]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
xfs: avoid setting XFS_ILOG_CORE if i_version doesn't need incrementing
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
ae5e165d 46#include <linux/iversion.h>
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
63541927 62#include "props.h"
31193213 63#include "qgroup.h"
dda3245e 64#include "dedupe.h"
39279cc3
CM
65
66struct btrfs_iget_args {
90d3e592 67 struct btrfs_key *location;
39279cc3
CM
68 struct btrfs_root *root;
69};
70
f28a4928 71struct btrfs_dio_data {
f28a4928
FM
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
4aaedfb0 75 int overwrite;
f28a4928
FM
76};
77
6e1d5dcc
AD
78static const struct inode_operations btrfs_dir_inode_operations;
79static const struct inode_operations btrfs_symlink_inode_operations;
80static const struct inode_operations btrfs_dir_ro_inode_operations;
81static const struct inode_operations btrfs_special_inode_operations;
82static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
83static const struct address_space_operations btrfs_aops;
84static const struct address_space_operations btrfs_symlink_aops;
828c0950 85static const struct file_operations btrfs_dir_file_operations;
20e5506b 86static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
87
88static struct kmem_cache *btrfs_inode_cachep;
89struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
112static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 u64 orig_start, u64 block_start,
114 u64 block_len, u64 orig_block_len,
115 u64 ram_bytes, int compress_type,
116 int type);
7b128766 117
52427260
QW
118static void __endio_write_update_ordered(struct inode *inode,
119 const u64 offset, const u64 bytes,
120 const bool uptodate);
121
122/*
123 * Cleanup all submitted ordered extents in specified range to handle errors
124 * from the fill_dellaloc() callback.
125 *
126 * NOTE: caller must ensure that when an error happens, it can not call
127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129 * to be released, which we want to happen only when finishing the ordered
130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131 * fill_delalloc() callback already does proper cleanup for the first page of
132 * the range, that is, it invokes the callback writepage_end_io_hook() for the
133 * range of the first page.
134 */
135static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
136 const u64 offset,
137 const u64 bytes)
138{
63d71450
NA
139 unsigned long index = offset >> PAGE_SHIFT;
140 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
141 struct page *page;
142
143 while (index <= end_index) {
144 page = find_get_page(inode->i_mapping, index);
145 index++;
146 if (!page)
147 continue;
148 ClearPagePrivate2(page);
149 put_page(page);
150 }
52427260
QW
151 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
152 bytes - PAGE_SIZE, false);
153}
154
48a3b636 155static int btrfs_dirty_inode(struct inode *inode);
7b128766 156
6a3891c5
JB
157#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
158void btrfs_test_inode_set_ops(struct inode *inode)
159{
160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
161}
162#endif
163
f34f57a3 164static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
165 struct inode *inode, struct inode *dir,
166 const struct qstr *qstr)
0279b4cd
JO
167{
168 int err;
169
f34f57a3 170 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 171 if (!err)
2a7dba39 172 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
173 return err;
174}
175
c8b97818
CM
176/*
177 * this does all the hard work for inserting an inline extent into
178 * the btree. The caller should have done a btrfs_drop_extents so that
179 * no overlapping inline items exist in the btree
180 */
40f76580 181static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 182 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
183 struct btrfs_root *root, struct inode *inode,
184 u64 start, size_t size, size_t compressed_size,
fe3f566c 185 int compress_type,
c8b97818
CM
186 struct page **compressed_pages)
187{
c8b97818
CM
188 struct extent_buffer *leaf;
189 struct page *page = NULL;
190 char *kaddr;
191 unsigned long ptr;
192 struct btrfs_file_extent_item *ei;
c8b97818
CM
193 int ret;
194 size_t cur_size = size;
c8b97818 195 unsigned long offset;
c8b97818 196
fe3f566c 197 if (compressed_size && compressed_pages)
c8b97818 198 cur_size = compressed_size;
c8b97818 199
1acae57b 200 inode_add_bytes(inode, size);
c8b97818 201
1acae57b
FDBM
202 if (!extent_inserted) {
203 struct btrfs_key key;
204 size_t datasize;
c8b97818 205
4a0cc7ca 206 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 207 key.offset = start;
962a298f 208 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 209
1acae57b
FDBM
210 datasize = btrfs_file_extent_calc_inline_size(cur_size);
211 path->leave_spinning = 1;
212 ret = btrfs_insert_empty_item(trans, root, path, &key,
213 datasize);
79b4f4c6 214 if (ret)
1acae57b 215 goto fail;
c8b97818
CM
216 }
217 leaf = path->nodes[0];
218 ei = btrfs_item_ptr(leaf, path->slots[0],
219 struct btrfs_file_extent_item);
220 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
221 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
222 btrfs_set_file_extent_encryption(leaf, ei, 0);
223 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
224 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
225 ptr = btrfs_file_extent_inline_start(ei);
226
261507a0 227 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
228 struct page *cpage;
229 int i = 0;
d397712b 230 while (compressed_size > 0) {
c8b97818 231 cpage = compressed_pages[i];
5b050f04 232 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 233 PAGE_SIZE);
c8b97818 234
7ac687d9 235 kaddr = kmap_atomic(cpage);
c8b97818 236 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 237 kunmap_atomic(kaddr);
c8b97818
CM
238
239 i++;
240 ptr += cur_size;
241 compressed_size -= cur_size;
242 }
243 btrfs_set_file_extent_compression(leaf, ei,
261507a0 244 compress_type);
c8b97818
CM
245 } else {
246 page = find_get_page(inode->i_mapping,
09cbfeaf 247 start >> PAGE_SHIFT);
c8b97818 248 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 249 kaddr = kmap_atomic(page);
09cbfeaf 250 offset = start & (PAGE_SIZE - 1);
c8b97818 251 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 252 kunmap_atomic(kaddr);
09cbfeaf 253 put_page(page);
c8b97818
CM
254 }
255 btrfs_mark_buffer_dirty(leaf);
1acae57b 256 btrfs_release_path(path);
c8b97818 257
c2167754
YZ
258 /*
259 * we're an inline extent, so nobody can
260 * extend the file past i_size without locking
261 * a page we already have locked.
262 *
263 * We must do any isize and inode updates
264 * before we unlock the pages. Otherwise we
265 * could end up racing with unlink.
266 */
c8b97818 267 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 268 ret = btrfs_update_inode(trans, root, inode);
c2167754 269
c8b97818 270fail:
79b4f4c6 271 return ret;
c8b97818
CM
272}
273
274
275/*
276 * conditionally insert an inline extent into the file. This
277 * does the checks required to make sure the data is small enough
278 * to fit as an inline extent.
279 */
00361589
JB
280static noinline int cow_file_range_inline(struct btrfs_root *root,
281 struct inode *inode, u64 start,
282 u64 end, size_t compressed_size,
283 int compress_type,
284 struct page **compressed_pages)
c8b97818 285{
0b246afa 286 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 287 struct btrfs_trans_handle *trans;
c8b97818
CM
288 u64 isize = i_size_read(inode);
289 u64 actual_end = min(end + 1, isize);
290 u64 inline_len = actual_end - start;
0b246afa 291 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
292 u64 data_len = inline_len;
293 int ret;
1acae57b
FDBM
294 struct btrfs_path *path;
295 int extent_inserted = 0;
296 u32 extent_item_size;
c8b97818
CM
297
298 if (compressed_size)
299 data_len = compressed_size;
300
301 if (start > 0 ||
0b246afa
JM
302 actual_end > fs_info->sectorsize ||
303 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 304 (!compressed_size &&
0b246afa 305 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 306 end + 1 < isize ||
0b246afa 307 data_len > fs_info->max_inline) {
c8b97818
CM
308 return 1;
309 }
310
1acae57b
FDBM
311 path = btrfs_alloc_path();
312 if (!path)
313 return -ENOMEM;
314
00361589 315 trans = btrfs_join_transaction(root);
1acae57b
FDBM
316 if (IS_ERR(trans)) {
317 btrfs_free_path(path);
00361589 318 return PTR_ERR(trans);
1acae57b 319 }
69fe2d75 320 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 321
1acae57b
FDBM
322 if (compressed_size && compressed_pages)
323 extent_item_size = btrfs_file_extent_calc_inline_size(
324 compressed_size);
325 else
326 extent_item_size = btrfs_file_extent_calc_inline_size(
327 inline_len);
328
329 ret = __btrfs_drop_extents(trans, root, inode, path,
330 start, aligned_end, NULL,
331 1, 1, extent_item_size, &extent_inserted);
00361589 332 if (ret) {
66642832 333 btrfs_abort_transaction(trans, ret);
00361589
JB
334 goto out;
335 }
c8b97818
CM
336
337 if (isize > actual_end)
338 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
339 ret = insert_inline_extent(trans, path, extent_inserted,
340 root, inode, start,
c8b97818 341 inline_len, compressed_size,
fe3f566c 342 compress_type, compressed_pages);
2adcac1a 343 if (ret && ret != -ENOSPC) {
66642832 344 btrfs_abort_transaction(trans, ret);
00361589 345 goto out;
2adcac1a 346 } else if (ret == -ENOSPC) {
00361589
JB
347 ret = 1;
348 goto out;
79787eaa 349 }
2adcac1a 350
bdc20e67 351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 353out:
94ed938a
QW
354 /*
355 * Don't forget to free the reserved space, as for inlined extent
356 * it won't count as data extent, free them directly here.
357 * And at reserve time, it's always aligned to page size, so
358 * just free one page here.
359 */
bc42bda2 360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 361 btrfs_free_path(path);
3a45bb20 362 btrfs_end_transaction(trans);
00361589 363 return ret;
c8b97818
CM
364}
365
771ed689
CM
366struct async_extent {
367 u64 start;
368 u64 ram_size;
369 u64 compressed_size;
370 struct page **pages;
371 unsigned long nr_pages;
261507a0 372 int compress_type;
771ed689
CM
373 struct list_head list;
374};
375
376struct async_cow {
377 struct inode *inode;
378 struct btrfs_root *root;
379 struct page *locked_page;
380 u64 start;
381 u64 end;
f82b7359 382 unsigned int write_flags;
771ed689
CM
383 struct list_head extents;
384 struct btrfs_work work;
385};
386
387static noinline int add_async_extent(struct async_cow *cow,
388 u64 start, u64 ram_size,
389 u64 compressed_size,
390 struct page **pages,
261507a0
LZ
391 unsigned long nr_pages,
392 int compress_type)
771ed689
CM
393{
394 struct async_extent *async_extent;
395
396 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 397 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
398 async_extent->start = start;
399 async_extent->ram_size = ram_size;
400 async_extent->compressed_size = compressed_size;
401 async_extent->pages = pages;
402 async_extent->nr_pages = nr_pages;
261507a0 403 async_extent->compress_type = compress_type;
771ed689
CM
404 list_add_tail(&async_extent->list, &cow->extents);
405 return 0;
406}
407
c2fcdcdf 408static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 409{
0b246afa 410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
411
412 /* force compress */
0b246afa 413 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 414 return 1;
eec63c65
DS
415 /* defrag ioctl */
416 if (BTRFS_I(inode)->defrag_compress)
417 return 1;
f79707b0
WS
418 /* bad compression ratios */
419 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
420 return 0;
0b246afa 421 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 422 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 423 BTRFS_I(inode)->prop_compress)
c2fcdcdf 424 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
425 return 0;
426}
427
6158e1ce 428static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
429 u64 start, u64 end, u64 num_bytes, u64 small_write)
430{
431 /* If this is a small write inside eof, kick off a defrag */
432 if (num_bytes < small_write &&
6158e1ce 433 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
434 btrfs_add_inode_defrag(NULL, inode);
435}
436
d352ac68 437/*
771ed689
CM
438 * we create compressed extents in two phases. The first
439 * phase compresses a range of pages that have already been
440 * locked (both pages and state bits are locked).
c8b97818 441 *
771ed689
CM
442 * This is done inside an ordered work queue, and the compression
443 * is spread across many cpus. The actual IO submission is step
444 * two, and the ordered work queue takes care of making sure that
445 * happens in the same order things were put onto the queue by
446 * writepages and friends.
c8b97818 447 *
771ed689
CM
448 * If this code finds it can't get good compression, it puts an
449 * entry onto the work queue to write the uncompressed bytes. This
450 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
451 * are written in the same order that the flusher thread sent them
452 * down.
d352ac68 453 */
c44f649e 454static noinline void compress_file_range(struct inode *inode,
771ed689
CM
455 struct page *locked_page,
456 u64 start, u64 end,
457 struct async_cow *async_cow,
458 int *num_added)
b888db2b 459{
0b246afa 460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 461 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 462 u64 blocksize = fs_info->sectorsize;
c8b97818 463 u64 actual_end;
42dc7bab 464 u64 isize = i_size_read(inode);
e6dcd2dc 465 int ret = 0;
c8b97818
CM
466 struct page **pages = NULL;
467 unsigned long nr_pages;
c8b97818
CM
468 unsigned long total_compressed = 0;
469 unsigned long total_in = 0;
c8b97818
CM
470 int i;
471 int will_compress;
0b246afa 472 int compress_type = fs_info->compress_type;
4adaa611 473 int redirty = 0;
b888db2b 474
6158e1ce
NB
475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
476 SZ_16K);
4cb5300b 477
42dc7bab 478 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
479again:
480 will_compress = 0;
09cbfeaf 481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
483 nr_pages = min_t(unsigned long, nr_pages,
484 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 485
f03d9301
CM
486 /*
487 * we don't want to send crud past the end of i_size through
488 * compression, that's just a waste of CPU time. So, if the
489 * end of the file is before the start of our current
490 * requested range of bytes, we bail out to the uncompressed
491 * cleanup code that can deal with all of this.
492 *
493 * It isn't really the fastest way to fix things, but this is a
494 * very uncommon corner.
495 */
496 if (actual_end <= start)
497 goto cleanup_and_bail_uncompressed;
498
c8b97818
CM
499 total_compressed = actual_end - start;
500
4bcbb332
SW
501 /*
502 * skip compression for a small file range(<=blocksize) that
01327610 503 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
504 */
505 if (total_compressed <= blocksize &&
506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
507 goto cleanup_and_bail_uncompressed;
508
069eac78
DS
509 total_compressed = min_t(unsigned long, total_compressed,
510 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
511 total_in = 0;
512 ret = 0;
db94535d 513
771ed689
CM
514 /*
515 * we do compression for mount -o compress and when the
516 * inode has not been flagged as nocompress. This flag can
517 * change at any time if we discover bad compression ratios.
c8b97818 518 */
c2fcdcdf 519 if (inode_need_compress(inode, start, end)) {
c8b97818 520 WARN_ON(pages);
31e818fe 521 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
522 if (!pages) {
523 /* just bail out to the uncompressed code */
524 goto cont;
525 }
c8b97818 526
eec63c65
DS
527 if (BTRFS_I(inode)->defrag_compress)
528 compress_type = BTRFS_I(inode)->defrag_compress;
529 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 530 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 531
4adaa611
CM
532 /*
533 * we need to call clear_page_dirty_for_io on each
534 * page in the range. Otherwise applications with the file
535 * mmap'd can wander in and change the page contents while
536 * we are compressing them.
537 *
538 * If the compression fails for any reason, we set the pages
539 * dirty again later on.
540 */
541 extent_range_clear_dirty_for_io(inode, start, end);
542 redirty = 1;
f51d2b59
DS
543
544 /* Compression level is applied here and only here */
545 ret = btrfs_compress_pages(
546 compress_type | (fs_info->compress_level << 4),
261507a0 547 inode->i_mapping, start,
38c31464 548 pages,
4d3a800e 549 &nr_pages,
261507a0 550 &total_in,
e5d74902 551 &total_compressed);
c8b97818
CM
552
553 if (!ret) {
554 unsigned long offset = total_compressed &
09cbfeaf 555 (PAGE_SIZE - 1);
4d3a800e 556 struct page *page = pages[nr_pages - 1];
c8b97818
CM
557 char *kaddr;
558
559 /* zero the tail end of the last page, we might be
560 * sending it down to disk
561 */
562 if (offset) {
7ac687d9 563 kaddr = kmap_atomic(page);
c8b97818 564 memset(kaddr + offset, 0,
09cbfeaf 565 PAGE_SIZE - offset);
7ac687d9 566 kunmap_atomic(kaddr);
c8b97818
CM
567 }
568 will_compress = 1;
569 }
570 }
560f7d75 571cont:
c8b97818
CM
572 if (start == 0) {
573 /* lets try to make an inline extent */
6018ba0a 574 if (ret || total_in < actual_end) {
c8b97818 575 /* we didn't compress the entire range, try
771ed689 576 * to make an uncompressed inline extent.
c8b97818 577 */
00361589 578 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 579 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 580 } else {
771ed689 581 /* try making a compressed inline extent */
00361589 582 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
583 total_compressed,
584 compress_type, pages);
c8b97818 585 }
79787eaa 586 if (ret <= 0) {
151a41bc 587 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
588 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
589 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
590 unsigned long page_error_op;
591
e6eb4314 592 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 593
771ed689 594 /*
79787eaa
JM
595 * inline extent creation worked or returned error,
596 * we don't need to create any more async work items.
597 * Unlock and free up our temp pages.
8b62f87b
JB
598 *
599 * We use DO_ACCOUNTING here because we need the
600 * delalloc_release_metadata to be done _after_ we drop
601 * our outstanding extent for clearing delalloc for this
602 * range.
771ed689 603 */
ba8b04c1
QW
604 extent_clear_unlock_delalloc(inode, start, end, end,
605 NULL, clear_flags,
606 PAGE_UNLOCK |
c2790a2e
JB
607 PAGE_CLEAR_DIRTY |
608 PAGE_SET_WRITEBACK |
e6eb4314 609 page_error_op |
c2790a2e 610 PAGE_END_WRITEBACK);
c8b97818
CM
611 goto free_pages_out;
612 }
613 }
614
615 if (will_compress) {
616 /*
617 * we aren't doing an inline extent round the compressed size
618 * up to a block size boundary so the allocator does sane
619 * things
620 */
fda2832f 621 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
622
623 /*
624 * one last check to make sure the compression is really a
170607eb
TT
625 * win, compare the page count read with the blocks on disk,
626 * compression must free at least one sector size
c8b97818 627 */
09cbfeaf 628 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 629 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
630 *num_added += 1;
631
632 /*
633 * The async work queues will take care of doing actual
634 * allocation on disk for these compressed pages, and
635 * will submit them to the elevator.
636 */
1170862d 637 add_async_extent(async_cow, start, total_in,
4d3a800e 638 total_compressed, pages, nr_pages,
c8bb0c8b
AS
639 compress_type);
640
1170862d
TT
641 if (start + total_in < end) {
642 start += total_in;
c8bb0c8b
AS
643 pages = NULL;
644 cond_resched();
645 goto again;
646 }
647 return;
c8b97818
CM
648 }
649 }
c8bb0c8b 650 if (pages) {
c8b97818
CM
651 /*
652 * the compression code ran but failed to make things smaller,
653 * free any pages it allocated and our page pointer array
654 */
4d3a800e 655 for (i = 0; i < nr_pages; i++) {
70b99e69 656 WARN_ON(pages[i]->mapping);
09cbfeaf 657 put_page(pages[i]);
c8b97818
CM
658 }
659 kfree(pages);
660 pages = NULL;
661 total_compressed = 0;
4d3a800e 662 nr_pages = 0;
c8b97818
CM
663
664 /* flag the file so we don't compress in the future */
0b246afa 665 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 666 !(BTRFS_I(inode)->prop_compress)) {
a555f810 667 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 668 }
c8b97818 669 }
f03d9301 670cleanup_and_bail_uncompressed:
c8bb0c8b
AS
671 /*
672 * No compression, but we still need to write the pages in the file
673 * we've been given so far. redirty the locked page if it corresponds
674 * to our extent and set things up for the async work queue to run
675 * cow_file_range to do the normal delalloc dance.
676 */
677 if (page_offset(locked_page) >= start &&
678 page_offset(locked_page) <= end)
679 __set_page_dirty_nobuffers(locked_page);
680 /* unlocked later on in the async handlers */
681
682 if (redirty)
683 extent_range_redirty_for_io(inode, start, end);
684 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
685 BTRFS_COMPRESS_NONE);
686 *num_added += 1;
3b951516 687
c44f649e 688 return;
771ed689
CM
689
690free_pages_out:
4d3a800e 691 for (i = 0; i < nr_pages; i++) {
771ed689 692 WARN_ON(pages[i]->mapping);
09cbfeaf 693 put_page(pages[i]);
771ed689 694 }
d397712b 695 kfree(pages);
771ed689 696}
771ed689 697
40ae837b
FM
698static void free_async_extent_pages(struct async_extent *async_extent)
699{
700 int i;
701
702 if (!async_extent->pages)
703 return;
704
705 for (i = 0; i < async_extent->nr_pages; i++) {
706 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 707 put_page(async_extent->pages[i]);
40ae837b
FM
708 }
709 kfree(async_extent->pages);
710 async_extent->nr_pages = 0;
711 async_extent->pages = NULL;
771ed689
CM
712}
713
714/*
715 * phase two of compressed writeback. This is the ordered portion
716 * of the code, which only gets called in the order the work was
717 * queued. We walk all the async extents created by compress_file_range
718 * and send them down to the disk.
719 */
dec8f175 720static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
721 struct async_cow *async_cow)
722{
0b246afa 723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
724 struct async_extent *async_extent;
725 u64 alloc_hint = 0;
771ed689
CM
726 struct btrfs_key ins;
727 struct extent_map *em;
728 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 729 struct extent_io_tree *io_tree;
f5a84ee3 730 int ret = 0;
771ed689 731
3e04e7f1 732again:
d397712b 733 while (!list_empty(&async_cow->extents)) {
771ed689
CM
734 async_extent = list_entry(async_cow->extents.next,
735 struct async_extent, list);
736 list_del(&async_extent->list);
c8b97818 737
771ed689
CM
738 io_tree = &BTRFS_I(inode)->io_tree;
739
f5a84ee3 740retry:
771ed689
CM
741 /* did the compression code fall back to uncompressed IO? */
742 if (!async_extent->pages) {
743 int page_started = 0;
744 unsigned long nr_written = 0;
745
746 lock_extent(io_tree, async_extent->start,
2ac55d41 747 async_extent->start +
d0082371 748 async_extent->ram_size - 1);
771ed689
CM
749
750 /* allocate blocks */
f5a84ee3
JB
751 ret = cow_file_range(inode, async_cow->locked_page,
752 async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1,
dda3245e
WX
755 async_extent->start +
756 async_extent->ram_size - 1,
757 &page_started, &nr_written, 0,
758 NULL);
771ed689 759
79787eaa
JM
760 /* JDM XXX */
761
771ed689
CM
762 /*
763 * if page_started, cow_file_range inserted an
764 * inline extent and took care of all the unlocking
765 * and IO for us. Otherwise, we need to submit
766 * all those pages down to the drive.
767 */
f5a84ee3 768 if (!page_started && !ret)
771ed689
CM
769 extent_write_locked_range(io_tree,
770 inode, async_extent->start,
d397712b 771 async_extent->start +
771ed689
CM
772 async_extent->ram_size - 1,
773 btrfs_get_extent,
774 WB_SYNC_ALL);
3e04e7f1
JB
775 else if (ret)
776 unlock_page(async_cow->locked_page);
771ed689
CM
777 kfree(async_extent);
778 cond_resched();
779 continue;
780 }
781
782 lock_extent(io_tree, async_extent->start,
d0082371 783 async_extent->start + async_extent->ram_size - 1);
771ed689 784
18513091 785 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
786 async_extent->compressed_size,
787 async_extent->compressed_size,
e570fd27 788 0, alloc_hint, &ins, 1, 1);
f5a84ee3 789 if (ret) {
40ae837b 790 free_async_extent_pages(async_extent);
3e04e7f1 791
fdf8e2ea
JB
792 if (ret == -ENOSPC) {
793 unlock_extent(io_tree, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1);
ce62003f
LB
796
797 /*
798 * we need to redirty the pages if we decide to
799 * fallback to uncompressed IO, otherwise we
800 * will not submit these pages down to lower
801 * layers.
802 */
803 extent_range_redirty_for_io(inode,
804 async_extent->start,
805 async_extent->start +
806 async_extent->ram_size - 1);
807
79787eaa 808 goto retry;
fdf8e2ea 809 }
3e04e7f1 810 goto out_free;
f5a84ee3 811 }
c2167754
YZ
812 /*
813 * here we're doing allocation and writeback of the
814 * compressed pages
815 */
6f9994db
LB
816 em = create_io_em(inode, async_extent->start,
817 async_extent->ram_size, /* len */
818 async_extent->start, /* orig_start */
819 ins.objectid, /* block_start */
820 ins.offset, /* block_len */
821 ins.offset, /* orig_block_len */
822 async_extent->ram_size, /* ram_bytes */
823 async_extent->compress_type,
824 BTRFS_ORDERED_COMPRESSED);
825 if (IS_ERR(em))
826 /* ret value is not necessary due to void function */
3e04e7f1 827 goto out_free_reserve;
6f9994db 828 free_extent_map(em);
3e04e7f1 829
261507a0
LZ
830 ret = btrfs_add_ordered_extent_compress(inode,
831 async_extent->start,
832 ins.objectid,
833 async_extent->ram_size,
834 ins.offset,
835 BTRFS_ORDERED_COMPRESSED,
836 async_extent->compress_type);
d9f85963 837 if (ret) {
dcdbc059
NB
838 btrfs_drop_extent_cache(BTRFS_I(inode),
839 async_extent->start,
d9f85963
FM
840 async_extent->start +
841 async_extent->ram_size - 1, 0);
3e04e7f1 842 goto out_free_reserve;
d9f85963 843 }
0b246afa 844 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 845
771ed689
CM
846 /*
847 * clear dirty, set writeback and unlock the pages.
848 */
c2790a2e 849 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
850 async_extent->start +
851 async_extent->ram_size - 1,
a791e35e
CM
852 async_extent->start +
853 async_extent->ram_size - 1,
151a41bc
JB
854 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
855 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 856 PAGE_SET_WRITEBACK);
4e4cbee9 857 if (btrfs_submit_compressed_write(inode,
d397712b
CM
858 async_extent->start,
859 async_extent->ram_size,
860 ins.objectid,
861 ins.offset, async_extent->pages,
f82b7359
LB
862 async_extent->nr_pages,
863 async_cow->write_flags)) {
fce2a4e6
FM
864 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
865 struct page *p = async_extent->pages[0];
866 const u64 start = async_extent->start;
867 const u64 end = start + async_extent->ram_size - 1;
868
869 p->mapping = inode->i_mapping;
870 tree->ops->writepage_end_io_hook(p, start, end,
871 NULL, 0);
872 p->mapping = NULL;
ba8b04c1
QW
873 extent_clear_unlock_delalloc(inode, start, end, end,
874 NULL, 0,
fce2a4e6
FM
875 PAGE_END_WRITEBACK |
876 PAGE_SET_ERROR);
40ae837b 877 free_async_extent_pages(async_extent);
fce2a4e6 878 }
771ed689
CM
879 alloc_hint = ins.objectid + ins.offset;
880 kfree(async_extent);
881 cond_resched();
882 }
dec8f175 883 return;
3e04e7f1 884out_free_reserve:
0b246afa 885 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 886 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 887out_free:
c2790a2e 888 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
889 async_extent->start +
890 async_extent->ram_size - 1,
3e04e7f1
JB
891 async_extent->start +
892 async_extent->ram_size - 1,
c2790a2e 893 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 894 EXTENT_DELALLOC_NEW |
151a41bc
JB
895 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
896 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
897 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
898 PAGE_SET_ERROR);
40ae837b 899 free_async_extent_pages(async_extent);
79787eaa 900 kfree(async_extent);
3e04e7f1 901 goto again;
771ed689
CM
902}
903
4b46fce2
JB
904static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
905 u64 num_bytes)
906{
907 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
908 struct extent_map *em;
909 u64 alloc_hint = 0;
910
911 read_lock(&em_tree->lock);
912 em = search_extent_mapping(em_tree, start, num_bytes);
913 if (em) {
914 /*
915 * if block start isn't an actual block number then find the
916 * first block in this inode and use that as a hint. If that
917 * block is also bogus then just don't worry about it.
918 */
919 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
920 free_extent_map(em);
921 em = search_extent_mapping(em_tree, 0, 0);
922 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
923 alloc_hint = em->block_start;
924 if (em)
925 free_extent_map(em);
926 } else {
927 alloc_hint = em->block_start;
928 free_extent_map(em);
929 }
930 }
931 read_unlock(&em_tree->lock);
932
933 return alloc_hint;
934}
935
771ed689
CM
936/*
937 * when extent_io.c finds a delayed allocation range in the file,
938 * the call backs end up in this code. The basic idea is to
939 * allocate extents on disk for the range, and create ordered data structs
940 * in ram to track those extents.
941 *
942 * locked_page is the page that writepage had locked already. We use
943 * it to make sure we don't do extra locks or unlocks.
944 *
945 * *page_started is set to one if we unlock locked_page and do everything
946 * required to start IO on it. It may be clean and already done with
947 * IO when we return.
948 */
00361589
JB
949static noinline int cow_file_range(struct inode *inode,
950 struct page *locked_page,
dda3245e
WX
951 u64 start, u64 end, u64 delalloc_end,
952 int *page_started, unsigned long *nr_written,
953 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 954{
0b246afa 955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 956 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
957 u64 alloc_hint = 0;
958 u64 num_bytes;
959 unsigned long ram_size;
960 u64 disk_num_bytes;
a315e68f 961 u64 cur_alloc_size = 0;
0b246afa 962 u64 blocksize = fs_info->sectorsize;
771ed689
CM
963 struct btrfs_key ins;
964 struct extent_map *em;
a315e68f
FM
965 unsigned clear_bits;
966 unsigned long page_ops;
967 bool extent_reserved = false;
771ed689
CM
968 int ret = 0;
969
70ddc553 970 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 971 WARN_ON_ONCE(1);
29bce2f3
JB
972 ret = -EINVAL;
973 goto out_unlock;
02ecd2c2 974 }
771ed689 975
fda2832f 976 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
977 num_bytes = max(blocksize, num_bytes);
978 disk_num_bytes = num_bytes;
771ed689 979
6158e1ce 980 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 981
771ed689
CM
982 if (start == 0) {
983 /* lets try to make an inline extent */
f74670f7
AJ
984 ret = cow_file_range_inline(root, inode, start, end, 0,
985 BTRFS_COMPRESS_NONE, NULL);
771ed689 986 if (ret == 0) {
8b62f87b
JB
987 /*
988 * We use DO_ACCOUNTING here because we need the
989 * delalloc_release_metadata to be run _after_ we drop
990 * our outstanding extent for clearing delalloc for this
991 * range.
992 */
ba8b04c1
QW
993 extent_clear_unlock_delalloc(inode, start, end,
994 delalloc_end, NULL,
c2790a2e 995 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
996 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
997 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
998 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
999 PAGE_END_WRITEBACK);
771ed689 1000 *nr_written = *nr_written +
09cbfeaf 1001 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1002 *page_started = 1;
771ed689 1003 goto out;
79787eaa 1004 } else if (ret < 0) {
79787eaa 1005 goto out_unlock;
771ed689
CM
1006 }
1007 }
1008
1009 BUG_ON(disk_num_bytes >
0b246afa 1010 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1011
4b46fce2 1012 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1013 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1014 start + num_bytes - 1, 0);
771ed689 1015
d397712b 1016 while (disk_num_bytes > 0) {
287a0ab9 1017 cur_alloc_size = disk_num_bytes;
18513091 1018 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1019 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1020 &ins, 1, 1);
00361589 1021 if (ret < 0)
79787eaa 1022 goto out_unlock;
a315e68f
FM
1023 cur_alloc_size = ins.offset;
1024 extent_reserved = true;
d397712b 1025
771ed689 1026 ram_size = ins.offset;
6f9994db
LB
1027 em = create_io_em(inode, start, ins.offset, /* len */
1028 start, /* orig_start */
1029 ins.objectid, /* block_start */
1030 ins.offset, /* block_len */
1031 ins.offset, /* orig_block_len */
1032 ram_size, /* ram_bytes */
1033 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1034 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1035 if (IS_ERR(em))
ace68bac 1036 goto out_reserve;
6f9994db 1037 free_extent_map(em);
e6dcd2dc 1038
e6dcd2dc 1039 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1040 ram_size, cur_alloc_size, 0);
ace68bac 1041 if (ret)
d9f85963 1042 goto out_drop_extent_cache;
c8b97818 1043
17d217fe
YZ
1044 if (root->root_key.objectid ==
1045 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1046 ret = btrfs_reloc_clone_csums(inode, start,
1047 cur_alloc_size);
4dbd80fb
QW
1048 /*
1049 * Only drop cache here, and process as normal.
1050 *
1051 * We must not allow extent_clear_unlock_delalloc()
1052 * at out_unlock label to free meta of this ordered
1053 * extent, as its meta should be freed by
1054 * btrfs_finish_ordered_io().
1055 *
1056 * So we must continue until @start is increased to
1057 * skip current ordered extent.
1058 */
00361589 1059 if (ret)
4dbd80fb
QW
1060 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1061 start + ram_size - 1, 0);
17d217fe
YZ
1062 }
1063
0b246afa 1064 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1065
c8b97818
CM
1066 /* we're not doing compressed IO, don't unlock the first
1067 * page (which the caller expects to stay locked), don't
1068 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1069 *
1070 * Do set the Private2 bit so we know this page was properly
1071 * setup for writepage
c8b97818 1072 */
a315e68f
FM
1073 page_ops = unlock ? PAGE_UNLOCK : 0;
1074 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1075
c2790a2e 1076 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1077 start + ram_size - 1,
1078 delalloc_end, locked_page,
c2790a2e 1079 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1080 page_ops);
4dbd80fb
QW
1081 if (disk_num_bytes < cur_alloc_size)
1082 disk_num_bytes = 0;
1083 else
1084 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1085 num_bytes -= cur_alloc_size;
1086 alloc_hint = ins.objectid + ins.offset;
1087 start += cur_alloc_size;
a315e68f 1088 extent_reserved = false;
4dbd80fb
QW
1089
1090 /*
1091 * btrfs_reloc_clone_csums() error, since start is increased
1092 * extent_clear_unlock_delalloc() at out_unlock label won't
1093 * free metadata of current ordered extent, we're OK to exit.
1094 */
1095 if (ret)
1096 goto out_unlock;
b888db2b 1097 }
79787eaa 1098out:
be20aa9d 1099 return ret;
b7d5b0a8 1100
d9f85963 1101out_drop_extent_cache:
dcdbc059 1102 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1103out_reserve:
0b246afa 1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1105 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1106out_unlock:
a7e3b975
FM
1107 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1108 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1109 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1110 PAGE_END_WRITEBACK;
1111 /*
1112 * If we reserved an extent for our delalloc range (or a subrange) and
1113 * failed to create the respective ordered extent, then it means that
1114 * when we reserved the extent we decremented the extent's size from
1115 * the data space_info's bytes_may_use counter and incremented the
1116 * space_info's bytes_reserved counter by the same amount. We must make
1117 * sure extent_clear_unlock_delalloc() does not try to decrement again
1118 * the data space_info's bytes_may_use counter, therefore we do not pass
1119 * it the flag EXTENT_CLEAR_DATA_RESV.
1120 */
1121 if (extent_reserved) {
1122 extent_clear_unlock_delalloc(inode, start,
1123 start + cur_alloc_size,
1124 start + cur_alloc_size,
1125 locked_page,
1126 clear_bits,
1127 page_ops);
1128 start += cur_alloc_size;
1129 if (start >= end)
1130 goto out;
1131 }
ba8b04c1
QW
1132 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1133 locked_page,
a315e68f
FM
1134 clear_bits | EXTENT_CLEAR_DATA_RESV,
1135 page_ops);
79787eaa 1136 goto out;
771ed689 1137}
c8b97818 1138
771ed689
CM
1139/*
1140 * work queue call back to started compression on a file and pages
1141 */
1142static noinline void async_cow_start(struct btrfs_work *work)
1143{
1144 struct async_cow *async_cow;
1145 int num_added = 0;
1146 async_cow = container_of(work, struct async_cow, work);
1147
1148 compress_file_range(async_cow->inode, async_cow->locked_page,
1149 async_cow->start, async_cow->end, async_cow,
1150 &num_added);
8180ef88 1151 if (num_added == 0) {
cb77fcd8 1152 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1153 async_cow->inode = NULL;
8180ef88 1154 }
771ed689
CM
1155}
1156
1157/*
1158 * work queue call back to submit previously compressed pages
1159 */
1160static noinline void async_cow_submit(struct btrfs_work *work)
1161{
0b246afa 1162 struct btrfs_fs_info *fs_info;
771ed689
CM
1163 struct async_cow *async_cow;
1164 struct btrfs_root *root;
1165 unsigned long nr_pages;
1166
1167 async_cow = container_of(work, struct async_cow, work);
1168
1169 root = async_cow->root;
0b246afa 1170 fs_info = root->fs_info;
09cbfeaf
KS
1171 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1172 PAGE_SHIFT;
771ed689 1173
ee863954
DS
1174 /*
1175 * atomic_sub_return implies a barrier for waitqueue_active
1176 */
0b246afa 1177 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1178 5 * SZ_1M &&
0b246afa
JM
1179 waitqueue_active(&fs_info->async_submit_wait))
1180 wake_up(&fs_info->async_submit_wait);
771ed689 1181
d397712b 1182 if (async_cow->inode)
771ed689 1183 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1184}
c8b97818 1185
771ed689
CM
1186static noinline void async_cow_free(struct btrfs_work *work)
1187{
1188 struct async_cow *async_cow;
1189 async_cow = container_of(work, struct async_cow, work);
8180ef88 1190 if (async_cow->inode)
cb77fcd8 1191 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1192 kfree(async_cow);
1193}
1194
1195static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1196 u64 start, u64 end, int *page_started,
f82b7359
LB
1197 unsigned long *nr_written,
1198 unsigned int write_flags)
771ed689 1199{
0b246afa 1200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1201 struct async_cow *async_cow;
1202 struct btrfs_root *root = BTRFS_I(inode)->root;
1203 unsigned long nr_pages;
1204 u64 cur_end;
771ed689 1205
a3429ab7
CM
1206 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1207 1, 0, NULL, GFP_NOFS);
d397712b 1208 while (start < end) {
771ed689 1209 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1210 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1211 async_cow->inode = igrab(inode);
771ed689
CM
1212 async_cow->root = root;
1213 async_cow->locked_page = locked_page;
1214 async_cow->start = start;
f82b7359 1215 async_cow->write_flags = write_flags;
771ed689 1216
f79707b0 1217 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1218 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1219 cur_end = end;
1220 else
ee22184b 1221 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1222
1223 async_cow->end = cur_end;
1224 INIT_LIST_HEAD(&async_cow->extents);
1225
9e0af237
LB
1226 btrfs_init_work(&async_cow->work,
1227 btrfs_delalloc_helper,
1228 async_cow_start, async_cow_submit,
1229 async_cow_free);
771ed689 1230
09cbfeaf
KS
1231 nr_pages = (cur_end - start + PAGE_SIZE) >>
1232 PAGE_SHIFT;
0b246afa 1233 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1234
0b246afa 1235 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1236
771ed689
CM
1237 *nr_written += nr_pages;
1238 start = cur_end + 1;
1239 }
1240 *page_started = 1;
1241 return 0;
be20aa9d
CM
1242}
1243
2ff7e61e 1244static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1245 u64 bytenr, u64 num_bytes)
1246{
1247 int ret;
1248 struct btrfs_ordered_sum *sums;
1249 LIST_HEAD(list);
1250
0b246afa 1251 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1252 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1253 if (ret == 0 && list_empty(&list))
1254 return 0;
1255
1256 while (!list_empty(&list)) {
1257 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1258 list_del(&sums->list);
1259 kfree(sums);
1260 }
1261 return 1;
1262}
1263
d352ac68
CM
1264/*
1265 * when nowcow writeback call back. This checks for snapshots or COW copies
1266 * of the extents that exist in the file, and COWs the file as required.
1267 *
1268 * If no cow copies or snapshots exist, we write directly to the existing
1269 * blocks on disk
1270 */
7f366cfe
CM
1271static noinline int run_delalloc_nocow(struct inode *inode,
1272 struct page *locked_page,
771ed689
CM
1273 u64 start, u64 end, int *page_started, int force,
1274 unsigned long *nr_written)
be20aa9d 1275{
0b246afa 1276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
1278 struct extent_buffer *leaf;
be20aa9d 1279 struct btrfs_path *path;
80ff3856 1280 struct btrfs_file_extent_item *fi;
be20aa9d 1281 struct btrfs_key found_key;
6f9994db 1282 struct extent_map *em;
80ff3856
YZ
1283 u64 cow_start;
1284 u64 cur_offset;
1285 u64 extent_end;
5d4f98a2 1286 u64 extent_offset;
80ff3856
YZ
1287 u64 disk_bytenr;
1288 u64 num_bytes;
b4939680 1289 u64 disk_num_bytes;
cc95bef6 1290 u64 ram_bytes;
80ff3856 1291 int extent_type;
79787eaa 1292 int ret, err;
d899e052 1293 int type;
80ff3856
YZ
1294 int nocow;
1295 int check_prev = 1;
82d5902d 1296 bool nolock;
4a0cc7ca 1297 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1298
1299 path = btrfs_alloc_path();
17ca04af 1300 if (!path) {
ba8b04c1
QW
1301 extent_clear_unlock_delalloc(inode, start, end, end,
1302 locked_page,
c2790a2e 1303 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1304 EXTENT_DO_ACCOUNTING |
1305 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1306 PAGE_CLEAR_DIRTY |
1307 PAGE_SET_WRITEBACK |
1308 PAGE_END_WRITEBACK);
d8926bb3 1309 return -ENOMEM;
17ca04af 1310 }
82d5902d 1311
70ddc553 1312 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1313
80ff3856
YZ
1314 cow_start = (u64)-1;
1315 cur_offset = start;
1316 while (1) {
e4c3b2dc 1317 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1318 cur_offset, 0);
d788a349 1319 if (ret < 0)
79787eaa 1320 goto error;
80ff3856
YZ
1321 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1322 leaf = path->nodes[0];
1323 btrfs_item_key_to_cpu(leaf, &found_key,
1324 path->slots[0] - 1);
33345d01 1325 if (found_key.objectid == ino &&
80ff3856
YZ
1326 found_key.type == BTRFS_EXTENT_DATA_KEY)
1327 path->slots[0]--;
1328 }
1329 check_prev = 0;
1330next_slot:
1331 leaf = path->nodes[0];
1332 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1333 ret = btrfs_next_leaf(root, path);
d788a349 1334 if (ret < 0)
79787eaa 1335 goto error;
80ff3856
YZ
1336 if (ret > 0)
1337 break;
1338 leaf = path->nodes[0];
1339 }
be20aa9d 1340
80ff3856
YZ
1341 nocow = 0;
1342 disk_bytenr = 0;
17d217fe 1343 num_bytes = 0;
80ff3856
YZ
1344 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1345
1d512cb7
FM
1346 if (found_key.objectid > ino)
1347 break;
1348 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1349 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1350 path->slots[0]++;
1351 goto next_slot;
1352 }
1353 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1354 found_key.offset > end)
1355 break;
1356
1357 if (found_key.offset > cur_offset) {
1358 extent_end = found_key.offset;
e9061e21 1359 extent_type = 0;
80ff3856
YZ
1360 goto out_check;
1361 }
1362
1363 fi = btrfs_item_ptr(leaf, path->slots[0],
1364 struct btrfs_file_extent_item);
1365 extent_type = btrfs_file_extent_type(leaf, fi);
1366
cc95bef6 1367 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1368 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1369 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1370 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1371 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1372 extent_end = found_key.offset +
1373 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1374 disk_num_bytes =
1375 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1376 if (extent_end <= start) {
1377 path->slots[0]++;
1378 goto next_slot;
1379 }
17d217fe
YZ
1380 if (disk_bytenr == 0)
1381 goto out_check;
80ff3856
YZ
1382 if (btrfs_file_extent_compression(leaf, fi) ||
1383 btrfs_file_extent_encryption(leaf, fi) ||
1384 btrfs_file_extent_other_encoding(leaf, fi))
1385 goto out_check;
d899e052
YZ
1386 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1387 goto out_check;
2ff7e61e 1388 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1389 goto out_check;
e4c3b2dc 1390 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1391 found_key.offset -
1392 extent_offset, disk_bytenr))
17d217fe 1393 goto out_check;
5d4f98a2 1394 disk_bytenr += extent_offset;
17d217fe
YZ
1395 disk_bytenr += cur_offset - found_key.offset;
1396 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1397 /*
1398 * if there are pending snapshots for this root,
1399 * we fall into common COW way.
1400 */
1401 if (!nolock) {
ea14b57f 1402 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1403 if (!err)
1404 goto out_check;
1405 }
17d217fe
YZ
1406 /*
1407 * force cow if csum exists in the range.
1408 * this ensure that csum for a given extent are
1409 * either valid or do not exist.
1410 */
2ff7e61e 1411 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1412 num_bytes)) {
1413 if (!nolock)
ea14b57f 1414 btrfs_end_write_no_snapshotting(root);
17d217fe 1415 goto out_check;
91e1f56a
RK
1416 }
1417 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1418 if (!nolock)
ea14b57f 1419 btrfs_end_write_no_snapshotting(root);
f78c436c 1420 goto out_check;
91e1f56a 1421 }
80ff3856
YZ
1422 nocow = 1;
1423 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1424 extent_end = found_key.offset +
514ac8ad
CM
1425 btrfs_file_extent_inline_len(leaf,
1426 path->slots[0], fi);
da17066c 1427 extent_end = ALIGN(extent_end,
0b246afa 1428 fs_info->sectorsize);
80ff3856
YZ
1429 } else {
1430 BUG_ON(1);
1431 }
1432out_check:
1433 if (extent_end <= start) {
1434 path->slots[0]++;
e9894fd3 1435 if (!nolock && nocow)
ea14b57f 1436 btrfs_end_write_no_snapshotting(root);
f78c436c 1437 if (nocow)
0b246afa 1438 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1439 goto next_slot;
1440 }
1441 if (!nocow) {
1442 if (cow_start == (u64)-1)
1443 cow_start = cur_offset;
1444 cur_offset = extent_end;
1445 if (cur_offset > end)
1446 break;
1447 path->slots[0]++;
1448 goto next_slot;
7ea394f1
YZ
1449 }
1450
b3b4aa74 1451 btrfs_release_path(path);
80ff3856 1452 if (cow_start != (u64)-1) {
00361589
JB
1453 ret = cow_file_range(inode, locked_page,
1454 cow_start, found_key.offset - 1,
dda3245e
WX
1455 end, page_started, nr_written, 1,
1456 NULL);
e9894fd3
WS
1457 if (ret) {
1458 if (!nolock && nocow)
ea14b57f 1459 btrfs_end_write_no_snapshotting(root);
f78c436c 1460 if (nocow)
0b246afa 1461 btrfs_dec_nocow_writers(fs_info,
f78c436c 1462 disk_bytenr);
79787eaa 1463 goto error;
e9894fd3 1464 }
80ff3856 1465 cow_start = (u64)-1;
7ea394f1 1466 }
80ff3856 1467
d899e052 1468 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1469 u64 orig_start = found_key.offset - extent_offset;
1470
1471 em = create_io_em(inode, cur_offset, num_bytes,
1472 orig_start,
1473 disk_bytenr, /* block_start */
1474 num_bytes, /* block_len */
1475 disk_num_bytes, /* orig_block_len */
1476 ram_bytes, BTRFS_COMPRESS_NONE,
1477 BTRFS_ORDERED_PREALLOC);
1478 if (IS_ERR(em)) {
1479 if (!nolock && nocow)
ea14b57f 1480 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1481 if (nocow)
1482 btrfs_dec_nocow_writers(fs_info,
1483 disk_bytenr);
1484 ret = PTR_ERR(em);
1485 goto error;
d899e052 1486 }
6f9994db
LB
1487 free_extent_map(em);
1488 }
1489
1490 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1491 type = BTRFS_ORDERED_PREALLOC;
1492 } else {
1493 type = BTRFS_ORDERED_NOCOW;
1494 }
80ff3856
YZ
1495
1496 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1497 num_bytes, num_bytes, type);
f78c436c 1498 if (nocow)
0b246afa 1499 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1500 BUG_ON(ret); /* -ENOMEM */
771ed689 1501
efa56464 1502 if (root->root_key.objectid ==
4dbd80fb
QW
1503 BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 /*
1505 * Error handled later, as we must prevent
1506 * extent_clear_unlock_delalloc() in error handler
1507 * from freeing metadata of created ordered extent.
1508 */
efa56464
YZ
1509 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1510 num_bytes);
efa56464 1511
c2790a2e 1512 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1513 cur_offset + num_bytes - 1, end,
c2790a2e 1514 locked_page, EXTENT_LOCKED |
18513091
WX
1515 EXTENT_DELALLOC |
1516 EXTENT_CLEAR_DATA_RESV,
1517 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1518
e9894fd3 1519 if (!nolock && nocow)
ea14b57f 1520 btrfs_end_write_no_snapshotting(root);
80ff3856 1521 cur_offset = extent_end;
4dbd80fb
QW
1522
1523 /*
1524 * btrfs_reloc_clone_csums() error, now we're OK to call error
1525 * handler, as metadata for created ordered extent will only
1526 * be freed by btrfs_finish_ordered_io().
1527 */
1528 if (ret)
1529 goto error;
80ff3856
YZ
1530 if (cur_offset > end)
1531 break;
be20aa9d 1532 }
b3b4aa74 1533 btrfs_release_path(path);
80ff3856 1534
17ca04af 1535 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1536 cow_start = cur_offset;
17ca04af
JB
1537 cur_offset = end;
1538 }
1539
80ff3856 1540 if (cow_start != (u64)-1) {
dda3245e
WX
1541 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1542 page_started, nr_written, 1, NULL);
d788a349 1543 if (ret)
79787eaa 1544 goto error;
80ff3856
YZ
1545 }
1546
79787eaa 1547error:
17ca04af 1548 if (ret && cur_offset < end)
ba8b04c1 1549 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1550 locked_page, EXTENT_LOCKED |
151a41bc
JB
1551 EXTENT_DELALLOC | EXTENT_DEFRAG |
1552 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1553 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1554 PAGE_SET_WRITEBACK |
1555 PAGE_END_WRITEBACK);
7ea394f1 1556 btrfs_free_path(path);
79787eaa 1557 return ret;
be20aa9d
CM
1558}
1559
47059d93
WS
1560static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1561{
1562
1563 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1564 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1565 return 0;
1566
1567 /*
1568 * @defrag_bytes is a hint value, no spinlock held here,
1569 * if is not zero, it means the file is defragging.
1570 * Force cow if given extent needs to be defragged.
1571 */
1572 if (BTRFS_I(inode)->defrag_bytes &&
1573 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1574 EXTENT_DEFRAG, 0, NULL))
1575 return 1;
1576
1577 return 0;
1578}
1579
d352ac68
CM
1580/*
1581 * extent_io.c call back to do delayed allocation processing
1582 */
c6100a4b 1583static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1584 u64 start, u64 end, int *page_started,
f82b7359
LB
1585 unsigned long *nr_written,
1586 struct writeback_control *wbc)
be20aa9d 1587{
c6100a4b 1588 struct inode *inode = private_data;
be20aa9d 1589 int ret;
47059d93 1590 int force_cow = need_force_cow(inode, start, end);
f82b7359 1591 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1592
47059d93 1593 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1594 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1595 page_started, 1, nr_written);
47059d93 1596 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1597 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1598 page_started, 0, nr_written);
c2fcdcdf 1599 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1600 ret = cow_file_range(inode, locked_page, start, end, end,
1601 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1602 } else {
1603 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1604 &BTRFS_I(inode)->runtime_flags);
771ed689 1605 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1606 page_started, nr_written,
1607 write_flags);
7ddf5a42 1608 }
52427260
QW
1609 if (ret)
1610 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1611 return ret;
1612}
1613
c6100a4b 1614static void btrfs_split_extent_hook(void *private_data,
1bf85046 1615 struct extent_state *orig, u64 split)
9ed74f2d 1616{
c6100a4b 1617 struct inode *inode = private_data;
dcab6a3b
JB
1618 u64 size;
1619
0ca1f7ce 1620 /* not delalloc, ignore it */
9ed74f2d 1621 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1622 return;
9ed74f2d 1623
dcab6a3b
JB
1624 size = orig->end - orig->start + 1;
1625 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1626 u32 num_extents;
dcab6a3b
JB
1627 u64 new_size;
1628
1629 /*
ba117213
JB
1630 * See the explanation in btrfs_merge_extent_hook, the same
1631 * applies here, just in reverse.
dcab6a3b
JB
1632 */
1633 new_size = orig->end - split + 1;
823bb20a 1634 num_extents = count_max_extents(new_size);
ba117213 1635 new_size = split - orig->start;
823bb20a
DS
1636 num_extents += count_max_extents(new_size);
1637 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1638 return;
1639 }
1640
9e0baf60 1641 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1642 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1643 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1644}
1645
1646/*
1647 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1648 * extents so we can keep track of new extents that are just merged onto old
1649 * extents, such as when we are doing sequential writes, so we can properly
1650 * account for the metadata space we'll need.
1651 */
c6100a4b 1652static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1653 struct extent_state *new,
1654 struct extent_state *other)
9ed74f2d 1655{
c6100a4b 1656 struct inode *inode = private_data;
dcab6a3b 1657 u64 new_size, old_size;
823bb20a 1658 u32 num_extents;
dcab6a3b 1659
9ed74f2d
JB
1660 /* not delalloc, ignore it */
1661 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1662 return;
9ed74f2d 1663
8461a3de
JB
1664 if (new->start > other->start)
1665 new_size = new->end - other->start + 1;
1666 else
1667 new_size = other->end - new->start + 1;
dcab6a3b
JB
1668
1669 /* we're not bigger than the max, unreserve the space and go */
1670 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1671 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1672 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1673 spin_unlock(&BTRFS_I(inode)->lock);
1674 return;
1675 }
1676
1677 /*
ba117213
JB
1678 * We have to add up either side to figure out how many extents were
1679 * accounted for before we merged into one big extent. If the number of
1680 * extents we accounted for is <= the amount we need for the new range
1681 * then we can return, otherwise drop. Think of it like this
1682 *
1683 * [ 4k][MAX_SIZE]
1684 *
1685 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1686 * need 2 outstanding extents, on one side we have 1 and the other side
1687 * we have 1 so they are == and we can return. But in this case
1688 *
1689 * [MAX_SIZE+4k][MAX_SIZE+4k]
1690 *
1691 * Each range on their own accounts for 2 extents, but merged together
1692 * they are only 3 extents worth of accounting, so we need to drop in
1693 * this case.
dcab6a3b 1694 */
ba117213 1695 old_size = other->end - other->start + 1;
823bb20a 1696 num_extents = count_max_extents(old_size);
ba117213 1697 old_size = new->end - new->start + 1;
823bb20a
DS
1698 num_extents += count_max_extents(old_size);
1699 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1700 return;
1701
9e0baf60 1702 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1703 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1704 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1705}
1706
eb73c1b7
MX
1707static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1708 struct inode *inode)
1709{
0b246afa
JM
1710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1711
eb73c1b7
MX
1712 spin_lock(&root->delalloc_lock);
1713 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1714 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1715 &root->delalloc_inodes);
1716 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1717 &BTRFS_I(inode)->runtime_flags);
1718 root->nr_delalloc_inodes++;
1719 if (root->nr_delalloc_inodes == 1) {
0b246afa 1720 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1721 BUG_ON(!list_empty(&root->delalloc_root));
1722 list_add_tail(&root->delalloc_root,
0b246afa
JM
1723 &fs_info->delalloc_roots);
1724 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1725 }
1726 }
1727 spin_unlock(&root->delalloc_lock);
1728}
1729
1730static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1731 struct btrfs_inode *inode)
eb73c1b7 1732{
9e3e97f4 1733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1734
eb73c1b7 1735 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1736 if (!list_empty(&inode->delalloc_inodes)) {
1737 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1738 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1739 &inode->runtime_flags);
eb73c1b7
MX
1740 root->nr_delalloc_inodes--;
1741 if (!root->nr_delalloc_inodes) {
0b246afa 1742 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1743 BUG_ON(list_empty(&root->delalloc_root));
1744 list_del_init(&root->delalloc_root);
0b246afa 1745 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1746 }
1747 }
1748 spin_unlock(&root->delalloc_lock);
1749}
1750
d352ac68
CM
1751/*
1752 * extent_io.c set_bit_hook, used to track delayed allocation
1753 * bytes in this file, and to maintain the list of inodes that
1754 * have pending delalloc work to be done.
1755 */
c6100a4b 1756static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1757 struct extent_state *state, unsigned *bits)
291d673e 1758{
c6100a4b 1759 struct inode *inode = private_data;
9ed74f2d 1760
0b246afa
JM
1761 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1762
47059d93
WS
1763 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1764 WARN_ON(1);
75eff68e
CM
1765 /*
1766 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1767 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1768 * bit, which is only set or cleared with irqs on
1769 */
0ca1f7ce 1770 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1771 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1772 u64 len = state->end + 1 - state->start;
8b62f87b 1773 u32 num_extents = count_max_extents(len);
70ddc553 1774 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1775
8b62f87b
JB
1776 spin_lock(&BTRFS_I(inode)->lock);
1777 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1778 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1779
6a3891c5 1780 /* For sanity tests */
0b246afa 1781 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1782 return;
1783
104b4e51
NB
1784 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1785 fs_info->delalloc_batch);
df0af1a5 1786 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1787 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1788 if (*bits & EXTENT_DEFRAG)
1789 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1790 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1791 &BTRFS_I(inode)->runtime_flags))
1792 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1793 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1794 }
a7e3b975
FM
1795
1796 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1797 (*bits & EXTENT_DELALLOC_NEW)) {
1798 spin_lock(&BTRFS_I(inode)->lock);
1799 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1800 state->start;
1801 spin_unlock(&BTRFS_I(inode)->lock);
1802 }
291d673e
CM
1803}
1804
d352ac68
CM
1805/*
1806 * extent_io.c clear_bit_hook, see set_bit_hook for why
1807 */
c6100a4b 1808static void btrfs_clear_bit_hook(void *private_data,
41074888 1809 struct extent_state *state,
9ee49a04 1810 unsigned *bits)
291d673e 1811{
c6100a4b 1812 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1813 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1814 u64 len = state->end + 1 - state->start;
823bb20a 1815 u32 num_extents = count_max_extents(len);
47059d93 1816
4a4b964f
FM
1817 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1818 spin_lock(&inode->lock);
6fc0ef68 1819 inode->defrag_bytes -= len;
4a4b964f
FM
1820 spin_unlock(&inode->lock);
1821 }
47059d93 1822
75eff68e
CM
1823 /*
1824 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1825 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1826 * bit, which is only set or cleared with irqs on
1827 */
0ca1f7ce 1828 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1829 struct btrfs_root *root = inode->root;
83eea1f1 1830 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1831
8b62f87b
JB
1832 spin_lock(&inode->lock);
1833 btrfs_mod_outstanding_extents(inode, -num_extents);
1834 spin_unlock(&inode->lock);
0ca1f7ce 1835
b6d08f06
JB
1836 /*
1837 * We don't reserve metadata space for space cache inodes so we
1838 * don't need to call dellalloc_release_metadata if there is an
1839 * error.
1840 */
a315e68f 1841 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1842 root != fs_info->tree_root)
0ca1f7ce
YZ
1843 btrfs_delalloc_release_metadata(inode, len);
1844
6a3891c5 1845 /* For sanity tests. */
0b246afa 1846 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1847 return;
1848
a315e68f
FM
1849 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1850 do_list && !(state->state & EXTENT_NORESERVE) &&
1851 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1852 btrfs_free_reserved_data_space_noquota(
1853 &inode->vfs_inode,
51773bec 1854 state->start, len);
9ed74f2d 1855
104b4e51
NB
1856 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1857 fs_info->delalloc_batch);
6fc0ef68
NB
1858 spin_lock(&inode->lock);
1859 inode->delalloc_bytes -= len;
1860 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1861 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1862 &inode->runtime_flags))
eb73c1b7 1863 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1864 spin_unlock(&inode->lock);
291d673e 1865 }
a7e3b975
FM
1866
1867 if ((state->state & EXTENT_DELALLOC_NEW) &&
1868 (*bits & EXTENT_DELALLOC_NEW)) {
1869 spin_lock(&inode->lock);
1870 ASSERT(inode->new_delalloc_bytes >= len);
1871 inode->new_delalloc_bytes -= len;
1872 spin_unlock(&inode->lock);
1873 }
291d673e
CM
1874}
1875
d352ac68
CM
1876/*
1877 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1878 * we don't create bios that span stripes or chunks
6f034ece
LB
1879 *
1880 * return 1 if page cannot be merged to bio
1881 * return 0 if page can be merged to bio
1882 * return error otherwise
d352ac68 1883 */
81a75f67 1884int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1885 size_t size, struct bio *bio,
1886 unsigned long bio_flags)
239b14b3 1887{
0b246afa
JM
1888 struct inode *inode = page->mapping->host;
1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1890 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1891 u64 length = 0;
1892 u64 map_length;
239b14b3
CM
1893 int ret;
1894
771ed689
CM
1895 if (bio_flags & EXTENT_BIO_COMPRESSED)
1896 return 0;
1897
4f024f37 1898 length = bio->bi_iter.bi_size;
239b14b3 1899 map_length = length;
0b246afa
JM
1900 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1901 NULL, 0);
6f034ece
LB
1902 if (ret < 0)
1903 return ret;
d397712b 1904 if (map_length < length + size)
239b14b3 1905 return 1;
3444a972 1906 return 0;
239b14b3
CM
1907}
1908
d352ac68
CM
1909/*
1910 * in order to insert checksums into the metadata in large chunks,
1911 * we wait until bio submission time. All the pages in the bio are
1912 * checksummed and sums are attached onto the ordered extent record.
1913 *
1914 * At IO completion time the cums attached on the ordered extent record
1915 * are inserted into the btree
1916 */
8c27cb35 1917static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1918 int mirror_num, unsigned long bio_flags,
eaf25d93 1919 u64 bio_offset)
065631f6 1920{
c6100a4b 1921 struct inode *inode = private_data;
4e4cbee9 1922 blk_status_t ret = 0;
e015640f 1923
2ff7e61e 1924 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1925 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1926 return 0;
1927}
e015640f 1928
4a69a410
CM
1929/*
1930 * in order to insert checksums into the metadata in large chunks,
1931 * we wait until bio submission time. All the pages in the bio are
1932 * checksummed and sums are attached onto the ordered extent record.
1933 *
1934 * At IO completion time the cums attached on the ordered extent record
1935 * are inserted into the btree
1936 */
8c27cb35 1937static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1938 int mirror_num, unsigned long bio_flags,
1939 u64 bio_offset)
4a69a410 1940{
c6100a4b 1941 struct inode *inode = private_data;
2ff7e61e 1942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1943 blk_status_t ret;
61891923 1944
2ff7e61e 1945 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1946 if (ret) {
4e4cbee9 1947 bio->bi_status = ret;
4246a0b6
CH
1948 bio_endio(bio);
1949 }
61891923 1950 return ret;
44b8bd7e
CM
1951}
1952
d352ac68 1953/*
cad321ad
CM
1954 * extent_io.c submission hook. This does the right thing for csum calculation
1955 * on write, or reading the csums from the tree before a read
d352ac68 1956 */
8c27cb35 1957static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1958 int mirror_num, unsigned long bio_flags,
1959 u64 bio_offset)
44b8bd7e 1960{
c6100a4b 1961 struct inode *inode = private_data;
0b246afa 1962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1963 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1964 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1965 blk_status_t ret = 0;
19b9bdb0 1966 int skip_sum;
b812ce28 1967 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1968
6cbff00f 1969 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1970
70ddc553 1971 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1972 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1973
37226b21 1974 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1975 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1976 if (ret)
61891923 1977 goto out;
5fd02043 1978
d20f7043 1979 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1980 ret = btrfs_submit_compressed_read(inode, bio,
1981 mirror_num,
1982 bio_flags);
1983 goto out;
c2db1073 1984 } else if (!skip_sum) {
2ff7e61e 1985 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1986 if (ret)
61891923 1987 goto out;
c2db1073 1988 }
4d1b5fb4 1989 goto mapit;
b812ce28 1990 } else if (async && !skip_sum) {
17d217fe
YZ
1991 /* csum items have already been cloned */
1992 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1993 goto mapit;
19b9bdb0 1994 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1995 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1996 bio_offset, inode,
0b246afa
JM
1997 __btrfs_submit_bio_start,
1998 __btrfs_submit_bio_done);
61891923 1999 goto out;
b812ce28 2000 } else if (!skip_sum) {
2ff7e61e 2001 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2002 if (ret)
2003 goto out;
19b9bdb0
CM
2004 }
2005
0b86a832 2006mapit:
2ff7e61e 2007 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2008
2009out:
4e4cbee9
CH
2010 if (ret) {
2011 bio->bi_status = ret;
4246a0b6
CH
2012 bio_endio(bio);
2013 }
61891923 2014 return ret;
065631f6 2015}
6885f308 2016
d352ac68
CM
2017/*
2018 * given a list of ordered sums record them in the inode. This happens
2019 * at IO completion time based on sums calculated at bio submission time.
2020 */
ba1da2f4 2021static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2022 struct inode *inode, struct list_head *list)
e6dcd2dc 2023{
e6dcd2dc
CM
2024 struct btrfs_ordered_sum *sum;
2025
c6e30871 2026 list_for_each_entry(sum, list, list) {
39847c4d 2027 trans->adding_csums = 1;
d20f7043
CM
2028 btrfs_csum_file_blocks(trans,
2029 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2030 trans->adding_csums = 0;
e6dcd2dc
CM
2031 }
2032 return 0;
2033}
2034
2ac55d41 2035int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2036 unsigned int extra_bits,
ba8b04c1 2037 struct extent_state **cached_state, int dedupe)
ea8c2819 2038{
09cbfeaf 2039 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2040 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2041 extra_bits, cached_state);
ea8c2819
CM
2042}
2043
d352ac68 2044/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2045struct btrfs_writepage_fixup {
2046 struct page *page;
2047 struct btrfs_work work;
2048};
2049
b2950863 2050static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2051{
2052 struct btrfs_writepage_fixup *fixup;
2053 struct btrfs_ordered_extent *ordered;
2ac55d41 2054 struct extent_state *cached_state = NULL;
364ecf36 2055 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2056 struct page *page;
2057 struct inode *inode;
2058 u64 page_start;
2059 u64 page_end;
87826df0 2060 int ret;
247e743c
CM
2061
2062 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2063 page = fixup->page;
4a096752 2064again:
247e743c
CM
2065 lock_page(page);
2066 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2067 ClearPageChecked(page);
2068 goto out_page;
2069 }
2070
2071 inode = page->mapping->host;
2072 page_start = page_offset(page);
09cbfeaf 2073 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2074
ff13db41 2075 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2076 &cached_state);
4a096752
CM
2077
2078 /* already ordered? We're done */
8b62b72b 2079 if (PagePrivate2(page))
247e743c 2080 goto out;
4a096752 2081
a776c6fa 2082 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2083 PAGE_SIZE);
4a096752 2084 if (ordered) {
2ac55d41
JB
2085 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2086 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2087 unlock_page(page);
2088 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2089 btrfs_put_ordered_extent(ordered);
4a096752
CM
2090 goto again;
2091 }
247e743c 2092
364ecf36 2093 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2094 PAGE_SIZE);
87826df0
JM
2095 if (ret) {
2096 mapping_set_error(page->mapping, ret);
2097 end_extent_writepage(page, ret, page_start, page_end);
2098 ClearPageChecked(page);
2099 goto out;
2100 }
2101
e3b8a485 2102 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
ba8b04c1 2103 0);
247e743c 2104 ClearPageChecked(page);
87826df0 2105 set_page_dirty(page);
8b62f87b 2106 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2107out:
2ac55d41
JB
2108 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2109 &cached_state, GFP_NOFS);
247e743c
CM
2110out_page:
2111 unlock_page(page);
09cbfeaf 2112 put_page(page);
b897abec 2113 kfree(fixup);
364ecf36 2114 extent_changeset_free(data_reserved);
247e743c
CM
2115}
2116
2117/*
2118 * There are a few paths in the higher layers of the kernel that directly
2119 * set the page dirty bit without asking the filesystem if it is a
2120 * good idea. This causes problems because we want to make sure COW
2121 * properly happens and the data=ordered rules are followed.
2122 *
c8b97818 2123 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2124 * hasn't been properly setup for IO. We kick off an async process
2125 * to fix it up. The async helper will wait for ordered extents, set
2126 * the delalloc bit and make it safe to write the page.
2127 */
b2950863 2128static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2129{
2130 struct inode *inode = page->mapping->host;
0b246afa 2131 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2132 struct btrfs_writepage_fixup *fixup;
247e743c 2133
8b62b72b
CM
2134 /* this page is properly in the ordered list */
2135 if (TestClearPagePrivate2(page))
247e743c
CM
2136 return 0;
2137
2138 if (PageChecked(page))
2139 return -EAGAIN;
2140
2141 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2142 if (!fixup)
2143 return -EAGAIN;
f421950f 2144
247e743c 2145 SetPageChecked(page);
09cbfeaf 2146 get_page(page);
9e0af237
LB
2147 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2148 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2149 fixup->page = page;
0b246afa 2150 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2151 return -EBUSY;
247e743c
CM
2152}
2153
d899e052
YZ
2154static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2155 struct inode *inode, u64 file_pos,
2156 u64 disk_bytenr, u64 disk_num_bytes,
2157 u64 num_bytes, u64 ram_bytes,
2158 u8 compression, u8 encryption,
2159 u16 other_encoding, int extent_type)
2160{
2161 struct btrfs_root *root = BTRFS_I(inode)->root;
2162 struct btrfs_file_extent_item *fi;
2163 struct btrfs_path *path;
2164 struct extent_buffer *leaf;
2165 struct btrfs_key ins;
a12b877b 2166 u64 qg_released;
1acae57b 2167 int extent_inserted = 0;
d899e052
YZ
2168 int ret;
2169
2170 path = btrfs_alloc_path();
d8926bb3
MF
2171 if (!path)
2172 return -ENOMEM;
d899e052 2173
a1ed835e
CM
2174 /*
2175 * we may be replacing one extent in the tree with another.
2176 * The new extent is pinned in the extent map, and we don't want
2177 * to drop it from the cache until it is completely in the btree.
2178 *
2179 * So, tell btrfs_drop_extents to leave this extent in the cache.
2180 * the caller is expected to unpin it and allow it to be merged
2181 * with the others.
2182 */
1acae57b
FDBM
2183 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2184 file_pos + num_bytes, NULL, 0,
2185 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2186 if (ret)
2187 goto out;
d899e052 2188
1acae57b 2189 if (!extent_inserted) {
4a0cc7ca 2190 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2191 ins.offset = file_pos;
2192 ins.type = BTRFS_EXTENT_DATA_KEY;
2193
2194 path->leave_spinning = 1;
2195 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2196 sizeof(*fi));
2197 if (ret)
2198 goto out;
2199 }
d899e052
YZ
2200 leaf = path->nodes[0];
2201 fi = btrfs_item_ptr(leaf, path->slots[0],
2202 struct btrfs_file_extent_item);
2203 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2204 btrfs_set_file_extent_type(leaf, fi, extent_type);
2205 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2206 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2207 btrfs_set_file_extent_offset(leaf, fi, 0);
2208 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2209 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2210 btrfs_set_file_extent_compression(leaf, fi, compression);
2211 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2212 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2213
d899e052 2214 btrfs_mark_buffer_dirty(leaf);
ce195332 2215 btrfs_release_path(path);
d899e052
YZ
2216
2217 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2218
2219 ins.objectid = disk_bytenr;
2220 ins.offset = disk_num_bytes;
2221 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2222
297d750b 2223 /*
5846a3c2
QW
2224 * Release the reserved range from inode dirty range map, as it is
2225 * already moved into delayed_ref_head
297d750b 2226 */
a12b877b
QW
2227 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2228 if (ret < 0)
2229 goto out;
2230 qg_released = ret;
84f7d8e6
JB
2231 ret = btrfs_alloc_reserved_file_extent(trans, root,
2232 btrfs_ino(BTRFS_I(inode)),
2233 file_pos, qg_released, &ins);
79787eaa 2234out:
d899e052 2235 btrfs_free_path(path);
b9473439 2236
79787eaa 2237 return ret;
d899e052
YZ
2238}
2239
38c227d8
LB
2240/* snapshot-aware defrag */
2241struct sa_defrag_extent_backref {
2242 struct rb_node node;
2243 struct old_sa_defrag_extent *old;
2244 u64 root_id;
2245 u64 inum;
2246 u64 file_pos;
2247 u64 extent_offset;
2248 u64 num_bytes;
2249 u64 generation;
2250};
2251
2252struct old_sa_defrag_extent {
2253 struct list_head list;
2254 struct new_sa_defrag_extent *new;
2255
2256 u64 extent_offset;
2257 u64 bytenr;
2258 u64 offset;
2259 u64 len;
2260 int count;
2261};
2262
2263struct new_sa_defrag_extent {
2264 struct rb_root root;
2265 struct list_head head;
2266 struct btrfs_path *path;
2267 struct inode *inode;
2268 u64 file_pos;
2269 u64 len;
2270 u64 bytenr;
2271 u64 disk_len;
2272 u8 compress_type;
2273};
2274
2275static int backref_comp(struct sa_defrag_extent_backref *b1,
2276 struct sa_defrag_extent_backref *b2)
2277{
2278 if (b1->root_id < b2->root_id)
2279 return -1;
2280 else if (b1->root_id > b2->root_id)
2281 return 1;
2282
2283 if (b1->inum < b2->inum)
2284 return -1;
2285 else if (b1->inum > b2->inum)
2286 return 1;
2287
2288 if (b1->file_pos < b2->file_pos)
2289 return -1;
2290 else if (b1->file_pos > b2->file_pos)
2291 return 1;
2292
2293 /*
2294 * [------------------------------] ===> (a range of space)
2295 * |<--->| |<---->| =============> (fs/file tree A)
2296 * |<---------------------------->| ===> (fs/file tree B)
2297 *
2298 * A range of space can refer to two file extents in one tree while
2299 * refer to only one file extent in another tree.
2300 *
2301 * So we may process a disk offset more than one time(two extents in A)
2302 * and locate at the same extent(one extent in B), then insert two same
2303 * backrefs(both refer to the extent in B).
2304 */
2305 return 0;
2306}
2307
2308static void backref_insert(struct rb_root *root,
2309 struct sa_defrag_extent_backref *backref)
2310{
2311 struct rb_node **p = &root->rb_node;
2312 struct rb_node *parent = NULL;
2313 struct sa_defrag_extent_backref *entry;
2314 int ret;
2315
2316 while (*p) {
2317 parent = *p;
2318 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2319
2320 ret = backref_comp(backref, entry);
2321 if (ret < 0)
2322 p = &(*p)->rb_left;
2323 else
2324 p = &(*p)->rb_right;
2325 }
2326
2327 rb_link_node(&backref->node, parent, p);
2328 rb_insert_color(&backref->node, root);
2329}
2330
2331/*
2332 * Note the backref might has changed, and in this case we just return 0.
2333 */
2334static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2335 void *ctx)
2336{
2337 struct btrfs_file_extent_item *extent;
38c227d8
LB
2338 struct old_sa_defrag_extent *old = ctx;
2339 struct new_sa_defrag_extent *new = old->new;
2340 struct btrfs_path *path = new->path;
2341 struct btrfs_key key;
2342 struct btrfs_root *root;
2343 struct sa_defrag_extent_backref *backref;
2344 struct extent_buffer *leaf;
2345 struct inode *inode = new->inode;
0b246afa 2346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2347 int slot;
2348 int ret;
2349 u64 extent_offset;
2350 u64 num_bytes;
2351
2352 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2353 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2354 return 0;
2355
2356 key.objectid = root_id;
2357 key.type = BTRFS_ROOT_ITEM_KEY;
2358 key.offset = (u64)-1;
2359
38c227d8
LB
2360 root = btrfs_read_fs_root_no_name(fs_info, &key);
2361 if (IS_ERR(root)) {
2362 if (PTR_ERR(root) == -ENOENT)
2363 return 0;
2364 WARN_ON(1);
ab8d0fc4 2365 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2366 inum, offset, root_id);
2367 return PTR_ERR(root);
2368 }
2369
2370 key.objectid = inum;
2371 key.type = BTRFS_EXTENT_DATA_KEY;
2372 if (offset > (u64)-1 << 32)
2373 key.offset = 0;
2374 else
2375 key.offset = offset;
2376
2377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2378 if (WARN_ON(ret < 0))
38c227d8 2379 return ret;
50f1319c 2380 ret = 0;
38c227d8
LB
2381
2382 while (1) {
2383 cond_resched();
2384
2385 leaf = path->nodes[0];
2386 slot = path->slots[0];
2387
2388 if (slot >= btrfs_header_nritems(leaf)) {
2389 ret = btrfs_next_leaf(root, path);
2390 if (ret < 0) {
2391 goto out;
2392 } else if (ret > 0) {
2393 ret = 0;
2394 goto out;
2395 }
2396 continue;
2397 }
2398
2399 path->slots[0]++;
2400
2401 btrfs_item_key_to_cpu(leaf, &key, slot);
2402
2403 if (key.objectid > inum)
2404 goto out;
2405
2406 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2407 continue;
2408
2409 extent = btrfs_item_ptr(leaf, slot,
2410 struct btrfs_file_extent_item);
2411
2412 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2413 continue;
2414
e68afa49
LB
2415 /*
2416 * 'offset' refers to the exact key.offset,
2417 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2418 * (key.offset - extent_offset).
2419 */
2420 if (key.offset != offset)
38c227d8
LB
2421 continue;
2422
e68afa49 2423 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2424 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2425
38c227d8
LB
2426 if (extent_offset >= old->extent_offset + old->offset +
2427 old->len || extent_offset + num_bytes <=
2428 old->extent_offset + old->offset)
2429 continue;
38c227d8
LB
2430 break;
2431 }
2432
2433 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2434 if (!backref) {
2435 ret = -ENOENT;
2436 goto out;
2437 }
2438
2439 backref->root_id = root_id;
2440 backref->inum = inum;
e68afa49 2441 backref->file_pos = offset;
38c227d8
LB
2442 backref->num_bytes = num_bytes;
2443 backref->extent_offset = extent_offset;
2444 backref->generation = btrfs_file_extent_generation(leaf, extent);
2445 backref->old = old;
2446 backref_insert(&new->root, backref);
2447 old->count++;
2448out:
2449 btrfs_release_path(path);
2450 WARN_ON(ret);
2451 return ret;
2452}
2453
2454static noinline bool record_extent_backrefs(struct btrfs_path *path,
2455 struct new_sa_defrag_extent *new)
2456{
0b246afa 2457 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2458 struct old_sa_defrag_extent *old, *tmp;
2459 int ret;
2460
2461 new->path = path;
2462
2463 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2464 ret = iterate_inodes_from_logical(old->bytenr +
2465 old->extent_offset, fs_info,
38c227d8 2466 path, record_one_backref,
c995ab3c 2467 old, false);
4724b106
JB
2468 if (ret < 0 && ret != -ENOENT)
2469 return false;
38c227d8
LB
2470
2471 /* no backref to be processed for this extent */
2472 if (!old->count) {
2473 list_del(&old->list);
2474 kfree(old);
2475 }
2476 }
2477
2478 if (list_empty(&new->head))
2479 return false;
2480
2481 return true;
2482}
2483
2484static int relink_is_mergable(struct extent_buffer *leaf,
2485 struct btrfs_file_extent_item *fi,
116e0024 2486 struct new_sa_defrag_extent *new)
38c227d8 2487{
116e0024 2488 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2489 return 0;
2490
2491 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2492 return 0;
2493
116e0024
LB
2494 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2495 return 0;
2496
2497 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2498 btrfs_file_extent_other_encoding(leaf, fi))
2499 return 0;
2500
2501 return 1;
2502}
2503
2504/*
2505 * Note the backref might has changed, and in this case we just return 0.
2506 */
2507static noinline int relink_extent_backref(struct btrfs_path *path,
2508 struct sa_defrag_extent_backref *prev,
2509 struct sa_defrag_extent_backref *backref)
2510{
2511 struct btrfs_file_extent_item *extent;
2512 struct btrfs_file_extent_item *item;
2513 struct btrfs_ordered_extent *ordered;
2514 struct btrfs_trans_handle *trans;
38c227d8
LB
2515 struct btrfs_root *root;
2516 struct btrfs_key key;
2517 struct extent_buffer *leaf;
2518 struct old_sa_defrag_extent *old = backref->old;
2519 struct new_sa_defrag_extent *new = old->new;
0b246afa 2520 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2521 struct inode *inode;
2522 struct extent_state *cached = NULL;
2523 int ret = 0;
2524 u64 start;
2525 u64 len;
2526 u64 lock_start;
2527 u64 lock_end;
2528 bool merge = false;
2529 int index;
2530
2531 if (prev && prev->root_id == backref->root_id &&
2532 prev->inum == backref->inum &&
2533 prev->file_pos + prev->num_bytes == backref->file_pos)
2534 merge = true;
2535
2536 /* step 1: get root */
2537 key.objectid = backref->root_id;
2538 key.type = BTRFS_ROOT_ITEM_KEY;
2539 key.offset = (u64)-1;
2540
38c227d8
LB
2541 index = srcu_read_lock(&fs_info->subvol_srcu);
2542
2543 root = btrfs_read_fs_root_no_name(fs_info, &key);
2544 if (IS_ERR(root)) {
2545 srcu_read_unlock(&fs_info->subvol_srcu, index);
2546 if (PTR_ERR(root) == -ENOENT)
2547 return 0;
2548 return PTR_ERR(root);
2549 }
38c227d8 2550
bcbba5e6
WS
2551 if (btrfs_root_readonly(root)) {
2552 srcu_read_unlock(&fs_info->subvol_srcu, index);
2553 return 0;
2554 }
2555
38c227d8
LB
2556 /* step 2: get inode */
2557 key.objectid = backref->inum;
2558 key.type = BTRFS_INODE_ITEM_KEY;
2559 key.offset = 0;
2560
2561 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2562 if (IS_ERR(inode)) {
2563 srcu_read_unlock(&fs_info->subvol_srcu, index);
2564 return 0;
2565 }
2566
2567 srcu_read_unlock(&fs_info->subvol_srcu, index);
2568
2569 /* step 3: relink backref */
2570 lock_start = backref->file_pos;
2571 lock_end = backref->file_pos + backref->num_bytes - 1;
2572 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2573 &cached);
38c227d8
LB
2574
2575 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2576 if (ordered) {
2577 btrfs_put_ordered_extent(ordered);
2578 goto out_unlock;
2579 }
2580
2581 trans = btrfs_join_transaction(root);
2582 if (IS_ERR(trans)) {
2583 ret = PTR_ERR(trans);
2584 goto out_unlock;
2585 }
2586
2587 key.objectid = backref->inum;
2588 key.type = BTRFS_EXTENT_DATA_KEY;
2589 key.offset = backref->file_pos;
2590
2591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2592 if (ret < 0) {
2593 goto out_free_path;
2594 } else if (ret > 0) {
2595 ret = 0;
2596 goto out_free_path;
2597 }
2598
2599 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2600 struct btrfs_file_extent_item);
2601
2602 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2603 backref->generation)
2604 goto out_free_path;
2605
2606 btrfs_release_path(path);
2607
2608 start = backref->file_pos;
2609 if (backref->extent_offset < old->extent_offset + old->offset)
2610 start += old->extent_offset + old->offset -
2611 backref->extent_offset;
2612
2613 len = min(backref->extent_offset + backref->num_bytes,
2614 old->extent_offset + old->offset + old->len);
2615 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2616
2617 ret = btrfs_drop_extents(trans, root, inode, start,
2618 start + len, 1);
2619 if (ret)
2620 goto out_free_path;
2621again:
4a0cc7ca 2622 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2623 key.type = BTRFS_EXTENT_DATA_KEY;
2624 key.offset = start;
2625
a09a0a70 2626 path->leave_spinning = 1;
38c227d8
LB
2627 if (merge) {
2628 struct btrfs_file_extent_item *fi;
2629 u64 extent_len;
2630 struct btrfs_key found_key;
2631
3c9665df 2632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2633 if (ret < 0)
2634 goto out_free_path;
2635
2636 path->slots[0]--;
2637 leaf = path->nodes[0];
2638 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2639
2640 fi = btrfs_item_ptr(leaf, path->slots[0],
2641 struct btrfs_file_extent_item);
2642 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2643
116e0024
LB
2644 if (extent_len + found_key.offset == start &&
2645 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2646 btrfs_set_file_extent_num_bytes(leaf, fi,
2647 extent_len + len);
2648 btrfs_mark_buffer_dirty(leaf);
2649 inode_add_bytes(inode, len);
2650
2651 ret = 1;
2652 goto out_free_path;
2653 } else {
2654 merge = false;
2655 btrfs_release_path(path);
2656 goto again;
2657 }
2658 }
2659
2660 ret = btrfs_insert_empty_item(trans, root, path, &key,
2661 sizeof(*extent));
2662 if (ret) {
66642832 2663 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2664 goto out_free_path;
2665 }
2666
2667 leaf = path->nodes[0];
2668 item = btrfs_item_ptr(leaf, path->slots[0],
2669 struct btrfs_file_extent_item);
2670 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2671 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2672 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2673 btrfs_set_file_extent_num_bytes(leaf, item, len);
2674 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2675 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2676 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2677 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2678 btrfs_set_file_extent_encryption(leaf, item, 0);
2679 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2680
2681 btrfs_mark_buffer_dirty(leaf);
2682 inode_add_bytes(inode, len);
a09a0a70 2683 btrfs_release_path(path);
38c227d8 2684
84f7d8e6 2685 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2686 new->disk_len, 0,
2687 backref->root_id, backref->inum,
b06c4bf5 2688 new->file_pos); /* start - extent_offset */
38c227d8 2689 if (ret) {
66642832 2690 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2691 goto out_free_path;
2692 }
2693
2694 ret = 1;
2695out_free_path:
2696 btrfs_release_path(path);
a09a0a70 2697 path->leave_spinning = 0;
3a45bb20 2698 btrfs_end_transaction(trans);
38c227d8
LB
2699out_unlock:
2700 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2701 &cached, GFP_NOFS);
2702 iput(inode);
2703 return ret;
2704}
2705
6f519564
LB
2706static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2707{
2708 struct old_sa_defrag_extent *old, *tmp;
2709
2710 if (!new)
2711 return;
2712
2713 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2714 kfree(old);
2715 }
2716 kfree(new);
2717}
2718
38c227d8
LB
2719static void relink_file_extents(struct new_sa_defrag_extent *new)
2720{
0b246afa 2721 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2722 struct btrfs_path *path;
38c227d8
LB
2723 struct sa_defrag_extent_backref *backref;
2724 struct sa_defrag_extent_backref *prev = NULL;
2725 struct inode *inode;
2726 struct btrfs_root *root;
2727 struct rb_node *node;
2728 int ret;
2729
2730 inode = new->inode;
2731 root = BTRFS_I(inode)->root;
2732
2733 path = btrfs_alloc_path();
2734 if (!path)
2735 return;
2736
2737 if (!record_extent_backrefs(path, new)) {
2738 btrfs_free_path(path);
2739 goto out;
2740 }
2741 btrfs_release_path(path);
2742
2743 while (1) {
2744 node = rb_first(&new->root);
2745 if (!node)
2746 break;
2747 rb_erase(node, &new->root);
2748
2749 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2750
2751 ret = relink_extent_backref(path, prev, backref);
2752 WARN_ON(ret < 0);
2753
2754 kfree(prev);
2755
2756 if (ret == 1)
2757 prev = backref;
2758 else
2759 prev = NULL;
2760 cond_resched();
2761 }
2762 kfree(prev);
2763
2764 btrfs_free_path(path);
38c227d8 2765out:
6f519564
LB
2766 free_sa_defrag_extent(new);
2767
0b246afa
JM
2768 atomic_dec(&fs_info->defrag_running);
2769 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2770}
2771
2772static struct new_sa_defrag_extent *
2773record_old_file_extents(struct inode *inode,
2774 struct btrfs_ordered_extent *ordered)
2775{
0b246afa 2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2777 struct btrfs_root *root = BTRFS_I(inode)->root;
2778 struct btrfs_path *path;
2779 struct btrfs_key key;
6f519564 2780 struct old_sa_defrag_extent *old;
38c227d8
LB
2781 struct new_sa_defrag_extent *new;
2782 int ret;
2783
2784 new = kmalloc(sizeof(*new), GFP_NOFS);
2785 if (!new)
2786 return NULL;
2787
2788 new->inode = inode;
2789 new->file_pos = ordered->file_offset;
2790 new->len = ordered->len;
2791 new->bytenr = ordered->start;
2792 new->disk_len = ordered->disk_len;
2793 new->compress_type = ordered->compress_type;
2794 new->root = RB_ROOT;
2795 INIT_LIST_HEAD(&new->head);
2796
2797 path = btrfs_alloc_path();
2798 if (!path)
2799 goto out_kfree;
2800
4a0cc7ca 2801 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2802 key.type = BTRFS_EXTENT_DATA_KEY;
2803 key.offset = new->file_pos;
2804
2805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2806 if (ret < 0)
2807 goto out_free_path;
2808 if (ret > 0 && path->slots[0] > 0)
2809 path->slots[0]--;
2810
2811 /* find out all the old extents for the file range */
2812 while (1) {
2813 struct btrfs_file_extent_item *extent;
2814 struct extent_buffer *l;
2815 int slot;
2816 u64 num_bytes;
2817 u64 offset;
2818 u64 end;
2819 u64 disk_bytenr;
2820 u64 extent_offset;
2821
2822 l = path->nodes[0];
2823 slot = path->slots[0];
2824
2825 if (slot >= btrfs_header_nritems(l)) {
2826 ret = btrfs_next_leaf(root, path);
2827 if (ret < 0)
6f519564 2828 goto out_free_path;
38c227d8
LB
2829 else if (ret > 0)
2830 break;
2831 continue;
2832 }
2833
2834 btrfs_item_key_to_cpu(l, &key, slot);
2835
4a0cc7ca 2836 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2837 break;
2838 if (key.type != BTRFS_EXTENT_DATA_KEY)
2839 break;
2840 if (key.offset >= new->file_pos + new->len)
2841 break;
2842
2843 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2844
2845 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2846 if (key.offset + num_bytes < new->file_pos)
2847 goto next;
2848
2849 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2850 if (!disk_bytenr)
2851 goto next;
2852
2853 extent_offset = btrfs_file_extent_offset(l, extent);
2854
2855 old = kmalloc(sizeof(*old), GFP_NOFS);
2856 if (!old)
6f519564 2857 goto out_free_path;
38c227d8
LB
2858
2859 offset = max(new->file_pos, key.offset);
2860 end = min(new->file_pos + new->len, key.offset + num_bytes);
2861
2862 old->bytenr = disk_bytenr;
2863 old->extent_offset = extent_offset;
2864 old->offset = offset - key.offset;
2865 old->len = end - offset;
2866 old->new = new;
2867 old->count = 0;
2868 list_add_tail(&old->list, &new->head);
2869next:
2870 path->slots[0]++;
2871 cond_resched();
2872 }
2873
2874 btrfs_free_path(path);
0b246afa 2875 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2876
2877 return new;
2878
38c227d8
LB
2879out_free_path:
2880 btrfs_free_path(path);
2881out_kfree:
6f519564 2882 free_sa_defrag_extent(new);
38c227d8
LB
2883 return NULL;
2884}
2885
2ff7e61e 2886static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2887 u64 start, u64 len)
2888{
2889 struct btrfs_block_group_cache *cache;
2890
0b246afa 2891 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2892 ASSERT(cache);
2893
2894 spin_lock(&cache->lock);
2895 cache->delalloc_bytes -= len;
2896 spin_unlock(&cache->lock);
2897
2898 btrfs_put_block_group(cache);
2899}
2900
d352ac68
CM
2901/* as ordered data IO finishes, this gets called so we can finish
2902 * an ordered extent if the range of bytes in the file it covers are
2903 * fully written.
2904 */
5fd02043 2905static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2906{
5fd02043 2907 struct inode *inode = ordered_extent->inode;
0b246afa 2908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2909 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2910 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2911 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2912 struct extent_state *cached_state = NULL;
38c227d8 2913 struct new_sa_defrag_extent *new = NULL;
261507a0 2914 int compress_type = 0;
77cef2ec
JB
2915 int ret = 0;
2916 u64 logical_len = ordered_extent->len;
82d5902d 2917 bool nolock;
77cef2ec 2918 bool truncated = false;
a7e3b975
FM
2919 bool range_locked = false;
2920 bool clear_new_delalloc_bytes = false;
2921
2922 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2923 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2924 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2925 clear_new_delalloc_bytes = true;
e6dcd2dc 2926
70ddc553 2927 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2928
5fd02043
JB
2929 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2930 ret = -EIO;
2931 goto out;
2932 }
2933
7ab7956e
NB
2934 btrfs_free_io_failure_record(BTRFS_I(inode),
2935 ordered_extent->file_offset,
2936 ordered_extent->file_offset +
2937 ordered_extent->len - 1);
f612496b 2938
77cef2ec
JB
2939 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2940 truncated = true;
2941 logical_len = ordered_extent->truncated_len;
2942 /* Truncated the entire extent, don't bother adding */
2943 if (!logical_len)
2944 goto out;
2945 }
2946
c2167754 2947 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2948 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2949
2950 /*
2951 * For mwrite(mmap + memset to write) case, we still reserve
2952 * space for NOCOW range.
2953 * As NOCOW won't cause a new delayed ref, just free the space
2954 */
bc42bda2 2955 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2956 ordered_extent->len);
6c760c07
JB
2957 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2958 if (nolock)
2959 trans = btrfs_join_transaction_nolock(root);
2960 else
2961 trans = btrfs_join_transaction(root);
2962 if (IS_ERR(trans)) {
2963 ret = PTR_ERR(trans);
2964 trans = NULL;
2965 goto out;
c2167754 2966 }
69fe2d75 2967 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2968 ret = btrfs_update_inode_fallback(trans, root, inode);
2969 if (ret) /* -ENOMEM or corruption */
66642832 2970 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2971 goto out;
2972 }
e6dcd2dc 2973
a7e3b975 2974 range_locked = true;
2ac55d41
JB
2975 lock_extent_bits(io_tree, ordered_extent->file_offset,
2976 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2977 &cached_state);
e6dcd2dc 2978
38c227d8
LB
2979 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2980 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2981 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2982 if (ret) {
2983 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2984 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2985 /* the inode is shared */
2986 new = record_old_file_extents(inode, ordered_extent);
2987
2988 clear_extent_bit(io_tree, ordered_extent->file_offset,
2989 ordered_extent->file_offset + ordered_extent->len - 1,
2990 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2991 }
2992
0cb59c99 2993 if (nolock)
7a7eaa40 2994 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2995 else
7a7eaa40 2996 trans = btrfs_join_transaction(root);
79787eaa
JM
2997 if (IS_ERR(trans)) {
2998 ret = PTR_ERR(trans);
2999 trans = NULL;
a7e3b975 3000 goto out;
79787eaa 3001 }
a79b7d4b 3002
69fe2d75 3003 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3004
c8b97818 3005 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3006 compress_type = ordered_extent->compress_type;
d899e052 3007 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3008 BUG_ON(compress_type);
b430b775
JM
3009 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3010 ordered_extent->len);
7a6d7067 3011 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3012 ordered_extent->file_offset,
3013 ordered_extent->file_offset +
77cef2ec 3014 logical_len);
d899e052 3015 } else {
0b246afa 3016 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3017 ret = insert_reserved_file_extent(trans, inode,
3018 ordered_extent->file_offset,
3019 ordered_extent->start,
3020 ordered_extent->disk_len,
77cef2ec 3021 logical_len, logical_len,
261507a0 3022 compress_type, 0, 0,
d899e052 3023 BTRFS_FILE_EXTENT_REG);
e570fd27 3024 if (!ret)
2ff7e61e 3025 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3026 ordered_extent->start,
3027 ordered_extent->disk_len);
d899e052 3028 }
5dc562c5
JB
3029 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3030 ordered_extent->file_offset, ordered_extent->len,
3031 trans->transid);
79787eaa 3032 if (ret < 0) {
66642832 3033 btrfs_abort_transaction(trans, ret);
a7e3b975 3034 goto out;
79787eaa 3035 }
2ac55d41 3036
df9f628e 3037 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3038
6c760c07
JB
3039 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3040 ret = btrfs_update_inode_fallback(trans, root, inode);
3041 if (ret) { /* -ENOMEM or corruption */
66642832 3042 btrfs_abort_transaction(trans, ret);
a7e3b975 3043 goto out;
1ef30be1
JB
3044 }
3045 ret = 0;
c2167754 3046out:
a7e3b975
FM
3047 if (range_locked || clear_new_delalloc_bytes) {
3048 unsigned int clear_bits = 0;
3049
3050 if (range_locked)
3051 clear_bits |= EXTENT_LOCKED;
3052 if (clear_new_delalloc_bytes)
3053 clear_bits |= EXTENT_DELALLOC_NEW;
3054 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3055 ordered_extent->file_offset,
3056 ordered_extent->file_offset +
3057 ordered_extent->len - 1,
3058 clear_bits,
3059 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3060 0, &cached_state, GFP_NOFS);
3061 }
3062
a698d075 3063 if (trans)
3a45bb20 3064 btrfs_end_transaction(trans);
0cb59c99 3065
77cef2ec
JB
3066 if (ret || truncated) {
3067 u64 start, end;
3068
3069 if (truncated)
3070 start = ordered_extent->file_offset + logical_len;
3071 else
3072 start = ordered_extent->file_offset;
3073 end = ordered_extent->file_offset + ordered_extent->len - 1;
3074 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3075
3076 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3077 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3078
0bec9ef5
JB
3079 /*
3080 * If the ordered extent had an IOERR or something else went
3081 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3082 * back to the allocator. We only free the extent in the
3083 * truncated case if we didn't write out the extent at all.
0bec9ef5 3084 */
77cef2ec
JB
3085 if ((ret || !logical_len) &&
3086 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3087 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3088 btrfs_free_reserved_extent(fs_info,
3089 ordered_extent->start,
e570fd27 3090 ordered_extent->disk_len, 1);
0bec9ef5
JB
3091 }
3092
3093
5fd02043 3094 /*
8bad3c02
LB
3095 * This needs to be done to make sure anybody waiting knows we are done
3096 * updating everything for this ordered extent.
5fd02043
JB
3097 */
3098 btrfs_remove_ordered_extent(inode, ordered_extent);
3099
38c227d8 3100 /* for snapshot-aware defrag */
6f519564
LB
3101 if (new) {
3102 if (ret) {
3103 free_sa_defrag_extent(new);
0b246afa 3104 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3105 } else {
3106 relink_file_extents(new);
3107 }
3108 }
38c227d8 3109
e6dcd2dc
CM
3110 /* once for us */
3111 btrfs_put_ordered_extent(ordered_extent);
3112 /* once for the tree */
3113 btrfs_put_ordered_extent(ordered_extent);
3114
5fd02043
JB
3115 return ret;
3116}
3117
3118static void finish_ordered_fn(struct btrfs_work *work)
3119{
3120 struct btrfs_ordered_extent *ordered_extent;
3121 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3122 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3123}
3124
c3988d63 3125static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3126 struct extent_state *state, int uptodate)
3127{
5fd02043 3128 struct inode *inode = page->mapping->host;
0b246afa 3129 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3130 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3131 struct btrfs_workqueue *wq;
3132 btrfs_work_func_t func;
5fd02043 3133
1abe9b8a 3134 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3135
8b62b72b 3136 ClearPagePrivate2(page);
5fd02043
JB
3137 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3138 end - start + 1, uptodate))
c3988d63 3139 return;
5fd02043 3140
70ddc553 3141 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3142 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3143 func = btrfs_freespace_write_helper;
3144 } else {
0b246afa 3145 wq = fs_info->endio_write_workers;
9e0af237
LB
3146 func = btrfs_endio_write_helper;
3147 }
5fd02043 3148
9e0af237
LB
3149 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3150 NULL);
3151 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3152}
3153
dc380aea
MX
3154static int __readpage_endio_check(struct inode *inode,
3155 struct btrfs_io_bio *io_bio,
3156 int icsum, struct page *page,
3157 int pgoff, u64 start, size_t len)
3158{
3159 char *kaddr;
3160 u32 csum_expected;
3161 u32 csum = ~(u32)0;
dc380aea
MX
3162
3163 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3164
3165 kaddr = kmap_atomic(page);
3166 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3167 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3168 if (csum != csum_expected)
3169 goto zeroit;
3170
3171 kunmap_atomic(kaddr);
3172 return 0;
3173zeroit:
0970a22e 3174 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3175 io_bio->mirror_num);
dc380aea
MX
3176 memset(kaddr + pgoff, 1, len);
3177 flush_dcache_page(page);
3178 kunmap_atomic(kaddr);
dc380aea
MX
3179 return -EIO;
3180}
3181
d352ac68
CM
3182/*
3183 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3184 * if there's a match, we allow the bio to finish. If not, the code in
3185 * extent_io.c will try to find good copies for us.
d352ac68 3186 */
facc8a22
MX
3187static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3188 u64 phy_offset, struct page *page,
3189 u64 start, u64 end, int mirror)
07157aac 3190{
4eee4fa4 3191 size_t offset = start - page_offset(page);
07157aac 3192 struct inode *inode = page->mapping->host;
d1310b2e 3193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3194 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3195
d20f7043
CM
3196 if (PageChecked(page)) {
3197 ClearPageChecked(page);
dc380aea 3198 return 0;
d20f7043 3199 }
6cbff00f
CH
3200
3201 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3202 return 0;
17d217fe
YZ
3203
3204 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3205 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3206 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3207 return 0;
17d217fe 3208 }
d20f7043 3209
facc8a22 3210 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3211 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3212 start, (size_t)(end - start + 1));
07157aac 3213}
b888db2b 3214
24bbcf04
YZ
3215void btrfs_add_delayed_iput(struct inode *inode)
3216{
0b246afa 3217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3218 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3219
3220 if (atomic_add_unless(&inode->i_count, -1, 1))
3221 return;
3222
24bbcf04 3223 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3224 if (binode->delayed_iput_count == 0) {
3225 ASSERT(list_empty(&binode->delayed_iput));
3226 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3227 } else {
3228 binode->delayed_iput_count++;
3229 }
24bbcf04
YZ
3230 spin_unlock(&fs_info->delayed_iput_lock);
3231}
3232
2ff7e61e 3233void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3234{
24bbcf04 3235
24bbcf04 3236 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3237 while (!list_empty(&fs_info->delayed_iputs)) {
3238 struct btrfs_inode *inode;
3239
3240 inode = list_first_entry(&fs_info->delayed_iputs,
3241 struct btrfs_inode, delayed_iput);
3242 if (inode->delayed_iput_count) {
3243 inode->delayed_iput_count--;
3244 list_move_tail(&inode->delayed_iput,
3245 &fs_info->delayed_iputs);
3246 } else {
3247 list_del_init(&inode->delayed_iput);
3248 }
3249 spin_unlock(&fs_info->delayed_iput_lock);
3250 iput(&inode->vfs_inode);
3251 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3252 }
8089fe62 3253 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3254}
3255
d68fc57b 3256/*
42b2aa86 3257 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3258 * files in the subvolume, it removes orphan item and frees block_rsv
3259 * structure.
3260 */
3261void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3262 struct btrfs_root *root)
3263{
0b246afa 3264 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3265 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3266 int ret;
3267
8a35d95f 3268 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3269 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3270 return;
3271
90290e19 3272 spin_lock(&root->orphan_lock);
8a35d95f 3273 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3274 spin_unlock(&root->orphan_lock);
3275 return;
3276 }
3277
3278 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3279 spin_unlock(&root->orphan_lock);
3280 return;
3281 }
3282
3283 block_rsv = root->orphan_block_rsv;
3284 root->orphan_block_rsv = NULL;
3285 spin_unlock(&root->orphan_lock);
3286
27cdeb70 3287 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3288 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3289 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3290 root->root_key.objectid);
4ef31a45 3291 if (ret)
66642832 3292 btrfs_abort_transaction(trans, ret);
4ef31a45 3293 else
27cdeb70
MX
3294 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3295 &root->state);
d68fc57b
YZ
3296 }
3297
90290e19
JB
3298 if (block_rsv) {
3299 WARN_ON(block_rsv->size > 0);
2ff7e61e 3300 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3301 }
3302}
3303
7b128766
JB
3304/*
3305 * This creates an orphan entry for the given inode in case something goes
3306 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3307 *
3308 * NOTE: caller of this function should reserve 5 units of metadata for
3309 * this function.
7b128766 3310 */
73f2e545
NB
3311int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3312 struct btrfs_inode *inode)
7b128766 3313{
73f2e545
NB
3314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3315 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3316 struct btrfs_block_rsv *block_rsv = NULL;
3317 int reserve = 0;
3318 int insert = 0;
3319 int ret;
7b128766 3320
d68fc57b 3321 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3322 block_rsv = btrfs_alloc_block_rsv(fs_info,
3323 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3324 if (!block_rsv)
3325 return -ENOMEM;
d68fc57b 3326 }
7b128766 3327
d68fc57b
YZ
3328 spin_lock(&root->orphan_lock);
3329 if (!root->orphan_block_rsv) {
3330 root->orphan_block_rsv = block_rsv;
3331 } else if (block_rsv) {
2ff7e61e 3332 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3333 block_rsv = NULL;
7b128766 3334 }
7b128766 3335
8a35d95f 3336 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3337 &inode->runtime_flags)) {
d68fc57b
YZ
3338#if 0
3339 /*
3340 * For proper ENOSPC handling, we should do orphan
3341 * cleanup when mounting. But this introduces backward
3342 * compatibility issue.
3343 */
3344 if (!xchg(&root->orphan_item_inserted, 1))
3345 insert = 2;
3346 else
3347 insert = 1;
3348#endif
3349 insert = 1;
321f0e70 3350 atomic_inc(&root->orphan_inodes);
7b128766
JB
3351 }
3352
72ac3c0d 3353 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3354 &inode->runtime_flags))
d68fc57b 3355 reserve = 1;
d68fc57b 3356 spin_unlock(&root->orphan_lock);
7b128766 3357
d68fc57b
YZ
3358 /* grab metadata reservation from transaction handle */
3359 if (reserve) {
3360 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3361 ASSERT(!ret);
3362 if (ret) {
3363 atomic_dec(&root->orphan_inodes);
3364 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3365 &inode->runtime_flags);
3b6571c1
JB
3366 if (insert)
3367 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3368 &inode->runtime_flags);
3b6571c1
JB
3369 return ret;
3370 }
d68fc57b 3371 }
7b128766 3372
d68fc57b
YZ
3373 /* insert an orphan item to track this unlinked/truncated file */
3374 if (insert >= 1) {
73f2e545 3375 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3376 if (ret) {
703c88e0 3377 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3378 if (reserve) {
3379 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3380 &inode->runtime_flags);
4ef31a45
JB
3381 btrfs_orphan_release_metadata(inode);
3382 }
3383 if (ret != -EEXIST) {
e8e7cff6 3384 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3385 &inode->runtime_flags);
66642832 3386 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3387 return ret;
3388 }
79787eaa
JM
3389 }
3390 ret = 0;
d68fc57b
YZ
3391 }
3392
3393 /* insert an orphan item to track subvolume contains orphan files */
3394 if (insert >= 2) {
0b246afa 3395 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3396 root->root_key.objectid);
79787eaa 3397 if (ret && ret != -EEXIST) {
66642832 3398 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3399 return ret;
3400 }
d68fc57b
YZ
3401 }
3402 return 0;
7b128766
JB
3403}
3404
3405/*
3406 * We have done the truncate/delete so we can go ahead and remove the orphan
3407 * item for this particular inode.
3408 */
48a3b636 3409static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3410 struct btrfs_inode *inode)
7b128766 3411{
3d6ae7bb 3412 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3413 int delete_item = 0;
3414 int release_rsv = 0;
7b128766
JB
3415 int ret = 0;
3416
d68fc57b 3417 spin_lock(&root->orphan_lock);
8a35d95f 3418 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3419 &inode->runtime_flags))
d68fc57b 3420 delete_item = 1;
7b128766 3421
72ac3c0d 3422 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3423 &inode->runtime_flags))
d68fc57b 3424 release_rsv = 1;
d68fc57b 3425 spin_unlock(&root->orphan_lock);
7b128766 3426
703c88e0 3427 if (delete_item) {
8a35d95f 3428 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3429 if (trans)
3430 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3431 btrfs_ino(inode));
8a35d95f 3432 }
7b128766 3433
703c88e0
FDBM
3434 if (release_rsv)
3435 btrfs_orphan_release_metadata(inode);
3436
4ef31a45 3437 return ret;
7b128766
JB
3438}
3439
3440/*
3441 * this cleans up any orphans that may be left on the list from the last use
3442 * of this root.
3443 */
66b4ffd1 3444int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3445{
0b246afa 3446 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3447 struct btrfs_path *path;
3448 struct extent_buffer *leaf;
7b128766
JB
3449 struct btrfs_key key, found_key;
3450 struct btrfs_trans_handle *trans;
3451 struct inode *inode;
8f6d7f4f 3452 u64 last_objectid = 0;
7b128766
JB
3453 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3454
d68fc57b 3455 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3456 return 0;
c71bf099
YZ
3457
3458 path = btrfs_alloc_path();
66b4ffd1
JB
3459 if (!path) {
3460 ret = -ENOMEM;
3461 goto out;
3462 }
e4058b54 3463 path->reada = READA_BACK;
7b128766
JB
3464
3465 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3466 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3467 key.offset = (u64)-1;
3468
7b128766
JB
3469 while (1) {
3470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3471 if (ret < 0)
3472 goto out;
7b128766
JB
3473
3474 /*
3475 * if ret == 0 means we found what we were searching for, which
25985edc 3476 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3477 * find the key and see if we have stuff that matches
3478 */
3479 if (ret > 0) {
66b4ffd1 3480 ret = 0;
7b128766
JB
3481 if (path->slots[0] == 0)
3482 break;
3483 path->slots[0]--;
3484 }
3485
3486 /* pull out the item */
3487 leaf = path->nodes[0];
7b128766
JB
3488 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3489
3490 /* make sure the item matches what we want */
3491 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3492 break;
962a298f 3493 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3494 break;
3495
3496 /* release the path since we're done with it */
b3b4aa74 3497 btrfs_release_path(path);
7b128766
JB
3498
3499 /*
3500 * this is where we are basically btrfs_lookup, without the
3501 * crossing root thing. we store the inode number in the
3502 * offset of the orphan item.
3503 */
8f6d7f4f
JB
3504
3505 if (found_key.offset == last_objectid) {
0b246afa
JM
3506 btrfs_err(fs_info,
3507 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3508 ret = -EINVAL;
3509 goto out;
3510 }
3511
3512 last_objectid = found_key.offset;
3513
5d4f98a2
YZ
3514 found_key.objectid = found_key.offset;
3515 found_key.type = BTRFS_INODE_ITEM_KEY;
3516 found_key.offset = 0;
0b246afa 3517 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3518 ret = PTR_ERR_OR_ZERO(inode);
67710892 3519 if (ret && ret != -ENOENT)
66b4ffd1 3520 goto out;
7b128766 3521
0b246afa 3522 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3523 struct btrfs_root *dead_root;
3524 struct btrfs_fs_info *fs_info = root->fs_info;
3525 int is_dead_root = 0;
3526
3527 /*
3528 * this is an orphan in the tree root. Currently these
3529 * could come from 2 sources:
3530 * a) a snapshot deletion in progress
3531 * b) a free space cache inode
3532 * We need to distinguish those two, as the snapshot
3533 * orphan must not get deleted.
3534 * find_dead_roots already ran before us, so if this
3535 * is a snapshot deletion, we should find the root
3536 * in the dead_roots list
3537 */
3538 spin_lock(&fs_info->trans_lock);
3539 list_for_each_entry(dead_root, &fs_info->dead_roots,
3540 root_list) {
3541 if (dead_root->root_key.objectid ==
3542 found_key.objectid) {
3543 is_dead_root = 1;
3544 break;
3545 }
3546 }
3547 spin_unlock(&fs_info->trans_lock);
3548 if (is_dead_root) {
3549 /* prevent this orphan from being found again */
3550 key.offset = found_key.objectid - 1;
3551 continue;
3552 }
3553 }
7b128766 3554 /*
a8c9e576
JB
3555 * Inode is already gone but the orphan item is still there,
3556 * kill the orphan item.
7b128766 3557 */
67710892 3558 if (ret == -ENOENT) {
a8c9e576 3559 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3560 if (IS_ERR(trans)) {
3561 ret = PTR_ERR(trans);
3562 goto out;
3563 }
0b246afa
JM
3564 btrfs_debug(fs_info, "auto deleting %Lu",
3565 found_key.objectid);
a8c9e576
JB
3566 ret = btrfs_del_orphan_item(trans, root,
3567 found_key.objectid);
3a45bb20 3568 btrfs_end_transaction(trans);
4ef31a45
JB
3569 if (ret)
3570 goto out;
7b128766
JB
3571 continue;
3572 }
3573
a8c9e576
JB
3574 /*
3575 * add this inode to the orphan list so btrfs_orphan_del does
3576 * the proper thing when we hit it
3577 */
8a35d95f
JB
3578 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3579 &BTRFS_I(inode)->runtime_flags);
925396ec 3580 atomic_inc(&root->orphan_inodes);
a8c9e576 3581
7b128766
JB
3582 /* if we have links, this was a truncate, lets do that */
3583 if (inode->i_nlink) {
fae7f21c 3584 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3585 iput(inode);
3586 continue;
3587 }
7b128766 3588 nr_truncate++;
f3fe820c
JB
3589
3590 /* 1 for the orphan item deletion. */
3591 trans = btrfs_start_transaction(root, 1);
3592 if (IS_ERR(trans)) {
c69b26b0 3593 iput(inode);
f3fe820c
JB
3594 ret = PTR_ERR(trans);
3595 goto out;
3596 }
73f2e545 3597 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3598 btrfs_end_transaction(trans);
c69b26b0
JB
3599 if (ret) {
3600 iput(inode);
f3fe820c 3601 goto out;
c69b26b0 3602 }
f3fe820c 3603
66b4ffd1 3604 ret = btrfs_truncate(inode);
4a7d0f68 3605 if (ret)
3d6ae7bb 3606 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3607 } else {
3608 nr_unlink++;
3609 }
3610
3611 /* this will do delete_inode and everything for us */
3612 iput(inode);
66b4ffd1
JB
3613 if (ret)
3614 goto out;
7b128766 3615 }
3254c876
MX
3616 /* release the path since we're done with it */
3617 btrfs_release_path(path);
3618
d68fc57b
YZ
3619 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3620
3621 if (root->orphan_block_rsv)
2ff7e61e 3622 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3623 (u64)-1);
3624
27cdeb70
MX
3625 if (root->orphan_block_rsv ||
3626 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3627 trans = btrfs_join_transaction(root);
66b4ffd1 3628 if (!IS_ERR(trans))
3a45bb20 3629 btrfs_end_transaction(trans);
d68fc57b 3630 }
7b128766
JB
3631
3632 if (nr_unlink)
0b246afa 3633 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3634 if (nr_truncate)
0b246afa 3635 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3636
3637out:
3638 if (ret)
0b246afa 3639 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3640 btrfs_free_path(path);
3641 return ret;
7b128766
JB
3642}
3643
46a53cca
CM
3644/*
3645 * very simple check to peek ahead in the leaf looking for xattrs. If we
3646 * don't find any xattrs, we know there can't be any acls.
3647 *
3648 * slot is the slot the inode is in, objectid is the objectid of the inode
3649 */
3650static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3651 int slot, u64 objectid,
3652 int *first_xattr_slot)
46a53cca
CM
3653{
3654 u32 nritems = btrfs_header_nritems(leaf);
3655 struct btrfs_key found_key;
f23b5a59
JB
3656 static u64 xattr_access = 0;
3657 static u64 xattr_default = 0;
46a53cca
CM
3658 int scanned = 0;
3659
f23b5a59 3660 if (!xattr_access) {
97d79299
AG
3661 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3662 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3663 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3664 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3665 }
3666
46a53cca 3667 slot++;
63541927 3668 *first_xattr_slot = -1;
46a53cca
CM
3669 while (slot < nritems) {
3670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3671
3672 /* we found a different objectid, there must not be acls */
3673 if (found_key.objectid != objectid)
3674 return 0;
3675
3676 /* we found an xattr, assume we've got an acl */
f23b5a59 3677 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3678 if (*first_xattr_slot == -1)
3679 *first_xattr_slot = slot;
f23b5a59
JB
3680 if (found_key.offset == xattr_access ||
3681 found_key.offset == xattr_default)
3682 return 1;
3683 }
46a53cca
CM
3684
3685 /*
3686 * we found a key greater than an xattr key, there can't
3687 * be any acls later on
3688 */
3689 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3690 return 0;
3691
3692 slot++;
3693 scanned++;
3694
3695 /*
3696 * it goes inode, inode backrefs, xattrs, extents,
3697 * so if there are a ton of hard links to an inode there can
3698 * be a lot of backrefs. Don't waste time searching too hard,
3699 * this is just an optimization
3700 */
3701 if (scanned >= 8)
3702 break;
3703 }
3704 /* we hit the end of the leaf before we found an xattr or
3705 * something larger than an xattr. We have to assume the inode
3706 * has acls
3707 */
63541927
FDBM
3708 if (*first_xattr_slot == -1)
3709 *first_xattr_slot = slot;
46a53cca
CM
3710 return 1;
3711}
3712
d352ac68
CM
3713/*
3714 * read an inode from the btree into the in-memory inode
3715 */
67710892 3716static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3717{
0b246afa 3718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3719 struct btrfs_path *path;
5f39d397 3720 struct extent_buffer *leaf;
39279cc3
CM
3721 struct btrfs_inode_item *inode_item;
3722 struct btrfs_root *root = BTRFS_I(inode)->root;
3723 struct btrfs_key location;
67de1176 3724 unsigned long ptr;
46a53cca 3725 int maybe_acls;
618e21d5 3726 u32 rdev;
39279cc3 3727 int ret;
2f7e33d4 3728 bool filled = false;
63541927 3729 int first_xattr_slot;
2f7e33d4
MX
3730
3731 ret = btrfs_fill_inode(inode, &rdev);
3732 if (!ret)
3733 filled = true;
39279cc3
CM
3734
3735 path = btrfs_alloc_path();
67710892
FM
3736 if (!path) {
3737 ret = -ENOMEM;
1748f843 3738 goto make_bad;
67710892 3739 }
1748f843 3740
39279cc3 3741 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3742
39279cc3 3743 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3744 if (ret) {
3745 if (ret > 0)
3746 ret = -ENOENT;
39279cc3 3747 goto make_bad;
67710892 3748 }
39279cc3 3749
5f39d397 3750 leaf = path->nodes[0];
2f7e33d4
MX
3751
3752 if (filled)
67de1176 3753 goto cache_index;
2f7e33d4 3754
5f39d397
CM
3755 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3756 struct btrfs_inode_item);
5f39d397 3757 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3758 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3759 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3760 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3761 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3762
a937b979
DS
3763 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3764 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3765
a937b979
DS
3766 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3767 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3768
a937b979
DS
3769 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3770 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3771
9cc97d64 3772 BTRFS_I(inode)->i_otime.tv_sec =
3773 btrfs_timespec_sec(leaf, &inode_item->otime);
3774 BTRFS_I(inode)->i_otime.tv_nsec =
3775 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3776
a76a3cd4 3777 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3778 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3779 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3780
c7f88c4e
JL
3781 inode_set_iversion_queried(inode,
3782 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3783 inode->i_generation = BTRFS_I(inode)->generation;
3784 inode->i_rdev = 0;
3785 rdev = btrfs_inode_rdev(leaf, inode_item);
3786
3787 BTRFS_I(inode)->index_cnt = (u64)-1;
3788 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3789
3790cache_index:
5dc562c5
JB
3791 /*
3792 * If we were modified in the current generation and evicted from memory
3793 * and then re-read we need to do a full sync since we don't have any
3794 * idea about which extents were modified before we were evicted from
3795 * cache.
6e17d30b
YD
3796 *
3797 * This is required for both inode re-read from disk and delayed inode
3798 * in delayed_nodes_tree.
5dc562c5 3799 */
0b246afa 3800 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3801 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3802 &BTRFS_I(inode)->runtime_flags);
3803
bde6c242
FM
3804 /*
3805 * We don't persist the id of the transaction where an unlink operation
3806 * against the inode was last made. So here we assume the inode might
3807 * have been evicted, and therefore the exact value of last_unlink_trans
3808 * lost, and set it to last_trans to avoid metadata inconsistencies
3809 * between the inode and its parent if the inode is fsync'ed and the log
3810 * replayed. For example, in the scenario:
3811 *
3812 * touch mydir/foo
3813 * ln mydir/foo mydir/bar
3814 * sync
3815 * unlink mydir/bar
3816 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3817 * xfs_io -c fsync mydir/foo
3818 * <power failure>
3819 * mount fs, triggers fsync log replay
3820 *
3821 * We must make sure that when we fsync our inode foo we also log its
3822 * parent inode, otherwise after log replay the parent still has the
3823 * dentry with the "bar" name but our inode foo has a link count of 1
3824 * and doesn't have an inode ref with the name "bar" anymore.
3825 *
3826 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3827 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3828 * transaction commits on fsync if our inode is a directory, or if our
3829 * inode is not a directory, logging its parent unnecessarily.
3830 */
3831 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3832
67de1176
MX
3833 path->slots[0]++;
3834 if (inode->i_nlink != 1 ||
3835 path->slots[0] >= btrfs_header_nritems(leaf))
3836 goto cache_acl;
3837
3838 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3839 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3840 goto cache_acl;
3841
3842 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3843 if (location.type == BTRFS_INODE_REF_KEY) {
3844 struct btrfs_inode_ref *ref;
3845
3846 ref = (struct btrfs_inode_ref *)ptr;
3847 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3848 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3849 struct btrfs_inode_extref *extref;
3850
3851 extref = (struct btrfs_inode_extref *)ptr;
3852 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3853 extref);
3854 }
2f7e33d4 3855cache_acl:
46a53cca
CM
3856 /*
3857 * try to precache a NULL acl entry for files that don't have
3858 * any xattrs or acls
3859 */
33345d01 3860 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3861 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3862 if (first_xattr_slot != -1) {
3863 path->slots[0] = first_xattr_slot;
3864 ret = btrfs_load_inode_props(inode, path);
3865 if (ret)
0b246afa 3866 btrfs_err(fs_info,
351fd353 3867 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3868 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3869 root->root_key.objectid, ret);
3870 }
3871 btrfs_free_path(path);
3872
72c04902
AV
3873 if (!maybe_acls)
3874 cache_no_acl(inode);
46a53cca 3875
39279cc3 3876 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3877 case S_IFREG:
3878 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3879 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3880 inode->i_fop = &btrfs_file_operations;
3881 inode->i_op = &btrfs_file_inode_operations;
3882 break;
3883 case S_IFDIR:
3884 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3885 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3886 break;
3887 case S_IFLNK:
3888 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3889 inode_nohighmem(inode);
39279cc3
CM
3890 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3891 break;
618e21d5 3892 default:
0279b4cd 3893 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3894 init_special_inode(inode, inode->i_mode, rdev);
3895 break;
39279cc3 3896 }
6cbff00f
CH
3897
3898 btrfs_update_iflags(inode);
67710892 3899 return 0;
39279cc3
CM
3900
3901make_bad:
39279cc3 3902 btrfs_free_path(path);
39279cc3 3903 make_bad_inode(inode);
67710892 3904 return ret;
39279cc3
CM
3905}
3906
d352ac68
CM
3907/*
3908 * given a leaf and an inode, copy the inode fields into the leaf
3909 */
e02119d5
CM
3910static void fill_inode_item(struct btrfs_trans_handle *trans,
3911 struct extent_buffer *leaf,
5f39d397 3912 struct btrfs_inode_item *item,
39279cc3
CM
3913 struct inode *inode)
3914{
51fab693
LB
3915 struct btrfs_map_token token;
3916
3917 btrfs_init_map_token(&token);
5f39d397 3918
51fab693
LB
3919 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3920 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3921 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3922 &token);
3923 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3924 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3925
a937b979 3926 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3927 inode->i_atime.tv_sec, &token);
a937b979 3928 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3929 inode->i_atime.tv_nsec, &token);
5f39d397 3930
a937b979 3931 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3932 inode->i_mtime.tv_sec, &token);
a937b979 3933 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3934 inode->i_mtime.tv_nsec, &token);
5f39d397 3935
a937b979 3936 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3937 inode->i_ctime.tv_sec, &token);
a937b979 3938 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3939 inode->i_ctime.tv_nsec, &token);
5f39d397 3940
9cc97d64 3941 btrfs_set_token_timespec_sec(leaf, &item->otime,
3942 BTRFS_I(inode)->i_otime.tv_sec, &token);
3943 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3944 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3945
51fab693
LB
3946 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3947 &token);
3948 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3949 &token);
c7f88c4e
JL
3950 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3951 &token);
51fab693
LB
3952 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3953 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3954 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3955 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3956}
3957
d352ac68
CM
3958/*
3959 * copy everything in the in-memory inode into the btree.
3960 */
2115133f 3961static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3962 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3963{
3964 struct btrfs_inode_item *inode_item;
3965 struct btrfs_path *path;
5f39d397 3966 struct extent_buffer *leaf;
39279cc3
CM
3967 int ret;
3968
3969 path = btrfs_alloc_path();
16cdcec7
MX
3970 if (!path)
3971 return -ENOMEM;
3972
b9473439 3973 path->leave_spinning = 1;
16cdcec7
MX
3974 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3975 1);
39279cc3
CM
3976 if (ret) {
3977 if (ret > 0)
3978 ret = -ENOENT;
3979 goto failed;
3980 }
3981
5f39d397
CM
3982 leaf = path->nodes[0];
3983 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3984 struct btrfs_inode_item);
39279cc3 3985
e02119d5 3986 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3987 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3988 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3989 ret = 0;
3990failed:
39279cc3
CM
3991 btrfs_free_path(path);
3992 return ret;
3993}
3994
2115133f
CM
3995/*
3996 * copy everything in the in-memory inode into the btree.
3997 */
3998noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3999 struct btrfs_root *root, struct inode *inode)
4000{
0b246afa 4001 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4002 int ret;
4003
4004 /*
4005 * If the inode is a free space inode, we can deadlock during commit
4006 * if we put it into the delayed code.
4007 *
4008 * The data relocation inode should also be directly updated
4009 * without delay
4010 */
70ddc553 4011 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4012 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4013 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4014 btrfs_update_root_times(trans, root);
4015
2115133f
CM
4016 ret = btrfs_delayed_update_inode(trans, root, inode);
4017 if (!ret)
4018 btrfs_set_inode_last_trans(trans, inode);
4019 return ret;
4020 }
4021
4022 return btrfs_update_inode_item(trans, root, inode);
4023}
4024
be6aef60
JB
4025noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4026 struct btrfs_root *root,
4027 struct inode *inode)
2115133f
CM
4028{
4029 int ret;
4030
4031 ret = btrfs_update_inode(trans, root, inode);
4032 if (ret == -ENOSPC)
4033 return btrfs_update_inode_item(trans, root, inode);
4034 return ret;
4035}
4036
d352ac68
CM
4037/*
4038 * unlink helper that gets used here in inode.c and in the tree logging
4039 * recovery code. It remove a link in a directory with a given name, and
4040 * also drops the back refs in the inode to the directory
4041 */
92986796
AV
4042static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4043 struct btrfs_root *root,
4ec5934e
NB
4044 struct btrfs_inode *dir,
4045 struct btrfs_inode *inode,
92986796 4046 const char *name, int name_len)
39279cc3 4047{
0b246afa 4048 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4049 struct btrfs_path *path;
39279cc3 4050 int ret = 0;
5f39d397 4051 struct extent_buffer *leaf;
39279cc3 4052 struct btrfs_dir_item *di;
5f39d397 4053 struct btrfs_key key;
aec7477b 4054 u64 index;
33345d01
LZ
4055 u64 ino = btrfs_ino(inode);
4056 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4057
4058 path = btrfs_alloc_path();
54aa1f4d
CM
4059 if (!path) {
4060 ret = -ENOMEM;
554233a6 4061 goto out;
54aa1f4d
CM
4062 }
4063
b9473439 4064 path->leave_spinning = 1;
33345d01 4065 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4066 name, name_len, -1);
4067 if (IS_ERR(di)) {
4068 ret = PTR_ERR(di);
4069 goto err;
4070 }
4071 if (!di) {
4072 ret = -ENOENT;
4073 goto err;
4074 }
5f39d397
CM
4075 leaf = path->nodes[0];
4076 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4077 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4078 if (ret)
4079 goto err;
b3b4aa74 4080 btrfs_release_path(path);
39279cc3 4081
67de1176
MX
4082 /*
4083 * If we don't have dir index, we have to get it by looking up
4084 * the inode ref, since we get the inode ref, remove it directly,
4085 * it is unnecessary to do delayed deletion.
4086 *
4087 * But if we have dir index, needn't search inode ref to get it.
4088 * Since the inode ref is close to the inode item, it is better
4089 * that we delay to delete it, and just do this deletion when
4090 * we update the inode item.
4091 */
4ec5934e 4092 if (inode->dir_index) {
67de1176
MX
4093 ret = btrfs_delayed_delete_inode_ref(inode);
4094 if (!ret) {
4ec5934e 4095 index = inode->dir_index;
67de1176
MX
4096 goto skip_backref;
4097 }
4098 }
4099
33345d01
LZ
4100 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4101 dir_ino, &index);
aec7477b 4102 if (ret) {
0b246afa 4103 btrfs_info(fs_info,
c2cf52eb 4104 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4105 name_len, name, ino, dir_ino);
66642832 4106 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4107 goto err;
4108 }
67de1176 4109skip_backref:
2ff7e61e 4110 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4111 if (ret) {
66642832 4112 btrfs_abort_transaction(trans, ret);
39279cc3 4113 goto err;
79787eaa 4114 }
39279cc3 4115
4ec5934e
NB
4116 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4117 dir_ino);
79787eaa 4118 if (ret != 0 && ret != -ENOENT) {
66642832 4119 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4120 goto err;
4121 }
e02119d5 4122
4ec5934e
NB
4123 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4124 index);
6418c961
CM
4125 if (ret == -ENOENT)
4126 ret = 0;
d4e3991b 4127 else if (ret)
66642832 4128 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4129err:
4130 btrfs_free_path(path);
e02119d5
CM
4131 if (ret)
4132 goto out;
4133
6ef06d27 4134 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4135 inode_inc_iversion(&inode->vfs_inode);
4136 inode_inc_iversion(&dir->vfs_inode);
4137 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4138 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4139 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4140out:
39279cc3
CM
4141 return ret;
4142}
4143
92986796
AV
4144int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4145 struct btrfs_root *root,
4ec5934e 4146 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4147 const char *name, int name_len)
4148{
4149 int ret;
4150 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4151 if (!ret) {
4ec5934e
NB
4152 drop_nlink(&inode->vfs_inode);
4153 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4154 }
4155 return ret;
4156}
39279cc3 4157
a22285a6
YZ
4158/*
4159 * helper to start transaction for unlink and rmdir.
4160 *
d52be818
JB
4161 * unlink and rmdir are special in btrfs, they do not always free space, so
4162 * if we cannot make our reservations the normal way try and see if there is
4163 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4164 * allow the unlink to occur.
a22285a6 4165 */
d52be818 4166static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4167{
a22285a6 4168 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4169
e70bea5f
JB
4170 /*
4171 * 1 for the possible orphan item
4172 * 1 for the dir item
4173 * 1 for the dir index
4174 * 1 for the inode ref
e70bea5f
JB
4175 * 1 for the inode
4176 */
8eab77ff 4177 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4178}
4179
4180static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4181{
4182 struct btrfs_root *root = BTRFS_I(dir)->root;
4183 struct btrfs_trans_handle *trans;
2b0143b5 4184 struct inode *inode = d_inode(dentry);
a22285a6 4185 int ret;
a22285a6 4186
d52be818 4187 trans = __unlink_start_trans(dir);
a22285a6
YZ
4188 if (IS_ERR(trans))
4189 return PTR_ERR(trans);
5f39d397 4190
4ec5934e
NB
4191 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4192 0);
12fcfd22 4193
4ec5934e
NB
4194 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4195 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4196 dentry->d_name.len);
b532402e
TI
4197 if (ret)
4198 goto out;
7b128766 4199
a22285a6 4200 if (inode->i_nlink == 0) {
73f2e545 4201 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4202 if (ret)
4203 goto out;
a22285a6 4204 }
7b128766 4205
b532402e 4206out:
3a45bb20 4207 btrfs_end_transaction(trans);
2ff7e61e 4208 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4209 return ret;
4210}
4211
4df27c4d
YZ
4212int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *root,
4214 struct inode *dir, u64 objectid,
4215 const char *name, int name_len)
4216{
0b246afa 4217 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4218 struct btrfs_path *path;
4219 struct extent_buffer *leaf;
4220 struct btrfs_dir_item *di;
4221 struct btrfs_key key;
4222 u64 index;
4223 int ret;
4a0cc7ca 4224 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4225
4226 path = btrfs_alloc_path();
4227 if (!path)
4228 return -ENOMEM;
4229
33345d01 4230 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4231 name, name_len, -1);
79787eaa
JM
4232 if (IS_ERR_OR_NULL(di)) {
4233 if (!di)
4234 ret = -ENOENT;
4235 else
4236 ret = PTR_ERR(di);
4237 goto out;
4238 }
4df27c4d
YZ
4239
4240 leaf = path->nodes[0];
4241 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4242 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4243 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4244 if (ret) {
66642832 4245 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4246 goto out;
4247 }
b3b4aa74 4248 btrfs_release_path(path);
4df27c4d 4249
0b246afa
JM
4250 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4251 root->root_key.objectid, dir_ino,
4252 &index, name, name_len);
4df27c4d 4253 if (ret < 0) {
79787eaa 4254 if (ret != -ENOENT) {
66642832 4255 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4256 goto out;
4257 }
33345d01 4258 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4259 name, name_len);
79787eaa
JM
4260 if (IS_ERR_OR_NULL(di)) {
4261 if (!di)
4262 ret = -ENOENT;
4263 else
4264 ret = PTR_ERR(di);
66642832 4265 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4266 goto out;
4267 }
4df27c4d
YZ
4268
4269 leaf = path->nodes[0];
4270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4271 btrfs_release_path(path);
4df27c4d
YZ
4272 index = key.offset;
4273 }
945d8962 4274 btrfs_release_path(path);
4df27c4d 4275
e67bbbb9 4276 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4277 if (ret) {
66642832 4278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4279 goto out;
4280 }
4df27c4d 4281
6ef06d27 4282 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4283 inode_inc_iversion(dir);
c2050a45 4284 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4285 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4286 if (ret)
66642832 4287 btrfs_abort_transaction(trans, ret);
79787eaa 4288out:
71d7aed0 4289 btrfs_free_path(path);
79787eaa 4290 return ret;
4df27c4d
YZ
4291}
4292
39279cc3
CM
4293static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4294{
2b0143b5 4295 struct inode *inode = d_inode(dentry);
1832a6d5 4296 int err = 0;
39279cc3 4297 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4298 struct btrfs_trans_handle *trans;
44f714da 4299 u64 last_unlink_trans;
39279cc3 4300
b3ae244e 4301 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4302 return -ENOTEMPTY;
4a0cc7ca 4303 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4304 return -EPERM;
134d4512 4305
d52be818 4306 trans = __unlink_start_trans(dir);
a22285a6 4307 if (IS_ERR(trans))
5df6a9f6 4308 return PTR_ERR(trans);
5df6a9f6 4309
4a0cc7ca 4310 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4311 err = btrfs_unlink_subvol(trans, root, dir,
4312 BTRFS_I(inode)->location.objectid,
4313 dentry->d_name.name,
4314 dentry->d_name.len);
4315 goto out;
4316 }
4317
73f2e545 4318 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4319 if (err)
4df27c4d 4320 goto out;
7b128766 4321
44f714da
FM
4322 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4323
39279cc3 4324 /* now the directory is empty */
4ec5934e
NB
4325 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4326 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4327 dentry->d_name.len);
44f714da 4328 if (!err) {
6ef06d27 4329 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4330 /*
4331 * Propagate the last_unlink_trans value of the deleted dir to
4332 * its parent directory. This is to prevent an unrecoverable
4333 * log tree in the case we do something like this:
4334 * 1) create dir foo
4335 * 2) create snapshot under dir foo
4336 * 3) delete the snapshot
4337 * 4) rmdir foo
4338 * 5) mkdir foo
4339 * 6) fsync foo or some file inside foo
4340 */
4341 if (last_unlink_trans >= trans->transid)
4342 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4343 }
4df27c4d 4344out:
3a45bb20 4345 btrfs_end_transaction(trans);
2ff7e61e 4346 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4347
39279cc3
CM
4348 return err;
4349}
4350
28f75a0e
CM
4351static int truncate_space_check(struct btrfs_trans_handle *trans,
4352 struct btrfs_root *root,
4353 u64 bytes_deleted)
4354{
0b246afa 4355 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4356 int ret;
4357
dc95f7bf
JB
4358 /*
4359 * This is only used to apply pressure to the enospc system, we don't
4360 * intend to use this reservation at all.
4361 */
2ff7e61e 4362 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4363 bytes_deleted *= fs_info->nodesize;
4364 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4365 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4366 if (!ret) {
0b246afa 4367 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4368 trans->transid,
4369 bytes_deleted, 1);
28f75a0e 4370 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4371 }
28f75a0e
CM
4372 return ret;
4373
4374}
4375
ddfae63c
JB
4376/*
4377 * Return this if we need to call truncate_block for the last bit of the
4378 * truncate.
4379 */
4380#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4381
39279cc3
CM
4382/*
4383 * this can truncate away extent items, csum items and directory items.
4384 * It starts at a high offset and removes keys until it can't find
d352ac68 4385 * any higher than new_size
39279cc3
CM
4386 *
4387 * csum items that cross the new i_size are truncated to the new size
4388 * as well.
7b128766
JB
4389 *
4390 * min_type is the minimum key type to truncate down to. If set to 0, this
4391 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4392 */
8082510e
YZ
4393int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4394 struct btrfs_root *root,
4395 struct inode *inode,
4396 u64 new_size, u32 min_type)
39279cc3 4397{
0b246afa 4398 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4399 struct btrfs_path *path;
5f39d397 4400 struct extent_buffer *leaf;
39279cc3 4401 struct btrfs_file_extent_item *fi;
8082510e
YZ
4402 struct btrfs_key key;
4403 struct btrfs_key found_key;
39279cc3 4404 u64 extent_start = 0;
db94535d 4405 u64 extent_num_bytes = 0;
5d4f98a2 4406 u64 extent_offset = 0;
39279cc3 4407 u64 item_end = 0;
c1aa4575 4408 u64 last_size = new_size;
8082510e 4409 u32 found_type = (u8)-1;
39279cc3
CM
4410 int found_extent;
4411 int del_item;
85e21bac
CM
4412 int pending_del_nr = 0;
4413 int pending_del_slot = 0;
179e29e4 4414 int extent_type = -1;
8082510e
YZ
4415 int ret;
4416 int err = 0;
4a0cc7ca 4417 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4418 u64 bytes_deleted = 0;
897ca819
TM
4419 bool be_nice = false;
4420 bool should_throttle = false;
4421 bool should_end = false;
8082510e
YZ
4422
4423 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4424
28ed1345
CM
4425 /*
4426 * for non-free space inodes and ref cows, we want to back off from
4427 * time to time
4428 */
70ddc553 4429 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4430 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4431 be_nice = true;
28ed1345 4432
0eb0e19c
MF
4433 path = btrfs_alloc_path();
4434 if (!path)
4435 return -ENOMEM;
e4058b54 4436 path->reada = READA_BACK;
0eb0e19c 4437
5dc562c5
JB
4438 /*
4439 * We want to drop from the next block forward in case this new size is
4440 * not block aligned since we will be keeping the last block of the
4441 * extent just the way it is.
4442 */
27cdeb70 4443 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4444 root == fs_info->tree_root)
dcdbc059 4445 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4446 fs_info->sectorsize),
da17066c 4447 (u64)-1, 0);
8082510e 4448
16cdcec7
MX
4449 /*
4450 * This function is also used to drop the items in the log tree before
4451 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4452 * it is used to drop the loged items. So we shouldn't kill the delayed
4453 * items.
4454 */
4455 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4456 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4457
33345d01 4458 key.objectid = ino;
39279cc3 4459 key.offset = (u64)-1;
5f39d397
CM
4460 key.type = (u8)-1;
4461
85e21bac 4462search_again:
28ed1345
CM
4463 /*
4464 * with a 16K leaf size and 128MB extents, you can actually queue
4465 * up a huge file in a single leaf. Most of the time that
4466 * bytes_deleted is > 0, it will be huge by the time we get here
4467 */
ee22184b 4468 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4469 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4470 err = -EAGAIN;
4471 goto error;
4472 }
4473 }
4474
4475
b9473439 4476 path->leave_spinning = 1;
85e21bac 4477 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4478 if (ret < 0) {
4479 err = ret;
4480 goto out;
4481 }
d397712b 4482
85e21bac 4483 if (ret > 0) {
e02119d5
CM
4484 /* there are no items in the tree for us to truncate, we're
4485 * done
4486 */
8082510e
YZ
4487 if (path->slots[0] == 0)
4488 goto out;
85e21bac
CM
4489 path->slots[0]--;
4490 }
4491
d397712b 4492 while (1) {
39279cc3 4493 fi = NULL;
5f39d397
CM
4494 leaf = path->nodes[0];
4495 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4496 found_type = found_key.type;
39279cc3 4497
33345d01 4498 if (found_key.objectid != ino)
39279cc3 4499 break;
5f39d397 4500
85e21bac 4501 if (found_type < min_type)
39279cc3
CM
4502 break;
4503
5f39d397 4504 item_end = found_key.offset;
39279cc3 4505 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4506 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4507 struct btrfs_file_extent_item);
179e29e4
CM
4508 extent_type = btrfs_file_extent_type(leaf, fi);
4509 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4510 item_end +=
db94535d 4511 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4512
4513 trace_btrfs_truncate_show_fi_regular(
4514 BTRFS_I(inode), leaf, fi,
4515 found_key.offset);
179e29e4 4516 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4517 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4518 path->slots[0], fi);
09ed2f16
LB
4519
4520 trace_btrfs_truncate_show_fi_inline(
4521 BTRFS_I(inode), leaf, fi, path->slots[0],
4522 found_key.offset);
39279cc3 4523 }
008630c1 4524 item_end--;
39279cc3 4525 }
8082510e
YZ
4526 if (found_type > min_type) {
4527 del_item = 1;
4528 } else {
76b42abb 4529 if (item_end < new_size)
b888db2b 4530 break;
8082510e
YZ
4531 if (found_key.offset >= new_size)
4532 del_item = 1;
4533 else
4534 del_item = 0;
39279cc3 4535 }
39279cc3 4536 found_extent = 0;
39279cc3 4537 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4538 if (found_type != BTRFS_EXTENT_DATA_KEY)
4539 goto delete;
4540
4541 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4542 u64 num_dec;
db94535d 4543 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4544 if (!del_item) {
db94535d
CM
4545 u64 orig_num_bytes =
4546 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4547 extent_num_bytes = ALIGN(new_size -
4548 found_key.offset,
0b246afa 4549 fs_info->sectorsize);
db94535d
CM
4550 btrfs_set_file_extent_num_bytes(leaf, fi,
4551 extent_num_bytes);
4552 num_dec = (orig_num_bytes -
9069218d 4553 extent_num_bytes);
27cdeb70
MX
4554 if (test_bit(BTRFS_ROOT_REF_COWS,
4555 &root->state) &&
4556 extent_start != 0)
a76a3cd4 4557 inode_sub_bytes(inode, num_dec);
5f39d397 4558 btrfs_mark_buffer_dirty(leaf);
39279cc3 4559 } else {
db94535d
CM
4560 extent_num_bytes =
4561 btrfs_file_extent_disk_num_bytes(leaf,
4562 fi);
5d4f98a2
YZ
4563 extent_offset = found_key.offset -
4564 btrfs_file_extent_offset(leaf, fi);
4565
39279cc3 4566 /* FIXME blocksize != 4096 */
9069218d 4567 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4568 if (extent_start != 0) {
4569 found_extent = 1;
27cdeb70
MX
4570 if (test_bit(BTRFS_ROOT_REF_COWS,
4571 &root->state))
a76a3cd4 4572 inode_sub_bytes(inode, num_dec);
e02119d5 4573 }
39279cc3 4574 }
9069218d 4575 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4576 /*
4577 * we can't truncate inline items that have had
4578 * special encodings
4579 */
4580 if (!del_item &&
c8b97818 4581 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4582 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4583 btrfs_file_extent_compression(leaf, fi) == 0) {
4584 u32 size = (u32)(new_size - found_key.offset);
4585
4586 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4587 size = btrfs_file_extent_calc_inline_size(size);
4588 btrfs_truncate_item(root->fs_info, path, size, 1);
4589 } else if (!del_item) {
514ac8ad 4590 /*
ddfae63c
JB
4591 * We have to bail so the last_size is set to
4592 * just before this extent.
514ac8ad 4593 */
ddfae63c
JB
4594 err = NEED_TRUNCATE_BLOCK;
4595 break;
4596 }
0305cd5f 4597
ddfae63c 4598 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4599 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4600 }
179e29e4 4601delete:
ddfae63c
JB
4602 if (del_item)
4603 last_size = found_key.offset;
4604 else
4605 last_size = new_size;
39279cc3 4606 if (del_item) {
85e21bac
CM
4607 if (!pending_del_nr) {
4608 /* no pending yet, add ourselves */
4609 pending_del_slot = path->slots[0];
4610 pending_del_nr = 1;
4611 } else if (pending_del_nr &&
4612 path->slots[0] + 1 == pending_del_slot) {
4613 /* hop on the pending chunk */
4614 pending_del_nr++;
4615 pending_del_slot = path->slots[0];
4616 } else {
d397712b 4617 BUG();
85e21bac 4618 }
39279cc3
CM
4619 } else {
4620 break;
4621 }
897ca819 4622 should_throttle = false;
28f75a0e 4623
27cdeb70
MX
4624 if (found_extent &&
4625 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4626 root == fs_info->tree_root)) {
b9473439 4627 btrfs_set_path_blocking(path);
28ed1345 4628 bytes_deleted += extent_num_bytes;
84f7d8e6 4629 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4630 extent_num_bytes, 0,
4631 btrfs_header_owner(leaf),
b06c4bf5 4632 ino, extent_offset);
39279cc3 4633 BUG_ON(ret);
2ff7e61e
JM
4634 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4635 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4636 trans->delayed_ref_updates * 2,
4637 trans->transid, 0);
28f75a0e
CM
4638 if (be_nice) {
4639 if (truncate_space_check(trans, root,
4640 extent_num_bytes)) {
897ca819 4641 should_end = true;
28f75a0e
CM
4642 }
4643 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4644 fs_info))
897ca819 4645 should_throttle = true;
28f75a0e 4646 }
39279cc3 4647 }
85e21bac 4648
8082510e
YZ
4649 if (found_type == BTRFS_INODE_ITEM_KEY)
4650 break;
4651
4652 if (path->slots[0] == 0 ||
1262133b 4653 path->slots[0] != pending_del_slot ||
28f75a0e 4654 should_throttle || should_end) {
8082510e
YZ
4655 if (pending_del_nr) {
4656 ret = btrfs_del_items(trans, root, path,
4657 pending_del_slot,
4658 pending_del_nr);
79787eaa 4659 if (ret) {
66642832 4660 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4661 goto error;
4662 }
8082510e
YZ
4663 pending_del_nr = 0;
4664 }
b3b4aa74 4665 btrfs_release_path(path);
28f75a0e 4666 if (should_throttle) {
1262133b
JB
4667 unsigned long updates = trans->delayed_ref_updates;
4668 if (updates) {
4669 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4670 ret = btrfs_run_delayed_refs(trans,
4671 fs_info,
4672 updates * 2);
1262133b
JB
4673 if (ret && !err)
4674 err = ret;
4675 }
4676 }
28f75a0e
CM
4677 /*
4678 * if we failed to refill our space rsv, bail out
4679 * and let the transaction restart
4680 */
4681 if (should_end) {
4682 err = -EAGAIN;
4683 goto error;
4684 }
85e21bac 4685 goto search_again;
8082510e
YZ
4686 } else {
4687 path->slots[0]--;
85e21bac 4688 }
39279cc3 4689 }
8082510e 4690out:
85e21bac
CM
4691 if (pending_del_nr) {
4692 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4693 pending_del_nr);
79787eaa 4694 if (ret)
66642832 4695 btrfs_abort_transaction(trans, ret);
85e21bac 4696 }
79787eaa 4697error:
76b42abb
FM
4698 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4699 ASSERT(last_size >= new_size);
4700 if (!err && last_size > new_size)
4701 last_size = new_size;
7f4f6e0a 4702 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4703 }
28ed1345 4704
39279cc3 4705 btrfs_free_path(path);
28ed1345 4706
ee22184b 4707 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4708 unsigned long updates = trans->delayed_ref_updates;
4709 if (updates) {
4710 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4711 ret = btrfs_run_delayed_refs(trans, fs_info,
4712 updates * 2);
28ed1345
CM
4713 if (ret && !err)
4714 err = ret;
4715 }
4716 }
8082510e 4717 return err;
39279cc3
CM
4718}
4719
4720/*
9703fefe 4721 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4722 * @inode - inode that we're zeroing
4723 * @from - the offset to start zeroing
4724 * @len - the length to zero, 0 to zero the entire range respective to the
4725 * offset
4726 * @front - zero up to the offset instead of from the offset on
4727 *
9703fefe 4728 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4729 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4730 */
9703fefe 4731int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4732 int front)
39279cc3 4733{
0b246afa 4734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4735 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4736 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4737 struct btrfs_ordered_extent *ordered;
2ac55d41 4738 struct extent_state *cached_state = NULL;
364ecf36 4739 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4740 char *kaddr;
0b246afa 4741 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4742 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4743 unsigned offset = from & (blocksize - 1);
39279cc3 4744 struct page *page;
3b16a4e3 4745 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4746 int ret = 0;
9703fefe
CR
4747 u64 block_start;
4748 u64 block_end;
39279cc3 4749
2aaa6655
JB
4750 if ((offset & (blocksize - 1)) == 0 &&
4751 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4752 goto out;
9703fefe 4753
8b62f87b
JB
4754 block_start = round_down(from, blocksize);
4755 block_end = block_start + blocksize - 1;
4756
364ecf36 4757 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4758 block_start, blocksize);
5d5e103a
JB
4759 if (ret)
4760 goto out;
39279cc3 4761
211c17f5 4762again:
3b16a4e3 4763 page = find_or_create_page(mapping, index, mask);
5d5e103a 4764 if (!page) {
bc42bda2 4765 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4766 block_start, blocksize);
4767 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4768 ret = -ENOMEM;
39279cc3 4769 goto out;
5d5e103a 4770 }
e6dcd2dc 4771
39279cc3 4772 if (!PageUptodate(page)) {
9ebefb18 4773 ret = btrfs_readpage(NULL, page);
39279cc3 4774 lock_page(page);
211c17f5
CM
4775 if (page->mapping != mapping) {
4776 unlock_page(page);
09cbfeaf 4777 put_page(page);
211c17f5
CM
4778 goto again;
4779 }
39279cc3
CM
4780 if (!PageUptodate(page)) {
4781 ret = -EIO;
89642229 4782 goto out_unlock;
39279cc3
CM
4783 }
4784 }
211c17f5 4785 wait_on_page_writeback(page);
e6dcd2dc 4786
9703fefe 4787 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4788 set_page_extent_mapped(page);
4789
9703fefe 4790 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4791 if (ordered) {
9703fefe 4792 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4793 &cached_state, GFP_NOFS);
e6dcd2dc 4794 unlock_page(page);
09cbfeaf 4795 put_page(page);
eb84ae03 4796 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4797 btrfs_put_ordered_extent(ordered);
4798 goto again;
4799 }
4800
9703fefe 4801 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4802 EXTENT_DIRTY | EXTENT_DELALLOC |
4803 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4804 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4805
e3b8a485 4806 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4807 &cached_state, 0);
9ed74f2d 4808 if (ret) {
9703fefe 4809 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4810 &cached_state, GFP_NOFS);
9ed74f2d
JB
4811 goto out_unlock;
4812 }
4813
9703fefe 4814 if (offset != blocksize) {
2aaa6655 4815 if (!len)
9703fefe 4816 len = blocksize - offset;
e6dcd2dc 4817 kaddr = kmap(page);
2aaa6655 4818 if (front)
9703fefe
CR
4819 memset(kaddr + (block_start - page_offset(page)),
4820 0, offset);
2aaa6655 4821 else
9703fefe
CR
4822 memset(kaddr + (block_start - page_offset(page)) + offset,
4823 0, len);
e6dcd2dc
CM
4824 flush_dcache_page(page);
4825 kunmap(page);
4826 }
247e743c 4827 ClearPageChecked(page);
e6dcd2dc 4828 set_page_dirty(page);
9703fefe 4829 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4830 GFP_NOFS);
39279cc3 4831
89642229 4832out_unlock:
5d5e103a 4833 if (ret)
bc42bda2 4834 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4835 blocksize);
8b62f87b 4836 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4837 unlock_page(page);
09cbfeaf 4838 put_page(page);
39279cc3 4839out:
364ecf36 4840 extent_changeset_free(data_reserved);
39279cc3
CM
4841 return ret;
4842}
4843
16e7549f
JB
4844static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4845 u64 offset, u64 len)
4846{
0b246afa 4847 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4848 struct btrfs_trans_handle *trans;
4849 int ret;
4850
4851 /*
4852 * Still need to make sure the inode looks like it's been updated so
4853 * that any holes get logged if we fsync.
4854 */
0b246afa
JM
4855 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4856 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4857 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4858 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4859 return 0;
4860 }
4861
4862 /*
4863 * 1 - for the one we're dropping
4864 * 1 - for the one we're adding
4865 * 1 - for updating the inode.
4866 */
4867 trans = btrfs_start_transaction(root, 3);
4868 if (IS_ERR(trans))
4869 return PTR_ERR(trans);
4870
4871 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4872 if (ret) {
66642832 4873 btrfs_abort_transaction(trans, ret);
3a45bb20 4874 btrfs_end_transaction(trans);
16e7549f
JB
4875 return ret;
4876 }
4877
f85b7379
DS
4878 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4879 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4880 if (ret)
66642832 4881 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4882 else
4883 btrfs_update_inode(trans, root, inode);
3a45bb20 4884 btrfs_end_transaction(trans);
16e7549f
JB
4885 return ret;
4886}
4887
695a0d0d
JB
4888/*
4889 * This function puts in dummy file extents for the area we're creating a hole
4890 * for. So if we are truncating this file to a larger size we need to insert
4891 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4892 * the range between oldsize and size
4893 */
a41ad394 4894int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4895{
0b246afa 4896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4897 struct btrfs_root *root = BTRFS_I(inode)->root;
4898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4899 struct extent_map *em = NULL;
2ac55d41 4900 struct extent_state *cached_state = NULL;
5dc562c5 4901 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4902 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4903 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4904 u64 last_byte;
4905 u64 cur_offset;
4906 u64 hole_size;
9ed74f2d 4907 int err = 0;
39279cc3 4908
a71754fc 4909 /*
9703fefe
CR
4910 * If our size started in the middle of a block we need to zero out the
4911 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4912 * expose stale data.
4913 */
9703fefe 4914 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4915 if (err)
4916 return err;
4917
9036c102
YZ
4918 if (size <= hole_start)
4919 return 0;
4920
9036c102
YZ
4921 while (1) {
4922 struct btrfs_ordered_extent *ordered;
fa7c1494 4923
ff13db41 4924 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4925 &cached_state);
a776c6fa 4926 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4927 block_end - hole_start);
9036c102
YZ
4928 if (!ordered)
4929 break;
2ac55d41
JB
4930 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4931 &cached_state, GFP_NOFS);
fa7c1494 4932 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4933 btrfs_put_ordered_extent(ordered);
4934 }
39279cc3 4935
9036c102
YZ
4936 cur_offset = hole_start;
4937 while (1) {
fc4f21b1 4938 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4939 block_end - cur_offset, 0);
79787eaa
JM
4940 if (IS_ERR(em)) {
4941 err = PTR_ERR(em);
f2767956 4942 em = NULL;
79787eaa
JM
4943 break;
4944 }
9036c102 4945 last_byte = min(extent_map_end(em), block_end);
0b246afa 4946 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4947 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4948 struct extent_map *hole_em;
9036c102 4949 hole_size = last_byte - cur_offset;
9ed74f2d 4950
16e7549f
JB
4951 err = maybe_insert_hole(root, inode, cur_offset,
4952 hole_size);
4953 if (err)
3893e33b 4954 break;
dcdbc059 4955 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4956 cur_offset + hole_size - 1, 0);
4957 hole_em = alloc_extent_map();
4958 if (!hole_em) {
4959 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4960 &BTRFS_I(inode)->runtime_flags);
4961 goto next;
4962 }
4963 hole_em->start = cur_offset;
4964 hole_em->len = hole_size;
4965 hole_em->orig_start = cur_offset;
8082510e 4966
5dc562c5
JB
4967 hole_em->block_start = EXTENT_MAP_HOLE;
4968 hole_em->block_len = 0;
b4939680 4969 hole_em->orig_block_len = 0;
cc95bef6 4970 hole_em->ram_bytes = hole_size;
0b246afa 4971 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4972 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4973 hole_em->generation = fs_info->generation;
8082510e 4974
5dc562c5
JB
4975 while (1) {
4976 write_lock(&em_tree->lock);
09a2a8f9 4977 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4978 write_unlock(&em_tree->lock);
4979 if (err != -EEXIST)
4980 break;
dcdbc059
NB
4981 btrfs_drop_extent_cache(BTRFS_I(inode),
4982 cur_offset,
5dc562c5
JB
4983 cur_offset +
4984 hole_size - 1, 0);
4985 }
4986 free_extent_map(hole_em);
9036c102 4987 }
16e7549f 4988next:
9036c102 4989 free_extent_map(em);
a22285a6 4990 em = NULL;
9036c102 4991 cur_offset = last_byte;
8082510e 4992 if (cur_offset >= block_end)
9036c102
YZ
4993 break;
4994 }
a22285a6 4995 free_extent_map(em);
2ac55d41
JB
4996 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4997 GFP_NOFS);
9036c102
YZ
4998 return err;
4999}
39279cc3 5000
3972f260 5001static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5002{
f4a2f4c5
MX
5003 struct btrfs_root *root = BTRFS_I(inode)->root;
5004 struct btrfs_trans_handle *trans;
a41ad394 5005 loff_t oldsize = i_size_read(inode);
3972f260
ES
5006 loff_t newsize = attr->ia_size;
5007 int mask = attr->ia_valid;
8082510e
YZ
5008 int ret;
5009
3972f260
ES
5010 /*
5011 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5012 * special case where we need to update the times despite not having
5013 * these flags set. For all other operations the VFS set these flags
5014 * explicitly if it wants a timestamp update.
5015 */
dff6efc3
CH
5016 if (newsize != oldsize) {
5017 inode_inc_iversion(inode);
5018 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5019 inode->i_ctime = inode->i_mtime =
c2050a45 5020 current_time(inode);
dff6efc3 5021 }
3972f260 5022
a41ad394 5023 if (newsize > oldsize) {
9ea24bbe 5024 /*
ea14b57f 5025 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5026 * This is to ensure the snapshot captures a fully consistent
5027 * state of this file - if the snapshot captures this expanding
5028 * truncation, it must capture all writes that happened before
5029 * this truncation.
5030 */
0bc19f90 5031 btrfs_wait_for_snapshot_creation(root);
a41ad394 5032 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5033 if (ret) {
ea14b57f 5034 btrfs_end_write_no_snapshotting(root);
8082510e 5035 return ret;
9ea24bbe 5036 }
8082510e 5037
f4a2f4c5 5038 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5039 if (IS_ERR(trans)) {
ea14b57f 5040 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5041 return PTR_ERR(trans);
9ea24bbe 5042 }
f4a2f4c5
MX
5043
5044 i_size_write(inode, newsize);
5045 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5046 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5047 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5048 btrfs_end_write_no_snapshotting(root);
3a45bb20 5049 btrfs_end_transaction(trans);
a41ad394 5050 } else {
8082510e 5051
a41ad394
JB
5052 /*
5053 * We're truncating a file that used to have good data down to
5054 * zero. Make sure it gets into the ordered flush list so that
5055 * any new writes get down to disk quickly.
5056 */
5057 if (newsize == 0)
72ac3c0d
JB
5058 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5059 &BTRFS_I(inode)->runtime_flags);
8082510e 5060
f3fe820c
JB
5061 /*
5062 * 1 for the orphan item we're going to add
5063 * 1 for the orphan item deletion.
5064 */
5065 trans = btrfs_start_transaction(root, 2);
5066 if (IS_ERR(trans))
5067 return PTR_ERR(trans);
5068
5069 /*
5070 * We need to do this in case we fail at _any_ point during the
5071 * actual truncate. Once we do the truncate_setsize we could
5072 * invalidate pages which forces any outstanding ordered io to
5073 * be instantly completed which will give us extents that need
5074 * to be truncated. If we fail to get an orphan inode down we
5075 * could have left over extents that were never meant to live,
01327610 5076 * so we need to guarantee from this point on that everything
f3fe820c
JB
5077 * will be consistent.
5078 */
73f2e545 5079 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5080 btrfs_end_transaction(trans);
f3fe820c
JB
5081 if (ret)
5082 return ret;
5083
a41ad394
JB
5084 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5085 truncate_setsize(inode, newsize);
2e60a51e
MX
5086
5087 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5088 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5089 inode_dio_wait(inode);
0b581701 5090 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5091
a41ad394 5092 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5093 if (ret && inode->i_nlink) {
5094 int err;
5095
19fd2df5
LB
5096 /* To get a stable disk_i_size */
5097 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5098 if (err) {
3d6ae7bb 5099 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5100 return err;
5101 }
5102
7f4f6e0a
JB
5103 /*
5104 * failed to truncate, disk_i_size is only adjusted down
5105 * as we remove extents, so it should represent the true
5106 * size of the inode, so reset the in memory size and
5107 * delete our orphan entry.
5108 */
5109 trans = btrfs_join_transaction(root);
5110 if (IS_ERR(trans)) {
3d6ae7bb 5111 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5112 return ret;
5113 }
5114 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5115 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5116 if (err)
66642832 5117 btrfs_abort_transaction(trans, err);
3a45bb20 5118 btrfs_end_transaction(trans);
7f4f6e0a 5119 }
8082510e
YZ
5120 }
5121
a41ad394 5122 return ret;
8082510e
YZ
5123}
5124
9036c102
YZ
5125static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5126{
2b0143b5 5127 struct inode *inode = d_inode(dentry);
b83cc969 5128 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5129 int err;
39279cc3 5130
b83cc969
LZ
5131 if (btrfs_root_readonly(root))
5132 return -EROFS;
5133
31051c85 5134 err = setattr_prepare(dentry, attr);
9036c102
YZ
5135 if (err)
5136 return err;
2bf5a725 5137
5a3f23d5 5138 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5139 err = btrfs_setsize(inode, attr);
8082510e
YZ
5140 if (err)
5141 return err;
39279cc3 5142 }
9036c102 5143
1025774c
CH
5144 if (attr->ia_valid) {
5145 setattr_copy(inode, attr);
0c4d2d95 5146 inode_inc_iversion(inode);
22c44fe6 5147 err = btrfs_dirty_inode(inode);
1025774c 5148
22c44fe6 5149 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5150 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5151 }
33268eaf 5152
39279cc3
CM
5153 return err;
5154}
61295eb8 5155
131e404a
FDBM
5156/*
5157 * While truncating the inode pages during eviction, we get the VFS calling
5158 * btrfs_invalidatepage() against each page of the inode. This is slow because
5159 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5160 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5161 * extent_state structures over and over, wasting lots of time.
5162 *
5163 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5164 * those expensive operations on a per page basis and do only the ordered io
5165 * finishing, while we release here the extent_map and extent_state structures,
5166 * without the excessive merging and splitting.
5167 */
5168static void evict_inode_truncate_pages(struct inode *inode)
5169{
5170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5171 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5172 struct rb_node *node;
5173
5174 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5175 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5176
5177 write_lock(&map_tree->lock);
5178 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5179 struct extent_map *em;
5180
5181 node = rb_first(&map_tree->map);
5182 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5183 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5184 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5185 remove_extent_mapping(map_tree, em);
5186 free_extent_map(em);
7064dd5c
FM
5187 if (need_resched()) {
5188 write_unlock(&map_tree->lock);
5189 cond_resched();
5190 write_lock(&map_tree->lock);
5191 }
131e404a
FDBM
5192 }
5193 write_unlock(&map_tree->lock);
5194
6ca07097
FM
5195 /*
5196 * Keep looping until we have no more ranges in the io tree.
5197 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5198 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5199 * still in progress (unlocked the pages in the bio but did not yet
5200 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5201 * ranges can still be locked and eviction started because before
5202 * submitting those bios, which are executed by a separate task (work
5203 * queue kthread), inode references (inode->i_count) were not taken
5204 * (which would be dropped in the end io callback of each bio).
5205 * Therefore here we effectively end up waiting for those bios and
5206 * anyone else holding locked ranges without having bumped the inode's
5207 * reference count - if we don't do it, when they access the inode's
5208 * io_tree to unlock a range it may be too late, leading to an
5209 * use-after-free issue.
5210 */
131e404a
FDBM
5211 spin_lock(&io_tree->lock);
5212 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5213 struct extent_state *state;
5214 struct extent_state *cached_state = NULL;
6ca07097
FM
5215 u64 start;
5216 u64 end;
131e404a
FDBM
5217
5218 node = rb_first(&io_tree->state);
5219 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5220 start = state->start;
5221 end = state->end;
131e404a
FDBM
5222 spin_unlock(&io_tree->lock);
5223
ff13db41 5224 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5225
5226 /*
5227 * If still has DELALLOC flag, the extent didn't reach disk,
5228 * and its reserved space won't be freed by delayed_ref.
5229 * So we need to free its reserved space here.
5230 * (Refer to comment in btrfs_invalidatepage, case 2)
5231 *
5232 * Note, end is the bytenr of last byte, so we need + 1 here.
5233 */
5234 if (state->state & EXTENT_DELALLOC)
bc42bda2 5235 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5236
6ca07097 5237 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5238 EXTENT_LOCKED | EXTENT_DIRTY |
5239 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5240 EXTENT_DEFRAG, 1, 1,
5241 &cached_state, GFP_NOFS);
131e404a 5242
7064dd5c 5243 cond_resched();
131e404a
FDBM
5244 spin_lock(&io_tree->lock);
5245 }
5246 spin_unlock(&io_tree->lock);
5247}
5248
bd555975 5249void btrfs_evict_inode(struct inode *inode)
39279cc3 5250{
0b246afa 5251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5252 struct btrfs_trans_handle *trans;
5253 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5254 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5255 int steal_from_global = 0;
3d48d981 5256 u64 min_size;
39279cc3
CM
5257 int ret;
5258
1abe9b8a 5259 trace_btrfs_inode_evict(inode);
5260
3d48d981
NB
5261 if (!root) {
5262 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5263 return;
5264 }
5265
0b246afa 5266 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5267
131e404a
FDBM
5268 evict_inode_truncate_pages(inode);
5269
69e9c6c6
SB
5270 if (inode->i_nlink &&
5271 ((btrfs_root_refs(&root->root_item) != 0 &&
5272 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5273 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5274 goto no_delete;
5275
39279cc3 5276 if (is_bad_inode(inode)) {
3d6ae7bb 5277 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5278 goto no_delete;
5279 }
bd555975 5280 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5281 if (!special_file(inode->i_mode))
5282 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5283
7ab7956e 5284 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5285
0b246afa 5286 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5287 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5288 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5289 goto no_delete;
5290 }
5291
76dda93c 5292 if (inode->i_nlink > 0) {
69e9c6c6
SB
5293 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5294 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5295 goto no_delete;
5296 }
5297
aa79021f 5298 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5299 if (ret) {
3d6ae7bb 5300 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5301 goto no_delete;
5302 }
5303
2ff7e61e 5304 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5305 if (!rsv) {
3d6ae7bb 5306 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5307 goto no_delete;
5308 }
4a338542 5309 rsv->size = min_size;
ca7e70f5 5310 rsv->failfast = 1;
0b246afa 5311 global_rsv = &fs_info->global_block_rsv;
4289a667 5312
6ef06d27 5313 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5314
4289a667 5315 /*
8407aa46
MX
5316 * This is a bit simpler than btrfs_truncate since we've already
5317 * reserved our space for our orphan item in the unlink, so we just
5318 * need to reserve some slack space in case we add bytes and update
5319 * inode item when doing the truncate.
4289a667 5320 */
8082510e 5321 while (1) {
08e007d2
MX
5322 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5323 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5324
5325 /*
5326 * Try and steal from the global reserve since we will
5327 * likely not use this space anyway, we want to try as
5328 * hard as possible to get this to work.
5329 */
5330 if (ret)
3bce876f
JB
5331 steal_from_global++;
5332 else
5333 steal_from_global = 0;
5334 ret = 0;
d68fc57b 5335
3bce876f
JB
5336 /*
5337 * steal_from_global == 0: we reserved stuff, hooray!
5338 * steal_from_global == 1: we didn't reserve stuff, boo!
5339 * steal_from_global == 2: we've committed, still not a lot of
5340 * room but maybe we'll have room in the global reserve this
5341 * time.
5342 * steal_from_global == 3: abandon all hope!
5343 */
5344 if (steal_from_global > 2) {
0b246afa
JM
5345 btrfs_warn(fs_info,
5346 "Could not get space for a delete, will truncate on mount %d",
5347 ret);
3d6ae7bb 5348 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5349 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5350 goto no_delete;
d68fc57b 5351 }
7b128766 5352
0e8c36a9 5353 trans = btrfs_join_transaction(root);
4289a667 5354 if (IS_ERR(trans)) {
3d6ae7bb 5355 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5356 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5357 goto no_delete;
d68fc57b 5358 }
7b128766 5359
3bce876f 5360 /*
01327610 5361 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5362 * sure there is room to do it, if not we need to commit and try
5363 * again.
5364 */
5365 if (steal_from_global) {
2ff7e61e 5366 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5367 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5368 min_size, 0);
3bce876f
JB
5369 else
5370 ret = -ENOSPC;
5371 }
5372
5373 /*
5374 * Couldn't steal from the global reserve, we have too much
5375 * pending stuff built up, commit the transaction and try it
5376 * again.
5377 */
5378 if (ret) {
3a45bb20 5379 ret = btrfs_commit_transaction(trans);
3bce876f 5380 if (ret) {
3d6ae7bb 5381 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5382 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5383 goto no_delete;
5384 }
5385 continue;
5386 } else {
5387 steal_from_global = 0;
5388 }
5389
4289a667
JB
5390 trans->block_rsv = rsv;
5391
d68fc57b 5392 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5393 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5394 break;
85e21bac 5395
0b246afa 5396 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5397 btrfs_end_transaction(trans);
8082510e 5398 trans = NULL;
2ff7e61e 5399 btrfs_btree_balance_dirty(fs_info);
8082510e 5400 }
5f39d397 5401
2ff7e61e 5402 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5403
4ef31a45
JB
5404 /*
5405 * Errors here aren't a big deal, it just means we leave orphan items
5406 * in the tree. They will be cleaned up on the next mount.
5407 */
8082510e 5408 if (ret == 0) {
4289a667 5409 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5410 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5411 } else {
3d6ae7bb 5412 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5413 }
54aa1f4d 5414
0b246afa
JM
5415 trans->block_rsv = &fs_info->trans_block_rsv;
5416 if (!(root == fs_info->tree_root ||
581bb050 5417 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5418 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5419
3a45bb20 5420 btrfs_end_transaction(trans);
2ff7e61e 5421 btrfs_btree_balance_dirty(fs_info);
39279cc3 5422no_delete:
f48d1cf5 5423 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5424 clear_inode(inode);
39279cc3
CM
5425}
5426
5427/*
5428 * this returns the key found in the dir entry in the location pointer.
5429 * If no dir entries were found, location->objectid is 0.
5430 */
5431static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5432 struct btrfs_key *location)
5433{
5434 const char *name = dentry->d_name.name;
5435 int namelen = dentry->d_name.len;
5436 struct btrfs_dir_item *di;
5437 struct btrfs_path *path;
5438 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5439 int ret = 0;
39279cc3
CM
5440
5441 path = btrfs_alloc_path();
d8926bb3
MF
5442 if (!path)
5443 return -ENOMEM;
3954401f 5444
f85b7379
DS
5445 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5446 name, namelen, 0);
0d9f7f3e
Y
5447 if (IS_ERR(di))
5448 ret = PTR_ERR(di);
d397712b 5449
c704005d 5450 if (IS_ERR_OR_NULL(di))
3954401f 5451 goto out_err;
d397712b 5452
5f39d397 5453 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5454 if (location->type != BTRFS_INODE_ITEM_KEY &&
5455 location->type != BTRFS_ROOT_ITEM_KEY) {
5456 btrfs_warn(root->fs_info,
5457"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5458 __func__, name, btrfs_ino(BTRFS_I(dir)),
5459 location->objectid, location->type, location->offset);
5460 goto out_err;
5461 }
39279cc3 5462out:
39279cc3
CM
5463 btrfs_free_path(path);
5464 return ret;
3954401f
CM
5465out_err:
5466 location->objectid = 0;
5467 goto out;
39279cc3
CM
5468}
5469
5470/*
5471 * when we hit a tree root in a directory, the btrfs part of the inode
5472 * needs to be changed to reflect the root directory of the tree root. This
5473 * is kind of like crossing a mount point.
5474 */
2ff7e61e 5475static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5476 struct inode *dir,
5477 struct dentry *dentry,
5478 struct btrfs_key *location,
5479 struct btrfs_root **sub_root)
39279cc3 5480{
4df27c4d
YZ
5481 struct btrfs_path *path;
5482 struct btrfs_root *new_root;
5483 struct btrfs_root_ref *ref;
5484 struct extent_buffer *leaf;
1d4c08e0 5485 struct btrfs_key key;
4df27c4d
YZ
5486 int ret;
5487 int err = 0;
39279cc3 5488
4df27c4d
YZ
5489 path = btrfs_alloc_path();
5490 if (!path) {
5491 err = -ENOMEM;
5492 goto out;
5493 }
39279cc3 5494
4df27c4d 5495 err = -ENOENT;
1d4c08e0
DS
5496 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5497 key.type = BTRFS_ROOT_REF_KEY;
5498 key.offset = location->objectid;
5499
0b246afa 5500 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5501 if (ret) {
5502 if (ret < 0)
5503 err = ret;
5504 goto out;
5505 }
39279cc3 5506
4df27c4d
YZ
5507 leaf = path->nodes[0];
5508 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5509 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5510 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5511 goto out;
39279cc3 5512
4df27c4d
YZ
5513 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5514 (unsigned long)(ref + 1),
5515 dentry->d_name.len);
5516 if (ret)
5517 goto out;
5518
b3b4aa74 5519 btrfs_release_path(path);
4df27c4d 5520
0b246afa 5521 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5522 if (IS_ERR(new_root)) {
5523 err = PTR_ERR(new_root);
5524 goto out;
5525 }
5526
4df27c4d
YZ
5527 *sub_root = new_root;
5528 location->objectid = btrfs_root_dirid(&new_root->root_item);
5529 location->type = BTRFS_INODE_ITEM_KEY;
5530 location->offset = 0;
5531 err = 0;
5532out:
5533 btrfs_free_path(path);
5534 return err;
39279cc3
CM
5535}
5536
5d4f98a2
YZ
5537static void inode_tree_add(struct inode *inode)
5538{
5539 struct btrfs_root *root = BTRFS_I(inode)->root;
5540 struct btrfs_inode *entry;
03e860bd
FNP
5541 struct rb_node **p;
5542 struct rb_node *parent;
cef21937 5543 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5544 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5545
1d3382cb 5546 if (inode_unhashed(inode))
76dda93c 5547 return;
e1409cef 5548 parent = NULL;
5d4f98a2 5549 spin_lock(&root->inode_lock);
e1409cef 5550 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5551 while (*p) {
5552 parent = *p;
5553 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5554
4a0cc7ca 5555 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5556 p = &parent->rb_left;
4a0cc7ca 5557 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5558 p = &parent->rb_right;
5d4f98a2
YZ
5559 else {
5560 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5561 (I_WILL_FREE | I_FREEING)));
cef21937 5562 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5563 RB_CLEAR_NODE(parent);
5564 spin_unlock(&root->inode_lock);
cef21937 5565 return;
5d4f98a2
YZ
5566 }
5567 }
cef21937
FDBM
5568 rb_link_node(new, parent, p);
5569 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5570 spin_unlock(&root->inode_lock);
5571}
5572
5573static void inode_tree_del(struct inode *inode)
5574{
0b246afa 5575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5576 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5577 int empty = 0;
5d4f98a2 5578
03e860bd 5579 spin_lock(&root->inode_lock);
5d4f98a2 5580 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5581 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5582 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5583 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5584 }
03e860bd 5585 spin_unlock(&root->inode_lock);
76dda93c 5586
69e9c6c6 5587 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5588 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5589 spin_lock(&root->inode_lock);
5590 empty = RB_EMPTY_ROOT(&root->inode_tree);
5591 spin_unlock(&root->inode_lock);
5592 if (empty)
5593 btrfs_add_dead_root(root);
5594 }
5595}
5596
143bede5 5597void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5598{
0b246afa 5599 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5600 struct rb_node *node;
5601 struct rb_node *prev;
5602 struct btrfs_inode *entry;
5603 struct inode *inode;
5604 u64 objectid = 0;
5605
0b246afa 5606 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5607 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5608
5609 spin_lock(&root->inode_lock);
5610again:
5611 node = root->inode_tree.rb_node;
5612 prev = NULL;
5613 while (node) {
5614 prev = node;
5615 entry = rb_entry(node, struct btrfs_inode, rb_node);
5616
4a0cc7ca 5617 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5618 node = node->rb_left;
4a0cc7ca 5619 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5620 node = node->rb_right;
5621 else
5622 break;
5623 }
5624 if (!node) {
5625 while (prev) {
5626 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5627 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5628 node = prev;
5629 break;
5630 }
5631 prev = rb_next(prev);
5632 }
5633 }
5634 while (node) {
5635 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5636 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5637 inode = igrab(&entry->vfs_inode);
5638 if (inode) {
5639 spin_unlock(&root->inode_lock);
5640 if (atomic_read(&inode->i_count) > 1)
5641 d_prune_aliases(inode);
5642 /*
45321ac5 5643 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5644 * the inode cache when its usage count
5645 * hits zero.
5646 */
5647 iput(inode);
5648 cond_resched();
5649 spin_lock(&root->inode_lock);
5650 goto again;
5651 }
5652
5653 if (cond_resched_lock(&root->inode_lock))
5654 goto again;
5655
5656 node = rb_next(node);
5657 }
5658 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5659}
5660
e02119d5
CM
5661static int btrfs_init_locked_inode(struct inode *inode, void *p)
5662{
5663 struct btrfs_iget_args *args = p;
90d3e592
CM
5664 inode->i_ino = args->location->objectid;
5665 memcpy(&BTRFS_I(inode)->location, args->location,
5666 sizeof(*args->location));
e02119d5 5667 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5668 return 0;
5669}
5670
5671static int btrfs_find_actor(struct inode *inode, void *opaque)
5672{
5673 struct btrfs_iget_args *args = opaque;
90d3e592 5674 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5675 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5676}
5677
5d4f98a2 5678static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5679 struct btrfs_key *location,
5d4f98a2 5680 struct btrfs_root *root)
39279cc3
CM
5681{
5682 struct inode *inode;
5683 struct btrfs_iget_args args;
90d3e592 5684 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5685
90d3e592 5686 args.location = location;
39279cc3
CM
5687 args.root = root;
5688
778ba82b 5689 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5690 btrfs_init_locked_inode,
5691 (void *)&args);
5692 return inode;
5693}
5694
1a54ef8c
BR
5695/* Get an inode object given its location and corresponding root.
5696 * Returns in *is_new if the inode was read from disk
5697 */
5698struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5699 struct btrfs_root *root, int *new)
1a54ef8c
BR
5700{
5701 struct inode *inode;
5702
90d3e592 5703 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5704 if (!inode)
5d4f98a2 5705 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5706
5707 if (inode->i_state & I_NEW) {
67710892
FM
5708 int ret;
5709
5710 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5711 if (!is_bad_inode(inode)) {
5712 inode_tree_add(inode);
5713 unlock_new_inode(inode);
5714 if (new)
5715 *new = 1;
5716 } else {
e0b6d65b
ST
5717 unlock_new_inode(inode);
5718 iput(inode);
67710892
FM
5719 ASSERT(ret < 0);
5720 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5721 }
5722 }
5723
1a54ef8c
BR
5724 return inode;
5725}
5726
4df27c4d
YZ
5727static struct inode *new_simple_dir(struct super_block *s,
5728 struct btrfs_key *key,
5729 struct btrfs_root *root)
5730{
5731 struct inode *inode = new_inode(s);
5732
5733 if (!inode)
5734 return ERR_PTR(-ENOMEM);
5735
4df27c4d
YZ
5736 BTRFS_I(inode)->root = root;
5737 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5738 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5739
5740 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5741 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5742 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5743 inode->i_fop = &simple_dir_operations;
5744 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5745 inode->i_mtime = current_time(inode);
9cc97d64 5746 inode->i_atime = inode->i_mtime;
5747 inode->i_ctime = inode->i_mtime;
5748 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5749
5750 return inode;
5751}
5752
3de4586c 5753struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5754{
0b246afa 5755 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5756 struct inode *inode;
4df27c4d 5757 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5758 struct btrfs_root *sub_root = root;
5759 struct btrfs_key location;
76dda93c 5760 int index;
b4aff1f8 5761 int ret = 0;
39279cc3
CM
5762
5763 if (dentry->d_name.len > BTRFS_NAME_LEN)
5764 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5765
39e3c955 5766 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5767 if (ret < 0)
5768 return ERR_PTR(ret);
5f39d397 5769
4df27c4d 5770 if (location.objectid == 0)
5662344b 5771 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5772
5773 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5774 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5775 return inode;
5776 }
5777
0b246afa 5778 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5779 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5780 &location, &sub_root);
5781 if (ret < 0) {
5782 if (ret != -ENOENT)
5783 inode = ERR_PTR(ret);
5784 else
5785 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5786 } else {
73f73415 5787 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5788 }
0b246afa 5789 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5790
34d19bad 5791 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5792 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5793 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5794 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5795 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5796 if (ret) {
5797 iput(inode);
66b4ffd1 5798 inode = ERR_PTR(ret);
01cd3367 5799 }
c71bf099
YZ
5800 }
5801
3de4586c
CM
5802 return inode;
5803}
5804
fe15ce44 5805static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5806{
5807 struct btrfs_root *root;
2b0143b5 5808 struct inode *inode = d_inode(dentry);
76dda93c 5809
848cce0d 5810 if (!inode && !IS_ROOT(dentry))
2b0143b5 5811 inode = d_inode(dentry->d_parent);
76dda93c 5812
848cce0d
LZ
5813 if (inode) {
5814 root = BTRFS_I(inode)->root;
efefb143
YZ
5815 if (btrfs_root_refs(&root->root_item) == 0)
5816 return 1;
848cce0d 5817
4a0cc7ca 5818 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5819 return 1;
efefb143 5820 }
76dda93c
YZ
5821 return 0;
5822}
5823
b4aff1f8
JB
5824static void btrfs_dentry_release(struct dentry *dentry)
5825{
944a4515 5826 kfree(dentry->d_fsdata);
b4aff1f8
JB
5827}
5828
3de4586c 5829static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5830 unsigned int flags)
3de4586c 5831{
5662344b 5832 struct inode *inode;
a66e7cc6 5833
5662344b
TI
5834 inode = btrfs_lookup_dentry(dir, dentry);
5835 if (IS_ERR(inode)) {
5836 if (PTR_ERR(inode) == -ENOENT)
5837 inode = NULL;
5838 else
5839 return ERR_CAST(inode);
5840 }
5841
41d28bca 5842 return d_splice_alias(inode, dentry);
39279cc3
CM
5843}
5844
16cdcec7 5845unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5846 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5847};
5848
23b5ec74
JB
5849/*
5850 * All this infrastructure exists because dir_emit can fault, and we are holding
5851 * the tree lock when doing readdir. For now just allocate a buffer and copy
5852 * our information into that, and then dir_emit from the buffer. This is
5853 * similar to what NFS does, only we don't keep the buffer around in pagecache
5854 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5855 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5856 * tree lock.
5857 */
5858static int btrfs_opendir(struct inode *inode, struct file *file)
5859{
5860 struct btrfs_file_private *private;
5861
5862 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5863 if (!private)
5864 return -ENOMEM;
5865 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5866 if (!private->filldir_buf) {
5867 kfree(private);
5868 return -ENOMEM;
5869 }
5870 file->private_data = private;
5871 return 0;
5872}
5873
5874struct dir_entry {
5875 u64 ino;
5876 u64 offset;
5877 unsigned type;
5878 int name_len;
5879};
5880
5881static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5882{
5883 while (entries--) {
5884 struct dir_entry *entry = addr;
5885 char *name = (char *)(entry + 1);
5886
5887 ctx->pos = entry->offset;
5888 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5889 entry->type))
5890 return 1;
5891 addr += sizeof(struct dir_entry) + entry->name_len;
5892 ctx->pos++;
5893 }
5894 return 0;
5895}
5896
9cdda8d3 5897static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5898{
9cdda8d3 5899 struct inode *inode = file_inode(file);
2ff7e61e 5900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5901 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5902 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5903 struct btrfs_dir_item *di;
5904 struct btrfs_key key;
5f39d397 5905 struct btrfs_key found_key;
39279cc3 5906 struct btrfs_path *path;
23b5ec74 5907 void *addr;
16cdcec7
MX
5908 struct list_head ins_list;
5909 struct list_head del_list;
39279cc3 5910 int ret;
5f39d397 5911 struct extent_buffer *leaf;
39279cc3 5912 int slot;
5f39d397
CM
5913 char *name_ptr;
5914 int name_len;
23b5ec74
JB
5915 int entries = 0;
5916 int total_len = 0;
02dbfc99 5917 bool put = false;
c2951f32 5918 struct btrfs_key location;
5f39d397 5919
9cdda8d3
AV
5920 if (!dir_emit_dots(file, ctx))
5921 return 0;
5922
49593bfa 5923 path = btrfs_alloc_path();
16cdcec7
MX
5924 if (!path)
5925 return -ENOMEM;
ff5714cc 5926
23b5ec74 5927 addr = private->filldir_buf;
e4058b54 5928 path->reada = READA_FORWARD;
49593bfa 5929
c2951f32
JM
5930 INIT_LIST_HEAD(&ins_list);
5931 INIT_LIST_HEAD(&del_list);
5932 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5933
23b5ec74 5934again:
c2951f32 5935 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5936 key.offset = ctx->pos;
4a0cc7ca 5937 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5938
39279cc3
CM
5939 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5940 if (ret < 0)
5941 goto err;
49593bfa
DW
5942
5943 while (1) {
23b5ec74
JB
5944 struct dir_entry *entry;
5945
5f39d397 5946 leaf = path->nodes[0];
39279cc3 5947 slot = path->slots[0];
b9e03af0
LZ
5948 if (slot >= btrfs_header_nritems(leaf)) {
5949 ret = btrfs_next_leaf(root, path);
5950 if (ret < 0)
5951 goto err;
5952 else if (ret > 0)
5953 break;
5954 continue;
39279cc3 5955 }
3de4586c 5956
5f39d397
CM
5957 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5958
5959 if (found_key.objectid != key.objectid)
39279cc3 5960 break;
c2951f32 5961 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5962 break;
9cdda8d3 5963 if (found_key.offset < ctx->pos)
b9e03af0 5964 goto next;
c2951f32 5965 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5966 goto next;
39279cc3 5967 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5968 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5969 goto next;
22a94d44 5970
c2951f32 5971 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5972 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5973 PAGE_SIZE) {
5974 btrfs_release_path(path);
5975 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5976 if (ret)
5977 goto nopos;
5978 addr = private->filldir_buf;
5979 entries = 0;
5980 total_len = 0;
5981 goto again;
c2951f32 5982 }
23b5ec74
JB
5983
5984 entry = addr;
5985 entry->name_len = name_len;
5986 name_ptr = (char *)(entry + 1);
c2951f32
JM
5987 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5988 name_len);
23b5ec74 5989 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 5990 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
5991 entry->ino = location.objectid;
5992 entry->offset = found_key.offset;
5993 entries++;
5994 addr += sizeof(struct dir_entry) + name_len;
5995 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5996next:
5997 path->slots[0]++;
39279cc3 5998 }
23b5ec74
JB
5999 btrfs_release_path(path);
6000
6001 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6002 if (ret)
6003 goto nopos;
49593bfa 6004
d2fbb2b5 6005 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6006 if (ret)
bc4ef759
DS
6007 goto nopos;
6008
db62efbb
ZB
6009 /*
6010 * Stop new entries from being returned after we return the last
6011 * entry.
6012 *
6013 * New directory entries are assigned a strictly increasing
6014 * offset. This means that new entries created during readdir
6015 * are *guaranteed* to be seen in the future by that readdir.
6016 * This has broken buggy programs which operate on names as
6017 * they're returned by readdir. Until we re-use freed offsets
6018 * we have this hack to stop new entries from being returned
6019 * under the assumption that they'll never reach this huge
6020 * offset.
6021 *
6022 * This is being careful not to overflow 32bit loff_t unless the
6023 * last entry requires it because doing so has broken 32bit apps
6024 * in the past.
6025 */
c2951f32
JM
6026 if (ctx->pos >= INT_MAX)
6027 ctx->pos = LLONG_MAX;
6028 else
6029 ctx->pos = INT_MAX;
39279cc3
CM
6030nopos:
6031 ret = 0;
6032err:
02dbfc99
OS
6033 if (put)
6034 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6035 btrfs_free_path(path);
39279cc3
CM
6036 return ret;
6037}
6038
a9185b41 6039int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6040{
6041 struct btrfs_root *root = BTRFS_I(inode)->root;
6042 struct btrfs_trans_handle *trans;
6043 int ret = 0;
0af3d00b 6044 bool nolock = false;
39279cc3 6045
72ac3c0d 6046 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6047 return 0;
6048
70ddc553
NB
6049 if (btrfs_fs_closing(root->fs_info) &&
6050 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6051 nolock = true;
0af3d00b 6052
a9185b41 6053 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6054 if (nolock)
7a7eaa40 6055 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6056 else
7a7eaa40 6057 trans = btrfs_join_transaction(root);
3612b495
TI
6058 if (IS_ERR(trans))
6059 return PTR_ERR(trans);
3a45bb20 6060 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6061 }
6062 return ret;
6063}
6064
6065/*
54aa1f4d 6066 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6067 * inode changes. But, it is most likely to find the inode in cache.
6068 * FIXME, needs more benchmarking...there are no reasons other than performance
6069 * to keep or drop this code.
6070 */
48a3b636 6071static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6072{
2ff7e61e 6073 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6074 struct btrfs_root *root = BTRFS_I(inode)->root;
6075 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6076 int ret;
6077
72ac3c0d 6078 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6079 return 0;
39279cc3 6080
7a7eaa40 6081 trans = btrfs_join_transaction(root);
22c44fe6
JB
6082 if (IS_ERR(trans))
6083 return PTR_ERR(trans);
8929ecfa
YZ
6084
6085 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6086 if (ret && ret == -ENOSPC) {
6087 /* whoops, lets try again with the full transaction */
3a45bb20 6088 btrfs_end_transaction(trans);
94b60442 6089 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6090 if (IS_ERR(trans))
6091 return PTR_ERR(trans);
8929ecfa 6092
94b60442 6093 ret = btrfs_update_inode(trans, root, inode);
94b60442 6094 }
3a45bb20 6095 btrfs_end_transaction(trans);
16cdcec7 6096 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6097 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6098
6099 return ret;
6100}
6101
6102/*
6103 * This is a copy of file_update_time. We need this so we can return error on
6104 * ENOSPC for updating the inode in the case of file write and mmap writes.
6105 */
e41f941a
JB
6106static int btrfs_update_time(struct inode *inode, struct timespec *now,
6107 int flags)
22c44fe6 6108{
2bc55652
AB
6109 struct btrfs_root *root = BTRFS_I(inode)->root;
6110
6111 if (btrfs_root_readonly(root))
6112 return -EROFS;
6113
e41f941a 6114 if (flags & S_VERSION)
22c44fe6 6115 inode_inc_iversion(inode);
e41f941a
JB
6116 if (flags & S_CTIME)
6117 inode->i_ctime = *now;
6118 if (flags & S_MTIME)
6119 inode->i_mtime = *now;
6120 if (flags & S_ATIME)
6121 inode->i_atime = *now;
6122 return btrfs_dirty_inode(inode);
39279cc3
CM
6123}
6124
d352ac68
CM
6125/*
6126 * find the highest existing sequence number in a directory
6127 * and then set the in-memory index_cnt variable to reflect
6128 * free sequence numbers
6129 */
4c570655 6130static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6131{
4c570655 6132 struct btrfs_root *root = inode->root;
aec7477b
JB
6133 struct btrfs_key key, found_key;
6134 struct btrfs_path *path;
6135 struct extent_buffer *leaf;
6136 int ret;
6137
4c570655 6138 key.objectid = btrfs_ino(inode);
962a298f 6139 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6140 key.offset = (u64)-1;
6141
6142 path = btrfs_alloc_path();
6143 if (!path)
6144 return -ENOMEM;
6145
6146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6147 if (ret < 0)
6148 goto out;
6149 /* FIXME: we should be able to handle this */
6150 if (ret == 0)
6151 goto out;
6152 ret = 0;
6153
6154 /*
6155 * MAGIC NUMBER EXPLANATION:
6156 * since we search a directory based on f_pos we have to start at 2
6157 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6158 * else has to start at 2
6159 */
6160 if (path->slots[0] == 0) {
4c570655 6161 inode->index_cnt = 2;
aec7477b
JB
6162 goto out;
6163 }
6164
6165 path->slots[0]--;
6166
6167 leaf = path->nodes[0];
6168 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6169
4c570655 6170 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6171 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6172 inode->index_cnt = 2;
aec7477b
JB
6173 goto out;
6174 }
6175
4c570655 6176 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6177out:
6178 btrfs_free_path(path);
6179 return ret;
6180}
6181
d352ac68
CM
6182/*
6183 * helper to find a free sequence number in a given directory. This current
6184 * code is very simple, later versions will do smarter things in the btree
6185 */
877574e2 6186int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6187{
6188 int ret = 0;
6189
877574e2
NB
6190 if (dir->index_cnt == (u64)-1) {
6191 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6192 if (ret) {
6193 ret = btrfs_set_inode_index_count(dir);
6194 if (ret)
6195 return ret;
6196 }
aec7477b
JB
6197 }
6198
877574e2
NB
6199 *index = dir->index_cnt;
6200 dir->index_cnt++;
aec7477b
JB
6201
6202 return ret;
6203}
6204
b0d5d10f
CM
6205static int btrfs_insert_inode_locked(struct inode *inode)
6206{
6207 struct btrfs_iget_args args;
6208 args.location = &BTRFS_I(inode)->location;
6209 args.root = BTRFS_I(inode)->root;
6210
6211 return insert_inode_locked4(inode,
6212 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6213 btrfs_find_actor, &args);
6214}
6215
19aee8de
AJ
6216/*
6217 * Inherit flags from the parent inode.
6218 *
6219 * Currently only the compression flags and the cow flags are inherited.
6220 */
6221static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6222{
6223 unsigned int flags;
6224
6225 if (!dir)
6226 return;
6227
6228 flags = BTRFS_I(dir)->flags;
6229
6230 if (flags & BTRFS_INODE_NOCOMPRESS) {
6231 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6232 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6233 } else if (flags & BTRFS_INODE_COMPRESS) {
6234 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6235 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6236 }
6237
6238 if (flags & BTRFS_INODE_NODATACOW) {
6239 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6240 if (S_ISREG(inode->i_mode))
6241 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6242 }
6243
6244 btrfs_update_iflags(inode);
6245}
6246
39279cc3
CM
6247static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6248 struct btrfs_root *root,
aec7477b 6249 struct inode *dir,
9c58309d 6250 const char *name, int name_len,
175a4eb7
AV
6251 u64 ref_objectid, u64 objectid,
6252 umode_t mode, u64 *index)
39279cc3 6253{
0b246afa 6254 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6255 struct inode *inode;
5f39d397 6256 struct btrfs_inode_item *inode_item;
39279cc3 6257 struct btrfs_key *location;
5f39d397 6258 struct btrfs_path *path;
9c58309d
CM
6259 struct btrfs_inode_ref *ref;
6260 struct btrfs_key key[2];
6261 u32 sizes[2];
ef3b9af5 6262 int nitems = name ? 2 : 1;
9c58309d 6263 unsigned long ptr;
39279cc3 6264 int ret;
39279cc3 6265
5f39d397 6266 path = btrfs_alloc_path();
d8926bb3
MF
6267 if (!path)
6268 return ERR_PTR(-ENOMEM);
5f39d397 6269
0b246afa 6270 inode = new_inode(fs_info->sb);
8fb27640
YS
6271 if (!inode) {
6272 btrfs_free_path(path);
39279cc3 6273 return ERR_PTR(-ENOMEM);
8fb27640 6274 }
39279cc3 6275
5762b5c9
FM
6276 /*
6277 * O_TMPFILE, set link count to 0, so that after this point,
6278 * we fill in an inode item with the correct link count.
6279 */
6280 if (!name)
6281 set_nlink(inode, 0);
6282
581bb050
LZ
6283 /*
6284 * we have to initialize this early, so we can reclaim the inode
6285 * number if we fail afterwards in this function.
6286 */
6287 inode->i_ino = objectid;
6288
ef3b9af5 6289 if (dir && name) {
1abe9b8a 6290 trace_btrfs_inode_request(dir);
6291
877574e2 6292 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6293 if (ret) {
8fb27640 6294 btrfs_free_path(path);
09771430 6295 iput(inode);
aec7477b 6296 return ERR_PTR(ret);
09771430 6297 }
ef3b9af5
FM
6298 } else if (dir) {
6299 *index = 0;
aec7477b
JB
6300 }
6301 /*
6302 * index_cnt is ignored for everything but a dir,
6303 * btrfs_get_inode_index_count has an explanation for the magic
6304 * number
6305 */
6306 BTRFS_I(inode)->index_cnt = 2;
67de1176 6307 BTRFS_I(inode)->dir_index = *index;
39279cc3 6308 BTRFS_I(inode)->root = root;
e02119d5 6309 BTRFS_I(inode)->generation = trans->transid;
76195853 6310 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6311
5dc562c5
JB
6312 /*
6313 * We could have gotten an inode number from somebody who was fsynced
6314 * and then removed in this same transaction, so let's just set full
6315 * sync since it will be a full sync anyway and this will blow away the
6316 * old info in the log.
6317 */
6318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6319
9c58309d 6320 key[0].objectid = objectid;
962a298f 6321 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6322 key[0].offset = 0;
6323
9c58309d 6324 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6325
6326 if (name) {
6327 /*
6328 * Start new inodes with an inode_ref. This is slightly more
6329 * efficient for small numbers of hard links since they will
6330 * be packed into one item. Extended refs will kick in if we
6331 * add more hard links than can fit in the ref item.
6332 */
6333 key[1].objectid = objectid;
962a298f 6334 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6335 key[1].offset = ref_objectid;
6336
6337 sizes[1] = name_len + sizeof(*ref);
6338 }
9c58309d 6339
b0d5d10f
CM
6340 location = &BTRFS_I(inode)->location;
6341 location->objectid = objectid;
6342 location->offset = 0;
962a298f 6343 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6344
6345 ret = btrfs_insert_inode_locked(inode);
6346 if (ret < 0)
6347 goto fail;
6348
b9473439 6349 path->leave_spinning = 1;
ef3b9af5 6350 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6351 if (ret != 0)
b0d5d10f 6352 goto fail_unlock;
5f39d397 6353
ecc11fab 6354 inode_init_owner(inode, dir, mode);
a76a3cd4 6355 inode_set_bytes(inode, 0);
9cc97d64 6356
c2050a45 6357 inode->i_mtime = current_time(inode);
9cc97d64 6358 inode->i_atime = inode->i_mtime;
6359 inode->i_ctime = inode->i_mtime;
6360 BTRFS_I(inode)->i_otime = inode->i_mtime;
6361
5f39d397
CM
6362 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6363 struct btrfs_inode_item);
b159fa28 6364 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6365 sizeof(*inode_item));
e02119d5 6366 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6367
ef3b9af5
FM
6368 if (name) {
6369 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6370 struct btrfs_inode_ref);
6371 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6372 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6373 ptr = (unsigned long)(ref + 1);
6374 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6375 }
9c58309d 6376
5f39d397
CM
6377 btrfs_mark_buffer_dirty(path->nodes[0]);
6378 btrfs_free_path(path);
6379
6cbff00f
CH
6380 btrfs_inherit_iflags(inode, dir);
6381
569254b0 6382 if (S_ISREG(mode)) {
0b246afa 6383 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6384 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6385 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6386 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6387 BTRFS_INODE_NODATASUM;
94272164
CM
6388 }
6389
5d4f98a2 6390 inode_tree_add(inode);
1abe9b8a 6391
6392 trace_btrfs_inode_new(inode);
1973f0fa 6393 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6394
8ea05e3a
AB
6395 btrfs_update_root_times(trans, root);
6396
63541927
FDBM
6397 ret = btrfs_inode_inherit_props(trans, inode, dir);
6398 if (ret)
0b246afa 6399 btrfs_err(fs_info,
63541927 6400 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6401 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6402
39279cc3 6403 return inode;
b0d5d10f
CM
6404
6405fail_unlock:
6406 unlock_new_inode(inode);
5f39d397 6407fail:
ef3b9af5 6408 if (dir && name)
aec7477b 6409 BTRFS_I(dir)->index_cnt--;
5f39d397 6410 btrfs_free_path(path);
09771430 6411 iput(inode);
5f39d397 6412 return ERR_PTR(ret);
39279cc3
CM
6413}
6414
6415static inline u8 btrfs_inode_type(struct inode *inode)
6416{
6417 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6418}
6419
d352ac68
CM
6420/*
6421 * utility function to add 'inode' into 'parent_inode' with
6422 * a give name and a given sequence number.
6423 * if 'add_backref' is true, also insert a backref from the
6424 * inode to the parent directory.
6425 */
e02119d5 6426int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6427 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6428 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6429{
db0a669f 6430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6431 int ret = 0;
39279cc3 6432 struct btrfs_key key;
db0a669f
NB
6433 struct btrfs_root *root = parent_inode->root;
6434 u64 ino = btrfs_ino(inode);
6435 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6436
33345d01 6437 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6438 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6439 } else {
33345d01 6440 key.objectid = ino;
962a298f 6441 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6442 key.offset = 0;
6443 }
6444
33345d01 6445 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6446 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6447 root->root_key.objectid, parent_ino,
6448 index, name, name_len);
4df27c4d 6449 } else if (add_backref) {
33345d01
LZ
6450 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6451 parent_ino, index);
4df27c4d 6452 }
39279cc3 6453
79787eaa
JM
6454 /* Nothing to clean up yet */
6455 if (ret)
6456 return ret;
4df27c4d 6457
79787eaa
JM
6458 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6459 parent_inode, &key,
db0a669f 6460 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6461 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6462 goto fail_dir_item;
6463 else if (ret) {
66642832 6464 btrfs_abort_transaction(trans, ret);
79787eaa 6465 return ret;
39279cc3 6466 }
79787eaa 6467
db0a669f 6468 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6469 name_len * 2);
db0a669f
NB
6470 inode_inc_iversion(&parent_inode->vfs_inode);
6471 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6472 current_time(&parent_inode->vfs_inode);
6473 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6474 if (ret)
66642832 6475 btrfs_abort_transaction(trans, ret);
39279cc3 6476 return ret;
fe66a05a
CM
6477
6478fail_dir_item:
6479 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6480 u64 local_index;
6481 int err;
0b246afa
JM
6482 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6483 root->root_key.objectid, parent_ino,
6484 &local_index, name, name_len);
fe66a05a
CM
6485
6486 } else if (add_backref) {
6487 u64 local_index;
6488 int err;
6489
6490 err = btrfs_del_inode_ref(trans, root, name, name_len,
6491 ino, parent_ino, &local_index);
6492 }
6493 return ret;
39279cc3
CM
6494}
6495
6496static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6497 struct btrfs_inode *dir, struct dentry *dentry,
6498 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6499{
a1b075d2
JB
6500 int err = btrfs_add_link(trans, dir, inode,
6501 dentry->d_name.name, dentry->d_name.len,
6502 backref, index);
39279cc3
CM
6503 if (err > 0)
6504 err = -EEXIST;
6505 return err;
6506}
6507
618e21d5 6508static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6509 umode_t mode, dev_t rdev)
618e21d5 6510{
2ff7e61e 6511 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6512 struct btrfs_trans_handle *trans;
6513 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6514 struct inode *inode = NULL;
618e21d5
JB
6515 int err;
6516 int drop_inode = 0;
6517 u64 objectid;
00e4e6b3 6518 u64 index = 0;
618e21d5 6519
9ed74f2d
JB
6520 /*
6521 * 2 for inode item and ref
6522 * 2 for dir items
6523 * 1 for xattr if selinux is on
6524 */
a22285a6
YZ
6525 trans = btrfs_start_transaction(root, 5);
6526 if (IS_ERR(trans))
6527 return PTR_ERR(trans);
1832a6d5 6528
581bb050
LZ
6529 err = btrfs_find_free_ino(root, &objectid);
6530 if (err)
6531 goto out_unlock;
6532
aec7477b 6533 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6534 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6535 mode, &index);
7cf96da3
TI
6536 if (IS_ERR(inode)) {
6537 err = PTR_ERR(inode);
618e21d5 6538 goto out_unlock;
7cf96da3 6539 }
618e21d5 6540
ad19db71
CS
6541 /*
6542 * If the active LSM wants to access the inode during
6543 * d_instantiate it needs these. Smack checks to see
6544 * if the filesystem supports xattrs by looking at the
6545 * ops vector.
6546 */
ad19db71 6547 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6548 init_special_inode(inode, inode->i_mode, rdev);
6549
6550 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6551 if (err)
b0d5d10f
CM
6552 goto out_unlock_inode;
6553
cef415af
NB
6554 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6555 0, index);
b0d5d10f
CM
6556 if (err) {
6557 goto out_unlock_inode;
6558 } else {
1b4ab1bb 6559 btrfs_update_inode(trans, root, inode);
b0d5d10f 6560 unlock_new_inode(inode);
08c422c2 6561 d_instantiate(dentry, inode);
618e21d5 6562 }
b0d5d10f 6563
618e21d5 6564out_unlock:
3a45bb20 6565 btrfs_end_transaction(trans);
2ff7e61e
JM
6566 btrfs_balance_delayed_items(fs_info);
6567 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6568 if (drop_inode) {
6569 inode_dec_link_count(inode);
6570 iput(inode);
6571 }
618e21d5 6572 return err;
b0d5d10f
CM
6573
6574out_unlock_inode:
6575 drop_inode = 1;
6576 unlock_new_inode(inode);
6577 goto out_unlock;
6578
618e21d5
JB
6579}
6580
39279cc3 6581static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6582 umode_t mode, bool excl)
39279cc3 6583{
2ff7e61e 6584 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6585 struct btrfs_trans_handle *trans;
6586 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6587 struct inode *inode = NULL;
43baa579 6588 int drop_inode_on_err = 0;
a22285a6 6589 int err;
39279cc3 6590 u64 objectid;
00e4e6b3 6591 u64 index = 0;
39279cc3 6592
9ed74f2d
JB
6593 /*
6594 * 2 for inode item and ref
6595 * 2 for dir items
6596 * 1 for xattr if selinux is on
6597 */
a22285a6
YZ
6598 trans = btrfs_start_transaction(root, 5);
6599 if (IS_ERR(trans))
6600 return PTR_ERR(trans);
9ed74f2d 6601
581bb050
LZ
6602 err = btrfs_find_free_ino(root, &objectid);
6603 if (err)
6604 goto out_unlock;
6605
aec7477b 6606 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6607 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6608 mode, &index);
7cf96da3
TI
6609 if (IS_ERR(inode)) {
6610 err = PTR_ERR(inode);
39279cc3 6611 goto out_unlock;
7cf96da3 6612 }
43baa579 6613 drop_inode_on_err = 1;
ad19db71
CS
6614 /*
6615 * If the active LSM wants to access the inode during
6616 * d_instantiate it needs these. Smack checks to see
6617 * if the filesystem supports xattrs by looking at the
6618 * ops vector.
6619 */
6620 inode->i_fop = &btrfs_file_operations;
6621 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6622 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6623
6624 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6625 if (err)
6626 goto out_unlock_inode;
6627
6628 err = btrfs_update_inode(trans, root, inode);
6629 if (err)
6630 goto out_unlock_inode;
ad19db71 6631
cef415af
NB
6632 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6633 0, index);
39279cc3 6634 if (err)
b0d5d10f 6635 goto out_unlock_inode;
43baa579 6636
43baa579 6637 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6638 unlock_new_inode(inode);
43baa579
FB
6639 d_instantiate(dentry, inode);
6640
39279cc3 6641out_unlock:
3a45bb20 6642 btrfs_end_transaction(trans);
43baa579 6643 if (err && drop_inode_on_err) {
39279cc3
CM
6644 inode_dec_link_count(inode);
6645 iput(inode);
6646 }
2ff7e61e
JM
6647 btrfs_balance_delayed_items(fs_info);
6648 btrfs_btree_balance_dirty(fs_info);
39279cc3 6649 return err;
b0d5d10f
CM
6650
6651out_unlock_inode:
6652 unlock_new_inode(inode);
6653 goto out_unlock;
6654
39279cc3
CM
6655}
6656
6657static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6658 struct dentry *dentry)
6659{
271dba45 6660 struct btrfs_trans_handle *trans = NULL;
39279cc3 6661 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6662 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6663 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6664 u64 index;
39279cc3
CM
6665 int err;
6666 int drop_inode = 0;
6667
4a8be425
TH
6668 /* do not allow sys_link's with other subvols of the same device */
6669 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6670 return -EXDEV;
4a8be425 6671
f186373f 6672 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6673 return -EMLINK;
4a8be425 6674
877574e2 6675 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6676 if (err)
6677 goto fail;
6678
a22285a6 6679 /*
7e6b6465 6680 * 2 items for inode and inode ref
a22285a6 6681 * 2 items for dir items
7e6b6465 6682 * 1 item for parent inode
a22285a6 6683 */
7e6b6465 6684 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6685 if (IS_ERR(trans)) {
6686 err = PTR_ERR(trans);
271dba45 6687 trans = NULL;
a22285a6
YZ
6688 goto fail;
6689 }
5f39d397 6690
67de1176
MX
6691 /* There are several dir indexes for this inode, clear the cache. */
6692 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6693 inc_nlink(inode);
0c4d2d95 6694 inode_inc_iversion(inode);
c2050a45 6695 inode->i_ctime = current_time(inode);
7de9c6ee 6696 ihold(inode);
e9976151 6697 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6698
cef415af
NB
6699 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6700 1, index);
5f39d397 6701
a5719521 6702 if (err) {
54aa1f4d 6703 drop_inode = 1;
a5719521 6704 } else {
10d9f309 6705 struct dentry *parent = dentry->d_parent;
a5719521 6706 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6707 if (err)
6708 goto fail;
ef3b9af5
FM
6709 if (inode->i_nlink == 1) {
6710 /*
6711 * If new hard link count is 1, it's a file created
6712 * with open(2) O_TMPFILE flag.
6713 */
3d6ae7bb 6714 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6715 if (err)
6716 goto fail;
6717 }
08c422c2 6718 d_instantiate(dentry, inode);
9ca5fbfb 6719 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6720 }
39279cc3 6721
2ff7e61e 6722 btrfs_balance_delayed_items(fs_info);
1832a6d5 6723fail:
271dba45 6724 if (trans)
3a45bb20 6725 btrfs_end_transaction(trans);
39279cc3
CM
6726 if (drop_inode) {
6727 inode_dec_link_count(inode);
6728 iput(inode);
6729 }
2ff7e61e 6730 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6731 return err;
6732}
6733
18bb1db3 6734static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6735{
2ff7e61e 6736 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6737 struct inode *inode = NULL;
39279cc3
CM
6738 struct btrfs_trans_handle *trans;
6739 struct btrfs_root *root = BTRFS_I(dir)->root;
6740 int err = 0;
6741 int drop_on_err = 0;
b9d86667 6742 u64 objectid = 0;
00e4e6b3 6743 u64 index = 0;
39279cc3 6744
9ed74f2d
JB
6745 /*
6746 * 2 items for inode and ref
6747 * 2 items for dir items
6748 * 1 for xattr if selinux is on
6749 */
a22285a6
YZ
6750 trans = btrfs_start_transaction(root, 5);
6751 if (IS_ERR(trans))
6752 return PTR_ERR(trans);
39279cc3 6753
581bb050
LZ
6754 err = btrfs_find_free_ino(root, &objectid);
6755 if (err)
6756 goto out_fail;
6757
aec7477b 6758 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6759 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6760 S_IFDIR | mode, &index);
39279cc3
CM
6761 if (IS_ERR(inode)) {
6762 err = PTR_ERR(inode);
6763 goto out_fail;
6764 }
5f39d397 6765
39279cc3 6766 drop_on_err = 1;
b0d5d10f
CM
6767 /* these must be set before we unlock the inode */
6768 inode->i_op = &btrfs_dir_inode_operations;
6769 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6770
2a7dba39 6771 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6772 if (err)
b0d5d10f 6773 goto out_fail_inode;
39279cc3 6774
6ef06d27 6775 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6776 err = btrfs_update_inode(trans, root, inode);
6777 if (err)
b0d5d10f 6778 goto out_fail_inode;
5f39d397 6779
db0a669f
NB
6780 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6781 dentry->d_name.name,
6782 dentry->d_name.len, 0, index);
39279cc3 6783 if (err)
b0d5d10f 6784 goto out_fail_inode;
5f39d397 6785
39279cc3 6786 d_instantiate(dentry, inode);
b0d5d10f
CM
6787 /*
6788 * mkdir is special. We're unlocking after we call d_instantiate
6789 * to avoid a race with nfsd calling d_instantiate.
6790 */
6791 unlock_new_inode(inode);
39279cc3 6792 drop_on_err = 0;
39279cc3
CM
6793
6794out_fail:
3a45bb20 6795 btrfs_end_transaction(trans);
c7cfb8a5
WS
6796 if (drop_on_err) {
6797 inode_dec_link_count(inode);
39279cc3 6798 iput(inode);
c7cfb8a5 6799 }
2ff7e61e
JM
6800 btrfs_balance_delayed_items(fs_info);
6801 btrfs_btree_balance_dirty(fs_info);
39279cc3 6802 return err;
b0d5d10f
CM
6803
6804out_fail_inode:
6805 unlock_new_inode(inode);
6806 goto out_fail;
39279cc3
CM
6807}
6808
e6c4efd8
QW
6809/* Find next extent map of a given extent map, caller needs to ensure locks */
6810static struct extent_map *next_extent_map(struct extent_map *em)
6811{
6812 struct rb_node *next;
6813
6814 next = rb_next(&em->rb_node);
6815 if (!next)
6816 return NULL;
6817 return container_of(next, struct extent_map, rb_node);
6818}
6819
6820static struct extent_map *prev_extent_map(struct extent_map *em)
6821{
6822 struct rb_node *prev;
6823
6824 prev = rb_prev(&em->rb_node);
6825 if (!prev)
6826 return NULL;
6827 return container_of(prev, struct extent_map, rb_node);
6828}
6829
d352ac68 6830/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6831 * the existing extent is the nearest extent to map_start,
d352ac68 6832 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6833 * the best fitted new extent into the tree.
d352ac68 6834 */
3b951516
CM
6835static int merge_extent_mapping(struct extent_map_tree *em_tree,
6836 struct extent_map *existing,
e6dcd2dc 6837 struct extent_map *em,
51f395ad 6838 u64 map_start)
3b951516 6839{
e6c4efd8
QW
6840 struct extent_map *prev;
6841 struct extent_map *next;
6842 u64 start;
6843 u64 end;
3b951516 6844 u64 start_diff;
3b951516 6845
e6dcd2dc 6846 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6847
6848 if (existing->start > map_start) {
6849 next = existing;
6850 prev = prev_extent_map(next);
6851 } else {
6852 prev = existing;
6853 next = next_extent_map(prev);
6854 }
6855
6856 start = prev ? extent_map_end(prev) : em->start;
6857 start = max_t(u64, start, em->start);
6858 end = next ? next->start : extent_map_end(em);
6859 end = min_t(u64, end, extent_map_end(em));
6860 start_diff = start - em->start;
6861 em->start = start;
6862 em->len = end - start;
c8b97818
CM
6863 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6864 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6865 em->block_start += start_diff;
c8b97818
CM
6866 em->block_len -= start_diff;
6867 }
09a2a8f9 6868 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6869}
6870
c8b97818 6871static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6872 struct page *page,
c8b97818
CM
6873 size_t pg_offset, u64 extent_offset,
6874 struct btrfs_file_extent_item *item)
6875{
6876 int ret;
6877 struct extent_buffer *leaf = path->nodes[0];
6878 char *tmp;
6879 size_t max_size;
6880 unsigned long inline_size;
6881 unsigned long ptr;
261507a0 6882 int compress_type;
c8b97818
CM
6883
6884 WARN_ON(pg_offset != 0);
261507a0 6885 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6886 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6887 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6888 btrfs_item_nr(path->slots[0]));
c8b97818 6889 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6890 if (!tmp)
6891 return -ENOMEM;
c8b97818
CM
6892 ptr = btrfs_file_extent_inline_start(item);
6893
6894 read_extent_buffer(leaf, tmp, ptr, inline_size);
6895
09cbfeaf 6896 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6897 ret = btrfs_decompress(compress_type, tmp, page,
6898 extent_offset, inline_size, max_size);
e1699d2d
ZB
6899
6900 /*
6901 * decompression code contains a memset to fill in any space between the end
6902 * of the uncompressed data and the end of max_size in case the decompressed
6903 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6904 * the end of an inline extent and the beginning of the next block, so we
6905 * cover that region here.
6906 */
6907
6908 if (max_size + pg_offset < PAGE_SIZE) {
6909 char *map = kmap(page);
6910 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6911 kunmap(page);
6912 }
c8b97818 6913 kfree(tmp);
166ae5a4 6914 return ret;
c8b97818
CM
6915}
6916
d352ac68
CM
6917/*
6918 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6919 * the ugly parts come from merging extents from the disk with the in-ram
6920 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6921 * where the in-ram extents might be locked pending data=ordered completion.
6922 *
6923 * This also copies inline extents directly into the page.
6924 */
fc4f21b1
NB
6925struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6926 struct page *page,
6927 size_t pg_offset, u64 start, u64 len,
6928 int create)
a52d9a80 6929{
fc4f21b1 6930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6931 int ret;
6932 int err = 0;
a52d9a80
CM
6933 u64 extent_start = 0;
6934 u64 extent_end = 0;
fc4f21b1 6935 u64 objectid = btrfs_ino(inode);
a52d9a80 6936 u32 found_type;
f421950f 6937 struct btrfs_path *path = NULL;
fc4f21b1 6938 struct btrfs_root *root = inode->root;
a52d9a80 6939 struct btrfs_file_extent_item *item;
5f39d397
CM
6940 struct extent_buffer *leaf;
6941 struct btrfs_key found_key;
a52d9a80 6942 struct extent_map *em = NULL;
fc4f21b1
NB
6943 struct extent_map_tree *em_tree = &inode->extent_tree;
6944 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6945 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6946 const bool new_inline = !page || create;
a52d9a80 6947
a52d9a80 6948again:
890871be 6949 read_lock(&em_tree->lock);
d1310b2e 6950 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6951 if (em)
0b246afa 6952 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6953 read_unlock(&em_tree->lock);
d1310b2e 6954
a52d9a80 6955 if (em) {
e1c4b745
CM
6956 if (em->start > start || em->start + em->len <= start)
6957 free_extent_map(em);
6958 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6959 free_extent_map(em);
6960 else
6961 goto out;
a52d9a80 6962 }
172ddd60 6963 em = alloc_extent_map();
a52d9a80 6964 if (!em) {
d1310b2e
CM
6965 err = -ENOMEM;
6966 goto out;
a52d9a80 6967 }
0b246afa 6968 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6969 em->start = EXTENT_MAP_HOLE;
445a6944 6970 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6971 em->len = (u64)-1;
c8b97818 6972 em->block_len = (u64)-1;
f421950f
CM
6973
6974 if (!path) {
6975 path = btrfs_alloc_path();
026fd317
JB
6976 if (!path) {
6977 err = -ENOMEM;
6978 goto out;
6979 }
6980 /*
6981 * Chances are we'll be called again, so go ahead and do
6982 * readahead
6983 */
e4058b54 6984 path->reada = READA_FORWARD;
f421950f
CM
6985 }
6986
179e29e4
CM
6987 ret = btrfs_lookup_file_extent(trans, root, path,
6988 objectid, start, trans != NULL);
a52d9a80
CM
6989 if (ret < 0) {
6990 err = ret;
6991 goto out;
6992 }
6993
6994 if (ret != 0) {
6995 if (path->slots[0] == 0)
6996 goto not_found;
6997 path->slots[0]--;
6998 }
6999
5f39d397
CM
7000 leaf = path->nodes[0];
7001 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 7002 struct btrfs_file_extent_item);
a52d9a80 7003 /* are we inside the extent that was found? */
5f39d397 7004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 7005 found_type = found_key.type;
5f39d397 7006 if (found_key.objectid != objectid ||
a52d9a80 7007 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7008 /*
7009 * If we backup past the first extent we want to move forward
7010 * and see if there is an extent in front of us, otherwise we'll
7011 * say there is a hole for our whole search range which can
7012 * cause problems.
7013 */
7014 extent_end = start;
7015 goto next;
a52d9a80
CM
7016 }
7017
5f39d397
CM
7018 found_type = btrfs_file_extent_type(leaf, item);
7019 extent_start = found_key.offset;
d899e052
YZ
7020 if (found_type == BTRFS_FILE_EXTENT_REG ||
7021 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7022 extent_end = extent_start +
db94535d 7023 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7024
7025 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7026 extent_start);
9036c102
YZ
7027 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7028 size_t size;
514ac8ad 7029 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7030 extent_end = ALIGN(extent_start + size,
0b246afa 7031 fs_info->sectorsize);
09ed2f16
LB
7032
7033 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7034 path->slots[0],
7035 extent_start);
9036c102 7036 }
25a50341 7037next:
9036c102
YZ
7038 if (start >= extent_end) {
7039 path->slots[0]++;
7040 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7041 ret = btrfs_next_leaf(root, path);
7042 if (ret < 0) {
7043 err = ret;
7044 goto out;
a52d9a80 7045 }
9036c102
YZ
7046 if (ret > 0)
7047 goto not_found;
7048 leaf = path->nodes[0];
a52d9a80 7049 }
9036c102
YZ
7050 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7051 if (found_key.objectid != objectid ||
7052 found_key.type != BTRFS_EXTENT_DATA_KEY)
7053 goto not_found;
7054 if (start + len <= found_key.offset)
7055 goto not_found;
e2eca69d
WS
7056 if (start > found_key.offset)
7057 goto next;
9036c102 7058 em->start = start;
70c8a91c 7059 em->orig_start = start;
9036c102
YZ
7060 em->len = found_key.offset - start;
7061 goto not_found_em;
7062 }
7063
fc4f21b1 7064 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7065 new_inline, em);
7ffbb598 7066
d899e052
YZ
7067 if (found_type == BTRFS_FILE_EXTENT_REG ||
7068 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7069 goto insert;
7070 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7071 unsigned long ptr;
a52d9a80 7072 char *map;
3326d1b0
CM
7073 size_t size;
7074 size_t extent_offset;
7075 size_t copy_size;
a52d9a80 7076
7ffbb598 7077 if (new_inline)
689f9346 7078 goto out;
5f39d397 7079
514ac8ad 7080 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7081 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7082 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7083 size - extent_offset);
3326d1b0 7084 em->start = extent_start + extent_offset;
0b246afa 7085 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7086 em->orig_block_len = em->len;
70c8a91c 7087 em->orig_start = em->start;
689f9346 7088 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7089 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7090 if (btrfs_file_extent_compression(leaf, item) !=
7091 BTRFS_COMPRESS_NONE) {
e40da0e5 7092 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7093 extent_offset, item);
166ae5a4
ZB
7094 if (ret) {
7095 err = ret;
7096 goto out;
7097 }
c8b97818
CM
7098 } else {
7099 map = kmap(page);
7100 read_extent_buffer(leaf, map + pg_offset, ptr,
7101 copy_size);
09cbfeaf 7102 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7103 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7104 PAGE_SIZE - pg_offset -
93c82d57
CM
7105 copy_size);
7106 }
c8b97818
CM
7107 kunmap(page);
7108 }
179e29e4
CM
7109 flush_dcache_page(page);
7110 } else if (create && PageUptodate(page)) {
6bf7e080 7111 BUG();
179e29e4
CM
7112 if (!trans) {
7113 kunmap(page);
7114 free_extent_map(em);
7115 em = NULL;
ff5714cc 7116
b3b4aa74 7117 btrfs_release_path(path);
7a7eaa40 7118 trans = btrfs_join_transaction(root);
ff5714cc 7119
3612b495
TI
7120 if (IS_ERR(trans))
7121 return ERR_CAST(trans);
179e29e4
CM
7122 goto again;
7123 }
c8b97818 7124 map = kmap(page);
70dec807 7125 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7126 copy_size);
c8b97818 7127 kunmap(page);
179e29e4 7128 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7129 }
d1310b2e 7130 set_extent_uptodate(io_tree, em->start,
507903b8 7131 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7132 goto insert;
a52d9a80
CM
7133 }
7134not_found:
7135 em->start = start;
70c8a91c 7136 em->orig_start = start;
d1310b2e 7137 em->len = len;
a52d9a80 7138not_found_em:
5f39d397 7139 em->block_start = EXTENT_MAP_HOLE;
9036c102 7140 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7141insert:
b3b4aa74 7142 btrfs_release_path(path);
d1310b2e 7143 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7144 btrfs_err(fs_info,
5d163e0e
JM
7145 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7146 em->start, em->len, start, len);
a52d9a80
CM
7147 err = -EIO;
7148 goto out;
7149 }
d1310b2e
CM
7150
7151 err = 0;
890871be 7152 write_lock(&em_tree->lock);
09a2a8f9 7153 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7154 /* it is possible that someone inserted the extent into the tree
7155 * while we had the lock dropped. It is also possible that
7156 * an overlapping map exists in the tree
7157 */
a52d9a80 7158 if (ret == -EEXIST) {
3b951516 7159 struct extent_map *existing;
e6dcd2dc
CM
7160
7161 ret = 0;
7162
e6c4efd8
QW
7163 existing = search_extent_mapping(em_tree, start, len);
7164 /*
7165 * existing will always be non-NULL, since there must be
7166 * extent causing the -EEXIST.
7167 */
8dff9c85 7168 if (existing->start == em->start &&
8e2bd3b7 7169 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7170 em->block_start == existing->block_start) {
7171 /*
8e2bd3b7
OS
7172 * The existing extent map already encompasses the
7173 * entire extent map we tried to add.
8dff9c85
CM
7174 */
7175 free_extent_map(em);
7176 em = existing;
7177 err = 0;
7178
7179 } else if (start >= extent_map_end(existing) ||
32be3a1a 7180 start <= existing->start) {
e6c4efd8
QW
7181 /*
7182 * The existing extent map is the one nearest to
7183 * the [start, start + len) range which overlaps
7184 */
7185 err = merge_extent_mapping(em_tree, existing,
7186 em, start);
e1c4b745 7187 free_extent_map(existing);
e6c4efd8 7188 if (err) {
3b951516
CM
7189 free_extent_map(em);
7190 em = NULL;
7191 }
7192 } else {
7193 free_extent_map(em);
7194 em = existing;
e6dcd2dc 7195 err = 0;
a52d9a80 7196 }
a52d9a80 7197 }
890871be 7198 write_unlock(&em_tree->lock);
a52d9a80 7199out:
1abe9b8a 7200
fc4f21b1 7201 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7202
527afb44 7203 btrfs_free_path(path);
a52d9a80 7204 if (trans) {
3a45bb20 7205 ret = btrfs_end_transaction(trans);
d397712b 7206 if (!err)
a52d9a80
CM
7207 err = ret;
7208 }
a52d9a80
CM
7209 if (err) {
7210 free_extent_map(em);
a52d9a80
CM
7211 return ERR_PTR(err);
7212 }
79787eaa 7213 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7214 return em;
7215}
7216
fc4f21b1
NB
7217struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7218 struct page *page,
7219 size_t pg_offset, u64 start, u64 len,
7220 int create)
ec29ed5b
CM
7221{
7222 struct extent_map *em;
7223 struct extent_map *hole_em = NULL;
7224 u64 range_start = start;
7225 u64 end;
7226 u64 found;
7227 u64 found_end;
7228 int err = 0;
7229
7230 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7231 if (IS_ERR(em))
7232 return em;
9986277e
DC
7233 /*
7234 * If our em maps to:
7235 * - a hole or
7236 * - a pre-alloc extent,
7237 * there might actually be delalloc bytes behind it.
7238 */
7239 if (em->block_start != EXTENT_MAP_HOLE &&
7240 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7241 return em;
7242 else
7243 hole_em = em;
ec29ed5b
CM
7244
7245 /* check to see if we've wrapped (len == -1 or similar) */
7246 end = start + len;
7247 if (end < start)
7248 end = (u64)-1;
7249 else
7250 end -= 1;
7251
7252 em = NULL;
7253
7254 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7255 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7256 end, len, EXTENT_DELALLOC, 1);
7257 found_end = range_start + found;
7258 if (found_end < range_start)
7259 found_end = (u64)-1;
7260
7261 /*
7262 * we didn't find anything useful, return
7263 * the original results from get_extent()
7264 */
7265 if (range_start > end || found_end <= start) {
7266 em = hole_em;
7267 hole_em = NULL;
7268 goto out;
7269 }
7270
7271 /* adjust the range_start to make sure it doesn't
7272 * go backwards from the start they passed in
7273 */
67871254 7274 range_start = max(start, range_start);
ec29ed5b
CM
7275 found = found_end - range_start;
7276
7277 if (found > 0) {
7278 u64 hole_start = start;
7279 u64 hole_len = len;
7280
172ddd60 7281 em = alloc_extent_map();
ec29ed5b
CM
7282 if (!em) {
7283 err = -ENOMEM;
7284 goto out;
7285 }
7286 /*
7287 * when btrfs_get_extent can't find anything it
7288 * returns one huge hole
7289 *
7290 * make sure what it found really fits our range, and
7291 * adjust to make sure it is based on the start from
7292 * the caller
7293 */
7294 if (hole_em) {
7295 u64 calc_end = extent_map_end(hole_em);
7296
7297 if (calc_end <= start || (hole_em->start > end)) {
7298 free_extent_map(hole_em);
7299 hole_em = NULL;
7300 } else {
7301 hole_start = max(hole_em->start, start);
7302 hole_len = calc_end - hole_start;
7303 }
7304 }
7305 em->bdev = NULL;
7306 if (hole_em && range_start > hole_start) {
7307 /* our hole starts before our delalloc, so we
7308 * have to return just the parts of the hole
7309 * that go until the delalloc starts
7310 */
7311 em->len = min(hole_len,
7312 range_start - hole_start);
7313 em->start = hole_start;
7314 em->orig_start = hole_start;
7315 /*
7316 * don't adjust block start at all,
7317 * it is fixed at EXTENT_MAP_HOLE
7318 */
7319 em->block_start = hole_em->block_start;
7320 em->block_len = hole_len;
f9e4fb53
LB
7321 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7322 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7323 } else {
7324 em->start = range_start;
7325 em->len = found;
7326 em->orig_start = range_start;
7327 em->block_start = EXTENT_MAP_DELALLOC;
7328 em->block_len = found;
7329 }
7330 } else if (hole_em) {
7331 return hole_em;
7332 }
7333out:
7334
7335 free_extent_map(hole_em);
7336 if (err) {
7337 free_extent_map(em);
7338 return ERR_PTR(err);
7339 }
7340 return em;
7341}
7342
5f9a8a51
FM
7343static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7344 const u64 start,
7345 const u64 len,
7346 const u64 orig_start,
7347 const u64 block_start,
7348 const u64 block_len,
7349 const u64 orig_block_len,
7350 const u64 ram_bytes,
7351 const int type)
7352{
7353 struct extent_map *em = NULL;
7354 int ret;
7355
5f9a8a51 7356 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7357 em = create_io_em(inode, start, len, orig_start,
7358 block_start, block_len, orig_block_len,
7359 ram_bytes,
7360 BTRFS_COMPRESS_NONE, /* compress_type */
7361 type);
5f9a8a51
FM
7362 if (IS_ERR(em))
7363 goto out;
7364 }
7365 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7366 len, block_len, type);
7367 if (ret) {
7368 if (em) {
7369 free_extent_map(em);
dcdbc059 7370 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7371 start + len - 1, 0);
7372 }
7373 em = ERR_PTR(ret);
7374 }
7375 out:
5f9a8a51
FM
7376
7377 return em;
7378}
7379
4b46fce2
JB
7380static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7381 u64 start, u64 len)
7382{
0b246afa 7383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7384 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7385 struct extent_map *em;
4b46fce2
JB
7386 struct btrfs_key ins;
7387 u64 alloc_hint;
7388 int ret;
4b46fce2 7389
4b46fce2 7390 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7391 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7392 0, alloc_hint, &ins, 1, 1);
00361589
JB
7393 if (ret)
7394 return ERR_PTR(ret);
4b46fce2 7395
5f9a8a51
FM
7396 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7397 ins.objectid, ins.offset, ins.offset,
6288d6ea 7398 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7399 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7400 if (IS_ERR(em))
2ff7e61e
JM
7401 btrfs_free_reserved_extent(fs_info, ins.objectid,
7402 ins.offset, 1);
de0ee0ed 7403
4b46fce2
JB
7404 return em;
7405}
7406
46bfbb5c
CM
7407/*
7408 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7409 * block must be cow'd
7410 */
00361589 7411noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7412 u64 *orig_start, u64 *orig_block_len,
7413 u64 *ram_bytes)
46bfbb5c 7414{
2ff7e61e 7415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7416 struct btrfs_path *path;
7417 int ret;
7418 struct extent_buffer *leaf;
7419 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7420 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7421 struct btrfs_file_extent_item *fi;
7422 struct btrfs_key key;
7423 u64 disk_bytenr;
7424 u64 backref_offset;
7425 u64 extent_end;
7426 u64 num_bytes;
7427 int slot;
7428 int found_type;
7ee9e440 7429 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7430
46bfbb5c
CM
7431 path = btrfs_alloc_path();
7432 if (!path)
7433 return -ENOMEM;
7434
f85b7379
DS
7435 ret = btrfs_lookup_file_extent(NULL, root, path,
7436 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7437 if (ret < 0)
7438 goto out;
7439
7440 slot = path->slots[0];
7441 if (ret == 1) {
7442 if (slot == 0) {
7443 /* can't find the item, must cow */
7444 ret = 0;
7445 goto out;
7446 }
7447 slot--;
7448 }
7449 ret = 0;
7450 leaf = path->nodes[0];
7451 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7452 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7453 key.type != BTRFS_EXTENT_DATA_KEY) {
7454 /* not our file or wrong item type, must cow */
7455 goto out;
7456 }
7457
7458 if (key.offset > offset) {
7459 /* Wrong offset, must cow */
7460 goto out;
7461 }
7462
7463 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7464 found_type = btrfs_file_extent_type(leaf, fi);
7465 if (found_type != BTRFS_FILE_EXTENT_REG &&
7466 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7467 /* not a regular extent, must cow */
7468 goto out;
7469 }
7ee9e440
JB
7470
7471 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7472 goto out;
7473
e77751aa
MX
7474 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7475 if (extent_end <= offset)
7476 goto out;
7477
46bfbb5c 7478 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7479 if (disk_bytenr == 0)
7480 goto out;
7481
7482 if (btrfs_file_extent_compression(leaf, fi) ||
7483 btrfs_file_extent_encryption(leaf, fi) ||
7484 btrfs_file_extent_other_encoding(leaf, fi))
7485 goto out;
7486
46bfbb5c
CM
7487 backref_offset = btrfs_file_extent_offset(leaf, fi);
7488
7ee9e440
JB
7489 if (orig_start) {
7490 *orig_start = key.offset - backref_offset;
7491 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7492 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7493 }
eb384b55 7494
2ff7e61e 7495 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7496 goto out;
7b2b7085
MX
7497
7498 num_bytes = min(offset + *len, extent_end) - offset;
7499 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7500 u64 range_end;
7501
da17066c
JM
7502 range_end = round_up(offset + num_bytes,
7503 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7504 ret = test_range_bit(io_tree, offset, range_end,
7505 EXTENT_DELALLOC, 0, NULL);
7506 if (ret) {
7507 ret = -EAGAIN;
7508 goto out;
7509 }
7510 }
7511
1bda19eb 7512 btrfs_release_path(path);
46bfbb5c
CM
7513
7514 /*
7515 * look for other files referencing this extent, if we
7516 * find any we must cow
7517 */
00361589 7518
e4c3b2dc 7519 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7520 key.offset - backref_offset, disk_bytenr);
00361589
JB
7521 if (ret) {
7522 ret = 0;
7523 goto out;
7524 }
46bfbb5c
CM
7525
7526 /*
7527 * adjust disk_bytenr and num_bytes to cover just the bytes
7528 * in this extent we are about to write. If there
7529 * are any csums in that range we have to cow in order
7530 * to keep the csums correct
7531 */
7532 disk_bytenr += backref_offset;
7533 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7534 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7535 goto out;
46bfbb5c
CM
7536 /*
7537 * all of the above have passed, it is safe to overwrite this extent
7538 * without cow
7539 */
eb384b55 7540 *len = num_bytes;
46bfbb5c
CM
7541 ret = 1;
7542out:
7543 btrfs_free_path(path);
7544 return ret;
7545}
7546
fc4adbff
AG
7547bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7548{
7549 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7550 bool found = false;
fc4adbff
AG
7551 void **pagep = NULL;
7552 struct page *page = NULL;
cc2b702c
DS
7553 unsigned long start_idx;
7554 unsigned long end_idx;
fc4adbff 7555
09cbfeaf 7556 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7557
7558 /*
7559 * end is the last byte in the last page. end == start is legal
7560 */
09cbfeaf 7561 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7562
7563 rcu_read_lock();
7564
7565 /* Most of the code in this while loop is lifted from
7566 * find_get_page. It's been modified to begin searching from a
7567 * page and return just the first page found in that range. If the
7568 * found idx is less than or equal to the end idx then we know that
7569 * a page exists. If no pages are found or if those pages are
7570 * outside of the range then we're fine (yay!) */
7571 while (page == NULL &&
7572 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7573 page = radix_tree_deref_slot(pagep);
7574 if (unlikely(!page))
7575 break;
7576
7577 if (radix_tree_exception(page)) {
809f9016
FM
7578 if (radix_tree_deref_retry(page)) {
7579 page = NULL;
fc4adbff 7580 continue;
809f9016 7581 }
fc4adbff
AG
7582 /*
7583 * Otherwise, shmem/tmpfs must be storing a swap entry
7584 * here as an exceptional entry: so return it without
7585 * attempting to raise page count.
7586 */
6fdef6d4 7587 page = NULL;
fc4adbff
AG
7588 break; /* TODO: Is this relevant for this use case? */
7589 }
7590
91405151
FM
7591 if (!page_cache_get_speculative(page)) {
7592 page = NULL;
fc4adbff 7593 continue;
91405151 7594 }
fc4adbff
AG
7595
7596 /*
7597 * Has the page moved?
7598 * This is part of the lockless pagecache protocol. See
7599 * include/linux/pagemap.h for details.
7600 */
7601 if (unlikely(page != *pagep)) {
09cbfeaf 7602 put_page(page);
fc4adbff
AG
7603 page = NULL;
7604 }
7605 }
7606
7607 if (page) {
7608 if (page->index <= end_idx)
7609 found = true;
09cbfeaf 7610 put_page(page);
fc4adbff
AG
7611 }
7612
7613 rcu_read_unlock();
7614 return found;
7615}
7616
eb838e73
JB
7617static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7618 struct extent_state **cached_state, int writing)
7619{
7620 struct btrfs_ordered_extent *ordered;
7621 int ret = 0;
7622
7623 while (1) {
7624 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7625 cached_state);
eb838e73
JB
7626 /*
7627 * We're concerned with the entire range that we're going to be
01327610 7628 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7629 * extents in this range.
7630 */
a776c6fa 7631 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7632 lockend - lockstart + 1);
7633
7634 /*
7635 * We need to make sure there are no buffered pages in this
7636 * range either, we could have raced between the invalidate in
7637 * generic_file_direct_write and locking the extent. The
7638 * invalidate needs to happen so that reads after a write do not
7639 * get stale data.
7640 */
fc4adbff
AG
7641 if (!ordered &&
7642 (!writing ||
7643 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7644 break;
7645
7646 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7647 cached_state, GFP_NOFS);
7648
7649 if (ordered) {
ade77029
FM
7650 /*
7651 * If we are doing a DIO read and the ordered extent we
7652 * found is for a buffered write, we can not wait for it
7653 * to complete and retry, because if we do so we can
7654 * deadlock with concurrent buffered writes on page
7655 * locks. This happens only if our DIO read covers more
7656 * than one extent map, if at this point has already
7657 * created an ordered extent for a previous extent map
7658 * and locked its range in the inode's io tree, and a
7659 * concurrent write against that previous extent map's
7660 * range and this range started (we unlock the ranges
7661 * in the io tree only when the bios complete and
7662 * buffered writes always lock pages before attempting
7663 * to lock range in the io tree).
7664 */
7665 if (writing ||
7666 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7667 btrfs_start_ordered_extent(inode, ordered, 1);
7668 else
7669 ret = -ENOTBLK;
eb838e73
JB
7670 btrfs_put_ordered_extent(ordered);
7671 } else {
eb838e73 7672 /*
b850ae14
FM
7673 * We could trigger writeback for this range (and wait
7674 * for it to complete) and then invalidate the pages for
7675 * this range (through invalidate_inode_pages2_range()),
7676 * but that can lead us to a deadlock with a concurrent
7677 * call to readpages() (a buffered read or a defrag call
7678 * triggered a readahead) on a page lock due to an
7679 * ordered dio extent we created before but did not have
7680 * yet a corresponding bio submitted (whence it can not
7681 * complete), which makes readpages() wait for that
7682 * ordered extent to complete while holding a lock on
7683 * that page.
eb838e73 7684 */
b850ae14 7685 ret = -ENOTBLK;
eb838e73
JB
7686 }
7687
ade77029
FM
7688 if (ret)
7689 break;
7690
eb838e73
JB
7691 cond_resched();
7692 }
7693
7694 return ret;
7695}
7696
6f9994db
LB
7697/* The callers of this must take lock_extent() */
7698static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7699 u64 orig_start, u64 block_start,
7700 u64 block_len, u64 orig_block_len,
7701 u64 ram_bytes, int compress_type,
7702 int type)
69ffb543
JB
7703{
7704 struct extent_map_tree *em_tree;
7705 struct extent_map *em;
7706 struct btrfs_root *root = BTRFS_I(inode)->root;
7707 int ret;
7708
6f9994db
LB
7709 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7710 type == BTRFS_ORDERED_COMPRESSED ||
7711 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7712 type == BTRFS_ORDERED_REGULAR);
6f9994db 7713
69ffb543
JB
7714 em_tree = &BTRFS_I(inode)->extent_tree;
7715 em = alloc_extent_map();
7716 if (!em)
7717 return ERR_PTR(-ENOMEM);
7718
7719 em->start = start;
7720 em->orig_start = orig_start;
7721 em->len = len;
7722 em->block_len = block_len;
7723 em->block_start = block_start;
7724 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7725 em->orig_block_len = orig_block_len;
cc95bef6 7726 em->ram_bytes = ram_bytes;
70c8a91c 7727 em->generation = -1;
69ffb543 7728 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7729 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7730 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7731 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7732 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7733 em->compress_type = compress_type;
7734 }
69ffb543
JB
7735
7736 do {
dcdbc059 7737 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7738 em->start + em->len - 1, 0);
7739 write_lock(&em_tree->lock);
09a2a8f9 7740 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7741 write_unlock(&em_tree->lock);
6f9994db
LB
7742 /*
7743 * The caller has taken lock_extent(), who could race with us
7744 * to add em?
7745 */
69ffb543
JB
7746 } while (ret == -EEXIST);
7747
7748 if (ret) {
7749 free_extent_map(em);
7750 return ERR_PTR(ret);
7751 }
7752
6f9994db 7753 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7754 return em;
7755}
7756
4b46fce2
JB
7757static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7758 struct buffer_head *bh_result, int create)
7759{
0b246afa 7760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7761 struct extent_map *em;
eb838e73 7762 struct extent_state *cached_state = NULL;
50745b0a 7763 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7764 u64 start = iblock << inode->i_blkbits;
eb838e73 7765 u64 lockstart, lockend;
4b46fce2 7766 u64 len = bh_result->b_size;
eb838e73 7767 int unlock_bits = EXTENT_LOCKED;
0934856d 7768 int ret = 0;
eb838e73 7769
172a5049 7770 if (create)
3266789f 7771 unlock_bits |= EXTENT_DIRTY;
172a5049 7772 else
0b246afa 7773 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7774
c329861d
JB
7775 lockstart = start;
7776 lockend = start + len - 1;
7777
e1cbbfa5
JB
7778 if (current->journal_info) {
7779 /*
7780 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7781 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7782 * confused.
7783 */
50745b0a 7784 dio_data = current->journal_info;
e1cbbfa5
JB
7785 current->journal_info = NULL;
7786 }
7787
eb838e73
JB
7788 /*
7789 * If this errors out it's because we couldn't invalidate pagecache for
7790 * this range and we need to fallback to buffered.
7791 */
9c9464cc
FM
7792 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7793 create)) {
7794 ret = -ENOTBLK;
7795 goto err;
7796 }
eb838e73 7797
fc4f21b1 7798 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7799 if (IS_ERR(em)) {
7800 ret = PTR_ERR(em);
7801 goto unlock_err;
7802 }
4b46fce2
JB
7803
7804 /*
7805 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7806 * io. INLINE is special, and we could probably kludge it in here, but
7807 * it's still buffered so for safety lets just fall back to the generic
7808 * buffered path.
7809 *
7810 * For COMPRESSED we _have_ to read the entire extent in so we can
7811 * decompress it, so there will be buffering required no matter what we
7812 * do, so go ahead and fallback to buffered.
7813 *
01327610 7814 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7815 * to buffered IO. Don't blame me, this is the price we pay for using
7816 * the generic code.
7817 */
7818 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7819 em->block_start == EXTENT_MAP_INLINE) {
7820 free_extent_map(em);
eb838e73
JB
7821 ret = -ENOTBLK;
7822 goto unlock_err;
4b46fce2
JB
7823 }
7824
7825 /* Just a good old fashioned hole, return */
7826 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7827 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7828 free_extent_map(em);
eb838e73 7829 goto unlock_err;
4b46fce2
JB
7830 }
7831
7832 /*
7833 * We don't allocate a new extent in the following cases
7834 *
7835 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7836 * existing extent.
7837 * 2) The extent is marked as PREALLOC. We're good to go here and can
7838 * just use the extent.
7839 *
7840 */
46bfbb5c 7841 if (!create) {
eb838e73
JB
7842 len = min(len, em->len - (start - em->start));
7843 lockstart = start + len;
7844 goto unlock;
46bfbb5c 7845 }
4b46fce2
JB
7846
7847 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7848 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7849 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7850 int type;
eb384b55 7851 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7852
7853 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7854 type = BTRFS_ORDERED_PREALLOC;
7855 else
7856 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7857 len = min(len, em->len - (start - em->start));
4b46fce2 7858 block_start = em->block_start + (start - em->start);
46bfbb5c 7859
00361589 7860 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7861 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7862 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7863 struct extent_map *em2;
0b901916 7864
5f9a8a51
FM
7865 em2 = btrfs_create_dio_extent(inode, start, len,
7866 orig_start, block_start,
7867 len, orig_block_len,
7868 ram_bytes, type);
0b246afa 7869 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7870 if (type == BTRFS_ORDERED_PREALLOC) {
7871 free_extent_map(em);
5f9a8a51 7872 em = em2;
69ffb543 7873 }
5f9a8a51
FM
7874 if (em2 && IS_ERR(em2)) {
7875 ret = PTR_ERR(em2);
eb838e73 7876 goto unlock_err;
46bfbb5c 7877 }
18513091
WX
7878 /*
7879 * For inode marked NODATACOW or extent marked PREALLOC,
7880 * use the existing or preallocated extent, so does not
7881 * need to adjust btrfs_space_info's bytes_may_use.
7882 */
7883 btrfs_free_reserved_data_space_noquota(inode,
7884 start, len);
46bfbb5c 7885 goto unlock;
4b46fce2 7886 }
4b46fce2 7887 }
00361589 7888
46bfbb5c
CM
7889 /*
7890 * this will cow the extent, reset the len in case we changed
7891 * it above
7892 */
7893 len = bh_result->b_size;
70c8a91c
JB
7894 free_extent_map(em);
7895 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7896 if (IS_ERR(em)) {
7897 ret = PTR_ERR(em);
7898 goto unlock_err;
7899 }
46bfbb5c
CM
7900 len = min(len, em->len - (start - em->start));
7901unlock:
4b46fce2
JB
7902 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7903 inode->i_blkbits;
46bfbb5c 7904 bh_result->b_size = len;
4b46fce2
JB
7905 bh_result->b_bdev = em->bdev;
7906 set_buffer_mapped(bh_result);
c3473e83
JB
7907 if (create) {
7908 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7909 set_buffer_new(bh_result);
7910
7911 /*
7912 * Need to update the i_size under the extent lock so buffered
7913 * readers will get the updated i_size when we unlock.
7914 */
4aaedfb0 7915 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7916 i_size_write(inode, start + len);
0934856d 7917
50745b0a 7918 WARN_ON(dio_data->reserve < len);
7919 dio_data->reserve -= len;
f28a4928 7920 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7921 current->journal_info = dio_data;
c3473e83 7922 }
4b46fce2 7923
eb838e73
JB
7924 /*
7925 * In the case of write we need to clear and unlock the entire range,
7926 * in the case of read we need to unlock only the end area that we
7927 * aren't using if there is any left over space.
7928 */
24c03fa5 7929 if (lockstart < lockend) {
0934856d
MX
7930 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7931 lockend, unlock_bits, 1, 0,
7932 &cached_state, GFP_NOFS);
24c03fa5 7933 } else {
eb838e73 7934 free_extent_state(cached_state);
24c03fa5 7935 }
eb838e73 7936
4b46fce2
JB
7937 free_extent_map(em);
7938
7939 return 0;
eb838e73
JB
7940
7941unlock_err:
eb838e73
JB
7942 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7943 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7944err:
50745b0a 7945 if (dio_data)
7946 current->journal_info = dio_data;
eb838e73 7947 return ret;
4b46fce2
JB
7948}
7949
58efbc9f
OS
7950static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7951 struct bio *bio,
7952 int mirror_num)
8b110e39 7953{
2ff7e61e 7954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7955 blk_status_t ret;
8b110e39 7956
37226b21 7957 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7958
7959 bio_get(bio);
7960
2ff7e61e 7961 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7962 if (ret)
7963 goto err;
7964
2ff7e61e 7965 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7966err:
7967 bio_put(bio);
7968 return ret;
7969}
7970
7971static int btrfs_check_dio_repairable(struct inode *inode,
7972 struct bio *failed_bio,
7973 struct io_failure_record *failrec,
7974 int failed_mirror)
7975{
ab8d0fc4 7976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7977 int num_copies;
7978
ab8d0fc4 7979 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7980 if (num_copies == 1) {
7981 /*
7982 * we only have a single copy of the data, so don't bother with
7983 * all the retry and error correction code that follows. no
7984 * matter what the error is, it is very likely to persist.
7985 */
ab8d0fc4
JM
7986 btrfs_debug(fs_info,
7987 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7988 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7989 return 0;
7990 }
7991
7992 failrec->failed_mirror = failed_mirror;
7993 failrec->this_mirror++;
7994 if (failrec->this_mirror == failed_mirror)
7995 failrec->this_mirror++;
7996
7997 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7998 btrfs_debug(fs_info,
7999 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8000 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
8001 return 0;
8002 }
8003
8004 return 1;
8005}
8006
58efbc9f
OS
8007static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8008 struct page *page, unsigned int pgoff,
8009 u64 start, u64 end, int failed_mirror,
8010 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
8011{
8012 struct io_failure_record *failrec;
7870d082
JB
8013 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8014 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
8015 struct bio *bio;
8016 int isector;
f1c77c55 8017 unsigned int read_mode = 0;
17347cec 8018 int segs;
8b110e39 8019 int ret;
58efbc9f 8020 blk_status_t status;
8b110e39 8021
37226b21 8022 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
8023
8024 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8025 if (ret)
58efbc9f 8026 return errno_to_blk_status(ret);
8b110e39
MX
8027
8028 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8029 failed_mirror);
8030 if (!ret) {
7870d082 8031 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 8032 return BLK_STS_IOERR;
8b110e39
MX
8033 }
8034
17347cec
LB
8035 segs = bio_segments(failed_bio);
8036 if (segs > 1 ||
8037 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8038 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8039
8040 isector = start - btrfs_io_bio(failed_bio)->logical;
8041 isector >>= inode->i_sb->s_blocksize_bits;
8042 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8043 pgoff, isector, repair_endio, repair_arg);
37226b21 8044 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8045
8046 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 8047 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
8048 read_mode, failrec->this_mirror, failrec->in_validation);
8049
58efbc9f
OS
8050 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8051 if (status) {
7870d082 8052 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8053 bio_put(bio);
8054 }
8055
58efbc9f 8056 return status;
8b110e39
MX
8057}
8058
8059struct btrfs_retry_complete {
8060 struct completion done;
8061 struct inode *inode;
8062 u64 start;
8063 int uptodate;
8064};
8065
4246a0b6 8066static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8067{
8068 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8069 struct inode *inode = done->inode;
8b110e39 8070 struct bio_vec *bvec;
7870d082 8071 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8072 int i;
8073
4e4cbee9 8074 if (bio->bi_status)
8b110e39
MX
8075 goto end;
8076
2dabb324 8077 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8078 io_tree = &BTRFS_I(inode)->io_tree;
8079 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8080 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8081
8b110e39 8082 done->uptodate = 1;
c09abff8 8083 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8084 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8085 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8086 io_tree, done->start, bvec->bv_page,
8087 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8088end:
8089 complete(&done->done);
8090 bio_put(bio);
8091}
8092
58efbc9f
OS
8093static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8094 struct btrfs_io_bio *io_bio)
4b46fce2 8095{
2dabb324 8096 struct btrfs_fs_info *fs_info;
17347cec
LB
8097 struct bio_vec bvec;
8098 struct bvec_iter iter;
8b110e39 8099 struct btrfs_retry_complete done;
4b46fce2 8100 u64 start;
2dabb324
CR
8101 unsigned int pgoff;
8102 u32 sectorsize;
8103 int nr_sectors;
58efbc9f
OS
8104 blk_status_t ret;
8105 blk_status_t err = BLK_STS_OK;
4b46fce2 8106
2dabb324 8107 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8108 sectorsize = fs_info->sectorsize;
2dabb324 8109
8b110e39
MX
8110 start = io_bio->logical;
8111 done.inode = inode;
17347cec 8112 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8113
17347cec
LB
8114 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8115 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8116 pgoff = bvec.bv_offset;
2dabb324
CR
8117
8118next_block_or_try_again:
8b110e39
MX
8119 done.uptodate = 0;
8120 done.start = start;
8121 init_completion(&done.done);
8122
17347cec 8123 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8124 pgoff, start, start + sectorsize - 1,
8125 io_bio->mirror_num,
8126 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8127 if (ret) {
8128 err = ret;
8129 goto next;
8130 }
8b110e39 8131
9c17f6cd 8132 wait_for_completion_io(&done.done);
8b110e39
MX
8133
8134 if (!done.uptodate) {
8135 /* We might have another mirror, so try again */
2dabb324 8136 goto next_block_or_try_again;
8b110e39
MX
8137 }
8138
629ebf4f 8139next:
2dabb324
CR
8140 start += sectorsize;
8141
97bf5a55
LB
8142 nr_sectors--;
8143 if (nr_sectors) {
2dabb324 8144 pgoff += sectorsize;
97bf5a55 8145 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8146 goto next_block_or_try_again;
8147 }
8b110e39
MX
8148 }
8149
629ebf4f 8150 return err;
8b110e39
MX
8151}
8152
4246a0b6 8153static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8154{
8155 struct btrfs_retry_complete *done = bio->bi_private;
8156 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8157 struct extent_io_tree *io_tree, *failure_tree;
8158 struct inode *inode = done->inode;
8b110e39
MX
8159 struct bio_vec *bvec;
8160 int uptodate;
8161 int ret;
8162 int i;
8163
4e4cbee9 8164 if (bio->bi_status)
8b110e39
MX
8165 goto end;
8166
8167 uptodate = 1;
2dabb324 8168
2dabb324 8169 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8170 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8171
7870d082
JB
8172 io_tree = &BTRFS_I(inode)->io_tree;
8173 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8174
c09abff8 8175 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8176 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8177 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8178 bvec->bv_offset, done->start,
8179 bvec->bv_len);
8b110e39 8180 if (!ret)
7870d082
JB
8181 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8182 failure_tree, io_tree, done->start,
8183 bvec->bv_page,
8184 btrfs_ino(BTRFS_I(inode)),
8185 bvec->bv_offset);
8b110e39
MX
8186 else
8187 uptodate = 0;
8188 }
8189
8190 done->uptodate = uptodate;
8191end:
8192 complete(&done->done);
8193 bio_put(bio);
8194}
8195
4e4cbee9
CH
8196static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8197 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8198{
2dabb324 8199 struct btrfs_fs_info *fs_info;
17347cec
LB
8200 struct bio_vec bvec;
8201 struct bvec_iter iter;
8b110e39
MX
8202 struct btrfs_retry_complete done;
8203 u64 start;
8204 u64 offset = 0;
2dabb324
CR
8205 u32 sectorsize;
8206 int nr_sectors;
8207 unsigned int pgoff;
8208 int csum_pos;
ef7cdac1 8209 bool uptodate = (err == 0);
8b110e39 8210 int ret;
58efbc9f 8211 blk_status_t status;
dc380aea 8212
2dabb324 8213 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8214 sectorsize = fs_info->sectorsize;
2dabb324 8215
58efbc9f 8216 err = BLK_STS_OK;
c1dc0896 8217 start = io_bio->logical;
8b110e39 8218 done.inode = inode;
17347cec 8219 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8220
17347cec
LB
8221 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8222 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8223
17347cec 8224 pgoff = bvec.bv_offset;
2dabb324 8225next_block:
ef7cdac1
LB
8226 if (uptodate) {
8227 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8228 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8229 bvec.bv_page, pgoff, start, sectorsize);
8230 if (likely(!ret))
8231 goto next;
8232 }
8b110e39
MX
8233try_again:
8234 done.uptodate = 0;
8235 done.start = start;
8236 init_completion(&done.done);
8237
58efbc9f
OS
8238 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8239 pgoff, start, start + sectorsize - 1,
8240 io_bio->mirror_num, btrfs_retry_endio,
8241 &done);
8242 if (status) {
8243 err = status;
8b110e39
MX
8244 goto next;
8245 }
8246
9c17f6cd 8247 wait_for_completion_io(&done.done);
8b110e39
MX
8248
8249 if (!done.uptodate) {
8250 /* We might have another mirror, so try again */
8251 goto try_again;
8252 }
8253next:
2dabb324
CR
8254 offset += sectorsize;
8255 start += sectorsize;
8256
8257 ASSERT(nr_sectors);
8258
97bf5a55
LB
8259 nr_sectors--;
8260 if (nr_sectors) {
2dabb324 8261 pgoff += sectorsize;
97bf5a55 8262 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8263 goto next_block;
8264 }
2c30c71b 8265 }
c1dc0896
MX
8266
8267 return err;
8268}
8269
4e4cbee9
CH
8270static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8271 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8272{
8273 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8274
8275 if (skip_csum) {
8276 if (unlikely(err))
8277 return __btrfs_correct_data_nocsum(inode, io_bio);
8278 else
58efbc9f 8279 return BLK_STS_OK;
8b110e39
MX
8280 } else {
8281 return __btrfs_subio_endio_read(inode, io_bio, err);
8282 }
8283}
8284
4246a0b6 8285static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8286{
8287 struct btrfs_dio_private *dip = bio->bi_private;
8288 struct inode *inode = dip->inode;
8289 struct bio *dio_bio;
8290 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8291 blk_status_t err = bio->bi_status;
c1dc0896 8292
99c4e3b9 8293 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8294 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8295
4b46fce2 8296 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8297 dip->logical_offset + dip->bytes - 1);
9be3395b 8298 dio_bio = dip->dio_bio;
4b46fce2 8299
4b46fce2 8300 kfree(dip);
c0da7aa1 8301
99c4e3b9 8302 dio_bio->bi_status = err;
4055351c 8303 dio_end_io(dio_bio);
23ea8e5a
MX
8304
8305 if (io_bio->end_io)
4e4cbee9 8306 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8307 bio_put(bio);
4b46fce2
JB
8308}
8309
52427260
QW
8310static void __endio_write_update_ordered(struct inode *inode,
8311 const u64 offset, const u64 bytes,
8312 const bool uptodate)
4b46fce2 8313{
0b246afa 8314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8315 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8316 struct btrfs_workqueue *wq;
8317 btrfs_work_func_t func;
14543774
FM
8318 u64 ordered_offset = offset;
8319 u64 ordered_bytes = bytes;
67c003f9 8320 u64 last_offset;
4b46fce2
JB
8321 int ret;
8322
52427260
QW
8323 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8324 wq = fs_info->endio_freespace_worker;
8325 func = btrfs_freespace_write_helper;
8326 } else {
8327 wq = fs_info->endio_write_workers;
8328 func = btrfs_endio_write_helper;
8329 }
8330
163cf09c 8331again:
67c003f9 8332 last_offset = ordered_offset;
163cf09c
CM
8333 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8334 &ordered_offset,
4246a0b6 8335 ordered_bytes,
14543774 8336 uptodate);
4b46fce2 8337 if (!ret)
163cf09c 8338 goto out_test;
4b46fce2 8339
52427260
QW
8340 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8341 btrfs_queue_work(wq, &ordered->work);
163cf09c 8342out_test:
67c003f9
NA
8343 /*
8344 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8345 * in the range, we can exit.
8346 */
8347 if (ordered_offset == last_offset)
8348 return;
163cf09c
CM
8349 /*
8350 * our bio might span multiple ordered extents. If we haven't
8351 * completed the accounting for the whole dio, go back and try again
8352 */
14543774
FM
8353 if (ordered_offset < offset + bytes) {
8354 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8355 ordered = NULL;
163cf09c
CM
8356 goto again;
8357 }
14543774
FM
8358}
8359
8360static void btrfs_endio_direct_write(struct bio *bio)
8361{
8362 struct btrfs_dio_private *dip = bio->bi_private;
8363 struct bio *dio_bio = dip->dio_bio;
8364
52427260 8365 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8366 dip->bytes, !bio->bi_status);
4b46fce2 8367
4b46fce2 8368 kfree(dip);
c0da7aa1 8369
4e4cbee9 8370 dio_bio->bi_status = bio->bi_status;
4055351c 8371 dio_end_io(dio_bio);
9be3395b 8372 bio_put(bio);
4b46fce2
JB
8373}
8374
8c27cb35 8375static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8376 struct bio *bio, int mirror_num,
8377 unsigned long bio_flags, u64 offset)
8378{
c6100a4b 8379 struct inode *inode = private_data;
4e4cbee9 8380 blk_status_t ret;
2ff7e61e 8381 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8382 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8383 return 0;
8384}
8385
4246a0b6 8386static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8387{
8388 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8389 blk_status_t err = bio->bi_status;
e65e1535 8390
8b110e39
MX
8391 if (err)
8392 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8393 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8394 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8395 bio->bi_opf,
8b110e39
MX
8396 (unsigned long long)bio->bi_iter.bi_sector,
8397 bio->bi_iter.bi_size, err);
8398
8399 if (dip->subio_endio)
8400 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8401
8402 if (err) {
e65e1535
MX
8403 dip->errors = 1;
8404
8405 /*
8406 * before atomic variable goto zero, we must make sure
8407 * dip->errors is perceived to be set.
8408 */
4e857c58 8409 smp_mb__before_atomic();
e65e1535
MX
8410 }
8411
8412 /* if there are more bios still pending for this dio, just exit */
8413 if (!atomic_dec_and_test(&dip->pending_bios))
8414 goto out;
8415
9be3395b 8416 if (dip->errors) {
e65e1535 8417 bio_io_error(dip->orig_bio);
9be3395b 8418 } else {
2dbe0c77 8419 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8420 bio_endio(dip->orig_bio);
e65e1535
MX
8421 }
8422out:
8423 bio_put(bio);
8424}
8425
4e4cbee9 8426static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8427 struct btrfs_dio_private *dip,
8428 struct bio *bio,
8429 u64 file_offset)
8430{
8431 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8432 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8433 blk_status_t ret;
c1dc0896
MX
8434
8435 /*
8436 * We load all the csum data we need when we submit
8437 * the first bio to reduce the csum tree search and
8438 * contention.
8439 */
8440 if (dip->logical_offset == file_offset) {
2ff7e61e 8441 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8442 file_offset);
8443 if (ret)
8444 return ret;
8445 }
8446
8447 if (bio == dip->orig_bio)
8448 return 0;
8449
8450 file_offset -= dip->logical_offset;
8451 file_offset >>= inode->i_sb->s_blocksize_bits;
8452 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8453
8454 return 0;
8455}
8456
58efbc9f
OS
8457static inline blk_status_t
8458__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8459 int async_submit)
e65e1535 8460{
0b246afa 8461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8462 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8463 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8464 blk_status_t ret;
e65e1535 8465
b812ce28
JB
8466 if (async_submit)
8467 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8468
e65e1535 8469 bio_get(bio);
5fd02043
JB
8470
8471 if (!write) {
0b246afa 8472 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8473 if (ret)
8474 goto err;
8475 }
e65e1535 8476
e6961cac 8477 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8478 goto map;
8479
8480 if (write && async_submit) {
c6100a4b
JB
8481 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8482 file_offset, inode,
0b246afa
JM
8483 __btrfs_submit_bio_start_direct_io,
8484 __btrfs_submit_bio_done);
e65e1535 8485 goto err;
1ae39938
JB
8486 } else if (write) {
8487 /*
8488 * If we aren't doing async submit, calculate the csum of the
8489 * bio now.
8490 */
2ff7e61e 8491 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8492 if (ret)
8493 goto err;
23ea8e5a 8494 } else {
2ff7e61e 8495 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8496 file_offset);
c2db1073
TI
8497 if (ret)
8498 goto err;
8499 }
1ae39938 8500map:
9b4a9b28 8501 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535
MX
8502err:
8503 bio_put(bio);
8504 return ret;
8505}
8506
e6961cac 8507static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8508{
8509 struct inode *inode = dip->inode;
0b246afa 8510 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8511 struct bio *bio;
8512 struct bio *orig_bio = dip->orig_bio;
4f024f37 8513 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8514 u64 file_offset = dip->logical_offset;
e65e1535 8515 u64 map_length;
1ae39938 8516 int async_submit = 0;
725130ba
LB
8517 u64 submit_len;
8518 int clone_offset = 0;
8519 int clone_len;
5f4dc8fc 8520 int ret;
58efbc9f 8521 blk_status_t status;
e65e1535 8522
4f024f37 8523 map_length = orig_bio->bi_iter.bi_size;
725130ba 8524 submit_len = map_length;
0b246afa
JM
8525 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8526 &map_length, NULL, 0);
7a5c3c9b 8527 if (ret)
e65e1535 8528 return -EIO;
facc8a22 8529
725130ba 8530 if (map_length >= submit_len) {
02f57c7a 8531 bio = orig_bio;
c1dc0896 8532 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8533 goto submit;
8534 }
8535
53b381b3 8536 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8537 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8538 async_submit = 0;
8539 else
8540 async_submit = 1;
8541
725130ba
LB
8542 /* bio split */
8543 ASSERT(map_length <= INT_MAX);
02f57c7a 8544 atomic_inc(&dip->pending_bios);
3c91ee69 8545 do {
725130ba 8546 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8547
725130ba
LB
8548 /*
8549 * This will never fail as it's passing GPF_NOFS and
8550 * the allocation is backed by btrfs_bioset.
8551 */
e477094f 8552 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8553 clone_len);
8554 bio->bi_private = dip;
8555 bio->bi_end_io = btrfs_end_dio_bio;
8556 btrfs_io_bio(bio)->logical = file_offset;
8557
8558 ASSERT(submit_len >= clone_len);
8559 submit_len -= clone_len;
8560 if (submit_len == 0)
8561 break;
e65e1535 8562
725130ba
LB
8563 /*
8564 * Increase the count before we submit the bio so we know
8565 * the end IO handler won't happen before we increase the
8566 * count. Otherwise, the dip might get freed before we're
8567 * done setting it up.
8568 */
8569 atomic_inc(&dip->pending_bios);
e65e1535 8570
66ba772e 8571 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8572 async_submit);
8573 if (status) {
725130ba
LB
8574 bio_put(bio);
8575 atomic_dec(&dip->pending_bios);
8576 goto out_err;
8577 }
e65e1535 8578
725130ba
LB
8579 clone_offset += clone_len;
8580 start_sector += clone_len >> 9;
8581 file_offset += clone_len;
5f4dc8fc 8582
725130ba
LB
8583 map_length = submit_len;
8584 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8585 start_sector << 9, &map_length, NULL, 0);
8586 if (ret)
8587 goto out_err;
3c91ee69 8588 } while (submit_len > 0);
e65e1535 8589
02f57c7a 8590submit:
66ba772e 8591 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8592 if (!status)
e65e1535
MX
8593 return 0;
8594
8595 bio_put(bio);
8596out_err:
8597 dip->errors = 1;
8598 /*
8599 * before atomic variable goto zero, we must
8600 * make sure dip->errors is perceived to be set.
8601 */
4e857c58 8602 smp_mb__before_atomic();
e65e1535
MX
8603 if (atomic_dec_and_test(&dip->pending_bios))
8604 bio_io_error(dip->orig_bio);
8605
8606 /* bio_end_io() will handle error, so we needn't return it */
8607 return 0;
8608}
8609
8a4c1e42
MC
8610static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8611 loff_t file_offset)
4b46fce2 8612{
61de718f 8613 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8614 struct bio *bio = NULL;
8615 struct btrfs_io_bio *io_bio;
8a4c1e42 8616 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8617 int ret = 0;
8618
8b6c1d56 8619 bio = btrfs_bio_clone(dio_bio);
9be3395b 8620
c1dc0896 8621 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8622 if (!dip) {
8623 ret = -ENOMEM;
61de718f 8624 goto free_ordered;
4b46fce2 8625 }
4b46fce2 8626
9be3395b 8627 dip->private = dio_bio->bi_private;
4b46fce2
JB
8628 dip->inode = inode;
8629 dip->logical_offset = file_offset;
4f024f37
KO
8630 dip->bytes = dio_bio->bi_iter.bi_size;
8631 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8632 bio->bi_private = dip;
8633 dip->orig_bio = bio;
9be3395b 8634 dip->dio_bio = dio_bio;
e65e1535 8635 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8636 io_bio = btrfs_io_bio(bio);
8637 io_bio->logical = file_offset;
4b46fce2 8638
c1dc0896 8639 if (write) {
3892ac90 8640 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8641 } else {
3892ac90 8642 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8643 dip->subio_endio = btrfs_subio_endio_read;
8644 }
4b46fce2 8645
f28a4928
FM
8646 /*
8647 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8648 * even if we fail to submit a bio, because in such case we do the
8649 * corresponding error handling below and it must not be done a second
8650 * time by btrfs_direct_IO().
8651 */
8652 if (write) {
8653 struct btrfs_dio_data *dio_data = current->journal_info;
8654
8655 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8656 dip->bytes;
8657 dio_data->unsubmitted_oe_range_start =
8658 dio_data->unsubmitted_oe_range_end;
8659 }
8660
e6961cac 8661 ret = btrfs_submit_direct_hook(dip);
e65e1535 8662 if (!ret)
eaf25d93 8663 return;
9be3395b 8664
3892ac90
LB
8665 if (io_bio->end_io)
8666 io_bio->end_io(io_bio, ret);
9be3395b 8667
4b46fce2
JB
8668free_ordered:
8669 /*
61de718f
FM
8670 * If we arrived here it means either we failed to submit the dip
8671 * or we either failed to clone the dio_bio or failed to allocate the
8672 * dip. If we cloned the dio_bio and allocated the dip, we can just
8673 * call bio_endio against our io_bio so that we get proper resource
8674 * cleanup if we fail to submit the dip, otherwise, we must do the
8675 * same as btrfs_endio_direct_[write|read] because we can't call these
8676 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8677 */
3892ac90 8678 if (bio && dip) {
054ec2f6 8679 bio_io_error(bio);
61de718f 8680 /*
3892ac90 8681 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8682 * and all the cleanup and final put for dio_bio (through
8683 * dio_end_io()).
8684 */
8685 dip = NULL;
3892ac90 8686 bio = NULL;
61de718f 8687 } else {
14543774 8688 if (write)
52427260 8689 __endio_write_update_ordered(inode,
14543774
FM
8690 file_offset,
8691 dio_bio->bi_iter.bi_size,
52427260 8692 false);
14543774 8693 else
61de718f
FM
8694 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8695 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8696
4e4cbee9 8697 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8698 /*
8699 * Releases and cleans up our dio_bio, no need to bio_put()
8700 * nor bio_endio()/bio_io_error() against dio_bio.
8701 */
4055351c 8702 dio_end_io(dio_bio);
4b46fce2 8703 }
3892ac90
LB
8704 if (bio)
8705 bio_put(bio);
61de718f 8706 kfree(dip);
4b46fce2
JB
8707}
8708
2ff7e61e 8709static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8710 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8711{
8712 int seg;
a1b75f7d 8713 int i;
0b246afa 8714 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8715 ssize_t retval = -EINVAL;
5a5f79b5
CM
8716
8717 if (offset & blocksize_mask)
8718 goto out;
8719
28060d5d
AV
8720 if (iov_iter_alignment(iter) & blocksize_mask)
8721 goto out;
a1b75f7d 8722
28060d5d 8723 /* If this is a write we don't need to check anymore */
cd27e455 8724 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8725 return 0;
8726 /*
8727 * Check to make sure we don't have duplicate iov_base's in this
8728 * iovec, if so return EINVAL, otherwise we'll get csum errors
8729 * when reading back.
8730 */
8731 for (seg = 0; seg < iter->nr_segs; seg++) {
8732 for (i = seg + 1; i < iter->nr_segs; i++) {
8733 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8734 goto out;
8735 }
5a5f79b5
CM
8736 }
8737 retval = 0;
8738out:
8739 return retval;
8740}
eb838e73 8741
c8b8e32d 8742static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8743{
4b46fce2
JB
8744 struct file *file = iocb->ki_filp;
8745 struct inode *inode = file->f_mapping->host;
0b246afa 8746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8747 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8748 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8749 loff_t offset = iocb->ki_pos;
0934856d 8750 size_t count = 0;
2e60a51e 8751 int flags = 0;
38851cc1
MX
8752 bool wakeup = true;
8753 bool relock = false;
0934856d 8754 ssize_t ret;
4b46fce2 8755
8c70c9f8 8756 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8757 return 0;
3f7c579c 8758
fe0f07d0 8759 inode_dio_begin(inode);
38851cc1 8760
0e267c44 8761 /*
41bd9ca4
MX
8762 * The generic stuff only does filemap_write_and_wait_range, which
8763 * isn't enough if we've written compressed pages to this area, so
8764 * we need to flush the dirty pages again to make absolutely sure
8765 * that any outstanding dirty pages are on disk.
0e267c44 8766 */
a6cbcd4a 8767 count = iov_iter_count(iter);
41bd9ca4
MX
8768 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8769 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8770 filemap_fdatawrite_range(inode->i_mapping, offset,
8771 offset + count - 1);
0e267c44 8772
6f673763 8773 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8774 /*
8775 * If the write DIO is beyond the EOF, we need update
8776 * the isize, but it is protected by i_mutex. So we can
8777 * not unlock the i_mutex at this case.
8778 */
8779 if (offset + count <= inode->i_size) {
4aaedfb0 8780 dio_data.overwrite = 1;
5955102c 8781 inode_unlock(inode);
38851cc1 8782 relock = true;
edf064e7
GR
8783 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8784 ret = -EAGAIN;
8785 goto out;
38851cc1 8786 }
364ecf36
QW
8787 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8788 offset, count);
0934856d 8789 if (ret)
38851cc1 8790 goto out;
e1cbbfa5
JB
8791
8792 /*
8793 * We need to know how many extents we reserved so that we can
8794 * do the accounting properly if we go over the number we
8795 * originally calculated. Abuse current->journal_info for this.
8796 */
da17066c 8797 dio_data.reserve = round_up(count,
0b246afa 8798 fs_info->sectorsize);
f28a4928
FM
8799 dio_data.unsubmitted_oe_range_start = (u64)offset;
8800 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8801 current->journal_info = &dio_data;
97dcdea0 8802 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8803 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8804 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8805 inode_dio_end(inode);
38851cc1
MX
8806 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8807 wakeup = false;
0934856d
MX
8808 }
8809
17f8c842 8810 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8811 fs_info->fs_devices->latest_bdev,
c8b8e32d 8812 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8813 btrfs_submit_direct, flags);
6f673763 8814 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8815 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8816 current->journal_info = NULL;
ddba1bfc 8817 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8818 if (dio_data.reserve)
bc42bda2
QW
8819 btrfs_delalloc_release_space(inode, data_reserved,
8820 offset, dio_data.reserve);
f28a4928
FM
8821 /*
8822 * On error we might have left some ordered extents
8823 * without submitting corresponding bios for them, so
8824 * cleanup them up to avoid other tasks getting them
8825 * and waiting for them to complete forever.
8826 */
8827 if (dio_data.unsubmitted_oe_range_start <
8828 dio_data.unsubmitted_oe_range_end)
52427260 8829 __endio_write_update_ordered(inode,
f28a4928
FM
8830 dio_data.unsubmitted_oe_range_start,
8831 dio_data.unsubmitted_oe_range_end -
8832 dio_data.unsubmitted_oe_range_start,
52427260 8833 false);
ddba1bfc 8834 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8835 btrfs_delalloc_release_space(inode, data_reserved,
8836 offset, count - (size_t)ret);
69fe2d75 8837 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8838 }
38851cc1 8839out:
2e60a51e 8840 if (wakeup)
fe0f07d0 8841 inode_dio_end(inode);
38851cc1 8842 if (relock)
5955102c 8843 inode_lock(inode);
0934856d 8844
364ecf36 8845 extent_changeset_free(data_reserved);
0934856d 8846 return ret;
16432985
CM
8847}
8848
05dadc09
TI
8849#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8850
1506fcc8
YS
8851static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8852 __u64 start, __u64 len)
8853{
05dadc09
TI
8854 int ret;
8855
8856 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8857 if (ret)
8858 return ret;
8859
ec29ed5b 8860 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8861}
8862
a52d9a80 8863int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8864{
d1310b2e
CM
8865 struct extent_io_tree *tree;
8866 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8867 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8868}
1832a6d5 8869
a52d9a80 8870static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8871{
d1310b2e 8872 struct extent_io_tree *tree;
be7bd730
JB
8873 struct inode *inode = page->mapping->host;
8874 int ret;
b888db2b
CM
8875
8876 if (current->flags & PF_MEMALLOC) {
8877 redirty_page_for_writepage(wbc, page);
8878 unlock_page(page);
8879 return 0;
8880 }
be7bd730
JB
8881
8882 /*
8883 * If we are under memory pressure we will call this directly from the
8884 * VM, we need to make sure we have the inode referenced for the ordered
8885 * extent. If not just return like we didn't do anything.
8886 */
8887 if (!igrab(inode)) {
8888 redirty_page_for_writepage(wbc, page);
8889 return AOP_WRITEPAGE_ACTIVATE;
8890 }
d1310b2e 8891 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8892 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8893 btrfs_add_delayed_iput(inode);
8894 return ret;
9ebefb18
CM
8895}
8896
48a3b636
ES
8897static int btrfs_writepages(struct address_space *mapping,
8898 struct writeback_control *wbc)
b293f02e 8899{
d1310b2e 8900 struct extent_io_tree *tree;
771ed689 8901
d1310b2e 8902 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8903 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8904}
8905
3ab2fb5a
CM
8906static int
8907btrfs_readpages(struct file *file, struct address_space *mapping,
8908 struct list_head *pages, unsigned nr_pages)
8909{
d1310b2e
CM
8910 struct extent_io_tree *tree;
8911 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8912 return extent_readpages(tree, mapping, pages, nr_pages,
8913 btrfs_get_extent);
8914}
e6dcd2dc 8915static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8916{
d1310b2e
CM
8917 struct extent_io_tree *tree;
8918 struct extent_map_tree *map;
a52d9a80 8919 int ret;
8c2383c3 8920
d1310b2e
CM
8921 tree = &BTRFS_I(page->mapping->host)->io_tree;
8922 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8923 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8924 if (ret == 1) {
8925 ClearPagePrivate(page);
8926 set_page_private(page, 0);
09cbfeaf 8927 put_page(page);
39279cc3 8928 }
a52d9a80 8929 return ret;
39279cc3
CM
8930}
8931
e6dcd2dc
CM
8932static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8933{
98509cfc
CM
8934 if (PageWriteback(page) || PageDirty(page))
8935 return 0;
3ba7ab22 8936 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8937}
8938
d47992f8
LC
8939static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8940 unsigned int length)
39279cc3 8941{
5fd02043 8942 struct inode *inode = page->mapping->host;
d1310b2e 8943 struct extent_io_tree *tree;
e6dcd2dc 8944 struct btrfs_ordered_extent *ordered;
2ac55d41 8945 struct extent_state *cached_state = NULL;
e6dcd2dc 8946 u64 page_start = page_offset(page);
09cbfeaf 8947 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8948 u64 start;
8949 u64 end;
131e404a 8950 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8951
8b62b72b
CM
8952 /*
8953 * we have the page locked, so new writeback can't start,
8954 * and the dirty bit won't be cleared while we are here.
8955 *
8956 * Wait for IO on this page so that we can safely clear
8957 * the PagePrivate2 bit and do ordered accounting
8958 */
e6dcd2dc 8959 wait_on_page_writeback(page);
8b62b72b 8960
5fd02043 8961 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8962 if (offset) {
8963 btrfs_releasepage(page, GFP_NOFS);
8964 return;
8965 }
131e404a
FDBM
8966
8967 if (!inode_evicting)
ff13db41 8968 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8969again:
8970 start = page_start;
a776c6fa 8971 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8972 page_end - start + 1);
e6dcd2dc 8973 if (ordered) {
dbfdb6d1 8974 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8975 /*
8976 * IO on this page will never be started, so we need
8977 * to account for any ordered extents now
8978 */
131e404a 8979 if (!inode_evicting)
dbfdb6d1 8980 clear_extent_bit(tree, start, end,
131e404a 8981 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8982 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8983 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8984 EXTENT_DEFRAG, 1, 0, &cached_state,
8985 GFP_NOFS);
8b62b72b
CM
8986 /*
8987 * whoever cleared the private bit is responsible
8988 * for the finish_ordered_io
8989 */
77cef2ec
JB
8990 if (TestClearPagePrivate2(page)) {
8991 struct btrfs_ordered_inode_tree *tree;
8992 u64 new_len;
8993
8994 tree = &BTRFS_I(inode)->ordered_tree;
8995
8996 spin_lock_irq(&tree->lock);
8997 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8998 new_len = start - ordered->file_offset;
77cef2ec
JB
8999 if (new_len < ordered->truncated_len)
9000 ordered->truncated_len = new_len;
9001 spin_unlock_irq(&tree->lock);
9002
9003 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
9004 start,
9005 end - start + 1, 1))
77cef2ec 9006 btrfs_finish_ordered_io(ordered);
8b62b72b 9007 }
e6dcd2dc 9008 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
9009 if (!inode_evicting) {
9010 cached_state = NULL;
dbfdb6d1 9011 lock_extent_bits(tree, start, end,
131e404a
FDBM
9012 &cached_state);
9013 }
dbfdb6d1
CR
9014
9015 start = end + 1;
9016 if (start < page_end)
9017 goto again;
131e404a
FDBM
9018 }
9019
b9d0b389
QW
9020 /*
9021 * Qgroup reserved space handler
9022 * Page here will be either
9023 * 1) Already written to disk
9024 * In this case, its reserved space is released from data rsv map
9025 * and will be freed by delayed_ref handler finally.
9026 * So even we call qgroup_free_data(), it won't decrease reserved
9027 * space.
9028 * 2) Not written to disk
0b34c261
GR
9029 * This means the reserved space should be freed here. However,
9030 * if a truncate invalidates the page (by clearing PageDirty)
9031 * and the page is accounted for while allocating extent
9032 * in btrfs_check_data_free_space() we let delayed_ref to
9033 * free the entire extent.
b9d0b389 9034 */
0b34c261 9035 if (PageDirty(page))
bc42bda2 9036 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9037 if (!inode_evicting) {
9038 clear_extent_bit(tree, page_start, page_end,
9039 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9040 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9041 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9042 &cached_state, GFP_NOFS);
9043
9044 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9045 }
e6dcd2dc 9046
4a096752 9047 ClearPageChecked(page);
9ad6b7bc 9048 if (PagePrivate(page)) {
9ad6b7bc
CM
9049 ClearPagePrivate(page);
9050 set_page_private(page, 0);
09cbfeaf 9051 put_page(page);
9ad6b7bc 9052 }
39279cc3
CM
9053}
9054
9ebefb18
CM
9055/*
9056 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9057 * called from a page fault handler when a page is first dirtied. Hence we must
9058 * be careful to check for EOF conditions here. We set the page up correctly
9059 * for a written page which means we get ENOSPC checking when writing into
9060 * holes and correct delalloc and unwritten extent mapping on filesystems that
9061 * support these features.
9062 *
9063 * We are not allowed to take the i_mutex here so we have to play games to
9064 * protect against truncate races as the page could now be beyond EOF. Because
9065 * vmtruncate() writes the inode size before removing pages, once we have the
9066 * page lock we can determine safely if the page is beyond EOF. If it is not
9067 * beyond EOF, then the page is guaranteed safe against truncation until we
9068 * unlock the page.
9069 */
11bac800 9070int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9071{
c2ec175c 9072 struct page *page = vmf->page;
11bac800 9073 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9076 struct btrfs_ordered_extent *ordered;
2ac55d41 9077 struct extent_state *cached_state = NULL;
364ecf36 9078 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9079 char *kaddr;
9080 unsigned long zero_start;
9ebefb18 9081 loff_t size;
1832a6d5 9082 int ret;
9998eb70 9083 int reserved = 0;
d0b7da88 9084 u64 reserved_space;
a52d9a80 9085 u64 page_start;
e6dcd2dc 9086 u64 page_end;
d0b7da88
CR
9087 u64 end;
9088
09cbfeaf 9089 reserved_space = PAGE_SIZE;
9ebefb18 9090
b2b5ef5c 9091 sb_start_pagefault(inode->i_sb);
df480633 9092 page_start = page_offset(page);
09cbfeaf 9093 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9094 end = page_end;
df480633 9095
d0b7da88
CR
9096 /*
9097 * Reserving delalloc space after obtaining the page lock can lead to
9098 * deadlock. For example, if a dirty page is locked by this function
9099 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9100 * dirty page write out, then the btrfs_writepage() function could
9101 * end up waiting indefinitely to get a lock on the page currently
9102 * being processed by btrfs_page_mkwrite() function.
9103 */
364ecf36 9104 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9105 reserved_space);
9998eb70 9106 if (!ret) {
11bac800 9107 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9108 reserved = 1;
9109 }
56a76f82
NP
9110 if (ret) {
9111 if (ret == -ENOMEM)
9112 ret = VM_FAULT_OOM;
9113 else /* -ENOSPC, -EIO, etc */
9114 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9115 if (reserved)
9116 goto out;
9117 goto out_noreserve;
56a76f82 9118 }
1832a6d5 9119
56a76f82 9120 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9121again:
9ebefb18 9122 lock_page(page);
9ebefb18 9123 size = i_size_read(inode);
a52d9a80 9124
9ebefb18 9125 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9126 (page_start >= size)) {
9ebefb18
CM
9127 /* page got truncated out from underneath us */
9128 goto out_unlock;
9129 }
e6dcd2dc
CM
9130 wait_on_page_writeback(page);
9131
ff13db41 9132 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9133 set_page_extent_mapped(page);
9134
eb84ae03
CM
9135 /*
9136 * we can't set the delalloc bits if there are pending ordered
9137 * extents. Drop our locks and wait for them to finish
9138 */
a776c6fa
NB
9139 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9140 PAGE_SIZE);
e6dcd2dc 9141 if (ordered) {
2ac55d41
JB
9142 unlock_extent_cached(io_tree, page_start, page_end,
9143 &cached_state, GFP_NOFS);
e6dcd2dc 9144 unlock_page(page);
eb84ae03 9145 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9146 btrfs_put_ordered_extent(ordered);
9147 goto again;
9148 }
9149
09cbfeaf 9150 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9151 reserved_space = round_up(size - page_start,
0b246afa 9152 fs_info->sectorsize);
09cbfeaf 9153 if (reserved_space < PAGE_SIZE) {
d0b7da88 9154 end = page_start + reserved_space - 1;
bc42bda2
QW
9155 btrfs_delalloc_release_space(inode, data_reserved,
9156 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9157 }
9158 }
9159
fbf19087 9160 /*
5416034f
LB
9161 * page_mkwrite gets called when the page is firstly dirtied after it's
9162 * faulted in, but write(2) could also dirty a page and set delalloc
9163 * bits, thus in this case for space account reason, we still need to
9164 * clear any delalloc bits within this page range since we have to
9165 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9166 */
d0b7da88 9167 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9168 EXTENT_DIRTY | EXTENT_DELALLOC |
9169 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9170 0, 0, &cached_state, GFP_NOFS);
fbf19087 9171
e3b8a485 9172 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9173 &cached_state, 0);
9ed74f2d 9174 if (ret) {
2ac55d41
JB
9175 unlock_extent_cached(io_tree, page_start, page_end,
9176 &cached_state, GFP_NOFS);
9ed74f2d
JB
9177 ret = VM_FAULT_SIGBUS;
9178 goto out_unlock;
9179 }
e6dcd2dc 9180 ret = 0;
9ebefb18
CM
9181
9182 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9183 if (page_start + PAGE_SIZE > size)
9184 zero_start = size & ~PAGE_MASK;
9ebefb18 9185 else
09cbfeaf 9186 zero_start = PAGE_SIZE;
9ebefb18 9187
09cbfeaf 9188 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9189 kaddr = kmap(page);
09cbfeaf 9190 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9191 flush_dcache_page(page);
9192 kunmap(page);
9193 }
247e743c 9194 ClearPageChecked(page);
e6dcd2dc 9195 set_page_dirty(page);
50a9b214 9196 SetPageUptodate(page);
5a3f23d5 9197
0b246afa 9198 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9199 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9200 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9201
2ac55d41 9202 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9203
9204out_unlock:
b2b5ef5c 9205 if (!ret) {
8b62f87b 9206 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9207 sb_end_pagefault(inode->i_sb);
364ecf36 9208 extent_changeset_free(data_reserved);
50a9b214 9209 return VM_FAULT_LOCKED;
b2b5ef5c 9210 }
9ebefb18 9211 unlock_page(page);
1832a6d5 9212out:
8b62f87b 9213 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9214 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9215 reserved_space);
9998eb70 9216out_noreserve:
b2b5ef5c 9217 sb_end_pagefault(inode->i_sb);
364ecf36 9218 extent_changeset_free(data_reserved);
9ebefb18
CM
9219 return ret;
9220}
9221
a41ad394 9222static int btrfs_truncate(struct inode *inode)
39279cc3 9223{
0b246afa 9224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9225 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9226 struct btrfs_block_rsv *rsv;
a71754fc 9227 int ret = 0;
3893e33b 9228 int err = 0;
39279cc3 9229 struct btrfs_trans_handle *trans;
0b246afa
JM
9230 u64 mask = fs_info->sectorsize - 1;
9231 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9232
0ef8b726
JB
9233 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9234 (u64)-1);
9235 if (ret)
9236 return ret;
39279cc3 9237
fcb80c2a 9238 /*
01327610 9239 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9240 * 3 things going on here
9241 *
9242 * 1) We need to reserve space for our orphan item and the space to
9243 * delete our orphan item. Lord knows we don't want to have a dangling
9244 * orphan item because we didn't reserve space to remove it.
9245 *
9246 * 2) We need to reserve space to update our inode.
9247 *
9248 * 3) We need to have something to cache all the space that is going to
9249 * be free'd up by the truncate operation, but also have some slack
9250 * space reserved in case it uses space during the truncate (thank you
9251 * very much snapshotting).
9252 *
01327610 9253 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9254 * space doing the truncate, and we have no earthly idea how much space
01327610 9255 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9256 * doesn't end up using space reserved for updating the inode or
9257 * removing the orphan item. We also need to be able to stop the
9258 * transaction and start a new one, which means we need to be able to
9259 * update the inode several times, and we have no idea of knowing how
9260 * many times that will be, so we can't just reserve 1 item for the
01327610 9261 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9262 * Then there is the orphan item, which does indeed need to be held on
9263 * to for the whole operation, and we need nobody to touch this reserved
9264 * space except the orphan code.
9265 *
9266 * So that leaves us with
9267 *
9268 * 1) root->orphan_block_rsv - for the orphan deletion.
9269 * 2) rsv - for the truncate reservation, which we will steal from the
9270 * transaction reservation.
9271 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9272 * updating the inode.
9273 */
2ff7e61e 9274 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9275 if (!rsv)
9276 return -ENOMEM;
4a338542 9277 rsv->size = min_size;
ca7e70f5 9278 rsv->failfast = 1;
f0cd846e 9279
907cbceb 9280 /*
07127184 9281 * 1 for the truncate slack space
907cbceb
JB
9282 * 1 for updating the inode.
9283 */
f3fe820c 9284 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9285 if (IS_ERR(trans)) {
9286 err = PTR_ERR(trans);
9287 goto out;
9288 }
f0cd846e 9289
907cbceb 9290 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9291 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9292 min_size, 0);
fcb80c2a 9293 BUG_ON(ret);
f0cd846e 9294
5dc562c5
JB
9295 /*
9296 * So if we truncate and then write and fsync we normally would just
9297 * write the extents that changed, which is a problem if we need to
9298 * first truncate that entire inode. So set this flag so we write out
9299 * all of the extents in the inode to the sync log so we're completely
9300 * safe.
9301 */
9302 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9303 trans->block_rsv = rsv;
907cbceb 9304
8082510e
YZ
9305 while (1) {
9306 ret = btrfs_truncate_inode_items(trans, root, inode,
9307 inode->i_size,
9308 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9309 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9310 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9311 err = ret;
8082510e 9312 break;
3893e33b 9313 }
39279cc3 9314
8082510e 9315 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9316 if (ret) {
9317 err = ret;
9318 break;
9319 }
ca7e70f5 9320
3a45bb20 9321 btrfs_end_transaction(trans);
2ff7e61e 9322 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9323
9324 trans = btrfs_start_transaction(root, 2);
9325 if (IS_ERR(trans)) {
9326 ret = err = PTR_ERR(trans);
9327 trans = NULL;
9328 break;
9329 }
9330
47b5d646 9331 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9332 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9333 rsv, min_size, 0);
ca7e70f5
JB
9334 BUG_ON(ret); /* shouldn't happen */
9335 trans->block_rsv = rsv;
8082510e
YZ
9336 }
9337
ddfae63c
JB
9338 /*
9339 * We can't call btrfs_truncate_block inside a trans handle as we could
9340 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9341 * we've truncated everything except the last little bit, and can do
9342 * btrfs_truncate_block and then update the disk_i_size.
9343 */
9344 if (ret == NEED_TRUNCATE_BLOCK) {
9345 btrfs_end_transaction(trans);
9346 btrfs_btree_balance_dirty(fs_info);
9347
9348 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9349 if (ret)
9350 goto out;
9351 trans = btrfs_start_transaction(root, 1);
9352 if (IS_ERR(trans)) {
9353 ret = PTR_ERR(trans);
9354 goto out;
9355 }
9356 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9357 }
9358
8082510e 9359 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9360 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9361 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9362 if (ret)
9363 err = ret;
8082510e
YZ
9364 }
9365
917c16b2 9366 if (trans) {
0b246afa 9367 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9368 ret = btrfs_update_inode(trans, root, inode);
9369 if (ret && !err)
9370 err = ret;
7b128766 9371
3a45bb20 9372 ret = btrfs_end_transaction(trans);
2ff7e61e 9373 btrfs_btree_balance_dirty(fs_info);
917c16b2 9374 }
fcb80c2a 9375out:
2ff7e61e 9376 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9377
3893e33b
JB
9378 if (ret && !err)
9379 err = ret;
a41ad394 9380
3893e33b 9381 return err;
39279cc3
CM
9382}
9383
d352ac68
CM
9384/*
9385 * create a new subvolume directory/inode (helper for the ioctl).
9386 */
d2fb3437 9387int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9388 struct btrfs_root *new_root,
9389 struct btrfs_root *parent_root,
9390 u64 new_dirid)
39279cc3 9391{
39279cc3 9392 struct inode *inode;
76dda93c 9393 int err;
00e4e6b3 9394 u64 index = 0;
39279cc3 9395
12fc9d09
FA
9396 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9397 new_dirid, new_dirid,
9398 S_IFDIR | (~current_umask() & S_IRWXUGO),
9399 &index);
54aa1f4d 9400 if (IS_ERR(inode))
f46b5a66 9401 return PTR_ERR(inode);
39279cc3
CM
9402 inode->i_op = &btrfs_dir_inode_operations;
9403 inode->i_fop = &btrfs_dir_file_operations;
9404
bfe86848 9405 set_nlink(inode, 1);
6ef06d27 9406 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9407 unlock_new_inode(inode);
3b96362c 9408
63541927
FDBM
9409 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9410 if (err)
9411 btrfs_err(new_root->fs_info,
351fd353 9412 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9413 new_root->root_key.objectid, err);
9414
76dda93c 9415 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9416
76dda93c 9417 iput(inode);
ce598979 9418 return err;
39279cc3
CM
9419}
9420
39279cc3
CM
9421struct inode *btrfs_alloc_inode(struct super_block *sb)
9422{
69fe2d75 9423 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9424 struct btrfs_inode *ei;
2ead6ae7 9425 struct inode *inode;
39279cc3
CM
9426
9427 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9428 if (!ei)
9429 return NULL;
2ead6ae7
YZ
9430
9431 ei->root = NULL;
2ead6ae7 9432 ei->generation = 0;
15ee9bc7 9433 ei->last_trans = 0;
257c62e1 9434 ei->last_sub_trans = 0;
e02119d5 9435 ei->logged_trans = 0;
2ead6ae7 9436 ei->delalloc_bytes = 0;
a7e3b975 9437 ei->new_delalloc_bytes = 0;
47059d93 9438 ei->defrag_bytes = 0;
2ead6ae7
YZ
9439 ei->disk_i_size = 0;
9440 ei->flags = 0;
7709cde3 9441 ei->csum_bytes = 0;
2ead6ae7 9442 ei->index_cnt = (u64)-1;
67de1176 9443 ei->dir_index = 0;
2ead6ae7 9444 ei->last_unlink_trans = 0;
46d8bc34 9445 ei->last_log_commit = 0;
8089fe62 9446 ei->delayed_iput_count = 0;
2ead6ae7 9447
9e0baf60
JB
9448 spin_lock_init(&ei->lock);
9449 ei->outstanding_extents = 0;
69fe2d75
JB
9450 if (sb->s_magic != BTRFS_TEST_MAGIC)
9451 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9452 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9453 ei->runtime_flags = 0;
b52aa8c9 9454 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9455 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9456
16cdcec7
MX
9457 ei->delayed_node = NULL;
9458
9cc97d64 9459 ei->i_otime.tv_sec = 0;
9460 ei->i_otime.tv_nsec = 0;
9461
2ead6ae7 9462 inode = &ei->vfs_inode;
a8067e02 9463 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9464 extent_io_tree_init(&ei->io_tree, inode);
9465 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9466 ei->io_tree.track_uptodate = 1;
9467 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9468 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9469 mutex_init(&ei->log_mutex);
f248679e 9470 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9471 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9472 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9473 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9474 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9475 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9476
9477 return inode;
39279cc3
CM
9478}
9479
aaedb55b
JB
9480#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9481void btrfs_test_destroy_inode(struct inode *inode)
9482{
dcdbc059 9483 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9484 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9485}
9486#endif
9487
fa0d7e3d
NP
9488static void btrfs_i_callback(struct rcu_head *head)
9489{
9490 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9491 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9492}
9493
39279cc3
CM
9494void btrfs_destroy_inode(struct inode *inode)
9495{
0b246afa 9496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9497 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9498 struct btrfs_root *root = BTRFS_I(inode)->root;
9499
b3d9b7a3 9500 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9501 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9502 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9503 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9504 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9505 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9506 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9507 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9508 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9509
a6dbd429
JB
9510 /*
9511 * This can happen where we create an inode, but somebody else also
9512 * created the same inode and we need to destroy the one we already
9513 * created.
9514 */
9515 if (!root)
9516 goto free;
9517
8a35d95f
JB
9518 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9519 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9520 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9521 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9522 atomic_dec(&root->orphan_inodes);
7b128766 9523 }
7b128766 9524
d397712b 9525 while (1) {
e6dcd2dc
CM
9526 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9527 if (!ordered)
9528 break;
9529 else {
0b246afa 9530 btrfs_err(fs_info,
5d163e0e
JM
9531 "found ordered extent %llu %llu on inode cleanup",
9532 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9533 btrfs_remove_ordered_extent(inode, ordered);
9534 btrfs_put_ordered_extent(ordered);
9535 btrfs_put_ordered_extent(ordered);
9536 }
9537 }
56fa9d07 9538 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9539 inode_tree_del(inode);
dcdbc059 9540 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9541free:
fa0d7e3d 9542 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9543}
9544
45321ac5 9545int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9546{
9547 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9548
6379ef9f
NA
9549 if (root == NULL)
9550 return 1;
9551
fa6ac876 9552 /* the snap/subvol tree is on deleting */
69e9c6c6 9553 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9554 return 1;
76dda93c 9555 else
45321ac5 9556 return generic_drop_inode(inode);
76dda93c
YZ
9557}
9558
0ee0fda0 9559static void init_once(void *foo)
39279cc3
CM
9560{
9561 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9562
9563 inode_init_once(&ei->vfs_inode);
9564}
9565
9566void btrfs_destroy_cachep(void)
9567{
8c0a8537
KS
9568 /*
9569 * Make sure all delayed rcu free inodes are flushed before we
9570 * destroy cache.
9571 */
9572 rcu_barrier();
5598e900
KM
9573 kmem_cache_destroy(btrfs_inode_cachep);
9574 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9575 kmem_cache_destroy(btrfs_path_cachep);
9576 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9577}
9578
9579int btrfs_init_cachep(void)
9580{
837e1972 9581 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9582 sizeof(struct btrfs_inode), 0,
5d097056
VD
9583 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9584 init_once);
39279cc3
CM
9585 if (!btrfs_inode_cachep)
9586 goto fail;
9601e3f6 9587
837e1972 9588 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9589 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9590 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9591 if (!btrfs_trans_handle_cachep)
9592 goto fail;
9601e3f6 9593
837e1972 9594 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9595 sizeof(struct btrfs_path), 0,
fba4b697 9596 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9597 if (!btrfs_path_cachep)
9598 goto fail;
9601e3f6 9599
837e1972 9600 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9601 sizeof(struct btrfs_free_space), 0,
fba4b697 9602 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9603 if (!btrfs_free_space_cachep)
9604 goto fail;
9605
39279cc3
CM
9606 return 0;
9607fail:
9608 btrfs_destroy_cachep();
9609 return -ENOMEM;
9610}
9611
a528d35e
DH
9612static int btrfs_getattr(const struct path *path, struct kstat *stat,
9613 u32 request_mask, unsigned int flags)
39279cc3 9614{
df0af1a5 9615 u64 delalloc_bytes;
a528d35e 9616 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9617 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9618 u32 bi_flags = BTRFS_I(inode)->flags;
9619
9620 stat->result_mask |= STATX_BTIME;
9621 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9622 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9623 if (bi_flags & BTRFS_INODE_APPEND)
9624 stat->attributes |= STATX_ATTR_APPEND;
9625 if (bi_flags & BTRFS_INODE_COMPRESS)
9626 stat->attributes |= STATX_ATTR_COMPRESSED;
9627 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9628 stat->attributes |= STATX_ATTR_IMMUTABLE;
9629 if (bi_flags & BTRFS_INODE_NODUMP)
9630 stat->attributes |= STATX_ATTR_NODUMP;
9631
9632 stat->attributes_mask |= (STATX_ATTR_APPEND |
9633 STATX_ATTR_COMPRESSED |
9634 STATX_ATTR_IMMUTABLE |
9635 STATX_ATTR_NODUMP);
fadc0d8b 9636
39279cc3 9637 generic_fillattr(inode, stat);
0ee5dc67 9638 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9639
9640 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9641 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9642 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9643 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9644 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9645 return 0;
9646}
9647
cdd1fedf
DF
9648static int btrfs_rename_exchange(struct inode *old_dir,
9649 struct dentry *old_dentry,
9650 struct inode *new_dir,
9651 struct dentry *new_dentry)
9652{
0b246afa 9653 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9654 struct btrfs_trans_handle *trans;
9655 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9656 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9657 struct inode *new_inode = new_dentry->d_inode;
9658 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9659 struct timespec ctime = current_time(old_inode);
cdd1fedf 9660 struct dentry *parent;
4a0cc7ca
NB
9661 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9662 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9663 u64 old_idx = 0;
9664 u64 new_idx = 0;
9665 u64 root_objectid;
9666 int ret;
86e8aa0e
FM
9667 bool root_log_pinned = false;
9668 bool dest_log_pinned = false;
cdd1fedf
DF
9669
9670 /* we only allow rename subvolume link between subvolumes */
9671 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9672 return -EXDEV;
9673
9674 /* close the race window with snapshot create/destroy ioctl */
9675 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9676 down_read(&fs_info->subvol_sem);
cdd1fedf 9677 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9678 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9679
9680 /*
9681 * We want to reserve the absolute worst case amount of items. So if
9682 * both inodes are subvols and we need to unlink them then that would
9683 * require 4 item modifications, but if they are both normal inodes it
9684 * would require 5 item modifications, so we'll assume their normal
9685 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9686 * should cover the worst case number of items we'll modify.
9687 */
9688 trans = btrfs_start_transaction(root, 12);
9689 if (IS_ERR(trans)) {
9690 ret = PTR_ERR(trans);
9691 goto out_notrans;
9692 }
9693
9694 /*
9695 * We need to find a free sequence number both in the source and
9696 * in the destination directory for the exchange.
9697 */
877574e2 9698 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9699 if (ret)
9700 goto out_fail;
877574e2 9701 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9702 if (ret)
9703 goto out_fail;
9704
9705 BTRFS_I(old_inode)->dir_index = 0ULL;
9706 BTRFS_I(new_inode)->dir_index = 0ULL;
9707
9708 /* Reference for the source. */
9709 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9710 /* force full log commit if subvolume involved. */
0b246afa 9711 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9712 } else {
376e5a57
FM
9713 btrfs_pin_log_trans(root);
9714 root_log_pinned = true;
cdd1fedf
DF
9715 ret = btrfs_insert_inode_ref(trans, dest,
9716 new_dentry->d_name.name,
9717 new_dentry->d_name.len,
9718 old_ino,
f85b7379
DS
9719 btrfs_ino(BTRFS_I(new_dir)),
9720 old_idx);
cdd1fedf
DF
9721 if (ret)
9722 goto out_fail;
cdd1fedf
DF
9723 }
9724
9725 /* And now for the dest. */
9726 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9727 /* force full log commit if subvolume involved. */
0b246afa 9728 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9729 } else {
376e5a57
FM
9730 btrfs_pin_log_trans(dest);
9731 dest_log_pinned = true;
cdd1fedf
DF
9732 ret = btrfs_insert_inode_ref(trans, root,
9733 old_dentry->d_name.name,
9734 old_dentry->d_name.len,
9735 new_ino,
f85b7379
DS
9736 btrfs_ino(BTRFS_I(old_dir)),
9737 new_idx);
cdd1fedf
DF
9738 if (ret)
9739 goto out_fail;
cdd1fedf
DF
9740 }
9741
9742 /* Update inode version and ctime/mtime. */
9743 inode_inc_iversion(old_dir);
9744 inode_inc_iversion(new_dir);
9745 inode_inc_iversion(old_inode);
9746 inode_inc_iversion(new_inode);
9747 old_dir->i_ctime = old_dir->i_mtime = ctime;
9748 new_dir->i_ctime = new_dir->i_mtime = ctime;
9749 old_inode->i_ctime = ctime;
9750 new_inode->i_ctime = ctime;
9751
9752 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9753 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9754 BTRFS_I(old_inode), 1);
9755 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9756 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9757 }
9758
9759 /* src is a subvolume */
9760 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9761 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9762 ret = btrfs_unlink_subvol(trans, root, old_dir,
9763 root_objectid,
9764 old_dentry->d_name.name,
9765 old_dentry->d_name.len);
9766 } else { /* src is an inode */
4ec5934e
NB
9767 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9768 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9769 old_dentry->d_name.name,
9770 old_dentry->d_name.len);
9771 if (!ret)
9772 ret = btrfs_update_inode(trans, root, old_inode);
9773 }
9774 if (ret) {
66642832 9775 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9776 goto out_fail;
9777 }
9778
9779 /* dest is a subvolume */
9780 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9781 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9782 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9783 root_objectid,
9784 new_dentry->d_name.name,
9785 new_dentry->d_name.len);
9786 } else { /* dest is an inode */
4ec5934e
NB
9787 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9788 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9789 new_dentry->d_name.name,
9790 new_dentry->d_name.len);
9791 if (!ret)
9792 ret = btrfs_update_inode(trans, dest, new_inode);
9793 }
9794 if (ret) {
66642832 9795 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9796 goto out_fail;
9797 }
9798
db0a669f 9799 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9800 new_dentry->d_name.name,
9801 new_dentry->d_name.len, 0, old_idx);
9802 if (ret) {
66642832 9803 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9804 goto out_fail;
9805 }
9806
db0a669f 9807 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9808 old_dentry->d_name.name,
9809 old_dentry->d_name.len, 0, new_idx);
9810 if (ret) {
66642832 9811 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9812 goto out_fail;
9813 }
9814
9815 if (old_inode->i_nlink == 1)
9816 BTRFS_I(old_inode)->dir_index = old_idx;
9817 if (new_inode->i_nlink == 1)
9818 BTRFS_I(new_inode)->dir_index = new_idx;
9819
86e8aa0e 9820 if (root_log_pinned) {
cdd1fedf 9821 parent = new_dentry->d_parent;
f85b7379
DS
9822 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9823 parent);
cdd1fedf 9824 btrfs_end_log_trans(root);
86e8aa0e 9825 root_log_pinned = false;
cdd1fedf 9826 }
86e8aa0e 9827 if (dest_log_pinned) {
cdd1fedf 9828 parent = old_dentry->d_parent;
f85b7379
DS
9829 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9830 parent);
cdd1fedf 9831 btrfs_end_log_trans(dest);
86e8aa0e 9832 dest_log_pinned = false;
cdd1fedf
DF
9833 }
9834out_fail:
86e8aa0e
FM
9835 /*
9836 * If we have pinned a log and an error happened, we unpin tasks
9837 * trying to sync the log and force them to fallback to a transaction
9838 * commit if the log currently contains any of the inodes involved in
9839 * this rename operation (to ensure we do not persist a log with an
9840 * inconsistent state for any of these inodes or leading to any
9841 * inconsistencies when replayed). If the transaction was aborted, the
9842 * abortion reason is propagated to userspace when attempting to commit
9843 * the transaction. If the log does not contain any of these inodes, we
9844 * allow the tasks to sync it.
9845 */
9846 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9847 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9848 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9849 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9850 (new_inode &&
0f8939b8 9851 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9852 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9853
9854 if (root_log_pinned) {
9855 btrfs_end_log_trans(root);
9856 root_log_pinned = false;
9857 }
9858 if (dest_log_pinned) {
9859 btrfs_end_log_trans(dest);
9860 dest_log_pinned = false;
9861 }
9862 }
3a45bb20 9863 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9864out_notrans:
9865 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9866 up_read(&fs_info->subvol_sem);
cdd1fedf 9867 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9868 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9869
9870 return ret;
9871}
9872
9873static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9874 struct btrfs_root *root,
9875 struct inode *dir,
9876 struct dentry *dentry)
9877{
9878 int ret;
9879 struct inode *inode;
9880 u64 objectid;
9881 u64 index;
9882
9883 ret = btrfs_find_free_ino(root, &objectid);
9884 if (ret)
9885 return ret;
9886
9887 inode = btrfs_new_inode(trans, root, dir,
9888 dentry->d_name.name,
9889 dentry->d_name.len,
4a0cc7ca 9890 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9891 objectid,
9892 S_IFCHR | WHITEOUT_MODE,
9893 &index);
9894
9895 if (IS_ERR(inode)) {
9896 ret = PTR_ERR(inode);
9897 return ret;
9898 }
9899
9900 inode->i_op = &btrfs_special_inode_operations;
9901 init_special_inode(inode, inode->i_mode,
9902 WHITEOUT_DEV);
9903
9904 ret = btrfs_init_inode_security(trans, inode, dir,
9905 &dentry->d_name);
9906 if (ret)
c9901618 9907 goto out;
cdd1fedf 9908
cef415af
NB
9909 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9910 BTRFS_I(inode), 0, index);
cdd1fedf 9911 if (ret)
c9901618 9912 goto out;
cdd1fedf
DF
9913
9914 ret = btrfs_update_inode(trans, root, inode);
c9901618 9915out:
cdd1fedf 9916 unlock_new_inode(inode);
c9901618
FM
9917 if (ret)
9918 inode_dec_link_count(inode);
cdd1fedf
DF
9919 iput(inode);
9920
c9901618 9921 return ret;
cdd1fedf
DF
9922}
9923
d397712b 9924static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9925 struct inode *new_dir, struct dentry *new_dentry,
9926 unsigned int flags)
39279cc3 9927{
0b246afa 9928 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9929 struct btrfs_trans_handle *trans;
5062af35 9930 unsigned int trans_num_items;
39279cc3 9931 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9932 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9933 struct inode *new_inode = d_inode(new_dentry);
9934 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9935 u64 index = 0;
4df27c4d 9936 u64 root_objectid;
39279cc3 9937 int ret;
4a0cc7ca 9938 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9939 bool log_pinned = false;
39279cc3 9940
4a0cc7ca 9941 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9942 return -EPERM;
9943
4df27c4d 9944 /* we only allow rename subvolume link between subvolumes */
33345d01 9945 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9946 return -EXDEV;
9947
33345d01 9948 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9949 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9950 return -ENOTEMPTY;
5f39d397 9951
4df27c4d
YZ
9952 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9953 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9954 return -ENOTEMPTY;
9c52057c
CM
9955
9956
9957 /* check for collisions, even if the name isn't there */
4871c158 9958 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9959 new_dentry->d_name.name,
9960 new_dentry->d_name.len);
9961
9962 if (ret) {
9963 if (ret == -EEXIST) {
9964 /* we shouldn't get
9965 * eexist without a new_inode */
fae7f21c 9966 if (WARN_ON(!new_inode)) {
9c52057c
CM
9967 return ret;
9968 }
9969 } else {
9970 /* maybe -EOVERFLOW */
9971 return ret;
9972 }
9973 }
9974 ret = 0;
9975
5a3f23d5 9976 /*
8d875f95
CM
9977 * we're using rename to replace one file with another. Start IO on it
9978 * now so we don't add too much work to the end of the transaction
5a3f23d5 9979 */
8d875f95 9980 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9981 filemap_flush(old_inode->i_mapping);
9982
76dda93c 9983 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9984 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9985 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9986 /*
9987 * We want to reserve the absolute worst case amount of items. So if
9988 * both inodes are subvols and we need to unlink them then that would
9989 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9990 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9991 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9992 * should cover the worst case number of items we'll modify.
5062af35
FM
9993 * If our rename has the whiteout flag, we need more 5 units for the
9994 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9995 * when selinux is enabled).
a22285a6 9996 */
5062af35
FM
9997 trans_num_items = 11;
9998 if (flags & RENAME_WHITEOUT)
9999 trans_num_items += 5;
10000 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 10001 if (IS_ERR(trans)) {
cdd1fedf
DF
10002 ret = PTR_ERR(trans);
10003 goto out_notrans;
10004 }
76dda93c 10005
4df27c4d
YZ
10006 if (dest != root)
10007 btrfs_record_root_in_trans(trans, dest);
5f39d397 10008
877574e2 10009 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
10010 if (ret)
10011 goto out_fail;
5a3f23d5 10012
67de1176 10013 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 10014 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 10015 /* force full log commit if subvolume involved. */
0b246afa 10016 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 10017 } else {
c4aba954
FM
10018 btrfs_pin_log_trans(root);
10019 log_pinned = true;
a5719521
YZ
10020 ret = btrfs_insert_inode_ref(trans, dest,
10021 new_dentry->d_name.name,
10022 new_dentry->d_name.len,
33345d01 10023 old_ino,
4a0cc7ca 10024 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
10025 if (ret)
10026 goto out_fail;
4df27c4d 10027 }
5a3f23d5 10028
0c4d2d95
JB
10029 inode_inc_iversion(old_dir);
10030 inode_inc_iversion(new_dir);
10031 inode_inc_iversion(old_inode);
04b285f3
DD
10032 old_dir->i_ctime = old_dir->i_mtime =
10033 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 10034 old_inode->i_ctime = current_time(old_dir);
5f39d397 10035
12fcfd22 10036 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
10037 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10038 BTRFS_I(old_inode), 1);
12fcfd22 10039
33345d01 10040 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
10041 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10042 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10043 old_dentry->d_name.name,
10044 old_dentry->d_name.len);
10045 } else {
4ec5934e
NB
10046 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10047 BTRFS_I(d_inode(old_dentry)),
92986796
AV
10048 old_dentry->d_name.name,
10049 old_dentry->d_name.len);
10050 if (!ret)
10051 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10052 }
79787eaa 10053 if (ret) {
66642832 10054 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10055 goto out_fail;
10056 }
39279cc3
CM
10057
10058 if (new_inode) {
0c4d2d95 10059 inode_inc_iversion(new_inode);
c2050a45 10060 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10061 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10062 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10063 root_objectid = BTRFS_I(new_inode)->location.objectid;
10064 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10065 root_objectid,
10066 new_dentry->d_name.name,
10067 new_dentry->d_name.len);
10068 BUG_ON(new_inode->i_nlink == 0);
10069 } else {
4ec5934e
NB
10070 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10071 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10072 new_dentry->d_name.name,
10073 new_dentry->d_name.len);
10074 }
4ef31a45 10075 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10076 ret = btrfs_orphan_add(trans,
10077 BTRFS_I(d_inode(new_dentry)));
79787eaa 10078 if (ret) {
66642832 10079 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10080 goto out_fail;
10081 }
39279cc3 10082 }
aec7477b 10083
db0a669f 10084 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10085 new_dentry->d_name.name,
a5719521 10086 new_dentry->d_name.len, 0, index);
79787eaa 10087 if (ret) {
66642832 10088 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10089 goto out_fail;
10090 }
39279cc3 10091
67de1176
MX
10092 if (old_inode->i_nlink == 1)
10093 BTRFS_I(old_inode)->dir_index = index;
10094
3dc9e8f7 10095 if (log_pinned) {
10d9f309 10096 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10097
f85b7379
DS
10098 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10099 parent);
4df27c4d 10100 btrfs_end_log_trans(root);
3dc9e8f7 10101 log_pinned = false;
4df27c4d 10102 }
cdd1fedf
DF
10103
10104 if (flags & RENAME_WHITEOUT) {
10105 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10106 old_dentry);
10107
10108 if (ret) {
66642832 10109 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10110 goto out_fail;
10111 }
4df27c4d 10112 }
39279cc3 10113out_fail:
3dc9e8f7
FM
10114 /*
10115 * If we have pinned the log and an error happened, we unpin tasks
10116 * trying to sync the log and force them to fallback to a transaction
10117 * commit if the log currently contains any of the inodes involved in
10118 * this rename operation (to ensure we do not persist a log with an
10119 * inconsistent state for any of these inodes or leading to any
10120 * inconsistencies when replayed). If the transaction was aborted, the
10121 * abortion reason is propagated to userspace when attempting to commit
10122 * the transaction. If the log does not contain any of these inodes, we
10123 * allow the tasks to sync it.
10124 */
10125 if (ret && log_pinned) {
0f8939b8
NB
10126 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10127 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10128 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10129 (new_inode &&
0f8939b8 10130 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10131 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10132
10133 btrfs_end_log_trans(root);
10134 log_pinned = false;
10135 }
3a45bb20 10136 btrfs_end_transaction(trans);
b44c59a8 10137out_notrans:
33345d01 10138 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10139 up_read(&fs_info->subvol_sem);
9ed74f2d 10140
39279cc3
CM
10141 return ret;
10142}
10143
80ace85c
MS
10144static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10145 struct inode *new_dir, struct dentry *new_dentry,
10146 unsigned int flags)
10147{
cdd1fedf 10148 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10149 return -EINVAL;
10150
cdd1fedf
DF
10151 if (flags & RENAME_EXCHANGE)
10152 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10153 new_dentry);
10154
10155 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10156}
10157
8ccf6f19
MX
10158static void btrfs_run_delalloc_work(struct btrfs_work *work)
10159{
10160 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10161 struct inode *inode;
8ccf6f19
MX
10162
10163 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10164 work);
9f23e289 10165 inode = delalloc_work->inode;
30424601
DS
10166 filemap_flush(inode->i_mapping);
10167 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10168 &BTRFS_I(inode)->runtime_flags))
9f23e289 10169 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10170
10171 if (delalloc_work->delay_iput)
9f23e289 10172 btrfs_add_delayed_iput(inode);
8ccf6f19 10173 else
9f23e289 10174 iput(inode);
8ccf6f19
MX
10175 complete(&delalloc_work->completion);
10176}
10177
10178struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10179 int delay_iput)
8ccf6f19
MX
10180{
10181 struct btrfs_delalloc_work *work;
10182
100d5702 10183 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10184 if (!work)
10185 return NULL;
10186
10187 init_completion(&work->completion);
10188 INIT_LIST_HEAD(&work->list);
10189 work->inode = inode;
8ccf6f19 10190 work->delay_iput = delay_iput;
9e0af237
LB
10191 WARN_ON_ONCE(!inode);
10192 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10193 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10194
10195 return work;
10196}
10197
10198void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10199{
10200 wait_for_completion(&work->completion);
100d5702 10201 kfree(work);
8ccf6f19
MX
10202}
10203
d352ac68
CM
10204/*
10205 * some fairly slow code that needs optimization. This walks the list
10206 * of all the inodes with pending delalloc and forces them to disk.
10207 */
6c255e67
MX
10208static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10209 int nr)
ea8c2819 10210{
ea8c2819 10211 struct btrfs_inode *binode;
5b21f2ed 10212 struct inode *inode;
8ccf6f19
MX
10213 struct btrfs_delalloc_work *work, *next;
10214 struct list_head works;
1eafa6c7 10215 struct list_head splice;
8ccf6f19 10216 int ret = 0;
ea8c2819 10217
8ccf6f19 10218 INIT_LIST_HEAD(&works);
1eafa6c7 10219 INIT_LIST_HEAD(&splice);
63607cc8 10220
573bfb72 10221 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10222 spin_lock(&root->delalloc_lock);
10223 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10224 while (!list_empty(&splice)) {
10225 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10226 delalloc_inodes);
1eafa6c7 10227
eb73c1b7
MX
10228 list_move_tail(&binode->delalloc_inodes,
10229 &root->delalloc_inodes);
5b21f2ed 10230 inode = igrab(&binode->vfs_inode);
df0af1a5 10231 if (!inode) {
eb73c1b7 10232 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10233 continue;
df0af1a5 10234 }
eb73c1b7 10235 spin_unlock(&root->delalloc_lock);
1eafa6c7 10236
651d494a 10237 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10238 if (!work) {
f4ab9ea7
JB
10239 if (delay_iput)
10240 btrfs_add_delayed_iput(inode);
10241 else
10242 iput(inode);
1eafa6c7 10243 ret = -ENOMEM;
a1ecaabb 10244 goto out;
5b21f2ed 10245 }
1eafa6c7 10246 list_add_tail(&work->list, &works);
a44903ab
QW
10247 btrfs_queue_work(root->fs_info->flush_workers,
10248 &work->work);
6c255e67
MX
10249 ret++;
10250 if (nr != -1 && ret >= nr)
a1ecaabb 10251 goto out;
5b21f2ed 10252 cond_resched();
eb73c1b7 10253 spin_lock(&root->delalloc_lock);
ea8c2819 10254 }
eb73c1b7 10255 spin_unlock(&root->delalloc_lock);
8c8bee1d 10256
a1ecaabb 10257out:
eb73c1b7
MX
10258 list_for_each_entry_safe(work, next, &works, list) {
10259 list_del_init(&work->list);
10260 btrfs_wait_and_free_delalloc_work(work);
10261 }
10262
10263 if (!list_empty_careful(&splice)) {
10264 spin_lock(&root->delalloc_lock);
10265 list_splice_tail(&splice, &root->delalloc_inodes);
10266 spin_unlock(&root->delalloc_lock);
10267 }
573bfb72 10268 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10269 return ret;
10270}
1eafa6c7 10271
eb73c1b7
MX
10272int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10273{
0b246afa 10274 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10275 int ret;
1eafa6c7 10276
0b246afa 10277 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10278 return -EROFS;
10279
6c255e67
MX
10280 ret = __start_delalloc_inodes(root, delay_iput, -1);
10281 if (ret > 0)
10282 ret = 0;
eb73c1b7
MX
10283 return ret;
10284}
10285
6c255e67
MX
10286int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10287 int nr)
eb73c1b7
MX
10288{
10289 struct btrfs_root *root;
10290 struct list_head splice;
10291 int ret;
10292
2c21b4d7 10293 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10294 return -EROFS;
10295
10296 INIT_LIST_HEAD(&splice);
10297
573bfb72 10298 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10299 spin_lock(&fs_info->delalloc_root_lock);
10300 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10301 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10302 root = list_first_entry(&splice, struct btrfs_root,
10303 delalloc_root);
10304 root = btrfs_grab_fs_root(root);
10305 BUG_ON(!root);
10306 list_move_tail(&root->delalloc_root,
10307 &fs_info->delalloc_roots);
10308 spin_unlock(&fs_info->delalloc_root_lock);
10309
6c255e67 10310 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10311 btrfs_put_fs_root(root);
6c255e67 10312 if (ret < 0)
eb73c1b7
MX
10313 goto out;
10314
6c255e67
MX
10315 if (nr != -1) {
10316 nr -= ret;
10317 WARN_ON(nr < 0);
10318 }
eb73c1b7 10319 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10320 }
eb73c1b7 10321 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10322
6c255e67 10323 ret = 0;
eb73c1b7 10324out:
1eafa6c7 10325 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10326 spin_lock(&fs_info->delalloc_root_lock);
10327 list_splice_tail(&splice, &fs_info->delalloc_roots);
10328 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10329 }
573bfb72 10330 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10331 return ret;
ea8c2819
CM
10332}
10333
39279cc3
CM
10334static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10335 const char *symname)
10336{
0b246afa 10337 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10338 struct btrfs_trans_handle *trans;
10339 struct btrfs_root *root = BTRFS_I(dir)->root;
10340 struct btrfs_path *path;
10341 struct btrfs_key key;
1832a6d5 10342 struct inode *inode = NULL;
39279cc3
CM
10343 int err;
10344 int drop_inode = 0;
10345 u64 objectid;
67871254 10346 u64 index = 0;
39279cc3
CM
10347 int name_len;
10348 int datasize;
5f39d397 10349 unsigned long ptr;
39279cc3 10350 struct btrfs_file_extent_item *ei;
5f39d397 10351 struct extent_buffer *leaf;
39279cc3 10352
f06becc4 10353 name_len = strlen(symname);
0b246afa 10354 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10355 return -ENAMETOOLONG;
1832a6d5 10356
9ed74f2d
JB
10357 /*
10358 * 2 items for inode item and ref
10359 * 2 items for dir items
9269d12b
FM
10360 * 1 item for updating parent inode item
10361 * 1 item for the inline extent item
9ed74f2d
JB
10362 * 1 item for xattr if selinux is on
10363 */
9269d12b 10364 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10365 if (IS_ERR(trans))
10366 return PTR_ERR(trans);
1832a6d5 10367
581bb050
LZ
10368 err = btrfs_find_free_ino(root, &objectid);
10369 if (err)
10370 goto out_unlock;
10371
aec7477b 10372 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10373 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10374 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10375 if (IS_ERR(inode)) {
10376 err = PTR_ERR(inode);
39279cc3 10377 goto out_unlock;
7cf96da3 10378 }
39279cc3 10379
ad19db71
CS
10380 /*
10381 * If the active LSM wants to access the inode during
10382 * d_instantiate it needs these. Smack checks to see
10383 * if the filesystem supports xattrs by looking at the
10384 * ops vector.
10385 */
10386 inode->i_fop = &btrfs_file_operations;
10387 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10388 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10389 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10390
10391 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10392 if (err)
10393 goto out_unlock_inode;
ad19db71 10394
39279cc3 10395 path = btrfs_alloc_path();
d8926bb3
MF
10396 if (!path) {
10397 err = -ENOMEM;
b0d5d10f 10398 goto out_unlock_inode;
d8926bb3 10399 }
4a0cc7ca 10400 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10401 key.offset = 0;
962a298f 10402 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10403 datasize = btrfs_file_extent_calc_inline_size(name_len);
10404 err = btrfs_insert_empty_item(trans, root, path, &key,
10405 datasize);
54aa1f4d 10406 if (err) {
b0839166 10407 btrfs_free_path(path);
b0d5d10f 10408 goto out_unlock_inode;
54aa1f4d 10409 }
5f39d397
CM
10410 leaf = path->nodes[0];
10411 ei = btrfs_item_ptr(leaf, path->slots[0],
10412 struct btrfs_file_extent_item);
10413 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10414 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10415 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10416 btrfs_set_file_extent_encryption(leaf, ei, 0);
10417 btrfs_set_file_extent_compression(leaf, ei, 0);
10418 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10419 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10420
39279cc3 10421 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10422 write_extent_buffer(leaf, symname, ptr, name_len);
10423 btrfs_mark_buffer_dirty(leaf);
39279cc3 10424 btrfs_free_path(path);
5f39d397 10425
39279cc3 10426 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10427 inode_nohighmem(inode);
39279cc3 10428 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10429 inode_set_bytes(inode, name_len);
6ef06d27 10430 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10431 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10432 /*
10433 * Last step, add directory indexes for our symlink inode. This is the
10434 * last step to avoid extra cleanup of these indexes if an error happens
10435 * elsewhere above.
10436 */
10437 if (!err)
cef415af
NB
10438 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10439 BTRFS_I(inode), 0, index);
b0d5d10f 10440 if (err) {
54aa1f4d 10441 drop_inode = 1;
b0d5d10f
CM
10442 goto out_unlock_inode;
10443 }
10444
10445 unlock_new_inode(inode);
10446 d_instantiate(dentry, inode);
39279cc3
CM
10447
10448out_unlock:
3a45bb20 10449 btrfs_end_transaction(trans);
39279cc3
CM
10450 if (drop_inode) {
10451 inode_dec_link_count(inode);
10452 iput(inode);
10453 }
2ff7e61e 10454 btrfs_btree_balance_dirty(fs_info);
39279cc3 10455 return err;
b0d5d10f
CM
10456
10457out_unlock_inode:
10458 drop_inode = 1;
10459 unlock_new_inode(inode);
10460 goto out_unlock;
39279cc3 10461}
16432985 10462
0af3d00b
JB
10463static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10464 u64 start, u64 num_bytes, u64 min_size,
10465 loff_t actual_len, u64 *alloc_hint,
10466 struct btrfs_trans_handle *trans)
d899e052 10467{
0b246afa 10468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10469 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10470 struct extent_map *em;
d899e052
YZ
10471 struct btrfs_root *root = BTRFS_I(inode)->root;
10472 struct btrfs_key ins;
d899e052 10473 u64 cur_offset = start;
55a61d1d 10474 u64 i_size;
154ea289 10475 u64 cur_bytes;
0b670dc4 10476 u64 last_alloc = (u64)-1;
d899e052 10477 int ret = 0;
0af3d00b 10478 bool own_trans = true;
18513091 10479 u64 end = start + num_bytes - 1;
d899e052 10480
0af3d00b
JB
10481 if (trans)
10482 own_trans = false;
d899e052 10483 while (num_bytes > 0) {
0af3d00b
JB
10484 if (own_trans) {
10485 trans = btrfs_start_transaction(root, 3);
10486 if (IS_ERR(trans)) {
10487 ret = PTR_ERR(trans);
10488 break;
10489 }
5a303d5d
YZ
10490 }
10491
ee22184b 10492 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10493 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10494 /*
10495 * If we are severely fragmented we could end up with really
10496 * small allocations, so if the allocator is returning small
10497 * chunks lets make its job easier by only searching for those
10498 * sized chunks.
10499 */
10500 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10501 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10502 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10503 if (ret) {
0af3d00b 10504 if (own_trans)
3a45bb20 10505 btrfs_end_transaction(trans);
a22285a6 10506 break;
d899e052 10507 }
0b246afa 10508 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10509
0b670dc4 10510 last_alloc = ins.offset;
d899e052
YZ
10511 ret = insert_reserved_file_extent(trans, inode,
10512 cur_offset, ins.objectid,
10513 ins.offset, ins.offset,
920bbbfb 10514 ins.offset, 0, 0, 0,
d899e052 10515 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10516 if (ret) {
2ff7e61e 10517 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10518 ins.offset, 0);
66642832 10519 btrfs_abort_transaction(trans, ret);
79787eaa 10520 if (own_trans)
3a45bb20 10521 btrfs_end_transaction(trans);
79787eaa
JM
10522 break;
10523 }
31193213 10524
dcdbc059 10525 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10526 cur_offset + ins.offset -1, 0);
5a303d5d 10527
5dc562c5
JB
10528 em = alloc_extent_map();
10529 if (!em) {
10530 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10531 &BTRFS_I(inode)->runtime_flags);
10532 goto next;
10533 }
10534
10535 em->start = cur_offset;
10536 em->orig_start = cur_offset;
10537 em->len = ins.offset;
10538 em->block_start = ins.objectid;
10539 em->block_len = ins.offset;
b4939680 10540 em->orig_block_len = ins.offset;
cc95bef6 10541 em->ram_bytes = ins.offset;
0b246afa 10542 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10543 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10544 em->generation = trans->transid;
10545
10546 while (1) {
10547 write_lock(&em_tree->lock);
09a2a8f9 10548 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10549 write_unlock(&em_tree->lock);
10550 if (ret != -EEXIST)
10551 break;
dcdbc059 10552 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10553 cur_offset + ins.offset - 1,
10554 0);
10555 }
10556 free_extent_map(em);
10557next:
d899e052
YZ
10558 num_bytes -= ins.offset;
10559 cur_offset += ins.offset;
efa56464 10560 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10561
0c4d2d95 10562 inode_inc_iversion(inode);
c2050a45 10563 inode->i_ctime = current_time(inode);
6cbff00f 10564 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10565 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10566 (actual_len > inode->i_size) &&
10567 (cur_offset > inode->i_size)) {
d1ea6a61 10568 if (cur_offset > actual_len)
55a61d1d 10569 i_size = actual_len;
d1ea6a61 10570 else
55a61d1d
JB
10571 i_size = cur_offset;
10572 i_size_write(inode, i_size);
10573 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10574 }
10575
d899e052 10576 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10577
10578 if (ret) {
66642832 10579 btrfs_abort_transaction(trans, ret);
79787eaa 10580 if (own_trans)
3a45bb20 10581 btrfs_end_transaction(trans);
79787eaa
JM
10582 break;
10583 }
d899e052 10584
0af3d00b 10585 if (own_trans)
3a45bb20 10586 btrfs_end_transaction(trans);
5a303d5d 10587 }
18513091 10588 if (cur_offset < end)
bc42bda2 10589 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10590 end - cur_offset + 1);
d899e052
YZ
10591 return ret;
10592}
10593
0af3d00b
JB
10594int btrfs_prealloc_file_range(struct inode *inode, int mode,
10595 u64 start, u64 num_bytes, u64 min_size,
10596 loff_t actual_len, u64 *alloc_hint)
10597{
10598 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10599 min_size, actual_len, alloc_hint,
10600 NULL);
10601}
10602
10603int btrfs_prealloc_file_range_trans(struct inode *inode,
10604 struct btrfs_trans_handle *trans, int mode,
10605 u64 start, u64 num_bytes, u64 min_size,
10606 loff_t actual_len, u64 *alloc_hint)
10607{
10608 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10609 min_size, actual_len, alloc_hint, trans);
10610}
10611
e6dcd2dc
CM
10612static int btrfs_set_page_dirty(struct page *page)
10613{
e6dcd2dc
CM
10614 return __set_page_dirty_nobuffers(page);
10615}
10616
10556cb2 10617static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10618{
b83cc969 10619 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10620 umode_t mode = inode->i_mode;
b83cc969 10621
cb6db4e5
JM
10622 if (mask & MAY_WRITE &&
10623 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10624 if (btrfs_root_readonly(root))
10625 return -EROFS;
10626 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10627 return -EACCES;
10628 }
2830ba7f 10629 return generic_permission(inode, mask);
fdebe2bd 10630}
39279cc3 10631
ef3b9af5
FM
10632static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10633{
2ff7e61e 10634 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10635 struct btrfs_trans_handle *trans;
10636 struct btrfs_root *root = BTRFS_I(dir)->root;
10637 struct inode *inode = NULL;
10638 u64 objectid;
10639 u64 index;
10640 int ret = 0;
10641
10642 /*
10643 * 5 units required for adding orphan entry
10644 */
10645 trans = btrfs_start_transaction(root, 5);
10646 if (IS_ERR(trans))
10647 return PTR_ERR(trans);
10648
10649 ret = btrfs_find_free_ino(root, &objectid);
10650 if (ret)
10651 goto out;
10652
10653 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10654 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10655 if (IS_ERR(inode)) {
10656 ret = PTR_ERR(inode);
10657 inode = NULL;
10658 goto out;
10659 }
10660
ef3b9af5
FM
10661 inode->i_fop = &btrfs_file_operations;
10662 inode->i_op = &btrfs_file_inode_operations;
10663
10664 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10665 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10666
b0d5d10f
CM
10667 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10668 if (ret)
10669 goto out_inode;
10670
10671 ret = btrfs_update_inode(trans, root, inode);
10672 if (ret)
10673 goto out_inode;
73f2e545 10674 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10675 if (ret)
b0d5d10f 10676 goto out_inode;
ef3b9af5 10677
5762b5c9
FM
10678 /*
10679 * We set number of links to 0 in btrfs_new_inode(), and here we set
10680 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10681 * through:
10682 *
10683 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10684 */
10685 set_nlink(inode, 1);
b0d5d10f 10686 unlock_new_inode(inode);
ef3b9af5
FM
10687 d_tmpfile(dentry, inode);
10688 mark_inode_dirty(inode);
10689
10690out:
3a45bb20 10691 btrfs_end_transaction(trans);
ef3b9af5
FM
10692 if (ret)
10693 iput(inode);
2ff7e61e
JM
10694 btrfs_balance_delayed_items(fs_info);
10695 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10696 return ret;
b0d5d10f
CM
10697
10698out_inode:
10699 unlock_new_inode(inode);
10700 goto out;
10701
ef3b9af5
FM
10702}
10703
20a7db8a 10704__attribute__((const))
9d0d1c8b 10705static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10706{
9d0d1c8b 10707 return -EAGAIN;
20a7db8a
DS
10708}
10709
c6100a4b
JB
10710static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10711{
10712 struct inode *inode = private_data;
10713 return btrfs_sb(inode->i_sb);
10714}
10715
10716static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10717 u64 start, u64 end)
10718{
10719 struct inode *inode = private_data;
10720 u64 isize;
10721
10722 isize = i_size_read(inode);
10723 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10724 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10725 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10726 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10727 }
10728}
10729
10730void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10731{
10732 struct inode *inode = private_data;
10733 unsigned long index = start >> PAGE_SHIFT;
10734 unsigned long end_index = end >> PAGE_SHIFT;
10735 struct page *page;
10736
10737 while (index <= end_index) {
10738 page = find_get_page(inode->i_mapping, index);
10739 ASSERT(page); /* Pages should be in the extent_io_tree */
10740 set_page_writeback(page);
10741 put_page(page);
10742 index++;
10743 }
10744}
10745
6e1d5dcc 10746static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10747 .getattr = btrfs_getattr,
39279cc3
CM
10748 .lookup = btrfs_lookup,
10749 .create = btrfs_create,
10750 .unlink = btrfs_unlink,
10751 .link = btrfs_link,
10752 .mkdir = btrfs_mkdir,
10753 .rmdir = btrfs_rmdir,
2773bf00 10754 .rename = btrfs_rename2,
39279cc3
CM
10755 .symlink = btrfs_symlink,
10756 .setattr = btrfs_setattr,
618e21d5 10757 .mknod = btrfs_mknod,
5103e947 10758 .listxattr = btrfs_listxattr,
fdebe2bd 10759 .permission = btrfs_permission,
4e34e719 10760 .get_acl = btrfs_get_acl,
996a710d 10761 .set_acl = btrfs_set_acl,
93fd63c2 10762 .update_time = btrfs_update_time,
ef3b9af5 10763 .tmpfile = btrfs_tmpfile,
39279cc3 10764};
6e1d5dcc 10765static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10766 .lookup = btrfs_lookup,
fdebe2bd 10767 .permission = btrfs_permission,
93fd63c2 10768 .update_time = btrfs_update_time,
39279cc3 10769};
76dda93c 10770
828c0950 10771static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10772 .llseek = generic_file_llseek,
10773 .read = generic_read_dir,
02dbfc99 10774 .iterate_shared = btrfs_real_readdir,
23b5ec74 10775 .open = btrfs_opendir,
34287aa3 10776 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10777#ifdef CONFIG_COMPAT
4c63c245 10778 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10779#endif
6bf13c0c 10780 .release = btrfs_release_file,
e02119d5 10781 .fsync = btrfs_sync_file,
39279cc3
CM
10782};
10783
20e5506b 10784static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10785 /* mandatory callbacks */
065631f6 10786 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10787 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10788 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10789 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10790 .tree_fs_info = iotree_fs_info,
10791 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10792
10793 /* optional callbacks */
10794 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10795 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10796 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10797 .set_bit_hook = btrfs_set_bit_hook,
10798 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10799 .merge_extent_hook = btrfs_merge_extent_hook,
10800 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10801 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10802};
10803
35054394
CM
10804/*
10805 * btrfs doesn't support the bmap operation because swapfiles
10806 * use bmap to make a mapping of extents in the file. They assume
10807 * these extents won't change over the life of the file and they
10808 * use the bmap result to do IO directly to the drive.
10809 *
10810 * the btrfs bmap call would return logical addresses that aren't
10811 * suitable for IO and they also will change frequently as COW
10812 * operations happen. So, swapfile + btrfs == corruption.
10813 *
10814 * For now we're avoiding this by dropping bmap.
10815 */
7f09410b 10816static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10817 .readpage = btrfs_readpage,
10818 .writepage = btrfs_writepage,
b293f02e 10819 .writepages = btrfs_writepages,
3ab2fb5a 10820 .readpages = btrfs_readpages,
16432985 10821 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10822 .invalidatepage = btrfs_invalidatepage,
10823 .releasepage = btrfs_releasepage,
e6dcd2dc 10824 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10825 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10826};
10827
7f09410b 10828static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10829 .readpage = btrfs_readpage,
10830 .writepage = btrfs_writepage,
2bf5a725
CM
10831 .invalidatepage = btrfs_invalidatepage,
10832 .releasepage = btrfs_releasepage,
39279cc3
CM
10833};
10834
6e1d5dcc 10835static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10836 .getattr = btrfs_getattr,
10837 .setattr = btrfs_setattr,
5103e947 10838 .listxattr = btrfs_listxattr,
fdebe2bd 10839 .permission = btrfs_permission,
1506fcc8 10840 .fiemap = btrfs_fiemap,
4e34e719 10841 .get_acl = btrfs_get_acl,
996a710d 10842 .set_acl = btrfs_set_acl,
e41f941a 10843 .update_time = btrfs_update_time,
39279cc3 10844};
6e1d5dcc 10845static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10846 .getattr = btrfs_getattr,
10847 .setattr = btrfs_setattr,
fdebe2bd 10848 .permission = btrfs_permission,
33268eaf 10849 .listxattr = btrfs_listxattr,
4e34e719 10850 .get_acl = btrfs_get_acl,
996a710d 10851 .set_acl = btrfs_set_acl,
e41f941a 10852 .update_time = btrfs_update_time,
618e21d5 10853};
6e1d5dcc 10854static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10855 .get_link = page_get_link,
f209561a 10856 .getattr = btrfs_getattr,
22c44fe6 10857 .setattr = btrfs_setattr,
fdebe2bd 10858 .permission = btrfs_permission,
0279b4cd 10859 .listxattr = btrfs_listxattr,
e41f941a 10860 .update_time = btrfs_update_time,
39279cc3 10861};
76dda93c 10862
82d339d9 10863const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10864 .d_delete = btrfs_dentry_delete,
b4aff1f8 10865 .d_release = btrfs_dentry_release,
76dda93c 10866};