]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
btrfs: btrfs_update_root error push-up
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
c8b97818 92static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 BUG_ON(ret);
154 if (ret) {
155 err = ret;
c8b97818
CM
156 goto fail;
157 }
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
167
261507a0 168 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
169 struct page *cpage;
170 int i = 0;
d397712b 171 while (compressed_size > 0) {
c8b97818 172 cpage = compressed_pages[i];
5b050f04 173 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
174 PAGE_CACHE_SIZE);
175
b9473439 176 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 178 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
179
180 i++;
181 ptr += cur_size;
182 compressed_size -= cur_size;
183 }
184 btrfs_set_file_extent_compression(leaf, ei,
261507a0 185 compress_type);
c8b97818
CM
186 } else {
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page, KM_USER0);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr, KM_USER0);
194 page_cache_release(page);
195 }
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
198
c2167754
YZ
199 /*
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
203 *
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
207 */
c8b97818
CM
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
c2167754 210
c8b97818
CM
211 return 0;
212fail:
213 btrfs_free_path(path);
214 return err;
215}
216
217
218/*
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
222 */
7f366cfe 223static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
fe3f566c 226 size_t compressed_size, int compress_type,
c8b97818
CM
227 struct page **compressed_pages)
228{
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
234 u64 hint_byte;
235 u64 data_len = inline_len;
236 int ret;
237
238 if (compressed_size)
239 data_len = compressed_size;
240
241 if (start > 0 ||
70b99e69 242 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 (!compressed_size &&
245 (actual_end & (root->sectorsize - 1)) == 0) ||
246 end + 1 < isize ||
247 data_len > root->fs_info->max_inline) {
248 return 1;
249 }
250
920bbbfb 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 252 &hint_byte, 1);
c8b97818
CM
253 BUG_ON(ret);
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
c8b97818 260 BUG_ON(ret);
0ca1f7ce 261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
263 return 0;
264}
265
771ed689
CM
266struct async_extent {
267 u64 start;
268 u64 ram_size;
269 u64 compressed_size;
270 struct page **pages;
271 unsigned long nr_pages;
261507a0 272 int compress_type;
771ed689
CM
273 struct list_head list;
274};
275
276struct async_cow {
277 struct inode *inode;
278 struct btrfs_root *root;
279 struct page *locked_page;
280 u64 start;
281 u64 end;
282 struct list_head extents;
283 struct btrfs_work work;
284};
285
286static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
288 u64 compressed_size,
289 struct page **pages,
261507a0
LZ
290 unsigned long nr_pages,
291 int compress_type)
771ed689
CM
292{
293 struct async_extent *async_extent;
294
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 296 BUG_ON(!async_extent);
771ed689
CM
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
261507a0 302 async_extent->compress_type = compress_type;
771ed689
CM
303 list_add_tail(&async_extent->list, &cow->extents);
304 return 0;
305}
306
d352ac68 307/*
771ed689
CM
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
c8b97818 311 *
771ed689
CM
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
c8b97818 317 *
771ed689
CM
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
d352ac68 322 */
771ed689
CM
323static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
325 u64 start, u64 end,
326 struct async_cow *async_cow,
327 int *num_added)
b888db2b
CM
328{
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
db94535d 331 u64 num_bytes;
db94535d 332 u64 blocksize = root->sectorsize;
c8b97818 333 u64 actual_end;
42dc7bab 334 u64 isize = i_size_read(inode);
e6dcd2dc 335 int ret = 0;
c8b97818
CM
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
771ed689 342 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
343 int i;
344 int will_compress;
261507a0 345 int compress_type = root->fs_info->compress_type;
b888db2b 346
4cb5300b
CM
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
350
42dc7bab 351 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
352again:
353 will_compress = 0;
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 356
f03d9301
CM
357 /*
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
363 *
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
366 */
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
369
c8b97818
CM
370 total_compressed = actual_end - start;
371
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
377 *
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
c8b97818
CM
381 */
382 total_compressed = min(total_compressed, max_uncompressed);
db94535d 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 384 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
385 total_in = 0;
386 ret = 0;
db94535d 387
771ed689
CM
388 /*
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
c8b97818 392 */
6cbff00f 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 394 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 397 WARN_ON(pages);
cfbc246e 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
399 if (!pages) {
400 /* just bail out to the uncompressed code */
401 goto cont;
402 }
c8b97818 403
261507a0
LZ
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
406
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
411 &total_in,
412 &total_compressed,
413 max_compressed);
c8b97818
CM
414
415 if (!ret) {
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
419 char *kaddr;
420
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
423 */
424 if (offset) {
425 kaddr = kmap_atomic(page, KM_USER0);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr, KM_USER0);
429 }
430 will_compress = 1;
431 }
432 }
560f7d75 433cont:
c8b97818 434 if (start == 0) {
7a7eaa40 435 trans = btrfs_join_transaction(root);
3612b495 436 BUG_ON(IS_ERR(trans));
0ca1f7ce 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 438
c8b97818 439 /* lets try to make an inline extent */
771ed689 440 if (ret || total_in < (actual_end - start)) {
c8b97818 441 /* we didn't compress the entire range, try
771ed689 442 * to make an uncompressed inline extent.
c8b97818
CM
443 */
444 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 445 start, end, 0, 0, NULL);
c8b97818 446 } else {
771ed689 447 /* try making a compressed inline extent */
c8b97818
CM
448 ret = cow_file_range_inline(trans, root, inode,
449 start, end,
fe3f566c
LZ
450 total_compressed,
451 compress_type, pages);
c8b97818
CM
452 }
453 if (ret == 0) {
771ed689
CM
454 /*
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
458 */
c8b97818 459 extent_clear_unlock_delalloc(inode,
a791e35e
CM
460 &BTRFS_I(inode)->io_tree,
461 start, end, NULL,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 463 EXTENT_CLEAR_DELALLOC |
a791e35e 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
465
466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 goto free_pages_out;
468 }
c2167754 469 btrfs_end_transaction(trans, root);
c8b97818
CM
470 }
471
472 if (will_compress) {
473 /*
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
476 * things
477 */
478 total_compressed = (total_compressed + blocksize - 1) &
479 ~(blocksize - 1);
480
481 /*
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
484 */
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
488 will_compress = 0;
489 } else {
c8b97818
CM
490 num_bytes = total_in;
491 }
492 }
493 if (!will_compress && pages) {
494 /*
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
497 */
498 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 499 WARN_ON(pages[i]->mapping);
c8b97818
CM
500 page_cache_release(pages[i]);
501 }
502 kfree(pages);
503 pages = NULL;
504 total_compressed = 0;
505 nr_pages_ret = 0;
506
507 /* flag the file so we don't compress in the future */
1e701a32
CM
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
a555f810 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 511 }
c8b97818 512 }
771ed689
CM
513 if (will_compress) {
514 *num_added += 1;
c8b97818 515
771ed689
CM
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
519 */
520 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
521 total_compressed, pages, nr_pages_ret,
522 compress_type);
179e29e4 523
24ae6365 524 if (start + num_bytes < end) {
771ed689
CM
525 start += num_bytes;
526 pages = NULL;
527 cond_resched();
528 goto again;
529 }
530 } else {
f03d9301 531cleanup_and_bail_uncompressed:
771ed689
CM
532 /*
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
538 */
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
543 }
261507a0
LZ
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
546 *num_added += 1;
547 }
3b951516 548
771ed689
CM
549out:
550 return 0;
551
552free_pages_out:
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
556 }
d397712b 557 kfree(pages);
771ed689
CM
558
559 goto out;
560}
561
562/*
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
567 */
568static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
570{
571 struct async_extent *async_extent;
572 u64 alloc_hint = 0;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
f5a84ee3 579 int ret = 0;
771ed689
CM
580
581 if (list_empty(&async_cow->extents))
582 return 0;
583
771ed689 584
d397712b 585 while (!list_empty(&async_cow->extents)) {
771ed689
CM
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
c8b97818 589
771ed689
CM
590 io_tree = &BTRFS_I(inode)->io_tree;
591
f5a84ee3 592retry:
771ed689
CM
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
597
598 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
599 async_extent->start +
600 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
601
602 /* allocate blocks */
f5a84ee3
JB
603 ret = cow_file_range(inode, async_cow->locked_page,
604 async_extent->start,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
771ed689
CM
608
609 /*
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
614 */
f5a84ee3 615 if (!page_started && !ret)
771ed689
CM
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
d397712b 618 async_extent->start +
771ed689
CM
619 async_extent->ram_size - 1,
620 btrfs_get_extent,
621 WB_SYNC_ALL);
622 kfree(async_extent);
623 cond_resched();
624 continue;
625 }
626
627 lock_extent(io_tree, async_extent->start,
628 async_extent->start + async_extent->ram_size - 1,
629 GFP_NOFS);
771ed689 630
7a7eaa40 631 trans = btrfs_join_transaction(root);
3612b495 632 BUG_ON(IS_ERR(trans));
74b21075 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
634 ret = btrfs_reserve_extent(trans, root,
635 async_extent->compressed_size,
636 async_extent->compressed_size,
637 0, alloc_hint,
638 (u64)-1, &ins, 1);
c2167754
YZ
639 btrfs_end_transaction(trans, root);
640
f5a84ee3
JB
641 if (ret) {
642 int i;
643 for (i = 0; i < async_extent->nr_pages; i++) {
644 WARN_ON(async_extent->pages[i]->mapping);
645 page_cache_release(async_extent->pages[i]);
646 }
647 kfree(async_extent->pages);
648 async_extent->nr_pages = 0;
649 async_extent->pages = NULL;
650 unlock_extent(io_tree, async_extent->start,
651 async_extent->start +
652 async_extent->ram_size - 1, GFP_NOFS);
653 goto retry;
654 }
655
c2167754
YZ
656 /*
657 * here we're doing allocation and writeback of the
658 * compressed pages
659 */
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663
172ddd60 664 em = alloc_extent_map();
c26a9203 665 BUG_ON(!em);
771ed689
CM
666 em->start = async_extent->start;
667 em->len = async_extent->ram_size;
445a6944 668 em->orig_start = em->start;
c8b97818 669
771ed689
CM
670 em->block_start = ins.objectid;
671 em->block_len = ins.offset;
672 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 673 em->compress_type = async_extent->compress_type;
771ed689
CM
674 set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
676
d397712b 677 while (1) {
890871be 678 write_lock(&em_tree->lock);
771ed689 679 ret = add_extent_mapping(em_tree, em);
890871be 680 write_unlock(&em_tree->lock);
771ed689
CM
681 if (ret != -EEXIST) {
682 free_extent_map(em);
683 break;
684 }
685 btrfs_drop_extent_cache(inode, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1, 0);
688 }
689
261507a0
LZ
690 ret = btrfs_add_ordered_extent_compress(inode,
691 async_extent->start,
692 ins.objectid,
693 async_extent->ram_size,
694 ins.offset,
695 BTRFS_ORDERED_COMPRESSED,
696 async_extent->compress_type);
771ed689
CM
697 BUG_ON(ret);
698
771ed689
CM
699 /*
700 * clear dirty, set writeback and unlock the pages.
701 */
702 extent_clear_unlock_delalloc(inode,
a791e35e
CM
703 &BTRFS_I(inode)->io_tree,
704 async_extent->start,
705 async_extent->start +
706 async_extent->ram_size - 1,
707 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 EXTENT_CLEAR_UNLOCK |
a3429ab7 709 EXTENT_CLEAR_DELALLOC |
a791e35e 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
711
712 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
713 async_extent->start,
714 async_extent->ram_size,
715 ins.objectid,
716 ins.offset, async_extent->pages,
717 async_extent->nr_pages);
771ed689
CM
718
719 BUG_ON(ret);
771ed689
CM
720 alloc_hint = ins.objectid + ins.offset;
721 kfree(async_extent);
722 cond_resched();
723 }
724
771ed689
CM
725 return 0;
726}
727
4b46fce2
JB
728static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
729 u64 num_bytes)
730{
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 struct extent_map *em;
733 u64 alloc_hint = 0;
734
735 read_lock(&em_tree->lock);
736 em = search_extent_mapping(em_tree, start, num_bytes);
737 if (em) {
738 /*
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
742 */
743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
744 free_extent_map(em);
745 em = search_extent_mapping(em_tree, 0, 0);
746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 alloc_hint = em->block_start;
748 if (em)
749 free_extent_map(em);
750 } else {
751 alloc_hint = em->block_start;
752 free_extent_map(em);
753 }
754 }
755 read_unlock(&em_tree->lock);
756
757 return alloc_hint;
758}
759
771ed689
CM
760/*
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
765 *
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
768 *
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
771 * IO when we return.
772 */
773static noinline int cow_file_range(struct inode *inode,
774 struct page *locked_page,
775 u64 start, u64 end, int *page_started,
776 unsigned long *nr_written,
777 int unlock)
778{
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 struct btrfs_trans_handle *trans;
781 u64 alloc_hint = 0;
782 u64 num_bytes;
783 unsigned long ram_size;
784 u64 disk_num_bytes;
785 u64 cur_alloc_size;
786 u64 blocksize = root->sectorsize;
771ed689
CM
787 struct btrfs_key ins;
788 struct extent_map *em;
789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 int ret = 0;
791
2cf8572d 792 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 793 trans = btrfs_join_transaction(root);
3612b495 794 BUG_ON(IS_ERR(trans));
0ca1f7ce 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 796
771ed689
CM
797 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 num_bytes = max(blocksize, num_bytes);
799 disk_num_bytes = num_bytes;
800 ret = 0;
801
4cb5300b
CM
802 /* if this is a small write inside eof, kick off defrag */
803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 btrfs_add_inode_defrag(trans, inode);
805
771ed689
CM
806 if (start == 0) {
807 /* lets try to make an inline extent */
808 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 809 start, end, 0, 0, NULL);
771ed689
CM
810 if (ret == 0) {
811 extent_clear_unlock_delalloc(inode,
a791e35e
CM
812 &BTRFS_I(inode)->io_tree,
813 start, end, NULL,
814 EXTENT_CLEAR_UNLOCK_PAGE |
815 EXTENT_CLEAR_UNLOCK |
816 EXTENT_CLEAR_DELALLOC |
817 EXTENT_CLEAR_DIRTY |
818 EXTENT_SET_WRITEBACK |
819 EXTENT_END_WRITEBACK);
c2167754 820
771ed689
CM
821 *nr_written = *nr_written +
822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
823 *page_started = 1;
824 ret = 0;
825 goto out;
826 }
827 }
828
829 BUG_ON(disk_num_bytes >
6c41761f 830 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 831
4b46fce2 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
834
d397712b 835 while (disk_num_bytes > 0) {
a791e35e
CM
836 unsigned long op;
837
287a0ab9 838 cur_alloc_size = disk_num_bytes;
e6dcd2dc 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 840 root->sectorsize, 0, alloc_hint,
e6dcd2dc 841 (u64)-1, &ins, 1);
d397712b
CM
842 BUG_ON(ret);
843
172ddd60 844 em = alloc_extent_map();
c26a9203 845 BUG_ON(!em);
e6dcd2dc 846 em->start = start;
445a6944 847 em->orig_start = em->start;
771ed689
CM
848 ram_size = ins.offset;
849 em->len = ins.offset;
c8b97818 850
e6dcd2dc 851 em->block_start = ins.objectid;
c8b97818 852 em->block_len = ins.offset;
e6dcd2dc 853 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 854 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 855
d397712b 856 while (1) {
890871be 857 write_lock(&em_tree->lock);
e6dcd2dc 858 ret = add_extent_mapping(em_tree, em);
890871be 859 write_unlock(&em_tree->lock);
e6dcd2dc
CM
860 if (ret != -EEXIST) {
861 free_extent_map(em);
862 break;
863 }
864 btrfs_drop_extent_cache(inode, start,
c8b97818 865 start + ram_size - 1, 0);
e6dcd2dc
CM
866 }
867
98d20f67 868 cur_alloc_size = ins.offset;
e6dcd2dc 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 870 ram_size, cur_alloc_size, 0);
e6dcd2dc 871 BUG_ON(ret);
c8b97818 872
17d217fe
YZ
873 if (root->root_key.objectid ==
874 BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 ret = btrfs_reloc_clone_csums(inode, start,
876 cur_alloc_size);
877 BUG_ON(ret);
878 }
879
d397712b 880 if (disk_num_bytes < cur_alloc_size)
3b951516 881 break;
d397712b 882
c8b97818
CM
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
886 *
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
c8b97818 889 */
a791e35e
CM
890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
892 EXTENT_SET_PRIVATE2;
893
c8b97818
CM
894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 start, start + ram_size - 1,
a791e35e 896 locked_page, op);
c8b97818 897 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
898 num_bytes -= cur_alloc_size;
899 alloc_hint = ins.objectid + ins.offset;
900 start += cur_alloc_size;
b888db2b 901 }
b888db2b 902out:
771ed689 903 ret = 0;
b888db2b 904 btrfs_end_transaction(trans, root);
c8b97818 905
be20aa9d 906 return ret;
771ed689 907}
c8b97818 908
771ed689
CM
909/*
910 * work queue call back to started compression on a file and pages
911 */
912static noinline void async_cow_start(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 int num_added = 0;
916 async_cow = container_of(work, struct async_cow, work);
917
918 compress_file_range(async_cow->inode, async_cow->locked_page,
919 async_cow->start, async_cow->end, async_cow,
920 &num_added);
921 if (num_added == 0)
922 async_cow->inode = NULL;
923}
924
925/*
926 * work queue call back to submit previously compressed pages
927 */
928static noinline void async_cow_submit(struct btrfs_work *work)
929{
930 struct async_cow *async_cow;
931 struct btrfs_root *root;
932 unsigned long nr_pages;
933
934 async_cow = container_of(work, struct async_cow, work);
935
936 root = async_cow->root;
937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
938 PAGE_CACHE_SHIFT;
939
940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
941
942 if (atomic_read(&root->fs_info->async_delalloc_pages) <
943 5 * 1042 * 1024 &&
944 waitqueue_active(&root->fs_info->async_submit_wait))
945 wake_up(&root->fs_info->async_submit_wait);
946
d397712b 947 if (async_cow->inode)
771ed689 948 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 949}
c8b97818 950
771ed689
CM
951static noinline void async_cow_free(struct btrfs_work *work)
952{
953 struct async_cow *async_cow;
954 async_cow = container_of(work, struct async_cow, work);
955 kfree(async_cow);
956}
957
958static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 u64 start, u64 end, int *page_started,
960 unsigned long *nr_written)
961{
962 struct async_cow *async_cow;
963 struct btrfs_root *root = BTRFS_I(inode)->root;
964 unsigned long nr_pages;
965 u64 cur_end;
966 int limit = 10 * 1024 * 1042;
967
a3429ab7
CM
968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 1, 0, NULL, GFP_NOFS);
d397712b 970 while (start < end) {
771ed689 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 972 BUG_ON(!async_cow);
771ed689
CM
973 async_cow->inode = inode;
974 async_cow->root = root;
975 async_cow->locked_page = locked_page;
976 async_cow->start = start;
977
6cbff00f 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
979 cur_end = end;
980 else
981 cur_end = min(end, start + 512 * 1024 - 1);
982
983 async_cow->end = cur_end;
984 INIT_LIST_HEAD(&async_cow->extents);
985
986 async_cow->work.func = async_cow_start;
987 async_cow->work.ordered_func = async_cow_submit;
988 async_cow->work.ordered_free = async_cow_free;
989 async_cow->work.flags = 0;
990
771ed689
CM
991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
992 PAGE_CACHE_SHIFT;
993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
994
995 btrfs_queue_worker(&root->fs_info->delalloc_workers,
996 &async_cow->work);
997
998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) <
1001 limit));
1002 }
1003
d397712b 1004 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1005 atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 wait_event(root->fs_info->async_submit_wait,
1007 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1008 0));
1009 }
1010
1011 *nr_written += nr_pages;
1012 start = cur_end + 1;
1013 }
1014 *page_started = 1;
1015 return 0;
be20aa9d
CM
1016}
1017
d397712b 1018static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1019 u64 bytenr, u64 num_bytes)
1020{
1021 int ret;
1022 struct btrfs_ordered_sum *sums;
1023 LIST_HEAD(list);
1024
07d400a6 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1026 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1027 if (ret == 0 && list_empty(&list))
1028 return 0;
1029
1030 while (!list_empty(&list)) {
1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 list_del(&sums->list);
1033 kfree(sums);
1034 }
1035 return 1;
1036}
1037
d352ac68
CM
1038/*
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1041 *
1042 * If no cow copies or snapshots exist, we write directly to the existing
1043 * blocks on disk
1044 */
7f366cfe
CM
1045static noinline int run_delalloc_nocow(struct inode *inode,
1046 struct page *locked_page,
771ed689
CM
1047 u64 start, u64 end, int *page_started, int force,
1048 unsigned long *nr_written)
be20aa9d 1049{
be20aa9d 1050 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1051 struct btrfs_trans_handle *trans;
be20aa9d 1052 struct extent_buffer *leaf;
be20aa9d 1053 struct btrfs_path *path;
80ff3856 1054 struct btrfs_file_extent_item *fi;
be20aa9d 1055 struct btrfs_key found_key;
80ff3856
YZ
1056 u64 cow_start;
1057 u64 cur_offset;
1058 u64 extent_end;
5d4f98a2 1059 u64 extent_offset;
80ff3856
YZ
1060 u64 disk_bytenr;
1061 u64 num_bytes;
1062 int extent_type;
1063 int ret;
d899e052 1064 int type;
80ff3856
YZ
1065 int nocow;
1066 int check_prev = 1;
82d5902d 1067 bool nolock;
33345d01 1068 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1069
1070 path = btrfs_alloc_path();
d8926bb3
MF
1071 if (!path)
1072 return -ENOMEM;
82d5902d 1073
2cf8572d 1074 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1075
1076 if (nolock)
7a7eaa40 1077 trans = btrfs_join_transaction_nolock(root);
82d5902d 1078 else
7a7eaa40 1079 trans = btrfs_join_transaction(root);
ff5714cc 1080
3612b495 1081 BUG_ON(IS_ERR(trans));
74b21075 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1083
80ff3856
YZ
1084 cow_start = (u64)-1;
1085 cur_offset = start;
1086 while (1) {
33345d01 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1088 cur_offset, 0);
1089 BUG_ON(ret < 0);
1090 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 leaf = path->nodes[0];
1092 btrfs_item_key_to_cpu(leaf, &found_key,
1093 path->slots[0] - 1);
33345d01 1094 if (found_key.objectid == ino &&
80ff3856
YZ
1095 found_key.type == BTRFS_EXTENT_DATA_KEY)
1096 path->slots[0]--;
1097 }
1098 check_prev = 0;
1099next_slot:
1100 leaf = path->nodes[0];
1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 ret = btrfs_next_leaf(root, path);
1103 if (ret < 0)
1104 BUG_ON(1);
1105 if (ret > 0)
1106 break;
1107 leaf = path->nodes[0];
1108 }
be20aa9d 1109
80ff3856
YZ
1110 nocow = 0;
1111 disk_bytenr = 0;
17d217fe 1112 num_bytes = 0;
80ff3856
YZ
1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114
33345d01 1115 if (found_key.objectid > ino ||
80ff3856
YZ
1116 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 found_key.offset > end)
1118 break;
1119
1120 if (found_key.offset > cur_offset) {
1121 extent_end = found_key.offset;
e9061e21 1122 extent_type = 0;
80ff3856
YZ
1123 goto out_check;
1124 }
1125
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 extent_type = btrfs_file_extent_type(leaf, fi);
1129
d899e052
YZ
1130 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1133 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1134 extent_end = found_key.offset +
1135 btrfs_file_extent_num_bytes(leaf, fi);
1136 if (extent_end <= start) {
1137 path->slots[0]++;
1138 goto next_slot;
1139 }
17d217fe
YZ
1140 if (disk_bytenr == 0)
1141 goto out_check;
80ff3856
YZ
1142 if (btrfs_file_extent_compression(leaf, fi) ||
1143 btrfs_file_extent_encryption(leaf, fi) ||
1144 btrfs_file_extent_other_encoding(leaf, fi))
1145 goto out_check;
d899e052
YZ
1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1147 goto out_check;
d2fb3437 1148 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1149 goto out_check;
33345d01 1150 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1151 found_key.offset -
1152 extent_offset, disk_bytenr))
17d217fe 1153 goto out_check;
5d4f98a2 1154 disk_bytenr += extent_offset;
17d217fe
YZ
1155 disk_bytenr += cur_offset - found_key.offset;
1156 num_bytes = min(end + 1, extent_end) - cur_offset;
1157 /*
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1161 */
1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1163 goto out_check;
80ff3856
YZ
1164 nocow = 1;
1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 extent_end = found_key.offset +
1167 btrfs_file_extent_inline_len(leaf, fi);
1168 extent_end = ALIGN(extent_end, root->sectorsize);
1169 } else {
1170 BUG_ON(1);
1171 }
1172out_check:
1173 if (extent_end <= start) {
1174 path->slots[0]++;
1175 goto next_slot;
1176 }
1177 if (!nocow) {
1178 if (cow_start == (u64)-1)
1179 cow_start = cur_offset;
1180 cur_offset = extent_end;
1181 if (cur_offset > end)
1182 break;
1183 path->slots[0]++;
1184 goto next_slot;
7ea394f1
YZ
1185 }
1186
b3b4aa74 1187 btrfs_release_path(path);
80ff3856
YZ
1188 if (cow_start != (u64)-1) {
1189 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1190 found_key.offset - 1, page_started,
1191 nr_written, 1);
80ff3856
YZ
1192 BUG_ON(ret);
1193 cow_start = (u64)-1;
7ea394f1 1194 }
80ff3856 1195
d899e052
YZ
1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 struct extent_map *em;
1198 struct extent_map_tree *em_tree;
1199 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1200 em = alloc_extent_map();
c26a9203 1201 BUG_ON(!em);
d899e052 1202 em->start = cur_offset;
445a6944 1203 em->orig_start = em->start;
d899e052
YZ
1204 em->len = num_bytes;
1205 em->block_len = num_bytes;
1206 em->block_start = disk_bytenr;
1207 em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1209 while (1) {
890871be 1210 write_lock(&em_tree->lock);
d899e052 1211 ret = add_extent_mapping(em_tree, em);
890871be 1212 write_unlock(&em_tree->lock);
d899e052
YZ
1213 if (ret != -EEXIST) {
1214 free_extent_map(em);
1215 break;
1216 }
1217 btrfs_drop_extent_cache(inode, em->start,
1218 em->start + em->len - 1, 0);
1219 }
1220 type = BTRFS_ORDERED_PREALLOC;
1221 } else {
1222 type = BTRFS_ORDERED_NOCOW;
1223 }
80ff3856
YZ
1224
1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1226 num_bytes, num_bytes, type);
1227 BUG_ON(ret);
771ed689 1228
efa56464
YZ
1229 if (root->root_key.objectid ==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1232 num_bytes);
1233 BUG_ON(ret);
1234 }
1235
d899e052 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1237 cur_offset, cur_offset + num_bytes - 1,
1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1241 cur_offset = extent_end;
1242 if (cur_offset > end)
1243 break;
be20aa9d 1244 }
b3b4aa74 1245 btrfs_release_path(path);
80ff3856
YZ
1246
1247 if (cur_offset <= end && cow_start == (u64)-1)
1248 cow_start = cur_offset;
1249 if (cow_start != (u64)-1) {
1250 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1251 page_started, nr_written, 1);
80ff3856
YZ
1252 BUG_ON(ret);
1253 }
1254
0cb59c99
JB
1255 if (nolock) {
1256 ret = btrfs_end_transaction_nolock(trans, root);
1257 BUG_ON(ret);
1258 } else {
1259 ret = btrfs_end_transaction(trans, root);
1260 BUG_ON(ret);
1261 }
7ea394f1 1262 btrfs_free_path(path);
80ff3856 1263 return 0;
be20aa9d
CM
1264}
1265
d352ac68
CM
1266/*
1267 * extent_io.c call back to do delayed allocation processing
1268 */
c8b97818 1269static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1270 u64 start, u64 end, int *page_started,
1271 unsigned long *nr_written)
be20aa9d 1272{
be20aa9d 1273 int ret;
7f366cfe 1274 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1275
6cbff00f 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1278 page_started, 1, nr_written);
6cbff00f 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1280 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1281 page_started, 0, nr_written);
1e701a32 1282 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1283 !(BTRFS_I(inode)->force_compress) &&
1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1285 ret = cow_file_range(inode, locked_page, start, end,
1286 page_started, nr_written, 1);
be20aa9d 1287 else
771ed689 1288 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1289 page_started, nr_written);
b888db2b
CM
1290 return ret;
1291}
1292
1bf85046
JM
1293static void btrfs_split_extent_hook(struct inode *inode,
1294 struct extent_state *orig, u64 split)
9ed74f2d 1295{
0ca1f7ce 1296 /* not delalloc, ignore it */
9ed74f2d 1297 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1298 return;
9ed74f2d 1299
9e0baf60
JB
1300 spin_lock(&BTRFS_I(inode)->lock);
1301 BTRFS_I(inode)->outstanding_extents++;
1302 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1303}
1304
1305/*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1bf85046
JM
1311static void btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
9ed74f2d 1314{
9ed74f2d
JB
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1317 return;
9ed74f2d 1318
9e0baf60
JB
1319 spin_lock(&BTRFS_I(inode)->lock);
1320 BTRFS_I(inode)->outstanding_extents--;
1321 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1322}
1323
d352ac68
CM
1324/*
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1328 */
1bf85046
JM
1329static void btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
291d673e 1331{
9ed74f2d 1332
75eff68e
CM
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1335 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1336 * bit, which is only set or cleared with irqs on
1337 */
0ca1f7ce 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1339 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1340 u64 len = state->end + 1 - state->start;
2cf8572d 1341 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1342
9e0baf60 1343 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1344 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1345 } else {
1346 spin_lock(&BTRFS_I(inode)->lock);
1347 BTRFS_I(inode)->outstanding_extents++;
1348 spin_unlock(&BTRFS_I(inode)->lock);
1349 }
287a0ab9 1350
75eff68e 1351 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1352 BTRFS_I(inode)->delalloc_bytes += len;
1353 root->fs_info->delalloc_bytes += len;
0cb59c99 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 &root->fs_info->delalloc_inodes);
1357 }
75eff68e 1358 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1359 }
291d673e
CM
1360}
1361
d352ac68
CM
1362/*
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1364 */
1bf85046
JM
1365static void btrfs_clear_bit_hook(struct inode *inode,
1366 struct extent_state *state, int *bits)
291d673e 1367{
75eff68e
CM
1368 /*
1369 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1370 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1371 * bit, which is only set or cleared with irqs on
1372 */
0ca1f7ce 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1374 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1375 u64 len = state->end + 1 - state->start;
2cf8572d 1376 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1377
9e0baf60 1378 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1379 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 spin_lock(&BTRFS_I(inode)->lock);
1382 BTRFS_I(inode)->outstanding_extents--;
1383 spin_unlock(&BTRFS_I(inode)->lock);
1384 }
0ca1f7ce
YZ
1385
1386 if (*bits & EXTENT_DO_ACCOUNTING)
1387 btrfs_delalloc_release_metadata(inode, len);
1388
0cb59c99
JB
1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1390 && do_list)
0ca1f7ce 1391 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1392
75eff68e 1393 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1394 root->fs_info->delalloc_bytes -= len;
1395 BTRFS_I(inode)->delalloc_bytes -= len;
1396
0cb59c99 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1400 }
75eff68e 1401 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1402 }
291d673e
CM
1403}
1404
d352ac68
CM
1405/*
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1408 */
239b14b3 1409int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1410 size_t size, struct bio *bio,
1411 unsigned long bio_flags)
239b14b3
CM
1412{
1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 struct btrfs_mapping_tree *map_tree;
a62b9401 1415 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1416 u64 length = 0;
1417 u64 map_length;
239b14b3
CM
1418 int ret;
1419
771ed689
CM
1420 if (bio_flags & EXTENT_BIO_COMPRESSED)
1421 return 0;
1422
f2d8d74d 1423 length = bio->bi_size;
239b14b3
CM
1424 map_tree = &root->fs_info->mapping_tree;
1425 map_length = length;
cea9e445 1426 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1427 &map_length, NULL, 0);
cea9e445 1428
d397712b 1429 if (map_length < length + size)
239b14b3 1430 return 1;
411fc6bc 1431 return ret;
239b14b3
CM
1432}
1433
d352ac68
CM
1434/*
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1438 *
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1441 */
d397712b
CM
1442static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 struct bio *bio, int mirror_num,
eaf25d93
CM
1444 unsigned long bio_flags,
1445 u64 bio_offset)
065631f6 1446{
065631f6 1447 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1448 int ret = 0;
e015640f 1449
d20f7043 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1451 BUG_ON(ret);
4a69a410
CM
1452 return 0;
1453}
e015640f 1454
4a69a410
CM
1455/*
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1459 *
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1462 */
b2950863 1463static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1464 int mirror_num, unsigned long bio_flags,
1465 u64 bio_offset)
4a69a410
CM
1466{
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1469}
1470
d352ac68 1471/*
cad321ad
CM
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
d352ac68 1474 */
b2950863 1475static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1476 int mirror_num, unsigned long bio_flags,
1477 u64 bio_offset)
44b8bd7e
CM
1478{
1479 struct btrfs_root *root = BTRFS_I(inode)->root;
1480 int ret = 0;
19b9bdb0 1481 int skip_sum;
44b8bd7e 1482
6cbff00f 1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1484
2cf8572d 1485 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1487 else
1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1489 BUG_ON(ret);
065631f6 1490
7b6d91da 1491 if (!(rw & REQ_WRITE)) {
d20f7043 1492 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1493 return btrfs_submit_compressed_read(inode, bio,
1494 mirror_num, bio_flags);
c2db1073
TI
1495 } else if (!skip_sum) {
1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1497 if (ret)
1498 return ret;
1499 }
4d1b5fb4 1500 goto mapit;
19b9bdb0 1501 } else if (!skip_sum) {
17d217fe
YZ
1502 /* csum items have already been cloned */
1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 goto mapit;
19b9bdb0
CM
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1507 inode, rw, bio, mirror_num,
eaf25d93
CM
1508 bio_flags, bio_offset,
1509 __btrfs_submit_bio_start,
4a69a410 1510 __btrfs_submit_bio_done);
19b9bdb0
CM
1511 }
1512
0b86a832 1513mapit:
8b712842 1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1515}
6885f308 1516
d352ac68
CM
1517/*
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1520 */
ba1da2f4 1521static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1522 struct inode *inode, u64 file_offset,
1523 struct list_head *list)
1524{
e6dcd2dc
CM
1525 struct btrfs_ordered_sum *sum;
1526
c6e30871 1527 list_for_each_entry(sum, list, list) {
d20f7043
CM
1528 btrfs_csum_file_blocks(trans,
1529 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1530 }
1531 return 0;
1532}
1533
2ac55d41
JB
1534int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 struct extent_state **cached_state)
ea8c2819 1536{
d397712b 1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1538 WARN_ON(1);
ea8c2819 1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1540 cached_state, GFP_NOFS);
ea8c2819
CM
1541}
1542
d352ac68 1543/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1544struct btrfs_writepage_fixup {
1545 struct page *page;
1546 struct btrfs_work work;
1547};
1548
b2950863 1549static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1550{
1551 struct btrfs_writepage_fixup *fixup;
1552 struct btrfs_ordered_extent *ordered;
2ac55d41 1553 struct extent_state *cached_state = NULL;
247e743c
CM
1554 struct page *page;
1555 struct inode *inode;
1556 u64 page_start;
1557 u64 page_end;
87826df0 1558 int ret;
247e743c
CM
1559
1560 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1561 page = fixup->page;
4a096752 1562again:
247e743c
CM
1563 lock_page(page);
1564 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1565 ClearPageChecked(page);
1566 goto out_page;
1567 }
1568
1569 inode = page->mapping->host;
1570 page_start = page_offset(page);
1571 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1572
2ac55d41
JB
1573 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1574 &cached_state, GFP_NOFS);
4a096752
CM
1575
1576 /* already ordered? We're done */
8b62b72b 1577 if (PagePrivate2(page))
247e743c 1578 goto out;
4a096752
CM
1579
1580 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1581 if (ordered) {
2ac55d41
JB
1582 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1583 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1584 unlock_page(page);
1585 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1586 btrfs_put_ordered_extent(ordered);
4a096752
CM
1587 goto again;
1588 }
247e743c 1589
87826df0
JM
1590 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1591 if (ret) {
1592 mapping_set_error(page->mapping, ret);
1593 end_extent_writepage(page, ret, page_start, page_end);
1594 ClearPageChecked(page);
1595 goto out;
1596 }
1597
2ac55d41 1598 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1599 ClearPageChecked(page);
87826df0 1600 set_page_dirty(page);
247e743c 1601out:
2ac55d41
JB
1602 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1603 &cached_state, GFP_NOFS);
247e743c
CM
1604out_page:
1605 unlock_page(page);
1606 page_cache_release(page);
b897abec 1607 kfree(fixup);
247e743c
CM
1608}
1609
1610/*
1611 * There are a few paths in the higher layers of the kernel that directly
1612 * set the page dirty bit without asking the filesystem if it is a
1613 * good idea. This causes problems because we want to make sure COW
1614 * properly happens and the data=ordered rules are followed.
1615 *
c8b97818 1616 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1617 * hasn't been properly setup for IO. We kick off an async process
1618 * to fix it up. The async helper will wait for ordered extents, set
1619 * the delalloc bit and make it safe to write the page.
1620 */
b2950863 1621static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1622{
1623 struct inode *inode = page->mapping->host;
1624 struct btrfs_writepage_fixup *fixup;
1625 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1626
8b62b72b
CM
1627 /* this page is properly in the ordered list */
1628 if (TestClearPagePrivate2(page))
247e743c
CM
1629 return 0;
1630
1631 if (PageChecked(page))
1632 return -EAGAIN;
1633
1634 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1635 if (!fixup)
1636 return -EAGAIN;
f421950f 1637
247e743c
CM
1638 SetPageChecked(page);
1639 page_cache_get(page);
1640 fixup->work.func = btrfs_writepage_fixup_worker;
1641 fixup->page = page;
1642 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1643 return -EBUSY;
247e743c
CM
1644}
1645
d899e052
YZ
1646static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1647 struct inode *inode, u64 file_pos,
1648 u64 disk_bytenr, u64 disk_num_bytes,
1649 u64 num_bytes, u64 ram_bytes,
1650 u8 compression, u8 encryption,
1651 u16 other_encoding, int extent_type)
1652{
1653 struct btrfs_root *root = BTRFS_I(inode)->root;
1654 struct btrfs_file_extent_item *fi;
1655 struct btrfs_path *path;
1656 struct extent_buffer *leaf;
1657 struct btrfs_key ins;
1658 u64 hint;
1659 int ret;
1660
1661 path = btrfs_alloc_path();
d8926bb3
MF
1662 if (!path)
1663 return -ENOMEM;
d899e052 1664
b9473439 1665 path->leave_spinning = 1;
a1ed835e
CM
1666
1667 /*
1668 * we may be replacing one extent in the tree with another.
1669 * The new extent is pinned in the extent map, and we don't want
1670 * to drop it from the cache until it is completely in the btree.
1671 *
1672 * So, tell btrfs_drop_extents to leave this extent in the cache.
1673 * the caller is expected to unpin it and allow it to be merged
1674 * with the others.
1675 */
920bbbfb
YZ
1676 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1677 &hint, 0);
d899e052
YZ
1678 BUG_ON(ret);
1679
33345d01 1680 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1681 ins.offset = file_pos;
1682 ins.type = BTRFS_EXTENT_DATA_KEY;
1683 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1684 BUG_ON(ret);
1685 leaf = path->nodes[0];
1686 fi = btrfs_item_ptr(leaf, path->slots[0],
1687 struct btrfs_file_extent_item);
1688 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1689 btrfs_set_file_extent_type(leaf, fi, extent_type);
1690 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1691 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1692 btrfs_set_file_extent_offset(leaf, fi, 0);
1693 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1694 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1695 btrfs_set_file_extent_compression(leaf, fi, compression);
1696 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1697 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1698
1699 btrfs_unlock_up_safe(path, 1);
1700 btrfs_set_lock_blocking(leaf);
1701
d899e052
YZ
1702 btrfs_mark_buffer_dirty(leaf);
1703
1704 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1705
1706 ins.objectid = disk_bytenr;
1707 ins.offset = disk_num_bytes;
1708 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1709 ret = btrfs_alloc_reserved_file_extent(trans, root,
1710 root->root_key.objectid,
33345d01 1711 btrfs_ino(inode), file_pos, &ins);
d899e052 1712 BUG_ON(ret);
d899e052 1713 btrfs_free_path(path);
b9473439 1714
d899e052
YZ
1715 return 0;
1716}
1717
5d13a98f
CM
1718/*
1719 * helper function for btrfs_finish_ordered_io, this
1720 * just reads in some of the csum leaves to prime them into ram
1721 * before we start the transaction. It limits the amount of btree
1722 * reads required while inside the transaction.
1723 */
d352ac68
CM
1724/* as ordered data IO finishes, this gets called so we can finish
1725 * an ordered extent if the range of bytes in the file it covers are
1726 * fully written.
1727 */
211f90e6 1728static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1729{
e6dcd2dc 1730 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1731 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1732 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1733 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1734 struct extent_state *cached_state = NULL;
261507a0 1735 int compress_type = 0;
e6dcd2dc 1736 int ret;
82d5902d 1737 bool nolock;
e6dcd2dc 1738
5a1a3df1
JB
1739 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1740 end - start + 1);
ba1da2f4 1741 if (!ret)
e6dcd2dc 1742 return 0;
e6dcd2dc 1743 BUG_ON(!ordered_extent);
efd049fb 1744
2cf8572d 1745 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1746
c2167754
YZ
1747 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1748 BUG_ON(!list_empty(&ordered_extent->list));
1749 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1750 if (!ret) {
0cb59c99 1751 if (nolock)
7a7eaa40 1752 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1753 else
7a7eaa40 1754 trans = btrfs_join_transaction(root);
3612b495 1755 BUG_ON(IS_ERR(trans));
0ca1f7ce 1756 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1757 ret = btrfs_update_inode_fallback(trans, root, inode);
c2167754 1758 BUG_ON(ret);
c2167754
YZ
1759 }
1760 goto out;
1761 }
e6dcd2dc 1762
2ac55d41
JB
1763 lock_extent_bits(io_tree, ordered_extent->file_offset,
1764 ordered_extent->file_offset + ordered_extent->len - 1,
1765 0, &cached_state, GFP_NOFS);
e6dcd2dc 1766
0cb59c99 1767 if (nolock)
7a7eaa40 1768 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1769 else
7a7eaa40 1770 trans = btrfs_join_transaction(root);
3612b495 1771 BUG_ON(IS_ERR(trans));
0ca1f7ce 1772 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1773
c8b97818 1774 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1775 compress_type = ordered_extent->compress_type;
d899e052 1776 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1777 BUG_ON(compress_type);
920bbbfb 1778 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1779 ordered_extent->file_offset,
1780 ordered_extent->file_offset +
1781 ordered_extent->len);
1782 BUG_ON(ret);
1783 } else {
0af3d00b 1784 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1785 ret = insert_reserved_file_extent(trans, inode,
1786 ordered_extent->file_offset,
1787 ordered_extent->start,
1788 ordered_extent->disk_len,
1789 ordered_extent->len,
1790 ordered_extent->len,
261507a0 1791 compress_type, 0, 0,
d899e052 1792 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1793 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1794 ordered_extent->file_offset,
1795 ordered_extent->len);
d899e052
YZ
1796 BUG_ON(ret);
1797 }
2ac55d41
JB
1798 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1799 ordered_extent->file_offset +
1800 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1801
e6dcd2dc
CM
1802 add_pending_csums(trans, inode, ordered_extent->file_offset,
1803 &ordered_extent->list);
1804
1ef30be1 1805 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1806 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1807 ret = btrfs_update_inode_fallback(trans, root, inode);
1ef30be1
JB
1808 BUG_ON(ret);
1809 }
1810 ret = 0;
c2167754 1811out:
5b0e95bf 1812 if (root != root->fs_info->tree_root)
0cb59c99 1813 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1814 if (trans) {
1815 if (nolock)
0cb59c99 1816 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1817 else
0cb59c99
JB
1818 btrfs_end_transaction(trans, root);
1819 }
1820
e6dcd2dc
CM
1821 /* once for us */
1822 btrfs_put_ordered_extent(ordered_extent);
1823 /* once for the tree */
1824 btrfs_put_ordered_extent(ordered_extent);
1825
e6dcd2dc
CM
1826 return 0;
1827}
1828
b2950863 1829static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1830 struct extent_state *state, int uptodate)
1831{
1abe9b8a 1832 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1833
8b62b72b 1834 ClearPagePrivate2(page);
211f90e6
CM
1835 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1836}
1837
d352ac68
CM
1838/*
1839 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1840 * if there's a match, we allow the bio to finish. If not, the code in
1841 * extent_io.c will try to find good copies for us.
d352ac68 1842 */
b2950863 1843static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1844 struct extent_state *state)
07157aac 1845{
35ebb934 1846 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1847 struct inode *inode = page->mapping->host;
d1310b2e 1848 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1849 char *kaddr;
aadfeb6e 1850 u64 private = ~(u32)0;
07157aac 1851 int ret;
ff79f819
CM
1852 struct btrfs_root *root = BTRFS_I(inode)->root;
1853 u32 csum = ~(u32)0;
d1310b2e 1854
d20f7043
CM
1855 if (PageChecked(page)) {
1856 ClearPageChecked(page);
1857 goto good;
1858 }
6cbff00f
CH
1859
1860 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1861 goto good;
17d217fe
YZ
1862
1863 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1864 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1865 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1866 GFP_NOFS);
b6cda9bc 1867 return 0;
17d217fe 1868 }
d20f7043 1869
c2e639f0 1870 if (state && state->start == start) {
70dec807
CM
1871 private = state->private;
1872 ret = 0;
1873 } else {
1874 ret = get_state_private(io_tree, start, &private);
1875 }
9ab86c8e 1876 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1877 if (ret)
07157aac 1878 goto zeroit;
d397712b 1879
ff79f819
CM
1880 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1881 btrfs_csum_final(csum, (char *)&csum);
d397712b 1882 if (csum != private)
07157aac 1883 goto zeroit;
d397712b 1884
9ab86c8e 1885 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1886good:
07157aac
CM
1887 return 0;
1888
1889zeroit:
945d8962 1890 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1891 "private %llu\n",
1892 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1893 (unsigned long long)start, csum,
1894 (unsigned long long)private);
db94535d
CM
1895 memset(kaddr + offset, 1, end - start + 1);
1896 flush_dcache_page(page);
9ab86c8e 1897 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1898 if (private == 0)
1899 return 0;
7e38326f 1900 return -EIO;
07157aac 1901}
b888db2b 1902
24bbcf04
YZ
1903struct delayed_iput {
1904 struct list_head list;
1905 struct inode *inode;
1906};
1907
1908void btrfs_add_delayed_iput(struct inode *inode)
1909{
1910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1911 struct delayed_iput *delayed;
1912
1913 if (atomic_add_unless(&inode->i_count, -1, 1))
1914 return;
1915
1916 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1917 delayed->inode = inode;
1918
1919 spin_lock(&fs_info->delayed_iput_lock);
1920 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1921 spin_unlock(&fs_info->delayed_iput_lock);
1922}
1923
1924void btrfs_run_delayed_iputs(struct btrfs_root *root)
1925{
1926 LIST_HEAD(list);
1927 struct btrfs_fs_info *fs_info = root->fs_info;
1928 struct delayed_iput *delayed;
1929 int empty;
1930
1931 spin_lock(&fs_info->delayed_iput_lock);
1932 empty = list_empty(&fs_info->delayed_iputs);
1933 spin_unlock(&fs_info->delayed_iput_lock);
1934 if (empty)
1935 return;
1936
1937 down_read(&root->fs_info->cleanup_work_sem);
1938 spin_lock(&fs_info->delayed_iput_lock);
1939 list_splice_init(&fs_info->delayed_iputs, &list);
1940 spin_unlock(&fs_info->delayed_iput_lock);
1941
1942 while (!list_empty(&list)) {
1943 delayed = list_entry(list.next, struct delayed_iput, list);
1944 list_del(&delayed->list);
1945 iput(delayed->inode);
1946 kfree(delayed);
1947 }
1948 up_read(&root->fs_info->cleanup_work_sem);
1949}
1950
d68fc57b
YZ
1951enum btrfs_orphan_cleanup_state {
1952 ORPHAN_CLEANUP_STARTED = 1,
1953 ORPHAN_CLEANUP_DONE = 2,
1954};
1955
1956/*
42b2aa86 1957 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
1958 * files in the subvolume, it removes orphan item and frees block_rsv
1959 * structure.
1960 */
1961void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1962 struct btrfs_root *root)
1963{
90290e19 1964 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
1965 int ret;
1966
1967 if (!list_empty(&root->orphan_list) ||
1968 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1969 return;
1970
90290e19
JB
1971 spin_lock(&root->orphan_lock);
1972 if (!list_empty(&root->orphan_list)) {
1973 spin_unlock(&root->orphan_lock);
1974 return;
1975 }
1976
1977 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1978 spin_unlock(&root->orphan_lock);
1979 return;
1980 }
1981
1982 block_rsv = root->orphan_block_rsv;
1983 root->orphan_block_rsv = NULL;
1984 spin_unlock(&root->orphan_lock);
1985
d68fc57b
YZ
1986 if (root->orphan_item_inserted &&
1987 btrfs_root_refs(&root->root_item) > 0) {
1988 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1989 root->root_key.objectid);
1990 BUG_ON(ret);
1991 root->orphan_item_inserted = 0;
1992 }
1993
90290e19
JB
1994 if (block_rsv) {
1995 WARN_ON(block_rsv->size > 0);
1996 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
1997 }
1998}
1999
7b128766
JB
2000/*
2001 * This creates an orphan entry for the given inode in case something goes
2002 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2003 *
2004 * NOTE: caller of this function should reserve 5 units of metadata for
2005 * this function.
7b128766
JB
2006 */
2007int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2008{
2009 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2010 struct btrfs_block_rsv *block_rsv = NULL;
2011 int reserve = 0;
2012 int insert = 0;
2013 int ret;
7b128766 2014
d68fc57b
YZ
2015 if (!root->orphan_block_rsv) {
2016 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2017 if (!block_rsv)
2018 return -ENOMEM;
d68fc57b 2019 }
7b128766 2020
d68fc57b
YZ
2021 spin_lock(&root->orphan_lock);
2022 if (!root->orphan_block_rsv) {
2023 root->orphan_block_rsv = block_rsv;
2024 } else if (block_rsv) {
2025 btrfs_free_block_rsv(root, block_rsv);
2026 block_rsv = NULL;
7b128766 2027 }
7b128766 2028
d68fc57b
YZ
2029 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2030 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2031#if 0
2032 /*
2033 * For proper ENOSPC handling, we should do orphan
2034 * cleanup when mounting. But this introduces backward
2035 * compatibility issue.
2036 */
2037 if (!xchg(&root->orphan_item_inserted, 1))
2038 insert = 2;
2039 else
2040 insert = 1;
2041#endif
2042 insert = 1;
7b128766
JB
2043 }
2044
d68fc57b
YZ
2045 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2046 BTRFS_I(inode)->orphan_meta_reserved = 1;
2047 reserve = 1;
2048 }
2049 spin_unlock(&root->orphan_lock);
7b128766 2050
d68fc57b
YZ
2051 /* grab metadata reservation from transaction handle */
2052 if (reserve) {
2053 ret = btrfs_orphan_reserve_metadata(trans, inode);
2054 BUG_ON(ret);
2055 }
7b128766 2056
d68fc57b
YZ
2057 /* insert an orphan item to track this unlinked/truncated file */
2058 if (insert >= 1) {
33345d01 2059 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
ee4d89f0 2060 BUG_ON(ret && ret != -EEXIST);
d68fc57b
YZ
2061 }
2062
2063 /* insert an orphan item to track subvolume contains orphan files */
2064 if (insert >= 2) {
2065 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2066 root->root_key.objectid);
2067 BUG_ON(ret);
2068 }
2069 return 0;
7b128766
JB
2070}
2071
2072/*
2073 * We have done the truncate/delete so we can go ahead and remove the orphan
2074 * item for this particular inode.
2075 */
2076int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2077{
2078 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2079 int delete_item = 0;
2080 int release_rsv = 0;
7b128766
JB
2081 int ret = 0;
2082
d68fc57b
YZ
2083 spin_lock(&root->orphan_lock);
2084 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2085 list_del_init(&BTRFS_I(inode)->i_orphan);
2086 delete_item = 1;
7b128766
JB
2087 }
2088
d68fc57b
YZ
2089 if (BTRFS_I(inode)->orphan_meta_reserved) {
2090 BTRFS_I(inode)->orphan_meta_reserved = 0;
2091 release_rsv = 1;
7b128766 2092 }
d68fc57b 2093 spin_unlock(&root->orphan_lock);
7b128766 2094
d68fc57b 2095 if (trans && delete_item) {
33345d01 2096 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2097 BUG_ON(ret);
2098 }
7b128766 2099
d68fc57b
YZ
2100 if (release_rsv)
2101 btrfs_orphan_release_metadata(inode);
7b128766 2102
d68fc57b 2103 return 0;
7b128766
JB
2104}
2105
2106/*
2107 * this cleans up any orphans that may be left on the list from the last use
2108 * of this root.
2109 */
66b4ffd1 2110int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2111{
2112 struct btrfs_path *path;
2113 struct extent_buffer *leaf;
7b128766
JB
2114 struct btrfs_key key, found_key;
2115 struct btrfs_trans_handle *trans;
2116 struct inode *inode;
8f6d7f4f 2117 u64 last_objectid = 0;
7b128766
JB
2118 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2119
d68fc57b 2120 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2121 return 0;
c71bf099
YZ
2122
2123 path = btrfs_alloc_path();
66b4ffd1
JB
2124 if (!path) {
2125 ret = -ENOMEM;
2126 goto out;
2127 }
7b128766
JB
2128 path->reada = -1;
2129
2130 key.objectid = BTRFS_ORPHAN_OBJECTID;
2131 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2132 key.offset = (u64)-1;
2133
7b128766
JB
2134 while (1) {
2135 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2136 if (ret < 0)
2137 goto out;
7b128766
JB
2138
2139 /*
2140 * if ret == 0 means we found what we were searching for, which
25985edc 2141 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2142 * find the key and see if we have stuff that matches
2143 */
2144 if (ret > 0) {
66b4ffd1 2145 ret = 0;
7b128766
JB
2146 if (path->slots[0] == 0)
2147 break;
2148 path->slots[0]--;
2149 }
2150
2151 /* pull out the item */
2152 leaf = path->nodes[0];
7b128766
JB
2153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2154
2155 /* make sure the item matches what we want */
2156 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2157 break;
2158 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2159 break;
2160
2161 /* release the path since we're done with it */
b3b4aa74 2162 btrfs_release_path(path);
7b128766
JB
2163
2164 /*
2165 * this is where we are basically btrfs_lookup, without the
2166 * crossing root thing. we store the inode number in the
2167 * offset of the orphan item.
2168 */
8f6d7f4f
JB
2169
2170 if (found_key.offset == last_objectid) {
2171 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2172 "stopping orphan cleanup\n");
2173 ret = -EINVAL;
2174 goto out;
2175 }
2176
2177 last_objectid = found_key.offset;
2178
5d4f98a2
YZ
2179 found_key.objectid = found_key.offset;
2180 found_key.type = BTRFS_INODE_ITEM_KEY;
2181 found_key.offset = 0;
73f73415 2182 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2183 ret = PTR_RET(inode);
2184 if (ret && ret != -ESTALE)
66b4ffd1 2185 goto out;
7b128766 2186
f8e9e0b0
AJ
2187 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2188 struct btrfs_root *dead_root;
2189 struct btrfs_fs_info *fs_info = root->fs_info;
2190 int is_dead_root = 0;
2191
2192 /*
2193 * this is an orphan in the tree root. Currently these
2194 * could come from 2 sources:
2195 * a) a snapshot deletion in progress
2196 * b) a free space cache inode
2197 * We need to distinguish those two, as the snapshot
2198 * orphan must not get deleted.
2199 * find_dead_roots already ran before us, so if this
2200 * is a snapshot deletion, we should find the root
2201 * in the dead_roots list
2202 */
2203 spin_lock(&fs_info->trans_lock);
2204 list_for_each_entry(dead_root, &fs_info->dead_roots,
2205 root_list) {
2206 if (dead_root->root_key.objectid ==
2207 found_key.objectid) {
2208 is_dead_root = 1;
2209 break;
2210 }
2211 }
2212 spin_unlock(&fs_info->trans_lock);
2213 if (is_dead_root) {
2214 /* prevent this orphan from being found again */
2215 key.offset = found_key.objectid - 1;
2216 continue;
2217 }
2218 }
7b128766 2219 /*
a8c9e576
JB
2220 * Inode is already gone but the orphan item is still there,
2221 * kill the orphan item.
7b128766 2222 */
a8c9e576
JB
2223 if (ret == -ESTALE) {
2224 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2225 if (IS_ERR(trans)) {
2226 ret = PTR_ERR(trans);
2227 goto out;
2228 }
a8c9e576
JB
2229 ret = btrfs_del_orphan_item(trans, root,
2230 found_key.objectid);
2231 BUG_ON(ret);
5b21f2ed 2232 btrfs_end_transaction(trans, root);
7b128766
JB
2233 continue;
2234 }
2235
a8c9e576
JB
2236 /*
2237 * add this inode to the orphan list so btrfs_orphan_del does
2238 * the proper thing when we hit it
2239 */
2240 spin_lock(&root->orphan_lock);
2241 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2242 spin_unlock(&root->orphan_lock);
2243
7b128766
JB
2244 /* if we have links, this was a truncate, lets do that */
2245 if (inode->i_nlink) {
a41ad394
JB
2246 if (!S_ISREG(inode->i_mode)) {
2247 WARN_ON(1);
2248 iput(inode);
2249 continue;
2250 }
7b128766 2251 nr_truncate++;
66b4ffd1 2252 ret = btrfs_truncate(inode);
7b128766
JB
2253 } else {
2254 nr_unlink++;
2255 }
2256
2257 /* this will do delete_inode and everything for us */
2258 iput(inode);
66b4ffd1
JB
2259 if (ret)
2260 goto out;
7b128766 2261 }
3254c876
MX
2262 /* release the path since we're done with it */
2263 btrfs_release_path(path);
2264
d68fc57b
YZ
2265 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2266
2267 if (root->orphan_block_rsv)
2268 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2269 (u64)-1);
2270
2271 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2272 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2273 if (!IS_ERR(trans))
2274 btrfs_end_transaction(trans, root);
d68fc57b 2275 }
7b128766
JB
2276
2277 if (nr_unlink)
2278 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2279 if (nr_truncate)
2280 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2281
2282out:
2283 if (ret)
2284 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2285 btrfs_free_path(path);
2286 return ret;
7b128766
JB
2287}
2288
46a53cca
CM
2289/*
2290 * very simple check to peek ahead in the leaf looking for xattrs. If we
2291 * don't find any xattrs, we know there can't be any acls.
2292 *
2293 * slot is the slot the inode is in, objectid is the objectid of the inode
2294 */
2295static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2296 int slot, u64 objectid)
2297{
2298 u32 nritems = btrfs_header_nritems(leaf);
2299 struct btrfs_key found_key;
2300 int scanned = 0;
2301
2302 slot++;
2303 while (slot < nritems) {
2304 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2305
2306 /* we found a different objectid, there must not be acls */
2307 if (found_key.objectid != objectid)
2308 return 0;
2309
2310 /* we found an xattr, assume we've got an acl */
2311 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2312 return 1;
2313
2314 /*
2315 * we found a key greater than an xattr key, there can't
2316 * be any acls later on
2317 */
2318 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2319 return 0;
2320
2321 slot++;
2322 scanned++;
2323
2324 /*
2325 * it goes inode, inode backrefs, xattrs, extents,
2326 * so if there are a ton of hard links to an inode there can
2327 * be a lot of backrefs. Don't waste time searching too hard,
2328 * this is just an optimization
2329 */
2330 if (scanned >= 8)
2331 break;
2332 }
2333 /* we hit the end of the leaf before we found an xattr or
2334 * something larger than an xattr. We have to assume the inode
2335 * has acls
2336 */
2337 return 1;
2338}
2339
d352ac68
CM
2340/*
2341 * read an inode from the btree into the in-memory inode
2342 */
5d4f98a2 2343static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2344{
2345 struct btrfs_path *path;
5f39d397 2346 struct extent_buffer *leaf;
39279cc3 2347 struct btrfs_inode_item *inode_item;
0b86a832 2348 struct btrfs_timespec *tspec;
39279cc3
CM
2349 struct btrfs_root *root = BTRFS_I(inode)->root;
2350 struct btrfs_key location;
46a53cca 2351 int maybe_acls;
618e21d5 2352 u32 rdev;
39279cc3 2353 int ret;
2f7e33d4
MX
2354 bool filled = false;
2355
2356 ret = btrfs_fill_inode(inode, &rdev);
2357 if (!ret)
2358 filled = true;
39279cc3
CM
2359
2360 path = btrfs_alloc_path();
1748f843
MF
2361 if (!path)
2362 goto make_bad;
2363
d90c7321 2364 path->leave_spinning = 1;
39279cc3 2365 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2366
39279cc3 2367 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2368 if (ret)
39279cc3 2369 goto make_bad;
39279cc3 2370
5f39d397 2371 leaf = path->nodes[0];
2f7e33d4
MX
2372
2373 if (filled)
2374 goto cache_acl;
2375
5f39d397
CM
2376 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2377 struct btrfs_inode_item);
5f39d397 2378 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2379 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2380 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2381 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2382 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2383
2384 tspec = btrfs_inode_atime(inode_item);
2385 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2386 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2387
2388 tspec = btrfs_inode_mtime(inode_item);
2389 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2390 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2391
2392 tspec = btrfs_inode_ctime(inode_item);
2393 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2394 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2395
a76a3cd4 2396 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2397 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2398 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2399 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2400 inode->i_rdev = 0;
5f39d397
CM
2401 rdev = btrfs_inode_rdev(leaf, inode_item);
2402
aec7477b 2403 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2404 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2405cache_acl:
46a53cca
CM
2406 /*
2407 * try to precache a NULL acl entry for files that don't have
2408 * any xattrs or acls
2409 */
33345d01
LZ
2410 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2411 btrfs_ino(inode));
72c04902
AV
2412 if (!maybe_acls)
2413 cache_no_acl(inode);
46a53cca 2414
39279cc3 2415 btrfs_free_path(path);
39279cc3 2416
39279cc3 2417 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2418 case S_IFREG:
2419 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2420 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2421 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2422 inode->i_fop = &btrfs_file_operations;
2423 inode->i_op = &btrfs_file_inode_operations;
2424 break;
2425 case S_IFDIR:
2426 inode->i_fop = &btrfs_dir_file_operations;
2427 if (root == root->fs_info->tree_root)
2428 inode->i_op = &btrfs_dir_ro_inode_operations;
2429 else
2430 inode->i_op = &btrfs_dir_inode_operations;
2431 break;
2432 case S_IFLNK:
2433 inode->i_op = &btrfs_symlink_inode_operations;
2434 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2435 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2436 break;
618e21d5 2437 default:
0279b4cd 2438 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2439 init_special_inode(inode, inode->i_mode, rdev);
2440 break;
39279cc3 2441 }
6cbff00f
CH
2442
2443 btrfs_update_iflags(inode);
39279cc3
CM
2444 return;
2445
2446make_bad:
39279cc3 2447 btrfs_free_path(path);
39279cc3
CM
2448 make_bad_inode(inode);
2449}
2450
d352ac68
CM
2451/*
2452 * given a leaf and an inode, copy the inode fields into the leaf
2453 */
e02119d5
CM
2454static void fill_inode_item(struct btrfs_trans_handle *trans,
2455 struct extent_buffer *leaf,
5f39d397 2456 struct btrfs_inode_item *item,
39279cc3
CM
2457 struct inode *inode)
2458{
5f39d397
CM
2459 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2460 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2461 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2462 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2463 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2464
2465 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2466 inode->i_atime.tv_sec);
2467 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2468 inode->i_atime.tv_nsec);
2469
2470 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2471 inode->i_mtime.tv_sec);
2472 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2473 inode->i_mtime.tv_nsec);
2474
2475 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2476 inode->i_ctime.tv_sec);
2477 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2478 inode->i_ctime.tv_nsec);
2479
a76a3cd4 2480 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2481 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2482 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2483 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2484 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2485 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2486 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2487}
2488
d352ac68
CM
2489/*
2490 * copy everything in the in-memory inode into the btree.
2491 */
2115133f 2492static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2493 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2494{
2495 struct btrfs_inode_item *inode_item;
2496 struct btrfs_path *path;
5f39d397 2497 struct extent_buffer *leaf;
39279cc3
CM
2498 int ret;
2499
2500 path = btrfs_alloc_path();
16cdcec7
MX
2501 if (!path)
2502 return -ENOMEM;
2503
b9473439 2504 path->leave_spinning = 1;
16cdcec7
MX
2505 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2506 1);
39279cc3
CM
2507 if (ret) {
2508 if (ret > 0)
2509 ret = -ENOENT;
2510 goto failed;
2511 }
2512
b4ce94de 2513 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2514 leaf = path->nodes[0];
2515 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2516 struct btrfs_inode_item);
39279cc3 2517
e02119d5 2518 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2519 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2520 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2521 ret = 0;
2522failed:
39279cc3
CM
2523 btrfs_free_path(path);
2524 return ret;
2525}
2526
2115133f
CM
2527/*
2528 * copy everything in the in-memory inode into the btree.
2529 */
2530noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root, struct inode *inode)
2532{
2533 int ret;
2534
2535 /*
2536 * If the inode is a free space inode, we can deadlock during commit
2537 * if we put it into the delayed code.
2538 *
2539 * The data relocation inode should also be directly updated
2540 * without delay
2541 */
2542 if (!btrfs_is_free_space_inode(root, inode)
2543 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2544 ret = btrfs_delayed_update_inode(trans, root, inode);
2545 if (!ret)
2546 btrfs_set_inode_last_trans(trans, inode);
2547 return ret;
2548 }
2549
2550 return btrfs_update_inode_item(trans, root, inode);
2551}
2552
2553static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2554 struct btrfs_root *root, struct inode *inode)
2555{
2556 int ret;
2557
2558 ret = btrfs_update_inode(trans, root, inode);
2559 if (ret == -ENOSPC)
2560 return btrfs_update_inode_item(trans, root, inode);
2561 return ret;
2562}
2563
d352ac68
CM
2564/*
2565 * unlink helper that gets used here in inode.c and in the tree logging
2566 * recovery code. It remove a link in a directory with a given name, and
2567 * also drops the back refs in the inode to the directory
2568 */
92986796
AV
2569static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2570 struct btrfs_root *root,
2571 struct inode *dir, struct inode *inode,
2572 const char *name, int name_len)
39279cc3
CM
2573{
2574 struct btrfs_path *path;
39279cc3 2575 int ret = 0;
5f39d397 2576 struct extent_buffer *leaf;
39279cc3 2577 struct btrfs_dir_item *di;
5f39d397 2578 struct btrfs_key key;
aec7477b 2579 u64 index;
33345d01
LZ
2580 u64 ino = btrfs_ino(inode);
2581 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2582
2583 path = btrfs_alloc_path();
54aa1f4d
CM
2584 if (!path) {
2585 ret = -ENOMEM;
554233a6 2586 goto out;
54aa1f4d
CM
2587 }
2588
b9473439 2589 path->leave_spinning = 1;
33345d01 2590 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2591 name, name_len, -1);
2592 if (IS_ERR(di)) {
2593 ret = PTR_ERR(di);
2594 goto err;
2595 }
2596 if (!di) {
2597 ret = -ENOENT;
2598 goto err;
2599 }
5f39d397
CM
2600 leaf = path->nodes[0];
2601 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2602 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2603 if (ret)
2604 goto err;
b3b4aa74 2605 btrfs_release_path(path);
39279cc3 2606
33345d01
LZ
2607 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2608 dir_ino, &index);
aec7477b 2609 if (ret) {
d397712b 2610 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2611 "inode %llu parent %llu\n", name_len, name,
2612 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2613 goto err;
2614 }
2615
16cdcec7
MX
2616 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2617 if (ret)
39279cc3 2618 goto err;
39279cc3 2619
e02119d5 2620 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2621 inode, dir_ino);
49eb7e46 2622 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2623
2624 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2625 dir, index);
6418c961
CM
2626 if (ret == -ENOENT)
2627 ret = 0;
39279cc3
CM
2628err:
2629 btrfs_free_path(path);
e02119d5
CM
2630 if (ret)
2631 goto out;
2632
2633 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2634 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2635 btrfs_update_inode(trans, root, dir);
e02119d5 2636out:
39279cc3
CM
2637 return ret;
2638}
2639
92986796
AV
2640int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct inode *dir, struct inode *inode,
2643 const char *name, int name_len)
2644{
2645 int ret;
2646 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2647 if (!ret) {
2648 btrfs_drop_nlink(inode);
2649 ret = btrfs_update_inode(trans, root, inode);
2650 }
2651 return ret;
2652}
2653
2654
a22285a6
YZ
2655/* helper to check if there is any shared block in the path */
2656static int check_path_shared(struct btrfs_root *root,
2657 struct btrfs_path *path)
39279cc3 2658{
a22285a6
YZ
2659 struct extent_buffer *eb;
2660 int level;
0e4dcbef 2661 u64 refs = 1;
5df6a9f6 2662
a22285a6 2663 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2664 int ret;
2665
a22285a6
YZ
2666 if (!path->nodes[level])
2667 break;
2668 eb = path->nodes[level];
2669 if (!btrfs_block_can_be_shared(root, eb))
2670 continue;
2671 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2672 &refs, NULL);
2673 if (refs > 1)
2674 return 1;
5df6a9f6 2675 }
dedefd72 2676 return 0;
39279cc3
CM
2677}
2678
a22285a6
YZ
2679/*
2680 * helper to start transaction for unlink and rmdir.
2681 *
2682 * unlink and rmdir are special in btrfs, they do not always free space.
2683 * so in enospc case, we should make sure they will free space before
2684 * allowing them to use the global metadata reservation.
2685 */
2686static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2687 struct dentry *dentry)
4df27c4d 2688{
39279cc3 2689 struct btrfs_trans_handle *trans;
a22285a6 2690 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2691 struct btrfs_path *path;
a22285a6 2692 struct btrfs_inode_ref *ref;
4df27c4d 2693 struct btrfs_dir_item *di;
7b128766 2694 struct inode *inode = dentry->d_inode;
4df27c4d 2695 u64 index;
a22285a6
YZ
2696 int check_link = 1;
2697 int err = -ENOSPC;
4df27c4d 2698 int ret;
33345d01
LZ
2699 u64 ino = btrfs_ino(inode);
2700 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2701
e70bea5f
JB
2702 /*
2703 * 1 for the possible orphan item
2704 * 1 for the dir item
2705 * 1 for the dir index
2706 * 1 for the inode ref
2707 * 1 for the inode ref in the tree log
2708 * 2 for the dir entries in the log
2709 * 1 for the inode
2710 */
2711 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2712 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2713 return trans;
4df27c4d 2714
33345d01 2715 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2716 return ERR_PTR(-ENOSPC);
4df27c4d 2717
a22285a6
YZ
2718 /* check if there is someone else holds reference */
2719 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2720 return ERR_PTR(-ENOSPC);
4df27c4d 2721
a22285a6
YZ
2722 if (atomic_read(&inode->i_count) > 2)
2723 return ERR_PTR(-ENOSPC);
4df27c4d 2724
a22285a6
YZ
2725 if (xchg(&root->fs_info->enospc_unlink, 1))
2726 return ERR_PTR(-ENOSPC);
2727
2728 path = btrfs_alloc_path();
2729 if (!path) {
2730 root->fs_info->enospc_unlink = 0;
2731 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2732 }
2733
3880a1b4
JB
2734 /* 1 for the orphan item */
2735 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2736 if (IS_ERR(trans)) {
a22285a6
YZ
2737 btrfs_free_path(path);
2738 root->fs_info->enospc_unlink = 0;
2739 return trans;
2740 }
4df27c4d 2741
a22285a6
YZ
2742 path->skip_locking = 1;
2743 path->search_commit_root = 1;
4df27c4d 2744
a22285a6
YZ
2745 ret = btrfs_lookup_inode(trans, root, path,
2746 &BTRFS_I(dir)->location, 0);
2747 if (ret < 0) {
2748 err = ret;
2749 goto out;
2750 }
2751 if (ret == 0) {
2752 if (check_path_shared(root, path))
2753 goto out;
2754 } else {
2755 check_link = 0;
5df6a9f6 2756 }
b3b4aa74 2757 btrfs_release_path(path);
a22285a6
YZ
2758
2759 ret = btrfs_lookup_inode(trans, root, path,
2760 &BTRFS_I(inode)->location, 0);
2761 if (ret < 0) {
2762 err = ret;
2763 goto out;
2764 }
2765 if (ret == 0) {
2766 if (check_path_shared(root, path))
2767 goto out;
2768 } else {
2769 check_link = 0;
2770 }
b3b4aa74 2771 btrfs_release_path(path);
a22285a6
YZ
2772
2773 if (ret == 0 && S_ISREG(inode->i_mode)) {
2774 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2775 ino, (u64)-1, 0);
a22285a6
YZ
2776 if (ret < 0) {
2777 err = ret;
2778 goto out;
2779 }
2780 BUG_ON(ret == 0);
2781 if (check_path_shared(root, path))
2782 goto out;
b3b4aa74 2783 btrfs_release_path(path);
a22285a6
YZ
2784 }
2785
2786 if (!check_link) {
2787 err = 0;
2788 goto out;
2789 }
2790
33345d01 2791 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2792 dentry->d_name.name, dentry->d_name.len, 0);
2793 if (IS_ERR(di)) {
2794 err = PTR_ERR(di);
2795 goto out;
2796 }
2797 if (di) {
2798 if (check_path_shared(root, path))
2799 goto out;
2800 } else {
2801 err = 0;
2802 goto out;
2803 }
b3b4aa74 2804 btrfs_release_path(path);
a22285a6
YZ
2805
2806 ref = btrfs_lookup_inode_ref(trans, root, path,
2807 dentry->d_name.name, dentry->d_name.len,
33345d01 2808 ino, dir_ino, 0);
a22285a6
YZ
2809 if (IS_ERR(ref)) {
2810 err = PTR_ERR(ref);
2811 goto out;
2812 }
2813 BUG_ON(!ref);
2814 if (check_path_shared(root, path))
2815 goto out;
2816 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2817 btrfs_release_path(path);
a22285a6 2818
16cdcec7
MX
2819 /*
2820 * This is a commit root search, if we can lookup inode item and other
2821 * relative items in the commit root, it means the transaction of
2822 * dir/file creation has been committed, and the dir index item that we
2823 * delay to insert has also been inserted into the commit root. So
2824 * we needn't worry about the delayed insertion of the dir index item
2825 * here.
2826 */
33345d01 2827 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2828 dentry->d_name.name, dentry->d_name.len, 0);
2829 if (IS_ERR(di)) {
2830 err = PTR_ERR(di);
2831 goto out;
2832 }
2833 BUG_ON(ret == -ENOENT);
2834 if (check_path_shared(root, path))
2835 goto out;
2836
2837 err = 0;
2838out:
2839 btrfs_free_path(path);
3880a1b4
JB
2840 /* Migrate the orphan reservation over */
2841 if (!err)
2842 err = btrfs_block_rsv_migrate(trans->block_rsv,
2843 &root->fs_info->global_block_rsv,
5a77d76c 2844 trans->bytes_reserved);
3880a1b4 2845
a22285a6
YZ
2846 if (err) {
2847 btrfs_end_transaction(trans, root);
2848 root->fs_info->enospc_unlink = 0;
2849 return ERR_PTR(err);
2850 }
2851
2852 trans->block_rsv = &root->fs_info->global_block_rsv;
2853 return trans;
2854}
2855
2856static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root)
2858{
2859 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2860 btrfs_block_rsv_release(root, trans->block_rsv,
2861 trans->bytes_reserved);
2862 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2863 BUG_ON(!root->fs_info->enospc_unlink);
2864 root->fs_info->enospc_unlink = 0;
2865 }
7ad85bb7 2866 btrfs_end_transaction(trans, root);
a22285a6
YZ
2867}
2868
2869static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2870{
2871 struct btrfs_root *root = BTRFS_I(dir)->root;
2872 struct btrfs_trans_handle *trans;
2873 struct inode *inode = dentry->d_inode;
2874 int ret;
2875 unsigned long nr = 0;
2876
2877 trans = __unlink_start_trans(dir, dentry);
2878 if (IS_ERR(trans))
2879 return PTR_ERR(trans);
5f39d397 2880
12fcfd22
CM
2881 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2882
e02119d5
CM
2883 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2884 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2885 if (ret)
2886 goto out;
7b128766 2887
a22285a6 2888 if (inode->i_nlink == 0) {
7b128766 2889 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2890 if (ret)
2891 goto out;
a22285a6 2892 }
7b128766 2893
b532402e 2894out:
d3c2fdcf 2895 nr = trans->blocks_used;
a22285a6 2896 __unlink_end_trans(trans, root);
d3c2fdcf 2897 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2898 return ret;
2899}
2900
4df27c4d
YZ
2901int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root,
2903 struct inode *dir, u64 objectid,
2904 const char *name, int name_len)
2905{
2906 struct btrfs_path *path;
2907 struct extent_buffer *leaf;
2908 struct btrfs_dir_item *di;
2909 struct btrfs_key key;
2910 u64 index;
2911 int ret;
33345d01 2912 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2913
2914 path = btrfs_alloc_path();
2915 if (!path)
2916 return -ENOMEM;
2917
33345d01 2918 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2919 name, name_len, -1);
c704005d 2920 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2921
2922 leaf = path->nodes[0];
2923 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2924 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2925 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2926 BUG_ON(ret);
b3b4aa74 2927 btrfs_release_path(path);
4df27c4d
YZ
2928
2929 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2930 objectid, root->root_key.objectid,
33345d01 2931 dir_ino, &index, name, name_len);
4df27c4d
YZ
2932 if (ret < 0) {
2933 BUG_ON(ret != -ENOENT);
33345d01 2934 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2935 name, name_len);
c704005d 2936 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2937
2938 leaf = path->nodes[0];
2939 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2940 btrfs_release_path(path);
4df27c4d
YZ
2941 index = key.offset;
2942 }
945d8962 2943 btrfs_release_path(path);
4df27c4d 2944
16cdcec7 2945 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2946 BUG_ON(ret);
4df27c4d
YZ
2947
2948 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2949 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2950 ret = btrfs_update_inode(trans, root, dir);
2951 BUG_ON(ret);
4df27c4d 2952
71d7aed0 2953 btrfs_free_path(path);
4df27c4d
YZ
2954 return 0;
2955}
2956
39279cc3
CM
2957static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2958{
2959 struct inode *inode = dentry->d_inode;
1832a6d5 2960 int err = 0;
39279cc3 2961 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2962 struct btrfs_trans_handle *trans;
1832a6d5 2963 unsigned long nr = 0;
39279cc3 2964
3394e160 2965 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2966 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2967 return -ENOTEMPTY;
2968
a22285a6
YZ
2969 trans = __unlink_start_trans(dir, dentry);
2970 if (IS_ERR(trans))
5df6a9f6 2971 return PTR_ERR(trans);
5df6a9f6 2972
33345d01 2973 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
2974 err = btrfs_unlink_subvol(trans, root, dir,
2975 BTRFS_I(inode)->location.objectid,
2976 dentry->d_name.name,
2977 dentry->d_name.len);
2978 goto out;
2979 }
2980
7b128766
JB
2981 err = btrfs_orphan_add(trans, inode);
2982 if (err)
4df27c4d 2983 goto out;
7b128766 2984
39279cc3 2985 /* now the directory is empty */
e02119d5
CM
2986 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2987 dentry->d_name.name, dentry->d_name.len);
d397712b 2988 if (!err)
dbe674a9 2989 btrfs_i_size_write(inode, 0);
4df27c4d 2990out:
d3c2fdcf 2991 nr = trans->blocks_used;
a22285a6 2992 __unlink_end_trans(trans, root);
d3c2fdcf 2993 btrfs_btree_balance_dirty(root, nr);
3954401f 2994
39279cc3
CM
2995 return err;
2996}
2997
39279cc3
CM
2998/*
2999 * this can truncate away extent items, csum items and directory items.
3000 * It starts at a high offset and removes keys until it can't find
d352ac68 3001 * any higher than new_size
39279cc3
CM
3002 *
3003 * csum items that cross the new i_size are truncated to the new size
3004 * as well.
7b128766
JB
3005 *
3006 * min_type is the minimum key type to truncate down to. If set to 0, this
3007 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3008 */
8082510e
YZ
3009int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 struct inode *inode,
3012 u64 new_size, u32 min_type)
39279cc3 3013{
39279cc3 3014 struct btrfs_path *path;
5f39d397 3015 struct extent_buffer *leaf;
39279cc3 3016 struct btrfs_file_extent_item *fi;
8082510e
YZ
3017 struct btrfs_key key;
3018 struct btrfs_key found_key;
39279cc3 3019 u64 extent_start = 0;
db94535d 3020 u64 extent_num_bytes = 0;
5d4f98a2 3021 u64 extent_offset = 0;
39279cc3 3022 u64 item_end = 0;
8082510e
YZ
3023 u64 mask = root->sectorsize - 1;
3024 u32 found_type = (u8)-1;
39279cc3
CM
3025 int found_extent;
3026 int del_item;
85e21bac
CM
3027 int pending_del_nr = 0;
3028 int pending_del_slot = 0;
179e29e4 3029 int extent_type = -1;
8082510e
YZ
3030 int ret;
3031 int err = 0;
33345d01 3032 u64 ino = btrfs_ino(inode);
8082510e
YZ
3033
3034 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3035
0eb0e19c
MF
3036 path = btrfs_alloc_path();
3037 if (!path)
3038 return -ENOMEM;
3039 path->reada = -1;
3040
0af3d00b 3041 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3042 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3043
16cdcec7
MX
3044 /*
3045 * This function is also used to drop the items in the log tree before
3046 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3047 * it is used to drop the loged items. So we shouldn't kill the delayed
3048 * items.
3049 */
3050 if (min_type == 0 && root == BTRFS_I(inode)->root)
3051 btrfs_kill_delayed_inode_items(inode);
3052
33345d01 3053 key.objectid = ino;
39279cc3 3054 key.offset = (u64)-1;
5f39d397
CM
3055 key.type = (u8)-1;
3056
85e21bac 3057search_again:
b9473439 3058 path->leave_spinning = 1;
85e21bac 3059 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3060 if (ret < 0) {
3061 err = ret;
3062 goto out;
3063 }
d397712b 3064
85e21bac 3065 if (ret > 0) {
e02119d5
CM
3066 /* there are no items in the tree for us to truncate, we're
3067 * done
3068 */
8082510e
YZ
3069 if (path->slots[0] == 0)
3070 goto out;
85e21bac
CM
3071 path->slots[0]--;
3072 }
3073
d397712b 3074 while (1) {
39279cc3 3075 fi = NULL;
5f39d397
CM
3076 leaf = path->nodes[0];
3077 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3078 found_type = btrfs_key_type(&found_key);
39279cc3 3079
33345d01 3080 if (found_key.objectid != ino)
39279cc3 3081 break;
5f39d397 3082
85e21bac 3083 if (found_type < min_type)
39279cc3
CM
3084 break;
3085
5f39d397 3086 item_end = found_key.offset;
39279cc3 3087 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3088 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3089 struct btrfs_file_extent_item);
179e29e4
CM
3090 extent_type = btrfs_file_extent_type(leaf, fi);
3091 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3092 item_end +=
db94535d 3093 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3094 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3095 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3096 fi);
39279cc3 3097 }
008630c1 3098 item_end--;
39279cc3 3099 }
8082510e
YZ
3100 if (found_type > min_type) {
3101 del_item = 1;
3102 } else {
3103 if (item_end < new_size)
b888db2b 3104 break;
8082510e
YZ
3105 if (found_key.offset >= new_size)
3106 del_item = 1;
3107 else
3108 del_item = 0;
39279cc3 3109 }
39279cc3 3110 found_extent = 0;
39279cc3 3111 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3112 if (found_type != BTRFS_EXTENT_DATA_KEY)
3113 goto delete;
3114
3115 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3116 u64 num_dec;
db94535d 3117 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3118 if (!del_item) {
db94535d
CM
3119 u64 orig_num_bytes =
3120 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3121 extent_num_bytes = new_size -
5f39d397 3122 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3123 extent_num_bytes = extent_num_bytes &
3124 ~((u64)root->sectorsize - 1);
db94535d
CM
3125 btrfs_set_file_extent_num_bytes(leaf, fi,
3126 extent_num_bytes);
3127 num_dec = (orig_num_bytes -
9069218d 3128 extent_num_bytes);
e02119d5 3129 if (root->ref_cows && extent_start != 0)
a76a3cd4 3130 inode_sub_bytes(inode, num_dec);
5f39d397 3131 btrfs_mark_buffer_dirty(leaf);
39279cc3 3132 } else {
db94535d
CM
3133 extent_num_bytes =
3134 btrfs_file_extent_disk_num_bytes(leaf,
3135 fi);
5d4f98a2
YZ
3136 extent_offset = found_key.offset -
3137 btrfs_file_extent_offset(leaf, fi);
3138
39279cc3 3139 /* FIXME blocksize != 4096 */
9069218d 3140 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3141 if (extent_start != 0) {
3142 found_extent = 1;
e02119d5 3143 if (root->ref_cows)
a76a3cd4 3144 inode_sub_bytes(inode, num_dec);
e02119d5 3145 }
39279cc3 3146 }
9069218d 3147 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3148 /*
3149 * we can't truncate inline items that have had
3150 * special encodings
3151 */
3152 if (!del_item &&
3153 btrfs_file_extent_compression(leaf, fi) == 0 &&
3154 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3155 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3156 u32 size = new_size - found_key.offset;
3157
3158 if (root->ref_cows) {
a76a3cd4
YZ
3159 inode_sub_bytes(inode, item_end + 1 -
3160 new_size);
e02119d5
CM
3161 }
3162 size =
3163 btrfs_file_extent_calc_inline_size(size);
9069218d 3164 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3165 size, 1);
e02119d5 3166 } else if (root->ref_cows) {
a76a3cd4
YZ
3167 inode_sub_bytes(inode, item_end + 1 -
3168 found_key.offset);
9069218d 3169 }
39279cc3 3170 }
179e29e4 3171delete:
39279cc3 3172 if (del_item) {
85e21bac
CM
3173 if (!pending_del_nr) {
3174 /* no pending yet, add ourselves */
3175 pending_del_slot = path->slots[0];
3176 pending_del_nr = 1;
3177 } else if (pending_del_nr &&
3178 path->slots[0] + 1 == pending_del_slot) {
3179 /* hop on the pending chunk */
3180 pending_del_nr++;
3181 pending_del_slot = path->slots[0];
3182 } else {
d397712b 3183 BUG();
85e21bac 3184 }
39279cc3
CM
3185 } else {
3186 break;
3187 }
0af3d00b
JB
3188 if (found_extent && (root->ref_cows ||
3189 root == root->fs_info->tree_root)) {
b9473439 3190 btrfs_set_path_blocking(path);
39279cc3 3191 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3192 extent_num_bytes, 0,
3193 btrfs_header_owner(leaf),
66d7e7f0 3194 ino, extent_offset, 0);
39279cc3
CM
3195 BUG_ON(ret);
3196 }
85e21bac 3197
8082510e
YZ
3198 if (found_type == BTRFS_INODE_ITEM_KEY)
3199 break;
3200
3201 if (path->slots[0] == 0 ||
3202 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3203 if (root->ref_cows &&
3204 BTRFS_I(inode)->location.objectid !=
3205 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3206 err = -EAGAIN;
3207 goto out;
3208 }
3209 if (pending_del_nr) {
3210 ret = btrfs_del_items(trans, root, path,
3211 pending_del_slot,
3212 pending_del_nr);
3213 BUG_ON(ret);
3214 pending_del_nr = 0;
3215 }
b3b4aa74 3216 btrfs_release_path(path);
85e21bac 3217 goto search_again;
8082510e
YZ
3218 } else {
3219 path->slots[0]--;
85e21bac 3220 }
39279cc3 3221 }
8082510e 3222out:
85e21bac
CM
3223 if (pending_del_nr) {
3224 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3225 pending_del_nr);
d68fc57b 3226 BUG_ON(ret);
85e21bac 3227 }
39279cc3 3228 btrfs_free_path(path);
8082510e 3229 return err;
39279cc3
CM
3230}
3231
3232/*
3233 * taken from block_truncate_page, but does cow as it zeros out
3234 * any bytes left in the last page in the file.
3235 */
3236static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3237{
3238 struct inode *inode = mapping->host;
db94535d 3239 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3240 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3241 struct btrfs_ordered_extent *ordered;
2ac55d41 3242 struct extent_state *cached_state = NULL;
e6dcd2dc 3243 char *kaddr;
db94535d 3244 u32 blocksize = root->sectorsize;
39279cc3
CM
3245 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3246 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3247 struct page *page;
3b16a4e3 3248 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3249 int ret = 0;
a52d9a80 3250 u64 page_start;
e6dcd2dc 3251 u64 page_end;
39279cc3
CM
3252
3253 if ((offset & (blocksize - 1)) == 0)
3254 goto out;
0ca1f7ce 3255 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3256 if (ret)
3257 goto out;
39279cc3
CM
3258
3259 ret = -ENOMEM;
211c17f5 3260again:
3b16a4e3 3261 page = find_or_create_page(mapping, index, mask);
5d5e103a 3262 if (!page) {
0ca1f7ce 3263 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3264 goto out;
5d5e103a 3265 }
e6dcd2dc
CM
3266
3267 page_start = page_offset(page);
3268 page_end = page_start + PAGE_CACHE_SIZE - 1;
3269
39279cc3 3270 if (!PageUptodate(page)) {
9ebefb18 3271 ret = btrfs_readpage(NULL, page);
39279cc3 3272 lock_page(page);
211c17f5
CM
3273 if (page->mapping != mapping) {
3274 unlock_page(page);
3275 page_cache_release(page);
3276 goto again;
3277 }
39279cc3
CM
3278 if (!PageUptodate(page)) {
3279 ret = -EIO;
89642229 3280 goto out_unlock;
39279cc3
CM
3281 }
3282 }
211c17f5 3283 wait_on_page_writeback(page);
e6dcd2dc 3284
2ac55d41
JB
3285 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3286 GFP_NOFS);
e6dcd2dc
CM
3287 set_page_extent_mapped(page);
3288
3289 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3290 if (ordered) {
2ac55d41
JB
3291 unlock_extent_cached(io_tree, page_start, page_end,
3292 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3293 unlock_page(page);
3294 page_cache_release(page);
eb84ae03 3295 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3296 btrfs_put_ordered_extent(ordered);
3297 goto again;
3298 }
3299
2ac55d41 3300 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3301 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3302 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3303
2ac55d41
JB
3304 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3305 &cached_state);
9ed74f2d 3306 if (ret) {
2ac55d41
JB
3307 unlock_extent_cached(io_tree, page_start, page_end,
3308 &cached_state, GFP_NOFS);
9ed74f2d
JB
3309 goto out_unlock;
3310 }
3311
e6dcd2dc
CM
3312 ret = 0;
3313 if (offset != PAGE_CACHE_SIZE) {
3314 kaddr = kmap(page);
3315 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3316 flush_dcache_page(page);
3317 kunmap(page);
3318 }
247e743c 3319 ClearPageChecked(page);
e6dcd2dc 3320 set_page_dirty(page);
2ac55d41
JB
3321 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3322 GFP_NOFS);
39279cc3 3323
89642229 3324out_unlock:
5d5e103a 3325 if (ret)
0ca1f7ce 3326 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3327 unlock_page(page);
3328 page_cache_release(page);
3329out:
3330 return ret;
3331}
3332
695a0d0d
JB
3333/*
3334 * This function puts in dummy file extents for the area we're creating a hole
3335 * for. So if we are truncating this file to a larger size we need to insert
3336 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3337 * the range between oldsize and size
3338 */
a41ad394 3339int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3340{
9036c102
YZ
3341 struct btrfs_trans_handle *trans;
3342 struct btrfs_root *root = BTRFS_I(inode)->root;
3343 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3344 struct extent_map *em = NULL;
2ac55d41 3345 struct extent_state *cached_state = NULL;
9036c102 3346 u64 mask = root->sectorsize - 1;
a41ad394 3347 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3348 u64 block_end = (size + mask) & ~mask;
3349 u64 last_byte;
3350 u64 cur_offset;
3351 u64 hole_size;
9ed74f2d 3352 int err = 0;
39279cc3 3353
9036c102
YZ
3354 if (size <= hole_start)
3355 return 0;
3356
9036c102
YZ
3357 while (1) {
3358 struct btrfs_ordered_extent *ordered;
3359 btrfs_wait_ordered_range(inode, hole_start,
3360 block_end - hole_start);
2ac55d41
JB
3361 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3362 &cached_state, GFP_NOFS);
9036c102
YZ
3363 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3364 if (!ordered)
3365 break;
2ac55d41
JB
3366 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3367 &cached_state, GFP_NOFS);
9036c102
YZ
3368 btrfs_put_ordered_extent(ordered);
3369 }
39279cc3 3370
9036c102
YZ
3371 cur_offset = hole_start;
3372 while (1) {
3373 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3374 block_end - cur_offset, 0);
c704005d 3375 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3376 last_byte = min(extent_map_end(em), block_end);
3377 last_byte = (last_byte + mask) & ~mask;
8082510e 3378 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3379 u64 hint_byte = 0;
9036c102 3380 hole_size = last_byte - cur_offset;
9ed74f2d 3381
3642320e 3382 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3383 if (IS_ERR(trans)) {
3384 err = PTR_ERR(trans);
9ed74f2d 3385 break;
a22285a6 3386 }
8082510e
YZ
3387
3388 err = btrfs_drop_extents(trans, inode, cur_offset,
3389 cur_offset + hole_size,
3390 &hint_byte, 1);
5b397377 3391 if (err) {
3642320e 3392 btrfs_update_inode(trans, root, inode);
5b397377 3393 btrfs_end_transaction(trans, root);
3893e33b 3394 break;
5b397377 3395 }
8082510e 3396
9036c102 3397 err = btrfs_insert_file_extent(trans, root,
33345d01 3398 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3399 0, hole_size, 0, hole_size,
3400 0, 0, 0);
5b397377 3401 if (err) {
3642320e 3402 btrfs_update_inode(trans, root, inode);
5b397377 3403 btrfs_end_transaction(trans, root);
3893e33b 3404 break;
5b397377 3405 }
8082510e 3406
9036c102
YZ
3407 btrfs_drop_extent_cache(inode, hole_start,
3408 last_byte - 1, 0);
8082510e 3409
3642320e 3410 btrfs_update_inode(trans, root, inode);
8082510e 3411 btrfs_end_transaction(trans, root);
9036c102
YZ
3412 }
3413 free_extent_map(em);
a22285a6 3414 em = NULL;
9036c102 3415 cur_offset = last_byte;
8082510e 3416 if (cur_offset >= block_end)
9036c102
YZ
3417 break;
3418 }
1832a6d5 3419
a22285a6 3420 free_extent_map(em);
2ac55d41
JB
3421 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3422 GFP_NOFS);
9036c102
YZ
3423 return err;
3424}
39279cc3 3425
a41ad394 3426static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3427{
f4a2f4c5
MX
3428 struct btrfs_root *root = BTRFS_I(inode)->root;
3429 struct btrfs_trans_handle *trans;
a41ad394 3430 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3431 int ret;
3432
a41ad394 3433 if (newsize == oldsize)
8082510e
YZ
3434 return 0;
3435
a41ad394 3436 if (newsize > oldsize) {
a41ad394
JB
3437 truncate_pagecache(inode, oldsize, newsize);
3438 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3439 if (ret)
8082510e 3440 return ret;
8082510e 3441
f4a2f4c5
MX
3442 trans = btrfs_start_transaction(root, 1);
3443 if (IS_ERR(trans))
3444 return PTR_ERR(trans);
3445
3446 i_size_write(inode, newsize);
3447 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3448 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3449 btrfs_end_transaction(trans, root);
a41ad394 3450 } else {
8082510e 3451
a41ad394
JB
3452 /*
3453 * We're truncating a file that used to have good data down to
3454 * zero. Make sure it gets into the ordered flush list so that
3455 * any new writes get down to disk quickly.
3456 */
3457 if (newsize == 0)
3458 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3459
a41ad394
JB
3460 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3461 truncate_setsize(inode, newsize);
3462 ret = btrfs_truncate(inode);
8082510e
YZ
3463 }
3464
a41ad394 3465 return ret;
8082510e
YZ
3466}
3467
9036c102
YZ
3468static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3469{
3470 struct inode *inode = dentry->d_inode;
b83cc969 3471 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3472 int err;
39279cc3 3473
b83cc969
LZ
3474 if (btrfs_root_readonly(root))
3475 return -EROFS;
3476
9036c102
YZ
3477 err = inode_change_ok(inode, attr);
3478 if (err)
3479 return err;
2bf5a725 3480
5a3f23d5 3481 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3482 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3483 if (err)
3484 return err;
39279cc3 3485 }
9036c102 3486
1025774c
CH
3487 if (attr->ia_valid) {
3488 setattr_copy(inode, attr);
22c44fe6 3489 err = btrfs_dirty_inode(inode);
1025774c 3490
22c44fe6 3491 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3492 err = btrfs_acl_chmod(inode);
3493 }
33268eaf 3494
39279cc3
CM
3495 return err;
3496}
61295eb8 3497
bd555975 3498void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3499{
3500 struct btrfs_trans_handle *trans;
3501 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3502 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3503 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3504 unsigned long nr;
39279cc3
CM
3505 int ret;
3506
1abe9b8a 3507 trace_btrfs_inode_evict(inode);
3508
39279cc3 3509 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3510 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3511 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3512 goto no_delete;
3513
39279cc3 3514 if (is_bad_inode(inode)) {
7b128766 3515 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3516 goto no_delete;
3517 }
bd555975 3518 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3519 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3520
c71bf099
YZ
3521 if (root->fs_info->log_root_recovering) {
3522 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3523 goto no_delete;
3524 }
3525
76dda93c
YZ
3526 if (inode->i_nlink > 0) {
3527 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3528 goto no_delete;
3529 }
3530
4289a667
JB
3531 rsv = btrfs_alloc_block_rsv(root);
3532 if (!rsv) {
3533 btrfs_orphan_del(NULL, inode);
3534 goto no_delete;
3535 }
4a338542 3536 rsv->size = min_size;
726c35fa 3537 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3538
dbe674a9 3539 btrfs_i_size_write(inode, 0);
5f39d397 3540
4289a667
JB
3541 /*
3542 * This is a bit simpler than btrfs_truncate since
3543 *
3544 * 1) We've already reserved our space for our orphan item in the
3545 * unlink.
3546 * 2) We're going to delete the inode item, so we don't need to update
3547 * it at all.
3548 *
3549 * So we just need to reserve some slack space in case we add bytes when
3550 * doing the truncate.
3551 */
8082510e 3552 while (1) {
aa38a711 3553 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3554
3555 /*
3556 * Try and steal from the global reserve since we will
3557 * likely not use this space anyway, we want to try as
3558 * hard as possible to get this to work.
3559 */
3560 if (ret)
3561 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3562
d68fc57b 3563 if (ret) {
4289a667 3564 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3565 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3566 btrfs_orphan_del(NULL, inode);
3567 btrfs_free_block_rsv(root, rsv);
3568 goto no_delete;
d68fc57b 3569 }
7b128766 3570
4289a667
JB
3571 trans = btrfs_start_transaction(root, 0);
3572 if (IS_ERR(trans)) {
3573 btrfs_orphan_del(NULL, inode);
3574 btrfs_free_block_rsv(root, rsv);
3575 goto no_delete;
d68fc57b 3576 }
7b128766 3577
4289a667
JB
3578 trans->block_rsv = rsv;
3579
d68fc57b 3580 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3581 if (ret != -EAGAIN)
3582 break;
85e21bac 3583
8082510e
YZ
3584 nr = trans->blocks_used;
3585 btrfs_end_transaction(trans, root);
3586 trans = NULL;
3587 btrfs_btree_balance_dirty(root, nr);
3588 }
5f39d397 3589
4289a667
JB
3590 btrfs_free_block_rsv(root, rsv);
3591
8082510e 3592 if (ret == 0) {
4289a667 3593 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3594 ret = btrfs_orphan_del(trans, inode);
3595 BUG_ON(ret);
3596 }
54aa1f4d 3597
4289a667 3598 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3599 if (!(root == root->fs_info->tree_root ||
3600 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3601 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3602
d3c2fdcf 3603 nr = trans->blocks_used;
54aa1f4d 3604 btrfs_end_transaction(trans, root);
d3c2fdcf 3605 btrfs_btree_balance_dirty(root, nr);
39279cc3 3606no_delete:
bd555975 3607 end_writeback(inode);
8082510e 3608 return;
39279cc3
CM
3609}
3610
3611/*
3612 * this returns the key found in the dir entry in the location pointer.
3613 * If no dir entries were found, location->objectid is 0.
3614 */
3615static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3616 struct btrfs_key *location)
3617{
3618 const char *name = dentry->d_name.name;
3619 int namelen = dentry->d_name.len;
3620 struct btrfs_dir_item *di;
3621 struct btrfs_path *path;
3622 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3623 int ret = 0;
39279cc3
CM
3624
3625 path = btrfs_alloc_path();
d8926bb3
MF
3626 if (!path)
3627 return -ENOMEM;
3954401f 3628
33345d01 3629 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3630 namelen, 0);
0d9f7f3e
Y
3631 if (IS_ERR(di))
3632 ret = PTR_ERR(di);
d397712b 3633
c704005d 3634 if (IS_ERR_OR_NULL(di))
3954401f 3635 goto out_err;
d397712b 3636
5f39d397 3637 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3638out:
39279cc3
CM
3639 btrfs_free_path(path);
3640 return ret;
3954401f
CM
3641out_err:
3642 location->objectid = 0;
3643 goto out;
39279cc3
CM
3644}
3645
3646/*
3647 * when we hit a tree root in a directory, the btrfs part of the inode
3648 * needs to be changed to reflect the root directory of the tree root. This
3649 * is kind of like crossing a mount point.
3650 */
3651static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3652 struct inode *dir,
3653 struct dentry *dentry,
3654 struct btrfs_key *location,
3655 struct btrfs_root **sub_root)
39279cc3 3656{
4df27c4d
YZ
3657 struct btrfs_path *path;
3658 struct btrfs_root *new_root;
3659 struct btrfs_root_ref *ref;
3660 struct extent_buffer *leaf;
3661 int ret;
3662 int err = 0;
39279cc3 3663
4df27c4d
YZ
3664 path = btrfs_alloc_path();
3665 if (!path) {
3666 err = -ENOMEM;
3667 goto out;
3668 }
39279cc3 3669
4df27c4d
YZ
3670 err = -ENOENT;
3671 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3672 BTRFS_I(dir)->root->root_key.objectid,
3673 location->objectid);
3674 if (ret) {
3675 if (ret < 0)
3676 err = ret;
3677 goto out;
3678 }
39279cc3 3679
4df27c4d
YZ
3680 leaf = path->nodes[0];
3681 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3682 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3683 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3684 goto out;
39279cc3 3685
4df27c4d
YZ
3686 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3687 (unsigned long)(ref + 1),
3688 dentry->d_name.len);
3689 if (ret)
3690 goto out;
3691
b3b4aa74 3692 btrfs_release_path(path);
4df27c4d
YZ
3693
3694 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3695 if (IS_ERR(new_root)) {
3696 err = PTR_ERR(new_root);
3697 goto out;
3698 }
3699
3700 if (btrfs_root_refs(&new_root->root_item) == 0) {
3701 err = -ENOENT;
3702 goto out;
3703 }
3704
3705 *sub_root = new_root;
3706 location->objectid = btrfs_root_dirid(&new_root->root_item);
3707 location->type = BTRFS_INODE_ITEM_KEY;
3708 location->offset = 0;
3709 err = 0;
3710out:
3711 btrfs_free_path(path);
3712 return err;
39279cc3
CM
3713}
3714
5d4f98a2
YZ
3715static void inode_tree_add(struct inode *inode)
3716{
3717 struct btrfs_root *root = BTRFS_I(inode)->root;
3718 struct btrfs_inode *entry;
03e860bd
FNP
3719 struct rb_node **p;
3720 struct rb_node *parent;
33345d01 3721 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3722again:
3723 p = &root->inode_tree.rb_node;
3724 parent = NULL;
5d4f98a2 3725
1d3382cb 3726 if (inode_unhashed(inode))
76dda93c
YZ
3727 return;
3728
5d4f98a2
YZ
3729 spin_lock(&root->inode_lock);
3730 while (*p) {
3731 parent = *p;
3732 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3733
33345d01 3734 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3735 p = &parent->rb_left;
33345d01 3736 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3737 p = &parent->rb_right;
5d4f98a2
YZ
3738 else {
3739 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3740 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3741 rb_erase(parent, &root->inode_tree);
3742 RB_CLEAR_NODE(parent);
3743 spin_unlock(&root->inode_lock);
3744 goto again;
5d4f98a2
YZ
3745 }
3746 }
3747 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3748 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3749 spin_unlock(&root->inode_lock);
3750}
3751
3752static void inode_tree_del(struct inode *inode)
3753{
3754 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3755 int empty = 0;
5d4f98a2 3756
03e860bd 3757 spin_lock(&root->inode_lock);
5d4f98a2 3758 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3759 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3760 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3761 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3762 }
03e860bd 3763 spin_unlock(&root->inode_lock);
76dda93c 3764
0af3d00b
JB
3765 /*
3766 * Free space cache has inodes in the tree root, but the tree root has a
3767 * root_refs of 0, so this could end up dropping the tree root as a
3768 * snapshot, so we need the extra !root->fs_info->tree_root check to
3769 * make sure we don't drop it.
3770 */
3771 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3772 root != root->fs_info->tree_root) {
76dda93c
YZ
3773 synchronize_srcu(&root->fs_info->subvol_srcu);
3774 spin_lock(&root->inode_lock);
3775 empty = RB_EMPTY_ROOT(&root->inode_tree);
3776 spin_unlock(&root->inode_lock);
3777 if (empty)
3778 btrfs_add_dead_root(root);
3779 }
3780}
3781
3782int btrfs_invalidate_inodes(struct btrfs_root *root)
3783{
3784 struct rb_node *node;
3785 struct rb_node *prev;
3786 struct btrfs_inode *entry;
3787 struct inode *inode;
3788 u64 objectid = 0;
3789
3790 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3791
3792 spin_lock(&root->inode_lock);
3793again:
3794 node = root->inode_tree.rb_node;
3795 prev = NULL;
3796 while (node) {
3797 prev = node;
3798 entry = rb_entry(node, struct btrfs_inode, rb_node);
3799
33345d01 3800 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3801 node = node->rb_left;
33345d01 3802 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3803 node = node->rb_right;
3804 else
3805 break;
3806 }
3807 if (!node) {
3808 while (prev) {
3809 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3810 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3811 node = prev;
3812 break;
3813 }
3814 prev = rb_next(prev);
3815 }
3816 }
3817 while (node) {
3818 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3819 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3820 inode = igrab(&entry->vfs_inode);
3821 if (inode) {
3822 spin_unlock(&root->inode_lock);
3823 if (atomic_read(&inode->i_count) > 1)
3824 d_prune_aliases(inode);
3825 /*
45321ac5 3826 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3827 * the inode cache when its usage count
3828 * hits zero.
3829 */
3830 iput(inode);
3831 cond_resched();
3832 spin_lock(&root->inode_lock);
3833 goto again;
3834 }
3835
3836 if (cond_resched_lock(&root->inode_lock))
3837 goto again;
3838
3839 node = rb_next(node);
3840 }
3841 spin_unlock(&root->inode_lock);
3842 return 0;
5d4f98a2
YZ
3843}
3844
e02119d5
CM
3845static int btrfs_init_locked_inode(struct inode *inode, void *p)
3846{
3847 struct btrfs_iget_args *args = p;
3848 inode->i_ino = args->ino;
e02119d5 3849 BTRFS_I(inode)->root = args->root;
6a63209f 3850 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3851 return 0;
3852}
3853
3854static int btrfs_find_actor(struct inode *inode, void *opaque)
3855{
3856 struct btrfs_iget_args *args = opaque;
33345d01 3857 return args->ino == btrfs_ino(inode) &&
d397712b 3858 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3859}
3860
5d4f98a2
YZ
3861static struct inode *btrfs_iget_locked(struct super_block *s,
3862 u64 objectid,
3863 struct btrfs_root *root)
39279cc3
CM
3864{
3865 struct inode *inode;
3866 struct btrfs_iget_args args;
3867 args.ino = objectid;
3868 args.root = root;
3869
3870 inode = iget5_locked(s, objectid, btrfs_find_actor,
3871 btrfs_init_locked_inode,
3872 (void *)&args);
3873 return inode;
3874}
3875
1a54ef8c
BR
3876/* Get an inode object given its location and corresponding root.
3877 * Returns in *is_new if the inode was read from disk
3878 */
3879struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3880 struct btrfs_root *root, int *new)
1a54ef8c
BR
3881{
3882 struct inode *inode;
3883
3884 inode = btrfs_iget_locked(s, location->objectid, root);
3885 if (!inode)
5d4f98a2 3886 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3887
3888 if (inode->i_state & I_NEW) {
3889 BTRFS_I(inode)->root = root;
3890 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3891 btrfs_read_locked_inode(inode);
1748f843
MF
3892 if (!is_bad_inode(inode)) {
3893 inode_tree_add(inode);
3894 unlock_new_inode(inode);
3895 if (new)
3896 *new = 1;
3897 } else {
e0b6d65b
ST
3898 unlock_new_inode(inode);
3899 iput(inode);
3900 inode = ERR_PTR(-ESTALE);
1748f843
MF
3901 }
3902 }
3903
1a54ef8c
BR
3904 return inode;
3905}
3906
4df27c4d
YZ
3907static struct inode *new_simple_dir(struct super_block *s,
3908 struct btrfs_key *key,
3909 struct btrfs_root *root)
3910{
3911 struct inode *inode = new_inode(s);
3912
3913 if (!inode)
3914 return ERR_PTR(-ENOMEM);
3915
4df27c4d
YZ
3916 BTRFS_I(inode)->root = root;
3917 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3918 BTRFS_I(inode)->dummy_inode = 1;
3919
3920 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3921 inode->i_op = &simple_dir_inode_operations;
3922 inode->i_fop = &simple_dir_operations;
3923 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3924 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3925
3926 return inode;
3927}
3928
3de4586c 3929struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3930{
d397712b 3931 struct inode *inode;
4df27c4d 3932 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3933 struct btrfs_root *sub_root = root;
3934 struct btrfs_key location;
76dda93c 3935 int index;
b4aff1f8 3936 int ret = 0;
39279cc3
CM
3937
3938 if (dentry->d_name.len > BTRFS_NAME_LEN)
3939 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3940
b4aff1f8
JB
3941 if (unlikely(d_need_lookup(dentry))) {
3942 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3943 kfree(dentry->d_fsdata);
3944 dentry->d_fsdata = NULL;
a66e7cc6
JB
3945 /* This thing is hashed, drop it for now */
3946 d_drop(dentry);
b4aff1f8
JB
3947 } else {
3948 ret = btrfs_inode_by_name(dir, dentry, &location);
3949 }
5f39d397 3950
39279cc3
CM
3951 if (ret < 0)
3952 return ERR_PTR(ret);
5f39d397 3953
4df27c4d
YZ
3954 if (location.objectid == 0)
3955 return NULL;
3956
3957 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3958 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3959 return inode;
3960 }
3961
3962 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3963
76dda93c 3964 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3965 ret = fixup_tree_root_location(root, dir, dentry,
3966 &location, &sub_root);
3967 if (ret < 0) {
3968 if (ret != -ENOENT)
3969 inode = ERR_PTR(ret);
3970 else
3971 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3972 } else {
73f73415 3973 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3974 }
76dda93c
YZ
3975 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3976
34d19bad 3977 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3978 down_read(&root->fs_info->cleanup_work_sem);
3979 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3980 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3981 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3982 if (ret)
3983 inode = ERR_PTR(ret);
c71bf099
YZ
3984 }
3985
3de4586c
CM
3986 return inode;
3987}
3988
fe15ce44 3989static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
3990{
3991 struct btrfs_root *root;
3992
efefb143
YZ
3993 if (!dentry->d_inode && !IS_ROOT(dentry))
3994 dentry = dentry->d_parent;
76dda93c 3995
efefb143
YZ
3996 if (dentry->d_inode) {
3997 root = BTRFS_I(dentry->d_inode)->root;
3998 if (btrfs_root_refs(&root->root_item) == 0)
3999 return 1;
4000 }
76dda93c
YZ
4001 return 0;
4002}
4003
b4aff1f8
JB
4004static void btrfs_dentry_release(struct dentry *dentry)
4005{
4006 if (dentry->d_fsdata)
4007 kfree(dentry->d_fsdata);
4008}
4009
3de4586c
CM
4010static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4011 struct nameidata *nd)
4012{
a66e7cc6
JB
4013 struct dentry *ret;
4014
4015 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4016 if (unlikely(d_need_lookup(dentry))) {
4017 spin_lock(&dentry->d_lock);
4018 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4019 spin_unlock(&dentry->d_lock);
4020 }
4021 return ret;
39279cc3
CM
4022}
4023
16cdcec7 4024unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4025 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4026};
4027
cbdf5a24
DW
4028static int btrfs_real_readdir(struct file *filp, void *dirent,
4029 filldir_t filldir)
39279cc3 4030{
6da6abae 4031 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4032 struct btrfs_root *root = BTRFS_I(inode)->root;
4033 struct btrfs_item *item;
4034 struct btrfs_dir_item *di;
4035 struct btrfs_key key;
5f39d397 4036 struct btrfs_key found_key;
39279cc3 4037 struct btrfs_path *path;
16cdcec7
MX
4038 struct list_head ins_list;
4039 struct list_head del_list;
b4aff1f8 4040 struct qstr q;
39279cc3 4041 int ret;
5f39d397 4042 struct extent_buffer *leaf;
39279cc3 4043 int slot;
39279cc3
CM
4044 unsigned char d_type;
4045 int over = 0;
4046 u32 di_cur;
4047 u32 di_total;
4048 u32 di_len;
4049 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4050 char tmp_name[32];
4051 char *name_ptr;
4052 int name_len;
16cdcec7 4053 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4054
4055 /* FIXME, use a real flag for deciding about the key type */
4056 if (root->fs_info->tree_root == root)
4057 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4058
3954401f
CM
4059 /* special case for "." */
4060 if (filp->f_pos == 0) {
3765fefa
HS
4061 over = filldir(dirent, ".", 1,
4062 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4063 if (over)
4064 return 0;
4065 filp->f_pos = 1;
4066 }
3954401f
CM
4067 /* special case for .., just use the back ref */
4068 if (filp->f_pos == 1) {
5ecc7e5d 4069 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4070 over = filldir(dirent, "..", 2,
3765fefa 4071 filp->f_pos, pino, DT_DIR);
3954401f 4072 if (over)
49593bfa 4073 return 0;
3954401f
CM
4074 filp->f_pos = 2;
4075 }
49593bfa 4076 path = btrfs_alloc_path();
16cdcec7
MX
4077 if (!path)
4078 return -ENOMEM;
ff5714cc 4079
026fd317 4080 path->reada = 1;
49593bfa 4081
16cdcec7
MX
4082 if (key_type == BTRFS_DIR_INDEX_KEY) {
4083 INIT_LIST_HEAD(&ins_list);
4084 INIT_LIST_HEAD(&del_list);
4085 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4086 }
4087
39279cc3
CM
4088 btrfs_set_key_type(&key, key_type);
4089 key.offset = filp->f_pos;
33345d01 4090 key.objectid = btrfs_ino(inode);
5f39d397 4091
39279cc3
CM
4092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4093 if (ret < 0)
4094 goto err;
49593bfa
DW
4095
4096 while (1) {
5f39d397 4097 leaf = path->nodes[0];
39279cc3 4098 slot = path->slots[0];
b9e03af0
LZ
4099 if (slot >= btrfs_header_nritems(leaf)) {
4100 ret = btrfs_next_leaf(root, path);
4101 if (ret < 0)
4102 goto err;
4103 else if (ret > 0)
4104 break;
4105 continue;
39279cc3 4106 }
3de4586c 4107
5f39d397
CM
4108 item = btrfs_item_nr(leaf, slot);
4109 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4110
4111 if (found_key.objectid != key.objectid)
39279cc3 4112 break;
5f39d397 4113 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4114 break;
5f39d397 4115 if (found_key.offset < filp->f_pos)
b9e03af0 4116 goto next;
16cdcec7
MX
4117 if (key_type == BTRFS_DIR_INDEX_KEY &&
4118 btrfs_should_delete_dir_index(&del_list,
4119 found_key.offset))
4120 goto next;
5f39d397
CM
4121
4122 filp->f_pos = found_key.offset;
16cdcec7 4123 is_curr = 1;
49593bfa 4124
39279cc3
CM
4125 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4126 di_cur = 0;
5f39d397 4127 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4128
4129 while (di_cur < di_total) {
5f39d397 4130 struct btrfs_key location;
b4aff1f8 4131 struct dentry *tmp;
5f39d397 4132
22a94d44
JB
4133 if (verify_dir_item(root, leaf, di))
4134 break;
4135
5f39d397 4136 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4137 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4138 name_ptr = tmp_name;
4139 } else {
4140 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4141 if (!name_ptr) {
4142 ret = -ENOMEM;
4143 goto err;
4144 }
5f39d397
CM
4145 }
4146 read_extent_buffer(leaf, name_ptr,
4147 (unsigned long)(di + 1), name_len);
4148
4149 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4150 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4151
b4aff1f8
JB
4152 q.name = name_ptr;
4153 q.len = name_len;
4154 q.hash = full_name_hash(q.name, q.len);
4155 tmp = d_lookup(filp->f_dentry, &q);
4156 if (!tmp) {
4157 struct btrfs_key *newkey;
4158
4159 newkey = kzalloc(sizeof(struct btrfs_key),
4160 GFP_NOFS);
4161 if (!newkey)
4162 goto no_dentry;
4163 tmp = d_alloc(filp->f_dentry, &q);
4164 if (!tmp) {
4165 kfree(newkey);
4166 dput(tmp);
4167 goto no_dentry;
4168 }
4169 memcpy(newkey, &location,
4170 sizeof(struct btrfs_key));
4171 tmp->d_fsdata = newkey;
4172 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4173 d_rehash(tmp);
4174 dput(tmp);
4175 } else {
4176 dput(tmp);
4177 }
4178no_dentry:
3de4586c
CM
4179 /* is this a reference to our own snapshot? If so
4180 * skip it
4181 */
4182 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4183 location.objectid == root->root_key.objectid) {
4184 over = 0;
4185 goto skip;
4186 }
5f39d397 4187 over = filldir(dirent, name_ptr, name_len,
49593bfa 4188 found_key.offset, location.objectid,
39279cc3 4189 d_type);
5f39d397 4190
3de4586c 4191skip:
5f39d397
CM
4192 if (name_ptr != tmp_name)
4193 kfree(name_ptr);
4194
39279cc3
CM
4195 if (over)
4196 goto nopos;
5103e947 4197 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4198 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4199 di_cur += di_len;
4200 di = (struct btrfs_dir_item *)((char *)di + di_len);
4201 }
b9e03af0
LZ
4202next:
4203 path->slots[0]++;
39279cc3 4204 }
49593bfa 4205
16cdcec7
MX
4206 if (key_type == BTRFS_DIR_INDEX_KEY) {
4207 if (is_curr)
4208 filp->f_pos++;
4209 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4210 &ins_list);
4211 if (ret)
4212 goto nopos;
4213 }
4214
49593bfa 4215 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4216 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4217 /*
4218 * 32-bit glibc will use getdents64, but then strtol -
4219 * so the last number we can serve is this.
4220 */
4221 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4222 else
4223 filp->f_pos++;
39279cc3
CM
4224nopos:
4225 ret = 0;
4226err:
16cdcec7
MX
4227 if (key_type == BTRFS_DIR_INDEX_KEY)
4228 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4229 btrfs_free_path(path);
39279cc3
CM
4230 return ret;
4231}
4232
a9185b41 4233int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4234{
4235 struct btrfs_root *root = BTRFS_I(inode)->root;
4236 struct btrfs_trans_handle *trans;
4237 int ret = 0;
0af3d00b 4238 bool nolock = false;
39279cc3 4239
8929ecfa 4240 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4241 return 0;
4242
2cf8572d 4243 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4244 nolock = true;
0af3d00b 4245
a9185b41 4246 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4247 if (nolock)
7a7eaa40 4248 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4249 else
7a7eaa40 4250 trans = btrfs_join_transaction(root);
3612b495
TI
4251 if (IS_ERR(trans))
4252 return PTR_ERR(trans);
0af3d00b
JB
4253 if (nolock)
4254 ret = btrfs_end_transaction_nolock(trans, root);
4255 else
4256 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4257 }
4258 return ret;
4259}
4260
4261/*
54aa1f4d 4262 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4263 * inode changes. But, it is most likely to find the inode in cache.
4264 * FIXME, needs more benchmarking...there are no reasons other than performance
4265 * to keep or drop this code.
4266 */
22c44fe6 4267int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4268{
4269 struct btrfs_root *root = BTRFS_I(inode)->root;
4270 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4271 int ret;
4272
4273 if (BTRFS_I(inode)->dummy_inode)
22c44fe6 4274 return 0;
39279cc3 4275
7a7eaa40 4276 trans = btrfs_join_transaction(root);
22c44fe6
JB
4277 if (IS_ERR(trans))
4278 return PTR_ERR(trans);
8929ecfa
YZ
4279
4280 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4281 if (ret && ret == -ENOSPC) {
4282 /* whoops, lets try again with the full transaction */
4283 btrfs_end_transaction(trans, root);
4284 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4285 if (IS_ERR(trans))
4286 return PTR_ERR(trans);
8929ecfa 4287
94b60442 4288 ret = btrfs_update_inode(trans, root, inode);
94b60442 4289 }
39279cc3 4290 btrfs_end_transaction(trans, root);
16cdcec7
MX
4291 if (BTRFS_I(inode)->delayed_node)
4292 btrfs_balance_delayed_items(root);
22c44fe6
JB
4293
4294 return ret;
4295}
4296
4297/*
4298 * This is a copy of file_update_time. We need this so we can return error on
4299 * ENOSPC for updating the inode in the case of file write and mmap writes.
4300 */
4301int btrfs_update_time(struct file *file)
4302{
4303 struct inode *inode = file->f_path.dentry->d_inode;
4304 struct timespec now;
4305 int ret;
4306 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4307
4308 /* First try to exhaust all avenues to not sync */
4309 if (IS_NOCMTIME(inode))
4310 return 0;
4311
4312 now = current_fs_time(inode->i_sb);
4313 if (!timespec_equal(&inode->i_mtime, &now))
4314 sync_it = S_MTIME;
4315
4316 if (!timespec_equal(&inode->i_ctime, &now))
4317 sync_it |= S_CTIME;
4318
4319 if (IS_I_VERSION(inode))
4320 sync_it |= S_VERSION;
4321
4322 if (!sync_it)
4323 return 0;
4324
4325 /* Finally allowed to write? Takes lock. */
4326 if (mnt_want_write_file(file))
4327 return 0;
4328
4329 /* Only change inode inside the lock region */
4330 if (sync_it & S_VERSION)
4331 inode_inc_iversion(inode);
4332 if (sync_it & S_CTIME)
4333 inode->i_ctime = now;
4334 if (sync_it & S_MTIME)
4335 inode->i_mtime = now;
4336 ret = btrfs_dirty_inode(inode);
4337 if (!ret)
4338 mark_inode_dirty_sync(inode);
4339 mnt_drop_write(file->f_path.mnt);
4340 return ret;
39279cc3
CM
4341}
4342
d352ac68
CM
4343/*
4344 * find the highest existing sequence number in a directory
4345 * and then set the in-memory index_cnt variable to reflect
4346 * free sequence numbers
4347 */
aec7477b
JB
4348static int btrfs_set_inode_index_count(struct inode *inode)
4349{
4350 struct btrfs_root *root = BTRFS_I(inode)->root;
4351 struct btrfs_key key, found_key;
4352 struct btrfs_path *path;
4353 struct extent_buffer *leaf;
4354 int ret;
4355
33345d01 4356 key.objectid = btrfs_ino(inode);
aec7477b
JB
4357 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4358 key.offset = (u64)-1;
4359
4360 path = btrfs_alloc_path();
4361 if (!path)
4362 return -ENOMEM;
4363
4364 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4365 if (ret < 0)
4366 goto out;
4367 /* FIXME: we should be able to handle this */
4368 if (ret == 0)
4369 goto out;
4370 ret = 0;
4371
4372 /*
4373 * MAGIC NUMBER EXPLANATION:
4374 * since we search a directory based on f_pos we have to start at 2
4375 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4376 * else has to start at 2
4377 */
4378 if (path->slots[0] == 0) {
4379 BTRFS_I(inode)->index_cnt = 2;
4380 goto out;
4381 }
4382
4383 path->slots[0]--;
4384
4385 leaf = path->nodes[0];
4386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4387
33345d01 4388 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4389 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4390 BTRFS_I(inode)->index_cnt = 2;
4391 goto out;
4392 }
4393
4394 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4395out:
4396 btrfs_free_path(path);
4397 return ret;
4398}
4399
d352ac68
CM
4400/*
4401 * helper to find a free sequence number in a given directory. This current
4402 * code is very simple, later versions will do smarter things in the btree
4403 */
3de4586c 4404int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4405{
4406 int ret = 0;
4407
4408 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4409 ret = btrfs_inode_delayed_dir_index_count(dir);
4410 if (ret) {
4411 ret = btrfs_set_inode_index_count(dir);
4412 if (ret)
4413 return ret;
4414 }
aec7477b
JB
4415 }
4416
00e4e6b3 4417 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4418 BTRFS_I(dir)->index_cnt++;
4419
4420 return ret;
4421}
4422
39279cc3
CM
4423static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4424 struct btrfs_root *root,
aec7477b 4425 struct inode *dir,
9c58309d 4426 const char *name, int name_len,
175a4eb7
AV
4427 u64 ref_objectid, u64 objectid,
4428 umode_t mode, u64 *index)
39279cc3
CM
4429{
4430 struct inode *inode;
5f39d397 4431 struct btrfs_inode_item *inode_item;
39279cc3 4432 struct btrfs_key *location;
5f39d397 4433 struct btrfs_path *path;
9c58309d
CM
4434 struct btrfs_inode_ref *ref;
4435 struct btrfs_key key[2];
4436 u32 sizes[2];
4437 unsigned long ptr;
39279cc3
CM
4438 int ret;
4439 int owner;
4440
5f39d397 4441 path = btrfs_alloc_path();
d8926bb3
MF
4442 if (!path)
4443 return ERR_PTR(-ENOMEM);
5f39d397 4444
39279cc3 4445 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4446 if (!inode) {
4447 btrfs_free_path(path);
39279cc3 4448 return ERR_PTR(-ENOMEM);
8fb27640 4449 }
39279cc3 4450
581bb050
LZ
4451 /*
4452 * we have to initialize this early, so we can reclaim the inode
4453 * number if we fail afterwards in this function.
4454 */
4455 inode->i_ino = objectid;
4456
aec7477b 4457 if (dir) {
1abe9b8a 4458 trace_btrfs_inode_request(dir);
4459
3de4586c 4460 ret = btrfs_set_inode_index(dir, index);
09771430 4461 if (ret) {
8fb27640 4462 btrfs_free_path(path);
09771430 4463 iput(inode);
aec7477b 4464 return ERR_PTR(ret);
09771430 4465 }
aec7477b
JB
4466 }
4467 /*
4468 * index_cnt is ignored for everything but a dir,
4469 * btrfs_get_inode_index_count has an explanation for the magic
4470 * number
4471 */
4472 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4473 BTRFS_I(inode)->root = root;
e02119d5 4474 BTRFS_I(inode)->generation = trans->transid;
76195853 4475 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4476 btrfs_set_inode_space_info(root, inode);
b888db2b 4477
569254b0 4478 if (S_ISDIR(mode))
39279cc3
CM
4479 owner = 0;
4480 else
4481 owner = 1;
9c58309d
CM
4482
4483 key[0].objectid = objectid;
4484 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4485 key[0].offset = 0;
4486
4487 key[1].objectid = objectid;
4488 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4489 key[1].offset = ref_objectid;
4490
4491 sizes[0] = sizeof(struct btrfs_inode_item);
4492 sizes[1] = name_len + sizeof(*ref);
4493
b9473439 4494 path->leave_spinning = 1;
9c58309d
CM
4495 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4496 if (ret != 0)
5f39d397
CM
4497 goto fail;
4498
ecc11fab 4499 inode_init_owner(inode, dir, mode);
a76a3cd4 4500 inode_set_bytes(inode, 0);
39279cc3 4501 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4502 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4503 struct btrfs_inode_item);
e02119d5 4504 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4505
4506 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4507 struct btrfs_inode_ref);
4508 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4509 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4510 ptr = (unsigned long)(ref + 1);
4511 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4512
5f39d397
CM
4513 btrfs_mark_buffer_dirty(path->nodes[0]);
4514 btrfs_free_path(path);
4515
39279cc3
CM
4516 location = &BTRFS_I(inode)->location;
4517 location->objectid = objectid;
39279cc3
CM
4518 location->offset = 0;
4519 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4520
6cbff00f
CH
4521 btrfs_inherit_iflags(inode, dir);
4522
569254b0 4523 if (S_ISREG(mode)) {
94272164
CM
4524 if (btrfs_test_opt(root, NODATASUM))
4525 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4526 if (btrfs_test_opt(root, NODATACOW) ||
4527 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4528 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4529 }
4530
39279cc3 4531 insert_inode_hash(inode);
5d4f98a2 4532 inode_tree_add(inode);
1abe9b8a 4533
4534 trace_btrfs_inode_new(inode);
1973f0fa 4535 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4536
39279cc3 4537 return inode;
5f39d397 4538fail:
aec7477b
JB
4539 if (dir)
4540 BTRFS_I(dir)->index_cnt--;
5f39d397 4541 btrfs_free_path(path);
09771430 4542 iput(inode);
5f39d397 4543 return ERR_PTR(ret);
39279cc3
CM
4544}
4545
4546static inline u8 btrfs_inode_type(struct inode *inode)
4547{
4548 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4549}
4550
d352ac68
CM
4551/*
4552 * utility function to add 'inode' into 'parent_inode' with
4553 * a give name and a given sequence number.
4554 * if 'add_backref' is true, also insert a backref from the
4555 * inode to the parent directory.
4556 */
e02119d5
CM
4557int btrfs_add_link(struct btrfs_trans_handle *trans,
4558 struct inode *parent_inode, struct inode *inode,
4559 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4560{
4df27c4d 4561 int ret = 0;
39279cc3 4562 struct btrfs_key key;
e02119d5 4563 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4564 u64 ino = btrfs_ino(inode);
4565 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4566
33345d01 4567 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4568 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4569 } else {
33345d01 4570 key.objectid = ino;
4df27c4d
YZ
4571 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4572 key.offset = 0;
4573 }
4574
33345d01 4575 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4576 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4577 key.objectid, root->root_key.objectid,
33345d01 4578 parent_ino, index, name, name_len);
4df27c4d 4579 } else if (add_backref) {
33345d01
LZ
4580 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4581 parent_ino, index);
4df27c4d 4582 }
39279cc3 4583
39279cc3 4584 if (ret == 0) {
4df27c4d 4585 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4586 parent_inode, &key,
4df27c4d 4587 btrfs_inode_type(inode), index);
fe66a05a
CM
4588 if (ret)
4589 goto fail_dir_item;
4df27c4d 4590
dbe674a9 4591 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4592 name_len * 2);
79c44584 4593 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4594 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4595 }
4596 return ret;
fe66a05a
CM
4597
4598fail_dir_item:
4599 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4600 u64 local_index;
4601 int err;
4602 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4603 key.objectid, root->root_key.objectid,
4604 parent_ino, &local_index, name, name_len);
4605
4606 } else if (add_backref) {
4607 u64 local_index;
4608 int err;
4609
4610 err = btrfs_del_inode_ref(trans, root, name, name_len,
4611 ino, parent_ino, &local_index);
4612 }
4613 return ret;
39279cc3
CM
4614}
4615
4616static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4617 struct inode *dir, struct dentry *dentry,
4618 struct inode *inode, int backref, u64 index)
39279cc3 4619{
a1b075d2
JB
4620 int err = btrfs_add_link(trans, dir, inode,
4621 dentry->d_name.name, dentry->d_name.len,
4622 backref, index);
39279cc3
CM
4623 if (err > 0)
4624 err = -EEXIST;
4625 return err;
4626}
4627
618e21d5 4628static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4629 umode_t mode, dev_t rdev)
618e21d5
JB
4630{
4631 struct btrfs_trans_handle *trans;
4632 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4633 struct inode *inode = NULL;
618e21d5
JB
4634 int err;
4635 int drop_inode = 0;
4636 u64 objectid;
1832a6d5 4637 unsigned long nr = 0;
00e4e6b3 4638 u64 index = 0;
618e21d5
JB
4639
4640 if (!new_valid_dev(rdev))
4641 return -EINVAL;
4642
9ed74f2d
JB
4643 /*
4644 * 2 for inode item and ref
4645 * 2 for dir items
4646 * 1 for xattr if selinux is on
4647 */
a22285a6
YZ
4648 trans = btrfs_start_transaction(root, 5);
4649 if (IS_ERR(trans))
4650 return PTR_ERR(trans);
1832a6d5 4651
581bb050
LZ
4652 err = btrfs_find_free_ino(root, &objectid);
4653 if (err)
4654 goto out_unlock;
4655
aec7477b 4656 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4657 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4658 mode, &index);
7cf96da3
TI
4659 if (IS_ERR(inode)) {
4660 err = PTR_ERR(inode);
618e21d5 4661 goto out_unlock;
7cf96da3 4662 }
618e21d5 4663
2a7dba39 4664 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4665 if (err) {
4666 drop_inode = 1;
4667 goto out_unlock;
4668 }
4669
ad19db71
CS
4670 /*
4671 * If the active LSM wants to access the inode during
4672 * d_instantiate it needs these. Smack checks to see
4673 * if the filesystem supports xattrs by looking at the
4674 * ops vector.
4675 */
4676
4677 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4678 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4679 if (err)
4680 drop_inode = 1;
4681 else {
618e21d5 4682 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4683 btrfs_update_inode(trans, root, inode);
08c422c2 4684 d_instantiate(dentry, inode);
618e21d5 4685 }
618e21d5 4686out_unlock:
d3c2fdcf 4687 nr = trans->blocks_used;
7ad85bb7 4688 btrfs_end_transaction(trans, root);
a22285a6 4689 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4690 if (drop_inode) {
4691 inode_dec_link_count(inode);
4692 iput(inode);
4693 }
618e21d5
JB
4694 return err;
4695}
4696
39279cc3 4697static int btrfs_create(struct inode *dir, struct dentry *dentry,
4acdaf27 4698 umode_t mode, struct nameidata *nd)
39279cc3
CM
4699{
4700 struct btrfs_trans_handle *trans;
4701 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4702 struct inode *inode = NULL;
39279cc3 4703 int drop_inode = 0;
a22285a6 4704 int err;
1832a6d5 4705 unsigned long nr = 0;
39279cc3 4706 u64 objectid;
00e4e6b3 4707 u64 index = 0;
39279cc3 4708
9ed74f2d
JB
4709 /*
4710 * 2 for inode item and ref
4711 * 2 for dir items
4712 * 1 for xattr if selinux is on
4713 */
a22285a6
YZ
4714 trans = btrfs_start_transaction(root, 5);
4715 if (IS_ERR(trans))
4716 return PTR_ERR(trans);
9ed74f2d 4717
581bb050
LZ
4718 err = btrfs_find_free_ino(root, &objectid);
4719 if (err)
4720 goto out_unlock;
4721
aec7477b 4722 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4723 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4724 mode, &index);
7cf96da3
TI
4725 if (IS_ERR(inode)) {
4726 err = PTR_ERR(inode);
39279cc3 4727 goto out_unlock;
7cf96da3 4728 }
39279cc3 4729
2a7dba39 4730 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4731 if (err) {
4732 drop_inode = 1;
4733 goto out_unlock;
4734 }
4735
ad19db71
CS
4736 /*
4737 * If the active LSM wants to access the inode during
4738 * d_instantiate it needs these. Smack checks to see
4739 * if the filesystem supports xattrs by looking at the
4740 * ops vector.
4741 */
4742 inode->i_fop = &btrfs_file_operations;
4743 inode->i_op = &btrfs_file_inode_operations;
4744
a1b075d2 4745 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4746 if (err)
4747 drop_inode = 1;
4748 else {
4749 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4750 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4751 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4752 d_instantiate(dentry, inode);
39279cc3 4753 }
39279cc3 4754out_unlock:
d3c2fdcf 4755 nr = trans->blocks_used;
7ad85bb7 4756 btrfs_end_transaction(trans, root);
39279cc3
CM
4757 if (drop_inode) {
4758 inode_dec_link_count(inode);
4759 iput(inode);
4760 }
d3c2fdcf 4761 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4762 return err;
4763}
4764
4765static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4766 struct dentry *dentry)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *root = BTRFS_I(dir)->root;
4770 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4771 u64 index;
1832a6d5 4772 unsigned long nr = 0;
39279cc3
CM
4773 int err;
4774 int drop_inode = 0;
4775
4a8be425
TH
4776 /* do not allow sys_link's with other subvols of the same device */
4777 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4778 return -EXDEV;
4a8be425 4779
c055e99e
AV
4780 if (inode->i_nlink == ~0U)
4781 return -EMLINK;
4a8be425 4782
3de4586c 4783 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4784 if (err)
4785 goto fail;
4786
a22285a6 4787 /*
7e6b6465 4788 * 2 items for inode and inode ref
a22285a6 4789 * 2 items for dir items
7e6b6465 4790 * 1 item for parent inode
a22285a6 4791 */
7e6b6465 4792 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4793 if (IS_ERR(trans)) {
4794 err = PTR_ERR(trans);
4795 goto fail;
4796 }
5f39d397 4797
3153495d
MX
4798 btrfs_inc_nlink(inode);
4799 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4800 ihold(inode);
aec7477b 4801
a1b075d2 4802 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4803
a5719521 4804 if (err) {
54aa1f4d 4805 drop_inode = 1;
a5719521 4806 } else {
10d9f309 4807 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4808 err = btrfs_update_inode(trans, root, inode);
4809 BUG_ON(err);
08c422c2 4810 d_instantiate(dentry, inode);
6a912213 4811 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4812 }
39279cc3 4813
d3c2fdcf 4814 nr = trans->blocks_used;
7ad85bb7 4815 btrfs_end_transaction(trans, root);
1832a6d5 4816fail:
39279cc3
CM
4817 if (drop_inode) {
4818 inode_dec_link_count(inode);
4819 iput(inode);
4820 }
d3c2fdcf 4821 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4822 return err;
4823}
4824
18bb1db3 4825static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 4826{
b9d86667 4827 struct inode *inode = NULL;
39279cc3
CM
4828 struct btrfs_trans_handle *trans;
4829 struct btrfs_root *root = BTRFS_I(dir)->root;
4830 int err = 0;
4831 int drop_on_err = 0;
b9d86667 4832 u64 objectid = 0;
00e4e6b3 4833 u64 index = 0;
d3c2fdcf 4834 unsigned long nr = 1;
39279cc3 4835
9ed74f2d
JB
4836 /*
4837 * 2 items for inode and ref
4838 * 2 items for dir items
4839 * 1 for xattr if selinux is on
4840 */
a22285a6
YZ
4841 trans = btrfs_start_transaction(root, 5);
4842 if (IS_ERR(trans))
4843 return PTR_ERR(trans);
39279cc3 4844
581bb050
LZ
4845 err = btrfs_find_free_ino(root, &objectid);
4846 if (err)
4847 goto out_fail;
4848
aec7477b 4849 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4850 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4851 S_IFDIR | mode, &index);
39279cc3
CM
4852 if (IS_ERR(inode)) {
4853 err = PTR_ERR(inode);
4854 goto out_fail;
4855 }
5f39d397 4856
39279cc3 4857 drop_on_err = 1;
33268eaf 4858
2a7dba39 4859 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4860 if (err)
4861 goto out_fail;
4862
39279cc3
CM
4863 inode->i_op = &btrfs_dir_inode_operations;
4864 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4865
dbe674a9 4866 btrfs_i_size_write(inode, 0);
39279cc3
CM
4867 err = btrfs_update_inode(trans, root, inode);
4868 if (err)
4869 goto out_fail;
5f39d397 4870
a1b075d2
JB
4871 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4872 dentry->d_name.len, 0, index);
39279cc3
CM
4873 if (err)
4874 goto out_fail;
5f39d397 4875
39279cc3
CM
4876 d_instantiate(dentry, inode);
4877 drop_on_err = 0;
39279cc3
CM
4878
4879out_fail:
d3c2fdcf 4880 nr = trans->blocks_used;
7ad85bb7 4881 btrfs_end_transaction(trans, root);
39279cc3
CM
4882 if (drop_on_err)
4883 iput(inode);
d3c2fdcf 4884 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4885 return err;
4886}
4887
d352ac68
CM
4888/* helper for btfs_get_extent. Given an existing extent in the tree,
4889 * and an extent that you want to insert, deal with overlap and insert
4890 * the new extent into the tree.
4891 */
3b951516
CM
4892static int merge_extent_mapping(struct extent_map_tree *em_tree,
4893 struct extent_map *existing,
e6dcd2dc
CM
4894 struct extent_map *em,
4895 u64 map_start, u64 map_len)
3b951516
CM
4896{
4897 u64 start_diff;
3b951516 4898
e6dcd2dc
CM
4899 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4900 start_diff = map_start - em->start;
4901 em->start = map_start;
4902 em->len = map_len;
c8b97818
CM
4903 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4904 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4905 em->block_start += start_diff;
c8b97818
CM
4906 em->block_len -= start_diff;
4907 }
e6dcd2dc 4908 return add_extent_mapping(em_tree, em);
3b951516
CM
4909}
4910
c8b97818
CM
4911static noinline int uncompress_inline(struct btrfs_path *path,
4912 struct inode *inode, struct page *page,
4913 size_t pg_offset, u64 extent_offset,
4914 struct btrfs_file_extent_item *item)
4915{
4916 int ret;
4917 struct extent_buffer *leaf = path->nodes[0];
4918 char *tmp;
4919 size_t max_size;
4920 unsigned long inline_size;
4921 unsigned long ptr;
261507a0 4922 int compress_type;
c8b97818
CM
4923
4924 WARN_ON(pg_offset != 0);
261507a0 4925 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4926 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4927 inline_size = btrfs_file_extent_inline_item_len(leaf,
4928 btrfs_item_nr(leaf, path->slots[0]));
4929 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4930 if (!tmp)
4931 return -ENOMEM;
c8b97818
CM
4932 ptr = btrfs_file_extent_inline_start(item);
4933
4934 read_extent_buffer(leaf, tmp, ptr, inline_size);
4935
5b050f04 4936 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4937 ret = btrfs_decompress(compress_type, tmp, page,
4938 extent_offset, inline_size, max_size);
c8b97818
CM
4939 if (ret) {
4940 char *kaddr = kmap_atomic(page, KM_USER0);
4941 unsigned long copy_size = min_t(u64,
4942 PAGE_CACHE_SIZE - pg_offset,
4943 max_size - extent_offset);
4944 memset(kaddr + pg_offset, 0, copy_size);
4945 kunmap_atomic(kaddr, KM_USER0);
4946 }
4947 kfree(tmp);
4948 return 0;
4949}
4950
d352ac68
CM
4951/*
4952 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4953 * the ugly parts come from merging extents from the disk with the in-ram
4954 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4955 * where the in-ram extents might be locked pending data=ordered completion.
4956 *
4957 * This also copies inline extents directly into the page.
4958 */
d397712b 4959
a52d9a80 4960struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4961 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4962 int create)
4963{
4964 int ret;
4965 int err = 0;
db94535d 4966 u64 bytenr;
a52d9a80
CM
4967 u64 extent_start = 0;
4968 u64 extent_end = 0;
33345d01 4969 u64 objectid = btrfs_ino(inode);
a52d9a80 4970 u32 found_type;
f421950f 4971 struct btrfs_path *path = NULL;
a52d9a80
CM
4972 struct btrfs_root *root = BTRFS_I(inode)->root;
4973 struct btrfs_file_extent_item *item;
5f39d397
CM
4974 struct extent_buffer *leaf;
4975 struct btrfs_key found_key;
a52d9a80
CM
4976 struct extent_map *em = NULL;
4977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4979 struct btrfs_trans_handle *trans = NULL;
261507a0 4980 int compress_type;
a52d9a80 4981
a52d9a80 4982again:
890871be 4983 read_lock(&em_tree->lock);
d1310b2e 4984 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4985 if (em)
4986 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4987 read_unlock(&em_tree->lock);
d1310b2e 4988
a52d9a80 4989 if (em) {
e1c4b745
CM
4990 if (em->start > start || em->start + em->len <= start)
4991 free_extent_map(em);
4992 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4993 free_extent_map(em);
4994 else
4995 goto out;
a52d9a80 4996 }
172ddd60 4997 em = alloc_extent_map();
a52d9a80 4998 if (!em) {
d1310b2e
CM
4999 err = -ENOMEM;
5000 goto out;
a52d9a80 5001 }
e6dcd2dc 5002 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5003 em->start = EXTENT_MAP_HOLE;
445a6944 5004 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5005 em->len = (u64)-1;
c8b97818 5006 em->block_len = (u64)-1;
f421950f
CM
5007
5008 if (!path) {
5009 path = btrfs_alloc_path();
026fd317
JB
5010 if (!path) {
5011 err = -ENOMEM;
5012 goto out;
5013 }
5014 /*
5015 * Chances are we'll be called again, so go ahead and do
5016 * readahead
5017 */
5018 path->reada = 1;
f421950f
CM
5019 }
5020
179e29e4
CM
5021 ret = btrfs_lookup_file_extent(trans, root, path,
5022 objectid, start, trans != NULL);
a52d9a80
CM
5023 if (ret < 0) {
5024 err = ret;
5025 goto out;
5026 }
5027
5028 if (ret != 0) {
5029 if (path->slots[0] == 0)
5030 goto not_found;
5031 path->slots[0]--;
5032 }
5033
5f39d397
CM
5034 leaf = path->nodes[0];
5035 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5036 struct btrfs_file_extent_item);
a52d9a80 5037 /* are we inside the extent that was found? */
5f39d397
CM
5038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5039 found_type = btrfs_key_type(&found_key);
5040 if (found_key.objectid != objectid ||
a52d9a80
CM
5041 found_type != BTRFS_EXTENT_DATA_KEY) {
5042 goto not_found;
5043 }
5044
5f39d397
CM
5045 found_type = btrfs_file_extent_type(leaf, item);
5046 extent_start = found_key.offset;
261507a0 5047 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5048 if (found_type == BTRFS_FILE_EXTENT_REG ||
5049 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5050 extent_end = extent_start +
db94535d 5051 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5052 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5053 size_t size;
5054 size = btrfs_file_extent_inline_len(leaf, item);
5055 extent_end = (extent_start + size + root->sectorsize - 1) &
5056 ~((u64)root->sectorsize - 1);
5057 }
5058
5059 if (start >= extent_end) {
5060 path->slots[0]++;
5061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5062 ret = btrfs_next_leaf(root, path);
5063 if (ret < 0) {
5064 err = ret;
5065 goto out;
a52d9a80 5066 }
9036c102
YZ
5067 if (ret > 0)
5068 goto not_found;
5069 leaf = path->nodes[0];
a52d9a80 5070 }
9036c102
YZ
5071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072 if (found_key.objectid != objectid ||
5073 found_key.type != BTRFS_EXTENT_DATA_KEY)
5074 goto not_found;
5075 if (start + len <= found_key.offset)
5076 goto not_found;
5077 em->start = start;
5078 em->len = found_key.offset - start;
5079 goto not_found_em;
5080 }
5081
d899e052
YZ
5082 if (found_type == BTRFS_FILE_EXTENT_REG ||
5083 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5084 em->start = extent_start;
5085 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5086 em->orig_start = extent_start -
5087 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5088 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5089 if (bytenr == 0) {
5f39d397 5090 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5091 goto insert;
5092 }
261507a0 5093 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5094 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5095 em->compress_type = compress_type;
c8b97818
CM
5096 em->block_start = bytenr;
5097 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5098 item);
5099 } else {
5100 bytenr += btrfs_file_extent_offset(leaf, item);
5101 em->block_start = bytenr;
5102 em->block_len = em->len;
d899e052
YZ
5103 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5104 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5105 }
a52d9a80
CM
5106 goto insert;
5107 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5108 unsigned long ptr;
a52d9a80 5109 char *map;
3326d1b0
CM
5110 size_t size;
5111 size_t extent_offset;
5112 size_t copy_size;
a52d9a80 5113
689f9346 5114 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5115 if (!page || create) {
689f9346 5116 em->start = extent_start;
9036c102 5117 em->len = extent_end - extent_start;
689f9346
Y
5118 goto out;
5119 }
5f39d397 5120
9036c102
YZ
5121 size = btrfs_file_extent_inline_len(leaf, item);
5122 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5123 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5124 size - extent_offset);
3326d1b0 5125 em->start = extent_start + extent_offset;
70dec807
CM
5126 em->len = (copy_size + root->sectorsize - 1) &
5127 ~((u64)root->sectorsize - 1);
ff5b7ee3 5128 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5129 if (compress_type) {
c8b97818 5130 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5131 em->compress_type = compress_type;
5132 }
689f9346 5133 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5134 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5135 if (btrfs_file_extent_compression(leaf, item) !=
5136 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5137 ret = uncompress_inline(path, inode, page,
5138 pg_offset,
5139 extent_offset, item);
5140 BUG_ON(ret);
5141 } else {
5142 map = kmap(page);
5143 read_extent_buffer(leaf, map + pg_offset, ptr,
5144 copy_size);
93c82d57
CM
5145 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5146 memset(map + pg_offset + copy_size, 0,
5147 PAGE_CACHE_SIZE - pg_offset -
5148 copy_size);
5149 }
c8b97818
CM
5150 kunmap(page);
5151 }
179e29e4
CM
5152 flush_dcache_page(page);
5153 } else if (create && PageUptodate(page)) {
6bf7e080 5154 BUG();
179e29e4
CM
5155 if (!trans) {
5156 kunmap(page);
5157 free_extent_map(em);
5158 em = NULL;
ff5714cc 5159
b3b4aa74 5160 btrfs_release_path(path);
7a7eaa40 5161 trans = btrfs_join_transaction(root);
ff5714cc 5162
3612b495
TI
5163 if (IS_ERR(trans))
5164 return ERR_CAST(trans);
179e29e4
CM
5165 goto again;
5166 }
c8b97818 5167 map = kmap(page);
70dec807 5168 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5169 copy_size);
c8b97818 5170 kunmap(page);
179e29e4 5171 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5172 }
d1310b2e 5173 set_extent_uptodate(io_tree, em->start,
507903b8 5174 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5175 goto insert;
5176 } else {
d397712b 5177 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5178 WARN_ON(1);
5179 }
5180not_found:
5181 em->start = start;
d1310b2e 5182 em->len = len;
a52d9a80 5183not_found_em:
5f39d397 5184 em->block_start = EXTENT_MAP_HOLE;
9036c102 5185 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5186insert:
b3b4aa74 5187 btrfs_release_path(path);
d1310b2e 5188 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5189 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5190 "[%llu %llu]\n", (unsigned long long)em->start,
5191 (unsigned long long)em->len,
5192 (unsigned long long)start,
5193 (unsigned long long)len);
a52d9a80
CM
5194 err = -EIO;
5195 goto out;
5196 }
d1310b2e
CM
5197
5198 err = 0;
890871be 5199 write_lock(&em_tree->lock);
a52d9a80 5200 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5201 /* it is possible that someone inserted the extent into the tree
5202 * while we had the lock dropped. It is also possible that
5203 * an overlapping map exists in the tree
5204 */
a52d9a80 5205 if (ret == -EEXIST) {
3b951516 5206 struct extent_map *existing;
e6dcd2dc
CM
5207
5208 ret = 0;
5209
3b951516 5210 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5211 if (existing && (existing->start > start ||
5212 existing->start + existing->len <= start)) {
5213 free_extent_map(existing);
5214 existing = NULL;
5215 }
3b951516
CM
5216 if (!existing) {
5217 existing = lookup_extent_mapping(em_tree, em->start,
5218 em->len);
5219 if (existing) {
5220 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5221 em, start,
5222 root->sectorsize);
3b951516
CM
5223 free_extent_map(existing);
5224 if (err) {
5225 free_extent_map(em);
5226 em = NULL;
5227 }
5228 } else {
5229 err = -EIO;
3b951516
CM
5230 free_extent_map(em);
5231 em = NULL;
5232 }
5233 } else {
5234 free_extent_map(em);
5235 em = existing;
e6dcd2dc 5236 err = 0;
a52d9a80 5237 }
a52d9a80 5238 }
890871be 5239 write_unlock(&em_tree->lock);
a52d9a80 5240out:
1abe9b8a 5241
5242 trace_btrfs_get_extent(root, em);
5243
f421950f
CM
5244 if (path)
5245 btrfs_free_path(path);
a52d9a80
CM
5246 if (trans) {
5247 ret = btrfs_end_transaction(trans, root);
d397712b 5248 if (!err)
a52d9a80
CM
5249 err = ret;
5250 }
a52d9a80
CM
5251 if (err) {
5252 free_extent_map(em);
a52d9a80
CM
5253 return ERR_PTR(err);
5254 }
5255 return em;
5256}
5257
ec29ed5b
CM
5258struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5259 size_t pg_offset, u64 start, u64 len,
5260 int create)
5261{
5262 struct extent_map *em;
5263 struct extent_map *hole_em = NULL;
5264 u64 range_start = start;
5265 u64 end;
5266 u64 found;
5267 u64 found_end;
5268 int err = 0;
5269
5270 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5271 if (IS_ERR(em))
5272 return em;
5273 if (em) {
5274 /*
5275 * if our em maps to a hole, there might
5276 * actually be delalloc bytes behind it
5277 */
5278 if (em->block_start != EXTENT_MAP_HOLE)
5279 return em;
5280 else
5281 hole_em = em;
5282 }
5283
5284 /* check to see if we've wrapped (len == -1 or similar) */
5285 end = start + len;
5286 if (end < start)
5287 end = (u64)-1;
5288 else
5289 end -= 1;
5290
5291 em = NULL;
5292
5293 /* ok, we didn't find anything, lets look for delalloc */
5294 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5295 end, len, EXTENT_DELALLOC, 1);
5296 found_end = range_start + found;
5297 if (found_end < range_start)
5298 found_end = (u64)-1;
5299
5300 /*
5301 * we didn't find anything useful, return
5302 * the original results from get_extent()
5303 */
5304 if (range_start > end || found_end <= start) {
5305 em = hole_em;
5306 hole_em = NULL;
5307 goto out;
5308 }
5309
5310 /* adjust the range_start to make sure it doesn't
5311 * go backwards from the start they passed in
5312 */
5313 range_start = max(start,range_start);
5314 found = found_end - range_start;
5315
5316 if (found > 0) {
5317 u64 hole_start = start;
5318 u64 hole_len = len;
5319
172ddd60 5320 em = alloc_extent_map();
ec29ed5b
CM
5321 if (!em) {
5322 err = -ENOMEM;
5323 goto out;
5324 }
5325 /*
5326 * when btrfs_get_extent can't find anything it
5327 * returns one huge hole
5328 *
5329 * make sure what it found really fits our range, and
5330 * adjust to make sure it is based on the start from
5331 * the caller
5332 */
5333 if (hole_em) {
5334 u64 calc_end = extent_map_end(hole_em);
5335
5336 if (calc_end <= start || (hole_em->start > end)) {
5337 free_extent_map(hole_em);
5338 hole_em = NULL;
5339 } else {
5340 hole_start = max(hole_em->start, start);
5341 hole_len = calc_end - hole_start;
5342 }
5343 }
5344 em->bdev = NULL;
5345 if (hole_em && range_start > hole_start) {
5346 /* our hole starts before our delalloc, so we
5347 * have to return just the parts of the hole
5348 * that go until the delalloc starts
5349 */
5350 em->len = min(hole_len,
5351 range_start - hole_start);
5352 em->start = hole_start;
5353 em->orig_start = hole_start;
5354 /*
5355 * don't adjust block start at all,
5356 * it is fixed at EXTENT_MAP_HOLE
5357 */
5358 em->block_start = hole_em->block_start;
5359 em->block_len = hole_len;
5360 } else {
5361 em->start = range_start;
5362 em->len = found;
5363 em->orig_start = range_start;
5364 em->block_start = EXTENT_MAP_DELALLOC;
5365 em->block_len = found;
5366 }
5367 } else if (hole_em) {
5368 return hole_em;
5369 }
5370out:
5371
5372 free_extent_map(hole_em);
5373 if (err) {
5374 free_extent_map(em);
5375 return ERR_PTR(err);
5376 }
5377 return em;
5378}
5379
4b46fce2 5380static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5381 struct extent_map *em,
4b46fce2
JB
5382 u64 start, u64 len)
5383{
5384 struct btrfs_root *root = BTRFS_I(inode)->root;
5385 struct btrfs_trans_handle *trans;
4b46fce2
JB
5386 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5387 struct btrfs_key ins;
5388 u64 alloc_hint;
5389 int ret;
16d299ac 5390 bool insert = false;
4b46fce2 5391
16d299ac
JB
5392 /*
5393 * Ok if the extent map we looked up is a hole and is for the exact
5394 * range we want, there is no reason to allocate a new one, however if
5395 * it is not right then we need to free this one and drop the cache for
5396 * our range.
5397 */
5398 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5399 em->len != len) {
5400 free_extent_map(em);
5401 em = NULL;
5402 insert = true;
5403 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5404 }
4b46fce2 5405
7a7eaa40 5406 trans = btrfs_join_transaction(root);
3612b495
TI
5407 if (IS_ERR(trans))
5408 return ERR_CAST(trans);
4b46fce2 5409
4cb5300b
CM
5410 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5411 btrfs_add_inode_defrag(trans, inode);
5412
4b46fce2
JB
5413 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5414
5415 alloc_hint = get_extent_allocation_hint(inode, start, len);
5416 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5417 alloc_hint, (u64)-1, &ins, 1);
5418 if (ret) {
5419 em = ERR_PTR(ret);
5420 goto out;
5421 }
5422
4b46fce2 5423 if (!em) {
172ddd60 5424 em = alloc_extent_map();
16d299ac
JB
5425 if (!em) {
5426 em = ERR_PTR(-ENOMEM);
5427 goto out;
5428 }
4b46fce2
JB
5429 }
5430
5431 em->start = start;
5432 em->orig_start = em->start;
5433 em->len = ins.offset;
5434
5435 em->block_start = ins.objectid;
5436 em->block_len = ins.offset;
5437 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5438
5439 /*
5440 * We need to do this because if we're using the original em we searched
5441 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5442 */
5443 em->flags = 0;
4b46fce2
JB
5444 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5445
16d299ac 5446 while (insert) {
4b46fce2
JB
5447 write_lock(&em_tree->lock);
5448 ret = add_extent_mapping(em_tree, em);
5449 write_unlock(&em_tree->lock);
5450 if (ret != -EEXIST)
5451 break;
5452 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5453 }
5454
5455 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5456 ins.offset, ins.offset, 0);
5457 if (ret) {
5458 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5459 em = ERR_PTR(ret);
5460 }
5461out:
5462 btrfs_end_transaction(trans, root);
5463 return em;
5464}
5465
46bfbb5c
CM
5466/*
5467 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5468 * block must be cow'd
5469 */
5470static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5471 struct inode *inode, u64 offset, u64 len)
5472{
5473 struct btrfs_path *path;
5474 int ret;
5475 struct extent_buffer *leaf;
5476 struct btrfs_root *root = BTRFS_I(inode)->root;
5477 struct btrfs_file_extent_item *fi;
5478 struct btrfs_key key;
5479 u64 disk_bytenr;
5480 u64 backref_offset;
5481 u64 extent_end;
5482 u64 num_bytes;
5483 int slot;
5484 int found_type;
5485
5486 path = btrfs_alloc_path();
5487 if (!path)
5488 return -ENOMEM;
5489
33345d01 5490 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5491 offset, 0);
5492 if (ret < 0)
5493 goto out;
5494
5495 slot = path->slots[0];
5496 if (ret == 1) {
5497 if (slot == 0) {
5498 /* can't find the item, must cow */
5499 ret = 0;
5500 goto out;
5501 }
5502 slot--;
5503 }
5504 ret = 0;
5505 leaf = path->nodes[0];
5506 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5507 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5508 key.type != BTRFS_EXTENT_DATA_KEY) {
5509 /* not our file or wrong item type, must cow */
5510 goto out;
5511 }
5512
5513 if (key.offset > offset) {
5514 /* Wrong offset, must cow */
5515 goto out;
5516 }
5517
5518 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5519 found_type = btrfs_file_extent_type(leaf, fi);
5520 if (found_type != BTRFS_FILE_EXTENT_REG &&
5521 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5522 /* not a regular extent, must cow */
5523 goto out;
5524 }
5525 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5526 backref_offset = btrfs_file_extent_offset(leaf, fi);
5527
5528 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5529 if (extent_end < offset + len) {
5530 /* extent doesn't include our full range, must cow */
5531 goto out;
5532 }
5533
5534 if (btrfs_extent_readonly(root, disk_bytenr))
5535 goto out;
5536
5537 /*
5538 * look for other files referencing this extent, if we
5539 * find any we must cow
5540 */
33345d01 5541 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5542 key.offset - backref_offset, disk_bytenr))
5543 goto out;
5544
5545 /*
5546 * adjust disk_bytenr and num_bytes to cover just the bytes
5547 * in this extent we are about to write. If there
5548 * are any csums in that range we have to cow in order
5549 * to keep the csums correct
5550 */
5551 disk_bytenr += backref_offset;
5552 disk_bytenr += offset - key.offset;
5553 num_bytes = min(offset + len, extent_end) - offset;
5554 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5555 goto out;
5556 /*
5557 * all of the above have passed, it is safe to overwrite this extent
5558 * without cow
5559 */
5560 ret = 1;
5561out:
5562 btrfs_free_path(path);
5563 return ret;
5564}
5565
4b46fce2
JB
5566static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5567 struct buffer_head *bh_result, int create)
5568{
5569 struct extent_map *em;
5570 struct btrfs_root *root = BTRFS_I(inode)->root;
5571 u64 start = iblock << inode->i_blkbits;
5572 u64 len = bh_result->b_size;
46bfbb5c 5573 struct btrfs_trans_handle *trans;
4b46fce2
JB
5574
5575 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5576 if (IS_ERR(em))
5577 return PTR_ERR(em);
5578
5579 /*
5580 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5581 * io. INLINE is special, and we could probably kludge it in here, but
5582 * it's still buffered so for safety lets just fall back to the generic
5583 * buffered path.
5584 *
5585 * For COMPRESSED we _have_ to read the entire extent in so we can
5586 * decompress it, so there will be buffering required no matter what we
5587 * do, so go ahead and fallback to buffered.
5588 *
5589 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5590 * to buffered IO. Don't blame me, this is the price we pay for using
5591 * the generic code.
5592 */
5593 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5594 em->block_start == EXTENT_MAP_INLINE) {
5595 free_extent_map(em);
5596 return -ENOTBLK;
5597 }
5598
5599 /* Just a good old fashioned hole, return */
5600 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5601 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5602 free_extent_map(em);
5603 /* DIO will do one hole at a time, so just unlock a sector */
5604 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5605 start + root->sectorsize - 1, GFP_NOFS);
5606 return 0;
5607 }
5608
5609 /*
5610 * We don't allocate a new extent in the following cases
5611 *
5612 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5613 * existing extent.
5614 * 2) The extent is marked as PREALLOC. We're good to go here and can
5615 * just use the extent.
5616 *
5617 */
46bfbb5c
CM
5618 if (!create) {
5619 len = em->len - (start - em->start);
4b46fce2 5620 goto map;
46bfbb5c 5621 }
4b46fce2
JB
5622
5623 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5624 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5625 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5626 int type;
5627 int ret;
46bfbb5c 5628 u64 block_start;
4b46fce2
JB
5629
5630 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5631 type = BTRFS_ORDERED_PREALLOC;
5632 else
5633 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5634 len = min(len, em->len - (start - em->start));
4b46fce2 5635 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5636
5637 /*
5638 * we're not going to log anything, but we do need
5639 * to make sure the current transaction stays open
5640 * while we look for nocow cross refs
5641 */
7a7eaa40 5642 trans = btrfs_join_transaction(root);
3612b495 5643 if (IS_ERR(trans))
46bfbb5c
CM
5644 goto must_cow;
5645
5646 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5647 ret = btrfs_add_ordered_extent_dio(inode, start,
5648 block_start, len, len, type);
5649 btrfs_end_transaction(trans, root);
5650 if (ret) {
5651 free_extent_map(em);
5652 return ret;
5653 }
5654 goto unlock;
4b46fce2 5655 }
46bfbb5c 5656 btrfs_end_transaction(trans, root);
4b46fce2 5657 }
46bfbb5c
CM
5658must_cow:
5659 /*
5660 * this will cow the extent, reset the len in case we changed
5661 * it above
5662 */
5663 len = bh_result->b_size;
16d299ac 5664 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5665 if (IS_ERR(em))
5666 return PTR_ERR(em);
5667 len = min(len, em->len - (start - em->start));
5668unlock:
4845e44f
CM
5669 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5670 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5671 0, NULL, GFP_NOFS);
4b46fce2
JB
5672map:
5673 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5674 inode->i_blkbits;
46bfbb5c 5675 bh_result->b_size = len;
4b46fce2
JB
5676 bh_result->b_bdev = em->bdev;
5677 set_buffer_mapped(bh_result);
5678 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5679 set_buffer_new(bh_result);
5680
5681 free_extent_map(em);
5682
5683 return 0;
5684}
5685
5686struct btrfs_dio_private {
5687 struct inode *inode;
5688 u64 logical_offset;
5689 u64 disk_bytenr;
5690 u64 bytes;
5691 u32 *csums;
5692 void *private;
e65e1535
MX
5693
5694 /* number of bios pending for this dio */
5695 atomic_t pending_bios;
5696
5697 /* IO errors */
5698 int errors;
5699
5700 struct bio *orig_bio;
4b46fce2
JB
5701};
5702
5703static void btrfs_endio_direct_read(struct bio *bio, int err)
5704{
e65e1535 5705 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5706 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5707 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5708 struct inode *inode = dip->inode;
5709 struct btrfs_root *root = BTRFS_I(inode)->root;
5710 u64 start;
5711 u32 *private = dip->csums;
5712
5713 start = dip->logical_offset;
5714 do {
5715 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5716 struct page *page = bvec->bv_page;
5717 char *kaddr;
5718 u32 csum = ~(u32)0;
5719 unsigned long flags;
5720
5721 local_irq_save(flags);
5722 kaddr = kmap_atomic(page, KM_IRQ0);
5723 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5724 csum, bvec->bv_len);
5725 btrfs_csum_final(csum, (char *)&csum);
5726 kunmap_atomic(kaddr, KM_IRQ0);
5727 local_irq_restore(flags);
5728
5729 flush_dcache_page(bvec->bv_page);
5730 if (csum != *private) {
33345d01 5731 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5732 " %llu csum %u private %u\n",
33345d01
LZ
5733 (unsigned long long)btrfs_ino(inode),
5734 (unsigned long long)start,
4b46fce2
JB
5735 csum, *private);
5736 err = -EIO;
5737 }
5738 }
5739
5740 start += bvec->bv_len;
5741 private++;
5742 bvec++;
5743 } while (bvec <= bvec_end);
5744
5745 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5746 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5747 bio->bi_private = dip->private;
5748
5749 kfree(dip->csums);
5750 kfree(dip);
c0da7aa1
JB
5751
5752 /* If we had a csum failure make sure to clear the uptodate flag */
5753 if (err)
5754 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5755 dio_end_io(bio, err);
5756}
5757
5758static void btrfs_endio_direct_write(struct bio *bio, int err)
5759{
5760 struct btrfs_dio_private *dip = bio->bi_private;
5761 struct inode *inode = dip->inode;
5762 struct btrfs_root *root = BTRFS_I(inode)->root;
5763 struct btrfs_trans_handle *trans;
5764 struct btrfs_ordered_extent *ordered = NULL;
5765 struct extent_state *cached_state = NULL;
163cf09c
CM
5766 u64 ordered_offset = dip->logical_offset;
5767 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5768 int ret;
5769
5770 if (err)
5771 goto out_done;
163cf09c
CM
5772again:
5773 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5774 &ordered_offset,
5775 ordered_bytes);
4b46fce2 5776 if (!ret)
163cf09c 5777 goto out_test;
4b46fce2
JB
5778
5779 BUG_ON(!ordered);
5780
7a7eaa40 5781 trans = btrfs_join_transaction(root);
3612b495 5782 if (IS_ERR(trans)) {
4b46fce2
JB
5783 err = -ENOMEM;
5784 goto out;
5785 }
5786 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5787
5788 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5789 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5790 if (!ret)
2115133f 5791 err = btrfs_update_inode_fallback(trans, root, inode);
4b46fce2
JB
5792 goto out;
5793 }
5794
5795 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5796 ordered->file_offset + ordered->len - 1, 0,
5797 &cached_state, GFP_NOFS);
5798
5799 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5800 ret = btrfs_mark_extent_written(trans, inode,
5801 ordered->file_offset,
5802 ordered->file_offset +
5803 ordered->len);
5804 if (ret) {
5805 err = ret;
5806 goto out_unlock;
5807 }
5808 } else {
5809 ret = insert_reserved_file_extent(trans, inode,
5810 ordered->file_offset,
5811 ordered->start,
5812 ordered->disk_len,
5813 ordered->len,
5814 ordered->len,
5815 0, 0, 0,
5816 BTRFS_FILE_EXTENT_REG);
5817 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5818 ordered->file_offset, ordered->len);
5819 if (ret) {
5820 err = ret;
5821 WARN_ON(1);
5822 goto out_unlock;
5823 }
5824 }
5825
5826 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5827 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5828 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
2115133f 5829 btrfs_update_inode_fallback(trans, root, inode);
1ef30be1 5830 ret = 0;
4b46fce2
JB
5831out_unlock:
5832 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5833 ordered->file_offset + ordered->len - 1,
5834 &cached_state, GFP_NOFS);
5835out:
5836 btrfs_delalloc_release_metadata(inode, ordered->len);
5837 btrfs_end_transaction(trans, root);
163cf09c 5838 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5839 btrfs_put_ordered_extent(ordered);
5840 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5841
5842out_test:
5843 /*
5844 * our bio might span multiple ordered extents. If we haven't
5845 * completed the accounting for the whole dio, go back and try again
5846 */
5847 if (ordered_offset < dip->logical_offset + dip->bytes) {
5848 ordered_bytes = dip->logical_offset + dip->bytes -
5849 ordered_offset;
5850 goto again;
5851 }
4b46fce2
JB
5852out_done:
5853 bio->bi_private = dip->private;
5854
5855 kfree(dip->csums);
5856 kfree(dip);
c0da7aa1
JB
5857
5858 /* If we had an error make sure to clear the uptodate flag */
5859 if (err)
5860 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5861 dio_end_io(bio, err);
5862}
5863
eaf25d93
CM
5864static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5865 struct bio *bio, int mirror_num,
5866 unsigned long bio_flags, u64 offset)
5867{
5868 int ret;
5869 struct btrfs_root *root = BTRFS_I(inode)->root;
5870 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5871 BUG_ON(ret);
5872 return 0;
5873}
5874
e65e1535
MX
5875static void btrfs_end_dio_bio(struct bio *bio, int err)
5876{
5877 struct btrfs_dio_private *dip = bio->bi_private;
5878
5879 if (err) {
33345d01 5880 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5881 "sector %#Lx len %u err no %d\n",
33345d01 5882 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5883 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5884 dip->errors = 1;
5885
5886 /*
5887 * before atomic variable goto zero, we must make sure
5888 * dip->errors is perceived to be set.
5889 */
5890 smp_mb__before_atomic_dec();
5891 }
5892
5893 /* if there are more bios still pending for this dio, just exit */
5894 if (!atomic_dec_and_test(&dip->pending_bios))
5895 goto out;
5896
5897 if (dip->errors)
5898 bio_io_error(dip->orig_bio);
5899 else {
5900 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5901 bio_endio(dip->orig_bio, 0);
5902 }
5903out:
5904 bio_put(bio);
5905}
5906
5907static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5908 u64 first_sector, gfp_t gfp_flags)
5909{
5910 int nr_vecs = bio_get_nr_vecs(bdev);
5911 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5912}
5913
5914static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5915 int rw, u64 file_offset, int skip_sum,
1ae39938 5916 u32 *csums, int async_submit)
e65e1535
MX
5917{
5918 int write = rw & REQ_WRITE;
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 int ret;
5921
5922 bio_get(bio);
5923 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5924 if (ret)
5925 goto err;
5926
1ae39938
JB
5927 if (skip_sum)
5928 goto map;
5929
5930 if (write && async_submit) {
e65e1535
MX
5931 ret = btrfs_wq_submit_bio(root->fs_info,
5932 inode, rw, bio, 0, 0,
5933 file_offset,
5934 __btrfs_submit_bio_start_direct_io,
5935 __btrfs_submit_bio_done);
5936 goto err;
1ae39938
JB
5937 } else if (write) {
5938 /*
5939 * If we aren't doing async submit, calculate the csum of the
5940 * bio now.
5941 */
5942 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5943 if (ret)
5944 goto err;
c2db1073
TI
5945 } else if (!skip_sum) {
5946 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5947 file_offset, csums);
c2db1073
TI
5948 if (ret)
5949 goto err;
5950 }
e65e1535 5951
1ae39938
JB
5952map:
5953 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5954err:
5955 bio_put(bio);
5956 return ret;
5957}
5958
5959static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5960 int skip_sum)
5961{
5962 struct inode *inode = dip->inode;
5963 struct btrfs_root *root = BTRFS_I(inode)->root;
5964 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5965 struct bio *bio;
5966 struct bio *orig_bio = dip->orig_bio;
5967 struct bio_vec *bvec = orig_bio->bi_io_vec;
5968 u64 start_sector = orig_bio->bi_sector;
5969 u64 file_offset = dip->logical_offset;
5970 u64 submit_len = 0;
5971 u64 map_length;
5972 int nr_pages = 0;
5973 u32 *csums = dip->csums;
5974 int ret = 0;
1ae39938 5975 int async_submit = 0;
98bc3149 5976 int write = rw & REQ_WRITE;
e65e1535 5977
e65e1535
MX
5978 map_length = orig_bio->bi_size;
5979 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5980 &map_length, NULL, 0);
5981 if (ret) {
64728bbb 5982 bio_put(orig_bio);
e65e1535
MX
5983 return -EIO;
5984 }
5985
02f57c7a
JB
5986 if (map_length >= orig_bio->bi_size) {
5987 bio = orig_bio;
5988 goto submit;
5989 }
5990
1ae39938 5991 async_submit = 1;
02f57c7a
JB
5992 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5993 if (!bio)
5994 return -ENOMEM;
5995 bio->bi_private = dip;
5996 bio->bi_end_io = btrfs_end_dio_bio;
5997 atomic_inc(&dip->pending_bios);
5998
e65e1535
MX
5999 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6000 if (unlikely(map_length < submit_len + bvec->bv_len ||
6001 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6002 bvec->bv_offset) < bvec->bv_len)) {
6003 /*
6004 * inc the count before we submit the bio so
6005 * we know the end IO handler won't happen before
6006 * we inc the count. Otherwise, the dip might get freed
6007 * before we're done setting it up
6008 */
6009 atomic_inc(&dip->pending_bios);
6010 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6011 file_offset, skip_sum,
1ae39938 6012 csums, async_submit);
e65e1535
MX
6013 if (ret) {
6014 bio_put(bio);
6015 atomic_dec(&dip->pending_bios);
6016 goto out_err;
6017 }
6018
98bc3149
JB
6019 /* Write's use the ordered csums */
6020 if (!write && !skip_sum)
e65e1535
MX
6021 csums = csums + nr_pages;
6022 start_sector += submit_len >> 9;
6023 file_offset += submit_len;
6024
6025 submit_len = 0;
6026 nr_pages = 0;
6027
6028 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6029 start_sector, GFP_NOFS);
6030 if (!bio)
6031 goto out_err;
6032 bio->bi_private = dip;
6033 bio->bi_end_io = btrfs_end_dio_bio;
6034
6035 map_length = orig_bio->bi_size;
6036 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6037 &map_length, NULL, 0);
6038 if (ret) {
6039 bio_put(bio);
6040 goto out_err;
6041 }
6042 } else {
6043 submit_len += bvec->bv_len;
6044 nr_pages ++;
6045 bvec++;
6046 }
6047 }
6048
02f57c7a 6049submit:
e65e1535 6050 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6051 csums, async_submit);
e65e1535
MX
6052 if (!ret)
6053 return 0;
6054
6055 bio_put(bio);
6056out_err:
6057 dip->errors = 1;
6058 /*
6059 * before atomic variable goto zero, we must
6060 * make sure dip->errors is perceived to be set.
6061 */
6062 smp_mb__before_atomic_dec();
6063 if (atomic_dec_and_test(&dip->pending_bios))
6064 bio_io_error(dip->orig_bio);
6065
6066 /* bio_end_io() will handle error, so we needn't return it */
6067 return 0;
6068}
6069
4b46fce2
JB
6070static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6071 loff_t file_offset)
6072{
6073 struct btrfs_root *root = BTRFS_I(inode)->root;
6074 struct btrfs_dio_private *dip;
6075 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6076 int skip_sum;
7b6d91da 6077 int write = rw & REQ_WRITE;
4b46fce2
JB
6078 int ret = 0;
6079
6080 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6081
6082 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6083 if (!dip) {
6084 ret = -ENOMEM;
6085 goto free_ordered;
6086 }
6087 dip->csums = NULL;
6088
98bc3149
JB
6089 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6090 if (!write && !skip_sum) {
4b46fce2
JB
6091 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6092 if (!dip->csums) {
b4966b77 6093 kfree(dip);
4b46fce2
JB
6094 ret = -ENOMEM;
6095 goto free_ordered;
6096 }
6097 }
6098
6099 dip->private = bio->bi_private;
6100 dip->inode = inode;
6101 dip->logical_offset = file_offset;
6102
4b46fce2
JB
6103 dip->bytes = 0;
6104 do {
6105 dip->bytes += bvec->bv_len;
6106 bvec++;
6107 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6108
46bfbb5c 6109 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6110 bio->bi_private = dip;
e65e1535
MX
6111 dip->errors = 0;
6112 dip->orig_bio = bio;
6113 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6114
6115 if (write)
6116 bio->bi_end_io = btrfs_endio_direct_write;
6117 else
6118 bio->bi_end_io = btrfs_endio_direct_read;
6119
e65e1535
MX
6120 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6121 if (!ret)
eaf25d93 6122 return;
4b46fce2
JB
6123free_ordered:
6124 /*
6125 * If this is a write, we need to clean up the reserved space and kill
6126 * the ordered extent.
6127 */
6128 if (write) {
6129 struct btrfs_ordered_extent *ordered;
955256f2 6130 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6131 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6132 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6133 btrfs_free_reserved_extent(root, ordered->start,
6134 ordered->disk_len);
6135 btrfs_put_ordered_extent(ordered);
6136 btrfs_put_ordered_extent(ordered);
6137 }
6138 bio_endio(bio, ret);
6139}
6140
5a5f79b5
CM
6141static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6142 const struct iovec *iov, loff_t offset,
6143 unsigned long nr_segs)
6144{
6145 int seg;
a1b75f7d 6146 int i;
5a5f79b5
CM
6147 size_t size;
6148 unsigned long addr;
6149 unsigned blocksize_mask = root->sectorsize - 1;
6150 ssize_t retval = -EINVAL;
6151 loff_t end = offset;
6152
6153 if (offset & blocksize_mask)
6154 goto out;
6155
6156 /* Check the memory alignment. Blocks cannot straddle pages */
6157 for (seg = 0; seg < nr_segs; seg++) {
6158 addr = (unsigned long)iov[seg].iov_base;
6159 size = iov[seg].iov_len;
6160 end += size;
a1b75f7d 6161 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6162 goto out;
a1b75f7d
JB
6163
6164 /* If this is a write we don't need to check anymore */
6165 if (rw & WRITE)
6166 continue;
6167
6168 /*
6169 * Check to make sure we don't have duplicate iov_base's in this
6170 * iovec, if so return EINVAL, otherwise we'll get csum errors
6171 * when reading back.
6172 */
6173 for (i = seg + 1; i < nr_segs; i++) {
6174 if (iov[seg].iov_base == iov[i].iov_base)
6175 goto out;
6176 }
5a5f79b5
CM
6177 }
6178 retval = 0;
6179out:
6180 return retval;
6181}
16432985
CM
6182static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6183 const struct iovec *iov, loff_t offset,
6184 unsigned long nr_segs)
6185{
4b46fce2
JB
6186 struct file *file = iocb->ki_filp;
6187 struct inode *inode = file->f_mapping->host;
6188 struct btrfs_ordered_extent *ordered;
4845e44f 6189 struct extent_state *cached_state = NULL;
4b46fce2
JB
6190 u64 lockstart, lockend;
6191 ssize_t ret;
4845e44f
CM
6192 int writing = rw & WRITE;
6193 int write_bits = 0;
3f7c579c 6194 size_t count = iov_length(iov, nr_segs);
4b46fce2 6195
5a5f79b5
CM
6196 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6197 offset, nr_segs)) {
6198 return 0;
6199 }
6200
4b46fce2 6201 lockstart = offset;
3f7c579c
CM
6202 lockend = offset + count - 1;
6203
6204 if (writing) {
6205 ret = btrfs_delalloc_reserve_space(inode, count);
6206 if (ret)
6207 goto out;
6208 }
4845e44f 6209
4b46fce2 6210 while (1) {
4845e44f
CM
6211 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6212 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6213 /*
6214 * We're concerned with the entire range that we're going to be
6215 * doing DIO to, so we need to make sure theres no ordered
6216 * extents in this range.
6217 */
6218 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6219 lockend - lockstart + 1);
6220 if (!ordered)
6221 break;
4845e44f
CM
6222 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6223 &cached_state, GFP_NOFS);
4b46fce2
JB
6224 btrfs_start_ordered_extent(inode, ordered, 1);
6225 btrfs_put_ordered_extent(ordered);
6226 cond_resched();
6227 }
6228
4845e44f
CM
6229 /*
6230 * we don't use btrfs_set_extent_delalloc because we don't want
6231 * the dirty or uptodate bits
6232 */
6233 if (writing) {
6234 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6235 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6236 EXTENT_DELALLOC, 0, NULL, &cached_state,
6237 GFP_NOFS);
6238 if (ret) {
6239 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6240 lockend, EXTENT_LOCKED | write_bits,
6241 1, 0, &cached_state, GFP_NOFS);
6242 goto out;
6243 }
6244 }
6245
6246 free_extent_state(cached_state);
6247 cached_state = NULL;
6248
5a5f79b5
CM
6249 ret = __blockdev_direct_IO(rw, iocb, inode,
6250 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6251 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6252 btrfs_submit_direct, 0);
4b46fce2
JB
6253
6254 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6255 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6256 offset + iov_length(iov, nr_segs) - 1,
6257 EXTENT_LOCKED | write_bits, 1, 0,
6258 &cached_state, GFP_NOFS);
4b46fce2
JB
6259 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6260 /*
6261 * We're falling back to buffered, unlock the section we didn't
6262 * do IO on.
6263 */
4845e44f
CM
6264 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6265 offset + iov_length(iov, nr_segs) - 1,
6266 EXTENT_LOCKED | write_bits, 1, 0,
6267 &cached_state, GFP_NOFS);
4b46fce2 6268 }
4845e44f
CM
6269out:
6270 free_extent_state(cached_state);
4b46fce2 6271 return ret;
16432985
CM
6272}
6273
1506fcc8
YS
6274static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6275 __u64 start, __u64 len)
6276{
ec29ed5b 6277 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6278}
6279
a52d9a80 6280int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6281{
d1310b2e
CM
6282 struct extent_io_tree *tree;
6283 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6284 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6285}
1832a6d5 6286
a52d9a80 6287static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6288{
d1310b2e 6289 struct extent_io_tree *tree;
b888db2b
CM
6290
6291
6292 if (current->flags & PF_MEMALLOC) {
6293 redirty_page_for_writepage(wbc, page);
6294 unlock_page(page);
6295 return 0;
6296 }
d1310b2e 6297 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6298 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6299}
6300
f421950f
CM
6301int btrfs_writepages(struct address_space *mapping,
6302 struct writeback_control *wbc)
b293f02e 6303{
d1310b2e 6304 struct extent_io_tree *tree;
771ed689 6305
d1310b2e 6306 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6307 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6308}
6309
3ab2fb5a
CM
6310static int
6311btrfs_readpages(struct file *file, struct address_space *mapping,
6312 struct list_head *pages, unsigned nr_pages)
6313{
d1310b2e
CM
6314 struct extent_io_tree *tree;
6315 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6316 return extent_readpages(tree, mapping, pages, nr_pages,
6317 btrfs_get_extent);
6318}
e6dcd2dc 6319static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6320{
d1310b2e
CM
6321 struct extent_io_tree *tree;
6322 struct extent_map_tree *map;
a52d9a80 6323 int ret;
8c2383c3 6324
d1310b2e
CM
6325 tree = &BTRFS_I(page->mapping->host)->io_tree;
6326 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6327 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6328 if (ret == 1) {
6329 ClearPagePrivate(page);
6330 set_page_private(page, 0);
6331 page_cache_release(page);
39279cc3 6332 }
a52d9a80 6333 return ret;
39279cc3
CM
6334}
6335
e6dcd2dc
CM
6336static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6337{
98509cfc
CM
6338 if (PageWriteback(page) || PageDirty(page))
6339 return 0;
b335b003 6340 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6341}
6342
a52d9a80 6343static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6344{
d1310b2e 6345 struct extent_io_tree *tree;
e6dcd2dc 6346 struct btrfs_ordered_extent *ordered;
2ac55d41 6347 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6348 u64 page_start = page_offset(page);
6349 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6350
8b62b72b
CM
6351
6352 /*
6353 * we have the page locked, so new writeback can't start,
6354 * and the dirty bit won't be cleared while we are here.
6355 *
6356 * Wait for IO on this page so that we can safely clear
6357 * the PagePrivate2 bit and do ordered accounting
6358 */
e6dcd2dc 6359 wait_on_page_writeback(page);
8b62b72b 6360
d1310b2e 6361 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6362 if (offset) {
6363 btrfs_releasepage(page, GFP_NOFS);
6364 return;
6365 }
2ac55d41
JB
6366 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6367 GFP_NOFS);
e6dcd2dc
CM
6368 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6369 page_offset(page));
6370 if (ordered) {
eb84ae03
CM
6371 /*
6372 * IO on this page will never be started, so we need
6373 * to account for any ordered extents now
6374 */
e6dcd2dc
CM
6375 clear_extent_bit(tree, page_start, page_end,
6376 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6377 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6378 &cached_state, GFP_NOFS);
8b62b72b
CM
6379 /*
6380 * whoever cleared the private bit is responsible
6381 * for the finish_ordered_io
6382 */
6383 if (TestClearPagePrivate2(page)) {
6384 btrfs_finish_ordered_io(page->mapping->host,
6385 page_start, page_end);
6386 }
e6dcd2dc 6387 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6388 cached_state = NULL;
6389 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6390 GFP_NOFS);
e6dcd2dc
CM
6391 }
6392 clear_extent_bit(tree, page_start, page_end,
32c00aff 6393 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6394 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6395 __btrfs_releasepage(page, GFP_NOFS);
6396
4a096752 6397 ClearPageChecked(page);
9ad6b7bc 6398 if (PagePrivate(page)) {
9ad6b7bc
CM
6399 ClearPagePrivate(page);
6400 set_page_private(page, 0);
6401 page_cache_release(page);
6402 }
39279cc3
CM
6403}
6404
9ebefb18
CM
6405/*
6406 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6407 * called from a page fault handler when a page is first dirtied. Hence we must
6408 * be careful to check for EOF conditions here. We set the page up correctly
6409 * for a written page which means we get ENOSPC checking when writing into
6410 * holes and correct delalloc and unwritten extent mapping on filesystems that
6411 * support these features.
6412 *
6413 * We are not allowed to take the i_mutex here so we have to play games to
6414 * protect against truncate races as the page could now be beyond EOF. Because
6415 * vmtruncate() writes the inode size before removing pages, once we have the
6416 * page lock we can determine safely if the page is beyond EOF. If it is not
6417 * beyond EOF, then the page is guaranteed safe against truncation until we
6418 * unlock the page.
6419 */
c2ec175c 6420int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6421{
c2ec175c 6422 struct page *page = vmf->page;
6da6abae 6423 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6424 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6425 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6426 struct btrfs_ordered_extent *ordered;
2ac55d41 6427 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6428 char *kaddr;
6429 unsigned long zero_start;
9ebefb18 6430 loff_t size;
1832a6d5 6431 int ret;
9998eb70 6432 int reserved = 0;
a52d9a80 6433 u64 page_start;
e6dcd2dc 6434 u64 page_end;
9ebefb18 6435
0ca1f7ce 6436 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6437 if (!ret) {
22c44fe6 6438 ret = btrfs_update_time(vma->vm_file);
9998eb70
CM
6439 reserved = 1;
6440 }
56a76f82
NP
6441 if (ret) {
6442 if (ret == -ENOMEM)
6443 ret = VM_FAULT_OOM;
6444 else /* -ENOSPC, -EIO, etc */
6445 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6446 if (reserved)
6447 goto out;
6448 goto out_noreserve;
56a76f82 6449 }
1832a6d5 6450
56a76f82 6451 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6452again:
9ebefb18 6453 lock_page(page);
9ebefb18 6454 size = i_size_read(inode);
e6dcd2dc
CM
6455 page_start = page_offset(page);
6456 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6457
9ebefb18 6458 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6459 (page_start >= size)) {
9ebefb18
CM
6460 /* page got truncated out from underneath us */
6461 goto out_unlock;
6462 }
e6dcd2dc
CM
6463 wait_on_page_writeback(page);
6464
2ac55d41
JB
6465 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6466 GFP_NOFS);
e6dcd2dc
CM
6467 set_page_extent_mapped(page);
6468
eb84ae03
CM
6469 /*
6470 * we can't set the delalloc bits if there are pending ordered
6471 * extents. Drop our locks and wait for them to finish
6472 */
e6dcd2dc
CM
6473 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6474 if (ordered) {
2ac55d41
JB
6475 unlock_extent_cached(io_tree, page_start, page_end,
6476 &cached_state, GFP_NOFS);
e6dcd2dc 6477 unlock_page(page);
eb84ae03 6478 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6479 btrfs_put_ordered_extent(ordered);
6480 goto again;
6481 }
6482
fbf19087
JB
6483 /*
6484 * XXX - page_mkwrite gets called every time the page is dirtied, even
6485 * if it was already dirty, so for space accounting reasons we need to
6486 * clear any delalloc bits for the range we are fixing to save. There
6487 * is probably a better way to do this, but for now keep consistent with
6488 * prepare_pages in the normal write path.
6489 */
2ac55d41 6490 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6491 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6492 0, 0, &cached_state, GFP_NOFS);
fbf19087 6493
2ac55d41
JB
6494 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6495 &cached_state);
9ed74f2d 6496 if (ret) {
2ac55d41
JB
6497 unlock_extent_cached(io_tree, page_start, page_end,
6498 &cached_state, GFP_NOFS);
9ed74f2d
JB
6499 ret = VM_FAULT_SIGBUS;
6500 goto out_unlock;
6501 }
e6dcd2dc 6502 ret = 0;
9ebefb18
CM
6503
6504 /* page is wholly or partially inside EOF */
a52d9a80 6505 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6506 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6507 else
e6dcd2dc 6508 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6509
e6dcd2dc
CM
6510 if (zero_start != PAGE_CACHE_SIZE) {
6511 kaddr = kmap(page);
6512 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6513 flush_dcache_page(page);
6514 kunmap(page);
6515 }
247e743c 6516 ClearPageChecked(page);
e6dcd2dc 6517 set_page_dirty(page);
50a9b214 6518 SetPageUptodate(page);
5a3f23d5 6519
257c62e1
CM
6520 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6521 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6522
2ac55d41 6523 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6524
6525out_unlock:
50a9b214
CM
6526 if (!ret)
6527 return VM_FAULT_LOCKED;
9ebefb18 6528 unlock_page(page);
1832a6d5 6529out:
ec39e180 6530 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6531out_noreserve:
9ebefb18
CM
6532 return ret;
6533}
6534
a41ad394 6535static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6536{
6537 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6538 struct btrfs_block_rsv *rsv;
39279cc3 6539 int ret;
3893e33b 6540 int err = 0;
39279cc3 6541 struct btrfs_trans_handle *trans;
d3c2fdcf 6542 unsigned long nr;
dbe674a9 6543 u64 mask = root->sectorsize - 1;
07127184 6544 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6545
5d5e103a
JB
6546 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6547 if (ret)
a41ad394 6548 return ret;
8082510e 6549
4a096752 6550 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6551 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6552
fcb80c2a
JB
6553 /*
6554 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6555 * 3 things going on here
6556 *
6557 * 1) We need to reserve space for our orphan item and the space to
6558 * delete our orphan item. Lord knows we don't want to have a dangling
6559 * orphan item because we didn't reserve space to remove it.
6560 *
6561 * 2) We need to reserve space to update our inode.
6562 *
6563 * 3) We need to have something to cache all the space that is going to
6564 * be free'd up by the truncate operation, but also have some slack
6565 * space reserved in case it uses space during the truncate (thank you
6566 * very much snapshotting).
6567 *
6568 * And we need these to all be seperate. The fact is we can use alot of
6569 * space doing the truncate, and we have no earthly idea how much space
6570 * we will use, so we need the truncate reservation to be seperate so it
6571 * doesn't end up using space reserved for updating the inode or
6572 * removing the orphan item. We also need to be able to stop the
6573 * transaction and start a new one, which means we need to be able to
6574 * update the inode several times, and we have no idea of knowing how
6575 * many times that will be, so we can't just reserve 1 item for the
6576 * entirety of the opration, so that has to be done seperately as well.
6577 * Then there is the orphan item, which does indeed need to be held on
6578 * to for the whole operation, and we need nobody to touch this reserved
6579 * space except the orphan code.
6580 *
6581 * So that leaves us with
6582 *
6583 * 1) root->orphan_block_rsv - for the orphan deletion.
6584 * 2) rsv - for the truncate reservation, which we will steal from the
6585 * transaction reservation.
6586 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6587 * updating the inode.
6588 */
6589 rsv = btrfs_alloc_block_rsv(root);
6590 if (!rsv)
6591 return -ENOMEM;
4a338542 6592 rsv->size = min_size;
f0cd846e 6593
907cbceb 6594 /*
07127184 6595 * 1 for the truncate slack space
907cbceb
JB
6596 * 1 for the orphan item we're going to add
6597 * 1 for the orphan item deletion
6598 * 1 for updating the inode.
6599 */
fcb80c2a
JB
6600 trans = btrfs_start_transaction(root, 4);
6601 if (IS_ERR(trans)) {
6602 err = PTR_ERR(trans);
6603 goto out;
6604 }
f0cd846e 6605
907cbceb
JB
6606 /* Migrate the slack space for the truncate to our reserve */
6607 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6608 min_size);
fcb80c2a 6609 BUG_ON(ret);
f0cd846e
JB
6610
6611 ret = btrfs_orphan_add(trans, inode);
6612 if (ret) {
6613 btrfs_end_transaction(trans, root);
fcb80c2a 6614 goto out;
f0cd846e
JB
6615 }
6616
5a3f23d5
CM
6617 /*
6618 * setattr is responsible for setting the ordered_data_close flag,
6619 * but that is only tested during the last file release. That
6620 * could happen well after the next commit, leaving a great big
6621 * window where new writes may get lost if someone chooses to write
6622 * to this file after truncating to zero
6623 *
6624 * The inode doesn't have any dirty data here, and so if we commit
6625 * this is a noop. If someone immediately starts writing to the inode
6626 * it is very likely we'll catch some of their writes in this
6627 * transaction, and the commit will find this file on the ordered
6628 * data list with good things to send down.
6629 *
6630 * This is a best effort solution, there is still a window where
6631 * using truncate to replace the contents of the file will
6632 * end up with a zero length file after a crash.
6633 */
6634 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6635 btrfs_add_ordered_operation(trans, root, inode);
6636
8082510e 6637 while (1) {
36ba022a 6638 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6639 if (ret) {
6640 /*
6641 * This can only happen with the original transaction we
6642 * started above, every other time we shouldn't have a
6643 * transaction started yet.
6644 */
6645 if (ret == -EAGAIN)
6646 goto end_trans;
6647 err = ret;
6648 break;
6649 }
6650
d68fc57b 6651 if (!trans) {
907cbceb
JB
6652 /* Just need the 1 for updating the inode */
6653 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6654 if (IS_ERR(trans)) {
7041ee97
JB
6655 ret = err = PTR_ERR(trans);
6656 trans = NULL;
6657 break;
fcb80c2a 6658 }
d68fc57b
YZ
6659 }
6660
907cbceb
JB
6661 trans->block_rsv = rsv;
6662
8082510e
YZ
6663 ret = btrfs_truncate_inode_items(trans, root, inode,
6664 inode->i_size,
6665 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6666 if (ret != -EAGAIN) {
6667 err = ret;
8082510e 6668 break;
3893e33b 6669 }
39279cc3 6670
fcb80c2a 6671 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6672 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6673 if (ret) {
6674 err = ret;
6675 break;
6676 }
907cbceb 6677end_trans:
8082510e
YZ
6678 nr = trans->blocks_used;
6679 btrfs_end_transaction(trans, root);
d68fc57b 6680 trans = NULL;
8082510e 6681 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6682 }
6683
6684 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6685 trans->block_rsv = root->orphan_block_rsv;
8082510e 6686 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6687 if (ret)
6688 err = ret;
ded5db9d
JB
6689 } else if (ret && inode->i_nlink > 0) {
6690 /*
6691 * Failed to do the truncate, remove us from the in memory
6692 * orphan list.
6693 */
6694 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6695 }
6696
917c16b2
CM
6697 if (trans) {
6698 trans->block_rsv = &root->fs_info->trans_block_rsv;
6699 ret = btrfs_update_inode(trans, root, inode);
6700 if (ret && !err)
6701 err = ret;
7b128766 6702
917c16b2 6703 nr = trans->blocks_used;
7ad85bb7 6704 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6705 btrfs_btree_balance_dirty(root, nr);
6706 }
fcb80c2a
JB
6707
6708out:
6709 btrfs_free_block_rsv(root, rsv);
6710
3893e33b
JB
6711 if (ret && !err)
6712 err = ret;
a41ad394 6713
3893e33b 6714 return err;
39279cc3
CM
6715}
6716
d352ac68
CM
6717/*
6718 * create a new subvolume directory/inode (helper for the ioctl).
6719 */
d2fb3437 6720int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6721 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6722{
39279cc3 6723 struct inode *inode;
76dda93c 6724 int err;
00e4e6b3 6725 u64 index = 0;
39279cc3 6726
12fc9d09
FA
6727 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6728 new_dirid, new_dirid,
6729 S_IFDIR | (~current_umask() & S_IRWXUGO),
6730 &index);
54aa1f4d 6731 if (IS_ERR(inode))
f46b5a66 6732 return PTR_ERR(inode);
39279cc3
CM
6733 inode->i_op = &btrfs_dir_inode_operations;
6734 inode->i_fop = &btrfs_dir_file_operations;
6735
bfe86848 6736 set_nlink(inode, 1);
dbe674a9 6737 btrfs_i_size_write(inode, 0);
3b96362c 6738
76dda93c
YZ
6739 err = btrfs_update_inode(trans, new_root, inode);
6740 BUG_ON(err);
cb8e7090 6741
76dda93c 6742 iput(inode);
cb8e7090 6743 return 0;
39279cc3
CM
6744}
6745
39279cc3
CM
6746struct inode *btrfs_alloc_inode(struct super_block *sb)
6747{
6748 struct btrfs_inode *ei;
2ead6ae7 6749 struct inode *inode;
39279cc3
CM
6750
6751 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6752 if (!ei)
6753 return NULL;
2ead6ae7
YZ
6754
6755 ei->root = NULL;
6756 ei->space_info = NULL;
6757 ei->generation = 0;
6758 ei->sequence = 0;
15ee9bc7 6759 ei->last_trans = 0;
257c62e1 6760 ei->last_sub_trans = 0;
e02119d5 6761 ei->logged_trans = 0;
2ead6ae7 6762 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6763 ei->disk_i_size = 0;
6764 ei->flags = 0;
7709cde3 6765 ei->csum_bytes = 0;
2ead6ae7
YZ
6766 ei->index_cnt = (u64)-1;
6767 ei->last_unlink_trans = 0;
6768
9e0baf60
JB
6769 spin_lock_init(&ei->lock);
6770 ei->outstanding_extents = 0;
6771 ei->reserved_extents = 0;
2ead6ae7
YZ
6772
6773 ei->ordered_data_close = 0;
d68fc57b 6774 ei->orphan_meta_reserved = 0;
2ead6ae7 6775 ei->dummy_inode = 0;
4cb5300b 6776 ei->in_defrag = 0;
7fd2ae21 6777 ei->delalloc_meta_reserved = 0;
261507a0 6778 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6779
16cdcec7
MX
6780 ei->delayed_node = NULL;
6781
2ead6ae7 6782 inode = &ei->vfs_inode;
a8067e02 6783 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6784 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6785 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6786 mutex_init(&ei->log_mutex);
f248679e 6787 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 6788 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6789 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6790 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6791 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6792 RB_CLEAR_NODE(&ei->rb_node);
6793
6794 return inode;
39279cc3
CM
6795}
6796
fa0d7e3d
NP
6797static void btrfs_i_callback(struct rcu_head *head)
6798{
6799 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
6800 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6801}
6802
39279cc3
CM
6803void btrfs_destroy_inode(struct inode *inode)
6804{
e6dcd2dc 6805 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6806 struct btrfs_root *root = BTRFS_I(inode)->root;
6807
39279cc3
CM
6808 WARN_ON(!list_empty(&inode->i_dentry));
6809 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6810 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6811 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6812 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6813 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6814
a6dbd429
JB
6815 /*
6816 * This can happen where we create an inode, but somebody else also
6817 * created the same inode and we need to destroy the one we already
6818 * created.
6819 */
6820 if (!root)
6821 goto free;
6822
5a3f23d5
CM
6823 /*
6824 * Make sure we're properly removed from the ordered operation
6825 * lists.
6826 */
6827 smp_mb();
6828 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6829 spin_lock(&root->fs_info->ordered_extent_lock);
6830 list_del_init(&BTRFS_I(inode)->ordered_operations);
6831 spin_unlock(&root->fs_info->ordered_extent_lock);
6832 }
6833
d68fc57b 6834 spin_lock(&root->orphan_lock);
7b128766 6835 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6836 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6837 (unsigned long long)btrfs_ino(inode));
8082510e 6838 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6839 }
d68fc57b 6840 spin_unlock(&root->orphan_lock);
7b128766 6841
d397712b 6842 while (1) {
e6dcd2dc
CM
6843 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6844 if (!ordered)
6845 break;
6846 else {
d397712b
CM
6847 printk(KERN_ERR "btrfs found ordered "
6848 "extent %llu %llu on inode cleanup\n",
6849 (unsigned long long)ordered->file_offset,
6850 (unsigned long long)ordered->len);
e6dcd2dc
CM
6851 btrfs_remove_ordered_extent(inode, ordered);
6852 btrfs_put_ordered_extent(ordered);
6853 btrfs_put_ordered_extent(ordered);
6854 }
6855 }
5d4f98a2 6856 inode_tree_del(inode);
5b21f2ed 6857 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6858free:
16cdcec7 6859 btrfs_remove_delayed_node(inode);
fa0d7e3d 6860 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6861}
6862
45321ac5 6863int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6864{
6865 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6866
0af3d00b 6867 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6868 !btrfs_is_free_space_inode(root, inode))
45321ac5 6869 return 1;
76dda93c 6870 else
45321ac5 6871 return generic_drop_inode(inode);
76dda93c
YZ
6872}
6873
0ee0fda0 6874static void init_once(void *foo)
39279cc3
CM
6875{
6876 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6877
6878 inode_init_once(&ei->vfs_inode);
6879}
6880
6881void btrfs_destroy_cachep(void)
6882{
6883 if (btrfs_inode_cachep)
6884 kmem_cache_destroy(btrfs_inode_cachep);
6885 if (btrfs_trans_handle_cachep)
6886 kmem_cache_destroy(btrfs_trans_handle_cachep);
6887 if (btrfs_transaction_cachep)
6888 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6889 if (btrfs_path_cachep)
6890 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6891 if (btrfs_free_space_cachep)
6892 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6893}
6894
6895int btrfs_init_cachep(void)
6896{
9601e3f6
CH
6897 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6898 sizeof(struct btrfs_inode), 0,
6899 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6900 if (!btrfs_inode_cachep)
6901 goto fail;
9601e3f6
CH
6902
6903 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6904 sizeof(struct btrfs_trans_handle), 0,
6905 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6906 if (!btrfs_trans_handle_cachep)
6907 goto fail;
9601e3f6
CH
6908
6909 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6910 sizeof(struct btrfs_transaction), 0,
6911 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6912 if (!btrfs_transaction_cachep)
6913 goto fail;
9601e3f6
CH
6914
6915 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6916 sizeof(struct btrfs_path), 0,
6917 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6918 if (!btrfs_path_cachep)
6919 goto fail;
9601e3f6 6920
dc89e982
JB
6921 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6922 sizeof(struct btrfs_free_space), 0,
6923 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6924 if (!btrfs_free_space_cachep)
6925 goto fail;
6926
39279cc3
CM
6927 return 0;
6928fail:
6929 btrfs_destroy_cachep();
6930 return -ENOMEM;
6931}
6932
6933static int btrfs_getattr(struct vfsmount *mnt,
6934 struct dentry *dentry, struct kstat *stat)
6935{
6936 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
6937 u32 blocksize = inode->i_sb->s_blocksize;
6938
39279cc3 6939 generic_fillattr(inode, stat);
0ee5dc67 6940 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6941 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
6942 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6943 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
6944 return 0;
6945}
6946
75e7cb7f
LB
6947/*
6948 * If a file is moved, it will inherit the cow and compression flags of the new
6949 * directory.
6950 */
6951static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6952{
6953 struct btrfs_inode *b_dir = BTRFS_I(dir);
6954 struct btrfs_inode *b_inode = BTRFS_I(inode);
6955
6956 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6957 b_inode->flags |= BTRFS_INODE_NODATACOW;
6958 else
6959 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6960
6961 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6962 b_inode->flags |= BTRFS_INODE_COMPRESS;
6963 else
6964 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6965}
6966
d397712b
CM
6967static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6968 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6969{
6970 struct btrfs_trans_handle *trans;
6971 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6972 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6973 struct inode *new_inode = new_dentry->d_inode;
6974 struct inode *old_inode = old_dentry->d_inode;
6975 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6976 u64 index = 0;
4df27c4d 6977 u64 root_objectid;
39279cc3 6978 int ret;
33345d01 6979 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6980
33345d01 6981 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6982 return -EPERM;
6983
4df27c4d 6984 /* we only allow rename subvolume link between subvolumes */
33345d01 6985 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6986 return -EXDEV;
6987
33345d01
LZ
6988 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6989 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6990 return -ENOTEMPTY;
5f39d397 6991
4df27c4d
YZ
6992 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6993 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6994 return -ENOTEMPTY;
5a3f23d5
CM
6995 /*
6996 * we're using rename to replace one file with another.
6997 * and the replacement file is large. Start IO on it now so
6998 * we don't add too much work to the end of the transaction
6999 */
4baf8c92 7000 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7001 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7002 filemap_flush(old_inode->i_mapping);
7003
76dda93c 7004 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7005 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7006 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7007 /*
7008 * We want to reserve the absolute worst case amount of items. So if
7009 * both inodes are subvols and we need to unlink them then that would
7010 * require 4 item modifications, but if they are both normal inodes it
7011 * would require 5 item modifications, so we'll assume their normal
7012 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7013 * should cover the worst case number of items we'll modify.
7014 */
7015 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7016 if (IS_ERR(trans)) {
7017 ret = PTR_ERR(trans);
7018 goto out_notrans;
7019 }
76dda93c 7020
4df27c4d
YZ
7021 if (dest != root)
7022 btrfs_record_root_in_trans(trans, dest);
5f39d397 7023
a5719521
YZ
7024 ret = btrfs_set_inode_index(new_dir, &index);
7025 if (ret)
7026 goto out_fail;
5a3f23d5 7027
33345d01 7028 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7029 /* force full log commit if subvolume involved. */
7030 root->fs_info->last_trans_log_full_commit = trans->transid;
7031 } else {
a5719521
YZ
7032 ret = btrfs_insert_inode_ref(trans, dest,
7033 new_dentry->d_name.name,
7034 new_dentry->d_name.len,
33345d01
LZ
7035 old_ino,
7036 btrfs_ino(new_dir), index);
a5719521
YZ
7037 if (ret)
7038 goto out_fail;
4df27c4d
YZ
7039 /*
7040 * this is an ugly little race, but the rename is required
7041 * to make sure that if we crash, the inode is either at the
7042 * old name or the new one. pinning the log transaction lets
7043 * us make sure we don't allow a log commit to come in after
7044 * we unlink the name but before we add the new name back in.
7045 */
7046 btrfs_pin_log_trans(root);
7047 }
5a3f23d5
CM
7048 /*
7049 * make sure the inode gets flushed if it is replacing
7050 * something.
7051 */
33345d01 7052 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7053 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7054
39279cc3
CM
7055 old_dir->i_ctime = old_dir->i_mtime = ctime;
7056 new_dir->i_ctime = new_dir->i_mtime = ctime;
7057 old_inode->i_ctime = ctime;
5f39d397 7058
12fcfd22
CM
7059 if (old_dentry->d_parent != new_dentry->d_parent)
7060 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7061
33345d01 7062 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7063 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7064 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7065 old_dentry->d_name.name,
7066 old_dentry->d_name.len);
7067 } else {
92986796
AV
7068 ret = __btrfs_unlink_inode(trans, root, old_dir,
7069 old_dentry->d_inode,
7070 old_dentry->d_name.name,
7071 old_dentry->d_name.len);
7072 if (!ret)
7073 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7074 }
7075 BUG_ON(ret);
39279cc3
CM
7076
7077 if (new_inode) {
7078 new_inode->i_ctime = CURRENT_TIME;
33345d01 7079 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7080 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7081 root_objectid = BTRFS_I(new_inode)->location.objectid;
7082 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7083 root_objectid,
7084 new_dentry->d_name.name,
7085 new_dentry->d_name.len);
7086 BUG_ON(new_inode->i_nlink == 0);
7087 } else {
7088 ret = btrfs_unlink_inode(trans, dest, new_dir,
7089 new_dentry->d_inode,
7090 new_dentry->d_name.name,
7091 new_dentry->d_name.len);
7092 }
7093 BUG_ON(ret);
7b128766 7094 if (new_inode->i_nlink == 0) {
e02119d5 7095 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7096 BUG_ON(ret);
7b128766 7097 }
39279cc3 7098 }
aec7477b 7099
75e7cb7f
LB
7100 fixup_inode_flags(new_dir, old_inode);
7101
4df27c4d
YZ
7102 ret = btrfs_add_link(trans, new_dir, old_inode,
7103 new_dentry->d_name.name,
a5719521 7104 new_dentry->d_name.len, 0, index);
4df27c4d 7105 BUG_ON(ret);
39279cc3 7106
33345d01 7107 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7108 struct dentry *parent = new_dentry->d_parent;
6a912213 7109 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7110 btrfs_end_log_trans(root);
7111 }
39279cc3 7112out_fail:
7ad85bb7 7113 btrfs_end_transaction(trans, root);
b44c59a8 7114out_notrans:
33345d01 7115 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7116 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7117
39279cc3
CM
7118 return ret;
7119}
7120
d352ac68
CM
7121/*
7122 * some fairly slow code that needs optimization. This walks the list
7123 * of all the inodes with pending delalloc and forces them to disk.
7124 */
24bbcf04 7125int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7126{
7127 struct list_head *head = &root->fs_info->delalloc_inodes;
7128 struct btrfs_inode *binode;
5b21f2ed 7129 struct inode *inode;
ea8c2819 7130
c146afad
YZ
7131 if (root->fs_info->sb->s_flags & MS_RDONLY)
7132 return -EROFS;
7133
75eff68e 7134 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7135 while (!list_empty(head)) {
ea8c2819
CM
7136 binode = list_entry(head->next, struct btrfs_inode,
7137 delalloc_inodes);
5b21f2ed
ZY
7138 inode = igrab(&binode->vfs_inode);
7139 if (!inode)
7140 list_del_init(&binode->delalloc_inodes);
75eff68e 7141 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7142 if (inode) {
8c8bee1d 7143 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7144 if (delay_iput)
7145 btrfs_add_delayed_iput(inode);
7146 else
7147 iput(inode);
5b21f2ed
ZY
7148 }
7149 cond_resched();
75eff68e 7150 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7151 }
75eff68e 7152 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7153
7154 /* the filemap_flush will queue IO into the worker threads, but
7155 * we have to make sure the IO is actually started and that
7156 * ordered extents get created before we return
7157 */
7158 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7159 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7160 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7161 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7162 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7163 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7164 }
7165 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7166 return 0;
7167}
7168
39279cc3
CM
7169static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7170 const char *symname)
7171{
7172 struct btrfs_trans_handle *trans;
7173 struct btrfs_root *root = BTRFS_I(dir)->root;
7174 struct btrfs_path *path;
7175 struct btrfs_key key;
1832a6d5 7176 struct inode *inode = NULL;
39279cc3
CM
7177 int err;
7178 int drop_inode = 0;
7179 u64 objectid;
00e4e6b3 7180 u64 index = 0 ;
39279cc3
CM
7181 int name_len;
7182 int datasize;
5f39d397 7183 unsigned long ptr;
39279cc3 7184 struct btrfs_file_extent_item *ei;
5f39d397 7185 struct extent_buffer *leaf;
1832a6d5 7186 unsigned long nr = 0;
39279cc3
CM
7187
7188 name_len = strlen(symname) + 1;
7189 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7190 return -ENAMETOOLONG;
1832a6d5 7191
9ed74f2d
JB
7192 /*
7193 * 2 items for inode item and ref
7194 * 2 items for dir items
7195 * 1 item for xattr if selinux is on
7196 */
a22285a6
YZ
7197 trans = btrfs_start_transaction(root, 5);
7198 if (IS_ERR(trans))
7199 return PTR_ERR(trans);
1832a6d5 7200
581bb050
LZ
7201 err = btrfs_find_free_ino(root, &objectid);
7202 if (err)
7203 goto out_unlock;
7204
aec7477b 7205 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7206 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7207 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7208 if (IS_ERR(inode)) {
7209 err = PTR_ERR(inode);
39279cc3 7210 goto out_unlock;
7cf96da3 7211 }
39279cc3 7212
2a7dba39 7213 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7214 if (err) {
7215 drop_inode = 1;
7216 goto out_unlock;
7217 }
7218
ad19db71
CS
7219 /*
7220 * If the active LSM wants to access the inode during
7221 * d_instantiate it needs these. Smack checks to see
7222 * if the filesystem supports xattrs by looking at the
7223 * ops vector.
7224 */
7225 inode->i_fop = &btrfs_file_operations;
7226 inode->i_op = &btrfs_file_inode_operations;
7227
a1b075d2 7228 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7229 if (err)
7230 drop_inode = 1;
7231 else {
7232 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7233 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7234 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7235 }
39279cc3
CM
7236 if (drop_inode)
7237 goto out_unlock;
7238
7239 path = btrfs_alloc_path();
d8926bb3
MF
7240 if (!path) {
7241 err = -ENOMEM;
7242 drop_inode = 1;
7243 goto out_unlock;
7244 }
33345d01 7245 key.objectid = btrfs_ino(inode);
39279cc3 7246 key.offset = 0;
39279cc3
CM
7247 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7248 datasize = btrfs_file_extent_calc_inline_size(name_len);
7249 err = btrfs_insert_empty_item(trans, root, path, &key,
7250 datasize);
54aa1f4d
CM
7251 if (err) {
7252 drop_inode = 1;
b0839166 7253 btrfs_free_path(path);
54aa1f4d
CM
7254 goto out_unlock;
7255 }
5f39d397
CM
7256 leaf = path->nodes[0];
7257 ei = btrfs_item_ptr(leaf, path->slots[0],
7258 struct btrfs_file_extent_item);
7259 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7260 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7261 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7262 btrfs_set_file_extent_encryption(leaf, ei, 0);
7263 btrfs_set_file_extent_compression(leaf, ei, 0);
7264 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7265 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7266
39279cc3 7267 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7268 write_extent_buffer(leaf, symname, ptr, name_len);
7269 btrfs_mark_buffer_dirty(leaf);
39279cc3 7270 btrfs_free_path(path);
5f39d397 7271
39279cc3
CM
7272 inode->i_op = &btrfs_symlink_inode_operations;
7273 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7274 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7275 inode_set_bytes(inode, name_len);
dbe674a9 7276 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7277 err = btrfs_update_inode(trans, root, inode);
7278 if (err)
7279 drop_inode = 1;
39279cc3
CM
7280
7281out_unlock:
08c422c2
AV
7282 if (!err)
7283 d_instantiate(dentry, inode);
d3c2fdcf 7284 nr = trans->blocks_used;
7ad85bb7 7285 btrfs_end_transaction(trans, root);
39279cc3
CM
7286 if (drop_inode) {
7287 inode_dec_link_count(inode);
7288 iput(inode);
7289 }
d3c2fdcf 7290 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7291 return err;
7292}
16432985 7293
0af3d00b
JB
7294static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7295 u64 start, u64 num_bytes, u64 min_size,
7296 loff_t actual_len, u64 *alloc_hint,
7297 struct btrfs_trans_handle *trans)
d899e052 7298{
d899e052
YZ
7299 struct btrfs_root *root = BTRFS_I(inode)->root;
7300 struct btrfs_key ins;
d899e052 7301 u64 cur_offset = start;
55a61d1d 7302 u64 i_size;
d899e052 7303 int ret = 0;
0af3d00b 7304 bool own_trans = true;
d899e052 7305
0af3d00b
JB
7306 if (trans)
7307 own_trans = false;
d899e052 7308 while (num_bytes > 0) {
0af3d00b
JB
7309 if (own_trans) {
7310 trans = btrfs_start_transaction(root, 3);
7311 if (IS_ERR(trans)) {
7312 ret = PTR_ERR(trans);
7313 break;
7314 }
5a303d5d
YZ
7315 }
7316
efa56464
YZ
7317 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7318 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7319 if (ret) {
0af3d00b
JB
7320 if (own_trans)
7321 btrfs_end_transaction(trans, root);
a22285a6 7322 break;
d899e052 7323 }
5a303d5d 7324
d899e052
YZ
7325 ret = insert_reserved_file_extent(trans, inode,
7326 cur_offset, ins.objectid,
7327 ins.offset, ins.offset,
920bbbfb 7328 ins.offset, 0, 0, 0,
d899e052
YZ
7329 BTRFS_FILE_EXTENT_PREALLOC);
7330 BUG_ON(ret);
a1ed835e
CM
7331 btrfs_drop_extent_cache(inode, cur_offset,
7332 cur_offset + ins.offset -1, 0);
5a303d5d 7333
d899e052
YZ
7334 num_bytes -= ins.offset;
7335 cur_offset += ins.offset;
efa56464 7336 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7337
d899e052 7338 inode->i_ctime = CURRENT_TIME;
6cbff00f 7339 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7340 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7341 (actual_len > inode->i_size) &&
7342 (cur_offset > inode->i_size)) {
d1ea6a61 7343 if (cur_offset > actual_len)
55a61d1d 7344 i_size = actual_len;
d1ea6a61 7345 else
55a61d1d
JB
7346 i_size = cur_offset;
7347 i_size_write(inode, i_size);
7348 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7349 }
7350
d899e052
YZ
7351 ret = btrfs_update_inode(trans, root, inode);
7352 BUG_ON(ret);
d899e052 7353
0af3d00b
JB
7354 if (own_trans)
7355 btrfs_end_transaction(trans, root);
5a303d5d 7356 }
d899e052
YZ
7357 return ret;
7358}
7359
0af3d00b
JB
7360int btrfs_prealloc_file_range(struct inode *inode, int mode,
7361 u64 start, u64 num_bytes, u64 min_size,
7362 loff_t actual_len, u64 *alloc_hint)
7363{
7364 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7365 min_size, actual_len, alloc_hint,
7366 NULL);
7367}
7368
7369int btrfs_prealloc_file_range_trans(struct inode *inode,
7370 struct btrfs_trans_handle *trans, int mode,
7371 u64 start, u64 num_bytes, u64 min_size,
7372 loff_t actual_len, u64 *alloc_hint)
7373{
7374 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7375 min_size, actual_len, alloc_hint, trans);
7376}
7377
e6dcd2dc
CM
7378static int btrfs_set_page_dirty(struct page *page)
7379{
e6dcd2dc
CM
7380 return __set_page_dirty_nobuffers(page);
7381}
7382
10556cb2 7383static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7384{
b83cc969 7385 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7386 umode_t mode = inode->i_mode;
b83cc969 7387
cb6db4e5
JM
7388 if (mask & MAY_WRITE &&
7389 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7390 if (btrfs_root_readonly(root))
7391 return -EROFS;
7392 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7393 return -EACCES;
7394 }
2830ba7f 7395 return generic_permission(inode, mask);
fdebe2bd 7396}
39279cc3 7397
6e1d5dcc 7398static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7399 .getattr = btrfs_getattr,
39279cc3
CM
7400 .lookup = btrfs_lookup,
7401 .create = btrfs_create,
7402 .unlink = btrfs_unlink,
7403 .link = btrfs_link,
7404 .mkdir = btrfs_mkdir,
7405 .rmdir = btrfs_rmdir,
7406 .rename = btrfs_rename,
7407 .symlink = btrfs_symlink,
7408 .setattr = btrfs_setattr,
618e21d5 7409 .mknod = btrfs_mknod,
95819c05
CH
7410 .setxattr = btrfs_setxattr,
7411 .getxattr = btrfs_getxattr,
5103e947 7412 .listxattr = btrfs_listxattr,
95819c05 7413 .removexattr = btrfs_removexattr,
fdebe2bd 7414 .permission = btrfs_permission,
4e34e719 7415 .get_acl = btrfs_get_acl,
39279cc3 7416};
6e1d5dcc 7417static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7418 .lookup = btrfs_lookup,
fdebe2bd 7419 .permission = btrfs_permission,
4e34e719 7420 .get_acl = btrfs_get_acl,
39279cc3 7421};
76dda93c 7422
828c0950 7423static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7424 .llseek = generic_file_llseek,
7425 .read = generic_read_dir,
cbdf5a24 7426 .readdir = btrfs_real_readdir,
34287aa3 7427 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7428#ifdef CONFIG_COMPAT
34287aa3 7429 .compat_ioctl = btrfs_ioctl,
39279cc3 7430#endif
6bf13c0c 7431 .release = btrfs_release_file,
e02119d5 7432 .fsync = btrfs_sync_file,
39279cc3
CM
7433};
7434
d1310b2e 7435static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7436 .fill_delalloc = run_delalloc_range,
065631f6 7437 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7438 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7439 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7440 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7441 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7442 .set_bit_hook = btrfs_set_bit_hook,
7443 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7444 .merge_extent_hook = btrfs_merge_extent_hook,
7445 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7446};
7447
35054394
CM
7448/*
7449 * btrfs doesn't support the bmap operation because swapfiles
7450 * use bmap to make a mapping of extents in the file. They assume
7451 * these extents won't change over the life of the file and they
7452 * use the bmap result to do IO directly to the drive.
7453 *
7454 * the btrfs bmap call would return logical addresses that aren't
7455 * suitable for IO and they also will change frequently as COW
7456 * operations happen. So, swapfile + btrfs == corruption.
7457 *
7458 * For now we're avoiding this by dropping bmap.
7459 */
7f09410b 7460static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7461 .readpage = btrfs_readpage,
7462 .writepage = btrfs_writepage,
b293f02e 7463 .writepages = btrfs_writepages,
3ab2fb5a 7464 .readpages = btrfs_readpages,
16432985 7465 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7466 .invalidatepage = btrfs_invalidatepage,
7467 .releasepage = btrfs_releasepage,
e6dcd2dc 7468 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7469 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7470};
7471
7f09410b 7472static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7473 .readpage = btrfs_readpage,
7474 .writepage = btrfs_writepage,
2bf5a725
CM
7475 .invalidatepage = btrfs_invalidatepage,
7476 .releasepage = btrfs_releasepage,
39279cc3
CM
7477};
7478
6e1d5dcc 7479static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7480 .getattr = btrfs_getattr,
7481 .setattr = btrfs_setattr,
95819c05
CH
7482 .setxattr = btrfs_setxattr,
7483 .getxattr = btrfs_getxattr,
5103e947 7484 .listxattr = btrfs_listxattr,
95819c05 7485 .removexattr = btrfs_removexattr,
fdebe2bd 7486 .permission = btrfs_permission,
1506fcc8 7487 .fiemap = btrfs_fiemap,
4e34e719 7488 .get_acl = btrfs_get_acl,
39279cc3 7489};
6e1d5dcc 7490static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7491 .getattr = btrfs_getattr,
7492 .setattr = btrfs_setattr,
fdebe2bd 7493 .permission = btrfs_permission,
95819c05
CH
7494 .setxattr = btrfs_setxattr,
7495 .getxattr = btrfs_getxattr,
33268eaf 7496 .listxattr = btrfs_listxattr,
95819c05 7497 .removexattr = btrfs_removexattr,
4e34e719 7498 .get_acl = btrfs_get_acl,
618e21d5 7499};
6e1d5dcc 7500static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7501 .readlink = generic_readlink,
7502 .follow_link = page_follow_link_light,
7503 .put_link = page_put_link,
f209561a 7504 .getattr = btrfs_getattr,
22c44fe6 7505 .setattr = btrfs_setattr,
fdebe2bd 7506 .permission = btrfs_permission,
0279b4cd
JO
7507 .setxattr = btrfs_setxattr,
7508 .getxattr = btrfs_getxattr,
7509 .listxattr = btrfs_listxattr,
7510 .removexattr = btrfs_removexattr,
4e34e719 7511 .get_acl = btrfs_get_acl,
39279cc3 7512};
76dda93c 7513
82d339d9 7514const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7515 .d_delete = btrfs_dentry_delete,
b4aff1f8 7516 .d_release = btrfs_dentry_release,
76dda93c 7517};