]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
btrfs: Remove fs_info argument from btrfs_uuid_tree_rem
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3
CM
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
39279cc3 20#include <linux/compat.h>
9ebefb18 21#include <linux/bit_spinlock.h>
5103e947 22#include <linux/xattr.h>
33268eaf 23#include <linux/posix_acl.h>
d899e052 24#include <linux/falloc.h>
5a0e3ad6 25#include <linux/slab.h>
7a36ddec 26#include <linux/ratelimit.h>
22c44fe6 27#include <linux/mount.h>
55e301fd 28#include <linux/btrfs.h>
53b381b3 29#include <linux/blkdev.h>
f23b5a59 30#include <linux/posix_acl_xattr.h>
e2e40f2c 31#include <linux/uio.h>
69fe2d75 32#include <linux/magic.h>
ae5e165d 33#include <linux/iversion.h>
92d32170 34#include <asm/unaligned.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e6dcd2dc 40#include "ordered-data.h"
95819c05 41#include "xattr.h"
e02119d5 42#include "tree-log.h"
4a54c8c1 43#include "volumes.h"
c8b97818 44#include "compression.h"
b4ce94de 45#include "locking.h"
dc89e982 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
38c227d8 48#include "backref.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
dda3245e 51#include "dedupe.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
20e5506b 73static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
4d4ab6d6 81static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 92static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
dda3245e
WX
96 u64 start, u64 end, u64 delalloc_end,
97 int *page_started, unsigned long *nr_written,
98 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
99static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 u64 orig_start, u64 block_start,
101 u64 block_len, u64 orig_block_len,
102 u64 ram_bytes, int compress_type,
103 int type);
7b128766 104
52427260
QW
105static void __endio_write_update_ordered(struct inode *inode,
106 const u64 offset, const u64 bytes,
107 const bool uptodate);
108
109/*
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
112 *
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
121 */
122static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 const u64 offset,
124 const u64 bytes)
125{
63d71450
NA
126 unsigned long index = offset >> PAGE_SHIFT;
127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 struct page *page;
129
130 while (index <= end_index) {
131 page = find_get_page(inode->i_mapping, index);
132 index++;
133 if (!page)
134 continue;
135 ClearPagePrivate2(page);
136 put_page(page);
137 }
52427260
QW
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
d02c0e20 267static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
268 u64 end, size_t compressed_size,
269 int compress_type,
270 struct page **compressed_pages)
c8b97818 271{
d02c0e20 272 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
69fe2d75 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 340out:
94ed938a
QW
341 /*
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
346 */
bc42bda2 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 348 btrfs_free_path(path);
3a45bb20 349 btrfs_end_transaction(trans);
00361589 350 return ret;
c8b97818
CM
351}
352
771ed689
CM
353struct async_extent {
354 u64 start;
355 u64 ram_size;
356 u64 compressed_size;
357 struct page **pages;
358 unsigned long nr_pages;
261507a0 359 int compress_type;
771ed689
CM
360 struct list_head list;
361};
362
363struct async_cow {
364 struct inode *inode;
365 struct btrfs_root *root;
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689
CM
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
c2fcdcdf 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 401 return 1;
eec63c65
DS
402 /* defrag ioctl */
403 if (BTRFS_I(inode)->defrag_compress)
404 return 1;
f79707b0
WS
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 return 0;
0b246afa 408 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 410 BTRFS_I(inode)->prop_compress)
c2fcdcdf 411 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
412 return 0;
413}
414
6158e1ce 415static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
417{
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
6158e1ce 420 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
421 btrfs_add_inode_defrag(NULL, inode);
422}
423
d352ac68 424/*
771ed689
CM
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
c8b97818 428 *
771ed689
CM
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
c8b97818 434 *
771ed689
CM
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
438 * are written in the same order that the flusher thread sent them
439 * down.
d352ac68 440 */
c44f649e 441static noinline void compress_file_range(struct inode *inode,
771ed689
CM
442 struct page *locked_page,
443 u64 start, u64 end,
444 struct async_cow *async_cow,
445 int *num_added)
b888db2b 446{
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 448 u64 blocksize = fs_info->sectorsize;
c8b97818 449 u64 actual_end;
42dc7bab 450 u64 isize = i_size_read(inode);
e6dcd2dc 451 int ret = 0;
c8b97818
CM
452 struct page **pages = NULL;
453 unsigned long nr_pages;
c8b97818
CM
454 unsigned long total_compressed = 0;
455 unsigned long total_in = 0;
c8b97818
CM
456 int i;
457 int will_compress;
0b246afa 458 int compress_type = fs_info->compress_type;
4adaa611 459 int redirty = 0;
b888db2b 460
6158e1ce
NB
461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 SZ_16K);
4cb5300b 463
42dc7bab 464 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
465again:
466 will_compress = 0;
09cbfeaf 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 nr_pages = min_t(unsigned long, nr_pages,
470 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 471
f03d9301
CM
472 /*
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
478 *
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
481 */
482 if (actual_end <= start)
483 goto cleanup_and_bail_uncompressed;
484
c8b97818
CM
485 total_compressed = actual_end - start;
486
4bcbb332
SW
487 /*
488 * skip compression for a small file range(<=blocksize) that
01327610 489 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
490 */
491 if (total_compressed <= blocksize &&
492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 goto cleanup_and_bail_uncompressed;
494
069eac78
DS
495 total_compressed = min_t(unsigned long, total_compressed,
496 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
497 total_in = 0;
498 ret = 0;
db94535d 499
771ed689
CM
500 /*
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
c8b97818 504 */
c2fcdcdf 505 if (inode_need_compress(inode, start, end)) {
c8b97818 506 WARN_ON(pages);
31e818fe 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
508 if (!pages) {
509 /* just bail out to the uncompressed code */
510 goto cont;
511 }
c8b97818 512
eec63c65
DS
513 if (BTRFS_I(inode)->defrag_compress)
514 compress_type = BTRFS_I(inode)->defrag_compress;
515 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 516 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 517
4adaa611
CM
518 /*
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
523 *
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
e9679de3
TT
526 *
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
4adaa611 529 */
e9679de3
TT
530 if (!redirty) {
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
533 }
f51d2b59
DS
534
535 /* Compression level is applied here and only here */
536 ret = btrfs_compress_pages(
537 compress_type | (fs_info->compress_level << 4),
261507a0 538 inode->i_mapping, start,
38c31464 539 pages,
4d3a800e 540 &nr_pages,
261507a0 541 &total_in,
e5d74902 542 &total_compressed);
c8b97818
CM
543
544 if (!ret) {
545 unsigned long offset = total_compressed &
09cbfeaf 546 (PAGE_SIZE - 1);
4d3a800e 547 struct page *page = pages[nr_pages - 1];
c8b97818
CM
548 char *kaddr;
549
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
552 */
553 if (offset) {
7ac687d9 554 kaddr = kmap_atomic(page);
c8b97818 555 memset(kaddr + offset, 0,
09cbfeaf 556 PAGE_SIZE - offset);
7ac687d9 557 kunmap_atomic(kaddr);
c8b97818
CM
558 }
559 will_compress = 1;
560 }
561 }
560f7d75 562cont:
c8b97818
CM
563 if (start == 0) {
564 /* lets try to make an inline extent */
6018ba0a 565 if (ret || total_in < actual_end) {
c8b97818 566 /* we didn't compress the entire range, try
771ed689 567 * to make an uncompressed inline extent.
c8b97818 568 */
d02c0e20
NB
569 ret = cow_file_range_inline(inode, start, end, 0,
570 BTRFS_COMPRESS_NONE, NULL);
c8b97818 571 } else {
771ed689 572 /* try making a compressed inline extent */
d02c0e20 573 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
574 total_compressed,
575 compress_type, pages);
c8b97818 576 }
79787eaa 577 if (ret <= 0) {
151a41bc 578 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
581 unsigned long page_error_op;
582
e6eb4314 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 584
771ed689 585 /*
79787eaa
JM
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
8b62f87b
JB
589 *
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
593 * range.
771ed689 594 */
ba8b04c1
QW
595 extent_clear_unlock_delalloc(inode, start, end, end,
596 NULL, clear_flags,
597 PAGE_UNLOCK |
c2790a2e
JB
598 PAGE_CLEAR_DIRTY |
599 PAGE_SET_WRITEBACK |
e6eb4314 600 page_error_op |
c2790a2e 601 PAGE_END_WRITEBACK);
c8b97818
CM
602 goto free_pages_out;
603 }
604 }
605
606 if (will_compress) {
607 /*
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
610 * things
611 */
fda2832f 612 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
613
614 /*
615 * one last check to make sure the compression is really a
170607eb
TT
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
c8b97818 618 */
09cbfeaf 619 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 620 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
621 *num_added += 1;
622
623 /*
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
627 */
1170862d 628 add_async_extent(async_cow, start, total_in,
4d3a800e 629 total_compressed, pages, nr_pages,
c8bb0c8b
AS
630 compress_type);
631
1170862d
TT
632 if (start + total_in < end) {
633 start += total_in;
c8bb0c8b
AS
634 pages = NULL;
635 cond_resched();
636 goto again;
637 }
638 return;
c8b97818
CM
639 }
640 }
c8bb0c8b 641 if (pages) {
c8b97818
CM
642 /*
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
645 */
4d3a800e 646 for (i = 0; i < nr_pages; i++) {
70b99e69 647 WARN_ON(pages[i]->mapping);
09cbfeaf 648 put_page(pages[i]);
c8b97818
CM
649 }
650 kfree(pages);
651 pages = NULL;
652 total_compressed = 0;
4d3a800e 653 nr_pages = 0;
c8b97818
CM
654
655 /* flag the file so we don't compress in the future */
0b246afa 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 657 !(BTRFS_I(inode)->prop_compress)) {
a555f810 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 659 }
c8b97818 660 }
f03d9301 661cleanup_and_bail_uncompressed:
c8bb0c8b
AS
662 /*
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
667 */
668 if (page_offset(locked_page) >= start &&
669 page_offset(locked_page) <= end)
670 __set_page_dirty_nobuffers(locked_page);
671 /* unlocked later on in the async handlers */
672
673 if (redirty)
674 extent_range_redirty_for_io(inode, start, end);
675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 BTRFS_COMPRESS_NONE);
677 *num_added += 1;
3b951516 678
c44f649e 679 return;
771ed689
CM
680
681free_pages_out:
4d3a800e 682 for (i = 0; i < nr_pages; i++) {
771ed689 683 WARN_ON(pages[i]->mapping);
09cbfeaf 684 put_page(pages[i]);
771ed689 685 }
d397712b 686 kfree(pages);
771ed689 687}
771ed689 688
40ae837b
FM
689static void free_async_extent_pages(struct async_extent *async_extent)
690{
691 int i;
692
693 if (!async_extent->pages)
694 return;
695
696 for (i = 0; i < async_extent->nr_pages; i++) {
697 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 698 put_page(async_extent->pages[i]);
40ae837b
FM
699 }
700 kfree(async_extent->pages);
701 async_extent->nr_pages = 0;
702 async_extent->pages = NULL;
771ed689
CM
703}
704
705/*
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
710 */
dec8f175 711static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
712 struct async_cow *async_cow)
713{
0b246afa 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
715 struct async_extent *async_extent;
716 u64 alloc_hint = 0;
771ed689
CM
717 struct btrfs_key ins;
718 struct extent_map *em;
719 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 720 struct extent_io_tree *io_tree;
f5a84ee3 721 int ret = 0;
771ed689 722
3e04e7f1 723again:
d397712b 724 while (!list_empty(&async_cow->extents)) {
771ed689
CM
725 async_extent = list_entry(async_cow->extents.next,
726 struct async_extent, list);
727 list_del(&async_extent->list);
c8b97818 728
771ed689
CM
729 io_tree = &BTRFS_I(inode)->io_tree;
730
f5a84ee3 731retry:
771ed689
CM
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent->pages) {
734 int page_started = 0;
735 unsigned long nr_written = 0;
736
737 lock_extent(io_tree, async_extent->start,
2ac55d41 738 async_extent->start +
d0082371 739 async_extent->ram_size - 1);
771ed689
CM
740
741 /* allocate blocks */
f5a84ee3
JB
742 ret = cow_file_range(inode, async_cow->locked_page,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
dda3245e
WX
746 async_extent->start +
747 async_extent->ram_size - 1,
748 &page_started, &nr_written, 0,
749 NULL);
771ed689 750
79787eaa
JM
751 /* JDM XXX */
752
771ed689
CM
753 /*
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
758 */
f5a84ee3 759 if (!page_started && !ret)
5e3ee236
NB
760 extent_write_locked_range(inode,
761 async_extent->start,
d397712b 762 async_extent->start +
771ed689 763 async_extent->ram_size - 1,
771ed689 764 WB_SYNC_ALL);
3e04e7f1
JB
765 else if (ret)
766 unlock_page(async_cow->locked_page);
771ed689
CM
767 kfree(async_extent);
768 cond_resched();
769 continue;
770 }
771
772 lock_extent(io_tree, async_extent->start,
d0082371 773 async_extent->start + async_extent->ram_size - 1);
771ed689 774
18513091 775 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
776 async_extent->compressed_size,
777 async_extent->compressed_size,
e570fd27 778 0, alloc_hint, &ins, 1, 1);
f5a84ee3 779 if (ret) {
40ae837b 780 free_async_extent_pages(async_extent);
3e04e7f1 781
fdf8e2ea
JB
782 if (ret == -ENOSPC) {
783 unlock_extent(io_tree, async_extent->start,
784 async_extent->start +
785 async_extent->ram_size - 1);
ce62003f
LB
786
787 /*
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
791 * layers.
792 */
793 extent_range_redirty_for_io(inode,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1);
797
79787eaa 798 goto retry;
fdf8e2ea 799 }
3e04e7f1 800 goto out_free;
f5a84ee3 801 }
c2167754
YZ
802 /*
803 * here we're doing allocation and writeback of the
804 * compressed pages
805 */
6f9994db
LB
806 em = create_io_em(inode, async_extent->start,
807 async_extent->ram_size, /* len */
808 async_extent->start, /* orig_start */
809 ins.objectid, /* block_start */
810 ins.offset, /* block_len */
811 ins.offset, /* orig_block_len */
812 async_extent->ram_size, /* ram_bytes */
813 async_extent->compress_type,
814 BTRFS_ORDERED_COMPRESSED);
815 if (IS_ERR(em))
816 /* ret value is not necessary due to void function */
3e04e7f1 817 goto out_free_reserve;
6f9994db 818 free_extent_map(em);
3e04e7f1 819
261507a0
LZ
820 ret = btrfs_add_ordered_extent_compress(inode,
821 async_extent->start,
822 ins.objectid,
823 async_extent->ram_size,
824 ins.offset,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
d9f85963 827 if (ret) {
dcdbc059
NB
828 btrfs_drop_extent_cache(BTRFS_I(inode),
829 async_extent->start,
d9f85963
FM
830 async_extent->start +
831 async_extent->ram_size - 1, 0);
3e04e7f1 832 goto out_free_reserve;
d9f85963 833 }
0b246afa 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 835
771ed689
CM
836 /*
837 * clear dirty, set writeback and unlock the pages.
838 */
c2790a2e 839 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
840 async_extent->start +
841 async_extent->ram_size - 1,
a791e35e
CM
842 async_extent->start +
843 async_extent->ram_size - 1,
151a41bc
JB
844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 846 PAGE_SET_WRITEBACK);
4e4cbee9 847 if (btrfs_submit_compressed_write(inode,
d397712b
CM
848 async_extent->start,
849 async_extent->ram_size,
850 ins.objectid,
851 ins.offset, async_extent->pages,
f82b7359
LB
852 async_extent->nr_pages,
853 async_cow->write_flags)) {
fce2a4e6
FM
854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 struct page *p = async_extent->pages[0];
856 const u64 start = async_extent->start;
857 const u64 end = start + async_extent->ram_size - 1;
858
859 p->mapping = inode->i_mapping;
860 tree->ops->writepage_end_io_hook(p, start, end,
861 NULL, 0);
862 p->mapping = NULL;
ba8b04c1
QW
863 extent_clear_unlock_delalloc(inode, start, end, end,
864 NULL, 0,
fce2a4e6
FM
865 PAGE_END_WRITEBACK |
866 PAGE_SET_ERROR);
40ae837b 867 free_async_extent_pages(async_extent);
fce2a4e6 868 }
771ed689
CM
869 alloc_hint = ins.objectid + ins.offset;
870 kfree(async_extent);
871 cond_resched();
872 }
dec8f175 873 return;
3e04e7f1 874out_free_reserve:
0b246afa 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 877out_free:
c2790a2e 878 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
879 async_extent->start +
880 async_extent->ram_size - 1,
3e04e7f1
JB
881 async_extent->start +
882 async_extent->ram_size - 1,
c2790a2e 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 884 EXTENT_DELALLOC_NEW |
151a41bc
JB
885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 PAGE_SET_ERROR);
40ae837b 889 free_async_extent_pages(async_extent);
79787eaa 890 kfree(async_extent);
3e04e7f1 891 goto again;
771ed689
CM
892}
893
4b46fce2
JB
894static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 u64 num_bytes)
896{
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 struct extent_map *em;
899 u64 alloc_hint = 0;
900
901 read_lock(&em_tree->lock);
902 em = search_extent_mapping(em_tree, start, num_bytes);
903 if (em) {
904 /*
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
908 */
909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 free_extent_map(em);
911 em = search_extent_mapping(em_tree, 0, 0);
912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 alloc_hint = em->block_start;
914 if (em)
915 free_extent_map(em);
916 } else {
917 alloc_hint = em->block_start;
918 free_extent_map(em);
919 }
920 }
921 read_unlock(&em_tree->lock);
922
923 return alloc_hint;
924}
925
771ed689
CM
926/*
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
931 *
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
934 *
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
937 * IO when we return.
938 */
00361589
JB
939static noinline int cow_file_range(struct inode *inode,
940 struct page *locked_page,
dda3245e
WX
941 u64 start, u64 end, u64 delalloc_end,
942 int *page_started, unsigned long *nr_written,
943 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 944{
0b246afa 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 946 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
947 u64 alloc_hint = 0;
948 u64 num_bytes;
949 unsigned long ram_size;
a315e68f 950 u64 cur_alloc_size = 0;
0b246afa 951 u64 blocksize = fs_info->sectorsize;
771ed689
CM
952 struct btrfs_key ins;
953 struct extent_map *em;
a315e68f
FM
954 unsigned clear_bits;
955 unsigned long page_ops;
956 bool extent_reserved = false;
771ed689
CM
957 int ret = 0;
958
70ddc553 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 960 WARN_ON_ONCE(1);
29bce2f3
JB
961 ret = -EINVAL;
962 goto out_unlock;
02ecd2c2 963 }
771ed689 964
fda2832f 965 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 966 num_bytes = max(blocksize, num_bytes);
566b1760 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 968
6158e1ce 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 970
771ed689
CM
971 if (start == 0) {
972 /* lets try to make an inline extent */
d02c0e20
NB
973 ret = cow_file_range_inline(inode, start, end, 0,
974 BTRFS_COMPRESS_NONE, NULL);
771ed689 975 if (ret == 0) {
8b62f87b
JB
976 /*
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
980 * range.
981 */
ba8b04c1
QW
982 extent_clear_unlock_delalloc(inode, start, end,
983 delalloc_end, NULL,
c2790a2e 984 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 PAGE_END_WRITEBACK);
771ed689 989 *nr_written = *nr_written +
09cbfeaf 990 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 991 *page_started = 1;
771ed689 992 goto out;
79787eaa 993 } else if (ret < 0) {
79787eaa 994 goto out_unlock;
771ed689
CM
995 }
996 }
997
4b46fce2 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
999 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 start + num_bytes - 1, 0);
771ed689 1001
3752d22f
AJ
1002 while (num_bytes > 0) {
1003 cur_alloc_size = num_bytes;
18513091 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1005 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1006 &ins, 1, 1);
00361589 1007 if (ret < 0)
79787eaa 1008 goto out_unlock;
a315e68f
FM
1009 cur_alloc_size = ins.offset;
1010 extent_reserved = true;
d397712b 1011
771ed689 1012 ram_size = ins.offset;
6f9994db
LB
1013 em = create_io_em(inode, start, ins.offset, /* len */
1014 start, /* orig_start */
1015 ins.objectid, /* block_start */
1016 ins.offset, /* block_len */
1017 ins.offset, /* orig_block_len */
1018 ram_size, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1020 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1021 if (IS_ERR(em))
ace68bac 1022 goto out_reserve;
6f9994db 1023 free_extent_map(em);
e6dcd2dc 1024
e6dcd2dc 1025 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1026 ram_size, cur_alloc_size, 0);
ace68bac 1027 if (ret)
d9f85963 1028 goto out_drop_extent_cache;
c8b97818 1029
17d217fe
YZ
1030 if (root->root_key.objectid ==
1031 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 ret = btrfs_reloc_clone_csums(inode, start,
1033 cur_alloc_size);
4dbd80fb
QW
1034 /*
1035 * Only drop cache here, and process as normal.
1036 *
1037 * We must not allow extent_clear_unlock_delalloc()
1038 * at out_unlock label to free meta of this ordered
1039 * extent, as its meta should be freed by
1040 * btrfs_finish_ordered_io().
1041 *
1042 * So we must continue until @start is increased to
1043 * skip current ordered extent.
1044 */
00361589 1045 if (ret)
4dbd80fb
QW
1046 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 start + ram_size - 1, 0);
17d217fe
YZ
1048 }
1049
0b246afa 1050 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1051
c8b97818
CM
1052 /* we're not doing compressed IO, don't unlock the first
1053 * page (which the caller expects to stay locked), don't
1054 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1055 *
1056 * Do set the Private2 bit so we know this page was properly
1057 * setup for writepage
c8b97818 1058 */
a315e68f
FM
1059 page_ops = unlock ? PAGE_UNLOCK : 0;
1060 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1061
c2790a2e 1062 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1063 start + ram_size - 1,
1064 delalloc_end, locked_page,
c2790a2e 1065 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1066 page_ops);
3752d22f
AJ
1067 if (num_bytes < cur_alloc_size)
1068 num_bytes = 0;
4dbd80fb 1069 else
3752d22f 1070 num_bytes -= cur_alloc_size;
c59f8951
CM
1071 alloc_hint = ins.objectid + ins.offset;
1072 start += cur_alloc_size;
a315e68f 1073 extent_reserved = false;
4dbd80fb
QW
1074
1075 /*
1076 * btrfs_reloc_clone_csums() error, since start is increased
1077 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 * free metadata of current ordered extent, we're OK to exit.
1079 */
1080 if (ret)
1081 goto out_unlock;
b888db2b 1082 }
79787eaa 1083out:
be20aa9d 1084 return ret;
b7d5b0a8 1085
d9f85963 1086out_drop_extent_cache:
dcdbc059 1087 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1088out_reserve:
0b246afa 1089 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1090 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1091out_unlock:
a7e3b975
FM
1092 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1094 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 PAGE_END_WRITEBACK;
1096 /*
1097 * If we reserved an extent for our delalloc range (or a subrange) and
1098 * failed to create the respective ordered extent, then it means that
1099 * when we reserved the extent we decremented the extent's size from
1100 * the data space_info's bytes_may_use counter and incremented the
1101 * space_info's bytes_reserved counter by the same amount. We must make
1102 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 */
1106 if (extent_reserved) {
1107 extent_clear_unlock_delalloc(inode, start,
1108 start + cur_alloc_size,
1109 start + cur_alloc_size,
1110 locked_page,
1111 clear_bits,
1112 page_ops);
1113 start += cur_alloc_size;
1114 if (start >= end)
1115 goto out;
1116 }
ba8b04c1
QW
1117 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 locked_page,
a315e68f
FM
1119 clear_bits | EXTENT_CLEAR_DATA_RESV,
1120 page_ops);
79787eaa 1121 goto out;
771ed689 1122}
c8b97818 1123
771ed689
CM
1124/*
1125 * work queue call back to started compression on a file and pages
1126 */
1127static noinline void async_cow_start(struct btrfs_work *work)
1128{
1129 struct async_cow *async_cow;
1130 int num_added = 0;
1131 async_cow = container_of(work, struct async_cow, work);
1132
1133 compress_file_range(async_cow->inode, async_cow->locked_page,
1134 async_cow->start, async_cow->end, async_cow,
1135 &num_added);
8180ef88 1136 if (num_added == 0) {
cb77fcd8 1137 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1138 async_cow->inode = NULL;
8180ef88 1139 }
771ed689
CM
1140}
1141
1142/*
1143 * work queue call back to submit previously compressed pages
1144 */
1145static noinline void async_cow_submit(struct btrfs_work *work)
1146{
0b246afa 1147 struct btrfs_fs_info *fs_info;
771ed689
CM
1148 struct async_cow *async_cow;
1149 struct btrfs_root *root;
1150 unsigned long nr_pages;
1151
1152 async_cow = container_of(work, struct async_cow, work);
1153
1154 root = async_cow->root;
0b246afa 1155 fs_info = root->fs_info;
09cbfeaf
KS
1156 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 PAGE_SHIFT;
771ed689 1158
093258e6 1159 /* atomic_sub_return implies a barrier */
0b246afa 1160 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1161 5 * SZ_1M)
1162 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1163
d397712b 1164 if (async_cow->inode)
771ed689 1165 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1166}
c8b97818 1167
771ed689
CM
1168static noinline void async_cow_free(struct btrfs_work *work)
1169{
1170 struct async_cow *async_cow;
1171 async_cow = container_of(work, struct async_cow, work);
8180ef88 1172 if (async_cow->inode)
cb77fcd8 1173 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1174 kfree(async_cow);
1175}
1176
1177static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1178 u64 start, u64 end, int *page_started,
f82b7359
LB
1179 unsigned long *nr_written,
1180 unsigned int write_flags)
771ed689 1181{
0b246afa 1182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1183 struct async_cow *async_cow;
1184 struct btrfs_root *root = BTRFS_I(inode)->root;
1185 unsigned long nr_pages;
1186 u64 cur_end;
771ed689 1187
a3429ab7 1188 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1189 1, 0, NULL);
d397712b 1190 while (start < end) {
771ed689 1191 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1192 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1193 async_cow->inode = igrab(inode);
771ed689
CM
1194 async_cow->root = root;
1195 async_cow->locked_page = locked_page;
1196 async_cow->start = start;
f82b7359 1197 async_cow->write_flags = write_flags;
771ed689 1198
f79707b0 1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1201 cur_end = end;
1202 else
ee22184b 1203 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1204
1205 async_cow->end = cur_end;
1206 INIT_LIST_HEAD(&async_cow->extents);
1207
9e0af237
LB
1208 btrfs_init_work(&async_cow->work,
1209 btrfs_delalloc_helper,
1210 async_cow_start, async_cow_submit,
1211 async_cow_free);
771ed689 1212
09cbfeaf
KS
1213 nr_pages = (cur_end - start + PAGE_SIZE) >>
1214 PAGE_SHIFT;
0b246afa 1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1216
0b246afa 1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1218
771ed689
CM
1219 *nr_written += nr_pages;
1220 start = cur_end + 1;
1221 }
1222 *page_started = 1;
1223 return 0;
be20aa9d
CM
1224}
1225
2ff7e61e 1226static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1227 u64 bytenr, u64 num_bytes)
1228{
1229 int ret;
1230 struct btrfs_ordered_sum *sums;
1231 LIST_HEAD(list);
1232
0b246afa 1233 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1234 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1235 if (ret == 0 && list_empty(&list))
1236 return 0;
1237
1238 while (!list_empty(&list)) {
1239 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1240 list_del(&sums->list);
1241 kfree(sums);
1242 }
58113753
LB
1243 if (ret < 0)
1244 return ret;
17d217fe
YZ
1245 return 1;
1246}
1247
d352ac68
CM
1248/*
1249 * when nowcow writeback call back. This checks for snapshots or COW copies
1250 * of the extents that exist in the file, and COWs the file as required.
1251 *
1252 * If no cow copies or snapshots exist, we write directly to the existing
1253 * blocks on disk
1254 */
7f366cfe
CM
1255static noinline int run_delalloc_nocow(struct inode *inode,
1256 struct page *locked_page,
771ed689
CM
1257 u64 start, u64 end, int *page_started, int force,
1258 unsigned long *nr_written)
be20aa9d 1259{
0b246afa 1260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1261 struct btrfs_root *root = BTRFS_I(inode)->root;
1262 struct extent_buffer *leaf;
be20aa9d 1263 struct btrfs_path *path;
80ff3856 1264 struct btrfs_file_extent_item *fi;
be20aa9d 1265 struct btrfs_key found_key;
6f9994db 1266 struct extent_map *em;
80ff3856
YZ
1267 u64 cow_start;
1268 u64 cur_offset;
1269 u64 extent_end;
5d4f98a2 1270 u64 extent_offset;
80ff3856
YZ
1271 u64 disk_bytenr;
1272 u64 num_bytes;
b4939680 1273 u64 disk_num_bytes;
cc95bef6 1274 u64 ram_bytes;
80ff3856 1275 int extent_type;
79787eaa 1276 int ret, err;
d899e052 1277 int type;
80ff3856
YZ
1278 int nocow;
1279 int check_prev = 1;
82d5902d 1280 bool nolock;
4a0cc7ca 1281 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1282
1283 path = btrfs_alloc_path();
17ca04af 1284 if (!path) {
ba8b04c1
QW
1285 extent_clear_unlock_delalloc(inode, start, end, end,
1286 locked_page,
c2790a2e 1287 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1288 EXTENT_DO_ACCOUNTING |
1289 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1290 PAGE_CLEAR_DIRTY |
1291 PAGE_SET_WRITEBACK |
1292 PAGE_END_WRITEBACK);
d8926bb3 1293 return -ENOMEM;
17ca04af 1294 }
82d5902d 1295
70ddc553 1296 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1297
80ff3856
YZ
1298 cow_start = (u64)-1;
1299 cur_offset = start;
1300 while (1) {
e4c3b2dc 1301 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1302 cur_offset, 0);
d788a349 1303 if (ret < 0)
79787eaa 1304 goto error;
80ff3856
YZ
1305 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1306 leaf = path->nodes[0];
1307 btrfs_item_key_to_cpu(leaf, &found_key,
1308 path->slots[0] - 1);
33345d01 1309 if (found_key.objectid == ino &&
80ff3856
YZ
1310 found_key.type == BTRFS_EXTENT_DATA_KEY)
1311 path->slots[0]--;
1312 }
1313 check_prev = 0;
1314next_slot:
1315 leaf = path->nodes[0];
1316 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1317 ret = btrfs_next_leaf(root, path);
e8916699
LB
1318 if (ret < 0) {
1319 if (cow_start != (u64)-1)
1320 cur_offset = cow_start;
79787eaa 1321 goto error;
e8916699 1322 }
80ff3856
YZ
1323 if (ret > 0)
1324 break;
1325 leaf = path->nodes[0];
1326 }
be20aa9d 1327
80ff3856
YZ
1328 nocow = 0;
1329 disk_bytenr = 0;
17d217fe 1330 num_bytes = 0;
80ff3856
YZ
1331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1332
1d512cb7
FM
1333 if (found_key.objectid > ino)
1334 break;
1335 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1336 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1337 path->slots[0]++;
1338 goto next_slot;
1339 }
1340 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1341 found_key.offset > end)
1342 break;
1343
1344 if (found_key.offset > cur_offset) {
1345 extent_end = found_key.offset;
e9061e21 1346 extent_type = 0;
80ff3856
YZ
1347 goto out_check;
1348 }
1349
1350 fi = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_file_extent_item);
1352 extent_type = btrfs_file_extent_type(leaf, fi);
1353
cc95bef6 1354 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1355 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1356 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1357 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1358 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1359 extent_end = found_key.offset +
1360 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1361 disk_num_bytes =
1362 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1363 if (extent_end <= start) {
1364 path->slots[0]++;
1365 goto next_slot;
1366 }
17d217fe
YZ
1367 if (disk_bytenr == 0)
1368 goto out_check;
80ff3856
YZ
1369 if (btrfs_file_extent_compression(leaf, fi) ||
1370 btrfs_file_extent_encryption(leaf, fi) ||
1371 btrfs_file_extent_other_encoding(leaf, fi))
1372 goto out_check;
d899e052
YZ
1373 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1374 goto out_check;
2ff7e61e 1375 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1376 goto out_check;
58113753
LB
1377 ret = btrfs_cross_ref_exist(root, ino,
1378 found_key.offset -
1379 extent_offset, disk_bytenr);
1380 if (ret) {
1381 /*
1382 * ret could be -EIO if the above fails to read
1383 * metadata.
1384 */
1385 if (ret < 0) {
1386 if (cow_start != (u64)-1)
1387 cur_offset = cow_start;
1388 goto error;
1389 }
1390
1391 WARN_ON_ONCE(nolock);
17d217fe 1392 goto out_check;
58113753 1393 }
5d4f98a2 1394 disk_bytenr += extent_offset;
17d217fe
YZ
1395 disk_bytenr += cur_offset - found_key.offset;
1396 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1397 /*
1398 * if there are pending snapshots for this root,
1399 * we fall into common COW way.
1400 */
1401 if (!nolock) {
ea14b57f 1402 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1403 if (!err)
1404 goto out_check;
1405 }
17d217fe
YZ
1406 /*
1407 * force cow if csum exists in the range.
1408 * this ensure that csum for a given extent are
1409 * either valid or do not exist.
1410 */
58113753
LB
1411 ret = csum_exist_in_range(fs_info, disk_bytenr,
1412 num_bytes);
1413 if (ret) {
91e1f56a 1414 if (!nolock)
ea14b57f 1415 btrfs_end_write_no_snapshotting(root);
58113753
LB
1416
1417 /*
1418 * ret could be -EIO if the above fails to read
1419 * metadata.
1420 */
1421 if (ret < 0) {
1422 if (cow_start != (u64)-1)
1423 cur_offset = cow_start;
1424 goto error;
1425 }
1426 WARN_ON_ONCE(nolock);
17d217fe 1427 goto out_check;
91e1f56a
RK
1428 }
1429 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1430 if (!nolock)
ea14b57f 1431 btrfs_end_write_no_snapshotting(root);
f78c436c 1432 goto out_check;
91e1f56a 1433 }
80ff3856
YZ
1434 nocow = 1;
1435 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1436 extent_end = found_key.offset +
514ac8ad
CM
1437 btrfs_file_extent_inline_len(leaf,
1438 path->slots[0], fi);
da17066c 1439 extent_end = ALIGN(extent_end,
0b246afa 1440 fs_info->sectorsize);
80ff3856
YZ
1441 } else {
1442 BUG_ON(1);
1443 }
1444out_check:
1445 if (extent_end <= start) {
1446 path->slots[0]++;
e9894fd3 1447 if (!nolock && nocow)
ea14b57f 1448 btrfs_end_write_no_snapshotting(root);
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1451 goto next_slot;
1452 }
1453 if (!nocow) {
1454 if (cow_start == (u64)-1)
1455 cow_start = cur_offset;
1456 cur_offset = extent_end;
1457 if (cur_offset > end)
1458 break;
1459 path->slots[0]++;
1460 goto next_slot;
7ea394f1
YZ
1461 }
1462
b3b4aa74 1463 btrfs_release_path(path);
80ff3856 1464 if (cow_start != (u64)-1) {
00361589
JB
1465 ret = cow_file_range(inode, locked_page,
1466 cow_start, found_key.offset - 1,
dda3245e
WX
1467 end, page_started, nr_written, 1,
1468 NULL);
e9894fd3
WS
1469 if (ret) {
1470 if (!nolock && nocow)
ea14b57f 1471 btrfs_end_write_no_snapshotting(root);
f78c436c 1472 if (nocow)
0b246afa 1473 btrfs_dec_nocow_writers(fs_info,
f78c436c 1474 disk_bytenr);
79787eaa 1475 goto error;
e9894fd3 1476 }
80ff3856 1477 cow_start = (u64)-1;
7ea394f1 1478 }
80ff3856 1479
d899e052 1480 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1481 u64 orig_start = found_key.offset - extent_offset;
1482
1483 em = create_io_em(inode, cur_offset, num_bytes,
1484 orig_start,
1485 disk_bytenr, /* block_start */
1486 num_bytes, /* block_len */
1487 disk_num_bytes, /* orig_block_len */
1488 ram_bytes, BTRFS_COMPRESS_NONE,
1489 BTRFS_ORDERED_PREALLOC);
1490 if (IS_ERR(em)) {
1491 if (!nolock && nocow)
ea14b57f 1492 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1493 if (nocow)
1494 btrfs_dec_nocow_writers(fs_info,
1495 disk_bytenr);
1496 ret = PTR_ERR(em);
1497 goto error;
d899e052 1498 }
6f9994db
LB
1499 free_extent_map(em);
1500 }
1501
1502 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1503 type = BTRFS_ORDERED_PREALLOC;
1504 } else {
1505 type = BTRFS_ORDERED_NOCOW;
1506 }
80ff3856
YZ
1507
1508 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1509 num_bytes, num_bytes, type);
f78c436c 1510 if (nocow)
0b246afa 1511 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1512 BUG_ON(ret); /* -ENOMEM */
771ed689 1513
efa56464 1514 if (root->root_key.objectid ==
4dbd80fb
QW
1515 BTRFS_DATA_RELOC_TREE_OBJECTID)
1516 /*
1517 * Error handled later, as we must prevent
1518 * extent_clear_unlock_delalloc() in error handler
1519 * from freeing metadata of created ordered extent.
1520 */
efa56464
YZ
1521 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1522 num_bytes);
efa56464 1523
c2790a2e 1524 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1525 cur_offset + num_bytes - 1, end,
c2790a2e 1526 locked_page, EXTENT_LOCKED |
18513091
WX
1527 EXTENT_DELALLOC |
1528 EXTENT_CLEAR_DATA_RESV,
1529 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1530
e9894fd3 1531 if (!nolock && nocow)
ea14b57f 1532 btrfs_end_write_no_snapshotting(root);
80ff3856 1533 cur_offset = extent_end;
4dbd80fb
QW
1534
1535 /*
1536 * btrfs_reloc_clone_csums() error, now we're OK to call error
1537 * handler, as metadata for created ordered extent will only
1538 * be freed by btrfs_finish_ordered_io().
1539 */
1540 if (ret)
1541 goto error;
80ff3856
YZ
1542 if (cur_offset > end)
1543 break;
be20aa9d 1544 }
b3b4aa74 1545 btrfs_release_path(path);
80ff3856 1546
17ca04af 1547 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1548 cow_start = cur_offset;
17ca04af
JB
1549 cur_offset = end;
1550 }
1551
80ff3856 1552 if (cow_start != (u64)-1) {
dda3245e
WX
1553 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1554 page_started, nr_written, 1, NULL);
d788a349 1555 if (ret)
79787eaa 1556 goto error;
80ff3856
YZ
1557 }
1558
79787eaa 1559error:
17ca04af 1560 if (ret && cur_offset < end)
ba8b04c1 1561 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1562 locked_page, EXTENT_LOCKED |
151a41bc
JB
1563 EXTENT_DELALLOC | EXTENT_DEFRAG |
1564 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1565 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1566 PAGE_SET_WRITEBACK |
1567 PAGE_END_WRITEBACK);
7ea394f1 1568 btrfs_free_path(path);
79787eaa 1569 return ret;
be20aa9d
CM
1570}
1571
47059d93
WS
1572static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1573{
1574
1575 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1576 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1577 return 0;
1578
1579 /*
1580 * @defrag_bytes is a hint value, no spinlock held here,
1581 * if is not zero, it means the file is defragging.
1582 * Force cow if given extent needs to be defragged.
1583 */
1584 if (BTRFS_I(inode)->defrag_bytes &&
1585 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1586 EXTENT_DEFRAG, 0, NULL))
1587 return 1;
1588
1589 return 0;
1590}
1591
d352ac68
CM
1592/*
1593 * extent_io.c call back to do delayed allocation processing
1594 */
c6100a4b 1595static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1596 u64 start, u64 end, int *page_started,
f82b7359
LB
1597 unsigned long *nr_written,
1598 struct writeback_control *wbc)
be20aa9d 1599{
c6100a4b 1600 struct inode *inode = private_data;
be20aa9d 1601 int ret;
47059d93 1602 int force_cow = need_force_cow(inode, start, end);
f82b7359 1603 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1604
47059d93 1605 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1606 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1607 page_started, 1, nr_written);
47059d93 1608 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1609 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1610 page_started, 0, nr_written);
c2fcdcdf 1611 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1612 ret = cow_file_range(inode, locked_page, start, end, end,
1613 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1614 } else {
1615 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1616 &BTRFS_I(inode)->runtime_flags);
771ed689 1617 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1618 page_started, nr_written,
1619 write_flags);
7ddf5a42 1620 }
52427260
QW
1621 if (ret)
1622 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1623 return ret;
1624}
1625
c6100a4b 1626static void btrfs_split_extent_hook(void *private_data,
1bf85046 1627 struct extent_state *orig, u64 split)
9ed74f2d 1628{
c6100a4b 1629 struct inode *inode = private_data;
dcab6a3b
JB
1630 u64 size;
1631
0ca1f7ce 1632 /* not delalloc, ignore it */
9ed74f2d 1633 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1634 return;
9ed74f2d 1635
dcab6a3b
JB
1636 size = orig->end - orig->start + 1;
1637 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1638 u32 num_extents;
dcab6a3b
JB
1639 u64 new_size;
1640
1641 /*
ba117213
JB
1642 * See the explanation in btrfs_merge_extent_hook, the same
1643 * applies here, just in reverse.
dcab6a3b
JB
1644 */
1645 new_size = orig->end - split + 1;
823bb20a 1646 num_extents = count_max_extents(new_size);
ba117213 1647 new_size = split - orig->start;
823bb20a
DS
1648 num_extents += count_max_extents(new_size);
1649 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1650 return;
1651 }
1652
9e0baf60 1653 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1654 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1655 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1656}
1657
1658/*
1659 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1660 * extents so we can keep track of new extents that are just merged onto old
1661 * extents, such as when we are doing sequential writes, so we can properly
1662 * account for the metadata space we'll need.
1663 */
c6100a4b 1664static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1665 struct extent_state *new,
1666 struct extent_state *other)
9ed74f2d 1667{
c6100a4b 1668 struct inode *inode = private_data;
dcab6a3b 1669 u64 new_size, old_size;
823bb20a 1670 u32 num_extents;
dcab6a3b 1671
9ed74f2d
JB
1672 /* not delalloc, ignore it */
1673 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1674 return;
9ed74f2d 1675
8461a3de
JB
1676 if (new->start > other->start)
1677 new_size = new->end - other->start + 1;
1678 else
1679 new_size = other->end - new->start + 1;
dcab6a3b
JB
1680
1681 /* we're not bigger than the max, unreserve the space and go */
1682 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1683 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1684 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1685 spin_unlock(&BTRFS_I(inode)->lock);
1686 return;
1687 }
1688
1689 /*
ba117213
JB
1690 * We have to add up either side to figure out how many extents were
1691 * accounted for before we merged into one big extent. If the number of
1692 * extents we accounted for is <= the amount we need for the new range
1693 * then we can return, otherwise drop. Think of it like this
1694 *
1695 * [ 4k][MAX_SIZE]
1696 *
1697 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1698 * need 2 outstanding extents, on one side we have 1 and the other side
1699 * we have 1 so they are == and we can return. But in this case
1700 *
1701 * [MAX_SIZE+4k][MAX_SIZE+4k]
1702 *
1703 * Each range on their own accounts for 2 extents, but merged together
1704 * they are only 3 extents worth of accounting, so we need to drop in
1705 * this case.
dcab6a3b 1706 */
ba117213 1707 old_size = other->end - other->start + 1;
823bb20a 1708 num_extents = count_max_extents(old_size);
ba117213 1709 old_size = new->end - new->start + 1;
823bb20a
DS
1710 num_extents += count_max_extents(old_size);
1711 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1712 return;
1713
9e0baf60 1714 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1715 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1716 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1717}
1718
eb73c1b7
MX
1719static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1720 struct inode *inode)
1721{
0b246afa
JM
1722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1723
eb73c1b7
MX
1724 spin_lock(&root->delalloc_lock);
1725 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1726 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1727 &root->delalloc_inodes);
1728 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1729 &BTRFS_I(inode)->runtime_flags);
1730 root->nr_delalloc_inodes++;
1731 if (root->nr_delalloc_inodes == 1) {
0b246afa 1732 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1733 BUG_ON(!list_empty(&root->delalloc_root));
1734 list_add_tail(&root->delalloc_root,
0b246afa
JM
1735 &fs_info->delalloc_roots);
1736 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1737 }
1738 }
1739 spin_unlock(&root->delalloc_lock);
1740}
1741
2b877331
NB
1742
1743void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1744 struct btrfs_inode *inode)
eb73c1b7 1745{
9e3e97f4 1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1747
9e3e97f4
NB
1748 if (!list_empty(&inode->delalloc_inodes)) {
1749 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1750 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1751 &inode->runtime_flags);
eb73c1b7
MX
1752 root->nr_delalloc_inodes--;
1753 if (!root->nr_delalloc_inodes) {
7c8a0d36 1754 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1755 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1756 BUG_ON(list_empty(&root->delalloc_root));
1757 list_del_init(&root->delalloc_root);
0b246afa 1758 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1759 }
1760 }
2b877331
NB
1761}
1762
1763static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1764 struct btrfs_inode *inode)
1765{
1766 spin_lock(&root->delalloc_lock);
1767 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1768 spin_unlock(&root->delalloc_lock);
1769}
1770
d352ac68
CM
1771/*
1772 * extent_io.c set_bit_hook, used to track delayed allocation
1773 * bytes in this file, and to maintain the list of inodes that
1774 * have pending delalloc work to be done.
1775 */
c6100a4b 1776static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1777 struct extent_state *state, unsigned *bits)
291d673e 1778{
c6100a4b 1779 struct inode *inode = private_data;
9ed74f2d 1780
0b246afa
JM
1781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1782
47059d93
WS
1783 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1784 WARN_ON(1);
75eff68e
CM
1785 /*
1786 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1787 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1788 * bit, which is only set or cleared with irqs on
1789 */
0ca1f7ce 1790 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1791 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1792 u64 len = state->end + 1 - state->start;
8b62f87b 1793 u32 num_extents = count_max_extents(len);
70ddc553 1794 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1795
8b62f87b
JB
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1798 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1799
6a3891c5 1800 /* For sanity tests */
0b246afa 1801 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1802 return;
1803
104b4e51
NB
1804 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1805 fs_info->delalloc_batch);
df0af1a5 1806 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1807 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1808 if (*bits & EXTENT_DEFRAG)
1809 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1810 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1811 &BTRFS_I(inode)->runtime_flags))
1812 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1813 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1814 }
a7e3b975
FM
1815
1816 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1817 (*bits & EXTENT_DELALLOC_NEW)) {
1818 spin_lock(&BTRFS_I(inode)->lock);
1819 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1820 state->start;
1821 spin_unlock(&BTRFS_I(inode)->lock);
1822 }
291d673e
CM
1823}
1824
d352ac68
CM
1825/*
1826 * extent_io.c clear_bit_hook, see set_bit_hook for why
1827 */
c6100a4b 1828static void btrfs_clear_bit_hook(void *private_data,
41074888 1829 struct extent_state *state,
9ee49a04 1830 unsigned *bits)
291d673e 1831{
c6100a4b 1832 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1834 u64 len = state->end + 1 - state->start;
823bb20a 1835 u32 num_extents = count_max_extents(len);
47059d93 1836
4a4b964f
FM
1837 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1838 spin_lock(&inode->lock);
6fc0ef68 1839 inode->defrag_bytes -= len;
4a4b964f
FM
1840 spin_unlock(&inode->lock);
1841 }
47059d93 1842
75eff68e
CM
1843 /*
1844 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1845 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1846 * bit, which is only set or cleared with irqs on
1847 */
0ca1f7ce 1848 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1849 struct btrfs_root *root = inode->root;
83eea1f1 1850 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1851
8b62f87b
JB
1852 spin_lock(&inode->lock);
1853 btrfs_mod_outstanding_extents(inode, -num_extents);
1854 spin_unlock(&inode->lock);
0ca1f7ce 1855
b6d08f06
JB
1856 /*
1857 * We don't reserve metadata space for space cache inodes so we
1858 * don't need to call dellalloc_release_metadata if there is an
1859 * error.
1860 */
a315e68f 1861 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1862 root != fs_info->tree_root)
43b18595 1863 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1864
6a3891c5 1865 /* For sanity tests. */
0b246afa 1866 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1867 return;
1868
a315e68f
FM
1869 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1870 do_list && !(state->state & EXTENT_NORESERVE) &&
1871 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1872 btrfs_free_reserved_data_space_noquota(
1873 &inode->vfs_inode,
51773bec 1874 state->start, len);
9ed74f2d 1875
104b4e51
NB
1876 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1877 fs_info->delalloc_batch);
6fc0ef68
NB
1878 spin_lock(&inode->lock);
1879 inode->delalloc_bytes -= len;
1880 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1881 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1882 &inode->runtime_flags))
eb73c1b7 1883 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1884 spin_unlock(&inode->lock);
291d673e 1885 }
a7e3b975
FM
1886
1887 if ((state->state & EXTENT_DELALLOC_NEW) &&
1888 (*bits & EXTENT_DELALLOC_NEW)) {
1889 spin_lock(&inode->lock);
1890 ASSERT(inode->new_delalloc_bytes >= len);
1891 inode->new_delalloc_bytes -= len;
1892 spin_unlock(&inode->lock);
1893 }
291d673e
CM
1894}
1895
d352ac68
CM
1896/*
1897 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1898 * we don't create bios that span stripes or chunks
6f034ece
LB
1899 *
1900 * return 1 if page cannot be merged to bio
1901 * return 0 if page can be merged to bio
1902 * return error otherwise
d352ac68 1903 */
81a75f67 1904int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1905 size_t size, struct bio *bio,
1906 unsigned long bio_flags)
239b14b3 1907{
0b246afa
JM
1908 struct inode *inode = page->mapping->host;
1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1910 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1911 u64 length = 0;
1912 u64 map_length;
239b14b3
CM
1913 int ret;
1914
771ed689
CM
1915 if (bio_flags & EXTENT_BIO_COMPRESSED)
1916 return 0;
1917
4f024f37 1918 length = bio->bi_iter.bi_size;
239b14b3 1919 map_length = length;
0b246afa
JM
1920 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1921 NULL, 0);
6f034ece
LB
1922 if (ret < 0)
1923 return ret;
d397712b 1924 if (map_length < length + size)
239b14b3 1925 return 1;
3444a972 1926 return 0;
239b14b3
CM
1927}
1928
d352ac68
CM
1929/*
1930 * in order to insert checksums into the metadata in large chunks,
1931 * we wait until bio submission time. All the pages in the bio are
1932 * checksummed and sums are attached onto the ordered extent record.
1933 *
1934 * At IO completion time the cums attached on the ordered extent record
1935 * are inserted into the btree
1936 */
d0ee3934 1937static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1938 u64 bio_offset)
065631f6 1939{
c6100a4b 1940 struct inode *inode = private_data;
4e4cbee9 1941 blk_status_t ret = 0;
e015640f 1942
2ff7e61e 1943 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1944 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1945 return 0;
1946}
e015640f 1947
4a69a410
CM
1948/*
1949 * in order to insert checksums into the metadata in large chunks,
1950 * we wait until bio submission time. All the pages in the bio are
1951 * checksummed and sums are attached onto the ordered extent record.
1952 *
1953 * At IO completion time the cums attached on the ordered extent record
1954 * are inserted into the btree
1955 */
d0ee3934 1956static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
6c553435 1957 int mirror_num)
4a69a410 1958{
c6100a4b 1959 struct inode *inode = private_data;
2ff7e61e 1960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1961 blk_status_t ret;
61891923 1962
2ff7e61e 1963 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1964 if (ret) {
4e4cbee9 1965 bio->bi_status = ret;
4246a0b6
CH
1966 bio_endio(bio);
1967 }
61891923 1968 return ret;
44b8bd7e
CM
1969}
1970
d352ac68 1971/*
cad321ad 1972 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1973 * on write, or reading the csums from the tree before a read.
1974 *
1975 * Rules about async/sync submit,
1976 * a) read: sync submit
1977 *
1978 * b) write without checksum: sync submit
1979 *
1980 * c) write with checksum:
1981 * c-1) if bio is issued by fsync: sync submit
1982 * (sync_writers != 0)
1983 *
1984 * c-2) if root is reloc root: sync submit
1985 * (only in case of buffered IO)
1986 *
1987 * c-3) otherwise: async submit
d352ac68 1988 */
8c27cb35 1989static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1990 int mirror_num, unsigned long bio_flags,
1991 u64 bio_offset)
44b8bd7e 1992{
c6100a4b 1993 struct inode *inode = private_data;
0b246afa 1994 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1995 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1996 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1997 blk_status_t ret = 0;
19b9bdb0 1998 int skip_sum;
b812ce28 1999 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2000
6cbff00f 2001 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2002
70ddc553 2003 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2004 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2005
37226b21 2006 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2007 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2008 if (ret)
61891923 2009 goto out;
5fd02043 2010
d20f7043 2011 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2012 ret = btrfs_submit_compressed_read(inode, bio,
2013 mirror_num,
2014 bio_flags);
2015 goto out;
c2db1073 2016 } else if (!skip_sum) {
2ff7e61e 2017 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2018 if (ret)
61891923 2019 goto out;
c2db1073 2020 }
4d1b5fb4 2021 goto mapit;
b812ce28 2022 } else if (async && !skip_sum) {
17d217fe
YZ
2023 /* csum items have already been cloned */
2024 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2025 goto mapit;
19b9bdb0 2026 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2027 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2028 bio_offset, inode,
d0ee3934
DS
2029 btrfs_submit_bio_start,
2030 btrfs_submit_bio_done);
61891923 2031 goto out;
b812ce28 2032 } else if (!skip_sum) {
2ff7e61e 2033 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2034 if (ret)
2035 goto out;
19b9bdb0
CM
2036 }
2037
0b86a832 2038mapit:
2ff7e61e 2039 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2040
2041out:
4e4cbee9
CH
2042 if (ret) {
2043 bio->bi_status = ret;
4246a0b6
CH
2044 bio_endio(bio);
2045 }
61891923 2046 return ret;
065631f6 2047}
6885f308 2048
d352ac68
CM
2049/*
2050 * given a list of ordered sums record them in the inode. This happens
2051 * at IO completion time based on sums calculated at bio submission time.
2052 */
ba1da2f4 2053static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2054 struct inode *inode, struct list_head *list)
e6dcd2dc 2055{
e6dcd2dc 2056 struct btrfs_ordered_sum *sum;
ac01f26a 2057 int ret;
e6dcd2dc 2058
c6e30871 2059 list_for_each_entry(sum, list, list) {
7c2871a2 2060 trans->adding_csums = true;
ac01f26a 2061 ret = btrfs_csum_file_blocks(trans,
d20f7043 2062 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2063 trans->adding_csums = false;
ac01f26a
NB
2064 if (ret)
2065 return ret;
e6dcd2dc
CM
2066 }
2067 return 0;
2068}
2069
2ac55d41 2070int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2071 unsigned int extra_bits,
ba8b04c1 2072 struct extent_state **cached_state, int dedupe)
ea8c2819 2073{
09cbfeaf 2074 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2075 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2076 extra_bits, cached_state);
ea8c2819
CM
2077}
2078
d352ac68 2079/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2080struct btrfs_writepage_fixup {
2081 struct page *page;
2082 struct btrfs_work work;
2083};
2084
b2950863 2085static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2086{
2087 struct btrfs_writepage_fixup *fixup;
2088 struct btrfs_ordered_extent *ordered;
2ac55d41 2089 struct extent_state *cached_state = NULL;
364ecf36 2090 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2091 struct page *page;
2092 struct inode *inode;
2093 u64 page_start;
2094 u64 page_end;
87826df0 2095 int ret;
247e743c
CM
2096
2097 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2098 page = fixup->page;
4a096752 2099again:
247e743c
CM
2100 lock_page(page);
2101 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2102 ClearPageChecked(page);
2103 goto out_page;
2104 }
2105
2106 inode = page->mapping->host;
2107 page_start = page_offset(page);
09cbfeaf 2108 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2109
ff13db41 2110 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2111 &cached_state);
4a096752
CM
2112
2113 /* already ordered? We're done */
8b62b72b 2114 if (PagePrivate2(page))
247e743c 2115 goto out;
4a096752 2116
a776c6fa 2117 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2118 PAGE_SIZE);
4a096752 2119 if (ordered) {
2ac55d41 2120 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2121 page_end, &cached_state);
4a096752
CM
2122 unlock_page(page);
2123 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2124 btrfs_put_ordered_extent(ordered);
4a096752
CM
2125 goto again;
2126 }
247e743c 2127
364ecf36 2128 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2129 PAGE_SIZE);
87826df0
JM
2130 if (ret) {
2131 mapping_set_error(page->mapping, ret);
2132 end_extent_writepage(page, ret, page_start, page_end);
2133 ClearPageChecked(page);
2134 goto out;
2135 }
2136
f3038ee3
NB
2137 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2138 &cached_state, 0);
2139 if (ret) {
2140 mapping_set_error(page->mapping, ret);
2141 end_extent_writepage(page, ret, page_start, page_end);
2142 ClearPageChecked(page);
2143 goto out;
2144 }
2145
247e743c 2146 ClearPageChecked(page);
87826df0 2147 set_page_dirty(page);
43b18595 2148 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2149out:
2ac55d41 2150 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2151 &cached_state);
247e743c
CM
2152out_page:
2153 unlock_page(page);
09cbfeaf 2154 put_page(page);
b897abec 2155 kfree(fixup);
364ecf36 2156 extent_changeset_free(data_reserved);
247e743c
CM
2157}
2158
2159/*
2160 * There are a few paths in the higher layers of the kernel that directly
2161 * set the page dirty bit without asking the filesystem if it is a
2162 * good idea. This causes problems because we want to make sure COW
2163 * properly happens and the data=ordered rules are followed.
2164 *
c8b97818 2165 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2166 * hasn't been properly setup for IO. We kick off an async process
2167 * to fix it up. The async helper will wait for ordered extents, set
2168 * the delalloc bit and make it safe to write the page.
2169 */
b2950863 2170static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2171{
2172 struct inode *inode = page->mapping->host;
0b246afa 2173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2174 struct btrfs_writepage_fixup *fixup;
247e743c 2175
8b62b72b
CM
2176 /* this page is properly in the ordered list */
2177 if (TestClearPagePrivate2(page))
247e743c
CM
2178 return 0;
2179
2180 if (PageChecked(page))
2181 return -EAGAIN;
2182
2183 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2184 if (!fixup)
2185 return -EAGAIN;
f421950f 2186
247e743c 2187 SetPageChecked(page);
09cbfeaf 2188 get_page(page);
9e0af237
LB
2189 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2190 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2191 fixup->page = page;
0b246afa 2192 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2193 return -EBUSY;
247e743c
CM
2194}
2195
d899e052
YZ
2196static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2197 struct inode *inode, u64 file_pos,
2198 u64 disk_bytenr, u64 disk_num_bytes,
2199 u64 num_bytes, u64 ram_bytes,
2200 u8 compression, u8 encryption,
2201 u16 other_encoding, int extent_type)
2202{
2203 struct btrfs_root *root = BTRFS_I(inode)->root;
2204 struct btrfs_file_extent_item *fi;
2205 struct btrfs_path *path;
2206 struct extent_buffer *leaf;
2207 struct btrfs_key ins;
a12b877b 2208 u64 qg_released;
1acae57b 2209 int extent_inserted = 0;
d899e052
YZ
2210 int ret;
2211
2212 path = btrfs_alloc_path();
d8926bb3
MF
2213 if (!path)
2214 return -ENOMEM;
d899e052 2215
a1ed835e
CM
2216 /*
2217 * we may be replacing one extent in the tree with another.
2218 * The new extent is pinned in the extent map, and we don't want
2219 * to drop it from the cache until it is completely in the btree.
2220 *
2221 * So, tell btrfs_drop_extents to leave this extent in the cache.
2222 * the caller is expected to unpin it and allow it to be merged
2223 * with the others.
2224 */
1acae57b
FDBM
2225 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2226 file_pos + num_bytes, NULL, 0,
2227 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2228 if (ret)
2229 goto out;
d899e052 2230
1acae57b 2231 if (!extent_inserted) {
4a0cc7ca 2232 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2233 ins.offset = file_pos;
2234 ins.type = BTRFS_EXTENT_DATA_KEY;
2235
2236 path->leave_spinning = 1;
2237 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2238 sizeof(*fi));
2239 if (ret)
2240 goto out;
2241 }
d899e052
YZ
2242 leaf = path->nodes[0];
2243 fi = btrfs_item_ptr(leaf, path->slots[0],
2244 struct btrfs_file_extent_item);
2245 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2246 btrfs_set_file_extent_type(leaf, fi, extent_type);
2247 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2248 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2249 btrfs_set_file_extent_offset(leaf, fi, 0);
2250 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2251 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2252 btrfs_set_file_extent_compression(leaf, fi, compression);
2253 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2254 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2255
d899e052 2256 btrfs_mark_buffer_dirty(leaf);
ce195332 2257 btrfs_release_path(path);
d899e052
YZ
2258
2259 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2260
2261 ins.objectid = disk_bytenr;
2262 ins.offset = disk_num_bytes;
2263 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2264
297d750b 2265 /*
5846a3c2
QW
2266 * Release the reserved range from inode dirty range map, as it is
2267 * already moved into delayed_ref_head
297d750b 2268 */
a12b877b
QW
2269 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2270 if (ret < 0)
2271 goto out;
2272 qg_released = ret;
84f7d8e6
JB
2273 ret = btrfs_alloc_reserved_file_extent(trans, root,
2274 btrfs_ino(BTRFS_I(inode)),
2275 file_pos, qg_released, &ins);
79787eaa 2276out:
d899e052 2277 btrfs_free_path(path);
b9473439 2278
79787eaa 2279 return ret;
d899e052
YZ
2280}
2281
38c227d8
LB
2282/* snapshot-aware defrag */
2283struct sa_defrag_extent_backref {
2284 struct rb_node node;
2285 struct old_sa_defrag_extent *old;
2286 u64 root_id;
2287 u64 inum;
2288 u64 file_pos;
2289 u64 extent_offset;
2290 u64 num_bytes;
2291 u64 generation;
2292};
2293
2294struct old_sa_defrag_extent {
2295 struct list_head list;
2296 struct new_sa_defrag_extent *new;
2297
2298 u64 extent_offset;
2299 u64 bytenr;
2300 u64 offset;
2301 u64 len;
2302 int count;
2303};
2304
2305struct new_sa_defrag_extent {
2306 struct rb_root root;
2307 struct list_head head;
2308 struct btrfs_path *path;
2309 struct inode *inode;
2310 u64 file_pos;
2311 u64 len;
2312 u64 bytenr;
2313 u64 disk_len;
2314 u8 compress_type;
2315};
2316
2317static int backref_comp(struct sa_defrag_extent_backref *b1,
2318 struct sa_defrag_extent_backref *b2)
2319{
2320 if (b1->root_id < b2->root_id)
2321 return -1;
2322 else if (b1->root_id > b2->root_id)
2323 return 1;
2324
2325 if (b1->inum < b2->inum)
2326 return -1;
2327 else if (b1->inum > b2->inum)
2328 return 1;
2329
2330 if (b1->file_pos < b2->file_pos)
2331 return -1;
2332 else if (b1->file_pos > b2->file_pos)
2333 return 1;
2334
2335 /*
2336 * [------------------------------] ===> (a range of space)
2337 * |<--->| |<---->| =============> (fs/file tree A)
2338 * |<---------------------------->| ===> (fs/file tree B)
2339 *
2340 * A range of space can refer to two file extents in one tree while
2341 * refer to only one file extent in another tree.
2342 *
2343 * So we may process a disk offset more than one time(two extents in A)
2344 * and locate at the same extent(one extent in B), then insert two same
2345 * backrefs(both refer to the extent in B).
2346 */
2347 return 0;
2348}
2349
2350static void backref_insert(struct rb_root *root,
2351 struct sa_defrag_extent_backref *backref)
2352{
2353 struct rb_node **p = &root->rb_node;
2354 struct rb_node *parent = NULL;
2355 struct sa_defrag_extent_backref *entry;
2356 int ret;
2357
2358 while (*p) {
2359 parent = *p;
2360 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2361
2362 ret = backref_comp(backref, entry);
2363 if (ret < 0)
2364 p = &(*p)->rb_left;
2365 else
2366 p = &(*p)->rb_right;
2367 }
2368
2369 rb_link_node(&backref->node, parent, p);
2370 rb_insert_color(&backref->node, root);
2371}
2372
2373/*
2374 * Note the backref might has changed, and in this case we just return 0.
2375 */
2376static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2377 void *ctx)
2378{
2379 struct btrfs_file_extent_item *extent;
38c227d8
LB
2380 struct old_sa_defrag_extent *old = ctx;
2381 struct new_sa_defrag_extent *new = old->new;
2382 struct btrfs_path *path = new->path;
2383 struct btrfs_key key;
2384 struct btrfs_root *root;
2385 struct sa_defrag_extent_backref *backref;
2386 struct extent_buffer *leaf;
2387 struct inode *inode = new->inode;
0b246afa 2388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2389 int slot;
2390 int ret;
2391 u64 extent_offset;
2392 u64 num_bytes;
2393
2394 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2395 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2396 return 0;
2397
2398 key.objectid = root_id;
2399 key.type = BTRFS_ROOT_ITEM_KEY;
2400 key.offset = (u64)-1;
2401
38c227d8
LB
2402 root = btrfs_read_fs_root_no_name(fs_info, &key);
2403 if (IS_ERR(root)) {
2404 if (PTR_ERR(root) == -ENOENT)
2405 return 0;
2406 WARN_ON(1);
ab8d0fc4 2407 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2408 inum, offset, root_id);
2409 return PTR_ERR(root);
2410 }
2411
2412 key.objectid = inum;
2413 key.type = BTRFS_EXTENT_DATA_KEY;
2414 if (offset > (u64)-1 << 32)
2415 key.offset = 0;
2416 else
2417 key.offset = offset;
2418
2419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2420 if (WARN_ON(ret < 0))
38c227d8 2421 return ret;
50f1319c 2422 ret = 0;
38c227d8
LB
2423
2424 while (1) {
2425 cond_resched();
2426
2427 leaf = path->nodes[0];
2428 slot = path->slots[0];
2429
2430 if (slot >= btrfs_header_nritems(leaf)) {
2431 ret = btrfs_next_leaf(root, path);
2432 if (ret < 0) {
2433 goto out;
2434 } else if (ret > 0) {
2435 ret = 0;
2436 goto out;
2437 }
2438 continue;
2439 }
2440
2441 path->slots[0]++;
2442
2443 btrfs_item_key_to_cpu(leaf, &key, slot);
2444
2445 if (key.objectid > inum)
2446 goto out;
2447
2448 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2449 continue;
2450
2451 extent = btrfs_item_ptr(leaf, slot,
2452 struct btrfs_file_extent_item);
2453
2454 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2455 continue;
2456
e68afa49
LB
2457 /*
2458 * 'offset' refers to the exact key.offset,
2459 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2460 * (key.offset - extent_offset).
2461 */
2462 if (key.offset != offset)
38c227d8
LB
2463 continue;
2464
e68afa49 2465 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2466 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2467
38c227d8
LB
2468 if (extent_offset >= old->extent_offset + old->offset +
2469 old->len || extent_offset + num_bytes <=
2470 old->extent_offset + old->offset)
2471 continue;
38c227d8
LB
2472 break;
2473 }
2474
2475 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2476 if (!backref) {
2477 ret = -ENOENT;
2478 goto out;
2479 }
2480
2481 backref->root_id = root_id;
2482 backref->inum = inum;
e68afa49 2483 backref->file_pos = offset;
38c227d8
LB
2484 backref->num_bytes = num_bytes;
2485 backref->extent_offset = extent_offset;
2486 backref->generation = btrfs_file_extent_generation(leaf, extent);
2487 backref->old = old;
2488 backref_insert(&new->root, backref);
2489 old->count++;
2490out:
2491 btrfs_release_path(path);
2492 WARN_ON(ret);
2493 return ret;
2494}
2495
2496static noinline bool record_extent_backrefs(struct btrfs_path *path,
2497 struct new_sa_defrag_extent *new)
2498{
0b246afa 2499 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2500 struct old_sa_defrag_extent *old, *tmp;
2501 int ret;
2502
2503 new->path = path;
2504
2505 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2506 ret = iterate_inodes_from_logical(old->bytenr +
2507 old->extent_offset, fs_info,
38c227d8 2508 path, record_one_backref,
c995ab3c 2509 old, false);
4724b106
JB
2510 if (ret < 0 && ret != -ENOENT)
2511 return false;
38c227d8
LB
2512
2513 /* no backref to be processed for this extent */
2514 if (!old->count) {
2515 list_del(&old->list);
2516 kfree(old);
2517 }
2518 }
2519
2520 if (list_empty(&new->head))
2521 return false;
2522
2523 return true;
2524}
2525
2526static int relink_is_mergable(struct extent_buffer *leaf,
2527 struct btrfs_file_extent_item *fi,
116e0024 2528 struct new_sa_defrag_extent *new)
38c227d8 2529{
116e0024 2530 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2531 return 0;
2532
2533 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2534 return 0;
2535
116e0024
LB
2536 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2537 return 0;
2538
2539 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2540 btrfs_file_extent_other_encoding(leaf, fi))
2541 return 0;
2542
2543 return 1;
2544}
2545
2546/*
2547 * Note the backref might has changed, and in this case we just return 0.
2548 */
2549static noinline int relink_extent_backref(struct btrfs_path *path,
2550 struct sa_defrag_extent_backref *prev,
2551 struct sa_defrag_extent_backref *backref)
2552{
2553 struct btrfs_file_extent_item *extent;
2554 struct btrfs_file_extent_item *item;
2555 struct btrfs_ordered_extent *ordered;
2556 struct btrfs_trans_handle *trans;
38c227d8
LB
2557 struct btrfs_root *root;
2558 struct btrfs_key key;
2559 struct extent_buffer *leaf;
2560 struct old_sa_defrag_extent *old = backref->old;
2561 struct new_sa_defrag_extent *new = old->new;
0b246afa 2562 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2563 struct inode *inode;
2564 struct extent_state *cached = NULL;
2565 int ret = 0;
2566 u64 start;
2567 u64 len;
2568 u64 lock_start;
2569 u64 lock_end;
2570 bool merge = false;
2571 int index;
2572
2573 if (prev && prev->root_id == backref->root_id &&
2574 prev->inum == backref->inum &&
2575 prev->file_pos + prev->num_bytes == backref->file_pos)
2576 merge = true;
2577
2578 /* step 1: get root */
2579 key.objectid = backref->root_id;
2580 key.type = BTRFS_ROOT_ITEM_KEY;
2581 key.offset = (u64)-1;
2582
38c227d8
LB
2583 index = srcu_read_lock(&fs_info->subvol_srcu);
2584
2585 root = btrfs_read_fs_root_no_name(fs_info, &key);
2586 if (IS_ERR(root)) {
2587 srcu_read_unlock(&fs_info->subvol_srcu, index);
2588 if (PTR_ERR(root) == -ENOENT)
2589 return 0;
2590 return PTR_ERR(root);
2591 }
38c227d8 2592
bcbba5e6
WS
2593 if (btrfs_root_readonly(root)) {
2594 srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 return 0;
2596 }
2597
38c227d8
LB
2598 /* step 2: get inode */
2599 key.objectid = backref->inum;
2600 key.type = BTRFS_INODE_ITEM_KEY;
2601 key.offset = 0;
2602
2603 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2604 if (IS_ERR(inode)) {
2605 srcu_read_unlock(&fs_info->subvol_srcu, index);
2606 return 0;
2607 }
2608
2609 srcu_read_unlock(&fs_info->subvol_srcu, index);
2610
2611 /* step 3: relink backref */
2612 lock_start = backref->file_pos;
2613 lock_end = backref->file_pos + backref->num_bytes - 1;
2614 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2615 &cached);
38c227d8
LB
2616
2617 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2618 if (ordered) {
2619 btrfs_put_ordered_extent(ordered);
2620 goto out_unlock;
2621 }
2622
2623 trans = btrfs_join_transaction(root);
2624 if (IS_ERR(trans)) {
2625 ret = PTR_ERR(trans);
2626 goto out_unlock;
2627 }
2628
2629 key.objectid = backref->inum;
2630 key.type = BTRFS_EXTENT_DATA_KEY;
2631 key.offset = backref->file_pos;
2632
2633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2634 if (ret < 0) {
2635 goto out_free_path;
2636 } else if (ret > 0) {
2637 ret = 0;
2638 goto out_free_path;
2639 }
2640
2641 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2642 struct btrfs_file_extent_item);
2643
2644 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2645 backref->generation)
2646 goto out_free_path;
2647
2648 btrfs_release_path(path);
2649
2650 start = backref->file_pos;
2651 if (backref->extent_offset < old->extent_offset + old->offset)
2652 start += old->extent_offset + old->offset -
2653 backref->extent_offset;
2654
2655 len = min(backref->extent_offset + backref->num_bytes,
2656 old->extent_offset + old->offset + old->len);
2657 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2658
2659 ret = btrfs_drop_extents(trans, root, inode, start,
2660 start + len, 1);
2661 if (ret)
2662 goto out_free_path;
2663again:
4a0cc7ca 2664 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2665 key.type = BTRFS_EXTENT_DATA_KEY;
2666 key.offset = start;
2667
a09a0a70 2668 path->leave_spinning = 1;
38c227d8
LB
2669 if (merge) {
2670 struct btrfs_file_extent_item *fi;
2671 u64 extent_len;
2672 struct btrfs_key found_key;
2673
3c9665df 2674 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2675 if (ret < 0)
2676 goto out_free_path;
2677
2678 path->slots[0]--;
2679 leaf = path->nodes[0];
2680 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2681
2682 fi = btrfs_item_ptr(leaf, path->slots[0],
2683 struct btrfs_file_extent_item);
2684 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2685
116e0024
LB
2686 if (extent_len + found_key.offset == start &&
2687 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2688 btrfs_set_file_extent_num_bytes(leaf, fi,
2689 extent_len + len);
2690 btrfs_mark_buffer_dirty(leaf);
2691 inode_add_bytes(inode, len);
2692
2693 ret = 1;
2694 goto out_free_path;
2695 } else {
2696 merge = false;
2697 btrfs_release_path(path);
2698 goto again;
2699 }
2700 }
2701
2702 ret = btrfs_insert_empty_item(trans, root, path, &key,
2703 sizeof(*extent));
2704 if (ret) {
66642832 2705 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2706 goto out_free_path;
2707 }
2708
2709 leaf = path->nodes[0];
2710 item = btrfs_item_ptr(leaf, path->slots[0],
2711 struct btrfs_file_extent_item);
2712 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2713 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2714 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2715 btrfs_set_file_extent_num_bytes(leaf, item, len);
2716 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2717 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2718 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2719 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2720 btrfs_set_file_extent_encryption(leaf, item, 0);
2721 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2722
2723 btrfs_mark_buffer_dirty(leaf);
2724 inode_add_bytes(inode, len);
a09a0a70 2725 btrfs_release_path(path);
38c227d8 2726
84f7d8e6 2727 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2728 new->disk_len, 0,
2729 backref->root_id, backref->inum,
b06c4bf5 2730 new->file_pos); /* start - extent_offset */
38c227d8 2731 if (ret) {
66642832 2732 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2733 goto out_free_path;
2734 }
2735
2736 ret = 1;
2737out_free_path:
2738 btrfs_release_path(path);
a09a0a70 2739 path->leave_spinning = 0;
3a45bb20 2740 btrfs_end_transaction(trans);
38c227d8
LB
2741out_unlock:
2742 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2743 &cached);
38c227d8
LB
2744 iput(inode);
2745 return ret;
2746}
2747
6f519564
LB
2748static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2749{
2750 struct old_sa_defrag_extent *old, *tmp;
2751
2752 if (!new)
2753 return;
2754
2755 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2756 kfree(old);
2757 }
2758 kfree(new);
2759}
2760
38c227d8
LB
2761static void relink_file_extents(struct new_sa_defrag_extent *new)
2762{
0b246afa 2763 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2764 struct btrfs_path *path;
38c227d8
LB
2765 struct sa_defrag_extent_backref *backref;
2766 struct sa_defrag_extent_backref *prev = NULL;
2767 struct inode *inode;
38c227d8
LB
2768 struct rb_node *node;
2769 int ret;
2770
2771 inode = new->inode;
38c227d8
LB
2772
2773 path = btrfs_alloc_path();
2774 if (!path)
2775 return;
2776
2777 if (!record_extent_backrefs(path, new)) {
2778 btrfs_free_path(path);
2779 goto out;
2780 }
2781 btrfs_release_path(path);
2782
2783 while (1) {
2784 node = rb_first(&new->root);
2785 if (!node)
2786 break;
2787 rb_erase(node, &new->root);
2788
2789 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2790
2791 ret = relink_extent_backref(path, prev, backref);
2792 WARN_ON(ret < 0);
2793
2794 kfree(prev);
2795
2796 if (ret == 1)
2797 prev = backref;
2798 else
2799 prev = NULL;
2800 cond_resched();
2801 }
2802 kfree(prev);
2803
2804 btrfs_free_path(path);
38c227d8 2805out:
6f519564
LB
2806 free_sa_defrag_extent(new);
2807
0b246afa
JM
2808 atomic_dec(&fs_info->defrag_running);
2809 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2810}
2811
2812static struct new_sa_defrag_extent *
2813record_old_file_extents(struct inode *inode,
2814 struct btrfs_ordered_extent *ordered)
2815{
0b246afa 2816 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2817 struct btrfs_root *root = BTRFS_I(inode)->root;
2818 struct btrfs_path *path;
2819 struct btrfs_key key;
6f519564 2820 struct old_sa_defrag_extent *old;
38c227d8
LB
2821 struct new_sa_defrag_extent *new;
2822 int ret;
2823
2824 new = kmalloc(sizeof(*new), GFP_NOFS);
2825 if (!new)
2826 return NULL;
2827
2828 new->inode = inode;
2829 new->file_pos = ordered->file_offset;
2830 new->len = ordered->len;
2831 new->bytenr = ordered->start;
2832 new->disk_len = ordered->disk_len;
2833 new->compress_type = ordered->compress_type;
2834 new->root = RB_ROOT;
2835 INIT_LIST_HEAD(&new->head);
2836
2837 path = btrfs_alloc_path();
2838 if (!path)
2839 goto out_kfree;
2840
4a0cc7ca 2841 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2842 key.type = BTRFS_EXTENT_DATA_KEY;
2843 key.offset = new->file_pos;
2844
2845 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2846 if (ret < 0)
2847 goto out_free_path;
2848 if (ret > 0 && path->slots[0] > 0)
2849 path->slots[0]--;
2850
2851 /* find out all the old extents for the file range */
2852 while (1) {
2853 struct btrfs_file_extent_item *extent;
2854 struct extent_buffer *l;
2855 int slot;
2856 u64 num_bytes;
2857 u64 offset;
2858 u64 end;
2859 u64 disk_bytenr;
2860 u64 extent_offset;
2861
2862 l = path->nodes[0];
2863 slot = path->slots[0];
2864
2865 if (slot >= btrfs_header_nritems(l)) {
2866 ret = btrfs_next_leaf(root, path);
2867 if (ret < 0)
6f519564 2868 goto out_free_path;
38c227d8
LB
2869 else if (ret > 0)
2870 break;
2871 continue;
2872 }
2873
2874 btrfs_item_key_to_cpu(l, &key, slot);
2875
4a0cc7ca 2876 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2877 break;
2878 if (key.type != BTRFS_EXTENT_DATA_KEY)
2879 break;
2880 if (key.offset >= new->file_pos + new->len)
2881 break;
2882
2883 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2884
2885 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2886 if (key.offset + num_bytes < new->file_pos)
2887 goto next;
2888
2889 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2890 if (!disk_bytenr)
2891 goto next;
2892
2893 extent_offset = btrfs_file_extent_offset(l, extent);
2894
2895 old = kmalloc(sizeof(*old), GFP_NOFS);
2896 if (!old)
6f519564 2897 goto out_free_path;
38c227d8
LB
2898
2899 offset = max(new->file_pos, key.offset);
2900 end = min(new->file_pos + new->len, key.offset + num_bytes);
2901
2902 old->bytenr = disk_bytenr;
2903 old->extent_offset = extent_offset;
2904 old->offset = offset - key.offset;
2905 old->len = end - offset;
2906 old->new = new;
2907 old->count = 0;
2908 list_add_tail(&old->list, &new->head);
2909next:
2910 path->slots[0]++;
2911 cond_resched();
2912 }
2913
2914 btrfs_free_path(path);
0b246afa 2915 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2916
2917 return new;
2918
38c227d8
LB
2919out_free_path:
2920 btrfs_free_path(path);
2921out_kfree:
6f519564 2922 free_sa_defrag_extent(new);
38c227d8
LB
2923 return NULL;
2924}
2925
2ff7e61e 2926static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2927 u64 start, u64 len)
2928{
2929 struct btrfs_block_group_cache *cache;
2930
0b246afa 2931 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2932 ASSERT(cache);
2933
2934 spin_lock(&cache->lock);
2935 cache->delalloc_bytes -= len;
2936 spin_unlock(&cache->lock);
2937
2938 btrfs_put_block_group(cache);
2939}
2940
d352ac68
CM
2941/* as ordered data IO finishes, this gets called so we can finish
2942 * an ordered extent if the range of bytes in the file it covers are
2943 * fully written.
2944 */
5fd02043 2945static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2946{
5fd02043 2947 struct inode *inode = ordered_extent->inode;
0b246afa 2948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2949 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2950 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2952 struct extent_state *cached_state = NULL;
38c227d8 2953 struct new_sa_defrag_extent *new = NULL;
261507a0 2954 int compress_type = 0;
77cef2ec
JB
2955 int ret = 0;
2956 u64 logical_len = ordered_extent->len;
82d5902d 2957 bool nolock;
77cef2ec 2958 bool truncated = false;
a7e3b975
FM
2959 bool range_locked = false;
2960 bool clear_new_delalloc_bytes = false;
2961
2962 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2963 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2964 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2965 clear_new_delalloc_bytes = true;
e6dcd2dc 2966
70ddc553 2967 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2968
5fd02043
JB
2969 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2970 ret = -EIO;
2971 goto out;
2972 }
2973
7ab7956e
NB
2974 btrfs_free_io_failure_record(BTRFS_I(inode),
2975 ordered_extent->file_offset,
2976 ordered_extent->file_offset +
2977 ordered_extent->len - 1);
f612496b 2978
77cef2ec
JB
2979 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2980 truncated = true;
2981 logical_len = ordered_extent->truncated_len;
2982 /* Truncated the entire extent, don't bother adding */
2983 if (!logical_len)
2984 goto out;
2985 }
2986
c2167754 2987 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2988 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2989
2990 /*
2991 * For mwrite(mmap + memset to write) case, we still reserve
2992 * space for NOCOW range.
2993 * As NOCOW won't cause a new delayed ref, just free the space
2994 */
bc42bda2 2995 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2996 ordered_extent->len);
6c760c07
JB
2997 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2998 if (nolock)
2999 trans = btrfs_join_transaction_nolock(root);
3000 else
3001 trans = btrfs_join_transaction(root);
3002 if (IS_ERR(trans)) {
3003 ret = PTR_ERR(trans);
3004 trans = NULL;
3005 goto out;
c2167754 3006 }
69fe2d75 3007 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3008 ret = btrfs_update_inode_fallback(trans, root, inode);
3009 if (ret) /* -ENOMEM or corruption */
66642832 3010 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3011 goto out;
3012 }
e6dcd2dc 3013
a7e3b975 3014 range_locked = true;
2ac55d41
JB
3015 lock_extent_bits(io_tree, ordered_extent->file_offset,
3016 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3017 &cached_state);
e6dcd2dc 3018
38c227d8
LB
3019 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3020 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3021 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3022 if (ret) {
3023 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3024 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3025 /* the inode is shared */
3026 new = record_old_file_extents(inode, ordered_extent);
3027
3028 clear_extent_bit(io_tree, ordered_extent->file_offset,
3029 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3030 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3031 }
3032
0cb59c99 3033 if (nolock)
7a7eaa40 3034 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3035 else
7a7eaa40 3036 trans = btrfs_join_transaction(root);
79787eaa
JM
3037 if (IS_ERR(trans)) {
3038 ret = PTR_ERR(trans);
3039 trans = NULL;
a7e3b975 3040 goto out;
79787eaa 3041 }
a79b7d4b 3042
69fe2d75 3043 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3044
c8b97818 3045 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3046 compress_type = ordered_extent->compress_type;
d899e052 3047 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3048 BUG_ON(compress_type);
b430b775
JM
3049 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3050 ordered_extent->len);
7a6d7067 3051 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3052 ordered_extent->file_offset,
3053 ordered_extent->file_offset +
77cef2ec 3054 logical_len);
d899e052 3055 } else {
0b246afa 3056 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3057 ret = insert_reserved_file_extent(trans, inode,
3058 ordered_extent->file_offset,
3059 ordered_extent->start,
3060 ordered_extent->disk_len,
77cef2ec 3061 logical_len, logical_len,
261507a0 3062 compress_type, 0, 0,
d899e052 3063 BTRFS_FILE_EXTENT_REG);
e570fd27 3064 if (!ret)
2ff7e61e 3065 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3066 ordered_extent->start,
3067 ordered_extent->disk_len);
d899e052 3068 }
5dc562c5
JB
3069 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3070 ordered_extent->file_offset, ordered_extent->len,
3071 trans->transid);
79787eaa 3072 if (ret < 0) {
66642832 3073 btrfs_abort_transaction(trans, ret);
a7e3b975 3074 goto out;
79787eaa 3075 }
2ac55d41 3076
ac01f26a
NB
3077 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3078 if (ret) {
3079 btrfs_abort_transaction(trans, ret);
3080 goto out;
3081 }
e6dcd2dc 3082
6c760c07
JB
3083 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3084 ret = btrfs_update_inode_fallback(trans, root, inode);
3085 if (ret) { /* -ENOMEM or corruption */
66642832 3086 btrfs_abort_transaction(trans, ret);
a7e3b975 3087 goto out;
1ef30be1
JB
3088 }
3089 ret = 0;
c2167754 3090out:
a7e3b975
FM
3091 if (range_locked || clear_new_delalloc_bytes) {
3092 unsigned int clear_bits = 0;
3093
3094 if (range_locked)
3095 clear_bits |= EXTENT_LOCKED;
3096 if (clear_new_delalloc_bytes)
3097 clear_bits |= EXTENT_DELALLOC_NEW;
3098 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3099 ordered_extent->file_offset,
3100 ordered_extent->file_offset +
3101 ordered_extent->len - 1,
3102 clear_bits,
3103 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3104 0, &cached_state);
a7e3b975
FM
3105 }
3106
a698d075 3107 if (trans)
3a45bb20 3108 btrfs_end_transaction(trans);
0cb59c99 3109
77cef2ec
JB
3110 if (ret || truncated) {
3111 u64 start, end;
3112
3113 if (truncated)
3114 start = ordered_extent->file_offset + logical_len;
3115 else
3116 start = ordered_extent->file_offset;
3117 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3118 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3119
3120 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3121 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3122
0bec9ef5
JB
3123 /*
3124 * If the ordered extent had an IOERR or something else went
3125 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3126 * back to the allocator. We only free the extent in the
3127 * truncated case if we didn't write out the extent at all.
0bec9ef5 3128 */
77cef2ec
JB
3129 if ((ret || !logical_len) &&
3130 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3131 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3132 btrfs_free_reserved_extent(fs_info,
3133 ordered_extent->start,
e570fd27 3134 ordered_extent->disk_len, 1);
0bec9ef5
JB
3135 }
3136
3137
5fd02043 3138 /*
8bad3c02
LB
3139 * This needs to be done to make sure anybody waiting knows we are done
3140 * updating everything for this ordered extent.
5fd02043
JB
3141 */
3142 btrfs_remove_ordered_extent(inode, ordered_extent);
3143
38c227d8 3144 /* for snapshot-aware defrag */
6f519564
LB
3145 if (new) {
3146 if (ret) {
3147 free_sa_defrag_extent(new);
0b246afa 3148 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3149 } else {
3150 relink_file_extents(new);
3151 }
3152 }
38c227d8 3153
e6dcd2dc
CM
3154 /* once for us */
3155 btrfs_put_ordered_extent(ordered_extent);
3156 /* once for the tree */
3157 btrfs_put_ordered_extent(ordered_extent);
3158
5fd02043
JB
3159 return ret;
3160}
3161
3162static void finish_ordered_fn(struct btrfs_work *work)
3163{
3164 struct btrfs_ordered_extent *ordered_extent;
3165 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3166 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3167}
3168
c3988d63 3169static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3170 struct extent_state *state, int uptodate)
3171{
5fd02043 3172 struct inode *inode = page->mapping->host;
0b246afa 3173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3174 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3175 struct btrfs_workqueue *wq;
3176 btrfs_work_func_t func;
5fd02043 3177
1abe9b8a 3178 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3179
8b62b72b 3180 ClearPagePrivate2(page);
5fd02043
JB
3181 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3182 end - start + 1, uptodate))
c3988d63 3183 return;
5fd02043 3184
70ddc553 3185 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3186 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3187 func = btrfs_freespace_write_helper;
3188 } else {
0b246afa 3189 wq = fs_info->endio_write_workers;
9e0af237
LB
3190 func = btrfs_endio_write_helper;
3191 }
5fd02043 3192
9e0af237
LB
3193 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3194 NULL);
3195 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3196}
3197
dc380aea
MX
3198static int __readpage_endio_check(struct inode *inode,
3199 struct btrfs_io_bio *io_bio,
3200 int icsum, struct page *page,
3201 int pgoff, u64 start, size_t len)
3202{
3203 char *kaddr;
3204 u32 csum_expected;
3205 u32 csum = ~(u32)0;
dc380aea
MX
3206
3207 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3208
3209 kaddr = kmap_atomic(page);
3210 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3211 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3212 if (csum != csum_expected)
3213 goto zeroit;
3214
3215 kunmap_atomic(kaddr);
3216 return 0;
3217zeroit:
0970a22e 3218 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3219 io_bio->mirror_num);
dc380aea
MX
3220 memset(kaddr + pgoff, 1, len);
3221 flush_dcache_page(page);
3222 kunmap_atomic(kaddr);
dc380aea
MX
3223 return -EIO;
3224}
3225
d352ac68
CM
3226/*
3227 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3228 * if there's a match, we allow the bio to finish. If not, the code in
3229 * extent_io.c will try to find good copies for us.
d352ac68 3230 */
facc8a22
MX
3231static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3232 u64 phy_offset, struct page *page,
3233 u64 start, u64 end, int mirror)
07157aac 3234{
4eee4fa4 3235 size_t offset = start - page_offset(page);
07157aac 3236 struct inode *inode = page->mapping->host;
d1310b2e 3237 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3238 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3239
d20f7043
CM
3240 if (PageChecked(page)) {
3241 ClearPageChecked(page);
dc380aea 3242 return 0;
d20f7043 3243 }
6cbff00f
CH
3244
3245 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3246 return 0;
17d217fe
YZ
3247
3248 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3249 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3250 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3251 return 0;
17d217fe 3252 }
d20f7043 3253
facc8a22 3254 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3255 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3256 start, (size_t)(end - start + 1));
07157aac 3257}
b888db2b 3258
c1c3fac2
NB
3259/*
3260 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3261 *
3262 * @inode: The inode we want to perform iput on
3263 *
3264 * This function uses the generic vfs_inode::i_count to track whether we should
3265 * just decrement it (in case it's > 1) or if this is the last iput then link
3266 * the inode to the delayed iput machinery. Delayed iputs are processed at
3267 * transaction commit time/superblock commit/cleaner kthread.
3268 */
24bbcf04
YZ
3269void btrfs_add_delayed_iput(struct inode *inode)
3270{
0b246afa 3271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3272 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3273
3274 if (atomic_add_unless(&inode->i_count, -1, 1))
3275 return;
3276
24bbcf04 3277 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3278 ASSERT(list_empty(&binode->delayed_iput));
3279 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3280 spin_unlock(&fs_info->delayed_iput_lock);
3281}
3282
2ff7e61e 3283void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3284{
24bbcf04 3285
24bbcf04 3286 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3287 while (!list_empty(&fs_info->delayed_iputs)) {
3288 struct btrfs_inode *inode;
3289
3290 inode = list_first_entry(&fs_info->delayed_iputs,
3291 struct btrfs_inode, delayed_iput);
c1c3fac2 3292 list_del_init(&inode->delayed_iput);
8089fe62
DS
3293 spin_unlock(&fs_info->delayed_iput_lock);
3294 iput(&inode->vfs_inode);
3295 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3296 }
8089fe62 3297 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3298}
3299
7b128766 3300/*
f7e9e8fc
OS
3301 * This creates an orphan entry for the given inode in case something goes wrong
3302 * in the middle of an unlink.
7b128766 3303 */
73f2e545 3304int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3305 struct btrfs_inode *inode)
7b128766 3306{
d68fc57b 3307 int ret;
7b128766 3308
27919067
OS
3309 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3310 if (ret && ret != -EEXIST) {
3311 btrfs_abort_transaction(trans, ret);
3312 return ret;
d68fc57b
YZ
3313 }
3314
d68fc57b 3315 return 0;
7b128766
JB
3316}
3317
3318/*
f7e9e8fc
OS
3319 * We have done the delete so we can go ahead and remove the orphan item for
3320 * this particular inode.
7b128766 3321 */
48a3b636 3322static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3323 struct btrfs_inode *inode)
7b128766 3324{
27919067 3325 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3326}
3327
3328/*
3329 * this cleans up any orphans that may be left on the list from the last use
3330 * of this root.
3331 */
66b4ffd1 3332int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3333{
0b246afa 3334 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3335 struct btrfs_path *path;
3336 struct extent_buffer *leaf;
7b128766
JB
3337 struct btrfs_key key, found_key;
3338 struct btrfs_trans_handle *trans;
3339 struct inode *inode;
8f6d7f4f 3340 u64 last_objectid = 0;
f7e9e8fc 3341 int ret = 0, nr_unlink = 0;
7b128766 3342
d68fc57b 3343 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3344 return 0;
c71bf099
YZ
3345
3346 path = btrfs_alloc_path();
66b4ffd1
JB
3347 if (!path) {
3348 ret = -ENOMEM;
3349 goto out;
3350 }
e4058b54 3351 path->reada = READA_BACK;
7b128766
JB
3352
3353 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3354 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3355 key.offset = (u64)-1;
3356
7b128766
JB
3357 while (1) {
3358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3359 if (ret < 0)
3360 goto out;
7b128766
JB
3361
3362 /*
3363 * if ret == 0 means we found what we were searching for, which
25985edc 3364 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3365 * find the key and see if we have stuff that matches
3366 */
3367 if (ret > 0) {
66b4ffd1 3368 ret = 0;
7b128766
JB
3369 if (path->slots[0] == 0)
3370 break;
3371 path->slots[0]--;
3372 }
3373
3374 /* pull out the item */
3375 leaf = path->nodes[0];
7b128766
JB
3376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3377
3378 /* make sure the item matches what we want */
3379 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3380 break;
962a298f 3381 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3382 break;
3383
3384 /* release the path since we're done with it */
b3b4aa74 3385 btrfs_release_path(path);
7b128766
JB
3386
3387 /*
3388 * this is where we are basically btrfs_lookup, without the
3389 * crossing root thing. we store the inode number in the
3390 * offset of the orphan item.
3391 */
8f6d7f4f
JB
3392
3393 if (found_key.offset == last_objectid) {
0b246afa
JM
3394 btrfs_err(fs_info,
3395 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3396 ret = -EINVAL;
3397 goto out;
3398 }
3399
3400 last_objectid = found_key.offset;
3401
5d4f98a2
YZ
3402 found_key.objectid = found_key.offset;
3403 found_key.type = BTRFS_INODE_ITEM_KEY;
3404 found_key.offset = 0;
0b246afa 3405 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3406 ret = PTR_ERR_OR_ZERO(inode);
67710892 3407 if (ret && ret != -ENOENT)
66b4ffd1 3408 goto out;
7b128766 3409
0b246afa 3410 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3411 struct btrfs_root *dead_root;
3412 struct btrfs_fs_info *fs_info = root->fs_info;
3413 int is_dead_root = 0;
3414
3415 /*
3416 * this is an orphan in the tree root. Currently these
3417 * could come from 2 sources:
3418 * a) a snapshot deletion in progress
3419 * b) a free space cache inode
3420 * We need to distinguish those two, as the snapshot
3421 * orphan must not get deleted.
3422 * find_dead_roots already ran before us, so if this
3423 * is a snapshot deletion, we should find the root
3424 * in the dead_roots list
3425 */
3426 spin_lock(&fs_info->trans_lock);
3427 list_for_each_entry(dead_root, &fs_info->dead_roots,
3428 root_list) {
3429 if (dead_root->root_key.objectid ==
3430 found_key.objectid) {
3431 is_dead_root = 1;
3432 break;
3433 }
3434 }
3435 spin_unlock(&fs_info->trans_lock);
3436 if (is_dead_root) {
3437 /* prevent this orphan from being found again */
3438 key.offset = found_key.objectid - 1;
3439 continue;
3440 }
f7e9e8fc 3441
f8e9e0b0 3442 }
f7e9e8fc 3443
7b128766 3444 /*
f7e9e8fc
OS
3445 * If we have an inode with links, there are a couple of
3446 * possibilities. Old kernels (before v3.12) used to create an
3447 * orphan item for truncate indicating that there were possibly
3448 * extent items past i_size that needed to be deleted. In v3.12,
3449 * truncate was changed to update i_size in sync with the extent
3450 * items, but the (useless) orphan item was still created. Since
3451 * v4.18, we don't create the orphan item for truncate at all.
3452 *
3453 * So, this item could mean that we need to do a truncate, but
3454 * only if this filesystem was last used on a pre-v3.12 kernel
3455 * and was not cleanly unmounted. The odds of that are quite
3456 * slim, and it's a pain to do the truncate now, so just delete
3457 * the orphan item.
3458 *
3459 * It's also possible that this orphan item was supposed to be
3460 * deleted but wasn't. The inode number may have been reused,
3461 * but either way, we can delete the orphan item.
7b128766 3462 */
f7e9e8fc
OS
3463 if (ret == -ENOENT || inode->i_nlink) {
3464 if (!ret)
3465 iput(inode);
a8c9e576 3466 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3467 if (IS_ERR(trans)) {
3468 ret = PTR_ERR(trans);
3469 goto out;
3470 }
0b246afa
JM
3471 btrfs_debug(fs_info, "auto deleting %Lu",
3472 found_key.objectid);
a8c9e576
JB
3473 ret = btrfs_del_orphan_item(trans, root,
3474 found_key.objectid);
3a45bb20 3475 btrfs_end_transaction(trans);
4ef31a45
JB
3476 if (ret)
3477 goto out;
7b128766
JB
3478 continue;
3479 }
3480
f7e9e8fc 3481 nr_unlink++;
7b128766
JB
3482
3483 /* this will do delete_inode and everything for us */
3484 iput(inode);
66b4ffd1
JB
3485 if (ret)
3486 goto out;
7b128766 3487 }
3254c876
MX
3488 /* release the path since we're done with it */
3489 btrfs_release_path(path);
3490
d68fc57b
YZ
3491 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3492
a575ceeb 3493 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3494 trans = btrfs_join_transaction(root);
66b4ffd1 3495 if (!IS_ERR(trans))
3a45bb20 3496 btrfs_end_transaction(trans);
d68fc57b 3497 }
7b128766
JB
3498
3499 if (nr_unlink)
0b246afa 3500 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3501
3502out:
3503 if (ret)
0b246afa 3504 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3505 btrfs_free_path(path);
3506 return ret;
7b128766
JB
3507}
3508
46a53cca
CM
3509/*
3510 * very simple check to peek ahead in the leaf looking for xattrs. If we
3511 * don't find any xattrs, we know there can't be any acls.
3512 *
3513 * slot is the slot the inode is in, objectid is the objectid of the inode
3514 */
3515static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3516 int slot, u64 objectid,
3517 int *first_xattr_slot)
46a53cca
CM
3518{
3519 u32 nritems = btrfs_header_nritems(leaf);
3520 struct btrfs_key found_key;
f23b5a59
JB
3521 static u64 xattr_access = 0;
3522 static u64 xattr_default = 0;
46a53cca
CM
3523 int scanned = 0;
3524
f23b5a59 3525 if (!xattr_access) {
97d79299
AG
3526 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3527 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3528 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3529 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3530 }
3531
46a53cca 3532 slot++;
63541927 3533 *first_xattr_slot = -1;
46a53cca
CM
3534 while (slot < nritems) {
3535 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3536
3537 /* we found a different objectid, there must not be acls */
3538 if (found_key.objectid != objectid)
3539 return 0;
3540
3541 /* we found an xattr, assume we've got an acl */
f23b5a59 3542 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3543 if (*first_xattr_slot == -1)
3544 *first_xattr_slot = slot;
f23b5a59
JB
3545 if (found_key.offset == xattr_access ||
3546 found_key.offset == xattr_default)
3547 return 1;
3548 }
46a53cca
CM
3549
3550 /*
3551 * we found a key greater than an xattr key, there can't
3552 * be any acls later on
3553 */
3554 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3555 return 0;
3556
3557 slot++;
3558 scanned++;
3559
3560 /*
3561 * it goes inode, inode backrefs, xattrs, extents,
3562 * so if there are a ton of hard links to an inode there can
3563 * be a lot of backrefs. Don't waste time searching too hard,
3564 * this is just an optimization
3565 */
3566 if (scanned >= 8)
3567 break;
3568 }
3569 /* we hit the end of the leaf before we found an xattr or
3570 * something larger than an xattr. We have to assume the inode
3571 * has acls
3572 */
63541927
FDBM
3573 if (*first_xattr_slot == -1)
3574 *first_xattr_slot = slot;
46a53cca
CM
3575 return 1;
3576}
3577
d352ac68
CM
3578/*
3579 * read an inode from the btree into the in-memory inode
3580 */
67710892 3581static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3582{
0b246afa 3583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3584 struct btrfs_path *path;
5f39d397 3585 struct extent_buffer *leaf;
39279cc3
CM
3586 struct btrfs_inode_item *inode_item;
3587 struct btrfs_root *root = BTRFS_I(inode)->root;
3588 struct btrfs_key location;
67de1176 3589 unsigned long ptr;
46a53cca 3590 int maybe_acls;
618e21d5 3591 u32 rdev;
39279cc3 3592 int ret;
2f7e33d4 3593 bool filled = false;
63541927 3594 int first_xattr_slot;
2f7e33d4
MX
3595
3596 ret = btrfs_fill_inode(inode, &rdev);
3597 if (!ret)
3598 filled = true;
39279cc3
CM
3599
3600 path = btrfs_alloc_path();
67710892
FM
3601 if (!path) {
3602 ret = -ENOMEM;
1748f843 3603 goto make_bad;
67710892 3604 }
1748f843 3605
39279cc3 3606 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3607
39279cc3 3608 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3609 if (ret) {
3610 if (ret > 0)
3611 ret = -ENOENT;
39279cc3 3612 goto make_bad;
67710892 3613 }
39279cc3 3614
5f39d397 3615 leaf = path->nodes[0];
2f7e33d4
MX
3616
3617 if (filled)
67de1176 3618 goto cache_index;
2f7e33d4 3619
5f39d397
CM
3620 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3621 struct btrfs_inode_item);
5f39d397 3622 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3623 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3624 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3625 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3626 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3627
a937b979
DS
3628 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3629 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3630
a937b979
DS
3631 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3632 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3633
a937b979
DS
3634 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3635 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3636
9cc97d64 3637 BTRFS_I(inode)->i_otime.tv_sec =
3638 btrfs_timespec_sec(leaf, &inode_item->otime);
3639 BTRFS_I(inode)->i_otime.tv_nsec =
3640 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3641
a76a3cd4 3642 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3643 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3644 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3645
c7f88c4e
JL
3646 inode_set_iversion_queried(inode,
3647 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3648 inode->i_generation = BTRFS_I(inode)->generation;
3649 inode->i_rdev = 0;
3650 rdev = btrfs_inode_rdev(leaf, inode_item);
3651
3652 BTRFS_I(inode)->index_cnt = (u64)-1;
3653 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3654
3655cache_index:
5dc562c5
JB
3656 /*
3657 * If we were modified in the current generation and evicted from memory
3658 * and then re-read we need to do a full sync since we don't have any
3659 * idea about which extents were modified before we were evicted from
3660 * cache.
6e17d30b
YD
3661 *
3662 * This is required for both inode re-read from disk and delayed inode
3663 * in delayed_nodes_tree.
5dc562c5 3664 */
0b246afa 3665 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3666 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3667 &BTRFS_I(inode)->runtime_flags);
3668
bde6c242
FM
3669 /*
3670 * We don't persist the id of the transaction where an unlink operation
3671 * against the inode was last made. So here we assume the inode might
3672 * have been evicted, and therefore the exact value of last_unlink_trans
3673 * lost, and set it to last_trans to avoid metadata inconsistencies
3674 * between the inode and its parent if the inode is fsync'ed and the log
3675 * replayed. For example, in the scenario:
3676 *
3677 * touch mydir/foo
3678 * ln mydir/foo mydir/bar
3679 * sync
3680 * unlink mydir/bar
3681 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3682 * xfs_io -c fsync mydir/foo
3683 * <power failure>
3684 * mount fs, triggers fsync log replay
3685 *
3686 * We must make sure that when we fsync our inode foo we also log its
3687 * parent inode, otherwise after log replay the parent still has the
3688 * dentry with the "bar" name but our inode foo has a link count of 1
3689 * and doesn't have an inode ref with the name "bar" anymore.
3690 *
3691 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3692 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3693 * transaction commits on fsync if our inode is a directory, or if our
3694 * inode is not a directory, logging its parent unnecessarily.
3695 */
3696 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3697
67de1176
MX
3698 path->slots[0]++;
3699 if (inode->i_nlink != 1 ||
3700 path->slots[0] >= btrfs_header_nritems(leaf))
3701 goto cache_acl;
3702
3703 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3704 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3705 goto cache_acl;
3706
3707 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3708 if (location.type == BTRFS_INODE_REF_KEY) {
3709 struct btrfs_inode_ref *ref;
3710
3711 ref = (struct btrfs_inode_ref *)ptr;
3712 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3713 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3714 struct btrfs_inode_extref *extref;
3715
3716 extref = (struct btrfs_inode_extref *)ptr;
3717 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3718 extref);
3719 }
2f7e33d4 3720cache_acl:
46a53cca
CM
3721 /*
3722 * try to precache a NULL acl entry for files that don't have
3723 * any xattrs or acls
3724 */
33345d01 3725 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3726 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3727 if (first_xattr_slot != -1) {
3728 path->slots[0] = first_xattr_slot;
3729 ret = btrfs_load_inode_props(inode, path);
3730 if (ret)
0b246afa 3731 btrfs_err(fs_info,
351fd353 3732 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3733 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3734 root->root_key.objectid, ret);
3735 }
3736 btrfs_free_path(path);
3737
72c04902
AV
3738 if (!maybe_acls)
3739 cache_no_acl(inode);
46a53cca 3740
39279cc3 3741 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3742 case S_IFREG:
3743 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3744 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3745 inode->i_fop = &btrfs_file_operations;
3746 inode->i_op = &btrfs_file_inode_operations;
3747 break;
3748 case S_IFDIR:
3749 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3750 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3751 break;
3752 case S_IFLNK:
3753 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3754 inode_nohighmem(inode);
39279cc3
CM
3755 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3756 break;
618e21d5 3757 default:
0279b4cd 3758 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3759 init_special_inode(inode, inode->i_mode, rdev);
3760 break;
39279cc3 3761 }
6cbff00f 3762
7b6a221e 3763 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3764 return 0;
39279cc3
CM
3765
3766make_bad:
39279cc3 3767 btrfs_free_path(path);
39279cc3 3768 make_bad_inode(inode);
67710892 3769 return ret;
39279cc3
CM
3770}
3771
d352ac68
CM
3772/*
3773 * given a leaf and an inode, copy the inode fields into the leaf
3774 */
e02119d5
CM
3775static void fill_inode_item(struct btrfs_trans_handle *trans,
3776 struct extent_buffer *leaf,
5f39d397 3777 struct btrfs_inode_item *item,
39279cc3
CM
3778 struct inode *inode)
3779{
51fab693
LB
3780 struct btrfs_map_token token;
3781
3782 btrfs_init_map_token(&token);
5f39d397 3783
51fab693
LB
3784 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3785 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3786 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3787 &token);
3788 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3789 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3790
a937b979 3791 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3792 inode->i_atime.tv_sec, &token);
a937b979 3793 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3794 inode->i_atime.tv_nsec, &token);
5f39d397 3795
a937b979 3796 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3797 inode->i_mtime.tv_sec, &token);
a937b979 3798 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3799 inode->i_mtime.tv_nsec, &token);
5f39d397 3800
a937b979 3801 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3802 inode->i_ctime.tv_sec, &token);
a937b979 3803 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3804 inode->i_ctime.tv_nsec, &token);
5f39d397 3805
9cc97d64 3806 btrfs_set_token_timespec_sec(leaf, &item->otime,
3807 BTRFS_I(inode)->i_otime.tv_sec, &token);
3808 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3809 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3810
51fab693
LB
3811 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3812 &token);
3813 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3814 &token);
c7f88c4e
JL
3815 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3816 &token);
51fab693
LB
3817 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3818 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3819 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3820 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3821}
3822
d352ac68
CM
3823/*
3824 * copy everything in the in-memory inode into the btree.
3825 */
2115133f 3826static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3827 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3828{
3829 struct btrfs_inode_item *inode_item;
3830 struct btrfs_path *path;
5f39d397 3831 struct extent_buffer *leaf;
39279cc3
CM
3832 int ret;
3833
3834 path = btrfs_alloc_path();
16cdcec7
MX
3835 if (!path)
3836 return -ENOMEM;
3837
b9473439 3838 path->leave_spinning = 1;
16cdcec7
MX
3839 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3840 1);
39279cc3
CM
3841 if (ret) {
3842 if (ret > 0)
3843 ret = -ENOENT;
3844 goto failed;
3845 }
3846
5f39d397
CM
3847 leaf = path->nodes[0];
3848 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3849 struct btrfs_inode_item);
39279cc3 3850
e02119d5 3851 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3852 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3853 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3854 ret = 0;
3855failed:
39279cc3
CM
3856 btrfs_free_path(path);
3857 return ret;
3858}
3859
2115133f
CM
3860/*
3861 * copy everything in the in-memory inode into the btree.
3862 */
3863noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3864 struct btrfs_root *root, struct inode *inode)
3865{
0b246afa 3866 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3867 int ret;
3868
3869 /*
3870 * If the inode is a free space inode, we can deadlock during commit
3871 * if we put it into the delayed code.
3872 *
3873 * The data relocation inode should also be directly updated
3874 * without delay
3875 */
70ddc553 3876 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3877 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3878 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3879 btrfs_update_root_times(trans, root);
3880
2115133f
CM
3881 ret = btrfs_delayed_update_inode(trans, root, inode);
3882 if (!ret)
3883 btrfs_set_inode_last_trans(trans, inode);
3884 return ret;
3885 }
3886
3887 return btrfs_update_inode_item(trans, root, inode);
3888}
3889
be6aef60
JB
3890noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3891 struct btrfs_root *root,
3892 struct inode *inode)
2115133f
CM
3893{
3894 int ret;
3895
3896 ret = btrfs_update_inode(trans, root, inode);
3897 if (ret == -ENOSPC)
3898 return btrfs_update_inode_item(trans, root, inode);
3899 return ret;
3900}
3901
d352ac68
CM
3902/*
3903 * unlink helper that gets used here in inode.c and in the tree logging
3904 * recovery code. It remove a link in a directory with a given name, and
3905 * also drops the back refs in the inode to the directory
3906 */
92986796
AV
3907static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root,
4ec5934e
NB
3909 struct btrfs_inode *dir,
3910 struct btrfs_inode *inode,
92986796 3911 const char *name, int name_len)
39279cc3 3912{
0b246afa 3913 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3914 struct btrfs_path *path;
39279cc3 3915 int ret = 0;
5f39d397 3916 struct extent_buffer *leaf;
39279cc3 3917 struct btrfs_dir_item *di;
5f39d397 3918 struct btrfs_key key;
aec7477b 3919 u64 index;
33345d01
LZ
3920 u64 ino = btrfs_ino(inode);
3921 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3922
3923 path = btrfs_alloc_path();
54aa1f4d
CM
3924 if (!path) {
3925 ret = -ENOMEM;
554233a6 3926 goto out;
54aa1f4d
CM
3927 }
3928
b9473439 3929 path->leave_spinning = 1;
33345d01 3930 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3931 name, name_len, -1);
3932 if (IS_ERR(di)) {
3933 ret = PTR_ERR(di);
3934 goto err;
3935 }
3936 if (!di) {
3937 ret = -ENOENT;
3938 goto err;
3939 }
5f39d397
CM
3940 leaf = path->nodes[0];
3941 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3942 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3943 if (ret)
3944 goto err;
b3b4aa74 3945 btrfs_release_path(path);
39279cc3 3946
67de1176
MX
3947 /*
3948 * If we don't have dir index, we have to get it by looking up
3949 * the inode ref, since we get the inode ref, remove it directly,
3950 * it is unnecessary to do delayed deletion.
3951 *
3952 * But if we have dir index, needn't search inode ref to get it.
3953 * Since the inode ref is close to the inode item, it is better
3954 * that we delay to delete it, and just do this deletion when
3955 * we update the inode item.
3956 */
4ec5934e 3957 if (inode->dir_index) {
67de1176
MX
3958 ret = btrfs_delayed_delete_inode_ref(inode);
3959 if (!ret) {
4ec5934e 3960 index = inode->dir_index;
67de1176
MX
3961 goto skip_backref;
3962 }
3963 }
3964
33345d01
LZ
3965 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3966 dir_ino, &index);
aec7477b 3967 if (ret) {
0b246afa 3968 btrfs_info(fs_info,
c2cf52eb 3969 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3970 name_len, name, ino, dir_ino);
66642832 3971 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3972 goto err;
3973 }
67de1176 3974skip_backref:
2ff7e61e 3975 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 3976 if (ret) {
66642832 3977 btrfs_abort_transaction(trans, ret);
39279cc3 3978 goto err;
79787eaa 3979 }
39279cc3 3980
4ec5934e
NB
3981 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3982 dir_ino);
79787eaa 3983 if (ret != 0 && ret != -ENOENT) {
66642832 3984 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3985 goto err;
3986 }
e02119d5 3987
4ec5934e
NB
3988 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3989 index);
6418c961
CM
3990 if (ret == -ENOENT)
3991 ret = 0;
d4e3991b 3992 else if (ret)
66642832 3993 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3994err:
3995 btrfs_free_path(path);
e02119d5
CM
3996 if (ret)
3997 goto out;
3998
6ef06d27 3999 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4000 inode_inc_iversion(&inode->vfs_inode);
4001 inode_inc_iversion(&dir->vfs_inode);
4002 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4003 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4004 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4005out:
39279cc3
CM
4006 return ret;
4007}
4008
92986796
AV
4009int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4010 struct btrfs_root *root,
4ec5934e 4011 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4012 const char *name, int name_len)
4013{
4014 int ret;
4015 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4016 if (!ret) {
4ec5934e
NB
4017 drop_nlink(&inode->vfs_inode);
4018 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4019 }
4020 return ret;
4021}
39279cc3 4022
a22285a6
YZ
4023/*
4024 * helper to start transaction for unlink and rmdir.
4025 *
d52be818
JB
4026 * unlink and rmdir are special in btrfs, they do not always free space, so
4027 * if we cannot make our reservations the normal way try and see if there is
4028 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4029 * allow the unlink to occur.
a22285a6 4030 */
d52be818 4031static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4032{
a22285a6 4033 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4034
e70bea5f
JB
4035 /*
4036 * 1 for the possible orphan item
4037 * 1 for the dir item
4038 * 1 for the dir index
4039 * 1 for the inode ref
e70bea5f
JB
4040 * 1 for the inode
4041 */
8eab77ff 4042 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4043}
4044
4045static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4046{
4047 struct btrfs_root *root = BTRFS_I(dir)->root;
4048 struct btrfs_trans_handle *trans;
2b0143b5 4049 struct inode *inode = d_inode(dentry);
a22285a6 4050 int ret;
a22285a6 4051
d52be818 4052 trans = __unlink_start_trans(dir);
a22285a6
YZ
4053 if (IS_ERR(trans))
4054 return PTR_ERR(trans);
5f39d397 4055
4ec5934e
NB
4056 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4057 0);
12fcfd22 4058
4ec5934e
NB
4059 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4060 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4061 dentry->d_name.len);
b532402e
TI
4062 if (ret)
4063 goto out;
7b128766 4064
a22285a6 4065 if (inode->i_nlink == 0) {
73f2e545 4066 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4067 if (ret)
4068 goto out;
a22285a6 4069 }
7b128766 4070
b532402e 4071out:
3a45bb20 4072 btrfs_end_transaction(trans);
2ff7e61e 4073 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4074 return ret;
4075}
4076
f60a2364 4077static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4df27c4d
YZ
4078 struct btrfs_root *root,
4079 struct inode *dir, u64 objectid,
4080 const char *name, int name_len)
4081{
0b246afa 4082 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4083 struct btrfs_path *path;
4084 struct extent_buffer *leaf;
4085 struct btrfs_dir_item *di;
4086 struct btrfs_key key;
4087 u64 index;
4088 int ret;
4a0cc7ca 4089 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4090
4091 path = btrfs_alloc_path();
4092 if (!path)
4093 return -ENOMEM;
4094
33345d01 4095 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4096 name, name_len, -1);
79787eaa
JM
4097 if (IS_ERR_OR_NULL(di)) {
4098 if (!di)
4099 ret = -ENOENT;
4100 else
4101 ret = PTR_ERR(di);
4102 goto out;
4103 }
4df27c4d
YZ
4104
4105 leaf = path->nodes[0];
4106 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4107 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4108 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4109 if (ret) {
66642832 4110 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4111 goto out;
4112 }
b3b4aa74 4113 btrfs_release_path(path);
4df27c4d 4114
0b246afa
JM
4115 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4116 root->root_key.objectid, dir_ino,
4117 &index, name, name_len);
4df27c4d 4118 if (ret < 0) {
79787eaa 4119 if (ret != -ENOENT) {
66642832 4120 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4121 goto out;
4122 }
33345d01 4123 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4124 name, name_len);
79787eaa
JM
4125 if (IS_ERR_OR_NULL(di)) {
4126 if (!di)
4127 ret = -ENOENT;
4128 else
4129 ret = PTR_ERR(di);
66642832 4130 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4131 goto out;
4132 }
4df27c4d
YZ
4133
4134 leaf = path->nodes[0];
4135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4136 btrfs_release_path(path);
4df27c4d
YZ
4137 index = key.offset;
4138 }
945d8962 4139 btrfs_release_path(path);
4df27c4d 4140
e67bbbb9 4141 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4142 if (ret) {
66642832 4143 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4144 goto out;
4145 }
4df27c4d 4146
6ef06d27 4147 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4148 inode_inc_iversion(dir);
c2050a45 4149 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4150 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4151 if (ret)
66642832 4152 btrfs_abort_transaction(trans, ret);
79787eaa 4153out:
71d7aed0 4154 btrfs_free_path(path);
79787eaa 4155 return ret;
4df27c4d
YZ
4156}
4157
ec42f167
MT
4158/*
4159 * Helper to check if the subvolume references other subvolumes or if it's
4160 * default.
4161 */
f60a2364 4162static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4163{
4164 struct btrfs_fs_info *fs_info = root->fs_info;
4165 struct btrfs_path *path;
4166 struct btrfs_dir_item *di;
4167 struct btrfs_key key;
4168 u64 dir_id;
4169 int ret;
4170
4171 path = btrfs_alloc_path();
4172 if (!path)
4173 return -ENOMEM;
4174
4175 /* Make sure this root isn't set as the default subvol */
4176 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4177 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4178 dir_id, "default", 7, 0);
4179 if (di && !IS_ERR(di)) {
4180 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4181 if (key.objectid == root->root_key.objectid) {
4182 ret = -EPERM;
4183 btrfs_err(fs_info,
4184 "deleting default subvolume %llu is not allowed",
4185 key.objectid);
4186 goto out;
4187 }
4188 btrfs_release_path(path);
4189 }
4190
4191 key.objectid = root->root_key.objectid;
4192 key.type = BTRFS_ROOT_REF_KEY;
4193 key.offset = (u64)-1;
4194
4195 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4196 if (ret < 0)
4197 goto out;
4198 BUG_ON(ret == 0);
4199
4200 ret = 0;
4201 if (path->slots[0] > 0) {
4202 path->slots[0]--;
4203 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4204 if (key.objectid == root->root_key.objectid &&
4205 key.type == BTRFS_ROOT_REF_KEY)
4206 ret = -ENOTEMPTY;
4207 }
4208out:
4209 btrfs_free_path(path);
4210 return ret;
4211}
4212
20a68004
NB
4213/* Delete all dentries for inodes belonging to the root */
4214static void btrfs_prune_dentries(struct btrfs_root *root)
4215{
4216 struct btrfs_fs_info *fs_info = root->fs_info;
4217 struct rb_node *node;
4218 struct rb_node *prev;
4219 struct btrfs_inode *entry;
4220 struct inode *inode;
4221 u64 objectid = 0;
4222
4223 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4224 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4225
4226 spin_lock(&root->inode_lock);
4227again:
4228 node = root->inode_tree.rb_node;
4229 prev = NULL;
4230 while (node) {
4231 prev = node;
4232 entry = rb_entry(node, struct btrfs_inode, rb_node);
4233
4234 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4235 node = node->rb_left;
4236 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
4237 node = node->rb_right;
4238 else
4239 break;
4240 }
4241 if (!node) {
4242 while (prev) {
4243 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4244 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
4245 node = prev;
4246 break;
4247 }
4248 prev = rb_next(prev);
4249 }
4250 }
4251 while (node) {
4252 entry = rb_entry(node, struct btrfs_inode, rb_node);
4253 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
4254 inode = igrab(&entry->vfs_inode);
4255 if (inode) {
4256 spin_unlock(&root->inode_lock);
4257 if (atomic_read(&inode->i_count) > 1)
4258 d_prune_aliases(inode);
4259 /*
4260 * btrfs_drop_inode will have it removed from the inode
4261 * cache when its usage count hits zero.
4262 */
4263 iput(inode);
4264 cond_resched();
4265 spin_lock(&root->inode_lock);
4266 goto again;
4267 }
4268
4269 if (cond_resched_lock(&root->inode_lock))
4270 goto again;
4271
4272 node = rb_next(node);
4273 }
4274 spin_unlock(&root->inode_lock);
4275}
4276
f60a2364
MT
4277int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4278{
4279 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4280 struct btrfs_root *root = BTRFS_I(dir)->root;
4281 struct inode *inode = d_inode(dentry);
4282 struct btrfs_root *dest = BTRFS_I(inode)->root;
4283 struct btrfs_trans_handle *trans;
4284 struct btrfs_block_rsv block_rsv;
4285 u64 root_flags;
4286 u64 qgroup_reserved;
4287 int ret;
4288 int err;
4289
4290 /*
4291 * Don't allow to delete a subvolume with send in progress. This is
4292 * inside the inode lock so the error handling that has to drop the bit
4293 * again is not run concurrently.
4294 */
4295 spin_lock(&dest->root_item_lock);
4296 root_flags = btrfs_root_flags(&dest->root_item);
4297 if (dest->send_in_progress == 0) {
4298 btrfs_set_root_flags(&dest->root_item,
4299 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4300 spin_unlock(&dest->root_item_lock);
4301 } else {
4302 spin_unlock(&dest->root_item_lock);
4303 btrfs_warn(fs_info,
4304 "attempt to delete subvolume %llu during send",
4305 dest->root_key.objectid);
4306 return -EPERM;
4307 }
4308
4309 down_write(&fs_info->subvol_sem);
4310
4311 err = may_destroy_subvol(dest);
4312 if (err)
4313 goto out_up_write;
4314
4315 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4316 /*
4317 * One for dir inode,
4318 * two for dir entries,
4319 * two for root ref/backref.
4320 */
4321 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
4322 5, &qgroup_reserved, true);
4323 if (err)
4324 goto out_up_write;
4325
4326 trans = btrfs_start_transaction(root, 0);
4327 if (IS_ERR(trans)) {
4328 err = PTR_ERR(trans);
4329 goto out_release;
4330 }
4331 trans->block_rsv = &block_rsv;
4332 trans->bytes_reserved = block_rsv.size;
4333
4334 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4335
4336 ret = btrfs_unlink_subvol(trans, root, dir,
4337 dest->root_key.objectid,
4338 dentry->d_name.name,
4339 dentry->d_name.len);
4340 if (ret) {
4341 err = ret;
4342 btrfs_abort_transaction(trans, ret);
4343 goto out_end_trans;
4344 }
4345
4346 btrfs_record_root_in_trans(trans, dest);
4347
4348 memset(&dest->root_item.drop_progress, 0,
4349 sizeof(dest->root_item.drop_progress));
4350 dest->root_item.drop_level = 0;
4351 btrfs_set_root_refs(&dest->root_item, 0);
4352
4353 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4354 ret = btrfs_insert_orphan_item(trans,
4355 fs_info->tree_root,
4356 dest->root_key.objectid);
4357 if (ret) {
4358 btrfs_abort_transaction(trans, ret);
4359 err = ret;
4360 goto out_end_trans;
4361 }
4362 }
4363
d1957791 4364 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4365 BTRFS_UUID_KEY_SUBVOL,
4366 dest->root_key.objectid);
4367 if (ret && ret != -ENOENT) {
4368 btrfs_abort_transaction(trans, ret);
4369 err = ret;
4370 goto out_end_trans;
4371 }
4372 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4373 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4374 dest->root_item.received_uuid,
4375 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4376 dest->root_key.objectid);
4377 if (ret && ret != -ENOENT) {
4378 btrfs_abort_transaction(trans, ret);
4379 err = ret;
4380 goto out_end_trans;
4381 }
4382 }
4383
4384out_end_trans:
4385 trans->block_rsv = NULL;
4386 trans->bytes_reserved = 0;
4387 ret = btrfs_end_transaction(trans);
4388 if (ret && !err)
4389 err = ret;
4390 inode->i_flags |= S_DEAD;
4391out_release:
4392 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4393out_up_write:
4394 up_write(&fs_info->subvol_sem);
4395 if (err) {
4396 spin_lock(&dest->root_item_lock);
4397 root_flags = btrfs_root_flags(&dest->root_item);
4398 btrfs_set_root_flags(&dest->root_item,
4399 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4400 spin_unlock(&dest->root_item_lock);
4401 } else {
4402 d_invalidate(dentry);
20a68004 4403 btrfs_prune_dentries(dest);
f60a2364
MT
4404 ASSERT(dest->send_in_progress == 0);
4405
4406 /* the last ref */
4407 if (dest->ino_cache_inode) {
4408 iput(dest->ino_cache_inode);
4409 dest->ino_cache_inode = NULL;
4410 }
4411 }
4412
4413 return err;
4414}
4415
39279cc3
CM
4416static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4417{
2b0143b5 4418 struct inode *inode = d_inode(dentry);
1832a6d5 4419 int err = 0;
39279cc3 4420 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4421 struct btrfs_trans_handle *trans;
44f714da 4422 u64 last_unlink_trans;
39279cc3 4423
b3ae244e 4424 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4425 return -ENOTEMPTY;
4a0cc7ca 4426 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4427 return btrfs_delete_subvolume(dir, dentry);
134d4512 4428
d52be818 4429 trans = __unlink_start_trans(dir);
a22285a6 4430 if (IS_ERR(trans))
5df6a9f6 4431 return PTR_ERR(trans);
5df6a9f6 4432
4a0cc7ca 4433 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4434 err = btrfs_unlink_subvol(trans, root, dir,
4435 BTRFS_I(inode)->location.objectid,
4436 dentry->d_name.name,
4437 dentry->d_name.len);
4438 goto out;
4439 }
4440
73f2e545 4441 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4442 if (err)
4df27c4d 4443 goto out;
7b128766 4444
44f714da
FM
4445 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4446
39279cc3 4447 /* now the directory is empty */
4ec5934e
NB
4448 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4449 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4450 dentry->d_name.len);
44f714da 4451 if (!err) {
6ef06d27 4452 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4453 /*
4454 * Propagate the last_unlink_trans value of the deleted dir to
4455 * its parent directory. This is to prevent an unrecoverable
4456 * log tree in the case we do something like this:
4457 * 1) create dir foo
4458 * 2) create snapshot under dir foo
4459 * 3) delete the snapshot
4460 * 4) rmdir foo
4461 * 5) mkdir foo
4462 * 6) fsync foo or some file inside foo
4463 */
4464 if (last_unlink_trans >= trans->transid)
4465 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4466 }
4df27c4d 4467out:
3a45bb20 4468 btrfs_end_transaction(trans);
2ff7e61e 4469 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4470
39279cc3
CM
4471 return err;
4472}
4473
28f75a0e
CM
4474static int truncate_space_check(struct btrfs_trans_handle *trans,
4475 struct btrfs_root *root,
4476 u64 bytes_deleted)
4477{
0b246afa 4478 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4479 int ret;
4480
dc95f7bf
JB
4481 /*
4482 * This is only used to apply pressure to the enospc system, we don't
4483 * intend to use this reservation at all.
4484 */
2ff7e61e 4485 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4486 bytes_deleted *= fs_info->nodesize;
4487 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4488 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4489 if (!ret) {
0b246afa 4490 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4491 trans->transid,
4492 bytes_deleted, 1);
28f75a0e 4493 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4494 }
28f75a0e
CM
4495 return ret;
4496
4497}
4498
ddfae63c
JB
4499/*
4500 * Return this if we need to call truncate_block for the last bit of the
4501 * truncate.
4502 */
4503#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4504
39279cc3
CM
4505/*
4506 * this can truncate away extent items, csum items and directory items.
4507 * It starts at a high offset and removes keys until it can't find
d352ac68 4508 * any higher than new_size
39279cc3
CM
4509 *
4510 * csum items that cross the new i_size are truncated to the new size
4511 * as well.
7b128766
JB
4512 *
4513 * min_type is the minimum key type to truncate down to. If set to 0, this
4514 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4515 */
8082510e
YZ
4516int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4517 struct btrfs_root *root,
4518 struct inode *inode,
4519 u64 new_size, u32 min_type)
39279cc3 4520{
0b246afa 4521 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4522 struct btrfs_path *path;
5f39d397 4523 struct extent_buffer *leaf;
39279cc3 4524 struct btrfs_file_extent_item *fi;
8082510e
YZ
4525 struct btrfs_key key;
4526 struct btrfs_key found_key;
39279cc3 4527 u64 extent_start = 0;
db94535d 4528 u64 extent_num_bytes = 0;
5d4f98a2 4529 u64 extent_offset = 0;
39279cc3 4530 u64 item_end = 0;
c1aa4575 4531 u64 last_size = new_size;
8082510e 4532 u32 found_type = (u8)-1;
39279cc3
CM
4533 int found_extent;
4534 int del_item;
85e21bac
CM
4535 int pending_del_nr = 0;
4536 int pending_del_slot = 0;
179e29e4 4537 int extent_type = -1;
8082510e 4538 int ret;
4a0cc7ca 4539 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4540 u64 bytes_deleted = 0;
897ca819
TM
4541 bool be_nice = false;
4542 bool should_throttle = false;
4543 bool should_end = false;
8082510e
YZ
4544
4545 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4546
28ed1345
CM
4547 /*
4548 * for non-free space inodes and ref cows, we want to back off from
4549 * time to time
4550 */
70ddc553 4551 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4552 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4553 be_nice = true;
28ed1345 4554
0eb0e19c
MF
4555 path = btrfs_alloc_path();
4556 if (!path)
4557 return -ENOMEM;
e4058b54 4558 path->reada = READA_BACK;
0eb0e19c 4559
5dc562c5
JB
4560 /*
4561 * We want to drop from the next block forward in case this new size is
4562 * not block aligned since we will be keeping the last block of the
4563 * extent just the way it is.
4564 */
27cdeb70 4565 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4566 root == fs_info->tree_root)
dcdbc059 4567 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4568 fs_info->sectorsize),
da17066c 4569 (u64)-1, 0);
8082510e 4570
16cdcec7
MX
4571 /*
4572 * This function is also used to drop the items in the log tree before
4573 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4574 * it is used to drop the loged items. So we shouldn't kill the delayed
4575 * items.
4576 */
4577 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4578 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4579
33345d01 4580 key.objectid = ino;
39279cc3 4581 key.offset = (u64)-1;
5f39d397
CM
4582 key.type = (u8)-1;
4583
85e21bac 4584search_again:
28ed1345
CM
4585 /*
4586 * with a 16K leaf size and 128MB extents, you can actually queue
4587 * up a huge file in a single leaf. Most of the time that
4588 * bytes_deleted is > 0, it will be huge by the time we get here
4589 */
fd86a3a3
OS
4590 if (be_nice && bytes_deleted > SZ_32M &&
4591 btrfs_should_end_transaction(trans)) {
4592 ret = -EAGAIN;
4593 goto out;
28ed1345
CM
4594 }
4595
b9473439 4596 path->leave_spinning = 1;
85e21bac 4597 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4598 if (ret < 0)
8082510e 4599 goto out;
d397712b 4600
85e21bac 4601 if (ret > 0) {
fd86a3a3 4602 ret = 0;
e02119d5
CM
4603 /* there are no items in the tree for us to truncate, we're
4604 * done
4605 */
8082510e
YZ
4606 if (path->slots[0] == 0)
4607 goto out;
85e21bac
CM
4608 path->slots[0]--;
4609 }
4610
d397712b 4611 while (1) {
39279cc3 4612 fi = NULL;
5f39d397
CM
4613 leaf = path->nodes[0];
4614 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4615 found_type = found_key.type;
39279cc3 4616
33345d01 4617 if (found_key.objectid != ino)
39279cc3 4618 break;
5f39d397 4619
85e21bac 4620 if (found_type < min_type)
39279cc3
CM
4621 break;
4622
5f39d397 4623 item_end = found_key.offset;
39279cc3 4624 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4625 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4626 struct btrfs_file_extent_item);
179e29e4
CM
4627 extent_type = btrfs_file_extent_type(leaf, fi);
4628 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4629 item_end +=
db94535d 4630 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4631
4632 trace_btrfs_truncate_show_fi_regular(
4633 BTRFS_I(inode), leaf, fi,
4634 found_key.offset);
179e29e4 4635 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4636 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4637 path->slots[0], fi);
09ed2f16
LB
4638
4639 trace_btrfs_truncate_show_fi_inline(
4640 BTRFS_I(inode), leaf, fi, path->slots[0],
4641 found_key.offset);
39279cc3 4642 }
008630c1 4643 item_end--;
39279cc3 4644 }
8082510e
YZ
4645 if (found_type > min_type) {
4646 del_item = 1;
4647 } else {
76b42abb 4648 if (item_end < new_size)
b888db2b 4649 break;
8082510e
YZ
4650 if (found_key.offset >= new_size)
4651 del_item = 1;
4652 else
4653 del_item = 0;
39279cc3 4654 }
39279cc3 4655 found_extent = 0;
39279cc3 4656 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4657 if (found_type != BTRFS_EXTENT_DATA_KEY)
4658 goto delete;
4659
4660 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4661 u64 num_dec;
db94535d 4662 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4663 if (!del_item) {
db94535d
CM
4664 u64 orig_num_bytes =
4665 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4666 extent_num_bytes = ALIGN(new_size -
4667 found_key.offset,
0b246afa 4668 fs_info->sectorsize);
db94535d
CM
4669 btrfs_set_file_extent_num_bytes(leaf, fi,
4670 extent_num_bytes);
4671 num_dec = (orig_num_bytes -
9069218d 4672 extent_num_bytes);
27cdeb70
MX
4673 if (test_bit(BTRFS_ROOT_REF_COWS,
4674 &root->state) &&
4675 extent_start != 0)
a76a3cd4 4676 inode_sub_bytes(inode, num_dec);
5f39d397 4677 btrfs_mark_buffer_dirty(leaf);
39279cc3 4678 } else {
db94535d
CM
4679 extent_num_bytes =
4680 btrfs_file_extent_disk_num_bytes(leaf,
4681 fi);
5d4f98a2
YZ
4682 extent_offset = found_key.offset -
4683 btrfs_file_extent_offset(leaf, fi);
4684
39279cc3 4685 /* FIXME blocksize != 4096 */
9069218d 4686 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4687 if (extent_start != 0) {
4688 found_extent = 1;
27cdeb70
MX
4689 if (test_bit(BTRFS_ROOT_REF_COWS,
4690 &root->state))
a76a3cd4 4691 inode_sub_bytes(inode, num_dec);
e02119d5 4692 }
39279cc3 4693 }
9069218d 4694 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4695 /*
4696 * we can't truncate inline items that have had
4697 * special encodings
4698 */
4699 if (!del_item &&
c8b97818 4700 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4701 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4702 btrfs_file_extent_compression(leaf, fi) == 0) {
4703 u32 size = (u32)(new_size - found_key.offset);
4704
4705 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4706 size = btrfs_file_extent_calc_inline_size(size);
4707 btrfs_truncate_item(root->fs_info, path, size, 1);
4708 } else if (!del_item) {
514ac8ad 4709 /*
ddfae63c
JB
4710 * We have to bail so the last_size is set to
4711 * just before this extent.
514ac8ad 4712 */
fd86a3a3 4713 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4714 break;
4715 }
0305cd5f 4716
ddfae63c 4717 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4718 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4719 }
179e29e4 4720delete:
ddfae63c
JB
4721 if (del_item)
4722 last_size = found_key.offset;
4723 else
4724 last_size = new_size;
39279cc3 4725 if (del_item) {
85e21bac
CM
4726 if (!pending_del_nr) {
4727 /* no pending yet, add ourselves */
4728 pending_del_slot = path->slots[0];
4729 pending_del_nr = 1;
4730 } else if (pending_del_nr &&
4731 path->slots[0] + 1 == pending_del_slot) {
4732 /* hop on the pending chunk */
4733 pending_del_nr++;
4734 pending_del_slot = path->slots[0];
4735 } else {
d397712b 4736 BUG();
85e21bac 4737 }
39279cc3
CM
4738 } else {
4739 break;
4740 }
897ca819 4741 should_throttle = false;
28f75a0e 4742
27cdeb70
MX
4743 if (found_extent &&
4744 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4745 root == fs_info->tree_root)) {
b9473439 4746 btrfs_set_path_blocking(path);
28ed1345 4747 bytes_deleted += extent_num_bytes;
84f7d8e6 4748 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4749 extent_num_bytes, 0,
4750 btrfs_header_owner(leaf),
b06c4bf5 4751 ino, extent_offset);
05522109
OS
4752 if (ret) {
4753 btrfs_abort_transaction(trans, ret);
4754 break;
4755 }
2ff7e61e
JM
4756 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4757 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4758 trans->delayed_ref_updates * 2,
4759 trans->transid, 0);
28f75a0e
CM
4760 if (be_nice) {
4761 if (truncate_space_check(trans, root,
4762 extent_num_bytes)) {
897ca819 4763 should_end = true;
28f75a0e
CM
4764 }
4765 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4766 fs_info))
897ca819 4767 should_throttle = true;
28f75a0e 4768 }
39279cc3 4769 }
85e21bac 4770
8082510e
YZ
4771 if (found_type == BTRFS_INODE_ITEM_KEY)
4772 break;
4773
4774 if (path->slots[0] == 0 ||
1262133b 4775 path->slots[0] != pending_del_slot ||
28f75a0e 4776 should_throttle || should_end) {
8082510e
YZ
4777 if (pending_del_nr) {
4778 ret = btrfs_del_items(trans, root, path,
4779 pending_del_slot,
4780 pending_del_nr);
79787eaa 4781 if (ret) {
66642832 4782 btrfs_abort_transaction(trans, ret);
fd86a3a3 4783 break;
79787eaa 4784 }
8082510e
YZ
4785 pending_del_nr = 0;
4786 }
b3b4aa74 4787 btrfs_release_path(path);
28f75a0e 4788 if (should_throttle) {
1262133b
JB
4789 unsigned long updates = trans->delayed_ref_updates;
4790 if (updates) {
4791 trans->delayed_ref_updates = 0;
2ff7e61e 4792 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4793 updates * 2);
fd86a3a3
OS
4794 if (ret)
4795 break;
1262133b
JB
4796 }
4797 }
28f75a0e
CM
4798 /*
4799 * if we failed to refill our space rsv, bail out
4800 * and let the transaction restart
4801 */
4802 if (should_end) {
fd86a3a3
OS
4803 ret = -EAGAIN;
4804 break;
28f75a0e 4805 }
85e21bac 4806 goto search_again;
8082510e
YZ
4807 } else {
4808 path->slots[0]--;
85e21bac 4809 }
39279cc3 4810 }
8082510e 4811out:
fd86a3a3
OS
4812 if (ret >= 0 && pending_del_nr) {
4813 int err;
4814
4815 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4816 pending_del_nr);
fd86a3a3
OS
4817 if (err) {
4818 btrfs_abort_transaction(trans, err);
4819 ret = err;
4820 }
85e21bac 4821 }
76b42abb
FM
4822 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4823 ASSERT(last_size >= new_size);
fd86a3a3 4824 if (!ret && last_size > new_size)
76b42abb 4825 last_size = new_size;
7f4f6e0a 4826 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4827 }
28ed1345 4828
39279cc3 4829 btrfs_free_path(path);
28ed1345 4830
fd86a3a3 4831 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
28ed1345 4832 unsigned long updates = trans->delayed_ref_updates;
fd86a3a3
OS
4833 int err;
4834
28ed1345
CM
4835 if (updates) {
4836 trans->delayed_ref_updates = 0;
fd86a3a3
OS
4837 err = btrfs_run_delayed_refs(trans, updates * 2);
4838 if (err)
4839 ret = err;
28ed1345
CM
4840 }
4841 }
fd86a3a3 4842 return ret;
39279cc3
CM
4843}
4844
4845/*
9703fefe 4846 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4847 * @inode - inode that we're zeroing
4848 * @from - the offset to start zeroing
4849 * @len - the length to zero, 0 to zero the entire range respective to the
4850 * offset
4851 * @front - zero up to the offset instead of from the offset on
4852 *
9703fefe 4853 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4854 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4855 */
9703fefe 4856int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4857 int front)
39279cc3 4858{
0b246afa 4859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4860 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4861 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4862 struct btrfs_ordered_extent *ordered;
2ac55d41 4863 struct extent_state *cached_state = NULL;
364ecf36 4864 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4865 char *kaddr;
0b246afa 4866 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4867 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4868 unsigned offset = from & (blocksize - 1);
39279cc3 4869 struct page *page;
3b16a4e3 4870 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4871 int ret = 0;
9703fefe
CR
4872 u64 block_start;
4873 u64 block_end;
39279cc3 4874
b03ebd99
NB
4875 if (IS_ALIGNED(offset, blocksize) &&
4876 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4877 goto out;
9703fefe 4878
8b62f87b
JB
4879 block_start = round_down(from, blocksize);
4880 block_end = block_start + blocksize - 1;
4881
364ecf36 4882 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4883 block_start, blocksize);
5d5e103a
JB
4884 if (ret)
4885 goto out;
39279cc3 4886
211c17f5 4887again:
3b16a4e3 4888 page = find_or_create_page(mapping, index, mask);
5d5e103a 4889 if (!page) {
bc42bda2 4890 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4891 block_start, blocksize, true);
4892 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4893 ret = -ENOMEM;
39279cc3 4894 goto out;
5d5e103a 4895 }
e6dcd2dc 4896
39279cc3 4897 if (!PageUptodate(page)) {
9ebefb18 4898 ret = btrfs_readpage(NULL, page);
39279cc3 4899 lock_page(page);
211c17f5
CM
4900 if (page->mapping != mapping) {
4901 unlock_page(page);
09cbfeaf 4902 put_page(page);
211c17f5
CM
4903 goto again;
4904 }
39279cc3
CM
4905 if (!PageUptodate(page)) {
4906 ret = -EIO;
89642229 4907 goto out_unlock;
39279cc3
CM
4908 }
4909 }
211c17f5 4910 wait_on_page_writeback(page);
e6dcd2dc 4911
9703fefe 4912 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4913 set_page_extent_mapped(page);
4914
9703fefe 4915 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4916 if (ordered) {
9703fefe 4917 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4918 &cached_state);
e6dcd2dc 4919 unlock_page(page);
09cbfeaf 4920 put_page(page);
eb84ae03 4921 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4922 btrfs_put_ordered_extent(ordered);
4923 goto again;
4924 }
4925
9703fefe 4926 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4927 EXTENT_DIRTY | EXTENT_DELALLOC |
4928 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4929 0, 0, &cached_state);
5d5e103a 4930
e3b8a485 4931 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4932 &cached_state, 0);
9ed74f2d 4933 if (ret) {
9703fefe 4934 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4935 &cached_state);
9ed74f2d
JB
4936 goto out_unlock;
4937 }
4938
9703fefe 4939 if (offset != blocksize) {
2aaa6655 4940 if (!len)
9703fefe 4941 len = blocksize - offset;
e6dcd2dc 4942 kaddr = kmap(page);
2aaa6655 4943 if (front)
9703fefe
CR
4944 memset(kaddr + (block_start - page_offset(page)),
4945 0, offset);
2aaa6655 4946 else
9703fefe
CR
4947 memset(kaddr + (block_start - page_offset(page)) + offset,
4948 0, len);
e6dcd2dc
CM
4949 flush_dcache_page(page);
4950 kunmap(page);
4951 }
247e743c 4952 ClearPageChecked(page);
e6dcd2dc 4953 set_page_dirty(page);
e43bbe5e 4954 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4955
89642229 4956out_unlock:
5d5e103a 4957 if (ret)
bc42bda2 4958 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4959 blocksize, true);
4960 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4961 unlock_page(page);
09cbfeaf 4962 put_page(page);
39279cc3 4963out:
364ecf36 4964 extent_changeset_free(data_reserved);
39279cc3
CM
4965 return ret;
4966}
4967
16e7549f
JB
4968static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4969 u64 offset, u64 len)
4970{
0b246afa 4971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4972 struct btrfs_trans_handle *trans;
4973 int ret;
4974
4975 /*
4976 * Still need to make sure the inode looks like it's been updated so
4977 * that any holes get logged if we fsync.
4978 */
0b246afa
JM
4979 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4980 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4981 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4982 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4983 return 0;
4984 }
4985
4986 /*
4987 * 1 - for the one we're dropping
4988 * 1 - for the one we're adding
4989 * 1 - for updating the inode.
4990 */
4991 trans = btrfs_start_transaction(root, 3);
4992 if (IS_ERR(trans))
4993 return PTR_ERR(trans);
4994
4995 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4996 if (ret) {
66642832 4997 btrfs_abort_transaction(trans, ret);
3a45bb20 4998 btrfs_end_transaction(trans);
16e7549f
JB
4999 return ret;
5000 }
5001
f85b7379
DS
5002 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5003 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5004 if (ret)
66642832 5005 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5006 else
5007 btrfs_update_inode(trans, root, inode);
3a45bb20 5008 btrfs_end_transaction(trans);
16e7549f
JB
5009 return ret;
5010}
5011
695a0d0d
JB
5012/*
5013 * This function puts in dummy file extents for the area we're creating a hole
5014 * for. So if we are truncating this file to a larger size we need to insert
5015 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5016 * the range between oldsize and size
5017 */
a41ad394 5018int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5019{
0b246afa 5020 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5021 struct btrfs_root *root = BTRFS_I(inode)->root;
5022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5023 struct extent_map *em = NULL;
2ac55d41 5024 struct extent_state *cached_state = NULL;
5dc562c5 5025 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5026 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5027 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5028 u64 last_byte;
5029 u64 cur_offset;
5030 u64 hole_size;
9ed74f2d 5031 int err = 0;
39279cc3 5032
a71754fc 5033 /*
9703fefe
CR
5034 * If our size started in the middle of a block we need to zero out the
5035 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5036 * expose stale data.
5037 */
9703fefe 5038 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5039 if (err)
5040 return err;
5041
9036c102
YZ
5042 if (size <= hole_start)
5043 return 0;
5044
9036c102
YZ
5045 while (1) {
5046 struct btrfs_ordered_extent *ordered;
fa7c1494 5047
ff13db41 5048 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 5049 &cached_state);
a776c6fa 5050 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 5051 block_end - hole_start);
9036c102
YZ
5052 if (!ordered)
5053 break;
2ac55d41 5054 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 5055 &cached_state);
fa7c1494 5056 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
5057 btrfs_put_ordered_extent(ordered);
5058 }
39279cc3 5059
9036c102
YZ
5060 cur_offset = hole_start;
5061 while (1) {
fc4f21b1 5062 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5063 block_end - cur_offset, 0);
79787eaa
JM
5064 if (IS_ERR(em)) {
5065 err = PTR_ERR(em);
f2767956 5066 em = NULL;
79787eaa
JM
5067 break;
5068 }
9036c102 5069 last_byte = min(extent_map_end(em), block_end);
0b246afa 5070 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5071 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5072 struct extent_map *hole_em;
9036c102 5073 hole_size = last_byte - cur_offset;
9ed74f2d 5074
16e7549f
JB
5075 err = maybe_insert_hole(root, inode, cur_offset,
5076 hole_size);
5077 if (err)
3893e33b 5078 break;
dcdbc059 5079 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5080 cur_offset + hole_size - 1, 0);
5081 hole_em = alloc_extent_map();
5082 if (!hole_em) {
5083 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5084 &BTRFS_I(inode)->runtime_flags);
5085 goto next;
5086 }
5087 hole_em->start = cur_offset;
5088 hole_em->len = hole_size;
5089 hole_em->orig_start = cur_offset;
8082510e 5090
5dc562c5
JB
5091 hole_em->block_start = EXTENT_MAP_HOLE;
5092 hole_em->block_len = 0;
b4939680 5093 hole_em->orig_block_len = 0;
cc95bef6 5094 hole_em->ram_bytes = hole_size;
0b246afa 5095 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5096 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5097 hole_em->generation = fs_info->generation;
8082510e 5098
5dc562c5
JB
5099 while (1) {
5100 write_lock(&em_tree->lock);
09a2a8f9 5101 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5102 write_unlock(&em_tree->lock);
5103 if (err != -EEXIST)
5104 break;
dcdbc059
NB
5105 btrfs_drop_extent_cache(BTRFS_I(inode),
5106 cur_offset,
5dc562c5
JB
5107 cur_offset +
5108 hole_size - 1, 0);
5109 }
5110 free_extent_map(hole_em);
9036c102 5111 }
16e7549f 5112next:
9036c102 5113 free_extent_map(em);
a22285a6 5114 em = NULL;
9036c102 5115 cur_offset = last_byte;
8082510e 5116 if (cur_offset >= block_end)
9036c102
YZ
5117 break;
5118 }
a22285a6 5119 free_extent_map(em);
e43bbe5e 5120 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5121 return err;
5122}
39279cc3 5123
3972f260 5124static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5125{
f4a2f4c5
MX
5126 struct btrfs_root *root = BTRFS_I(inode)->root;
5127 struct btrfs_trans_handle *trans;
a41ad394 5128 loff_t oldsize = i_size_read(inode);
3972f260
ES
5129 loff_t newsize = attr->ia_size;
5130 int mask = attr->ia_valid;
8082510e
YZ
5131 int ret;
5132
3972f260
ES
5133 /*
5134 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5135 * special case where we need to update the times despite not having
5136 * these flags set. For all other operations the VFS set these flags
5137 * explicitly if it wants a timestamp update.
5138 */
dff6efc3
CH
5139 if (newsize != oldsize) {
5140 inode_inc_iversion(inode);
5141 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5142 inode->i_ctime = inode->i_mtime =
c2050a45 5143 current_time(inode);
dff6efc3 5144 }
3972f260 5145
a41ad394 5146 if (newsize > oldsize) {
9ea24bbe 5147 /*
ea14b57f 5148 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5149 * This is to ensure the snapshot captures a fully consistent
5150 * state of this file - if the snapshot captures this expanding
5151 * truncation, it must capture all writes that happened before
5152 * this truncation.
5153 */
0bc19f90 5154 btrfs_wait_for_snapshot_creation(root);
a41ad394 5155 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5156 if (ret) {
ea14b57f 5157 btrfs_end_write_no_snapshotting(root);
8082510e 5158 return ret;
9ea24bbe 5159 }
8082510e 5160
f4a2f4c5 5161 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5162 if (IS_ERR(trans)) {
ea14b57f 5163 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5164 return PTR_ERR(trans);
9ea24bbe 5165 }
f4a2f4c5
MX
5166
5167 i_size_write(inode, newsize);
5168 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5169 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5170 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5171 btrfs_end_write_no_snapshotting(root);
3a45bb20 5172 btrfs_end_transaction(trans);
a41ad394 5173 } else {
8082510e 5174
a41ad394
JB
5175 /*
5176 * We're truncating a file that used to have good data down to
5177 * zero. Make sure it gets into the ordered flush list so that
5178 * any new writes get down to disk quickly.
5179 */
5180 if (newsize == 0)
72ac3c0d
JB
5181 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5182 &BTRFS_I(inode)->runtime_flags);
8082510e 5183
a41ad394 5184 truncate_setsize(inode, newsize);
2e60a51e
MX
5185
5186 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5187 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5188 inode_dio_wait(inode);
0b581701 5189 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5190
213e8c55 5191 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5192 if (ret && inode->i_nlink) {
5193 int err;
5194
5195 /*
f7e9e8fc
OS
5196 * Truncate failed, so fix up the in-memory size. We
5197 * adjusted disk_i_size down as we removed extents, so
5198 * wait for disk_i_size to be stable and then update the
5199 * in-memory size to match.
7f4f6e0a 5200 */
f7e9e8fc 5201 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5202 if (err)
f7e9e8fc
OS
5203 return err;
5204 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5205 }
8082510e
YZ
5206 }
5207
a41ad394 5208 return ret;
8082510e
YZ
5209}
5210
9036c102
YZ
5211static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5212{
2b0143b5 5213 struct inode *inode = d_inode(dentry);
b83cc969 5214 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5215 int err;
39279cc3 5216
b83cc969
LZ
5217 if (btrfs_root_readonly(root))
5218 return -EROFS;
5219
31051c85 5220 err = setattr_prepare(dentry, attr);
9036c102
YZ
5221 if (err)
5222 return err;
2bf5a725 5223
5a3f23d5 5224 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5225 err = btrfs_setsize(inode, attr);
8082510e
YZ
5226 if (err)
5227 return err;
39279cc3 5228 }
9036c102 5229
1025774c
CH
5230 if (attr->ia_valid) {
5231 setattr_copy(inode, attr);
0c4d2d95 5232 inode_inc_iversion(inode);
22c44fe6 5233 err = btrfs_dirty_inode(inode);
1025774c 5234
22c44fe6 5235 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5236 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5237 }
33268eaf 5238
39279cc3
CM
5239 return err;
5240}
61295eb8 5241
131e404a
FDBM
5242/*
5243 * While truncating the inode pages during eviction, we get the VFS calling
5244 * btrfs_invalidatepage() against each page of the inode. This is slow because
5245 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5246 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5247 * extent_state structures over and over, wasting lots of time.
5248 *
5249 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5250 * those expensive operations on a per page basis and do only the ordered io
5251 * finishing, while we release here the extent_map and extent_state structures,
5252 * without the excessive merging and splitting.
5253 */
5254static void evict_inode_truncate_pages(struct inode *inode)
5255{
5256 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5257 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5258 struct rb_node *node;
5259
5260 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5261 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5262
5263 write_lock(&map_tree->lock);
5264 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5265 struct extent_map *em;
5266
5267 node = rb_first(&map_tree->map);
5268 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5269 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5270 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5271 remove_extent_mapping(map_tree, em);
5272 free_extent_map(em);
7064dd5c
FM
5273 if (need_resched()) {
5274 write_unlock(&map_tree->lock);
5275 cond_resched();
5276 write_lock(&map_tree->lock);
5277 }
131e404a
FDBM
5278 }
5279 write_unlock(&map_tree->lock);
5280
6ca07097
FM
5281 /*
5282 * Keep looping until we have no more ranges in the io tree.
5283 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5284 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5285 * still in progress (unlocked the pages in the bio but did not yet
5286 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5287 * ranges can still be locked and eviction started because before
5288 * submitting those bios, which are executed by a separate task (work
5289 * queue kthread), inode references (inode->i_count) were not taken
5290 * (which would be dropped in the end io callback of each bio).
5291 * Therefore here we effectively end up waiting for those bios and
5292 * anyone else holding locked ranges without having bumped the inode's
5293 * reference count - if we don't do it, when they access the inode's
5294 * io_tree to unlock a range it may be too late, leading to an
5295 * use-after-free issue.
5296 */
131e404a
FDBM
5297 spin_lock(&io_tree->lock);
5298 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5299 struct extent_state *state;
5300 struct extent_state *cached_state = NULL;
6ca07097
FM
5301 u64 start;
5302 u64 end;
131e404a
FDBM
5303
5304 node = rb_first(&io_tree->state);
5305 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5306 start = state->start;
5307 end = state->end;
131e404a
FDBM
5308 spin_unlock(&io_tree->lock);
5309
ff13db41 5310 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5311
5312 /*
5313 * If still has DELALLOC flag, the extent didn't reach disk,
5314 * and its reserved space won't be freed by delayed_ref.
5315 * So we need to free its reserved space here.
5316 * (Refer to comment in btrfs_invalidatepage, case 2)
5317 *
5318 * Note, end is the bytenr of last byte, so we need + 1 here.
5319 */
5320 if (state->state & EXTENT_DELALLOC)
bc42bda2 5321 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5322
6ca07097 5323 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5324 EXTENT_LOCKED | EXTENT_DIRTY |
5325 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5326 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5327
7064dd5c 5328 cond_resched();
131e404a
FDBM
5329 spin_lock(&io_tree->lock);
5330 }
5331 spin_unlock(&io_tree->lock);
5332}
5333
4b9d7b59
OS
5334static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5335 struct btrfs_block_rsv *rsv,
5336 u64 min_size)
5337{
5338 struct btrfs_fs_info *fs_info = root->fs_info;
5339 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5340 int failures = 0;
5341
5342 for (;;) {
5343 struct btrfs_trans_handle *trans;
5344 int ret;
5345
5346 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5347 BTRFS_RESERVE_FLUSH_LIMIT);
5348
5349 if (ret && ++failures > 2) {
5350 btrfs_warn(fs_info,
5351 "could not allocate space for a delete; will truncate on mount");
5352 return ERR_PTR(-ENOSPC);
5353 }
5354
5355 trans = btrfs_join_transaction(root);
5356 if (IS_ERR(trans) || !ret)
5357 return trans;
5358
5359 /*
5360 * Try to steal from the global reserve if there is space for
5361 * it.
5362 */
5363 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5364 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5365 return trans;
5366
5367 /* If not, commit and try again. */
5368 ret = btrfs_commit_transaction(trans);
5369 if (ret)
5370 return ERR_PTR(ret);
5371 }
5372}
5373
bd555975 5374void btrfs_evict_inode(struct inode *inode)
39279cc3 5375{
0b246afa 5376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5377 struct btrfs_trans_handle *trans;
5378 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5379 struct btrfs_block_rsv *rsv;
3d48d981 5380 u64 min_size;
39279cc3
CM
5381 int ret;
5382
1abe9b8a 5383 trace_btrfs_inode_evict(inode);
5384
3d48d981 5385 if (!root) {
e8f1bc14 5386 clear_inode(inode);
3d48d981
NB
5387 return;
5388 }
5389
0b246afa 5390 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5391
131e404a
FDBM
5392 evict_inode_truncate_pages(inode);
5393
69e9c6c6
SB
5394 if (inode->i_nlink &&
5395 ((btrfs_root_refs(&root->root_item) != 0 &&
5396 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5397 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5398 goto no_delete;
5399
27919067 5400 if (is_bad_inode(inode))
39279cc3 5401 goto no_delete;
bd555975 5402 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5403 if (!special_file(inode->i_mode))
5404 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5405
7ab7956e 5406 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5407
7b40b695 5408 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5409 goto no_delete;
c71bf099 5410
76dda93c 5411 if (inode->i_nlink > 0) {
69e9c6c6
SB
5412 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5413 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5414 goto no_delete;
5415 }
5416
aa79021f 5417 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5418 if (ret)
0e8c36a9 5419 goto no_delete;
0e8c36a9 5420
2ff7e61e 5421 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5422 if (!rsv)
4289a667 5423 goto no_delete;
4a338542 5424 rsv->size = min_size;
ca7e70f5 5425 rsv->failfast = 1;
4289a667 5426
6ef06d27 5427 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5428
8082510e 5429 while (1) {
4b9d7b59 5430 trans = evict_refill_and_join(root, rsv, min_size);
27919067
OS
5431 if (IS_ERR(trans))
5432 goto free_rsv;
7b128766 5433
4289a667
JB
5434 trans->block_rsv = rsv;
5435
d68fc57b 5436 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5437 trans->block_rsv = &fs_info->trans_block_rsv;
5438 btrfs_end_transaction(trans);
5439 btrfs_btree_balance_dirty(fs_info);
5440 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5441 goto free_rsv;
5442 else if (!ret)
8082510e 5443 break;
8082510e 5444 }
5f39d397 5445
4ef31a45 5446 /*
27919067
OS
5447 * Errors here aren't a big deal, it just means we leave orphan items in
5448 * the tree. They will be cleaned up on the next mount. If the inode
5449 * number gets reused, cleanup deletes the orphan item without doing
5450 * anything, and unlink reuses the existing orphan item.
5451 *
5452 * If it turns out that we are dropping too many of these, we might want
5453 * to add a mechanism for retrying these after a commit.
4ef31a45 5454 */
27919067
OS
5455 trans = evict_refill_and_join(root, rsv, min_size);
5456 if (!IS_ERR(trans)) {
5457 trans->block_rsv = rsv;
5458 btrfs_orphan_del(trans, BTRFS_I(inode));
5459 trans->block_rsv = &fs_info->trans_block_rsv;
5460 btrfs_end_transaction(trans);
5461 }
54aa1f4d 5462
0b246afa 5463 if (!(root == fs_info->tree_root ||
581bb050 5464 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5465 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5466
27919067
OS
5467free_rsv:
5468 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5469no_delete:
27919067
OS
5470 /*
5471 * If we didn't successfully delete, the orphan item will still be in
5472 * the tree and we'll retry on the next mount. Again, we might also want
5473 * to retry these periodically in the future.
5474 */
f48d1cf5 5475 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5476 clear_inode(inode);
39279cc3
CM
5477}
5478
5479/*
5480 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5481 * If no dir entries were found, returns -ENOENT.
5482 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5483 */
5484static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5485 struct btrfs_key *location)
5486{
5487 const char *name = dentry->d_name.name;
5488 int namelen = dentry->d_name.len;
5489 struct btrfs_dir_item *di;
5490 struct btrfs_path *path;
5491 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5492 int ret = 0;
39279cc3
CM
5493
5494 path = btrfs_alloc_path();
d8926bb3
MF
5495 if (!path)
5496 return -ENOMEM;
3954401f 5497
f85b7379
DS
5498 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5499 name, namelen, 0);
005d6712
SY
5500 if (!di) {
5501 ret = -ENOENT;
5502 goto out;
5503 }
5504 if (IS_ERR(di)) {
0d9f7f3e 5505 ret = PTR_ERR(di);
005d6712
SY
5506 goto out;
5507 }
d397712b 5508
5f39d397 5509 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5510 if (location->type != BTRFS_INODE_ITEM_KEY &&
5511 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5512 ret = -EUCLEAN;
56a0e706
LB
5513 btrfs_warn(root->fs_info,
5514"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5515 __func__, name, btrfs_ino(BTRFS_I(dir)),
5516 location->objectid, location->type, location->offset);
56a0e706 5517 }
39279cc3 5518out:
39279cc3
CM
5519 btrfs_free_path(path);
5520 return ret;
5521}
5522
5523/*
5524 * when we hit a tree root in a directory, the btrfs part of the inode
5525 * needs to be changed to reflect the root directory of the tree root. This
5526 * is kind of like crossing a mount point.
5527 */
2ff7e61e 5528static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5529 struct inode *dir,
5530 struct dentry *dentry,
5531 struct btrfs_key *location,
5532 struct btrfs_root **sub_root)
39279cc3 5533{
4df27c4d
YZ
5534 struct btrfs_path *path;
5535 struct btrfs_root *new_root;
5536 struct btrfs_root_ref *ref;
5537 struct extent_buffer *leaf;
1d4c08e0 5538 struct btrfs_key key;
4df27c4d
YZ
5539 int ret;
5540 int err = 0;
39279cc3 5541
4df27c4d
YZ
5542 path = btrfs_alloc_path();
5543 if (!path) {
5544 err = -ENOMEM;
5545 goto out;
5546 }
39279cc3 5547
4df27c4d 5548 err = -ENOENT;
1d4c08e0
DS
5549 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5550 key.type = BTRFS_ROOT_REF_KEY;
5551 key.offset = location->objectid;
5552
0b246afa 5553 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5554 if (ret) {
5555 if (ret < 0)
5556 err = ret;
5557 goto out;
5558 }
39279cc3 5559
4df27c4d
YZ
5560 leaf = path->nodes[0];
5561 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5562 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5563 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5564 goto out;
39279cc3 5565
4df27c4d
YZ
5566 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5567 (unsigned long)(ref + 1),
5568 dentry->d_name.len);
5569 if (ret)
5570 goto out;
5571
b3b4aa74 5572 btrfs_release_path(path);
4df27c4d 5573
0b246afa 5574 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5575 if (IS_ERR(new_root)) {
5576 err = PTR_ERR(new_root);
5577 goto out;
5578 }
5579
4df27c4d
YZ
5580 *sub_root = new_root;
5581 location->objectid = btrfs_root_dirid(&new_root->root_item);
5582 location->type = BTRFS_INODE_ITEM_KEY;
5583 location->offset = 0;
5584 err = 0;
5585out:
5586 btrfs_free_path(path);
5587 return err;
39279cc3
CM
5588}
5589
5d4f98a2
YZ
5590static void inode_tree_add(struct inode *inode)
5591{
5592 struct btrfs_root *root = BTRFS_I(inode)->root;
5593 struct btrfs_inode *entry;
03e860bd
NP
5594 struct rb_node **p;
5595 struct rb_node *parent;
cef21937 5596 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5597 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5598
1d3382cb 5599 if (inode_unhashed(inode))
76dda93c 5600 return;
e1409cef 5601 parent = NULL;
5d4f98a2 5602 spin_lock(&root->inode_lock);
e1409cef 5603 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5604 while (*p) {
5605 parent = *p;
5606 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5607
4a0cc7ca 5608 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5609 p = &parent->rb_left;
4a0cc7ca 5610 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5611 p = &parent->rb_right;
5d4f98a2
YZ
5612 else {
5613 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5614 (I_WILL_FREE | I_FREEING)));
cef21937 5615 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5616 RB_CLEAR_NODE(parent);
5617 spin_unlock(&root->inode_lock);
cef21937 5618 return;
5d4f98a2
YZ
5619 }
5620 }
cef21937
FDBM
5621 rb_link_node(new, parent, p);
5622 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5623 spin_unlock(&root->inode_lock);
5624}
5625
5626static void inode_tree_del(struct inode *inode)
5627{
0b246afa 5628 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5629 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5630 int empty = 0;
5d4f98a2 5631
03e860bd 5632 spin_lock(&root->inode_lock);
5d4f98a2 5633 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5634 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5635 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5636 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5637 }
03e860bd 5638 spin_unlock(&root->inode_lock);
76dda93c 5639
69e9c6c6 5640 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5641 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5642 spin_lock(&root->inode_lock);
5643 empty = RB_EMPTY_ROOT(&root->inode_tree);
5644 spin_unlock(&root->inode_lock);
5645 if (empty)
5646 btrfs_add_dead_root(root);
5647 }
5648}
5649
5d4f98a2 5650
e02119d5
CM
5651static int btrfs_init_locked_inode(struct inode *inode, void *p)
5652{
5653 struct btrfs_iget_args *args = p;
90d3e592
CM
5654 inode->i_ino = args->location->objectid;
5655 memcpy(&BTRFS_I(inode)->location, args->location,
5656 sizeof(*args->location));
e02119d5 5657 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5658 return 0;
5659}
5660
5661static int btrfs_find_actor(struct inode *inode, void *opaque)
5662{
5663 struct btrfs_iget_args *args = opaque;
90d3e592 5664 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5665 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5666}
5667
5d4f98a2 5668static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5669 struct btrfs_key *location,
5d4f98a2 5670 struct btrfs_root *root)
39279cc3
CM
5671{
5672 struct inode *inode;
5673 struct btrfs_iget_args args;
90d3e592 5674 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5675
90d3e592 5676 args.location = location;
39279cc3
CM
5677 args.root = root;
5678
778ba82b 5679 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5680 btrfs_init_locked_inode,
5681 (void *)&args);
5682 return inode;
5683}
5684
1a54ef8c
BR
5685/* Get an inode object given its location and corresponding root.
5686 * Returns in *is_new if the inode was read from disk
5687 */
5688struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5689 struct btrfs_root *root, int *new)
1a54ef8c
BR
5690{
5691 struct inode *inode;
5692
90d3e592 5693 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5694 if (!inode)
5d4f98a2 5695 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5696
5697 if (inode->i_state & I_NEW) {
67710892
FM
5698 int ret;
5699
5700 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5701 if (!is_bad_inode(inode)) {
5702 inode_tree_add(inode);
5703 unlock_new_inode(inode);
5704 if (new)
5705 *new = 1;
5706 } else {
e0b6d65b
ST
5707 unlock_new_inode(inode);
5708 iput(inode);
67710892
FM
5709 ASSERT(ret < 0);
5710 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5711 }
5712 }
5713
1a54ef8c
BR
5714 return inode;
5715}
5716
4df27c4d
YZ
5717static struct inode *new_simple_dir(struct super_block *s,
5718 struct btrfs_key *key,
5719 struct btrfs_root *root)
5720{
5721 struct inode *inode = new_inode(s);
5722
5723 if (!inode)
5724 return ERR_PTR(-ENOMEM);
5725
4df27c4d
YZ
5726 BTRFS_I(inode)->root = root;
5727 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5728 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5729
5730 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5731 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5732 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5733 inode->i_fop = &simple_dir_operations;
5734 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5735 inode->i_mtime = current_time(inode);
9cc97d64 5736 inode->i_atime = inode->i_mtime;
5737 inode->i_ctime = inode->i_mtime;
5738 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5739
5740 return inode;
5741}
5742
3de4586c 5743struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5744{
0b246afa 5745 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5746 struct inode *inode;
4df27c4d 5747 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5748 struct btrfs_root *sub_root = root;
5749 struct btrfs_key location;
76dda93c 5750 int index;
b4aff1f8 5751 int ret = 0;
39279cc3
CM
5752
5753 if (dentry->d_name.len > BTRFS_NAME_LEN)
5754 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5755
39e3c955 5756 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5757 if (ret < 0)
5758 return ERR_PTR(ret);
5f39d397 5759
4df27c4d 5760 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5761 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5762 return inode;
5763 }
5764
0b246afa 5765 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5766 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5767 &location, &sub_root);
5768 if (ret < 0) {
5769 if (ret != -ENOENT)
5770 inode = ERR_PTR(ret);
5771 else
5772 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5773 } else {
73f73415 5774 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5775 }
0b246afa 5776 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5777
34d19bad 5778 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5779 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5780 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5781 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5782 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5783 if (ret) {
5784 iput(inode);
66b4ffd1 5785 inode = ERR_PTR(ret);
01cd3367 5786 }
c71bf099
YZ
5787 }
5788
3de4586c
CM
5789 return inode;
5790}
5791
fe15ce44 5792static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5793{
5794 struct btrfs_root *root;
2b0143b5 5795 struct inode *inode = d_inode(dentry);
76dda93c 5796
848cce0d 5797 if (!inode && !IS_ROOT(dentry))
2b0143b5 5798 inode = d_inode(dentry->d_parent);
76dda93c 5799
848cce0d
LZ
5800 if (inode) {
5801 root = BTRFS_I(inode)->root;
efefb143
YZ
5802 if (btrfs_root_refs(&root->root_item) == 0)
5803 return 1;
848cce0d 5804
4a0cc7ca 5805 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5806 return 1;
efefb143 5807 }
76dda93c
YZ
5808 return 0;
5809}
5810
3de4586c 5811static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5812 unsigned int flags)
3de4586c 5813{
5662344b 5814 struct inode *inode;
a66e7cc6 5815
5662344b
TI
5816 inode = btrfs_lookup_dentry(dir, dentry);
5817 if (IS_ERR(inode)) {
5818 if (PTR_ERR(inode) == -ENOENT)
5819 inode = NULL;
5820 else
5821 return ERR_CAST(inode);
5822 }
5823
41d28bca 5824 return d_splice_alias(inode, dentry);
39279cc3
CM
5825}
5826
16cdcec7 5827unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5828 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5829};
5830
23b5ec74
JB
5831/*
5832 * All this infrastructure exists because dir_emit can fault, and we are holding
5833 * the tree lock when doing readdir. For now just allocate a buffer and copy
5834 * our information into that, and then dir_emit from the buffer. This is
5835 * similar to what NFS does, only we don't keep the buffer around in pagecache
5836 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5837 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5838 * tree lock.
5839 */
5840static int btrfs_opendir(struct inode *inode, struct file *file)
5841{
5842 struct btrfs_file_private *private;
5843
5844 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5845 if (!private)
5846 return -ENOMEM;
5847 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5848 if (!private->filldir_buf) {
5849 kfree(private);
5850 return -ENOMEM;
5851 }
5852 file->private_data = private;
5853 return 0;
5854}
5855
5856struct dir_entry {
5857 u64 ino;
5858 u64 offset;
5859 unsigned type;
5860 int name_len;
5861};
5862
5863static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5864{
5865 while (entries--) {
5866 struct dir_entry *entry = addr;
5867 char *name = (char *)(entry + 1);
5868
92d32170
DS
5869 ctx->pos = get_unaligned(&entry->offset);
5870 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5871 get_unaligned(&entry->ino),
5872 get_unaligned(&entry->type)))
23b5ec74 5873 return 1;
92d32170
DS
5874 addr += sizeof(struct dir_entry) +
5875 get_unaligned(&entry->name_len);
23b5ec74
JB
5876 ctx->pos++;
5877 }
5878 return 0;
5879}
5880
9cdda8d3 5881static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5882{
9cdda8d3 5883 struct inode *inode = file_inode(file);
39279cc3 5884 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5885 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5886 struct btrfs_dir_item *di;
5887 struct btrfs_key key;
5f39d397 5888 struct btrfs_key found_key;
39279cc3 5889 struct btrfs_path *path;
23b5ec74 5890 void *addr;
16cdcec7
MX
5891 struct list_head ins_list;
5892 struct list_head del_list;
39279cc3 5893 int ret;
5f39d397 5894 struct extent_buffer *leaf;
39279cc3 5895 int slot;
5f39d397
CM
5896 char *name_ptr;
5897 int name_len;
23b5ec74
JB
5898 int entries = 0;
5899 int total_len = 0;
02dbfc99 5900 bool put = false;
c2951f32 5901 struct btrfs_key location;
5f39d397 5902
9cdda8d3
AV
5903 if (!dir_emit_dots(file, ctx))
5904 return 0;
5905
49593bfa 5906 path = btrfs_alloc_path();
16cdcec7
MX
5907 if (!path)
5908 return -ENOMEM;
ff5714cc 5909
23b5ec74 5910 addr = private->filldir_buf;
e4058b54 5911 path->reada = READA_FORWARD;
49593bfa 5912
c2951f32
JM
5913 INIT_LIST_HEAD(&ins_list);
5914 INIT_LIST_HEAD(&del_list);
5915 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5916
23b5ec74 5917again:
c2951f32 5918 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5919 key.offset = ctx->pos;
4a0cc7ca 5920 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5921
39279cc3
CM
5922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5923 if (ret < 0)
5924 goto err;
49593bfa
DW
5925
5926 while (1) {
23b5ec74
JB
5927 struct dir_entry *entry;
5928
5f39d397 5929 leaf = path->nodes[0];
39279cc3 5930 slot = path->slots[0];
b9e03af0
LZ
5931 if (slot >= btrfs_header_nritems(leaf)) {
5932 ret = btrfs_next_leaf(root, path);
5933 if (ret < 0)
5934 goto err;
5935 else if (ret > 0)
5936 break;
5937 continue;
39279cc3 5938 }
3de4586c 5939
5f39d397
CM
5940 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5941
5942 if (found_key.objectid != key.objectid)
39279cc3 5943 break;
c2951f32 5944 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5945 break;
9cdda8d3 5946 if (found_key.offset < ctx->pos)
b9e03af0 5947 goto next;
c2951f32 5948 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5949 goto next;
39279cc3 5950 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5951 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5952 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5953 PAGE_SIZE) {
5954 btrfs_release_path(path);
5955 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5956 if (ret)
5957 goto nopos;
5958 addr = private->filldir_buf;
5959 entries = 0;
5960 total_len = 0;
5961 goto again;
c2951f32 5962 }
23b5ec74
JB
5963
5964 entry = addr;
92d32170 5965 put_unaligned(name_len, &entry->name_len);
23b5ec74 5966 name_ptr = (char *)(entry + 1);
c2951f32
JM
5967 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5968 name_len);
92d32170
DS
5969 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5970 &entry->type);
c2951f32 5971 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5972 put_unaligned(location.objectid, &entry->ino);
5973 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5974 entries++;
5975 addr += sizeof(struct dir_entry) + name_len;
5976 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5977next:
5978 path->slots[0]++;
39279cc3 5979 }
23b5ec74
JB
5980 btrfs_release_path(path);
5981
5982 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5983 if (ret)
5984 goto nopos;
49593bfa 5985
d2fbb2b5 5986 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5987 if (ret)
bc4ef759
DS
5988 goto nopos;
5989
db62efbb
ZB
5990 /*
5991 * Stop new entries from being returned after we return the last
5992 * entry.
5993 *
5994 * New directory entries are assigned a strictly increasing
5995 * offset. This means that new entries created during readdir
5996 * are *guaranteed* to be seen in the future by that readdir.
5997 * This has broken buggy programs which operate on names as
5998 * they're returned by readdir. Until we re-use freed offsets
5999 * we have this hack to stop new entries from being returned
6000 * under the assumption that they'll never reach this huge
6001 * offset.
6002 *
6003 * This is being careful not to overflow 32bit loff_t unless the
6004 * last entry requires it because doing so has broken 32bit apps
6005 * in the past.
6006 */
c2951f32
JM
6007 if (ctx->pos >= INT_MAX)
6008 ctx->pos = LLONG_MAX;
6009 else
6010 ctx->pos = INT_MAX;
39279cc3
CM
6011nopos:
6012 ret = 0;
6013err:
02dbfc99
OS
6014 if (put)
6015 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6016 btrfs_free_path(path);
39279cc3
CM
6017 return ret;
6018}
6019
a9185b41 6020int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6021{
6022 struct btrfs_root *root = BTRFS_I(inode)->root;
6023 struct btrfs_trans_handle *trans;
6024 int ret = 0;
0af3d00b 6025 bool nolock = false;
39279cc3 6026
72ac3c0d 6027 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6028 return 0;
6029
70ddc553
NB
6030 if (btrfs_fs_closing(root->fs_info) &&
6031 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6032 nolock = true;
0af3d00b 6033
a9185b41 6034 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6035 if (nolock)
7a7eaa40 6036 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6037 else
7a7eaa40 6038 trans = btrfs_join_transaction(root);
3612b495
TI
6039 if (IS_ERR(trans))
6040 return PTR_ERR(trans);
3a45bb20 6041 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6042 }
6043 return ret;
6044}
6045
6046/*
54aa1f4d 6047 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6048 * inode changes. But, it is most likely to find the inode in cache.
6049 * FIXME, needs more benchmarking...there are no reasons other than performance
6050 * to keep or drop this code.
6051 */
48a3b636 6052static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6053{
2ff7e61e 6054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6055 struct btrfs_root *root = BTRFS_I(inode)->root;
6056 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6057 int ret;
6058
72ac3c0d 6059 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6060 return 0;
39279cc3 6061
7a7eaa40 6062 trans = btrfs_join_transaction(root);
22c44fe6
JB
6063 if (IS_ERR(trans))
6064 return PTR_ERR(trans);
8929ecfa
YZ
6065
6066 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6067 if (ret && ret == -ENOSPC) {
6068 /* whoops, lets try again with the full transaction */
3a45bb20 6069 btrfs_end_transaction(trans);
94b60442 6070 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6071 if (IS_ERR(trans))
6072 return PTR_ERR(trans);
8929ecfa 6073
94b60442 6074 ret = btrfs_update_inode(trans, root, inode);
94b60442 6075 }
3a45bb20 6076 btrfs_end_transaction(trans);
16cdcec7 6077 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6078 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6079
6080 return ret;
6081}
6082
6083/*
6084 * This is a copy of file_update_time. We need this so we can return error on
6085 * ENOSPC for updating the inode in the case of file write and mmap writes.
6086 */
e41f941a
JB
6087static int btrfs_update_time(struct inode *inode, struct timespec *now,
6088 int flags)
22c44fe6 6089{
2bc55652 6090 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6091 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6092
6093 if (btrfs_root_readonly(root))
6094 return -EROFS;
6095
e41f941a 6096 if (flags & S_VERSION)
3a8c7231 6097 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6098 if (flags & S_CTIME)
6099 inode->i_ctime = *now;
6100 if (flags & S_MTIME)
6101 inode->i_mtime = *now;
6102 if (flags & S_ATIME)
6103 inode->i_atime = *now;
3a8c7231 6104 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6105}
6106
d352ac68
CM
6107/*
6108 * find the highest existing sequence number in a directory
6109 * and then set the in-memory index_cnt variable to reflect
6110 * free sequence numbers
6111 */
4c570655 6112static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6113{
4c570655 6114 struct btrfs_root *root = inode->root;
aec7477b
JB
6115 struct btrfs_key key, found_key;
6116 struct btrfs_path *path;
6117 struct extent_buffer *leaf;
6118 int ret;
6119
4c570655 6120 key.objectid = btrfs_ino(inode);
962a298f 6121 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6122 key.offset = (u64)-1;
6123
6124 path = btrfs_alloc_path();
6125 if (!path)
6126 return -ENOMEM;
6127
6128 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6129 if (ret < 0)
6130 goto out;
6131 /* FIXME: we should be able to handle this */
6132 if (ret == 0)
6133 goto out;
6134 ret = 0;
6135
6136 /*
6137 * MAGIC NUMBER EXPLANATION:
6138 * since we search a directory based on f_pos we have to start at 2
6139 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6140 * else has to start at 2
6141 */
6142 if (path->slots[0] == 0) {
4c570655 6143 inode->index_cnt = 2;
aec7477b
JB
6144 goto out;
6145 }
6146
6147 path->slots[0]--;
6148
6149 leaf = path->nodes[0];
6150 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6151
4c570655 6152 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6153 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6154 inode->index_cnt = 2;
aec7477b
JB
6155 goto out;
6156 }
6157
4c570655 6158 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6159out:
6160 btrfs_free_path(path);
6161 return ret;
6162}
6163
d352ac68
CM
6164/*
6165 * helper to find a free sequence number in a given directory. This current
6166 * code is very simple, later versions will do smarter things in the btree
6167 */
877574e2 6168int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6169{
6170 int ret = 0;
6171
877574e2
NB
6172 if (dir->index_cnt == (u64)-1) {
6173 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6174 if (ret) {
6175 ret = btrfs_set_inode_index_count(dir);
6176 if (ret)
6177 return ret;
6178 }
aec7477b
JB
6179 }
6180
877574e2
NB
6181 *index = dir->index_cnt;
6182 dir->index_cnt++;
aec7477b
JB
6183
6184 return ret;
6185}
6186
b0d5d10f
CM
6187static int btrfs_insert_inode_locked(struct inode *inode)
6188{
6189 struct btrfs_iget_args args;
6190 args.location = &BTRFS_I(inode)->location;
6191 args.root = BTRFS_I(inode)->root;
6192
6193 return insert_inode_locked4(inode,
6194 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6195 btrfs_find_actor, &args);
6196}
6197
19aee8de
AJ
6198/*
6199 * Inherit flags from the parent inode.
6200 *
6201 * Currently only the compression flags and the cow flags are inherited.
6202 */
6203static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6204{
6205 unsigned int flags;
6206
6207 if (!dir)
6208 return;
6209
6210 flags = BTRFS_I(dir)->flags;
6211
6212 if (flags & BTRFS_INODE_NOCOMPRESS) {
6213 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6214 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6215 } else if (flags & BTRFS_INODE_COMPRESS) {
6216 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6217 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6218 }
6219
6220 if (flags & BTRFS_INODE_NODATACOW) {
6221 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6222 if (S_ISREG(inode->i_mode))
6223 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6224 }
6225
7b6a221e 6226 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6227}
6228
39279cc3
CM
6229static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6230 struct btrfs_root *root,
aec7477b 6231 struct inode *dir,
9c58309d 6232 const char *name, int name_len,
175a4eb7
AV
6233 u64 ref_objectid, u64 objectid,
6234 umode_t mode, u64 *index)
39279cc3 6235{
0b246afa 6236 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6237 struct inode *inode;
5f39d397 6238 struct btrfs_inode_item *inode_item;
39279cc3 6239 struct btrfs_key *location;
5f39d397 6240 struct btrfs_path *path;
9c58309d
CM
6241 struct btrfs_inode_ref *ref;
6242 struct btrfs_key key[2];
6243 u32 sizes[2];
ef3b9af5 6244 int nitems = name ? 2 : 1;
9c58309d 6245 unsigned long ptr;
39279cc3 6246 int ret;
39279cc3 6247
5f39d397 6248 path = btrfs_alloc_path();
d8926bb3
MF
6249 if (!path)
6250 return ERR_PTR(-ENOMEM);
5f39d397 6251
0b246afa 6252 inode = new_inode(fs_info->sb);
8fb27640
YS
6253 if (!inode) {
6254 btrfs_free_path(path);
39279cc3 6255 return ERR_PTR(-ENOMEM);
8fb27640 6256 }
39279cc3 6257
5762b5c9
FM
6258 /*
6259 * O_TMPFILE, set link count to 0, so that after this point,
6260 * we fill in an inode item with the correct link count.
6261 */
6262 if (!name)
6263 set_nlink(inode, 0);
6264
581bb050
LZ
6265 /*
6266 * we have to initialize this early, so we can reclaim the inode
6267 * number if we fail afterwards in this function.
6268 */
6269 inode->i_ino = objectid;
6270
ef3b9af5 6271 if (dir && name) {
1abe9b8a 6272 trace_btrfs_inode_request(dir);
6273
877574e2 6274 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6275 if (ret) {
8fb27640 6276 btrfs_free_path(path);
09771430 6277 iput(inode);
aec7477b 6278 return ERR_PTR(ret);
09771430 6279 }
ef3b9af5
FM
6280 } else if (dir) {
6281 *index = 0;
aec7477b
JB
6282 }
6283 /*
6284 * index_cnt is ignored for everything but a dir,
df6703e1 6285 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6286 * number
6287 */
6288 BTRFS_I(inode)->index_cnt = 2;
67de1176 6289 BTRFS_I(inode)->dir_index = *index;
39279cc3 6290 BTRFS_I(inode)->root = root;
e02119d5 6291 BTRFS_I(inode)->generation = trans->transid;
76195853 6292 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6293
5dc562c5
JB
6294 /*
6295 * We could have gotten an inode number from somebody who was fsynced
6296 * and then removed in this same transaction, so let's just set full
6297 * sync since it will be a full sync anyway and this will blow away the
6298 * old info in the log.
6299 */
6300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6301
9c58309d 6302 key[0].objectid = objectid;
962a298f 6303 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6304 key[0].offset = 0;
6305
9c58309d 6306 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6307
6308 if (name) {
6309 /*
6310 * Start new inodes with an inode_ref. This is slightly more
6311 * efficient for small numbers of hard links since they will
6312 * be packed into one item. Extended refs will kick in if we
6313 * add more hard links than can fit in the ref item.
6314 */
6315 key[1].objectid = objectid;
962a298f 6316 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6317 key[1].offset = ref_objectid;
6318
6319 sizes[1] = name_len + sizeof(*ref);
6320 }
9c58309d 6321
b0d5d10f
CM
6322 location = &BTRFS_I(inode)->location;
6323 location->objectid = objectid;
6324 location->offset = 0;
962a298f 6325 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6326
6327 ret = btrfs_insert_inode_locked(inode);
6328 if (ret < 0)
6329 goto fail;
6330
b9473439 6331 path->leave_spinning = 1;
ef3b9af5 6332 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6333 if (ret != 0)
b0d5d10f 6334 goto fail_unlock;
5f39d397 6335
ecc11fab 6336 inode_init_owner(inode, dir, mode);
a76a3cd4 6337 inode_set_bytes(inode, 0);
9cc97d64 6338
c2050a45 6339 inode->i_mtime = current_time(inode);
9cc97d64 6340 inode->i_atime = inode->i_mtime;
6341 inode->i_ctime = inode->i_mtime;
6342 BTRFS_I(inode)->i_otime = inode->i_mtime;
6343
5f39d397
CM
6344 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6345 struct btrfs_inode_item);
b159fa28 6346 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6347 sizeof(*inode_item));
e02119d5 6348 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6349
ef3b9af5
FM
6350 if (name) {
6351 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6352 struct btrfs_inode_ref);
6353 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6354 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6355 ptr = (unsigned long)(ref + 1);
6356 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6357 }
9c58309d 6358
5f39d397
CM
6359 btrfs_mark_buffer_dirty(path->nodes[0]);
6360 btrfs_free_path(path);
6361
6cbff00f
CH
6362 btrfs_inherit_iflags(inode, dir);
6363
569254b0 6364 if (S_ISREG(mode)) {
0b246afa 6365 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6366 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6367 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6368 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6369 BTRFS_INODE_NODATASUM;
94272164
CM
6370 }
6371
5d4f98a2 6372 inode_tree_add(inode);
1abe9b8a 6373
6374 trace_btrfs_inode_new(inode);
1973f0fa 6375 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6376
8ea05e3a
AB
6377 btrfs_update_root_times(trans, root);
6378
63541927
FDBM
6379 ret = btrfs_inode_inherit_props(trans, inode, dir);
6380 if (ret)
0b246afa 6381 btrfs_err(fs_info,
63541927 6382 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6383 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6384
39279cc3 6385 return inode;
b0d5d10f
CM
6386
6387fail_unlock:
6388 unlock_new_inode(inode);
5f39d397 6389fail:
ef3b9af5 6390 if (dir && name)
aec7477b 6391 BTRFS_I(dir)->index_cnt--;
5f39d397 6392 btrfs_free_path(path);
09771430 6393 iput(inode);
5f39d397 6394 return ERR_PTR(ret);
39279cc3
CM
6395}
6396
6397static inline u8 btrfs_inode_type(struct inode *inode)
6398{
6399 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6400}
6401
d352ac68
CM
6402/*
6403 * utility function to add 'inode' into 'parent_inode' with
6404 * a give name and a given sequence number.
6405 * if 'add_backref' is true, also insert a backref from the
6406 * inode to the parent directory.
6407 */
e02119d5 6408int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6409 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6410 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6411{
db0a669f 6412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6413 int ret = 0;
39279cc3 6414 struct btrfs_key key;
db0a669f
NB
6415 struct btrfs_root *root = parent_inode->root;
6416 u64 ino = btrfs_ino(inode);
6417 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6418
33345d01 6419 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6420 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6421 } else {
33345d01 6422 key.objectid = ino;
962a298f 6423 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6424 key.offset = 0;
6425 }
6426
33345d01 6427 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6428 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6429 root->root_key.objectid, parent_ino,
6430 index, name, name_len);
4df27c4d 6431 } else if (add_backref) {
33345d01
LZ
6432 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6433 parent_ino, index);
4df27c4d 6434 }
39279cc3 6435
79787eaa
JM
6436 /* Nothing to clean up yet */
6437 if (ret)
6438 return ret;
4df27c4d 6439
79787eaa
JM
6440 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6441 parent_inode, &key,
db0a669f 6442 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6443 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6444 goto fail_dir_item;
6445 else if (ret) {
66642832 6446 btrfs_abort_transaction(trans, ret);
79787eaa 6447 return ret;
39279cc3 6448 }
79787eaa 6449
db0a669f 6450 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6451 name_len * 2);
db0a669f
NB
6452 inode_inc_iversion(&parent_inode->vfs_inode);
6453 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6454 current_time(&parent_inode->vfs_inode);
6455 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6456 if (ret)
66642832 6457 btrfs_abort_transaction(trans, ret);
39279cc3 6458 return ret;
fe66a05a
CM
6459
6460fail_dir_item:
6461 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6462 u64 local_index;
6463 int err;
0b246afa
JM
6464 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6465 root->root_key.objectid, parent_ino,
6466 &local_index, name, name_len);
fe66a05a
CM
6467
6468 } else if (add_backref) {
6469 u64 local_index;
6470 int err;
6471
6472 err = btrfs_del_inode_ref(trans, root, name, name_len,
6473 ino, parent_ino, &local_index);
6474 }
6475 return ret;
39279cc3
CM
6476}
6477
6478static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6479 struct btrfs_inode *dir, struct dentry *dentry,
6480 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6481{
a1b075d2
JB
6482 int err = btrfs_add_link(trans, dir, inode,
6483 dentry->d_name.name, dentry->d_name.len,
6484 backref, index);
39279cc3
CM
6485 if (err > 0)
6486 err = -EEXIST;
6487 return err;
6488}
6489
618e21d5 6490static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6491 umode_t mode, dev_t rdev)
618e21d5 6492{
2ff7e61e 6493 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6494 struct btrfs_trans_handle *trans;
6495 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6496 struct inode *inode = NULL;
618e21d5
JB
6497 int err;
6498 int drop_inode = 0;
6499 u64 objectid;
00e4e6b3 6500 u64 index = 0;
618e21d5 6501
9ed74f2d
JB
6502 /*
6503 * 2 for inode item and ref
6504 * 2 for dir items
6505 * 1 for xattr if selinux is on
6506 */
a22285a6
YZ
6507 trans = btrfs_start_transaction(root, 5);
6508 if (IS_ERR(trans))
6509 return PTR_ERR(trans);
1832a6d5 6510
581bb050
LZ
6511 err = btrfs_find_free_ino(root, &objectid);
6512 if (err)
6513 goto out_unlock;
6514
aec7477b 6515 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6516 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6517 mode, &index);
7cf96da3
TI
6518 if (IS_ERR(inode)) {
6519 err = PTR_ERR(inode);
618e21d5 6520 goto out_unlock;
7cf96da3 6521 }
618e21d5 6522
ad19db71
CS
6523 /*
6524 * If the active LSM wants to access the inode during
6525 * d_instantiate it needs these. Smack checks to see
6526 * if the filesystem supports xattrs by looking at the
6527 * ops vector.
6528 */
ad19db71 6529 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6530 init_special_inode(inode, inode->i_mode, rdev);
6531
6532 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6533 if (err)
b0d5d10f
CM
6534 goto out_unlock_inode;
6535
cef415af
NB
6536 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6537 0, index);
b0d5d10f
CM
6538 if (err) {
6539 goto out_unlock_inode;
6540 } else {
1b4ab1bb 6541 btrfs_update_inode(trans, root, inode);
1e2e547a 6542 d_instantiate_new(dentry, inode);
618e21d5 6543 }
b0d5d10f 6544
618e21d5 6545out_unlock:
3a45bb20 6546 btrfs_end_transaction(trans);
2ff7e61e 6547 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6548 if (drop_inode) {
6549 inode_dec_link_count(inode);
6550 iput(inode);
6551 }
618e21d5 6552 return err;
b0d5d10f
CM
6553
6554out_unlock_inode:
6555 drop_inode = 1;
6556 unlock_new_inode(inode);
6557 goto out_unlock;
6558
618e21d5
JB
6559}
6560
39279cc3 6561static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6562 umode_t mode, bool excl)
39279cc3 6563{
2ff7e61e 6564 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6565 struct btrfs_trans_handle *trans;
6566 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6567 struct inode *inode = NULL;
43baa579 6568 int drop_inode_on_err = 0;
a22285a6 6569 int err;
39279cc3 6570 u64 objectid;
00e4e6b3 6571 u64 index = 0;
39279cc3 6572
9ed74f2d
JB
6573 /*
6574 * 2 for inode item and ref
6575 * 2 for dir items
6576 * 1 for xattr if selinux is on
6577 */
a22285a6
YZ
6578 trans = btrfs_start_transaction(root, 5);
6579 if (IS_ERR(trans))
6580 return PTR_ERR(trans);
9ed74f2d 6581
581bb050
LZ
6582 err = btrfs_find_free_ino(root, &objectid);
6583 if (err)
6584 goto out_unlock;
6585
aec7477b 6586 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6587 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6588 mode, &index);
7cf96da3
TI
6589 if (IS_ERR(inode)) {
6590 err = PTR_ERR(inode);
39279cc3 6591 goto out_unlock;
7cf96da3 6592 }
43baa579 6593 drop_inode_on_err = 1;
ad19db71
CS
6594 /*
6595 * If the active LSM wants to access the inode during
6596 * d_instantiate it needs these. Smack checks to see
6597 * if the filesystem supports xattrs by looking at the
6598 * ops vector.
6599 */
6600 inode->i_fop = &btrfs_file_operations;
6601 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6602 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6603
6604 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6605 if (err)
6606 goto out_unlock_inode;
6607
6608 err = btrfs_update_inode(trans, root, inode);
6609 if (err)
6610 goto out_unlock_inode;
ad19db71 6611
cef415af
NB
6612 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6613 0, index);
39279cc3 6614 if (err)
b0d5d10f 6615 goto out_unlock_inode;
43baa579 6616
43baa579 6617 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6618 d_instantiate_new(dentry, inode);
43baa579 6619
39279cc3 6620out_unlock:
3a45bb20 6621 btrfs_end_transaction(trans);
43baa579 6622 if (err && drop_inode_on_err) {
39279cc3
CM
6623 inode_dec_link_count(inode);
6624 iput(inode);
6625 }
2ff7e61e 6626 btrfs_btree_balance_dirty(fs_info);
39279cc3 6627 return err;
b0d5d10f
CM
6628
6629out_unlock_inode:
6630 unlock_new_inode(inode);
6631 goto out_unlock;
6632
39279cc3
CM
6633}
6634
6635static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6636 struct dentry *dentry)
6637{
271dba45 6638 struct btrfs_trans_handle *trans = NULL;
39279cc3 6639 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6640 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6642 u64 index;
39279cc3
CM
6643 int err;
6644 int drop_inode = 0;
6645
4a8be425
TH
6646 /* do not allow sys_link's with other subvols of the same device */
6647 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6648 return -EXDEV;
4a8be425 6649
f186373f 6650 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6651 return -EMLINK;
4a8be425 6652
877574e2 6653 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6654 if (err)
6655 goto fail;
6656
a22285a6 6657 /*
7e6b6465 6658 * 2 items for inode and inode ref
a22285a6 6659 * 2 items for dir items
7e6b6465 6660 * 1 item for parent inode
399b0bbf 6661 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6662 */
399b0bbf 6663 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6664 if (IS_ERR(trans)) {
6665 err = PTR_ERR(trans);
271dba45 6666 trans = NULL;
a22285a6
YZ
6667 goto fail;
6668 }
5f39d397 6669
67de1176
MX
6670 /* There are several dir indexes for this inode, clear the cache. */
6671 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6672 inc_nlink(inode);
0c4d2d95 6673 inode_inc_iversion(inode);
c2050a45 6674 inode->i_ctime = current_time(inode);
7de9c6ee 6675 ihold(inode);
e9976151 6676 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6677
cef415af
NB
6678 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6679 1, index);
5f39d397 6680
a5719521 6681 if (err) {
54aa1f4d 6682 drop_inode = 1;
a5719521 6683 } else {
10d9f309 6684 struct dentry *parent = dentry->d_parent;
a5719521 6685 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6686 if (err)
6687 goto fail;
ef3b9af5
FM
6688 if (inode->i_nlink == 1) {
6689 /*
6690 * If new hard link count is 1, it's a file created
6691 * with open(2) O_TMPFILE flag.
6692 */
3d6ae7bb 6693 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6694 if (err)
6695 goto fail;
6696 }
08c422c2 6697 d_instantiate(dentry, inode);
9ca5fbfb 6698 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6699 }
39279cc3 6700
1832a6d5 6701fail:
271dba45 6702 if (trans)
3a45bb20 6703 btrfs_end_transaction(trans);
39279cc3
CM
6704 if (drop_inode) {
6705 inode_dec_link_count(inode);
6706 iput(inode);
6707 }
2ff7e61e 6708 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6709 return err;
6710}
6711
18bb1db3 6712static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6713{
2ff7e61e 6714 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6715 struct inode *inode = NULL;
39279cc3
CM
6716 struct btrfs_trans_handle *trans;
6717 struct btrfs_root *root = BTRFS_I(dir)->root;
6718 int err = 0;
6719 int drop_on_err = 0;
b9d86667 6720 u64 objectid = 0;
00e4e6b3 6721 u64 index = 0;
39279cc3 6722
9ed74f2d
JB
6723 /*
6724 * 2 items for inode and ref
6725 * 2 items for dir items
6726 * 1 for xattr if selinux is on
6727 */
a22285a6
YZ
6728 trans = btrfs_start_transaction(root, 5);
6729 if (IS_ERR(trans))
6730 return PTR_ERR(trans);
39279cc3 6731
581bb050
LZ
6732 err = btrfs_find_free_ino(root, &objectid);
6733 if (err)
6734 goto out_fail;
6735
aec7477b 6736 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6737 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6738 S_IFDIR | mode, &index);
39279cc3
CM
6739 if (IS_ERR(inode)) {
6740 err = PTR_ERR(inode);
6741 goto out_fail;
6742 }
5f39d397 6743
39279cc3 6744 drop_on_err = 1;
b0d5d10f
CM
6745 /* these must be set before we unlock the inode */
6746 inode->i_op = &btrfs_dir_inode_operations;
6747 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6748
2a7dba39 6749 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6750 if (err)
b0d5d10f 6751 goto out_fail_inode;
39279cc3 6752
6ef06d27 6753 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6754 err = btrfs_update_inode(trans, root, inode);
6755 if (err)
b0d5d10f 6756 goto out_fail_inode;
5f39d397 6757
db0a669f
NB
6758 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6759 dentry->d_name.name,
6760 dentry->d_name.len, 0, index);
39279cc3 6761 if (err)
b0d5d10f 6762 goto out_fail_inode;
5f39d397 6763
1e2e547a 6764 d_instantiate_new(dentry, inode);
39279cc3 6765 drop_on_err = 0;
39279cc3
CM
6766
6767out_fail:
3a45bb20 6768 btrfs_end_transaction(trans);
c7cfb8a5
WS
6769 if (drop_on_err) {
6770 inode_dec_link_count(inode);
39279cc3 6771 iput(inode);
c7cfb8a5 6772 }
2ff7e61e 6773 btrfs_btree_balance_dirty(fs_info);
39279cc3 6774 return err;
b0d5d10f
CM
6775
6776out_fail_inode:
6777 unlock_new_inode(inode);
6778 goto out_fail;
39279cc3
CM
6779}
6780
c8b97818 6781static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6782 struct page *page,
c8b97818
CM
6783 size_t pg_offset, u64 extent_offset,
6784 struct btrfs_file_extent_item *item)
6785{
6786 int ret;
6787 struct extent_buffer *leaf = path->nodes[0];
6788 char *tmp;
6789 size_t max_size;
6790 unsigned long inline_size;
6791 unsigned long ptr;
261507a0 6792 int compress_type;
c8b97818
CM
6793
6794 WARN_ON(pg_offset != 0);
261507a0 6795 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6796 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6797 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6798 btrfs_item_nr(path->slots[0]));
c8b97818 6799 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6800 if (!tmp)
6801 return -ENOMEM;
c8b97818
CM
6802 ptr = btrfs_file_extent_inline_start(item);
6803
6804 read_extent_buffer(leaf, tmp, ptr, inline_size);
6805
09cbfeaf 6806 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6807 ret = btrfs_decompress(compress_type, tmp, page,
6808 extent_offset, inline_size, max_size);
e1699d2d
ZB
6809
6810 /*
6811 * decompression code contains a memset to fill in any space between the end
6812 * of the uncompressed data and the end of max_size in case the decompressed
6813 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6814 * the end of an inline extent and the beginning of the next block, so we
6815 * cover that region here.
6816 */
6817
6818 if (max_size + pg_offset < PAGE_SIZE) {
6819 char *map = kmap(page);
6820 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6821 kunmap(page);
6822 }
c8b97818 6823 kfree(tmp);
166ae5a4 6824 return ret;
c8b97818
CM
6825}
6826
d352ac68
CM
6827/*
6828 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6829 * the ugly parts come from merging extents from the disk with the in-ram
6830 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6831 * where the in-ram extents might be locked pending data=ordered completion.
6832 *
6833 * This also copies inline extents directly into the page.
6834 */
fc4f21b1
NB
6835struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6836 struct page *page,
6837 size_t pg_offset, u64 start, u64 len,
6838 int create)
a52d9a80 6839{
fc4f21b1 6840 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6841 int ret;
6842 int err = 0;
a52d9a80
CM
6843 u64 extent_start = 0;
6844 u64 extent_end = 0;
fc4f21b1 6845 u64 objectid = btrfs_ino(inode);
a52d9a80 6846 u32 found_type;
f421950f 6847 struct btrfs_path *path = NULL;
fc4f21b1 6848 struct btrfs_root *root = inode->root;
a52d9a80 6849 struct btrfs_file_extent_item *item;
5f39d397
CM
6850 struct extent_buffer *leaf;
6851 struct btrfs_key found_key;
a52d9a80 6852 struct extent_map *em = NULL;
fc4f21b1
NB
6853 struct extent_map_tree *em_tree = &inode->extent_tree;
6854 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6855 const bool new_inline = !page || create;
a52d9a80 6856
890871be 6857 read_lock(&em_tree->lock);
d1310b2e 6858 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6859 if (em)
0b246afa 6860 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6861 read_unlock(&em_tree->lock);
d1310b2e 6862
a52d9a80 6863 if (em) {
e1c4b745
CM
6864 if (em->start > start || em->start + em->len <= start)
6865 free_extent_map(em);
6866 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6867 free_extent_map(em);
6868 else
6869 goto out;
a52d9a80 6870 }
172ddd60 6871 em = alloc_extent_map();
a52d9a80 6872 if (!em) {
d1310b2e
CM
6873 err = -ENOMEM;
6874 goto out;
a52d9a80 6875 }
0b246afa 6876 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6877 em->start = EXTENT_MAP_HOLE;
445a6944 6878 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6879 em->len = (u64)-1;
c8b97818 6880 em->block_len = (u64)-1;
f421950f
CM
6881
6882 if (!path) {
6883 path = btrfs_alloc_path();
026fd317
JB
6884 if (!path) {
6885 err = -ENOMEM;
6886 goto out;
6887 }
6888 /*
6889 * Chances are we'll be called again, so go ahead and do
6890 * readahead
6891 */
e4058b54 6892 path->reada = READA_FORWARD;
f421950f
CM
6893 }
6894
5c9a702e 6895 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6896 if (ret < 0) {
6897 err = ret;
6898 goto out;
6899 }
6900
6901 if (ret != 0) {
6902 if (path->slots[0] == 0)
6903 goto not_found;
6904 path->slots[0]--;
6905 }
6906
5f39d397
CM
6907 leaf = path->nodes[0];
6908 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6909 struct btrfs_file_extent_item);
a52d9a80 6910 /* are we inside the extent that was found? */
5f39d397 6911 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6912 found_type = found_key.type;
5f39d397 6913 if (found_key.objectid != objectid ||
a52d9a80 6914 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6915 /*
6916 * If we backup past the first extent we want to move forward
6917 * and see if there is an extent in front of us, otherwise we'll
6918 * say there is a hole for our whole search range which can
6919 * cause problems.
6920 */
6921 extent_end = start;
6922 goto next;
a52d9a80
CM
6923 }
6924
5f39d397
CM
6925 found_type = btrfs_file_extent_type(leaf, item);
6926 extent_start = found_key.offset;
d899e052
YZ
6927 if (found_type == BTRFS_FILE_EXTENT_REG ||
6928 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6929 extent_end = extent_start +
db94535d 6930 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6931
6932 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6933 extent_start);
9036c102
YZ
6934 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6935 size_t size;
514ac8ad 6936 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6937 extent_end = ALIGN(extent_start + size,
0b246afa 6938 fs_info->sectorsize);
09ed2f16
LB
6939
6940 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6941 path->slots[0],
6942 extent_start);
9036c102 6943 }
25a50341 6944next:
9036c102
YZ
6945 if (start >= extent_end) {
6946 path->slots[0]++;
6947 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6948 ret = btrfs_next_leaf(root, path);
6949 if (ret < 0) {
6950 err = ret;
6951 goto out;
a52d9a80 6952 }
9036c102
YZ
6953 if (ret > 0)
6954 goto not_found;
6955 leaf = path->nodes[0];
a52d9a80 6956 }
9036c102
YZ
6957 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6958 if (found_key.objectid != objectid ||
6959 found_key.type != BTRFS_EXTENT_DATA_KEY)
6960 goto not_found;
6961 if (start + len <= found_key.offset)
6962 goto not_found;
e2eca69d
WS
6963 if (start > found_key.offset)
6964 goto next;
9036c102 6965 em->start = start;
70c8a91c 6966 em->orig_start = start;
9036c102
YZ
6967 em->len = found_key.offset - start;
6968 goto not_found_em;
6969 }
6970
fc4f21b1 6971 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6972 new_inline, em);
7ffbb598 6973
d899e052
YZ
6974 if (found_type == BTRFS_FILE_EXTENT_REG ||
6975 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6976 goto insert;
6977 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6978 unsigned long ptr;
a52d9a80 6979 char *map;
3326d1b0
CM
6980 size_t size;
6981 size_t extent_offset;
6982 size_t copy_size;
a52d9a80 6983
7ffbb598 6984 if (new_inline)
689f9346 6985 goto out;
5f39d397 6986
514ac8ad 6987 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6988 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6989 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6990 size - extent_offset);
3326d1b0 6991 em->start = extent_start + extent_offset;
0b246afa 6992 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6993 em->orig_block_len = em->len;
70c8a91c 6994 em->orig_start = em->start;
689f9346 6995 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 6996 if (!PageUptodate(page)) {
261507a0
LZ
6997 if (btrfs_file_extent_compression(leaf, item) !=
6998 BTRFS_COMPRESS_NONE) {
e40da0e5 6999 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7000 extent_offset, item);
166ae5a4
ZB
7001 if (ret) {
7002 err = ret;
7003 goto out;
7004 }
c8b97818
CM
7005 } else {
7006 map = kmap(page);
7007 read_extent_buffer(leaf, map + pg_offset, ptr,
7008 copy_size);
09cbfeaf 7009 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7010 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7011 PAGE_SIZE - pg_offset -
93c82d57
CM
7012 copy_size);
7013 }
c8b97818
CM
7014 kunmap(page);
7015 }
179e29e4 7016 flush_dcache_page(page);
a52d9a80 7017 }
d1310b2e 7018 set_extent_uptodate(io_tree, em->start,
507903b8 7019 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7020 goto insert;
a52d9a80
CM
7021 }
7022not_found:
7023 em->start = start;
70c8a91c 7024 em->orig_start = start;
d1310b2e 7025 em->len = len;
a52d9a80 7026not_found_em:
5f39d397 7027 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7028insert:
b3b4aa74 7029 btrfs_release_path(path);
d1310b2e 7030 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7031 btrfs_err(fs_info,
5d163e0e
JM
7032 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7033 em->start, em->len, start, len);
a52d9a80
CM
7034 err = -EIO;
7035 goto out;
7036 }
d1310b2e
CM
7037
7038 err = 0;
890871be 7039 write_lock(&em_tree->lock);
f46b24c9 7040 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7041 write_unlock(&em_tree->lock);
a52d9a80 7042out:
1abe9b8a 7043
fc4f21b1 7044 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7045
527afb44 7046 btrfs_free_path(path);
a52d9a80
CM
7047 if (err) {
7048 free_extent_map(em);
a52d9a80
CM
7049 return ERR_PTR(err);
7050 }
79787eaa 7051 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7052 return em;
7053}
7054
fc4f21b1
NB
7055struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7056 struct page *page,
7057 size_t pg_offset, u64 start, u64 len,
7058 int create)
ec29ed5b
CM
7059{
7060 struct extent_map *em;
7061 struct extent_map *hole_em = NULL;
7062 u64 range_start = start;
7063 u64 end;
7064 u64 found;
7065 u64 found_end;
7066 int err = 0;
7067
7068 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7069 if (IS_ERR(em))
7070 return em;
9986277e
DC
7071 /*
7072 * If our em maps to:
7073 * - a hole or
7074 * - a pre-alloc extent,
7075 * there might actually be delalloc bytes behind it.
7076 */
7077 if (em->block_start != EXTENT_MAP_HOLE &&
7078 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7079 return em;
7080 else
7081 hole_em = em;
ec29ed5b
CM
7082
7083 /* check to see if we've wrapped (len == -1 or similar) */
7084 end = start + len;
7085 if (end < start)
7086 end = (u64)-1;
7087 else
7088 end -= 1;
7089
7090 em = NULL;
7091
7092 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7093 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7094 end, len, EXTENT_DELALLOC, 1);
7095 found_end = range_start + found;
7096 if (found_end < range_start)
7097 found_end = (u64)-1;
7098
7099 /*
7100 * we didn't find anything useful, return
7101 * the original results from get_extent()
7102 */
7103 if (range_start > end || found_end <= start) {
7104 em = hole_em;
7105 hole_em = NULL;
7106 goto out;
7107 }
7108
7109 /* adjust the range_start to make sure it doesn't
7110 * go backwards from the start they passed in
7111 */
67871254 7112 range_start = max(start, range_start);
ec29ed5b
CM
7113 found = found_end - range_start;
7114
7115 if (found > 0) {
7116 u64 hole_start = start;
7117 u64 hole_len = len;
7118
172ddd60 7119 em = alloc_extent_map();
ec29ed5b
CM
7120 if (!em) {
7121 err = -ENOMEM;
7122 goto out;
7123 }
7124 /*
7125 * when btrfs_get_extent can't find anything it
7126 * returns one huge hole
7127 *
7128 * make sure what it found really fits our range, and
7129 * adjust to make sure it is based on the start from
7130 * the caller
7131 */
7132 if (hole_em) {
7133 u64 calc_end = extent_map_end(hole_em);
7134
7135 if (calc_end <= start || (hole_em->start > end)) {
7136 free_extent_map(hole_em);
7137 hole_em = NULL;
7138 } else {
7139 hole_start = max(hole_em->start, start);
7140 hole_len = calc_end - hole_start;
7141 }
7142 }
7143 em->bdev = NULL;
7144 if (hole_em && range_start > hole_start) {
7145 /* our hole starts before our delalloc, so we
7146 * have to return just the parts of the hole
7147 * that go until the delalloc starts
7148 */
7149 em->len = min(hole_len,
7150 range_start - hole_start);
7151 em->start = hole_start;
7152 em->orig_start = hole_start;
7153 /*
7154 * don't adjust block start at all,
7155 * it is fixed at EXTENT_MAP_HOLE
7156 */
7157 em->block_start = hole_em->block_start;
7158 em->block_len = hole_len;
f9e4fb53
LB
7159 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7160 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7161 } else {
7162 em->start = range_start;
7163 em->len = found;
7164 em->orig_start = range_start;
7165 em->block_start = EXTENT_MAP_DELALLOC;
7166 em->block_len = found;
7167 }
bf8d32b9 7168 } else {
ec29ed5b
CM
7169 return hole_em;
7170 }
7171out:
7172
7173 free_extent_map(hole_em);
7174 if (err) {
7175 free_extent_map(em);
7176 return ERR_PTR(err);
7177 }
7178 return em;
7179}
7180
5f9a8a51
FM
7181static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7182 const u64 start,
7183 const u64 len,
7184 const u64 orig_start,
7185 const u64 block_start,
7186 const u64 block_len,
7187 const u64 orig_block_len,
7188 const u64 ram_bytes,
7189 const int type)
7190{
7191 struct extent_map *em = NULL;
7192 int ret;
7193
5f9a8a51 7194 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7195 em = create_io_em(inode, start, len, orig_start,
7196 block_start, block_len, orig_block_len,
7197 ram_bytes,
7198 BTRFS_COMPRESS_NONE, /* compress_type */
7199 type);
5f9a8a51
FM
7200 if (IS_ERR(em))
7201 goto out;
7202 }
7203 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7204 len, block_len, type);
7205 if (ret) {
7206 if (em) {
7207 free_extent_map(em);
dcdbc059 7208 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7209 start + len - 1, 0);
7210 }
7211 em = ERR_PTR(ret);
7212 }
7213 out:
5f9a8a51
FM
7214
7215 return em;
7216}
7217
4b46fce2
JB
7218static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7219 u64 start, u64 len)
7220{
0b246afa 7221 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7222 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7223 struct extent_map *em;
4b46fce2
JB
7224 struct btrfs_key ins;
7225 u64 alloc_hint;
7226 int ret;
4b46fce2 7227
4b46fce2 7228 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7229 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7230 0, alloc_hint, &ins, 1, 1);
00361589
JB
7231 if (ret)
7232 return ERR_PTR(ret);
4b46fce2 7233
5f9a8a51
FM
7234 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7235 ins.objectid, ins.offset, ins.offset,
6288d6ea 7236 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7237 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7238 if (IS_ERR(em))
2ff7e61e
JM
7239 btrfs_free_reserved_extent(fs_info, ins.objectid,
7240 ins.offset, 1);
de0ee0ed 7241
4b46fce2
JB
7242 return em;
7243}
7244
46bfbb5c
CM
7245/*
7246 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7247 * block must be cow'd
7248 */
00361589 7249noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7250 u64 *orig_start, u64 *orig_block_len,
7251 u64 *ram_bytes)
46bfbb5c 7252{
2ff7e61e 7253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7254 struct btrfs_path *path;
7255 int ret;
7256 struct extent_buffer *leaf;
7257 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7258 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7259 struct btrfs_file_extent_item *fi;
7260 struct btrfs_key key;
7261 u64 disk_bytenr;
7262 u64 backref_offset;
7263 u64 extent_end;
7264 u64 num_bytes;
7265 int slot;
7266 int found_type;
7ee9e440 7267 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7268
46bfbb5c
CM
7269 path = btrfs_alloc_path();
7270 if (!path)
7271 return -ENOMEM;
7272
f85b7379
DS
7273 ret = btrfs_lookup_file_extent(NULL, root, path,
7274 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7275 if (ret < 0)
7276 goto out;
7277
7278 slot = path->slots[0];
7279 if (ret == 1) {
7280 if (slot == 0) {
7281 /* can't find the item, must cow */
7282 ret = 0;
7283 goto out;
7284 }
7285 slot--;
7286 }
7287 ret = 0;
7288 leaf = path->nodes[0];
7289 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7290 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7291 key.type != BTRFS_EXTENT_DATA_KEY) {
7292 /* not our file or wrong item type, must cow */
7293 goto out;
7294 }
7295
7296 if (key.offset > offset) {
7297 /* Wrong offset, must cow */
7298 goto out;
7299 }
7300
7301 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7302 found_type = btrfs_file_extent_type(leaf, fi);
7303 if (found_type != BTRFS_FILE_EXTENT_REG &&
7304 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7305 /* not a regular extent, must cow */
7306 goto out;
7307 }
7ee9e440
JB
7308
7309 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7310 goto out;
7311
e77751aa
MX
7312 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7313 if (extent_end <= offset)
7314 goto out;
7315
46bfbb5c 7316 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7317 if (disk_bytenr == 0)
7318 goto out;
7319
7320 if (btrfs_file_extent_compression(leaf, fi) ||
7321 btrfs_file_extent_encryption(leaf, fi) ||
7322 btrfs_file_extent_other_encoding(leaf, fi))
7323 goto out;
7324
46bfbb5c
CM
7325 backref_offset = btrfs_file_extent_offset(leaf, fi);
7326
7ee9e440
JB
7327 if (orig_start) {
7328 *orig_start = key.offset - backref_offset;
7329 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7330 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7331 }
eb384b55 7332
2ff7e61e 7333 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7334 goto out;
7b2b7085
MX
7335
7336 num_bytes = min(offset + *len, extent_end) - offset;
7337 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7338 u64 range_end;
7339
da17066c
JM
7340 range_end = round_up(offset + num_bytes,
7341 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7342 ret = test_range_bit(io_tree, offset, range_end,
7343 EXTENT_DELALLOC, 0, NULL);
7344 if (ret) {
7345 ret = -EAGAIN;
7346 goto out;
7347 }
7348 }
7349
1bda19eb 7350 btrfs_release_path(path);
46bfbb5c
CM
7351
7352 /*
7353 * look for other files referencing this extent, if we
7354 * find any we must cow
7355 */
00361589 7356
e4c3b2dc 7357 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7358 key.offset - backref_offset, disk_bytenr);
00361589
JB
7359 if (ret) {
7360 ret = 0;
7361 goto out;
7362 }
46bfbb5c
CM
7363
7364 /*
7365 * adjust disk_bytenr and num_bytes to cover just the bytes
7366 * in this extent we are about to write. If there
7367 * are any csums in that range we have to cow in order
7368 * to keep the csums correct
7369 */
7370 disk_bytenr += backref_offset;
7371 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7372 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7373 goto out;
46bfbb5c
CM
7374 /*
7375 * all of the above have passed, it is safe to overwrite this extent
7376 * without cow
7377 */
eb384b55 7378 *len = num_bytes;
46bfbb5c
CM
7379 ret = 1;
7380out:
7381 btrfs_free_path(path);
7382 return ret;
7383}
7384
eb838e73
JB
7385static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7386 struct extent_state **cached_state, int writing)
7387{
7388 struct btrfs_ordered_extent *ordered;
7389 int ret = 0;
7390
7391 while (1) {
7392 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7393 cached_state);
eb838e73
JB
7394 /*
7395 * We're concerned with the entire range that we're going to be
01327610 7396 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7397 * extents in this range.
7398 */
a776c6fa 7399 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7400 lockend - lockstart + 1);
7401
7402 /*
7403 * We need to make sure there are no buffered pages in this
7404 * range either, we could have raced between the invalidate in
7405 * generic_file_direct_write and locking the extent. The
7406 * invalidate needs to happen so that reads after a write do not
7407 * get stale data.
7408 */
fc4adbff 7409 if (!ordered &&
051c98eb
DS
7410 (!writing || !filemap_range_has_page(inode->i_mapping,
7411 lockstart, lockend)))
eb838e73
JB
7412 break;
7413
7414 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7415 cached_state);
eb838e73
JB
7416
7417 if (ordered) {
ade77029
FM
7418 /*
7419 * If we are doing a DIO read and the ordered extent we
7420 * found is for a buffered write, we can not wait for it
7421 * to complete and retry, because if we do so we can
7422 * deadlock with concurrent buffered writes on page
7423 * locks. This happens only if our DIO read covers more
7424 * than one extent map, if at this point has already
7425 * created an ordered extent for a previous extent map
7426 * and locked its range in the inode's io tree, and a
7427 * concurrent write against that previous extent map's
7428 * range and this range started (we unlock the ranges
7429 * in the io tree only when the bios complete and
7430 * buffered writes always lock pages before attempting
7431 * to lock range in the io tree).
7432 */
7433 if (writing ||
7434 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7435 btrfs_start_ordered_extent(inode, ordered, 1);
7436 else
7437 ret = -ENOTBLK;
eb838e73
JB
7438 btrfs_put_ordered_extent(ordered);
7439 } else {
eb838e73 7440 /*
b850ae14
FM
7441 * We could trigger writeback for this range (and wait
7442 * for it to complete) and then invalidate the pages for
7443 * this range (through invalidate_inode_pages2_range()),
7444 * but that can lead us to a deadlock with a concurrent
7445 * call to readpages() (a buffered read or a defrag call
7446 * triggered a readahead) on a page lock due to an
7447 * ordered dio extent we created before but did not have
7448 * yet a corresponding bio submitted (whence it can not
7449 * complete), which makes readpages() wait for that
7450 * ordered extent to complete while holding a lock on
7451 * that page.
eb838e73 7452 */
b850ae14 7453 ret = -ENOTBLK;
eb838e73
JB
7454 }
7455
ade77029
FM
7456 if (ret)
7457 break;
7458
eb838e73
JB
7459 cond_resched();
7460 }
7461
7462 return ret;
7463}
7464
6f9994db
LB
7465/* The callers of this must take lock_extent() */
7466static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7467 u64 orig_start, u64 block_start,
7468 u64 block_len, u64 orig_block_len,
7469 u64 ram_bytes, int compress_type,
7470 int type)
69ffb543
JB
7471{
7472 struct extent_map_tree *em_tree;
7473 struct extent_map *em;
7474 struct btrfs_root *root = BTRFS_I(inode)->root;
7475 int ret;
7476
6f9994db
LB
7477 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7478 type == BTRFS_ORDERED_COMPRESSED ||
7479 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7480 type == BTRFS_ORDERED_REGULAR);
6f9994db 7481
69ffb543
JB
7482 em_tree = &BTRFS_I(inode)->extent_tree;
7483 em = alloc_extent_map();
7484 if (!em)
7485 return ERR_PTR(-ENOMEM);
7486
7487 em->start = start;
7488 em->orig_start = orig_start;
7489 em->len = len;
7490 em->block_len = block_len;
7491 em->block_start = block_start;
7492 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7493 em->orig_block_len = orig_block_len;
cc95bef6 7494 em->ram_bytes = ram_bytes;
70c8a91c 7495 em->generation = -1;
69ffb543 7496 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7497 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7498 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7499 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7500 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7501 em->compress_type = compress_type;
7502 }
69ffb543
JB
7503
7504 do {
dcdbc059 7505 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7506 em->start + em->len - 1, 0);
7507 write_lock(&em_tree->lock);
09a2a8f9 7508 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7509 write_unlock(&em_tree->lock);
6f9994db
LB
7510 /*
7511 * The caller has taken lock_extent(), who could race with us
7512 * to add em?
7513 */
69ffb543
JB
7514 } while (ret == -EEXIST);
7515
7516 if (ret) {
7517 free_extent_map(em);
7518 return ERR_PTR(ret);
7519 }
7520
6f9994db 7521 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7522 return em;
7523}
7524
4b46fce2
JB
7525static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7526 struct buffer_head *bh_result, int create)
7527{
0b246afa 7528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7529 struct extent_map *em;
eb838e73 7530 struct extent_state *cached_state = NULL;
50745b0a 7531 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7532 u64 start = iblock << inode->i_blkbits;
eb838e73 7533 u64 lockstart, lockend;
4b46fce2 7534 u64 len = bh_result->b_size;
eb838e73 7535 int unlock_bits = EXTENT_LOCKED;
0934856d 7536 int ret = 0;
eb838e73 7537
172a5049 7538 if (create)
3266789f 7539 unlock_bits |= EXTENT_DIRTY;
172a5049 7540 else
0b246afa 7541 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7542
c329861d
JB
7543 lockstart = start;
7544 lockend = start + len - 1;
7545
e1cbbfa5
JB
7546 if (current->journal_info) {
7547 /*
7548 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7549 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7550 * confused.
7551 */
50745b0a 7552 dio_data = current->journal_info;
e1cbbfa5
JB
7553 current->journal_info = NULL;
7554 }
7555
eb838e73
JB
7556 /*
7557 * If this errors out it's because we couldn't invalidate pagecache for
7558 * this range and we need to fallback to buffered.
7559 */
9c9464cc
FM
7560 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7561 create)) {
7562 ret = -ENOTBLK;
7563 goto err;
7564 }
eb838e73 7565
fc4f21b1 7566 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7567 if (IS_ERR(em)) {
7568 ret = PTR_ERR(em);
7569 goto unlock_err;
7570 }
4b46fce2
JB
7571
7572 /*
7573 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7574 * io. INLINE is special, and we could probably kludge it in here, but
7575 * it's still buffered so for safety lets just fall back to the generic
7576 * buffered path.
7577 *
7578 * For COMPRESSED we _have_ to read the entire extent in so we can
7579 * decompress it, so there will be buffering required no matter what we
7580 * do, so go ahead and fallback to buffered.
7581 *
01327610 7582 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7583 * to buffered IO. Don't blame me, this is the price we pay for using
7584 * the generic code.
7585 */
7586 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7587 em->block_start == EXTENT_MAP_INLINE) {
7588 free_extent_map(em);
eb838e73
JB
7589 ret = -ENOTBLK;
7590 goto unlock_err;
4b46fce2
JB
7591 }
7592
7593 /* Just a good old fashioned hole, return */
7594 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7595 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7596 free_extent_map(em);
eb838e73 7597 goto unlock_err;
4b46fce2
JB
7598 }
7599
7600 /*
7601 * We don't allocate a new extent in the following cases
7602 *
7603 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7604 * existing extent.
7605 * 2) The extent is marked as PREALLOC. We're good to go here and can
7606 * just use the extent.
7607 *
7608 */
46bfbb5c 7609 if (!create) {
eb838e73
JB
7610 len = min(len, em->len - (start - em->start));
7611 lockstart = start + len;
7612 goto unlock;
46bfbb5c 7613 }
4b46fce2
JB
7614
7615 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7616 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7617 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7618 int type;
eb384b55 7619 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7620
7621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7622 type = BTRFS_ORDERED_PREALLOC;
7623 else
7624 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7625 len = min(len, em->len - (start - em->start));
4b46fce2 7626 block_start = em->block_start + (start - em->start);
46bfbb5c 7627
00361589 7628 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7629 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7630 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7631 struct extent_map *em2;
0b901916 7632
5f9a8a51
FM
7633 em2 = btrfs_create_dio_extent(inode, start, len,
7634 orig_start, block_start,
7635 len, orig_block_len,
7636 ram_bytes, type);
0b246afa 7637 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7638 if (type == BTRFS_ORDERED_PREALLOC) {
7639 free_extent_map(em);
5f9a8a51 7640 em = em2;
69ffb543 7641 }
5f9a8a51
FM
7642 if (em2 && IS_ERR(em2)) {
7643 ret = PTR_ERR(em2);
eb838e73 7644 goto unlock_err;
46bfbb5c 7645 }
18513091
WX
7646 /*
7647 * For inode marked NODATACOW or extent marked PREALLOC,
7648 * use the existing or preallocated extent, so does not
7649 * need to adjust btrfs_space_info's bytes_may_use.
7650 */
7651 btrfs_free_reserved_data_space_noquota(inode,
7652 start, len);
46bfbb5c 7653 goto unlock;
4b46fce2 7654 }
4b46fce2 7655 }
00361589 7656
46bfbb5c
CM
7657 /*
7658 * this will cow the extent, reset the len in case we changed
7659 * it above
7660 */
7661 len = bh_result->b_size;
70c8a91c
JB
7662 free_extent_map(em);
7663 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7664 if (IS_ERR(em)) {
7665 ret = PTR_ERR(em);
7666 goto unlock_err;
7667 }
46bfbb5c
CM
7668 len = min(len, em->len - (start - em->start));
7669unlock:
4b46fce2
JB
7670 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7671 inode->i_blkbits;
46bfbb5c 7672 bh_result->b_size = len;
4b46fce2
JB
7673 bh_result->b_bdev = em->bdev;
7674 set_buffer_mapped(bh_result);
c3473e83
JB
7675 if (create) {
7676 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7677 set_buffer_new(bh_result);
7678
7679 /*
7680 * Need to update the i_size under the extent lock so buffered
7681 * readers will get the updated i_size when we unlock.
7682 */
4aaedfb0 7683 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7684 i_size_write(inode, start + len);
0934856d 7685
50745b0a 7686 WARN_ON(dio_data->reserve < len);
7687 dio_data->reserve -= len;
f28a4928 7688 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7689 current->journal_info = dio_data;
c3473e83 7690 }
4b46fce2 7691
eb838e73
JB
7692 /*
7693 * In the case of write we need to clear and unlock the entire range,
7694 * in the case of read we need to unlock only the end area that we
7695 * aren't using if there is any left over space.
7696 */
24c03fa5 7697 if (lockstart < lockend) {
0934856d
MX
7698 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7699 lockend, unlock_bits, 1, 0,
ae0f1625 7700 &cached_state);
24c03fa5 7701 } else {
eb838e73 7702 free_extent_state(cached_state);
24c03fa5 7703 }
eb838e73 7704
4b46fce2
JB
7705 free_extent_map(em);
7706
7707 return 0;
eb838e73
JB
7708
7709unlock_err:
eb838e73 7710 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7711 unlock_bits, 1, 0, &cached_state);
9c9464cc 7712err:
50745b0a 7713 if (dio_data)
7714 current->journal_info = dio_data;
eb838e73 7715 return ret;
4b46fce2
JB
7716}
7717
58efbc9f
OS
7718static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7719 struct bio *bio,
7720 int mirror_num)
8b110e39 7721{
2ff7e61e 7722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7723 blk_status_t ret;
8b110e39 7724
37226b21 7725 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7726
2ff7e61e 7727 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7728 if (ret)
ea057f6d 7729 return ret;
8b110e39 7730
2ff7e61e 7731 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7732
8b110e39
MX
7733 return ret;
7734}
7735
7736static int btrfs_check_dio_repairable(struct inode *inode,
7737 struct bio *failed_bio,
7738 struct io_failure_record *failrec,
7739 int failed_mirror)
7740{
ab8d0fc4 7741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7742 int num_copies;
7743
ab8d0fc4 7744 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7745 if (num_copies == 1) {
7746 /*
7747 * we only have a single copy of the data, so don't bother with
7748 * all the retry and error correction code that follows. no
7749 * matter what the error is, it is very likely to persist.
7750 */
ab8d0fc4
JM
7751 btrfs_debug(fs_info,
7752 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7753 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7754 return 0;
7755 }
7756
7757 failrec->failed_mirror = failed_mirror;
7758 failrec->this_mirror++;
7759 if (failrec->this_mirror == failed_mirror)
7760 failrec->this_mirror++;
7761
7762 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7763 btrfs_debug(fs_info,
7764 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7765 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7766 return 0;
7767 }
7768
7769 return 1;
7770}
7771
58efbc9f
OS
7772static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7773 struct page *page, unsigned int pgoff,
7774 u64 start, u64 end, int failed_mirror,
7775 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7776{
7777 struct io_failure_record *failrec;
7870d082
JB
7778 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7779 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7780 struct bio *bio;
7781 int isector;
f1c77c55 7782 unsigned int read_mode = 0;
17347cec 7783 int segs;
8b110e39 7784 int ret;
58efbc9f 7785 blk_status_t status;
c16a8ac3 7786 struct bio_vec bvec;
8b110e39 7787
37226b21 7788 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7789
7790 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7791 if (ret)
58efbc9f 7792 return errno_to_blk_status(ret);
8b110e39
MX
7793
7794 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7795 failed_mirror);
7796 if (!ret) {
7870d082 7797 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7798 return BLK_STS_IOERR;
8b110e39
MX
7799 }
7800
17347cec 7801 segs = bio_segments(failed_bio);
c16a8ac3 7802 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7803 if (segs > 1 ||
c16a8ac3 7804 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7805 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7806
7807 isector = start - btrfs_io_bio(failed_bio)->logical;
7808 isector >>= inode->i_sb->s_blocksize_bits;
7809 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7810 pgoff, isector, repair_endio, repair_arg);
37226b21 7811 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7812
7813 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7814 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7815 read_mode, failrec->this_mirror, failrec->in_validation);
7816
58efbc9f
OS
7817 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7818 if (status) {
7870d082 7819 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7820 bio_put(bio);
7821 }
7822
58efbc9f 7823 return status;
8b110e39
MX
7824}
7825
7826struct btrfs_retry_complete {
7827 struct completion done;
7828 struct inode *inode;
7829 u64 start;
7830 int uptodate;
7831};
7832
4246a0b6 7833static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7834{
7835 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7836 struct inode *inode = done->inode;
8b110e39 7837 struct bio_vec *bvec;
7870d082 7838 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7839 int i;
7840
4e4cbee9 7841 if (bio->bi_status)
8b110e39
MX
7842 goto end;
7843
2dabb324 7844 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7845 io_tree = &BTRFS_I(inode)->io_tree;
7846 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7847 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7848
8b110e39 7849 done->uptodate = 1;
c09abff8 7850 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7851 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7852 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7853 io_tree, done->start, bvec->bv_page,
7854 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7855end:
7856 complete(&done->done);
7857 bio_put(bio);
7858}
7859
58efbc9f
OS
7860static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7861 struct btrfs_io_bio *io_bio)
4b46fce2 7862{
2dabb324 7863 struct btrfs_fs_info *fs_info;
17347cec
LB
7864 struct bio_vec bvec;
7865 struct bvec_iter iter;
8b110e39 7866 struct btrfs_retry_complete done;
4b46fce2 7867 u64 start;
2dabb324
CR
7868 unsigned int pgoff;
7869 u32 sectorsize;
7870 int nr_sectors;
58efbc9f
OS
7871 blk_status_t ret;
7872 blk_status_t err = BLK_STS_OK;
4b46fce2 7873
2dabb324 7874 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7875 sectorsize = fs_info->sectorsize;
2dabb324 7876
8b110e39
MX
7877 start = io_bio->logical;
7878 done.inode = inode;
17347cec 7879 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7880
17347cec
LB
7881 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7882 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7883 pgoff = bvec.bv_offset;
2dabb324
CR
7884
7885next_block_or_try_again:
8b110e39
MX
7886 done.uptodate = 0;
7887 done.start = start;
7888 init_completion(&done.done);
7889
17347cec 7890 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7891 pgoff, start, start + sectorsize - 1,
7892 io_bio->mirror_num,
7893 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7894 if (ret) {
7895 err = ret;
7896 goto next;
7897 }
8b110e39 7898
9c17f6cd 7899 wait_for_completion_io(&done.done);
8b110e39
MX
7900
7901 if (!done.uptodate) {
7902 /* We might have another mirror, so try again */
2dabb324 7903 goto next_block_or_try_again;
8b110e39
MX
7904 }
7905
629ebf4f 7906next:
2dabb324
CR
7907 start += sectorsize;
7908
97bf5a55
LB
7909 nr_sectors--;
7910 if (nr_sectors) {
2dabb324 7911 pgoff += sectorsize;
97bf5a55 7912 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7913 goto next_block_or_try_again;
7914 }
8b110e39
MX
7915 }
7916
629ebf4f 7917 return err;
8b110e39
MX
7918}
7919
4246a0b6 7920static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7921{
7922 struct btrfs_retry_complete *done = bio->bi_private;
7923 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7924 struct extent_io_tree *io_tree, *failure_tree;
7925 struct inode *inode = done->inode;
8b110e39
MX
7926 struct bio_vec *bvec;
7927 int uptodate;
7928 int ret;
7929 int i;
7930
4e4cbee9 7931 if (bio->bi_status)
8b110e39
MX
7932 goto end;
7933
7934 uptodate = 1;
2dabb324 7935
2dabb324 7936 ASSERT(bio->bi_vcnt == 1);
263663cd 7937 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7938
7870d082
JB
7939 io_tree = &BTRFS_I(inode)->io_tree;
7940 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7941
c09abff8 7942 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7943 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
7944 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7945 bvec->bv_offset, done->start,
7946 bvec->bv_len);
8b110e39 7947 if (!ret)
7870d082
JB
7948 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7949 failure_tree, io_tree, done->start,
7950 bvec->bv_page,
7951 btrfs_ino(BTRFS_I(inode)),
7952 bvec->bv_offset);
8b110e39
MX
7953 else
7954 uptodate = 0;
7955 }
7956
7957 done->uptodate = uptodate;
7958end:
7959 complete(&done->done);
7960 bio_put(bio);
7961}
7962
4e4cbee9
CH
7963static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7964 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 7965{
2dabb324 7966 struct btrfs_fs_info *fs_info;
17347cec
LB
7967 struct bio_vec bvec;
7968 struct bvec_iter iter;
8b110e39
MX
7969 struct btrfs_retry_complete done;
7970 u64 start;
7971 u64 offset = 0;
2dabb324
CR
7972 u32 sectorsize;
7973 int nr_sectors;
7974 unsigned int pgoff;
7975 int csum_pos;
ef7cdac1 7976 bool uptodate = (err == 0);
8b110e39 7977 int ret;
58efbc9f 7978 blk_status_t status;
dc380aea 7979
2dabb324 7980 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7981 sectorsize = fs_info->sectorsize;
2dabb324 7982
58efbc9f 7983 err = BLK_STS_OK;
c1dc0896 7984 start = io_bio->logical;
8b110e39 7985 done.inode = inode;
17347cec 7986 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7987
17347cec
LB
7988 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7989 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 7990
17347cec 7991 pgoff = bvec.bv_offset;
2dabb324 7992next_block:
ef7cdac1
LB
7993 if (uptodate) {
7994 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7995 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7996 bvec.bv_page, pgoff, start, sectorsize);
7997 if (likely(!ret))
7998 goto next;
7999 }
8b110e39
MX
8000try_again:
8001 done.uptodate = 0;
8002 done.start = start;
8003 init_completion(&done.done);
8004
58efbc9f
OS
8005 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8006 pgoff, start, start + sectorsize - 1,
8007 io_bio->mirror_num, btrfs_retry_endio,
8008 &done);
8009 if (status) {
8010 err = status;
8b110e39
MX
8011 goto next;
8012 }
8013
9c17f6cd 8014 wait_for_completion_io(&done.done);
8b110e39
MX
8015
8016 if (!done.uptodate) {
8017 /* We might have another mirror, so try again */
8018 goto try_again;
8019 }
8020next:
2dabb324
CR
8021 offset += sectorsize;
8022 start += sectorsize;
8023
8024 ASSERT(nr_sectors);
8025
97bf5a55
LB
8026 nr_sectors--;
8027 if (nr_sectors) {
2dabb324 8028 pgoff += sectorsize;
97bf5a55 8029 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8030 goto next_block;
8031 }
2c30c71b 8032 }
c1dc0896
MX
8033
8034 return err;
8035}
8036
4e4cbee9
CH
8037static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8038 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8039{
8040 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8041
8042 if (skip_csum) {
8043 if (unlikely(err))
8044 return __btrfs_correct_data_nocsum(inode, io_bio);
8045 else
58efbc9f 8046 return BLK_STS_OK;
8b110e39
MX
8047 } else {
8048 return __btrfs_subio_endio_read(inode, io_bio, err);
8049 }
8050}
8051
4246a0b6 8052static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8053{
8054 struct btrfs_dio_private *dip = bio->bi_private;
8055 struct inode *inode = dip->inode;
8056 struct bio *dio_bio;
8057 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8058 blk_status_t err = bio->bi_status;
c1dc0896 8059
99c4e3b9 8060 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8061 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8062
4b46fce2 8063 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8064 dip->logical_offset + dip->bytes - 1);
9be3395b 8065 dio_bio = dip->dio_bio;
4b46fce2 8066
4b46fce2 8067 kfree(dip);
c0da7aa1 8068
99c4e3b9 8069 dio_bio->bi_status = err;
4055351c 8070 dio_end_io(dio_bio);
23ea8e5a
MX
8071
8072 if (io_bio->end_io)
4e4cbee9 8073 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8074 bio_put(bio);
4b46fce2
JB
8075}
8076
52427260
QW
8077static void __endio_write_update_ordered(struct inode *inode,
8078 const u64 offset, const u64 bytes,
8079 const bool uptodate)
4b46fce2 8080{
0b246afa 8081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8082 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8083 struct btrfs_workqueue *wq;
8084 btrfs_work_func_t func;
14543774
FM
8085 u64 ordered_offset = offset;
8086 u64 ordered_bytes = bytes;
67c003f9 8087 u64 last_offset;
4b46fce2 8088
52427260
QW
8089 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8090 wq = fs_info->endio_freespace_worker;
8091 func = btrfs_freespace_write_helper;
8092 } else {
8093 wq = fs_info->endio_write_workers;
8094 func = btrfs_endio_write_helper;
8095 }
8096
b25f0d00
NB
8097 while (ordered_offset < offset + bytes) {
8098 last_offset = ordered_offset;
8099 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8100 &ordered_offset,
8101 ordered_bytes,
8102 uptodate)) {
8103 btrfs_init_work(&ordered->work, func,
8104 finish_ordered_fn,
8105 NULL, NULL);
8106 btrfs_queue_work(wq, &ordered->work);
8107 }
8108 /*
8109 * If btrfs_dec_test_ordered_pending does not find any ordered
8110 * extent in the range, we can exit.
8111 */
8112 if (ordered_offset == last_offset)
8113 return;
8114 /*
8115 * Our bio might span multiple ordered extents. In this case
8116 * we keep goin until we have accounted the whole dio.
8117 */
8118 if (ordered_offset < offset + bytes) {
8119 ordered_bytes = offset + bytes - ordered_offset;
8120 ordered = NULL;
8121 }
163cf09c 8122 }
14543774
FM
8123}
8124
8125static void btrfs_endio_direct_write(struct bio *bio)
8126{
8127 struct btrfs_dio_private *dip = bio->bi_private;
8128 struct bio *dio_bio = dip->dio_bio;
8129
52427260 8130 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8131 dip->bytes, !bio->bi_status);
4b46fce2 8132
4b46fce2 8133 kfree(dip);
c0da7aa1 8134
4e4cbee9 8135 dio_bio->bi_status = bio->bi_status;
4055351c 8136 dio_end_io(dio_bio);
9be3395b 8137 bio_put(bio);
4b46fce2
JB
8138}
8139
d0ee3934 8140static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8141 struct bio *bio, u64 offset)
eaf25d93 8142{
c6100a4b 8143 struct inode *inode = private_data;
4e4cbee9 8144 blk_status_t ret;
2ff7e61e 8145 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8146 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8147 return 0;
8148}
8149
4246a0b6 8150static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8151{
8152 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8153 blk_status_t err = bio->bi_status;
e65e1535 8154
8b110e39
MX
8155 if (err)
8156 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8157 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8158 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8159 bio->bi_opf,
8b110e39
MX
8160 (unsigned long long)bio->bi_iter.bi_sector,
8161 bio->bi_iter.bi_size, err);
8162
8163 if (dip->subio_endio)
8164 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8165
8166 if (err) {
e65e1535 8167 /*
de224b7c
NB
8168 * We want to perceive the errors flag being set before
8169 * decrementing the reference count. We don't need a barrier
8170 * since atomic operations with a return value are fully
8171 * ordered as per atomic_t.txt
e65e1535 8172 */
de224b7c 8173 dip->errors = 1;
e65e1535
MX
8174 }
8175
8176 /* if there are more bios still pending for this dio, just exit */
8177 if (!atomic_dec_and_test(&dip->pending_bios))
8178 goto out;
8179
9be3395b 8180 if (dip->errors) {
e65e1535 8181 bio_io_error(dip->orig_bio);
9be3395b 8182 } else {
2dbe0c77 8183 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8184 bio_endio(dip->orig_bio);
e65e1535
MX
8185 }
8186out:
8187 bio_put(bio);
8188}
8189
4e4cbee9 8190static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8191 struct btrfs_dio_private *dip,
8192 struct bio *bio,
8193 u64 file_offset)
8194{
8195 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8196 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8197 blk_status_t ret;
c1dc0896
MX
8198
8199 /*
8200 * We load all the csum data we need when we submit
8201 * the first bio to reduce the csum tree search and
8202 * contention.
8203 */
8204 if (dip->logical_offset == file_offset) {
2ff7e61e 8205 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8206 file_offset);
8207 if (ret)
8208 return ret;
8209 }
8210
8211 if (bio == dip->orig_bio)
8212 return 0;
8213
8214 file_offset -= dip->logical_offset;
8215 file_offset >>= inode->i_sb->s_blocksize_bits;
8216 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8217
8218 return 0;
8219}
8220
d0ee3934
DS
8221static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8222 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8223{
0b246afa 8224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8225 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8226 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8227 blk_status_t ret;
e65e1535 8228
4c274bc6 8229 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8230 if (async_submit)
8231 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8232
5fd02043 8233 if (!write) {
0b246afa 8234 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8235 if (ret)
8236 goto err;
8237 }
e65e1535 8238
e6961cac 8239 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8240 goto map;
8241
8242 if (write && async_submit) {
c6100a4b
JB
8243 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8244 file_offset, inode,
d0ee3934
DS
8245 btrfs_submit_bio_start_direct_io,
8246 btrfs_submit_bio_done);
e65e1535 8247 goto err;
1ae39938
JB
8248 } else if (write) {
8249 /*
8250 * If we aren't doing async submit, calculate the csum of the
8251 * bio now.
8252 */
2ff7e61e 8253 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8254 if (ret)
8255 goto err;
23ea8e5a 8256 } else {
2ff7e61e 8257 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8258 file_offset);
c2db1073
TI
8259 if (ret)
8260 goto err;
8261 }
1ae39938 8262map:
9b4a9b28 8263 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8264err:
e65e1535
MX
8265 return ret;
8266}
8267
e6961cac 8268static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8269{
8270 struct inode *inode = dip->inode;
0b246afa 8271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8272 struct bio *bio;
8273 struct bio *orig_bio = dip->orig_bio;
4f024f37 8274 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8275 u64 file_offset = dip->logical_offset;
e65e1535 8276 u64 map_length;
1ae39938 8277 int async_submit = 0;
725130ba
LB
8278 u64 submit_len;
8279 int clone_offset = 0;
8280 int clone_len;
5f4dc8fc 8281 int ret;
58efbc9f 8282 blk_status_t status;
e65e1535 8283
4f024f37 8284 map_length = orig_bio->bi_iter.bi_size;
725130ba 8285 submit_len = map_length;
0b246afa
JM
8286 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8287 &map_length, NULL, 0);
7a5c3c9b 8288 if (ret)
e65e1535 8289 return -EIO;
facc8a22 8290
725130ba 8291 if (map_length >= submit_len) {
02f57c7a 8292 bio = orig_bio;
c1dc0896 8293 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8294 goto submit;
8295 }
8296
53b381b3 8297 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8298 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8299 async_submit = 0;
8300 else
8301 async_submit = 1;
8302
725130ba
LB
8303 /* bio split */
8304 ASSERT(map_length <= INT_MAX);
02f57c7a 8305 atomic_inc(&dip->pending_bios);
3c91ee69 8306 do {
725130ba 8307 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8308
725130ba
LB
8309 /*
8310 * This will never fail as it's passing GPF_NOFS and
8311 * the allocation is backed by btrfs_bioset.
8312 */
e477094f 8313 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8314 clone_len);
8315 bio->bi_private = dip;
8316 bio->bi_end_io = btrfs_end_dio_bio;
8317 btrfs_io_bio(bio)->logical = file_offset;
8318
8319 ASSERT(submit_len >= clone_len);
8320 submit_len -= clone_len;
8321 if (submit_len == 0)
8322 break;
e65e1535 8323
725130ba
LB
8324 /*
8325 * Increase the count before we submit the bio so we know
8326 * the end IO handler won't happen before we increase the
8327 * count. Otherwise, the dip might get freed before we're
8328 * done setting it up.
8329 */
8330 atomic_inc(&dip->pending_bios);
e65e1535 8331
d0ee3934 8332 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8333 async_submit);
8334 if (status) {
725130ba
LB
8335 bio_put(bio);
8336 atomic_dec(&dip->pending_bios);
8337 goto out_err;
8338 }
e65e1535 8339
725130ba
LB
8340 clone_offset += clone_len;
8341 start_sector += clone_len >> 9;
8342 file_offset += clone_len;
5f4dc8fc 8343
725130ba
LB
8344 map_length = submit_len;
8345 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8346 start_sector << 9, &map_length, NULL, 0);
8347 if (ret)
8348 goto out_err;
3c91ee69 8349 } while (submit_len > 0);
e65e1535 8350
02f57c7a 8351submit:
d0ee3934 8352 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8353 if (!status)
e65e1535
MX
8354 return 0;
8355
8356 bio_put(bio);
8357out_err:
8358 dip->errors = 1;
8359 /*
de224b7c
NB
8360 * Before atomic variable goto zero, we must make sure dip->errors is
8361 * perceived to be set. This ordering is ensured by the fact that an
8362 * atomic operations with a return value are fully ordered as per
8363 * atomic_t.txt
e65e1535 8364 */
e65e1535
MX
8365 if (atomic_dec_and_test(&dip->pending_bios))
8366 bio_io_error(dip->orig_bio);
8367
8368 /* bio_end_io() will handle error, so we needn't return it */
8369 return 0;
8370}
8371
8a4c1e42
MC
8372static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8373 loff_t file_offset)
4b46fce2 8374{
61de718f 8375 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8376 struct bio *bio = NULL;
8377 struct btrfs_io_bio *io_bio;
8a4c1e42 8378 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8379 int ret = 0;
8380
8b6c1d56 8381 bio = btrfs_bio_clone(dio_bio);
9be3395b 8382
c1dc0896 8383 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8384 if (!dip) {
8385 ret = -ENOMEM;
61de718f 8386 goto free_ordered;
4b46fce2 8387 }
4b46fce2 8388
9be3395b 8389 dip->private = dio_bio->bi_private;
4b46fce2
JB
8390 dip->inode = inode;
8391 dip->logical_offset = file_offset;
4f024f37
KO
8392 dip->bytes = dio_bio->bi_iter.bi_size;
8393 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8394 bio->bi_private = dip;
8395 dip->orig_bio = bio;
9be3395b 8396 dip->dio_bio = dio_bio;
e65e1535 8397 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8398 io_bio = btrfs_io_bio(bio);
8399 io_bio->logical = file_offset;
4b46fce2 8400
c1dc0896 8401 if (write) {
3892ac90 8402 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8403 } else {
3892ac90 8404 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8405 dip->subio_endio = btrfs_subio_endio_read;
8406 }
4b46fce2 8407
f28a4928
FM
8408 /*
8409 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8410 * even if we fail to submit a bio, because in such case we do the
8411 * corresponding error handling below and it must not be done a second
8412 * time by btrfs_direct_IO().
8413 */
8414 if (write) {
8415 struct btrfs_dio_data *dio_data = current->journal_info;
8416
8417 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8418 dip->bytes;
8419 dio_data->unsubmitted_oe_range_start =
8420 dio_data->unsubmitted_oe_range_end;
8421 }
8422
e6961cac 8423 ret = btrfs_submit_direct_hook(dip);
e65e1535 8424 if (!ret)
eaf25d93 8425 return;
9be3395b 8426
3892ac90
LB
8427 if (io_bio->end_io)
8428 io_bio->end_io(io_bio, ret);
9be3395b 8429
4b46fce2
JB
8430free_ordered:
8431 /*
61de718f
FM
8432 * If we arrived here it means either we failed to submit the dip
8433 * or we either failed to clone the dio_bio or failed to allocate the
8434 * dip. If we cloned the dio_bio and allocated the dip, we can just
8435 * call bio_endio against our io_bio so that we get proper resource
8436 * cleanup if we fail to submit the dip, otherwise, we must do the
8437 * same as btrfs_endio_direct_[write|read] because we can't call these
8438 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8439 */
3892ac90 8440 if (bio && dip) {
054ec2f6 8441 bio_io_error(bio);
61de718f 8442 /*
3892ac90 8443 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8444 * and all the cleanup and final put for dio_bio (through
8445 * dio_end_io()).
8446 */
8447 dip = NULL;
3892ac90 8448 bio = NULL;
61de718f 8449 } else {
14543774 8450 if (write)
52427260 8451 __endio_write_update_ordered(inode,
14543774
FM
8452 file_offset,
8453 dio_bio->bi_iter.bi_size,
52427260 8454 false);
14543774 8455 else
61de718f
FM
8456 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8457 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8458
4e4cbee9 8459 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8460 /*
8461 * Releases and cleans up our dio_bio, no need to bio_put()
8462 * nor bio_endio()/bio_io_error() against dio_bio.
8463 */
4055351c 8464 dio_end_io(dio_bio);
4b46fce2 8465 }
3892ac90
LB
8466 if (bio)
8467 bio_put(bio);
61de718f 8468 kfree(dip);
4b46fce2
JB
8469}
8470
2ff7e61e 8471static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8472 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8473{
8474 int seg;
a1b75f7d 8475 int i;
0b246afa 8476 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8477 ssize_t retval = -EINVAL;
5a5f79b5
CM
8478
8479 if (offset & blocksize_mask)
8480 goto out;
8481
28060d5d
AV
8482 if (iov_iter_alignment(iter) & blocksize_mask)
8483 goto out;
a1b75f7d 8484
28060d5d 8485 /* If this is a write we don't need to check anymore */
cd27e455 8486 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8487 return 0;
8488 /*
8489 * Check to make sure we don't have duplicate iov_base's in this
8490 * iovec, if so return EINVAL, otherwise we'll get csum errors
8491 * when reading back.
8492 */
8493 for (seg = 0; seg < iter->nr_segs; seg++) {
8494 for (i = seg + 1; i < iter->nr_segs; i++) {
8495 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8496 goto out;
8497 }
5a5f79b5
CM
8498 }
8499 retval = 0;
8500out:
8501 return retval;
8502}
eb838e73 8503
c8b8e32d 8504static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8505{
4b46fce2
JB
8506 struct file *file = iocb->ki_filp;
8507 struct inode *inode = file->f_mapping->host;
0b246afa 8508 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8509 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8510 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8511 loff_t offset = iocb->ki_pos;
0934856d 8512 size_t count = 0;
2e60a51e 8513 int flags = 0;
38851cc1
MX
8514 bool wakeup = true;
8515 bool relock = false;
0934856d 8516 ssize_t ret;
4b46fce2 8517
8c70c9f8 8518 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8519 return 0;
3f7c579c 8520
fe0f07d0 8521 inode_dio_begin(inode);
38851cc1 8522
0e267c44 8523 /*
41bd9ca4
MX
8524 * The generic stuff only does filemap_write_and_wait_range, which
8525 * isn't enough if we've written compressed pages to this area, so
8526 * we need to flush the dirty pages again to make absolutely sure
8527 * that any outstanding dirty pages are on disk.
0e267c44 8528 */
a6cbcd4a 8529 count = iov_iter_count(iter);
41bd9ca4
MX
8530 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8531 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8532 filemap_fdatawrite_range(inode->i_mapping, offset,
8533 offset + count - 1);
0e267c44 8534
6f673763 8535 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8536 /*
8537 * If the write DIO is beyond the EOF, we need update
8538 * the isize, but it is protected by i_mutex. So we can
8539 * not unlock the i_mutex at this case.
8540 */
8541 if (offset + count <= inode->i_size) {
4aaedfb0 8542 dio_data.overwrite = 1;
5955102c 8543 inode_unlock(inode);
38851cc1 8544 relock = true;
edf064e7
GR
8545 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8546 ret = -EAGAIN;
8547 goto out;
38851cc1 8548 }
364ecf36
QW
8549 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8550 offset, count);
0934856d 8551 if (ret)
38851cc1 8552 goto out;
e1cbbfa5
JB
8553
8554 /*
8555 * We need to know how many extents we reserved so that we can
8556 * do the accounting properly if we go over the number we
8557 * originally calculated. Abuse current->journal_info for this.
8558 */
da17066c 8559 dio_data.reserve = round_up(count,
0b246afa 8560 fs_info->sectorsize);
f28a4928
FM
8561 dio_data.unsubmitted_oe_range_start = (u64)offset;
8562 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8563 current->journal_info = &dio_data;
97dcdea0 8564 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8565 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8566 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8567 inode_dio_end(inode);
38851cc1
MX
8568 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8569 wakeup = false;
0934856d
MX
8570 }
8571
17f8c842 8572 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8573 fs_info->fs_devices->latest_bdev,
c8b8e32d 8574 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8575 btrfs_submit_direct, flags);
6f673763 8576 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8577 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8578 current->journal_info = NULL;
ddba1bfc 8579 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8580 if (dio_data.reserve)
bc42bda2 8581 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8582 offset, dio_data.reserve, true);
f28a4928
FM
8583 /*
8584 * On error we might have left some ordered extents
8585 * without submitting corresponding bios for them, so
8586 * cleanup them up to avoid other tasks getting them
8587 * and waiting for them to complete forever.
8588 */
8589 if (dio_data.unsubmitted_oe_range_start <
8590 dio_data.unsubmitted_oe_range_end)
52427260 8591 __endio_write_update_ordered(inode,
f28a4928
FM
8592 dio_data.unsubmitted_oe_range_start,
8593 dio_data.unsubmitted_oe_range_end -
8594 dio_data.unsubmitted_oe_range_start,
52427260 8595 false);
ddba1bfc 8596 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8597 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8598 offset, count - (size_t)ret, true);
8599 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8600 }
38851cc1 8601out:
2e60a51e 8602 if (wakeup)
fe0f07d0 8603 inode_dio_end(inode);
38851cc1 8604 if (relock)
5955102c 8605 inode_lock(inode);
0934856d 8606
364ecf36 8607 extent_changeset_free(data_reserved);
0934856d 8608 return ret;
16432985
CM
8609}
8610
05dadc09
TI
8611#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8612
1506fcc8
YS
8613static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8614 __u64 start, __u64 len)
8615{
05dadc09
TI
8616 int ret;
8617
8618 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8619 if (ret)
8620 return ret;
8621
2135fb9b 8622 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8623}
8624
a52d9a80 8625int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8626{
d1310b2e
CM
8627 struct extent_io_tree *tree;
8628 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8629 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8630}
1832a6d5 8631
a52d9a80 8632static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8633{
be7bd730
JB
8634 struct inode *inode = page->mapping->host;
8635 int ret;
b888db2b
CM
8636
8637 if (current->flags & PF_MEMALLOC) {
8638 redirty_page_for_writepage(wbc, page);
8639 unlock_page(page);
8640 return 0;
8641 }
be7bd730
JB
8642
8643 /*
8644 * If we are under memory pressure we will call this directly from the
8645 * VM, we need to make sure we have the inode referenced for the ordered
8646 * extent. If not just return like we didn't do anything.
8647 */
8648 if (!igrab(inode)) {
8649 redirty_page_for_writepage(wbc, page);
8650 return AOP_WRITEPAGE_ACTIVATE;
8651 }
0a9b0e53 8652 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8653 btrfs_add_delayed_iput(inode);
8654 return ret;
9ebefb18
CM
8655}
8656
48a3b636
ES
8657static int btrfs_writepages(struct address_space *mapping,
8658 struct writeback_control *wbc)
b293f02e 8659{
8ae225a8 8660 return extent_writepages(mapping, wbc);
b293f02e
CM
8661}
8662
3ab2fb5a
CM
8663static int
8664btrfs_readpages(struct file *file, struct address_space *mapping,
8665 struct list_head *pages, unsigned nr_pages)
8666{
2a3ff0ad 8667 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8668}
2a3ff0ad 8669
e6dcd2dc 8670static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8671{
477a30ba 8672 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8673 if (ret == 1) {
8674 ClearPagePrivate(page);
8675 set_page_private(page, 0);
09cbfeaf 8676 put_page(page);
39279cc3 8677 }
a52d9a80 8678 return ret;
39279cc3
CM
8679}
8680
e6dcd2dc
CM
8681static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8682{
98509cfc
CM
8683 if (PageWriteback(page) || PageDirty(page))
8684 return 0;
3ba7ab22 8685 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8686}
8687
d47992f8
LC
8688static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8689 unsigned int length)
39279cc3 8690{
5fd02043 8691 struct inode *inode = page->mapping->host;
d1310b2e 8692 struct extent_io_tree *tree;
e6dcd2dc 8693 struct btrfs_ordered_extent *ordered;
2ac55d41 8694 struct extent_state *cached_state = NULL;
e6dcd2dc 8695 u64 page_start = page_offset(page);
09cbfeaf 8696 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8697 u64 start;
8698 u64 end;
131e404a 8699 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8700
8b62b72b
CM
8701 /*
8702 * we have the page locked, so new writeback can't start,
8703 * and the dirty bit won't be cleared while we are here.
8704 *
8705 * Wait for IO on this page so that we can safely clear
8706 * the PagePrivate2 bit and do ordered accounting
8707 */
e6dcd2dc 8708 wait_on_page_writeback(page);
8b62b72b 8709
5fd02043 8710 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8711 if (offset) {
8712 btrfs_releasepage(page, GFP_NOFS);
8713 return;
8714 }
131e404a
FDBM
8715
8716 if (!inode_evicting)
ff13db41 8717 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8718again:
8719 start = page_start;
a776c6fa 8720 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8721 page_end - start + 1);
e6dcd2dc 8722 if (ordered) {
dbfdb6d1 8723 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8724 /*
8725 * IO on this page will never be started, so we need
8726 * to account for any ordered extents now
8727 */
131e404a 8728 if (!inode_evicting)
dbfdb6d1 8729 clear_extent_bit(tree, start, end,
131e404a 8730 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8731 EXTENT_DELALLOC_NEW |
131e404a 8732 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8733 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8734 /*
8735 * whoever cleared the private bit is responsible
8736 * for the finish_ordered_io
8737 */
77cef2ec
JB
8738 if (TestClearPagePrivate2(page)) {
8739 struct btrfs_ordered_inode_tree *tree;
8740 u64 new_len;
8741
8742 tree = &BTRFS_I(inode)->ordered_tree;
8743
8744 spin_lock_irq(&tree->lock);
8745 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8746 new_len = start - ordered->file_offset;
77cef2ec
JB
8747 if (new_len < ordered->truncated_len)
8748 ordered->truncated_len = new_len;
8749 spin_unlock_irq(&tree->lock);
8750
8751 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8752 start,
8753 end - start + 1, 1))
77cef2ec 8754 btrfs_finish_ordered_io(ordered);
8b62b72b 8755 }
e6dcd2dc 8756 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8757 if (!inode_evicting) {
8758 cached_state = NULL;
dbfdb6d1 8759 lock_extent_bits(tree, start, end,
131e404a
FDBM
8760 &cached_state);
8761 }
dbfdb6d1
CR
8762
8763 start = end + 1;
8764 if (start < page_end)
8765 goto again;
131e404a
FDBM
8766 }
8767
b9d0b389
QW
8768 /*
8769 * Qgroup reserved space handler
8770 * Page here will be either
8771 * 1) Already written to disk
8772 * In this case, its reserved space is released from data rsv map
8773 * and will be freed by delayed_ref handler finally.
8774 * So even we call qgroup_free_data(), it won't decrease reserved
8775 * space.
8776 * 2) Not written to disk
0b34c261
GR
8777 * This means the reserved space should be freed here. However,
8778 * if a truncate invalidates the page (by clearing PageDirty)
8779 * and the page is accounted for while allocating extent
8780 * in btrfs_check_data_free_space() we let delayed_ref to
8781 * free the entire extent.
b9d0b389 8782 */
0b34c261 8783 if (PageDirty(page))
bc42bda2 8784 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8785 if (!inode_evicting) {
8786 clear_extent_bit(tree, page_start, page_end,
8787 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8788 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8789 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8790 &cached_state);
131e404a
FDBM
8791
8792 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8793 }
e6dcd2dc 8794
4a096752 8795 ClearPageChecked(page);
9ad6b7bc 8796 if (PagePrivate(page)) {
9ad6b7bc
CM
8797 ClearPagePrivate(page);
8798 set_page_private(page, 0);
09cbfeaf 8799 put_page(page);
9ad6b7bc 8800 }
39279cc3
CM
8801}
8802
9ebefb18
CM
8803/*
8804 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8805 * called from a page fault handler when a page is first dirtied. Hence we must
8806 * be careful to check for EOF conditions here. We set the page up correctly
8807 * for a written page which means we get ENOSPC checking when writing into
8808 * holes and correct delalloc and unwritten extent mapping on filesystems that
8809 * support these features.
8810 *
8811 * We are not allowed to take the i_mutex here so we have to play games to
8812 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8813 * truncate_setsize() writes the inode size before removing pages, once we have
8814 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8815 * beyond EOF, then the page is guaranteed safe against truncation until we
8816 * unlock the page.
8817 */
11bac800 8818int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8819{
c2ec175c 8820 struct page *page = vmf->page;
11bac800 8821 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8822 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8823 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8824 struct btrfs_ordered_extent *ordered;
2ac55d41 8825 struct extent_state *cached_state = NULL;
364ecf36 8826 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8827 char *kaddr;
8828 unsigned long zero_start;
9ebefb18 8829 loff_t size;
1832a6d5 8830 int ret;
9998eb70 8831 int reserved = 0;
d0b7da88 8832 u64 reserved_space;
a52d9a80 8833 u64 page_start;
e6dcd2dc 8834 u64 page_end;
d0b7da88
CR
8835 u64 end;
8836
09cbfeaf 8837 reserved_space = PAGE_SIZE;
9ebefb18 8838
b2b5ef5c 8839 sb_start_pagefault(inode->i_sb);
df480633 8840 page_start = page_offset(page);
09cbfeaf 8841 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8842 end = page_end;
df480633 8843
d0b7da88
CR
8844 /*
8845 * Reserving delalloc space after obtaining the page lock can lead to
8846 * deadlock. For example, if a dirty page is locked by this function
8847 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8848 * dirty page write out, then the btrfs_writepage() function could
8849 * end up waiting indefinitely to get a lock on the page currently
8850 * being processed by btrfs_page_mkwrite() function.
8851 */
364ecf36 8852 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8853 reserved_space);
9998eb70 8854 if (!ret) {
11bac800 8855 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8856 reserved = 1;
8857 }
56a76f82
NP
8858 if (ret) {
8859 if (ret == -ENOMEM)
8860 ret = VM_FAULT_OOM;
8861 else /* -ENOSPC, -EIO, etc */
8862 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8863 if (reserved)
8864 goto out;
8865 goto out_noreserve;
56a76f82 8866 }
1832a6d5 8867
56a76f82 8868 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8869again:
9ebefb18 8870 lock_page(page);
9ebefb18 8871 size = i_size_read(inode);
a52d9a80 8872
9ebefb18 8873 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8874 (page_start >= size)) {
9ebefb18
CM
8875 /* page got truncated out from underneath us */
8876 goto out_unlock;
8877 }
e6dcd2dc
CM
8878 wait_on_page_writeback(page);
8879
ff13db41 8880 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8881 set_page_extent_mapped(page);
8882
eb84ae03
CM
8883 /*
8884 * we can't set the delalloc bits if there are pending ordered
8885 * extents. Drop our locks and wait for them to finish
8886 */
a776c6fa
NB
8887 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8888 PAGE_SIZE);
e6dcd2dc 8889 if (ordered) {
2ac55d41 8890 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8891 &cached_state);
e6dcd2dc 8892 unlock_page(page);
eb84ae03 8893 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8894 btrfs_put_ordered_extent(ordered);
8895 goto again;
8896 }
8897
09cbfeaf 8898 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8899 reserved_space = round_up(size - page_start,
0b246afa 8900 fs_info->sectorsize);
09cbfeaf 8901 if (reserved_space < PAGE_SIZE) {
d0b7da88 8902 end = page_start + reserved_space - 1;
bc42bda2 8903 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8904 page_start, PAGE_SIZE - reserved_space,
8905 true);
d0b7da88
CR
8906 }
8907 }
8908
fbf19087 8909 /*
5416034f
LB
8910 * page_mkwrite gets called when the page is firstly dirtied after it's
8911 * faulted in, but write(2) could also dirty a page and set delalloc
8912 * bits, thus in this case for space account reason, we still need to
8913 * clear any delalloc bits within this page range since we have to
8914 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8915 */
d0b7da88 8916 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8917 EXTENT_DIRTY | EXTENT_DELALLOC |
8918 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8919 0, 0, &cached_state);
fbf19087 8920
e3b8a485 8921 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8922 &cached_state, 0);
9ed74f2d 8923 if (ret) {
2ac55d41 8924 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8925 &cached_state);
9ed74f2d
JB
8926 ret = VM_FAULT_SIGBUS;
8927 goto out_unlock;
8928 }
e6dcd2dc 8929 ret = 0;
9ebefb18
CM
8930
8931 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8932 if (page_start + PAGE_SIZE > size)
8933 zero_start = size & ~PAGE_MASK;
9ebefb18 8934 else
09cbfeaf 8935 zero_start = PAGE_SIZE;
9ebefb18 8936
09cbfeaf 8937 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8938 kaddr = kmap(page);
09cbfeaf 8939 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8940 flush_dcache_page(page);
8941 kunmap(page);
8942 }
247e743c 8943 ClearPageChecked(page);
e6dcd2dc 8944 set_page_dirty(page);
50a9b214 8945 SetPageUptodate(page);
5a3f23d5 8946
0b246afa 8947 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8948 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8949 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8950
e43bbe5e 8951 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
8952
8953out_unlock:
b2b5ef5c 8954 if (!ret) {
43b18595 8955 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 8956 sb_end_pagefault(inode->i_sb);
364ecf36 8957 extent_changeset_free(data_reserved);
50a9b214 8958 return VM_FAULT_LOCKED;
b2b5ef5c 8959 }
9ebefb18 8960 unlock_page(page);
1832a6d5 8961out:
43b18595 8962 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 8963 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 8964 reserved_space, (ret != 0));
9998eb70 8965out_noreserve:
b2b5ef5c 8966 sb_end_pagefault(inode->i_sb);
364ecf36 8967 extent_changeset_free(data_reserved);
9ebefb18
CM
8968 return ret;
8969}
8970
213e8c55 8971static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8972{
0b246afa 8973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8974 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8975 struct btrfs_block_rsv *rsv;
a71754fc 8976 int ret = 0;
3893e33b 8977 int err = 0;
39279cc3 8978 struct btrfs_trans_handle *trans;
0b246afa
JM
8979 u64 mask = fs_info->sectorsize - 1;
8980 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 8981
213e8c55
FM
8982 if (!skip_writeback) {
8983 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8984 (u64)-1);
8985 if (ret)
8986 return ret;
8987 }
39279cc3 8988
fcb80c2a 8989 /*
f7e9e8fc
OS
8990 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8991 * things going on here:
fcb80c2a 8992 *
f7e9e8fc 8993 * 1) We need to reserve space to update our inode.
fcb80c2a 8994 *
f7e9e8fc 8995 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8996 * be free'd up by the truncate operation, but also have some slack
8997 * space reserved in case it uses space during the truncate (thank you
8998 * very much snapshotting).
8999 *
f7e9e8fc 9000 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9001 * space doing the truncate, and we have no earthly idea how much space
01327610 9002 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9003 * doesn't end up using space reserved for updating the inode. We also
9004 * need to be able to stop the transaction and start a new one, which
9005 * means we need to be able to update the inode several times, and we
9006 * have no idea of knowing how many times that will be, so we can't just
9007 * reserve 1 item for the entirety of the operation, so that has to be
9008 * done separately as well.
fcb80c2a
JB
9009 *
9010 * So that leaves us with
9011 *
f7e9e8fc 9012 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9013 * transaction reservation.
f7e9e8fc 9014 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9015 * updating the inode.
9016 */
2ff7e61e 9017 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9018 if (!rsv)
9019 return -ENOMEM;
4a338542 9020 rsv->size = min_size;
ca7e70f5 9021 rsv->failfast = 1;
f0cd846e 9022
907cbceb 9023 /*
07127184 9024 * 1 for the truncate slack space
907cbceb
JB
9025 * 1 for updating the inode.
9026 */
f3fe820c 9027 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9028 if (IS_ERR(trans)) {
9029 err = PTR_ERR(trans);
9030 goto out;
9031 }
f0cd846e 9032
907cbceb 9033 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9034 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9035 min_size, 0);
fcb80c2a 9036 BUG_ON(ret);
f0cd846e 9037
5dc562c5
JB
9038 /*
9039 * So if we truncate and then write and fsync we normally would just
9040 * write the extents that changed, which is a problem if we need to
9041 * first truncate that entire inode. So set this flag so we write out
9042 * all of the extents in the inode to the sync log so we're completely
9043 * safe.
9044 */
9045 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9046 trans->block_rsv = rsv;
907cbceb 9047
8082510e
YZ
9048 while (1) {
9049 ret = btrfs_truncate_inode_items(trans, root, inode,
9050 inode->i_size,
9051 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9052 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9053 if (ret != -ENOSPC && ret != -EAGAIN) {
d5014738
OS
9054 if (ret < 0)
9055 err = ret;
8082510e 9056 break;
3893e33b 9057 }
39279cc3 9058
8082510e 9059 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9060 if (ret) {
9061 err = ret;
9062 break;
9063 }
ca7e70f5 9064
3a45bb20 9065 btrfs_end_transaction(trans);
2ff7e61e 9066 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9067
9068 trans = btrfs_start_transaction(root, 2);
9069 if (IS_ERR(trans)) {
9070 ret = err = PTR_ERR(trans);
9071 trans = NULL;
9072 break;
9073 }
9074
47b5d646 9075 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9076 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9077 rsv, min_size, 0);
ca7e70f5
JB
9078 BUG_ON(ret); /* shouldn't happen */
9079 trans->block_rsv = rsv;
8082510e
YZ
9080 }
9081
ddfae63c
JB
9082 /*
9083 * We can't call btrfs_truncate_block inside a trans handle as we could
9084 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9085 * we've truncated everything except the last little bit, and can do
9086 * btrfs_truncate_block and then update the disk_i_size.
9087 */
9088 if (ret == NEED_TRUNCATE_BLOCK) {
9089 btrfs_end_transaction(trans);
9090 btrfs_btree_balance_dirty(fs_info);
9091
9092 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9093 if (ret)
9094 goto out;
9095 trans = btrfs_start_transaction(root, 1);
9096 if (IS_ERR(trans)) {
9097 ret = PTR_ERR(trans);
9098 goto out;
9099 }
9100 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9101 }
9102
917c16b2 9103 if (trans) {
0b246afa 9104 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9105 ret = btrfs_update_inode(trans, root, inode);
9106 if (ret && !err)
9107 err = ret;
7b128766 9108
3a45bb20 9109 ret = btrfs_end_transaction(trans);
2ff7e61e 9110 btrfs_btree_balance_dirty(fs_info);
917c16b2 9111 }
fcb80c2a 9112out:
2ff7e61e 9113 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9114
3893e33b
JB
9115 if (ret && !err)
9116 err = ret;
a41ad394 9117
3893e33b 9118 return err;
39279cc3
CM
9119}
9120
d352ac68
CM
9121/*
9122 * create a new subvolume directory/inode (helper for the ioctl).
9123 */
d2fb3437 9124int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9125 struct btrfs_root *new_root,
9126 struct btrfs_root *parent_root,
9127 u64 new_dirid)
39279cc3 9128{
39279cc3 9129 struct inode *inode;
76dda93c 9130 int err;
00e4e6b3 9131 u64 index = 0;
39279cc3 9132
12fc9d09
FA
9133 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9134 new_dirid, new_dirid,
9135 S_IFDIR | (~current_umask() & S_IRWXUGO),
9136 &index);
54aa1f4d 9137 if (IS_ERR(inode))
f46b5a66 9138 return PTR_ERR(inode);
39279cc3
CM
9139 inode->i_op = &btrfs_dir_inode_operations;
9140 inode->i_fop = &btrfs_dir_file_operations;
9141
bfe86848 9142 set_nlink(inode, 1);
6ef06d27 9143 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9144 unlock_new_inode(inode);
3b96362c 9145
63541927
FDBM
9146 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9147 if (err)
9148 btrfs_err(new_root->fs_info,
351fd353 9149 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9150 new_root->root_key.objectid, err);
9151
76dda93c 9152 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9153
76dda93c 9154 iput(inode);
ce598979 9155 return err;
39279cc3
CM
9156}
9157
39279cc3
CM
9158struct inode *btrfs_alloc_inode(struct super_block *sb)
9159{
69fe2d75 9160 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9161 struct btrfs_inode *ei;
2ead6ae7 9162 struct inode *inode;
39279cc3 9163
712e36c5 9164 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9165 if (!ei)
9166 return NULL;
2ead6ae7
YZ
9167
9168 ei->root = NULL;
2ead6ae7 9169 ei->generation = 0;
15ee9bc7 9170 ei->last_trans = 0;
257c62e1 9171 ei->last_sub_trans = 0;
e02119d5 9172 ei->logged_trans = 0;
2ead6ae7 9173 ei->delalloc_bytes = 0;
a7e3b975 9174 ei->new_delalloc_bytes = 0;
47059d93 9175 ei->defrag_bytes = 0;
2ead6ae7
YZ
9176 ei->disk_i_size = 0;
9177 ei->flags = 0;
7709cde3 9178 ei->csum_bytes = 0;
2ead6ae7 9179 ei->index_cnt = (u64)-1;
67de1176 9180 ei->dir_index = 0;
2ead6ae7 9181 ei->last_unlink_trans = 0;
46d8bc34 9182 ei->last_log_commit = 0;
2ead6ae7 9183
9e0baf60
JB
9184 spin_lock_init(&ei->lock);
9185 ei->outstanding_extents = 0;
69fe2d75
JB
9186 if (sb->s_magic != BTRFS_TEST_MAGIC)
9187 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9188 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9189 ei->runtime_flags = 0;
b52aa8c9 9190 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9191 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9192
16cdcec7
MX
9193 ei->delayed_node = NULL;
9194
9cc97d64 9195 ei->i_otime.tv_sec = 0;
9196 ei->i_otime.tv_nsec = 0;
9197
2ead6ae7 9198 inode = &ei->vfs_inode;
a8067e02 9199 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9200 extent_io_tree_init(&ei->io_tree, inode);
9201 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9202 ei->io_tree.track_uptodate = 1;
9203 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9204 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9205 mutex_init(&ei->log_mutex);
f248679e 9206 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9207 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9208 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9209 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9210 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9211 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9212
9213 return inode;
39279cc3
CM
9214}
9215
aaedb55b
JB
9216#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9217void btrfs_test_destroy_inode(struct inode *inode)
9218{
dcdbc059 9219 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9220 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9221}
9222#endif
9223
fa0d7e3d
NP
9224static void btrfs_i_callback(struct rcu_head *head)
9225{
9226 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9227 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9228}
9229
39279cc3
CM
9230void btrfs_destroy_inode(struct inode *inode)
9231{
0b246afa 9232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9233 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9234 struct btrfs_root *root = BTRFS_I(inode)->root;
9235
b3d9b7a3 9236 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9237 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9238 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9239 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9240 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9241 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9242 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9243 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9244 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9245
a6dbd429
JB
9246 /*
9247 * This can happen where we create an inode, but somebody else also
9248 * created the same inode and we need to destroy the one we already
9249 * created.
9250 */
9251 if (!root)
9252 goto free;
9253
d397712b 9254 while (1) {
e6dcd2dc
CM
9255 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9256 if (!ordered)
9257 break;
9258 else {
0b246afa 9259 btrfs_err(fs_info,
5d163e0e
JM
9260 "found ordered extent %llu %llu on inode cleanup",
9261 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9262 btrfs_remove_ordered_extent(inode, ordered);
9263 btrfs_put_ordered_extent(ordered);
9264 btrfs_put_ordered_extent(ordered);
9265 }
9266 }
56fa9d07 9267 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9268 inode_tree_del(inode);
dcdbc059 9269 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9270free:
fa0d7e3d 9271 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9272}
9273
45321ac5 9274int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9275{
9276 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9277
6379ef9f
NA
9278 if (root == NULL)
9279 return 1;
9280
fa6ac876 9281 /* the snap/subvol tree is on deleting */
69e9c6c6 9282 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9283 return 1;
76dda93c 9284 else
45321ac5 9285 return generic_drop_inode(inode);
76dda93c
YZ
9286}
9287
0ee0fda0 9288static void init_once(void *foo)
39279cc3
CM
9289{
9290 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9291
9292 inode_init_once(&ei->vfs_inode);
9293}
9294
e67c718b 9295void __cold btrfs_destroy_cachep(void)
39279cc3 9296{
8c0a8537
KS
9297 /*
9298 * Make sure all delayed rcu free inodes are flushed before we
9299 * destroy cache.
9300 */
9301 rcu_barrier();
5598e900
KM
9302 kmem_cache_destroy(btrfs_inode_cachep);
9303 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9304 kmem_cache_destroy(btrfs_path_cachep);
9305 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9306}
9307
f5c29bd9 9308int __init btrfs_init_cachep(void)
39279cc3 9309{
837e1972 9310 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9311 sizeof(struct btrfs_inode), 0,
5d097056
VD
9312 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9313 init_once);
39279cc3
CM
9314 if (!btrfs_inode_cachep)
9315 goto fail;
9601e3f6 9316
837e1972 9317 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9318 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9319 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9320 if (!btrfs_trans_handle_cachep)
9321 goto fail;
9601e3f6 9322
837e1972 9323 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9324 sizeof(struct btrfs_path), 0,
fba4b697 9325 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9326 if (!btrfs_path_cachep)
9327 goto fail;
9601e3f6 9328
837e1972 9329 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9330 sizeof(struct btrfs_free_space), 0,
fba4b697 9331 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9332 if (!btrfs_free_space_cachep)
9333 goto fail;
9334
39279cc3
CM
9335 return 0;
9336fail:
9337 btrfs_destroy_cachep();
9338 return -ENOMEM;
9339}
9340
a528d35e
DH
9341static int btrfs_getattr(const struct path *path, struct kstat *stat,
9342 u32 request_mask, unsigned int flags)
39279cc3 9343{
df0af1a5 9344 u64 delalloc_bytes;
a528d35e 9345 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9346 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9347 u32 bi_flags = BTRFS_I(inode)->flags;
9348
9349 stat->result_mask |= STATX_BTIME;
9350 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9351 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9352 if (bi_flags & BTRFS_INODE_APPEND)
9353 stat->attributes |= STATX_ATTR_APPEND;
9354 if (bi_flags & BTRFS_INODE_COMPRESS)
9355 stat->attributes |= STATX_ATTR_COMPRESSED;
9356 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9357 stat->attributes |= STATX_ATTR_IMMUTABLE;
9358 if (bi_flags & BTRFS_INODE_NODUMP)
9359 stat->attributes |= STATX_ATTR_NODUMP;
9360
9361 stat->attributes_mask |= (STATX_ATTR_APPEND |
9362 STATX_ATTR_COMPRESSED |
9363 STATX_ATTR_IMMUTABLE |
9364 STATX_ATTR_NODUMP);
fadc0d8b 9365
39279cc3 9366 generic_fillattr(inode, stat);
0ee5dc67 9367 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9368
9369 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9370 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9371 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9372 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9373 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9374 return 0;
9375}
9376
cdd1fedf
DF
9377static int btrfs_rename_exchange(struct inode *old_dir,
9378 struct dentry *old_dentry,
9379 struct inode *new_dir,
9380 struct dentry *new_dentry)
9381{
0b246afa 9382 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9383 struct btrfs_trans_handle *trans;
9384 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9385 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9386 struct inode *new_inode = new_dentry->d_inode;
9387 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9388 struct timespec ctime = current_time(old_inode);
cdd1fedf 9389 struct dentry *parent;
4a0cc7ca
NB
9390 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9391 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9392 u64 old_idx = 0;
9393 u64 new_idx = 0;
9394 u64 root_objectid;
9395 int ret;
86e8aa0e
FM
9396 bool root_log_pinned = false;
9397 bool dest_log_pinned = false;
cdd1fedf
DF
9398
9399 /* we only allow rename subvolume link between subvolumes */
9400 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9401 return -EXDEV;
9402
9403 /* close the race window with snapshot create/destroy ioctl */
9404 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9405 down_read(&fs_info->subvol_sem);
cdd1fedf 9406 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9407 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9408
9409 /*
9410 * We want to reserve the absolute worst case amount of items. So if
9411 * both inodes are subvols and we need to unlink them then that would
9412 * require 4 item modifications, but if they are both normal inodes it
9413 * would require 5 item modifications, so we'll assume their normal
9414 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9415 * should cover the worst case number of items we'll modify.
9416 */
9417 trans = btrfs_start_transaction(root, 12);
9418 if (IS_ERR(trans)) {
9419 ret = PTR_ERR(trans);
9420 goto out_notrans;
9421 }
9422
9423 /*
9424 * We need to find a free sequence number both in the source and
9425 * in the destination directory for the exchange.
9426 */
877574e2 9427 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9428 if (ret)
9429 goto out_fail;
877574e2 9430 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9431 if (ret)
9432 goto out_fail;
9433
9434 BTRFS_I(old_inode)->dir_index = 0ULL;
9435 BTRFS_I(new_inode)->dir_index = 0ULL;
9436
9437 /* Reference for the source. */
9438 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9439 /* force full log commit if subvolume involved. */
0b246afa 9440 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9441 } else {
376e5a57
FM
9442 btrfs_pin_log_trans(root);
9443 root_log_pinned = true;
cdd1fedf
DF
9444 ret = btrfs_insert_inode_ref(trans, dest,
9445 new_dentry->d_name.name,
9446 new_dentry->d_name.len,
9447 old_ino,
f85b7379
DS
9448 btrfs_ino(BTRFS_I(new_dir)),
9449 old_idx);
cdd1fedf
DF
9450 if (ret)
9451 goto out_fail;
cdd1fedf
DF
9452 }
9453
9454 /* And now for the dest. */
9455 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9456 /* force full log commit if subvolume involved. */
0b246afa 9457 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9458 } else {
376e5a57
FM
9459 btrfs_pin_log_trans(dest);
9460 dest_log_pinned = true;
cdd1fedf
DF
9461 ret = btrfs_insert_inode_ref(trans, root,
9462 old_dentry->d_name.name,
9463 old_dentry->d_name.len,
9464 new_ino,
f85b7379
DS
9465 btrfs_ino(BTRFS_I(old_dir)),
9466 new_idx);
cdd1fedf
DF
9467 if (ret)
9468 goto out_fail;
cdd1fedf
DF
9469 }
9470
9471 /* Update inode version and ctime/mtime. */
9472 inode_inc_iversion(old_dir);
9473 inode_inc_iversion(new_dir);
9474 inode_inc_iversion(old_inode);
9475 inode_inc_iversion(new_inode);
9476 old_dir->i_ctime = old_dir->i_mtime = ctime;
9477 new_dir->i_ctime = new_dir->i_mtime = ctime;
9478 old_inode->i_ctime = ctime;
9479 new_inode->i_ctime = ctime;
9480
9481 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9482 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9483 BTRFS_I(old_inode), 1);
9484 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9485 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9486 }
9487
9488 /* src is a subvolume */
9489 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9490 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9491 ret = btrfs_unlink_subvol(trans, root, old_dir,
9492 root_objectid,
9493 old_dentry->d_name.name,
9494 old_dentry->d_name.len);
9495 } else { /* src is an inode */
4ec5934e
NB
9496 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9497 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9498 old_dentry->d_name.name,
9499 old_dentry->d_name.len);
9500 if (!ret)
9501 ret = btrfs_update_inode(trans, root, old_inode);
9502 }
9503 if (ret) {
66642832 9504 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9505 goto out_fail;
9506 }
9507
9508 /* dest is a subvolume */
9509 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9510 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9511 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9512 root_objectid,
9513 new_dentry->d_name.name,
9514 new_dentry->d_name.len);
9515 } else { /* dest is an inode */
4ec5934e
NB
9516 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9517 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9518 new_dentry->d_name.name,
9519 new_dentry->d_name.len);
9520 if (!ret)
9521 ret = btrfs_update_inode(trans, dest, new_inode);
9522 }
9523 if (ret) {
66642832 9524 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9525 goto out_fail;
9526 }
9527
db0a669f 9528 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9529 new_dentry->d_name.name,
9530 new_dentry->d_name.len, 0, old_idx);
9531 if (ret) {
66642832 9532 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9533 goto out_fail;
9534 }
9535
db0a669f 9536 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9537 old_dentry->d_name.name,
9538 old_dentry->d_name.len, 0, new_idx);
9539 if (ret) {
66642832 9540 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9541 goto out_fail;
9542 }
9543
9544 if (old_inode->i_nlink == 1)
9545 BTRFS_I(old_inode)->dir_index = old_idx;
9546 if (new_inode->i_nlink == 1)
9547 BTRFS_I(new_inode)->dir_index = new_idx;
9548
86e8aa0e 9549 if (root_log_pinned) {
cdd1fedf 9550 parent = new_dentry->d_parent;
f85b7379
DS
9551 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9552 parent);
cdd1fedf 9553 btrfs_end_log_trans(root);
86e8aa0e 9554 root_log_pinned = false;
cdd1fedf 9555 }
86e8aa0e 9556 if (dest_log_pinned) {
cdd1fedf 9557 parent = old_dentry->d_parent;
f85b7379
DS
9558 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9559 parent);
cdd1fedf 9560 btrfs_end_log_trans(dest);
86e8aa0e 9561 dest_log_pinned = false;
cdd1fedf
DF
9562 }
9563out_fail:
86e8aa0e
FM
9564 /*
9565 * If we have pinned a log and an error happened, we unpin tasks
9566 * trying to sync the log and force them to fallback to a transaction
9567 * commit if the log currently contains any of the inodes involved in
9568 * this rename operation (to ensure we do not persist a log with an
9569 * inconsistent state for any of these inodes or leading to any
9570 * inconsistencies when replayed). If the transaction was aborted, the
9571 * abortion reason is propagated to userspace when attempting to commit
9572 * the transaction. If the log does not contain any of these inodes, we
9573 * allow the tasks to sync it.
9574 */
9575 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9576 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9577 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9578 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9579 (new_inode &&
0f8939b8 9580 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9581 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9582
9583 if (root_log_pinned) {
9584 btrfs_end_log_trans(root);
9585 root_log_pinned = false;
9586 }
9587 if (dest_log_pinned) {
9588 btrfs_end_log_trans(dest);
9589 dest_log_pinned = false;
9590 }
9591 }
3a45bb20 9592 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9593out_notrans:
9594 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9595 up_read(&fs_info->subvol_sem);
cdd1fedf 9596 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9597 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9598
9599 return ret;
9600}
9601
9602static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9603 struct btrfs_root *root,
9604 struct inode *dir,
9605 struct dentry *dentry)
9606{
9607 int ret;
9608 struct inode *inode;
9609 u64 objectid;
9610 u64 index;
9611
9612 ret = btrfs_find_free_ino(root, &objectid);
9613 if (ret)
9614 return ret;
9615
9616 inode = btrfs_new_inode(trans, root, dir,
9617 dentry->d_name.name,
9618 dentry->d_name.len,
4a0cc7ca 9619 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9620 objectid,
9621 S_IFCHR | WHITEOUT_MODE,
9622 &index);
9623
9624 if (IS_ERR(inode)) {
9625 ret = PTR_ERR(inode);
9626 return ret;
9627 }
9628
9629 inode->i_op = &btrfs_special_inode_operations;
9630 init_special_inode(inode, inode->i_mode,
9631 WHITEOUT_DEV);
9632
9633 ret = btrfs_init_inode_security(trans, inode, dir,
9634 &dentry->d_name);
9635 if (ret)
c9901618 9636 goto out;
cdd1fedf 9637
cef415af
NB
9638 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9639 BTRFS_I(inode), 0, index);
cdd1fedf 9640 if (ret)
c9901618 9641 goto out;
cdd1fedf
DF
9642
9643 ret = btrfs_update_inode(trans, root, inode);
c9901618 9644out:
cdd1fedf 9645 unlock_new_inode(inode);
c9901618
FM
9646 if (ret)
9647 inode_dec_link_count(inode);
cdd1fedf
DF
9648 iput(inode);
9649
c9901618 9650 return ret;
cdd1fedf
DF
9651}
9652
d397712b 9653static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9654 struct inode *new_dir, struct dentry *new_dentry,
9655 unsigned int flags)
39279cc3 9656{
0b246afa 9657 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9658 struct btrfs_trans_handle *trans;
5062af35 9659 unsigned int trans_num_items;
39279cc3 9660 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9661 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9662 struct inode *new_inode = d_inode(new_dentry);
9663 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9664 u64 index = 0;
4df27c4d 9665 u64 root_objectid;
39279cc3 9666 int ret;
4a0cc7ca 9667 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9668 bool log_pinned = false;
39279cc3 9669
4a0cc7ca 9670 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9671 return -EPERM;
9672
4df27c4d 9673 /* we only allow rename subvolume link between subvolumes */
33345d01 9674 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9675 return -EXDEV;
9676
33345d01 9677 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9678 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9679 return -ENOTEMPTY;
5f39d397 9680
4df27c4d
YZ
9681 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9682 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9683 return -ENOTEMPTY;
9c52057c
CM
9684
9685
9686 /* check for collisions, even if the name isn't there */
4871c158 9687 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9688 new_dentry->d_name.name,
9689 new_dentry->d_name.len);
9690
9691 if (ret) {
9692 if (ret == -EEXIST) {
9693 /* we shouldn't get
9694 * eexist without a new_inode */
fae7f21c 9695 if (WARN_ON(!new_inode)) {
9c52057c
CM
9696 return ret;
9697 }
9698 } else {
9699 /* maybe -EOVERFLOW */
9700 return ret;
9701 }
9702 }
9703 ret = 0;
9704
5a3f23d5 9705 /*
8d875f95
CM
9706 * we're using rename to replace one file with another. Start IO on it
9707 * now so we don't add too much work to the end of the transaction
5a3f23d5 9708 */
8d875f95 9709 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9710 filemap_flush(old_inode->i_mapping);
9711
76dda93c 9712 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9713 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9714 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9715 /*
9716 * We want to reserve the absolute worst case amount of items. So if
9717 * both inodes are subvols and we need to unlink them then that would
9718 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9719 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9720 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9721 * should cover the worst case number of items we'll modify.
5062af35
FM
9722 * If our rename has the whiteout flag, we need more 5 units for the
9723 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9724 * when selinux is enabled).
a22285a6 9725 */
5062af35
FM
9726 trans_num_items = 11;
9727 if (flags & RENAME_WHITEOUT)
9728 trans_num_items += 5;
9729 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9730 if (IS_ERR(trans)) {
cdd1fedf
DF
9731 ret = PTR_ERR(trans);
9732 goto out_notrans;
9733 }
76dda93c 9734
4df27c4d
YZ
9735 if (dest != root)
9736 btrfs_record_root_in_trans(trans, dest);
5f39d397 9737
877574e2 9738 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9739 if (ret)
9740 goto out_fail;
5a3f23d5 9741
67de1176 9742 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9743 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9744 /* force full log commit if subvolume involved. */
0b246afa 9745 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9746 } else {
c4aba954
FM
9747 btrfs_pin_log_trans(root);
9748 log_pinned = true;
a5719521
YZ
9749 ret = btrfs_insert_inode_ref(trans, dest,
9750 new_dentry->d_name.name,
9751 new_dentry->d_name.len,
33345d01 9752 old_ino,
4a0cc7ca 9753 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9754 if (ret)
9755 goto out_fail;
4df27c4d 9756 }
5a3f23d5 9757
0c4d2d95
JB
9758 inode_inc_iversion(old_dir);
9759 inode_inc_iversion(new_dir);
9760 inode_inc_iversion(old_inode);
04b285f3
DD
9761 old_dir->i_ctime = old_dir->i_mtime =
9762 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9763 old_inode->i_ctime = current_time(old_dir);
5f39d397 9764
12fcfd22 9765 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9766 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9767 BTRFS_I(old_inode), 1);
12fcfd22 9768
33345d01 9769 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9770 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9771 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9772 old_dentry->d_name.name,
9773 old_dentry->d_name.len);
9774 } else {
4ec5934e
NB
9775 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9776 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9777 old_dentry->d_name.name,
9778 old_dentry->d_name.len);
9779 if (!ret)
9780 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9781 }
79787eaa 9782 if (ret) {
66642832 9783 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9784 goto out_fail;
9785 }
39279cc3
CM
9786
9787 if (new_inode) {
0c4d2d95 9788 inode_inc_iversion(new_inode);
c2050a45 9789 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9790 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9791 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9792 root_objectid = BTRFS_I(new_inode)->location.objectid;
9793 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9794 root_objectid,
9795 new_dentry->d_name.name,
9796 new_dentry->d_name.len);
9797 BUG_ON(new_inode->i_nlink == 0);
9798 } else {
4ec5934e
NB
9799 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9800 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9801 new_dentry->d_name.name,
9802 new_dentry->d_name.len);
9803 }
4ef31a45 9804 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9805 ret = btrfs_orphan_add(trans,
9806 BTRFS_I(d_inode(new_dentry)));
79787eaa 9807 if (ret) {
66642832 9808 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9809 goto out_fail;
9810 }
39279cc3 9811 }
aec7477b 9812
db0a669f 9813 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9814 new_dentry->d_name.name,
a5719521 9815 new_dentry->d_name.len, 0, index);
79787eaa 9816 if (ret) {
66642832 9817 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9818 goto out_fail;
9819 }
39279cc3 9820
67de1176
MX
9821 if (old_inode->i_nlink == 1)
9822 BTRFS_I(old_inode)->dir_index = index;
9823
3dc9e8f7 9824 if (log_pinned) {
10d9f309 9825 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9826
f85b7379
DS
9827 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9828 parent);
4df27c4d 9829 btrfs_end_log_trans(root);
3dc9e8f7 9830 log_pinned = false;
4df27c4d 9831 }
cdd1fedf
DF
9832
9833 if (flags & RENAME_WHITEOUT) {
9834 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9835 old_dentry);
9836
9837 if (ret) {
66642832 9838 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9839 goto out_fail;
9840 }
4df27c4d 9841 }
39279cc3 9842out_fail:
3dc9e8f7
FM
9843 /*
9844 * If we have pinned the log and an error happened, we unpin tasks
9845 * trying to sync the log and force them to fallback to a transaction
9846 * commit if the log currently contains any of the inodes involved in
9847 * this rename operation (to ensure we do not persist a log with an
9848 * inconsistent state for any of these inodes or leading to any
9849 * inconsistencies when replayed). If the transaction was aborted, the
9850 * abortion reason is propagated to userspace when attempting to commit
9851 * the transaction. If the log does not contain any of these inodes, we
9852 * allow the tasks to sync it.
9853 */
9854 if (ret && log_pinned) {
0f8939b8
NB
9855 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9856 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9857 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9858 (new_inode &&
0f8939b8 9859 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9860 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9861
9862 btrfs_end_log_trans(root);
9863 log_pinned = false;
9864 }
3a45bb20 9865 btrfs_end_transaction(trans);
b44c59a8 9866out_notrans:
33345d01 9867 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9868 up_read(&fs_info->subvol_sem);
9ed74f2d 9869
39279cc3
CM
9870 return ret;
9871}
9872
80ace85c
MS
9873static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9874 struct inode *new_dir, struct dentry *new_dentry,
9875 unsigned int flags)
9876{
cdd1fedf 9877 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9878 return -EINVAL;
9879
cdd1fedf
DF
9880 if (flags & RENAME_EXCHANGE)
9881 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9882 new_dentry);
9883
9884 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9885}
9886
3a2f8c07
NB
9887struct btrfs_delalloc_work {
9888 struct inode *inode;
9889 struct completion completion;
9890 struct list_head list;
9891 struct btrfs_work work;
9892};
9893
8ccf6f19
MX
9894static void btrfs_run_delalloc_work(struct btrfs_work *work)
9895{
9896 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9897 struct inode *inode;
8ccf6f19
MX
9898
9899 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9900 work);
9f23e289 9901 inode = delalloc_work->inode;
30424601
DS
9902 filemap_flush(inode->i_mapping);
9903 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9904 &BTRFS_I(inode)->runtime_flags))
9f23e289 9905 filemap_flush(inode->i_mapping);
8ccf6f19 9906
076da91c 9907 iput(inode);
8ccf6f19
MX
9908 complete(&delalloc_work->completion);
9909}
9910
3a2f8c07 9911static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9912{
9913 struct btrfs_delalloc_work *work;
9914
100d5702 9915 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9916 if (!work)
9917 return NULL;
9918
9919 init_completion(&work->completion);
9920 INIT_LIST_HEAD(&work->list);
9921 work->inode = inode;
9e0af237
LB
9922 WARN_ON_ONCE(!inode);
9923 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9924 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9925
9926 return work;
9927}
9928
d352ac68
CM
9929/*
9930 * some fairly slow code that needs optimization. This walks the list
9931 * of all the inodes with pending delalloc and forces them to disk.
9932 */
4fbb5147 9933static int start_delalloc_inodes(struct btrfs_root *root, int nr)
ea8c2819 9934{
ea8c2819 9935 struct btrfs_inode *binode;
5b21f2ed 9936 struct inode *inode;
8ccf6f19
MX
9937 struct btrfs_delalloc_work *work, *next;
9938 struct list_head works;
1eafa6c7 9939 struct list_head splice;
8ccf6f19 9940 int ret = 0;
ea8c2819 9941
8ccf6f19 9942 INIT_LIST_HEAD(&works);
1eafa6c7 9943 INIT_LIST_HEAD(&splice);
63607cc8 9944
573bfb72 9945 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9946 spin_lock(&root->delalloc_lock);
9947 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9948 while (!list_empty(&splice)) {
9949 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9950 delalloc_inodes);
1eafa6c7 9951
eb73c1b7
MX
9952 list_move_tail(&binode->delalloc_inodes,
9953 &root->delalloc_inodes);
5b21f2ed 9954 inode = igrab(&binode->vfs_inode);
df0af1a5 9955 if (!inode) {
eb73c1b7 9956 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9957 continue;
df0af1a5 9958 }
eb73c1b7 9959 spin_unlock(&root->delalloc_lock);
1eafa6c7 9960
076da91c 9961 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9962 if (!work) {
4fbb5147 9963 iput(inode);
1eafa6c7 9964 ret = -ENOMEM;
a1ecaabb 9965 goto out;
5b21f2ed 9966 }
1eafa6c7 9967 list_add_tail(&work->list, &works);
a44903ab
QW
9968 btrfs_queue_work(root->fs_info->flush_workers,
9969 &work->work);
6c255e67
MX
9970 ret++;
9971 if (nr != -1 && ret >= nr)
a1ecaabb 9972 goto out;
5b21f2ed 9973 cond_resched();
eb73c1b7 9974 spin_lock(&root->delalloc_lock);
ea8c2819 9975 }
eb73c1b7 9976 spin_unlock(&root->delalloc_lock);
8c8bee1d 9977
a1ecaabb 9978out:
eb73c1b7
MX
9979 list_for_each_entry_safe(work, next, &works, list) {
9980 list_del_init(&work->list);
40012f96
NB
9981 wait_for_completion(&work->completion);
9982 kfree(work);
eb73c1b7
MX
9983 }
9984
81f1d390 9985 if (!list_empty(&splice)) {
eb73c1b7
MX
9986 spin_lock(&root->delalloc_lock);
9987 list_splice_tail(&splice, &root->delalloc_inodes);
9988 spin_unlock(&root->delalloc_lock);
9989 }
573bfb72 9990 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9991 return ret;
9992}
1eafa6c7 9993
76f32e24 9994int btrfs_start_delalloc_inodes(struct btrfs_root *root)
eb73c1b7 9995{
0b246afa 9996 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 9997 int ret;
1eafa6c7 9998
0b246afa 9999 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10000 return -EROFS;
10001
4fbb5147 10002 ret = start_delalloc_inodes(root, -1);
6c255e67
MX
10003 if (ret > 0)
10004 ret = 0;
eb73c1b7
MX
10005 return ret;
10006}
10007
82b3e53b 10008int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10009{
10010 struct btrfs_root *root;
10011 struct list_head splice;
10012 int ret;
10013
2c21b4d7 10014 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10015 return -EROFS;
10016
10017 INIT_LIST_HEAD(&splice);
10018
573bfb72 10019 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10020 spin_lock(&fs_info->delalloc_root_lock);
10021 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10022 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10023 root = list_first_entry(&splice, struct btrfs_root,
10024 delalloc_root);
10025 root = btrfs_grab_fs_root(root);
10026 BUG_ON(!root);
10027 list_move_tail(&root->delalloc_root,
10028 &fs_info->delalloc_roots);
10029 spin_unlock(&fs_info->delalloc_root_lock);
10030
4fbb5147 10031 ret = start_delalloc_inodes(root, nr);
eb73c1b7 10032 btrfs_put_fs_root(root);
6c255e67 10033 if (ret < 0)
eb73c1b7
MX
10034 goto out;
10035
6c255e67
MX
10036 if (nr != -1) {
10037 nr -= ret;
10038 WARN_ON(nr < 0);
10039 }
eb73c1b7 10040 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10041 }
eb73c1b7 10042 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10043
6c255e67 10044 ret = 0;
eb73c1b7 10045out:
81f1d390 10046 if (!list_empty(&splice)) {
eb73c1b7
MX
10047 spin_lock(&fs_info->delalloc_root_lock);
10048 list_splice_tail(&splice, &fs_info->delalloc_roots);
10049 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10050 }
573bfb72 10051 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10052 return ret;
ea8c2819
CM
10053}
10054
39279cc3
CM
10055static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10056 const char *symname)
10057{
0b246afa 10058 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10059 struct btrfs_trans_handle *trans;
10060 struct btrfs_root *root = BTRFS_I(dir)->root;
10061 struct btrfs_path *path;
10062 struct btrfs_key key;
1832a6d5 10063 struct inode *inode = NULL;
39279cc3
CM
10064 int err;
10065 int drop_inode = 0;
10066 u64 objectid;
67871254 10067 u64 index = 0;
39279cc3
CM
10068 int name_len;
10069 int datasize;
5f39d397 10070 unsigned long ptr;
39279cc3 10071 struct btrfs_file_extent_item *ei;
5f39d397 10072 struct extent_buffer *leaf;
39279cc3 10073
f06becc4 10074 name_len = strlen(symname);
0b246afa 10075 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10076 return -ENAMETOOLONG;
1832a6d5 10077
9ed74f2d
JB
10078 /*
10079 * 2 items for inode item and ref
10080 * 2 items for dir items
9269d12b
FM
10081 * 1 item for updating parent inode item
10082 * 1 item for the inline extent item
9ed74f2d
JB
10083 * 1 item for xattr if selinux is on
10084 */
9269d12b 10085 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10086 if (IS_ERR(trans))
10087 return PTR_ERR(trans);
1832a6d5 10088
581bb050
LZ
10089 err = btrfs_find_free_ino(root, &objectid);
10090 if (err)
10091 goto out_unlock;
10092
aec7477b 10093 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10094 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10095 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10096 if (IS_ERR(inode)) {
10097 err = PTR_ERR(inode);
39279cc3 10098 goto out_unlock;
7cf96da3 10099 }
39279cc3 10100
ad19db71
CS
10101 /*
10102 * If the active LSM wants to access the inode during
10103 * d_instantiate it needs these. Smack checks to see
10104 * if the filesystem supports xattrs by looking at the
10105 * ops vector.
10106 */
10107 inode->i_fop = &btrfs_file_operations;
10108 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10109 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10110 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10111
10112 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10113 if (err)
10114 goto out_unlock_inode;
ad19db71 10115
39279cc3 10116 path = btrfs_alloc_path();
d8926bb3
MF
10117 if (!path) {
10118 err = -ENOMEM;
b0d5d10f 10119 goto out_unlock_inode;
d8926bb3 10120 }
4a0cc7ca 10121 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10122 key.offset = 0;
962a298f 10123 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10124 datasize = btrfs_file_extent_calc_inline_size(name_len);
10125 err = btrfs_insert_empty_item(trans, root, path, &key,
10126 datasize);
54aa1f4d 10127 if (err) {
b0839166 10128 btrfs_free_path(path);
b0d5d10f 10129 goto out_unlock_inode;
54aa1f4d 10130 }
5f39d397
CM
10131 leaf = path->nodes[0];
10132 ei = btrfs_item_ptr(leaf, path->slots[0],
10133 struct btrfs_file_extent_item);
10134 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10135 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10136 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10137 btrfs_set_file_extent_encryption(leaf, ei, 0);
10138 btrfs_set_file_extent_compression(leaf, ei, 0);
10139 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10140 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10141
39279cc3 10142 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10143 write_extent_buffer(leaf, symname, ptr, name_len);
10144 btrfs_mark_buffer_dirty(leaf);
39279cc3 10145 btrfs_free_path(path);
5f39d397 10146
39279cc3 10147 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10148 inode_nohighmem(inode);
39279cc3 10149 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10150 inode_set_bytes(inode, name_len);
6ef06d27 10151 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10152 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10153 /*
10154 * Last step, add directory indexes for our symlink inode. This is the
10155 * last step to avoid extra cleanup of these indexes if an error happens
10156 * elsewhere above.
10157 */
10158 if (!err)
cef415af
NB
10159 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10160 BTRFS_I(inode), 0, index);
b0d5d10f 10161 if (err) {
54aa1f4d 10162 drop_inode = 1;
b0d5d10f
CM
10163 goto out_unlock_inode;
10164 }
10165
1e2e547a 10166 d_instantiate_new(dentry, inode);
39279cc3
CM
10167
10168out_unlock:
3a45bb20 10169 btrfs_end_transaction(trans);
39279cc3
CM
10170 if (drop_inode) {
10171 inode_dec_link_count(inode);
10172 iput(inode);
10173 }
2ff7e61e 10174 btrfs_btree_balance_dirty(fs_info);
39279cc3 10175 return err;
b0d5d10f
CM
10176
10177out_unlock_inode:
10178 drop_inode = 1;
10179 unlock_new_inode(inode);
10180 goto out_unlock;
39279cc3 10181}
16432985 10182
0af3d00b
JB
10183static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10184 u64 start, u64 num_bytes, u64 min_size,
10185 loff_t actual_len, u64 *alloc_hint,
10186 struct btrfs_trans_handle *trans)
d899e052 10187{
0b246afa 10188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10189 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10190 struct extent_map *em;
d899e052
YZ
10191 struct btrfs_root *root = BTRFS_I(inode)->root;
10192 struct btrfs_key ins;
d899e052 10193 u64 cur_offset = start;
55a61d1d 10194 u64 i_size;
154ea289 10195 u64 cur_bytes;
0b670dc4 10196 u64 last_alloc = (u64)-1;
d899e052 10197 int ret = 0;
0af3d00b 10198 bool own_trans = true;
18513091 10199 u64 end = start + num_bytes - 1;
d899e052 10200
0af3d00b
JB
10201 if (trans)
10202 own_trans = false;
d899e052 10203 while (num_bytes > 0) {
0af3d00b
JB
10204 if (own_trans) {
10205 trans = btrfs_start_transaction(root, 3);
10206 if (IS_ERR(trans)) {
10207 ret = PTR_ERR(trans);
10208 break;
10209 }
5a303d5d
YZ
10210 }
10211
ee22184b 10212 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10213 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10214 /*
10215 * If we are severely fragmented we could end up with really
10216 * small allocations, so if the allocator is returning small
10217 * chunks lets make its job easier by only searching for those
10218 * sized chunks.
10219 */
10220 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10221 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10222 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10223 if (ret) {
0af3d00b 10224 if (own_trans)
3a45bb20 10225 btrfs_end_transaction(trans);
a22285a6 10226 break;
d899e052 10227 }
0b246afa 10228 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10229
0b670dc4 10230 last_alloc = ins.offset;
d899e052
YZ
10231 ret = insert_reserved_file_extent(trans, inode,
10232 cur_offset, ins.objectid,
10233 ins.offset, ins.offset,
920bbbfb 10234 ins.offset, 0, 0, 0,
d899e052 10235 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10236 if (ret) {
2ff7e61e 10237 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10238 ins.offset, 0);
66642832 10239 btrfs_abort_transaction(trans, ret);
79787eaa 10240 if (own_trans)
3a45bb20 10241 btrfs_end_transaction(trans);
79787eaa
JM
10242 break;
10243 }
31193213 10244
dcdbc059 10245 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10246 cur_offset + ins.offset -1, 0);
5a303d5d 10247
5dc562c5
JB
10248 em = alloc_extent_map();
10249 if (!em) {
10250 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10251 &BTRFS_I(inode)->runtime_flags);
10252 goto next;
10253 }
10254
10255 em->start = cur_offset;
10256 em->orig_start = cur_offset;
10257 em->len = ins.offset;
10258 em->block_start = ins.objectid;
10259 em->block_len = ins.offset;
b4939680 10260 em->orig_block_len = ins.offset;
cc95bef6 10261 em->ram_bytes = ins.offset;
0b246afa 10262 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10263 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10264 em->generation = trans->transid;
10265
10266 while (1) {
10267 write_lock(&em_tree->lock);
09a2a8f9 10268 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10269 write_unlock(&em_tree->lock);
10270 if (ret != -EEXIST)
10271 break;
dcdbc059 10272 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10273 cur_offset + ins.offset - 1,
10274 0);
10275 }
10276 free_extent_map(em);
10277next:
d899e052
YZ
10278 num_bytes -= ins.offset;
10279 cur_offset += ins.offset;
efa56464 10280 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10281
0c4d2d95 10282 inode_inc_iversion(inode);
c2050a45 10283 inode->i_ctime = current_time(inode);
6cbff00f 10284 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10285 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10286 (actual_len > inode->i_size) &&
10287 (cur_offset > inode->i_size)) {
d1ea6a61 10288 if (cur_offset > actual_len)
55a61d1d 10289 i_size = actual_len;
d1ea6a61 10290 else
55a61d1d
JB
10291 i_size = cur_offset;
10292 i_size_write(inode, i_size);
10293 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10294 }
10295
d899e052 10296 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10297
10298 if (ret) {
66642832 10299 btrfs_abort_transaction(trans, ret);
79787eaa 10300 if (own_trans)
3a45bb20 10301 btrfs_end_transaction(trans);
79787eaa
JM
10302 break;
10303 }
d899e052 10304
0af3d00b 10305 if (own_trans)
3a45bb20 10306 btrfs_end_transaction(trans);
5a303d5d 10307 }
18513091 10308 if (cur_offset < end)
bc42bda2 10309 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10310 end - cur_offset + 1);
d899e052
YZ
10311 return ret;
10312}
10313
0af3d00b
JB
10314int btrfs_prealloc_file_range(struct inode *inode, int mode,
10315 u64 start, u64 num_bytes, u64 min_size,
10316 loff_t actual_len, u64 *alloc_hint)
10317{
10318 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10319 min_size, actual_len, alloc_hint,
10320 NULL);
10321}
10322
10323int btrfs_prealloc_file_range_trans(struct inode *inode,
10324 struct btrfs_trans_handle *trans, int mode,
10325 u64 start, u64 num_bytes, u64 min_size,
10326 loff_t actual_len, u64 *alloc_hint)
10327{
10328 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10329 min_size, actual_len, alloc_hint, trans);
10330}
10331
e6dcd2dc
CM
10332static int btrfs_set_page_dirty(struct page *page)
10333{
e6dcd2dc
CM
10334 return __set_page_dirty_nobuffers(page);
10335}
10336
10556cb2 10337static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10338{
b83cc969 10339 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10340 umode_t mode = inode->i_mode;
b83cc969 10341
cb6db4e5
JM
10342 if (mask & MAY_WRITE &&
10343 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10344 if (btrfs_root_readonly(root))
10345 return -EROFS;
10346 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10347 return -EACCES;
10348 }
2830ba7f 10349 return generic_permission(inode, mask);
fdebe2bd 10350}
39279cc3 10351
ef3b9af5
FM
10352static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10353{
2ff7e61e 10354 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10355 struct btrfs_trans_handle *trans;
10356 struct btrfs_root *root = BTRFS_I(dir)->root;
10357 struct inode *inode = NULL;
10358 u64 objectid;
10359 u64 index;
10360 int ret = 0;
10361
10362 /*
10363 * 5 units required for adding orphan entry
10364 */
10365 trans = btrfs_start_transaction(root, 5);
10366 if (IS_ERR(trans))
10367 return PTR_ERR(trans);
10368
10369 ret = btrfs_find_free_ino(root, &objectid);
10370 if (ret)
10371 goto out;
10372
10373 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10374 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10375 if (IS_ERR(inode)) {
10376 ret = PTR_ERR(inode);
10377 inode = NULL;
10378 goto out;
10379 }
10380
ef3b9af5
FM
10381 inode->i_fop = &btrfs_file_operations;
10382 inode->i_op = &btrfs_file_inode_operations;
10383
10384 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10385 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10386
b0d5d10f
CM
10387 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10388 if (ret)
10389 goto out_inode;
10390
10391 ret = btrfs_update_inode(trans, root, inode);
10392 if (ret)
10393 goto out_inode;
73f2e545 10394 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10395 if (ret)
b0d5d10f 10396 goto out_inode;
ef3b9af5 10397
5762b5c9
FM
10398 /*
10399 * We set number of links to 0 in btrfs_new_inode(), and here we set
10400 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10401 * through:
10402 *
10403 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10404 */
10405 set_nlink(inode, 1);
b0d5d10f 10406 unlock_new_inode(inode);
ef3b9af5
FM
10407 d_tmpfile(dentry, inode);
10408 mark_inode_dirty(inode);
10409
10410out:
3a45bb20 10411 btrfs_end_transaction(trans);
ef3b9af5
FM
10412 if (ret)
10413 iput(inode);
2ff7e61e 10414 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10415 return ret;
b0d5d10f
CM
10416
10417out_inode:
10418 unlock_new_inode(inode);
10419 goto out;
10420
ef3b9af5
FM
10421}
10422
20a7db8a 10423__attribute__((const))
9d0d1c8b 10424static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10425{
9d0d1c8b 10426 return -EAGAIN;
20a7db8a
DS
10427}
10428
c6100a4b
JB
10429static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10430{
10431 struct inode *inode = private_data;
10432 return btrfs_sb(inode->i_sb);
10433}
10434
10435static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10436 u64 start, u64 end)
10437{
10438 struct inode *inode = private_data;
10439 u64 isize;
10440
10441 isize = i_size_read(inode);
10442 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10443 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10444 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10445 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10446 }
10447}
10448
10449void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10450{
10451 struct inode *inode = private_data;
10452 unsigned long index = start >> PAGE_SHIFT;
10453 unsigned long end_index = end >> PAGE_SHIFT;
10454 struct page *page;
10455
10456 while (index <= end_index) {
10457 page = find_get_page(inode->i_mapping, index);
10458 ASSERT(page); /* Pages should be in the extent_io_tree */
10459 set_page_writeback(page);
10460 put_page(page);
10461 index++;
10462 }
10463}
10464
6e1d5dcc 10465static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10466 .getattr = btrfs_getattr,
39279cc3
CM
10467 .lookup = btrfs_lookup,
10468 .create = btrfs_create,
10469 .unlink = btrfs_unlink,
10470 .link = btrfs_link,
10471 .mkdir = btrfs_mkdir,
10472 .rmdir = btrfs_rmdir,
2773bf00 10473 .rename = btrfs_rename2,
39279cc3
CM
10474 .symlink = btrfs_symlink,
10475 .setattr = btrfs_setattr,
618e21d5 10476 .mknod = btrfs_mknod,
5103e947 10477 .listxattr = btrfs_listxattr,
fdebe2bd 10478 .permission = btrfs_permission,
4e34e719 10479 .get_acl = btrfs_get_acl,
996a710d 10480 .set_acl = btrfs_set_acl,
93fd63c2 10481 .update_time = btrfs_update_time,
ef3b9af5 10482 .tmpfile = btrfs_tmpfile,
39279cc3 10483};
6e1d5dcc 10484static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10485 .lookup = btrfs_lookup,
fdebe2bd 10486 .permission = btrfs_permission,
93fd63c2 10487 .update_time = btrfs_update_time,
39279cc3 10488};
76dda93c 10489
828c0950 10490static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10491 .llseek = generic_file_llseek,
10492 .read = generic_read_dir,
02dbfc99 10493 .iterate_shared = btrfs_real_readdir,
23b5ec74 10494 .open = btrfs_opendir,
34287aa3 10495 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10496#ifdef CONFIG_COMPAT
4c63c245 10497 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10498#endif
6bf13c0c 10499 .release = btrfs_release_file,
e02119d5 10500 .fsync = btrfs_sync_file,
39279cc3
CM
10501};
10502
20e5506b 10503static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10504 /* mandatory callbacks */
065631f6 10505 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10506 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10507 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10508 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10509 .tree_fs_info = iotree_fs_info,
10510 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10511
10512 /* optional callbacks */
10513 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10514 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10515 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10516 .set_bit_hook = btrfs_set_bit_hook,
10517 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10518 .merge_extent_hook = btrfs_merge_extent_hook,
10519 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10520 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10521};
10522
35054394
CM
10523/*
10524 * btrfs doesn't support the bmap operation because swapfiles
10525 * use bmap to make a mapping of extents in the file. They assume
10526 * these extents won't change over the life of the file and they
10527 * use the bmap result to do IO directly to the drive.
10528 *
10529 * the btrfs bmap call would return logical addresses that aren't
10530 * suitable for IO and they also will change frequently as COW
10531 * operations happen. So, swapfile + btrfs == corruption.
10532 *
10533 * For now we're avoiding this by dropping bmap.
10534 */
7f09410b 10535static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10536 .readpage = btrfs_readpage,
10537 .writepage = btrfs_writepage,
b293f02e 10538 .writepages = btrfs_writepages,
3ab2fb5a 10539 .readpages = btrfs_readpages,
16432985 10540 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10541 .invalidatepage = btrfs_invalidatepage,
10542 .releasepage = btrfs_releasepage,
e6dcd2dc 10543 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10544 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10545};
10546
7f09410b 10547static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10548 .readpage = btrfs_readpage,
10549 .writepage = btrfs_writepage,
2bf5a725
CM
10550 .invalidatepage = btrfs_invalidatepage,
10551 .releasepage = btrfs_releasepage,
39279cc3
CM
10552};
10553
6e1d5dcc 10554static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10555 .getattr = btrfs_getattr,
10556 .setattr = btrfs_setattr,
5103e947 10557 .listxattr = btrfs_listxattr,
fdebe2bd 10558 .permission = btrfs_permission,
1506fcc8 10559 .fiemap = btrfs_fiemap,
4e34e719 10560 .get_acl = btrfs_get_acl,
996a710d 10561 .set_acl = btrfs_set_acl,
e41f941a 10562 .update_time = btrfs_update_time,
39279cc3 10563};
6e1d5dcc 10564static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10565 .getattr = btrfs_getattr,
10566 .setattr = btrfs_setattr,
fdebe2bd 10567 .permission = btrfs_permission,
33268eaf 10568 .listxattr = btrfs_listxattr,
4e34e719 10569 .get_acl = btrfs_get_acl,
996a710d 10570 .set_acl = btrfs_set_acl,
e41f941a 10571 .update_time = btrfs_update_time,
618e21d5 10572};
6e1d5dcc 10573static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10574 .get_link = page_get_link,
f209561a 10575 .getattr = btrfs_getattr,
22c44fe6 10576 .setattr = btrfs_setattr,
fdebe2bd 10577 .permission = btrfs_permission,
0279b4cd 10578 .listxattr = btrfs_listxattr,
e41f941a 10579 .update_time = btrfs_update_time,
39279cc3 10580};
76dda93c 10581
82d339d9 10582const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10583 .d_delete = btrfs_dentry_delete,
10584};