5095 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5096 truncate_setsize(inode, newsize);
2e60a51e
MX
5097
5098 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5099 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5100 inode_dio_wait(inode);
0b581701 5101 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5102
a41ad394 5103 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5104 if (ret && inode->i_nlink) {
5105 int err;
5106
19fd2df5
LB
5107 /* To get a stable disk_i_size */
5108 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5109 if (err) {
3d6ae7bb 5110 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5111 return err;
5112 }
5113
7f4f6e0a
JB
5114 /*
5115 * failed to truncate, disk_i_size is only adjusted down
5116 * as we remove extents, so it should represent the true
5117 * size of the inode, so reset the in memory size and
5118 * delete our orphan entry.
5119 */
5120 trans = btrfs_join_transaction(root);
5121 if (IS_ERR(trans)) {
3d6ae7bb 5122 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5123 return ret;
5124 }
5125 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5126 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5127 if (err)
66642832 5128 btrfs_abort_transaction(trans, err);
3a45bb20 5129 btrfs_end_transaction(trans);
7f4f6e0a 5130 }
8082510e
YZ
5131 }
5132
a41ad394 5133 return ret;
8082510e
YZ
5134}
5135
9036c102
YZ
5136static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5137{
2b0143b5 5138 struct inode *inode = d_inode(dentry);
b83cc969 5139 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5140 int err;
39279cc3 5141
b83cc969
LZ
5142 if (btrfs_root_readonly(root))
5143 return -EROFS;
5144
31051c85 5145 err = setattr_prepare(dentry, attr);
9036c102
YZ
5146 if (err)
5147 return err;
2bf5a725 5148
5a3f23d5 5149 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5150 err = btrfs_setsize(inode, attr);
8082510e
YZ
5151 if (err)
5152 return err;
39279cc3 5153 }
9036c102 5154
1025774c
CH
5155 if (attr->ia_valid) {
5156 setattr_copy(inode, attr);
0c4d2d95 5157 inode_inc_iversion(inode);
22c44fe6 5158 err = btrfs_dirty_inode(inode);
1025774c 5159
22c44fe6 5160 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5161 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5162 }
33268eaf 5163
39279cc3
CM
5164 return err;
5165}
61295eb8 5166
131e404a
FDBM
5167/*
5168 * While truncating the inode pages during eviction, we get the VFS calling
5169 * btrfs_invalidatepage() against each page of the inode. This is slow because
5170 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5171 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5172 * extent_state structures over and over, wasting lots of time.
5173 *
5174 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5175 * those expensive operations on a per page basis and do only the ordered io
5176 * finishing, while we release here the extent_map and extent_state structures,
5177 * without the excessive merging and splitting.
5178 */
5179static void evict_inode_truncate_pages(struct inode *inode)
5180{
5181 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5182 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5183 struct rb_node *node;
5184
5185 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5186 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5187
5188 write_lock(&map_tree->lock);
5189 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5190 struct extent_map *em;
5191
5192 node = rb_first(&map_tree->map);
5193 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5194 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5195 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5196 remove_extent_mapping(map_tree, em);
5197 free_extent_map(em);
7064dd5c
FM
5198 if (need_resched()) {
5199 write_unlock(&map_tree->lock);
5200 cond_resched();
5201 write_lock(&map_tree->lock);
5202 }
131e404a
FDBM
5203 }
5204 write_unlock(&map_tree->lock);
5205
6ca07097
FM
5206 /*
5207 * Keep looping until we have no more ranges in the io tree.
5208 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5209 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5210 * still in progress (unlocked the pages in the bio but did not yet
5211 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5212 * ranges can still be locked and eviction started because before
5213 * submitting those bios, which are executed by a separate task (work
5214 * queue kthread), inode references (inode->i_count) were not taken
5215 * (which would be dropped in the end io callback of each bio).
5216 * Therefore here we effectively end up waiting for those bios and
5217 * anyone else holding locked ranges without having bumped the inode's
5218 * reference count - if we don't do it, when they access the inode's
5219 * io_tree to unlock a range it may be too late, leading to an
5220 * use-after-free issue.
5221 */
131e404a
FDBM
5222 spin_lock(&io_tree->lock);
5223 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5224 struct extent_state *state;
5225 struct extent_state *cached_state = NULL;
6ca07097
FM
5226 u64 start;
5227 u64 end;
131e404a
FDBM
5228
5229 node = rb_first(&io_tree->state);
5230 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5231 start = state->start;
5232 end = state->end;
131e404a
FDBM
5233 spin_unlock(&io_tree->lock);
5234
ff13db41 5235 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5236
5237 /*
5238 * If still has DELALLOC flag, the extent didn't reach disk,
5239 * and its reserved space won't be freed by delayed_ref.
5240 * So we need to free its reserved space here.
5241 * (Refer to comment in btrfs_invalidatepage, case 2)
5242 *
5243 * Note, end is the bytenr of last byte, so we need + 1 here.
5244 */
5245 if (state->state & EXTENT_DELALLOC)
bc42bda2 5246 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5247
6ca07097 5248 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5249 EXTENT_LOCKED | EXTENT_DIRTY |
5250 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5251 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5252
7064dd5c 5253 cond_resched();
131e404a
FDBM
5254 spin_lock(&io_tree->lock);
5255 }
5256 spin_unlock(&io_tree->lock);
5257}
5258
bd555975 5259void btrfs_evict_inode(struct inode *inode)
39279cc3 5260{
0b246afa 5261 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5262 struct btrfs_trans_handle *trans;
5263 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5264 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5265 int steal_from_global = 0;
3d48d981 5266 u64 min_size;
39279cc3
CM
5267 int ret;
5268
1abe9b8a 5269 trace_btrfs_inode_evict(inode);
5270
3d48d981
NB
5271 if (!root) {
5272 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5273 return;
5274 }
5275
0b246afa 5276 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5277
131e404a
FDBM
5278 evict_inode_truncate_pages(inode);
5279
69e9c6c6
SB
5280 if (inode->i_nlink &&
5281 ((btrfs_root_refs(&root->root_item) != 0 &&
5282 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5283 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5284 goto no_delete;
5285
39279cc3 5286 if (is_bad_inode(inode)) {
3d6ae7bb 5287 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5288 goto no_delete;
5289 }
bd555975 5290 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5291 if (!special_file(inode->i_mode))
5292 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5293
7ab7956e 5294 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5295
0b246afa 5296 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5297 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5298 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5299 goto no_delete;
5300 }
5301
76dda93c 5302 if (inode->i_nlink > 0) {
69e9c6c6
SB
5303 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5304 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5305 goto no_delete;
5306 }
5307
aa79021f 5308 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5309 if (ret) {
3d6ae7bb 5310 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5311 goto no_delete;
5312 }
5313
2ff7e61e 5314 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5315 if (!rsv) {
3d6ae7bb 5316 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5317 goto no_delete;
5318 }
4a338542 5319 rsv->size = min_size;
ca7e70f5 5320 rsv->failfast = 1;
0b246afa 5321 global_rsv = &fs_info->global_block_rsv;
4289a667 5322
6ef06d27 5323 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5324
4289a667 5325 /*
8407aa46
MX
5326 * This is a bit simpler than btrfs_truncate since we've already
5327 * reserved our space for our orphan item in the unlink, so we just
5328 * need to reserve some slack space in case we add bytes and update
5329 * inode item when doing the truncate.
4289a667 5330 */
8082510e 5331 while (1) {
08e007d2
MX
5332 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5333 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5334
5335 /*
5336 * Try and steal from the global reserve since we will
5337 * likely not use this space anyway, we want to try as
5338 * hard as possible to get this to work.
5339 */
5340 if (ret)
3bce876f
JB
5341 steal_from_global++;
5342 else
5343 steal_from_global = 0;
5344 ret = 0;
d68fc57b 5345
3bce876f
JB
5346 /*
5347 * steal_from_global == 0: we reserved stuff, hooray!
5348 * steal_from_global == 1: we didn't reserve stuff, boo!
5349 * steal_from_global == 2: we've committed, still not a lot of
5350 * room but maybe we'll have room in the global reserve this
5351 * time.
5352 * steal_from_global == 3: abandon all hope!
5353 */
5354 if (steal_from_global > 2) {
0b246afa
JM
5355 btrfs_warn(fs_info,
5356 "Could not get space for a delete, will truncate on mount %d",
5357 ret);
3d6ae7bb 5358 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5359 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5360 goto no_delete;
d68fc57b 5361 }
7b128766 5362
0e8c36a9 5363 trans = btrfs_join_transaction(root);
4289a667 5364 if (IS_ERR(trans)) {
3d6ae7bb 5365 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5366 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5367 goto no_delete;
d68fc57b 5368 }
7b128766 5369
3bce876f 5370 /*
01327610 5371 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5372 * sure there is room to do it, if not we need to commit and try
5373 * again.
5374 */
5375 if (steal_from_global) {
2ff7e61e 5376 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5377 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5378 min_size, 0);
3bce876f
JB
5379 else
5380 ret = -ENOSPC;
5381 }
5382
5383 /*
5384 * Couldn't steal from the global reserve, we have too much
5385 * pending stuff built up, commit the transaction and try it
5386 * again.
5387 */
5388 if (ret) {
3a45bb20 5389 ret = btrfs_commit_transaction(trans);
3bce876f 5390 if (ret) {
3d6ae7bb 5391 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5392 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5393 goto no_delete;
5394 }
5395 continue;
5396 } else {
5397 steal_from_global = 0;
5398 }
5399
4289a667
JB
5400 trans->block_rsv = rsv;
5401
d68fc57b 5402 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5403 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5404 break;
85e21bac 5405
0b246afa 5406 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5407 btrfs_end_transaction(trans);
8082510e 5408 trans = NULL;
2ff7e61e 5409 btrfs_btree_balance_dirty(fs_info);
8082510e 5410 }
5f39d397 5411
2ff7e61e 5412 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5413
4ef31a45
JB
5414 /*
5415 * Errors here aren't a big deal, it just means we leave orphan items
5416 * in the tree. They will be cleaned up on the next mount.
5417 */
8082510e 5418 if (ret == 0) {
4289a667 5419 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5420 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5421 } else {
3d6ae7bb 5422 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5423 }
54aa1f4d 5424
0b246afa
JM
5425 trans->block_rsv = &fs_info->trans_block_rsv;
5426 if (!(root == fs_info->tree_root ||
581bb050 5427 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5428 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5429
3a45bb20 5430 btrfs_end_transaction(trans);
2ff7e61e 5431 btrfs_btree_balance_dirty(fs_info);
39279cc3 5432no_delete:
f48d1cf5 5433 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5434 clear_inode(inode);
39279cc3
CM
5435}
5436
5437/*
5438 * this returns the key found in the dir entry in the location pointer.
5439 * If no dir entries were found, location->objectid is 0.
5440 */
5441static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5442 struct btrfs_key *location)
5443{
5444 const char *name = dentry->d_name.name;
5445 int namelen = dentry->d_name.len;
5446 struct btrfs_dir_item *di;
5447 struct btrfs_path *path;
5448 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5449 int ret = 0;
39279cc3
CM
5450
5451 path = btrfs_alloc_path();
d8926bb3
MF
5452 if (!path)
5453 return -ENOMEM;
3954401f 5454
f85b7379
DS
5455 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5456 name, namelen, 0);
0d9f7f3e
Y
5457 if (IS_ERR(di))
5458 ret = PTR_ERR(di);
d397712b 5459
c704005d 5460 if (IS_ERR_OR_NULL(di))
3954401f 5461 goto out_err;
d397712b 5462
5f39d397 5463 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5464 if (location->type != BTRFS_INODE_ITEM_KEY &&
5465 location->type != BTRFS_ROOT_ITEM_KEY) {
5466 btrfs_warn(root->fs_info,
5467"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5468 __func__, name, btrfs_ino(BTRFS_I(dir)),
5469 location->objectid, location->type, location->offset);
5470 goto out_err;
5471 }
39279cc3 5472out:
39279cc3
CM
5473 btrfs_free_path(path);
5474 return ret;
3954401f
CM
5475out_err:
5476 location->objectid = 0;
5477 goto out;
39279cc3
CM
5478}
5479
5480/*
5481 * when we hit a tree root in a directory, the btrfs part of the inode
5482 * needs to be changed to reflect the root directory of the tree root. This
5483 * is kind of like crossing a mount point.
5484 */
2ff7e61e 5485static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5486 struct inode *dir,
5487 struct dentry *dentry,
5488 struct btrfs_key *location,
5489 struct btrfs_root **sub_root)
39279cc3 5490{
4df27c4d
YZ
5491 struct btrfs_path *path;
5492 struct btrfs_root *new_root;
5493 struct btrfs_root_ref *ref;
5494 struct extent_buffer *leaf;
1d4c08e0 5495 struct btrfs_key key;
4df27c4d
YZ
5496 int ret;
5497 int err = 0;
39279cc3 5498
4df27c4d
YZ
5499 path = btrfs_alloc_path();
5500 if (!path) {
5501 err = -ENOMEM;
5502 goto out;
5503 }
39279cc3 5504
4df27c4d 5505 err = -ENOENT;
1d4c08e0
DS
5506 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5507 key.type = BTRFS_ROOT_REF_KEY;
5508 key.offset = location->objectid;
5509
0b246afa 5510 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5511 if (ret) {
5512 if (ret < 0)
5513 err = ret;
5514 goto out;
5515 }
39279cc3 5516
4df27c4d
YZ
5517 leaf = path->nodes[0];
5518 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5519 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5520 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5521 goto out;
39279cc3 5522
4df27c4d
YZ
5523 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5524 (unsigned long)(ref + 1),
5525 dentry->d_name.len);
5526 if (ret)
5527 goto out;
5528
b3b4aa74 5529 btrfs_release_path(path);
4df27c4d 5530
0b246afa 5531 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5532 if (IS_ERR(new_root)) {
5533 err = PTR_ERR(new_root);
5534 goto out;
5535 }
5536
4df27c4d
YZ
5537 *sub_root = new_root;
5538 location->objectid = btrfs_root_dirid(&new_root->root_item);
5539 location->type = BTRFS_INODE_ITEM_KEY;
5540 location->offset = 0;
5541 err = 0;
5542out:
5543 btrfs_free_path(path);
5544 return err;
39279cc3
CM
5545}
5546
5d4f98a2
YZ
5547static void inode_tree_add(struct inode *inode)
5548{
5549 struct btrfs_root *root = BTRFS_I(inode)->root;
5550 struct btrfs_inode *entry;
03e860bd
NP
5551 struct rb_node **p;
5552 struct rb_node *parent;
cef21937 5553 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5554 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5555
1d3382cb 5556 if (inode_unhashed(inode))
76dda93c 5557 return;
e1409cef 5558 parent = NULL;
5d4f98a2 5559 spin_lock(&root->inode_lock);
e1409cef 5560 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5561 while (*p) {
5562 parent = *p;
5563 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5564
4a0cc7ca 5565 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5566 p = &parent->rb_left;
4a0cc7ca 5567 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5568 p = &parent->rb_right;
5d4f98a2
YZ
5569 else {
5570 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5571 (I_WILL_FREE | I_FREEING)));
cef21937 5572 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5573 RB_CLEAR_NODE(parent);
5574 spin_unlock(&root->inode_lock);
cef21937 5575 return;
5d4f98a2
YZ
5576 }
5577 }
cef21937
FDBM
5578 rb_link_node(new, parent, p);
5579 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5580 spin_unlock(&root->inode_lock);
5581}
5582
5583static void inode_tree_del(struct inode *inode)
5584{
0b246afa 5585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5586 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5587 int empty = 0;
5d4f98a2 5588
03e860bd 5589 spin_lock(&root->inode_lock);
5d4f98a2 5590 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5591 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5592 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5593 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5594 }
03e860bd 5595 spin_unlock(&root->inode_lock);
76dda93c 5596
69e9c6c6 5597 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5598 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5599 spin_lock(&root->inode_lock);
5600 empty = RB_EMPTY_ROOT(&root->inode_tree);
5601 spin_unlock(&root->inode_lock);
5602 if (empty)
5603 btrfs_add_dead_root(root);
5604 }
5605}
5606
143bede5 5607void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5608{
0b246afa 5609 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5610 struct rb_node *node;
5611 struct rb_node *prev;
5612 struct btrfs_inode *entry;
5613 struct inode *inode;
5614 u64 objectid = 0;
5615
0b246afa 5616 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5617 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5618
5619 spin_lock(&root->inode_lock);
5620again:
5621 node = root->inode_tree.rb_node;
5622 prev = NULL;
5623 while (node) {
5624 prev = node;
5625 entry = rb_entry(node, struct btrfs_inode, rb_node);
5626
4a0cc7ca 5627 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5628 node = node->rb_left;
4a0cc7ca 5629 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5630 node = node->rb_right;
5631 else
5632 break;
5633 }
5634 if (!node) {
5635 while (prev) {
5636 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5637 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5638 node = prev;
5639 break;
5640 }
5641 prev = rb_next(prev);
5642 }
5643 }
5644 while (node) {
5645 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5646 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5647 inode = igrab(&entry->vfs_inode);
5648 if (inode) {
5649 spin_unlock(&root->inode_lock);
5650 if (atomic_read(&inode->i_count) > 1)
5651 d_prune_aliases(inode);
5652 /*
45321ac5 5653 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5654 * the inode cache when its usage count
5655 * hits zero.
5656 */
5657 iput(inode);
5658 cond_resched();
5659 spin_lock(&root->inode_lock);
5660 goto again;
5661 }
5662
5663 if (cond_resched_lock(&root->inode_lock))
5664 goto again;
5665
5666 node = rb_next(node);
5667 }
5668 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5669}
5670
e02119d5
CM
5671static int btrfs_init_locked_inode(struct inode *inode, void *p)
5672{
5673 struct btrfs_iget_args *args = p;
90d3e592
CM
5674 inode->i_ino = args->location->objectid;
5675 memcpy(&BTRFS_I(inode)->location, args->location,
5676 sizeof(*args->location));
e02119d5 5677 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5678 return 0;
5679}
5680
5681static int btrfs_find_actor(struct inode *inode, void *opaque)
5682{
5683 struct btrfs_iget_args *args = opaque;
90d3e592 5684 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5685 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5686}
5687
5d4f98a2 5688static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5689 struct btrfs_key *location,
5d4f98a2 5690 struct btrfs_root *root)
39279cc3
CM
5691{
5692 struct inode *inode;
5693 struct btrfs_iget_args args;
90d3e592 5694 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5695
90d3e592 5696 args.location = location;
39279cc3
CM
5697 args.root = root;
5698
778ba82b 5699 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5700 btrfs_init_locked_inode,
5701 (void *)&args);
5702 return inode;
5703}
5704
1a54ef8c
BR
5705/* Get an inode object given its location and corresponding root.
5706 * Returns in *is_new if the inode was read from disk
5707 */
5708struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5709 struct btrfs_root *root, int *new)
1a54ef8c
BR
5710{
5711 struct inode *inode;
5712
90d3e592 5713 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5714 if (!inode)
5d4f98a2 5715 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5716
5717 if (inode->i_state & I_NEW) {
67710892
FM
5718 int ret;
5719
5720 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5721 if (!is_bad_inode(inode)) {
5722 inode_tree_add(inode);
5723 unlock_new_inode(inode);
5724 if (new)
5725 *new = 1;
5726 } else {
e0b6d65b
ST
5727 unlock_new_inode(inode);
5728 iput(inode);
67710892
FM
5729 ASSERT(ret < 0);
5730 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5731 }
5732 }
5733
1a54ef8c
BR
5734 return inode;
5735}
5736
4df27c4d
YZ
5737static struct inode *new_simple_dir(struct super_block *s,
5738 struct btrfs_key *key,
5739 struct btrfs_root *root)
5740{
5741 struct inode *inode = new_inode(s);
5742
5743 if (!inode)
5744 return ERR_PTR(-ENOMEM);
5745
4df27c4d
YZ
5746 BTRFS_I(inode)->root = root;
5747 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5748 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5749
5750 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5751 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5752 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5753 inode->i_fop = &simple_dir_operations;
5754 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5755 inode->i_mtime = current_time(inode);
9cc97d64 5756 inode->i_atime = inode->i_mtime;
5757 inode->i_ctime = inode->i_mtime;
5758 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5759
5760 return inode;
5761}
5762
3de4586c 5763struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5764{
0b246afa 5765 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5766 struct inode *inode;
4df27c4d 5767 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5768 struct btrfs_root *sub_root = root;
5769 struct btrfs_key location;
76dda93c 5770 int index;
b4aff1f8 5771 int ret = 0;
39279cc3
CM
5772
5773 if (dentry->d_name.len > BTRFS_NAME_LEN)
5774 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5775
39e3c955 5776 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5777 if (ret < 0)
5778 return ERR_PTR(ret);
5f39d397 5779
4df27c4d 5780 if (location.objectid == 0)
5662344b 5781 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5782
5783 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5784 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5785 return inode;
5786 }
5787
0b246afa 5788 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5789 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5790 &location, &sub_root);
5791 if (ret < 0) {
5792 if (ret != -ENOENT)
5793 inode = ERR_PTR(ret);
5794 else
5795 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5796 } else {
73f73415 5797 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5798 }
0b246afa 5799 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5800
34d19bad 5801 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5802 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5803 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5804 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5805 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5806 if (ret) {
5807 iput(inode);
66b4ffd1 5808 inode = ERR_PTR(ret);
01cd3367 5809 }
c71bf099
YZ
5810 }
5811
3de4586c
CM
5812 return inode;
5813}
5814
fe15ce44 5815static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5816{
5817 struct btrfs_root *root;
2b0143b5 5818 struct inode *inode = d_inode(dentry);
76dda93c 5819
848cce0d 5820 if (!inode && !IS_ROOT(dentry))
2b0143b5 5821 inode = d_inode(dentry->d_parent);
76dda93c 5822
848cce0d
LZ
5823 if (inode) {
5824 root = BTRFS_I(inode)->root;
efefb143
YZ
5825 if (btrfs_root_refs(&root->root_item) == 0)
5826 return 1;
848cce0d 5827
4a0cc7ca 5828 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5829 return 1;
efefb143 5830 }
76dda93c
YZ
5831 return 0;
5832}
5833
b4aff1f8
JB
5834static void btrfs_dentry_release(struct dentry *dentry)
5835{
944a4515 5836 kfree(dentry->d_fsdata);
b4aff1f8
JB
5837}
5838
3de4586c 5839static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5840 unsigned int flags)
3de4586c 5841{
5662344b 5842 struct inode *inode;
a66e7cc6 5843
5662344b
TI
5844 inode = btrfs_lookup_dentry(dir, dentry);
5845 if (IS_ERR(inode)) {
5846 if (PTR_ERR(inode) == -ENOENT)
5847 inode = NULL;
5848 else
5849 return ERR_CAST(inode);
5850 }
5851
41d28bca 5852 return d_splice_alias(inode, dentry);
39279cc3
CM
5853}
5854
16cdcec7 5855unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5856 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5857};
5858
23b5ec74
JB
5859/*
5860 * All this infrastructure exists because dir_emit can fault, and we are holding
5861 * the tree lock when doing readdir. For now just allocate a buffer and copy
5862 * our information into that, and then dir_emit from the buffer. This is
5863 * similar to what NFS does, only we don't keep the buffer around in pagecache
5864 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5865 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5866 * tree lock.
5867 */
5868static int btrfs_opendir(struct inode *inode, struct file *file)
5869{
5870 struct btrfs_file_private *private;
5871
5872 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5873 if (!private)
5874 return -ENOMEM;
5875 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5876 if (!private->filldir_buf) {
5877 kfree(private);
5878 return -ENOMEM;
5879 }
5880 file->private_data = private;
5881 return 0;
5882}
5883
5884struct dir_entry {
5885 u64 ino;
5886 u64 offset;
5887 unsigned type;
5888 int name_len;
5889};
5890
5891static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5892{
5893 while (entries--) {
5894 struct dir_entry *entry = addr;
5895 char *name = (char *)(entry + 1);
5896
5897 ctx->pos = entry->offset;
5898 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5899 entry->type))
5900 return 1;
5901 addr += sizeof(struct dir_entry) + entry->name_len;
5902 ctx->pos++;
5903 }
5904 return 0;
5905}
5906
9cdda8d3 5907static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5908{
9cdda8d3 5909 struct inode *inode = file_inode(file);
2ff7e61e 5910 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5911 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5912 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5913 struct btrfs_dir_item *di;
5914 struct btrfs_key key;
5f39d397 5915 struct btrfs_key found_key;
39279cc3 5916 struct btrfs_path *path;
23b5ec74 5917 void *addr;
16cdcec7
MX
5918 struct list_head ins_list;
5919 struct list_head del_list;
39279cc3 5920 int ret;
5f39d397 5921 struct extent_buffer *leaf;
39279cc3 5922 int slot;
5f39d397
CM
5923 char *name_ptr;
5924 int name_len;
23b5ec74
JB
5925 int entries = 0;
5926 int total_len = 0;
02dbfc99 5927 bool put = false;
c2951f32 5928 struct btrfs_key location;
5f39d397 5929
9cdda8d3
AV
5930 if (!dir_emit_dots(file, ctx))
5931 return 0;
5932
49593bfa 5933 path = btrfs_alloc_path();
16cdcec7
MX
5934 if (!path)
5935 return -ENOMEM;
ff5714cc 5936
23b5ec74 5937 addr = private->filldir_buf;
e4058b54 5938 path->reada = READA_FORWARD;
49593bfa 5939
c2951f32
JM
5940 INIT_LIST_HEAD(&ins_list);
5941 INIT_LIST_HEAD(&del_list);
5942 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5943
23b5ec74 5944again:
c2951f32 5945 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5946 key.offset = ctx->pos;
4a0cc7ca 5947 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5948
39279cc3
CM
5949 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5950 if (ret < 0)
5951 goto err;
49593bfa
DW
5952
5953 while (1) {
23b5ec74
JB
5954 struct dir_entry *entry;
5955
5f39d397 5956 leaf = path->nodes[0];
39279cc3 5957 slot = path->slots[0];
b9e03af0
LZ
5958 if (slot >= btrfs_header_nritems(leaf)) {
5959 ret = btrfs_next_leaf(root, path);
5960 if (ret < 0)
5961 goto err;
5962 else if (ret > 0)
5963 break;
5964 continue;
39279cc3 5965 }
3de4586c 5966
5f39d397
CM
5967 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5968
5969 if (found_key.objectid != key.objectid)
39279cc3 5970 break;
c2951f32 5971 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5972 break;
9cdda8d3 5973 if (found_key.offset < ctx->pos)
b9e03af0 5974 goto next;
c2951f32 5975 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5976 goto next;
39279cc3 5977 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5978 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5979 goto next;
22a94d44 5980
c2951f32 5981 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5982 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5983 PAGE_SIZE) {
5984 btrfs_release_path(path);
5985 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5986 if (ret)
5987 goto nopos;
5988 addr = private->filldir_buf;
5989 entries = 0;
5990 total_len = 0;
5991 goto again;
c2951f32 5992 }
23b5ec74
JB
5993
5994 entry = addr;
5995 entry->name_len = name_len;
5996 name_ptr = (char *)(entry + 1);
c2951f32
JM
5997 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5998 name_len);
23b5ec74 5999 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 6000 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
6001 entry->ino = location.objectid;
6002 entry->offset = found_key.offset;
6003 entries++;
6004 addr += sizeof(struct dir_entry) + name_len;
6005 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6006next:
6007 path->slots[0]++;
39279cc3 6008 }
23b5ec74
JB
6009 btrfs_release_path(path);
6010
6011 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6012 if (ret)
6013 goto nopos;
49593bfa 6014
d2fbb2b5 6015 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6016 if (ret)
bc4ef759
DS
6017 goto nopos;
6018
db62efbb
ZB
6019 /*
6020 * Stop new entries from being returned after we return the last
6021 * entry.
6022 *
6023 * New directory entries are assigned a strictly increasing
6024 * offset. This means that new entries created during readdir
6025 * are *guaranteed* to be seen in the future by that readdir.
6026 * This has broken buggy programs which operate on names as
6027 * they're returned by readdir. Until we re-use freed offsets
6028 * we have this hack to stop new entries from being returned
6029 * under the assumption that they'll never reach this huge
6030 * offset.
6031 *
6032 * This is being careful not to overflow 32bit loff_t unless the
6033 * last entry requires it because doing so has broken 32bit apps
6034 * in the past.
6035 */
c2951f32
JM
6036 if (ctx->pos >= INT_MAX)
6037 ctx->pos = LLONG_MAX;
6038 else
6039 ctx->pos = INT_MAX;
39279cc3
CM
6040nopos:
6041 ret = 0;
6042err:
02dbfc99
OS
6043 if (put)
6044 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6045 btrfs_free_path(path);
39279cc3
CM
6046 return ret;
6047}
6048
a9185b41 6049int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6050{
6051 struct btrfs_root *root = BTRFS_I(inode)->root;
6052 struct btrfs_trans_handle *trans;
6053 int ret = 0;
0af3d00b 6054 bool nolock = false;
39279cc3 6055
72ac3c0d 6056 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6057 return 0;
6058
70ddc553
NB
6059 if (btrfs_fs_closing(root->fs_info) &&
6060 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6061 nolock = true;
0af3d00b 6062
a9185b41 6063 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6064 if (nolock)
7a7eaa40 6065 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6066 else
7a7eaa40 6067 trans = btrfs_join_transaction(root);
3612b495
TI
6068 if (IS_ERR(trans))
6069 return PTR_ERR(trans);
3a45bb20 6070 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6071 }
6072 return ret;
6073}
6074
6075/*
54aa1f4d 6076 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6077 * inode changes. But, it is most likely to find the inode in cache.
6078 * FIXME, needs more benchmarking...there are no reasons other than performance
6079 * to keep or drop this code.
6080 */
48a3b636 6081static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6082{
2ff7e61e 6083 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6084 struct btrfs_root *root = BTRFS_I(inode)->root;
6085 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6086 int ret;
6087
72ac3c0d 6088 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6089 return 0;
39279cc3 6090
7a7eaa40 6091 trans = btrfs_join_transaction(root);
22c44fe6
JB
6092 if (IS_ERR(trans))
6093 return PTR_ERR(trans);
8929ecfa
YZ
6094
6095 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6096 if (ret && ret == -ENOSPC) {
6097 /* whoops, lets try again with the full transaction */
3a45bb20 6098 btrfs_end_transaction(trans);
94b60442 6099 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6100 if (IS_ERR(trans))
6101 return PTR_ERR(trans);
8929ecfa 6102
94b60442 6103 ret = btrfs_update_inode(trans, root, inode);
94b60442 6104 }
3a45bb20 6105 btrfs_end_transaction(trans);
16cdcec7 6106 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6107 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6108
6109 return ret;
6110}
6111
6112/*
6113 * This is a copy of file_update_time. We need this so we can return error on
6114 * ENOSPC for updating the inode in the case of file write and mmap writes.
6115 */
e41f941a
JB
6116static int btrfs_update_time(struct inode *inode, struct timespec *now,
6117 int flags)
22c44fe6 6118{
2bc55652
AB
6119 struct btrfs_root *root = BTRFS_I(inode)->root;
6120
6121 if (btrfs_root_readonly(root))
6122 return -EROFS;
6123
e41f941a 6124 if (flags & S_VERSION)
22c44fe6 6125 inode_inc_iversion(inode);
e41f941a
JB
6126 if (flags & S_CTIME)
6127 inode->i_ctime = *now;
6128 if (flags & S_MTIME)
6129 inode->i_mtime = *now;
6130 if (flags & S_ATIME)
6131 inode->i_atime = *now;
6132 return btrfs_dirty_inode(inode);
39279cc3
CM
6133}
6134
d352ac68
CM
6135/*
6136 * find the highest existing sequence number in a directory
6137 * and then set the in-memory index_cnt variable to reflect
6138 * free sequence numbers
6139 */
4c570655 6140static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6141{
4c570655 6142 struct btrfs_root *root = inode->root;
aec7477b
JB
6143 struct btrfs_key key, found_key;
6144 struct btrfs_path *path;
6145 struct extent_buffer *leaf;
6146 int ret;
6147
4c570655 6148 key.objectid = btrfs_ino(inode);
962a298f 6149 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6150 key.offset = (u64)-1;
6151
6152 path = btrfs_alloc_path();
6153 if (!path)
6154 return -ENOMEM;
6155
6156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6157 if (ret < 0)
6158 goto out;
6159 /* FIXME: we should be able to handle this */
6160 if (ret == 0)
6161 goto out;
6162 ret = 0;
6163
6164 /*
6165 * MAGIC NUMBER EXPLANATION:
6166 * since we search a directory based on f_pos we have to start at 2
6167 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6168 * else has to start at 2
6169 */
6170 if (path->slots[0] == 0) {
4c570655 6171 inode->index_cnt = 2;
aec7477b
JB
6172 goto out;
6173 }
6174
6175 path->slots[0]--;
6176
6177 leaf = path->nodes[0];
6178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6179
4c570655 6180 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6181 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6182 inode->index_cnt = 2;
aec7477b
JB
6183 goto out;
6184 }
6185
4c570655 6186 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6187out:
6188 btrfs_free_path(path);
6189 return ret;
6190}
6191
d352ac68
CM
6192/*
6193 * helper to find a free sequence number in a given directory. This current
6194 * code is very simple, later versions will do smarter things in the btree
6195 */
877574e2 6196int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6197{
6198 int ret = 0;
6199
877574e2
NB
6200 if (dir->index_cnt == (u64)-1) {
6201 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6202 if (ret) {
6203 ret = btrfs_set_inode_index_count(dir);
6204 if (ret)
6205 return ret;
6206 }
aec7477b
JB
6207 }
6208
877574e2
NB
6209 *index = dir->index_cnt;
6210 dir->index_cnt++;
aec7477b
JB
6211
6212 return ret;
6213}
6214
b0d5d10f
CM
6215static int btrfs_insert_inode_locked(struct inode *inode)
6216{
6217 struct btrfs_iget_args args;
6218 args.location = &BTRFS_I(inode)->location;
6219 args.root = BTRFS_I(inode)->root;
6220
6221 return insert_inode_locked4(inode,
6222 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6223 btrfs_find_actor, &args);
6224}
6225
19aee8de
AJ
6226/*
6227 * Inherit flags from the parent inode.
6228 *
6229 * Currently only the compression flags and the cow flags are inherited.
6230 */
6231static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6232{
6233 unsigned int flags;
6234
6235 if (!dir)
6236 return;
6237
6238 flags = BTRFS_I(dir)->flags;
6239
6240 if (flags & BTRFS_INODE_NOCOMPRESS) {
6241 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6242 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6243 } else if (flags & BTRFS_INODE_COMPRESS) {
6244 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6245 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6246 }
6247
6248 if (flags & BTRFS_INODE_NODATACOW) {
6249 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6250 if (S_ISREG(inode->i_mode))
6251 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6252 }
6253
6254 btrfs_update_iflags(inode);
6255}
6256
39279cc3
CM
6257static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6258 struct btrfs_root *root,
aec7477b 6259 struct inode *dir,
9c58309d 6260 const char *name, int name_len,
175a4eb7
AV
6261 u64 ref_objectid, u64 objectid,
6262 umode_t mode, u64 *index)
39279cc3 6263{
0b246afa 6264 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6265 struct inode *inode;
5f39d397 6266 struct btrfs_inode_item *inode_item;
39279cc3 6267 struct btrfs_key *location;
5f39d397 6268 struct btrfs_path *path;
9c58309d
CM
6269 struct btrfs_inode_ref *ref;
6270 struct btrfs_key key[2];
6271 u32 sizes[2];
ef3b9af5 6272 int nitems = name ? 2 : 1;
9c58309d 6273 unsigned long ptr;
39279cc3 6274 int ret;
39279cc3 6275
5f39d397 6276 path = btrfs_alloc_path();
d8926bb3
MF
6277 if (!path)
6278 return ERR_PTR(-ENOMEM);
5f39d397 6279
0b246afa 6280 inode = new_inode(fs_info->sb);
8fb27640
YS
6281 if (!inode) {
6282 btrfs_free_path(path);
39279cc3 6283 return ERR_PTR(-ENOMEM);
8fb27640 6284 }
39279cc3 6285
5762b5c9
FM
6286 /*
6287 * O_TMPFILE, set link count to 0, so that after this point,
6288 * we fill in an inode item with the correct link count.
6289 */
6290 if (!name)
6291 set_nlink(inode, 0);
6292
581bb050
LZ
6293 /*
6294 * we have to initialize this early, so we can reclaim the inode
6295 * number if we fail afterwards in this function.
6296 */
6297 inode->i_ino = objectid;
6298
ef3b9af5 6299 if (dir && name) {
1abe9b8a 6300 trace_btrfs_inode_request(dir);
6301
877574e2 6302 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6303 if (ret) {
8fb27640 6304 btrfs_free_path(path);
09771430 6305 iput(inode);
aec7477b 6306 return ERR_PTR(ret);
09771430 6307 }
ef3b9af5
FM
6308 } else if (dir) {
6309 *index = 0;
aec7477b
JB
6310 }
6311 /*
6312 * index_cnt is ignored for everything but a dir,
6313 * btrfs_get_inode_index_count has an explanation for the magic
6314 * number
6315 */
6316 BTRFS_I(inode)->index_cnt = 2;
67de1176 6317 BTRFS_I(inode)->dir_index = *index;
39279cc3 6318 BTRFS_I(inode)->root = root;
e02119d5 6319 BTRFS_I(inode)->generation = trans->transid;
76195853 6320 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6321
5dc562c5
JB
6322 /*
6323 * We could have gotten an inode number from somebody who was fsynced
6324 * and then removed in this same transaction, so let's just set full
6325 * sync since it will be a full sync anyway and this will blow away the
6326 * old info in the log.
6327 */
6328 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6329
9c58309d 6330 key[0].objectid = objectid;
962a298f 6331 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6332 key[0].offset = 0;
6333
9c58309d 6334 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6335
6336 if (name) {
6337 /*
6338 * Start new inodes with an inode_ref. This is slightly more
6339 * efficient for small numbers of hard links since they will
6340 * be packed into one item. Extended refs will kick in if we
6341 * add more hard links than can fit in the ref item.
6342 */
6343 key[1].objectid = objectid;
962a298f 6344 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6345 key[1].offset = ref_objectid;
6346
6347 sizes[1] = name_len + sizeof(*ref);
6348 }
9c58309d 6349
b0d5d10f
CM
6350 location = &BTRFS_I(inode)->location;
6351 location->objectid = objectid;
6352 location->offset = 0;
962a298f 6353 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6354
6355 ret = btrfs_insert_inode_locked(inode);
6356 if (ret < 0)
6357 goto fail;
6358
b9473439 6359 path->leave_spinning = 1;
ef3b9af5 6360 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6361 if (ret != 0)
b0d5d10f 6362 goto fail_unlock;
5f39d397 6363
ecc11fab 6364 inode_init_owner(inode, dir, mode);
a76a3cd4 6365 inode_set_bytes(inode, 0);
9cc97d64 6366
c2050a45 6367 inode->i_mtime = current_time(inode);
9cc97d64 6368 inode->i_atime = inode->i_mtime;
6369 inode->i_ctime = inode->i_mtime;
6370 BTRFS_I(inode)->i_otime = inode->i_mtime;
6371
5f39d397
CM
6372 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6373 struct btrfs_inode_item);
b159fa28 6374 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6375 sizeof(*inode_item));
e02119d5 6376 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6377
ef3b9af5
FM
6378 if (name) {
6379 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6380 struct btrfs_inode_ref);
6381 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6382 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6383 ptr = (unsigned long)(ref + 1);
6384 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6385 }
9c58309d 6386
5f39d397
CM
6387 btrfs_mark_buffer_dirty(path->nodes[0]);
6388 btrfs_free_path(path);
6389
6cbff00f
CH
6390 btrfs_inherit_iflags(inode, dir);
6391
569254b0 6392 if (S_ISREG(mode)) {
0b246afa 6393 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6394 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6395 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6396 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6397 BTRFS_INODE_NODATASUM;
94272164
CM
6398 }
6399
5d4f98a2 6400 inode_tree_add(inode);
1abe9b8a 6401
6402 trace_btrfs_inode_new(inode);
1973f0fa 6403 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6404
8ea05e3a
AB
6405 btrfs_update_root_times(trans, root);
6406
63541927
FDBM
6407 ret = btrfs_inode_inherit_props(trans, inode, dir);
6408 if (ret)
0b246afa 6409 btrfs_err(fs_info,
63541927 6410 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6411 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6412
39279cc3 6413 return inode;
b0d5d10f
CM
6414
6415fail_unlock:
6416 unlock_new_inode(inode);
5f39d397 6417fail:
ef3b9af5 6418 if (dir && name)
aec7477b 6419 BTRFS_I(dir)->index_cnt--;
5f39d397 6420 btrfs_free_path(path);
09771430 6421 iput(inode);
5f39d397 6422 return ERR_PTR(ret);
39279cc3
CM
6423}
6424
6425static inline u8 btrfs_inode_type(struct inode *inode)
6426{
6427 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6428}
6429
d352ac68
CM
6430/*
6431 * utility function to add 'inode' into 'parent_inode' with
6432 * a give name and a given sequence number.
6433 * if 'add_backref' is true, also insert a backref from the
6434 * inode to the parent directory.
6435 */
e02119d5 6436int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6437 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6438 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6439{
db0a669f 6440 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6441 int ret = 0;
39279cc3 6442 struct btrfs_key key;
db0a669f
NB
6443 struct btrfs_root *root = parent_inode->root;
6444 u64 ino = btrfs_ino(inode);
6445 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6446
33345d01 6447 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6448 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6449 } else {
33345d01 6450 key.objectid = ino;
962a298f 6451 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6452 key.offset = 0;
6453 }
6454
33345d01 6455 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6456 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6457 root->root_key.objectid, parent_ino,
6458 index, name, name_len);
4df27c4d 6459 } else if (add_backref) {
33345d01
LZ
6460 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6461 parent_ino, index);
4df27c4d 6462 }
39279cc3 6463
79787eaa
JM
6464 /* Nothing to clean up yet */
6465 if (ret)
6466 return ret;
4df27c4d 6467
79787eaa
JM
6468 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6469 parent_inode, &key,
db0a669f 6470 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6471 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6472 goto fail_dir_item;
6473 else if (ret) {
66642832 6474 btrfs_abort_transaction(trans, ret);
79787eaa 6475 return ret;
39279cc3 6476 }
79787eaa 6477
db0a669f 6478 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6479 name_len * 2);
db0a669f
NB
6480 inode_inc_iversion(&parent_inode->vfs_inode);
6481 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6482 current_time(&parent_inode->vfs_inode);
6483 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6484 if (ret)
66642832 6485 btrfs_abort_transaction(trans, ret);
39279cc3 6486 return ret;
fe66a05a
CM
6487
6488fail_dir_item:
6489 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6490 u64 local_index;
6491 int err;
0b246afa
JM
6492 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6493 root->root_key.objectid, parent_ino,
6494 &local_index, name, name_len);
fe66a05a
CM
6495
6496 } else if (add_backref) {
6497 u64 local_index;
6498 int err;
6499
6500 err = btrfs_del_inode_ref(trans, root, name, name_len,
6501 ino, parent_ino, &local_index);
6502 }
6503 return ret;
39279cc3
CM
6504}
6505
6506static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6507 struct btrfs_inode *dir, struct dentry *dentry,
6508 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6509{
a1b075d2
JB
6510 int err = btrfs_add_link(trans, dir, inode,
6511 dentry->d_name.name, dentry->d_name.len,
6512 backref, index);
39279cc3
CM
6513 if (err > 0)
6514 err = -EEXIST;
6515 return err;
6516}
6517
618e21d5 6518static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6519 umode_t mode, dev_t rdev)
618e21d5 6520{
2ff7e61e 6521 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6522 struct btrfs_trans_handle *trans;
6523 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6524 struct inode *inode = NULL;
618e21d5
JB
6525 int err;
6526 int drop_inode = 0;
6527 u64 objectid;
00e4e6b3 6528 u64 index = 0;
618e21d5 6529
9ed74f2d
JB
6530 /*
6531 * 2 for inode item and ref
6532 * 2 for dir items
6533 * 1 for xattr if selinux is on
6534 */
a22285a6
YZ
6535 trans = btrfs_start_transaction(root, 5);
6536 if (IS_ERR(trans))
6537 return PTR_ERR(trans);
1832a6d5 6538
581bb050
LZ
6539 err = btrfs_find_free_ino(root, &objectid);
6540 if (err)
6541 goto out_unlock;
6542
aec7477b 6543 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6544 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6545 mode, &index);
7cf96da3
TI
6546 if (IS_ERR(inode)) {
6547 err = PTR_ERR(inode);
618e21d5 6548 goto out_unlock;
7cf96da3 6549 }
618e21d5 6550
ad19db71
CS
6551 /*
6552 * If the active LSM wants to access the inode during
6553 * d_instantiate it needs these. Smack checks to see
6554 * if the filesystem supports xattrs by looking at the
6555 * ops vector.
6556 */
ad19db71 6557 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6558 init_special_inode(inode, inode->i_mode, rdev);
6559
6560 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6561 if (err)
b0d5d10f
CM
6562 goto out_unlock_inode;
6563
cef415af
NB
6564 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6565 0, index);
b0d5d10f
CM
6566 if (err) {
6567 goto out_unlock_inode;
6568 } else {
1b4ab1bb 6569 btrfs_update_inode(trans, root, inode);
b0d5d10f 6570 unlock_new_inode(inode);
08c422c2 6571 d_instantiate(dentry, inode);
618e21d5 6572 }
b0d5d10f 6573
618e21d5 6574out_unlock:
3a45bb20 6575 btrfs_end_transaction(trans);
2ff7e61e 6576 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6577 if (drop_inode) {
6578 inode_dec_link_count(inode);
6579 iput(inode);
6580 }
618e21d5 6581 return err;
b0d5d10f
CM
6582
6583out_unlock_inode:
6584 drop_inode = 1;
6585 unlock_new_inode(inode);
6586 goto out_unlock;
6587
618e21d5
JB
6588}
6589
39279cc3 6590static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6591 umode_t mode, bool excl)
39279cc3 6592{
2ff7e61e 6593 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6594 struct btrfs_trans_handle *trans;
6595 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6596 struct inode *inode = NULL;
43baa579 6597 int drop_inode_on_err = 0;
a22285a6 6598 int err;
39279cc3 6599 u64 objectid;
00e4e6b3 6600 u64 index = 0;
39279cc3 6601
9ed74f2d
JB
6602 /*
6603 * 2 for inode item and ref
6604 * 2 for dir items
6605 * 1 for xattr if selinux is on
6606 */
a22285a6
YZ
6607 trans = btrfs_start_transaction(root, 5);
6608 if (IS_ERR(trans))
6609 return PTR_ERR(trans);
9ed74f2d 6610
581bb050
LZ
6611 err = btrfs_find_free_ino(root, &objectid);
6612 if (err)
6613 goto out_unlock;
6614
aec7477b 6615 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6616 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6617 mode, &index);
7cf96da3
TI
6618 if (IS_ERR(inode)) {
6619 err = PTR_ERR(inode);
39279cc3 6620 goto out_unlock;
7cf96da3 6621 }
43baa579 6622 drop_inode_on_err = 1;
ad19db71
CS
6623 /*
6624 * If the active LSM wants to access the inode during
6625 * d_instantiate it needs these. Smack checks to see
6626 * if the filesystem supports xattrs by looking at the
6627 * ops vector.
6628 */
6629 inode->i_fop = &btrfs_file_operations;
6630 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6631 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6632
6633 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6634 if (err)
6635 goto out_unlock_inode;
6636
6637 err = btrfs_update_inode(trans, root, inode);
6638 if (err)
6639 goto out_unlock_inode;
ad19db71 6640
cef415af
NB
6641 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6642 0, index);
39279cc3 6643 if (err)
b0d5d10f 6644 goto out_unlock_inode;
43baa579 6645
43baa579 6646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6647 unlock_new_inode(inode);
43baa579
FB
6648 d_instantiate(dentry, inode);
6649
39279cc3 6650out_unlock:
3a45bb20 6651 btrfs_end_transaction(trans);
43baa579 6652 if (err && drop_inode_on_err) {
39279cc3
CM
6653 inode_dec_link_count(inode);
6654 iput(inode);
6655 }
2ff7e61e 6656 btrfs_btree_balance_dirty(fs_info);
39279cc3 6657 return err;
b0d5d10f
CM
6658
6659out_unlock_inode:
6660 unlock_new_inode(inode);
6661 goto out_unlock;
6662
39279cc3
CM
6663}
6664
6665static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6666 struct dentry *dentry)
6667{
271dba45 6668 struct btrfs_trans_handle *trans = NULL;
39279cc3 6669 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6670 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6672 u64 index;
39279cc3
CM
6673 int err;
6674 int drop_inode = 0;
6675
4a8be425
TH
6676 /* do not allow sys_link's with other subvols of the same device */
6677 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6678 return -EXDEV;
4a8be425 6679
f186373f 6680 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6681 return -EMLINK;
4a8be425 6682
877574e2 6683 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6684 if (err)
6685 goto fail;
6686
a22285a6 6687 /*
7e6b6465 6688 * 2 items for inode and inode ref
a22285a6 6689 * 2 items for dir items
7e6b6465 6690 * 1 item for parent inode
a22285a6 6691 */
7e6b6465 6692 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6693 if (IS_ERR(trans)) {
6694 err = PTR_ERR(trans);
271dba45 6695 trans = NULL;
a22285a6
YZ
6696 goto fail;
6697 }
5f39d397 6698
67de1176
MX
6699 /* There are several dir indexes for this inode, clear the cache. */
6700 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6701 inc_nlink(inode);
0c4d2d95 6702 inode_inc_iversion(inode);
c2050a45 6703 inode->i_ctime = current_time(inode);
7de9c6ee 6704 ihold(inode);
e9976151 6705 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6706
cef415af
NB
6707 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6708 1, index);
5f39d397 6709
a5719521 6710 if (err) {
54aa1f4d 6711 drop_inode = 1;
a5719521 6712 } else {
10d9f309 6713 struct dentry *parent = dentry->d_parent;
a5719521 6714 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6715 if (err)
6716 goto fail;
ef3b9af5
FM
6717 if (inode->i_nlink == 1) {
6718 /*
6719 * If new hard link count is 1, it's a file created
6720 * with open(2) O_TMPFILE flag.
6721 */
3d6ae7bb 6722 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6723 if (err)
6724 goto fail;
6725 }
08c422c2 6726 d_instantiate(dentry, inode);
9ca5fbfb 6727 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6728 }
39279cc3 6729
1832a6d5 6730fail:
271dba45 6731 if (trans)
3a45bb20 6732 btrfs_end_transaction(trans);
39279cc3
CM
6733 if (drop_inode) {
6734 inode_dec_link_count(inode);
6735 iput(inode);
6736 }
2ff7e61e 6737 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6738 return err;
6739}
6740
18bb1db3 6741static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6742{
2ff7e61e 6743 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6744 struct inode *inode = NULL;
39279cc3
CM
6745 struct btrfs_trans_handle *trans;
6746 struct btrfs_root *root = BTRFS_I(dir)->root;
6747 int err = 0;
6748 int drop_on_err = 0;
b9d86667 6749 u64 objectid = 0;
00e4e6b3 6750 u64 index = 0;
39279cc3 6751
9ed74f2d
JB
6752 /*
6753 * 2 items for inode and ref
6754 * 2 items for dir items
6755 * 1 for xattr if selinux is on
6756 */
a22285a6
YZ
6757 trans = btrfs_start_transaction(root, 5);
6758 if (IS_ERR(trans))
6759 return PTR_ERR(trans);
39279cc3 6760
581bb050
LZ
6761 err = btrfs_find_free_ino(root, &objectid);
6762 if (err)
6763 goto out_fail;
6764
aec7477b 6765 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6766 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6767 S_IFDIR | mode, &index);
39279cc3
CM
6768 if (IS_ERR(inode)) {
6769 err = PTR_ERR(inode);
6770 goto out_fail;
6771 }
5f39d397 6772
39279cc3 6773 drop_on_err = 1;
b0d5d10f
CM
6774 /* these must be set before we unlock the inode */
6775 inode->i_op = &btrfs_dir_inode_operations;
6776 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6777
2a7dba39 6778 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6779 if (err)
b0d5d10f 6780 goto out_fail_inode;
39279cc3 6781
6ef06d27 6782 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6783 err = btrfs_update_inode(trans, root, inode);
6784 if (err)
b0d5d10f 6785 goto out_fail_inode;
5f39d397 6786
db0a669f
NB
6787 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6788 dentry->d_name.name,
6789 dentry->d_name.len, 0, index);
39279cc3 6790 if (err)
b0d5d10f 6791 goto out_fail_inode;
5f39d397 6792
39279cc3 6793 d_instantiate(dentry, inode);
b0d5d10f
CM
6794 /*
6795 * mkdir is special. We're unlocking after we call d_instantiate
6796 * to avoid a race with nfsd calling d_instantiate.
6797 */
6798 unlock_new_inode(inode);
39279cc3 6799 drop_on_err = 0;
39279cc3
CM
6800
6801out_fail:
3a45bb20 6802 btrfs_end_transaction(trans);
c7cfb8a5
WS
6803 if (drop_on_err) {
6804 inode_dec_link_count(inode);
39279cc3 6805 iput(inode);
c7cfb8a5 6806 }
2ff7e61e 6807 btrfs_btree_balance_dirty(fs_info);
39279cc3 6808 return err;
b0d5d10f
CM
6809
6810out_fail_inode:
6811 unlock_new_inode(inode);
6812 goto out_fail;
39279cc3
CM
6813}
6814
e6c4efd8
QW
6815/* Find next extent map of a given extent map, caller needs to ensure locks */
6816static struct extent_map *next_extent_map(struct extent_map *em)
6817{
6818 struct rb_node *next;
6819
6820 next = rb_next(&em->rb_node);
6821 if (!next)
6822 return NULL;
6823 return container_of(next, struct extent_map, rb_node);
6824}
6825
6826static struct extent_map *prev_extent_map(struct extent_map *em)
6827{
6828 struct rb_node *prev;
6829
6830 prev = rb_prev(&em->rb_node);
6831 if (!prev)
6832 return NULL;
6833 return container_of(prev, struct extent_map, rb_node);
6834}
6835
d352ac68 6836/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6837 * the existing extent is the nearest extent to map_start,
d352ac68 6838 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6839 * the best fitted new extent into the tree.
d352ac68 6840 */
3b951516
CM
6841static int merge_extent_mapping(struct extent_map_tree *em_tree,
6842 struct extent_map *existing,
e6dcd2dc 6843 struct extent_map *em,
51f395ad 6844 u64 map_start)
3b951516 6845{
e6c4efd8
QW
6846 struct extent_map *prev;
6847 struct extent_map *next;
6848 u64 start;
6849 u64 end;
3b951516 6850 u64 start_diff;
3b951516 6851
e6dcd2dc 6852 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6853
6854 if (existing->start > map_start) {
6855 next = existing;
6856 prev = prev_extent_map(next);
6857 } else {
6858 prev = existing;
6859 next = next_extent_map(prev);
6860 }
6861
6862 start = prev ? extent_map_end(prev) : em->start;
6863 start = max_t(u64, start, em->start);
6864 end = next ? next->start : extent_map_end(em);
6865 end = min_t(u64, end, extent_map_end(em));
6866 start_diff = start - em->start;
6867 em->start = start;
6868 em->len = end - start;
c8b97818
CM
6869 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6870 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6871 em->block_start += start_diff;
c8b97818
CM
6872 em->block_len -= start_diff;
6873 }
09a2a8f9 6874 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6875}
6876
c8b97818 6877static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6878 struct page *page,
c8b97818
CM
6879 size_t pg_offset, u64 extent_offset,
6880 struct btrfs_file_extent_item *item)
6881{
6882 int ret;
6883 struct extent_buffer *leaf = path->nodes[0];
6884 char *tmp;
6885 size_t max_size;
6886 unsigned long inline_size;
6887 unsigned long ptr;
261507a0 6888 int compress_type;
c8b97818
CM
6889
6890 WARN_ON(pg_offset != 0);
261507a0 6891 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6892 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6893 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6894 btrfs_item_nr(path->slots[0]));
c8b97818 6895 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6896 if (!tmp)
6897 return -ENOMEM;
c8b97818
CM
6898 ptr = btrfs_file_extent_inline_start(item);
6899
6900 read_extent_buffer(leaf, tmp, ptr, inline_size);
6901
09cbfeaf 6902 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6903 ret = btrfs_decompress(compress_type, tmp, page,
6904 extent_offset, inline_size, max_size);
e1699d2d
ZB
6905
6906 /*
6907 * decompression code contains a memset to fill in any space between the end
6908 * of the uncompressed data and the end of max_size in case the decompressed
6909 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6910 * the end of an inline extent and the beginning of the next block, so we
6911 * cover that region here.
6912 */
6913
6914 if (max_size + pg_offset < PAGE_SIZE) {
6915 char *map = kmap(page);
6916 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6917 kunmap(page);
6918 }
c8b97818 6919 kfree(tmp);
166ae5a4 6920 return ret;
c8b97818
CM
6921}
6922
d352ac68
CM
6923/*
6924 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6925 * the ugly parts come from merging extents from the disk with the in-ram
6926 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6927 * where the in-ram extents might be locked pending data=ordered completion.
6928 *
6929 * This also copies inline extents directly into the page.
6930 */
fc4f21b1
NB
6931struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6932 struct page *page,
6933 size_t pg_offset, u64 start, u64 len,
6934 int create)
a52d9a80 6935{
fc4f21b1 6936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6937 int ret;
6938 int err = 0;
a52d9a80
CM
6939 u64 extent_start = 0;
6940 u64 extent_end = 0;
fc4f21b1 6941 u64 objectid = btrfs_ino(inode);
a52d9a80 6942 u32 found_type;
f421950f 6943 struct btrfs_path *path = NULL;
fc4f21b1 6944 struct btrfs_root *root = inode->root;
a52d9a80 6945 struct btrfs_file_extent_item *item;
5f39d397
CM
6946 struct extent_buffer *leaf;
6947 struct btrfs_key found_key;
a52d9a80 6948 struct extent_map *em = NULL;
fc4f21b1
NB
6949 struct extent_map_tree *em_tree = &inode->extent_tree;
6950 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6951 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6952 const bool new_inline = !page || create;
a52d9a80 6953
a52d9a80 6954again:
890871be 6955 read_lock(&em_tree->lock);
d1310b2e 6956 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6957 if (em)
0b246afa 6958 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6959 read_unlock(&em_tree->lock);
d1310b2e 6960
a52d9a80 6961 if (em) {
e1c4b745
CM
6962 if (em->start > start || em->start + em->len <= start)
6963 free_extent_map(em);
6964 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6965 free_extent_map(em);
6966 else
6967 goto out;
a52d9a80 6968 }
172ddd60 6969 em = alloc_extent_map();
a52d9a80 6970 if (!em) {
d1310b2e
CM
6971 err = -ENOMEM;
6972 goto out;
a52d9a80 6973 }
0b246afa 6974 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6975 em->start = EXTENT_MAP_HOLE;
445a6944 6976 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6977 em->len = (u64)-1;
c8b97818 6978 em->block_len = (u64)-1;
f421950f
CM
6979
6980 if (!path) {
6981 path = btrfs_alloc_path();
026fd317
JB
6982 if (!path) {
6983 err = -ENOMEM;
6984 goto out;
6985 }
6986 /*
6987 * Chances are we'll be called again, so go ahead and do
6988 * readahead
6989 */
e4058b54 6990 path->reada = READA_FORWARD;
f421950f
CM
6991 }
6992
179e29e4
CM
6993 ret = btrfs_lookup_file_extent(trans, root, path,
6994 objectid, start, trans != NULL);
a52d9a80
CM
6995 if (ret < 0) {
6996 err = ret;
6997 goto out;
6998 }
6999
7000 if (ret != 0) {
7001 if (path->slots[0] == 0)
7002 goto not_found;
7003 path->slots[0]--;
7004 }
7005
5f39d397
CM
7006 leaf = path->nodes[0];
7007 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 7008 struct btrfs_file_extent_item);
a52d9a80 7009 /* are we inside the extent that was found? */
5f39d397 7010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 7011 found_type = found_key.type;
5f39d397 7012 if (found_key.objectid != objectid ||
a52d9a80 7013 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7014 /*
7015 * If we backup past the first extent we want to move forward
7016 * and see if there is an extent in front of us, otherwise we'll
7017 * say there is a hole for our whole search range which can
7018 * cause problems.
7019 */
7020 extent_end = start;
7021 goto next;
a52d9a80
CM
7022 }
7023
5f39d397
CM
7024 found_type = btrfs_file_extent_type(leaf, item);
7025 extent_start = found_key.offset;
d899e052
YZ
7026 if (found_type == BTRFS_FILE_EXTENT_REG ||
7027 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7028 extent_end = extent_start +
db94535d 7029 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7030
7031 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7032 extent_start);
9036c102
YZ
7033 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7034 size_t size;
514ac8ad 7035 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7036 extent_end = ALIGN(extent_start + size,
0b246afa 7037 fs_info->sectorsize);
09ed2f16
LB
7038
7039 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7040 path->slots[0],
7041 extent_start);
9036c102 7042 }
25a50341 7043next:
9036c102
YZ
7044 if (start >= extent_end) {
7045 path->slots[0]++;
7046 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7047 ret = btrfs_next_leaf(root, path);
7048 if (ret < 0) {
7049 err = ret;
7050 goto out;
a52d9a80 7051 }
9036c102
YZ
7052 if (ret > 0)
7053 goto not_found;
7054 leaf = path->nodes[0];
a52d9a80 7055 }
9036c102
YZ
7056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7057 if (found_key.objectid != objectid ||
7058 found_key.type != BTRFS_EXTENT_DATA_KEY)
7059 goto not_found;
7060 if (start + len <= found_key.offset)
7061 goto not_found;
e2eca69d
WS
7062 if (start > found_key.offset)
7063 goto next;
9036c102 7064 em->start = start;
70c8a91c 7065 em->orig_start = start;
9036c102
YZ
7066 em->len = found_key.offset - start;
7067 goto not_found_em;
7068 }
7069
fc4f21b1 7070 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7071 new_inline, em);
7ffbb598 7072
d899e052
YZ
7073 if (found_type == BTRFS_FILE_EXTENT_REG ||
7074 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7075 goto insert;
7076 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7077 unsigned long ptr;
a52d9a80 7078 char *map;
3326d1b0
CM
7079 size_t size;
7080 size_t extent_offset;
7081 size_t copy_size;
a52d9a80 7082
7ffbb598 7083 if (new_inline)
689f9346 7084 goto out;
5f39d397 7085
514ac8ad 7086 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7087 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7088 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7089 size - extent_offset);
3326d1b0 7090 em->start = extent_start + extent_offset;
0b246afa 7091 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7092 em->orig_block_len = em->len;
70c8a91c 7093 em->orig_start = em->start;
689f9346 7094 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7095 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7096 if (btrfs_file_extent_compression(leaf, item) !=
7097 BTRFS_COMPRESS_NONE) {
e40da0e5 7098 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7099 extent_offset, item);
166ae5a4
ZB
7100 if (ret) {
7101 err = ret;
7102 goto out;
7103 }
c8b97818
CM
7104 } else {
7105 map = kmap(page);
7106 read_extent_buffer(leaf, map + pg_offset, ptr,
7107 copy_size);
09cbfeaf 7108 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7109 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7110 PAGE_SIZE - pg_offset -
93c82d57
CM
7111 copy_size);
7112 }
c8b97818
CM
7113 kunmap(page);
7114 }
179e29e4
CM
7115 flush_dcache_page(page);
7116 } else if (create && PageUptodate(page)) {
6bf7e080 7117 BUG();
179e29e4
CM
7118 if (!trans) {
7119 kunmap(page);
7120 free_extent_map(em);
7121 em = NULL;
ff5714cc 7122
b3b4aa74 7123 btrfs_release_path(path);
7a7eaa40 7124 trans = btrfs_join_transaction(root);
ff5714cc 7125
3612b495
TI
7126 if (IS_ERR(trans))
7127 return ERR_CAST(trans);
179e29e4
CM
7128 goto again;
7129 }
c8b97818 7130 map = kmap(page);
70dec807 7131 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7132 copy_size);
c8b97818 7133 kunmap(page);
179e29e4 7134 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7135 }
d1310b2e 7136 set_extent_uptodate(io_tree, em->start,
507903b8 7137 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7138 goto insert;
a52d9a80
CM
7139 }
7140not_found:
7141 em->start = start;
70c8a91c 7142 em->orig_start = start;
d1310b2e 7143 em->len = len;
a52d9a80 7144not_found_em:
5f39d397 7145 em->block_start = EXTENT_MAP_HOLE;
9036c102 7146 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7147insert:
b3b4aa74 7148 btrfs_release_path(path);
d1310b2e 7149 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7150 btrfs_err(fs_info,
5d163e0e
JM
7151 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7152 em->start, em->len, start, len);
a52d9a80
CM
7153 err = -EIO;
7154 goto out;
7155 }
d1310b2e
CM
7156
7157 err = 0;
890871be 7158 write_lock(&em_tree->lock);
09a2a8f9 7159 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7160 /* it is possible that someone inserted the extent into the tree
7161 * while we had the lock dropped. It is also possible that
7162 * an overlapping map exists in the tree
7163 */
a52d9a80 7164 if (ret == -EEXIST) {
3b951516 7165 struct extent_map *existing;
e6dcd2dc
CM
7166
7167 ret = 0;
7168
e6c4efd8
QW
7169 existing = search_extent_mapping(em_tree, start, len);
7170 /*
7171 * existing will always be non-NULL, since there must be
7172 * extent causing the -EEXIST.
7173 */
8dff9c85 7174 if (existing->start == em->start &&
8e2bd3b7 7175 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7176 em->block_start == existing->block_start) {
7177 /*
8e2bd3b7
OS
7178 * The existing extent map already encompasses the
7179 * entire extent map we tried to add.
8dff9c85
CM
7180 */
7181 free_extent_map(em);
7182 em = existing;
7183 err = 0;
7184
7185 } else if (start >= extent_map_end(existing) ||
32be3a1a 7186 start <= existing->start) {
e6c4efd8
QW
7187 /*
7188 * The existing extent map is the one nearest to
7189 * the [start, start + len) range which overlaps
7190 */
7191 err = merge_extent_mapping(em_tree, existing,
7192 em, start);
e1c4b745 7193 free_extent_map(existing);
e6c4efd8 7194 if (err) {
3b951516
CM
7195 free_extent_map(em);
7196 em = NULL;
7197 }
7198 } else {
7199 free_extent_map(em);
7200 em = existing;
e6dcd2dc 7201 err = 0;
a52d9a80 7202 }
a52d9a80 7203 }
890871be 7204 write_unlock(&em_tree->lock);
a52d9a80 7205out:
1abe9b8a 7206
fc4f21b1 7207 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7208
527afb44 7209 btrfs_free_path(path);
a52d9a80 7210 if (trans) {
3a45bb20 7211 ret = btrfs_end_transaction(trans);
d397712b 7212 if (!err)
a52d9a80
CM
7213 err = ret;
7214 }
a52d9a80
CM
7215 if (err) {
7216 free_extent_map(em);
a52d9a80
CM
7217 return ERR_PTR(err);
7218 }
79787eaa 7219 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7220 return em;
7221}
7222
fc4f21b1
NB
7223struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7224 struct page *page,
7225 size_t pg_offset, u64 start, u64 len,
7226 int create)
ec29ed5b
CM
7227{
7228 struct extent_map *em;
7229 struct extent_map *hole_em = NULL;
7230 u64 range_start = start;
7231 u64 end;
7232 u64 found;
7233 u64 found_end;
7234 int err = 0;
7235
7236 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7237 if (IS_ERR(em))
7238 return em;
9986277e
DC
7239 /*
7240 * If our em maps to:
7241 * - a hole or
7242 * - a pre-alloc extent,
7243 * there might actually be delalloc bytes behind it.
7244 */
7245 if (em->block_start != EXTENT_MAP_HOLE &&
7246 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7247 return em;
7248 else
7249 hole_em = em;
ec29ed5b
CM
7250
7251 /* check to see if we've wrapped (len == -1 or similar) */
7252 end = start + len;
7253 if (end < start)
7254 end = (u64)-1;
7255 else
7256 end -= 1;
7257
7258 em = NULL;
7259
7260 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7261 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7262 end, len, EXTENT_DELALLOC, 1);
7263 found_end = range_start + found;
7264 if (found_end < range_start)
7265 found_end = (u64)-1;
7266
7267 /*
7268 * we didn't find anything useful, return
7269 * the original results from get_extent()
7270 */
7271 if (range_start > end || found_end <= start) {
7272 em = hole_em;
7273 hole_em = NULL;
7274 goto out;
7275 }
7276
7277 /* adjust the range_start to make sure it doesn't
7278 * go backwards from the start they passed in
7279 */
67871254 7280 range_start = max(start, range_start);
ec29ed5b
CM
7281 found = found_end - range_start;
7282
7283 if (found > 0) {
7284 u64 hole_start = start;
7285 u64 hole_len = len;
7286
172ddd60 7287 em = alloc_extent_map();
ec29ed5b
CM
7288 if (!em) {
7289 err = -ENOMEM;
7290 goto out;
7291 }
7292 /*
7293 * when btrfs_get_extent can't find anything it
7294 * returns one huge hole
7295 *
7296 * make sure what it found really fits our range, and
7297 * adjust to make sure it is based on the start from
7298 * the caller
7299 */
7300 if (hole_em) {
7301 u64 calc_end = extent_map_end(hole_em);
7302
7303 if (calc_end <= start || (hole_em->start > end)) {
7304 free_extent_map(hole_em);
7305 hole_em = NULL;
7306 } else {
7307 hole_start = max(hole_em->start, start);
7308 hole_len = calc_end - hole_start;
7309 }
7310 }
7311 em->bdev = NULL;
7312 if (hole_em && range_start > hole_start) {
7313 /* our hole starts before our delalloc, so we
7314 * have to return just the parts of the hole
7315 * that go until the delalloc starts
7316 */
7317 em->len = min(hole_len,
7318 range_start - hole_start);
7319 em->start = hole_start;
7320 em->orig_start = hole_start;
7321 /*
7322 * don't adjust block start at all,
7323 * it is fixed at EXTENT_MAP_HOLE
7324 */
7325 em->block_start = hole_em->block_start;
7326 em->block_len = hole_len;
f9e4fb53
LB
7327 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7328 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7329 } else {
7330 em->start = range_start;
7331 em->len = found;
7332 em->orig_start = range_start;
7333 em->block_start = EXTENT_MAP_DELALLOC;
7334 em->block_len = found;
7335 }
7336 } else if (hole_em) {
7337 return hole_em;
7338 }
7339out:
7340
7341 free_extent_map(hole_em);
7342 if (err) {
7343 free_extent_map(em);
7344 return ERR_PTR(err);
7345 }
7346 return em;
7347}
7348
5f9a8a51
FM
7349static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7350 const u64 start,
7351 const u64 len,
7352 const u64 orig_start,
7353 const u64 block_start,
7354 const u64 block_len,
7355 const u64 orig_block_len,
7356 const u64 ram_bytes,
7357 const int type)
7358{
7359 struct extent_map *em = NULL;
7360 int ret;
7361
5f9a8a51 7362 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7363 em = create_io_em(inode, start, len, orig_start,
7364 block_start, block_len, orig_block_len,
7365 ram_bytes,
7366 BTRFS_COMPRESS_NONE, /* compress_type */
7367 type);
5f9a8a51
FM
7368 if (IS_ERR(em))
7369 goto out;
7370 }
7371 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7372 len, block_len, type);
7373 if (ret) {
7374 if (em) {
7375 free_extent_map(em);
dcdbc059 7376 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7377 start + len - 1, 0);
7378 }
7379 em = ERR_PTR(ret);
7380 }
7381 out:
5f9a8a51
FM
7382
7383 return em;
7384}
7385
4b46fce2
JB
7386static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7387 u64 start, u64 len)
7388{
0b246afa 7389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7390 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7391 struct extent_map *em;
4b46fce2
JB
7392 struct btrfs_key ins;
7393 u64 alloc_hint;
7394 int ret;
4b46fce2 7395
4b46fce2 7396 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7397 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7398 0, alloc_hint, &ins, 1, 1);
00361589
JB
7399 if (ret)
7400 return ERR_PTR(ret);
4b46fce2 7401
5f9a8a51
FM
7402 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7403 ins.objectid, ins.offset, ins.offset,
6288d6ea 7404 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7405 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7406 if (IS_ERR(em))
2ff7e61e
JM
7407 btrfs_free_reserved_extent(fs_info, ins.objectid,
7408 ins.offset, 1);
de0ee0ed 7409
4b46fce2
JB
7410 return em;
7411}
7412
46bfbb5c
CM
7413/*
7414 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7415 * block must be cow'd
7416 */
00361589 7417noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7418 u64 *orig_start, u64 *orig_block_len,
7419 u64 *ram_bytes)
46bfbb5c 7420{
2ff7e61e 7421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7422 struct btrfs_path *path;
7423 int ret;
7424 struct extent_buffer *leaf;
7425 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7426 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7427 struct btrfs_file_extent_item *fi;
7428 struct btrfs_key key;
7429 u64 disk_bytenr;
7430 u64 backref_offset;
7431 u64 extent_end;
7432 u64 num_bytes;
7433 int slot;
7434 int found_type;
7ee9e440 7435 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7436
46bfbb5c
CM
7437 path = btrfs_alloc_path();
7438 if (!path)
7439 return -ENOMEM;
7440
f85b7379
DS
7441 ret = btrfs_lookup_file_extent(NULL, root, path,
7442 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7443 if (ret < 0)
7444 goto out;
7445
7446 slot = path->slots[0];
7447 if (ret == 1) {
7448 if (slot == 0) {
7449 /* can't find the item, must cow */
7450 ret = 0;
7451 goto out;
7452 }
7453 slot--;
7454 }
7455 ret = 0;
7456 leaf = path->nodes[0];
7457 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7458 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7459 key.type != BTRFS_EXTENT_DATA_KEY) {
7460 /* not our file or wrong item type, must cow */
7461 goto out;
7462 }
7463
7464 if (key.offset > offset) {
7465 /* Wrong offset, must cow */
7466 goto out;
7467 }
7468
7469 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7470 found_type = btrfs_file_extent_type(leaf, fi);
7471 if (found_type != BTRFS_FILE_EXTENT_REG &&
7472 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7473 /* not a regular extent, must cow */
7474 goto out;
7475 }
7ee9e440
JB
7476
7477 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7478 goto out;
7479
e77751aa
MX
7480 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7481 if (extent_end <= offset)
7482 goto out;
7483
46bfbb5c 7484 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7485 if (disk_bytenr == 0)
7486 goto out;
7487
7488 if (btrfs_file_extent_compression(leaf, fi) ||
7489 btrfs_file_extent_encryption(leaf, fi) ||
7490 btrfs_file_extent_other_encoding(leaf, fi))
7491 goto out;
7492
46bfbb5c
CM
7493 backref_offset = btrfs_file_extent_offset(leaf, fi);
7494
7ee9e440
JB
7495 if (orig_start) {
7496 *orig_start = key.offset - backref_offset;
7497 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7498 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7499 }
eb384b55 7500
2ff7e61e 7501 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7502 goto out;
7b2b7085
MX
7503
7504 num_bytes = min(offset + *len, extent_end) - offset;
7505 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7506 u64 range_end;
7507
da17066c
JM
7508 range_end = round_up(offset + num_bytes,
7509 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7510 ret = test_range_bit(io_tree, offset, range_end,
7511 EXTENT_DELALLOC, 0, NULL);
7512 if (ret) {
7513 ret = -EAGAIN;
7514 goto out;
7515 }
7516 }
7517
1bda19eb 7518 btrfs_release_path(path);
46bfbb5c
CM
7519
7520 /*
7521 * look for other files referencing this extent, if we
7522 * find any we must cow
7523 */
00361589 7524
e4c3b2dc 7525 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7526 key.offset - backref_offset, disk_bytenr);
00361589
JB
7527 if (ret) {
7528 ret = 0;
7529 goto out;
7530 }
46bfbb5c
CM
7531
7532 /*
7533 * adjust disk_bytenr and num_bytes to cover just the bytes
7534 * in this extent we are about to write. If there
7535 * are any csums in that range we have to cow in order
7536 * to keep the csums correct
7537 */
7538 disk_bytenr += backref_offset;
7539 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7540 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7541 goto out;
46bfbb5c
CM
7542 /*
7543 * all of the above have passed, it is safe to overwrite this extent
7544 * without cow
7545 */
eb384b55 7546 *len = num_bytes;
46bfbb5c
CM
7547 ret = 1;
7548out:
7549 btrfs_free_path(path);
7550 return ret;
7551}
7552
fc4adbff
AG
7553bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7554{
7555 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7556 bool found = false;
fc4adbff
AG
7557 void **pagep = NULL;
7558 struct page *page = NULL;
cc2b702c
DS
7559 unsigned long start_idx;
7560 unsigned long end_idx;
fc4adbff 7561
09cbfeaf 7562 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7563
7564 /*
7565 * end is the last byte in the last page. end == start is legal
7566 */
09cbfeaf 7567 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7568
7569 rcu_read_lock();
7570
7571 /* Most of the code in this while loop is lifted from
7572 * find_get_page. It's been modified to begin searching from a
7573 * page and return just the first page found in that range. If the
7574 * found idx is less than or equal to the end idx then we know that
7575 * a page exists. If no pages are found or if those pages are
7576 * outside of the range then we're fine (yay!) */
7577 while (page == NULL &&
7578 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7579 page = radix_tree_deref_slot(pagep);
7580 if (unlikely(!page))
7581 break;
7582
7583 if (radix_tree_exception(page)) {
809f9016
FM
7584 if (radix_tree_deref_retry(page)) {
7585 page = NULL;
fc4adbff 7586 continue;
809f9016 7587 }
fc4adbff
AG
7588 /*
7589 * Otherwise, shmem/tmpfs must be storing a swap entry
7590 * here as an exceptional entry: so return it without
7591 * attempting to raise page count.
7592 */
6fdef6d4 7593 page = NULL;
fc4adbff
AG
7594 break; /* TODO: Is this relevant for this use case? */
7595 }
7596
91405151
FM
7597 if (!page_cache_get_speculative(page)) {
7598 page = NULL;
fc4adbff 7599 continue;
91405151 7600 }
fc4adbff
AG
7601
7602 /*
7603 * Has the page moved?
7604 * This is part of the lockless pagecache protocol. See
7605 * include/linux/pagemap.h for details.
7606 */
7607 if (unlikely(page != *pagep)) {
09cbfeaf 7608 put_page(page);
fc4adbff
AG
7609 page = NULL;
7610 }
7611 }
7612
7613 if (page) {
7614 if (page->index <= end_idx)
7615 found = true;
09cbfeaf 7616 put_page(page);
fc4adbff
AG
7617 }
7618
7619 rcu_read_unlock();
7620 return found;
7621}
7622
eb838e73
JB
7623static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7624 struct extent_state **cached_state, int writing)
7625{
7626 struct btrfs_ordered_extent *ordered;
7627 int ret = 0;
7628
7629 while (1) {
7630 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7631 cached_state);
eb838e73
JB
7632 /*
7633 * We're concerned with the entire range that we're going to be
01327610 7634 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7635 * extents in this range.
7636 */
a776c6fa 7637 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7638 lockend - lockstart + 1);
7639
7640 /*
7641 * We need to make sure there are no buffered pages in this
7642 * range either, we could have raced between the invalidate in
7643 * generic_file_direct_write and locking the extent. The
7644 * invalidate needs to happen so that reads after a write do not
7645 * get stale data.
7646 */
fc4adbff
AG
7647 if (!ordered &&
7648 (!writing ||
7649 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7650 break;
7651
7652 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7653 cached_state, GFP_NOFS);
7654
7655 if (ordered) {
ade77029
FM
7656 /*
7657 * If we are doing a DIO read and the ordered extent we
7658 * found is for a buffered write, we can not wait for it
7659 * to complete and retry, because if we do so we can
7660 * deadlock with concurrent buffered writes on page
7661 * locks. This happens only if our DIO read covers more
7662 * than one extent map, if at this point has already
7663 * created an ordered extent for a previous extent map
7664 * and locked its range in the inode's io tree, and a
7665 * concurrent write against that previous extent map's
7666 * range and this range started (we unlock the ranges
7667 * in the io tree only when the bios complete and
7668 * buffered writes always lock pages before attempting
7669 * to lock range in the io tree).
7670 */
7671 if (writing ||
7672 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7673 btrfs_start_ordered_extent(inode, ordered, 1);
7674 else
7675 ret = -ENOTBLK;
eb838e73
JB
7676 btrfs_put_ordered_extent(ordered);
7677 } else {
eb838e73 7678 /*
b850ae14
FM
7679 * We could trigger writeback for this range (and wait
7680 * for it to complete) and then invalidate the pages for
7681 * this range (through invalidate_inode_pages2_range()),
7682 * but that can lead us to a deadlock with a concurrent
7683 * call to readpages() (a buffered read or a defrag call
7684 * triggered a readahead) on a page lock due to an
7685 * ordered dio extent we created before but did not have
7686 * yet a corresponding bio submitted (whence it can not
7687 * complete), which makes readpages() wait for that
7688 * ordered extent to complete while holding a lock on
7689 * that page.
eb838e73 7690 */
b850ae14 7691 ret = -ENOTBLK;
eb838e73
JB
7692 }
7693
ade77029
FM
7694 if (ret)
7695 break;
7696
eb838e73
JB
7697 cond_resched();
7698 }
7699
7700 return ret;
7701}
7702
6f9994db
LB
7703/* The callers of this must take lock_extent() */
7704static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7705 u64 orig_start, u64 block_start,
7706 u64 block_len, u64 orig_block_len,
7707 u64 ram_bytes, int compress_type,
7708 int type)
69ffb543
JB
7709{
7710 struct extent_map_tree *em_tree;
7711 struct extent_map *em;
7712 struct btrfs_root *root = BTRFS_I(inode)->root;
7713 int ret;
7714
6f9994db
LB
7715 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7716 type == BTRFS_ORDERED_COMPRESSED ||
7717 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7718 type == BTRFS_ORDERED_REGULAR);
6f9994db 7719
69ffb543
JB
7720 em_tree = &BTRFS_I(inode)->extent_tree;
7721 em = alloc_extent_map();
7722 if (!em)
7723 return ERR_PTR(-ENOMEM);
7724
7725 em->start = start;
7726 em->orig_start = orig_start;
7727 em->len = len;
7728 em->block_len = block_len;
7729 em->block_start = block_start;
7730 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7731 em->orig_block_len = orig_block_len;
cc95bef6 7732 em->ram_bytes = ram_bytes;
70c8a91c 7733 em->generation = -1;
69ffb543 7734 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7735 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7736 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7737 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7738 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7739 em->compress_type = compress_type;
7740 }
69ffb543
JB
7741
7742 do {
dcdbc059 7743 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7744 em->start + em->len - 1, 0);
7745 write_lock(&em_tree->lock);
09a2a8f9 7746 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7747 write_unlock(&em_tree->lock);
6f9994db
LB
7748 /*
7749 * The caller has taken lock_extent(), who could race with us
7750 * to add em?
7751 */
69ffb543
JB
7752 } while (ret == -EEXIST);
7753
7754 if (ret) {
7755 free_extent_map(em);
7756 return ERR_PTR(ret);
7757 }
7758
6f9994db 7759 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7760 return em;
7761}
7762
4b46fce2
JB
7763static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7764 struct buffer_head *bh_result, int create)
7765{
0b246afa 7766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7767 struct extent_map *em;
eb838e73 7768 struct extent_state *cached_state = NULL;
50745b0a 7769 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7770 u64 start = iblock << inode->i_blkbits;
eb838e73 7771 u64 lockstart, lockend;
4b46fce2 7772 u64 len = bh_result->b_size;
eb838e73 7773 int unlock_bits = EXTENT_LOCKED;
0934856d 7774 int ret = 0;
eb838e73 7775
172a5049 7776 if (create)
3266789f 7777 unlock_bits |= EXTENT_DIRTY;
172a5049 7778 else
0b246afa 7779 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7780
c329861d
JB
7781 lockstart = start;
7782 lockend = start + len - 1;
7783
e1cbbfa5
JB
7784 if (current->journal_info) {
7785 /*
7786 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7787 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7788 * confused.
7789 */
50745b0a 7790 dio_data = current->journal_info;
e1cbbfa5
JB
7791 current->journal_info = NULL;
7792 }
7793
eb838e73
JB
7794 /*
7795 * If this errors out it's because we couldn't invalidate pagecache for
7796 * this range and we need to fallback to buffered.
7797 */
9c9464cc
FM
7798 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7799 create)) {
7800 ret = -ENOTBLK;
7801 goto err;
7802 }
eb838e73 7803
fc4f21b1 7804 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7805 if (IS_ERR(em)) {
7806 ret = PTR_ERR(em);
7807 goto unlock_err;
7808 }
4b46fce2
JB
7809
7810 /*
7811 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7812 * io. INLINE is special, and we could probably kludge it in here, but
7813 * it's still buffered so for safety lets just fall back to the generic
7814 * buffered path.
7815 *
7816 * For COMPRESSED we _have_ to read the entire extent in so we can
7817 * decompress it, so there will be buffering required no matter what we
7818 * do, so go ahead and fallback to buffered.
7819 *
01327610 7820 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7821 * to buffered IO. Don't blame me, this is the price we pay for using
7822 * the generic code.
7823 */
7824 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7825 em->block_start == EXTENT_MAP_INLINE) {
7826 free_extent_map(em);
eb838e73
JB
7827 ret = -ENOTBLK;
7828 goto unlock_err;
4b46fce2
JB
7829 }
7830
7831 /* Just a good old fashioned hole, return */
7832 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7833 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7834 free_extent_map(em);
eb838e73 7835 goto unlock_err;
4b46fce2
JB
7836 }
7837
7838 /*
7839 * We don't allocate a new extent in the following cases
7840 *
7841 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7842 * existing extent.
7843 * 2) The extent is marked as PREALLOC. We're good to go here and can
7844 * just use the extent.
7845 *
7846 */
46bfbb5c 7847 if (!create) {
eb838e73
JB
7848 len = min(len, em->len - (start - em->start));
7849 lockstart = start + len;
7850 goto unlock;
46bfbb5c 7851 }
4b46fce2
JB
7852
7853 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7854 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7855 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7856 int type;
eb384b55 7857 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7858
7859 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7860 type = BTRFS_ORDERED_PREALLOC;
7861 else
7862 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7863 len = min(len, em->len - (start - em->start));
4b46fce2 7864 block_start = em->block_start + (start - em->start);
46bfbb5c 7865
00361589 7866 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7867 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7868 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7869 struct extent_map *em2;
0b901916 7870
5f9a8a51
FM
7871 em2 = btrfs_create_dio_extent(inode, start, len,
7872 orig_start, block_start,
7873 len, orig_block_len,
7874 ram_bytes, type);
0b246afa 7875 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7876 if (type == BTRFS_ORDERED_PREALLOC) {
7877 free_extent_map(em);
5f9a8a51 7878 em = em2;
69ffb543 7879 }
5f9a8a51
FM
7880 if (em2 && IS_ERR(em2)) {
7881 ret = PTR_ERR(em2);
eb838e73 7882 goto unlock_err;
46bfbb5c 7883 }
18513091
WX
7884 /*
7885 * For inode marked NODATACOW or extent marked PREALLOC,
7886 * use the existing or preallocated extent, so does not
7887 * need to adjust btrfs_space_info's bytes_may_use.
7888 */
7889 btrfs_free_reserved_data_space_noquota(inode,
7890 start, len);
46bfbb5c 7891 goto unlock;
4b46fce2 7892 }
4b46fce2 7893 }
00361589 7894
46bfbb5c
CM
7895 /*
7896 * this will cow the extent, reset the len in case we changed
7897 * it above
7898 */
7899 len = bh_result->b_size;
70c8a91c
JB
7900 free_extent_map(em);
7901 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7902 if (IS_ERR(em)) {
7903 ret = PTR_ERR(em);
7904 goto unlock_err;
7905 }
46bfbb5c
CM
7906 len = min(len, em->len - (start - em->start));
7907unlock:
4b46fce2
JB
7908 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7909 inode->i_blkbits;
46bfbb5c 7910 bh_result->b_size = len;
4b46fce2
JB
7911 bh_result->b_bdev = em->bdev;
7912 set_buffer_mapped(bh_result);
c3473e83
JB
7913 if (create) {
7914 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7915 set_buffer_new(bh_result);
7916
7917 /*
7918 * Need to update the i_size under the extent lock so buffered
7919 * readers will get the updated i_size when we unlock.
7920 */
4aaedfb0 7921 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7922 i_size_write(inode, start + len);
0934856d 7923
50745b0a 7924 WARN_ON(dio_data->reserve < len);
7925 dio_data->reserve -= len;
f28a4928 7926 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7927 current->journal_info = dio_data;
c3473e83 7928 }
4b46fce2 7929
eb838e73
JB
7930 /*
7931 * In the case of write we need to clear and unlock the entire range,
7932 * in the case of read we need to unlock only the end area that we
7933 * aren't using if there is any left over space.
7934 */
24c03fa5 7935 if (lockstart < lockend) {
0934856d
MX
7936 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7937 lockend, unlock_bits, 1, 0,
ae0f1625 7938 &cached_state);
24c03fa5 7939 } else {
eb838e73 7940 free_extent_state(cached_state);
24c03fa5 7941 }
eb838e73 7942
4b46fce2
JB
7943 free_extent_map(em);
7944
7945 return 0;
eb838e73
JB
7946
7947unlock_err:
eb838e73 7948 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7949 unlock_bits, 1, 0, &cached_state);
9c9464cc 7950err:
50745b0a 7951 if (dio_data)
7952 current->journal_info = dio_data;
eb838e73 7953 return ret;
4b46fce2
JB
7954}
7955
58efbc9f
OS
7956static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7957 struct bio *bio,
7958 int mirror_num)
8b110e39 7959{
2ff7e61e 7960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7961 blk_status_t ret;
8b110e39 7962
37226b21 7963 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7964
7965 bio_get(bio);
7966
2ff7e61e 7967 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7968 if (ret)
7969 goto err;
7970
2ff7e61e 7971 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7972err:
7973 bio_put(bio);
7974 return ret;
7975}
7976
7977static int btrfs_check_dio_repairable(struct inode *inode,
7978 struct bio *failed_bio,
7979 struct io_failure_record *failrec,
7980 int failed_mirror)
7981{
ab8d0fc4 7982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7983 int num_copies;
7984
ab8d0fc4 7985 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7986 if (num_copies == 1) {
7987 /*
7988 * we only have a single copy of the data, so don't bother with
7989 * all the retry and error correction code that follows. no
7990 * matter what the error is, it is very likely to persist.
7991 */
ab8d0fc4
JM
7992 btrfs_debug(fs_info,
7993 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7994 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7995 return 0;
7996 }
7997
7998 failrec->failed_mirror = failed_mirror;
7999 failrec->this_mirror++;
8000 if (failrec->this_mirror == failed_mirror)
8001 failrec->this_mirror++;
8002
8003 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
8004 btrfs_debug(fs_info,
8005 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8006 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
8007 return 0;
8008 }
8009
8010 return 1;
8011}
8012
58efbc9f
OS
8013static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8014 struct page *page, unsigned int pgoff,
8015 u64 start, u64 end, int failed_mirror,
8016 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
8017{
8018 struct io_failure_record *failrec;
7870d082
JB
8019 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8020 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
8021 struct bio *bio;
8022 int isector;
f1c77c55 8023 unsigned int read_mode = 0;
17347cec 8024 int segs;
8b110e39 8025 int ret;
58efbc9f 8026 blk_status_t status;
8b110e39 8027
37226b21 8028 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
8029
8030 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8031 if (ret)
58efbc9f 8032 return errno_to_blk_status(ret);
8b110e39
MX
8033
8034 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8035 failed_mirror);
8036 if (!ret) {
7870d082 8037 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 8038 return BLK_STS_IOERR;
8b110e39
MX
8039 }
8040
17347cec
LB
8041 segs = bio_segments(failed_bio);
8042 if (segs > 1 ||
8043 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8044 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8045
8046 isector = start - btrfs_io_bio(failed_bio)->logical;
8047 isector >>= inode->i_sb->s_blocksize_bits;
8048 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8049 pgoff, isector, repair_endio, repair_arg);
37226b21 8050 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8051
8052 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 8053 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
8054 read_mode, failrec->this_mirror, failrec->in_validation);
8055
58efbc9f
OS
8056 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8057 if (status) {
7870d082 8058 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8059 bio_put(bio);
8060 }
8061
58efbc9f 8062 return status;
8b110e39
MX
8063}
8064
8065struct btrfs_retry_complete {
8066 struct completion done;
8067 struct inode *inode;
8068 u64 start;
8069 int uptodate;
8070};
8071
4246a0b6 8072static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8073{
8074 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8075 struct inode *inode = done->inode;
8b110e39 8076 struct bio_vec *bvec;
7870d082 8077 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8078 int i;
8079
4e4cbee9 8080 if (bio->bi_status)
8b110e39
MX
8081 goto end;
8082
2dabb324 8083 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8084 io_tree = &BTRFS_I(inode)->io_tree;
8085 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8086 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8087
8b110e39 8088 done->uptodate = 1;
c09abff8 8089 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8090 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8091 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8092 io_tree, done->start, bvec->bv_page,
8093 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8094end:
8095 complete(&done->done);
8096 bio_put(bio);
8097}
8098
58efbc9f
OS
8099static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8100 struct btrfs_io_bio *io_bio)
4b46fce2 8101{
2dabb324 8102 struct btrfs_fs_info *fs_info;
17347cec
LB
8103 struct bio_vec bvec;
8104 struct bvec_iter iter;
8b110e39 8105 struct btrfs_retry_complete done;
4b46fce2 8106 u64 start;
2dabb324
CR
8107 unsigned int pgoff;
8108 u32 sectorsize;
8109 int nr_sectors;
58efbc9f
OS
8110 blk_status_t ret;
8111 blk_status_t err = BLK_STS_OK;
4b46fce2 8112
2dabb324 8113 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8114 sectorsize = fs_info->sectorsize;
2dabb324 8115
8b110e39
MX
8116 start = io_bio->logical;
8117 done.inode = inode;
17347cec 8118 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8119
17347cec
LB
8120 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8121 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8122 pgoff = bvec.bv_offset;
2dabb324
CR
8123
8124next_block_or_try_again:
8b110e39
MX
8125 done.uptodate = 0;
8126 done.start = start;
8127 init_completion(&done.done);
8128
17347cec 8129 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8130 pgoff, start, start + sectorsize - 1,
8131 io_bio->mirror_num,
8132 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8133 if (ret) {
8134 err = ret;
8135 goto next;
8136 }
8b110e39 8137
9c17f6cd 8138 wait_for_completion_io(&done.done);
8b110e39
MX
8139
8140 if (!done.uptodate) {
8141 /* We might have another mirror, so try again */
2dabb324 8142 goto next_block_or_try_again;
8b110e39
MX
8143 }
8144
629ebf4f 8145next:
2dabb324
CR
8146 start += sectorsize;
8147
97bf5a55
LB
8148 nr_sectors--;
8149 if (nr_sectors) {
2dabb324 8150 pgoff += sectorsize;
97bf5a55 8151 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8152 goto next_block_or_try_again;
8153 }
8b110e39
MX
8154 }
8155
629ebf4f 8156 return err;
8b110e39
MX
8157}
8158
4246a0b6 8159static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8160{
8161 struct btrfs_retry_complete *done = bio->bi_private;
8162 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8163 struct extent_io_tree *io_tree, *failure_tree;
8164 struct inode *inode = done->inode;
8b110e39
MX
8165 struct bio_vec *bvec;
8166 int uptodate;
8167 int ret;
8168 int i;
8169
4e4cbee9 8170 if (bio->bi_status)
8b110e39
MX
8171 goto end;
8172
8173 uptodate = 1;
2dabb324 8174
2dabb324 8175 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8176 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8177
7870d082
JB
8178 io_tree = &BTRFS_I(inode)->io_tree;
8179 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8180
c09abff8 8181 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8182 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8183 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8184 bvec->bv_offset, done->start,
8185 bvec->bv_len);
8b110e39 8186 if (!ret)
7870d082
JB
8187 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8188 failure_tree, io_tree, done->start,
8189 bvec->bv_page,
8190 btrfs_ino(BTRFS_I(inode)),
8191 bvec->bv_offset);
8b110e39
MX
8192 else
8193 uptodate = 0;
8194 }
8195
8196 done->uptodate = uptodate;
8197end:
8198 complete(&done->done);
8199 bio_put(bio);
8200}
8201
4e4cbee9
CH
8202static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8203 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8204{
2dabb324 8205 struct btrfs_fs_info *fs_info;
17347cec
LB
8206 struct bio_vec bvec;
8207 struct bvec_iter iter;
8b110e39
MX
8208 struct btrfs_retry_complete done;
8209 u64 start;
8210 u64 offset = 0;
2dabb324
CR
8211 u32 sectorsize;
8212 int nr_sectors;
8213 unsigned int pgoff;
8214 int csum_pos;
ef7cdac1 8215 bool uptodate = (err == 0);
8b110e39 8216 int ret;
58efbc9f 8217 blk_status_t status;
dc380aea 8218
2dabb324 8219 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8220 sectorsize = fs_info->sectorsize;
2dabb324 8221
58efbc9f 8222 err = BLK_STS_OK;
c1dc0896 8223 start = io_bio->logical;
8b110e39 8224 done.inode = inode;
17347cec 8225 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8226
17347cec
LB
8227 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8228 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8229
17347cec 8230 pgoff = bvec.bv_offset;
2dabb324 8231next_block:
ef7cdac1
LB
8232 if (uptodate) {
8233 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8234 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8235 bvec.bv_page, pgoff, start, sectorsize);
8236 if (likely(!ret))
8237 goto next;
8238 }
8b110e39
MX
8239try_again:
8240 done.uptodate = 0;
8241 done.start = start;
8242 init_completion(&done.done);
8243
58efbc9f
OS
8244 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8245 pgoff, start, start + sectorsize - 1,
8246 io_bio->mirror_num, btrfs_retry_endio,
8247 &done);
8248 if (status) {
8249 err = status;
8b110e39
MX
8250 goto next;
8251 }
8252
9c17f6cd 8253 wait_for_completion_io(&done.done);
8b110e39
MX
8254
8255 if (!done.uptodate) {
8256 /* We might have another mirror, so try again */
8257 goto try_again;
8258 }
8259next:
2dabb324
CR
8260 offset += sectorsize;
8261 start += sectorsize;
8262
8263 ASSERT(nr_sectors);
8264
97bf5a55
LB
8265 nr_sectors--;
8266 if (nr_sectors) {
2dabb324 8267 pgoff += sectorsize;
97bf5a55 8268 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8269 goto next_block;
8270 }
2c30c71b 8271 }
c1dc0896
MX
8272
8273 return err;
8274}
8275
4e4cbee9
CH
8276static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8277 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8278{
8279 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8280
8281 if (skip_csum) {
8282 if (unlikely(err))
8283 return __btrfs_correct_data_nocsum(inode, io_bio);
8284 else
58efbc9f 8285 return BLK_STS_OK;
8b110e39
MX
8286 } else {
8287 return __btrfs_subio_endio_read(inode, io_bio, err);
8288 }
8289}
8290
4246a0b6 8291static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8292{
8293 struct btrfs_dio_private *dip = bio->bi_private;
8294 struct inode *inode = dip->inode;
8295 struct bio *dio_bio;
8296 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8297 blk_status_t err = bio->bi_status;
c1dc0896 8298
99c4e3b9 8299 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8300 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8301
4b46fce2 8302 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8303 dip->logical_offset + dip->bytes - 1);
9be3395b 8304 dio_bio = dip->dio_bio;
4b46fce2 8305
4b46fce2 8306 kfree(dip);
c0da7aa1 8307
99c4e3b9 8308 dio_bio->bi_status = err;
4055351c 8309 dio_end_io(dio_bio);
23ea8e5a
MX
8310
8311 if (io_bio->end_io)
4e4cbee9 8312 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8313 bio_put(bio);
4b46fce2
JB
8314}
8315
52427260
QW
8316static void __endio_write_update_ordered(struct inode *inode,
8317 const u64 offset, const u64 bytes,
8318 const bool uptodate)
4b46fce2 8319{
0b246afa 8320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8321 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8322 struct btrfs_workqueue *wq;
8323 btrfs_work_func_t func;
14543774
FM
8324 u64 ordered_offset = offset;
8325 u64 ordered_bytes = bytes;
67c003f9 8326 u64 last_offset;
4b46fce2
JB
8327 int ret;
8328
52427260
QW
8329 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8330 wq = fs_info->endio_freespace_worker;
8331 func = btrfs_freespace_write_helper;
8332 } else {
8333 wq = fs_info->endio_write_workers;
8334 func = btrfs_endio_write_helper;
8335 }
8336
163cf09c 8337again:
67c003f9 8338 last_offset = ordered_offset;
163cf09c
CM
8339 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8340 &ordered_offset,
4246a0b6 8341 ordered_bytes,
14543774 8342 uptodate);
4b46fce2 8343 if (!ret)
163cf09c 8344 goto out_test;
4b46fce2 8345
52427260
QW
8346 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8347 btrfs_queue_work(wq, &ordered->work);
163cf09c 8348out_test:
67c003f9
NA
8349 /*
8350 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8351 * in the range, we can exit.
8352 */
8353 if (ordered_offset == last_offset)
8354 return;
163cf09c
CM
8355 /*
8356 * our bio might span multiple ordered extents. If we haven't
8357 * completed the accounting for the whole dio, go back and try again
8358 */
14543774
FM
8359 if (ordered_offset < offset + bytes) {
8360 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8361 ordered = NULL;
163cf09c
CM
8362 goto again;
8363 }
14543774
FM
8364}
8365
8366static void btrfs_endio_direct_write(struct bio *bio)
8367{
8368 struct btrfs_dio_private *dip = bio->bi_private;
8369 struct bio *dio_bio = dip->dio_bio;
8370
52427260 8371 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8372 dip->bytes, !bio->bi_status);
4b46fce2 8373
4b46fce2 8374 kfree(dip);
c0da7aa1 8375
4e4cbee9 8376 dio_bio->bi_status = bio->bi_status;
4055351c 8377 dio_end_io(dio_bio);
9be3395b 8378 bio_put(bio);
4b46fce2
JB
8379}
8380
8c27cb35 8381static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8382 struct bio *bio, int mirror_num,
8383 unsigned long bio_flags, u64 offset)
8384{
c6100a4b 8385 struct inode *inode = private_data;
4e4cbee9 8386 blk_status_t ret;
2ff7e61e 8387 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8388 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8389 return 0;
8390}
8391
4246a0b6 8392static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8393{
8394 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8395 blk_status_t err = bio->bi_status;
e65e1535 8396
8b110e39
MX
8397 if (err)
8398 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8399 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8400 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8401 bio->bi_opf,
8b110e39
MX
8402 (unsigned long long)bio->bi_iter.bi_sector,
8403 bio->bi_iter.bi_size, err);
8404
8405 if (dip->subio_endio)
8406 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8407
8408 if (err) {
e65e1535
MX
8409 dip->errors = 1;
8410
8411 /*
8412 * before atomic variable goto zero, we must make sure
8413 * dip->errors is perceived to be set.
8414 */
4e857c58 8415 smp_mb__before_atomic();
e65e1535
MX
8416 }
8417
8418 /* if there are more bios still pending for this dio, just exit */
8419 if (!atomic_dec_and_test(&dip->pending_bios))
8420 goto out;
8421
9be3395b 8422 if (dip->errors) {
e65e1535 8423 bio_io_error(dip->orig_bio);
9be3395b 8424 } else {
2dbe0c77 8425 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8426 bio_endio(dip->orig_bio);
e65e1535
MX
8427 }
8428out:
8429 bio_put(bio);
8430}
8431
4e4cbee9 8432static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8433 struct btrfs_dio_private *dip,
8434 struct bio *bio,
8435 u64 file_offset)
8436{
8437 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8438 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8439 blk_status_t ret;
c1dc0896
MX
8440
8441 /*
8442 * We load all the csum data we need when we submit
8443 * the first bio to reduce the csum tree search and
8444 * contention.
8445 */
8446 if (dip->logical_offset == file_offset) {
2ff7e61e 8447 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8448 file_offset);
8449 if (ret)
8450 return ret;
8451 }
8452
8453 if (bio == dip->orig_bio)
8454 return 0;
8455
8456 file_offset -= dip->logical_offset;
8457 file_offset >>= inode->i_sb->s_blocksize_bits;
8458 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8459
8460 return 0;
8461}
8462
58efbc9f
OS
8463static inline blk_status_t
8464__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8465 int async_submit)
e65e1535 8466{
0b246afa 8467 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8468 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8469 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8470 blk_status_t ret;
e65e1535 8471
4c274bc6 8472 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8473 if (async_submit)
8474 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8475
e65e1535 8476 bio_get(bio);
5fd02043
JB
8477
8478 if (!write) {
0b246afa 8479 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8480 if (ret)
8481 goto err;
8482 }
e65e1535 8483
e6961cac 8484 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8485 goto map;
8486
8487 if (write && async_submit) {
c6100a4b
JB
8488 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8489 file_offset, inode,
0b246afa
JM
8490 __btrfs_submit_bio_start_direct_io,
8491 __btrfs_submit_bio_done);
e65e1535 8492 goto err;
1ae39938
JB
8493 } else if (write) {
8494 /*
8495 * If we aren't doing async submit, calculate the csum of the
8496 * bio now.
8497 */
2ff7e61e 8498 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8499 if (ret)
8500 goto err;
23ea8e5a 8501 } else {
2ff7e61e 8502 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8503 file_offset);
c2db1073
TI
8504 if (ret)
8505 goto err;
8506 }
1ae39938 8507map:
9b4a9b28 8508 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535
MX
8509err:
8510 bio_put(bio);
8511 return ret;
8512}
8513
e6961cac 8514static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8515{
8516 struct inode *inode = dip->inode;
0b246afa 8517 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8518 struct bio *bio;
8519 struct bio *orig_bio = dip->orig_bio;
4f024f37 8520 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8521 u64 file_offset = dip->logical_offset;
e65e1535 8522 u64 map_length;
1ae39938 8523 int async_submit = 0;
725130ba
LB
8524 u64 submit_len;
8525 int clone_offset = 0;
8526 int clone_len;
5f4dc8fc 8527 int ret;
58efbc9f 8528 blk_status_t status;
e65e1535 8529
4f024f37 8530 map_length = orig_bio->bi_iter.bi_size;
725130ba 8531 submit_len = map_length;
0b246afa
JM
8532 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8533 &map_length, NULL, 0);
7a5c3c9b 8534 if (ret)
e65e1535 8535 return -EIO;
facc8a22 8536
725130ba 8537 if (map_length >= submit_len) {
02f57c7a 8538 bio = orig_bio;
c1dc0896 8539 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8540 goto submit;
8541 }
8542
53b381b3 8543 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8544 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8545 async_submit = 0;
8546 else
8547 async_submit = 1;
8548
725130ba
LB
8549 /* bio split */
8550 ASSERT(map_length <= INT_MAX);
02f57c7a 8551 atomic_inc(&dip->pending_bios);
3c91ee69 8552 do {
725130ba 8553 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8554
725130ba
LB
8555 /*
8556 * This will never fail as it's passing GPF_NOFS and
8557 * the allocation is backed by btrfs_bioset.
8558 */
e477094f 8559 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8560 clone_len);
8561 bio->bi_private = dip;
8562 bio->bi_end_io = btrfs_end_dio_bio;
8563 btrfs_io_bio(bio)->logical = file_offset;
8564
8565 ASSERT(submit_len >= clone_len);
8566 submit_len -= clone_len;
8567 if (submit_len == 0)
8568 break;
e65e1535 8569
725130ba
LB
8570 /*
8571 * Increase the count before we submit the bio so we know
8572 * the end IO handler won't happen before we increase the
8573 * count. Otherwise, the dip might get freed before we're
8574 * done setting it up.
8575 */
8576 atomic_inc(&dip->pending_bios);
e65e1535 8577
66ba772e 8578 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8579 async_submit);
8580 if (status) {
725130ba
LB
8581 bio_put(bio);
8582 atomic_dec(&dip->pending_bios);
8583 goto out_err;
8584 }
e65e1535 8585
725130ba
LB
8586 clone_offset += clone_len;
8587 start_sector += clone_len >> 9;
8588 file_offset += clone_len;
5f4dc8fc 8589
725130ba
LB
8590 map_length = submit_len;
8591 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8592 start_sector << 9, &map_length, NULL, 0);
8593 if (ret)
8594 goto out_err;
3c91ee69 8595 } while (submit_len > 0);
e65e1535 8596
02f57c7a 8597submit:
66ba772e 8598 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8599 if (!status)
e65e1535
MX
8600 return 0;
8601
8602 bio_put(bio);
8603out_err:
8604 dip->errors = 1;
8605 /*
8606 * before atomic variable goto zero, we must
8607 * make sure dip->errors is perceived to be set.
8608 */
4e857c58 8609 smp_mb__before_atomic();
e65e1535
MX
8610 if (atomic_dec_and_test(&dip->pending_bios))
8611 bio_io_error(dip->orig_bio);
8612
8613 /* bio_end_io() will handle error, so we needn't return it */
8614 return 0;
8615}
8616
8a4c1e42
MC
8617static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8618 loff_t file_offset)
4b46fce2 8619{
61de718f 8620 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8621 struct bio *bio = NULL;
8622 struct btrfs_io_bio *io_bio;
8a4c1e42 8623 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8624 int ret = 0;
8625
8b6c1d56 8626 bio = btrfs_bio_clone(dio_bio);
9be3395b 8627
c1dc0896 8628 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8629 if (!dip) {
8630 ret = -ENOMEM;
61de718f 8631 goto free_ordered;
4b46fce2 8632 }
4b46fce2 8633
9be3395b 8634 dip->private = dio_bio->bi_private;
4b46fce2
JB
8635 dip->inode = inode;
8636 dip->logical_offset = file_offset;
4f024f37
KO
8637 dip->bytes = dio_bio->bi_iter.bi_size;
8638 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8639 bio->bi_private = dip;
8640 dip->orig_bio = bio;
9be3395b 8641 dip->dio_bio = dio_bio;
e65e1535 8642 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8643 io_bio = btrfs_io_bio(bio);
8644 io_bio->logical = file_offset;
4b46fce2 8645
c1dc0896 8646 if (write) {
3892ac90 8647 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8648 } else {
3892ac90 8649 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8650 dip->subio_endio = btrfs_subio_endio_read;
8651 }
4b46fce2 8652
f28a4928
FM
8653 /*
8654 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8655 * even if we fail to submit a bio, because in such case we do the
8656 * corresponding error handling below and it must not be done a second
8657 * time by btrfs_direct_IO().
8658 */
8659 if (write) {
8660 struct btrfs_dio_data *dio_data = current->journal_info;
8661
8662 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8663 dip->bytes;
8664 dio_data->unsubmitted_oe_range_start =
8665 dio_data->unsubmitted_oe_range_end;
8666 }
8667
e6961cac 8668 ret = btrfs_submit_direct_hook(dip);
e65e1535 8669 if (!ret)
eaf25d93 8670 return;
9be3395b 8671
3892ac90
LB
8672 if (io_bio->end_io)
8673 io_bio->end_io(io_bio, ret);
9be3395b 8674
4b46fce2
JB
8675free_ordered:
8676 /*
61de718f
FM
8677 * If we arrived here it means either we failed to submit the dip
8678 * or we either failed to clone the dio_bio or failed to allocate the
8679 * dip. If we cloned the dio_bio and allocated the dip, we can just
8680 * call bio_endio against our io_bio so that we get proper resource
8681 * cleanup if we fail to submit the dip, otherwise, we must do the
8682 * same as btrfs_endio_direct_[write|read] because we can't call these
8683 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8684 */
3892ac90 8685 if (bio && dip) {
054ec2f6 8686 bio_io_error(bio);
61de718f 8687 /*
3892ac90 8688 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8689 * and all the cleanup and final put for dio_bio (through
8690 * dio_end_io()).
8691 */
8692 dip = NULL;
3892ac90 8693 bio = NULL;
61de718f 8694 } else {
14543774 8695 if (write)
52427260 8696 __endio_write_update_ordered(inode,
14543774
FM
8697 file_offset,
8698 dio_bio->bi_iter.bi_size,
52427260 8699 false);
14543774 8700 else
61de718f
FM
8701 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8702 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8703
4e4cbee9 8704 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8705 /*
8706 * Releases and cleans up our dio_bio, no need to bio_put()
8707 * nor bio_endio()/bio_io_error() against dio_bio.
8708 */
4055351c 8709 dio_end_io(dio_bio);
4b46fce2 8710 }
3892ac90
LB
8711 if (bio)
8712 bio_put(bio);
61de718f 8713 kfree(dip);
4b46fce2
JB
8714}
8715
2ff7e61e 8716static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8717 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8718{
8719 int seg;
a1b75f7d 8720 int i;
0b246afa 8721 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8722 ssize_t retval = -EINVAL;
5a5f79b5
CM
8723
8724 if (offset & blocksize_mask)
8725 goto out;
8726
28060d5d
AV
8727 if (iov_iter_alignment(iter) & blocksize_mask)
8728 goto out;
a1b75f7d 8729
28060d5d 8730 /* If this is a write we don't need to check anymore */
cd27e455 8731 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8732 return 0;
8733 /*
8734 * Check to make sure we don't have duplicate iov_base's in this
8735 * iovec, if so return EINVAL, otherwise we'll get csum errors
8736 * when reading back.
8737 */
8738 for (seg = 0; seg < iter->nr_segs; seg++) {
8739 for (i = seg + 1; i < iter->nr_segs; i++) {
8740 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8741 goto out;
8742 }
5a5f79b5
CM
8743 }
8744 retval = 0;
8745out:
8746 return retval;
8747}
eb838e73 8748
c8b8e32d 8749static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8750{
4b46fce2
JB
8751 struct file *file = iocb->ki_filp;
8752 struct inode *inode = file->f_mapping->host;
0b246afa 8753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8754 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8755 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8756 loff_t offset = iocb->ki_pos;
0934856d 8757 size_t count = 0;
2e60a51e 8758 int flags = 0;
38851cc1
MX
8759 bool wakeup = true;
8760 bool relock = false;
0934856d 8761 ssize_t ret;
4b46fce2 8762
8c70c9f8 8763 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8764 return 0;
3f7c579c 8765
fe0f07d0 8766 inode_dio_begin(inode);
38851cc1 8767
0e267c44 8768 /*
41bd9ca4
MX
8769 * The generic stuff only does filemap_write_and_wait_range, which
8770 * isn't enough if we've written compressed pages to this area, so
8771 * we need to flush the dirty pages again to make absolutely sure
8772 * that any outstanding dirty pages are on disk.
0e267c44 8773 */
a6cbcd4a 8774 count = iov_iter_count(iter);
41bd9ca4
MX
8775 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8776 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8777 filemap_fdatawrite_range(inode->i_mapping, offset,
8778 offset + count - 1);
0e267c44 8779
6f673763 8780 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8781 /*
8782 * If the write DIO is beyond the EOF, we need update
8783 * the isize, but it is protected by i_mutex. So we can
8784 * not unlock the i_mutex at this case.
8785 */
8786 if (offset + count <= inode->i_size) {
4aaedfb0 8787 dio_data.overwrite = 1;
5955102c 8788 inode_unlock(inode);
38851cc1 8789 relock = true;
edf064e7
GR
8790 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8791 ret = -EAGAIN;
8792 goto out;
38851cc1 8793 }
364ecf36
QW
8794 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8795 offset, count);
0934856d 8796 if (ret)
38851cc1 8797 goto out;
e1cbbfa5
JB
8798
8799 /*
8800 * We need to know how many extents we reserved so that we can
8801 * do the accounting properly if we go over the number we
8802 * originally calculated. Abuse current->journal_info for this.
8803 */
da17066c 8804 dio_data.reserve = round_up(count,
0b246afa 8805 fs_info->sectorsize);
f28a4928
FM
8806 dio_data.unsubmitted_oe_range_start = (u64)offset;
8807 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8808 current->journal_info = &dio_data;
97dcdea0 8809 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8810 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8811 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8812 inode_dio_end(inode);
38851cc1
MX
8813 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8814 wakeup = false;
0934856d
MX
8815 }
8816
17f8c842 8817 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8818 fs_info->fs_devices->latest_bdev,
c8b8e32d 8819 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8820 btrfs_submit_direct, flags);
6f673763 8821 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8822 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8823 current->journal_info = NULL;
ddba1bfc 8824 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8825 if (dio_data.reserve)
bc42bda2
QW
8826 btrfs_delalloc_release_space(inode, data_reserved,
8827 offset, dio_data.reserve);
f28a4928
FM
8828 /*
8829 * On error we might have left some ordered extents
8830 * without submitting corresponding bios for them, so
8831 * cleanup them up to avoid other tasks getting them
8832 * and waiting for them to complete forever.
8833 */
8834 if (dio_data.unsubmitted_oe_range_start <
8835 dio_data.unsubmitted_oe_range_end)
52427260 8836 __endio_write_update_ordered(inode,
f28a4928
FM
8837 dio_data.unsubmitted_oe_range_start,
8838 dio_data.unsubmitted_oe_range_end -
8839 dio_data.unsubmitted_oe_range_start,
52427260 8840 false);
ddba1bfc 8841 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8842 btrfs_delalloc_release_space(inode, data_reserved,
8843 offset, count - (size_t)ret);
69fe2d75 8844 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8845 }
38851cc1 8846out:
2e60a51e 8847 if (wakeup)
fe0f07d0 8848 inode_dio_end(inode);
38851cc1 8849 if (relock)
5955102c 8850 inode_lock(inode);
0934856d 8851
364ecf36 8852 extent_changeset_free(data_reserved);
0934856d 8853 return ret;
16432985
CM
8854}
8855
05dadc09
TI
8856#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8857
1506fcc8
YS
8858static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8859 __u64 start, __u64 len)
8860{
05dadc09
TI
8861 int ret;
8862
8863 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8864 if (ret)
8865 return ret;
8866
ec29ed5b 8867 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8868}
8869
a52d9a80 8870int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8871{
d1310b2e
CM
8872 struct extent_io_tree *tree;
8873 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8874 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8875}
1832a6d5 8876
a52d9a80 8877static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8878{
d1310b2e 8879 struct extent_io_tree *tree;
be7bd730
JB
8880 struct inode *inode = page->mapping->host;
8881 int ret;
b888db2b
CM
8882
8883 if (current->flags & PF_MEMALLOC) {
8884 redirty_page_for_writepage(wbc, page);
8885 unlock_page(page);
8886 return 0;
8887 }
be7bd730
JB
8888
8889 /*
8890 * If we are under memory pressure we will call this directly from the
8891 * VM, we need to make sure we have the inode referenced for the ordered
8892 * extent. If not just return like we didn't do anything.
8893 */
8894 if (!igrab(inode)) {
8895 redirty_page_for_writepage(wbc, page);
8896 return AOP_WRITEPAGE_ACTIVATE;
8897 }
d1310b2e 8898 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8899 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8900 btrfs_add_delayed_iput(inode);
8901 return ret;
9ebefb18
CM
8902}
8903
48a3b636
ES
8904static int btrfs_writepages(struct address_space *mapping,
8905 struct writeback_control *wbc)
b293f02e 8906{
d1310b2e 8907 struct extent_io_tree *tree;
771ed689 8908
d1310b2e 8909 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8910 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8911}
8912
3ab2fb5a
CM
8913static int
8914btrfs_readpages(struct file *file, struct address_space *mapping,
8915 struct list_head *pages, unsigned nr_pages)
8916{
d1310b2e
CM
8917 struct extent_io_tree *tree;
8918 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8919 return extent_readpages(tree, mapping, pages, nr_pages,
8920 btrfs_get_extent);
8921}
e6dcd2dc 8922static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8923{
d1310b2e
CM
8924 struct extent_io_tree *tree;
8925 struct extent_map_tree *map;
a52d9a80 8926 int ret;
8c2383c3 8927
d1310b2e
CM
8928 tree = &BTRFS_I(page->mapping->host)->io_tree;
8929 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8930 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8931 if (ret == 1) {
8932 ClearPagePrivate(page);
8933 set_page_private(page, 0);
09cbfeaf 8934 put_page(page);
39279cc3 8935 }
a52d9a80 8936 return ret;
39279cc3
CM
8937}
8938
e6dcd2dc
CM
8939static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8940{
98509cfc
CM
8941 if (PageWriteback(page) || PageDirty(page))
8942 return 0;
3ba7ab22 8943 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8944}
8945
d47992f8
LC
8946static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8947 unsigned int length)
39279cc3 8948{
5fd02043 8949 struct inode *inode = page->mapping->host;
d1310b2e 8950 struct extent_io_tree *tree;
e6dcd2dc 8951 struct btrfs_ordered_extent *ordered;
2ac55d41 8952 struct extent_state *cached_state = NULL;
e6dcd2dc 8953 u64 page_start = page_offset(page);
09cbfeaf 8954 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8955 u64 start;
8956 u64 end;
131e404a 8957 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8958
8b62b72b
CM
8959 /*
8960 * we have the page locked, so new writeback can't start,
8961 * and the dirty bit won't be cleared while we are here.
8962 *
8963 * Wait for IO on this page so that we can safely clear
8964 * the PagePrivate2 bit and do ordered accounting
8965 */
e6dcd2dc 8966 wait_on_page_writeback(page);
8b62b72b 8967
5fd02043 8968 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8969 if (offset) {
8970 btrfs_releasepage(page, GFP_NOFS);
8971 return;
8972 }
131e404a
FDBM
8973
8974 if (!inode_evicting)
ff13db41 8975 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8976again:
8977 start = page_start;
a776c6fa 8978 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8979 page_end - start + 1);
e6dcd2dc 8980 if (ordered) {
dbfdb6d1 8981 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8982 /*
8983 * IO on this page will never be started, so we need
8984 * to account for any ordered extents now
8985 */
131e404a 8986 if (!inode_evicting)
dbfdb6d1 8987 clear_extent_bit(tree, start, end,
131e404a 8988 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8989 EXTENT_DELALLOC_NEW |
131e404a 8990 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8991 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8992 /*
8993 * whoever cleared the private bit is responsible
8994 * for the finish_ordered_io
8995 */
77cef2ec
JB
8996 if (TestClearPagePrivate2(page)) {
8997 struct btrfs_ordered_inode_tree *tree;
8998 u64 new_len;
8999
9000 tree = &BTRFS_I(inode)->ordered_tree;
9001
9002 spin_lock_irq(&tree->lock);
9003 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 9004 new_len = start - ordered->file_offset;
77cef2ec
JB
9005 if (new_len < ordered->truncated_len)
9006 ordered->truncated_len = new_len;
9007 spin_unlock_irq(&tree->lock);
9008
9009 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
9010 start,
9011 end - start + 1, 1))
77cef2ec 9012 btrfs_finish_ordered_io(ordered);
8b62b72b 9013 }
e6dcd2dc 9014 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
9015 if (!inode_evicting) {
9016 cached_state = NULL;
dbfdb6d1 9017 lock_extent_bits(tree, start, end,
131e404a
FDBM
9018 &cached_state);
9019 }
dbfdb6d1
CR
9020
9021 start = end + 1;
9022 if (start < page_end)
9023 goto again;
131e404a
FDBM
9024 }
9025
b9d0b389
QW
9026 /*
9027 * Qgroup reserved space handler
9028 * Page here will be either
9029 * 1) Already written to disk
9030 * In this case, its reserved space is released from data rsv map
9031 * and will be freed by delayed_ref handler finally.
9032 * So even we call qgroup_free_data(), it won't decrease reserved
9033 * space.
9034 * 2) Not written to disk
0b34c261
GR
9035 * This means the reserved space should be freed here. However,
9036 * if a truncate invalidates the page (by clearing PageDirty)
9037 * and the page is accounted for while allocating extent
9038 * in btrfs_check_data_free_space() we let delayed_ref to
9039 * free the entire extent.
b9d0b389 9040 */
0b34c261 9041 if (PageDirty(page))
bc42bda2 9042 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9043 if (!inode_evicting) {
9044 clear_extent_bit(tree, page_start, page_end,
9045 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9046 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9047 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 9048 &cached_state);
131e404a
FDBM
9049
9050 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9051 }
e6dcd2dc 9052
4a096752 9053 ClearPageChecked(page);
9ad6b7bc 9054 if (PagePrivate(page)) {
9ad6b7bc
CM
9055 ClearPagePrivate(page);
9056 set_page_private(page, 0);
09cbfeaf 9057 put_page(page);
9ad6b7bc 9058 }
39279cc3
CM
9059}
9060
9ebefb18
CM
9061/*
9062 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9063 * called from a page fault handler when a page is first dirtied. Hence we must
9064 * be careful to check for EOF conditions here. We set the page up correctly
9065 * for a written page which means we get ENOSPC checking when writing into
9066 * holes and correct delalloc and unwritten extent mapping on filesystems that
9067 * support these features.
9068 *
9069 * We are not allowed to take the i_mutex here so we have to play games to
9070 * protect against truncate races as the page could now be beyond EOF. Because
9071 * vmtruncate() writes the inode size before removing pages, once we have the
9072 * page lock we can determine safely if the page is beyond EOF. If it is not
9073 * beyond EOF, then the page is guaranteed safe against truncation until we
9074 * unlock the page.
9075 */
11bac800 9076int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9077{
c2ec175c 9078 struct page *page = vmf->page;
11bac800 9079 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9080 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9081 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9082 struct btrfs_ordered_extent *ordered;
2ac55d41 9083 struct extent_state *cached_state = NULL;
364ecf36 9084 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9085 char *kaddr;
9086 unsigned long zero_start;
9ebefb18 9087 loff_t size;
1832a6d5 9088 int ret;
9998eb70 9089 int reserved = 0;
d0b7da88 9090 u64 reserved_space;
a52d9a80 9091 u64 page_start;
e6dcd2dc 9092 u64 page_end;
d0b7da88
CR
9093 u64 end;
9094
09cbfeaf 9095 reserved_space = PAGE_SIZE;
9ebefb18 9096
b2b5ef5c 9097 sb_start_pagefault(inode->i_sb);
df480633 9098 page_start = page_offset(page);
09cbfeaf 9099 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9100 end = page_end;
df480633 9101
d0b7da88
CR
9102 /*
9103 * Reserving delalloc space after obtaining the page lock can lead to
9104 * deadlock. For example, if a dirty page is locked by this function
9105 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9106 * dirty page write out, then the btrfs_writepage() function could
9107 * end up waiting indefinitely to get a lock on the page currently
9108 * being processed by btrfs_page_mkwrite() function.
9109 */
364ecf36 9110 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9111 reserved_space);
9998eb70 9112 if (!ret) {
11bac800 9113 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9114 reserved = 1;
9115 }
56a76f82
NP
9116 if (ret) {
9117 if (ret == -ENOMEM)
9118 ret = VM_FAULT_OOM;
9119 else /* -ENOSPC, -EIO, etc */
9120 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9121 if (reserved)
9122 goto out;
9123 goto out_noreserve;
56a76f82 9124 }
1832a6d5 9125
56a76f82 9126 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9127again:
9ebefb18 9128 lock_page(page);
9ebefb18 9129 size = i_size_read(inode);
a52d9a80 9130
9ebefb18 9131 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9132 (page_start >= size)) {
9ebefb18
CM
9133 /* page got truncated out from underneath us */
9134 goto out_unlock;
9135 }
e6dcd2dc
CM
9136 wait_on_page_writeback(page);
9137
ff13db41 9138 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9139 set_page_extent_mapped(page);
9140
eb84ae03
CM
9141 /*
9142 * we can't set the delalloc bits if there are pending ordered
9143 * extents. Drop our locks and wait for them to finish
9144 */
a776c6fa
NB
9145 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9146 PAGE_SIZE);
e6dcd2dc 9147 if (ordered) {
2ac55d41
JB
9148 unlock_extent_cached(io_tree, page_start, page_end,
9149 &cached_state, GFP_NOFS);
e6dcd2dc 9150 unlock_page(page);
eb84ae03 9151 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9152 btrfs_put_ordered_extent(ordered);
9153 goto again;
9154 }
9155
09cbfeaf 9156 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9157 reserved_space = round_up(size - page_start,
0b246afa 9158 fs_info->sectorsize);
09cbfeaf 9159 if (reserved_space < PAGE_SIZE) {
d0b7da88 9160 end = page_start + reserved_space - 1;
bc42bda2
QW
9161 btrfs_delalloc_release_space(inode, data_reserved,
9162 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9163 }
9164 }
9165
fbf19087 9166 /*
5416034f
LB
9167 * page_mkwrite gets called when the page is firstly dirtied after it's
9168 * faulted in, but write(2) could also dirty a page and set delalloc
9169 * bits, thus in this case for space account reason, we still need to
9170 * clear any delalloc bits within this page range since we have to
9171 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9172 */
d0b7da88 9173 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9174 EXTENT_DIRTY | EXTENT_DELALLOC |
9175 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 9176 0, 0, &cached_state);
fbf19087 9177
e3b8a485 9178 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9179 &cached_state, 0);
9ed74f2d 9180 if (ret) {
2ac55d41
JB
9181 unlock_extent_cached(io_tree, page_start, page_end,
9182 &cached_state, GFP_NOFS);
9ed74f2d
JB
9183 ret = VM_FAULT_SIGBUS;
9184 goto out_unlock;
9185 }
e6dcd2dc 9186 ret = 0;
9ebefb18
CM
9187
9188 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9189 if (page_start + PAGE_SIZE > size)
9190 zero_start = size & ~PAGE_MASK;
9ebefb18 9191 else
09cbfeaf 9192 zero_start = PAGE_SIZE;
9ebefb18 9193
09cbfeaf 9194 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9195 kaddr = kmap(page);
09cbfeaf 9196 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9197 flush_dcache_page(page);
9198 kunmap(page);
9199 }
247e743c 9200 ClearPageChecked(page);
e6dcd2dc 9201 set_page_dirty(page);
50a9b214 9202 SetPageUptodate(page);
5a3f23d5 9203
0b246afa 9204 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9205 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9206 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9207
2ac55d41 9208 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9209
9210out_unlock:
b2b5ef5c 9211 if (!ret) {
8b62f87b 9212 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9213 sb_end_pagefault(inode->i_sb);
364ecf36 9214 extent_changeset_free(data_reserved);
50a9b214 9215 return VM_FAULT_LOCKED;
b2b5ef5c 9216 }
9ebefb18 9217 unlock_page(page);
1832a6d5 9218out:
8b62f87b 9219 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9220 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9221 reserved_space);
9998eb70 9222out_noreserve:
b2b5ef5c 9223 sb_end_pagefault(inode->i_sb);
364ecf36 9224 extent_changeset_free(data_reserved);
9ebefb18
CM
9225 return ret;
9226}
9227
a41ad394 9228static int btrfs_truncate(struct inode *inode)
39279cc3 9229{
0b246afa 9230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9231 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9232 struct btrfs_block_rsv *rsv;
a71754fc 9233 int ret = 0;
3893e33b 9234 int err = 0;
39279cc3 9235 struct btrfs_trans_handle *trans;
0b246afa
JM
9236 u64 mask = fs_info->sectorsize - 1;
9237 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9238
0ef8b726
JB
9239 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9240 (u64)-1);
9241 if (ret)
9242 return ret;
39279cc3 9243
fcb80c2a 9244 /*
01327610 9245 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9246 * 3 things going on here
9247 *
9248 * 1) We need to reserve space for our orphan item and the space to
9249 * delete our orphan item. Lord knows we don't want to have a dangling
9250 * orphan item because we didn't reserve space to remove it.
9251 *
9252 * 2) We need to reserve space to update our inode.
9253 *
9254 * 3) We need to have something to cache all the space that is going to
9255 * be free'd up by the truncate operation, but also have some slack
9256 * space reserved in case it uses space during the truncate (thank you
9257 * very much snapshotting).
9258 *
01327610 9259 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9260 * space doing the truncate, and we have no earthly idea how much space
01327610 9261 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9262 * doesn't end up using space reserved for updating the inode or
9263 * removing the orphan item. We also need to be able to stop the
9264 * transaction and start a new one, which means we need to be able to
9265 * update the inode several times, and we have no idea of knowing how
9266 * many times that will be, so we can't just reserve 1 item for the
01327610 9267 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9268 * Then there is the orphan item, which does indeed need to be held on
9269 * to for the whole operation, and we need nobody to touch this reserved
9270 * space except the orphan code.
9271 *
9272 * So that leaves us with
9273 *
9274 * 1) root->orphan_block_rsv - for the orphan deletion.
9275 * 2) rsv - for the truncate reservation, which we will steal from the
9276 * transaction reservation.
9277 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9278 * updating the inode.
9279 */
2ff7e61e 9280 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9281 if (!rsv)
9282 return -ENOMEM;
4a338542 9283 rsv->size = min_size;
ca7e70f5 9284 rsv->failfast = 1;
f0cd846e 9285
907cbceb 9286 /*
07127184 9287 * 1 for the truncate slack space
907cbceb
JB
9288 * 1 for updating the inode.
9289 */
f3fe820c 9290 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9291 if (IS_ERR(trans)) {
9292 err = PTR_ERR(trans);
9293 goto out;
9294 }
f0cd846e 9295
907cbceb 9296 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9297 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9298 min_size, 0);
fcb80c2a 9299 BUG_ON(ret);
f0cd846e 9300
5dc562c5
JB
9301 /*
9302 * So if we truncate and then write and fsync we normally would just
9303 * write the extents that changed, which is a problem if we need to
9304 * first truncate that entire inode. So set this flag so we write out
9305 * all of the extents in the inode to the sync log so we're completely
9306 * safe.
9307 */
9308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9309 trans->block_rsv = rsv;
907cbceb 9310
8082510e
YZ
9311 while (1) {
9312 ret = btrfs_truncate_inode_items(trans, root, inode,
9313 inode->i_size,
9314 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9315 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9316 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9317 err = ret;
8082510e 9318 break;
3893e33b 9319 }
39279cc3 9320
8082510e 9321 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9322 if (ret) {
9323 err = ret;
9324 break;
9325 }
ca7e70f5 9326
3a45bb20 9327 btrfs_end_transaction(trans);
2ff7e61e 9328 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9329
9330 trans = btrfs_start_transaction(root, 2);
9331 if (IS_ERR(trans)) {
9332 ret = err = PTR_ERR(trans);
9333 trans = NULL;
9334 break;
9335 }
9336
47b5d646 9337 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9338 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9339 rsv, min_size, 0);
ca7e70f5
JB
9340 BUG_ON(ret); /* shouldn't happen */
9341 trans->block_rsv = rsv;
8082510e
YZ
9342 }
9343
ddfae63c
JB
9344 /*
9345 * We can't call btrfs_truncate_block inside a trans handle as we could
9346 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9347 * we've truncated everything except the last little bit, and can do
9348 * btrfs_truncate_block and then update the disk_i_size.
9349 */
9350 if (ret == NEED_TRUNCATE_BLOCK) {
9351 btrfs_end_transaction(trans);
9352 btrfs_btree_balance_dirty(fs_info);
9353
9354 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9355 if (ret)
9356 goto out;
9357 trans = btrfs_start_transaction(root, 1);
9358 if (IS_ERR(trans)) {
9359 ret = PTR_ERR(trans);
9360 goto out;
9361 }
9362 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9363 }
9364
8082510e 9365 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9366 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9367 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9368 if (ret)
9369 err = ret;
8082510e
YZ
9370 }
9371
917c16b2 9372 if (trans) {
0b246afa 9373 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9374 ret = btrfs_update_inode(trans, root, inode);
9375 if (ret && !err)
9376 err = ret;
7b128766 9377
3a45bb20 9378 ret = btrfs_end_transaction(trans);
2ff7e61e 9379 btrfs_btree_balance_dirty(fs_info);
917c16b2 9380 }
fcb80c2a 9381out:
2ff7e61e 9382 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9383
3893e33b
JB
9384 if (ret && !err)
9385 err = ret;
a41ad394 9386
3893e33b 9387 return err;
39279cc3
CM
9388}
9389
d352ac68
CM
9390/*
9391 * create a new subvolume directory/inode (helper for the ioctl).
9392 */
d2fb3437 9393int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9394 struct btrfs_root *new_root,
9395 struct btrfs_root *parent_root,
9396 u64 new_dirid)
39279cc3 9397{
39279cc3 9398 struct inode *inode;
76dda93c 9399 int err;
00e4e6b3 9400 u64 index = 0;
39279cc3 9401
12fc9d09
FA
9402 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9403 new_dirid, new_dirid,
9404 S_IFDIR | (~current_umask() & S_IRWXUGO),
9405 &index);
54aa1f4d 9406 if (IS_ERR(inode))
f46b5a66 9407 return PTR_ERR(inode);
39279cc3
CM
9408 inode->i_op = &btrfs_dir_inode_operations;
9409 inode->i_fop = &btrfs_dir_file_operations;
9410
bfe86848 9411 set_nlink(inode, 1);
6ef06d27 9412 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9413 unlock_new_inode(inode);
3b96362c 9414
63541927
FDBM
9415 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9416 if (err)
9417 btrfs_err(new_root->fs_info,
351fd353 9418 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9419 new_root->root_key.objectid, err);
9420
76dda93c 9421 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9422
76dda93c 9423 iput(inode);
ce598979 9424 return err;
39279cc3
CM
9425}
9426
39279cc3
CM
9427struct inode *btrfs_alloc_inode(struct super_block *sb)
9428{
69fe2d75 9429 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9430 struct btrfs_inode *ei;
2ead6ae7 9431 struct inode *inode;
39279cc3
CM
9432
9433 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9434 if (!ei)
9435 return NULL;
2ead6ae7
YZ
9436
9437 ei->root = NULL;
2ead6ae7 9438 ei->generation = 0;
15ee9bc7 9439 ei->last_trans = 0;
257c62e1 9440 ei->last_sub_trans = 0;
e02119d5 9441 ei->logged_trans = 0;
2ead6ae7 9442 ei->delalloc_bytes = 0;
a7e3b975 9443 ei->new_delalloc_bytes = 0;
47059d93 9444 ei->defrag_bytes = 0;
2ead6ae7
YZ
9445 ei->disk_i_size = 0;
9446 ei->flags = 0;
7709cde3 9447 ei->csum_bytes = 0;
2ead6ae7 9448 ei->index_cnt = (u64)-1;
67de1176 9449 ei->dir_index = 0;
2ead6ae7 9450 ei->last_unlink_trans = 0;
46d8bc34 9451 ei->last_log_commit = 0;
8089fe62 9452 ei->delayed_iput_count = 0;
2ead6ae7 9453
9e0baf60
JB
9454 spin_lock_init(&ei->lock);
9455 ei->outstanding_extents = 0;
69fe2d75
JB
9456 if (sb->s_magic != BTRFS_TEST_MAGIC)
9457 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9458 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9459 ei->runtime_flags = 0;
b52aa8c9 9460 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9461 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9462
16cdcec7
MX
9463 ei->delayed_node = NULL;
9464
9cc97d64 9465 ei->i_otime.tv_sec = 0;
9466 ei->i_otime.tv_nsec = 0;
9467
2ead6ae7 9468 inode = &ei->vfs_inode;
a8067e02 9469 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9470 extent_io_tree_init(&ei->io_tree, inode);
9471 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9472 ei->io_tree.track_uptodate = 1;
9473 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9474 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9475 mutex_init(&ei->log_mutex);
f248679e 9476 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9477 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9478 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9479 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9480 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9481 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9482
9483 return inode;
39279cc3
CM
9484}
9485
aaedb55b
JB
9486#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9487void btrfs_test_destroy_inode(struct inode *inode)
9488{
dcdbc059 9489 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9490 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9491}
9492#endif
9493
fa0d7e3d
NP
9494static void btrfs_i_callback(struct rcu_head *head)
9495{
9496 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9497 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9498}
9499
39279cc3
CM
9500void btrfs_destroy_inode(struct inode *inode)
9501{
0b246afa 9502 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9503 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9504 struct btrfs_root *root = BTRFS_I(inode)->root;
9505
b3d9b7a3 9506 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9507 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9508 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9509 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9510 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9511 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9512 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9513 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9514 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9515
a6dbd429
JB
9516 /*
9517 * This can happen where we create an inode, but somebody else also
9518 * created the same inode and we need to destroy the one we already
9519 * created.
9520 */
9521 if (!root)
9522 goto free;
9523
8a35d95f
JB
9524 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9525 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9526 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9527 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9528 atomic_dec(&root->orphan_inodes);
7b128766 9529 }
7b128766 9530
d397712b 9531 while (1) {
e6dcd2dc
CM
9532 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9533 if (!ordered)
9534 break;
9535 else {
0b246afa 9536 btrfs_err(fs_info,
5d163e0e
JM
9537 "found ordered extent %llu %llu on inode cleanup",
9538 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9539 btrfs_remove_ordered_extent(inode, ordered);
9540 btrfs_put_ordered_extent(ordered);
9541 btrfs_put_ordered_extent(ordered);
9542 }
9543 }
56fa9d07 9544 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9545 inode_tree_del(inode);
dcdbc059 9546 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9547free:
fa0d7e3d 9548 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9549}
9550
45321ac5 9551int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9552{
9553 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9554
6379ef9f
NA
9555 if (root == NULL)
9556 return 1;
9557
fa6ac876 9558 /* the snap/subvol tree is on deleting */
69e9c6c6 9559 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9560 return 1;
76dda93c 9561 else
45321ac5 9562 return generic_drop_inode(inode);
76dda93c
YZ
9563}
9564
0ee0fda0 9565static void init_once(void *foo)
39279cc3
CM
9566{
9567 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9568
9569 inode_init_once(&ei->vfs_inode);
9570}
9571
9572void btrfs_destroy_cachep(void)
9573{
8c0a8537
KS
9574 /*
9575 * Make sure all delayed rcu free inodes are flushed before we
9576 * destroy cache.
9577 */
9578 rcu_barrier();
5598e900
KM
9579 kmem_cache_destroy(btrfs_inode_cachep);
9580 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9581 kmem_cache_destroy(btrfs_path_cachep);
9582 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9583}
9584
f5c29bd9 9585int __init btrfs_init_cachep(void)
39279cc3 9586{
837e1972 9587 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9588 sizeof(struct btrfs_inode), 0,
5d097056
VD
9589 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9590 init_once);
39279cc3
CM
9591 if (!btrfs_inode_cachep)
9592 goto fail;
9601e3f6 9593
837e1972 9594 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9595 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9596 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9597 if (!btrfs_trans_handle_cachep)
9598 goto fail;
9601e3f6 9599
837e1972 9600 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9601 sizeof(struct btrfs_path), 0,
fba4b697 9602 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9603 if (!btrfs_path_cachep)
9604 goto fail;
9601e3f6 9605
837e1972 9606 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9607 sizeof(struct btrfs_free_space), 0,
fba4b697 9608 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9609 if (!btrfs_free_space_cachep)
9610 goto fail;
9611
39279cc3
CM
9612 return 0;
9613fail:
9614 btrfs_destroy_cachep();
9615 return -ENOMEM;
9616}
9617
a528d35e
DH
9618static int btrfs_getattr(const struct path *path, struct kstat *stat,
9619 u32 request_mask, unsigned int flags)
39279cc3 9620{
df0af1a5 9621 u64 delalloc_bytes;
a528d35e 9622 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9623 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9624 u32 bi_flags = BTRFS_I(inode)->flags;
9625
9626 stat->result_mask |= STATX_BTIME;
9627 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9628 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9629 if (bi_flags & BTRFS_INODE_APPEND)
9630 stat->attributes |= STATX_ATTR_APPEND;
9631 if (bi_flags & BTRFS_INODE_COMPRESS)
9632 stat->attributes |= STATX_ATTR_COMPRESSED;
9633 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9634 stat->attributes |= STATX_ATTR_IMMUTABLE;
9635 if (bi_flags & BTRFS_INODE_NODUMP)
9636 stat->attributes |= STATX_ATTR_NODUMP;
9637
9638 stat->attributes_mask |= (STATX_ATTR_APPEND |
9639 STATX_ATTR_COMPRESSED |
9640 STATX_ATTR_IMMUTABLE |
9641 STATX_ATTR_NODUMP);
fadc0d8b 9642
39279cc3 9643 generic_fillattr(inode, stat);
0ee5dc67 9644 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9645
9646 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9647 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9648 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9649 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9650 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9651 return 0;
9652}
9653
cdd1fedf
DF
9654static int btrfs_rename_exchange(struct inode *old_dir,
9655 struct dentry *old_dentry,
9656 struct inode *new_dir,
9657 struct dentry *new_dentry)
9658{
0b246afa 9659 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9660 struct btrfs_trans_handle *trans;
9661 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9662 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9663 struct inode *new_inode = new_dentry->d_inode;
9664 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9665 struct timespec ctime = current_time(old_inode);
cdd1fedf 9666 struct dentry *parent;
4a0cc7ca
NB
9667 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9668 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9669 u64 old_idx = 0;
9670 u64 new_idx = 0;
9671 u64 root_objectid;
9672 int ret;
86e8aa0e
FM
9673 bool root_log_pinned = false;
9674 bool dest_log_pinned = false;
cdd1fedf
DF
9675
9676 /* we only allow rename subvolume link between subvolumes */
9677 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9678 return -EXDEV;
9679
9680 /* close the race window with snapshot create/destroy ioctl */
9681 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9682 down_read(&fs_info->subvol_sem);
cdd1fedf 9683 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9684 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9685
9686 /*
9687 * We want to reserve the absolute worst case amount of items. So if
9688 * both inodes are subvols and we need to unlink them then that would
9689 * require 4 item modifications, but if they are both normal inodes it
9690 * would require 5 item modifications, so we'll assume their normal
9691 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9692 * should cover the worst case number of items we'll modify.
9693 */
9694 trans = btrfs_start_transaction(root, 12);
9695 if (IS_ERR(trans)) {
9696 ret = PTR_ERR(trans);
9697 goto out_notrans;
9698 }
9699
9700 /*
9701 * We need to find a free sequence number both in the source and
9702 * in the destination directory for the exchange.
9703 */
877574e2 9704 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9705 if (ret)
9706 goto out_fail;
877574e2 9707 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9708 if (ret)
9709 goto out_fail;
9710
9711 BTRFS_I(old_inode)->dir_index = 0ULL;
9712 BTRFS_I(new_inode)->dir_index = 0ULL;
9713
9714 /* Reference for the source. */
9715 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9716 /* force full log commit if subvolume involved. */
0b246afa 9717 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9718 } else {
376e5a57
FM
9719 btrfs_pin_log_trans(root);
9720 root_log_pinned = true;
cdd1fedf
DF
9721 ret = btrfs_insert_inode_ref(trans, dest,
9722 new_dentry->d_name.name,
9723 new_dentry->d_name.len,
9724 old_ino,
f85b7379
DS
9725 btrfs_ino(BTRFS_I(new_dir)),
9726 old_idx);
cdd1fedf
DF
9727 if (ret)
9728 goto out_fail;
cdd1fedf
DF
9729 }
9730
9731 /* And now for the dest. */
9732 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9733 /* force full log commit if subvolume involved. */
0b246afa 9734 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9735 } else {
376e5a57
FM
9736 btrfs_pin_log_trans(dest);
9737 dest_log_pinned = true;
cdd1fedf
DF
9738 ret = btrfs_insert_inode_ref(trans, root,
9739 old_dentry->d_name.name,
9740 old_dentry->d_name.len,
9741 new_ino,
f85b7379
DS
9742 btrfs_ino(BTRFS_I(old_dir)),
9743 new_idx);
cdd1fedf
DF
9744 if (ret)
9745 goto out_fail;
cdd1fedf
DF
9746 }
9747
9748 /* Update inode version and ctime/mtime. */
9749 inode_inc_iversion(old_dir);
9750 inode_inc_iversion(new_dir);
9751 inode_inc_iversion(old_inode);
9752 inode_inc_iversion(new_inode);
9753 old_dir->i_ctime = old_dir->i_mtime = ctime;
9754 new_dir->i_ctime = new_dir->i_mtime = ctime;
9755 old_inode->i_ctime = ctime;
9756 new_inode->i_ctime = ctime;
9757
9758 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9759 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9760 BTRFS_I(old_inode), 1);
9761 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9762 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9763 }
9764
9765 /* src is a subvolume */
9766 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9767 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9768 ret = btrfs_unlink_subvol(trans, root, old_dir,
9769 root_objectid,
9770 old_dentry->d_name.name,
9771 old_dentry->d_name.len);
9772 } else { /* src is an inode */
4ec5934e
NB
9773 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9774 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9775 old_dentry->d_name.name,
9776 old_dentry->d_name.len);
9777 if (!ret)
9778 ret = btrfs_update_inode(trans, root, old_inode);
9779 }
9780 if (ret) {
66642832 9781 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9782 goto out_fail;
9783 }
9784
9785 /* dest is a subvolume */
9786 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9787 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9788 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9789 root_objectid,
9790 new_dentry->d_name.name,
9791 new_dentry->d_name.len);
9792 } else { /* dest is an inode */
4ec5934e
NB
9793 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9794 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9795 new_dentry->d_name.name,
9796 new_dentry->d_name.len);
9797 if (!ret)
9798 ret = btrfs_update_inode(trans, dest, new_inode);
9799 }
9800 if (ret) {
66642832 9801 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9802 goto out_fail;
9803 }
9804
db0a669f 9805 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9806 new_dentry->d_name.name,
9807 new_dentry->d_name.len, 0, old_idx);
9808 if (ret) {
66642832 9809 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9810 goto out_fail;
9811 }
9812
db0a669f 9813 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9814 old_dentry->d_name.name,
9815 old_dentry->d_name.len, 0, new_idx);
9816 if (ret) {
66642832 9817 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9818 goto out_fail;
9819 }
9820
9821 if (old_inode->i_nlink == 1)
9822 BTRFS_I(old_inode)->dir_index = old_idx;
9823 if (new_inode->i_nlink == 1)
9824 BTRFS_I(new_inode)->dir_index = new_idx;
9825
86e8aa0e 9826 if (root_log_pinned) {
cdd1fedf 9827 parent = new_dentry->d_parent;
f85b7379
DS
9828 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9829 parent);
cdd1fedf 9830 btrfs_end_log_trans(root);
86e8aa0e 9831 root_log_pinned = false;
cdd1fedf 9832 }
86e8aa0e 9833 if (dest_log_pinned) {
cdd1fedf 9834 parent = old_dentry->d_parent;
f85b7379
DS
9835 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9836 parent);
cdd1fedf 9837 btrfs_end_log_trans(dest);
86e8aa0e 9838 dest_log_pinned = false;
cdd1fedf
DF
9839 }
9840out_fail:
86e8aa0e
FM
9841 /*
9842 * If we have pinned a log and an error happened, we unpin tasks
9843 * trying to sync the log and force them to fallback to a transaction
9844 * commit if the log currently contains any of the inodes involved in
9845 * this rename operation (to ensure we do not persist a log with an
9846 * inconsistent state for any of these inodes or leading to any
9847 * inconsistencies when replayed). If the transaction was aborted, the
9848 * abortion reason is propagated to userspace when attempting to commit
9849 * the transaction. If the log does not contain any of these inodes, we
9850 * allow the tasks to sync it.
9851 */
9852 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9853 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9854 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9855 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9856 (new_inode &&
0f8939b8 9857 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9858 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9859
9860 if (root_log_pinned) {
9861 btrfs_end_log_trans(root);
9862 root_log_pinned = false;
9863 }
9864 if (dest_log_pinned) {
9865 btrfs_end_log_trans(dest);
9866 dest_log_pinned = false;
9867 }
9868 }
3a45bb20 9869 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9870out_notrans:
9871 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9872 up_read(&fs_info->subvol_sem);
cdd1fedf 9873 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9874 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9875
9876 return ret;
9877}
9878
9879static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9880 struct btrfs_root *root,
9881 struct inode *dir,
9882 struct dentry *dentry)
9883{
9884 int ret;
9885 struct inode *inode;
9886 u64 objectid;
9887 u64 index;
9888
9889 ret = btrfs_find_free_ino(root, &objectid);
9890 if (ret)
9891 return ret;
9892
9893 inode = btrfs_new_inode(trans, root, dir,
9894 dentry->d_name.name,
9895 dentry->d_name.len,
4a0cc7ca 9896 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9897 objectid,
9898 S_IFCHR | WHITEOUT_MODE,
9899 &index);
9900
9901 if (IS_ERR(inode)) {
9902 ret = PTR_ERR(inode);
9903 return ret;
9904 }
9905
9906 inode->i_op = &btrfs_special_inode_operations;
9907 init_special_inode(inode, inode->i_mode,
9908 WHITEOUT_DEV);
9909
9910 ret = btrfs_init_inode_security(trans, inode, dir,
9911 &dentry->d_name);
9912 if (ret)
c9901618 9913 goto out;
cdd1fedf 9914
cef415af
NB
9915 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9916 BTRFS_I(inode), 0, index);
cdd1fedf 9917 if (ret)
c9901618 9918 goto out;
cdd1fedf
DF
9919
9920 ret = btrfs_update_inode(trans, root, inode);
c9901618 9921out:
cdd1fedf 9922 unlock_new_inode(inode);
c9901618
FM
9923 if (ret)
9924 inode_dec_link_count(inode);
cdd1fedf
DF
9925 iput(inode);
9926
c9901618 9927 return ret;
cdd1fedf
DF
9928}
9929
d397712b 9930static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9931 struct inode *new_dir, struct dentry *new_dentry,
9932 unsigned int flags)
39279cc3 9933{
0b246afa 9934 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9935 struct btrfs_trans_handle *trans;
5062af35 9936 unsigned int trans_num_items;
39279cc3 9937 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9938 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9939 struct inode *new_inode = d_inode(new_dentry);
9940 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9941 u64 index = 0;
4df27c4d 9942 u64 root_objectid;
39279cc3 9943 int ret;
4a0cc7ca 9944 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9945 bool log_pinned = false;
39279cc3 9946
4a0cc7ca 9947 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9948 return -EPERM;
9949
4df27c4d 9950 /* we only allow rename subvolume link between subvolumes */
33345d01 9951 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9952 return -EXDEV;
9953
33345d01 9954 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9955 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9956 return -ENOTEMPTY;
5f39d397 9957
4df27c4d
YZ
9958 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9959 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9960 return -ENOTEMPTY;
9c52057c
CM
9961
9962
9963 /* check for collisions, even if the name isn't there */
4871c158 9964 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9965 new_dentry->d_name.name,
9966 new_dentry->d_name.len);
9967
9968 if (ret) {
9969 if (ret == -EEXIST) {
9970 /* we shouldn't get
9971 * eexist without a new_inode */
fae7f21c 9972 if (WARN_ON(!new_inode)) {
9c52057c
CM
9973 return ret;
9974 }
9975 } else {
9976 /* maybe -EOVERFLOW */
9977 return ret;
9978 }
9979 }
9980 ret = 0;
9981
5a3f23d5 9982 /*
8d875f95
CM
9983 * we're using rename to replace one file with another. Start IO on it
9984 * now so we don't add too much work to the end of the transaction
5a3f23d5 9985 */
8d875f95 9986 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9987 filemap_flush(old_inode->i_mapping);
9988
76dda93c 9989 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9990 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9991 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9992 /*
9993 * We want to reserve the absolute worst case amount of items. So if
9994 * both inodes are subvols and we need to unlink them then that would
9995 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9996 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9997 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9998 * should cover the worst case number of items we'll modify.
5062af35
FM
9999 * If our rename has the whiteout flag, we need more 5 units for the
10000 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10001 * when selinux is enabled).
a22285a6 10002 */
5062af35
FM
10003 trans_num_items = 11;
10004 if (flags & RENAME_WHITEOUT)
10005 trans_num_items += 5;
10006 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 10007 if (IS_ERR(trans)) {
cdd1fedf
DF
10008 ret = PTR_ERR(trans);
10009 goto out_notrans;
10010 }
76dda93c 10011
4df27c4d
YZ
10012 if (dest != root)
10013 btrfs_record_root_in_trans(trans, dest);
5f39d397 10014
877574e2 10015 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
10016 if (ret)
10017 goto out_fail;
5a3f23d5 10018
67de1176 10019 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 10020 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 10021 /* force full log commit if subvolume involved. */
0b246afa 10022 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 10023 } else {
c4aba954
FM
10024 btrfs_pin_log_trans(root);
10025 log_pinned = true;
a5719521
YZ
10026 ret = btrfs_insert_inode_ref(trans, dest,
10027 new_dentry->d_name.name,
10028 new_dentry->d_name.len,
33345d01 10029 old_ino,
4a0cc7ca 10030 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
10031 if (ret)
10032 goto out_fail;
4df27c4d 10033 }
5a3f23d5 10034
0c4d2d95
JB
10035 inode_inc_iversion(old_dir);
10036 inode_inc_iversion(new_dir);
10037 inode_inc_iversion(old_inode);
04b285f3
DD
10038 old_dir->i_ctime = old_dir->i_mtime =
10039 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 10040 old_inode->i_ctime = current_time(old_dir);
5f39d397 10041
12fcfd22 10042 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
10043 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10044 BTRFS_I(old_inode), 1);
12fcfd22 10045
33345d01 10046 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
10047 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10048 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10049 old_dentry->d_name.name,
10050 old_dentry->d_name.len);
10051 } else {
4ec5934e
NB
10052 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10053 BTRFS_I(d_inode(old_dentry)),
92986796
AV
10054 old_dentry->d_name.name,
10055 old_dentry->d_name.len);
10056 if (!ret)
10057 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10058 }
79787eaa 10059 if (ret) {
66642832 10060 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10061 goto out_fail;
10062 }
39279cc3
CM
10063
10064 if (new_inode) {
0c4d2d95 10065 inode_inc_iversion(new_inode);
c2050a45 10066 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10067 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10068 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10069 root_objectid = BTRFS_I(new_inode)->location.objectid;
10070 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10071 root_objectid,
10072 new_dentry->d_name.name,
10073 new_dentry->d_name.len);
10074 BUG_ON(new_inode->i_nlink == 0);
10075 } else {
4ec5934e
NB
10076 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10077 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10078 new_dentry->d_name.name,
10079 new_dentry->d_name.len);
10080 }
4ef31a45 10081 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10082 ret = btrfs_orphan_add(trans,
10083 BTRFS_I(d_inode(new_dentry)));
79787eaa 10084 if (ret) {
66642832 10085 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10086 goto out_fail;
10087 }
39279cc3 10088 }
aec7477b 10089
db0a669f 10090 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10091 new_dentry->d_name.name,
a5719521 10092 new_dentry->d_name.len, 0, index);
79787eaa 10093 if (ret) {
66642832 10094 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10095 goto out_fail;
10096 }
39279cc3 10097
67de1176
MX
10098 if (old_inode->i_nlink == 1)
10099 BTRFS_I(old_inode)->dir_index = index;
10100
3dc9e8f7 10101 if (log_pinned) {
10d9f309 10102 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10103
f85b7379
DS
10104 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10105 parent);
4df27c4d 10106 btrfs_end_log_trans(root);
3dc9e8f7 10107 log_pinned = false;
4df27c4d 10108 }
cdd1fedf
DF
10109
10110 if (flags & RENAME_WHITEOUT) {
10111 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10112 old_dentry);
10113
10114 if (ret) {
66642832 10115 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10116 goto out_fail;
10117 }
4df27c4d 10118 }
39279cc3 10119out_fail:
3dc9e8f7
FM
10120 /*
10121 * If we have pinned the log and an error happened, we unpin tasks
10122 * trying to sync the log and force them to fallback to a transaction
10123 * commit if the log currently contains any of the inodes involved in
10124 * this rename operation (to ensure we do not persist a log with an
10125 * inconsistent state for any of these inodes or leading to any
10126 * inconsistencies when replayed). If the transaction was aborted, the
10127 * abortion reason is propagated to userspace when attempting to commit
10128 * the transaction. If the log does not contain any of these inodes, we
10129 * allow the tasks to sync it.
10130 */
10131 if (ret && log_pinned) {
0f8939b8
NB
10132 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10133 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10134 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10135 (new_inode &&
0f8939b8 10136 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10137 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10138
10139 btrfs_end_log_trans(root);
10140 log_pinned = false;
10141 }
3a45bb20 10142 btrfs_end_transaction(trans);
b44c59a8 10143out_notrans:
33345d01 10144 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10145 up_read(&fs_info->subvol_sem);
9ed74f2d 10146
39279cc3
CM
10147 return ret;
10148}
10149
80ace85c
MS
10150static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10151 struct inode *new_dir, struct dentry *new_dentry,
10152 unsigned int flags)
10153{
cdd1fedf 10154 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10155 return -EINVAL;
10156
cdd1fedf
DF
10157 if (flags & RENAME_EXCHANGE)
10158 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10159 new_dentry);
10160
10161 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10162}
10163
8ccf6f19
MX
10164static void btrfs_run_delalloc_work(struct btrfs_work *work)
10165{
10166 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10167 struct inode *inode;
8ccf6f19
MX
10168
10169 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10170 work);
9f23e289 10171 inode = delalloc_work->inode;
30424601
DS
10172 filemap_flush(inode->i_mapping);
10173 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10174 &BTRFS_I(inode)->runtime_flags))
9f23e289 10175 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10176
10177 if (delalloc_work->delay_iput)
9f23e289 10178 btrfs_add_delayed_iput(inode);
8ccf6f19 10179 else
9f23e289 10180 iput(inode);
8ccf6f19
MX
10181 complete(&delalloc_work->completion);
10182}
10183
10184struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10185 int delay_iput)
8ccf6f19
MX
10186{
10187 struct btrfs_delalloc_work *work;
10188
100d5702 10189 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10190 if (!work)
10191 return NULL;
10192
10193 init_completion(&work->completion);
10194 INIT_LIST_HEAD(&work->list);
10195 work->inode = inode;
8ccf6f19 10196 work->delay_iput = delay_iput;
9e0af237
LB
10197 WARN_ON_ONCE(!inode);
10198 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10199 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10200
10201 return work;
10202}
10203
10204void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10205{
10206 wait_for_completion(&work->completion);
100d5702 10207 kfree(work);
8ccf6f19
MX
10208}
10209
d352ac68
CM
10210/*
10211 * some fairly slow code that needs optimization. This walks the list
10212 * of all the inodes with pending delalloc and forces them to disk.
10213 */
6c255e67
MX
10214static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10215 int nr)
ea8c2819 10216{
ea8c2819 10217 struct btrfs_inode *binode;
5b21f2ed 10218 struct inode *inode;
8ccf6f19
MX
10219 struct btrfs_delalloc_work *work, *next;
10220 struct list_head works;
1eafa6c7 10221 struct list_head splice;
8ccf6f19 10222 int ret = 0;
ea8c2819 10223
8ccf6f19 10224 INIT_LIST_HEAD(&works);
1eafa6c7 10225 INIT_LIST_HEAD(&splice);
63607cc8 10226
573bfb72 10227 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10228 spin_lock(&root->delalloc_lock);
10229 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10230 while (!list_empty(&splice)) {
10231 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10232 delalloc_inodes);
1eafa6c7 10233
eb73c1b7
MX
10234 list_move_tail(&binode->delalloc_inodes,
10235 &root->delalloc_inodes);
5b21f2ed 10236 inode = igrab(&binode->vfs_inode);
df0af1a5 10237 if (!inode) {
eb73c1b7 10238 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10239 continue;
df0af1a5 10240 }
eb73c1b7 10241 spin_unlock(&root->delalloc_lock);
1eafa6c7 10242
651d494a 10243 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10244 if (!work) {
f4ab9ea7
JB
10245 if (delay_iput)
10246 btrfs_add_delayed_iput(inode);
10247 else
10248 iput(inode);
1eafa6c7 10249 ret = -ENOMEM;
a1ecaabb 10250 goto out;
5b21f2ed 10251 }
1eafa6c7 10252 list_add_tail(&work->list, &works);
a44903ab
QW
10253 btrfs_queue_work(root->fs_info->flush_workers,
10254 &work->work);
6c255e67
MX
10255 ret++;
10256 if (nr != -1 && ret >= nr)
a1ecaabb 10257 goto out;
5b21f2ed 10258 cond_resched();
eb73c1b7 10259 spin_lock(&root->delalloc_lock);
ea8c2819 10260 }
eb73c1b7 10261 spin_unlock(&root->delalloc_lock);
8c8bee1d 10262
a1ecaabb 10263out:
eb73c1b7
MX
10264 list_for_each_entry_safe(work, next, &works, list) {
10265 list_del_init(&work->list);
10266 btrfs_wait_and_free_delalloc_work(work);
10267 }
10268
10269 if (!list_empty_careful(&splice)) {
10270 spin_lock(&root->delalloc_lock);
10271 list_splice_tail(&splice, &root->delalloc_inodes);
10272 spin_unlock(&root->delalloc_lock);
10273 }
573bfb72 10274 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10275 return ret;
10276}
1eafa6c7 10277
eb73c1b7
MX
10278int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10279{
0b246afa 10280 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10281 int ret;
1eafa6c7 10282
0b246afa 10283 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10284 return -EROFS;
10285
6c255e67
MX
10286 ret = __start_delalloc_inodes(root, delay_iput, -1);
10287 if (ret > 0)
10288 ret = 0;
eb73c1b7
MX
10289 return ret;
10290}
10291
6c255e67
MX
10292int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10293 int nr)
eb73c1b7
MX
10294{
10295 struct btrfs_root *root;
10296 struct list_head splice;
10297 int ret;
10298
2c21b4d7 10299 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10300 return -EROFS;
10301
10302 INIT_LIST_HEAD(&splice);
10303
573bfb72 10304 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10305 spin_lock(&fs_info->delalloc_root_lock);
10306 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10307 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10308 root = list_first_entry(&splice, struct btrfs_root,
10309 delalloc_root);
10310 root = btrfs_grab_fs_root(root);
10311 BUG_ON(!root);
10312 list_move_tail(&root->delalloc_root,
10313 &fs_info->delalloc_roots);
10314 spin_unlock(&fs_info->delalloc_root_lock);
10315
6c255e67 10316 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10317 btrfs_put_fs_root(root);
6c255e67 10318 if (ret < 0)
eb73c1b7
MX
10319 goto out;
10320
6c255e67
MX
10321 if (nr != -1) {
10322 nr -= ret;
10323 WARN_ON(nr < 0);
10324 }
eb73c1b7 10325 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10326 }
eb73c1b7 10327 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10328
6c255e67 10329 ret = 0;
eb73c1b7 10330out:
1eafa6c7 10331 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10332 spin_lock(&fs_info->delalloc_root_lock);
10333 list_splice_tail(&splice, &fs_info->delalloc_roots);
10334 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10335 }
573bfb72 10336 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10337 return ret;
ea8c2819
CM
10338}
10339
39279cc3
CM
10340static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10341 const char *symname)
10342{
0b246afa 10343 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10344 struct btrfs_trans_handle *trans;
10345 struct btrfs_root *root = BTRFS_I(dir)->root;
10346 struct btrfs_path *path;
10347 struct btrfs_key key;
1832a6d5 10348 struct inode *inode = NULL;
39279cc3
CM
10349 int err;
10350 int drop_inode = 0;
10351 u64 objectid;
67871254 10352 u64 index = 0;
39279cc3
CM
10353 int name_len;
10354 int datasize;
5f39d397 10355 unsigned long ptr;
39279cc3 10356 struct btrfs_file_extent_item *ei;
5f39d397 10357 struct extent_buffer *leaf;
39279cc3 10358
f06becc4 10359 name_len = strlen(symname);
0b246afa 10360 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10361 return -ENAMETOOLONG;
1832a6d5 10362
9ed74f2d
JB
10363 /*
10364 * 2 items for inode item and ref
10365 * 2 items for dir items
9269d12b
FM
10366 * 1 item for updating parent inode item
10367 * 1 item for the inline extent item
9ed74f2d
JB
10368 * 1 item for xattr if selinux is on
10369 */
9269d12b 10370 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10371 if (IS_ERR(trans))
10372 return PTR_ERR(trans);
1832a6d5 10373
581bb050
LZ
10374 err = btrfs_find_free_ino(root, &objectid);
10375 if (err)
10376 goto out_unlock;
10377
aec7477b 10378 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10379 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10380 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10381 if (IS_ERR(inode)) {
10382 err = PTR_ERR(inode);
39279cc3 10383 goto out_unlock;
7cf96da3 10384 }
39279cc3 10385
ad19db71
CS
10386 /*
10387 * If the active LSM wants to access the inode during
10388 * d_instantiate it needs these. Smack checks to see
10389 * if the filesystem supports xattrs by looking at the
10390 * ops vector.
10391 */
10392 inode->i_fop = &btrfs_file_operations;
10393 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10394 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10395 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10396
10397 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10398 if (err)
10399 goto out_unlock_inode;
ad19db71 10400
39279cc3 10401 path = btrfs_alloc_path();
d8926bb3
MF
10402 if (!path) {
10403 err = -ENOMEM;
b0d5d10f 10404 goto out_unlock_inode;
d8926bb3 10405 }
4a0cc7ca 10406 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10407 key.offset = 0;
962a298f 10408 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10409 datasize = btrfs_file_extent_calc_inline_size(name_len);
10410 err = btrfs_insert_empty_item(trans, root, path, &key,
10411 datasize);
54aa1f4d 10412 if (err) {
b0839166 10413 btrfs_free_path(path);
b0d5d10f 10414 goto out_unlock_inode;
54aa1f4d 10415 }
5f39d397
CM
10416 leaf = path->nodes[0];
10417 ei = btrfs_item_ptr(leaf, path->slots[0],
10418 struct btrfs_file_extent_item);
10419 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10420 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10421 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10422 btrfs_set_file_extent_encryption(leaf, ei, 0);
10423 btrfs_set_file_extent_compression(leaf, ei, 0);
10424 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10425 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10426
39279cc3 10427 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10428 write_extent_buffer(leaf, symname, ptr, name_len);
10429 btrfs_mark_buffer_dirty(leaf);
39279cc3 10430 btrfs_free_path(path);
5f39d397 10431
39279cc3 10432 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10433 inode_nohighmem(inode);
39279cc3 10434 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10435 inode_set_bytes(inode, name_len);
6ef06d27 10436 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10437 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10438 /*
10439 * Last step, add directory indexes for our symlink inode. This is the
10440 * last step to avoid extra cleanup of these indexes if an error happens
10441 * elsewhere above.
10442 */
10443 if (!err)
cef415af
NB
10444 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10445 BTRFS_I(inode), 0, index);
b0d5d10f 10446 if (err) {
54aa1f4d 10447 drop_inode = 1;
b0d5d10f
CM
10448 goto out_unlock_inode;
10449 }
10450
10451 unlock_new_inode(inode);
10452 d_instantiate(dentry, inode);
39279cc3
CM
10453
10454out_unlock:
3a45bb20 10455 btrfs_end_transaction(trans);
39279cc3
CM
10456 if (drop_inode) {
10457 inode_dec_link_count(inode);
10458 iput(inode);
10459 }
2ff7e61e 10460 btrfs_btree_balance_dirty(fs_info);
39279cc3 10461 return err;
b0d5d10f
CM
10462
10463out_unlock_inode:
10464 drop_inode = 1;
10465 unlock_new_inode(inode);
10466 goto out_unlock;
39279cc3 10467}
16432985 10468
0af3d00b
JB
10469static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10470 u64 start, u64 num_bytes, u64 min_size,
10471 loff_t actual_len, u64 *alloc_hint,
10472 struct btrfs_trans_handle *trans)
d899e052 10473{
0b246afa 10474 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10475 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10476 struct extent_map *em;
d899e052
YZ
10477 struct btrfs_root *root = BTRFS_I(inode)->root;
10478 struct btrfs_key ins;
d899e052 10479 u64 cur_offset = start;
55a61d1d 10480 u64 i_size;
154ea289 10481 u64 cur_bytes;
0b670dc4 10482 u64 last_alloc = (u64)-1;
d899e052 10483 int ret = 0;
0af3d00b 10484 bool own_trans = true;
18513091 10485 u64 end = start + num_bytes - 1;
d899e052 10486
0af3d00b
JB
10487 if (trans)
10488 own_trans = false;
d899e052 10489 while (num_bytes > 0) {
0af3d00b
JB
10490 if (own_trans) {
10491 trans = btrfs_start_transaction(root, 3);
10492 if (IS_ERR(trans)) {
10493 ret = PTR_ERR(trans);
10494 break;
10495 }
5a303d5d
YZ
10496 }
10497
ee22184b 10498 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10499 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10500 /*
10501 * If we are severely fragmented we could end up with really
10502 * small allocations, so if the allocator is returning small
10503 * chunks lets make its job easier by only searching for those
10504 * sized chunks.
10505 */
10506 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10507 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10508 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10509 if (ret) {
0af3d00b 10510 if (own_trans)
3a45bb20 10511 btrfs_end_transaction(trans);
a22285a6 10512 break;
d899e052 10513 }
0b246afa 10514 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10515
0b670dc4 10516 last_alloc = ins.offset;
d899e052
YZ
10517 ret = insert_reserved_file_extent(trans, inode,
10518 cur_offset, ins.objectid,
10519 ins.offset, ins.offset,
920bbbfb 10520 ins.offset, 0, 0, 0,
d899e052 10521 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10522 if (ret) {
2ff7e61e 10523 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10524 ins.offset, 0);
66642832 10525 btrfs_abort_transaction(trans, ret);
79787eaa 10526 if (own_trans)
3a45bb20 10527 btrfs_end_transaction(trans);
79787eaa
JM
10528 break;
10529 }
31193213 10530
dcdbc059 10531 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10532 cur_offset + ins.offset -1, 0);
5a303d5d 10533
5dc562c5
JB
10534 em = alloc_extent_map();
10535 if (!em) {
10536 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10537 &BTRFS_I(inode)->runtime_flags);
10538 goto next;
10539 }
10540
10541 em->start = cur_offset;
10542 em->orig_start = cur_offset;
10543 em->len = ins.offset;
10544 em->block_start = ins.objectid;
10545 em->block_len = ins.offset;
b4939680 10546 em->orig_block_len = ins.offset;
cc95bef6 10547 em->ram_bytes = ins.offset;
0b246afa 10548 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10549 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10550 em->generation = trans->transid;
10551
10552 while (1) {
10553 write_lock(&em_tree->lock);
09a2a8f9 10554 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10555 write_unlock(&em_tree->lock);
10556 if (ret != -EEXIST)
10557 break;
dcdbc059 10558 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10559 cur_offset + ins.offset - 1,
10560 0);
10561 }
10562 free_extent_map(em);
10563next:
d899e052
YZ
10564 num_bytes -= ins.offset;
10565 cur_offset += ins.offset;
efa56464 10566 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10567
0c4d2d95 10568 inode_inc_iversion(inode);
c2050a45 10569 inode->i_ctime = current_time(inode);
6cbff00f 10570 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10571 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10572 (actual_len > inode->i_size) &&
10573 (cur_offset > inode->i_size)) {
d1ea6a61 10574 if (cur_offset > actual_len)
55a61d1d 10575 i_size = actual_len;
d1ea6a61 10576 else
55a61d1d
JB
10577 i_size = cur_offset;
10578 i_size_write(inode, i_size);
10579 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10580 }
10581
d899e052 10582 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10583
10584 if (ret) {
66642832 10585 btrfs_abort_transaction(trans, ret);
79787eaa 10586 if (own_trans)
3a45bb20 10587 btrfs_end_transaction(trans);
79787eaa
JM
10588 break;
10589 }
d899e052 10590
0af3d00b 10591 if (own_trans)
3a45bb20 10592 btrfs_end_transaction(trans);
5a303d5d 10593 }
18513091 10594 if (cur_offset < end)
bc42bda2 10595 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10596 end - cur_offset + 1);
d899e052
YZ
10597 return ret;
10598}
10599
0af3d00b
JB
10600int btrfs_prealloc_file_range(struct inode *inode, int mode,
10601 u64 start, u64 num_bytes, u64 min_size,
10602 loff_t actual_len, u64 *alloc_hint)
10603{
10604 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10605 min_size, actual_len, alloc_hint,
10606 NULL);
10607}
10608
10609int btrfs_prealloc_file_range_trans(struct inode *inode,
10610 struct btrfs_trans_handle *trans, int mode,
10611 u64 start, u64 num_bytes, u64 min_size,
10612 loff_t actual_len, u64 *alloc_hint)
10613{
10614 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10615 min_size, actual_len, alloc_hint, trans);
10616}
10617
e6dcd2dc
CM
10618static int btrfs_set_page_dirty(struct page *page)
10619{
e6dcd2dc
CM
10620 return __set_page_dirty_nobuffers(page);
10621}
10622
10556cb2 10623static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10624{
b83cc969 10625 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10626 umode_t mode = inode->i_mode;
b83cc969 10627
cb6db4e5
JM
10628 if (mask & MAY_WRITE &&
10629 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10630 if (btrfs_root_readonly(root))
10631 return -EROFS;
10632 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10633 return -EACCES;
10634 }
2830ba7f 10635 return generic_permission(inode, mask);
fdebe2bd 10636}
39279cc3 10637
ef3b9af5
FM
10638static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10639{
2ff7e61e 10640 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10641 struct btrfs_trans_handle *trans;
10642 struct btrfs_root *root = BTRFS_I(dir)->root;
10643 struct inode *inode = NULL;
10644 u64 objectid;
10645 u64 index;
10646 int ret = 0;
10647
10648 /*
10649 * 5 units required for adding orphan entry
10650 */
10651 trans = btrfs_start_transaction(root, 5);
10652 if (IS_ERR(trans))
10653 return PTR_ERR(trans);
10654
10655 ret = btrfs_find_free_ino(root, &objectid);
10656 if (ret)
10657 goto out;
10658
10659 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10660 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10661 if (IS_ERR(inode)) {
10662 ret = PTR_ERR(inode);
10663 inode = NULL;
10664 goto out;
10665 }
10666
ef3b9af5
FM
10667 inode->i_fop = &btrfs_file_operations;
10668 inode->i_op = &btrfs_file_inode_operations;
10669
10670 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10671 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10672
b0d5d10f
CM
10673 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10674 if (ret)
10675 goto out_inode;
10676
10677 ret = btrfs_update_inode(trans, root, inode);
10678 if (ret)
10679 goto out_inode;
73f2e545 10680 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10681 if (ret)
b0d5d10f 10682 goto out_inode;
ef3b9af5 10683
5762b5c9
FM
10684 /*
10685 * We set number of links to 0 in btrfs_new_inode(), and here we set
10686 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10687 * through:
10688 *
10689 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10690 */
10691 set_nlink(inode, 1);
b0d5d10f 10692 unlock_new_inode(inode);
ef3b9af5
FM
10693 d_tmpfile(dentry, inode);
10694 mark_inode_dirty(inode);
10695
10696out:
3a45bb20 10697 btrfs_end_transaction(trans);
ef3b9af5
FM
10698 if (ret)
10699 iput(inode);
2ff7e61e 10700 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10701 return ret;
b0d5d10f
CM
10702
10703out_inode:
10704 unlock_new_inode(inode);
10705 goto out;
10706
ef3b9af5
FM
10707}
10708
20a7db8a 10709__attribute__((const))
9d0d1c8b 10710static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10711{
9d0d1c8b 10712 return -EAGAIN;
20a7db8a
DS
10713}
10714
c6100a4b
JB
10715static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10716{
10717 struct inode *inode = private_data;
10718 return btrfs_sb(inode->i_sb);
10719}
10720
10721static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10722 u64 start, u64 end)
10723{
10724 struct inode *inode = private_data;
10725 u64 isize;
10726
10727 isize = i_size_read(inode);
10728 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10729 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10730 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10731 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10732 }
10733}
10734
10735void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10736{
10737 struct inode *inode = private_data;
10738 unsigned long index = start >> PAGE_SHIFT;
10739 unsigned long end_index = end >> PAGE_SHIFT;
10740 struct page *page;
10741
10742 while (index <= end_index) {
10743 page = find_get_page(inode->i_mapping, index);
10744 ASSERT(page); /* Pages should be in the extent_io_tree */
10745 set_page_writeback(page);
10746 put_page(page);
10747 index++;
10748 }
10749}
10750
6e1d5dcc 10751static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10752 .getattr = btrfs_getattr,
39279cc3
CM
10753 .lookup = btrfs_lookup,
10754 .create = btrfs_create,
10755 .unlink = btrfs_unlink,
10756 .link = btrfs_link,
10757 .mkdir = btrfs_mkdir,
10758 .rmdir = btrfs_rmdir,
2773bf00 10759 .rename = btrfs_rename2,
39279cc3
CM
10760 .symlink = btrfs_symlink,
10761 .setattr = btrfs_setattr,
618e21d5 10762 .mknod = btrfs_mknod,
5103e947 10763 .listxattr = btrfs_listxattr,
fdebe2bd 10764 .permission = btrfs_permission,
4e34e719 10765 .get_acl = btrfs_get_acl,
996a710d 10766 .set_acl = btrfs_set_acl,
93fd63c2 10767 .update_time = btrfs_update_time,
ef3b9af5 10768 .tmpfile = btrfs_tmpfile,
39279cc3 10769};
6e1d5dcc 10770static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10771 .lookup = btrfs_lookup,
fdebe2bd 10772 .permission = btrfs_permission,
93fd63c2 10773 .update_time = btrfs_update_time,
39279cc3 10774};
76dda93c 10775
828c0950 10776static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10777 .llseek = generic_file_llseek,
10778 .read = generic_read_dir,
02dbfc99 10779 .iterate_shared = btrfs_real_readdir,
23b5ec74 10780 .open = btrfs_opendir,
34287aa3 10781 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10782#ifdef CONFIG_COMPAT
4c63c245 10783 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10784#endif
6bf13c0c 10785 .release = btrfs_release_file,
e02119d5 10786 .fsync = btrfs_sync_file,
39279cc3
CM
10787};
10788
20e5506b 10789static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10790 /* mandatory callbacks */
065631f6 10791 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10792 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10793 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10794 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10795 .tree_fs_info = iotree_fs_info,
10796 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10797
10798 /* optional callbacks */
10799 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10800 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10801 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10802 .set_bit_hook = btrfs_set_bit_hook,
10803 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10804 .merge_extent_hook = btrfs_merge_extent_hook,
10805 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10806 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10807};
10808
35054394
CM
10809/*
10810 * btrfs doesn't support the bmap operation because swapfiles
10811 * use bmap to make a mapping of extents in the file. They assume
10812 * these extents won't change over the life of the file and they
10813 * use the bmap result to do IO directly to the drive.
10814 *
10815 * the btrfs bmap call would return logical addresses that aren't
10816 * suitable for IO and they also will change frequently as COW
10817 * operations happen. So, swapfile + btrfs == corruption.
10818 *
10819 * For now we're avoiding this by dropping bmap.
10820 */
7f09410b 10821static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10822 .readpage = btrfs_readpage,
10823 .writepage = btrfs_writepage,
b293f02e 10824 .writepages = btrfs_writepages,
3ab2fb5a 10825 .readpages = btrfs_readpages,
16432985 10826 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10827 .invalidatepage = btrfs_invalidatepage,
10828 .releasepage = btrfs_releasepage,
e6dcd2dc 10829 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10830 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10831};
10832
7f09410b 10833static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10834 .readpage = btrfs_readpage,
10835 .writepage = btrfs_writepage,
2bf5a725
CM
10836 .invalidatepage = btrfs_invalidatepage,
10837 .releasepage = btrfs_releasepage,
39279cc3
CM
10838};
10839
6e1d5dcc 10840static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10841 .getattr = btrfs_getattr,
10842 .setattr = btrfs_setattr,
5103e947 10843 .listxattr = btrfs_listxattr,
fdebe2bd 10844 .permission = btrfs_permission,
1506fcc8 10845 .fiemap = btrfs_fiemap,
4e34e719 10846 .get_acl = btrfs_get_acl,
996a710d 10847 .set_acl = btrfs_set_acl,
e41f941a 10848 .update_time = btrfs_update_time,
39279cc3 10849};
6e1d5dcc 10850static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10851 .getattr = btrfs_getattr,
10852 .setattr = btrfs_setattr,
fdebe2bd 10853 .permission = btrfs_permission,
33268eaf 10854 .listxattr = btrfs_listxattr,
4e34e719 10855 .get_acl = btrfs_get_acl,
996a710d 10856 .set_acl = btrfs_set_acl,
e41f941a 10857 .update_time = btrfs_update_time,
618e21d5 10858};
6e1d5dcc 10859static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10860 .get_link = page_get_link,
f209561a 10861 .getattr = btrfs_getattr,
22c44fe6 10862 .setattr = btrfs_setattr,
fdebe2bd 10863 .permission = btrfs_permission,
0279b4cd 10864 .listxattr = btrfs_listxattr,
e41f941a 10865 .update_time = btrfs_update_time,
39279cc3 10866};
76dda93c 10867
82d339d9 10868const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10869 .d_delete = btrfs_dentry_delete,
b4aff1f8 10870 .d_release = btrfs_dentry_release,
76dda93c 10871};