]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
Btrfs: fix OOPS of empty filesystem after balance
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3
YZ
95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
0279b4cd
JO
97{
98 int err;
99
f34f57a3 100 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 101 if (!err)
f34f57a3 102 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
103 return err;
104}
105
c8b97818
CM
106/*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
d397712b 111static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 struct page **compressed_pages)
115{
116 struct btrfs_key key;
117 struct btrfs_path *path;
118 struct extent_buffer *leaf;
119 struct page *page = NULL;
120 char *kaddr;
121 unsigned long ptr;
122 struct btrfs_file_extent_item *ei;
123 int err = 0;
124 int ret;
125 size_t cur_size = size;
126 size_t datasize;
127 unsigned long offset;
261507a0 128 int compress_type = BTRFS_COMPRESS_NONE;
c8b97818
CM
129
130 if (compressed_size && compressed_pages) {
261507a0 131 compress_type = root->fs_info->compress_type;
c8b97818
CM
132 cur_size = compressed_size;
133 }
134
d397712b
CM
135 path = btrfs_alloc_path();
136 if (!path)
c8b97818
CM
137 return -ENOMEM;
138
b9473439 139 path->leave_spinning = 1;
c8b97818
CM
140 btrfs_set_trans_block_group(trans, inode);
141
142 key.objectid = inode->i_ino;
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size,
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compressed_pages);
257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
42dc7bab 344 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
345again:
346 will_compress = 0;
347 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
348 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 349
f03d9301
CM
350 /*
351 * we don't want to send crud past the end of i_size through
352 * compression, that's just a waste of CPU time. So, if the
353 * end of the file is before the start of our current
354 * requested range of bytes, we bail out to the uncompressed
355 * cleanup code that can deal with all of this.
356 *
357 * It isn't really the fastest way to fix things, but this is a
358 * very uncommon corner.
359 */
360 if (actual_end <= start)
361 goto cleanup_and_bail_uncompressed;
362
c8b97818
CM
363 total_compressed = actual_end - start;
364
365 /* we want to make sure that amount of ram required to uncompress
366 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
367 * of a compressed extent to 128k. This is a crucial number
368 * because it also controls how easily we can spread reads across
369 * cpus for decompression.
370 *
371 * We also want to make sure the amount of IO required to do
372 * a random read is reasonably small, so we limit the size of
373 * a compressed extent to 128k.
c8b97818
CM
374 */
375 total_compressed = min(total_compressed, max_uncompressed);
db94535d 376 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 377 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
378 total_in = 0;
379 ret = 0;
db94535d 380
771ed689
CM
381 /*
382 * we do compression for mount -o compress and when the
383 * inode has not been flagged as nocompress. This flag can
384 * change at any time if we discover bad compression ratios.
c8b97818 385 */
6cbff00f 386 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 387 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
388 (BTRFS_I(inode)->force_compress) ||
389 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 390 WARN_ON(pages);
cfbc246e 391 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 392 BUG_ON(!pages);
c8b97818 393
261507a0
LZ
394 if (BTRFS_I(inode)->force_compress)
395 compress_type = BTRFS_I(inode)->force_compress;
396
397 ret = btrfs_compress_pages(compress_type,
398 inode->i_mapping, start,
399 total_compressed, pages,
400 nr_pages, &nr_pages_ret,
401 &total_in,
402 &total_compressed,
403 max_compressed);
c8b97818
CM
404
405 if (!ret) {
406 unsigned long offset = total_compressed &
407 (PAGE_CACHE_SIZE - 1);
408 struct page *page = pages[nr_pages_ret - 1];
409 char *kaddr;
410
411 /* zero the tail end of the last page, we might be
412 * sending it down to disk
413 */
414 if (offset) {
415 kaddr = kmap_atomic(page, KM_USER0);
416 memset(kaddr + offset, 0,
417 PAGE_CACHE_SIZE - offset);
418 kunmap_atomic(kaddr, KM_USER0);
419 }
420 will_compress = 1;
421 }
422 }
423 if (start == 0) {
771ed689 424 trans = btrfs_join_transaction(root, 1);
3612b495 425 BUG_ON(IS_ERR(trans));
771ed689 426 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 427 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 428
c8b97818 429 /* lets try to make an inline extent */
771ed689 430 if (ret || total_in < (actual_end - start)) {
c8b97818 431 /* we didn't compress the entire range, try
771ed689 432 * to make an uncompressed inline extent.
c8b97818
CM
433 */
434 ret = cow_file_range_inline(trans, root, inode,
435 start, end, 0, NULL);
436 } else {
771ed689 437 /* try making a compressed inline extent */
c8b97818
CM
438 ret = cow_file_range_inline(trans, root, inode,
439 start, end,
440 total_compressed, pages);
441 }
442 if (ret == 0) {
771ed689
CM
443 /*
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
447 */
c8b97818 448 extent_clear_unlock_delalloc(inode,
a791e35e
CM
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 452 EXTENT_CLEAR_DELALLOC |
a791e35e 453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
454
455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 goto free_pages_out;
457 }
c2167754 458 btrfs_end_transaction(trans, root);
c8b97818
CM
459 }
460
461 if (will_compress) {
462 /*
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
466 */
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
469
470 /*
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
473 */
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
c8b97818
CM
479 num_bytes = total_in;
480 }
481 }
482 if (!will_compress && pages) {
483 /*
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
486 */
487 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 488 WARN_ON(pages[i]->mapping);
c8b97818
CM
489 page_cache_release(pages[i]);
490 }
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
495
496 /* flag the file so we don't compress in the future */
1e701a32
CM
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
a555f810 499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 500 }
c8b97818 501 }
771ed689
CM
502 if (will_compress) {
503 *num_added += 1;
c8b97818 504
771ed689
CM
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
508 */
509 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
179e29e4 512
24ae6365 513 if (start + num_bytes < end) {
771ed689
CM
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
518 }
519 } else {
f03d9301 520cleanup_and_bail_uncompressed:
771ed689
CM
521 /*
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
527 */
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
532 }
261507a0
LZ
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
535 *num_added += 1;
536 }
3b951516 537
771ed689
CM
538out:
539 return 0;
540
541free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
545 }
d397712b 546 kfree(pages);
771ed689
CM
547
548 goto out;
549}
550
551/*
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
556 */
557static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
559{
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
f5a84ee3 568 int ret = 0;
771ed689
CM
569
570 if (list_empty(&async_cow->extents))
571 return 0;
572
771ed689 573
d397712b 574 while (!list_empty(&async_cow->extents)) {
771ed689
CM
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
c8b97818 578
771ed689
CM
579 io_tree = &BTRFS_I(inode)->io_tree;
580
f5a84ee3 581retry:
771ed689
CM
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
586
587 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
590
591 /* allocate blocks */
f5a84ee3
JB
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
771ed689
CM
597
598 /*
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
603 */
f5a84ee3 604 if (!page_started && !ret)
771ed689
CM
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
d397712b 607 async_extent->start +
771ed689
CM
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
614 }
615
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
771ed689 619
c2167754 620 trans = btrfs_join_transaction(root, 1);
3612b495 621 BUG_ON(IS_ERR(trans));
771ed689
CM
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
c2167754
YZ
627 btrfs_end_transaction(trans, root);
628
f5a84ee3
JB
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
634 }
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
642 }
643
c2167754
YZ
644 /*
645 * here we're doing allocation and writeback of the
646 * compressed pages
647 */
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
651
771ed689 652 em = alloc_extent_map(GFP_NOFS);
c26a9203 653 BUG_ON(!em);
771ed689
CM
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
445a6944 656 em->orig_start = em->start;
c8b97818 657
771ed689
CM
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 661 em->compress_type = async_extent->compress_type;
771ed689
CM
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
d397712b 665 while (1) {
890871be 666 write_lock(&em_tree->lock);
771ed689 667 ret = add_extent_mapping(em_tree, em);
890871be 668 write_unlock(&em_tree->lock);
771ed689
CM
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
672 }
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
676 }
677
261507a0
LZ
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
771ed689
CM
685 BUG_ON(ret);
686
771ed689
CM
687 /*
688 * clear dirty, set writeback and unlock the pages.
689 */
690 extent_clear_unlock_delalloc(inode,
a791e35e
CM
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
a3429ab7 697 EXTENT_CLEAR_DELALLOC |
a791e35e 698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
699
700 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
771ed689
CM
706
707 BUG_ON(ret);
771ed689
CM
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
711 }
712
771ed689
CM
713 return 0;
714}
715
4b46fce2
JB
716static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
718{
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
722
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
726 /*
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
730 */
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
741 }
742 }
743 read_unlock(&em_tree->lock);
744
745 return alloc_hint;
746}
747
771ed689
CM
748/*
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
753 *
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
756 *
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
760 */
761static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
766{
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
771ed689
CM
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
779
0cb59c99 780 BUG_ON(root == root->fs_info->tree_root);
771ed689 781 trans = btrfs_join_transaction(root, 1);
3612b495 782 BUG_ON(IS_ERR(trans));
771ed689 783 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 785
771ed689
CM
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
790
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
794 start, end, 0, NULL);
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
a791e35e
CM
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
c2167754 805
771ed689
CM
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
811 }
812 }
813
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
816
4b46fce2 817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
d397712b 820 while (disk_num_bytes > 0) {
a791e35e
CM
821 unsigned long op;
822
287a0ab9 823 cur_alloc_size = disk_num_bytes;
e6dcd2dc 824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 825 root->sectorsize, 0, alloc_hint,
e6dcd2dc 826 (u64)-1, &ins, 1);
d397712b
CM
827 BUG_ON(ret);
828
e6dcd2dc 829 em = alloc_extent_map(GFP_NOFS);
c26a9203 830 BUG_ON(!em);
e6dcd2dc 831 em->start = start;
445a6944 832 em->orig_start = em->start;
771ed689
CM
833 ram_size = ins.offset;
834 em->len = ins.offset;
c8b97818 835
e6dcd2dc 836 em->block_start = ins.objectid;
c8b97818 837 em->block_len = ins.offset;
e6dcd2dc 838 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 840
d397712b 841 while (1) {
890871be 842 write_lock(&em_tree->lock);
e6dcd2dc 843 ret = add_extent_mapping(em_tree, em);
890871be 844 write_unlock(&em_tree->lock);
e6dcd2dc
CM
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
848 }
849 btrfs_drop_extent_cache(inode, start,
c8b97818 850 start + ram_size - 1, 0);
e6dcd2dc
CM
851 }
852
98d20f67 853 cur_alloc_size = ins.offset;
e6dcd2dc 854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 855 ram_size, cur_alloc_size, 0);
e6dcd2dc 856 BUG_ON(ret);
c8b97818 857
17d217fe
YZ
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
863 }
864
d397712b 865 if (disk_num_bytes < cur_alloc_size)
3b951516 866 break;
d397712b 867
c8b97818
CM
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
871 *
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
c8b97818 874 */
a791e35e
CM
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
878
c8b97818
CM
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
a791e35e 881 locked_page, op);
c8b97818 882 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
b888db2b 886 }
b888db2b 887out:
771ed689 888 ret = 0;
b888db2b 889 btrfs_end_transaction(trans, root);
c8b97818 890
be20aa9d 891 return ret;
771ed689 892}
c8b97818 893
771ed689
CM
894/*
895 * work queue call back to started compression on a file and pages
896 */
897static noinline void async_cow_start(struct btrfs_work *work)
898{
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
902
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
908}
909
910/*
911 * work queue call back to submit previously compressed pages
912 */
913static noinline void async_cow_submit(struct btrfs_work *work)
914{
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
918
919 async_cow = container_of(work, struct async_cow, work);
920
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
924
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
931
d397712b 932 if (async_cow->inode)
771ed689 933 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 934}
c8b97818 935
771ed689
CM
936static noinline void async_cow_free(struct btrfs_work *work)
937{
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
941}
942
943static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
946{
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
952
a3429ab7
CM
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
d397712b 955 while (start < end) {
771ed689
CM
956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
961
6cbff00f 962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
966
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
969
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
974
771ed689
CM
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
981
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
986 }
987
d397712b 988 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
993 }
994
995 *nr_written += nr_pages;
996 start = cur_end + 1;
997 }
998 *page_started = 1;
999 return 0;
be20aa9d
CM
1000}
1001
d397712b 1002static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1003 u64 bytenr, u64 num_bytes)
1004{
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1008
07d400a6
YZ
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1013
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1018 }
1019 return 1;
1020}
1021
d352ac68
CM
1022/*
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1025 *
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1028 */
7f366cfe
CM
1029static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
771ed689
CM
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
be20aa9d 1033{
be20aa9d 1034 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1035 struct btrfs_trans_handle *trans;
be20aa9d 1036 struct extent_buffer *leaf;
be20aa9d 1037 struct btrfs_path *path;
80ff3856 1038 struct btrfs_file_extent_item *fi;
be20aa9d 1039 struct btrfs_key found_key;
80ff3856
YZ
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
5d4f98a2 1043 u64 extent_offset;
80ff3856
YZ
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
d899e052 1048 int type;
80ff3856
YZ
1049 int nocow;
1050 int check_prev = 1;
0cb59c99 1051 bool nolock = false;
be20aa9d
CM
1052
1053 path = btrfs_alloc_path();
1054 BUG_ON(!path);
0cb59c99
JB
1055 if (root == root->fs_info->tree_root) {
1056 nolock = true;
1057 trans = btrfs_join_transaction_nolock(root, 1);
1058 } else {
1059 trans = btrfs_join_transaction(root, 1);
1060 }
3612b495 1061 BUG_ON(IS_ERR(trans));
be20aa9d 1062
80ff3856
YZ
1063 cow_start = (u64)-1;
1064 cur_offset = start;
1065 while (1) {
1066 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067 cur_offset, 0);
1068 BUG_ON(ret < 0);
1069 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070 leaf = path->nodes[0];
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0] - 1);
1073 if (found_key.objectid == inode->i_ino &&
1074 found_key.type == BTRFS_EXTENT_DATA_KEY)
1075 path->slots[0]--;
1076 }
1077 check_prev = 0;
1078next_slot:
1079 leaf = path->nodes[0];
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 BUG_ON(1);
1084 if (ret > 0)
1085 break;
1086 leaf = path->nodes[0];
1087 }
be20aa9d 1088
80ff3856
YZ
1089 nocow = 0;
1090 disk_bytenr = 0;
17d217fe 1091 num_bytes = 0;
80ff3856
YZ
1092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094 if (found_key.objectid > inode->i_ino ||
1095 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096 found_key.offset > end)
1097 break;
1098
1099 if (found_key.offset > cur_offset) {
1100 extent_end = found_key.offset;
e9061e21 1101 extent_type = 0;
80ff3856
YZ
1102 goto out_check;
1103 }
1104
1105 fi = btrfs_item_ptr(leaf, path->slots[0],
1106 struct btrfs_file_extent_item);
1107 extent_type = btrfs_file_extent_type(leaf, fi);
1108
d899e052
YZ
1109 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1111 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1112 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1113 extent_end = found_key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 if (extent_end <= start) {
1116 path->slots[0]++;
1117 goto next_slot;
1118 }
17d217fe
YZ
1119 if (disk_bytenr == 0)
1120 goto out_check;
80ff3856
YZ
1121 if (btrfs_file_extent_compression(leaf, fi) ||
1122 btrfs_file_extent_encryption(leaf, fi) ||
1123 btrfs_file_extent_other_encoding(leaf, fi))
1124 goto out_check;
d899e052
YZ
1125 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126 goto out_check;
d2fb3437 1127 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1128 goto out_check;
17d217fe 1129 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1130 found_key.offset -
1131 extent_offset, disk_bytenr))
17d217fe 1132 goto out_check;
5d4f98a2 1133 disk_bytenr += extent_offset;
17d217fe
YZ
1134 disk_bytenr += cur_offset - found_key.offset;
1135 num_bytes = min(end + 1, extent_end) - cur_offset;
1136 /*
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1140 */
1141 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142 goto out_check;
80ff3856
YZ
1143 nocow = 1;
1144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145 extent_end = found_key.offset +
1146 btrfs_file_extent_inline_len(leaf, fi);
1147 extent_end = ALIGN(extent_end, root->sectorsize);
1148 } else {
1149 BUG_ON(1);
1150 }
1151out_check:
1152 if (extent_end <= start) {
1153 path->slots[0]++;
1154 goto next_slot;
1155 }
1156 if (!nocow) {
1157 if (cow_start == (u64)-1)
1158 cow_start = cur_offset;
1159 cur_offset = extent_end;
1160 if (cur_offset > end)
1161 break;
1162 path->slots[0]++;
1163 goto next_slot;
7ea394f1
YZ
1164 }
1165
1166 btrfs_release_path(root, path);
80ff3856
YZ
1167 if (cow_start != (u64)-1) {
1168 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1169 found_key.offset - 1, page_started,
1170 nr_written, 1);
80ff3856
YZ
1171 BUG_ON(ret);
1172 cow_start = (u64)-1;
7ea394f1 1173 }
80ff3856 1174
d899e052
YZ
1175 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176 struct extent_map *em;
1177 struct extent_map_tree *em_tree;
1178 em_tree = &BTRFS_I(inode)->extent_tree;
1179 em = alloc_extent_map(GFP_NOFS);
c26a9203 1180 BUG_ON(!em);
d899e052 1181 em->start = cur_offset;
445a6944 1182 em->orig_start = em->start;
d899e052
YZ
1183 em->len = num_bytes;
1184 em->block_len = num_bytes;
1185 em->block_start = disk_bytenr;
1186 em->bdev = root->fs_info->fs_devices->latest_bdev;
1187 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188 while (1) {
890871be 1189 write_lock(&em_tree->lock);
d899e052 1190 ret = add_extent_mapping(em_tree, em);
890871be 1191 write_unlock(&em_tree->lock);
d899e052
YZ
1192 if (ret != -EEXIST) {
1193 free_extent_map(em);
1194 break;
1195 }
1196 btrfs_drop_extent_cache(inode, em->start,
1197 em->start + em->len - 1, 0);
1198 }
1199 type = BTRFS_ORDERED_PREALLOC;
1200 } else {
1201 type = BTRFS_ORDERED_NOCOW;
1202 }
80ff3856
YZ
1203
1204 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1205 num_bytes, num_bytes, type);
1206 BUG_ON(ret);
771ed689 1207
efa56464
YZ
1208 if (root->root_key.objectid ==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211 num_bytes);
1212 BUG_ON(ret);
1213 }
1214
d899e052 1215 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1216 cur_offset, cur_offset + num_bytes - 1,
1217 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1220 cur_offset = extent_end;
1221 if (cur_offset > end)
1222 break;
be20aa9d 1223 }
80ff3856
YZ
1224 btrfs_release_path(root, path);
1225
1226 if (cur_offset <= end && cow_start == (u64)-1)
1227 cow_start = cur_offset;
1228 if (cow_start != (u64)-1) {
1229 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1230 page_started, nr_written, 1);
80ff3856
YZ
1231 BUG_ON(ret);
1232 }
1233
0cb59c99
JB
1234 if (nolock) {
1235 ret = btrfs_end_transaction_nolock(trans, root);
1236 BUG_ON(ret);
1237 } else {
1238 ret = btrfs_end_transaction(trans, root);
1239 BUG_ON(ret);
1240 }
7ea394f1 1241 btrfs_free_path(path);
80ff3856 1242 return 0;
be20aa9d
CM
1243}
1244
d352ac68
CM
1245/*
1246 * extent_io.c call back to do delayed allocation processing
1247 */
c8b97818 1248static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1249 u64 start, u64 end, int *page_started,
1250 unsigned long *nr_written)
be20aa9d 1251{
be20aa9d 1252 int ret;
7f366cfe 1253 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1254
6cbff00f 1255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1257 page_started, 1, nr_written);
6cbff00f 1258 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1260 page_started, 0, nr_written);
1e701a32 1261 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1262 !(BTRFS_I(inode)->force_compress) &&
1263 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1264 ret = cow_file_range(inode, locked_page, start, end,
1265 page_started, nr_written, 1);
be20aa9d 1266 else
771ed689 1267 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1268 page_started, nr_written);
b888db2b
CM
1269 return ret;
1270}
1271
9ed74f2d 1272static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1273 struct extent_state *orig, u64 split)
9ed74f2d 1274{
0ca1f7ce 1275 /* not delalloc, ignore it */
9ed74f2d
JB
1276 if (!(orig->state & EXTENT_DELALLOC))
1277 return 0;
1278
0ca1f7ce 1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1280 return 0;
1281}
1282
1283/*
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1288 */
1289static int btrfs_merge_extent_hook(struct inode *inode,
1290 struct extent_state *new,
1291 struct extent_state *other)
1292{
9ed74f2d
JB
1293 /* not delalloc, ignore it */
1294 if (!(other->state & EXTENT_DELALLOC))
1295 return 0;
1296
0ca1f7ce 1297 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1298 return 0;
1299}
1300
d352ac68
CM
1301/*
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1305 */
0ca1f7ce
YZ
1306static int btrfs_set_bit_hook(struct inode *inode,
1307 struct extent_state *state, int *bits)
291d673e 1308{
9ed74f2d 1309
75eff68e
CM
1310 /*
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1314 */
0ca1f7ce 1315 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1316 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1317 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1318 int do_list = (root->root_key.objectid !=
1319 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1320
0ca1f7ce
YZ
1321 if (*bits & EXTENT_FIRST_DELALLOC)
1322 *bits &= ~EXTENT_FIRST_DELALLOC;
1323 else
1324 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1325
75eff68e 1326 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1327 BTRFS_I(inode)->delalloc_bytes += len;
1328 root->fs_info->delalloc_bytes += len;
0cb59c99 1329 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1332 }
75eff68e 1333 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1334 }
1335 return 0;
1336}
1337
d352ac68
CM
1338/*
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 */
9ed74f2d 1341static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1342 struct extent_state *state, int *bits)
291d673e 1343{
75eff68e
CM
1344 /*
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1348 */
0ca1f7ce 1349 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1350 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1351 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1352 int do_list = (root->root_key.objectid !=
1353 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1354
0ca1f7ce
YZ
1355 if (*bits & EXTENT_FIRST_DELALLOC)
1356 *bits &= ~EXTENT_FIRST_DELALLOC;
1357 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360 if (*bits & EXTENT_DO_ACCOUNTING)
1361 btrfs_delalloc_release_metadata(inode, len);
1362
0cb59c99
JB
1363 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364 && do_list)
0ca1f7ce 1365 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1366
75eff68e 1367 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1368 root->fs_info->delalloc_bytes -= len;
1369 BTRFS_I(inode)->delalloc_bytes -= len;
1370
0cb59c99 1371 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374 }
75eff68e 1375 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1376 }
1377 return 0;
1378}
1379
d352ac68
CM
1380/*
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1383 */
239b14b3 1384int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1385 size_t size, struct bio *bio,
1386 unsigned long bio_flags)
239b14b3
CM
1387{
1388 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389 struct btrfs_mapping_tree *map_tree;
a62b9401 1390 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1391 u64 length = 0;
1392 u64 map_length;
239b14b3
CM
1393 int ret;
1394
771ed689
CM
1395 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 return 0;
1397
f2d8d74d 1398 length = bio->bi_size;
239b14b3
CM
1399 map_tree = &root->fs_info->mapping_tree;
1400 map_length = length;
cea9e445 1401 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1402 &map_length, NULL, 0);
cea9e445 1403
d397712b 1404 if (map_length < length + size)
239b14b3 1405 return 1;
411fc6bc 1406 return ret;
239b14b3
CM
1407}
1408
d352ac68
CM
1409/*
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1413 *
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1416 */
d397712b
CM
1417static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418 struct bio *bio, int mirror_num,
eaf25d93
CM
1419 unsigned long bio_flags,
1420 u64 bio_offset)
065631f6 1421{
065631f6 1422 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1423 int ret = 0;
e015640f 1424
d20f7043 1425 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1426 BUG_ON(ret);
4a69a410
CM
1427 return 0;
1428}
e015640f 1429
4a69a410
CM
1430/*
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1434 *
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1437 */
b2950863 1438static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1439 int mirror_num, unsigned long bio_flags,
1440 u64 bio_offset)
4a69a410
CM
1441{
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1443 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1444}
1445
d352ac68 1446/*
cad321ad
CM
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
d352ac68 1449 */
b2950863 1450static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1451 int mirror_num, unsigned long bio_flags,
1452 u64 bio_offset)
44b8bd7e
CM
1453{
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 int ret = 0;
19b9bdb0 1456 int skip_sum;
44b8bd7e 1457
6cbff00f 1458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1459
0cb59c99
JB
1460 if (root == root->fs_info->tree_root)
1461 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462 else
1463 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1464 BUG_ON(ret);
065631f6 1465
7b6d91da 1466 if (!(rw & REQ_WRITE)) {
d20f7043 1467 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1468 return btrfs_submit_compressed_read(inode, bio,
1469 mirror_num, bio_flags);
d20f7043
CM
1470 } else if (!skip_sum)
1471 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1472 goto mapit;
19b9bdb0 1473 } else if (!skip_sum) {
17d217fe
YZ
1474 /* csum items have already been cloned */
1475 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1476 goto mapit;
19b9bdb0
CM
1477 /* we're doing a write, do the async checksumming */
1478 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1479 inode, rw, bio, mirror_num,
eaf25d93
CM
1480 bio_flags, bio_offset,
1481 __btrfs_submit_bio_start,
4a69a410 1482 __btrfs_submit_bio_done);
19b9bdb0
CM
1483 }
1484
0b86a832 1485mapit:
8b712842 1486 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1487}
6885f308 1488
d352ac68
CM
1489/*
1490 * given a list of ordered sums record them in the inode. This happens
1491 * at IO completion time based on sums calculated at bio submission time.
1492 */
ba1da2f4 1493static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1494 struct inode *inode, u64 file_offset,
1495 struct list_head *list)
1496{
e6dcd2dc
CM
1497 struct btrfs_ordered_sum *sum;
1498
1499 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1500
1501 list_for_each_entry(sum, list, list) {
d20f7043
CM
1502 btrfs_csum_file_blocks(trans,
1503 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1504 }
1505 return 0;
1506}
1507
2ac55d41
JB
1508int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1509 struct extent_state **cached_state)
ea8c2819 1510{
d397712b 1511 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1512 WARN_ON(1);
ea8c2819 1513 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1514 cached_state, GFP_NOFS);
ea8c2819
CM
1515}
1516
d352ac68 1517/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1518struct btrfs_writepage_fixup {
1519 struct page *page;
1520 struct btrfs_work work;
1521};
1522
b2950863 1523static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1524{
1525 struct btrfs_writepage_fixup *fixup;
1526 struct btrfs_ordered_extent *ordered;
2ac55d41 1527 struct extent_state *cached_state = NULL;
247e743c
CM
1528 struct page *page;
1529 struct inode *inode;
1530 u64 page_start;
1531 u64 page_end;
1532
1533 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1534 page = fixup->page;
4a096752 1535again:
247e743c
CM
1536 lock_page(page);
1537 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1538 ClearPageChecked(page);
1539 goto out_page;
1540 }
1541
1542 inode = page->mapping->host;
1543 page_start = page_offset(page);
1544 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1545
2ac55d41
JB
1546 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1547 &cached_state, GFP_NOFS);
4a096752
CM
1548
1549 /* already ordered? We're done */
8b62b72b 1550 if (PagePrivate2(page))
247e743c 1551 goto out;
4a096752
CM
1552
1553 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1554 if (ordered) {
2ac55d41
JB
1555 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1556 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1557 unlock_page(page);
1558 btrfs_start_ordered_extent(inode, ordered, 1);
1559 goto again;
1560 }
247e743c 1561
0ca1f7ce 1562 BUG();
2ac55d41 1563 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1564 ClearPageChecked(page);
1565out:
2ac55d41
JB
1566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1567 &cached_state, GFP_NOFS);
247e743c
CM
1568out_page:
1569 unlock_page(page);
1570 page_cache_release(page);
b897abec 1571 kfree(fixup);
247e743c
CM
1572}
1573
1574/*
1575 * There are a few paths in the higher layers of the kernel that directly
1576 * set the page dirty bit without asking the filesystem if it is a
1577 * good idea. This causes problems because we want to make sure COW
1578 * properly happens and the data=ordered rules are followed.
1579 *
c8b97818 1580 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1581 * hasn't been properly setup for IO. We kick off an async process
1582 * to fix it up. The async helper will wait for ordered extents, set
1583 * the delalloc bit and make it safe to write the page.
1584 */
b2950863 1585static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1586{
1587 struct inode *inode = page->mapping->host;
1588 struct btrfs_writepage_fixup *fixup;
1589 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1590
8b62b72b
CM
1591 /* this page is properly in the ordered list */
1592 if (TestClearPagePrivate2(page))
247e743c
CM
1593 return 0;
1594
1595 if (PageChecked(page))
1596 return -EAGAIN;
1597
1598 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1599 if (!fixup)
1600 return -EAGAIN;
f421950f 1601
247e743c
CM
1602 SetPageChecked(page);
1603 page_cache_get(page);
1604 fixup->work.func = btrfs_writepage_fixup_worker;
1605 fixup->page = page;
1606 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1607 return -EAGAIN;
1608}
1609
d899e052
YZ
1610static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1611 struct inode *inode, u64 file_pos,
1612 u64 disk_bytenr, u64 disk_num_bytes,
1613 u64 num_bytes, u64 ram_bytes,
1614 u8 compression, u8 encryption,
1615 u16 other_encoding, int extent_type)
1616{
1617 struct btrfs_root *root = BTRFS_I(inode)->root;
1618 struct btrfs_file_extent_item *fi;
1619 struct btrfs_path *path;
1620 struct extent_buffer *leaf;
1621 struct btrfs_key ins;
1622 u64 hint;
1623 int ret;
1624
1625 path = btrfs_alloc_path();
1626 BUG_ON(!path);
1627
b9473439 1628 path->leave_spinning = 1;
a1ed835e
CM
1629
1630 /*
1631 * we may be replacing one extent in the tree with another.
1632 * The new extent is pinned in the extent map, and we don't want
1633 * to drop it from the cache until it is completely in the btree.
1634 *
1635 * So, tell btrfs_drop_extents to leave this extent in the cache.
1636 * the caller is expected to unpin it and allow it to be merged
1637 * with the others.
1638 */
920bbbfb
YZ
1639 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1640 &hint, 0);
d899e052
YZ
1641 BUG_ON(ret);
1642
1643 ins.objectid = inode->i_ino;
1644 ins.offset = file_pos;
1645 ins.type = BTRFS_EXTENT_DATA_KEY;
1646 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1647 BUG_ON(ret);
1648 leaf = path->nodes[0];
1649 fi = btrfs_item_ptr(leaf, path->slots[0],
1650 struct btrfs_file_extent_item);
1651 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1652 btrfs_set_file_extent_type(leaf, fi, extent_type);
1653 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1654 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1655 btrfs_set_file_extent_offset(leaf, fi, 0);
1656 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1657 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1658 btrfs_set_file_extent_compression(leaf, fi, compression);
1659 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1660 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1661
1662 btrfs_unlock_up_safe(path, 1);
1663 btrfs_set_lock_blocking(leaf);
1664
d899e052
YZ
1665 btrfs_mark_buffer_dirty(leaf);
1666
1667 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1668
1669 ins.objectid = disk_bytenr;
1670 ins.offset = disk_num_bytes;
1671 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1672 ret = btrfs_alloc_reserved_file_extent(trans, root,
1673 root->root_key.objectid,
1674 inode->i_ino, file_pos, &ins);
d899e052 1675 BUG_ON(ret);
d899e052 1676 btrfs_free_path(path);
b9473439 1677
d899e052
YZ
1678 return 0;
1679}
1680
5d13a98f
CM
1681/*
1682 * helper function for btrfs_finish_ordered_io, this
1683 * just reads in some of the csum leaves to prime them into ram
1684 * before we start the transaction. It limits the amount of btree
1685 * reads required while inside the transaction.
1686 */
d352ac68
CM
1687/* as ordered data IO finishes, this gets called so we can finish
1688 * an ordered extent if the range of bytes in the file it covers are
1689 * fully written.
1690 */
211f90e6 1691static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1692{
e6dcd2dc 1693 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1694 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1695 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1696 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1697 struct extent_state *cached_state = NULL;
261507a0 1698 int compress_type = 0;
e6dcd2dc 1699 int ret;
0cb59c99 1700 bool nolock = false;
e6dcd2dc 1701
5a1a3df1
JB
1702 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1703 end - start + 1);
ba1da2f4 1704 if (!ret)
e6dcd2dc 1705 return 0;
e6dcd2dc 1706 BUG_ON(!ordered_extent);
efd049fb 1707
0cb59c99
JB
1708 nolock = (root == root->fs_info->tree_root);
1709
c2167754
YZ
1710 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1711 BUG_ON(!list_empty(&ordered_extent->list));
1712 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1713 if (!ret) {
0cb59c99
JB
1714 if (nolock)
1715 trans = btrfs_join_transaction_nolock(root, 1);
1716 else
1717 trans = btrfs_join_transaction(root, 1);
3612b495 1718 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1719 btrfs_set_trans_block_group(trans, inode);
1720 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1721 ret = btrfs_update_inode(trans, root, inode);
1722 BUG_ON(ret);
c2167754
YZ
1723 }
1724 goto out;
1725 }
e6dcd2dc 1726
2ac55d41
JB
1727 lock_extent_bits(io_tree, ordered_extent->file_offset,
1728 ordered_extent->file_offset + ordered_extent->len - 1,
1729 0, &cached_state, GFP_NOFS);
e6dcd2dc 1730
0cb59c99
JB
1731 if (nolock)
1732 trans = btrfs_join_transaction_nolock(root, 1);
1733 else
1734 trans = btrfs_join_transaction(root, 1);
3612b495 1735 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1736 btrfs_set_trans_block_group(trans, inode);
1737 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1738
c8b97818 1739 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1740 compress_type = ordered_extent->compress_type;
d899e052 1741 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1742 BUG_ON(compress_type);
920bbbfb 1743 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1744 ordered_extent->file_offset,
1745 ordered_extent->file_offset +
1746 ordered_extent->len);
1747 BUG_ON(ret);
1748 } else {
0af3d00b 1749 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1750 ret = insert_reserved_file_extent(trans, inode,
1751 ordered_extent->file_offset,
1752 ordered_extent->start,
1753 ordered_extent->disk_len,
1754 ordered_extent->len,
1755 ordered_extent->len,
261507a0 1756 compress_type, 0, 0,
d899e052 1757 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1758 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1759 ordered_extent->file_offset,
1760 ordered_extent->len);
d899e052
YZ
1761 BUG_ON(ret);
1762 }
2ac55d41
JB
1763 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1764 ordered_extent->file_offset +
1765 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1766
e6dcd2dc
CM
1767 add_pending_csums(trans, inode, ordered_extent->file_offset,
1768 &ordered_extent->list);
1769
c2167754
YZ
1770 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1771 ret = btrfs_update_inode(trans, root, inode);
1772 BUG_ON(ret);
c2167754 1773out:
0cb59c99
JB
1774 if (nolock) {
1775 if (trans)
1776 btrfs_end_transaction_nolock(trans, root);
1777 } else {
1778 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1779 if (trans)
1780 btrfs_end_transaction(trans, root);
1781 }
1782
e6dcd2dc
CM
1783 /* once for us */
1784 btrfs_put_ordered_extent(ordered_extent);
1785 /* once for the tree */
1786 btrfs_put_ordered_extent(ordered_extent);
1787
e6dcd2dc
CM
1788 return 0;
1789}
1790
b2950863 1791static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1792 struct extent_state *state, int uptodate)
1793{
1abe9b8a 1794 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1795
8b62b72b 1796 ClearPagePrivate2(page);
211f90e6
CM
1797 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1798}
1799
d352ac68
CM
1800/*
1801 * When IO fails, either with EIO or csum verification fails, we
1802 * try other mirrors that might have a good copy of the data. This
1803 * io_failure_record is used to record state as we go through all the
1804 * mirrors. If another mirror has good data, the page is set up to date
1805 * and things continue. If a good mirror can't be found, the original
1806 * bio end_io callback is called to indicate things have failed.
1807 */
7e38326f
CM
1808struct io_failure_record {
1809 struct page *page;
1810 u64 start;
1811 u64 len;
1812 u64 logical;
d20f7043 1813 unsigned long bio_flags;
7e38326f
CM
1814 int last_mirror;
1815};
1816
b2950863 1817static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1818 struct page *page, u64 start, u64 end,
1819 struct extent_state *state)
7e38326f
CM
1820{
1821 struct io_failure_record *failrec = NULL;
1822 u64 private;
1823 struct extent_map *em;
1824 struct inode *inode = page->mapping->host;
1825 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1826 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1827 struct bio *bio;
1828 int num_copies;
1829 int ret;
1259ab75 1830 int rw;
7e38326f
CM
1831 u64 logical;
1832
1833 ret = get_state_private(failure_tree, start, &private);
1834 if (ret) {
7e38326f
CM
1835 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1836 if (!failrec)
1837 return -ENOMEM;
1838 failrec->start = start;
1839 failrec->len = end - start + 1;
1840 failrec->last_mirror = 0;
d20f7043 1841 failrec->bio_flags = 0;
7e38326f 1842
890871be 1843 read_lock(&em_tree->lock);
3b951516
CM
1844 em = lookup_extent_mapping(em_tree, start, failrec->len);
1845 if (em->start > start || em->start + em->len < start) {
1846 free_extent_map(em);
1847 em = NULL;
1848 }
890871be 1849 read_unlock(&em_tree->lock);
7e38326f
CM
1850
1851 if (!em || IS_ERR(em)) {
1852 kfree(failrec);
1853 return -EIO;
1854 }
1855 logical = start - em->start;
1856 logical = em->block_start + logical;
d20f7043
CM
1857 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1858 logical = em->block_start;
1859 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1860 extent_set_compress_type(&failrec->bio_flags,
1861 em->compress_type);
d20f7043 1862 }
7e38326f
CM
1863 failrec->logical = logical;
1864 free_extent_map(em);
1865 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1866 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1867 set_state_private(failure_tree, start,
1868 (u64)(unsigned long)failrec);
7e38326f 1869 } else {
587f7704 1870 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1871 }
1872 num_copies = btrfs_num_copies(
1873 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1874 failrec->logical, failrec->len);
1875 failrec->last_mirror++;
1876 if (!state) {
cad321ad 1877 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1878 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1879 failrec->start,
1880 EXTENT_LOCKED);
1881 if (state && state->start != failrec->start)
1882 state = NULL;
cad321ad 1883 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1884 }
1885 if (!state || failrec->last_mirror > num_copies) {
1886 set_state_private(failure_tree, failrec->start, 0);
1887 clear_extent_bits(failure_tree, failrec->start,
1888 failrec->start + failrec->len - 1,
1889 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1890 kfree(failrec);
1891 return -EIO;
1892 }
1893 bio = bio_alloc(GFP_NOFS, 1);
1894 bio->bi_private = state;
1895 bio->bi_end_io = failed_bio->bi_end_io;
1896 bio->bi_sector = failrec->logical >> 9;
1897 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1898 bio->bi_size = 0;
d20f7043 1899
7e38326f 1900 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1901 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1902 rw = WRITE;
1903 else
1904 rw = READ;
1905
1906 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1907 failrec->last_mirror,
eaf25d93 1908 failrec->bio_flags, 0);
1259ab75
CM
1909 return 0;
1910}
1911
d352ac68
CM
1912/*
1913 * each time an IO finishes, we do a fast check in the IO failure tree
1914 * to see if we need to process or clean up an io_failure_record
1915 */
b2950863 1916static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1917{
1918 u64 private;
1919 u64 private_failure;
1920 struct io_failure_record *failure;
1921 int ret;
1922
1923 private = 0;
1924 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1925 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1926 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1927 start, &private_failure);
1928 if (ret == 0) {
1929 failure = (struct io_failure_record *)(unsigned long)
1930 private_failure;
1931 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1932 failure->start, 0);
1933 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1934 failure->start,
1935 failure->start + failure->len - 1,
1936 EXTENT_DIRTY | EXTENT_LOCKED,
1937 GFP_NOFS);
1938 kfree(failure);
1939 }
1940 }
7e38326f
CM
1941 return 0;
1942}
1943
d352ac68
CM
1944/*
1945 * when reads are done, we need to check csums to verify the data is correct
1946 * if there's a match, we allow the bio to finish. If not, we go through
1947 * the io_failure_record routines to find good copies
1948 */
b2950863 1949static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1950 struct extent_state *state)
07157aac 1951{
35ebb934 1952 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1953 struct inode *inode = page->mapping->host;
d1310b2e 1954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1955 char *kaddr;
aadfeb6e 1956 u64 private = ~(u32)0;
07157aac 1957 int ret;
ff79f819
CM
1958 struct btrfs_root *root = BTRFS_I(inode)->root;
1959 u32 csum = ~(u32)0;
d1310b2e 1960
d20f7043
CM
1961 if (PageChecked(page)) {
1962 ClearPageChecked(page);
1963 goto good;
1964 }
6cbff00f
CH
1965
1966 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1967 return 0;
1968
1969 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1970 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1971 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1972 GFP_NOFS);
b6cda9bc 1973 return 0;
17d217fe 1974 }
d20f7043 1975
c2e639f0 1976 if (state && state->start == start) {
70dec807
CM
1977 private = state->private;
1978 ret = 0;
1979 } else {
1980 ret = get_state_private(io_tree, start, &private);
1981 }
9ab86c8e 1982 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1983 if (ret)
07157aac 1984 goto zeroit;
d397712b 1985
ff79f819
CM
1986 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1987 btrfs_csum_final(csum, (char *)&csum);
d397712b 1988 if (csum != private)
07157aac 1989 goto zeroit;
d397712b 1990
9ab86c8e 1991 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1992good:
7e38326f
CM
1993 /* if the io failure tree for this inode is non-empty,
1994 * check to see if we've recovered from a failed IO
1995 */
1259ab75 1996 btrfs_clean_io_failures(inode, start);
07157aac
CM
1997 return 0;
1998
1999zeroit:
193f284d
CM
2000 if (printk_ratelimit()) {
2001 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2002 "private %llu\n", page->mapping->host->i_ino,
2003 (unsigned long long)start, csum,
2004 (unsigned long long)private);
2005 }
db94535d
CM
2006 memset(kaddr + offset, 1, end - start + 1);
2007 flush_dcache_page(page);
9ab86c8e 2008 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2009 if (private == 0)
2010 return 0;
7e38326f 2011 return -EIO;
07157aac 2012}
b888db2b 2013
24bbcf04
YZ
2014struct delayed_iput {
2015 struct list_head list;
2016 struct inode *inode;
2017};
2018
2019void btrfs_add_delayed_iput(struct inode *inode)
2020{
2021 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2022 struct delayed_iput *delayed;
2023
2024 if (atomic_add_unless(&inode->i_count, -1, 1))
2025 return;
2026
2027 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2028 delayed->inode = inode;
2029
2030 spin_lock(&fs_info->delayed_iput_lock);
2031 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2032 spin_unlock(&fs_info->delayed_iput_lock);
2033}
2034
2035void btrfs_run_delayed_iputs(struct btrfs_root *root)
2036{
2037 LIST_HEAD(list);
2038 struct btrfs_fs_info *fs_info = root->fs_info;
2039 struct delayed_iput *delayed;
2040 int empty;
2041
2042 spin_lock(&fs_info->delayed_iput_lock);
2043 empty = list_empty(&fs_info->delayed_iputs);
2044 spin_unlock(&fs_info->delayed_iput_lock);
2045 if (empty)
2046 return;
2047
2048 down_read(&root->fs_info->cleanup_work_sem);
2049 spin_lock(&fs_info->delayed_iput_lock);
2050 list_splice_init(&fs_info->delayed_iputs, &list);
2051 spin_unlock(&fs_info->delayed_iput_lock);
2052
2053 while (!list_empty(&list)) {
2054 delayed = list_entry(list.next, struct delayed_iput, list);
2055 list_del(&delayed->list);
2056 iput(delayed->inode);
2057 kfree(delayed);
2058 }
2059 up_read(&root->fs_info->cleanup_work_sem);
2060}
2061
d68fc57b
YZ
2062/*
2063 * calculate extra metadata reservation when snapshotting a subvolume
2064 * contains orphan files.
2065 */
2066void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2067 struct btrfs_pending_snapshot *pending,
2068 u64 *bytes_to_reserve)
2069{
2070 struct btrfs_root *root;
2071 struct btrfs_block_rsv *block_rsv;
2072 u64 num_bytes;
2073 int index;
2074
2075 root = pending->root;
2076 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2077 return;
2078
2079 block_rsv = root->orphan_block_rsv;
2080
2081 /* orphan block reservation for the snapshot */
2082 num_bytes = block_rsv->size;
2083
2084 /*
2085 * after the snapshot is created, COWing tree blocks may use more
2086 * space than it frees. So we should make sure there is enough
2087 * reserved space.
2088 */
2089 index = trans->transid & 0x1;
2090 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2091 num_bytes += block_rsv->size -
2092 (block_rsv->reserved + block_rsv->freed[index]);
2093 }
2094
2095 *bytes_to_reserve += num_bytes;
2096}
2097
2098void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2099 struct btrfs_pending_snapshot *pending)
2100{
2101 struct btrfs_root *root = pending->root;
2102 struct btrfs_root *snap = pending->snap;
2103 struct btrfs_block_rsv *block_rsv;
2104 u64 num_bytes;
2105 int index;
2106 int ret;
2107
2108 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2109 return;
2110
2111 /* refill source subvolume's orphan block reservation */
2112 block_rsv = root->orphan_block_rsv;
2113 index = trans->transid & 0x1;
2114 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2115 num_bytes = block_rsv->size -
2116 (block_rsv->reserved + block_rsv->freed[index]);
2117 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2118 root->orphan_block_rsv,
2119 num_bytes);
2120 BUG_ON(ret);
2121 }
2122
2123 /* setup orphan block reservation for the snapshot */
2124 block_rsv = btrfs_alloc_block_rsv(snap);
2125 BUG_ON(!block_rsv);
2126
2127 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2128 snap->orphan_block_rsv = block_rsv;
2129
2130 num_bytes = root->orphan_block_rsv->size;
2131 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2132 block_rsv, num_bytes);
2133 BUG_ON(ret);
2134
2135#if 0
2136 /* insert orphan item for the snapshot */
2137 WARN_ON(!root->orphan_item_inserted);
2138 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2139 snap->root_key.objectid);
2140 BUG_ON(ret);
2141 snap->orphan_item_inserted = 1;
2142#endif
2143}
2144
2145enum btrfs_orphan_cleanup_state {
2146 ORPHAN_CLEANUP_STARTED = 1,
2147 ORPHAN_CLEANUP_DONE = 2,
2148};
2149
2150/*
2151 * This is called in transaction commmit time. If there are no orphan
2152 * files in the subvolume, it removes orphan item and frees block_rsv
2153 * structure.
2154 */
2155void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2156 struct btrfs_root *root)
2157{
2158 int ret;
2159
2160 if (!list_empty(&root->orphan_list) ||
2161 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2162 return;
2163
2164 if (root->orphan_item_inserted &&
2165 btrfs_root_refs(&root->root_item) > 0) {
2166 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2167 root->root_key.objectid);
2168 BUG_ON(ret);
2169 root->orphan_item_inserted = 0;
2170 }
2171
2172 if (root->orphan_block_rsv) {
2173 WARN_ON(root->orphan_block_rsv->size > 0);
2174 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2175 root->orphan_block_rsv = NULL;
2176 }
2177}
2178
7b128766
JB
2179/*
2180 * This creates an orphan entry for the given inode in case something goes
2181 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2182 *
2183 * NOTE: caller of this function should reserve 5 units of metadata for
2184 * this function.
7b128766
JB
2185 */
2186int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2187{
2188 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2189 struct btrfs_block_rsv *block_rsv = NULL;
2190 int reserve = 0;
2191 int insert = 0;
2192 int ret;
7b128766 2193
d68fc57b
YZ
2194 if (!root->orphan_block_rsv) {
2195 block_rsv = btrfs_alloc_block_rsv(root);
2196 BUG_ON(!block_rsv);
2197 }
7b128766 2198
d68fc57b
YZ
2199 spin_lock(&root->orphan_lock);
2200 if (!root->orphan_block_rsv) {
2201 root->orphan_block_rsv = block_rsv;
2202 } else if (block_rsv) {
2203 btrfs_free_block_rsv(root, block_rsv);
2204 block_rsv = NULL;
7b128766 2205 }
7b128766 2206
d68fc57b
YZ
2207 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2208 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2209#if 0
2210 /*
2211 * For proper ENOSPC handling, we should do orphan
2212 * cleanup when mounting. But this introduces backward
2213 * compatibility issue.
2214 */
2215 if (!xchg(&root->orphan_item_inserted, 1))
2216 insert = 2;
2217 else
2218 insert = 1;
2219#endif
2220 insert = 1;
2221 } else {
2222 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2223 }
2224
d68fc57b
YZ
2225 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2226 BTRFS_I(inode)->orphan_meta_reserved = 1;
2227 reserve = 1;
2228 }
2229 spin_unlock(&root->orphan_lock);
7b128766 2230
d68fc57b
YZ
2231 if (block_rsv)
2232 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2233
d68fc57b
YZ
2234 /* grab metadata reservation from transaction handle */
2235 if (reserve) {
2236 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237 BUG_ON(ret);
2238 }
7b128766 2239
d68fc57b
YZ
2240 /* insert an orphan item to track this unlinked/truncated file */
2241 if (insert >= 1) {
2242 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2243 BUG_ON(ret);
2244 }
2245
2246 /* insert an orphan item to track subvolume contains orphan files */
2247 if (insert >= 2) {
2248 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2249 root->root_key.objectid);
2250 BUG_ON(ret);
2251 }
2252 return 0;
7b128766
JB
2253}
2254
2255/*
2256 * We have done the truncate/delete so we can go ahead and remove the orphan
2257 * item for this particular inode.
2258 */
2259int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2260{
2261 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2262 int delete_item = 0;
2263 int release_rsv = 0;
7b128766
JB
2264 int ret = 0;
2265
d68fc57b
YZ
2266 spin_lock(&root->orphan_lock);
2267 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2268 list_del_init(&BTRFS_I(inode)->i_orphan);
2269 delete_item = 1;
7b128766
JB
2270 }
2271
d68fc57b
YZ
2272 if (BTRFS_I(inode)->orphan_meta_reserved) {
2273 BTRFS_I(inode)->orphan_meta_reserved = 0;
2274 release_rsv = 1;
7b128766 2275 }
d68fc57b 2276 spin_unlock(&root->orphan_lock);
7b128766 2277
d68fc57b
YZ
2278 if (trans && delete_item) {
2279 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2280 BUG_ON(ret);
2281 }
7b128766 2282
d68fc57b
YZ
2283 if (release_rsv)
2284 btrfs_orphan_release_metadata(inode);
7b128766 2285
d68fc57b 2286 return 0;
7b128766
JB
2287}
2288
2289/*
2290 * this cleans up any orphans that may be left on the list from the last use
2291 * of this root.
2292 */
66b4ffd1 2293int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2294{
2295 struct btrfs_path *path;
2296 struct extent_buffer *leaf;
7b128766
JB
2297 struct btrfs_key key, found_key;
2298 struct btrfs_trans_handle *trans;
2299 struct inode *inode;
2300 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2301
d68fc57b 2302 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2303 return 0;
c71bf099
YZ
2304
2305 path = btrfs_alloc_path();
66b4ffd1
JB
2306 if (!path) {
2307 ret = -ENOMEM;
2308 goto out;
2309 }
7b128766
JB
2310 path->reada = -1;
2311
2312 key.objectid = BTRFS_ORPHAN_OBJECTID;
2313 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2314 key.offset = (u64)-1;
2315
7b128766
JB
2316 while (1) {
2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2318 if (ret < 0)
2319 goto out;
7b128766
JB
2320
2321 /*
2322 * if ret == 0 means we found what we were searching for, which
2323 * is weird, but possible, so only screw with path if we didnt
2324 * find the key and see if we have stuff that matches
2325 */
2326 if (ret > 0) {
66b4ffd1 2327 ret = 0;
7b128766
JB
2328 if (path->slots[0] == 0)
2329 break;
2330 path->slots[0]--;
2331 }
2332
2333 /* pull out the item */
2334 leaf = path->nodes[0];
7b128766
JB
2335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2336
2337 /* make sure the item matches what we want */
2338 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2339 break;
2340 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2341 break;
2342
2343 /* release the path since we're done with it */
2344 btrfs_release_path(root, path);
2345
2346 /*
2347 * this is where we are basically btrfs_lookup, without the
2348 * crossing root thing. we store the inode number in the
2349 * offset of the orphan item.
2350 */
5d4f98a2
YZ
2351 found_key.objectid = found_key.offset;
2352 found_key.type = BTRFS_INODE_ITEM_KEY;
2353 found_key.offset = 0;
73f73415 2354 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2355 if (IS_ERR(inode)) {
2356 ret = PTR_ERR(inode);
2357 goto out;
2358 }
7b128766 2359
7b128766
JB
2360 /*
2361 * add this inode to the orphan list so btrfs_orphan_del does
2362 * the proper thing when we hit it
2363 */
d68fc57b 2364 spin_lock(&root->orphan_lock);
7b128766 2365 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2366 spin_unlock(&root->orphan_lock);
7b128766
JB
2367
2368 /*
2369 * if this is a bad inode, means we actually succeeded in
2370 * removing the inode, but not the orphan record, which means
2371 * we need to manually delete the orphan since iput will just
2372 * do a destroy_inode
2373 */
2374 if (is_bad_inode(inode)) {
a22285a6 2375 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2376 if (IS_ERR(trans)) {
2377 ret = PTR_ERR(trans);
2378 goto out;
2379 }
7b128766 2380 btrfs_orphan_del(trans, inode);
5b21f2ed 2381 btrfs_end_transaction(trans, root);
7b128766
JB
2382 iput(inode);
2383 continue;
2384 }
2385
2386 /* if we have links, this was a truncate, lets do that */
2387 if (inode->i_nlink) {
a41ad394
JB
2388 if (!S_ISREG(inode->i_mode)) {
2389 WARN_ON(1);
2390 iput(inode);
2391 continue;
2392 }
7b128766 2393 nr_truncate++;
66b4ffd1 2394 ret = btrfs_truncate(inode);
7b128766
JB
2395 } else {
2396 nr_unlink++;
2397 }
2398
2399 /* this will do delete_inode and everything for us */
2400 iput(inode);
66b4ffd1
JB
2401 if (ret)
2402 goto out;
7b128766 2403 }
d68fc57b
YZ
2404 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2405
2406 if (root->orphan_block_rsv)
2407 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2408 (u64)-1);
2409
2410 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2411 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2412 if (!IS_ERR(trans))
2413 btrfs_end_transaction(trans, root);
d68fc57b 2414 }
7b128766
JB
2415
2416 if (nr_unlink)
2417 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2418 if (nr_truncate)
2419 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2420
2421out:
2422 if (ret)
2423 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2424 btrfs_free_path(path);
2425 return ret;
7b128766
JB
2426}
2427
46a53cca
CM
2428/*
2429 * very simple check to peek ahead in the leaf looking for xattrs. If we
2430 * don't find any xattrs, we know there can't be any acls.
2431 *
2432 * slot is the slot the inode is in, objectid is the objectid of the inode
2433 */
2434static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2435 int slot, u64 objectid)
2436{
2437 u32 nritems = btrfs_header_nritems(leaf);
2438 struct btrfs_key found_key;
2439 int scanned = 0;
2440
2441 slot++;
2442 while (slot < nritems) {
2443 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2444
2445 /* we found a different objectid, there must not be acls */
2446 if (found_key.objectid != objectid)
2447 return 0;
2448
2449 /* we found an xattr, assume we've got an acl */
2450 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2451 return 1;
2452
2453 /*
2454 * we found a key greater than an xattr key, there can't
2455 * be any acls later on
2456 */
2457 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2458 return 0;
2459
2460 slot++;
2461 scanned++;
2462
2463 /*
2464 * it goes inode, inode backrefs, xattrs, extents,
2465 * so if there are a ton of hard links to an inode there can
2466 * be a lot of backrefs. Don't waste time searching too hard,
2467 * this is just an optimization
2468 */
2469 if (scanned >= 8)
2470 break;
2471 }
2472 /* we hit the end of the leaf before we found an xattr or
2473 * something larger than an xattr. We have to assume the inode
2474 * has acls
2475 */
2476 return 1;
2477}
2478
d352ac68
CM
2479/*
2480 * read an inode from the btree into the in-memory inode
2481 */
5d4f98a2 2482static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2483{
2484 struct btrfs_path *path;
5f39d397 2485 struct extent_buffer *leaf;
39279cc3 2486 struct btrfs_inode_item *inode_item;
0b86a832 2487 struct btrfs_timespec *tspec;
39279cc3
CM
2488 struct btrfs_root *root = BTRFS_I(inode)->root;
2489 struct btrfs_key location;
46a53cca 2490 int maybe_acls;
39279cc3 2491 u64 alloc_group_block;
618e21d5 2492 u32 rdev;
39279cc3
CM
2493 int ret;
2494
2495 path = btrfs_alloc_path();
2496 BUG_ON(!path);
39279cc3 2497 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2498
39279cc3 2499 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2500 if (ret)
39279cc3 2501 goto make_bad;
39279cc3 2502
5f39d397
CM
2503 leaf = path->nodes[0];
2504 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2505 struct btrfs_inode_item);
2506
2507 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2508 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2509 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2510 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2511 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2512
2513 tspec = btrfs_inode_atime(inode_item);
2514 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517 tspec = btrfs_inode_mtime(inode_item);
2518 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521 tspec = btrfs_inode_ctime(inode_item);
2522 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
a76a3cd4 2525 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2526 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2527 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2528 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2529 inode->i_rdev = 0;
5f39d397
CM
2530 rdev = btrfs_inode_rdev(leaf, inode_item);
2531
aec7477b 2532 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2533 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2534
5f39d397 2535 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2536
46a53cca
CM
2537 /*
2538 * try to precache a NULL acl entry for files that don't have
2539 * any xattrs or acls
2540 */
2541 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2542 if (!maybe_acls)
2543 cache_no_acl(inode);
46a53cca 2544
d2fb3437
YZ
2545 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2546 alloc_group_block, 0);
39279cc3
CM
2547 btrfs_free_path(path);
2548 inode_item = NULL;
2549
39279cc3 2550 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2551 case S_IFREG:
2552 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2553 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2554 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2555 inode->i_fop = &btrfs_file_operations;
2556 inode->i_op = &btrfs_file_inode_operations;
2557 break;
2558 case S_IFDIR:
2559 inode->i_fop = &btrfs_dir_file_operations;
2560 if (root == root->fs_info->tree_root)
2561 inode->i_op = &btrfs_dir_ro_inode_operations;
2562 else
2563 inode->i_op = &btrfs_dir_inode_operations;
2564 break;
2565 case S_IFLNK:
2566 inode->i_op = &btrfs_symlink_inode_operations;
2567 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2568 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2569 break;
618e21d5 2570 default:
0279b4cd 2571 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2572 init_special_inode(inode, inode->i_mode, rdev);
2573 break;
39279cc3 2574 }
6cbff00f
CH
2575
2576 btrfs_update_iflags(inode);
39279cc3
CM
2577 return;
2578
2579make_bad:
39279cc3 2580 btrfs_free_path(path);
39279cc3
CM
2581 make_bad_inode(inode);
2582}
2583
d352ac68
CM
2584/*
2585 * given a leaf and an inode, copy the inode fields into the leaf
2586 */
e02119d5
CM
2587static void fill_inode_item(struct btrfs_trans_handle *trans,
2588 struct extent_buffer *leaf,
5f39d397 2589 struct btrfs_inode_item *item,
39279cc3
CM
2590 struct inode *inode)
2591{
5f39d397
CM
2592 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2593 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2594 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2595 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2596 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2597
2598 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2599 inode->i_atime.tv_sec);
2600 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2601 inode->i_atime.tv_nsec);
2602
2603 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2604 inode->i_mtime.tv_sec);
2605 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2606 inode->i_mtime.tv_nsec);
2607
2608 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2609 inode->i_ctime.tv_sec);
2610 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2611 inode->i_ctime.tv_nsec);
2612
a76a3cd4 2613 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2614 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2615 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2616 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2617 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2618 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2619 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2620}
2621
d352ac68
CM
2622/*
2623 * copy everything in the in-memory inode into the btree.
2624 */
d397712b
CM
2625noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2627{
2628 struct btrfs_inode_item *inode_item;
2629 struct btrfs_path *path;
5f39d397 2630 struct extent_buffer *leaf;
39279cc3
CM
2631 int ret;
2632
2633 path = btrfs_alloc_path();
2634 BUG_ON(!path);
b9473439 2635 path->leave_spinning = 1;
39279cc3
CM
2636 ret = btrfs_lookup_inode(trans, root, path,
2637 &BTRFS_I(inode)->location, 1);
2638 if (ret) {
2639 if (ret > 0)
2640 ret = -ENOENT;
2641 goto failed;
2642 }
2643
b4ce94de 2644 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2645 leaf = path->nodes[0];
2646 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2647 struct btrfs_inode_item);
2648
e02119d5 2649 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2650 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2651 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2652 ret = 0;
2653failed:
39279cc3
CM
2654 btrfs_free_path(path);
2655 return ret;
2656}
2657
2658
d352ac68
CM
2659/*
2660 * unlink helper that gets used here in inode.c and in the tree logging
2661 * recovery code. It remove a link in a directory with a given name, and
2662 * also drops the back refs in the inode to the directory
2663 */
e02119d5
CM
2664int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2665 struct btrfs_root *root,
2666 struct inode *dir, struct inode *inode,
2667 const char *name, int name_len)
39279cc3
CM
2668{
2669 struct btrfs_path *path;
39279cc3 2670 int ret = 0;
5f39d397 2671 struct extent_buffer *leaf;
39279cc3 2672 struct btrfs_dir_item *di;
5f39d397 2673 struct btrfs_key key;
aec7477b 2674 u64 index;
39279cc3
CM
2675
2676 path = btrfs_alloc_path();
54aa1f4d
CM
2677 if (!path) {
2678 ret = -ENOMEM;
554233a6 2679 goto out;
54aa1f4d
CM
2680 }
2681
b9473439 2682 path->leave_spinning = 1;
39279cc3
CM
2683 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2684 name, name_len, -1);
2685 if (IS_ERR(di)) {
2686 ret = PTR_ERR(di);
2687 goto err;
2688 }
2689 if (!di) {
2690 ret = -ENOENT;
2691 goto err;
2692 }
5f39d397
CM
2693 leaf = path->nodes[0];
2694 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2695 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2696 if (ret)
2697 goto err;
39279cc3
CM
2698 btrfs_release_path(root, path);
2699
aec7477b 2700 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2701 inode->i_ino,
2702 dir->i_ino, &index);
aec7477b 2703 if (ret) {
d397712b 2704 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2705 "inode %lu parent %lu\n", name_len, name,
e02119d5 2706 inode->i_ino, dir->i_ino);
aec7477b
JB
2707 goto err;
2708 }
2709
39279cc3 2710 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2711 index, name, name_len, -1);
39279cc3
CM
2712 if (IS_ERR(di)) {
2713 ret = PTR_ERR(di);
2714 goto err;
2715 }
2716 if (!di) {
2717 ret = -ENOENT;
2718 goto err;
2719 }
2720 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2721 btrfs_release_path(root, path);
39279cc3 2722
e02119d5
CM
2723 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2724 inode, dir->i_ino);
49eb7e46 2725 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2726
2727 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2728 dir, index);
6418c961
CM
2729 if (ret == -ENOENT)
2730 ret = 0;
39279cc3
CM
2731err:
2732 btrfs_free_path(path);
e02119d5
CM
2733 if (ret)
2734 goto out;
2735
2736 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2737 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2738 btrfs_update_inode(trans, root, dir);
2739 btrfs_drop_nlink(inode);
2740 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2741out:
39279cc3
CM
2742 return ret;
2743}
2744
a22285a6
YZ
2745/* helper to check if there is any shared block in the path */
2746static int check_path_shared(struct btrfs_root *root,
2747 struct btrfs_path *path)
39279cc3 2748{
a22285a6
YZ
2749 struct extent_buffer *eb;
2750 int level;
0e4dcbef 2751 u64 refs = 1;
5df6a9f6 2752
a22285a6 2753 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2754 int ret;
2755
a22285a6
YZ
2756 if (!path->nodes[level])
2757 break;
2758 eb = path->nodes[level];
2759 if (!btrfs_block_can_be_shared(root, eb))
2760 continue;
2761 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2762 &refs, NULL);
2763 if (refs > 1)
2764 return 1;
5df6a9f6 2765 }
dedefd72 2766 return 0;
39279cc3
CM
2767}
2768
a22285a6
YZ
2769/*
2770 * helper to start transaction for unlink and rmdir.
2771 *
2772 * unlink and rmdir are special in btrfs, they do not always free space.
2773 * so in enospc case, we should make sure they will free space before
2774 * allowing them to use the global metadata reservation.
2775 */
2776static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2777 struct dentry *dentry)
4df27c4d 2778{
39279cc3 2779 struct btrfs_trans_handle *trans;
a22285a6 2780 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2781 struct btrfs_path *path;
a22285a6 2782 struct btrfs_inode_ref *ref;
4df27c4d 2783 struct btrfs_dir_item *di;
7b128766 2784 struct inode *inode = dentry->d_inode;
4df27c4d 2785 u64 index;
a22285a6
YZ
2786 int check_link = 1;
2787 int err = -ENOSPC;
4df27c4d
YZ
2788 int ret;
2789
a22285a6
YZ
2790 trans = btrfs_start_transaction(root, 10);
2791 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2792 return trans;
4df27c4d 2793
a22285a6
YZ
2794 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2795 return ERR_PTR(-ENOSPC);
4df27c4d 2796
a22285a6
YZ
2797 /* check if there is someone else holds reference */
2798 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2799 return ERR_PTR(-ENOSPC);
4df27c4d 2800
a22285a6
YZ
2801 if (atomic_read(&inode->i_count) > 2)
2802 return ERR_PTR(-ENOSPC);
4df27c4d 2803
a22285a6
YZ
2804 if (xchg(&root->fs_info->enospc_unlink, 1))
2805 return ERR_PTR(-ENOSPC);
2806
2807 path = btrfs_alloc_path();
2808 if (!path) {
2809 root->fs_info->enospc_unlink = 0;
2810 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2811 }
2812
a22285a6 2813 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2814 if (IS_ERR(trans)) {
a22285a6
YZ
2815 btrfs_free_path(path);
2816 root->fs_info->enospc_unlink = 0;
2817 return trans;
2818 }
4df27c4d 2819
a22285a6
YZ
2820 path->skip_locking = 1;
2821 path->search_commit_root = 1;
4df27c4d 2822
a22285a6
YZ
2823 ret = btrfs_lookup_inode(trans, root, path,
2824 &BTRFS_I(dir)->location, 0);
2825 if (ret < 0) {
2826 err = ret;
2827 goto out;
2828 }
2829 if (ret == 0) {
2830 if (check_path_shared(root, path))
2831 goto out;
2832 } else {
2833 check_link = 0;
5df6a9f6 2834 }
a22285a6
YZ
2835 btrfs_release_path(root, path);
2836
2837 ret = btrfs_lookup_inode(trans, root, path,
2838 &BTRFS_I(inode)->location, 0);
2839 if (ret < 0) {
2840 err = ret;
2841 goto out;
2842 }
2843 if (ret == 0) {
2844 if (check_path_shared(root, path))
2845 goto out;
2846 } else {
2847 check_link = 0;
2848 }
2849 btrfs_release_path(root, path);
2850
2851 if (ret == 0 && S_ISREG(inode->i_mode)) {
2852 ret = btrfs_lookup_file_extent(trans, root, path,
2853 inode->i_ino, (u64)-1, 0);
2854 if (ret < 0) {
2855 err = ret;
2856 goto out;
2857 }
2858 BUG_ON(ret == 0);
2859 if (check_path_shared(root, path))
2860 goto out;
2861 btrfs_release_path(root, path);
2862 }
2863
2864 if (!check_link) {
2865 err = 0;
2866 goto out;
2867 }
2868
2869 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2870 dentry->d_name.name, dentry->d_name.len, 0);
2871 if (IS_ERR(di)) {
2872 err = PTR_ERR(di);
2873 goto out;
2874 }
2875 if (di) {
2876 if (check_path_shared(root, path))
2877 goto out;
2878 } else {
2879 err = 0;
2880 goto out;
2881 }
2882 btrfs_release_path(root, path);
2883
2884 ref = btrfs_lookup_inode_ref(trans, root, path,
2885 dentry->d_name.name, dentry->d_name.len,
2886 inode->i_ino, dir->i_ino, 0);
2887 if (IS_ERR(ref)) {
2888 err = PTR_ERR(ref);
2889 goto out;
2890 }
2891 BUG_ON(!ref);
2892 if (check_path_shared(root, path))
2893 goto out;
2894 index = btrfs_inode_ref_index(path->nodes[0], ref);
2895 btrfs_release_path(root, path);
2896
2897 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2898 dentry->d_name.name, dentry->d_name.len, 0);
2899 if (IS_ERR(di)) {
2900 err = PTR_ERR(di);
2901 goto out;
2902 }
2903 BUG_ON(ret == -ENOENT);
2904 if (check_path_shared(root, path))
2905 goto out;
2906
2907 err = 0;
2908out:
2909 btrfs_free_path(path);
2910 if (err) {
2911 btrfs_end_transaction(trans, root);
2912 root->fs_info->enospc_unlink = 0;
2913 return ERR_PTR(err);
2914 }
2915
2916 trans->block_rsv = &root->fs_info->global_block_rsv;
2917 return trans;
2918}
2919
2920static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2921 struct btrfs_root *root)
2922{
2923 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2924 BUG_ON(!root->fs_info->enospc_unlink);
2925 root->fs_info->enospc_unlink = 0;
2926 }
2927 btrfs_end_transaction_throttle(trans, root);
2928}
2929
2930static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2931{
2932 struct btrfs_root *root = BTRFS_I(dir)->root;
2933 struct btrfs_trans_handle *trans;
2934 struct inode *inode = dentry->d_inode;
2935 int ret;
2936 unsigned long nr = 0;
2937
2938 trans = __unlink_start_trans(dir, dentry);
2939 if (IS_ERR(trans))
2940 return PTR_ERR(trans);
5f39d397 2941
39279cc3 2942 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2943
2944 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2945
e02119d5
CM
2946 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2947 dentry->d_name.name, dentry->d_name.len);
a22285a6 2948 BUG_ON(ret);
7b128766 2949
a22285a6 2950 if (inode->i_nlink == 0) {
7b128766 2951 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2952 BUG_ON(ret);
2953 }
7b128766 2954
d3c2fdcf 2955 nr = trans->blocks_used;
a22285a6 2956 __unlink_end_trans(trans, root);
d3c2fdcf 2957 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2958 return ret;
2959}
2960
4df27c4d
YZ
2961int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root,
2963 struct inode *dir, u64 objectid,
2964 const char *name, int name_len)
2965{
2966 struct btrfs_path *path;
2967 struct extent_buffer *leaf;
2968 struct btrfs_dir_item *di;
2969 struct btrfs_key key;
2970 u64 index;
2971 int ret;
2972
2973 path = btrfs_alloc_path();
2974 if (!path)
2975 return -ENOMEM;
2976
2977 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2978 name, name_len, -1);
2979 BUG_ON(!di || IS_ERR(di));
2980
2981 leaf = path->nodes[0];
2982 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2983 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2984 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2985 BUG_ON(ret);
2986 btrfs_release_path(root, path);
2987
2988 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2989 objectid, root->root_key.objectid,
2990 dir->i_ino, &index, name, name_len);
2991 if (ret < 0) {
2992 BUG_ON(ret != -ENOENT);
2993 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2994 name, name_len);
2995 BUG_ON(!di || IS_ERR(di));
2996
2997 leaf = path->nodes[0];
2998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2999 btrfs_release_path(root, path);
3000 index = key.offset;
3001 }
3002
3003 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3004 index, name, name_len, -1);
3005 BUG_ON(!di || IS_ERR(di));
3006
3007 leaf = path->nodes[0];
3008 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3009 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3010 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3011 BUG_ON(ret);
3012 btrfs_release_path(root, path);
3013
3014 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3015 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3016 ret = btrfs_update_inode(trans, root, dir);
3017 BUG_ON(ret);
4df27c4d
YZ
3018
3019 btrfs_free_path(path);
3020 return 0;
3021}
3022
39279cc3
CM
3023static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3024{
3025 struct inode *inode = dentry->d_inode;
1832a6d5 3026 int err = 0;
39279cc3 3027 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3028 struct btrfs_trans_handle *trans;
1832a6d5 3029 unsigned long nr = 0;
39279cc3 3030
3394e160 3031 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3032 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3033 return -ENOTEMPTY;
3034
a22285a6
YZ
3035 trans = __unlink_start_trans(dir, dentry);
3036 if (IS_ERR(trans))
5df6a9f6 3037 return PTR_ERR(trans);
5df6a9f6 3038
39279cc3 3039 btrfs_set_trans_block_group(trans, dir);
39279cc3 3040
4df27c4d
YZ
3041 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3042 err = btrfs_unlink_subvol(trans, root, dir,
3043 BTRFS_I(inode)->location.objectid,
3044 dentry->d_name.name,
3045 dentry->d_name.len);
3046 goto out;
3047 }
3048
7b128766
JB
3049 err = btrfs_orphan_add(trans, inode);
3050 if (err)
4df27c4d 3051 goto out;
7b128766 3052
39279cc3 3053 /* now the directory is empty */
e02119d5
CM
3054 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3055 dentry->d_name.name, dentry->d_name.len);
d397712b 3056 if (!err)
dbe674a9 3057 btrfs_i_size_write(inode, 0);
4df27c4d 3058out:
d3c2fdcf 3059 nr = trans->blocks_used;
a22285a6 3060 __unlink_end_trans(trans, root);
d3c2fdcf 3061 btrfs_btree_balance_dirty(root, nr);
3954401f 3062
39279cc3
CM
3063 return err;
3064}
3065
d20f7043 3066#if 0
323ac95b
CM
3067/*
3068 * when truncating bytes in a file, it is possible to avoid reading
3069 * the leaves that contain only checksum items. This can be the
3070 * majority of the IO required to delete a large file, but it must
3071 * be done carefully.
3072 *
3073 * The keys in the level just above the leaves are checked to make sure
3074 * the lowest key in a given leaf is a csum key, and starts at an offset
3075 * after the new size.
3076 *
3077 * Then the key for the next leaf is checked to make sure it also has
3078 * a checksum item for the same file. If it does, we know our target leaf
3079 * contains only checksum items, and it can be safely freed without reading
3080 * it.
3081 *
3082 * This is just an optimization targeted at large files. It may do
3083 * nothing. It will return 0 unless things went badly.
3084 */
3085static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3086 struct btrfs_root *root,
3087 struct btrfs_path *path,
3088 struct inode *inode, u64 new_size)
3089{
3090 struct btrfs_key key;
3091 int ret;
3092 int nritems;
3093 struct btrfs_key found_key;
3094 struct btrfs_key other_key;
5b84e8d6
YZ
3095 struct btrfs_leaf_ref *ref;
3096 u64 leaf_gen;
3097 u64 leaf_start;
323ac95b
CM
3098
3099 path->lowest_level = 1;
3100 key.objectid = inode->i_ino;
3101 key.type = BTRFS_CSUM_ITEM_KEY;
3102 key.offset = new_size;
3103again:
3104 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3105 if (ret < 0)
3106 goto out;
3107
3108 if (path->nodes[1] == NULL) {
3109 ret = 0;
3110 goto out;
3111 }
3112 ret = 0;
3113 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3114 nritems = btrfs_header_nritems(path->nodes[1]);
3115
3116 if (!nritems)
3117 goto out;
3118
3119 if (path->slots[1] >= nritems)
3120 goto next_node;
3121
3122 /* did we find a key greater than anything we want to delete? */
3123 if (found_key.objectid > inode->i_ino ||
3124 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3125 goto out;
3126
3127 /* we check the next key in the node to make sure the leave contains
3128 * only checksum items. This comparison doesn't work if our
3129 * leaf is the last one in the node
3130 */
3131 if (path->slots[1] + 1 >= nritems) {
3132next_node:
3133 /* search forward from the last key in the node, this
3134 * will bring us into the next node in the tree
3135 */
3136 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3137
3138 /* unlikely, but we inc below, so check to be safe */
3139 if (found_key.offset == (u64)-1)
3140 goto out;
3141
3142 /* search_forward needs a path with locks held, do the
3143 * search again for the original key. It is possible
3144 * this will race with a balance and return a path that
3145 * we could modify, but this drop is just an optimization
3146 * and is allowed to miss some leaves.
3147 */
3148 btrfs_release_path(root, path);
3149 found_key.offset++;
3150
3151 /* setup a max key for search_forward */
3152 other_key.offset = (u64)-1;
3153 other_key.type = key.type;
3154 other_key.objectid = key.objectid;
3155
3156 path->keep_locks = 1;
3157 ret = btrfs_search_forward(root, &found_key, &other_key,
3158 path, 0, 0);
3159 path->keep_locks = 0;
3160 if (ret || found_key.objectid != key.objectid ||
3161 found_key.type != key.type) {
3162 ret = 0;
3163 goto out;
3164 }
3165
3166 key.offset = found_key.offset;
3167 btrfs_release_path(root, path);
3168 cond_resched();
3169 goto again;
3170 }
3171
3172 /* we know there's one more slot after us in the tree,
3173 * read that key so we can verify it is also a checksum item
3174 */
3175 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3176
3177 if (found_key.objectid < inode->i_ino)
3178 goto next_key;
3179
3180 if (found_key.type != key.type || found_key.offset < new_size)
3181 goto next_key;
3182
3183 /*
3184 * if the key for the next leaf isn't a csum key from this objectid,
3185 * we can't be sure there aren't good items inside this leaf.
3186 * Bail out
3187 */
3188 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3189 goto out;
3190
5b84e8d6
YZ
3191 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3192 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3193 /*
3194 * it is safe to delete this leaf, it contains only
3195 * csum items from this inode at an offset >= new_size
3196 */
5b84e8d6 3197 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3198 BUG_ON(ret);
3199
5b84e8d6
YZ
3200 if (root->ref_cows && leaf_gen < trans->transid) {
3201 ref = btrfs_alloc_leaf_ref(root, 0);
3202 if (ref) {
3203 ref->root_gen = root->root_key.offset;
3204 ref->bytenr = leaf_start;
3205 ref->owner = 0;
3206 ref->generation = leaf_gen;
3207 ref->nritems = 0;
3208
bd56b302
CM
3209 btrfs_sort_leaf_ref(ref);
3210
5b84e8d6
YZ
3211 ret = btrfs_add_leaf_ref(root, ref, 0);
3212 WARN_ON(ret);
3213 btrfs_free_leaf_ref(root, ref);
3214 } else {
3215 WARN_ON(1);
3216 }
3217 }
323ac95b
CM
3218next_key:
3219 btrfs_release_path(root, path);
3220
3221 if (other_key.objectid == inode->i_ino &&
3222 other_key.type == key.type && other_key.offset > key.offset) {
3223 key.offset = other_key.offset;
3224 cond_resched();
3225 goto again;
3226 }
3227 ret = 0;
3228out:
3229 /* fixup any changes we've made to the path */
3230 path->lowest_level = 0;
3231 path->keep_locks = 0;
3232 btrfs_release_path(root, path);
3233 return ret;
3234}
3235
d20f7043
CM
3236#endif
3237
39279cc3
CM
3238/*
3239 * this can truncate away extent items, csum items and directory items.
3240 * It starts at a high offset and removes keys until it can't find
d352ac68 3241 * any higher than new_size
39279cc3
CM
3242 *
3243 * csum items that cross the new i_size are truncated to the new size
3244 * as well.
7b128766
JB
3245 *
3246 * min_type is the minimum key type to truncate down to. If set to 0, this
3247 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3248 */
8082510e
YZ
3249int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3250 struct btrfs_root *root,
3251 struct inode *inode,
3252 u64 new_size, u32 min_type)
39279cc3 3253{
39279cc3 3254 struct btrfs_path *path;
5f39d397 3255 struct extent_buffer *leaf;
39279cc3 3256 struct btrfs_file_extent_item *fi;
8082510e
YZ
3257 struct btrfs_key key;
3258 struct btrfs_key found_key;
39279cc3 3259 u64 extent_start = 0;
db94535d 3260 u64 extent_num_bytes = 0;
5d4f98a2 3261 u64 extent_offset = 0;
39279cc3 3262 u64 item_end = 0;
8082510e
YZ
3263 u64 mask = root->sectorsize - 1;
3264 u32 found_type = (u8)-1;
39279cc3
CM
3265 int found_extent;
3266 int del_item;
85e21bac
CM
3267 int pending_del_nr = 0;
3268 int pending_del_slot = 0;
179e29e4 3269 int extent_type = -1;
771ed689 3270 int encoding;
8082510e
YZ
3271 int ret;
3272 int err = 0;
3273
3274 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3275
0af3d00b 3276 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3277 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3278
39279cc3
CM
3279 path = btrfs_alloc_path();
3280 BUG_ON(!path);
33c17ad5 3281 path->reada = -1;
5f39d397 3282
39279cc3
CM
3283 key.objectid = inode->i_ino;
3284 key.offset = (u64)-1;
5f39d397
CM
3285 key.type = (u8)-1;
3286
85e21bac 3287search_again:
b9473439 3288 path->leave_spinning = 1;
85e21bac 3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3290 if (ret < 0) {
3291 err = ret;
3292 goto out;
3293 }
d397712b 3294
85e21bac 3295 if (ret > 0) {
e02119d5
CM
3296 /* there are no items in the tree for us to truncate, we're
3297 * done
3298 */
8082510e
YZ
3299 if (path->slots[0] == 0)
3300 goto out;
85e21bac
CM
3301 path->slots[0]--;
3302 }
3303
d397712b 3304 while (1) {
39279cc3 3305 fi = NULL;
5f39d397
CM
3306 leaf = path->nodes[0];
3307 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3308 found_type = btrfs_key_type(&found_key);
771ed689 3309 encoding = 0;
39279cc3 3310
5f39d397 3311 if (found_key.objectid != inode->i_ino)
39279cc3 3312 break;
5f39d397 3313
85e21bac 3314 if (found_type < min_type)
39279cc3
CM
3315 break;
3316
5f39d397 3317 item_end = found_key.offset;
39279cc3 3318 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3319 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3320 struct btrfs_file_extent_item);
179e29e4 3321 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3322 encoding = btrfs_file_extent_compression(leaf, fi);
3323 encoding |= btrfs_file_extent_encryption(leaf, fi);
3324 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3325
179e29e4 3326 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3327 item_end +=
db94535d 3328 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3329 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3330 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3331 fi);
39279cc3 3332 }
008630c1 3333 item_end--;
39279cc3 3334 }
8082510e
YZ
3335 if (found_type > min_type) {
3336 del_item = 1;
3337 } else {
3338 if (item_end < new_size)
b888db2b 3339 break;
8082510e
YZ
3340 if (found_key.offset >= new_size)
3341 del_item = 1;
3342 else
3343 del_item = 0;
39279cc3 3344 }
39279cc3 3345 found_extent = 0;
39279cc3 3346 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3347 if (found_type != BTRFS_EXTENT_DATA_KEY)
3348 goto delete;
3349
3350 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3351 u64 num_dec;
db94535d 3352 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3353 if (!del_item && !encoding) {
db94535d
CM
3354 u64 orig_num_bytes =
3355 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3356 extent_num_bytes = new_size -
5f39d397 3357 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3358 extent_num_bytes = extent_num_bytes &
3359 ~((u64)root->sectorsize - 1);
db94535d
CM
3360 btrfs_set_file_extent_num_bytes(leaf, fi,
3361 extent_num_bytes);
3362 num_dec = (orig_num_bytes -
9069218d 3363 extent_num_bytes);
e02119d5 3364 if (root->ref_cows && extent_start != 0)
a76a3cd4 3365 inode_sub_bytes(inode, num_dec);
5f39d397 3366 btrfs_mark_buffer_dirty(leaf);
39279cc3 3367 } else {
db94535d
CM
3368 extent_num_bytes =
3369 btrfs_file_extent_disk_num_bytes(leaf,
3370 fi);
5d4f98a2
YZ
3371 extent_offset = found_key.offset -
3372 btrfs_file_extent_offset(leaf, fi);
3373
39279cc3 3374 /* FIXME blocksize != 4096 */
9069218d 3375 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3376 if (extent_start != 0) {
3377 found_extent = 1;
e02119d5 3378 if (root->ref_cows)
a76a3cd4 3379 inode_sub_bytes(inode, num_dec);
e02119d5 3380 }
39279cc3 3381 }
9069218d 3382 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3383 /*
3384 * we can't truncate inline items that have had
3385 * special encodings
3386 */
3387 if (!del_item &&
3388 btrfs_file_extent_compression(leaf, fi) == 0 &&
3389 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3390 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3391 u32 size = new_size - found_key.offset;
3392
3393 if (root->ref_cows) {
a76a3cd4
YZ
3394 inode_sub_bytes(inode, item_end + 1 -
3395 new_size);
e02119d5
CM
3396 }
3397 size =
3398 btrfs_file_extent_calc_inline_size(size);
9069218d 3399 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3400 size, 1);
9069218d 3401 BUG_ON(ret);
e02119d5 3402 } else if (root->ref_cows) {
a76a3cd4
YZ
3403 inode_sub_bytes(inode, item_end + 1 -
3404 found_key.offset);
9069218d 3405 }
39279cc3 3406 }
179e29e4 3407delete:
39279cc3 3408 if (del_item) {
85e21bac
CM
3409 if (!pending_del_nr) {
3410 /* no pending yet, add ourselves */
3411 pending_del_slot = path->slots[0];
3412 pending_del_nr = 1;
3413 } else if (pending_del_nr &&
3414 path->slots[0] + 1 == pending_del_slot) {
3415 /* hop on the pending chunk */
3416 pending_del_nr++;
3417 pending_del_slot = path->slots[0];
3418 } else {
d397712b 3419 BUG();
85e21bac 3420 }
39279cc3
CM
3421 } else {
3422 break;
3423 }
0af3d00b
JB
3424 if (found_extent && (root->ref_cows ||
3425 root == root->fs_info->tree_root)) {
b9473439 3426 btrfs_set_path_blocking(path);
39279cc3 3427 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3428 extent_num_bytes, 0,
3429 btrfs_header_owner(leaf),
3430 inode->i_ino, extent_offset);
39279cc3
CM
3431 BUG_ON(ret);
3432 }
85e21bac 3433
8082510e
YZ
3434 if (found_type == BTRFS_INODE_ITEM_KEY)
3435 break;
3436
3437 if (path->slots[0] == 0 ||
3438 path->slots[0] != pending_del_slot) {
3439 if (root->ref_cows) {
3440 err = -EAGAIN;
3441 goto out;
3442 }
3443 if (pending_del_nr) {
3444 ret = btrfs_del_items(trans, root, path,
3445 pending_del_slot,
3446 pending_del_nr);
3447 BUG_ON(ret);
3448 pending_del_nr = 0;
3449 }
85e21bac
CM
3450 btrfs_release_path(root, path);
3451 goto search_again;
8082510e
YZ
3452 } else {
3453 path->slots[0]--;
85e21bac 3454 }
39279cc3 3455 }
8082510e 3456out:
85e21bac
CM
3457 if (pending_del_nr) {
3458 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3459 pending_del_nr);
d68fc57b 3460 BUG_ON(ret);
85e21bac 3461 }
39279cc3 3462 btrfs_free_path(path);
8082510e 3463 return err;
39279cc3
CM
3464}
3465
3466/*
3467 * taken from block_truncate_page, but does cow as it zeros out
3468 * any bytes left in the last page in the file.
3469 */
3470static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3471{
3472 struct inode *inode = mapping->host;
db94535d 3473 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3474 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3475 struct btrfs_ordered_extent *ordered;
2ac55d41 3476 struct extent_state *cached_state = NULL;
e6dcd2dc 3477 char *kaddr;
db94535d 3478 u32 blocksize = root->sectorsize;
39279cc3
CM
3479 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3480 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3481 struct page *page;
39279cc3 3482 int ret = 0;
a52d9a80 3483 u64 page_start;
e6dcd2dc 3484 u64 page_end;
39279cc3
CM
3485
3486 if ((offset & (blocksize - 1)) == 0)
3487 goto out;
0ca1f7ce 3488 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3489 if (ret)
3490 goto out;
39279cc3
CM
3491
3492 ret = -ENOMEM;
211c17f5 3493again:
39279cc3 3494 page = grab_cache_page(mapping, index);
5d5e103a 3495 if (!page) {
0ca1f7ce 3496 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3497 goto out;
5d5e103a 3498 }
e6dcd2dc
CM
3499
3500 page_start = page_offset(page);
3501 page_end = page_start + PAGE_CACHE_SIZE - 1;
3502
39279cc3 3503 if (!PageUptodate(page)) {
9ebefb18 3504 ret = btrfs_readpage(NULL, page);
39279cc3 3505 lock_page(page);
211c17f5
CM
3506 if (page->mapping != mapping) {
3507 unlock_page(page);
3508 page_cache_release(page);
3509 goto again;
3510 }
39279cc3
CM
3511 if (!PageUptodate(page)) {
3512 ret = -EIO;
89642229 3513 goto out_unlock;
39279cc3
CM
3514 }
3515 }
211c17f5 3516 wait_on_page_writeback(page);
e6dcd2dc 3517
2ac55d41
JB
3518 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3519 GFP_NOFS);
e6dcd2dc
CM
3520 set_page_extent_mapped(page);
3521
3522 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3523 if (ordered) {
2ac55d41
JB
3524 unlock_extent_cached(io_tree, page_start, page_end,
3525 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3526 unlock_page(page);
3527 page_cache_release(page);
eb84ae03 3528 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3529 btrfs_put_ordered_extent(ordered);
3530 goto again;
3531 }
3532
2ac55d41 3533 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3534 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3535 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3536
2ac55d41
JB
3537 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3538 &cached_state);
9ed74f2d 3539 if (ret) {
2ac55d41
JB
3540 unlock_extent_cached(io_tree, page_start, page_end,
3541 &cached_state, GFP_NOFS);
9ed74f2d
JB
3542 goto out_unlock;
3543 }
3544
e6dcd2dc
CM
3545 ret = 0;
3546 if (offset != PAGE_CACHE_SIZE) {
3547 kaddr = kmap(page);
3548 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3549 flush_dcache_page(page);
3550 kunmap(page);
3551 }
247e743c 3552 ClearPageChecked(page);
e6dcd2dc 3553 set_page_dirty(page);
2ac55d41
JB
3554 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3555 GFP_NOFS);
39279cc3 3556
89642229 3557out_unlock:
5d5e103a 3558 if (ret)
0ca1f7ce 3559 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3560 unlock_page(page);
3561 page_cache_release(page);
3562out:
3563 return ret;
3564}
3565
695a0d0d
JB
3566/*
3567 * This function puts in dummy file extents for the area we're creating a hole
3568 * for. So if we are truncating this file to a larger size we need to insert
3569 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3570 * the range between oldsize and size
3571 */
a41ad394 3572int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3573{
9036c102
YZ
3574 struct btrfs_trans_handle *trans;
3575 struct btrfs_root *root = BTRFS_I(inode)->root;
3576 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3577 struct extent_map *em = NULL;
2ac55d41 3578 struct extent_state *cached_state = NULL;
9036c102 3579 u64 mask = root->sectorsize - 1;
a41ad394 3580 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3581 u64 block_end = (size + mask) & ~mask;
3582 u64 last_byte;
3583 u64 cur_offset;
3584 u64 hole_size;
9ed74f2d 3585 int err = 0;
39279cc3 3586
9036c102
YZ
3587 if (size <= hole_start)
3588 return 0;
3589
9036c102
YZ
3590 while (1) {
3591 struct btrfs_ordered_extent *ordered;
3592 btrfs_wait_ordered_range(inode, hole_start,
3593 block_end - hole_start);
2ac55d41
JB
3594 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3595 &cached_state, GFP_NOFS);
9036c102
YZ
3596 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3597 if (!ordered)
3598 break;
2ac55d41
JB
3599 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3600 &cached_state, GFP_NOFS);
9036c102
YZ
3601 btrfs_put_ordered_extent(ordered);
3602 }
39279cc3 3603
9036c102
YZ
3604 cur_offset = hole_start;
3605 while (1) {
3606 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3607 block_end - cur_offset, 0);
3608 BUG_ON(IS_ERR(em) || !em);
3609 last_byte = min(extent_map_end(em), block_end);
3610 last_byte = (last_byte + mask) & ~mask;
8082510e 3611 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3612 u64 hint_byte = 0;
9036c102 3613 hole_size = last_byte - cur_offset;
9ed74f2d 3614
a22285a6
YZ
3615 trans = btrfs_start_transaction(root, 2);
3616 if (IS_ERR(trans)) {
3617 err = PTR_ERR(trans);
9ed74f2d 3618 break;
a22285a6 3619 }
8082510e
YZ
3620 btrfs_set_trans_block_group(trans, inode);
3621
3622 err = btrfs_drop_extents(trans, inode, cur_offset,
3623 cur_offset + hole_size,
3624 &hint_byte, 1);
3893e33b
JB
3625 if (err)
3626 break;
8082510e 3627
9036c102
YZ
3628 err = btrfs_insert_file_extent(trans, root,
3629 inode->i_ino, cur_offset, 0,
3630 0, hole_size, 0, hole_size,
3631 0, 0, 0);
3893e33b
JB
3632 if (err)
3633 break;
8082510e 3634
9036c102
YZ
3635 btrfs_drop_extent_cache(inode, hole_start,
3636 last_byte - 1, 0);
8082510e
YZ
3637
3638 btrfs_end_transaction(trans, root);
9036c102
YZ
3639 }
3640 free_extent_map(em);
a22285a6 3641 em = NULL;
9036c102 3642 cur_offset = last_byte;
8082510e 3643 if (cur_offset >= block_end)
9036c102
YZ
3644 break;
3645 }
1832a6d5 3646
a22285a6 3647 free_extent_map(em);
2ac55d41
JB
3648 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3649 GFP_NOFS);
9036c102
YZ
3650 return err;
3651}
39279cc3 3652
a41ad394 3653static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3654{
a41ad394 3655 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3656 int ret;
3657
a41ad394 3658 if (newsize == oldsize)
8082510e
YZ
3659 return 0;
3660
a41ad394
JB
3661 if (newsize > oldsize) {
3662 i_size_write(inode, newsize);
3663 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3664 truncate_pagecache(inode, oldsize, newsize);
3665 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3666 if (ret) {
a41ad394 3667 btrfs_setsize(inode, oldsize);
8082510e
YZ
3668 return ret;
3669 }
3670
930f028a 3671 mark_inode_dirty(inode);
a41ad394 3672 } else {
8082510e 3673
a41ad394
JB
3674 /*
3675 * We're truncating a file that used to have good data down to
3676 * zero. Make sure it gets into the ordered flush list so that
3677 * any new writes get down to disk quickly.
3678 */
3679 if (newsize == 0)
3680 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3681
a41ad394
JB
3682 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3683 truncate_setsize(inode, newsize);
3684 ret = btrfs_truncate(inode);
3685 }
8082510e 3686
a41ad394 3687 return ret;
8082510e
YZ
3688}
3689
9036c102
YZ
3690static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3691{
3692 struct inode *inode = dentry->d_inode;
b83cc969 3693 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3694 int err;
39279cc3 3695
b83cc969
LZ
3696 if (btrfs_root_readonly(root))
3697 return -EROFS;
3698
9036c102
YZ
3699 err = inode_change_ok(inode, attr);
3700 if (err)
3701 return err;
2bf5a725 3702
5a3f23d5 3703 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3704 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3705 if (err)
3706 return err;
39279cc3 3707 }
9036c102 3708
1025774c
CH
3709 if (attr->ia_valid) {
3710 setattr_copy(inode, attr);
3711 mark_inode_dirty(inode);
3712
3713 if (attr->ia_valid & ATTR_MODE)
3714 err = btrfs_acl_chmod(inode);
3715 }
33268eaf 3716
39279cc3
CM
3717 return err;
3718}
61295eb8 3719
bd555975 3720void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3721{
3722 struct btrfs_trans_handle *trans;
3723 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3724 unsigned long nr;
39279cc3
CM
3725 int ret;
3726
1abe9b8a 3727 trace_btrfs_inode_evict(inode);
3728
39279cc3 3729 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3730 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3731 root == root->fs_info->tree_root))
bd555975
AV
3732 goto no_delete;
3733
39279cc3 3734 if (is_bad_inode(inode)) {
7b128766 3735 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3736 goto no_delete;
3737 }
bd555975 3738 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3739 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3740
c71bf099
YZ
3741 if (root->fs_info->log_root_recovering) {
3742 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3743 goto no_delete;
3744 }
3745
76dda93c
YZ
3746 if (inode->i_nlink > 0) {
3747 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3748 goto no_delete;
3749 }
3750
dbe674a9 3751 btrfs_i_size_write(inode, 0);
5f39d397 3752
8082510e 3753 while (1) {
d68fc57b
YZ
3754 trans = btrfs_start_transaction(root, 0);
3755 BUG_ON(IS_ERR(trans));
8082510e 3756 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3757 trans->block_rsv = root->orphan_block_rsv;
3758
3759 ret = btrfs_block_rsv_check(trans, root,
3760 root->orphan_block_rsv, 0, 5);
3761 if (ret) {
3762 BUG_ON(ret != -EAGAIN);
3763 ret = btrfs_commit_transaction(trans, root);
3764 BUG_ON(ret);
3765 continue;
3766 }
7b128766 3767
d68fc57b 3768 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3769 if (ret != -EAGAIN)
3770 break;
85e21bac 3771
8082510e
YZ
3772 nr = trans->blocks_used;
3773 btrfs_end_transaction(trans, root);
3774 trans = NULL;
3775 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3776
8082510e 3777 }
5f39d397 3778
8082510e
YZ
3779 if (ret == 0) {
3780 ret = btrfs_orphan_del(trans, inode);
3781 BUG_ON(ret);
3782 }
54aa1f4d 3783
d3c2fdcf 3784 nr = trans->blocks_used;
54aa1f4d 3785 btrfs_end_transaction(trans, root);
d3c2fdcf 3786 btrfs_btree_balance_dirty(root, nr);
39279cc3 3787no_delete:
bd555975 3788 end_writeback(inode);
8082510e 3789 return;
39279cc3
CM
3790}
3791
3792/*
3793 * this returns the key found in the dir entry in the location pointer.
3794 * If no dir entries were found, location->objectid is 0.
3795 */
3796static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3797 struct btrfs_key *location)
3798{
3799 const char *name = dentry->d_name.name;
3800 int namelen = dentry->d_name.len;
3801 struct btrfs_dir_item *di;
3802 struct btrfs_path *path;
3803 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3804 int ret = 0;
39279cc3
CM
3805
3806 path = btrfs_alloc_path();
3807 BUG_ON(!path);
3954401f 3808
39279cc3
CM
3809 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3810 namelen, 0);
0d9f7f3e
Y
3811 if (IS_ERR(di))
3812 ret = PTR_ERR(di);
d397712b
CM
3813
3814 if (!di || IS_ERR(di))
3954401f 3815 goto out_err;
d397712b 3816
5f39d397 3817 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3818out:
39279cc3
CM
3819 btrfs_free_path(path);
3820 return ret;
3954401f
CM
3821out_err:
3822 location->objectid = 0;
3823 goto out;
39279cc3
CM
3824}
3825
3826/*
3827 * when we hit a tree root in a directory, the btrfs part of the inode
3828 * needs to be changed to reflect the root directory of the tree root. This
3829 * is kind of like crossing a mount point.
3830 */
3831static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3832 struct inode *dir,
3833 struct dentry *dentry,
3834 struct btrfs_key *location,
3835 struct btrfs_root **sub_root)
39279cc3 3836{
4df27c4d
YZ
3837 struct btrfs_path *path;
3838 struct btrfs_root *new_root;
3839 struct btrfs_root_ref *ref;
3840 struct extent_buffer *leaf;
3841 int ret;
3842 int err = 0;
39279cc3 3843
4df27c4d
YZ
3844 path = btrfs_alloc_path();
3845 if (!path) {
3846 err = -ENOMEM;
3847 goto out;
3848 }
39279cc3 3849
4df27c4d
YZ
3850 err = -ENOENT;
3851 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3852 BTRFS_I(dir)->root->root_key.objectid,
3853 location->objectid);
3854 if (ret) {
3855 if (ret < 0)
3856 err = ret;
3857 goto out;
3858 }
39279cc3 3859
4df27c4d
YZ
3860 leaf = path->nodes[0];
3861 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3862 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3863 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3864 goto out;
39279cc3 3865
4df27c4d
YZ
3866 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3867 (unsigned long)(ref + 1),
3868 dentry->d_name.len);
3869 if (ret)
3870 goto out;
3871
3872 btrfs_release_path(root->fs_info->tree_root, path);
3873
3874 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3875 if (IS_ERR(new_root)) {
3876 err = PTR_ERR(new_root);
3877 goto out;
3878 }
3879
3880 if (btrfs_root_refs(&new_root->root_item) == 0) {
3881 err = -ENOENT;
3882 goto out;
3883 }
3884
3885 *sub_root = new_root;
3886 location->objectid = btrfs_root_dirid(&new_root->root_item);
3887 location->type = BTRFS_INODE_ITEM_KEY;
3888 location->offset = 0;
3889 err = 0;
3890out:
3891 btrfs_free_path(path);
3892 return err;
39279cc3
CM
3893}
3894
5d4f98a2
YZ
3895static void inode_tree_add(struct inode *inode)
3896{
3897 struct btrfs_root *root = BTRFS_I(inode)->root;
3898 struct btrfs_inode *entry;
03e860bd
FNP
3899 struct rb_node **p;
3900 struct rb_node *parent;
03e860bd
FNP
3901again:
3902 p = &root->inode_tree.rb_node;
3903 parent = NULL;
5d4f98a2 3904
1d3382cb 3905 if (inode_unhashed(inode))
76dda93c
YZ
3906 return;
3907
5d4f98a2
YZ
3908 spin_lock(&root->inode_lock);
3909 while (*p) {
3910 parent = *p;
3911 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3912
3913 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3914 p = &parent->rb_left;
5d4f98a2 3915 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3916 p = &parent->rb_right;
5d4f98a2
YZ
3917 else {
3918 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3919 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3920 rb_erase(parent, &root->inode_tree);
3921 RB_CLEAR_NODE(parent);
3922 spin_unlock(&root->inode_lock);
3923 goto again;
5d4f98a2
YZ
3924 }
3925 }
3926 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3927 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3928 spin_unlock(&root->inode_lock);
3929}
3930
3931static void inode_tree_del(struct inode *inode)
3932{
3933 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3934 int empty = 0;
5d4f98a2 3935
03e860bd 3936 spin_lock(&root->inode_lock);
5d4f98a2 3937 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3938 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3939 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3940 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3941 }
03e860bd 3942 spin_unlock(&root->inode_lock);
76dda93c 3943
0af3d00b
JB
3944 /*
3945 * Free space cache has inodes in the tree root, but the tree root has a
3946 * root_refs of 0, so this could end up dropping the tree root as a
3947 * snapshot, so we need the extra !root->fs_info->tree_root check to
3948 * make sure we don't drop it.
3949 */
3950 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3951 root != root->fs_info->tree_root) {
76dda93c
YZ
3952 synchronize_srcu(&root->fs_info->subvol_srcu);
3953 spin_lock(&root->inode_lock);
3954 empty = RB_EMPTY_ROOT(&root->inode_tree);
3955 spin_unlock(&root->inode_lock);
3956 if (empty)
3957 btrfs_add_dead_root(root);
3958 }
3959}
3960
3961int btrfs_invalidate_inodes(struct btrfs_root *root)
3962{
3963 struct rb_node *node;
3964 struct rb_node *prev;
3965 struct btrfs_inode *entry;
3966 struct inode *inode;
3967 u64 objectid = 0;
3968
3969 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3970
3971 spin_lock(&root->inode_lock);
3972again:
3973 node = root->inode_tree.rb_node;
3974 prev = NULL;
3975 while (node) {
3976 prev = node;
3977 entry = rb_entry(node, struct btrfs_inode, rb_node);
3978
3979 if (objectid < entry->vfs_inode.i_ino)
3980 node = node->rb_left;
3981 else if (objectid > entry->vfs_inode.i_ino)
3982 node = node->rb_right;
3983 else
3984 break;
3985 }
3986 if (!node) {
3987 while (prev) {
3988 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3989 if (objectid <= entry->vfs_inode.i_ino) {
3990 node = prev;
3991 break;
3992 }
3993 prev = rb_next(prev);
3994 }
3995 }
3996 while (node) {
3997 entry = rb_entry(node, struct btrfs_inode, rb_node);
3998 objectid = entry->vfs_inode.i_ino + 1;
3999 inode = igrab(&entry->vfs_inode);
4000 if (inode) {
4001 spin_unlock(&root->inode_lock);
4002 if (atomic_read(&inode->i_count) > 1)
4003 d_prune_aliases(inode);
4004 /*
45321ac5 4005 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4006 * the inode cache when its usage count
4007 * hits zero.
4008 */
4009 iput(inode);
4010 cond_resched();
4011 spin_lock(&root->inode_lock);
4012 goto again;
4013 }
4014
4015 if (cond_resched_lock(&root->inode_lock))
4016 goto again;
4017
4018 node = rb_next(node);
4019 }
4020 spin_unlock(&root->inode_lock);
4021 return 0;
5d4f98a2
YZ
4022}
4023
e02119d5
CM
4024static int btrfs_init_locked_inode(struct inode *inode, void *p)
4025{
4026 struct btrfs_iget_args *args = p;
4027 inode->i_ino = args->ino;
e02119d5 4028 BTRFS_I(inode)->root = args->root;
6a63209f 4029 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4030 return 0;
4031}
4032
4033static int btrfs_find_actor(struct inode *inode, void *opaque)
4034{
4035 struct btrfs_iget_args *args = opaque;
d397712b
CM
4036 return args->ino == inode->i_ino &&
4037 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4038}
4039
5d4f98a2
YZ
4040static struct inode *btrfs_iget_locked(struct super_block *s,
4041 u64 objectid,
4042 struct btrfs_root *root)
39279cc3
CM
4043{
4044 struct inode *inode;
4045 struct btrfs_iget_args args;
4046 args.ino = objectid;
4047 args.root = root;
4048
4049 inode = iget5_locked(s, objectid, btrfs_find_actor,
4050 btrfs_init_locked_inode,
4051 (void *)&args);
4052 return inode;
4053}
4054
1a54ef8c
BR
4055/* Get an inode object given its location and corresponding root.
4056 * Returns in *is_new if the inode was read from disk
4057 */
4058struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4059 struct btrfs_root *root, int *new)
1a54ef8c
BR
4060{
4061 struct inode *inode;
4062
4063 inode = btrfs_iget_locked(s, location->objectid, root);
4064 if (!inode)
5d4f98a2 4065 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4066
4067 if (inode->i_state & I_NEW) {
4068 BTRFS_I(inode)->root = root;
4069 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4070 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4071
4072 inode_tree_add(inode);
1a54ef8c 4073 unlock_new_inode(inode);
73f73415
JB
4074 if (new)
4075 *new = 1;
1a54ef8c
BR
4076 }
4077
4078 return inode;
4079}
4080
4df27c4d
YZ
4081static struct inode *new_simple_dir(struct super_block *s,
4082 struct btrfs_key *key,
4083 struct btrfs_root *root)
4084{
4085 struct inode *inode = new_inode(s);
4086
4087 if (!inode)
4088 return ERR_PTR(-ENOMEM);
4089
4df27c4d
YZ
4090 BTRFS_I(inode)->root = root;
4091 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4092 BTRFS_I(inode)->dummy_inode = 1;
4093
4094 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4095 inode->i_op = &simple_dir_inode_operations;
4096 inode->i_fop = &simple_dir_operations;
4097 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4098 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4099
4100 return inode;
4101}
4102
3de4586c 4103struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4104{
d397712b 4105 struct inode *inode;
4df27c4d 4106 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4107 struct btrfs_root *sub_root = root;
4108 struct btrfs_key location;
76dda93c 4109 int index;
5d4f98a2 4110 int ret;
39279cc3
CM
4111
4112 if (dentry->d_name.len > BTRFS_NAME_LEN)
4113 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4114
39279cc3 4115 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4116
39279cc3
CM
4117 if (ret < 0)
4118 return ERR_PTR(ret);
5f39d397 4119
4df27c4d
YZ
4120 if (location.objectid == 0)
4121 return NULL;
4122
4123 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4124 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4125 return inode;
4126 }
4127
4128 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4129
76dda93c 4130 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4131 ret = fixup_tree_root_location(root, dir, dentry,
4132 &location, &sub_root);
4133 if (ret < 0) {
4134 if (ret != -ENOENT)
4135 inode = ERR_PTR(ret);
4136 else
4137 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4138 } else {
73f73415 4139 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4140 }
76dda93c
YZ
4141 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4142
34d19bad 4143 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4144 down_read(&root->fs_info->cleanup_work_sem);
4145 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4146 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4147 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4148 if (ret)
4149 inode = ERR_PTR(ret);
c71bf099
YZ
4150 }
4151
3de4586c
CM
4152 return inode;
4153}
4154
fe15ce44 4155static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4156{
4157 struct btrfs_root *root;
4158
efefb143
YZ
4159 if (!dentry->d_inode && !IS_ROOT(dentry))
4160 dentry = dentry->d_parent;
76dda93c 4161
efefb143
YZ
4162 if (dentry->d_inode) {
4163 root = BTRFS_I(dentry->d_inode)->root;
4164 if (btrfs_root_refs(&root->root_item) == 0)
4165 return 1;
4166 }
76dda93c
YZ
4167 return 0;
4168}
4169
3de4586c
CM
4170static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4171 struct nameidata *nd)
4172{
4173 struct inode *inode;
4174
3de4586c
CM
4175 inode = btrfs_lookup_dentry(dir, dentry);
4176 if (IS_ERR(inode))
4177 return ERR_CAST(inode);
7b128766 4178
39279cc3
CM
4179 return d_splice_alias(inode, dentry);
4180}
4181
39279cc3
CM
4182static unsigned char btrfs_filetype_table[] = {
4183 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4184};
4185
cbdf5a24
DW
4186static int btrfs_real_readdir(struct file *filp, void *dirent,
4187 filldir_t filldir)
39279cc3 4188{
6da6abae 4189 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4190 struct btrfs_root *root = BTRFS_I(inode)->root;
4191 struct btrfs_item *item;
4192 struct btrfs_dir_item *di;
4193 struct btrfs_key key;
5f39d397 4194 struct btrfs_key found_key;
39279cc3
CM
4195 struct btrfs_path *path;
4196 int ret;
4197 u32 nritems;
5f39d397 4198 struct extent_buffer *leaf;
39279cc3
CM
4199 int slot;
4200 int advance;
4201 unsigned char d_type;
4202 int over = 0;
4203 u32 di_cur;
4204 u32 di_total;
4205 u32 di_len;
4206 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4207 char tmp_name[32];
4208 char *name_ptr;
4209 int name_len;
39279cc3
CM
4210
4211 /* FIXME, use a real flag for deciding about the key type */
4212 if (root->fs_info->tree_root == root)
4213 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4214
3954401f
CM
4215 /* special case for "." */
4216 if (filp->f_pos == 0) {
4217 over = filldir(dirent, ".", 1,
4218 1, inode->i_ino,
4219 DT_DIR);
4220 if (over)
4221 return 0;
4222 filp->f_pos = 1;
4223 }
3954401f
CM
4224 /* special case for .., just use the back ref */
4225 if (filp->f_pos == 1) {
5ecc7e5d 4226 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4227 over = filldir(dirent, "..", 2,
5ecc7e5d 4228 2, pino, DT_DIR);
3954401f 4229 if (over)
49593bfa 4230 return 0;
3954401f
CM
4231 filp->f_pos = 2;
4232 }
49593bfa
DW
4233 path = btrfs_alloc_path();
4234 path->reada = 2;
4235
39279cc3
CM
4236 btrfs_set_key_type(&key, key_type);
4237 key.offset = filp->f_pos;
49593bfa 4238 key.objectid = inode->i_ino;
5f39d397 4239
39279cc3
CM
4240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4241 if (ret < 0)
4242 goto err;
4243 advance = 0;
49593bfa
DW
4244
4245 while (1) {
5f39d397
CM
4246 leaf = path->nodes[0];
4247 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4248 slot = path->slots[0];
4249 if (advance || slot >= nritems) {
49593bfa 4250 if (slot >= nritems - 1) {
39279cc3
CM
4251 ret = btrfs_next_leaf(root, path);
4252 if (ret)
4253 break;
5f39d397
CM
4254 leaf = path->nodes[0];
4255 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4256 slot = path->slots[0];
4257 } else {
4258 slot++;
4259 path->slots[0]++;
4260 }
4261 }
3de4586c 4262
39279cc3 4263 advance = 1;
5f39d397
CM
4264 item = btrfs_item_nr(leaf, slot);
4265 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4266
4267 if (found_key.objectid != key.objectid)
39279cc3 4268 break;
5f39d397 4269 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4270 break;
5f39d397 4271 if (found_key.offset < filp->f_pos)
39279cc3 4272 continue;
5f39d397
CM
4273
4274 filp->f_pos = found_key.offset;
49593bfa 4275
39279cc3
CM
4276 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4277 di_cur = 0;
5f39d397 4278 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4279
4280 while (di_cur < di_total) {
5f39d397
CM
4281 struct btrfs_key location;
4282
22a94d44
JB
4283 if (verify_dir_item(root, leaf, di))
4284 break;
4285
5f39d397 4286 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4287 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4288 name_ptr = tmp_name;
4289 } else {
4290 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4291 if (!name_ptr) {
4292 ret = -ENOMEM;
4293 goto err;
4294 }
5f39d397
CM
4295 }
4296 read_extent_buffer(leaf, name_ptr,
4297 (unsigned long)(di + 1), name_len);
4298
4299 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4300 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4301
4302 /* is this a reference to our own snapshot? If so
4303 * skip it
4304 */
4305 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4306 location.objectid == root->root_key.objectid) {
4307 over = 0;
4308 goto skip;
4309 }
5f39d397 4310 over = filldir(dirent, name_ptr, name_len,
49593bfa 4311 found_key.offset, location.objectid,
39279cc3 4312 d_type);
5f39d397 4313
3de4586c 4314skip:
5f39d397
CM
4315 if (name_ptr != tmp_name)
4316 kfree(name_ptr);
4317
39279cc3
CM
4318 if (over)
4319 goto nopos;
5103e947 4320 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4321 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4322 di_cur += di_len;
4323 di = (struct btrfs_dir_item *)((char *)di + di_len);
4324 }
4325 }
49593bfa
DW
4326
4327 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4328 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4329 /*
4330 * 32-bit glibc will use getdents64, but then strtol -
4331 * so the last number we can serve is this.
4332 */
4333 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4334 else
4335 filp->f_pos++;
39279cc3
CM
4336nopos:
4337 ret = 0;
4338err:
39279cc3 4339 btrfs_free_path(path);
39279cc3
CM
4340 return ret;
4341}
4342
a9185b41 4343int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4344{
4345 struct btrfs_root *root = BTRFS_I(inode)->root;
4346 struct btrfs_trans_handle *trans;
4347 int ret = 0;
0af3d00b 4348 bool nolock = false;
39279cc3 4349
8929ecfa 4350 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4351 return 0;
4352
0af3d00b
JB
4353 smp_mb();
4354 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4355
a9185b41 4356 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4357 if (nolock)
4358 trans = btrfs_join_transaction_nolock(root, 1);
4359 else
4360 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4361 if (IS_ERR(trans))
4362 return PTR_ERR(trans);
39279cc3 4363 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4364 if (nolock)
4365 ret = btrfs_end_transaction_nolock(trans, root);
4366 else
4367 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4368 }
4369 return ret;
4370}
4371
4372/*
54aa1f4d 4373 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4374 * inode changes. But, it is most likely to find the inode in cache.
4375 * FIXME, needs more benchmarking...there are no reasons other than performance
4376 * to keep or drop this code.
4377 */
4378void btrfs_dirty_inode(struct inode *inode)
4379{
4380 struct btrfs_root *root = BTRFS_I(inode)->root;
4381 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4382 int ret;
4383
4384 if (BTRFS_I(inode)->dummy_inode)
4385 return;
39279cc3 4386
f9295749 4387 trans = btrfs_join_transaction(root, 1);
3612b495 4388 BUG_ON(IS_ERR(trans));
39279cc3 4389 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4390
4391 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4392 if (ret && ret == -ENOSPC) {
4393 /* whoops, lets try again with the full transaction */
4394 btrfs_end_transaction(trans, root);
4395 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4396 if (IS_ERR(trans)) {
4397 if (printk_ratelimit()) {
4398 printk(KERN_ERR "btrfs: fail to "
4399 "dirty inode %lu error %ld\n",
4400 inode->i_ino, PTR_ERR(trans));
4401 }
4402 return;
4403 }
94b60442 4404 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4405
94b60442
CM
4406 ret = btrfs_update_inode(trans, root, inode);
4407 if (ret) {
9aeead73
CM
4408 if (printk_ratelimit()) {
4409 printk(KERN_ERR "btrfs: fail to "
4410 "dirty inode %lu error %d\n",
4411 inode->i_ino, ret);
4412 }
94b60442
CM
4413 }
4414 }
39279cc3 4415 btrfs_end_transaction(trans, root);
39279cc3
CM
4416}
4417
d352ac68
CM
4418/*
4419 * find the highest existing sequence number in a directory
4420 * and then set the in-memory index_cnt variable to reflect
4421 * free sequence numbers
4422 */
aec7477b
JB
4423static int btrfs_set_inode_index_count(struct inode *inode)
4424{
4425 struct btrfs_root *root = BTRFS_I(inode)->root;
4426 struct btrfs_key key, found_key;
4427 struct btrfs_path *path;
4428 struct extent_buffer *leaf;
4429 int ret;
4430
4431 key.objectid = inode->i_ino;
4432 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4433 key.offset = (u64)-1;
4434
4435 path = btrfs_alloc_path();
4436 if (!path)
4437 return -ENOMEM;
4438
4439 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4440 if (ret < 0)
4441 goto out;
4442 /* FIXME: we should be able to handle this */
4443 if (ret == 0)
4444 goto out;
4445 ret = 0;
4446
4447 /*
4448 * MAGIC NUMBER EXPLANATION:
4449 * since we search a directory based on f_pos we have to start at 2
4450 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4451 * else has to start at 2
4452 */
4453 if (path->slots[0] == 0) {
4454 BTRFS_I(inode)->index_cnt = 2;
4455 goto out;
4456 }
4457
4458 path->slots[0]--;
4459
4460 leaf = path->nodes[0];
4461 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4462
4463 if (found_key.objectid != inode->i_ino ||
4464 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4465 BTRFS_I(inode)->index_cnt = 2;
4466 goto out;
4467 }
4468
4469 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4470out:
4471 btrfs_free_path(path);
4472 return ret;
4473}
4474
d352ac68
CM
4475/*
4476 * helper to find a free sequence number in a given directory. This current
4477 * code is very simple, later versions will do smarter things in the btree
4478 */
3de4586c 4479int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4480{
4481 int ret = 0;
4482
4483 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4484 ret = btrfs_set_inode_index_count(dir);
d397712b 4485 if (ret)
aec7477b
JB
4486 return ret;
4487 }
4488
00e4e6b3 4489 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4490 BTRFS_I(dir)->index_cnt++;
4491
4492 return ret;
4493}
4494
39279cc3
CM
4495static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4496 struct btrfs_root *root,
aec7477b 4497 struct inode *dir,
9c58309d 4498 const char *name, int name_len,
d2fb3437
YZ
4499 u64 ref_objectid, u64 objectid,
4500 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4501{
4502 struct inode *inode;
5f39d397 4503 struct btrfs_inode_item *inode_item;
39279cc3 4504 struct btrfs_key *location;
5f39d397 4505 struct btrfs_path *path;
9c58309d
CM
4506 struct btrfs_inode_ref *ref;
4507 struct btrfs_key key[2];
4508 u32 sizes[2];
4509 unsigned long ptr;
39279cc3
CM
4510 int ret;
4511 int owner;
4512
5f39d397
CM
4513 path = btrfs_alloc_path();
4514 BUG_ON(!path);
4515
39279cc3
CM
4516 inode = new_inode(root->fs_info->sb);
4517 if (!inode)
4518 return ERR_PTR(-ENOMEM);
4519
aec7477b 4520 if (dir) {
1abe9b8a 4521 trace_btrfs_inode_request(dir);
4522
3de4586c 4523 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4524 if (ret) {
4525 iput(inode);
aec7477b 4526 return ERR_PTR(ret);
09771430 4527 }
aec7477b
JB
4528 }
4529 /*
4530 * index_cnt is ignored for everything but a dir,
4531 * btrfs_get_inode_index_count has an explanation for the magic
4532 * number
4533 */
4534 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4535 BTRFS_I(inode)->root = root;
e02119d5 4536 BTRFS_I(inode)->generation = trans->transid;
76195853 4537 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4538 btrfs_set_inode_space_info(root, inode);
b888db2b 4539
39279cc3
CM
4540 if (mode & S_IFDIR)
4541 owner = 0;
4542 else
4543 owner = 1;
d2fb3437
YZ
4544 BTRFS_I(inode)->block_group =
4545 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4546
4547 key[0].objectid = objectid;
4548 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4549 key[0].offset = 0;
4550
4551 key[1].objectid = objectid;
4552 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4553 key[1].offset = ref_objectid;
4554
4555 sizes[0] = sizeof(struct btrfs_inode_item);
4556 sizes[1] = name_len + sizeof(*ref);
4557
b9473439 4558 path->leave_spinning = 1;
9c58309d
CM
4559 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4560 if (ret != 0)
5f39d397
CM
4561 goto fail;
4562
ecc11fab 4563 inode_init_owner(inode, dir, mode);
39279cc3 4564 inode->i_ino = objectid;
a76a3cd4 4565 inode_set_bytes(inode, 0);
39279cc3 4566 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4567 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4568 struct btrfs_inode_item);
e02119d5 4569 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4570
4571 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4572 struct btrfs_inode_ref);
4573 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4574 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4575 ptr = (unsigned long)(ref + 1);
4576 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4577
5f39d397
CM
4578 btrfs_mark_buffer_dirty(path->nodes[0]);
4579 btrfs_free_path(path);
4580
39279cc3
CM
4581 location = &BTRFS_I(inode)->location;
4582 location->objectid = objectid;
39279cc3
CM
4583 location->offset = 0;
4584 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4585
6cbff00f
CH
4586 btrfs_inherit_iflags(inode, dir);
4587
94272164
CM
4588 if ((mode & S_IFREG)) {
4589 if (btrfs_test_opt(root, NODATASUM))
4590 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4591 if (btrfs_test_opt(root, NODATACOW) ||
4592 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4593 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4594 }
4595
39279cc3 4596 insert_inode_hash(inode);
5d4f98a2 4597 inode_tree_add(inode);
1abe9b8a 4598
4599 trace_btrfs_inode_new(inode);
4600
39279cc3 4601 return inode;
5f39d397 4602fail:
aec7477b
JB
4603 if (dir)
4604 BTRFS_I(dir)->index_cnt--;
5f39d397 4605 btrfs_free_path(path);
09771430 4606 iput(inode);
5f39d397 4607 return ERR_PTR(ret);
39279cc3
CM
4608}
4609
4610static inline u8 btrfs_inode_type(struct inode *inode)
4611{
4612 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4613}
4614
d352ac68
CM
4615/*
4616 * utility function to add 'inode' into 'parent_inode' with
4617 * a give name and a given sequence number.
4618 * if 'add_backref' is true, also insert a backref from the
4619 * inode to the parent directory.
4620 */
e02119d5
CM
4621int btrfs_add_link(struct btrfs_trans_handle *trans,
4622 struct inode *parent_inode, struct inode *inode,
4623 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4624{
4df27c4d 4625 int ret = 0;
39279cc3 4626 struct btrfs_key key;
e02119d5 4627 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4628
4df27c4d
YZ
4629 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4630 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4631 } else {
4632 key.objectid = inode->i_ino;
4633 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4634 key.offset = 0;
4635 }
4636
4637 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4638 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4639 key.objectid, root->root_key.objectid,
4640 parent_inode->i_ino,
4641 index, name, name_len);
4642 } else if (add_backref) {
4643 ret = btrfs_insert_inode_ref(trans, root,
4644 name, name_len, inode->i_ino,
4645 parent_inode->i_ino, index);
4646 }
39279cc3 4647
39279cc3 4648 if (ret == 0) {
4df27c4d
YZ
4649 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4650 parent_inode->i_ino, &key,
4651 btrfs_inode_type(inode), index);
4652 BUG_ON(ret);
4653
dbe674a9 4654 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4655 name_len * 2);
79c44584 4656 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4657 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4658 }
4659 return ret;
4660}
4661
4662static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4663 struct inode *dir, struct dentry *dentry,
4664 struct inode *inode, int backref, u64 index)
39279cc3 4665{
a1b075d2
JB
4666 int err = btrfs_add_link(trans, dir, inode,
4667 dentry->d_name.name, dentry->d_name.len,
4668 backref, index);
39279cc3
CM
4669 if (!err) {
4670 d_instantiate(dentry, inode);
4671 return 0;
4672 }
4673 if (err > 0)
4674 err = -EEXIST;
4675 return err;
4676}
4677
618e21d5
JB
4678static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4679 int mode, dev_t rdev)
4680{
4681 struct btrfs_trans_handle *trans;
4682 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4683 struct inode *inode = NULL;
618e21d5
JB
4684 int err;
4685 int drop_inode = 0;
4686 u64 objectid;
1832a6d5 4687 unsigned long nr = 0;
00e4e6b3 4688 u64 index = 0;
618e21d5
JB
4689
4690 if (!new_valid_dev(rdev))
4691 return -EINVAL;
4692
a22285a6
YZ
4693 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4694 if (err)
4695 return err;
4696
9ed74f2d
JB
4697 /*
4698 * 2 for inode item and ref
4699 * 2 for dir items
4700 * 1 for xattr if selinux is on
4701 */
a22285a6
YZ
4702 trans = btrfs_start_transaction(root, 5);
4703 if (IS_ERR(trans))
4704 return PTR_ERR(trans);
1832a6d5 4705
618e21d5
JB
4706 btrfs_set_trans_block_group(trans, dir);
4707
aec7477b 4708 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4709 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4710 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4711 err = PTR_ERR(inode);
4712 if (IS_ERR(inode))
4713 goto out_unlock;
4714
f34f57a3 4715 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4716 if (err) {
4717 drop_inode = 1;
4718 goto out_unlock;
4719 }
4720
618e21d5 4721 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4722 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4723 if (err)
4724 drop_inode = 1;
4725 else {
4726 inode->i_op = &btrfs_special_inode_operations;
4727 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4728 btrfs_update_inode(trans, root, inode);
618e21d5 4729 }
618e21d5
JB
4730 btrfs_update_inode_block_group(trans, inode);
4731 btrfs_update_inode_block_group(trans, dir);
4732out_unlock:
d3c2fdcf 4733 nr = trans->blocks_used;
89ce8a63 4734 btrfs_end_transaction_throttle(trans, root);
a22285a6 4735 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4736 if (drop_inode) {
4737 inode_dec_link_count(inode);
4738 iput(inode);
4739 }
618e21d5
JB
4740 return err;
4741}
4742
39279cc3
CM
4743static int btrfs_create(struct inode *dir, struct dentry *dentry,
4744 int mode, struct nameidata *nd)
4745{
4746 struct btrfs_trans_handle *trans;
4747 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4748 struct inode *inode = NULL;
39279cc3 4749 int drop_inode = 0;
a22285a6 4750 int err;
1832a6d5 4751 unsigned long nr = 0;
39279cc3 4752 u64 objectid;
00e4e6b3 4753 u64 index = 0;
39279cc3 4754
a22285a6
YZ
4755 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4756 if (err)
4757 return err;
9ed74f2d
JB
4758 /*
4759 * 2 for inode item and ref
4760 * 2 for dir items
4761 * 1 for xattr if selinux is on
4762 */
a22285a6
YZ
4763 trans = btrfs_start_transaction(root, 5);
4764 if (IS_ERR(trans))
4765 return PTR_ERR(trans);
9ed74f2d 4766
39279cc3
CM
4767 btrfs_set_trans_block_group(trans, dir);
4768
aec7477b 4769 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4770 dentry->d_name.len, dir->i_ino, objectid,
4771 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4772 err = PTR_ERR(inode);
4773 if (IS_ERR(inode))
4774 goto out_unlock;
4775
f34f57a3 4776 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4777 if (err) {
4778 drop_inode = 1;
4779 goto out_unlock;
4780 }
4781
39279cc3 4782 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4783 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4784 if (err)
4785 drop_inode = 1;
4786 else {
4787 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4788 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4789 inode->i_fop = &btrfs_file_operations;
4790 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4791 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4792 }
39279cc3
CM
4793 btrfs_update_inode_block_group(trans, inode);
4794 btrfs_update_inode_block_group(trans, dir);
4795out_unlock:
d3c2fdcf 4796 nr = trans->blocks_used;
ab78c84d 4797 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4798 if (drop_inode) {
4799 inode_dec_link_count(inode);
4800 iput(inode);
4801 }
d3c2fdcf 4802 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4803 return err;
4804}
4805
4806static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4807 struct dentry *dentry)
4808{
4809 struct btrfs_trans_handle *trans;
4810 struct btrfs_root *root = BTRFS_I(dir)->root;
4811 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4812 u64 index;
1832a6d5 4813 unsigned long nr = 0;
39279cc3
CM
4814 int err;
4815 int drop_inode = 0;
4816
4817 if (inode->i_nlink == 0)
4818 return -ENOENT;
4819
4a8be425
TH
4820 /* do not allow sys_link's with other subvols of the same device */
4821 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4822 return -EXDEV;
4a8be425 4823
9ed74f2d 4824 btrfs_inc_nlink(inode);
bc1cbf1f 4825 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4826
3de4586c 4827 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4828 if (err)
4829 goto fail;
4830
a22285a6 4831 /*
7e6b6465 4832 * 2 items for inode and inode ref
a22285a6 4833 * 2 items for dir items
7e6b6465 4834 * 1 item for parent inode
a22285a6 4835 */
7e6b6465 4836 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4837 if (IS_ERR(trans)) {
4838 err = PTR_ERR(trans);
4839 goto fail;
4840 }
5f39d397 4841
39279cc3 4842 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4843 ihold(inode);
aec7477b 4844
a1b075d2 4845 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4846
a5719521 4847 if (err) {
54aa1f4d 4848 drop_inode = 1;
a5719521 4849 } else {
6a912213 4850 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4851 btrfs_update_inode_block_group(trans, dir);
4852 err = btrfs_update_inode(trans, root, inode);
4853 BUG_ON(err);
6a912213
JB
4854 btrfs_log_new_name(trans, inode, NULL, parent);
4855 dput(parent);
a5719521 4856 }
39279cc3 4857
d3c2fdcf 4858 nr = trans->blocks_used;
ab78c84d 4859 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4860fail:
39279cc3
CM
4861 if (drop_inode) {
4862 inode_dec_link_count(inode);
4863 iput(inode);
4864 }
d3c2fdcf 4865 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4866 return err;
4867}
4868
39279cc3
CM
4869static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4870{
b9d86667 4871 struct inode *inode = NULL;
39279cc3
CM
4872 struct btrfs_trans_handle *trans;
4873 struct btrfs_root *root = BTRFS_I(dir)->root;
4874 int err = 0;
4875 int drop_on_err = 0;
b9d86667 4876 u64 objectid = 0;
00e4e6b3 4877 u64 index = 0;
d3c2fdcf 4878 unsigned long nr = 1;
39279cc3 4879
a22285a6
YZ
4880 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4881 if (err)
4882 return err;
4883
9ed74f2d
JB
4884 /*
4885 * 2 items for inode and ref
4886 * 2 items for dir items
4887 * 1 for xattr if selinux is on
4888 */
a22285a6
YZ
4889 trans = btrfs_start_transaction(root, 5);
4890 if (IS_ERR(trans))
4891 return PTR_ERR(trans);
9ed74f2d 4892 btrfs_set_trans_block_group(trans, dir);
39279cc3 4893
aec7477b 4894 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4895 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4896 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4897 &index);
39279cc3
CM
4898 if (IS_ERR(inode)) {
4899 err = PTR_ERR(inode);
4900 goto out_fail;
4901 }
5f39d397 4902
39279cc3 4903 drop_on_err = 1;
33268eaf 4904
f34f57a3 4905 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4906 if (err)
4907 goto out_fail;
4908
39279cc3
CM
4909 inode->i_op = &btrfs_dir_inode_operations;
4910 inode->i_fop = &btrfs_dir_file_operations;
4911 btrfs_set_trans_block_group(trans, inode);
4912
dbe674a9 4913 btrfs_i_size_write(inode, 0);
39279cc3
CM
4914 err = btrfs_update_inode(trans, root, inode);
4915 if (err)
4916 goto out_fail;
5f39d397 4917
a1b075d2
JB
4918 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4919 dentry->d_name.len, 0, index);
39279cc3
CM
4920 if (err)
4921 goto out_fail;
5f39d397 4922
39279cc3
CM
4923 d_instantiate(dentry, inode);
4924 drop_on_err = 0;
39279cc3
CM
4925 btrfs_update_inode_block_group(trans, inode);
4926 btrfs_update_inode_block_group(trans, dir);
4927
4928out_fail:
d3c2fdcf 4929 nr = trans->blocks_used;
ab78c84d 4930 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4931 if (drop_on_err)
4932 iput(inode);
d3c2fdcf 4933 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4934 return err;
4935}
4936
d352ac68
CM
4937/* helper for btfs_get_extent. Given an existing extent in the tree,
4938 * and an extent that you want to insert, deal with overlap and insert
4939 * the new extent into the tree.
4940 */
3b951516
CM
4941static int merge_extent_mapping(struct extent_map_tree *em_tree,
4942 struct extent_map *existing,
e6dcd2dc
CM
4943 struct extent_map *em,
4944 u64 map_start, u64 map_len)
3b951516
CM
4945{
4946 u64 start_diff;
3b951516 4947
e6dcd2dc
CM
4948 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4949 start_diff = map_start - em->start;
4950 em->start = map_start;
4951 em->len = map_len;
c8b97818
CM
4952 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4953 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4954 em->block_start += start_diff;
c8b97818
CM
4955 em->block_len -= start_diff;
4956 }
e6dcd2dc 4957 return add_extent_mapping(em_tree, em);
3b951516
CM
4958}
4959
c8b97818
CM
4960static noinline int uncompress_inline(struct btrfs_path *path,
4961 struct inode *inode, struct page *page,
4962 size_t pg_offset, u64 extent_offset,
4963 struct btrfs_file_extent_item *item)
4964{
4965 int ret;
4966 struct extent_buffer *leaf = path->nodes[0];
4967 char *tmp;
4968 size_t max_size;
4969 unsigned long inline_size;
4970 unsigned long ptr;
261507a0 4971 int compress_type;
c8b97818
CM
4972
4973 WARN_ON(pg_offset != 0);
261507a0 4974 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4975 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4976 inline_size = btrfs_file_extent_inline_item_len(leaf,
4977 btrfs_item_nr(leaf, path->slots[0]));
4978 tmp = kmalloc(inline_size, GFP_NOFS);
4979 ptr = btrfs_file_extent_inline_start(item);
4980
4981 read_extent_buffer(leaf, tmp, ptr, inline_size);
4982
5b050f04 4983 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4984 ret = btrfs_decompress(compress_type, tmp, page,
4985 extent_offset, inline_size, max_size);
c8b97818
CM
4986 if (ret) {
4987 char *kaddr = kmap_atomic(page, KM_USER0);
4988 unsigned long copy_size = min_t(u64,
4989 PAGE_CACHE_SIZE - pg_offset,
4990 max_size - extent_offset);
4991 memset(kaddr + pg_offset, 0, copy_size);
4992 kunmap_atomic(kaddr, KM_USER0);
4993 }
4994 kfree(tmp);
4995 return 0;
4996}
4997
d352ac68
CM
4998/*
4999 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5000 * the ugly parts come from merging extents from the disk with the in-ram
5001 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5002 * where the in-ram extents might be locked pending data=ordered completion.
5003 *
5004 * This also copies inline extents directly into the page.
5005 */
d397712b 5006
a52d9a80 5007struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5008 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5009 int create)
5010{
5011 int ret;
5012 int err = 0;
db94535d 5013 u64 bytenr;
a52d9a80
CM
5014 u64 extent_start = 0;
5015 u64 extent_end = 0;
5016 u64 objectid = inode->i_ino;
5017 u32 found_type;
f421950f 5018 struct btrfs_path *path = NULL;
a52d9a80
CM
5019 struct btrfs_root *root = BTRFS_I(inode)->root;
5020 struct btrfs_file_extent_item *item;
5f39d397
CM
5021 struct extent_buffer *leaf;
5022 struct btrfs_key found_key;
a52d9a80
CM
5023 struct extent_map *em = NULL;
5024 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5025 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5026 struct btrfs_trans_handle *trans = NULL;
261507a0 5027 int compress_type;
a52d9a80 5028
a52d9a80 5029again:
890871be 5030 read_lock(&em_tree->lock);
d1310b2e 5031 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5032 if (em)
5033 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5034 read_unlock(&em_tree->lock);
d1310b2e 5035
a52d9a80 5036 if (em) {
e1c4b745
CM
5037 if (em->start > start || em->start + em->len <= start)
5038 free_extent_map(em);
5039 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5040 free_extent_map(em);
5041 else
5042 goto out;
a52d9a80 5043 }
d1310b2e 5044 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5045 if (!em) {
d1310b2e
CM
5046 err = -ENOMEM;
5047 goto out;
a52d9a80 5048 }
e6dcd2dc 5049 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5050 em->start = EXTENT_MAP_HOLE;
445a6944 5051 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5052 em->len = (u64)-1;
c8b97818 5053 em->block_len = (u64)-1;
f421950f
CM
5054
5055 if (!path) {
5056 path = btrfs_alloc_path();
5057 BUG_ON(!path);
5058 }
5059
179e29e4
CM
5060 ret = btrfs_lookup_file_extent(trans, root, path,
5061 objectid, start, trans != NULL);
a52d9a80
CM
5062 if (ret < 0) {
5063 err = ret;
5064 goto out;
5065 }
5066
5067 if (ret != 0) {
5068 if (path->slots[0] == 0)
5069 goto not_found;
5070 path->slots[0]--;
5071 }
5072
5f39d397
CM
5073 leaf = path->nodes[0];
5074 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5075 struct btrfs_file_extent_item);
a52d9a80 5076 /* are we inside the extent that was found? */
5f39d397
CM
5077 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5078 found_type = btrfs_key_type(&found_key);
5079 if (found_key.objectid != objectid ||
a52d9a80
CM
5080 found_type != BTRFS_EXTENT_DATA_KEY) {
5081 goto not_found;
5082 }
5083
5f39d397
CM
5084 found_type = btrfs_file_extent_type(leaf, item);
5085 extent_start = found_key.offset;
261507a0 5086 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5087 if (found_type == BTRFS_FILE_EXTENT_REG ||
5088 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5089 extent_end = extent_start +
db94535d 5090 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5091 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5092 size_t size;
5093 size = btrfs_file_extent_inline_len(leaf, item);
5094 extent_end = (extent_start + size + root->sectorsize - 1) &
5095 ~((u64)root->sectorsize - 1);
5096 }
5097
5098 if (start >= extent_end) {
5099 path->slots[0]++;
5100 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5101 ret = btrfs_next_leaf(root, path);
5102 if (ret < 0) {
5103 err = ret;
5104 goto out;
a52d9a80 5105 }
9036c102
YZ
5106 if (ret > 0)
5107 goto not_found;
5108 leaf = path->nodes[0];
a52d9a80 5109 }
9036c102
YZ
5110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5111 if (found_key.objectid != objectid ||
5112 found_key.type != BTRFS_EXTENT_DATA_KEY)
5113 goto not_found;
5114 if (start + len <= found_key.offset)
5115 goto not_found;
5116 em->start = start;
5117 em->len = found_key.offset - start;
5118 goto not_found_em;
5119 }
5120
d899e052
YZ
5121 if (found_type == BTRFS_FILE_EXTENT_REG ||
5122 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5123 em->start = extent_start;
5124 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5125 em->orig_start = extent_start -
5126 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5127 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5128 if (bytenr == 0) {
5f39d397 5129 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5130 goto insert;
5131 }
261507a0 5132 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5133 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5134 em->compress_type = compress_type;
c8b97818
CM
5135 em->block_start = bytenr;
5136 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5137 item);
5138 } else {
5139 bytenr += btrfs_file_extent_offset(leaf, item);
5140 em->block_start = bytenr;
5141 em->block_len = em->len;
d899e052
YZ
5142 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5143 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5144 }
a52d9a80
CM
5145 goto insert;
5146 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5147 unsigned long ptr;
a52d9a80 5148 char *map;
3326d1b0
CM
5149 size_t size;
5150 size_t extent_offset;
5151 size_t copy_size;
a52d9a80 5152
689f9346 5153 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5154 if (!page || create) {
689f9346 5155 em->start = extent_start;
9036c102 5156 em->len = extent_end - extent_start;
689f9346
Y
5157 goto out;
5158 }
5f39d397 5159
9036c102
YZ
5160 size = btrfs_file_extent_inline_len(leaf, item);
5161 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5162 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5163 size - extent_offset);
3326d1b0 5164 em->start = extent_start + extent_offset;
70dec807
CM
5165 em->len = (copy_size + root->sectorsize - 1) &
5166 ~((u64)root->sectorsize - 1);
ff5b7ee3 5167 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5168 if (compress_type) {
c8b97818 5169 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5170 em->compress_type = compress_type;
5171 }
689f9346 5172 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5173 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5174 if (btrfs_file_extent_compression(leaf, item) !=
5175 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5176 ret = uncompress_inline(path, inode, page,
5177 pg_offset,
5178 extent_offset, item);
5179 BUG_ON(ret);
5180 } else {
5181 map = kmap(page);
5182 read_extent_buffer(leaf, map + pg_offset, ptr,
5183 copy_size);
93c82d57
CM
5184 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5185 memset(map + pg_offset + copy_size, 0,
5186 PAGE_CACHE_SIZE - pg_offset -
5187 copy_size);
5188 }
c8b97818
CM
5189 kunmap(page);
5190 }
179e29e4
CM
5191 flush_dcache_page(page);
5192 } else if (create && PageUptodate(page)) {
0ca1f7ce 5193 WARN_ON(1);
179e29e4
CM
5194 if (!trans) {
5195 kunmap(page);
5196 free_extent_map(em);
5197 em = NULL;
5198 btrfs_release_path(root, path);
f9295749 5199 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5200 if (IS_ERR(trans))
5201 return ERR_CAST(trans);
179e29e4
CM
5202 goto again;
5203 }
c8b97818 5204 map = kmap(page);
70dec807 5205 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5206 copy_size);
c8b97818 5207 kunmap(page);
179e29e4 5208 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5209 }
d1310b2e
CM
5210 set_extent_uptodate(io_tree, em->start,
5211 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5212 goto insert;
5213 } else {
d397712b 5214 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5215 WARN_ON(1);
5216 }
5217not_found:
5218 em->start = start;
d1310b2e 5219 em->len = len;
a52d9a80 5220not_found_em:
5f39d397 5221 em->block_start = EXTENT_MAP_HOLE;
9036c102 5222 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5223insert:
5224 btrfs_release_path(root, path);
d1310b2e 5225 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5226 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5227 "[%llu %llu]\n", (unsigned long long)em->start,
5228 (unsigned long long)em->len,
5229 (unsigned long long)start,
5230 (unsigned long long)len);
a52d9a80
CM
5231 err = -EIO;
5232 goto out;
5233 }
d1310b2e
CM
5234
5235 err = 0;
890871be 5236 write_lock(&em_tree->lock);
a52d9a80 5237 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5238 /* it is possible that someone inserted the extent into the tree
5239 * while we had the lock dropped. It is also possible that
5240 * an overlapping map exists in the tree
5241 */
a52d9a80 5242 if (ret == -EEXIST) {
3b951516 5243 struct extent_map *existing;
e6dcd2dc
CM
5244
5245 ret = 0;
5246
3b951516 5247 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5248 if (existing && (existing->start > start ||
5249 existing->start + existing->len <= start)) {
5250 free_extent_map(existing);
5251 existing = NULL;
5252 }
3b951516
CM
5253 if (!existing) {
5254 existing = lookup_extent_mapping(em_tree, em->start,
5255 em->len);
5256 if (existing) {
5257 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5258 em, start,
5259 root->sectorsize);
3b951516
CM
5260 free_extent_map(existing);
5261 if (err) {
5262 free_extent_map(em);
5263 em = NULL;
5264 }
5265 } else {
5266 err = -EIO;
3b951516
CM
5267 free_extent_map(em);
5268 em = NULL;
5269 }
5270 } else {
5271 free_extent_map(em);
5272 em = existing;
e6dcd2dc 5273 err = 0;
a52d9a80 5274 }
a52d9a80 5275 }
890871be 5276 write_unlock(&em_tree->lock);
a52d9a80 5277out:
1abe9b8a 5278
5279 trace_btrfs_get_extent(root, em);
5280
f421950f
CM
5281 if (path)
5282 btrfs_free_path(path);
a52d9a80
CM
5283 if (trans) {
5284 ret = btrfs_end_transaction(trans, root);
d397712b 5285 if (!err)
a52d9a80
CM
5286 err = ret;
5287 }
a52d9a80
CM
5288 if (err) {
5289 free_extent_map(em);
a52d9a80
CM
5290 return ERR_PTR(err);
5291 }
5292 return em;
5293}
5294
ec29ed5b
CM
5295struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5296 size_t pg_offset, u64 start, u64 len,
5297 int create)
5298{
5299 struct extent_map *em;
5300 struct extent_map *hole_em = NULL;
5301 u64 range_start = start;
5302 u64 end;
5303 u64 found;
5304 u64 found_end;
5305 int err = 0;
5306
5307 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5308 if (IS_ERR(em))
5309 return em;
5310 if (em) {
5311 /*
5312 * if our em maps to a hole, there might
5313 * actually be delalloc bytes behind it
5314 */
5315 if (em->block_start != EXTENT_MAP_HOLE)
5316 return em;
5317 else
5318 hole_em = em;
5319 }
5320
5321 /* check to see if we've wrapped (len == -1 or similar) */
5322 end = start + len;
5323 if (end < start)
5324 end = (u64)-1;
5325 else
5326 end -= 1;
5327
5328 em = NULL;
5329
5330 /* ok, we didn't find anything, lets look for delalloc */
5331 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5332 end, len, EXTENT_DELALLOC, 1);
5333 found_end = range_start + found;
5334 if (found_end < range_start)
5335 found_end = (u64)-1;
5336
5337 /*
5338 * we didn't find anything useful, return
5339 * the original results from get_extent()
5340 */
5341 if (range_start > end || found_end <= start) {
5342 em = hole_em;
5343 hole_em = NULL;
5344 goto out;
5345 }
5346
5347 /* adjust the range_start to make sure it doesn't
5348 * go backwards from the start they passed in
5349 */
5350 range_start = max(start,range_start);
5351 found = found_end - range_start;
5352
5353 if (found > 0) {
5354 u64 hole_start = start;
5355 u64 hole_len = len;
5356
5357 em = alloc_extent_map(GFP_NOFS);
5358 if (!em) {
5359 err = -ENOMEM;
5360 goto out;
5361 }
5362 /*
5363 * when btrfs_get_extent can't find anything it
5364 * returns one huge hole
5365 *
5366 * make sure what it found really fits our range, and
5367 * adjust to make sure it is based on the start from
5368 * the caller
5369 */
5370 if (hole_em) {
5371 u64 calc_end = extent_map_end(hole_em);
5372
5373 if (calc_end <= start || (hole_em->start > end)) {
5374 free_extent_map(hole_em);
5375 hole_em = NULL;
5376 } else {
5377 hole_start = max(hole_em->start, start);
5378 hole_len = calc_end - hole_start;
5379 }
5380 }
5381 em->bdev = NULL;
5382 if (hole_em && range_start > hole_start) {
5383 /* our hole starts before our delalloc, so we
5384 * have to return just the parts of the hole
5385 * that go until the delalloc starts
5386 */
5387 em->len = min(hole_len,
5388 range_start - hole_start);
5389 em->start = hole_start;
5390 em->orig_start = hole_start;
5391 /*
5392 * don't adjust block start at all,
5393 * it is fixed at EXTENT_MAP_HOLE
5394 */
5395 em->block_start = hole_em->block_start;
5396 em->block_len = hole_len;
5397 } else {
5398 em->start = range_start;
5399 em->len = found;
5400 em->orig_start = range_start;
5401 em->block_start = EXTENT_MAP_DELALLOC;
5402 em->block_len = found;
5403 }
5404 } else if (hole_em) {
5405 return hole_em;
5406 }
5407out:
5408
5409 free_extent_map(hole_em);
5410 if (err) {
5411 free_extent_map(em);
5412 return ERR_PTR(err);
5413 }
5414 return em;
5415}
5416
4b46fce2
JB
5417static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5418 u64 start, u64 len)
5419{
5420 struct btrfs_root *root = BTRFS_I(inode)->root;
5421 struct btrfs_trans_handle *trans;
5422 struct extent_map *em;
5423 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5424 struct btrfs_key ins;
5425 u64 alloc_hint;
5426 int ret;
5427
5428 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5429
5430 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5431 if (IS_ERR(trans))
5432 return ERR_CAST(trans);
4b46fce2
JB
5433
5434 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5435
5436 alloc_hint = get_extent_allocation_hint(inode, start, len);
5437 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5438 alloc_hint, (u64)-1, &ins, 1);
5439 if (ret) {
5440 em = ERR_PTR(ret);
5441 goto out;
5442 }
5443
5444 em = alloc_extent_map(GFP_NOFS);
5445 if (!em) {
5446 em = ERR_PTR(-ENOMEM);
5447 goto out;
5448 }
5449
5450 em->start = start;
5451 em->orig_start = em->start;
5452 em->len = ins.offset;
5453
5454 em->block_start = ins.objectid;
5455 em->block_len = ins.offset;
5456 em->bdev = root->fs_info->fs_devices->latest_bdev;
5457 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5458
5459 while (1) {
5460 write_lock(&em_tree->lock);
5461 ret = add_extent_mapping(em_tree, em);
5462 write_unlock(&em_tree->lock);
5463 if (ret != -EEXIST)
5464 break;
5465 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5466 }
5467
5468 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5469 ins.offset, ins.offset, 0);
5470 if (ret) {
5471 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5472 em = ERR_PTR(ret);
5473 }
5474out:
5475 btrfs_end_transaction(trans, root);
5476 return em;
5477}
5478
46bfbb5c
CM
5479/*
5480 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5481 * block must be cow'd
5482 */
5483static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5484 struct inode *inode, u64 offset, u64 len)
5485{
5486 struct btrfs_path *path;
5487 int ret;
5488 struct extent_buffer *leaf;
5489 struct btrfs_root *root = BTRFS_I(inode)->root;
5490 struct btrfs_file_extent_item *fi;
5491 struct btrfs_key key;
5492 u64 disk_bytenr;
5493 u64 backref_offset;
5494 u64 extent_end;
5495 u64 num_bytes;
5496 int slot;
5497 int found_type;
5498
5499 path = btrfs_alloc_path();
5500 if (!path)
5501 return -ENOMEM;
5502
5503 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5504 offset, 0);
5505 if (ret < 0)
5506 goto out;
5507
5508 slot = path->slots[0];
5509 if (ret == 1) {
5510 if (slot == 0) {
5511 /* can't find the item, must cow */
5512 ret = 0;
5513 goto out;
5514 }
5515 slot--;
5516 }
5517 ret = 0;
5518 leaf = path->nodes[0];
5519 btrfs_item_key_to_cpu(leaf, &key, slot);
5520 if (key.objectid != inode->i_ino ||
5521 key.type != BTRFS_EXTENT_DATA_KEY) {
5522 /* not our file or wrong item type, must cow */
5523 goto out;
5524 }
5525
5526 if (key.offset > offset) {
5527 /* Wrong offset, must cow */
5528 goto out;
5529 }
5530
5531 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5532 found_type = btrfs_file_extent_type(leaf, fi);
5533 if (found_type != BTRFS_FILE_EXTENT_REG &&
5534 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5535 /* not a regular extent, must cow */
5536 goto out;
5537 }
5538 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5539 backref_offset = btrfs_file_extent_offset(leaf, fi);
5540
5541 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5542 if (extent_end < offset + len) {
5543 /* extent doesn't include our full range, must cow */
5544 goto out;
5545 }
5546
5547 if (btrfs_extent_readonly(root, disk_bytenr))
5548 goto out;
5549
5550 /*
5551 * look for other files referencing this extent, if we
5552 * find any we must cow
5553 */
5554 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5555 key.offset - backref_offset, disk_bytenr))
5556 goto out;
5557
5558 /*
5559 * adjust disk_bytenr and num_bytes to cover just the bytes
5560 * in this extent we are about to write. If there
5561 * are any csums in that range we have to cow in order
5562 * to keep the csums correct
5563 */
5564 disk_bytenr += backref_offset;
5565 disk_bytenr += offset - key.offset;
5566 num_bytes = min(offset + len, extent_end) - offset;
5567 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5568 goto out;
5569 /*
5570 * all of the above have passed, it is safe to overwrite this extent
5571 * without cow
5572 */
5573 ret = 1;
5574out:
5575 btrfs_free_path(path);
5576 return ret;
5577}
5578
4b46fce2
JB
5579static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5580 struct buffer_head *bh_result, int create)
5581{
5582 struct extent_map *em;
5583 struct btrfs_root *root = BTRFS_I(inode)->root;
5584 u64 start = iblock << inode->i_blkbits;
5585 u64 len = bh_result->b_size;
46bfbb5c 5586 struct btrfs_trans_handle *trans;
4b46fce2
JB
5587
5588 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5589 if (IS_ERR(em))
5590 return PTR_ERR(em);
5591
5592 /*
5593 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5594 * io. INLINE is special, and we could probably kludge it in here, but
5595 * it's still buffered so for safety lets just fall back to the generic
5596 * buffered path.
5597 *
5598 * For COMPRESSED we _have_ to read the entire extent in so we can
5599 * decompress it, so there will be buffering required no matter what we
5600 * do, so go ahead and fallback to buffered.
5601 *
5602 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5603 * to buffered IO. Don't blame me, this is the price we pay for using
5604 * the generic code.
5605 */
5606 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5607 em->block_start == EXTENT_MAP_INLINE) {
5608 free_extent_map(em);
5609 return -ENOTBLK;
5610 }
5611
5612 /* Just a good old fashioned hole, return */
5613 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5614 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5615 free_extent_map(em);
5616 /* DIO will do one hole at a time, so just unlock a sector */
5617 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5618 start + root->sectorsize - 1, GFP_NOFS);
5619 return 0;
5620 }
5621
5622 /*
5623 * We don't allocate a new extent in the following cases
5624 *
5625 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5626 * existing extent.
5627 * 2) The extent is marked as PREALLOC. We're good to go here and can
5628 * just use the extent.
5629 *
5630 */
46bfbb5c
CM
5631 if (!create) {
5632 len = em->len - (start - em->start);
4b46fce2 5633 goto map;
46bfbb5c 5634 }
4b46fce2
JB
5635
5636 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5637 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5638 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5639 int type;
5640 int ret;
46bfbb5c 5641 u64 block_start;
4b46fce2
JB
5642
5643 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5644 type = BTRFS_ORDERED_PREALLOC;
5645 else
5646 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5647 len = min(len, em->len - (start - em->start));
4b46fce2 5648 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5649
5650 /*
5651 * we're not going to log anything, but we do need
5652 * to make sure the current transaction stays open
5653 * while we look for nocow cross refs
5654 */
5655 trans = btrfs_join_transaction(root, 0);
3612b495 5656 if (IS_ERR(trans))
46bfbb5c
CM
5657 goto must_cow;
5658
5659 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5660 ret = btrfs_add_ordered_extent_dio(inode, start,
5661 block_start, len, len, type);
5662 btrfs_end_transaction(trans, root);
5663 if (ret) {
5664 free_extent_map(em);
5665 return ret;
5666 }
5667 goto unlock;
4b46fce2 5668 }
46bfbb5c 5669 btrfs_end_transaction(trans, root);
4b46fce2 5670 }
46bfbb5c
CM
5671must_cow:
5672 /*
5673 * this will cow the extent, reset the len in case we changed
5674 * it above
5675 */
5676 len = bh_result->b_size;
5677 free_extent_map(em);
5678 em = btrfs_new_extent_direct(inode, start, len);
5679 if (IS_ERR(em))
5680 return PTR_ERR(em);
5681 len = min(len, em->len - (start - em->start));
5682unlock:
4845e44f
CM
5683 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5684 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5685 0, NULL, GFP_NOFS);
4b46fce2
JB
5686map:
5687 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5688 inode->i_blkbits;
46bfbb5c 5689 bh_result->b_size = len;
4b46fce2
JB
5690 bh_result->b_bdev = em->bdev;
5691 set_buffer_mapped(bh_result);
5692 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5693 set_buffer_new(bh_result);
5694
5695 free_extent_map(em);
5696
5697 return 0;
5698}
5699
5700struct btrfs_dio_private {
5701 struct inode *inode;
5702 u64 logical_offset;
5703 u64 disk_bytenr;
5704 u64 bytes;
5705 u32 *csums;
5706 void *private;
e65e1535
MX
5707
5708 /* number of bios pending for this dio */
5709 atomic_t pending_bios;
5710
5711 /* IO errors */
5712 int errors;
5713
5714 struct bio *orig_bio;
4b46fce2
JB
5715};
5716
5717static void btrfs_endio_direct_read(struct bio *bio, int err)
5718{
e65e1535 5719 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5720 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5721 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5722 struct inode *inode = dip->inode;
5723 struct btrfs_root *root = BTRFS_I(inode)->root;
5724 u64 start;
5725 u32 *private = dip->csums;
5726
5727 start = dip->logical_offset;
5728 do {
5729 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5730 struct page *page = bvec->bv_page;
5731 char *kaddr;
5732 u32 csum = ~(u32)0;
5733 unsigned long flags;
5734
5735 local_irq_save(flags);
5736 kaddr = kmap_atomic(page, KM_IRQ0);
5737 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5738 csum, bvec->bv_len);
5739 btrfs_csum_final(csum, (char *)&csum);
5740 kunmap_atomic(kaddr, KM_IRQ0);
5741 local_irq_restore(flags);
5742
5743 flush_dcache_page(bvec->bv_page);
5744 if (csum != *private) {
5745 printk(KERN_ERR "btrfs csum failed ino %lu off"
5746 " %llu csum %u private %u\n",
5747 inode->i_ino, (unsigned long long)start,
5748 csum, *private);
5749 err = -EIO;
5750 }
5751 }
5752
5753 start += bvec->bv_len;
5754 private++;
5755 bvec++;
5756 } while (bvec <= bvec_end);
5757
5758 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5759 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5760 bio->bi_private = dip->private;
5761
5762 kfree(dip->csums);
5763 kfree(dip);
c0da7aa1
JB
5764
5765 /* If we had a csum failure make sure to clear the uptodate flag */
5766 if (err)
5767 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5768 dio_end_io(bio, err);
5769}
5770
5771static void btrfs_endio_direct_write(struct bio *bio, int err)
5772{
5773 struct btrfs_dio_private *dip = bio->bi_private;
5774 struct inode *inode = dip->inode;
5775 struct btrfs_root *root = BTRFS_I(inode)->root;
5776 struct btrfs_trans_handle *trans;
5777 struct btrfs_ordered_extent *ordered = NULL;
5778 struct extent_state *cached_state = NULL;
163cf09c
CM
5779 u64 ordered_offset = dip->logical_offset;
5780 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5781 int ret;
5782
5783 if (err)
5784 goto out_done;
163cf09c
CM
5785again:
5786 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5787 &ordered_offset,
5788 ordered_bytes);
4b46fce2 5789 if (!ret)
163cf09c 5790 goto out_test;
4b46fce2
JB
5791
5792 BUG_ON(!ordered);
5793
5794 trans = btrfs_join_transaction(root, 1);
3612b495 5795 if (IS_ERR(trans)) {
4b46fce2
JB
5796 err = -ENOMEM;
5797 goto out;
5798 }
5799 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5800
5801 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5802 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5803 if (!ret)
5804 ret = btrfs_update_inode(trans, root, inode);
5805 err = ret;
5806 goto out;
5807 }
5808
5809 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5810 ordered->file_offset + ordered->len - 1, 0,
5811 &cached_state, GFP_NOFS);
5812
5813 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5814 ret = btrfs_mark_extent_written(trans, inode,
5815 ordered->file_offset,
5816 ordered->file_offset +
5817 ordered->len);
5818 if (ret) {
5819 err = ret;
5820 goto out_unlock;
5821 }
5822 } else {
5823 ret = insert_reserved_file_extent(trans, inode,
5824 ordered->file_offset,
5825 ordered->start,
5826 ordered->disk_len,
5827 ordered->len,
5828 ordered->len,
5829 0, 0, 0,
5830 BTRFS_FILE_EXTENT_REG);
5831 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5832 ordered->file_offset, ordered->len);
5833 if (ret) {
5834 err = ret;
5835 WARN_ON(1);
5836 goto out_unlock;
5837 }
5838 }
5839
5840 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5841 btrfs_ordered_update_i_size(inode, 0, ordered);
5842 btrfs_update_inode(trans, root, inode);
5843out_unlock:
5844 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5845 ordered->file_offset + ordered->len - 1,
5846 &cached_state, GFP_NOFS);
5847out:
5848 btrfs_delalloc_release_metadata(inode, ordered->len);
5849 btrfs_end_transaction(trans, root);
163cf09c 5850 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5851 btrfs_put_ordered_extent(ordered);
5852 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5853
5854out_test:
5855 /*
5856 * our bio might span multiple ordered extents. If we haven't
5857 * completed the accounting for the whole dio, go back and try again
5858 */
5859 if (ordered_offset < dip->logical_offset + dip->bytes) {
5860 ordered_bytes = dip->logical_offset + dip->bytes -
5861 ordered_offset;
5862 goto again;
5863 }
4b46fce2
JB
5864out_done:
5865 bio->bi_private = dip->private;
5866
5867 kfree(dip->csums);
5868 kfree(dip);
c0da7aa1
JB
5869
5870 /* If we had an error make sure to clear the uptodate flag */
5871 if (err)
5872 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5873 dio_end_io(bio, err);
5874}
5875
eaf25d93
CM
5876static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5877 struct bio *bio, int mirror_num,
5878 unsigned long bio_flags, u64 offset)
5879{
5880 int ret;
5881 struct btrfs_root *root = BTRFS_I(inode)->root;
5882 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5883 BUG_ON(ret);
5884 return 0;
5885}
5886
e65e1535
MX
5887static void btrfs_end_dio_bio(struct bio *bio, int err)
5888{
5889 struct btrfs_dio_private *dip = bio->bi_private;
5890
5891 if (err) {
5892 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5893 "sector %#Lx len %u err no %d\n",
5894 dip->inode->i_ino, bio->bi_rw,
5895 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5896 dip->errors = 1;
5897
5898 /*
5899 * before atomic variable goto zero, we must make sure
5900 * dip->errors is perceived to be set.
5901 */
5902 smp_mb__before_atomic_dec();
5903 }
5904
5905 /* if there are more bios still pending for this dio, just exit */
5906 if (!atomic_dec_and_test(&dip->pending_bios))
5907 goto out;
5908
5909 if (dip->errors)
5910 bio_io_error(dip->orig_bio);
5911 else {
5912 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5913 bio_endio(dip->orig_bio, 0);
5914 }
5915out:
5916 bio_put(bio);
5917}
5918
5919static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5920 u64 first_sector, gfp_t gfp_flags)
5921{
5922 int nr_vecs = bio_get_nr_vecs(bdev);
5923 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5924}
5925
5926static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5927 int rw, u64 file_offset, int skip_sum,
5928 u32 *csums)
5929{
5930 int write = rw & REQ_WRITE;
5931 struct btrfs_root *root = BTRFS_I(inode)->root;
5932 int ret;
5933
5934 bio_get(bio);
5935 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5936 if (ret)
5937 goto err;
5938
5939 if (write && !skip_sum) {
5940 ret = btrfs_wq_submit_bio(root->fs_info,
5941 inode, rw, bio, 0, 0,
5942 file_offset,
5943 __btrfs_submit_bio_start_direct_io,
5944 __btrfs_submit_bio_done);
5945 goto err;
5946 } else if (!skip_sum)
5947 btrfs_lookup_bio_sums_dio(root, inode, bio,
5948 file_offset, csums);
5949
5950 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5951err:
5952 bio_put(bio);
5953 return ret;
5954}
5955
5956static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5957 int skip_sum)
5958{
5959 struct inode *inode = dip->inode;
5960 struct btrfs_root *root = BTRFS_I(inode)->root;
5961 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5962 struct bio *bio;
5963 struct bio *orig_bio = dip->orig_bio;
5964 struct bio_vec *bvec = orig_bio->bi_io_vec;
5965 u64 start_sector = orig_bio->bi_sector;
5966 u64 file_offset = dip->logical_offset;
5967 u64 submit_len = 0;
5968 u64 map_length;
5969 int nr_pages = 0;
5970 u32 *csums = dip->csums;
5971 int ret = 0;
98bc3149 5972 int write = rw & REQ_WRITE;
e65e1535
MX
5973
5974 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5975 if (!bio)
5976 return -ENOMEM;
5977 bio->bi_private = dip;
5978 bio->bi_end_io = btrfs_end_dio_bio;
5979 atomic_inc(&dip->pending_bios);
5980
5981 map_length = orig_bio->bi_size;
5982 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5983 &map_length, NULL, 0);
5984 if (ret) {
5985 bio_put(bio);
5986 return -EIO;
5987 }
5988
5989 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5990 if (unlikely(map_length < submit_len + bvec->bv_len ||
5991 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5992 bvec->bv_offset) < bvec->bv_len)) {
5993 /*
5994 * inc the count before we submit the bio so
5995 * we know the end IO handler won't happen before
5996 * we inc the count. Otherwise, the dip might get freed
5997 * before we're done setting it up
5998 */
5999 atomic_inc(&dip->pending_bios);
6000 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6001 file_offset, skip_sum,
6002 csums);
6003 if (ret) {
6004 bio_put(bio);
6005 atomic_dec(&dip->pending_bios);
6006 goto out_err;
6007 }
6008
98bc3149
JB
6009 /* Write's use the ordered csums */
6010 if (!write && !skip_sum)
e65e1535
MX
6011 csums = csums + nr_pages;
6012 start_sector += submit_len >> 9;
6013 file_offset += submit_len;
6014
6015 submit_len = 0;
6016 nr_pages = 0;
6017
6018 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6019 start_sector, GFP_NOFS);
6020 if (!bio)
6021 goto out_err;
6022 bio->bi_private = dip;
6023 bio->bi_end_io = btrfs_end_dio_bio;
6024
6025 map_length = orig_bio->bi_size;
6026 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6027 &map_length, NULL, 0);
6028 if (ret) {
6029 bio_put(bio);
6030 goto out_err;
6031 }
6032 } else {
6033 submit_len += bvec->bv_len;
6034 nr_pages ++;
6035 bvec++;
6036 }
6037 }
6038
6039 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6040 csums);
6041 if (!ret)
6042 return 0;
6043
6044 bio_put(bio);
6045out_err:
6046 dip->errors = 1;
6047 /*
6048 * before atomic variable goto zero, we must
6049 * make sure dip->errors is perceived to be set.
6050 */
6051 smp_mb__before_atomic_dec();
6052 if (atomic_dec_and_test(&dip->pending_bios))
6053 bio_io_error(dip->orig_bio);
6054
6055 /* bio_end_io() will handle error, so we needn't return it */
6056 return 0;
6057}
6058
4b46fce2
JB
6059static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6060 loff_t file_offset)
6061{
6062 struct btrfs_root *root = BTRFS_I(inode)->root;
6063 struct btrfs_dio_private *dip;
6064 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6065 int skip_sum;
7b6d91da 6066 int write = rw & REQ_WRITE;
4b46fce2
JB
6067 int ret = 0;
6068
6069 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6070
6071 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6072 if (!dip) {
6073 ret = -ENOMEM;
6074 goto free_ordered;
6075 }
6076 dip->csums = NULL;
6077
98bc3149
JB
6078 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6079 if (!write && !skip_sum) {
4b46fce2
JB
6080 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6081 if (!dip->csums) {
b4966b77 6082 kfree(dip);
4b46fce2
JB
6083 ret = -ENOMEM;
6084 goto free_ordered;
6085 }
6086 }
6087
6088 dip->private = bio->bi_private;
6089 dip->inode = inode;
6090 dip->logical_offset = file_offset;
6091
4b46fce2
JB
6092 dip->bytes = 0;
6093 do {
6094 dip->bytes += bvec->bv_len;
6095 bvec++;
6096 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6097
46bfbb5c 6098 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6099 bio->bi_private = dip;
e65e1535
MX
6100 dip->errors = 0;
6101 dip->orig_bio = bio;
6102 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6103
6104 if (write)
6105 bio->bi_end_io = btrfs_endio_direct_write;
6106 else
6107 bio->bi_end_io = btrfs_endio_direct_read;
6108
e65e1535
MX
6109 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6110 if (!ret)
eaf25d93 6111 return;
4b46fce2
JB
6112free_ordered:
6113 /*
6114 * If this is a write, we need to clean up the reserved space and kill
6115 * the ordered extent.
6116 */
6117 if (write) {
6118 struct btrfs_ordered_extent *ordered;
955256f2 6119 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6120 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6121 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6122 btrfs_free_reserved_extent(root, ordered->start,
6123 ordered->disk_len);
6124 btrfs_put_ordered_extent(ordered);
6125 btrfs_put_ordered_extent(ordered);
6126 }
6127 bio_endio(bio, ret);
6128}
6129
5a5f79b5
CM
6130static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6131 const struct iovec *iov, loff_t offset,
6132 unsigned long nr_segs)
6133{
6134 int seg;
6135 size_t size;
6136 unsigned long addr;
6137 unsigned blocksize_mask = root->sectorsize - 1;
6138 ssize_t retval = -EINVAL;
6139 loff_t end = offset;
6140
6141 if (offset & blocksize_mask)
6142 goto out;
6143
6144 /* Check the memory alignment. Blocks cannot straddle pages */
6145 for (seg = 0; seg < nr_segs; seg++) {
6146 addr = (unsigned long)iov[seg].iov_base;
6147 size = iov[seg].iov_len;
6148 end += size;
6149 if ((addr & blocksize_mask) || (size & blocksize_mask))
6150 goto out;
6151 }
6152 retval = 0;
6153out:
6154 return retval;
6155}
16432985
CM
6156static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6157 const struct iovec *iov, loff_t offset,
6158 unsigned long nr_segs)
6159{
4b46fce2
JB
6160 struct file *file = iocb->ki_filp;
6161 struct inode *inode = file->f_mapping->host;
6162 struct btrfs_ordered_extent *ordered;
4845e44f 6163 struct extent_state *cached_state = NULL;
4b46fce2
JB
6164 u64 lockstart, lockend;
6165 ssize_t ret;
4845e44f
CM
6166 int writing = rw & WRITE;
6167 int write_bits = 0;
3f7c579c 6168 size_t count = iov_length(iov, nr_segs);
4b46fce2 6169
5a5f79b5
CM
6170 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6171 offset, nr_segs)) {
6172 return 0;
6173 }
6174
4b46fce2 6175 lockstart = offset;
3f7c579c
CM
6176 lockend = offset + count - 1;
6177
6178 if (writing) {
6179 ret = btrfs_delalloc_reserve_space(inode, count);
6180 if (ret)
6181 goto out;
6182 }
4845e44f 6183
4b46fce2 6184 while (1) {
4845e44f
CM
6185 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6186 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6187 /*
6188 * We're concerned with the entire range that we're going to be
6189 * doing DIO to, so we need to make sure theres no ordered
6190 * extents in this range.
6191 */
6192 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6193 lockend - lockstart + 1);
6194 if (!ordered)
6195 break;
4845e44f
CM
6196 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6197 &cached_state, GFP_NOFS);
4b46fce2
JB
6198 btrfs_start_ordered_extent(inode, ordered, 1);
6199 btrfs_put_ordered_extent(ordered);
6200 cond_resched();
6201 }
6202
4845e44f
CM
6203 /*
6204 * we don't use btrfs_set_extent_delalloc because we don't want
6205 * the dirty or uptodate bits
6206 */
6207 if (writing) {
6208 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6209 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6210 EXTENT_DELALLOC, 0, NULL, &cached_state,
6211 GFP_NOFS);
6212 if (ret) {
6213 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6214 lockend, EXTENT_LOCKED | write_bits,
6215 1, 0, &cached_state, GFP_NOFS);
6216 goto out;
6217 }
6218 }
6219
6220 free_extent_state(cached_state);
6221 cached_state = NULL;
6222
5a5f79b5
CM
6223 ret = __blockdev_direct_IO(rw, iocb, inode,
6224 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6225 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6226 btrfs_submit_direct, 0);
4b46fce2
JB
6227
6228 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6229 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6230 offset + iov_length(iov, nr_segs) - 1,
6231 EXTENT_LOCKED | write_bits, 1, 0,
6232 &cached_state, GFP_NOFS);
4b46fce2
JB
6233 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6234 /*
6235 * We're falling back to buffered, unlock the section we didn't
6236 * do IO on.
6237 */
4845e44f
CM
6238 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6239 offset + iov_length(iov, nr_segs) - 1,
6240 EXTENT_LOCKED | write_bits, 1, 0,
6241 &cached_state, GFP_NOFS);
4b46fce2 6242 }
4845e44f
CM
6243out:
6244 free_extent_state(cached_state);
4b46fce2 6245 return ret;
16432985
CM
6246}
6247
1506fcc8
YS
6248static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6249 __u64 start, __u64 len)
6250{
ec29ed5b 6251 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6252}
6253
a52d9a80 6254int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6255{
d1310b2e
CM
6256 struct extent_io_tree *tree;
6257 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6258 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6259}
1832a6d5 6260
a52d9a80 6261static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6262{
d1310b2e 6263 struct extent_io_tree *tree;
b888db2b
CM
6264
6265
6266 if (current->flags & PF_MEMALLOC) {
6267 redirty_page_for_writepage(wbc, page);
6268 unlock_page(page);
6269 return 0;
6270 }
d1310b2e 6271 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6272 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6273}
6274
f421950f
CM
6275int btrfs_writepages(struct address_space *mapping,
6276 struct writeback_control *wbc)
b293f02e 6277{
d1310b2e 6278 struct extent_io_tree *tree;
771ed689 6279
d1310b2e 6280 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6281 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6282}
6283
3ab2fb5a
CM
6284static int
6285btrfs_readpages(struct file *file, struct address_space *mapping,
6286 struct list_head *pages, unsigned nr_pages)
6287{
d1310b2e
CM
6288 struct extent_io_tree *tree;
6289 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6290 return extent_readpages(tree, mapping, pages, nr_pages,
6291 btrfs_get_extent);
6292}
e6dcd2dc 6293static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6294{
d1310b2e
CM
6295 struct extent_io_tree *tree;
6296 struct extent_map_tree *map;
a52d9a80 6297 int ret;
8c2383c3 6298
d1310b2e
CM
6299 tree = &BTRFS_I(page->mapping->host)->io_tree;
6300 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6301 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6302 if (ret == 1) {
6303 ClearPagePrivate(page);
6304 set_page_private(page, 0);
6305 page_cache_release(page);
39279cc3 6306 }
a52d9a80 6307 return ret;
39279cc3
CM
6308}
6309
e6dcd2dc
CM
6310static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6311{
98509cfc
CM
6312 if (PageWriteback(page) || PageDirty(page))
6313 return 0;
b335b003 6314 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6315}
6316
a52d9a80 6317static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6318{
d1310b2e 6319 struct extent_io_tree *tree;
e6dcd2dc 6320 struct btrfs_ordered_extent *ordered;
2ac55d41 6321 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6322 u64 page_start = page_offset(page);
6323 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6324
8b62b72b
CM
6325
6326 /*
6327 * we have the page locked, so new writeback can't start,
6328 * and the dirty bit won't be cleared while we are here.
6329 *
6330 * Wait for IO on this page so that we can safely clear
6331 * the PagePrivate2 bit and do ordered accounting
6332 */
e6dcd2dc 6333 wait_on_page_writeback(page);
8b62b72b 6334
d1310b2e 6335 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6336 if (offset) {
6337 btrfs_releasepage(page, GFP_NOFS);
6338 return;
6339 }
2ac55d41
JB
6340 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6341 GFP_NOFS);
e6dcd2dc
CM
6342 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6343 page_offset(page));
6344 if (ordered) {
eb84ae03
CM
6345 /*
6346 * IO on this page will never be started, so we need
6347 * to account for any ordered extents now
6348 */
e6dcd2dc
CM
6349 clear_extent_bit(tree, page_start, page_end,
6350 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6351 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6352 &cached_state, GFP_NOFS);
8b62b72b
CM
6353 /*
6354 * whoever cleared the private bit is responsible
6355 * for the finish_ordered_io
6356 */
6357 if (TestClearPagePrivate2(page)) {
6358 btrfs_finish_ordered_io(page->mapping->host,
6359 page_start, page_end);
6360 }
e6dcd2dc 6361 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6362 cached_state = NULL;
6363 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6364 GFP_NOFS);
e6dcd2dc
CM
6365 }
6366 clear_extent_bit(tree, page_start, page_end,
32c00aff 6367 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6368 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6369 __btrfs_releasepage(page, GFP_NOFS);
6370
4a096752 6371 ClearPageChecked(page);
9ad6b7bc 6372 if (PagePrivate(page)) {
9ad6b7bc
CM
6373 ClearPagePrivate(page);
6374 set_page_private(page, 0);
6375 page_cache_release(page);
6376 }
39279cc3
CM
6377}
6378
9ebefb18
CM
6379/*
6380 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6381 * called from a page fault handler when a page is first dirtied. Hence we must
6382 * be careful to check for EOF conditions here. We set the page up correctly
6383 * for a written page which means we get ENOSPC checking when writing into
6384 * holes and correct delalloc and unwritten extent mapping on filesystems that
6385 * support these features.
6386 *
6387 * We are not allowed to take the i_mutex here so we have to play games to
6388 * protect against truncate races as the page could now be beyond EOF. Because
6389 * vmtruncate() writes the inode size before removing pages, once we have the
6390 * page lock we can determine safely if the page is beyond EOF. If it is not
6391 * beyond EOF, then the page is guaranteed safe against truncation until we
6392 * unlock the page.
6393 */
c2ec175c 6394int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6395{
c2ec175c 6396 struct page *page = vmf->page;
6da6abae 6397 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6398 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6399 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6400 struct btrfs_ordered_extent *ordered;
2ac55d41 6401 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6402 char *kaddr;
6403 unsigned long zero_start;
9ebefb18 6404 loff_t size;
1832a6d5 6405 int ret;
a52d9a80 6406 u64 page_start;
e6dcd2dc 6407 u64 page_end;
9ebefb18 6408
0ca1f7ce 6409 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6410 if (ret) {
6411 if (ret == -ENOMEM)
6412 ret = VM_FAULT_OOM;
6413 else /* -ENOSPC, -EIO, etc */
6414 ret = VM_FAULT_SIGBUS;
1832a6d5 6415 goto out;
56a76f82 6416 }
1832a6d5 6417
56a76f82 6418 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6419again:
9ebefb18 6420 lock_page(page);
9ebefb18 6421 size = i_size_read(inode);
e6dcd2dc
CM
6422 page_start = page_offset(page);
6423 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6424
9ebefb18 6425 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6426 (page_start >= size)) {
9ebefb18
CM
6427 /* page got truncated out from underneath us */
6428 goto out_unlock;
6429 }
e6dcd2dc
CM
6430 wait_on_page_writeback(page);
6431
2ac55d41
JB
6432 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6433 GFP_NOFS);
e6dcd2dc
CM
6434 set_page_extent_mapped(page);
6435
eb84ae03
CM
6436 /*
6437 * we can't set the delalloc bits if there are pending ordered
6438 * extents. Drop our locks and wait for them to finish
6439 */
e6dcd2dc
CM
6440 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6441 if (ordered) {
2ac55d41
JB
6442 unlock_extent_cached(io_tree, page_start, page_end,
6443 &cached_state, GFP_NOFS);
e6dcd2dc 6444 unlock_page(page);
eb84ae03 6445 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6446 btrfs_put_ordered_extent(ordered);
6447 goto again;
6448 }
6449
fbf19087
JB
6450 /*
6451 * XXX - page_mkwrite gets called every time the page is dirtied, even
6452 * if it was already dirty, so for space accounting reasons we need to
6453 * clear any delalloc bits for the range we are fixing to save. There
6454 * is probably a better way to do this, but for now keep consistent with
6455 * prepare_pages in the normal write path.
6456 */
2ac55d41 6457 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6458 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6459 0, 0, &cached_state, GFP_NOFS);
fbf19087 6460
2ac55d41
JB
6461 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6462 &cached_state);
9ed74f2d 6463 if (ret) {
2ac55d41
JB
6464 unlock_extent_cached(io_tree, page_start, page_end,
6465 &cached_state, GFP_NOFS);
9ed74f2d
JB
6466 ret = VM_FAULT_SIGBUS;
6467 goto out_unlock;
6468 }
e6dcd2dc 6469 ret = 0;
9ebefb18
CM
6470
6471 /* page is wholly or partially inside EOF */
a52d9a80 6472 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6473 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6474 else
e6dcd2dc 6475 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6476
e6dcd2dc
CM
6477 if (zero_start != PAGE_CACHE_SIZE) {
6478 kaddr = kmap(page);
6479 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6480 flush_dcache_page(page);
6481 kunmap(page);
6482 }
247e743c 6483 ClearPageChecked(page);
e6dcd2dc 6484 set_page_dirty(page);
50a9b214 6485 SetPageUptodate(page);
5a3f23d5 6486
257c62e1
CM
6487 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6488 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6489
2ac55d41 6490 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6491
6492out_unlock:
50a9b214
CM
6493 if (!ret)
6494 return VM_FAULT_LOCKED;
9ebefb18 6495 unlock_page(page);
0ca1f7ce 6496 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6497out:
9ebefb18
CM
6498 return ret;
6499}
6500
a41ad394 6501static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6502{
6503 struct btrfs_root *root = BTRFS_I(inode)->root;
6504 int ret;
3893e33b 6505 int err = 0;
39279cc3 6506 struct btrfs_trans_handle *trans;
d3c2fdcf 6507 unsigned long nr;
dbe674a9 6508 u64 mask = root->sectorsize - 1;
39279cc3 6509
5d5e103a
JB
6510 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6511 if (ret)
a41ad394 6512 return ret;
8082510e 6513
4a096752 6514 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6515 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6516
f0cd846e
JB
6517 trans = btrfs_start_transaction(root, 5);
6518 if (IS_ERR(trans))
6519 return PTR_ERR(trans);
6520
6521 btrfs_set_trans_block_group(trans, inode);
6522
6523 ret = btrfs_orphan_add(trans, inode);
6524 if (ret) {
6525 btrfs_end_transaction(trans, root);
6526 return ret;
6527 }
6528
6529 nr = trans->blocks_used;
6530 btrfs_end_transaction(trans, root);
6531 btrfs_btree_balance_dirty(root, nr);
6532
6533 /* Now start a transaction for the truncate */
d68fc57b 6534 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6535 if (IS_ERR(trans))
6536 return PTR_ERR(trans);
8082510e 6537 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6538 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6539
6540 /*
6541 * setattr is responsible for setting the ordered_data_close flag,
6542 * but that is only tested during the last file release. That
6543 * could happen well after the next commit, leaving a great big
6544 * window where new writes may get lost if someone chooses to write
6545 * to this file after truncating to zero
6546 *
6547 * The inode doesn't have any dirty data here, and so if we commit
6548 * this is a noop. If someone immediately starts writing to the inode
6549 * it is very likely we'll catch some of their writes in this
6550 * transaction, and the commit will find this file on the ordered
6551 * data list with good things to send down.
6552 *
6553 * This is a best effort solution, there is still a window where
6554 * using truncate to replace the contents of the file will
6555 * end up with a zero length file after a crash.
6556 */
6557 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6558 btrfs_add_ordered_operation(trans, root, inode);
6559
8082510e 6560 while (1) {
d68fc57b
YZ
6561 if (!trans) {
6562 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6563 if (IS_ERR(trans))
6564 return PTR_ERR(trans);
d68fc57b
YZ
6565 btrfs_set_trans_block_group(trans, inode);
6566 trans->block_rsv = root->orphan_block_rsv;
6567 }
6568
6569 ret = btrfs_block_rsv_check(trans, root,
6570 root->orphan_block_rsv, 0, 5);
3893e33b 6571 if (ret == -EAGAIN) {
d68fc57b 6572 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6573 if (ret)
6574 return ret;
d68fc57b
YZ
6575 trans = NULL;
6576 continue;
3893e33b
JB
6577 } else if (ret) {
6578 err = ret;
6579 break;
d68fc57b
YZ
6580 }
6581
8082510e
YZ
6582 ret = btrfs_truncate_inode_items(trans, root, inode,
6583 inode->i_size,
6584 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6585 if (ret != -EAGAIN) {
6586 err = ret;
8082510e 6587 break;
3893e33b 6588 }
39279cc3 6589
8082510e 6590 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6591 if (ret) {
6592 err = ret;
6593 break;
6594 }
5f39d397 6595
8082510e
YZ
6596 nr = trans->blocks_used;
6597 btrfs_end_transaction(trans, root);
d68fc57b 6598 trans = NULL;
8082510e 6599 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6600 }
6601
6602 if (ret == 0 && inode->i_nlink > 0) {
6603 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6604 if (ret)
6605 err = ret;
ded5db9d
JB
6606 } else if (ret && inode->i_nlink > 0) {
6607 /*
6608 * Failed to do the truncate, remove us from the in memory
6609 * orphan list.
6610 */
6611 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6612 }
6613
6614 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6615 if (ret && !err)
6616 err = ret;
7b128766 6617
7b128766 6618 nr = trans->blocks_used;
89ce8a63 6619 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6620 if (ret && !err)
6621 err = ret;
d3c2fdcf 6622 btrfs_btree_balance_dirty(root, nr);
a41ad394 6623
3893e33b 6624 return err;
39279cc3
CM
6625}
6626
d352ac68
CM
6627/*
6628 * create a new subvolume directory/inode (helper for the ioctl).
6629 */
d2fb3437 6630int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6631 struct btrfs_root *new_root,
d2fb3437 6632 u64 new_dirid, u64 alloc_hint)
39279cc3 6633{
39279cc3 6634 struct inode *inode;
76dda93c 6635 int err;
00e4e6b3 6636 u64 index = 0;
39279cc3 6637
aec7477b 6638 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6639 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6640 if (IS_ERR(inode))
f46b5a66 6641 return PTR_ERR(inode);
39279cc3
CM
6642 inode->i_op = &btrfs_dir_inode_operations;
6643 inode->i_fop = &btrfs_dir_file_operations;
6644
39279cc3 6645 inode->i_nlink = 1;
dbe674a9 6646 btrfs_i_size_write(inode, 0);
3b96362c 6647
76dda93c
YZ
6648 err = btrfs_update_inode(trans, new_root, inode);
6649 BUG_ON(err);
cb8e7090 6650
76dda93c 6651 iput(inode);
cb8e7090 6652 return 0;
39279cc3
CM
6653}
6654
d352ac68
CM
6655/* helper function for file defrag and space balancing. This
6656 * forces readahead on a given range of bytes in an inode
6657 */
edbd8d4e 6658unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6659 struct file_ra_state *ra, struct file *file,
6660 pgoff_t offset, pgoff_t last_index)
6661{
8e7bf94f 6662 pgoff_t req_size = last_index - offset + 1;
86479a04 6663
86479a04
CM
6664 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6665 return offset + req_size;
86479a04
CM
6666}
6667
39279cc3
CM
6668struct inode *btrfs_alloc_inode(struct super_block *sb)
6669{
6670 struct btrfs_inode *ei;
2ead6ae7 6671 struct inode *inode;
39279cc3
CM
6672
6673 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6674 if (!ei)
6675 return NULL;
2ead6ae7
YZ
6676
6677 ei->root = NULL;
6678 ei->space_info = NULL;
6679 ei->generation = 0;
6680 ei->sequence = 0;
15ee9bc7 6681 ei->last_trans = 0;
257c62e1 6682 ei->last_sub_trans = 0;
e02119d5 6683 ei->logged_trans = 0;
2ead6ae7
YZ
6684 ei->delalloc_bytes = 0;
6685 ei->reserved_bytes = 0;
6686 ei->disk_i_size = 0;
6687 ei->flags = 0;
6688 ei->index_cnt = (u64)-1;
6689 ei->last_unlink_trans = 0;
6690
0ca1f7ce 6691 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6692 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6693
6694 ei->ordered_data_close = 0;
d68fc57b 6695 ei->orphan_meta_reserved = 0;
2ead6ae7 6696 ei->dummy_inode = 0;
261507a0 6697 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6698
6699 inode = &ei->vfs_inode;
6700 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6701 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6702 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6703 mutex_init(&ei->log_mutex);
e6dcd2dc 6704 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6705 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6706 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6707 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6708 RB_CLEAR_NODE(&ei->rb_node);
6709
6710 return inode;
39279cc3
CM
6711}
6712
fa0d7e3d
NP
6713static void btrfs_i_callback(struct rcu_head *head)
6714{
6715 struct inode *inode = container_of(head, struct inode, i_rcu);
6716 INIT_LIST_HEAD(&inode->i_dentry);
6717 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6718}
6719
39279cc3
CM
6720void btrfs_destroy_inode(struct inode *inode)
6721{
e6dcd2dc 6722 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6723 struct btrfs_root *root = BTRFS_I(inode)->root;
6724
39279cc3
CM
6725 WARN_ON(!list_empty(&inode->i_dentry));
6726 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6727 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6728 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6729
a6dbd429
JB
6730 /*
6731 * This can happen where we create an inode, but somebody else also
6732 * created the same inode and we need to destroy the one we already
6733 * created.
6734 */
6735 if (!root)
6736 goto free;
6737
5a3f23d5
CM
6738 /*
6739 * Make sure we're properly removed from the ordered operation
6740 * lists.
6741 */
6742 smp_mb();
6743 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6744 spin_lock(&root->fs_info->ordered_extent_lock);
6745 list_del_init(&BTRFS_I(inode)->ordered_operations);
6746 spin_unlock(&root->fs_info->ordered_extent_lock);
6747 }
6748
0af3d00b
JB
6749 if (root == root->fs_info->tree_root) {
6750 struct btrfs_block_group_cache *block_group;
6751
6752 block_group = btrfs_lookup_block_group(root->fs_info,
6753 BTRFS_I(inode)->block_group);
6754 if (block_group && block_group->inode == inode) {
6755 spin_lock(&block_group->lock);
6756 block_group->inode = NULL;
6757 spin_unlock(&block_group->lock);
6758 btrfs_put_block_group(block_group);
6759 } else if (block_group) {
6760 btrfs_put_block_group(block_group);
6761 }
6762 }
6763
d68fc57b 6764 spin_lock(&root->orphan_lock);
7b128766 6765 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6766 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6767 inode->i_ino);
6768 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6769 }
d68fc57b 6770 spin_unlock(&root->orphan_lock);
7b128766 6771
d397712b 6772 while (1) {
e6dcd2dc
CM
6773 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6774 if (!ordered)
6775 break;
6776 else {
d397712b
CM
6777 printk(KERN_ERR "btrfs found ordered "
6778 "extent %llu %llu on inode cleanup\n",
6779 (unsigned long long)ordered->file_offset,
6780 (unsigned long long)ordered->len);
e6dcd2dc
CM
6781 btrfs_remove_ordered_extent(inode, ordered);
6782 btrfs_put_ordered_extent(ordered);
6783 btrfs_put_ordered_extent(ordered);
6784 }
6785 }
5d4f98a2 6786 inode_tree_del(inode);
5b21f2ed 6787 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6788free:
fa0d7e3d 6789 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6790}
6791
45321ac5 6792int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6793{
6794 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6795
0af3d00b
JB
6796 if (btrfs_root_refs(&root->root_item) == 0 &&
6797 root != root->fs_info->tree_root)
45321ac5 6798 return 1;
76dda93c 6799 else
45321ac5 6800 return generic_drop_inode(inode);
76dda93c
YZ
6801}
6802
0ee0fda0 6803static void init_once(void *foo)
39279cc3
CM
6804{
6805 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6806
6807 inode_init_once(&ei->vfs_inode);
6808}
6809
6810void btrfs_destroy_cachep(void)
6811{
6812 if (btrfs_inode_cachep)
6813 kmem_cache_destroy(btrfs_inode_cachep);
6814 if (btrfs_trans_handle_cachep)
6815 kmem_cache_destroy(btrfs_trans_handle_cachep);
6816 if (btrfs_transaction_cachep)
6817 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6818 if (btrfs_path_cachep)
6819 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6820 if (btrfs_free_space_cachep)
6821 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6822}
6823
6824int btrfs_init_cachep(void)
6825{
9601e3f6
CH
6826 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6827 sizeof(struct btrfs_inode), 0,
6828 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6829 if (!btrfs_inode_cachep)
6830 goto fail;
9601e3f6
CH
6831
6832 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6833 sizeof(struct btrfs_trans_handle), 0,
6834 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6835 if (!btrfs_trans_handle_cachep)
6836 goto fail;
9601e3f6
CH
6837
6838 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6839 sizeof(struct btrfs_transaction), 0,
6840 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6841 if (!btrfs_transaction_cachep)
6842 goto fail;
9601e3f6
CH
6843
6844 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6845 sizeof(struct btrfs_path), 0,
6846 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6847 if (!btrfs_path_cachep)
6848 goto fail;
9601e3f6 6849
dc89e982
JB
6850 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6851 sizeof(struct btrfs_free_space), 0,
6852 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6853 if (!btrfs_free_space_cachep)
6854 goto fail;
6855
39279cc3
CM
6856 return 0;
6857fail:
6858 btrfs_destroy_cachep();
6859 return -ENOMEM;
6860}
6861
6862static int btrfs_getattr(struct vfsmount *mnt,
6863 struct dentry *dentry, struct kstat *stat)
6864{
6865 struct inode *inode = dentry->d_inode;
6866 generic_fillattr(inode, stat);
3394e160 6867 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6868 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6869 stat->blocks = (inode_get_bytes(inode) +
6870 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6871 return 0;
6872}
6873
75e7cb7f
LB
6874/*
6875 * If a file is moved, it will inherit the cow and compression flags of the new
6876 * directory.
6877 */
6878static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6879{
6880 struct btrfs_inode *b_dir = BTRFS_I(dir);
6881 struct btrfs_inode *b_inode = BTRFS_I(inode);
6882
6883 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6884 b_inode->flags |= BTRFS_INODE_NODATACOW;
6885 else
6886 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6887
6888 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6889 b_inode->flags |= BTRFS_INODE_COMPRESS;
6890 else
6891 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6892}
6893
d397712b
CM
6894static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6895 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6896{
6897 struct btrfs_trans_handle *trans;
6898 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6899 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6900 struct inode *new_inode = new_dentry->d_inode;
6901 struct inode *old_inode = old_dentry->d_inode;
6902 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6903 u64 index = 0;
4df27c4d 6904 u64 root_objectid;
39279cc3
CM
6905 int ret;
6906
f679a840
YZ
6907 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6908 return -EPERM;
6909
4df27c4d
YZ
6910 /* we only allow rename subvolume link between subvolumes */
6911 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6912 return -EXDEV;
6913
4df27c4d
YZ
6914 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6915 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6916 return -ENOTEMPTY;
5f39d397 6917
4df27c4d
YZ
6918 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6919 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6920 return -ENOTEMPTY;
5a3f23d5
CM
6921 /*
6922 * we're using rename to replace one file with another.
6923 * and the replacement file is large. Start IO on it now so
6924 * we don't add too much work to the end of the transaction
6925 */
4baf8c92 6926 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6927 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6928 filemap_flush(old_inode->i_mapping);
6929
76dda93c
YZ
6930 /* close the racy window with snapshot create/destroy ioctl */
6931 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6932 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6933 /*
6934 * We want to reserve the absolute worst case amount of items. So if
6935 * both inodes are subvols and we need to unlink them then that would
6936 * require 4 item modifications, but if they are both normal inodes it
6937 * would require 5 item modifications, so we'll assume their normal
6938 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6939 * should cover the worst case number of items we'll modify.
6940 */
6941 trans = btrfs_start_transaction(root, 20);
6942 if (IS_ERR(trans))
6943 return PTR_ERR(trans);
76dda93c 6944
a5719521 6945 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6946
4df27c4d
YZ
6947 if (dest != root)
6948 btrfs_record_root_in_trans(trans, dest);
5f39d397 6949
a5719521
YZ
6950 ret = btrfs_set_inode_index(new_dir, &index);
6951 if (ret)
6952 goto out_fail;
5a3f23d5 6953
a5719521 6954 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6955 /* force full log commit if subvolume involved. */
6956 root->fs_info->last_trans_log_full_commit = trans->transid;
6957 } else {
a5719521
YZ
6958 ret = btrfs_insert_inode_ref(trans, dest,
6959 new_dentry->d_name.name,
6960 new_dentry->d_name.len,
6961 old_inode->i_ino,
6962 new_dir->i_ino, index);
6963 if (ret)
6964 goto out_fail;
4df27c4d
YZ
6965 /*
6966 * this is an ugly little race, but the rename is required
6967 * to make sure that if we crash, the inode is either at the
6968 * old name or the new one. pinning the log transaction lets
6969 * us make sure we don't allow a log commit to come in after
6970 * we unlink the name but before we add the new name back in.
6971 */
6972 btrfs_pin_log_trans(root);
6973 }
5a3f23d5
CM
6974 /*
6975 * make sure the inode gets flushed if it is replacing
6976 * something.
6977 */
6978 if (new_inode && new_inode->i_size &&
6979 old_inode && S_ISREG(old_inode->i_mode)) {
6980 btrfs_add_ordered_operation(trans, root, old_inode);
6981 }
6982
39279cc3
CM
6983 old_dir->i_ctime = old_dir->i_mtime = ctime;
6984 new_dir->i_ctime = new_dir->i_mtime = ctime;
6985 old_inode->i_ctime = ctime;
5f39d397 6986
12fcfd22
CM
6987 if (old_dentry->d_parent != new_dentry->d_parent)
6988 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6989
4df27c4d
YZ
6990 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6991 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6992 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6993 old_dentry->d_name.name,
6994 old_dentry->d_name.len);
6995 } else {
6996 btrfs_inc_nlink(old_dentry->d_inode);
6997 ret = btrfs_unlink_inode(trans, root, old_dir,
6998 old_dentry->d_inode,
6999 old_dentry->d_name.name,
7000 old_dentry->d_name.len);
7001 }
7002 BUG_ON(ret);
39279cc3
CM
7003
7004 if (new_inode) {
7005 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7006 if (unlikely(new_inode->i_ino ==
7007 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7008 root_objectid = BTRFS_I(new_inode)->location.objectid;
7009 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7010 root_objectid,
7011 new_dentry->d_name.name,
7012 new_dentry->d_name.len);
7013 BUG_ON(new_inode->i_nlink == 0);
7014 } else {
7015 ret = btrfs_unlink_inode(trans, dest, new_dir,
7016 new_dentry->d_inode,
7017 new_dentry->d_name.name,
7018 new_dentry->d_name.len);
7019 }
7020 BUG_ON(ret);
7b128766 7021 if (new_inode->i_nlink == 0) {
e02119d5 7022 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7023 BUG_ON(ret);
7b128766 7024 }
39279cc3 7025 }
aec7477b 7026
75e7cb7f
LB
7027 fixup_inode_flags(new_dir, old_inode);
7028
4df27c4d
YZ
7029 ret = btrfs_add_link(trans, new_dir, old_inode,
7030 new_dentry->d_name.name,
a5719521 7031 new_dentry->d_name.len, 0, index);
4df27c4d 7032 BUG_ON(ret);
39279cc3 7033
4df27c4d 7034 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7035 struct dentry *parent = dget_parent(new_dentry);
7036 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7037 dput(parent);
4df27c4d
YZ
7038 btrfs_end_log_trans(root);
7039 }
39279cc3 7040out_fail:
ab78c84d 7041 btrfs_end_transaction_throttle(trans, root);
4df27c4d 7042
76dda93c
YZ
7043 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7044 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7045
39279cc3
CM
7046 return ret;
7047}
7048
d352ac68
CM
7049/*
7050 * some fairly slow code that needs optimization. This walks the list
7051 * of all the inodes with pending delalloc and forces them to disk.
7052 */
24bbcf04 7053int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7054{
7055 struct list_head *head = &root->fs_info->delalloc_inodes;
7056 struct btrfs_inode *binode;
5b21f2ed 7057 struct inode *inode;
ea8c2819 7058
c146afad
YZ
7059 if (root->fs_info->sb->s_flags & MS_RDONLY)
7060 return -EROFS;
7061
75eff68e 7062 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7063 while (!list_empty(head)) {
ea8c2819
CM
7064 binode = list_entry(head->next, struct btrfs_inode,
7065 delalloc_inodes);
5b21f2ed
ZY
7066 inode = igrab(&binode->vfs_inode);
7067 if (!inode)
7068 list_del_init(&binode->delalloc_inodes);
75eff68e 7069 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7070 if (inode) {
8c8bee1d 7071 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7072 if (delay_iput)
7073 btrfs_add_delayed_iput(inode);
7074 else
7075 iput(inode);
5b21f2ed
ZY
7076 }
7077 cond_resched();
75eff68e 7078 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7079 }
75eff68e 7080 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7081
7082 /* the filemap_flush will queue IO into the worker threads, but
7083 * we have to make sure the IO is actually started and that
7084 * ordered extents get created before we return
7085 */
7086 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7087 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7088 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7089 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7090 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7091 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7092 }
7093 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7094 return 0;
7095}
7096
0019f10d
JB
7097int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7098 int sync)
5da9d01b
YZ
7099{
7100 struct btrfs_inode *binode;
7101 struct inode *inode = NULL;
7102
7103 spin_lock(&root->fs_info->delalloc_lock);
7104 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7105 binode = list_entry(root->fs_info->delalloc_inodes.next,
7106 struct btrfs_inode, delalloc_inodes);
7107 inode = igrab(&binode->vfs_inode);
7108 if (inode) {
7109 list_move_tail(&binode->delalloc_inodes,
7110 &root->fs_info->delalloc_inodes);
7111 break;
7112 }
7113
7114 list_del_init(&binode->delalloc_inodes);
7115 cond_resched_lock(&root->fs_info->delalloc_lock);
7116 }
7117 spin_unlock(&root->fs_info->delalloc_lock);
7118
7119 if (inode) {
0019f10d
JB
7120 if (sync) {
7121 filemap_write_and_wait(inode->i_mapping);
7122 /*
7123 * We have to do this because compression doesn't
7124 * actually set PG_writeback until it submits the pages
7125 * for IO, which happens in an async thread, so we could
7126 * race and not actually wait for any writeback pages
7127 * because they've not been submitted yet. Technically
7128 * this could still be the case for the ordered stuff
7129 * since the async thread may not have started to do its
7130 * work yet. If this becomes the case then we need to
7131 * figure out a way to make sure that in writepage we
7132 * wait for any async pages to be submitted before
7133 * returning so that fdatawait does what its supposed to
7134 * do.
7135 */
7136 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7137 } else {
7138 filemap_flush(inode->i_mapping);
7139 }
5da9d01b
YZ
7140 if (delay_iput)
7141 btrfs_add_delayed_iput(inode);
7142 else
7143 iput(inode);
7144 return 1;
7145 }
7146 return 0;
7147}
7148
39279cc3
CM
7149static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7150 const char *symname)
7151{
7152 struct btrfs_trans_handle *trans;
7153 struct btrfs_root *root = BTRFS_I(dir)->root;
7154 struct btrfs_path *path;
7155 struct btrfs_key key;
1832a6d5 7156 struct inode *inode = NULL;
39279cc3
CM
7157 int err;
7158 int drop_inode = 0;
7159 u64 objectid;
00e4e6b3 7160 u64 index = 0 ;
39279cc3
CM
7161 int name_len;
7162 int datasize;
5f39d397 7163 unsigned long ptr;
39279cc3 7164 struct btrfs_file_extent_item *ei;
5f39d397 7165 struct extent_buffer *leaf;
1832a6d5 7166 unsigned long nr = 0;
39279cc3
CM
7167
7168 name_len = strlen(symname) + 1;
7169 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7170 return -ENAMETOOLONG;
1832a6d5 7171
a22285a6
YZ
7172 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7173 if (err)
7174 return err;
9ed74f2d
JB
7175 /*
7176 * 2 items for inode item and ref
7177 * 2 items for dir items
7178 * 1 item for xattr if selinux is on
7179 */
a22285a6
YZ
7180 trans = btrfs_start_transaction(root, 5);
7181 if (IS_ERR(trans))
7182 return PTR_ERR(trans);
1832a6d5 7183
39279cc3
CM
7184 btrfs_set_trans_block_group(trans, dir);
7185
aec7477b 7186 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7187 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7188 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7189 &index);
39279cc3
CM
7190 err = PTR_ERR(inode);
7191 if (IS_ERR(inode))
7192 goto out_unlock;
7193
f34f57a3 7194 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7195 if (err) {
7196 drop_inode = 1;
7197 goto out_unlock;
7198 }
7199
39279cc3 7200 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7201 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7202 if (err)
7203 drop_inode = 1;
7204 else {
7205 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7206 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7207 inode->i_fop = &btrfs_file_operations;
7208 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7209 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7210 }
39279cc3
CM
7211 btrfs_update_inode_block_group(trans, inode);
7212 btrfs_update_inode_block_group(trans, dir);
7213 if (drop_inode)
7214 goto out_unlock;
7215
7216 path = btrfs_alloc_path();
7217 BUG_ON(!path);
7218 key.objectid = inode->i_ino;
7219 key.offset = 0;
39279cc3
CM
7220 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7221 datasize = btrfs_file_extent_calc_inline_size(name_len);
7222 err = btrfs_insert_empty_item(trans, root, path, &key,
7223 datasize);
54aa1f4d
CM
7224 if (err) {
7225 drop_inode = 1;
7226 goto out_unlock;
7227 }
5f39d397
CM
7228 leaf = path->nodes[0];
7229 ei = btrfs_item_ptr(leaf, path->slots[0],
7230 struct btrfs_file_extent_item);
7231 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7232 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7233 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7234 btrfs_set_file_extent_encryption(leaf, ei, 0);
7235 btrfs_set_file_extent_compression(leaf, ei, 0);
7236 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7237 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7238
39279cc3 7239 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7240 write_extent_buffer(leaf, symname, ptr, name_len);
7241 btrfs_mark_buffer_dirty(leaf);
39279cc3 7242 btrfs_free_path(path);
5f39d397 7243
39279cc3
CM
7244 inode->i_op = &btrfs_symlink_inode_operations;
7245 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7246 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7247 inode_set_bytes(inode, name_len);
dbe674a9 7248 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7249 err = btrfs_update_inode(trans, root, inode);
7250 if (err)
7251 drop_inode = 1;
39279cc3
CM
7252
7253out_unlock:
d3c2fdcf 7254 nr = trans->blocks_used;
ab78c84d 7255 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7256 if (drop_inode) {
7257 inode_dec_link_count(inode);
7258 iput(inode);
7259 }
d3c2fdcf 7260 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7261 return err;
7262}
16432985 7263
0af3d00b
JB
7264static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7265 u64 start, u64 num_bytes, u64 min_size,
7266 loff_t actual_len, u64 *alloc_hint,
7267 struct btrfs_trans_handle *trans)
d899e052 7268{
d899e052
YZ
7269 struct btrfs_root *root = BTRFS_I(inode)->root;
7270 struct btrfs_key ins;
d899e052 7271 u64 cur_offset = start;
55a61d1d 7272 u64 i_size;
d899e052 7273 int ret = 0;
0af3d00b 7274 bool own_trans = true;
d899e052 7275
0af3d00b
JB
7276 if (trans)
7277 own_trans = false;
d899e052 7278 while (num_bytes > 0) {
0af3d00b
JB
7279 if (own_trans) {
7280 trans = btrfs_start_transaction(root, 3);
7281 if (IS_ERR(trans)) {
7282 ret = PTR_ERR(trans);
7283 break;
7284 }
5a303d5d
YZ
7285 }
7286
efa56464
YZ
7287 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7288 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7289 if (ret) {
0af3d00b
JB
7290 if (own_trans)
7291 btrfs_end_transaction(trans, root);
a22285a6 7292 break;
d899e052 7293 }
5a303d5d 7294
d899e052
YZ
7295 ret = insert_reserved_file_extent(trans, inode,
7296 cur_offset, ins.objectid,
7297 ins.offset, ins.offset,
920bbbfb 7298 ins.offset, 0, 0, 0,
d899e052
YZ
7299 BTRFS_FILE_EXTENT_PREALLOC);
7300 BUG_ON(ret);
a1ed835e
CM
7301 btrfs_drop_extent_cache(inode, cur_offset,
7302 cur_offset + ins.offset -1, 0);
5a303d5d 7303
d899e052
YZ
7304 num_bytes -= ins.offset;
7305 cur_offset += ins.offset;
efa56464 7306 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7307
d899e052 7308 inode->i_ctime = CURRENT_TIME;
6cbff00f 7309 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7310 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7311 (actual_len > inode->i_size) &&
7312 (cur_offset > inode->i_size)) {
d1ea6a61 7313 if (cur_offset > actual_len)
55a61d1d 7314 i_size = actual_len;
d1ea6a61 7315 else
55a61d1d
JB
7316 i_size = cur_offset;
7317 i_size_write(inode, i_size);
7318 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7319 }
7320
d899e052
YZ
7321 ret = btrfs_update_inode(trans, root, inode);
7322 BUG_ON(ret);
d899e052 7323
0af3d00b
JB
7324 if (own_trans)
7325 btrfs_end_transaction(trans, root);
5a303d5d 7326 }
d899e052
YZ
7327 return ret;
7328}
7329
0af3d00b
JB
7330int btrfs_prealloc_file_range(struct inode *inode, int mode,
7331 u64 start, u64 num_bytes, u64 min_size,
7332 loff_t actual_len, u64 *alloc_hint)
7333{
7334 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7335 min_size, actual_len, alloc_hint,
7336 NULL);
7337}
7338
7339int btrfs_prealloc_file_range_trans(struct inode *inode,
7340 struct btrfs_trans_handle *trans, int mode,
7341 u64 start, u64 num_bytes, u64 min_size,
7342 loff_t actual_len, u64 *alloc_hint)
7343{
7344 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7345 min_size, actual_len, alloc_hint, trans);
7346}
7347
e6dcd2dc
CM
7348static int btrfs_set_page_dirty(struct page *page)
7349{
e6dcd2dc
CM
7350 return __set_page_dirty_nobuffers(page);
7351}
7352
b74c79e9 7353static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7354{
b83cc969
LZ
7355 struct btrfs_root *root = BTRFS_I(inode)->root;
7356
7357 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7358 return -EROFS;
6cbff00f 7359 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7360 return -EACCES;
b74c79e9 7361 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7362}
39279cc3 7363
6e1d5dcc 7364static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7365 .getattr = btrfs_getattr,
39279cc3
CM
7366 .lookup = btrfs_lookup,
7367 .create = btrfs_create,
7368 .unlink = btrfs_unlink,
7369 .link = btrfs_link,
7370 .mkdir = btrfs_mkdir,
7371 .rmdir = btrfs_rmdir,
7372 .rename = btrfs_rename,
7373 .symlink = btrfs_symlink,
7374 .setattr = btrfs_setattr,
618e21d5 7375 .mknod = btrfs_mknod,
95819c05
CH
7376 .setxattr = btrfs_setxattr,
7377 .getxattr = btrfs_getxattr,
5103e947 7378 .listxattr = btrfs_listxattr,
95819c05 7379 .removexattr = btrfs_removexattr,
fdebe2bd 7380 .permission = btrfs_permission,
39279cc3 7381};
6e1d5dcc 7382static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7383 .lookup = btrfs_lookup,
fdebe2bd 7384 .permission = btrfs_permission,
39279cc3 7385};
76dda93c 7386
828c0950 7387static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7388 .llseek = generic_file_llseek,
7389 .read = generic_read_dir,
cbdf5a24 7390 .readdir = btrfs_real_readdir,
34287aa3 7391 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7392#ifdef CONFIG_COMPAT
34287aa3 7393 .compat_ioctl = btrfs_ioctl,
39279cc3 7394#endif
6bf13c0c 7395 .release = btrfs_release_file,
e02119d5 7396 .fsync = btrfs_sync_file,
39279cc3
CM
7397};
7398
d1310b2e 7399static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7400 .fill_delalloc = run_delalloc_range,
065631f6 7401 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7402 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7403 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7404 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7405 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7406 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7407 .set_bit_hook = btrfs_set_bit_hook,
7408 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7409 .merge_extent_hook = btrfs_merge_extent_hook,
7410 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7411};
7412
35054394
CM
7413/*
7414 * btrfs doesn't support the bmap operation because swapfiles
7415 * use bmap to make a mapping of extents in the file. They assume
7416 * these extents won't change over the life of the file and they
7417 * use the bmap result to do IO directly to the drive.
7418 *
7419 * the btrfs bmap call would return logical addresses that aren't
7420 * suitable for IO and they also will change frequently as COW
7421 * operations happen. So, swapfile + btrfs == corruption.
7422 *
7423 * For now we're avoiding this by dropping bmap.
7424 */
7f09410b 7425static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7426 .readpage = btrfs_readpage,
7427 .writepage = btrfs_writepage,
b293f02e 7428 .writepages = btrfs_writepages,
3ab2fb5a 7429 .readpages = btrfs_readpages,
39279cc3 7430 .sync_page = block_sync_page,
16432985 7431 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7432 .invalidatepage = btrfs_invalidatepage,
7433 .releasepage = btrfs_releasepage,
e6dcd2dc 7434 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7435 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7436};
7437
7f09410b 7438static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7439 .readpage = btrfs_readpage,
7440 .writepage = btrfs_writepage,
2bf5a725
CM
7441 .invalidatepage = btrfs_invalidatepage,
7442 .releasepage = btrfs_releasepage,
39279cc3
CM
7443};
7444
6e1d5dcc 7445static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7446 .getattr = btrfs_getattr,
7447 .setattr = btrfs_setattr,
95819c05
CH
7448 .setxattr = btrfs_setxattr,
7449 .getxattr = btrfs_getxattr,
5103e947 7450 .listxattr = btrfs_listxattr,
95819c05 7451 .removexattr = btrfs_removexattr,
fdebe2bd 7452 .permission = btrfs_permission,
1506fcc8 7453 .fiemap = btrfs_fiemap,
39279cc3 7454};
6e1d5dcc 7455static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7456 .getattr = btrfs_getattr,
7457 .setattr = btrfs_setattr,
fdebe2bd 7458 .permission = btrfs_permission,
95819c05
CH
7459 .setxattr = btrfs_setxattr,
7460 .getxattr = btrfs_getxattr,
33268eaf 7461 .listxattr = btrfs_listxattr,
95819c05 7462 .removexattr = btrfs_removexattr,
618e21d5 7463};
6e1d5dcc 7464static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7465 .readlink = generic_readlink,
7466 .follow_link = page_follow_link_light,
7467 .put_link = page_put_link,
f209561a 7468 .getattr = btrfs_getattr,
fdebe2bd 7469 .permission = btrfs_permission,
0279b4cd
JO
7470 .setxattr = btrfs_setxattr,
7471 .getxattr = btrfs_getxattr,
7472 .listxattr = btrfs_listxattr,
7473 .removexattr = btrfs_removexattr,
39279cc3 7474};
76dda93c 7475
82d339d9 7476const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7477 .d_delete = btrfs_dentry_delete,
7478};