]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/inode.c
btrfs: block-group: Reuse the item key from caller of read_one_block_group()
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
b1c16ac9 31#include <linux/sched/mm.h>
92d32170 32#include <asm/unaligned.h>
602cbe91 33#include "misc.h"
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e6dcd2dc 39#include "ordered-data.h"
95819c05 40#include "xattr.h"
e02119d5 41#include "tree-log.h"
4a54c8c1 42#include "volumes.h"
c8b97818 43#include "compression.h"
b4ce94de 44#include "locking.h"
dc89e982 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
38c227d8 47#include "backref.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
83static noinline int cow_file_range(struct inode *inode,
84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
6f9994db
LB
87static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
52427260
QW
93static void __endio_write_update_ordered(struct inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260
QW
106 */
107static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
119 page = find_get_page(inode->i_mapping, index);
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
c2167754
YZ
246 /*
247 * we're an inline extent, so nobody can
248 * extend the file past i_size without locking
249 * a page we already have locked.
250 *
251 * We must do any isize and inode updates
252 * before we unlock the pages. Otherwise we
253 * could end up racing with unlink.
254 */
c8b97818 255 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 256 ret = btrfs_update_inode(trans, root, inode);
c2167754 257
c8b97818 258fail:
79b4f4c6 259 return ret;
c8b97818
CM
260}
261
262
263/*
264 * conditionally insert an inline extent into the file. This
265 * does the checks required to make sure the data is small enough
266 * to fit as an inline extent.
267 */
d02c0e20 268static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
c8b97818 272{
d02c0e20 273 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 274 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 275 struct btrfs_trans_handle *trans;
c8b97818
CM
276 u64 isize = i_size_read(inode);
277 u64 actual_end = min(end + 1, isize);
278 u64 inline_len = actual_end - start;
0b246afa 279 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
280 u64 data_len = inline_len;
281 int ret;
1acae57b
FDBM
282 struct btrfs_path *path;
283 int extent_inserted = 0;
284 u32 extent_item_size;
c8b97818
CM
285
286 if (compressed_size)
287 data_len = compressed_size;
288
289 if (start > 0 ||
0b246afa
JM
290 actual_end > fs_info->sectorsize ||
291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 292 (!compressed_size &&
0b246afa 293 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 294 end + 1 < isize ||
0b246afa 295 data_len > fs_info->max_inline) {
c8b97818
CM
296 return 1;
297 }
298
1acae57b
FDBM
299 path = btrfs_alloc_path();
300 if (!path)
301 return -ENOMEM;
302
00361589 303 trans = btrfs_join_transaction(root);
1acae57b
FDBM
304 if (IS_ERR(trans)) {
305 btrfs_free_path(path);
00361589 306 return PTR_ERR(trans);
1acae57b 307 }
69fe2d75 308 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 309
1acae57b
FDBM
310 if (compressed_size && compressed_pages)
311 extent_item_size = btrfs_file_extent_calc_inline_size(
312 compressed_size);
313 else
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 inline_len);
316
317 ret = __btrfs_drop_extents(trans, root, inode, path,
318 start, aligned_end, NULL,
319 1, 1, extent_item_size, &extent_inserted);
00361589 320 if (ret) {
66642832 321 btrfs_abort_transaction(trans, ret);
00361589
JB
322 goto out;
323 }
c8b97818
CM
324
325 if (isize > actual_end)
326 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
327 ret = insert_inline_extent(trans, path, extent_inserted,
328 root, inode, start,
c8b97818 329 inline_len, compressed_size,
fe3f566c 330 compress_type, compressed_pages);
2adcac1a 331 if (ret && ret != -ENOSPC) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589 333 goto out;
2adcac1a 334 } else if (ret == -ENOSPC) {
00361589
JB
335 ret = 1;
336 goto out;
79787eaa 337 }
2adcac1a 338
bdc20e67 339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 341out:
94ed938a
QW
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
bc42bda2 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 349 btrfs_free_path(path);
3a45bb20 350 btrfs_end_transaction(trans);
00361589 351 return ret;
c8b97818
CM
352}
353
771ed689
CM
354struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
261507a0 360 int compress_type;
771ed689
CM
361 struct list_head list;
362};
363
97db1204 364struct async_chunk {
771ed689 365 struct inode *inode;
771ed689
CM
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689 370 struct list_head extents;
ec39f769 371 struct cgroup_subsys_state *blkcg_css;
771ed689 372 struct btrfs_work work;
97db1204 373 atomic_t *pending;
771ed689
CM
374};
375
97db1204
NB
376struct async_cow {
377 /* Number of chunks in flight; must be first in the structure */
378 atomic_t num_chunks;
379 struct async_chunk chunks[];
771ed689
CM
380};
381
97db1204 382static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
383 u64 start, u64 ram_size,
384 u64 compressed_size,
385 struct page **pages,
261507a0
LZ
386 unsigned long nr_pages,
387 int compress_type)
771ed689
CM
388{
389 struct async_extent *async_extent;
390
391 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 392 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
393 async_extent->start = start;
394 async_extent->ram_size = ram_size;
395 async_extent->compressed_size = compressed_size;
396 async_extent->pages = pages;
397 async_extent->nr_pages = nr_pages;
261507a0 398 async_extent->compress_type = compress_type;
771ed689
CM
399 list_add_tail(&async_extent->list, &cow->extents);
400 return 0;
401}
402
42c16da6
QW
403/*
404 * Check if the inode has flags compatible with compression
405 */
406static inline bool inode_can_compress(struct inode *inode)
407{
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
409 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
410 return false;
411 return true;
412}
413
414/*
415 * Check if the inode needs to be submitted to compression, based on mount
416 * options, defragmentation, properties or heuristics.
417 */
c2fcdcdf 418static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 419{
0b246afa 420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0 421
42c16da6
QW
422 if (!inode_can_compress(inode)) {
423 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
424 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
425 btrfs_ino(BTRFS_I(inode)));
426 return 0;
427 }
f79707b0 428 /* force compress */
0b246afa 429 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 430 return 1;
eec63c65
DS
431 /* defrag ioctl */
432 if (BTRFS_I(inode)->defrag_compress)
433 return 1;
f79707b0
WS
434 /* bad compression ratios */
435 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
436 return 0;
0b246afa 437 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 438 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 439 BTRFS_I(inode)->prop_compress)
c2fcdcdf 440 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
441 return 0;
442}
443
6158e1ce 444static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
445 u64 start, u64 end, u64 num_bytes, u64 small_write)
446{
447 /* If this is a small write inside eof, kick off a defrag */
448 if (num_bytes < small_write &&
6158e1ce 449 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
450 btrfs_add_inode_defrag(NULL, inode);
451}
452
d352ac68 453/*
771ed689
CM
454 * we create compressed extents in two phases. The first
455 * phase compresses a range of pages that have already been
456 * locked (both pages and state bits are locked).
c8b97818 457 *
771ed689
CM
458 * This is done inside an ordered work queue, and the compression
459 * is spread across many cpus. The actual IO submission is step
460 * two, and the ordered work queue takes care of making sure that
461 * happens in the same order things were put onto the queue by
462 * writepages and friends.
c8b97818 463 *
771ed689
CM
464 * If this code finds it can't get good compression, it puts an
465 * entry onto the work queue to write the uncompressed bytes. This
466 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
467 * are written in the same order that the flusher thread sent them
468 * down.
d352ac68 469 */
ac3e9933 470static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 471{
1368c6da 472 struct inode *inode = async_chunk->inode;
0b246afa 473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 474 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
475 u64 start = async_chunk->start;
476 u64 end = async_chunk->end;
c8b97818 477 u64 actual_end;
d98da499 478 u64 i_size;
e6dcd2dc 479 int ret = 0;
c8b97818
CM
480 struct page **pages = NULL;
481 unsigned long nr_pages;
c8b97818
CM
482 unsigned long total_compressed = 0;
483 unsigned long total_in = 0;
c8b97818
CM
484 int i;
485 int will_compress;
0b246afa 486 int compress_type = fs_info->compress_type;
ac3e9933 487 int compressed_extents = 0;
4adaa611 488 int redirty = 0;
b888db2b 489
6158e1ce
NB
490 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
491 SZ_16K);
4cb5300b 492
d98da499
JB
493 /*
494 * We need to save i_size before now because it could change in between
495 * us evaluating the size and assigning it. This is because we lock and
496 * unlock the page in truncate and fallocate, and then modify the i_size
497 * later on.
498 *
499 * The barriers are to emulate READ_ONCE, remove that once i_size_read
500 * does that for us.
501 */
502 barrier();
503 i_size = i_size_read(inode);
504 barrier();
505 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
506again:
507 will_compress = 0;
09cbfeaf 508 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
509 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
510 nr_pages = min_t(unsigned long, nr_pages,
511 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 512
f03d9301
CM
513 /*
514 * we don't want to send crud past the end of i_size through
515 * compression, that's just a waste of CPU time. So, if the
516 * end of the file is before the start of our current
517 * requested range of bytes, we bail out to the uncompressed
518 * cleanup code that can deal with all of this.
519 *
520 * It isn't really the fastest way to fix things, but this is a
521 * very uncommon corner.
522 */
523 if (actual_end <= start)
524 goto cleanup_and_bail_uncompressed;
525
c8b97818
CM
526 total_compressed = actual_end - start;
527
4bcbb332
SW
528 /*
529 * skip compression for a small file range(<=blocksize) that
01327610 530 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
531 */
532 if (total_compressed <= blocksize &&
533 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
534 goto cleanup_and_bail_uncompressed;
535
069eac78
DS
536 total_compressed = min_t(unsigned long, total_compressed,
537 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
538 total_in = 0;
539 ret = 0;
db94535d 540
771ed689
CM
541 /*
542 * we do compression for mount -o compress and when the
543 * inode has not been flagged as nocompress. This flag can
544 * change at any time if we discover bad compression ratios.
c8b97818 545 */
c2fcdcdf 546 if (inode_need_compress(inode, start, end)) {
c8b97818 547 WARN_ON(pages);
31e818fe 548 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
549 if (!pages) {
550 /* just bail out to the uncompressed code */
3527a018 551 nr_pages = 0;
560f7d75
LZ
552 goto cont;
553 }
c8b97818 554
eec63c65
DS
555 if (BTRFS_I(inode)->defrag_compress)
556 compress_type = BTRFS_I(inode)->defrag_compress;
557 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 558 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 559
4adaa611
CM
560 /*
561 * we need to call clear_page_dirty_for_io on each
562 * page in the range. Otherwise applications with the file
563 * mmap'd can wander in and change the page contents while
564 * we are compressing them.
565 *
566 * If the compression fails for any reason, we set the pages
567 * dirty again later on.
e9679de3
TT
568 *
569 * Note that the remaining part is redirtied, the start pointer
570 * has moved, the end is the original one.
4adaa611 571 */
e9679de3
TT
572 if (!redirty) {
573 extent_range_clear_dirty_for_io(inode, start, end);
574 redirty = 1;
575 }
f51d2b59
DS
576
577 /* Compression level is applied here and only here */
578 ret = btrfs_compress_pages(
579 compress_type | (fs_info->compress_level << 4),
261507a0 580 inode->i_mapping, start,
38c31464 581 pages,
4d3a800e 582 &nr_pages,
261507a0 583 &total_in,
e5d74902 584 &total_compressed);
c8b97818
CM
585
586 if (!ret) {
7073017a 587 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 588 struct page *page = pages[nr_pages - 1];
c8b97818
CM
589 char *kaddr;
590
591 /* zero the tail end of the last page, we might be
592 * sending it down to disk
593 */
594 if (offset) {
7ac687d9 595 kaddr = kmap_atomic(page);
c8b97818 596 memset(kaddr + offset, 0,
09cbfeaf 597 PAGE_SIZE - offset);
7ac687d9 598 kunmap_atomic(kaddr);
c8b97818
CM
599 }
600 will_compress = 1;
601 }
602 }
560f7d75 603cont:
c8b97818
CM
604 if (start == 0) {
605 /* lets try to make an inline extent */
6018ba0a 606 if (ret || total_in < actual_end) {
c8b97818 607 /* we didn't compress the entire range, try
771ed689 608 * to make an uncompressed inline extent.
c8b97818 609 */
d02c0e20
NB
610 ret = cow_file_range_inline(inode, start, end, 0,
611 BTRFS_COMPRESS_NONE, NULL);
c8b97818 612 } else {
771ed689 613 /* try making a compressed inline extent */
d02c0e20 614 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
615 total_compressed,
616 compress_type, pages);
c8b97818 617 }
79787eaa 618 if (ret <= 0) {
151a41bc 619 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
620 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
621 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
622 unsigned long page_error_op;
623
e6eb4314 624 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 625
771ed689 626 /*
79787eaa
JM
627 * inline extent creation worked or returned error,
628 * we don't need to create any more async work items.
629 * Unlock and free up our temp pages.
8b62f87b
JB
630 *
631 * We use DO_ACCOUNTING here because we need the
632 * delalloc_release_metadata to be done _after_ we drop
633 * our outstanding extent for clearing delalloc for this
634 * range.
771ed689 635 */
74e9194a
NB
636 extent_clear_unlock_delalloc(inode, start, end, NULL,
637 clear_flags,
ba8b04c1 638 PAGE_UNLOCK |
c2790a2e
JB
639 PAGE_CLEAR_DIRTY |
640 PAGE_SET_WRITEBACK |
e6eb4314 641 page_error_op |
c2790a2e 642 PAGE_END_WRITEBACK);
cecc8d90
NB
643
644 for (i = 0; i < nr_pages; i++) {
645 WARN_ON(pages[i]->mapping);
646 put_page(pages[i]);
647 }
648 kfree(pages);
649
650 return 0;
c8b97818
CM
651 }
652 }
653
654 if (will_compress) {
655 /*
656 * we aren't doing an inline extent round the compressed size
657 * up to a block size boundary so the allocator does sane
658 * things
659 */
fda2832f 660 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
661
662 /*
663 * one last check to make sure the compression is really a
170607eb
TT
664 * win, compare the page count read with the blocks on disk,
665 * compression must free at least one sector size
c8b97818 666 */
09cbfeaf 667 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 668 if (total_compressed + blocksize <= total_in) {
ac3e9933 669 compressed_extents++;
c8bb0c8b
AS
670
671 /*
672 * The async work queues will take care of doing actual
673 * allocation on disk for these compressed pages, and
674 * will submit them to the elevator.
675 */
b5326271 676 add_async_extent(async_chunk, start, total_in,
4d3a800e 677 total_compressed, pages, nr_pages,
c8bb0c8b
AS
678 compress_type);
679
1170862d
TT
680 if (start + total_in < end) {
681 start += total_in;
c8bb0c8b
AS
682 pages = NULL;
683 cond_resched();
684 goto again;
685 }
ac3e9933 686 return compressed_extents;
c8b97818
CM
687 }
688 }
c8bb0c8b 689 if (pages) {
c8b97818
CM
690 /*
691 * the compression code ran but failed to make things smaller,
692 * free any pages it allocated and our page pointer array
693 */
4d3a800e 694 for (i = 0; i < nr_pages; i++) {
70b99e69 695 WARN_ON(pages[i]->mapping);
09cbfeaf 696 put_page(pages[i]);
c8b97818
CM
697 }
698 kfree(pages);
699 pages = NULL;
700 total_compressed = 0;
4d3a800e 701 nr_pages = 0;
c8b97818
CM
702
703 /* flag the file so we don't compress in the future */
0b246afa 704 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 705 !(BTRFS_I(inode)->prop_compress)) {
a555f810 706 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 707 }
c8b97818 708 }
f03d9301 709cleanup_and_bail_uncompressed:
c8bb0c8b
AS
710 /*
711 * No compression, but we still need to write the pages in the file
712 * we've been given so far. redirty the locked page if it corresponds
713 * to our extent and set things up for the async work queue to run
714 * cow_file_range to do the normal delalloc dance.
715 */
1d53c9e6
CM
716 if (async_chunk->locked_page &&
717 (page_offset(async_chunk->locked_page) >= start &&
718 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 719 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 720 /* unlocked later on in the async handlers */
1d53c9e6 721 }
c8bb0c8b
AS
722
723 if (redirty)
724 extent_range_redirty_for_io(inode, start, end);
b5326271 725 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 726 BTRFS_COMPRESS_NONE);
ac3e9933 727 compressed_extents++;
3b951516 728
ac3e9933 729 return compressed_extents;
771ed689 730}
771ed689 731
40ae837b
FM
732static void free_async_extent_pages(struct async_extent *async_extent)
733{
734 int i;
735
736 if (!async_extent->pages)
737 return;
738
739 for (i = 0; i < async_extent->nr_pages; i++) {
740 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 741 put_page(async_extent->pages[i]);
40ae837b
FM
742 }
743 kfree(async_extent->pages);
744 async_extent->nr_pages = 0;
745 async_extent->pages = NULL;
771ed689
CM
746}
747
748/*
749 * phase two of compressed writeback. This is the ordered portion
750 * of the code, which only gets called in the order the work was
751 * queued. We walk all the async extents created by compress_file_range
752 * and send them down to the disk.
753 */
b5326271 754static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 755{
b5326271 756 struct inode *inode = async_chunk->inode;
0b246afa 757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
758 struct async_extent *async_extent;
759 u64 alloc_hint = 0;
771ed689
CM
760 struct btrfs_key ins;
761 struct extent_map *em;
762 struct btrfs_root *root = BTRFS_I(inode)->root;
4336650a 763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
f5a84ee3 764 int ret = 0;
771ed689 765
3e04e7f1 766again:
b5326271
NB
767 while (!list_empty(&async_chunk->extents)) {
768 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
769 struct async_extent, list);
770 list_del(&async_extent->list);
c8b97818 771
f5a84ee3 772retry:
7447555f
NB
773 lock_extent(io_tree, async_extent->start,
774 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
775 /* did the compression code fall back to uncompressed IO? */
776 if (!async_extent->pages) {
777 int page_started = 0;
778 unsigned long nr_written = 0;
779
771ed689 780 /* allocate blocks */
b5326271 781 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
782 async_extent->start,
783 async_extent->start +
784 async_extent->ram_size - 1,
330a5827 785 &page_started, &nr_written, 0);
771ed689 786
79787eaa
JM
787 /* JDM XXX */
788
771ed689
CM
789 /*
790 * if page_started, cow_file_range inserted an
791 * inline extent and took care of all the unlocking
792 * and IO for us. Otherwise, we need to submit
793 * all those pages down to the drive.
794 */
f5a84ee3 795 if (!page_started && !ret)
5e3ee236
NB
796 extent_write_locked_range(inode,
797 async_extent->start,
d397712b 798 async_extent->start +
771ed689 799 async_extent->ram_size - 1,
771ed689 800 WB_SYNC_ALL);
1d53c9e6 801 else if (ret && async_chunk->locked_page)
b5326271 802 unlock_page(async_chunk->locked_page);
771ed689
CM
803 kfree(async_extent);
804 cond_resched();
805 continue;
806 }
807
18513091 808 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
809 async_extent->compressed_size,
810 async_extent->compressed_size,
e570fd27 811 0, alloc_hint, &ins, 1, 1);
f5a84ee3 812 if (ret) {
40ae837b 813 free_async_extent_pages(async_extent);
3e04e7f1 814
fdf8e2ea
JB
815 if (ret == -ENOSPC) {
816 unlock_extent(io_tree, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1);
ce62003f
LB
819
820 /*
821 * we need to redirty the pages if we decide to
822 * fallback to uncompressed IO, otherwise we
823 * will not submit these pages down to lower
824 * layers.
825 */
826 extent_range_redirty_for_io(inode,
827 async_extent->start,
828 async_extent->start +
829 async_extent->ram_size - 1);
830
79787eaa 831 goto retry;
fdf8e2ea 832 }
3e04e7f1 833 goto out_free;
f5a84ee3 834 }
c2167754
YZ
835 /*
836 * here we're doing allocation and writeback of the
837 * compressed pages
838 */
6f9994db
LB
839 em = create_io_em(inode, async_extent->start,
840 async_extent->ram_size, /* len */
841 async_extent->start, /* orig_start */
842 ins.objectid, /* block_start */
843 ins.offset, /* block_len */
844 ins.offset, /* orig_block_len */
845 async_extent->ram_size, /* ram_bytes */
846 async_extent->compress_type,
847 BTRFS_ORDERED_COMPRESSED);
848 if (IS_ERR(em))
849 /* ret value is not necessary due to void function */
3e04e7f1 850 goto out_free_reserve;
6f9994db 851 free_extent_map(em);
3e04e7f1 852
261507a0
LZ
853 ret = btrfs_add_ordered_extent_compress(inode,
854 async_extent->start,
855 ins.objectid,
856 async_extent->ram_size,
857 ins.offset,
858 BTRFS_ORDERED_COMPRESSED,
859 async_extent->compress_type);
d9f85963 860 if (ret) {
dcdbc059
NB
861 btrfs_drop_extent_cache(BTRFS_I(inode),
862 async_extent->start,
d9f85963
FM
863 async_extent->start +
864 async_extent->ram_size - 1, 0);
3e04e7f1 865 goto out_free_reserve;
d9f85963 866 }
0b246afa 867 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 868
771ed689
CM
869 /*
870 * clear dirty, set writeback and unlock the pages.
871 */
c2790a2e 872 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
873 async_extent->start +
874 async_extent->ram_size - 1,
151a41bc
JB
875 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 877 PAGE_SET_WRITEBACK);
4e4cbee9 878 if (btrfs_submit_compressed_write(inode,
d397712b
CM
879 async_extent->start,
880 async_extent->ram_size,
881 ins.objectid,
882 ins.offset, async_extent->pages,
f82b7359 883 async_extent->nr_pages,
ec39f769
CM
884 async_chunk->write_flags,
885 async_chunk->blkcg_css)) {
fce2a4e6
FM
886 struct page *p = async_extent->pages[0];
887 const u64 start = async_extent->start;
888 const u64 end = start + async_extent->ram_size - 1;
889
890 p->mapping = inode->i_mapping;
c629732d 891 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 892
fce2a4e6 893 p->mapping = NULL;
74e9194a 894 extent_clear_unlock_delalloc(inode, start, end,
ba8b04c1 895 NULL, 0,
fce2a4e6
FM
896 PAGE_END_WRITEBACK |
897 PAGE_SET_ERROR);
40ae837b 898 free_async_extent_pages(async_extent);
fce2a4e6 899 }
771ed689
CM
900 alloc_hint = ins.objectid + ins.offset;
901 kfree(async_extent);
902 cond_resched();
903 }
dec8f175 904 return;
3e04e7f1 905out_free_reserve:
0b246afa 906 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 907 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 908out_free:
c2790a2e 909 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
910 async_extent->start +
911 async_extent->ram_size - 1,
c2790a2e 912 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 913 EXTENT_DELALLOC_NEW |
151a41bc
JB
914 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
915 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
916 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
917 PAGE_SET_ERROR);
40ae837b 918 free_async_extent_pages(async_extent);
79787eaa 919 kfree(async_extent);
3e04e7f1 920 goto again;
771ed689
CM
921}
922
4b46fce2
JB
923static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
924 u64 num_bytes)
925{
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 struct extent_map *em;
928 u64 alloc_hint = 0;
929
930 read_lock(&em_tree->lock);
931 em = search_extent_mapping(em_tree, start, num_bytes);
932 if (em) {
933 /*
934 * if block start isn't an actual block number then find the
935 * first block in this inode and use that as a hint. If that
936 * block is also bogus then just don't worry about it.
937 */
938 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
939 free_extent_map(em);
940 em = search_extent_mapping(em_tree, 0, 0);
941 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
942 alloc_hint = em->block_start;
943 if (em)
944 free_extent_map(em);
945 } else {
946 alloc_hint = em->block_start;
947 free_extent_map(em);
948 }
949 }
950 read_unlock(&em_tree->lock);
951
952 return alloc_hint;
953}
954
771ed689
CM
955/*
956 * when extent_io.c finds a delayed allocation range in the file,
957 * the call backs end up in this code. The basic idea is to
958 * allocate extents on disk for the range, and create ordered data structs
959 * in ram to track those extents.
960 *
961 * locked_page is the page that writepage had locked already. We use
962 * it to make sure we don't do extra locks or unlocks.
963 *
964 * *page_started is set to one if we unlock locked_page and do everything
965 * required to start IO on it. It may be clean and already done with
966 * IO when we return.
967 */
00361589
JB
968static noinline int cow_file_range(struct inode *inode,
969 struct page *locked_page,
74e9194a 970 u64 start, u64 end, int *page_started,
330a5827 971 unsigned long *nr_written, int unlock)
771ed689 972{
0b246afa 973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 974 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
975 u64 alloc_hint = 0;
976 u64 num_bytes;
977 unsigned long ram_size;
a315e68f 978 u64 cur_alloc_size = 0;
0b246afa 979 u64 blocksize = fs_info->sectorsize;
771ed689
CM
980 struct btrfs_key ins;
981 struct extent_map *em;
a315e68f
FM
982 unsigned clear_bits;
983 unsigned long page_ops;
984 bool extent_reserved = false;
771ed689
CM
985 int ret = 0;
986
70ddc553 987 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 988 WARN_ON_ONCE(1);
29bce2f3
JB
989 ret = -EINVAL;
990 goto out_unlock;
02ecd2c2 991 }
771ed689 992
fda2832f 993 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 994 num_bytes = max(blocksize, num_bytes);
566b1760 995 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 996
6158e1ce 997 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 998
771ed689
CM
999 if (start == 0) {
1000 /* lets try to make an inline extent */
d02c0e20
NB
1001 ret = cow_file_range_inline(inode, start, end, 0,
1002 BTRFS_COMPRESS_NONE, NULL);
771ed689 1003 if (ret == 0) {
8b62f87b
JB
1004 /*
1005 * We use DO_ACCOUNTING here because we need the
1006 * delalloc_release_metadata to be run _after_ we drop
1007 * our outstanding extent for clearing delalloc for this
1008 * range.
1009 */
74e9194a 1010 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1011 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1012 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1013 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1014 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1015 PAGE_END_WRITEBACK);
771ed689 1016 *nr_written = *nr_written +
09cbfeaf 1017 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1018 *page_started = 1;
771ed689 1019 goto out;
79787eaa 1020 } else if (ret < 0) {
79787eaa 1021 goto out_unlock;
771ed689
CM
1022 }
1023 }
1024
4b46fce2 1025 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1026 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1027 start + num_bytes - 1, 0);
771ed689 1028
3752d22f
AJ
1029 while (num_bytes > 0) {
1030 cur_alloc_size = num_bytes;
18513091 1031 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1032 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1033 &ins, 1, 1);
00361589 1034 if (ret < 0)
79787eaa 1035 goto out_unlock;
a315e68f
FM
1036 cur_alloc_size = ins.offset;
1037 extent_reserved = true;
d397712b 1038
771ed689 1039 ram_size = ins.offset;
6f9994db
LB
1040 em = create_io_em(inode, start, ins.offset, /* len */
1041 start, /* orig_start */
1042 ins.objectid, /* block_start */
1043 ins.offset, /* block_len */
1044 ins.offset, /* orig_block_len */
1045 ram_size, /* ram_bytes */
1046 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1047 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1048 if (IS_ERR(em)) {
1049 ret = PTR_ERR(em);
ace68bac 1050 goto out_reserve;
090a127a 1051 }
6f9994db 1052 free_extent_map(em);
e6dcd2dc 1053
e6dcd2dc 1054 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1055 ram_size, cur_alloc_size, 0);
ace68bac 1056 if (ret)
d9f85963 1057 goto out_drop_extent_cache;
c8b97818 1058
17d217fe
YZ
1059 if (root->root_key.objectid ==
1060 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1061 ret = btrfs_reloc_clone_csums(inode, start,
1062 cur_alloc_size);
4dbd80fb
QW
1063 /*
1064 * Only drop cache here, and process as normal.
1065 *
1066 * We must not allow extent_clear_unlock_delalloc()
1067 * at out_unlock label to free meta of this ordered
1068 * extent, as its meta should be freed by
1069 * btrfs_finish_ordered_io().
1070 *
1071 * So we must continue until @start is increased to
1072 * skip current ordered extent.
1073 */
00361589 1074 if (ret)
4dbd80fb
QW
1075 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1076 start + ram_size - 1, 0);
17d217fe
YZ
1077 }
1078
0b246afa 1079 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1080
c8b97818
CM
1081 /* we're not doing compressed IO, don't unlock the first
1082 * page (which the caller expects to stay locked), don't
1083 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1084 *
1085 * Do set the Private2 bit so we know this page was properly
1086 * setup for writepage
c8b97818 1087 */
a315e68f
FM
1088 page_ops = unlock ? PAGE_UNLOCK : 0;
1089 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1090
c2790a2e 1091 extent_clear_unlock_delalloc(inode, start,
ba8b04c1 1092 start + ram_size - 1,
74e9194a 1093 locked_page,
c2790a2e 1094 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1095 page_ops);
3752d22f
AJ
1096 if (num_bytes < cur_alloc_size)
1097 num_bytes = 0;
4dbd80fb 1098 else
3752d22f 1099 num_bytes -= cur_alloc_size;
c59f8951
CM
1100 alloc_hint = ins.objectid + ins.offset;
1101 start += cur_alloc_size;
a315e68f 1102 extent_reserved = false;
4dbd80fb
QW
1103
1104 /*
1105 * btrfs_reloc_clone_csums() error, since start is increased
1106 * extent_clear_unlock_delalloc() at out_unlock label won't
1107 * free metadata of current ordered extent, we're OK to exit.
1108 */
1109 if (ret)
1110 goto out_unlock;
b888db2b 1111 }
79787eaa 1112out:
be20aa9d 1113 return ret;
b7d5b0a8 1114
d9f85963 1115out_drop_extent_cache:
dcdbc059 1116 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1117out_reserve:
0b246afa 1118 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1119 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1120out_unlock:
a7e3b975
FM
1121 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1122 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1123 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1124 PAGE_END_WRITEBACK;
1125 /*
1126 * If we reserved an extent for our delalloc range (or a subrange) and
1127 * failed to create the respective ordered extent, then it means that
1128 * when we reserved the extent we decremented the extent's size from
1129 * the data space_info's bytes_may_use counter and incremented the
1130 * space_info's bytes_reserved counter by the same amount. We must make
1131 * sure extent_clear_unlock_delalloc() does not try to decrement again
1132 * the data space_info's bytes_may_use counter, therefore we do not pass
1133 * it the flag EXTENT_CLEAR_DATA_RESV.
1134 */
1135 if (extent_reserved) {
1136 extent_clear_unlock_delalloc(inode, start,
a315e68f
FM
1137 start + cur_alloc_size,
1138 locked_page,
1139 clear_bits,
1140 page_ops);
1141 start += cur_alloc_size;
1142 if (start >= end)
1143 goto out;
1144 }
74e9194a 1145 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1146 clear_bits | EXTENT_CLEAR_DATA_RESV,
1147 page_ops);
79787eaa 1148 goto out;
771ed689 1149}
c8b97818 1150
771ed689
CM
1151/*
1152 * work queue call back to started compression on a file and pages
1153 */
1154static noinline void async_cow_start(struct btrfs_work *work)
1155{
b5326271 1156 struct async_chunk *async_chunk;
ac3e9933 1157 int compressed_extents;
771ed689 1158
b5326271 1159 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1160
ac3e9933
NB
1161 compressed_extents = compress_file_range(async_chunk);
1162 if (compressed_extents == 0) {
b5326271
NB
1163 btrfs_add_delayed_iput(async_chunk->inode);
1164 async_chunk->inode = NULL;
8180ef88 1165 }
771ed689
CM
1166}
1167
1168/*
1169 * work queue call back to submit previously compressed pages
1170 */
1171static noinline void async_cow_submit(struct btrfs_work *work)
1172{
c5a68aec
NB
1173 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1174 work);
1175 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1176 unsigned long nr_pages;
1177
b5326271 1178 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1179 PAGE_SHIFT;
771ed689 1180
093258e6 1181 /* atomic_sub_return implies a barrier */
0b246afa 1182 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1183 5 * SZ_1M)
1184 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1185
4546d178 1186 /*
b5326271 1187 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1188 * in which case we don't have anything to submit, yet we need to
1189 * always adjust ->async_delalloc_pages as its paired with the init
1190 * happening in cow_file_range_async
1191 */
b5326271
NB
1192 if (async_chunk->inode)
1193 submit_compressed_extents(async_chunk);
771ed689 1194}
c8b97818 1195
771ed689
CM
1196static noinline void async_cow_free(struct btrfs_work *work)
1197{
b5326271 1198 struct async_chunk *async_chunk;
97db1204 1199
b5326271
NB
1200 async_chunk = container_of(work, struct async_chunk, work);
1201 if (async_chunk->inode)
1202 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1203 if (async_chunk->blkcg_css)
1204 css_put(async_chunk->blkcg_css);
97db1204
NB
1205 /*
1206 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1207 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1208 */
b5326271 1209 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1210 kvfree(async_chunk->pending);
771ed689
CM
1211}
1212
ec39f769
CM
1213static int cow_file_range_async(struct inode *inode,
1214 struct writeback_control *wbc,
1215 struct page *locked_page,
771ed689 1216 u64 start, u64 end, int *page_started,
fac07d2b 1217 unsigned long *nr_written)
771ed689 1218{
0b246afa 1219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ec39f769 1220 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1221 struct async_cow *ctx;
1222 struct async_chunk *async_chunk;
771ed689
CM
1223 unsigned long nr_pages;
1224 u64 cur_end;
97db1204
NB
1225 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1226 int i;
1227 bool should_compress;
b1c16ac9 1228 unsigned nofs_flag;
fac07d2b 1229 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1230
69684c5a 1231 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
97db1204
NB
1232
1233 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1234 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1235 num_chunks = 1;
1236 should_compress = false;
1237 } else {
1238 should_compress = true;
1239 }
1240
b1c16ac9
NB
1241 nofs_flag = memalloc_nofs_save();
1242 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1243 memalloc_nofs_restore(nofs_flag);
1244
97db1204
NB
1245 if (!ctx) {
1246 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1247 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1248 EXTENT_DO_ACCOUNTING;
1249 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1251 PAGE_SET_ERROR;
1252
74e9194a 1253 extent_clear_unlock_delalloc(inode, start, end, locked_page,
97db1204
NB
1254 clear_bits, page_ops);
1255 return -ENOMEM;
1256 }
1257
1258 async_chunk = ctx->chunks;
1259 atomic_set(&ctx->num_chunks, num_chunks);
1260
1261 for (i = 0; i < num_chunks; i++) {
1262 if (should_compress)
1263 cur_end = min(end, start + SZ_512K - 1);
1264 else
1265 cur_end = end;
771ed689 1266
bd4691a0
NB
1267 /*
1268 * igrab is called higher up in the call chain, take only the
1269 * lightweight reference for the callback lifetime
1270 */
1271 ihold(inode);
97db1204
NB
1272 async_chunk[i].pending = &ctx->num_chunks;
1273 async_chunk[i].inode = inode;
1274 async_chunk[i].start = start;
1275 async_chunk[i].end = cur_end;
97db1204
NB
1276 async_chunk[i].write_flags = write_flags;
1277 INIT_LIST_HEAD(&async_chunk[i].extents);
1278
1d53c9e6
CM
1279 /*
1280 * The locked_page comes all the way from writepage and its
1281 * the original page we were actually given. As we spread
1282 * this large delalloc region across multiple async_chunk
1283 * structs, only the first struct needs a pointer to locked_page
1284 *
1285 * This way we don't need racey decisions about who is supposed
1286 * to unlock it.
1287 */
1288 if (locked_page) {
ec39f769
CM
1289 /*
1290 * Depending on the compressibility, the pages might or
1291 * might not go through async. We want all of them to
1292 * be accounted against wbc once. Let's do it here
1293 * before the paths diverge. wbc accounting is used
1294 * only for foreign writeback detection and doesn't
1295 * need full accuracy. Just account the whole thing
1296 * against the first page.
1297 */
1298 wbc_account_cgroup_owner(wbc, locked_page,
1299 cur_end - start);
1d53c9e6
CM
1300 async_chunk[i].locked_page = locked_page;
1301 locked_page = NULL;
1302 } else {
1303 async_chunk[i].locked_page = NULL;
1304 }
1305
ec39f769
CM
1306 if (blkcg_css != blkcg_root_css) {
1307 css_get(blkcg_css);
1308 async_chunk[i].blkcg_css = blkcg_css;
1309 } else {
1310 async_chunk[i].blkcg_css = NULL;
1311 }
1312
a0cac0ec
OS
1313 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1314 async_cow_submit, async_cow_free);
771ed689 1315
97db1204 1316 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1317 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1318
97db1204 1319 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1320
771ed689
CM
1321 *nr_written += nr_pages;
1322 start = cur_end + 1;
1323 }
1324 *page_started = 1;
1325 return 0;
be20aa9d
CM
1326}
1327
2ff7e61e 1328static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1329 u64 bytenr, u64 num_bytes)
1330{
1331 int ret;
1332 struct btrfs_ordered_sum *sums;
1333 LIST_HEAD(list);
1334
0b246afa 1335 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1336 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1337 if (ret == 0 && list_empty(&list))
1338 return 0;
1339
1340 while (!list_empty(&list)) {
1341 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1342 list_del(&sums->list);
1343 kfree(sums);
1344 }
58113753
LB
1345 if (ret < 0)
1346 return ret;
17d217fe
YZ
1347 return 1;
1348}
1349
d352ac68
CM
1350/*
1351 * when nowcow writeback call back. This checks for snapshots or COW copies
1352 * of the extents that exist in the file, and COWs the file as required.
1353 *
1354 * If no cow copies or snapshots exist, we write directly to the existing
1355 * blocks on disk
1356 */
7f366cfe
CM
1357static noinline int run_delalloc_nocow(struct inode *inode,
1358 struct page *locked_page,
3e024846
NB
1359 const u64 start, const u64 end,
1360 int *page_started, int force,
1361 unsigned long *nr_written)
be20aa9d 1362{
0b246afa 1363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d 1364 struct btrfs_root *root = BTRFS_I(inode)->root;
be20aa9d 1365 struct btrfs_path *path;
3e024846
NB
1366 u64 cow_start = (u64)-1;
1367 u64 cur_offset = start;
8ecebf4d 1368 int ret;
3e024846
NB
1369 bool check_prev = true;
1370 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
4a0cc7ca 1371 u64 ino = btrfs_ino(BTRFS_I(inode));
762bf098
NB
1372 bool nocow = false;
1373 u64 disk_bytenr = 0;
be20aa9d
CM
1374
1375 path = btrfs_alloc_path();
17ca04af 1376 if (!path) {
74e9194a 1377 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1378 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1379 EXTENT_DO_ACCOUNTING |
1380 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1381 PAGE_CLEAR_DIRTY |
1382 PAGE_SET_WRITEBACK |
1383 PAGE_END_WRITEBACK);
d8926bb3 1384 return -ENOMEM;
17ca04af 1385 }
82d5902d 1386
80ff3856 1387 while (1) {
3e024846
NB
1388 struct btrfs_key found_key;
1389 struct btrfs_file_extent_item *fi;
1390 struct extent_buffer *leaf;
1391 u64 extent_end;
1392 u64 extent_offset;
3e024846
NB
1393 u64 num_bytes = 0;
1394 u64 disk_num_bytes;
3e024846
NB
1395 u64 ram_bytes;
1396 int extent_type;
762bf098
NB
1397
1398 nocow = false;
3e024846 1399
e4c3b2dc 1400 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1401 cur_offset, 0);
d788a349 1402 if (ret < 0)
79787eaa 1403 goto error;
a6bd9cd1
NB
1404
1405 /*
1406 * If there is no extent for our range when doing the initial
1407 * search, then go back to the previous slot as it will be the
1408 * one containing the search offset
1409 */
80ff3856
YZ
1410 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1411 leaf = path->nodes[0];
1412 btrfs_item_key_to_cpu(leaf, &found_key,
1413 path->slots[0] - 1);
33345d01 1414 if (found_key.objectid == ino &&
80ff3856
YZ
1415 found_key.type == BTRFS_EXTENT_DATA_KEY)
1416 path->slots[0]--;
1417 }
3e024846 1418 check_prev = false;
80ff3856 1419next_slot:
a6bd9cd1 1420 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1421 leaf = path->nodes[0];
1422 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1423 ret = btrfs_next_leaf(root, path);
e8916699
LB
1424 if (ret < 0) {
1425 if (cow_start != (u64)-1)
1426 cur_offset = cow_start;
79787eaa 1427 goto error;
e8916699 1428 }
80ff3856
YZ
1429 if (ret > 0)
1430 break;
1431 leaf = path->nodes[0];
1432 }
be20aa9d 1433
80ff3856
YZ
1434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1435
a6bd9cd1 1436 /* Didn't find anything for our INO */
1d512cb7
FM
1437 if (found_key.objectid > ino)
1438 break;
a6bd9cd1
NB
1439 /*
1440 * Keep searching until we find an EXTENT_ITEM or there are no
1441 * more extents for this inode
1442 */
1d512cb7
FM
1443 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1444 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1445 path->slots[0]++;
1446 goto next_slot;
1447 }
a6bd9cd1
NB
1448
1449 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1450 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1451 found_key.offset > end)
1452 break;
1453
a6bd9cd1
NB
1454 /*
1455 * If the found extent starts after requested offset, then
1456 * adjust extent_end to be right before this extent begins
1457 */
80ff3856
YZ
1458 if (found_key.offset > cur_offset) {
1459 extent_end = found_key.offset;
e9061e21 1460 extent_type = 0;
80ff3856
YZ
1461 goto out_check;
1462 }
1463
a6bd9cd1
NB
1464 /*
1465 * Found extent which begins before our range and potentially
1466 * intersect it
1467 */
80ff3856
YZ
1468 fi = btrfs_item_ptr(leaf, path->slots[0],
1469 struct btrfs_file_extent_item);
1470 extent_type = btrfs_file_extent_type(leaf, fi);
1471
cc95bef6 1472 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1473 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1474 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1475 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1476 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1477 extent_end = found_key.offset +
1478 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1479 disk_num_bytes =
1480 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1
NB
1481 /*
1482 * If extent we got ends before our range starts, skip
1483 * to next extent
1484 */
80ff3856
YZ
1485 if (extent_end <= start) {
1486 path->slots[0]++;
1487 goto next_slot;
1488 }
a6bd9cd1 1489 /* Skip holes */
17d217fe
YZ
1490 if (disk_bytenr == 0)
1491 goto out_check;
a6bd9cd1 1492 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1493 if (btrfs_file_extent_compression(leaf, fi) ||
1494 btrfs_file_extent_encryption(leaf, fi) ||
1495 btrfs_file_extent_other_encoding(leaf, fi))
1496 goto out_check;
78d4295b 1497 /*
a6bd9cd1
NB
1498 * If extent is created before the last volume's snapshot
1499 * this implies the extent is shared, hence we can't do
1500 * nocow. This is the same check as in
1501 * btrfs_cross_ref_exist but without calling
1502 * btrfs_search_slot.
78d4295b 1503 */
3e024846 1504 if (!freespace_inode &&
27a7ff55 1505 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1506 btrfs_root_last_snapshot(&root->root_item))
1507 goto out_check;
d899e052
YZ
1508 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1509 goto out_check;
a6bd9cd1 1510 /* If extent is RO, we must COW it */
2ff7e61e 1511 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1512 goto out_check;
58113753
LB
1513 ret = btrfs_cross_ref_exist(root, ino,
1514 found_key.offset -
1515 extent_offset, disk_bytenr);
1516 if (ret) {
1517 /*
1518 * ret could be -EIO if the above fails to read
1519 * metadata.
1520 */
1521 if (ret < 0) {
1522 if (cow_start != (u64)-1)
1523 cur_offset = cow_start;
1524 goto error;
1525 }
1526
3e024846 1527 WARN_ON_ONCE(freespace_inode);
17d217fe 1528 goto out_check;
58113753 1529 }
5d4f98a2 1530 disk_bytenr += extent_offset;
17d217fe
YZ
1531 disk_bytenr += cur_offset - found_key.offset;
1532 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1533 /*
a6bd9cd1
NB
1534 * If there are pending snapshots for this root, we
1535 * fall into common COW way
e9894fd3 1536 */
3e024846 1537 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1538 goto out_check;
17d217fe
YZ
1539 /*
1540 * force cow if csum exists in the range.
1541 * this ensure that csum for a given extent are
1542 * either valid or do not exist.
1543 */
58113753
LB
1544 ret = csum_exist_in_range(fs_info, disk_bytenr,
1545 num_bytes);
1546 if (ret) {
58113753
LB
1547 /*
1548 * ret could be -EIO if the above fails to read
1549 * metadata.
1550 */
1551 if (ret < 0) {
1552 if (cow_start != (u64)-1)
1553 cur_offset = cow_start;
1554 goto error;
1555 }
3e024846 1556 WARN_ON_ONCE(freespace_inode);
17d217fe 1557 goto out_check;
91e1f56a 1558 }
8ecebf4d 1559 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1560 goto out_check;
3e024846 1561 nocow = true;
80ff3856 1562 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1563 extent_end = found_key.offset + ram_bytes;
1564 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1565 /* Skip extents outside of our requested range */
1566 if (extent_end <= start) {
1567 path->slots[0]++;
1568 goto next_slot;
1569 }
80ff3856 1570 } else {
e8e21007 1571 /* If this triggers then we have a memory corruption */
290342f6 1572 BUG();
80ff3856
YZ
1573 }
1574out_check:
a6bd9cd1
NB
1575 /*
1576 * If nocow is false then record the beginning of the range
1577 * that needs to be COWed
1578 */
80ff3856
YZ
1579 if (!nocow) {
1580 if (cow_start == (u64)-1)
1581 cow_start = cur_offset;
1582 cur_offset = extent_end;
1583 if (cur_offset > end)
1584 break;
1585 path->slots[0]++;
1586 goto next_slot;
7ea394f1
YZ
1587 }
1588
b3b4aa74 1589 btrfs_release_path(path);
a6bd9cd1
NB
1590
1591 /*
1592 * COW range from cow_start to found_key.offset - 1. As the key
1593 * will contain the beginning of the first extent that can be
1594 * NOCOW, following one which needs to be COW'ed
1595 */
80ff3856 1596 if (cow_start != (u64)-1) {
00361589
JB
1597 ret = cow_file_range(inode, locked_page,
1598 cow_start, found_key.offset - 1,
330a5827 1599 page_started, nr_written, 1);
e9894fd3 1600 if (ret) {
f78c436c 1601 if (nocow)
0b246afa 1602 btrfs_dec_nocow_writers(fs_info,
f78c436c 1603 disk_bytenr);
79787eaa 1604 goto error;
e9894fd3 1605 }
80ff3856 1606 cow_start = (u64)-1;
7ea394f1 1607 }
80ff3856 1608
d899e052 1609 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1610 u64 orig_start = found_key.offset - extent_offset;
3e024846 1611 struct extent_map *em;
6f9994db
LB
1612
1613 em = create_io_em(inode, cur_offset, num_bytes,
1614 orig_start,
1615 disk_bytenr, /* block_start */
1616 num_bytes, /* block_len */
1617 disk_num_bytes, /* orig_block_len */
1618 ram_bytes, BTRFS_COMPRESS_NONE,
1619 BTRFS_ORDERED_PREALLOC);
1620 if (IS_ERR(em)) {
6f9994db
LB
1621 if (nocow)
1622 btrfs_dec_nocow_writers(fs_info,
1623 disk_bytenr);
1624 ret = PTR_ERR(em);
1625 goto error;
d899e052 1626 }
6f9994db 1627 free_extent_map(em);
bb55f626
NB
1628 ret = btrfs_add_ordered_extent(inode, cur_offset,
1629 disk_bytenr, num_bytes,
1630 num_bytes,
1631 BTRFS_ORDERED_PREALLOC);
762bf098
NB
1632 if (ret) {
1633 btrfs_drop_extent_cache(BTRFS_I(inode),
1634 cur_offset,
1635 cur_offset + num_bytes - 1,
1636 0);
1637 goto error;
1638 }
d899e052 1639 } else {
bb55f626
NB
1640 ret = btrfs_add_ordered_extent(inode, cur_offset,
1641 disk_bytenr, num_bytes,
1642 num_bytes,
1643 BTRFS_ORDERED_NOCOW);
762bf098
NB
1644 if (ret)
1645 goto error;
d899e052 1646 }
80ff3856 1647
f78c436c 1648 if (nocow)
0b246afa 1649 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1650 nocow = false;
771ed689 1651
efa56464 1652 if (root->root_key.objectid ==
4dbd80fb
QW
1653 BTRFS_DATA_RELOC_TREE_OBJECTID)
1654 /*
1655 * Error handled later, as we must prevent
1656 * extent_clear_unlock_delalloc() in error handler
1657 * from freeing metadata of created ordered extent.
1658 */
efa56464
YZ
1659 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1660 num_bytes);
efa56464 1661
c2790a2e 1662 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1663 cur_offset + num_bytes - 1,
c2790a2e 1664 locked_page, EXTENT_LOCKED |
18513091
WX
1665 EXTENT_DELALLOC |
1666 EXTENT_CLEAR_DATA_RESV,
1667 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1668
80ff3856 1669 cur_offset = extent_end;
4dbd80fb
QW
1670
1671 /*
1672 * btrfs_reloc_clone_csums() error, now we're OK to call error
1673 * handler, as metadata for created ordered extent will only
1674 * be freed by btrfs_finish_ordered_io().
1675 */
1676 if (ret)
1677 goto error;
80ff3856
YZ
1678 if (cur_offset > end)
1679 break;
be20aa9d 1680 }
b3b4aa74 1681 btrfs_release_path(path);
80ff3856 1682
506481b2 1683 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1684 cow_start = cur_offset;
17ca04af 1685
80ff3856 1686 if (cow_start != (u64)-1) {
506481b2 1687 cur_offset = end;
74e9194a 1688 ret = cow_file_range(inode, locked_page, cow_start, end,
330a5827 1689 page_started, nr_written, 1);
d788a349 1690 if (ret)
79787eaa 1691 goto error;
80ff3856
YZ
1692 }
1693
79787eaa 1694error:
762bf098
NB
1695 if (nocow)
1696 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1697
17ca04af 1698 if (ret && cur_offset < end)
74e9194a 1699 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1700 locked_page, EXTENT_LOCKED |
151a41bc
JB
1701 EXTENT_DELALLOC | EXTENT_DEFRAG |
1702 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1703 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1704 PAGE_SET_WRITEBACK |
1705 PAGE_END_WRITEBACK);
7ea394f1 1706 btrfs_free_path(path);
79787eaa 1707 return ret;
be20aa9d
CM
1708}
1709
47059d93
WS
1710static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1711{
1712
1713 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1714 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1715 return 0;
1716
1717 /*
1718 * @defrag_bytes is a hint value, no spinlock held here,
1719 * if is not zero, it means the file is defragging.
1720 * Force cow if given extent needs to be defragged.
1721 */
1722 if (BTRFS_I(inode)->defrag_bytes &&
1723 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1724 EXTENT_DEFRAG, 0, NULL))
1725 return 1;
1726
1727 return 0;
1728}
1729
d352ac68 1730/*
5eaad97a
NB
1731 * Function to process delayed allocation (create CoW) for ranges which are
1732 * being touched for the first time.
d352ac68 1733 */
bc9a8bf7 1734int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
5eaad97a
NB
1735 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1736 struct writeback_control *wbc)
be20aa9d 1737{
be20aa9d 1738 int ret;
47059d93 1739 int force_cow = need_force_cow(inode, start, end);
a2135011 1740
47059d93 1741 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1742 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1743 page_started, 1, nr_written);
47059d93 1744 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1745 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1746 page_started, 0, nr_written);
42c16da6
QW
1747 } else if (!inode_can_compress(inode) ||
1748 !inode_need_compress(inode, start, end)) {
74e9194a 1749 ret = cow_file_range(inode, locked_page, start, end,
330a5827 1750 page_started, nr_written, 1);
7ddf5a42
JB
1751 } else {
1752 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1753 &BTRFS_I(inode)->runtime_flags);
ec39f769 1754 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1755 page_started, nr_written);
7ddf5a42 1756 }
52427260 1757 if (ret)
d1051d6e
NB
1758 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1759 end - start + 1);
b888db2b
CM
1760 return ret;
1761}
1762
abbb55f4
NB
1763void btrfs_split_delalloc_extent(struct inode *inode,
1764 struct extent_state *orig, u64 split)
9ed74f2d 1765{
dcab6a3b
JB
1766 u64 size;
1767
0ca1f7ce 1768 /* not delalloc, ignore it */
9ed74f2d 1769 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1770 return;
9ed74f2d 1771
dcab6a3b
JB
1772 size = orig->end - orig->start + 1;
1773 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1774 u32 num_extents;
dcab6a3b
JB
1775 u64 new_size;
1776
1777 /*
5c848198 1778 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1779 * applies here, just in reverse.
dcab6a3b
JB
1780 */
1781 new_size = orig->end - split + 1;
823bb20a 1782 num_extents = count_max_extents(new_size);
ba117213 1783 new_size = split - orig->start;
823bb20a
DS
1784 num_extents += count_max_extents(new_size);
1785 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1786 return;
1787 }
1788
9e0baf60 1789 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1790 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1791 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1792}
1793
1794/*
5c848198
NB
1795 * Handle merged delayed allocation extents so we can keep track of new extents
1796 * that are just merged onto old extents, such as when we are doing sequential
1797 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1798 */
5c848198
NB
1799void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1800 struct extent_state *other)
9ed74f2d 1801{
dcab6a3b 1802 u64 new_size, old_size;
823bb20a 1803 u32 num_extents;
dcab6a3b 1804
9ed74f2d
JB
1805 /* not delalloc, ignore it */
1806 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1807 return;
9ed74f2d 1808
8461a3de
JB
1809 if (new->start > other->start)
1810 new_size = new->end - other->start + 1;
1811 else
1812 new_size = other->end - new->start + 1;
dcab6a3b
JB
1813
1814 /* we're not bigger than the max, unreserve the space and go */
1815 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1816 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1817 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1818 spin_unlock(&BTRFS_I(inode)->lock);
1819 return;
1820 }
1821
1822 /*
ba117213
JB
1823 * We have to add up either side to figure out how many extents were
1824 * accounted for before we merged into one big extent. If the number of
1825 * extents we accounted for is <= the amount we need for the new range
1826 * then we can return, otherwise drop. Think of it like this
1827 *
1828 * [ 4k][MAX_SIZE]
1829 *
1830 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1831 * need 2 outstanding extents, on one side we have 1 and the other side
1832 * we have 1 so they are == and we can return. But in this case
1833 *
1834 * [MAX_SIZE+4k][MAX_SIZE+4k]
1835 *
1836 * Each range on their own accounts for 2 extents, but merged together
1837 * they are only 3 extents worth of accounting, so we need to drop in
1838 * this case.
dcab6a3b 1839 */
ba117213 1840 old_size = other->end - other->start + 1;
823bb20a 1841 num_extents = count_max_extents(old_size);
ba117213 1842 old_size = new->end - new->start + 1;
823bb20a
DS
1843 num_extents += count_max_extents(old_size);
1844 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1845 return;
1846
9e0baf60 1847 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1848 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1849 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1850}
1851
eb73c1b7
MX
1852static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1853 struct inode *inode)
1854{
0b246afa
JM
1855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1856
eb73c1b7
MX
1857 spin_lock(&root->delalloc_lock);
1858 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1859 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1860 &root->delalloc_inodes);
1861 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1862 &BTRFS_I(inode)->runtime_flags);
1863 root->nr_delalloc_inodes++;
1864 if (root->nr_delalloc_inodes == 1) {
0b246afa 1865 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1866 BUG_ON(!list_empty(&root->delalloc_root));
1867 list_add_tail(&root->delalloc_root,
0b246afa
JM
1868 &fs_info->delalloc_roots);
1869 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1870 }
1871 }
1872 spin_unlock(&root->delalloc_lock);
1873}
1874
2b877331
NB
1875
1876void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1877 struct btrfs_inode *inode)
eb73c1b7 1878{
3ffbd68c 1879 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1880
9e3e97f4
NB
1881 if (!list_empty(&inode->delalloc_inodes)) {
1882 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1883 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1884 &inode->runtime_flags);
eb73c1b7
MX
1885 root->nr_delalloc_inodes--;
1886 if (!root->nr_delalloc_inodes) {
7c8a0d36 1887 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1888 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1889 BUG_ON(list_empty(&root->delalloc_root));
1890 list_del_init(&root->delalloc_root);
0b246afa 1891 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1892 }
1893 }
2b877331
NB
1894}
1895
1896static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1897 struct btrfs_inode *inode)
1898{
1899 spin_lock(&root->delalloc_lock);
1900 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1901 spin_unlock(&root->delalloc_lock);
1902}
1903
d352ac68 1904/*
e06a1fc9
NB
1905 * Properly track delayed allocation bytes in the inode and to maintain the
1906 * list of inodes that have pending delalloc work to be done.
d352ac68 1907 */
e06a1fc9
NB
1908void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1909 unsigned *bits)
291d673e 1910{
0b246afa
JM
1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1912
47059d93
WS
1913 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1914 WARN_ON(1);
75eff68e
CM
1915 /*
1916 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1917 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1918 * bit, which is only set or cleared with irqs on
1919 */
0ca1f7ce 1920 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1921 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1922 u64 len = state->end + 1 - state->start;
8b62f87b 1923 u32 num_extents = count_max_extents(len);
70ddc553 1924 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1925
8b62f87b
JB
1926 spin_lock(&BTRFS_I(inode)->lock);
1927 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1928 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1929
6a3891c5 1930 /* For sanity tests */
0b246afa 1931 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1932 return;
1933
104b4e51
NB
1934 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1935 fs_info->delalloc_batch);
df0af1a5 1936 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1937 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1938 if (*bits & EXTENT_DEFRAG)
1939 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1940 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1941 &BTRFS_I(inode)->runtime_flags))
1942 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1943 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1944 }
a7e3b975
FM
1945
1946 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1947 (*bits & EXTENT_DELALLOC_NEW)) {
1948 spin_lock(&BTRFS_I(inode)->lock);
1949 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1950 state->start;
1951 spin_unlock(&BTRFS_I(inode)->lock);
1952 }
291d673e
CM
1953}
1954
d352ac68 1955/*
a36bb5f9
NB
1956 * Once a range is no longer delalloc this function ensures that proper
1957 * accounting happens.
d352ac68 1958 */
a36bb5f9
NB
1959void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1960 struct extent_state *state, unsigned *bits)
291d673e 1961{
a36bb5f9
NB
1962 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1963 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 1964 u64 len = state->end + 1 - state->start;
823bb20a 1965 u32 num_extents = count_max_extents(len);
47059d93 1966
4a4b964f
FM
1967 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1968 spin_lock(&inode->lock);
6fc0ef68 1969 inode->defrag_bytes -= len;
4a4b964f
FM
1970 spin_unlock(&inode->lock);
1971 }
47059d93 1972
75eff68e
CM
1973 /*
1974 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1975 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1976 * bit, which is only set or cleared with irqs on
1977 */
0ca1f7ce 1978 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1979 struct btrfs_root *root = inode->root;
83eea1f1 1980 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1981
8b62f87b
JB
1982 spin_lock(&inode->lock);
1983 btrfs_mod_outstanding_extents(inode, -num_extents);
1984 spin_unlock(&inode->lock);
0ca1f7ce 1985
b6d08f06
JB
1986 /*
1987 * We don't reserve metadata space for space cache inodes so we
52042d8e 1988 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
1989 * error.
1990 */
a315e68f 1991 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1992 root != fs_info->tree_root)
43b18595 1993 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1994
6a3891c5 1995 /* For sanity tests. */
0b246afa 1996 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1997 return;
1998
a315e68f
FM
1999 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2000 do_list && !(state->state & EXTENT_NORESERVE) &&
2001 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
2002 btrfs_free_reserved_data_space_noquota(
2003 &inode->vfs_inode,
51773bec 2004 state->start, len);
9ed74f2d 2005
104b4e51
NB
2006 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2007 fs_info->delalloc_batch);
6fc0ef68
NB
2008 spin_lock(&inode->lock);
2009 inode->delalloc_bytes -= len;
2010 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2011 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2012 &inode->runtime_flags))
eb73c1b7 2013 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2014 spin_unlock(&inode->lock);
291d673e 2015 }
a7e3b975
FM
2016
2017 if ((state->state & EXTENT_DELALLOC_NEW) &&
2018 (*bits & EXTENT_DELALLOC_NEW)) {
2019 spin_lock(&inode->lock);
2020 ASSERT(inode->new_delalloc_bytes >= len);
2021 inode->new_delalloc_bytes -= len;
2022 spin_unlock(&inode->lock);
2023 }
291d673e
CM
2024}
2025
d352ac68 2026/*
da12fe54
NB
2027 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2028 * in a chunk's stripe. This function ensures that bios do not span a
2029 * stripe/chunk
6f034ece 2030 *
da12fe54
NB
2031 * @page - The page we are about to add to the bio
2032 * @size - size we want to add to the bio
2033 * @bio - bio we want to ensure is smaller than a stripe
2034 * @bio_flags - flags of the bio
2035 *
2036 * return 1 if page cannot be added to the bio
2037 * return 0 if page can be added to the bio
6f034ece 2038 * return error otherwise
d352ac68 2039 */
da12fe54
NB
2040int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2041 unsigned long bio_flags)
239b14b3 2042{
0b246afa
JM
2043 struct inode *inode = page->mapping->host;
2044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2045 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2046 u64 length = 0;
2047 u64 map_length;
239b14b3 2048 int ret;
89b798ad 2049 struct btrfs_io_geometry geom;
239b14b3 2050
771ed689
CM
2051 if (bio_flags & EXTENT_BIO_COMPRESSED)
2052 return 0;
2053
4f024f37 2054 length = bio->bi_iter.bi_size;
239b14b3 2055 map_length = length;
89b798ad
NB
2056 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2057 &geom);
6f034ece
LB
2058 if (ret < 0)
2059 return ret;
89b798ad
NB
2060
2061 if (geom.len < length + size)
239b14b3 2062 return 1;
3444a972 2063 return 0;
239b14b3
CM
2064}
2065
d352ac68
CM
2066/*
2067 * in order to insert checksums into the metadata in large chunks,
2068 * we wait until bio submission time. All the pages in the bio are
2069 * checksummed and sums are attached onto the ordered extent record.
2070 *
2071 * At IO completion time the cums attached on the ordered extent record
2072 * are inserted into the btree
2073 */
d0ee3934 2074static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2075 u64 bio_offset)
065631f6 2076{
c6100a4b 2077 struct inode *inode = private_data;
4e4cbee9 2078 blk_status_t ret = 0;
e015640f 2079
2ff7e61e 2080 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 2081 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2082 return 0;
2083}
e015640f 2084
d352ac68 2085/*
cad321ad 2086 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2087 * on write, or reading the csums from the tree before a read.
2088 *
2089 * Rules about async/sync submit,
2090 * a) read: sync submit
2091 *
2092 * b) write without checksum: sync submit
2093 *
2094 * c) write with checksum:
2095 * c-1) if bio is issued by fsync: sync submit
2096 * (sync_writers != 0)
2097 *
2098 * c-2) if root is reloc root: sync submit
2099 * (only in case of buffered IO)
2100 *
2101 * c-3) otherwise: async submit
d352ac68 2102 */
a56b1c7b 2103static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2104 int mirror_num,
2105 unsigned long bio_flags)
2106
44b8bd7e 2107{
0b246afa 2108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2109 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2110 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2111 blk_status_t ret = 0;
19b9bdb0 2112 int skip_sum;
b812ce28 2113 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2114
6cbff00f 2115 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2116
70ddc553 2117 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2118 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2119
37226b21 2120 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2121 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2122 if (ret)
61891923 2123 goto out;
5fd02043 2124
d20f7043 2125 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2126 ret = btrfs_submit_compressed_read(inode, bio,
2127 mirror_num,
2128 bio_flags);
2129 goto out;
c2db1073 2130 } else if (!skip_sum) {
2ff7e61e 2131 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2132 if (ret)
61891923 2133 goto out;
c2db1073 2134 }
4d1b5fb4 2135 goto mapit;
b812ce28 2136 } else if (async && !skip_sum) {
17d217fe
YZ
2137 /* csum items have already been cloned */
2138 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2139 goto mapit;
19b9bdb0 2140 /* we're doing a write, do the async checksumming */
c6100a4b 2141 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2142 0, inode, btrfs_submit_bio_start);
61891923 2143 goto out;
b812ce28 2144 } else if (!skip_sum) {
2ff7e61e 2145 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2146 if (ret)
2147 goto out;
19b9bdb0
CM
2148 }
2149
0b86a832 2150mapit:
08635bae 2151 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2152
2153out:
4e4cbee9
CH
2154 if (ret) {
2155 bio->bi_status = ret;
4246a0b6
CH
2156 bio_endio(bio);
2157 }
61891923 2158 return ret;
065631f6 2159}
6885f308 2160
d352ac68
CM
2161/*
2162 * given a list of ordered sums record them in the inode. This happens
2163 * at IO completion time based on sums calculated at bio submission time.
2164 */
ba1da2f4 2165static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2166 struct inode *inode, struct list_head *list)
e6dcd2dc 2167{
e6dcd2dc 2168 struct btrfs_ordered_sum *sum;
ac01f26a 2169 int ret;
e6dcd2dc 2170
c6e30871 2171 list_for_each_entry(sum, list, list) {
7c2871a2 2172 trans->adding_csums = true;
ac01f26a 2173 ret = btrfs_csum_file_blocks(trans,
d20f7043 2174 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2175 trans->adding_csums = false;
ac01f26a
NB
2176 if (ret)
2177 return ret;
e6dcd2dc
CM
2178 }
2179 return 0;
2180}
2181
2ac55d41 2182int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2183 unsigned int extra_bits,
330a5827 2184 struct extent_state **cached_state)
ea8c2819 2185{
fdb1e121 2186 WARN_ON(PAGE_ALIGNED(end));
ea8c2819 2187 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2188 extra_bits, cached_state);
ea8c2819
CM
2189}
2190
d352ac68 2191/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2192struct btrfs_writepage_fixup {
2193 struct page *page;
2194 struct btrfs_work work;
2195};
2196
b2950863 2197static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2198{
2199 struct btrfs_writepage_fixup *fixup;
2200 struct btrfs_ordered_extent *ordered;
2ac55d41 2201 struct extent_state *cached_state = NULL;
364ecf36 2202 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2203 struct page *page;
2204 struct inode *inode;
2205 u64 page_start;
2206 u64 page_end;
87826df0 2207 int ret;
247e743c
CM
2208
2209 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2210 page = fixup->page;
4a096752 2211again:
247e743c
CM
2212 lock_page(page);
2213 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2214 ClearPageChecked(page);
2215 goto out_page;
2216 }
2217
2218 inode = page->mapping->host;
2219 page_start = page_offset(page);
09cbfeaf 2220 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2221
ff13db41 2222 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2223 &cached_state);
4a096752
CM
2224
2225 /* already ordered? We're done */
8b62b72b 2226 if (PagePrivate2(page))
247e743c 2227 goto out;
4a096752 2228
a776c6fa 2229 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2230 PAGE_SIZE);
4a096752 2231 if (ordered) {
2ac55d41 2232 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2233 page_end, &cached_state);
4a096752
CM
2234 unlock_page(page);
2235 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2236 btrfs_put_ordered_extent(ordered);
4a096752
CM
2237 goto again;
2238 }
247e743c 2239
364ecf36 2240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2241 PAGE_SIZE);
87826df0
JM
2242 if (ret) {
2243 mapping_set_error(page->mapping, ret);
2244 end_extent_writepage(page, ret, page_start, page_end);
2245 ClearPageChecked(page);
2246 goto out;
2247 }
2248
f3038ee3 2249 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2250 &cached_state);
f3038ee3
NB
2251 if (ret) {
2252 mapping_set_error(page->mapping, ret);
2253 end_extent_writepage(page, ret, page_start, page_end);
2254 ClearPageChecked(page);
53687007 2255 goto out_reserved;
f3038ee3
NB
2256 }
2257
247e743c 2258 ClearPageChecked(page);
87826df0 2259 set_page_dirty(page);
53687007 2260out_reserved:
8702ba93 2261 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
53687007
FM
2262 if (ret)
2263 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2264 PAGE_SIZE, true);
247e743c 2265out:
2ac55d41 2266 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2267 &cached_state);
247e743c
CM
2268out_page:
2269 unlock_page(page);
09cbfeaf 2270 put_page(page);
b897abec 2271 kfree(fixup);
364ecf36 2272 extent_changeset_free(data_reserved);
247e743c
CM
2273}
2274
2275/*
2276 * There are a few paths in the higher layers of the kernel that directly
2277 * set the page dirty bit without asking the filesystem if it is a
2278 * good idea. This causes problems because we want to make sure COW
2279 * properly happens and the data=ordered rules are followed.
2280 *
c8b97818 2281 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2282 * hasn't been properly setup for IO. We kick off an async process
2283 * to fix it up. The async helper will wait for ordered extents, set
2284 * the delalloc bit and make it safe to write the page.
2285 */
d75855b4 2286int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2287{
2288 struct inode *inode = page->mapping->host;
0b246afa 2289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2290 struct btrfs_writepage_fixup *fixup;
247e743c 2291
8b62b72b
CM
2292 /* this page is properly in the ordered list */
2293 if (TestClearPagePrivate2(page))
247e743c
CM
2294 return 0;
2295
2296 if (PageChecked(page))
2297 return -EAGAIN;
2298
2299 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2300 if (!fixup)
2301 return -EAGAIN;
f421950f 2302
247e743c 2303 SetPageChecked(page);
09cbfeaf 2304 get_page(page);
a0cac0ec 2305 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2306 fixup->page = page;
0b246afa 2307 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2308 return -EBUSY;
247e743c
CM
2309}
2310
d899e052
YZ
2311static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2312 struct inode *inode, u64 file_pos,
2313 u64 disk_bytenr, u64 disk_num_bytes,
2314 u64 num_bytes, u64 ram_bytes,
2315 u8 compression, u8 encryption,
2316 u16 other_encoding, int extent_type)
2317{
2318 struct btrfs_root *root = BTRFS_I(inode)->root;
2319 struct btrfs_file_extent_item *fi;
2320 struct btrfs_path *path;
2321 struct extent_buffer *leaf;
2322 struct btrfs_key ins;
a12b877b 2323 u64 qg_released;
1acae57b 2324 int extent_inserted = 0;
d899e052
YZ
2325 int ret;
2326
2327 path = btrfs_alloc_path();
d8926bb3
MF
2328 if (!path)
2329 return -ENOMEM;
d899e052 2330
a1ed835e
CM
2331 /*
2332 * we may be replacing one extent in the tree with another.
2333 * The new extent is pinned in the extent map, and we don't want
2334 * to drop it from the cache until it is completely in the btree.
2335 *
2336 * So, tell btrfs_drop_extents to leave this extent in the cache.
2337 * the caller is expected to unpin it and allow it to be merged
2338 * with the others.
2339 */
1acae57b
FDBM
2340 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2341 file_pos + num_bytes, NULL, 0,
2342 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2343 if (ret)
2344 goto out;
d899e052 2345
1acae57b 2346 if (!extent_inserted) {
4a0cc7ca 2347 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2348 ins.offset = file_pos;
2349 ins.type = BTRFS_EXTENT_DATA_KEY;
2350
2351 path->leave_spinning = 1;
2352 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2353 sizeof(*fi));
2354 if (ret)
2355 goto out;
2356 }
d899e052
YZ
2357 leaf = path->nodes[0];
2358 fi = btrfs_item_ptr(leaf, path->slots[0],
2359 struct btrfs_file_extent_item);
2360 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2361 btrfs_set_file_extent_type(leaf, fi, extent_type);
2362 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2363 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2364 btrfs_set_file_extent_offset(leaf, fi, 0);
2365 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2366 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2367 btrfs_set_file_extent_compression(leaf, fi, compression);
2368 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2369 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2370
d899e052 2371 btrfs_mark_buffer_dirty(leaf);
ce195332 2372 btrfs_release_path(path);
d899e052
YZ
2373
2374 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2375
2376 ins.objectid = disk_bytenr;
2377 ins.offset = disk_num_bytes;
2378 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2379
297d750b 2380 /*
5846a3c2
QW
2381 * Release the reserved range from inode dirty range map, as it is
2382 * already moved into delayed_ref_head
297d750b 2383 */
a12b877b
QW
2384 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2385 if (ret < 0)
2386 goto out;
2387 qg_released = ret;
84f7d8e6
JB
2388 ret = btrfs_alloc_reserved_file_extent(trans, root,
2389 btrfs_ino(BTRFS_I(inode)),
2390 file_pos, qg_released, &ins);
79787eaa 2391out:
d899e052 2392 btrfs_free_path(path);
b9473439 2393
79787eaa 2394 return ret;
d899e052
YZ
2395}
2396
38c227d8
LB
2397/* snapshot-aware defrag */
2398struct sa_defrag_extent_backref {
2399 struct rb_node node;
2400 struct old_sa_defrag_extent *old;
2401 u64 root_id;
2402 u64 inum;
2403 u64 file_pos;
2404 u64 extent_offset;
2405 u64 num_bytes;
2406 u64 generation;
2407};
2408
2409struct old_sa_defrag_extent {
2410 struct list_head list;
2411 struct new_sa_defrag_extent *new;
2412
2413 u64 extent_offset;
2414 u64 bytenr;
2415 u64 offset;
2416 u64 len;
2417 int count;
2418};
2419
2420struct new_sa_defrag_extent {
2421 struct rb_root root;
2422 struct list_head head;
2423 struct btrfs_path *path;
2424 struct inode *inode;
2425 u64 file_pos;
2426 u64 len;
2427 u64 bytenr;
2428 u64 disk_len;
2429 u8 compress_type;
2430};
2431
2432static int backref_comp(struct sa_defrag_extent_backref *b1,
2433 struct sa_defrag_extent_backref *b2)
2434{
2435 if (b1->root_id < b2->root_id)
2436 return -1;
2437 else if (b1->root_id > b2->root_id)
2438 return 1;
2439
2440 if (b1->inum < b2->inum)
2441 return -1;
2442 else if (b1->inum > b2->inum)
2443 return 1;
2444
2445 if (b1->file_pos < b2->file_pos)
2446 return -1;
2447 else if (b1->file_pos > b2->file_pos)
2448 return 1;
2449
2450 /*
2451 * [------------------------------] ===> (a range of space)
2452 * |<--->| |<---->| =============> (fs/file tree A)
2453 * |<---------------------------->| ===> (fs/file tree B)
2454 *
2455 * A range of space can refer to two file extents in one tree while
2456 * refer to only one file extent in another tree.
2457 *
2458 * So we may process a disk offset more than one time(two extents in A)
2459 * and locate at the same extent(one extent in B), then insert two same
2460 * backrefs(both refer to the extent in B).
2461 */
2462 return 0;
2463}
2464
2465static void backref_insert(struct rb_root *root,
2466 struct sa_defrag_extent_backref *backref)
2467{
2468 struct rb_node **p = &root->rb_node;
2469 struct rb_node *parent = NULL;
2470 struct sa_defrag_extent_backref *entry;
2471 int ret;
2472
2473 while (*p) {
2474 parent = *p;
2475 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2476
2477 ret = backref_comp(backref, entry);
2478 if (ret < 0)
2479 p = &(*p)->rb_left;
2480 else
2481 p = &(*p)->rb_right;
2482 }
2483
2484 rb_link_node(&backref->node, parent, p);
2485 rb_insert_color(&backref->node, root);
2486}
2487
2488/*
2489 * Note the backref might has changed, and in this case we just return 0.
2490 */
2491static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2492 void *ctx)
2493{
2494 struct btrfs_file_extent_item *extent;
38c227d8
LB
2495 struct old_sa_defrag_extent *old = ctx;
2496 struct new_sa_defrag_extent *new = old->new;
2497 struct btrfs_path *path = new->path;
2498 struct btrfs_key key;
2499 struct btrfs_root *root;
2500 struct sa_defrag_extent_backref *backref;
2501 struct extent_buffer *leaf;
2502 struct inode *inode = new->inode;
0b246afa 2503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2504 int slot;
2505 int ret;
2506 u64 extent_offset;
2507 u64 num_bytes;
2508
2509 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2510 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2511 return 0;
2512
2513 key.objectid = root_id;
2514 key.type = BTRFS_ROOT_ITEM_KEY;
2515 key.offset = (u64)-1;
2516
38c227d8
LB
2517 root = btrfs_read_fs_root_no_name(fs_info, &key);
2518 if (IS_ERR(root)) {
2519 if (PTR_ERR(root) == -ENOENT)
2520 return 0;
2521 WARN_ON(1);
ab8d0fc4 2522 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2523 inum, offset, root_id);
2524 return PTR_ERR(root);
2525 }
2526
2527 key.objectid = inum;
2528 key.type = BTRFS_EXTENT_DATA_KEY;
2529 if (offset > (u64)-1 << 32)
2530 key.offset = 0;
2531 else
2532 key.offset = offset;
2533
2534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2535 if (WARN_ON(ret < 0))
38c227d8 2536 return ret;
50f1319c 2537 ret = 0;
38c227d8
LB
2538
2539 while (1) {
2540 cond_resched();
2541
2542 leaf = path->nodes[0];
2543 slot = path->slots[0];
2544
2545 if (slot >= btrfs_header_nritems(leaf)) {
2546 ret = btrfs_next_leaf(root, path);
2547 if (ret < 0) {
2548 goto out;
2549 } else if (ret > 0) {
2550 ret = 0;
2551 goto out;
2552 }
2553 continue;
2554 }
2555
2556 path->slots[0]++;
2557
2558 btrfs_item_key_to_cpu(leaf, &key, slot);
2559
2560 if (key.objectid > inum)
2561 goto out;
2562
2563 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2564 continue;
2565
2566 extent = btrfs_item_ptr(leaf, slot,
2567 struct btrfs_file_extent_item);
2568
2569 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2570 continue;
2571
e68afa49
LB
2572 /*
2573 * 'offset' refers to the exact key.offset,
2574 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2575 * (key.offset - extent_offset).
2576 */
2577 if (key.offset != offset)
38c227d8
LB
2578 continue;
2579
e68afa49 2580 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2581 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2582
38c227d8
LB
2583 if (extent_offset >= old->extent_offset + old->offset +
2584 old->len || extent_offset + num_bytes <=
2585 old->extent_offset + old->offset)
2586 continue;
38c227d8
LB
2587 break;
2588 }
2589
2590 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2591 if (!backref) {
2592 ret = -ENOENT;
2593 goto out;
2594 }
2595
2596 backref->root_id = root_id;
2597 backref->inum = inum;
e68afa49 2598 backref->file_pos = offset;
38c227d8
LB
2599 backref->num_bytes = num_bytes;
2600 backref->extent_offset = extent_offset;
2601 backref->generation = btrfs_file_extent_generation(leaf, extent);
2602 backref->old = old;
2603 backref_insert(&new->root, backref);
2604 old->count++;
2605out:
2606 btrfs_release_path(path);
2607 WARN_ON(ret);
2608 return ret;
2609}
2610
2611static noinline bool record_extent_backrefs(struct btrfs_path *path,
2612 struct new_sa_defrag_extent *new)
2613{
0b246afa 2614 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2615 struct old_sa_defrag_extent *old, *tmp;
2616 int ret;
2617
2618 new->path = path;
2619
2620 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2621 ret = iterate_inodes_from_logical(old->bytenr +
2622 old->extent_offset, fs_info,
38c227d8 2623 path, record_one_backref,
c995ab3c 2624 old, false);
4724b106
JB
2625 if (ret < 0 && ret != -ENOENT)
2626 return false;
38c227d8
LB
2627
2628 /* no backref to be processed for this extent */
2629 if (!old->count) {
2630 list_del(&old->list);
2631 kfree(old);
2632 }
2633 }
2634
2635 if (list_empty(&new->head))
2636 return false;
2637
2638 return true;
2639}
2640
2641static int relink_is_mergable(struct extent_buffer *leaf,
2642 struct btrfs_file_extent_item *fi,
116e0024 2643 struct new_sa_defrag_extent *new)
38c227d8 2644{
116e0024 2645 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2646 return 0;
2647
2648 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2649 return 0;
2650
116e0024
LB
2651 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2652 return 0;
2653
2654 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2655 btrfs_file_extent_other_encoding(leaf, fi))
2656 return 0;
2657
2658 return 1;
2659}
2660
2661/*
2662 * Note the backref might has changed, and in this case we just return 0.
2663 */
2664static noinline int relink_extent_backref(struct btrfs_path *path,
2665 struct sa_defrag_extent_backref *prev,
2666 struct sa_defrag_extent_backref *backref)
2667{
2668 struct btrfs_file_extent_item *extent;
2669 struct btrfs_file_extent_item *item;
2670 struct btrfs_ordered_extent *ordered;
2671 struct btrfs_trans_handle *trans;
82fa113f 2672 struct btrfs_ref ref = { 0 };
38c227d8
LB
2673 struct btrfs_root *root;
2674 struct btrfs_key key;
2675 struct extent_buffer *leaf;
2676 struct old_sa_defrag_extent *old = backref->old;
2677 struct new_sa_defrag_extent *new = old->new;
0b246afa 2678 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2679 struct inode *inode;
2680 struct extent_state *cached = NULL;
2681 int ret = 0;
2682 u64 start;
2683 u64 len;
2684 u64 lock_start;
2685 u64 lock_end;
2686 bool merge = false;
2687 int index;
2688
2689 if (prev && prev->root_id == backref->root_id &&
2690 prev->inum == backref->inum &&
2691 prev->file_pos + prev->num_bytes == backref->file_pos)
2692 merge = true;
2693
2694 /* step 1: get root */
2695 key.objectid = backref->root_id;
2696 key.type = BTRFS_ROOT_ITEM_KEY;
2697 key.offset = (u64)-1;
2698
38c227d8
LB
2699 index = srcu_read_lock(&fs_info->subvol_srcu);
2700
2701 root = btrfs_read_fs_root_no_name(fs_info, &key);
2702 if (IS_ERR(root)) {
2703 srcu_read_unlock(&fs_info->subvol_srcu, index);
2704 if (PTR_ERR(root) == -ENOENT)
2705 return 0;
2706 return PTR_ERR(root);
2707 }
38c227d8 2708
bcbba5e6
WS
2709 if (btrfs_root_readonly(root)) {
2710 srcu_read_unlock(&fs_info->subvol_srcu, index);
2711 return 0;
2712 }
2713
38c227d8
LB
2714 /* step 2: get inode */
2715 key.objectid = backref->inum;
2716 key.type = BTRFS_INODE_ITEM_KEY;
2717 key.offset = 0;
2718
4c66e0d4 2719 inode = btrfs_iget(fs_info->sb, &key, root);
38c227d8
LB
2720 if (IS_ERR(inode)) {
2721 srcu_read_unlock(&fs_info->subvol_srcu, index);
2722 return 0;
2723 }
2724
2725 srcu_read_unlock(&fs_info->subvol_srcu, index);
2726
2727 /* step 3: relink backref */
2728 lock_start = backref->file_pos;
2729 lock_end = backref->file_pos + backref->num_bytes - 1;
2730 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2731 &cached);
38c227d8
LB
2732
2733 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2734 if (ordered) {
2735 btrfs_put_ordered_extent(ordered);
2736 goto out_unlock;
2737 }
2738
2739 trans = btrfs_join_transaction(root);
2740 if (IS_ERR(trans)) {
2741 ret = PTR_ERR(trans);
2742 goto out_unlock;
2743 }
2744
2745 key.objectid = backref->inum;
2746 key.type = BTRFS_EXTENT_DATA_KEY;
2747 key.offset = backref->file_pos;
2748
2749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2750 if (ret < 0) {
2751 goto out_free_path;
2752 } else if (ret > 0) {
2753 ret = 0;
2754 goto out_free_path;
2755 }
2756
2757 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2758 struct btrfs_file_extent_item);
2759
2760 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2761 backref->generation)
2762 goto out_free_path;
2763
2764 btrfs_release_path(path);
2765
2766 start = backref->file_pos;
2767 if (backref->extent_offset < old->extent_offset + old->offset)
2768 start += old->extent_offset + old->offset -
2769 backref->extent_offset;
2770
2771 len = min(backref->extent_offset + backref->num_bytes,
2772 old->extent_offset + old->offset + old->len);
2773 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2774
2775 ret = btrfs_drop_extents(trans, root, inode, start,
2776 start + len, 1);
2777 if (ret)
2778 goto out_free_path;
2779again:
4a0cc7ca 2780 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2781 key.type = BTRFS_EXTENT_DATA_KEY;
2782 key.offset = start;
2783
a09a0a70 2784 path->leave_spinning = 1;
38c227d8
LB
2785 if (merge) {
2786 struct btrfs_file_extent_item *fi;
2787 u64 extent_len;
2788 struct btrfs_key found_key;
2789
3c9665df 2790 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2791 if (ret < 0)
2792 goto out_free_path;
2793
2794 path->slots[0]--;
2795 leaf = path->nodes[0];
2796 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2797
2798 fi = btrfs_item_ptr(leaf, path->slots[0],
2799 struct btrfs_file_extent_item);
2800 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2801
116e0024
LB
2802 if (extent_len + found_key.offset == start &&
2803 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2804 btrfs_set_file_extent_num_bytes(leaf, fi,
2805 extent_len + len);
2806 btrfs_mark_buffer_dirty(leaf);
2807 inode_add_bytes(inode, len);
2808
2809 ret = 1;
2810 goto out_free_path;
2811 } else {
2812 merge = false;
2813 btrfs_release_path(path);
2814 goto again;
2815 }
2816 }
2817
2818 ret = btrfs_insert_empty_item(trans, root, path, &key,
2819 sizeof(*extent));
2820 if (ret) {
66642832 2821 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2822 goto out_free_path;
2823 }
2824
2825 leaf = path->nodes[0];
2826 item = btrfs_item_ptr(leaf, path->slots[0],
2827 struct btrfs_file_extent_item);
2828 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2829 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2830 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2831 btrfs_set_file_extent_num_bytes(leaf, item, len);
2832 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2833 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2834 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2835 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2836 btrfs_set_file_extent_encryption(leaf, item, 0);
2837 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2838
2839 btrfs_mark_buffer_dirty(leaf);
2840 inode_add_bytes(inode, len);
a09a0a70 2841 btrfs_release_path(path);
38c227d8 2842
82fa113f
QW
2843 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2844 new->disk_len, 0);
2845 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2846 new->file_pos); /* start - extent_offset */
2847 ret = btrfs_inc_extent_ref(trans, &ref);
38c227d8 2848 if (ret) {
66642832 2849 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2850 goto out_free_path;
2851 }
2852
2853 ret = 1;
2854out_free_path:
2855 btrfs_release_path(path);
a09a0a70 2856 path->leave_spinning = 0;
3a45bb20 2857 btrfs_end_transaction(trans);
38c227d8
LB
2858out_unlock:
2859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2860 &cached);
38c227d8
LB
2861 iput(inode);
2862 return ret;
2863}
2864
6f519564
LB
2865static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2866{
2867 struct old_sa_defrag_extent *old, *tmp;
2868
2869 if (!new)
2870 return;
2871
2872 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2873 kfree(old);
2874 }
2875 kfree(new);
2876}
2877
38c227d8
LB
2878static void relink_file_extents(struct new_sa_defrag_extent *new)
2879{
0b246afa 2880 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2881 struct btrfs_path *path;
38c227d8
LB
2882 struct sa_defrag_extent_backref *backref;
2883 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2884 struct rb_node *node;
2885 int ret;
2886
38c227d8
LB
2887 path = btrfs_alloc_path();
2888 if (!path)
2889 return;
2890
2891 if (!record_extent_backrefs(path, new)) {
2892 btrfs_free_path(path);
2893 goto out;
2894 }
2895 btrfs_release_path(path);
2896
2897 while (1) {
2898 node = rb_first(&new->root);
2899 if (!node)
2900 break;
2901 rb_erase(node, &new->root);
2902
2903 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2904
2905 ret = relink_extent_backref(path, prev, backref);
2906 WARN_ON(ret < 0);
2907
2908 kfree(prev);
2909
2910 if (ret == 1)
2911 prev = backref;
2912 else
2913 prev = NULL;
2914 cond_resched();
2915 }
2916 kfree(prev);
2917
2918 btrfs_free_path(path);
38c227d8 2919out:
6f519564
LB
2920 free_sa_defrag_extent(new);
2921
0b246afa
JM
2922 atomic_dec(&fs_info->defrag_running);
2923 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2924}
2925
2926static struct new_sa_defrag_extent *
2927record_old_file_extents(struct inode *inode,
2928 struct btrfs_ordered_extent *ordered)
2929{
0b246afa 2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2931 struct btrfs_root *root = BTRFS_I(inode)->root;
2932 struct btrfs_path *path;
2933 struct btrfs_key key;
6f519564 2934 struct old_sa_defrag_extent *old;
38c227d8
LB
2935 struct new_sa_defrag_extent *new;
2936 int ret;
2937
2938 new = kmalloc(sizeof(*new), GFP_NOFS);
2939 if (!new)
2940 return NULL;
2941
2942 new->inode = inode;
2943 new->file_pos = ordered->file_offset;
2944 new->len = ordered->len;
2945 new->bytenr = ordered->start;
2946 new->disk_len = ordered->disk_len;
2947 new->compress_type = ordered->compress_type;
2948 new->root = RB_ROOT;
2949 INIT_LIST_HEAD(&new->head);
2950
2951 path = btrfs_alloc_path();
2952 if (!path)
2953 goto out_kfree;
2954
4a0cc7ca 2955 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2956 key.type = BTRFS_EXTENT_DATA_KEY;
2957 key.offset = new->file_pos;
2958
2959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2960 if (ret < 0)
2961 goto out_free_path;
2962 if (ret > 0 && path->slots[0] > 0)
2963 path->slots[0]--;
2964
2965 /* find out all the old extents for the file range */
2966 while (1) {
2967 struct btrfs_file_extent_item *extent;
2968 struct extent_buffer *l;
2969 int slot;
2970 u64 num_bytes;
2971 u64 offset;
2972 u64 end;
2973 u64 disk_bytenr;
2974 u64 extent_offset;
2975
2976 l = path->nodes[0];
2977 slot = path->slots[0];
2978
2979 if (slot >= btrfs_header_nritems(l)) {
2980 ret = btrfs_next_leaf(root, path);
2981 if (ret < 0)
6f519564 2982 goto out_free_path;
38c227d8
LB
2983 else if (ret > 0)
2984 break;
2985 continue;
2986 }
2987
2988 btrfs_item_key_to_cpu(l, &key, slot);
2989
4a0cc7ca 2990 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2991 break;
2992 if (key.type != BTRFS_EXTENT_DATA_KEY)
2993 break;
2994 if (key.offset >= new->file_pos + new->len)
2995 break;
2996
2997 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2998
2999 num_bytes = btrfs_file_extent_num_bytes(l, extent);
3000 if (key.offset + num_bytes < new->file_pos)
3001 goto next;
3002
3003 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
3004 if (!disk_bytenr)
3005 goto next;
3006
3007 extent_offset = btrfs_file_extent_offset(l, extent);
3008
3009 old = kmalloc(sizeof(*old), GFP_NOFS);
3010 if (!old)
6f519564 3011 goto out_free_path;
38c227d8
LB
3012
3013 offset = max(new->file_pos, key.offset);
3014 end = min(new->file_pos + new->len, key.offset + num_bytes);
3015
3016 old->bytenr = disk_bytenr;
3017 old->extent_offset = extent_offset;
3018 old->offset = offset - key.offset;
3019 old->len = end - offset;
3020 old->new = new;
3021 old->count = 0;
3022 list_add_tail(&old->list, &new->head);
3023next:
3024 path->slots[0]++;
3025 cond_resched();
3026 }
3027
3028 btrfs_free_path(path);
0b246afa 3029 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
3030
3031 return new;
3032
38c227d8
LB
3033out_free_path:
3034 btrfs_free_path(path);
3035out_kfree:
6f519564 3036 free_sa_defrag_extent(new);
38c227d8
LB
3037 return NULL;
3038}
3039
2ff7e61e 3040static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
3041 u64 start, u64 len)
3042{
3043 struct btrfs_block_group_cache *cache;
3044
0b246afa 3045 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
3046 ASSERT(cache);
3047
3048 spin_lock(&cache->lock);
3049 cache->delalloc_bytes -= len;
3050 spin_unlock(&cache->lock);
3051
3052 btrfs_put_block_group(cache);
3053}
3054
d352ac68
CM
3055/* as ordered data IO finishes, this gets called so we can finish
3056 * an ordered extent if the range of bytes in the file it covers are
3057 * fully written.
3058 */
5fd02043 3059static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3060{
5fd02043 3061 struct inode *inode = ordered_extent->inode;
0b246afa 3062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 3063 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 3064 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 3065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 3066 struct extent_state *cached_state = NULL;
38c227d8 3067 struct new_sa_defrag_extent *new = NULL;
261507a0 3068 int compress_type = 0;
77cef2ec
JB
3069 int ret = 0;
3070 u64 logical_len = ordered_extent->len;
8d510121 3071 bool freespace_inode;
77cef2ec 3072 bool truncated = false;
a7e3b975
FM
3073 bool range_locked = false;
3074 bool clear_new_delalloc_bytes = false;
49940bdd 3075 bool clear_reserved_extent = true;
a7e3b975
FM
3076
3077 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3078 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3079 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3080 clear_new_delalloc_bytes = true;
e6dcd2dc 3081
8d510121 3082 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 3083
5fd02043
JB
3084 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3085 ret = -EIO;
3086 goto out;
3087 }
3088
7ab7956e
NB
3089 btrfs_free_io_failure_record(BTRFS_I(inode),
3090 ordered_extent->file_offset,
3091 ordered_extent->file_offset +
3092 ordered_extent->len - 1);
f612496b 3093
77cef2ec
JB
3094 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3095 truncated = true;
3096 logical_len = ordered_extent->truncated_len;
3097 /* Truncated the entire extent, don't bother adding */
3098 if (!logical_len)
3099 goto out;
3100 }
3101
c2167754 3102 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3103 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
3104
3105 /*
3106 * For mwrite(mmap + memset to write) case, we still reserve
3107 * space for NOCOW range.
3108 * As NOCOW won't cause a new delayed ref, just free the space
3109 */
bc42bda2 3110 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 3111 ordered_extent->len);
6c760c07 3112 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
8d510121
NB
3113 if (freespace_inode)
3114 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3115 else
3116 trans = btrfs_join_transaction(root);
3117 if (IS_ERR(trans)) {
3118 ret = PTR_ERR(trans);
3119 trans = NULL;
3120 goto out;
c2167754 3121 }
69fe2d75 3122 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3123 ret = btrfs_update_inode_fallback(trans, root, inode);
3124 if (ret) /* -ENOMEM or corruption */
66642832 3125 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3126 goto out;
3127 }
e6dcd2dc 3128
a7e3b975 3129 range_locked = true;
2ac55d41
JB
3130 lock_extent_bits(io_tree, ordered_extent->file_offset,
3131 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3132 &cached_state);
e6dcd2dc 3133
38c227d8
LB
3134 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3135 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3136 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3137 if (ret) {
3138 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3139 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3140 /* the inode is shared */
3141 new = record_old_file_extents(inode, ordered_extent);
3142
3143 clear_extent_bit(io_tree, ordered_extent->file_offset,
3144 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3145 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3146 }
3147
8d510121
NB
3148 if (freespace_inode)
3149 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3150 else
7a7eaa40 3151 trans = btrfs_join_transaction(root);
79787eaa
JM
3152 if (IS_ERR(trans)) {
3153 ret = PTR_ERR(trans);
3154 trans = NULL;
a7e3b975 3155 goto out;
79787eaa 3156 }
a79b7d4b 3157
69fe2d75 3158 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3159
c8b97818 3160 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3161 compress_type = ordered_extent->compress_type;
d899e052 3162 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3163 BUG_ON(compress_type);
b430b775
JM
3164 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3165 ordered_extent->len);
7a6d7067 3166 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3167 ordered_extent->file_offset,
3168 ordered_extent->file_offset +
77cef2ec 3169 logical_len);
d899e052 3170 } else {
0b246afa 3171 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3172 ret = insert_reserved_file_extent(trans, inode,
3173 ordered_extent->file_offset,
3174 ordered_extent->start,
3175 ordered_extent->disk_len,
77cef2ec 3176 logical_len, logical_len,
261507a0 3177 compress_type, 0, 0,
d899e052 3178 BTRFS_FILE_EXTENT_REG);
49940bdd
JB
3179 if (!ret) {
3180 clear_reserved_extent = false;
2ff7e61e 3181 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3182 ordered_extent->start,
3183 ordered_extent->disk_len);
49940bdd 3184 }
d899e052 3185 }
5dc562c5
JB
3186 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3187 ordered_extent->file_offset, ordered_extent->len,
3188 trans->transid);
79787eaa 3189 if (ret < 0) {
66642832 3190 btrfs_abort_transaction(trans, ret);
a7e3b975 3191 goto out;
79787eaa 3192 }
2ac55d41 3193
ac01f26a
NB
3194 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3195 if (ret) {
3196 btrfs_abort_transaction(trans, ret);
3197 goto out;
3198 }
e6dcd2dc 3199
6c760c07
JB
3200 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3201 ret = btrfs_update_inode_fallback(trans, root, inode);
3202 if (ret) { /* -ENOMEM or corruption */
66642832 3203 btrfs_abort_transaction(trans, ret);
a7e3b975 3204 goto out;
1ef30be1
JB
3205 }
3206 ret = 0;
c2167754 3207out:
a7e3b975
FM
3208 if (range_locked || clear_new_delalloc_bytes) {
3209 unsigned int clear_bits = 0;
3210
3211 if (range_locked)
3212 clear_bits |= EXTENT_LOCKED;
3213 if (clear_new_delalloc_bytes)
3214 clear_bits |= EXTENT_DELALLOC_NEW;
3215 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3216 ordered_extent->file_offset,
3217 ordered_extent->file_offset +
3218 ordered_extent->len - 1,
3219 clear_bits,
3220 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3221 0, &cached_state);
a7e3b975
FM
3222 }
3223
a698d075 3224 if (trans)
3a45bb20 3225 btrfs_end_transaction(trans);
0cb59c99 3226
77cef2ec
JB
3227 if (ret || truncated) {
3228 u64 start, end;
3229
3230 if (truncated)
3231 start = ordered_extent->file_offset + logical_len;
3232 else
3233 start = ordered_extent->file_offset;
3234 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3235 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3236
3237 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3238 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3239
0bec9ef5
JB
3240 /*
3241 * If the ordered extent had an IOERR or something else went
3242 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3243 * back to the allocator. We only free the extent in the
3244 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3245 *
3246 * If we made it past insert_reserved_file_extent before we
3247 * errored out then we don't need to do this as the accounting
3248 * has already been done.
0bec9ef5 3249 */
77cef2ec 3250 if ((ret || !logical_len) &&
49940bdd 3251 clear_reserved_extent &&
77cef2ec 3252 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3253 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3254 btrfs_free_reserved_extent(fs_info,
3255 ordered_extent->start,
e570fd27 3256 ordered_extent->disk_len, 1);
0bec9ef5
JB
3257 }
3258
3259
5fd02043 3260 /*
8bad3c02
LB
3261 * This needs to be done to make sure anybody waiting knows we are done
3262 * updating everything for this ordered extent.
5fd02043
JB
3263 */
3264 btrfs_remove_ordered_extent(inode, ordered_extent);
3265
38c227d8 3266 /* for snapshot-aware defrag */
6f519564
LB
3267 if (new) {
3268 if (ret) {
3269 free_sa_defrag_extent(new);
0b246afa 3270 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3271 } else {
3272 relink_file_extents(new);
3273 }
3274 }
38c227d8 3275
e6dcd2dc
CM
3276 /* once for us */
3277 btrfs_put_ordered_extent(ordered_extent);
3278 /* once for the tree */
3279 btrfs_put_ordered_extent(ordered_extent);
3280
5fd02043
JB
3281 return ret;
3282}
3283
3284static void finish_ordered_fn(struct btrfs_work *work)
3285{
3286 struct btrfs_ordered_extent *ordered_extent;
3287 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3288 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3289}
3290
c629732d
NB
3291void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3292 u64 end, int uptodate)
211f90e6 3293{
5fd02043 3294 struct inode *inode = page->mapping->host;
0b246afa 3295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3296 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 3297 struct btrfs_workqueue *wq;
5fd02043 3298
1abe9b8a 3299 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3300
8b62b72b 3301 ClearPagePrivate2(page);
5fd02043
JB
3302 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3303 end - start + 1, uptodate))
c3988d63 3304 return;
5fd02043 3305
a0cac0ec 3306 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 3307 wq = fs_info->endio_freespace_worker;
a0cac0ec 3308 else
0b246afa 3309 wq = fs_info->endio_write_workers;
5fd02043 3310
a0cac0ec 3311 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 3312 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3313}
3314
dc380aea
MX
3315static int __readpage_endio_check(struct inode *inode,
3316 struct btrfs_io_bio *io_bio,
3317 int icsum, struct page *page,
3318 int pgoff, u64 start, size_t len)
3319{
d5178578
JT
3320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3321 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 3322 char *kaddr;
d5178578
JT
3323 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3324 u8 *csum_expected;
3325 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3326
d5178578 3327 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
3328
3329 kaddr = kmap_atomic(page);
d5178578
JT
3330 shash->tfm = fs_info->csum_shash;
3331
3332 crypto_shash_init(shash);
3333 crypto_shash_update(shash, kaddr + pgoff, len);
3334 crypto_shash_final(shash, csum);
3335
3336 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
3337 goto zeroit;
3338
3339 kunmap_atomic(kaddr);
3340 return 0;
3341zeroit:
ea41d6b2
JT
3342 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3343 io_bio->mirror_num);
dc380aea
MX
3344 memset(kaddr + pgoff, 1, len);
3345 flush_dcache_page(page);
3346 kunmap_atomic(kaddr);
dc380aea
MX
3347 return -EIO;
3348}
3349
d352ac68
CM
3350/*
3351 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3352 * if there's a match, we allow the bio to finish. If not, the code in
3353 * extent_io.c will try to find good copies for us.
d352ac68 3354 */
facc8a22
MX
3355static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3356 u64 phy_offset, struct page *page,
3357 u64 start, u64 end, int mirror)
07157aac 3358{
4eee4fa4 3359 size_t offset = start - page_offset(page);
07157aac 3360 struct inode *inode = page->mapping->host;
d1310b2e 3361 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3362 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3363
d20f7043
CM
3364 if (PageChecked(page)) {
3365 ClearPageChecked(page);
dc380aea 3366 return 0;
d20f7043 3367 }
6cbff00f
CH
3368
3369 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3370 return 0;
17d217fe
YZ
3371
3372 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3373 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3374 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3375 return 0;
17d217fe 3376 }
d20f7043 3377
facc8a22 3378 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3379 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3380 start, (size_t)(end - start + 1));
07157aac 3381}
b888db2b 3382
c1c3fac2
NB
3383/*
3384 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3385 *
3386 * @inode: The inode we want to perform iput on
3387 *
3388 * This function uses the generic vfs_inode::i_count to track whether we should
3389 * just decrement it (in case it's > 1) or if this is the last iput then link
3390 * the inode to the delayed iput machinery. Delayed iputs are processed at
3391 * transaction commit time/superblock commit/cleaner kthread.
3392 */
24bbcf04
YZ
3393void btrfs_add_delayed_iput(struct inode *inode)
3394{
0b246afa 3395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3396 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3397
3398 if (atomic_add_unless(&inode->i_count, -1, 1))
3399 return;
3400
034f784d 3401 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 3402 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3403 ASSERT(list_empty(&binode->delayed_iput));
3404 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3405 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3406 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3407 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3408}
3409
63611e73
JB
3410static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3411 struct btrfs_inode *inode)
3412{
3413 list_del_init(&inode->delayed_iput);
3414 spin_unlock(&fs_info->delayed_iput_lock);
3415 iput(&inode->vfs_inode);
3416 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3417 wake_up(&fs_info->delayed_iputs_wait);
3418 spin_lock(&fs_info->delayed_iput_lock);
3419}
3420
3421static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3422 struct btrfs_inode *inode)
3423{
3424 if (!list_empty(&inode->delayed_iput)) {
3425 spin_lock(&fs_info->delayed_iput_lock);
3426 if (!list_empty(&inode->delayed_iput))
3427 run_delayed_iput_locked(fs_info, inode);
3428 spin_unlock(&fs_info->delayed_iput_lock);
3429 }
3430}
3431
2ff7e61e 3432void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3433{
24bbcf04 3434
24bbcf04 3435 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3436 while (!list_empty(&fs_info->delayed_iputs)) {
3437 struct btrfs_inode *inode;
3438
3439 inode = list_first_entry(&fs_info->delayed_iputs,
3440 struct btrfs_inode, delayed_iput);
63611e73 3441 run_delayed_iput_locked(fs_info, inode);
24bbcf04 3442 }
8089fe62 3443 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3444}
3445
034f784d
JB
3446/**
3447 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3448 * @fs_info - the fs_info for this fs
3449 * @return - EINTR if we were killed, 0 if nothing's pending
3450 *
3451 * This will wait on any delayed iputs that are currently running with KILLABLE
3452 * set. Once they are all done running we will return, unless we are killed in
3453 * which case we return EINTR. This helps in user operations like fallocate etc
3454 * that might get blocked on the iputs.
3455 */
3456int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3457{
3458 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3459 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3460 if (ret)
3461 return -EINTR;
3462 return 0;
3463}
3464
7b128766 3465/*
f7e9e8fc
OS
3466 * This creates an orphan entry for the given inode in case something goes wrong
3467 * in the middle of an unlink.
7b128766 3468 */
73f2e545 3469int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3470 struct btrfs_inode *inode)
7b128766 3471{
d68fc57b 3472 int ret;
7b128766 3473
27919067
OS
3474 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3475 if (ret && ret != -EEXIST) {
3476 btrfs_abort_transaction(trans, ret);
3477 return ret;
d68fc57b
YZ
3478 }
3479
d68fc57b 3480 return 0;
7b128766
JB
3481}
3482
3483/*
f7e9e8fc
OS
3484 * We have done the delete so we can go ahead and remove the orphan item for
3485 * this particular inode.
7b128766 3486 */
48a3b636 3487static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3488 struct btrfs_inode *inode)
7b128766 3489{
27919067 3490 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3491}
3492
3493/*
3494 * this cleans up any orphans that may be left on the list from the last use
3495 * of this root.
3496 */
66b4ffd1 3497int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3498{
0b246afa 3499 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3500 struct btrfs_path *path;
3501 struct extent_buffer *leaf;
7b128766
JB
3502 struct btrfs_key key, found_key;
3503 struct btrfs_trans_handle *trans;
3504 struct inode *inode;
8f6d7f4f 3505 u64 last_objectid = 0;
f7e9e8fc 3506 int ret = 0, nr_unlink = 0;
7b128766 3507
d68fc57b 3508 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3509 return 0;
c71bf099
YZ
3510
3511 path = btrfs_alloc_path();
66b4ffd1
JB
3512 if (!path) {
3513 ret = -ENOMEM;
3514 goto out;
3515 }
e4058b54 3516 path->reada = READA_BACK;
7b128766
JB
3517
3518 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3519 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3520 key.offset = (u64)-1;
3521
7b128766
JB
3522 while (1) {
3523 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3524 if (ret < 0)
3525 goto out;
7b128766
JB
3526
3527 /*
3528 * if ret == 0 means we found what we were searching for, which
25985edc 3529 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3530 * find the key and see if we have stuff that matches
3531 */
3532 if (ret > 0) {
66b4ffd1 3533 ret = 0;
7b128766
JB
3534 if (path->slots[0] == 0)
3535 break;
3536 path->slots[0]--;
3537 }
3538
3539 /* pull out the item */
3540 leaf = path->nodes[0];
7b128766
JB
3541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3542
3543 /* make sure the item matches what we want */
3544 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3545 break;
962a298f 3546 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3547 break;
3548
3549 /* release the path since we're done with it */
b3b4aa74 3550 btrfs_release_path(path);
7b128766
JB
3551
3552 /*
3553 * this is where we are basically btrfs_lookup, without the
3554 * crossing root thing. we store the inode number in the
3555 * offset of the orphan item.
3556 */
8f6d7f4f
JB
3557
3558 if (found_key.offset == last_objectid) {
0b246afa
JM
3559 btrfs_err(fs_info,
3560 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3561 ret = -EINVAL;
3562 goto out;
3563 }
3564
3565 last_objectid = found_key.offset;
3566
5d4f98a2
YZ
3567 found_key.objectid = found_key.offset;
3568 found_key.type = BTRFS_INODE_ITEM_KEY;
3569 found_key.offset = 0;
4c66e0d4 3570 inode = btrfs_iget(fs_info->sb, &found_key, root);
8c6ffba0 3571 ret = PTR_ERR_OR_ZERO(inode);
67710892 3572 if (ret && ret != -ENOENT)
66b4ffd1 3573 goto out;
7b128766 3574
0b246afa 3575 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3576 struct btrfs_root *dead_root;
3577 struct btrfs_fs_info *fs_info = root->fs_info;
3578 int is_dead_root = 0;
3579
3580 /*
3581 * this is an orphan in the tree root. Currently these
3582 * could come from 2 sources:
3583 * a) a snapshot deletion in progress
3584 * b) a free space cache inode
3585 * We need to distinguish those two, as the snapshot
3586 * orphan must not get deleted.
3587 * find_dead_roots already ran before us, so if this
3588 * is a snapshot deletion, we should find the root
3589 * in the dead_roots list
3590 */
3591 spin_lock(&fs_info->trans_lock);
3592 list_for_each_entry(dead_root, &fs_info->dead_roots,
3593 root_list) {
3594 if (dead_root->root_key.objectid ==
3595 found_key.objectid) {
3596 is_dead_root = 1;
3597 break;
3598 }
3599 }
3600 spin_unlock(&fs_info->trans_lock);
3601 if (is_dead_root) {
3602 /* prevent this orphan from being found again */
3603 key.offset = found_key.objectid - 1;
3604 continue;
3605 }
f7e9e8fc 3606
f8e9e0b0 3607 }
f7e9e8fc 3608
7b128766 3609 /*
f7e9e8fc
OS
3610 * If we have an inode with links, there are a couple of
3611 * possibilities. Old kernels (before v3.12) used to create an
3612 * orphan item for truncate indicating that there were possibly
3613 * extent items past i_size that needed to be deleted. In v3.12,
3614 * truncate was changed to update i_size in sync with the extent
3615 * items, but the (useless) orphan item was still created. Since
3616 * v4.18, we don't create the orphan item for truncate at all.
3617 *
3618 * So, this item could mean that we need to do a truncate, but
3619 * only if this filesystem was last used on a pre-v3.12 kernel
3620 * and was not cleanly unmounted. The odds of that are quite
3621 * slim, and it's a pain to do the truncate now, so just delete
3622 * the orphan item.
3623 *
3624 * It's also possible that this orphan item was supposed to be
3625 * deleted but wasn't. The inode number may have been reused,
3626 * but either way, we can delete the orphan item.
7b128766 3627 */
f7e9e8fc
OS
3628 if (ret == -ENOENT || inode->i_nlink) {
3629 if (!ret)
3630 iput(inode);
a8c9e576 3631 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3632 if (IS_ERR(trans)) {
3633 ret = PTR_ERR(trans);
3634 goto out;
3635 }
0b246afa
JM
3636 btrfs_debug(fs_info, "auto deleting %Lu",
3637 found_key.objectid);
a8c9e576
JB
3638 ret = btrfs_del_orphan_item(trans, root,
3639 found_key.objectid);
3a45bb20 3640 btrfs_end_transaction(trans);
4ef31a45
JB
3641 if (ret)
3642 goto out;
7b128766
JB
3643 continue;
3644 }
3645
f7e9e8fc 3646 nr_unlink++;
7b128766
JB
3647
3648 /* this will do delete_inode and everything for us */
3649 iput(inode);
3650 }
3254c876
MX
3651 /* release the path since we're done with it */
3652 btrfs_release_path(path);
3653
d68fc57b
YZ
3654 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3655
a575ceeb 3656 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3657 trans = btrfs_join_transaction(root);
66b4ffd1 3658 if (!IS_ERR(trans))
3a45bb20 3659 btrfs_end_transaction(trans);
d68fc57b 3660 }
7b128766
JB
3661
3662 if (nr_unlink)
0b246afa 3663 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3664
3665out:
3666 if (ret)
0b246afa 3667 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3668 btrfs_free_path(path);
3669 return ret;
7b128766
JB
3670}
3671
46a53cca
CM
3672/*
3673 * very simple check to peek ahead in the leaf looking for xattrs. If we
3674 * don't find any xattrs, we know there can't be any acls.
3675 *
3676 * slot is the slot the inode is in, objectid is the objectid of the inode
3677 */
3678static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3679 int slot, u64 objectid,
3680 int *first_xattr_slot)
46a53cca
CM
3681{
3682 u32 nritems = btrfs_header_nritems(leaf);
3683 struct btrfs_key found_key;
f23b5a59
JB
3684 static u64 xattr_access = 0;
3685 static u64 xattr_default = 0;
46a53cca
CM
3686 int scanned = 0;
3687
f23b5a59 3688 if (!xattr_access) {
97d79299
AG
3689 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3690 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3691 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3692 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3693 }
3694
46a53cca 3695 slot++;
63541927 3696 *first_xattr_slot = -1;
46a53cca
CM
3697 while (slot < nritems) {
3698 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699
3700 /* we found a different objectid, there must not be acls */
3701 if (found_key.objectid != objectid)
3702 return 0;
3703
3704 /* we found an xattr, assume we've got an acl */
f23b5a59 3705 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3706 if (*first_xattr_slot == -1)
3707 *first_xattr_slot = slot;
f23b5a59
JB
3708 if (found_key.offset == xattr_access ||
3709 found_key.offset == xattr_default)
3710 return 1;
3711 }
46a53cca
CM
3712
3713 /*
3714 * we found a key greater than an xattr key, there can't
3715 * be any acls later on
3716 */
3717 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3718 return 0;
3719
3720 slot++;
3721 scanned++;
3722
3723 /*
3724 * it goes inode, inode backrefs, xattrs, extents,
3725 * so if there are a ton of hard links to an inode there can
3726 * be a lot of backrefs. Don't waste time searching too hard,
3727 * this is just an optimization
3728 */
3729 if (scanned >= 8)
3730 break;
3731 }
3732 /* we hit the end of the leaf before we found an xattr or
3733 * something larger than an xattr. We have to assume the inode
3734 * has acls
3735 */
63541927
FDBM
3736 if (*first_xattr_slot == -1)
3737 *first_xattr_slot = slot;
46a53cca
CM
3738 return 1;
3739}
3740
d352ac68
CM
3741/*
3742 * read an inode from the btree into the in-memory inode
3743 */
4222ea71
FM
3744static int btrfs_read_locked_inode(struct inode *inode,
3745 struct btrfs_path *in_path)
39279cc3 3746{
0b246afa 3747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3748 struct btrfs_path *path = in_path;
5f39d397 3749 struct extent_buffer *leaf;
39279cc3
CM
3750 struct btrfs_inode_item *inode_item;
3751 struct btrfs_root *root = BTRFS_I(inode)->root;
3752 struct btrfs_key location;
67de1176 3753 unsigned long ptr;
46a53cca 3754 int maybe_acls;
618e21d5 3755 u32 rdev;
39279cc3 3756 int ret;
2f7e33d4 3757 bool filled = false;
63541927 3758 int first_xattr_slot;
2f7e33d4
MX
3759
3760 ret = btrfs_fill_inode(inode, &rdev);
3761 if (!ret)
3762 filled = true;
39279cc3 3763
4222ea71
FM
3764 if (!path) {
3765 path = btrfs_alloc_path();
3766 if (!path)
3767 return -ENOMEM;
3768 }
1748f843 3769
39279cc3 3770 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3771
39279cc3 3772 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3773 if (ret) {
4222ea71
FM
3774 if (path != in_path)
3775 btrfs_free_path(path);
f5b3a417 3776 return ret;
67710892 3777 }
39279cc3 3778
5f39d397 3779 leaf = path->nodes[0];
2f7e33d4
MX
3780
3781 if (filled)
67de1176 3782 goto cache_index;
2f7e33d4 3783
5f39d397
CM
3784 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3785 struct btrfs_inode_item);
5f39d397 3786 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3787 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3788 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3789 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3790 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3791
a937b979
DS
3792 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3793 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3794
a937b979
DS
3795 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3796 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3797
a937b979
DS
3798 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3799 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3800
9cc97d64 3801 BTRFS_I(inode)->i_otime.tv_sec =
3802 btrfs_timespec_sec(leaf, &inode_item->otime);
3803 BTRFS_I(inode)->i_otime.tv_nsec =
3804 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3805
a76a3cd4 3806 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3807 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3808 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3809
c7f88c4e
JL
3810 inode_set_iversion_queried(inode,
3811 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3812 inode->i_generation = BTRFS_I(inode)->generation;
3813 inode->i_rdev = 0;
3814 rdev = btrfs_inode_rdev(leaf, inode_item);
3815
3816 BTRFS_I(inode)->index_cnt = (u64)-1;
3817 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3818
3819cache_index:
5dc562c5
JB
3820 /*
3821 * If we were modified in the current generation and evicted from memory
3822 * and then re-read we need to do a full sync since we don't have any
3823 * idea about which extents were modified before we were evicted from
3824 * cache.
6e17d30b
YD
3825 *
3826 * This is required for both inode re-read from disk and delayed inode
3827 * in delayed_nodes_tree.
5dc562c5 3828 */
0b246afa 3829 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3830 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3831 &BTRFS_I(inode)->runtime_flags);
3832
bde6c242
FM
3833 /*
3834 * We don't persist the id of the transaction where an unlink operation
3835 * against the inode was last made. So here we assume the inode might
3836 * have been evicted, and therefore the exact value of last_unlink_trans
3837 * lost, and set it to last_trans to avoid metadata inconsistencies
3838 * between the inode and its parent if the inode is fsync'ed and the log
3839 * replayed. For example, in the scenario:
3840 *
3841 * touch mydir/foo
3842 * ln mydir/foo mydir/bar
3843 * sync
3844 * unlink mydir/bar
3845 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3846 * xfs_io -c fsync mydir/foo
3847 * <power failure>
3848 * mount fs, triggers fsync log replay
3849 *
3850 * We must make sure that when we fsync our inode foo we also log its
3851 * parent inode, otherwise after log replay the parent still has the
3852 * dentry with the "bar" name but our inode foo has a link count of 1
3853 * and doesn't have an inode ref with the name "bar" anymore.
3854 *
3855 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3856 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3857 * transaction commits on fsync if our inode is a directory, or if our
3858 * inode is not a directory, logging its parent unnecessarily.
3859 */
3860 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3861
67de1176
MX
3862 path->slots[0]++;
3863 if (inode->i_nlink != 1 ||
3864 path->slots[0] >= btrfs_header_nritems(leaf))
3865 goto cache_acl;
3866
3867 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3868 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3869 goto cache_acl;
3870
3871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3872 if (location.type == BTRFS_INODE_REF_KEY) {
3873 struct btrfs_inode_ref *ref;
3874
3875 ref = (struct btrfs_inode_ref *)ptr;
3876 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3877 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3878 struct btrfs_inode_extref *extref;
3879
3880 extref = (struct btrfs_inode_extref *)ptr;
3881 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3882 extref);
3883 }
2f7e33d4 3884cache_acl:
46a53cca
CM
3885 /*
3886 * try to precache a NULL acl entry for files that don't have
3887 * any xattrs or acls
3888 */
33345d01 3889 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3890 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3891 if (first_xattr_slot != -1) {
3892 path->slots[0] = first_xattr_slot;
3893 ret = btrfs_load_inode_props(inode, path);
3894 if (ret)
0b246afa 3895 btrfs_err(fs_info,
351fd353 3896 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3897 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3898 root->root_key.objectid, ret);
3899 }
4222ea71
FM
3900 if (path != in_path)
3901 btrfs_free_path(path);
63541927 3902
72c04902
AV
3903 if (!maybe_acls)
3904 cache_no_acl(inode);
46a53cca 3905
39279cc3 3906 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3907 case S_IFREG:
3908 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3909 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3910 inode->i_fop = &btrfs_file_operations;
3911 inode->i_op = &btrfs_file_inode_operations;
3912 break;
3913 case S_IFDIR:
3914 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3915 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3916 break;
3917 case S_IFLNK:
3918 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3919 inode_nohighmem(inode);
4779cc04 3920 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3921 break;
618e21d5 3922 default:
0279b4cd 3923 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3924 init_special_inode(inode, inode->i_mode, rdev);
3925 break;
39279cc3 3926 }
6cbff00f 3927
7b6a221e 3928 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3929 return 0;
39279cc3
CM
3930}
3931
d352ac68
CM
3932/*
3933 * given a leaf and an inode, copy the inode fields into the leaf
3934 */
e02119d5
CM
3935static void fill_inode_item(struct btrfs_trans_handle *trans,
3936 struct extent_buffer *leaf,
5f39d397 3937 struct btrfs_inode_item *item,
39279cc3
CM
3938 struct inode *inode)
3939{
51fab693
LB
3940 struct btrfs_map_token token;
3941
c82f823c 3942 btrfs_init_map_token(&token, leaf);
5f39d397 3943
51fab693
LB
3944 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3945 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3946 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3947 &token);
3948 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3949 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3950
a937b979 3951 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3952 inode->i_atime.tv_sec, &token);
a937b979 3953 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3954 inode->i_atime.tv_nsec, &token);
5f39d397 3955
a937b979 3956 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3957 inode->i_mtime.tv_sec, &token);
a937b979 3958 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3959 inode->i_mtime.tv_nsec, &token);
5f39d397 3960
a937b979 3961 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3962 inode->i_ctime.tv_sec, &token);
a937b979 3963 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3964 inode->i_ctime.tv_nsec, &token);
5f39d397 3965
9cc97d64 3966 btrfs_set_token_timespec_sec(leaf, &item->otime,
3967 BTRFS_I(inode)->i_otime.tv_sec, &token);
3968 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3969 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3970
51fab693
LB
3971 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3972 &token);
3973 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3974 &token);
c7f88c4e
JL
3975 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3976 &token);
51fab693
LB
3977 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3978 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3979 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3980 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3981}
3982
d352ac68
CM
3983/*
3984 * copy everything in the in-memory inode into the btree.
3985 */
2115133f 3986static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3987 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3988{
3989 struct btrfs_inode_item *inode_item;
3990 struct btrfs_path *path;
5f39d397 3991 struct extent_buffer *leaf;
39279cc3
CM
3992 int ret;
3993
3994 path = btrfs_alloc_path();
16cdcec7
MX
3995 if (!path)
3996 return -ENOMEM;
3997
b9473439 3998 path->leave_spinning = 1;
16cdcec7
MX
3999 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4000 1);
39279cc3
CM
4001 if (ret) {
4002 if (ret > 0)
4003 ret = -ENOENT;
4004 goto failed;
4005 }
4006
5f39d397
CM
4007 leaf = path->nodes[0];
4008 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4009 struct btrfs_inode_item);
39279cc3 4010
e02119d5 4011 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 4012 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 4013 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4014 ret = 0;
4015failed:
39279cc3
CM
4016 btrfs_free_path(path);
4017 return ret;
4018}
4019
2115133f
CM
4020/*
4021 * copy everything in the in-memory inode into the btree.
4022 */
4023noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root, struct inode *inode)
4025{
0b246afa 4026 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4027 int ret;
4028
4029 /*
4030 * If the inode is a free space inode, we can deadlock during commit
4031 * if we put it into the delayed code.
4032 *
4033 * The data relocation inode should also be directly updated
4034 * without delay
4035 */
70ddc553 4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4037 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4039 btrfs_update_root_times(trans, root);
4040
2115133f
CM
4041 ret = btrfs_delayed_update_inode(trans, root, inode);
4042 if (!ret)
4043 btrfs_set_inode_last_trans(trans, inode);
4044 return ret;
4045 }
4046
4047 return btrfs_update_inode_item(trans, root, inode);
4048}
4049
be6aef60
JB
4050noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4051 struct btrfs_root *root,
4052 struct inode *inode)
2115133f
CM
4053{
4054 int ret;
4055
4056 ret = btrfs_update_inode(trans, root, inode);
4057 if (ret == -ENOSPC)
4058 return btrfs_update_inode_item(trans, root, inode);
4059 return ret;
4060}
4061
d352ac68
CM
4062/*
4063 * unlink helper that gets used here in inode.c and in the tree logging
4064 * recovery code. It remove a link in a directory with a given name, and
4065 * also drops the back refs in the inode to the directory
4066 */
92986796
AV
4067static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4068 struct btrfs_root *root,
4ec5934e
NB
4069 struct btrfs_inode *dir,
4070 struct btrfs_inode *inode,
92986796 4071 const char *name, int name_len)
39279cc3 4072{
0b246afa 4073 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4074 struct btrfs_path *path;
39279cc3 4075 int ret = 0;
39279cc3 4076 struct btrfs_dir_item *di;
aec7477b 4077 u64 index;
33345d01
LZ
4078 u64 ino = btrfs_ino(inode);
4079 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4080
4081 path = btrfs_alloc_path();
54aa1f4d
CM
4082 if (!path) {
4083 ret = -ENOMEM;
554233a6 4084 goto out;
54aa1f4d
CM
4085 }
4086
b9473439 4087 path->leave_spinning = 1;
33345d01 4088 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 4089 name, name_len, -1);
3cf5068f
LB
4090 if (IS_ERR_OR_NULL(di)) {
4091 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4092 goto err;
4093 }
39279cc3 4094 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4095 if (ret)
4096 goto err;
b3b4aa74 4097 btrfs_release_path(path);
39279cc3 4098
67de1176
MX
4099 /*
4100 * If we don't have dir index, we have to get it by looking up
4101 * the inode ref, since we get the inode ref, remove it directly,
4102 * it is unnecessary to do delayed deletion.
4103 *
4104 * But if we have dir index, needn't search inode ref to get it.
4105 * Since the inode ref is close to the inode item, it is better
4106 * that we delay to delete it, and just do this deletion when
4107 * we update the inode item.
4108 */
4ec5934e 4109 if (inode->dir_index) {
67de1176
MX
4110 ret = btrfs_delayed_delete_inode_ref(inode);
4111 if (!ret) {
4ec5934e 4112 index = inode->dir_index;
67de1176
MX
4113 goto skip_backref;
4114 }
4115 }
4116
33345d01
LZ
4117 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4118 dir_ino, &index);
aec7477b 4119 if (ret) {
0b246afa 4120 btrfs_info(fs_info,
c2cf52eb 4121 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4122 name_len, name, ino, dir_ino);
66642832 4123 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4124 goto err;
4125 }
67de1176 4126skip_backref:
9add2945 4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4128 if (ret) {
66642832 4129 btrfs_abort_transaction(trans, ret);
39279cc3 4130 goto err;
79787eaa 4131 }
39279cc3 4132
4ec5934e
NB
4133 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4134 dir_ino);
79787eaa 4135 if (ret != 0 && ret != -ENOENT) {
66642832 4136 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4137 goto err;
4138 }
e02119d5 4139
4ec5934e
NB
4140 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4141 index);
6418c961
CM
4142 if (ret == -ENOENT)
4143 ret = 0;
d4e3991b 4144 else if (ret)
66642832 4145 btrfs_abort_transaction(trans, ret);
63611e73
JB
4146
4147 /*
4148 * If we have a pending delayed iput we could end up with the final iput
4149 * being run in btrfs-cleaner context. If we have enough of these built
4150 * up we can end up burning a lot of time in btrfs-cleaner without any
4151 * way to throttle the unlinks. Since we're currently holding a ref on
4152 * the inode we can run the delayed iput here without any issues as the
4153 * final iput won't be done until after we drop the ref we're currently
4154 * holding.
4155 */
4156 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4157err:
4158 btrfs_free_path(path);
e02119d5
CM
4159 if (ret)
4160 goto out;
4161
6ef06d27 4162 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4163 inode_inc_iversion(&inode->vfs_inode);
4164 inode_inc_iversion(&dir->vfs_inode);
4165 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4166 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4167 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4168out:
39279cc3
CM
4169 return ret;
4170}
4171
92986796
AV
4172int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *root,
4ec5934e 4174 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4175 const char *name, int name_len)
4176{
4177 int ret;
4178 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4179 if (!ret) {
4ec5934e
NB
4180 drop_nlink(&inode->vfs_inode);
4181 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4182 }
4183 return ret;
4184}
39279cc3 4185
a22285a6
YZ
4186/*
4187 * helper to start transaction for unlink and rmdir.
4188 *
d52be818
JB
4189 * unlink and rmdir are special in btrfs, they do not always free space, so
4190 * if we cannot make our reservations the normal way try and see if there is
4191 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4192 * allow the unlink to occur.
a22285a6 4193 */
d52be818 4194static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4195{
a22285a6 4196 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4197
e70bea5f
JB
4198 /*
4199 * 1 for the possible orphan item
4200 * 1 for the dir item
4201 * 1 for the dir index
4202 * 1 for the inode ref
e70bea5f
JB
4203 * 1 for the inode
4204 */
8eab77ff 4205 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4206}
4207
4208static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4209{
4210 struct btrfs_root *root = BTRFS_I(dir)->root;
4211 struct btrfs_trans_handle *trans;
2b0143b5 4212 struct inode *inode = d_inode(dentry);
a22285a6 4213 int ret;
a22285a6 4214
d52be818 4215 trans = __unlink_start_trans(dir);
a22285a6
YZ
4216 if (IS_ERR(trans))
4217 return PTR_ERR(trans);
5f39d397 4218
4ec5934e
NB
4219 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4220 0);
12fcfd22 4221
4ec5934e
NB
4222 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4223 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4224 dentry->d_name.len);
b532402e
TI
4225 if (ret)
4226 goto out;
7b128766 4227
a22285a6 4228 if (inode->i_nlink == 0) {
73f2e545 4229 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4230 if (ret)
4231 goto out;
a22285a6 4232 }
7b128766 4233
b532402e 4234out:
3a45bb20 4235 btrfs_end_transaction(trans);
2ff7e61e 4236 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4237 return ret;
4238}
4239
f60a2364 4240static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4241 struct inode *dir, u64 objectid,
4242 const char *name, int name_len)
4df27c4d 4243{
401b3b19 4244 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4245 struct btrfs_path *path;
4246 struct extent_buffer *leaf;
4247 struct btrfs_dir_item *di;
4248 struct btrfs_key key;
4249 u64 index;
4250 int ret;
4a0cc7ca 4251 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4252
4253 path = btrfs_alloc_path();
4254 if (!path)
4255 return -ENOMEM;
4256
33345d01 4257 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4258 name, name_len, -1);
79787eaa 4259 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4260 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4261 goto out;
4262 }
4df27c4d
YZ
4263
4264 leaf = path->nodes[0];
4265 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4266 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4267 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4268 if (ret) {
66642832 4269 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4270 goto out;
4271 }
b3b4aa74 4272 btrfs_release_path(path);
4df27c4d 4273
3ee1c553
LF
4274 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4275 dir_ino, &index, name, name_len);
4df27c4d 4276 if (ret < 0) {
79787eaa 4277 if (ret != -ENOENT) {
66642832 4278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4279 goto out;
4280 }
33345d01 4281 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4282 name, name_len);
79787eaa
JM
4283 if (IS_ERR_OR_NULL(di)) {
4284 if (!di)
4285 ret = -ENOENT;
4286 else
4287 ret = PTR_ERR(di);
66642832 4288 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4289 goto out;
4290 }
4df27c4d
YZ
4291
4292 leaf = path->nodes[0];
4293 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4294 index = key.offset;
4295 }
945d8962 4296 btrfs_release_path(path);
4df27c4d 4297
9add2945 4298 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4299 if (ret) {
66642832 4300 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4301 goto out;
4302 }
4df27c4d 4303
6ef06d27 4304 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4305 inode_inc_iversion(dir);
c2050a45 4306 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4307 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4308 if (ret)
66642832 4309 btrfs_abort_transaction(trans, ret);
79787eaa 4310out:
71d7aed0 4311 btrfs_free_path(path);
79787eaa 4312 return ret;
4df27c4d
YZ
4313}
4314
ec42f167
MT
4315/*
4316 * Helper to check if the subvolume references other subvolumes or if it's
4317 * default.
4318 */
f60a2364 4319static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4320{
4321 struct btrfs_fs_info *fs_info = root->fs_info;
4322 struct btrfs_path *path;
4323 struct btrfs_dir_item *di;
4324 struct btrfs_key key;
4325 u64 dir_id;
4326 int ret;
4327
4328 path = btrfs_alloc_path();
4329 if (!path)
4330 return -ENOMEM;
4331
4332 /* Make sure this root isn't set as the default subvol */
4333 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4334 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4335 dir_id, "default", 7, 0);
4336 if (di && !IS_ERR(di)) {
4337 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4338 if (key.objectid == root->root_key.objectid) {
4339 ret = -EPERM;
4340 btrfs_err(fs_info,
4341 "deleting default subvolume %llu is not allowed",
4342 key.objectid);
4343 goto out;
4344 }
4345 btrfs_release_path(path);
4346 }
4347
4348 key.objectid = root->root_key.objectid;
4349 key.type = BTRFS_ROOT_REF_KEY;
4350 key.offset = (u64)-1;
4351
4352 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4353 if (ret < 0)
4354 goto out;
4355 BUG_ON(ret == 0);
4356
4357 ret = 0;
4358 if (path->slots[0] > 0) {
4359 path->slots[0]--;
4360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4361 if (key.objectid == root->root_key.objectid &&
4362 key.type == BTRFS_ROOT_REF_KEY)
4363 ret = -ENOTEMPTY;
4364 }
4365out:
4366 btrfs_free_path(path);
4367 return ret;
4368}
4369
20a68004
NB
4370/* Delete all dentries for inodes belonging to the root */
4371static void btrfs_prune_dentries(struct btrfs_root *root)
4372{
4373 struct btrfs_fs_info *fs_info = root->fs_info;
4374 struct rb_node *node;
4375 struct rb_node *prev;
4376 struct btrfs_inode *entry;
4377 struct inode *inode;
4378 u64 objectid = 0;
4379
4380 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4381 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4382
4383 spin_lock(&root->inode_lock);
4384again:
4385 node = root->inode_tree.rb_node;
4386 prev = NULL;
4387 while (node) {
4388 prev = node;
4389 entry = rb_entry(node, struct btrfs_inode, rb_node);
4390
37508515 4391 if (objectid < btrfs_ino(entry))
20a68004 4392 node = node->rb_left;
37508515 4393 else if (objectid > btrfs_ino(entry))
20a68004
NB
4394 node = node->rb_right;
4395 else
4396 break;
4397 }
4398 if (!node) {
4399 while (prev) {
4400 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4401 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4402 node = prev;
4403 break;
4404 }
4405 prev = rb_next(prev);
4406 }
4407 }
4408 while (node) {
4409 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4410 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4411 inode = igrab(&entry->vfs_inode);
4412 if (inode) {
4413 spin_unlock(&root->inode_lock);
4414 if (atomic_read(&inode->i_count) > 1)
4415 d_prune_aliases(inode);
4416 /*
4417 * btrfs_drop_inode will have it removed from the inode
4418 * cache when its usage count hits zero.
4419 */
4420 iput(inode);
4421 cond_resched();
4422 spin_lock(&root->inode_lock);
4423 goto again;
4424 }
4425
4426 if (cond_resched_lock(&root->inode_lock))
4427 goto again;
4428
4429 node = rb_next(node);
4430 }
4431 spin_unlock(&root->inode_lock);
4432}
4433
f60a2364
MT
4434int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4435{
4436 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4437 struct btrfs_root *root = BTRFS_I(dir)->root;
4438 struct inode *inode = d_inode(dentry);
4439 struct btrfs_root *dest = BTRFS_I(inode)->root;
4440 struct btrfs_trans_handle *trans;
4441 struct btrfs_block_rsv block_rsv;
4442 u64 root_flags;
f60a2364
MT
4443 int ret;
4444 int err;
4445
4446 /*
4447 * Don't allow to delete a subvolume with send in progress. This is
4448 * inside the inode lock so the error handling that has to drop the bit
4449 * again is not run concurrently.
4450 */
4451 spin_lock(&dest->root_item_lock);
a7176f74 4452 if (dest->send_in_progress) {
f60a2364
MT
4453 spin_unlock(&dest->root_item_lock);
4454 btrfs_warn(fs_info,
4455 "attempt to delete subvolume %llu during send",
4456 dest->root_key.objectid);
4457 return -EPERM;
4458 }
a7176f74
LF
4459 root_flags = btrfs_root_flags(&dest->root_item);
4460 btrfs_set_root_flags(&dest->root_item,
4461 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4462 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4463
4464 down_write(&fs_info->subvol_sem);
4465
4466 err = may_destroy_subvol(dest);
4467 if (err)
4468 goto out_up_write;
4469
4470 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4471 /*
4472 * One for dir inode,
4473 * two for dir entries,
4474 * two for root ref/backref.
4475 */
c4c129db 4476 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4477 if (err)
4478 goto out_up_write;
4479
4480 trans = btrfs_start_transaction(root, 0);
4481 if (IS_ERR(trans)) {
4482 err = PTR_ERR(trans);
4483 goto out_release;
4484 }
4485 trans->block_rsv = &block_rsv;
4486 trans->bytes_reserved = block_rsv.size;
4487
4488 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4489
401b3b19
LF
4490 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4491 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4492 if (ret) {
4493 err = ret;
4494 btrfs_abort_transaction(trans, ret);
4495 goto out_end_trans;
4496 }
4497
4498 btrfs_record_root_in_trans(trans, dest);
4499
4500 memset(&dest->root_item.drop_progress, 0,
4501 sizeof(dest->root_item.drop_progress));
4502 dest->root_item.drop_level = 0;
4503 btrfs_set_root_refs(&dest->root_item, 0);
4504
4505 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4506 ret = btrfs_insert_orphan_item(trans,
4507 fs_info->tree_root,
4508 dest->root_key.objectid);
4509 if (ret) {
4510 btrfs_abort_transaction(trans, ret);
4511 err = ret;
4512 goto out_end_trans;
4513 }
4514 }
4515
d1957791 4516 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4517 BTRFS_UUID_KEY_SUBVOL,
4518 dest->root_key.objectid);
4519 if (ret && ret != -ENOENT) {
4520 btrfs_abort_transaction(trans, ret);
4521 err = ret;
4522 goto out_end_trans;
4523 }
4524 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4525 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4526 dest->root_item.received_uuid,
4527 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4528 dest->root_key.objectid);
4529 if (ret && ret != -ENOENT) {
4530 btrfs_abort_transaction(trans, ret);
4531 err = ret;
4532 goto out_end_trans;
4533 }
4534 }
4535
4536out_end_trans:
4537 trans->block_rsv = NULL;
4538 trans->bytes_reserved = 0;
4539 ret = btrfs_end_transaction(trans);
4540 if (ret && !err)
4541 err = ret;
4542 inode->i_flags |= S_DEAD;
4543out_release:
4544 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4545out_up_write:
4546 up_write(&fs_info->subvol_sem);
4547 if (err) {
4548 spin_lock(&dest->root_item_lock);
4549 root_flags = btrfs_root_flags(&dest->root_item);
4550 btrfs_set_root_flags(&dest->root_item,
4551 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4552 spin_unlock(&dest->root_item_lock);
4553 } else {
4554 d_invalidate(dentry);
20a68004 4555 btrfs_prune_dentries(dest);
f60a2364
MT
4556 ASSERT(dest->send_in_progress == 0);
4557
4558 /* the last ref */
4559 if (dest->ino_cache_inode) {
4560 iput(dest->ino_cache_inode);
4561 dest->ino_cache_inode = NULL;
4562 }
4563 }
4564
4565 return err;
4566}
4567
39279cc3
CM
4568static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4569{
2b0143b5 4570 struct inode *inode = d_inode(dentry);
1832a6d5 4571 int err = 0;
39279cc3 4572 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4573 struct btrfs_trans_handle *trans;
44f714da 4574 u64 last_unlink_trans;
39279cc3 4575
b3ae244e 4576 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4577 return -ENOTEMPTY;
4a0cc7ca 4578 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4579 return btrfs_delete_subvolume(dir, dentry);
134d4512 4580
d52be818 4581 trans = __unlink_start_trans(dir);
a22285a6 4582 if (IS_ERR(trans))
5df6a9f6 4583 return PTR_ERR(trans);
5df6a9f6 4584
4a0cc7ca 4585 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4586 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4587 BTRFS_I(inode)->location.objectid,
4588 dentry->d_name.name,
4589 dentry->d_name.len);
4590 goto out;
4591 }
4592
73f2e545 4593 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4594 if (err)
4df27c4d 4595 goto out;
7b128766 4596
44f714da
FM
4597 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4598
39279cc3 4599 /* now the directory is empty */
4ec5934e
NB
4600 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4601 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4602 dentry->d_name.len);
44f714da 4603 if (!err) {
6ef06d27 4604 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4605 /*
4606 * Propagate the last_unlink_trans value of the deleted dir to
4607 * its parent directory. This is to prevent an unrecoverable
4608 * log tree in the case we do something like this:
4609 * 1) create dir foo
4610 * 2) create snapshot under dir foo
4611 * 3) delete the snapshot
4612 * 4) rmdir foo
4613 * 5) mkdir foo
4614 * 6) fsync foo or some file inside foo
4615 */
4616 if (last_unlink_trans >= trans->transid)
4617 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4618 }
4df27c4d 4619out:
3a45bb20 4620 btrfs_end_transaction(trans);
2ff7e61e 4621 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4622
39279cc3
CM
4623 return err;
4624}
4625
ddfae63c
JB
4626/*
4627 * Return this if we need to call truncate_block for the last bit of the
4628 * truncate.
4629 */
4630#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4631
39279cc3
CM
4632/*
4633 * this can truncate away extent items, csum items and directory items.
4634 * It starts at a high offset and removes keys until it can't find
d352ac68 4635 * any higher than new_size
39279cc3
CM
4636 *
4637 * csum items that cross the new i_size are truncated to the new size
4638 * as well.
7b128766
JB
4639 *
4640 * min_type is the minimum key type to truncate down to. If set to 0, this
4641 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4642 */
8082510e
YZ
4643int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4644 struct btrfs_root *root,
4645 struct inode *inode,
4646 u64 new_size, u32 min_type)
39279cc3 4647{
0b246afa 4648 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4649 struct btrfs_path *path;
5f39d397 4650 struct extent_buffer *leaf;
39279cc3 4651 struct btrfs_file_extent_item *fi;
8082510e
YZ
4652 struct btrfs_key key;
4653 struct btrfs_key found_key;
39279cc3 4654 u64 extent_start = 0;
db94535d 4655 u64 extent_num_bytes = 0;
5d4f98a2 4656 u64 extent_offset = 0;
39279cc3 4657 u64 item_end = 0;
c1aa4575 4658 u64 last_size = new_size;
8082510e 4659 u32 found_type = (u8)-1;
39279cc3
CM
4660 int found_extent;
4661 int del_item;
85e21bac
CM
4662 int pending_del_nr = 0;
4663 int pending_del_slot = 0;
179e29e4 4664 int extent_type = -1;
8082510e 4665 int ret;
4a0cc7ca 4666 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4667 u64 bytes_deleted = 0;
897ca819
TM
4668 bool be_nice = false;
4669 bool should_throttle = false;
8082510e
YZ
4670
4671 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4672
28ed1345
CM
4673 /*
4674 * for non-free space inodes and ref cows, we want to back off from
4675 * time to time
4676 */
70ddc553 4677 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4678 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4679 be_nice = true;
28ed1345 4680
0eb0e19c
MF
4681 path = btrfs_alloc_path();
4682 if (!path)
4683 return -ENOMEM;
e4058b54 4684 path->reada = READA_BACK;
0eb0e19c 4685
5dc562c5
JB
4686 /*
4687 * We want to drop from the next block forward in case this new size is
4688 * not block aligned since we will be keeping the last block of the
4689 * extent just the way it is.
4690 */
27cdeb70 4691 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4692 root == fs_info->tree_root)
dcdbc059 4693 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4694 fs_info->sectorsize),
da17066c 4695 (u64)-1, 0);
8082510e 4696
16cdcec7
MX
4697 /*
4698 * This function is also used to drop the items in the log tree before
4699 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4700 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4701 * items.
4702 */
4703 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4704 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4705
33345d01 4706 key.objectid = ino;
39279cc3 4707 key.offset = (u64)-1;
5f39d397
CM
4708 key.type = (u8)-1;
4709
85e21bac 4710search_again:
28ed1345
CM
4711 /*
4712 * with a 16K leaf size and 128MB extents, you can actually queue
4713 * up a huge file in a single leaf. Most of the time that
4714 * bytes_deleted is > 0, it will be huge by the time we get here
4715 */
fd86a3a3
OS
4716 if (be_nice && bytes_deleted > SZ_32M &&
4717 btrfs_should_end_transaction(trans)) {
4718 ret = -EAGAIN;
4719 goto out;
28ed1345
CM
4720 }
4721
b9473439 4722 path->leave_spinning = 1;
85e21bac 4723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4724 if (ret < 0)
8082510e 4725 goto out;
d397712b 4726
85e21bac 4727 if (ret > 0) {
fd86a3a3 4728 ret = 0;
e02119d5
CM
4729 /* there are no items in the tree for us to truncate, we're
4730 * done
4731 */
8082510e
YZ
4732 if (path->slots[0] == 0)
4733 goto out;
85e21bac
CM
4734 path->slots[0]--;
4735 }
4736
d397712b 4737 while (1) {
39279cc3 4738 fi = NULL;
5f39d397
CM
4739 leaf = path->nodes[0];
4740 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4741 found_type = found_key.type;
39279cc3 4742
33345d01 4743 if (found_key.objectid != ino)
39279cc3 4744 break;
5f39d397 4745
85e21bac 4746 if (found_type < min_type)
39279cc3
CM
4747 break;
4748
5f39d397 4749 item_end = found_key.offset;
39279cc3 4750 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4751 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4752 struct btrfs_file_extent_item);
179e29e4
CM
4753 extent_type = btrfs_file_extent_type(leaf, fi);
4754 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4755 item_end +=
db94535d 4756 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4757
4758 trace_btrfs_truncate_show_fi_regular(
4759 BTRFS_I(inode), leaf, fi,
4760 found_key.offset);
179e29e4 4761 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4762 item_end += btrfs_file_extent_ram_bytes(leaf,
4763 fi);
09ed2f16
LB
4764
4765 trace_btrfs_truncate_show_fi_inline(
4766 BTRFS_I(inode), leaf, fi, path->slots[0],
4767 found_key.offset);
39279cc3 4768 }
008630c1 4769 item_end--;
39279cc3 4770 }
8082510e
YZ
4771 if (found_type > min_type) {
4772 del_item = 1;
4773 } else {
76b42abb 4774 if (item_end < new_size)
b888db2b 4775 break;
8082510e
YZ
4776 if (found_key.offset >= new_size)
4777 del_item = 1;
4778 else
4779 del_item = 0;
39279cc3 4780 }
39279cc3 4781 found_extent = 0;
39279cc3 4782 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4783 if (found_type != BTRFS_EXTENT_DATA_KEY)
4784 goto delete;
4785
4786 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4787 u64 num_dec;
db94535d 4788 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4789 if (!del_item) {
db94535d
CM
4790 u64 orig_num_bytes =
4791 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4792 extent_num_bytes = ALIGN(new_size -
4793 found_key.offset,
0b246afa 4794 fs_info->sectorsize);
db94535d
CM
4795 btrfs_set_file_extent_num_bytes(leaf, fi,
4796 extent_num_bytes);
4797 num_dec = (orig_num_bytes -
9069218d 4798 extent_num_bytes);
27cdeb70
MX
4799 if (test_bit(BTRFS_ROOT_REF_COWS,
4800 &root->state) &&
4801 extent_start != 0)
a76a3cd4 4802 inode_sub_bytes(inode, num_dec);
5f39d397 4803 btrfs_mark_buffer_dirty(leaf);
39279cc3 4804 } else {
db94535d
CM
4805 extent_num_bytes =
4806 btrfs_file_extent_disk_num_bytes(leaf,
4807 fi);
5d4f98a2
YZ
4808 extent_offset = found_key.offset -
4809 btrfs_file_extent_offset(leaf, fi);
4810
39279cc3 4811 /* FIXME blocksize != 4096 */
9069218d 4812 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4813 if (extent_start != 0) {
4814 found_extent = 1;
27cdeb70
MX
4815 if (test_bit(BTRFS_ROOT_REF_COWS,
4816 &root->state))
a76a3cd4 4817 inode_sub_bytes(inode, num_dec);
e02119d5 4818 }
39279cc3 4819 }
9069218d 4820 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4821 /*
4822 * we can't truncate inline items that have had
4823 * special encodings
4824 */
4825 if (!del_item &&
c8b97818 4826 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4827 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4828 btrfs_file_extent_compression(leaf, fi) == 0) {
4829 u32 size = (u32)(new_size - found_key.offset);
4830
4831 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4832 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4833 btrfs_truncate_item(path, size, 1);
ddfae63c 4834 } else if (!del_item) {
514ac8ad 4835 /*
ddfae63c
JB
4836 * We have to bail so the last_size is set to
4837 * just before this extent.
514ac8ad 4838 */
fd86a3a3 4839 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4840 break;
4841 }
0305cd5f 4842
ddfae63c 4843 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4844 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4845 }
179e29e4 4846delete:
ddfae63c
JB
4847 if (del_item)
4848 last_size = found_key.offset;
4849 else
4850 last_size = new_size;
39279cc3 4851 if (del_item) {
85e21bac
CM
4852 if (!pending_del_nr) {
4853 /* no pending yet, add ourselves */
4854 pending_del_slot = path->slots[0];
4855 pending_del_nr = 1;
4856 } else if (pending_del_nr &&
4857 path->slots[0] + 1 == pending_del_slot) {
4858 /* hop on the pending chunk */
4859 pending_del_nr++;
4860 pending_del_slot = path->slots[0];
4861 } else {
d397712b 4862 BUG();
85e21bac 4863 }
39279cc3
CM
4864 } else {
4865 break;
4866 }
897ca819 4867 should_throttle = false;
28f75a0e 4868
27cdeb70
MX
4869 if (found_extent &&
4870 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4871 root == fs_info->tree_root)) {
ffd4bb2a
QW
4872 struct btrfs_ref ref = { 0 };
4873
b9473439 4874 btrfs_set_path_blocking(path);
28ed1345 4875 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4876
4877 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4878 extent_start, extent_num_bytes, 0);
4879 ref.real_root = root->root_key.objectid;
4880 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4881 ino, extent_offset);
4882 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4883 if (ret) {
4884 btrfs_abort_transaction(trans, ret);
4885 break;
4886 }
28f75a0e 4887 if (be_nice) {
7c861627 4888 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4889 should_throttle = true;
28f75a0e 4890 }
39279cc3 4891 }
85e21bac 4892
8082510e
YZ
4893 if (found_type == BTRFS_INODE_ITEM_KEY)
4894 break;
4895
4896 if (path->slots[0] == 0 ||
1262133b 4897 path->slots[0] != pending_del_slot ||
28bad212 4898 should_throttle) {
8082510e
YZ
4899 if (pending_del_nr) {
4900 ret = btrfs_del_items(trans, root, path,
4901 pending_del_slot,
4902 pending_del_nr);
79787eaa 4903 if (ret) {
66642832 4904 btrfs_abort_transaction(trans, ret);
fd86a3a3 4905 break;
79787eaa 4906 }
8082510e
YZ
4907 pending_del_nr = 0;
4908 }
b3b4aa74 4909 btrfs_release_path(path);
28bad212 4910
28f75a0e 4911 /*
28bad212
JB
4912 * We can generate a lot of delayed refs, so we need to
4913 * throttle every once and a while and make sure we're
4914 * adding enough space to keep up with the work we are
4915 * generating. Since we hold a transaction here we
4916 * can't flush, and we don't want to FLUSH_LIMIT because
4917 * we could have generated too many delayed refs to
4918 * actually allocate, so just bail if we're short and
4919 * let the normal reservation dance happen higher up.
28f75a0e 4920 */
28bad212
JB
4921 if (should_throttle) {
4922 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4923 BTRFS_RESERVE_NO_FLUSH);
4924 if (ret) {
4925 ret = -EAGAIN;
4926 break;
4927 }
28f75a0e 4928 }
85e21bac 4929 goto search_again;
8082510e
YZ
4930 } else {
4931 path->slots[0]--;
85e21bac 4932 }
39279cc3 4933 }
8082510e 4934out:
fd86a3a3
OS
4935 if (ret >= 0 && pending_del_nr) {
4936 int err;
4937
4938 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4939 pending_del_nr);
fd86a3a3
OS
4940 if (err) {
4941 btrfs_abort_transaction(trans, err);
4942 ret = err;
4943 }
85e21bac 4944 }
76b42abb
FM
4945 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4946 ASSERT(last_size >= new_size);
fd86a3a3 4947 if (!ret && last_size > new_size)
76b42abb 4948 last_size = new_size;
7f4f6e0a 4949 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4950 }
28ed1345 4951
39279cc3 4952 btrfs_free_path(path);
fd86a3a3 4953 return ret;
39279cc3
CM
4954}
4955
4956/*
9703fefe 4957 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4958 * @inode - inode that we're zeroing
4959 * @from - the offset to start zeroing
4960 * @len - the length to zero, 0 to zero the entire range respective to the
4961 * offset
4962 * @front - zero up to the offset instead of from the offset on
4963 *
9703fefe 4964 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4965 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4966 */
9703fefe 4967int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4968 int front)
39279cc3 4969{
0b246afa 4970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4971 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4972 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4973 struct btrfs_ordered_extent *ordered;
2ac55d41 4974 struct extent_state *cached_state = NULL;
364ecf36 4975 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4976 char *kaddr;
0b246afa 4977 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4978 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4979 unsigned offset = from & (blocksize - 1);
39279cc3 4980 struct page *page;
3b16a4e3 4981 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4982 int ret = 0;
9703fefe
CR
4983 u64 block_start;
4984 u64 block_end;
39279cc3 4985
b03ebd99
NB
4986 if (IS_ALIGNED(offset, blocksize) &&
4987 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4988 goto out;
9703fefe 4989
8b62f87b
JB
4990 block_start = round_down(from, blocksize);
4991 block_end = block_start + blocksize - 1;
4992
364ecf36 4993 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4994 block_start, blocksize);
5d5e103a
JB
4995 if (ret)
4996 goto out;
39279cc3 4997
211c17f5 4998again:
3b16a4e3 4999 page = find_or_create_page(mapping, index, mask);
5d5e103a 5000 if (!page) {
bc42bda2 5001 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 5002 block_start, blocksize, true);
8702ba93 5003 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 5004 ret = -ENOMEM;
39279cc3 5005 goto out;
5d5e103a 5006 }
e6dcd2dc 5007
39279cc3 5008 if (!PageUptodate(page)) {
9ebefb18 5009 ret = btrfs_readpage(NULL, page);
39279cc3 5010 lock_page(page);
211c17f5
CM
5011 if (page->mapping != mapping) {
5012 unlock_page(page);
09cbfeaf 5013 put_page(page);
211c17f5
CM
5014 goto again;
5015 }
39279cc3
CM
5016 if (!PageUptodate(page)) {
5017 ret = -EIO;
89642229 5018 goto out_unlock;
39279cc3
CM
5019 }
5020 }
211c17f5 5021 wait_on_page_writeback(page);
e6dcd2dc 5022
9703fefe 5023 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
5024 set_page_extent_mapped(page);
5025
9703fefe 5026 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 5027 if (ordered) {
9703fefe 5028 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5029 &cached_state);
e6dcd2dc 5030 unlock_page(page);
09cbfeaf 5031 put_page(page);
eb84ae03 5032 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5033 btrfs_put_ordered_extent(ordered);
5034 goto again;
5035 }
5036
9703fefe 5037 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
5038 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5039 0, 0, &cached_state);
5d5e103a 5040
e3b8a485 5041 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 5042 &cached_state);
9ed74f2d 5043 if (ret) {
9703fefe 5044 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5045 &cached_state);
9ed74f2d
JB
5046 goto out_unlock;
5047 }
5048
9703fefe 5049 if (offset != blocksize) {
2aaa6655 5050 if (!len)
9703fefe 5051 len = blocksize - offset;
e6dcd2dc 5052 kaddr = kmap(page);
2aaa6655 5053 if (front)
9703fefe
CR
5054 memset(kaddr + (block_start - page_offset(page)),
5055 0, offset);
2aaa6655 5056 else
9703fefe
CR
5057 memset(kaddr + (block_start - page_offset(page)) + offset,
5058 0, len);
e6dcd2dc
CM
5059 flush_dcache_page(page);
5060 kunmap(page);
5061 }
247e743c 5062 ClearPageChecked(page);
e6dcd2dc 5063 set_page_dirty(page);
e43bbe5e 5064 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 5065
89642229 5066out_unlock:
5d5e103a 5067 if (ret)
bc42bda2 5068 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595 5069 blocksize, true);
8702ba93 5070 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 5071 unlock_page(page);
09cbfeaf 5072 put_page(page);
39279cc3 5073out:
364ecf36 5074 extent_changeset_free(data_reserved);
39279cc3
CM
5075 return ret;
5076}
5077
16e7549f
JB
5078static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5079 u64 offset, u64 len)
5080{
0b246afa 5081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
5082 struct btrfs_trans_handle *trans;
5083 int ret;
5084
5085 /*
5086 * Still need to make sure the inode looks like it's been updated so
5087 * that any holes get logged if we fsync.
5088 */
0b246afa
JM
5089 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5090 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
5091 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5092 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5093 return 0;
5094 }
5095
5096 /*
5097 * 1 - for the one we're dropping
5098 * 1 - for the one we're adding
5099 * 1 - for updating the inode.
5100 */
5101 trans = btrfs_start_transaction(root, 3);
5102 if (IS_ERR(trans))
5103 return PTR_ERR(trans);
5104
5105 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5106 if (ret) {
66642832 5107 btrfs_abort_transaction(trans, ret);
3a45bb20 5108 btrfs_end_transaction(trans);
16e7549f
JB
5109 return ret;
5110 }
5111
f85b7379
DS
5112 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5113 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5114 if (ret)
66642832 5115 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5116 else
5117 btrfs_update_inode(trans, root, inode);
3a45bb20 5118 btrfs_end_transaction(trans);
16e7549f
JB
5119 return ret;
5120}
5121
695a0d0d
JB
5122/*
5123 * This function puts in dummy file extents for the area we're creating a hole
5124 * for. So if we are truncating this file to a larger size we need to insert
5125 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5126 * the range between oldsize and size
5127 */
a41ad394 5128int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5129{
0b246afa 5130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5131 struct btrfs_root *root = BTRFS_I(inode)->root;
5132 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5133 struct extent_map *em = NULL;
2ac55d41 5134 struct extent_state *cached_state = NULL;
5dc562c5 5135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5136 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5137 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5138 u64 last_byte;
5139 u64 cur_offset;
5140 u64 hole_size;
9ed74f2d 5141 int err = 0;
39279cc3 5142
a71754fc 5143 /*
9703fefe
CR
5144 * If our size started in the middle of a block we need to zero out the
5145 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5146 * expose stale data.
5147 */
9703fefe 5148 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5149 if (err)
5150 return err;
5151
9036c102
YZ
5152 if (size <= hole_start)
5153 return 0;
5154
23d31bd4
NB
5155 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5156 block_end - 1, &cached_state);
9036c102
YZ
5157 cur_offset = hole_start;
5158 while (1) {
fc4f21b1 5159 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5160 block_end - cur_offset, 0);
79787eaa
JM
5161 if (IS_ERR(em)) {
5162 err = PTR_ERR(em);
f2767956 5163 em = NULL;
79787eaa
JM
5164 break;
5165 }
9036c102 5166 last_byte = min(extent_map_end(em), block_end);
0b246afa 5167 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5168 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5169 struct extent_map *hole_em;
9036c102 5170 hole_size = last_byte - cur_offset;
9ed74f2d 5171
16e7549f
JB
5172 err = maybe_insert_hole(root, inode, cur_offset,
5173 hole_size);
5174 if (err)
3893e33b 5175 break;
dcdbc059 5176 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5177 cur_offset + hole_size - 1, 0);
5178 hole_em = alloc_extent_map();
5179 if (!hole_em) {
5180 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5181 &BTRFS_I(inode)->runtime_flags);
5182 goto next;
5183 }
5184 hole_em->start = cur_offset;
5185 hole_em->len = hole_size;
5186 hole_em->orig_start = cur_offset;
8082510e 5187
5dc562c5
JB
5188 hole_em->block_start = EXTENT_MAP_HOLE;
5189 hole_em->block_len = 0;
b4939680 5190 hole_em->orig_block_len = 0;
cc95bef6 5191 hole_em->ram_bytes = hole_size;
0b246afa 5192 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5193 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5194 hole_em->generation = fs_info->generation;
8082510e 5195
5dc562c5
JB
5196 while (1) {
5197 write_lock(&em_tree->lock);
09a2a8f9 5198 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5199 write_unlock(&em_tree->lock);
5200 if (err != -EEXIST)
5201 break;
dcdbc059
NB
5202 btrfs_drop_extent_cache(BTRFS_I(inode),
5203 cur_offset,
5dc562c5
JB
5204 cur_offset +
5205 hole_size - 1, 0);
5206 }
5207 free_extent_map(hole_em);
9036c102 5208 }
16e7549f 5209next:
9036c102 5210 free_extent_map(em);
a22285a6 5211 em = NULL;
9036c102 5212 cur_offset = last_byte;
8082510e 5213 if (cur_offset >= block_end)
9036c102
YZ
5214 break;
5215 }
a22285a6 5216 free_extent_map(em);
e43bbe5e 5217 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5218 return err;
5219}
39279cc3 5220
3972f260 5221static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5222{
f4a2f4c5
MX
5223 struct btrfs_root *root = BTRFS_I(inode)->root;
5224 struct btrfs_trans_handle *trans;
a41ad394 5225 loff_t oldsize = i_size_read(inode);
3972f260
ES
5226 loff_t newsize = attr->ia_size;
5227 int mask = attr->ia_valid;
8082510e
YZ
5228 int ret;
5229
3972f260
ES
5230 /*
5231 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5232 * special case where we need to update the times despite not having
5233 * these flags set. For all other operations the VFS set these flags
5234 * explicitly if it wants a timestamp update.
5235 */
dff6efc3
CH
5236 if (newsize != oldsize) {
5237 inode_inc_iversion(inode);
5238 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5239 inode->i_ctime = inode->i_mtime =
c2050a45 5240 current_time(inode);
dff6efc3 5241 }
3972f260 5242
a41ad394 5243 if (newsize > oldsize) {
9ea24bbe 5244 /*
ea14b57f 5245 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5246 * This is to ensure the snapshot captures a fully consistent
5247 * state of this file - if the snapshot captures this expanding
5248 * truncation, it must capture all writes that happened before
5249 * this truncation.
5250 */
0bc19f90 5251 btrfs_wait_for_snapshot_creation(root);
a41ad394 5252 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5253 if (ret) {
ea14b57f 5254 btrfs_end_write_no_snapshotting(root);
8082510e 5255 return ret;
9ea24bbe 5256 }
8082510e 5257
f4a2f4c5 5258 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5259 if (IS_ERR(trans)) {
ea14b57f 5260 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5261 return PTR_ERR(trans);
9ea24bbe 5262 }
f4a2f4c5
MX
5263
5264 i_size_write(inode, newsize);
5265 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5266 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5267 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5268 btrfs_end_write_no_snapshotting(root);
3a45bb20 5269 btrfs_end_transaction(trans);
a41ad394 5270 } else {
8082510e 5271
a41ad394
JB
5272 /*
5273 * We're truncating a file that used to have good data down to
5274 * zero. Make sure it gets into the ordered flush list so that
5275 * any new writes get down to disk quickly.
5276 */
5277 if (newsize == 0)
72ac3c0d
JB
5278 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5279 &BTRFS_I(inode)->runtime_flags);
8082510e 5280
a41ad394 5281 truncate_setsize(inode, newsize);
2e60a51e 5282
52042d8e 5283 /* Disable nonlocked read DIO to avoid the endless truncate */
abcefb1e 5284 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5285 inode_dio_wait(inode);
0b581701 5286 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5287
213e8c55 5288 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5289 if (ret && inode->i_nlink) {
5290 int err;
5291
5292 /*
f7e9e8fc
OS
5293 * Truncate failed, so fix up the in-memory size. We
5294 * adjusted disk_i_size down as we removed extents, so
5295 * wait for disk_i_size to be stable and then update the
5296 * in-memory size to match.
7f4f6e0a 5297 */
f7e9e8fc 5298 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5299 if (err)
f7e9e8fc
OS
5300 return err;
5301 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5302 }
8082510e
YZ
5303 }
5304
a41ad394 5305 return ret;
8082510e
YZ
5306}
5307
9036c102
YZ
5308static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5309{
2b0143b5 5310 struct inode *inode = d_inode(dentry);
b83cc969 5311 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5312 int err;
39279cc3 5313
b83cc969
LZ
5314 if (btrfs_root_readonly(root))
5315 return -EROFS;
5316
31051c85 5317 err = setattr_prepare(dentry, attr);
9036c102
YZ
5318 if (err)
5319 return err;
2bf5a725 5320
5a3f23d5 5321 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5322 err = btrfs_setsize(inode, attr);
8082510e
YZ
5323 if (err)
5324 return err;
39279cc3 5325 }
9036c102 5326
1025774c
CH
5327 if (attr->ia_valid) {
5328 setattr_copy(inode, attr);
0c4d2d95 5329 inode_inc_iversion(inode);
22c44fe6 5330 err = btrfs_dirty_inode(inode);
1025774c 5331
22c44fe6 5332 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5333 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5334 }
33268eaf 5335
39279cc3
CM
5336 return err;
5337}
61295eb8 5338
131e404a
FDBM
5339/*
5340 * While truncating the inode pages during eviction, we get the VFS calling
5341 * btrfs_invalidatepage() against each page of the inode. This is slow because
5342 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5343 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5344 * extent_state structures over and over, wasting lots of time.
5345 *
5346 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5347 * those expensive operations on a per page basis and do only the ordered io
5348 * finishing, while we release here the extent_map and extent_state structures,
5349 * without the excessive merging and splitting.
5350 */
5351static void evict_inode_truncate_pages(struct inode *inode)
5352{
5353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5354 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5355 struct rb_node *node;
5356
5357 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5358 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5359
5360 write_lock(&map_tree->lock);
07e1ce09 5361 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5362 struct extent_map *em;
5363
07e1ce09 5364 node = rb_first_cached(&map_tree->map);
131e404a 5365 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5366 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5367 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5368 remove_extent_mapping(map_tree, em);
5369 free_extent_map(em);
7064dd5c
FM
5370 if (need_resched()) {
5371 write_unlock(&map_tree->lock);
5372 cond_resched();
5373 write_lock(&map_tree->lock);
5374 }
131e404a
FDBM
5375 }
5376 write_unlock(&map_tree->lock);
5377
6ca07097
FM
5378 /*
5379 * Keep looping until we have no more ranges in the io tree.
5380 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5381 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5382 * still in progress (unlocked the pages in the bio but did not yet
5383 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5384 * ranges can still be locked and eviction started because before
5385 * submitting those bios, which are executed by a separate task (work
5386 * queue kthread), inode references (inode->i_count) were not taken
5387 * (which would be dropped in the end io callback of each bio).
5388 * Therefore here we effectively end up waiting for those bios and
5389 * anyone else holding locked ranges without having bumped the inode's
5390 * reference count - if we don't do it, when they access the inode's
5391 * io_tree to unlock a range it may be too late, leading to an
5392 * use-after-free issue.
5393 */
131e404a
FDBM
5394 spin_lock(&io_tree->lock);
5395 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5396 struct extent_state *state;
5397 struct extent_state *cached_state = NULL;
6ca07097
FM
5398 u64 start;
5399 u64 end;
421f0922 5400 unsigned state_flags;
131e404a
FDBM
5401
5402 node = rb_first(&io_tree->state);
5403 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5404 start = state->start;
5405 end = state->end;
421f0922 5406 state_flags = state->state;
131e404a
FDBM
5407 spin_unlock(&io_tree->lock);
5408
ff13db41 5409 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5410
5411 /*
5412 * If still has DELALLOC flag, the extent didn't reach disk,
5413 * and its reserved space won't be freed by delayed_ref.
5414 * So we need to free its reserved space here.
5415 * (Refer to comment in btrfs_invalidatepage, case 2)
5416 *
5417 * Note, end is the bytenr of last byte, so we need + 1 here.
5418 */
421f0922 5419 if (state_flags & EXTENT_DELALLOC)
bc42bda2 5420 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5421
6ca07097 5422 clear_extent_bit(io_tree, start, end,
e182163d
OS
5423 EXTENT_LOCKED | EXTENT_DELALLOC |
5424 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5425 &cached_state);
131e404a 5426
7064dd5c 5427 cond_resched();
131e404a
FDBM
5428 spin_lock(&io_tree->lock);
5429 }
5430 spin_unlock(&io_tree->lock);
5431}
5432
4b9d7b59 5433static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5434 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5435{
5436 struct btrfs_fs_info *fs_info = root->fs_info;
5437 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5438 struct btrfs_trans_handle *trans;
2bd36e7b 5439 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5440 int ret;
4b9d7b59 5441
d3984c90
JB
5442 /*
5443 * Eviction should be taking place at some place safe because of our
5444 * delayed iputs. However the normal flushing code will run delayed
5445 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5446 *
5447 * We reserve the delayed_refs_extra here again because we can't use
5448 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5449 * above. We reserve our extra bit here because we generate a ton of
5450 * delayed refs activity by truncating.
5451 *
5452 * If we cannot make our reservation we'll attempt to steal from the
5453 * global reserve, because we really want to be able to free up space.
5454 */
5455 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5456 BTRFS_RESERVE_FLUSH_EVICT);
5457 if (ret) {
4b9d7b59
OS
5458 /*
5459 * Try to steal from the global reserve if there is space for
5460 * it.
5461 */
d3984c90
JB
5462 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5463 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5464 btrfs_warn(fs_info,
5465 "could not allocate space for delete; will truncate on mount");
5466 return ERR_PTR(-ENOSPC);
5467 }
5468 delayed_refs_extra = 0;
5469 }
4b9d7b59 5470
d3984c90
JB
5471 trans = btrfs_join_transaction(root);
5472 if (IS_ERR(trans))
5473 return trans;
5474
5475 if (delayed_refs_extra) {
5476 trans->block_rsv = &fs_info->trans_block_rsv;
5477 trans->bytes_reserved = delayed_refs_extra;
5478 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5479 delayed_refs_extra, 1);
4b9d7b59 5480 }
d3984c90 5481 return trans;
4b9d7b59
OS
5482}
5483
bd555975 5484void btrfs_evict_inode(struct inode *inode)
39279cc3 5485{
0b246afa 5486 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5487 struct btrfs_trans_handle *trans;
5488 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5489 struct btrfs_block_rsv *rsv;
39279cc3
CM
5490 int ret;
5491
1abe9b8a 5492 trace_btrfs_inode_evict(inode);
5493
3d48d981 5494 if (!root) {
e8f1bc14 5495 clear_inode(inode);
3d48d981
NB
5496 return;
5497 }
5498
131e404a
FDBM
5499 evict_inode_truncate_pages(inode);
5500
69e9c6c6
SB
5501 if (inode->i_nlink &&
5502 ((btrfs_root_refs(&root->root_item) != 0 &&
5503 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5504 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5505 goto no_delete;
5506
27919067 5507 if (is_bad_inode(inode))
39279cc3 5508 goto no_delete;
5f39d397 5509
7ab7956e 5510 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5511
7b40b695 5512 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5513 goto no_delete;
c71bf099 5514
76dda93c 5515 if (inode->i_nlink > 0) {
69e9c6c6
SB
5516 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5517 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5518 goto no_delete;
5519 }
5520
aa79021f 5521 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5522 if (ret)
0e8c36a9 5523 goto no_delete;
0e8c36a9 5524
2ff7e61e 5525 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5526 if (!rsv)
4289a667 5527 goto no_delete;
2bd36e7b 5528 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5529 rsv->failfast = 1;
4289a667 5530
6ef06d27 5531 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5532
8082510e 5533 while (1) {
ad80cf50 5534 trans = evict_refill_and_join(root, rsv);
27919067
OS
5535 if (IS_ERR(trans))
5536 goto free_rsv;
7b128766 5537
4289a667
JB
5538 trans->block_rsv = rsv;
5539
d68fc57b 5540 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5541 trans->block_rsv = &fs_info->trans_block_rsv;
5542 btrfs_end_transaction(trans);
5543 btrfs_btree_balance_dirty(fs_info);
5544 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5545 goto free_rsv;
5546 else if (!ret)
8082510e 5547 break;
8082510e 5548 }
5f39d397 5549
4ef31a45 5550 /*
27919067
OS
5551 * Errors here aren't a big deal, it just means we leave orphan items in
5552 * the tree. They will be cleaned up on the next mount. If the inode
5553 * number gets reused, cleanup deletes the orphan item without doing
5554 * anything, and unlink reuses the existing orphan item.
5555 *
5556 * If it turns out that we are dropping too many of these, we might want
5557 * to add a mechanism for retrying these after a commit.
4ef31a45 5558 */
ad80cf50 5559 trans = evict_refill_and_join(root, rsv);
27919067
OS
5560 if (!IS_ERR(trans)) {
5561 trans->block_rsv = rsv;
5562 btrfs_orphan_del(trans, BTRFS_I(inode));
5563 trans->block_rsv = &fs_info->trans_block_rsv;
5564 btrfs_end_transaction(trans);
5565 }
54aa1f4d 5566
0b246afa 5567 if (!(root == fs_info->tree_root ||
581bb050 5568 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5569 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5570
27919067
OS
5571free_rsv:
5572 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5573no_delete:
27919067
OS
5574 /*
5575 * If we didn't successfully delete, the orphan item will still be in
5576 * the tree and we'll retry on the next mount. Again, we might also want
5577 * to retry these periodically in the future.
5578 */
f48d1cf5 5579 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5580 clear_inode(inode);
39279cc3
CM
5581}
5582
5583/*
6bf9e4bd
QW
5584 * Return the key found in the dir entry in the location pointer, fill @type
5585 * with BTRFS_FT_*, and return 0.
5586 *
005d6712
SY
5587 * If no dir entries were found, returns -ENOENT.
5588 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5589 */
5590static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5591 struct btrfs_key *location, u8 *type)
39279cc3
CM
5592{
5593 const char *name = dentry->d_name.name;
5594 int namelen = dentry->d_name.len;
5595 struct btrfs_dir_item *di;
5596 struct btrfs_path *path;
5597 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5598 int ret = 0;
39279cc3
CM
5599
5600 path = btrfs_alloc_path();
d8926bb3
MF
5601 if (!path)
5602 return -ENOMEM;
3954401f 5603
f85b7379
DS
5604 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5605 name, namelen, 0);
3cf5068f
LB
5606 if (IS_ERR_OR_NULL(di)) {
5607 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5608 goto out;
5609 }
d397712b 5610
5f39d397 5611 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5612 if (location->type != BTRFS_INODE_ITEM_KEY &&
5613 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5614 ret = -EUCLEAN;
56a0e706
LB
5615 btrfs_warn(root->fs_info,
5616"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5617 __func__, name, btrfs_ino(BTRFS_I(dir)),
5618 location->objectid, location->type, location->offset);
56a0e706 5619 }
6bf9e4bd
QW
5620 if (!ret)
5621 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5622out:
39279cc3
CM
5623 btrfs_free_path(path);
5624 return ret;
5625}
5626
5627/*
5628 * when we hit a tree root in a directory, the btrfs part of the inode
5629 * needs to be changed to reflect the root directory of the tree root. This
5630 * is kind of like crossing a mount point.
5631 */
2ff7e61e 5632static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5633 struct inode *dir,
5634 struct dentry *dentry,
5635 struct btrfs_key *location,
5636 struct btrfs_root **sub_root)
39279cc3 5637{
4df27c4d
YZ
5638 struct btrfs_path *path;
5639 struct btrfs_root *new_root;
5640 struct btrfs_root_ref *ref;
5641 struct extent_buffer *leaf;
1d4c08e0 5642 struct btrfs_key key;
4df27c4d
YZ
5643 int ret;
5644 int err = 0;
39279cc3 5645
4df27c4d
YZ
5646 path = btrfs_alloc_path();
5647 if (!path) {
5648 err = -ENOMEM;
5649 goto out;
5650 }
39279cc3 5651
4df27c4d 5652 err = -ENOENT;
1d4c08e0
DS
5653 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5654 key.type = BTRFS_ROOT_REF_KEY;
5655 key.offset = location->objectid;
5656
0b246afa 5657 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5658 if (ret) {
5659 if (ret < 0)
5660 err = ret;
5661 goto out;
5662 }
39279cc3 5663
4df27c4d
YZ
5664 leaf = path->nodes[0];
5665 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5666 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5667 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5668 goto out;
39279cc3 5669
4df27c4d
YZ
5670 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5671 (unsigned long)(ref + 1),
5672 dentry->d_name.len);
5673 if (ret)
5674 goto out;
5675
b3b4aa74 5676 btrfs_release_path(path);
4df27c4d 5677
0b246afa 5678 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5679 if (IS_ERR(new_root)) {
5680 err = PTR_ERR(new_root);
5681 goto out;
5682 }
5683
4df27c4d
YZ
5684 *sub_root = new_root;
5685 location->objectid = btrfs_root_dirid(&new_root->root_item);
5686 location->type = BTRFS_INODE_ITEM_KEY;
5687 location->offset = 0;
5688 err = 0;
5689out:
5690 btrfs_free_path(path);
5691 return err;
39279cc3
CM
5692}
5693
5d4f98a2
YZ
5694static void inode_tree_add(struct inode *inode)
5695{
5696 struct btrfs_root *root = BTRFS_I(inode)->root;
5697 struct btrfs_inode *entry;
03e860bd
FNP
5698 struct rb_node **p;
5699 struct rb_node *parent;
cef21937 5700 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5701 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5702
1d3382cb 5703 if (inode_unhashed(inode))
76dda93c 5704 return;
e1409cef 5705 parent = NULL;
5d4f98a2 5706 spin_lock(&root->inode_lock);
e1409cef 5707 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5708 while (*p) {
5709 parent = *p;
5710 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5711
37508515 5712 if (ino < btrfs_ino(entry))
03e860bd 5713 p = &parent->rb_left;
37508515 5714 else if (ino > btrfs_ino(entry))
03e860bd 5715 p = &parent->rb_right;
5d4f98a2
YZ
5716 else {
5717 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5718 (I_WILL_FREE | I_FREEING)));
cef21937 5719 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5720 RB_CLEAR_NODE(parent);
5721 spin_unlock(&root->inode_lock);
cef21937 5722 return;
5d4f98a2
YZ
5723 }
5724 }
cef21937
FDBM
5725 rb_link_node(new, parent, p);
5726 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5727 spin_unlock(&root->inode_lock);
5728}
5729
5730static void inode_tree_del(struct inode *inode)
5731{
0b246afa 5732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5733 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5734 int empty = 0;
5d4f98a2 5735
03e860bd 5736 spin_lock(&root->inode_lock);
5d4f98a2 5737 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5738 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5739 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5740 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5741 }
03e860bd 5742 spin_unlock(&root->inode_lock);
76dda93c 5743
69e9c6c6 5744 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5745 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5746 spin_lock(&root->inode_lock);
5747 empty = RB_EMPTY_ROOT(&root->inode_tree);
5748 spin_unlock(&root->inode_lock);
5749 if (empty)
5750 btrfs_add_dead_root(root);
5751 }
5752}
5753
5d4f98a2 5754
e02119d5
CM
5755static int btrfs_init_locked_inode(struct inode *inode, void *p)
5756{
5757 struct btrfs_iget_args *args = p;
90d3e592
CM
5758 inode->i_ino = args->location->objectid;
5759 memcpy(&BTRFS_I(inode)->location, args->location,
5760 sizeof(*args->location));
e02119d5 5761 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5762 return 0;
5763}
5764
5765static int btrfs_find_actor(struct inode *inode, void *opaque)
5766{
5767 struct btrfs_iget_args *args = opaque;
90d3e592 5768 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5769 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5770}
5771
5d4f98a2 5772static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5773 struct btrfs_key *location,
5d4f98a2 5774 struct btrfs_root *root)
39279cc3
CM
5775{
5776 struct inode *inode;
5777 struct btrfs_iget_args args;
90d3e592 5778 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5779
90d3e592 5780 args.location = location;
39279cc3
CM
5781 args.root = root;
5782
778ba82b 5783 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5784 btrfs_init_locked_inode,
5785 (void *)&args);
5786 return inode;
5787}
5788
4c66e0d4
DS
5789/*
5790 * Get an inode object given its location and corresponding root.
5791 * Path can be preallocated to prevent recursing back to iget through
5792 * allocator. NULL is also valid but may require an additional allocation
5793 * later.
1a54ef8c 5794 */
4222ea71 5795struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
4c66e0d4 5796 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5797{
5798 struct inode *inode;
5799
90d3e592 5800 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5801 if (!inode)
5d4f98a2 5802 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5803
5804 if (inode->i_state & I_NEW) {
67710892
FM
5805 int ret;
5806
4222ea71 5807 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5808 if (!ret) {
1748f843
MF
5809 inode_tree_add(inode);
5810 unlock_new_inode(inode);
1748f843 5811 } else {
f5b3a417
AV
5812 iget_failed(inode);
5813 /*
5814 * ret > 0 can come from btrfs_search_slot called by
5815 * btrfs_read_locked_inode, this means the inode item
5816 * was not found.
5817 */
5818 if (ret > 0)
5819 ret = -ENOENT;
5820 inode = ERR_PTR(ret);
1748f843
MF
5821 }
5822 }
5823
1a54ef8c
BR
5824 return inode;
5825}
5826
4222ea71 5827struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4c66e0d4 5828 struct btrfs_root *root)
4222ea71 5829{
4c66e0d4 5830 return btrfs_iget_path(s, location, root, NULL);
4222ea71
FM
5831}
5832
4df27c4d
YZ
5833static struct inode *new_simple_dir(struct super_block *s,
5834 struct btrfs_key *key,
5835 struct btrfs_root *root)
5836{
5837 struct inode *inode = new_inode(s);
5838
5839 if (!inode)
5840 return ERR_PTR(-ENOMEM);
5841
4df27c4d
YZ
5842 BTRFS_I(inode)->root = root;
5843 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5844 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5845
5846 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5847 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5848 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5849 inode->i_fop = &simple_dir_operations;
5850 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5851 inode->i_mtime = current_time(inode);
9cc97d64 5852 inode->i_atime = inode->i_mtime;
5853 inode->i_ctime = inode->i_mtime;
d3c6be6f 5854 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5855
5856 return inode;
5857}
5858
6bf9e4bd
QW
5859static inline u8 btrfs_inode_type(struct inode *inode)
5860{
5861 /*
5862 * Compile-time asserts that generic FT_* types still match
5863 * BTRFS_FT_* types
5864 */
5865 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5866 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5867 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5868 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5869 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5870 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5871 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5872 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5873
5874 return fs_umode_to_ftype(inode->i_mode);
5875}
5876
3de4586c 5877struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5878{
0b246afa 5879 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5880 struct inode *inode;
4df27c4d 5881 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5882 struct btrfs_root *sub_root = root;
5883 struct btrfs_key location;
6bf9e4bd 5884 u8 di_type = 0;
76dda93c 5885 int index;
b4aff1f8 5886 int ret = 0;
39279cc3
CM
5887
5888 if (dentry->d_name.len > BTRFS_NAME_LEN)
5889 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5890
6bf9e4bd 5891 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5892 if (ret < 0)
5893 return ERR_PTR(ret);
5f39d397 5894
4df27c4d 5895 if (location.type == BTRFS_INODE_ITEM_KEY) {
4c66e0d4 5896 inode = btrfs_iget(dir->i_sb, &location, root);
6bf9e4bd
QW
5897 if (IS_ERR(inode))
5898 return inode;
5899
5900 /* Do extra check against inode mode with di_type */
5901 if (btrfs_inode_type(inode) != di_type) {
5902 btrfs_crit(fs_info,
5903"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5904 inode->i_mode, btrfs_inode_type(inode),
5905 di_type);
5906 iput(inode);
5907 return ERR_PTR(-EUCLEAN);
5908 }
4df27c4d
YZ
5909 return inode;
5910 }
5911
0b246afa 5912 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5913 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5914 &location, &sub_root);
5915 if (ret < 0) {
5916 if (ret != -ENOENT)
5917 inode = ERR_PTR(ret);
5918 else
5919 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5920 } else {
4c66e0d4 5921 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 5922 }
0b246afa 5923 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5924
34d19bad 5925 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5926 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5927 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5928 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5929 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5930 if (ret) {
5931 iput(inode);
66b4ffd1 5932 inode = ERR_PTR(ret);
01cd3367 5933 }
c71bf099
YZ
5934 }
5935
3de4586c
CM
5936 return inode;
5937}
5938
fe15ce44 5939static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5940{
5941 struct btrfs_root *root;
2b0143b5 5942 struct inode *inode = d_inode(dentry);
76dda93c 5943
848cce0d 5944 if (!inode && !IS_ROOT(dentry))
2b0143b5 5945 inode = d_inode(dentry->d_parent);
76dda93c 5946
848cce0d
LZ
5947 if (inode) {
5948 root = BTRFS_I(inode)->root;
efefb143
YZ
5949 if (btrfs_root_refs(&root->root_item) == 0)
5950 return 1;
848cce0d 5951
4a0cc7ca 5952 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5953 return 1;
efefb143 5954 }
76dda93c
YZ
5955 return 0;
5956}
5957
3de4586c 5958static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5959 unsigned int flags)
3de4586c 5960{
3837d208 5961 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5962
3837d208
AV
5963 if (inode == ERR_PTR(-ENOENT))
5964 inode = NULL;
41d28bca 5965 return d_splice_alias(inode, dentry);
39279cc3
CM
5966}
5967
23b5ec74
JB
5968/*
5969 * All this infrastructure exists because dir_emit can fault, and we are holding
5970 * the tree lock when doing readdir. For now just allocate a buffer and copy
5971 * our information into that, and then dir_emit from the buffer. This is
5972 * similar to what NFS does, only we don't keep the buffer around in pagecache
5973 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5974 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5975 * tree lock.
5976 */
5977static int btrfs_opendir(struct inode *inode, struct file *file)
5978{
5979 struct btrfs_file_private *private;
5980
5981 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5982 if (!private)
5983 return -ENOMEM;
5984 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5985 if (!private->filldir_buf) {
5986 kfree(private);
5987 return -ENOMEM;
5988 }
5989 file->private_data = private;
5990 return 0;
5991}
5992
5993struct dir_entry {
5994 u64 ino;
5995 u64 offset;
5996 unsigned type;
5997 int name_len;
5998};
5999
6000static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6001{
6002 while (entries--) {
6003 struct dir_entry *entry = addr;
6004 char *name = (char *)(entry + 1);
6005
92d32170
DS
6006 ctx->pos = get_unaligned(&entry->offset);
6007 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6008 get_unaligned(&entry->ino),
6009 get_unaligned(&entry->type)))
23b5ec74 6010 return 1;
92d32170
DS
6011 addr += sizeof(struct dir_entry) +
6012 get_unaligned(&entry->name_len);
23b5ec74
JB
6013 ctx->pos++;
6014 }
6015 return 0;
6016}
6017
9cdda8d3 6018static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 6019{
9cdda8d3 6020 struct inode *inode = file_inode(file);
39279cc3 6021 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 6022 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
6023 struct btrfs_dir_item *di;
6024 struct btrfs_key key;
5f39d397 6025 struct btrfs_key found_key;
39279cc3 6026 struct btrfs_path *path;
23b5ec74 6027 void *addr;
16cdcec7
MX
6028 struct list_head ins_list;
6029 struct list_head del_list;
39279cc3 6030 int ret;
5f39d397 6031 struct extent_buffer *leaf;
39279cc3 6032 int slot;
5f39d397
CM
6033 char *name_ptr;
6034 int name_len;
23b5ec74
JB
6035 int entries = 0;
6036 int total_len = 0;
02dbfc99 6037 bool put = false;
c2951f32 6038 struct btrfs_key location;
5f39d397 6039
9cdda8d3
AV
6040 if (!dir_emit_dots(file, ctx))
6041 return 0;
6042
49593bfa 6043 path = btrfs_alloc_path();
16cdcec7
MX
6044 if (!path)
6045 return -ENOMEM;
ff5714cc 6046
23b5ec74 6047 addr = private->filldir_buf;
e4058b54 6048 path->reada = READA_FORWARD;
49593bfa 6049
c2951f32
JM
6050 INIT_LIST_HEAD(&ins_list);
6051 INIT_LIST_HEAD(&del_list);
6052 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 6053
23b5ec74 6054again:
c2951f32 6055 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 6056 key.offset = ctx->pos;
4a0cc7ca 6057 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 6058
39279cc3
CM
6059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6060 if (ret < 0)
6061 goto err;
49593bfa
DW
6062
6063 while (1) {
23b5ec74
JB
6064 struct dir_entry *entry;
6065
5f39d397 6066 leaf = path->nodes[0];
39279cc3 6067 slot = path->slots[0];
b9e03af0
LZ
6068 if (slot >= btrfs_header_nritems(leaf)) {
6069 ret = btrfs_next_leaf(root, path);
6070 if (ret < 0)
6071 goto err;
6072 else if (ret > 0)
6073 break;
6074 continue;
39279cc3 6075 }
3de4586c 6076
5f39d397
CM
6077 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6078
6079 if (found_key.objectid != key.objectid)
39279cc3 6080 break;
c2951f32 6081 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6082 break;
9cdda8d3 6083 if (found_key.offset < ctx->pos)
b9e03af0 6084 goto next;
c2951f32 6085 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 6086 goto next;
39279cc3 6087 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 6088 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6089 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6090 PAGE_SIZE) {
6091 btrfs_release_path(path);
6092 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6093 if (ret)
6094 goto nopos;
6095 addr = private->filldir_buf;
6096 entries = 0;
6097 total_len = 0;
6098 goto again;
c2951f32 6099 }
23b5ec74
JB
6100
6101 entry = addr;
92d32170 6102 put_unaligned(name_len, &entry->name_len);
23b5ec74 6103 name_ptr = (char *)(entry + 1);
c2951f32
JM
6104 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6105 name_len);
7d157c3d 6106 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 6107 &entry->type);
c2951f32 6108 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6109 put_unaligned(location.objectid, &entry->ino);
6110 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6111 entries++;
6112 addr += sizeof(struct dir_entry) + name_len;
6113 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6114next:
6115 path->slots[0]++;
39279cc3 6116 }
23b5ec74
JB
6117 btrfs_release_path(path);
6118
6119 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6120 if (ret)
6121 goto nopos;
49593bfa 6122
d2fbb2b5 6123 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6124 if (ret)
bc4ef759
DS
6125 goto nopos;
6126
db62efbb
ZB
6127 /*
6128 * Stop new entries from being returned after we return the last
6129 * entry.
6130 *
6131 * New directory entries are assigned a strictly increasing
6132 * offset. This means that new entries created during readdir
6133 * are *guaranteed* to be seen in the future by that readdir.
6134 * This has broken buggy programs which operate on names as
6135 * they're returned by readdir. Until we re-use freed offsets
6136 * we have this hack to stop new entries from being returned
6137 * under the assumption that they'll never reach this huge
6138 * offset.
6139 *
6140 * This is being careful not to overflow 32bit loff_t unless the
6141 * last entry requires it because doing so has broken 32bit apps
6142 * in the past.
6143 */
c2951f32
JM
6144 if (ctx->pos >= INT_MAX)
6145 ctx->pos = LLONG_MAX;
6146 else
6147 ctx->pos = INT_MAX;
39279cc3
CM
6148nopos:
6149 ret = 0;
6150err:
02dbfc99
OS
6151 if (put)
6152 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6153 btrfs_free_path(path);
39279cc3
CM
6154 return ret;
6155}
6156
39279cc3 6157/*
54aa1f4d 6158 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6159 * inode changes. But, it is most likely to find the inode in cache.
6160 * FIXME, needs more benchmarking...there are no reasons other than performance
6161 * to keep or drop this code.
6162 */
48a3b636 6163static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6164{
2ff7e61e 6165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6166 struct btrfs_root *root = BTRFS_I(inode)->root;
6167 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6168 int ret;
6169
72ac3c0d 6170 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6171 return 0;
39279cc3 6172
7a7eaa40 6173 trans = btrfs_join_transaction(root);
22c44fe6
JB
6174 if (IS_ERR(trans))
6175 return PTR_ERR(trans);
8929ecfa
YZ
6176
6177 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6178 if (ret && ret == -ENOSPC) {
6179 /* whoops, lets try again with the full transaction */
3a45bb20 6180 btrfs_end_transaction(trans);
94b60442 6181 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6182 if (IS_ERR(trans))
6183 return PTR_ERR(trans);
8929ecfa 6184
94b60442 6185 ret = btrfs_update_inode(trans, root, inode);
94b60442 6186 }
3a45bb20 6187 btrfs_end_transaction(trans);
16cdcec7 6188 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6189 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6190
6191 return ret;
6192}
6193
6194/*
6195 * This is a copy of file_update_time. We need this so we can return error on
6196 * ENOSPC for updating the inode in the case of file write and mmap writes.
6197 */
95582b00 6198static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6199 int flags)
22c44fe6 6200{
2bc55652 6201 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6202 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6203
6204 if (btrfs_root_readonly(root))
6205 return -EROFS;
6206
e41f941a 6207 if (flags & S_VERSION)
3a8c7231 6208 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6209 if (flags & S_CTIME)
6210 inode->i_ctime = *now;
6211 if (flags & S_MTIME)
6212 inode->i_mtime = *now;
6213 if (flags & S_ATIME)
6214 inode->i_atime = *now;
3a8c7231 6215 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6216}
6217
d352ac68
CM
6218/*
6219 * find the highest existing sequence number in a directory
6220 * and then set the in-memory index_cnt variable to reflect
6221 * free sequence numbers
6222 */
4c570655 6223static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6224{
4c570655 6225 struct btrfs_root *root = inode->root;
aec7477b
JB
6226 struct btrfs_key key, found_key;
6227 struct btrfs_path *path;
6228 struct extent_buffer *leaf;
6229 int ret;
6230
4c570655 6231 key.objectid = btrfs_ino(inode);
962a298f 6232 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6233 key.offset = (u64)-1;
6234
6235 path = btrfs_alloc_path();
6236 if (!path)
6237 return -ENOMEM;
6238
6239 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6240 if (ret < 0)
6241 goto out;
6242 /* FIXME: we should be able to handle this */
6243 if (ret == 0)
6244 goto out;
6245 ret = 0;
6246
6247 /*
6248 * MAGIC NUMBER EXPLANATION:
6249 * since we search a directory based on f_pos we have to start at 2
6250 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6251 * else has to start at 2
6252 */
6253 if (path->slots[0] == 0) {
4c570655 6254 inode->index_cnt = 2;
aec7477b
JB
6255 goto out;
6256 }
6257
6258 path->slots[0]--;
6259
6260 leaf = path->nodes[0];
6261 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6262
4c570655 6263 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6264 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6265 inode->index_cnt = 2;
aec7477b
JB
6266 goto out;
6267 }
6268
4c570655 6269 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6270out:
6271 btrfs_free_path(path);
6272 return ret;
6273}
6274
d352ac68
CM
6275/*
6276 * helper to find a free sequence number in a given directory. This current
6277 * code is very simple, later versions will do smarter things in the btree
6278 */
877574e2 6279int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6280{
6281 int ret = 0;
6282
877574e2
NB
6283 if (dir->index_cnt == (u64)-1) {
6284 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6285 if (ret) {
6286 ret = btrfs_set_inode_index_count(dir);
6287 if (ret)
6288 return ret;
6289 }
aec7477b
JB
6290 }
6291
877574e2
NB
6292 *index = dir->index_cnt;
6293 dir->index_cnt++;
aec7477b
JB
6294
6295 return ret;
6296}
6297
b0d5d10f
CM
6298static int btrfs_insert_inode_locked(struct inode *inode)
6299{
6300 struct btrfs_iget_args args;
6301 args.location = &BTRFS_I(inode)->location;
6302 args.root = BTRFS_I(inode)->root;
6303
6304 return insert_inode_locked4(inode,
6305 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6306 btrfs_find_actor, &args);
6307}
6308
19aee8de
AJ
6309/*
6310 * Inherit flags from the parent inode.
6311 *
6312 * Currently only the compression flags and the cow flags are inherited.
6313 */
6314static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6315{
6316 unsigned int flags;
6317
6318 if (!dir)
6319 return;
6320
6321 flags = BTRFS_I(dir)->flags;
6322
6323 if (flags & BTRFS_INODE_NOCOMPRESS) {
6324 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6325 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6326 } else if (flags & BTRFS_INODE_COMPRESS) {
6327 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6328 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6329 }
6330
6331 if (flags & BTRFS_INODE_NODATACOW) {
6332 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6333 if (S_ISREG(inode->i_mode))
6334 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6335 }
6336
7b6a221e 6337 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6338}
6339
39279cc3
CM
6340static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6341 struct btrfs_root *root,
aec7477b 6342 struct inode *dir,
9c58309d 6343 const char *name, int name_len,
175a4eb7
AV
6344 u64 ref_objectid, u64 objectid,
6345 umode_t mode, u64 *index)
39279cc3 6346{
0b246afa 6347 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6348 struct inode *inode;
5f39d397 6349 struct btrfs_inode_item *inode_item;
39279cc3 6350 struct btrfs_key *location;
5f39d397 6351 struct btrfs_path *path;
9c58309d
CM
6352 struct btrfs_inode_ref *ref;
6353 struct btrfs_key key[2];
6354 u32 sizes[2];
ef3b9af5 6355 int nitems = name ? 2 : 1;
9c58309d 6356 unsigned long ptr;
11a19a90 6357 unsigned int nofs_flag;
39279cc3 6358 int ret;
39279cc3 6359
5f39d397 6360 path = btrfs_alloc_path();
d8926bb3
MF
6361 if (!path)
6362 return ERR_PTR(-ENOMEM);
5f39d397 6363
11a19a90 6364 nofs_flag = memalloc_nofs_save();
0b246afa 6365 inode = new_inode(fs_info->sb);
11a19a90 6366 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
6367 if (!inode) {
6368 btrfs_free_path(path);
39279cc3 6369 return ERR_PTR(-ENOMEM);
8fb27640 6370 }
39279cc3 6371
5762b5c9
FM
6372 /*
6373 * O_TMPFILE, set link count to 0, so that after this point,
6374 * we fill in an inode item with the correct link count.
6375 */
6376 if (!name)
6377 set_nlink(inode, 0);
6378
581bb050
LZ
6379 /*
6380 * we have to initialize this early, so we can reclaim the inode
6381 * number if we fail afterwards in this function.
6382 */
6383 inode->i_ino = objectid;
6384
ef3b9af5 6385 if (dir && name) {
1abe9b8a 6386 trace_btrfs_inode_request(dir);
6387
877574e2 6388 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6389 if (ret) {
8fb27640 6390 btrfs_free_path(path);
09771430 6391 iput(inode);
aec7477b 6392 return ERR_PTR(ret);
09771430 6393 }
ef3b9af5
FM
6394 } else if (dir) {
6395 *index = 0;
aec7477b
JB
6396 }
6397 /*
6398 * index_cnt is ignored for everything but a dir,
df6703e1 6399 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6400 * number
6401 */
6402 BTRFS_I(inode)->index_cnt = 2;
67de1176 6403 BTRFS_I(inode)->dir_index = *index;
39279cc3 6404 BTRFS_I(inode)->root = root;
e02119d5 6405 BTRFS_I(inode)->generation = trans->transid;
76195853 6406 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6407
5dc562c5
JB
6408 /*
6409 * We could have gotten an inode number from somebody who was fsynced
6410 * and then removed in this same transaction, so let's just set full
6411 * sync since it will be a full sync anyway and this will blow away the
6412 * old info in the log.
6413 */
6414 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6415
9c58309d 6416 key[0].objectid = objectid;
962a298f 6417 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6418 key[0].offset = 0;
6419
9c58309d 6420 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6421
6422 if (name) {
6423 /*
6424 * Start new inodes with an inode_ref. This is slightly more
6425 * efficient for small numbers of hard links since they will
6426 * be packed into one item. Extended refs will kick in if we
6427 * add more hard links than can fit in the ref item.
6428 */
6429 key[1].objectid = objectid;
962a298f 6430 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6431 key[1].offset = ref_objectid;
6432
6433 sizes[1] = name_len + sizeof(*ref);
6434 }
9c58309d 6435
b0d5d10f
CM
6436 location = &BTRFS_I(inode)->location;
6437 location->objectid = objectid;
6438 location->offset = 0;
962a298f 6439 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6440
6441 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6442 if (ret < 0) {
6443 iput(inode);
b0d5d10f 6444 goto fail;
32955c54 6445 }
b0d5d10f 6446
b9473439 6447 path->leave_spinning = 1;
ef3b9af5 6448 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6449 if (ret != 0)
b0d5d10f 6450 goto fail_unlock;
5f39d397 6451
ecc11fab 6452 inode_init_owner(inode, dir, mode);
a76a3cd4 6453 inode_set_bytes(inode, 0);
9cc97d64 6454
c2050a45 6455 inode->i_mtime = current_time(inode);
9cc97d64 6456 inode->i_atime = inode->i_mtime;
6457 inode->i_ctime = inode->i_mtime;
d3c6be6f 6458 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6459
5f39d397
CM
6460 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6461 struct btrfs_inode_item);
b159fa28 6462 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6463 sizeof(*inode_item));
e02119d5 6464 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6465
ef3b9af5
FM
6466 if (name) {
6467 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6468 struct btrfs_inode_ref);
6469 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6470 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6471 ptr = (unsigned long)(ref + 1);
6472 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6473 }
9c58309d 6474
5f39d397
CM
6475 btrfs_mark_buffer_dirty(path->nodes[0]);
6476 btrfs_free_path(path);
6477
6cbff00f
CH
6478 btrfs_inherit_iflags(inode, dir);
6479
569254b0 6480 if (S_ISREG(mode)) {
0b246afa 6481 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6482 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6483 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6484 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6485 BTRFS_INODE_NODATASUM;
94272164
CM
6486 }
6487
5d4f98a2 6488 inode_tree_add(inode);
1abe9b8a 6489
6490 trace_btrfs_inode_new(inode);
1973f0fa 6491 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6492
8ea05e3a
AB
6493 btrfs_update_root_times(trans, root);
6494
63541927
FDBM
6495 ret = btrfs_inode_inherit_props(trans, inode, dir);
6496 if (ret)
0b246afa 6497 btrfs_err(fs_info,
63541927 6498 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6499 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6500
39279cc3 6501 return inode;
b0d5d10f
CM
6502
6503fail_unlock:
32955c54 6504 discard_new_inode(inode);
5f39d397 6505fail:
ef3b9af5 6506 if (dir && name)
aec7477b 6507 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6508 btrfs_free_path(path);
6509 return ERR_PTR(ret);
39279cc3
CM
6510}
6511
d352ac68
CM
6512/*
6513 * utility function to add 'inode' into 'parent_inode' with
6514 * a give name and a given sequence number.
6515 * if 'add_backref' is true, also insert a backref from the
6516 * inode to the parent directory.
6517 */
e02119d5 6518int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6519 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6520 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6521{
4df27c4d 6522 int ret = 0;
39279cc3 6523 struct btrfs_key key;
db0a669f
NB
6524 struct btrfs_root *root = parent_inode->root;
6525 u64 ino = btrfs_ino(inode);
6526 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6527
33345d01 6528 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6529 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6530 } else {
33345d01 6531 key.objectid = ino;
962a298f 6532 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6533 key.offset = 0;
6534 }
6535
33345d01 6536 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6537 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6538 root->root_key.objectid, parent_ino,
6539 index, name, name_len);
4df27c4d 6540 } else if (add_backref) {
33345d01
LZ
6541 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6542 parent_ino, index);
4df27c4d 6543 }
39279cc3 6544
79787eaa
JM
6545 /* Nothing to clean up yet */
6546 if (ret)
6547 return ret;
4df27c4d 6548
684572df 6549 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6550 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6551 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6552 goto fail_dir_item;
6553 else if (ret) {
66642832 6554 btrfs_abort_transaction(trans, ret);
79787eaa 6555 return ret;
39279cc3 6556 }
79787eaa 6557
db0a669f 6558 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6559 name_len * 2);
db0a669f 6560 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6561 /*
6562 * If we are replaying a log tree, we do not want to update the mtime
6563 * and ctime of the parent directory with the current time, since the
6564 * log replay procedure is responsible for setting them to their correct
6565 * values (the ones it had when the fsync was done).
6566 */
6567 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6568 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6569
6570 parent_inode->vfs_inode.i_mtime = now;
6571 parent_inode->vfs_inode.i_ctime = now;
6572 }
db0a669f 6573 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6574 if (ret)
66642832 6575 btrfs_abort_transaction(trans, ret);
39279cc3 6576 return ret;
fe66a05a
CM
6577
6578fail_dir_item:
6579 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6580 u64 local_index;
6581 int err;
3ee1c553 6582 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6583 root->root_key.objectid, parent_ino,
6584 &local_index, name, name_len);
1690dd41
JT
6585 if (err)
6586 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6587 } else if (add_backref) {
6588 u64 local_index;
6589 int err;
6590
6591 err = btrfs_del_inode_ref(trans, root, name, name_len,
6592 ino, parent_ino, &local_index);
1690dd41
JT
6593 if (err)
6594 btrfs_abort_transaction(trans, err);
fe66a05a 6595 }
1690dd41
JT
6596
6597 /* Return the original error code */
fe66a05a 6598 return ret;
39279cc3
CM
6599}
6600
6601static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6602 struct btrfs_inode *dir, struct dentry *dentry,
6603 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6604{
a1b075d2
JB
6605 int err = btrfs_add_link(trans, dir, inode,
6606 dentry->d_name.name, dentry->d_name.len,
6607 backref, index);
39279cc3
CM
6608 if (err > 0)
6609 err = -EEXIST;
6610 return err;
6611}
6612
618e21d5 6613static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6614 umode_t mode, dev_t rdev)
618e21d5 6615{
2ff7e61e 6616 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6617 struct btrfs_trans_handle *trans;
6618 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6619 struct inode *inode = NULL;
618e21d5 6620 int err;
618e21d5 6621 u64 objectid;
00e4e6b3 6622 u64 index = 0;
618e21d5 6623
9ed74f2d
JB
6624 /*
6625 * 2 for inode item and ref
6626 * 2 for dir items
6627 * 1 for xattr if selinux is on
6628 */
a22285a6
YZ
6629 trans = btrfs_start_transaction(root, 5);
6630 if (IS_ERR(trans))
6631 return PTR_ERR(trans);
1832a6d5 6632
581bb050
LZ
6633 err = btrfs_find_free_ino(root, &objectid);
6634 if (err)
6635 goto out_unlock;
6636
aec7477b 6637 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6638 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6639 mode, &index);
7cf96da3
TI
6640 if (IS_ERR(inode)) {
6641 err = PTR_ERR(inode);
32955c54 6642 inode = NULL;
618e21d5 6643 goto out_unlock;
7cf96da3 6644 }
618e21d5 6645
ad19db71
CS
6646 /*
6647 * If the active LSM wants to access the inode during
6648 * d_instantiate it needs these. Smack checks to see
6649 * if the filesystem supports xattrs by looking at the
6650 * ops vector.
6651 */
ad19db71 6652 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6653 init_special_inode(inode, inode->i_mode, rdev);
6654
6655 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6656 if (err)
32955c54 6657 goto out_unlock;
b0d5d10f 6658
cef415af
NB
6659 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6660 0, index);
32955c54
AV
6661 if (err)
6662 goto out_unlock;
6663
6664 btrfs_update_inode(trans, root, inode);
6665 d_instantiate_new(dentry, inode);
b0d5d10f 6666
618e21d5 6667out_unlock:
3a45bb20 6668 btrfs_end_transaction(trans);
2ff7e61e 6669 btrfs_btree_balance_dirty(fs_info);
32955c54 6670 if (err && inode) {
618e21d5 6671 inode_dec_link_count(inode);
32955c54 6672 discard_new_inode(inode);
618e21d5 6673 }
618e21d5
JB
6674 return err;
6675}
6676
39279cc3 6677static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6678 umode_t mode, bool excl)
39279cc3 6679{
2ff7e61e 6680 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6681 struct btrfs_trans_handle *trans;
6682 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6683 struct inode *inode = NULL;
a22285a6 6684 int err;
39279cc3 6685 u64 objectid;
00e4e6b3 6686 u64 index = 0;
39279cc3 6687
9ed74f2d
JB
6688 /*
6689 * 2 for inode item and ref
6690 * 2 for dir items
6691 * 1 for xattr if selinux is on
6692 */
a22285a6
YZ
6693 trans = btrfs_start_transaction(root, 5);
6694 if (IS_ERR(trans))
6695 return PTR_ERR(trans);
9ed74f2d 6696
581bb050
LZ
6697 err = btrfs_find_free_ino(root, &objectid);
6698 if (err)
6699 goto out_unlock;
6700
aec7477b 6701 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6702 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6703 mode, &index);
7cf96da3
TI
6704 if (IS_ERR(inode)) {
6705 err = PTR_ERR(inode);
32955c54 6706 inode = NULL;
39279cc3 6707 goto out_unlock;
7cf96da3 6708 }
ad19db71
CS
6709 /*
6710 * If the active LSM wants to access the inode during
6711 * d_instantiate it needs these. Smack checks to see
6712 * if the filesystem supports xattrs by looking at the
6713 * ops vector.
6714 */
6715 inode->i_fop = &btrfs_file_operations;
6716 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6717 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6718
6719 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6720 if (err)
32955c54 6721 goto out_unlock;
b0d5d10f
CM
6722
6723 err = btrfs_update_inode(trans, root, inode);
6724 if (err)
32955c54 6725 goto out_unlock;
ad19db71 6726
cef415af
NB
6727 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6728 0, index);
39279cc3 6729 if (err)
32955c54 6730 goto out_unlock;
43baa579 6731
43baa579 6732 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6733 d_instantiate_new(dentry, inode);
43baa579 6734
39279cc3 6735out_unlock:
3a45bb20 6736 btrfs_end_transaction(trans);
32955c54 6737 if (err && inode) {
39279cc3 6738 inode_dec_link_count(inode);
32955c54 6739 discard_new_inode(inode);
39279cc3 6740 }
2ff7e61e 6741 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6742 return err;
6743}
6744
6745static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6746 struct dentry *dentry)
6747{
271dba45 6748 struct btrfs_trans_handle *trans = NULL;
39279cc3 6749 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6750 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6751 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6752 u64 index;
39279cc3
CM
6753 int err;
6754 int drop_inode = 0;
6755
4a8be425 6756 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6757 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6758 return -EXDEV;
4a8be425 6759
f186373f 6760 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6761 return -EMLINK;
4a8be425 6762
877574e2 6763 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6764 if (err)
6765 goto fail;
6766
a22285a6 6767 /*
7e6b6465 6768 * 2 items for inode and inode ref
a22285a6 6769 * 2 items for dir items
7e6b6465 6770 * 1 item for parent inode
399b0bbf 6771 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6772 */
399b0bbf 6773 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6774 if (IS_ERR(trans)) {
6775 err = PTR_ERR(trans);
271dba45 6776 trans = NULL;
a22285a6
YZ
6777 goto fail;
6778 }
5f39d397 6779
67de1176
MX
6780 /* There are several dir indexes for this inode, clear the cache. */
6781 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6782 inc_nlink(inode);
0c4d2d95 6783 inode_inc_iversion(inode);
c2050a45 6784 inode->i_ctime = current_time(inode);
7de9c6ee 6785 ihold(inode);
e9976151 6786 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6787
cef415af
NB
6788 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6789 1, index);
5f39d397 6790
a5719521 6791 if (err) {
54aa1f4d 6792 drop_inode = 1;
a5719521 6793 } else {
10d9f309 6794 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6795 int ret;
6796
a5719521 6797 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6798 if (err)
6799 goto fail;
ef3b9af5
FM
6800 if (inode->i_nlink == 1) {
6801 /*
6802 * If new hard link count is 1, it's a file created
6803 * with open(2) O_TMPFILE flag.
6804 */
3d6ae7bb 6805 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6806 if (err)
6807 goto fail;
6808 }
08c422c2 6809 d_instantiate(dentry, inode);
d4682ba0
FM
6810 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6811 true, NULL);
6812 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6813 err = btrfs_commit_transaction(trans);
6814 trans = NULL;
6815 }
a5719521 6816 }
39279cc3 6817
1832a6d5 6818fail:
271dba45 6819 if (trans)
3a45bb20 6820 btrfs_end_transaction(trans);
39279cc3
CM
6821 if (drop_inode) {
6822 inode_dec_link_count(inode);
6823 iput(inode);
6824 }
2ff7e61e 6825 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6826 return err;
6827}
6828
18bb1db3 6829static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6830{
2ff7e61e 6831 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6832 struct inode *inode = NULL;
39279cc3
CM
6833 struct btrfs_trans_handle *trans;
6834 struct btrfs_root *root = BTRFS_I(dir)->root;
6835 int err = 0;
b9d86667 6836 u64 objectid = 0;
00e4e6b3 6837 u64 index = 0;
39279cc3 6838
9ed74f2d
JB
6839 /*
6840 * 2 items for inode and ref
6841 * 2 items for dir items
6842 * 1 for xattr if selinux is on
6843 */
a22285a6
YZ
6844 trans = btrfs_start_transaction(root, 5);
6845 if (IS_ERR(trans))
6846 return PTR_ERR(trans);
39279cc3 6847
581bb050
LZ
6848 err = btrfs_find_free_ino(root, &objectid);
6849 if (err)
6850 goto out_fail;
6851
aec7477b 6852 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6853 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6854 S_IFDIR | mode, &index);
39279cc3
CM
6855 if (IS_ERR(inode)) {
6856 err = PTR_ERR(inode);
32955c54 6857 inode = NULL;
39279cc3
CM
6858 goto out_fail;
6859 }
5f39d397 6860
b0d5d10f
CM
6861 /* these must be set before we unlock the inode */
6862 inode->i_op = &btrfs_dir_inode_operations;
6863 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6864
2a7dba39 6865 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6866 if (err)
32955c54 6867 goto out_fail;
39279cc3 6868
6ef06d27 6869 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6870 err = btrfs_update_inode(trans, root, inode);
6871 if (err)
32955c54 6872 goto out_fail;
5f39d397 6873
db0a669f
NB
6874 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6875 dentry->d_name.name,
6876 dentry->d_name.len, 0, index);
39279cc3 6877 if (err)
32955c54 6878 goto out_fail;
5f39d397 6879
1e2e547a 6880 d_instantiate_new(dentry, inode);
39279cc3
CM
6881
6882out_fail:
3a45bb20 6883 btrfs_end_transaction(trans);
32955c54 6884 if (err && inode) {
c7cfb8a5 6885 inode_dec_link_count(inode);
32955c54 6886 discard_new_inode(inode);
c7cfb8a5 6887 }
2ff7e61e 6888 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6889 return err;
6890}
6891
c8b97818 6892static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6893 struct page *page,
c8b97818
CM
6894 size_t pg_offset, u64 extent_offset,
6895 struct btrfs_file_extent_item *item)
6896{
6897 int ret;
6898 struct extent_buffer *leaf = path->nodes[0];
6899 char *tmp;
6900 size_t max_size;
6901 unsigned long inline_size;
6902 unsigned long ptr;
261507a0 6903 int compress_type;
c8b97818
CM
6904
6905 WARN_ON(pg_offset != 0);
261507a0 6906 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6907 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6908 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6909 btrfs_item_nr(path->slots[0]));
c8b97818 6910 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6911 if (!tmp)
6912 return -ENOMEM;
c8b97818
CM
6913 ptr = btrfs_file_extent_inline_start(item);
6914
6915 read_extent_buffer(leaf, tmp, ptr, inline_size);
6916
09cbfeaf 6917 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6918 ret = btrfs_decompress(compress_type, tmp, page,
6919 extent_offset, inline_size, max_size);
e1699d2d
ZB
6920
6921 /*
6922 * decompression code contains a memset to fill in any space between the end
6923 * of the uncompressed data and the end of max_size in case the decompressed
6924 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6925 * the end of an inline extent and the beginning of the next block, so we
6926 * cover that region here.
6927 */
6928
6929 if (max_size + pg_offset < PAGE_SIZE) {
6930 char *map = kmap(page);
6931 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6932 kunmap(page);
6933 }
c8b97818 6934 kfree(tmp);
166ae5a4 6935 return ret;
c8b97818
CM
6936}
6937
d352ac68
CM
6938/*
6939 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6940 * the ugly parts come from merging extents from the disk with the in-ram
6941 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6942 * where the in-ram extents might be locked pending data=ordered completion.
6943 *
6944 * This also copies inline extents directly into the page.
6945 */
fc4f21b1 6946struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6947 struct page *page,
6948 size_t pg_offset, u64 start, u64 len,
6949 int create)
a52d9a80 6950{
3ffbd68c 6951 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6952 int ret;
6953 int err = 0;
a52d9a80
CM
6954 u64 extent_start = 0;
6955 u64 extent_end = 0;
fc4f21b1 6956 u64 objectid = btrfs_ino(inode);
7e74e235 6957 int extent_type = -1;
f421950f 6958 struct btrfs_path *path = NULL;
fc4f21b1 6959 struct btrfs_root *root = inode->root;
a52d9a80 6960 struct btrfs_file_extent_item *item;
5f39d397
CM
6961 struct extent_buffer *leaf;
6962 struct btrfs_key found_key;
a52d9a80 6963 struct extent_map *em = NULL;
fc4f21b1
NB
6964 struct extent_map_tree *em_tree = &inode->extent_tree;
6965 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6966 const bool new_inline = !page || create;
a52d9a80 6967
890871be 6968 read_lock(&em_tree->lock);
d1310b2e 6969 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6970 if (em)
0b246afa 6971 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6972 read_unlock(&em_tree->lock);
d1310b2e 6973
a52d9a80 6974 if (em) {
e1c4b745
CM
6975 if (em->start > start || em->start + em->len <= start)
6976 free_extent_map(em);
6977 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6978 free_extent_map(em);
6979 else
6980 goto out;
a52d9a80 6981 }
172ddd60 6982 em = alloc_extent_map();
a52d9a80 6983 if (!em) {
d1310b2e
CM
6984 err = -ENOMEM;
6985 goto out;
a52d9a80 6986 }
0b246afa 6987 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6988 em->start = EXTENT_MAP_HOLE;
445a6944 6989 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6990 em->len = (u64)-1;
c8b97818 6991 em->block_len = (u64)-1;
f421950f 6992
bee6ec82 6993 path = btrfs_alloc_path();
f421950f 6994 if (!path) {
bee6ec82
LB
6995 err = -ENOMEM;
6996 goto out;
f421950f
CM
6997 }
6998
bee6ec82
LB
6999 /* Chances are we'll be called again, so go ahead and do readahead */
7000 path->reada = READA_FORWARD;
7001
e49aabd9
LB
7002 /*
7003 * Unless we're going to uncompress the inline extent, no sleep would
7004 * happen.
7005 */
7006 path->leave_spinning = 1;
7007
5c9a702e 7008 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
7009 if (ret < 0) {
7010 err = ret;
7011 goto out;
b8eeab7f 7012 } else if (ret > 0) {
a52d9a80
CM
7013 if (path->slots[0] == 0)
7014 goto not_found;
7015 path->slots[0]--;
7016 }
7017
5f39d397
CM
7018 leaf = path->nodes[0];
7019 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 7020 struct btrfs_file_extent_item);
5f39d397 7021 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 7022 if (found_key.objectid != objectid ||
694c12ed 7023 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7024 /*
7025 * If we backup past the first extent we want to move forward
7026 * and see if there is an extent in front of us, otherwise we'll
7027 * say there is a hole for our whole search range which can
7028 * cause problems.
7029 */
7030 extent_end = start;
7031 goto next;
a52d9a80
CM
7032 }
7033
694c12ed 7034 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 7035 extent_start = found_key.offset;
694c12ed
NB
7036 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7037 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
7038 /* Only regular file could have regular/prealloc extent */
7039 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7040 ret = -EUCLEAN;
7041 btrfs_crit(fs_info,
7042 "regular/prealloc extent found for non-regular inode %llu",
7043 btrfs_ino(inode));
7044 goto out;
7045 }
a52d9a80 7046 extent_end = extent_start +
db94535d 7047 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7048
7049 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7050 extent_start);
694c12ed 7051 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
9036c102 7052 size_t size;
e41ca589
QW
7053
7054 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 7055 extent_end = ALIGN(extent_start + size,
0b246afa 7056 fs_info->sectorsize);
09ed2f16
LB
7057
7058 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7059 path->slots[0],
7060 extent_start);
9036c102 7061 }
25a50341 7062next:
9036c102
YZ
7063 if (start >= extent_end) {
7064 path->slots[0]++;
7065 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7066 ret = btrfs_next_leaf(root, path);
7067 if (ret < 0) {
7068 err = ret;
7069 goto out;
b8eeab7f 7070 } else if (ret > 0) {
9036c102 7071 goto not_found;
b8eeab7f 7072 }
9036c102 7073 leaf = path->nodes[0];
a52d9a80 7074 }
9036c102
YZ
7075 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7076 if (found_key.objectid != objectid ||
7077 found_key.type != BTRFS_EXTENT_DATA_KEY)
7078 goto not_found;
7079 if (start + len <= found_key.offset)
7080 goto not_found;
e2eca69d
WS
7081 if (start > found_key.offset)
7082 goto next;
02a033df
NB
7083
7084 /* New extent overlaps with existing one */
9036c102 7085 em->start = start;
70c8a91c 7086 em->orig_start = start;
9036c102 7087 em->len = found_key.offset - start;
02a033df
NB
7088 em->block_start = EXTENT_MAP_HOLE;
7089 goto insert;
9036c102
YZ
7090 }
7091
fc4f21b1 7092 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7093 new_inline, em);
7ffbb598 7094
694c12ed
NB
7095 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7096 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7097 goto insert;
694c12ed 7098 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7099 unsigned long ptr;
a52d9a80 7100 char *map;
3326d1b0
CM
7101 size_t size;
7102 size_t extent_offset;
7103 size_t copy_size;
a52d9a80 7104
7ffbb598 7105 if (new_inline)
689f9346 7106 goto out;
5f39d397 7107
e41ca589 7108 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 7109 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7110 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7111 size - extent_offset);
3326d1b0 7112 em->start = extent_start + extent_offset;
0b246afa 7113 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7114 em->orig_block_len = em->len;
70c8a91c 7115 em->orig_start = em->start;
689f9346 7116 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
7117
7118 btrfs_set_path_blocking(path);
bf46f52d 7119 if (!PageUptodate(page)) {
261507a0
LZ
7120 if (btrfs_file_extent_compression(leaf, item) !=
7121 BTRFS_COMPRESS_NONE) {
e40da0e5 7122 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7123 extent_offset, item);
166ae5a4
ZB
7124 if (ret) {
7125 err = ret;
7126 goto out;
7127 }
c8b97818
CM
7128 } else {
7129 map = kmap(page);
7130 read_extent_buffer(leaf, map + pg_offset, ptr,
7131 copy_size);
09cbfeaf 7132 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7133 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7134 PAGE_SIZE - pg_offset -
93c82d57
CM
7135 copy_size);
7136 }
c8b97818
CM
7137 kunmap(page);
7138 }
179e29e4 7139 flush_dcache_page(page);
a52d9a80 7140 }
d1310b2e 7141 set_extent_uptodate(io_tree, em->start,
507903b8 7142 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7143 goto insert;
a52d9a80
CM
7144 }
7145not_found:
7146 em->start = start;
70c8a91c 7147 em->orig_start = start;
d1310b2e 7148 em->len = len;
5f39d397 7149 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7150insert:
b3b4aa74 7151 btrfs_release_path(path);
d1310b2e 7152 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7153 btrfs_err(fs_info,
5d163e0e
JM
7154 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7155 em->start, em->len, start, len);
a52d9a80
CM
7156 err = -EIO;
7157 goto out;
7158 }
d1310b2e
CM
7159
7160 err = 0;
890871be 7161 write_lock(&em_tree->lock);
f46b24c9 7162 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7163 write_unlock(&em_tree->lock);
a52d9a80 7164out:
c6414280 7165 btrfs_free_path(path);
1abe9b8a 7166
fc4f21b1 7167 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7168
a52d9a80
CM
7169 if (err) {
7170 free_extent_map(em);
a52d9a80
CM
7171 return ERR_PTR(err);
7172 }
79787eaa 7173 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7174 return em;
7175}
7176
fc4f21b1 7177struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 7178 u64 start, u64 len)
ec29ed5b
CM
7179{
7180 struct extent_map *em;
7181 struct extent_map *hole_em = NULL;
f3714ef4 7182 u64 delalloc_start = start;
ec29ed5b 7183 u64 end;
f3714ef4
NB
7184 u64 delalloc_len;
7185 u64 delalloc_end;
ec29ed5b
CM
7186 int err = 0;
7187
4ab47a8d 7188 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
ec29ed5b
CM
7189 if (IS_ERR(em))
7190 return em;
9986277e
DC
7191 /*
7192 * If our em maps to:
7193 * - a hole or
7194 * - a pre-alloc extent,
7195 * there might actually be delalloc bytes behind it.
7196 */
7197 if (em->block_start != EXTENT_MAP_HOLE &&
7198 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7199 return em;
7200 else
7201 hole_em = em;
ec29ed5b
CM
7202
7203 /* check to see if we've wrapped (len == -1 or similar) */
7204 end = start + len;
7205 if (end < start)
7206 end = (u64)-1;
7207 else
7208 end -= 1;
7209
7210 em = NULL;
7211
7212 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 7213 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 7214 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
7215 delalloc_end = delalloc_start + delalloc_len;
7216 if (delalloc_end < delalloc_start)
7217 delalloc_end = (u64)-1;
ec29ed5b
CM
7218
7219 /*
f3714ef4
NB
7220 * We didn't find anything useful, return the original results from
7221 * get_extent()
ec29ed5b 7222 */
f3714ef4 7223 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
7224 em = hole_em;
7225 hole_em = NULL;
7226 goto out;
7227 }
7228
f3714ef4
NB
7229 /*
7230 * Adjust the delalloc_start to make sure it doesn't go backwards from
7231 * the start they passed in
ec29ed5b 7232 */
f3714ef4
NB
7233 delalloc_start = max(start, delalloc_start);
7234 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 7235
f3714ef4
NB
7236 if (delalloc_len > 0) {
7237 u64 hole_start;
02950af4 7238 u64 hole_len;
f3714ef4 7239 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 7240
172ddd60 7241 em = alloc_extent_map();
ec29ed5b
CM
7242 if (!em) {
7243 err = -ENOMEM;
7244 goto out;
7245 }
f3714ef4
NB
7246 em->bdev = NULL;
7247
7248 ASSERT(hole_em);
ec29ed5b 7249 /*
f3714ef4
NB
7250 * When btrfs_get_extent can't find anything it returns one
7251 * huge hole
ec29ed5b 7252 *
f3714ef4
NB
7253 * Make sure what it found really fits our range, and adjust to
7254 * make sure it is based on the start from the caller
ec29ed5b 7255 */
f3714ef4
NB
7256 if (hole_end <= start || hole_em->start > end) {
7257 free_extent_map(hole_em);
7258 hole_em = NULL;
7259 } else {
7260 hole_start = max(hole_em->start, start);
7261 hole_len = hole_end - hole_start;
ec29ed5b 7262 }
f3714ef4
NB
7263
7264 if (hole_em && delalloc_start > hole_start) {
7265 /*
7266 * Our hole starts before our delalloc, so we have to
7267 * return just the parts of the hole that go until the
7268 * delalloc starts
ec29ed5b 7269 */
f3714ef4 7270 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
7271 em->start = hole_start;
7272 em->orig_start = hole_start;
7273 /*
f3714ef4
NB
7274 * Don't adjust block start at all, it is fixed at
7275 * EXTENT_MAP_HOLE
ec29ed5b
CM
7276 */
7277 em->block_start = hole_em->block_start;
7278 em->block_len = hole_len;
f9e4fb53
LB
7279 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7280 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 7281 } else {
f3714ef4
NB
7282 /*
7283 * Hole is out of passed range or it starts after
7284 * delalloc range
7285 */
7286 em->start = delalloc_start;
7287 em->len = delalloc_len;
7288 em->orig_start = delalloc_start;
ec29ed5b 7289 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 7290 em->block_len = delalloc_len;
ec29ed5b 7291 }
bf8d32b9 7292 } else {
ec29ed5b
CM
7293 return hole_em;
7294 }
7295out:
7296
7297 free_extent_map(hole_em);
7298 if (err) {
7299 free_extent_map(em);
7300 return ERR_PTR(err);
7301 }
7302 return em;
7303}
7304
5f9a8a51
FM
7305static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7306 const u64 start,
7307 const u64 len,
7308 const u64 orig_start,
7309 const u64 block_start,
7310 const u64 block_len,
7311 const u64 orig_block_len,
7312 const u64 ram_bytes,
7313 const int type)
7314{
7315 struct extent_map *em = NULL;
7316 int ret;
7317
5f9a8a51 7318 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7319 em = create_io_em(inode, start, len, orig_start,
7320 block_start, block_len, orig_block_len,
7321 ram_bytes,
7322 BTRFS_COMPRESS_NONE, /* compress_type */
7323 type);
5f9a8a51
FM
7324 if (IS_ERR(em))
7325 goto out;
7326 }
7327 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7328 len, block_len, type);
7329 if (ret) {
7330 if (em) {
7331 free_extent_map(em);
dcdbc059 7332 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7333 start + len - 1, 0);
7334 }
7335 em = ERR_PTR(ret);
7336 }
7337 out:
5f9a8a51
FM
7338
7339 return em;
7340}
7341
4b46fce2
JB
7342static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7343 u64 start, u64 len)
7344{
0b246afa 7345 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7346 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7347 struct extent_map *em;
4b46fce2
JB
7348 struct btrfs_key ins;
7349 u64 alloc_hint;
7350 int ret;
4b46fce2 7351
4b46fce2 7352 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7353 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7354 0, alloc_hint, &ins, 1, 1);
00361589
JB
7355 if (ret)
7356 return ERR_PTR(ret);
4b46fce2 7357
5f9a8a51
FM
7358 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7359 ins.objectid, ins.offset, ins.offset,
6288d6ea 7360 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7361 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7362 if (IS_ERR(em))
2ff7e61e
JM
7363 btrfs_free_reserved_extent(fs_info, ins.objectid,
7364 ins.offset, 1);
de0ee0ed 7365
4b46fce2
JB
7366 return em;
7367}
7368
46bfbb5c
CM
7369/*
7370 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7371 * block must be cow'd
7372 */
00361589 7373noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7374 u64 *orig_start, u64 *orig_block_len,
7375 u64 *ram_bytes)
46bfbb5c 7376{
2ff7e61e 7377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7378 struct btrfs_path *path;
7379 int ret;
7380 struct extent_buffer *leaf;
7381 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7382 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7383 struct btrfs_file_extent_item *fi;
7384 struct btrfs_key key;
7385 u64 disk_bytenr;
7386 u64 backref_offset;
7387 u64 extent_end;
7388 u64 num_bytes;
7389 int slot;
7390 int found_type;
7ee9e440 7391 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7392
46bfbb5c
CM
7393 path = btrfs_alloc_path();
7394 if (!path)
7395 return -ENOMEM;
7396
f85b7379
DS
7397 ret = btrfs_lookup_file_extent(NULL, root, path,
7398 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7399 if (ret < 0)
7400 goto out;
7401
7402 slot = path->slots[0];
7403 if (ret == 1) {
7404 if (slot == 0) {
7405 /* can't find the item, must cow */
7406 ret = 0;
7407 goto out;
7408 }
7409 slot--;
7410 }
7411 ret = 0;
7412 leaf = path->nodes[0];
7413 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7414 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7415 key.type != BTRFS_EXTENT_DATA_KEY) {
7416 /* not our file or wrong item type, must cow */
7417 goto out;
7418 }
7419
7420 if (key.offset > offset) {
7421 /* Wrong offset, must cow */
7422 goto out;
7423 }
7424
7425 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7426 found_type = btrfs_file_extent_type(leaf, fi);
7427 if (found_type != BTRFS_FILE_EXTENT_REG &&
7428 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7429 /* not a regular extent, must cow */
7430 goto out;
7431 }
7ee9e440
JB
7432
7433 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7434 goto out;
7435
e77751aa
MX
7436 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7437 if (extent_end <= offset)
7438 goto out;
7439
46bfbb5c 7440 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7441 if (disk_bytenr == 0)
7442 goto out;
7443
7444 if (btrfs_file_extent_compression(leaf, fi) ||
7445 btrfs_file_extent_encryption(leaf, fi) ||
7446 btrfs_file_extent_other_encoding(leaf, fi))
7447 goto out;
7448
78d4295b
EL
7449 /*
7450 * Do the same check as in btrfs_cross_ref_exist but without the
7451 * unnecessary search.
7452 */
7453 if (btrfs_file_extent_generation(leaf, fi) <=
7454 btrfs_root_last_snapshot(&root->root_item))
7455 goto out;
7456
46bfbb5c
CM
7457 backref_offset = btrfs_file_extent_offset(leaf, fi);
7458
7ee9e440
JB
7459 if (orig_start) {
7460 *orig_start = key.offset - backref_offset;
7461 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7462 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7463 }
eb384b55 7464
2ff7e61e 7465 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7466 goto out;
7b2b7085
MX
7467
7468 num_bytes = min(offset + *len, extent_end) - offset;
7469 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7470 u64 range_end;
7471
da17066c
JM
7472 range_end = round_up(offset + num_bytes,
7473 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7474 ret = test_range_bit(io_tree, offset, range_end,
7475 EXTENT_DELALLOC, 0, NULL);
7476 if (ret) {
7477 ret = -EAGAIN;
7478 goto out;
7479 }
7480 }
7481
1bda19eb 7482 btrfs_release_path(path);
46bfbb5c
CM
7483
7484 /*
7485 * look for other files referencing this extent, if we
7486 * find any we must cow
7487 */
00361589 7488
e4c3b2dc 7489 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7490 key.offset - backref_offset, disk_bytenr);
00361589
JB
7491 if (ret) {
7492 ret = 0;
7493 goto out;
7494 }
46bfbb5c
CM
7495
7496 /*
7497 * adjust disk_bytenr and num_bytes to cover just the bytes
7498 * in this extent we are about to write. If there
7499 * are any csums in that range we have to cow in order
7500 * to keep the csums correct
7501 */
7502 disk_bytenr += backref_offset;
7503 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7504 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7505 goto out;
46bfbb5c
CM
7506 /*
7507 * all of the above have passed, it is safe to overwrite this extent
7508 * without cow
7509 */
eb384b55 7510 *len = num_bytes;
46bfbb5c
CM
7511 ret = 1;
7512out:
7513 btrfs_free_path(path);
7514 return ret;
7515}
7516
eb838e73
JB
7517static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7518 struct extent_state **cached_state, int writing)
7519{
7520 struct btrfs_ordered_extent *ordered;
7521 int ret = 0;
7522
7523 while (1) {
7524 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7525 cached_state);
eb838e73
JB
7526 /*
7527 * We're concerned with the entire range that we're going to be
01327610 7528 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7529 * extents in this range.
7530 */
a776c6fa 7531 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7532 lockend - lockstart + 1);
7533
7534 /*
7535 * We need to make sure there are no buffered pages in this
7536 * range either, we could have raced between the invalidate in
7537 * generic_file_direct_write and locking the extent. The
7538 * invalidate needs to happen so that reads after a write do not
7539 * get stale data.
7540 */
fc4adbff 7541 if (!ordered &&
051c98eb
DS
7542 (!writing || !filemap_range_has_page(inode->i_mapping,
7543 lockstart, lockend)))
eb838e73
JB
7544 break;
7545
7546 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7547 cached_state);
eb838e73
JB
7548
7549 if (ordered) {
ade77029
FM
7550 /*
7551 * If we are doing a DIO read and the ordered extent we
7552 * found is for a buffered write, we can not wait for it
7553 * to complete and retry, because if we do so we can
7554 * deadlock with concurrent buffered writes on page
7555 * locks. This happens only if our DIO read covers more
7556 * than one extent map, if at this point has already
7557 * created an ordered extent for a previous extent map
7558 * and locked its range in the inode's io tree, and a
7559 * concurrent write against that previous extent map's
7560 * range and this range started (we unlock the ranges
7561 * in the io tree only when the bios complete and
7562 * buffered writes always lock pages before attempting
7563 * to lock range in the io tree).
7564 */
7565 if (writing ||
7566 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7567 btrfs_start_ordered_extent(inode, ordered, 1);
7568 else
7569 ret = -ENOTBLK;
eb838e73
JB
7570 btrfs_put_ordered_extent(ordered);
7571 } else {
eb838e73 7572 /*
b850ae14
FM
7573 * We could trigger writeback for this range (and wait
7574 * for it to complete) and then invalidate the pages for
7575 * this range (through invalidate_inode_pages2_range()),
7576 * but that can lead us to a deadlock with a concurrent
7577 * call to readpages() (a buffered read or a defrag call
7578 * triggered a readahead) on a page lock due to an
7579 * ordered dio extent we created before but did not have
7580 * yet a corresponding bio submitted (whence it can not
7581 * complete), which makes readpages() wait for that
7582 * ordered extent to complete while holding a lock on
7583 * that page.
eb838e73 7584 */
b850ae14 7585 ret = -ENOTBLK;
eb838e73
JB
7586 }
7587
ade77029
FM
7588 if (ret)
7589 break;
7590
eb838e73
JB
7591 cond_resched();
7592 }
7593
7594 return ret;
7595}
7596
6f9994db
LB
7597/* The callers of this must take lock_extent() */
7598static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7599 u64 orig_start, u64 block_start,
7600 u64 block_len, u64 orig_block_len,
7601 u64 ram_bytes, int compress_type,
7602 int type)
69ffb543
JB
7603{
7604 struct extent_map_tree *em_tree;
7605 struct extent_map *em;
7606 struct btrfs_root *root = BTRFS_I(inode)->root;
7607 int ret;
7608
6f9994db
LB
7609 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7610 type == BTRFS_ORDERED_COMPRESSED ||
7611 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7612 type == BTRFS_ORDERED_REGULAR);
6f9994db 7613
69ffb543
JB
7614 em_tree = &BTRFS_I(inode)->extent_tree;
7615 em = alloc_extent_map();
7616 if (!em)
7617 return ERR_PTR(-ENOMEM);
7618
7619 em->start = start;
7620 em->orig_start = orig_start;
7621 em->len = len;
7622 em->block_len = block_len;
7623 em->block_start = block_start;
7624 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7625 em->orig_block_len = orig_block_len;
cc95bef6 7626 em->ram_bytes = ram_bytes;
70c8a91c 7627 em->generation = -1;
69ffb543 7628 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7629 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7630 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7631 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7632 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7633 em->compress_type = compress_type;
7634 }
69ffb543
JB
7635
7636 do {
dcdbc059 7637 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7638 em->start + em->len - 1, 0);
7639 write_lock(&em_tree->lock);
09a2a8f9 7640 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7641 write_unlock(&em_tree->lock);
6f9994db
LB
7642 /*
7643 * The caller has taken lock_extent(), who could race with us
7644 * to add em?
7645 */
69ffb543
JB
7646 } while (ret == -EEXIST);
7647
7648 if (ret) {
7649 free_extent_map(em);
7650 return ERR_PTR(ret);
7651 }
7652
6f9994db 7653 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7654 return em;
7655}
7656
1c8d0175
NB
7657
7658static int btrfs_get_blocks_direct_read(struct extent_map *em,
7659 struct buffer_head *bh_result,
7660 struct inode *inode,
7661 u64 start, u64 len)
7662{
8530c37a
DS
7663 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7664
1c8d0175
NB
7665 if (em->block_start == EXTENT_MAP_HOLE ||
7666 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7667 return -ENOENT;
7668
7669 len = min(len, em->len - (start - em->start));
7670
7671 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7672 inode->i_blkbits;
7673 bh_result->b_size = len;
8530c37a 7674 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
1c8d0175
NB
7675 set_buffer_mapped(bh_result);
7676
7677 return 0;
7678}
7679
c5794e51
NB
7680static int btrfs_get_blocks_direct_write(struct extent_map **map,
7681 struct buffer_head *bh_result,
7682 struct inode *inode,
7683 struct btrfs_dio_data *dio_data,
7684 u64 start, u64 len)
7685{
7686 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7687 struct extent_map *em = *map;
7688 int ret = 0;
7689
7690 /*
7691 * We don't allocate a new extent in the following cases
7692 *
7693 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7694 * existing extent.
7695 * 2) The extent is marked as PREALLOC. We're good to go here and can
7696 * just use the extent.
7697 *
7698 */
7699 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7700 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7701 em->block_start != EXTENT_MAP_HOLE)) {
7702 int type;
7703 u64 block_start, orig_start, orig_block_len, ram_bytes;
7704
7705 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7706 type = BTRFS_ORDERED_PREALLOC;
7707 else
7708 type = BTRFS_ORDERED_NOCOW;
7709 len = min(len, em->len - (start - em->start));
7710 block_start = em->block_start + (start - em->start);
7711
7712 if (can_nocow_extent(inode, start, &len, &orig_start,
7713 &orig_block_len, &ram_bytes) == 1 &&
7714 btrfs_inc_nocow_writers(fs_info, block_start)) {
7715 struct extent_map *em2;
7716
7717 em2 = btrfs_create_dio_extent(inode, start, len,
7718 orig_start, block_start,
7719 len, orig_block_len,
7720 ram_bytes, type);
7721 btrfs_dec_nocow_writers(fs_info, block_start);
7722 if (type == BTRFS_ORDERED_PREALLOC) {
7723 free_extent_map(em);
7724 *map = em = em2;
7725 }
7726
7727 if (em2 && IS_ERR(em2)) {
7728 ret = PTR_ERR(em2);
7729 goto out;
7730 }
7731 /*
7732 * For inode marked NODATACOW or extent marked PREALLOC,
7733 * use the existing or preallocated extent, so does not
7734 * need to adjust btrfs_space_info's bytes_may_use.
7735 */
7736 btrfs_free_reserved_data_space_noquota(inode, start,
7737 len);
7738 goto skip_cow;
7739 }
7740 }
7741
7742 /* this will cow the extent */
7743 len = bh_result->b_size;
7744 free_extent_map(em);
7745 *map = em = btrfs_new_extent_direct(inode, start, len);
7746 if (IS_ERR(em)) {
7747 ret = PTR_ERR(em);
7748 goto out;
7749 }
7750
7751 len = min(len, em->len - (start - em->start));
7752
7753skip_cow:
7754 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7755 inode->i_blkbits;
7756 bh_result->b_size = len;
8530c37a 7757 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
c5794e51
NB
7758 set_buffer_mapped(bh_result);
7759
7760 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7761 set_buffer_new(bh_result);
7762
7763 /*
7764 * Need to update the i_size under the extent lock so buffered
7765 * readers will get the updated i_size when we unlock.
7766 */
7767 if (!dio_data->overwrite && start + len > i_size_read(inode))
7768 i_size_write(inode, start + len);
7769
7770 WARN_ON(dio_data->reserve < len);
7771 dio_data->reserve -= len;
7772 dio_data->unsubmitted_oe_range_end = start + len;
7773 current->journal_info = dio_data;
7774out:
7775 return ret;
7776}
7777
4b46fce2
JB
7778static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7779 struct buffer_head *bh_result, int create)
7780{
0b246afa 7781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7782 struct extent_map *em;
eb838e73 7783 struct extent_state *cached_state = NULL;
50745b0a 7784 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7785 u64 start = iblock << inode->i_blkbits;
eb838e73 7786 u64 lockstart, lockend;
4b46fce2 7787 u64 len = bh_result->b_size;
0934856d 7788 int ret = 0;
eb838e73 7789
e182163d 7790 if (!create)
0b246afa 7791 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7792
c329861d
JB
7793 lockstart = start;
7794 lockend = start + len - 1;
7795
e1cbbfa5
JB
7796 if (current->journal_info) {
7797 /*
7798 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7799 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7800 * confused.
7801 */
50745b0a 7802 dio_data = current->journal_info;
e1cbbfa5
JB
7803 current->journal_info = NULL;
7804 }
7805
eb838e73
JB
7806 /*
7807 * If this errors out it's because we couldn't invalidate pagecache for
7808 * this range and we need to fallback to buffered.
7809 */
9c9464cc
FM
7810 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7811 create)) {
7812 ret = -ENOTBLK;
7813 goto err;
7814 }
eb838e73 7815
fc4f21b1 7816 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7817 if (IS_ERR(em)) {
7818 ret = PTR_ERR(em);
7819 goto unlock_err;
7820 }
4b46fce2
JB
7821
7822 /*
7823 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7824 * io. INLINE is special, and we could probably kludge it in here, but
7825 * it's still buffered so for safety lets just fall back to the generic
7826 * buffered path.
7827 *
7828 * For COMPRESSED we _have_ to read the entire extent in so we can
7829 * decompress it, so there will be buffering required no matter what we
7830 * do, so go ahead and fallback to buffered.
7831 *
01327610 7832 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7833 * to buffered IO. Don't blame me, this is the price we pay for using
7834 * the generic code.
7835 */
7836 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7837 em->block_start == EXTENT_MAP_INLINE) {
7838 free_extent_map(em);
eb838e73
JB
7839 ret = -ENOTBLK;
7840 goto unlock_err;
4b46fce2
JB
7841 }
7842
c5794e51
NB
7843 if (create) {
7844 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7845 dio_data, start, len);
7846 if (ret < 0)
7847 goto unlock_err;
7848
e182163d
OS
7849 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7850 lockend, &cached_state);
c5794e51 7851 } else {
1c8d0175
NB
7852 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7853 start, len);
7854 /* Can be negative only if we read from a hole */
7855 if (ret < 0) {
7856 ret = 0;
7857 free_extent_map(em);
7858 goto unlock_err;
7859 }
7860 /*
7861 * We need to unlock only the end area that we aren't using.
7862 * The rest is going to be unlocked by the endio routine.
7863 */
7864 lockstart = start + bh_result->b_size;
7865 if (lockstart < lockend) {
e182163d
OS
7866 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7867 lockstart, lockend, &cached_state);
1c8d0175
NB
7868 } else {
7869 free_extent_state(cached_state);
7870 }
4b46fce2
JB
7871 }
7872
4b46fce2
JB
7873 free_extent_map(em);
7874
7875 return 0;
eb838e73
JB
7876
7877unlock_err:
e182163d
OS
7878 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7879 &cached_state);
9c9464cc 7880err:
50745b0a 7881 if (dio_data)
7882 current->journal_info = dio_data;
eb838e73 7883 return ret;
4b46fce2
JB
7884}
7885
58efbc9f
OS
7886static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7887 struct bio *bio,
7888 int mirror_num)
8b110e39 7889{
2ff7e61e 7890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7891 blk_status_t ret;
8b110e39 7892
37226b21 7893 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7894
2ff7e61e 7895 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7896 if (ret)
ea057f6d 7897 return ret;
8b110e39 7898
08635bae 7899 ret = btrfs_map_bio(fs_info, bio, mirror_num);
ea057f6d 7900
8b110e39
MX
7901 return ret;
7902}
7903
7904static int btrfs_check_dio_repairable(struct inode *inode,
7905 struct bio *failed_bio,
7906 struct io_failure_record *failrec,
7907 int failed_mirror)
7908{
ab8d0fc4 7909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7910 int num_copies;
7911
ab8d0fc4 7912 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7913 if (num_copies == 1) {
7914 /*
7915 * we only have a single copy of the data, so don't bother with
7916 * all the retry and error correction code that follows. no
7917 * matter what the error is, it is very likely to persist.
7918 */
ab8d0fc4
JM
7919 btrfs_debug(fs_info,
7920 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7921 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7922 return 0;
7923 }
7924
7925 failrec->failed_mirror = failed_mirror;
7926 failrec->this_mirror++;
7927 if (failrec->this_mirror == failed_mirror)
7928 failrec->this_mirror++;
7929
7930 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7931 btrfs_debug(fs_info,
7932 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7933 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7934 return 0;
7935 }
7936
7937 return 1;
7938}
7939
58efbc9f
OS
7940static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7941 struct page *page, unsigned int pgoff,
7942 u64 start, u64 end, int failed_mirror,
7943 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7944{
7945 struct io_failure_record *failrec;
7870d082
JB
7946 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7947 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7948 struct bio *bio;
7949 int isector;
f1c77c55 7950 unsigned int read_mode = 0;
17347cec 7951 int segs;
8b110e39 7952 int ret;
58efbc9f 7953 blk_status_t status;
c16a8ac3 7954 struct bio_vec bvec;
8b110e39 7955
37226b21 7956 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7957
7958 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7959 if (ret)
58efbc9f 7960 return errno_to_blk_status(ret);
8b110e39
MX
7961
7962 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7963 failed_mirror);
7964 if (!ret) {
7870d082 7965 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7966 return BLK_STS_IOERR;
8b110e39
MX
7967 }
7968
17347cec 7969 segs = bio_segments(failed_bio);
c16a8ac3 7970 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7971 if (segs > 1 ||
c16a8ac3 7972 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7973 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7974
7975 isector = start - btrfs_io_bio(failed_bio)->logical;
7976 isector >>= inode->i_sb->s_blocksize_bits;
7977 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7978 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7979 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7980
7981 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7982 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7983 read_mode, failrec->this_mirror, failrec->in_validation);
7984
58efbc9f
OS
7985 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7986 if (status) {
7870d082 7987 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7988 bio_put(bio);
7989 }
7990
58efbc9f 7991 return status;
8b110e39
MX
7992}
7993
7994struct btrfs_retry_complete {
7995 struct completion done;
7996 struct inode *inode;
7997 u64 start;
7998 int uptodate;
7999};
8000
4246a0b6 8001static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8002{
8003 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8004 struct inode *inode = done->inode;
8b110e39 8005 struct bio_vec *bvec;
7870d082 8006 struct extent_io_tree *io_tree, *failure_tree;
6dc4f100 8007 struct bvec_iter_all iter_all;
8b110e39 8008
4e4cbee9 8009 if (bio->bi_status)
8b110e39
MX
8010 goto end;
8011
2dabb324 8012 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8013 io_tree = &BTRFS_I(inode)->io_tree;
8014 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 8015 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8016
8b110e39 8017 done->uptodate = 1;
c09abff8 8018 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 8019 bio_for_each_segment_all(bvec, bio, iter_all)
7870d082
JB
8020 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8021 io_tree, done->start, bvec->bv_page,
8022 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8023end:
8024 complete(&done->done);
8025 bio_put(bio);
8026}
8027
58efbc9f
OS
8028static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8029 struct btrfs_io_bio *io_bio)
4b46fce2 8030{
2dabb324 8031 struct btrfs_fs_info *fs_info;
17347cec
LB
8032 struct bio_vec bvec;
8033 struct bvec_iter iter;
8b110e39 8034 struct btrfs_retry_complete done;
4b46fce2 8035 u64 start;
2dabb324
CR
8036 unsigned int pgoff;
8037 u32 sectorsize;
8038 int nr_sectors;
58efbc9f
OS
8039 blk_status_t ret;
8040 blk_status_t err = BLK_STS_OK;
4b46fce2 8041
2dabb324 8042 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8043 sectorsize = fs_info->sectorsize;
2dabb324 8044
8b110e39
MX
8045 start = io_bio->logical;
8046 done.inode = inode;
17347cec 8047 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8048
17347cec
LB
8049 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8050 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8051 pgoff = bvec.bv_offset;
2dabb324
CR
8052
8053next_block_or_try_again:
8b110e39
MX
8054 done.uptodate = 0;
8055 done.start = start;
8056 init_completion(&done.done);
8057
17347cec 8058 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8059 pgoff, start, start + sectorsize - 1,
8060 io_bio->mirror_num,
8061 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8062 if (ret) {
8063 err = ret;
8064 goto next;
8065 }
8b110e39 8066
9c17f6cd 8067 wait_for_completion_io(&done.done);
8b110e39
MX
8068
8069 if (!done.uptodate) {
8070 /* We might have another mirror, so try again */
2dabb324 8071 goto next_block_or_try_again;
8b110e39
MX
8072 }
8073
629ebf4f 8074next:
2dabb324
CR
8075 start += sectorsize;
8076
97bf5a55
LB
8077 nr_sectors--;
8078 if (nr_sectors) {
2dabb324 8079 pgoff += sectorsize;
97bf5a55 8080 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8081 goto next_block_or_try_again;
8082 }
8b110e39
MX
8083 }
8084
629ebf4f 8085 return err;
8b110e39
MX
8086}
8087
4246a0b6 8088static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8089{
8090 struct btrfs_retry_complete *done = bio->bi_private;
8091 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8092 struct extent_io_tree *io_tree, *failure_tree;
8093 struct inode *inode = done->inode;
8b110e39
MX
8094 struct bio_vec *bvec;
8095 int uptodate;
8096 int ret;
2b070cfe 8097 int i = 0;
6dc4f100 8098 struct bvec_iter_all iter_all;
8b110e39 8099
4e4cbee9 8100 if (bio->bi_status)
8b110e39
MX
8101 goto end;
8102
8103 uptodate = 1;
2dabb324 8104
2dabb324 8105 ASSERT(bio->bi_vcnt == 1);
263663cd 8106 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8107
7870d082
JB
8108 io_tree = &BTRFS_I(inode)->io_tree;
8109 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8110
c09abff8 8111 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 8112 bio_for_each_segment_all(bvec, bio, iter_all) {
7870d082
JB
8113 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8114 bvec->bv_offset, done->start,
8115 bvec->bv_len);
8b110e39 8116 if (!ret)
7870d082
JB
8117 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8118 failure_tree, io_tree, done->start,
8119 bvec->bv_page,
8120 btrfs_ino(BTRFS_I(inode)),
8121 bvec->bv_offset);
8b110e39
MX
8122 else
8123 uptodate = 0;
2b070cfe 8124 i++;
8b110e39
MX
8125 }
8126
8127 done->uptodate = uptodate;
8128end:
8129 complete(&done->done);
8130 bio_put(bio);
8131}
8132
4e4cbee9
CH
8133static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8134 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8135{
2dabb324 8136 struct btrfs_fs_info *fs_info;
17347cec
LB
8137 struct bio_vec bvec;
8138 struct bvec_iter iter;
8b110e39
MX
8139 struct btrfs_retry_complete done;
8140 u64 start;
8141 u64 offset = 0;
2dabb324
CR
8142 u32 sectorsize;
8143 int nr_sectors;
8144 unsigned int pgoff;
8145 int csum_pos;
ef7cdac1 8146 bool uptodate = (err == 0);
8b110e39 8147 int ret;
58efbc9f 8148 blk_status_t status;
dc380aea 8149
2dabb324 8150 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8151 sectorsize = fs_info->sectorsize;
2dabb324 8152
58efbc9f 8153 err = BLK_STS_OK;
c1dc0896 8154 start = io_bio->logical;
8b110e39 8155 done.inode = inode;
17347cec 8156 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8157
17347cec
LB
8158 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8159 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8160
17347cec 8161 pgoff = bvec.bv_offset;
2dabb324 8162next_block:
ef7cdac1
LB
8163 if (uptodate) {
8164 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8165 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8166 bvec.bv_page, pgoff, start, sectorsize);
8167 if (likely(!ret))
8168 goto next;
8169 }
8b110e39
MX
8170try_again:
8171 done.uptodate = 0;
8172 done.start = start;
8173 init_completion(&done.done);
8174
58efbc9f
OS
8175 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8176 pgoff, start, start + sectorsize - 1,
8177 io_bio->mirror_num, btrfs_retry_endio,
8178 &done);
8179 if (status) {
8180 err = status;
8b110e39
MX
8181 goto next;
8182 }
8183
9c17f6cd 8184 wait_for_completion_io(&done.done);
8b110e39
MX
8185
8186 if (!done.uptodate) {
8187 /* We might have another mirror, so try again */
8188 goto try_again;
8189 }
8190next:
2dabb324
CR
8191 offset += sectorsize;
8192 start += sectorsize;
8193
8194 ASSERT(nr_sectors);
8195
97bf5a55
LB
8196 nr_sectors--;
8197 if (nr_sectors) {
2dabb324 8198 pgoff += sectorsize;
97bf5a55 8199 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8200 goto next_block;
8201 }
2c30c71b 8202 }
c1dc0896
MX
8203
8204 return err;
8205}
8206
4e4cbee9
CH
8207static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8208 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8209{
8210 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8211
8212 if (skip_csum) {
8213 if (unlikely(err))
8214 return __btrfs_correct_data_nocsum(inode, io_bio);
8215 else
58efbc9f 8216 return BLK_STS_OK;
8b110e39
MX
8217 } else {
8218 return __btrfs_subio_endio_read(inode, io_bio, err);
8219 }
8220}
8221
4246a0b6 8222static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8223{
8224 struct btrfs_dio_private *dip = bio->bi_private;
8225 struct inode *inode = dip->inode;
8226 struct bio *dio_bio;
8227 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8228 blk_status_t err = bio->bi_status;
c1dc0896 8229
99c4e3b9 8230 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8231 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8232
4b46fce2 8233 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8234 dip->logical_offset + dip->bytes - 1);
9be3395b 8235 dio_bio = dip->dio_bio;
4b46fce2 8236
4b46fce2 8237 kfree(dip);
c0da7aa1 8238
99c4e3b9 8239 dio_bio->bi_status = err;
4055351c 8240 dio_end_io(dio_bio);
b3a0dd50 8241 btrfs_io_bio_free_csum(io_bio);
9be3395b 8242 bio_put(bio);
4b46fce2
JB
8243}
8244
52427260
QW
8245static void __endio_write_update_ordered(struct inode *inode,
8246 const u64 offset, const u64 bytes,
8247 const bool uptodate)
4b46fce2 8248{
0b246afa 8249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8250 struct btrfs_ordered_extent *ordered = NULL;
52427260 8251 struct btrfs_workqueue *wq;
14543774
FM
8252 u64 ordered_offset = offset;
8253 u64 ordered_bytes = bytes;
67c003f9 8254 u64 last_offset;
4b46fce2 8255
a0cac0ec 8256 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
52427260 8257 wq = fs_info->endio_freespace_worker;
a0cac0ec 8258 else
52427260 8259 wq = fs_info->endio_write_workers;
52427260 8260
b25f0d00
NB
8261 while (ordered_offset < offset + bytes) {
8262 last_offset = ordered_offset;
8263 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8264 &ordered_offset,
8265 ordered_bytes,
8266 uptodate)) {
a0cac0ec
OS
8267 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8268 NULL);
b25f0d00
NB
8269 btrfs_queue_work(wq, &ordered->work);
8270 }
8271 /*
8272 * If btrfs_dec_test_ordered_pending does not find any ordered
8273 * extent in the range, we can exit.
8274 */
8275 if (ordered_offset == last_offset)
8276 return;
8277 /*
8278 * Our bio might span multiple ordered extents. In this case
52042d8e 8279 * we keep going until we have accounted the whole dio.
b25f0d00
NB
8280 */
8281 if (ordered_offset < offset + bytes) {
8282 ordered_bytes = offset + bytes - ordered_offset;
8283 ordered = NULL;
8284 }
163cf09c 8285 }
14543774
FM
8286}
8287
8288static void btrfs_endio_direct_write(struct bio *bio)
8289{
8290 struct btrfs_dio_private *dip = bio->bi_private;
8291 struct bio *dio_bio = dip->dio_bio;
8292
52427260 8293 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8294 dip->bytes, !bio->bi_status);
4b46fce2 8295
4b46fce2 8296 kfree(dip);
c0da7aa1 8297
4e4cbee9 8298 dio_bio->bi_status = bio->bi_status;
4055351c 8299 dio_end_io(dio_bio);
9be3395b 8300 bio_put(bio);
4b46fce2
JB
8301}
8302
d0ee3934 8303static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8304 struct bio *bio, u64 offset)
eaf25d93 8305{
c6100a4b 8306 struct inode *inode = private_data;
4e4cbee9 8307 blk_status_t ret;
2ff7e61e 8308 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8309 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8310 return 0;
8311}
8312
4246a0b6 8313static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8314{
8315 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8316 blk_status_t err = bio->bi_status;
e65e1535 8317
8b110e39
MX
8318 if (err)
8319 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8320 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8321 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8322 bio->bi_opf,
8b110e39
MX
8323 (unsigned long long)bio->bi_iter.bi_sector,
8324 bio->bi_iter.bi_size, err);
8325
8326 if (dip->subio_endio)
8327 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8328
8329 if (err) {
e65e1535 8330 /*
de224b7c
NB
8331 * We want to perceive the errors flag being set before
8332 * decrementing the reference count. We don't need a barrier
8333 * since atomic operations with a return value are fully
8334 * ordered as per atomic_t.txt
e65e1535 8335 */
de224b7c 8336 dip->errors = 1;
e65e1535
MX
8337 }
8338
8339 /* if there are more bios still pending for this dio, just exit */
8340 if (!atomic_dec_and_test(&dip->pending_bios))
8341 goto out;
8342
9be3395b 8343 if (dip->errors) {
e65e1535 8344 bio_io_error(dip->orig_bio);
9be3395b 8345 } else {
2dbe0c77 8346 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8347 bio_endio(dip->orig_bio);
e65e1535
MX
8348 }
8349out:
8350 bio_put(bio);
8351}
8352
4e4cbee9 8353static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8354 struct btrfs_dio_private *dip,
8355 struct bio *bio,
8356 u64 file_offset)
8357{
8358 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8359 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8360 blk_status_t ret;
c1dc0896
MX
8361
8362 /*
8363 * We load all the csum data we need when we submit
8364 * the first bio to reduce the csum tree search and
8365 * contention.
8366 */
8367 if (dip->logical_offset == file_offset) {
2ff7e61e 8368 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8369 file_offset);
8370 if (ret)
8371 return ret;
8372 }
8373
8374 if (bio == dip->orig_bio)
8375 return 0;
8376
8377 file_offset -= dip->logical_offset;
8378 file_offset >>= inode->i_sb->s_blocksize_bits;
8379 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8380
8381 return 0;
8382}
8383
d0ee3934
DS
8384static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8385 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8386{
0b246afa 8387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8388 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8389 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8390 blk_status_t ret;
e65e1535 8391
4c274bc6 8392 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8393 if (async_submit)
8394 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8395
5fd02043 8396 if (!write) {
0b246afa 8397 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8398 if (ret)
8399 goto err;
8400 }
e65e1535 8401
e6961cac 8402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8403 goto map;
8404
8405 if (write && async_submit) {
c6100a4b
JB
8406 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8407 file_offset, inode,
e288c080 8408 btrfs_submit_bio_start_direct_io);
e65e1535 8409 goto err;
1ae39938
JB
8410 } else if (write) {
8411 /*
8412 * If we aren't doing async submit, calculate the csum of the
8413 * bio now.
8414 */
2ff7e61e 8415 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8416 if (ret)
8417 goto err;
23ea8e5a 8418 } else {
2ff7e61e 8419 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8420 file_offset);
c2db1073
TI
8421 if (ret)
8422 goto err;
8423 }
1ae39938 8424map:
08635bae 8425 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 8426err:
e65e1535
MX
8427 return ret;
8428}
8429
e6961cac 8430static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8431{
8432 struct inode *inode = dip->inode;
0b246afa 8433 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8434 struct bio *bio;
8435 struct bio *orig_bio = dip->orig_bio;
4f024f37 8436 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8437 u64 file_offset = dip->logical_offset;
1ae39938 8438 int async_submit = 0;
725130ba
LB
8439 u64 submit_len;
8440 int clone_offset = 0;
8441 int clone_len;
5f4dc8fc 8442 int ret;
58efbc9f 8443 blk_status_t status;
89b798ad 8444 struct btrfs_io_geometry geom;
e65e1535 8445
89b798ad
NB
8446 submit_len = orig_bio->bi_iter.bi_size;
8447 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8448 start_sector << 9, submit_len, &geom);
7a5c3c9b 8449 if (ret)
e65e1535 8450 return -EIO;
facc8a22 8451
89b798ad 8452 if (geom.len >= submit_len) {
02f57c7a 8453 bio = orig_bio;
c1dc0896 8454 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8455 goto submit;
8456 }
8457
53b381b3 8458 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8459 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8460 async_submit = 0;
8461 else
8462 async_submit = 1;
8463
725130ba 8464 /* bio split */
89b798ad 8465 ASSERT(geom.len <= INT_MAX);
02f57c7a 8466 atomic_inc(&dip->pending_bios);
3c91ee69 8467 do {
89b798ad 8468 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 8469
725130ba
LB
8470 /*
8471 * This will never fail as it's passing GPF_NOFS and
8472 * the allocation is backed by btrfs_bioset.
8473 */
e477094f 8474 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8475 clone_len);
8476 bio->bi_private = dip;
8477 bio->bi_end_io = btrfs_end_dio_bio;
8478 btrfs_io_bio(bio)->logical = file_offset;
8479
8480 ASSERT(submit_len >= clone_len);
8481 submit_len -= clone_len;
8482 if (submit_len == 0)
8483 break;
e65e1535 8484
725130ba
LB
8485 /*
8486 * Increase the count before we submit the bio so we know
8487 * the end IO handler won't happen before we increase the
8488 * count. Otherwise, the dip might get freed before we're
8489 * done setting it up.
8490 */
8491 atomic_inc(&dip->pending_bios);
e65e1535 8492
d0ee3934 8493 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8494 async_submit);
8495 if (status) {
725130ba
LB
8496 bio_put(bio);
8497 atomic_dec(&dip->pending_bios);
8498 goto out_err;
8499 }
e65e1535 8500
725130ba
LB
8501 clone_offset += clone_len;
8502 start_sector += clone_len >> 9;
8503 file_offset += clone_len;
5f4dc8fc 8504
89b798ad
NB
8505 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8506 start_sector << 9, submit_len, &geom);
725130ba
LB
8507 if (ret)
8508 goto out_err;
3c91ee69 8509 } while (submit_len > 0);
e65e1535 8510
02f57c7a 8511submit:
d0ee3934 8512 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8513 if (!status)
e65e1535
MX
8514 return 0;
8515
8516 bio_put(bio);
8517out_err:
8518 dip->errors = 1;
8519 /*
de224b7c
NB
8520 * Before atomic variable goto zero, we must make sure dip->errors is
8521 * perceived to be set. This ordering is ensured by the fact that an
8522 * atomic operations with a return value are fully ordered as per
8523 * atomic_t.txt
e65e1535 8524 */
e65e1535
MX
8525 if (atomic_dec_and_test(&dip->pending_bios))
8526 bio_io_error(dip->orig_bio);
8527
8528 /* bio_end_io() will handle error, so we needn't return it */
8529 return 0;
8530}
8531
8a4c1e42
MC
8532static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8533 loff_t file_offset)
4b46fce2 8534{
61de718f 8535 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8536 struct bio *bio = NULL;
8537 struct btrfs_io_bio *io_bio;
8a4c1e42 8538 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8539 int ret = 0;
8540
8b6c1d56 8541 bio = btrfs_bio_clone(dio_bio);
9be3395b 8542
c1dc0896 8543 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8544 if (!dip) {
8545 ret = -ENOMEM;
61de718f 8546 goto free_ordered;
4b46fce2 8547 }
4b46fce2 8548
9be3395b 8549 dip->private = dio_bio->bi_private;
4b46fce2
JB
8550 dip->inode = inode;
8551 dip->logical_offset = file_offset;
4f024f37
KO
8552 dip->bytes = dio_bio->bi_iter.bi_size;
8553 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8554 bio->bi_private = dip;
8555 dip->orig_bio = bio;
9be3395b 8556 dip->dio_bio = dio_bio;
e65e1535 8557 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8558 io_bio = btrfs_io_bio(bio);
8559 io_bio->logical = file_offset;
4b46fce2 8560
c1dc0896 8561 if (write) {
3892ac90 8562 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8563 } else {
3892ac90 8564 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8565 dip->subio_endio = btrfs_subio_endio_read;
8566 }
4b46fce2 8567
f28a4928
FM
8568 /*
8569 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8570 * even if we fail to submit a bio, because in such case we do the
8571 * corresponding error handling below and it must not be done a second
8572 * time by btrfs_direct_IO().
8573 */
8574 if (write) {
8575 struct btrfs_dio_data *dio_data = current->journal_info;
8576
8577 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8578 dip->bytes;
8579 dio_data->unsubmitted_oe_range_start =
8580 dio_data->unsubmitted_oe_range_end;
8581 }
8582
e6961cac 8583 ret = btrfs_submit_direct_hook(dip);
e65e1535 8584 if (!ret)
eaf25d93 8585 return;
9be3395b 8586
b3a0dd50 8587 btrfs_io_bio_free_csum(io_bio);
9be3395b 8588
4b46fce2
JB
8589free_ordered:
8590 /*
61de718f
FM
8591 * If we arrived here it means either we failed to submit the dip
8592 * or we either failed to clone the dio_bio or failed to allocate the
8593 * dip. If we cloned the dio_bio and allocated the dip, we can just
8594 * call bio_endio against our io_bio so that we get proper resource
8595 * cleanup if we fail to submit the dip, otherwise, we must do the
8596 * same as btrfs_endio_direct_[write|read] because we can't call these
8597 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8598 */
3892ac90 8599 if (bio && dip) {
054ec2f6 8600 bio_io_error(bio);
61de718f 8601 /*
3892ac90 8602 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8603 * and all the cleanup and final put for dio_bio (through
8604 * dio_end_io()).
8605 */
8606 dip = NULL;
3892ac90 8607 bio = NULL;
61de718f 8608 } else {
14543774 8609 if (write)
52427260 8610 __endio_write_update_ordered(inode,
14543774
FM
8611 file_offset,
8612 dio_bio->bi_iter.bi_size,
52427260 8613 false);
14543774 8614 else
61de718f
FM
8615 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8616 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8617
4e4cbee9 8618 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8619 /*
8620 * Releases and cleans up our dio_bio, no need to bio_put()
8621 * nor bio_endio()/bio_io_error() against dio_bio.
8622 */
4055351c 8623 dio_end_io(dio_bio);
4b46fce2 8624 }
3892ac90
LB
8625 if (bio)
8626 bio_put(bio);
61de718f 8627 kfree(dip);
4b46fce2
JB
8628}
8629
2ff7e61e 8630static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8631 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8632{
8633 int seg;
a1b75f7d 8634 int i;
0b246afa 8635 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8636 ssize_t retval = -EINVAL;
5a5f79b5
CM
8637
8638 if (offset & blocksize_mask)
8639 goto out;
8640
28060d5d
AV
8641 if (iov_iter_alignment(iter) & blocksize_mask)
8642 goto out;
a1b75f7d 8643
28060d5d 8644 /* If this is a write we don't need to check anymore */
cd27e455 8645 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8646 return 0;
8647 /*
8648 * Check to make sure we don't have duplicate iov_base's in this
8649 * iovec, if so return EINVAL, otherwise we'll get csum errors
8650 * when reading back.
8651 */
8652 for (seg = 0; seg < iter->nr_segs; seg++) {
8653 for (i = seg + 1; i < iter->nr_segs; i++) {
8654 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8655 goto out;
8656 }
5a5f79b5
CM
8657 }
8658 retval = 0;
8659out:
8660 return retval;
8661}
eb838e73 8662
c8b8e32d 8663static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8664{
4b46fce2
JB
8665 struct file *file = iocb->ki_filp;
8666 struct inode *inode = file->f_mapping->host;
0b246afa 8667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8668 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8669 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8670 loff_t offset = iocb->ki_pos;
0934856d 8671 size_t count = 0;
2e60a51e 8672 int flags = 0;
38851cc1
MX
8673 bool wakeup = true;
8674 bool relock = false;
0934856d 8675 ssize_t ret;
4b46fce2 8676
8c70c9f8 8677 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8678 return 0;
3f7c579c 8679
fe0f07d0 8680 inode_dio_begin(inode);
38851cc1 8681
0e267c44 8682 /*
41bd9ca4
MX
8683 * The generic stuff only does filemap_write_and_wait_range, which
8684 * isn't enough if we've written compressed pages to this area, so
8685 * we need to flush the dirty pages again to make absolutely sure
8686 * that any outstanding dirty pages are on disk.
0e267c44 8687 */
a6cbcd4a 8688 count = iov_iter_count(iter);
41bd9ca4
MX
8689 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8690 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8691 filemap_fdatawrite_range(inode->i_mapping, offset,
8692 offset + count - 1);
0e267c44 8693
6f673763 8694 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8695 /*
8696 * If the write DIO is beyond the EOF, we need update
8697 * the isize, but it is protected by i_mutex. So we can
8698 * not unlock the i_mutex at this case.
8699 */
8700 if (offset + count <= inode->i_size) {
4aaedfb0 8701 dio_data.overwrite = 1;
5955102c 8702 inode_unlock(inode);
38851cc1 8703 relock = true;
edf064e7
GR
8704 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8705 ret = -EAGAIN;
8706 goto out;
38851cc1 8707 }
364ecf36
QW
8708 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8709 offset, count);
0934856d 8710 if (ret)
38851cc1 8711 goto out;
e1cbbfa5
JB
8712
8713 /*
8714 * We need to know how many extents we reserved so that we can
8715 * do the accounting properly if we go over the number we
8716 * originally calculated. Abuse current->journal_info for this.
8717 */
da17066c 8718 dio_data.reserve = round_up(count,
0b246afa 8719 fs_info->sectorsize);
f28a4928
FM
8720 dio_data.unsubmitted_oe_range_start = (u64)offset;
8721 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8722 current->journal_info = &dio_data;
97dcdea0 8723 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8724 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8725 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8726 inode_dio_end(inode);
38851cc1
MX
8727 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8728 wakeup = false;
0934856d
MX
8729 }
8730
17f8c842 8731 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8732 fs_info->fs_devices->latest_bdev,
c8b8e32d 8733 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8734 btrfs_submit_direct, flags);
6f673763 8735 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8736 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8737 current->journal_info = NULL;
ddba1bfc 8738 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8739 if (dio_data.reserve)
bc42bda2 8740 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8741 offset, dio_data.reserve, true);
f28a4928
FM
8742 /*
8743 * On error we might have left some ordered extents
8744 * without submitting corresponding bios for them, so
8745 * cleanup them up to avoid other tasks getting them
8746 * and waiting for them to complete forever.
8747 */
8748 if (dio_data.unsubmitted_oe_range_start <
8749 dio_data.unsubmitted_oe_range_end)
52427260 8750 __endio_write_update_ordered(inode,
f28a4928
FM
8751 dio_data.unsubmitted_oe_range_start,
8752 dio_data.unsubmitted_oe_range_end -
8753 dio_data.unsubmitted_oe_range_start,
52427260 8754 false);
ddba1bfc 8755 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8756 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8757 offset, count - (size_t)ret, true);
8702ba93 8758 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8759 }
38851cc1 8760out:
2e60a51e 8761 if (wakeup)
fe0f07d0 8762 inode_dio_end(inode);
38851cc1 8763 if (relock)
5955102c 8764 inode_lock(inode);
0934856d 8765
364ecf36 8766 extent_changeset_free(data_reserved);
0934856d 8767 return ret;
16432985
CM
8768}
8769
05dadc09
TI
8770#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8771
1506fcc8
YS
8772static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8773 __u64 start, __u64 len)
8774{
05dadc09
TI
8775 int ret;
8776
8777 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8778 if (ret)
8779 return ret;
8780
2135fb9b 8781 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8782}
8783
a52d9a80 8784int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8785{
d1310b2e
CM
8786 struct extent_io_tree *tree;
8787 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8788 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8789}
1832a6d5 8790
a52d9a80 8791static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8792{
be7bd730
JB
8793 struct inode *inode = page->mapping->host;
8794 int ret;
b888db2b
CM
8795
8796 if (current->flags & PF_MEMALLOC) {
8797 redirty_page_for_writepage(wbc, page);
8798 unlock_page(page);
8799 return 0;
8800 }
be7bd730
JB
8801
8802 /*
8803 * If we are under memory pressure we will call this directly from the
8804 * VM, we need to make sure we have the inode referenced for the ordered
8805 * extent. If not just return like we didn't do anything.
8806 */
8807 if (!igrab(inode)) {
8808 redirty_page_for_writepage(wbc, page);
8809 return AOP_WRITEPAGE_ACTIVATE;
8810 }
0a9b0e53 8811 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8812 btrfs_add_delayed_iput(inode);
8813 return ret;
9ebefb18
CM
8814}
8815
48a3b636
ES
8816static int btrfs_writepages(struct address_space *mapping,
8817 struct writeback_control *wbc)
b293f02e 8818{
8ae225a8 8819 return extent_writepages(mapping, wbc);
b293f02e
CM
8820}
8821
3ab2fb5a
CM
8822static int
8823btrfs_readpages(struct file *file, struct address_space *mapping,
8824 struct list_head *pages, unsigned nr_pages)
8825{
2a3ff0ad 8826 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8827}
2a3ff0ad 8828
e6dcd2dc 8829static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8830{
477a30ba 8831 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8832 if (ret == 1) {
8833 ClearPagePrivate(page);
8834 set_page_private(page, 0);
09cbfeaf 8835 put_page(page);
39279cc3 8836 }
a52d9a80 8837 return ret;
39279cc3
CM
8838}
8839
e6dcd2dc
CM
8840static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8841{
98509cfc
CM
8842 if (PageWriteback(page) || PageDirty(page))
8843 return 0;
3ba7ab22 8844 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8845}
8846
d47992f8
LC
8847static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8848 unsigned int length)
39279cc3 8849{
5fd02043 8850 struct inode *inode = page->mapping->host;
d1310b2e 8851 struct extent_io_tree *tree;
e6dcd2dc 8852 struct btrfs_ordered_extent *ordered;
2ac55d41 8853 struct extent_state *cached_state = NULL;
e6dcd2dc 8854 u64 page_start = page_offset(page);
09cbfeaf 8855 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8856 u64 start;
8857 u64 end;
131e404a 8858 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8859
8b62b72b
CM
8860 /*
8861 * we have the page locked, so new writeback can't start,
8862 * and the dirty bit won't be cleared while we are here.
8863 *
8864 * Wait for IO on this page so that we can safely clear
8865 * the PagePrivate2 bit and do ordered accounting
8866 */
e6dcd2dc 8867 wait_on_page_writeback(page);
8b62b72b 8868
5fd02043 8869 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8870 if (offset) {
8871 btrfs_releasepage(page, GFP_NOFS);
8872 return;
8873 }
131e404a
FDBM
8874
8875 if (!inode_evicting)
ff13db41 8876 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8877again:
8878 start = page_start;
a776c6fa 8879 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8880 page_end - start + 1);
e6dcd2dc 8881 if (ordered) {
dbfdb6d1 8882 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8883 /*
8884 * IO on this page will never be started, so we need
8885 * to account for any ordered extents now
8886 */
131e404a 8887 if (!inode_evicting)
dbfdb6d1 8888 clear_extent_bit(tree, start, end,
e182163d 8889 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8890 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8891 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8892 /*
8893 * whoever cleared the private bit is responsible
8894 * for the finish_ordered_io
8895 */
77cef2ec
JB
8896 if (TestClearPagePrivate2(page)) {
8897 struct btrfs_ordered_inode_tree *tree;
8898 u64 new_len;
8899
8900 tree = &BTRFS_I(inode)->ordered_tree;
8901
8902 spin_lock_irq(&tree->lock);
8903 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8904 new_len = start - ordered->file_offset;
77cef2ec
JB
8905 if (new_len < ordered->truncated_len)
8906 ordered->truncated_len = new_len;
8907 spin_unlock_irq(&tree->lock);
8908
8909 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8910 start,
8911 end - start + 1, 1))
77cef2ec 8912 btrfs_finish_ordered_io(ordered);
8b62b72b 8913 }
e6dcd2dc 8914 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8915 if (!inode_evicting) {
8916 cached_state = NULL;
dbfdb6d1 8917 lock_extent_bits(tree, start, end,
131e404a
FDBM
8918 &cached_state);
8919 }
dbfdb6d1
CR
8920
8921 start = end + 1;
8922 if (start < page_end)
8923 goto again;
131e404a
FDBM
8924 }
8925
b9d0b389
QW
8926 /*
8927 * Qgroup reserved space handler
8928 * Page here will be either
8929 * 1) Already written to disk
8930 * In this case, its reserved space is released from data rsv map
8931 * and will be freed by delayed_ref handler finally.
8932 * So even we call qgroup_free_data(), it won't decrease reserved
8933 * space.
8934 * 2) Not written to disk
0b34c261
GR
8935 * This means the reserved space should be freed here. However,
8936 * if a truncate invalidates the page (by clearing PageDirty)
8937 * and the page is accounted for while allocating extent
8938 * in btrfs_check_data_free_space() we let delayed_ref to
8939 * free the entire extent.
b9d0b389 8940 */
0b34c261 8941 if (PageDirty(page))
bc42bda2 8942 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a 8943 if (!inode_evicting) {
e182163d 8944 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8945 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8946 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8947 &cached_state);
131e404a
FDBM
8948
8949 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8950 }
e6dcd2dc 8951
4a096752 8952 ClearPageChecked(page);
9ad6b7bc 8953 if (PagePrivate(page)) {
9ad6b7bc
CM
8954 ClearPagePrivate(page);
8955 set_page_private(page, 0);
09cbfeaf 8956 put_page(page);
9ad6b7bc 8957 }
39279cc3
CM
8958}
8959
9ebefb18
CM
8960/*
8961 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8962 * called from a page fault handler when a page is first dirtied. Hence we must
8963 * be careful to check for EOF conditions here. We set the page up correctly
8964 * for a written page which means we get ENOSPC checking when writing into
8965 * holes and correct delalloc and unwritten extent mapping on filesystems that
8966 * support these features.
8967 *
8968 * We are not allowed to take the i_mutex here so we have to play games to
8969 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8970 * truncate_setsize() writes the inode size before removing pages, once we have
8971 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8972 * beyond EOF, then the page is guaranteed safe against truncation until we
8973 * unlock the page.
8974 */
a528a241 8975vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8976{
c2ec175c 8977 struct page *page = vmf->page;
11bac800 8978 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8980 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8981 struct btrfs_ordered_extent *ordered;
2ac55d41 8982 struct extent_state *cached_state = NULL;
364ecf36 8983 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8984 char *kaddr;
8985 unsigned long zero_start;
9ebefb18 8986 loff_t size;
a528a241
SJ
8987 vm_fault_t ret;
8988 int ret2;
9998eb70 8989 int reserved = 0;
d0b7da88 8990 u64 reserved_space;
a52d9a80 8991 u64 page_start;
e6dcd2dc 8992 u64 page_end;
d0b7da88
CR
8993 u64 end;
8994
09cbfeaf 8995 reserved_space = PAGE_SIZE;
9ebefb18 8996
b2b5ef5c 8997 sb_start_pagefault(inode->i_sb);
df480633 8998 page_start = page_offset(page);
09cbfeaf 8999 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9000 end = page_end;
df480633 9001
d0b7da88
CR
9002 /*
9003 * Reserving delalloc space after obtaining the page lock can lead to
9004 * deadlock. For example, if a dirty page is locked by this function
9005 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9006 * dirty page write out, then the btrfs_writepage() function could
9007 * end up waiting indefinitely to get a lock on the page currently
9008 * being processed by btrfs_page_mkwrite() function.
9009 */
a528a241 9010 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9011 reserved_space);
a528a241
SJ
9012 if (!ret2) {
9013 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9014 reserved = 1;
9015 }
a528a241
SJ
9016 if (ret2) {
9017 ret = vmf_error(ret2);
9998eb70
CM
9018 if (reserved)
9019 goto out;
9020 goto out_noreserve;
56a76f82 9021 }
1832a6d5 9022
56a76f82 9023 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9024again:
9ebefb18 9025 lock_page(page);
9ebefb18 9026 size = i_size_read(inode);
a52d9a80 9027
9ebefb18 9028 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9029 (page_start >= size)) {
9ebefb18
CM
9030 /* page got truncated out from underneath us */
9031 goto out_unlock;
9032 }
e6dcd2dc
CM
9033 wait_on_page_writeback(page);
9034
ff13db41 9035 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9036 set_page_extent_mapped(page);
9037
eb84ae03
CM
9038 /*
9039 * we can't set the delalloc bits if there are pending ordered
9040 * extents. Drop our locks and wait for them to finish
9041 */
a776c6fa
NB
9042 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9043 PAGE_SIZE);
e6dcd2dc 9044 if (ordered) {
2ac55d41 9045 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9046 &cached_state);
e6dcd2dc 9047 unlock_page(page);
eb84ae03 9048 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9049 btrfs_put_ordered_extent(ordered);
9050 goto again;
9051 }
9052
09cbfeaf 9053 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9054 reserved_space = round_up(size - page_start,
0b246afa 9055 fs_info->sectorsize);
09cbfeaf 9056 if (reserved_space < PAGE_SIZE) {
d0b7da88 9057 end = page_start + reserved_space - 1;
bc42bda2 9058 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
9059 page_start, PAGE_SIZE - reserved_space,
9060 true);
d0b7da88
CR
9061 }
9062 }
9063
fbf19087 9064 /*
5416034f
LB
9065 * page_mkwrite gets called when the page is firstly dirtied after it's
9066 * faulted in, but write(2) could also dirty a page and set delalloc
9067 * bits, thus in this case for space account reason, we still need to
9068 * clear any delalloc bits within this page range since we have to
9069 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9070 */
d0b7da88 9071 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
9072 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9073 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 9074
a528a241 9075 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
330a5827 9076 &cached_state);
a528a241 9077 if (ret2) {
2ac55d41 9078 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9079 &cached_state);
9ed74f2d
JB
9080 ret = VM_FAULT_SIGBUS;
9081 goto out_unlock;
9082 }
a528a241 9083 ret2 = 0;
9ebefb18
CM
9084
9085 /* page is wholly or partially inside EOF */
09cbfeaf 9086 if (page_start + PAGE_SIZE > size)
7073017a 9087 zero_start = offset_in_page(size);
9ebefb18 9088 else
09cbfeaf 9089 zero_start = PAGE_SIZE;
9ebefb18 9090
09cbfeaf 9091 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9092 kaddr = kmap(page);
09cbfeaf 9093 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9094 flush_dcache_page(page);
9095 kunmap(page);
9096 }
247e743c 9097 ClearPageChecked(page);
e6dcd2dc 9098 set_page_dirty(page);
50a9b214 9099 SetPageUptodate(page);
5a3f23d5 9100
0b246afa 9101 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9102 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9103 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9104
e43bbe5e 9105 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 9106
a528a241 9107 if (!ret2) {
8702ba93 9108 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9109 sb_end_pagefault(inode->i_sb);
364ecf36 9110 extent_changeset_free(data_reserved);
50a9b214 9111 return VM_FAULT_LOCKED;
b2b5ef5c 9112 }
717beb96
CM
9113
9114out_unlock:
9ebefb18 9115 unlock_page(page);
1832a6d5 9116out:
8702ba93 9117 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2 9118 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9119 reserved_space, (ret != 0));
9998eb70 9120out_noreserve:
b2b5ef5c 9121 sb_end_pagefault(inode->i_sb);
364ecf36 9122 extent_changeset_free(data_reserved);
9ebefb18
CM
9123 return ret;
9124}
9125
213e8c55 9126static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9127{
0b246afa 9128 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9129 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9130 struct btrfs_block_rsv *rsv;
ad7e1a74 9131 int ret;
39279cc3 9132 struct btrfs_trans_handle *trans;
0b246afa 9133 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 9134 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 9135
213e8c55
FM
9136 if (!skip_writeback) {
9137 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9138 (u64)-1);
9139 if (ret)
9140 return ret;
9141 }
39279cc3 9142
fcb80c2a 9143 /*
f7e9e8fc
OS
9144 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9145 * things going on here:
fcb80c2a 9146 *
f7e9e8fc 9147 * 1) We need to reserve space to update our inode.
fcb80c2a 9148 *
f7e9e8fc 9149 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9150 * be free'd up by the truncate operation, but also have some slack
9151 * space reserved in case it uses space during the truncate (thank you
9152 * very much snapshotting).
9153 *
f7e9e8fc 9154 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9155 * space doing the truncate, and we have no earthly idea how much space
01327610 9156 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9157 * doesn't end up using space reserved for updating the inode. We also
9158 * need to be able to stop the transaction and start a new one, which
9159 * means we need to be able to update the inode several times, and we
9160 * have no idea of knowing how many times that will be, so we can't just
9161 * reserve 1 item for the entirety of the operation, so that has to be
9162 * done separately as well.
fcb80c2a
JB
9163 *
9164 * So that leaves us with
9165 *
f7e9e8fc 9166 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9167 * transaction reservation.
f7e9e8fc 9168 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9169 * updating the inode.
9170 */
2ff7e61e 9171 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9172 if (!rsv)
9173 return -ENOMEM;
4a338542 9174 rsv->size = min_size;
ca7e70f5 9175 rsv->failfast = 1;
f0cd846e 9176
907cbceb 9177 /*
07127184 9178 * 1 for the truncate slack space
907cbceb
JB
9179 * 1 for updating the inode.
9180 */
f3fe820c 9181 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9182 if (IS_ERR(trans)) {
ad7e1a74 9183 ret = PTR_ERR(trans);
fcb80c2a
JB
9184 goto out;
9185 }
f0cd846e 9186
907cbceb 9187 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9188 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 9189 min_size, false);
fcb80c2a 9190 BUG_ON(ret);
f0cd846e 9191
5dc562c5
JB
9192 /*
9193 * So if we truncate and then write and fsync we normally would just
9194 * write the extents that changed, which is a problem if we need to
9195 * first truncate that entire inode. So set this flag so we write out
9196 * all of the extents in the inode to the sync log so we're completely
9197 * safe.
9198 */
9199 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9200 trans->block_rsv = rsv;
907cbceb 9201
8082510e
YZ
9202 while (1) {
9203 ret = btrfs_truncate_inode_items(trans, root, inode,
9204 inode->i_size,
9205 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9206 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9207 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9208 break;
39279cc3 9209
8082510e 9210 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9211 if (ret)
3893e33b 9212 break;
ca7e70f5 9213
3a45bb20 9214 btrfs_end_transaction(trans);
2ff7e61e 9215 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9216
9217 trans = btrfs_start_transaction(root, 2);
9218 if (IS_ERR(trans)) {
ad7e1a74 9219 ret = PTR_ERR(trans);
ca7e70f5
JB
9220 trans = NULL;
9221 break;
9222 }
9223
47b5d646 9224 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9225 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9226 rsv, min_size, false);
ca7e70f5
JB
9227 BUG_ON(ret); /* shouldn't happen */
9228 trans->block_rsv = rsv;
8082510e
YZ
9229 }
9230
ddfae63c
JB
9231 /*
9232 * We can't call btrfs_truncate_block inside a trans handle as we could
9233 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9234 * we've truncated everything except the last little bit, and can do
9235 * btrfs_truncate_block and then update the disk_i_size.
9236 */
9237 if (ret == NEED_TRUNCATE_BLOCK) {
9238 btrfs_end_transaction(trans);
9239 btrfs_btree_balance_dirty(fs_info);
9240
9241 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9242 if (ret)
9243 goto out;
9244 trans = btrfs_start_transaction(root, 1);
9245 if (IS_ERR(trans)) {
9246 ret = PTR_ERR(trans);
9247 goto out;
9248 }
9249 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9250 }
9251
917c16b2 9252 if (trans) {
ad7e1a74
OS
9253 int ret2;
9254
0b246afa 9255 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9256 ret2 = btrfs_update_inode(trans, root, inode);
9257 if (ret2 && !ret)
9258 ret = ret2;
7b128766 9259
ad7e1a74
OS
9260 ret2 = btrfs_end_transaction(trans);
9261 if (ret2 && !ret)
9262 ret = ret2;
2ff7e61e 9263 btrfs_btree_balance_dirty(fs_info);
917c16b2 9264 }
fcb80c2a 9265out:
2ff7e61e 9266 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9267
ad7e1a74 9268 return ret;
39279cc3
CM
9269}
9270
d352ac68
CM
9271/*
9272 * create a new subvolume directory/inode (helper for the ioctl).
9273 */
d2fb3437 9274int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9275 struct btrfs_root *new_root,
9276 struct btrfs_root *parent_root,
9277 u64 new_dirid)
39279cc3 9278{
39279cc3 9279 struct inode *inode;
76dda93c 9280 int err;
00e4e6b3 9281 u64 index = 0;
39279cc3 9282
12fc9d09
FA
9283 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9284 new_dirid, new_dirid,
9285 S_IFDIR | (~current_umask() & S_IRWXUGO),
9286 &index);
54aa1f4d 9287 if (IS_ERR(inode))
f46b5a66 9288 return PTR_ERR(inode);
39279cc3
CM
9289 inode->i_op = &btrfs_dir_inode_operations;
9290 inode->i_fop = &btrfs_dir_file_operations;
9291
bfe86848 9292 set_nlink(inode, 1);
6ef06d27 9293 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9294 unlock_new_inode(inode);
3b96362c 9295
63541927
FDBM
9296 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9297 if (err)
9298 btrfs_err(new_root->fs_info,
351fd353 9299 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9300 new_root->root_key.objectid, err);
9301
76dda93c 9302 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9303
76dda93c 9304 iput(inode);
ce598979 9305 return err;
39279cc3
CM
9306}
9307
39279cc3
CM
9308struct inode *btrfs_alloc_inode(struct super_block *sb)
9309{
69fe2d75 9310 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9311 struct btrfs_inode *ei;
2ead6ae7 9312 struct inode *inode;
39279cc3 9313
712e36c5 9314 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9315 if (!ei)
9316 return NULL;
2ead6ae7
YZ
9317
9318 ei->root = NULL;
2ead6ae7 9319 ei->generation = 0;
15ee9bc7 9320 ei->last_trans = 0;
257c62e1 9321 ei->last_sub_trans = 0;
e02119d5 9322 ei->logged_trans = 0;
2ead6ae7 9323 ei->delalloc_bytes = 0;
a7e3b975 9324 ei->new_delalloc_bytes = 0;
47059d93 9325 ei->defrag_bytes = 0;
2ead6ae7
YZ
9326 ei->disk_i_size = 0;
9327 ei->flags = 0;
7709cde3 9328 ei->csum_bytes = 0;
2ead6ae7 9329 ei->index_cnt = (u64)-1;
67de1176 9330 ei->dir_index = 0;
2ead6ae7 9331 ei->last_unlink_trans = 0;
46d8bc34 9332 ei->last_log_commit = 0;
2ead6ae7 9333
9e0baf60
JB
9334 spin_lock_init(&ei->lock);
9335 ei->outstanding_extents = 0;
69fe2d75
JB
9336 if (sb->s_magic != BTRFS_TEST_MAGIC)
9337 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9338 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9339 ei->runtime_flags = 0;
b52aa8c9 9340 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9341 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9342
16cdcec7
MX
9343 ei->delayed_node = NULL;
9344
9cc97d64 9345 ei->i_otime.tv_sec = 0;
9346 ei->i_otime.tv_nsec = 0;
9347
2ead6ae7 9348 inode = &ei->vfs_inode;
a8067e02 9349 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
9350 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9351 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9352 IO_TREE_INODE_IO_FAILURE, inode);
7b439738
DS
9353 ei->io_tree.track_uptodate = true;
9354 ei->io_failure_tree.track_uptodate = true;
b812ce28 9355 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9356 mutex_init(&ei->log_mutex);
e6dcd2dc 9357 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9358 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9359 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9360 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9361 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9362
9363 return inode;
39279cc3
CM
9364}
9365
aaedb55b
JB
9366#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9367void btrfs_test_destroy_inode(struct inode *inode)
9368{
dcdbc059 9369 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9370 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9371}
9372#endif
9373
26602cab 9374void btrfs_free_inode(struct inode *inode)
fa0d7e3d 9375{
fa0d7e3d
NP
9376 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9377}
9378
39279cc3
CM
9379void btrfs_destroy_inode(struct inode *inode)
9380{
0b246afa 9381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9382 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9383 struct btrfs_root *root = BTRFS_I(inode)->root;
9384
b3d9b7a3 9385 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9386 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9387 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9388 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9389 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9390 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9391 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9392 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9393 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9394
a6dbd429
JB
9395 /*
9396 * This can happen where we create an inode, but somebody else also
9397 * created the same inode and we need to destroy the one we already
9398 * created.
9399 */
9400 if (!root)
26602cab 9401 return;
a6dbd429 9402
d397712b 9403 while (1) {
e6dcd2dc
CM
9404 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9405 if (!ordered)
9406 break;
9407 else {
0b246afa 9408 btrfs_err(fs_info,
5d163e0e
JM
9409 "found ordered extent %llu %llu on inode cleanup",
9410 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9411 btrfs_remove_ordered_extent(inode, ordered);
9412 btrfs_put_ordered_extent(ordered);
9413 btrfs_put_ordered_extent(ordered);
9414 }
9415 }
56fa9d07 9416 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9417 inode_tree_del(inode);
dcdbc059 9418 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
39279cc3
CM
9419}
9420
45321ac5 9421int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9422{
9423 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9424
6379ef9f
NA
9425 if (root == NULL)
9426 return 1;
9427
fa6ac876 9428 /* the snap/subvol tree is on deleting */
69e9c6c6 9429 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9430 return 1;
76dda93c 9431 else
45321ac5 9432 return generic_drop_inode(inode);
76dda93c
YZ
9433}
9434
0ee0fda0 9435static void init_once(void *foo)
39279cc3
CM
9436{
9437 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9438
9439 inode_init_once(&ei->vfs_inode);
9440}
9441
e67c718b 9442void __cold btrfs_destroy_cachep(void)
39279cc3 9443{
8c0a8537
KS
9444 /*
9445 * Make sure all delayed rcu free inodes are flushed before we
9446 * destroy cache.
9447 */
9448 rcu_barrier();
5598e900
KM
9449 kmem_cache_destroy(btrfs_inode_cachep);
9450 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9451 kmem_cache_destroy(btrfs_path_cachep);
9452 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 9453 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
9454}
9455
f5c29bd9 9456int __init btrfs_init_cachep(void)
39279cc3 9457{
837e1972 9458 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9459 sizeof(struct btrfs_inode), 0,
5d097056
VD
9460 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9461 init_once);
39279cc3
CM
9462 if (!btrfs_inode_cachep)
9463 goto fail;
9601e3f6 9464
837e1972 9465 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9466 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9467 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9468 if (!btrfs_trans_handle_cachep)
9469 goto fail;
9601e3f6 9470
837e1972 9471 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9472 sizeof(struct btrfs_path), 0,
fba4b697 9473 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9474 if (!btrfs_path_cachep)
9475 goto fail;
9601e3f6 9476
837e1972 9477 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9478 sizeof(struct btrfs_free_space), 0,
fba4b697 9479 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9480 if (!btrfs_free_space_cachep)
9481 goto fail;
9482
3acd4850
CL
9483 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9484 PAGE_SIZE, PAGE_SIZE,
9485 SLAB_RED_ZONE, NULL);
9486 if (!btrfs_free_space_bitmap_cachep)
9487 goto fail;
9488
39279cc3
CM
9489 return 0;
9490fail:
9491 btrfs_destroy_cachep();
9492 return -ENOMEM;
9493}
9494
a528d35e
DH
9495static int btrfs_getattr(const struct path *path, struct kstat *stat,
9496 u32 request_mask, unsigned int flags)
39279cc3 9497{
df0af1a5 9498 u64 delalloc_bytes;
a528d35e 9499 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9500 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9501 u32 bi_flags = BTRFS_I(inode)->flags;
9502
9503 stat->result_mask |= STATX_BTIME;
9504 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9505 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9506 if (bi_flags & BTRFS_INODE_APPEND)
9507 stat->attributes |= STATX_ATTR_APPEND;
9508 if (bi_flags & BTRFS_INODE_COMPRESS)
9509 stat->attributes |= STATX_ATTR_COMPRESSED;
9510 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9511 stat->attributes |= STATX_ATTR_IMMUTABLE;
9512 if (bi_flags & BTRFS_INODE_NODUMP)
9513 stat->attributes |= STATX_ATTR_NODUMP;
9514
9515 stat->attributes_mask |= (STATX_ATTR_APPEND |
9516 STATX_ATTR_COMPRESSED |
9517 STATX_ATTR_IMMUTABLE |
9518 STATX_ATTR_NODUMP);
fadc0d8b 9519
39279cc3 9520 generic_fillattr(inode, stat);
0ee5dc67 9521 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9522
9523 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9524 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9525 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9526 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9527 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9528 return 0;
9529}
9530
cdd1fedf
DF
9531static int btrfs_rename_exchange(struct inode *old_dir,
9532 struct dentry *old_dentry,
9533 struct inode *new_dir,
9534 struct dentry *new_dentry)
9535{
0b246afa 9536 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9537 struct btrfs_trans_handle *trans;
9538 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9539 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9540 struct inode *new_inode = new_dentry->d_inode;
9541 struct inode *old_inode = old_dentry->d_inode;
95582b00 9542 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9543 struct dentry *parent;
4a0cc7ca
NB
9544 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9545 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9546 u64 old_idx = 0;
9547 u64 new_idx = 0;
9548 u64 root_objectid;
9549 int ret;
86e8aa0e
FM
9550 bool root_log_pinned = false;
9551 bool dest_log_pinned = false;
d4682ba0
FM
9552 struct btrfs_log_ctx ctx_root;
9553 struct btrfs_log_ctx ctx_dest;
9554 bool sync_log_root = false;
9555 bool sync_log_dest = false;
9556 bool commit_transaction = false;
cdd1fedf
DF
9557
9558 /* we only allow rename subvolume link between subvolumes */
9559 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9560 return -EXDEV;
9561
d4682ba0
FM
9562 btrfs_init_log_ctx(&ctx_root, old_inode);
9563 btrfs_init_log_ctx(&ctx_dest, new_inode);
9564
cdd1fedf
DF
9565 /* close the race window with snapshot create/destroy ioctl */
9566 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9567 down_read(&fs_info->subvol_sem);
cdd1fedf 9568 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9569 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9570
9571 /*
9572 * We want to reserve the absolute worst case amount of items. So if
9573 * both inodes are subvols and we need to unlink them then that would
9574 * require 4 item modifications, but if they are both normal inodes it
9575 * would require 5 item modifications, so we'll assume their normal
9576 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9577 * should cover the worst case number of items we'll modify.
9578 */
9579 trans = btrfs_start_transaction(root, 12);
9580 if (IS_ERR(trans)) {
9581 ret = PTR_ERR(trans);
9582 goto out_notrans;
9583 }
9584
9585 /*
9586 * We need to find a free sequence number both in the source and
9587 * in the destination directory for the exchange.
9588 */
877574e2 9589 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9590 if (ret)
9591 goto out_fail;
877574e2 9592 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9593 if (ret)
9594 goto out_fail;
9595
9596 BTRFS_I(old_inode)->dir_index = 0ULL;
9597 BTRFS_I(new_inode)->dir_index = 0ULL;
9598
9599 /* Reference for the source. */
9600 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9601 /* force full log commit if subvolume involved. */
90787766 9602 btrfs_set_log_full_commit(trans);
cdd1fedf 9603 } else {
376e5a57
FM
9604 btrfs_pin_log_trans(root);
9605 root_log_pinned = true;
cdd1fedf
DF
9606 ret = btrfs_insert_inode_ref(trans, dest,
9607 new_dentry->d_name.name,
9608 new_dentry->d_name.len,
9609 old_ino,
f85b7379
DS
9610 btrfs_ino(BTRFS_I(new_dir)),
9611 old_idx);
cdd1fedf
DF
9612 if (ret)
9613 goto out_fail;
cdd1fedf
DF
9614 }
9615
9616 /* And now for the dest. */
9617 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9618 /* force full log commit if subvolume involved. */
90787766 9619 btrfs_set_log_full_commit(trans);
cdd1fedf 9620 } else {
376e5a57
FM
9621 btrfs_pin_log_trans(dest);
9622 dest_log_pinned = true;
cdd1fedf
DF
9623 ret = btrfs_insert_inode_ref(trans, root,
9624 old_dentry->d_name.name,
9625 old_dentry->d_name.len,
9626 new_ino,
f85b7379
DS
9627 btrfs_ino(BTRFS_I(old_dir)),
9628 new_idx);
cdd1fedf
DF
9629 if (ret)
9630 goto out_fail;
cdd1fedf
DF
9631 }
9632
9633 /* Update inode version and ctime/mtime. */
9634 inode_inc_iversion(old_dir);
9635 inode_inc_iversion(new_dir);
9636 inode_inc_iversion(old_inode);
9637 inode_inc_iversion(new_inode);
9638 old_dir->i_ctime = old_dir->i_mtime = ctime;
9639 new_dir->i_ctime = new_dir->i_mtime = ctime;
9640 old_inode->i_ctime = ctime;
9641 new_inode->i_ctime = ctime;
9642
9643 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9644 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9645 BTRFS_I(old_inode), 1);
9646 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9647 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9648 }
9649
9650 /* src is a subvolume */
9651 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9652 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9653 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9654 old_dentry->d_name.name,
9655 old_dentry->d_name.len);
9656 } else { /* src is an inode */
4ec5934e
NB
9657 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9658 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9659 old_dentry->d_name.name,
9660 old_dentry->d_name.len);
9661 if (!ret)
9662 ret = btrfs_update_inode(trans, root, old_inode);
9663 }
9664 if (ret) {
66642832 9665 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9666 goto out_fail;
9667 }
9668
9669 /* dest is a subvolume */
9670 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9671 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9672 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9673 new_dentry->d_name.name,
9674 new_dentry->d_name.len);
9675 } else { /* dest is an inode */
4ec5934e
NB
9676 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9677 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9678 new_dentry->d_name.name,
9679 new_dentry->d_name.len);
9680 if (!ret)
9681 ret = btrfs_update_inode(trans, dest, new_inode);
9682 }
9683 if (ret) {
66642832 9684 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9685 goto out_fail;
9686 }
9687
db0a669f 9688 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9689 new_dentry->d_name.name,
9690 new_dentry->d_name.len, 0, old_idx);
9691 if (ret) {
66642832 9692 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9693 goto out_fail;
9694 }
9695
db0a669f 9696 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9697 old_dentry->d_name.name,
9698 old_dentry->d_name.len, 0, new_idx);
9699 if (ret) {
66642832 9700 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9701 goto out_fail;
9702 }
9703
9704 if (old_inode->i_nlink == 1)
9705 BTRFS_I(old_inode)->dir_index = old_idx;
9706 if (new_inode->i_nlink == 1)
9707 BTRFS_I(new_inode)->dir_index = new_idx;
9708
86e8aa0e 9709 if (root_log_pinned) {
cdd1fedf 9710 parent = new_dentry->d_parent;
d4682ba0
FM
9711 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9712 BTRFS_I(old_dir), parent,
9713 false, &ctx_root);
9714 if (ret == BTRFS_NEED_LOG_SYNC)
9715 sync_log_root = true;
9716 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9717 commit_transaction = true;
9718 ret = 0;
cdd1fedf 9719 btrfs_end_log_trans(root);
86e8aa0e 9720 root_log_pinned = false;
cdd1fedf 9721 }
86e8aa0e 9722 if (dest_log_pinned) {
d4682ba0
FM
9723 if (!commit_transaction) {
9724 parent = old_dentry->d_parent;
9725 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9726 BTRFS_I(new_dir), parent,
9727 false, &ctx_dest);
9728 if (ret == BTRFS_NEED_LOG_SYNC)
9729 sync_log_dest = true;
9730 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9731 commit_transaction = true;
9732 ret = 0;
9733 }
cdd1fedf 9734 btrfs_end_log_trans(dest);
86e8aa0e 9735 dest_log_pinned = false;
cdd1fedf
DF
9736 }
9737out_fail:
86e8aa0e
FM
9738 /*
9739 * If we have pinned a log and an error happened, we unpin tasks
9740 * trying to sync the log and force them to fallback to a transaction
9741 * commit if the log currently contains any of the inodes involved in
9742 * this rename operation (to ensure we do not persist a log with an
9743 * inconsistent state for any of these inodes or leading to any
9744 * inconsistencies when replayed). If the transaction was aborted, the
9745 * abortion reason is propagated to userspace when attempting to commit
9746 * the transaction. If the log does not contain any of these inodes, we
9747 * allow the tasks to sync it.
9748 */
9749 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9750 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9751 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9752 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9753 (new_inode &&
0f8939b8 9754 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9755 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
9756
9757 if (root_log_pinned) {
9758 btrfs_end_log_trans(root);
9759 root_log_pinned = false;
9760 }
9761 if (dest_log_pinned) {
9762 btrfs_end_log_trans(dest);
9763 dest_log_pinned = false;
9764 }
9765 }
d4682ba0
FM
9766 if (!ret && sync_log_root && !commit_transaction) {
9767 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9768 &ctx_root);
9769 if (ret)
9770 commit_transaction = true;
9771 }
9772 if (!ret && sync_log_dest && !commit_transaction) {
9773 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9774 &ctx_dest);
9775 if (ret)
9776 commit_transaction = true;
9777 }
9778 if (commit_transaction) {
e6c61710
FM
9779 /*
9780 * We may have set commit_transaction when logging the new name
9781 * in the destination root, in which case we left the source
9782 * root context in the list of log contextes. So make sure we
9783 * remove it to avoid invalid memory accesses, since the context
9784 * was allocated in our stack frame.
9785 */
9786 if (sync_log_root) {
9787 mutex_lock(&root->log_mutex);
9788 list_del_init(&ctx_root.list);
9789 mutex_unlock(&root->log_mutex);
9790 }
d4682ba0
FM
9791 ret = btrfs_commit_transaction(trans);
9792 } else {
9793 int ret2;
9794
9795 ret2 = btrfs_end_transaction(trans);
9796 ret = ret ? ret : ret2;
9797 }
cdd1fedf
DF
9798out_notrans:
9799 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9800 up_read(&fs_info->subvol_sem);
cdd1fedf 9801 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9802 up_read(&fs_info->subvol_sem);
cdd1fedf 9803
e6c61710
FM
9804 ASSERT(list_empty(&ctx_root.list));
9805 ASSERT(list_empty(&ctx_dest.list));
9806
cdd1fedf
DF
9807 return ret;
9808}
9809
9810static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9811 struct btrfs_root *root,
9812 struct inode *dir,
9813 struct dentry *dentry)
9814{
9815 int ret;
9816 struct inode *inode;
9817 u64 objectid;
9818 u64 index;
9819
9820 ret = btrfs_find_free_ino(root, &objectid);
9821 if (ret)
9822 return ret;
9823
9824 inode = btrfs_new_inode(trans, root, dir,
9825 dentry->d_name.name,
9826 dentry->d_name.len,
4a0cc7ca 9827 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9828 objectid,
9829 S_IFCHR | WHITEOUT_MODE,
9830 &index);
9831
9832 if (IS_ERR(inode)) {
9833 ret = PTR_ERR(inode);
9834 return ret;
9835 }
9836
9837 inode->i_op = &btrfs_special_inode_operations;
9838 init_special_inode(inode, inode->i_mode,
9839 WHITEOUT_DEV);
9840
9841 ret = btrfs_init_inode_security(trans, inode, dir,
9842 &dentry->d_name);
9843 if (ret)
c9901618 9844 goto out;
cdd1fedf 9845
cef415af
NB
9846 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9847 BTRFS_I(inode), 0, index);
cdd1fedf 9848 if (ret)
c9901618 9849 goto out;
cdd1fedf
DF
9850
9851 ret = btrfs_update_inode(trans, root, inode);
c9901618 9852out:
cdd1fedf 9853 unlock_new_inode(inode);
c9901618
FM
9854 if (ret)
9855 inode_dec_link_count(inode);
cdd1fedf
DF
9856 iput(inode);
9857
c9901618 9858 return ret;
cdd1fedf
DF
9859}
9860
d397712b 9861static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9862 struct inode *new_dir, struct dentry *new_dentry,
9863 unsigned int flags)
39279cc3 9864{
0b246afa 9865 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9866 struct btrfs_trans_handle *trans;
5062af35 9867 unsigned int trans_num_items;
39279cc3 9868 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9869 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9870 struct inode *new_inode = d_inode(new_dentry);
9871 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9872 u64 index = 0;
4df27c4d 9873 u64 root_objectid;
39279cc3 9874 int ret;
4a0cc7ca 9875 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9876 bool log_pinned = false;
d4682ba0
FM
9877 struct btrfs_log_ctx ctx;
9878 bool sync_log = false;
9879 bool commit_transaction = false;
39279cc3 9880
4a0cc7ca 9881 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9882 return -EPERM;
9883
4df27c4d 9884 /* we only allow rename subvolume link between subvolumes */
33345d01 9885 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9886 return -EXDEV;
9887
33345d01 9888 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9889 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9890 return -ENOTEMPTY;
5f39d397 9891
4df27c4d
YZ
9892 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9893 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9894 return -ENOTEMPTY;
9c52057c
CM
9895
9896
9897 /* check for collisions, even if the name isn't there */
4871c158 9898 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9899 new_dentry->d_name.name,
9900 new_dentry->d_name.len);
9901
9902 if (ret) {
9903 if (ret == -EEXIST) {
9904 /* we shouldn't get
9905 * eexist without a new_inode */
fae7f21c 9906 if (WARN_ON(!new_inode)) {
9c52057c
CM
9907 return ret;
9908 }
9909 } else {
9910 /* maybe -EOVERFLOW */
9911 return ret;
9912 }
9913 }
9914 ret = 0;
9915
5a3f23d5 9916 /*
8d875f95
CM
9917 * we're using rename to replace one file with another. Start IO on it
9918 * now so we don't add too much work to the end of the transaction
5a3f23d5 9919 */
8d875f95 9920 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9921 filemap_flush(old_inode->i_mapping);
9922
76dda93c 9923 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9924 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9925 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9926 /*
9927 * We want to reserve the absolute worst case amount of items. So if
9928 * both inodes are subvols and we need to unlink them then that would
9929 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9930 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9931 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9932 * should cover the worst case number of items we'll modify.
5062af35
FM
9933 * If our rename has the whiteout flag, we need more 5 units for the
9934 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9935 * when selinux is enabled).
a22285a6 9936 */
5062af35
FM
9937 trans_num_items = 11;
9938 if (flags & RENAME_WHITEOUT)
9939 trans_num_items += 5;
9940 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9941 if (IS_ERR(trans)) {
cdd1fedf
DF
9942 ret = PTR_ERR(trans);
9943 goto out_notrans;
9944 }
76dda93c 9945
4df27c4d
YZ
9946 if (dest != root)
9947 btrfs_record_root_in_trans(trans, dest);
5f39d397 9948
877574e2 9949 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9950 if (ret)
9951 goto out_fail;
5a3f23d5 9952
67de1176 9953 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9954 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9955 /* force full log commit if subvolume involved. */
90787766 9956 btrfs_set_log_full_commit(trans);
4df27c4d 9957 } else {
c4aba954
FM
9958 btrfs_pin_log_trans(root);
9959 log_pinned = true;
a5719521
YZ
9960 ret = btrfs_insert_inode_ref(trans, dest,
9961 new_dentry->d_name.name,
9962 new_dentry->d_name.len,
33345d01 9963 old_ino,
4a0cc7ca 9964 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9965 if (ret)
9966 goto out_fail;
4df27c4d 9967 }
5a3f23d5 9968
0c4d2d95
JB
9969 inode_inc_iversion(old_dir);
9970 inode_inc_iversion(new_dir);
9971 inode_inc_iversion(old_inode);
04b285f3
DD
9972 old_dir->i_ctime = old_dir->i_mtime =
9973 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9974 old_inode->i_ctime = current_time(old_dir);
5f39d397 9975
12fcfd22 9976 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9977 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9978 BTRFS_I(old_inode), 1);
12fcfd22 9979
33345d01 9980 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9981 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9982 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9983 old_dentry->d_name.name,
9984 old_dentry->d_name.len);
9985 } else {
4ec5934e
NB
9986 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9987 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9988 old_dentry->d_name.name,
9989 old_dentry->d_name.len);
9990 if (!ret)
9991 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9992 }
79787eaa 9993 if (ret) {
66642832 9994 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9995 goto out_fail;
9996 }
39279cc3
CM
9997
9998 if (new_inode) {
0c4d2d95 9999 inode_inc_iversion(new_inode);
c2050a45 10000 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10001 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10002 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10003 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 10004 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
10005 new_dentry->d_name.name,
10006 new_dentry->d_name.len);
10007 BUG_ON(new_inode->i_nlink == 0);
10008 } else {
4ec5934e
NB
10009 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10010 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10011 new_dentry->d_name.name,
10012 new_dentry->d_name.len);
10013 }
4ef31a45 10014 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10015 ret = btrfs_orphan_add(trans,
10016 BTRFS_I(d_inode(new_dentry)));
79787eaa 10017 if (ret) {
66642832 10018 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10019 goto out_fail;
10020 }
39279cc3 10021 }
aec7477b 10022
db0a669f 10023 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10024 new_dentry->d_name.name,
a5719521 10025 new_dentry->d_name.len, 0, index);
79787eaa 10026 if (ret) {
66642832 10027 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10028 goto out_fail;
10029 }
39279cc3 10030
67de1176
MX
10031 if (old_inode->i_nlink == 1)
10032 BTRFS_I(old_inode)->dir_index = index;
10033
3dc9e8f7 10034 if (log_pinned) {
10d9f309 10035 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10036
d4682ba0
FM
10037 btrfs_init_log_ctx(&ctx, old_inode);
10038 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10039 BTRFS_I(old_dir), parent,
10040 false, &ctx);
10041 if (ret == BTRFS_NEED_LOG_SYNC)
10042 sync_log = true;
10043 else if (ret == BTRFS_NEED_TRANS_COMMIT)
10044 commit_transaction = true;
10045 ret = 0;
4df27c4d 10046 btrfs_end_log_trans(root);
3dc9e8f7 10047 log_pinned = false;
4df27c4d 10048 }
cdd1fedf
DF
10049
10050 if (flags & RENAME_WHITEOUT) {
10051 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10052 old_dentry);
10053
10054 if (ret) {
66642832 10055 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10056 goto out_fail;
10057 }
4df27c4d 10058 }
39279cc3 10059out_fail:
3dc9e8f7
FM
10060 /*
10061 * If we have pinned the log and an error happened, we unpin tasks
10062 * trying to sync the log and force them to fallback to a transaction
10063 * commit if the log currently contains any of the inodes involved in
10064 * this rename operation (to ensure we do not persist a log with an
10065 * inconsistent state for any of these inodes or leading to any
10066 * inconsistencies when replayed). If the transaction was aborted, the
10067 * abortion reason is propagated to userspace when attempting to commit
10068 * the transaction. If the log does not contain any of these inodes, we
10069 * allow the tasks to sync it.
10070 */
10071 if (ret && log_pinned) {
0f8939b8
NB
10072 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10073 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10074 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10075 (new_inode &&
0f8939b8 10076 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 10077 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
10078
10079 btrfs_end_log_trans(root);
10080 log_pinned = false;
10081 }
d4682ba0
FM
10082 if (!ret && sync_log) {
10083 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10084 if (ret)
10085 commit_transaction = true;
10086 }
10087 if (commit_transaction) {
10088 ret = btrfs_commit_transaction(trans);
10089 } else {
10090 int ret2;
10091
10092 ret2 = btrfs_end_transaction(trans);
10093 ret = ret ? ret : ret2;
10094 }
b44c59a8 10095out_notrans:
33345d01 10096 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10097 up_read(&fs_info->subvol_sem);
9ed74f2d 10098
39279cc3
CM
10099 return ret;
10100}
10101
80ace85c
MS
10102static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10103 struct inode *new_dir, struct dentry *new_dentry,
10104 unsigned int flags)
10105{
cdd1fedf 10106 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10107 return -EINVAL;
10108
cdd1fedf
DF
10109 if (flags & RENAME_EXCHANGE)
10110 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10111 new_dentry);
10112
10113 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10114}
10115
3a2f8c07
NB
10116struct btrfs_delalloc_work {
10117 struct inode *inode;
10118 struct completion completion;
10119 struct list_head list;
10120 struct btrfs_work work;
10121};
10122
8ccf6f19
MX
10123static void btrfs_run_delalloc_work(struct btrfs_work *work)
10124{
10125 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10126 struct inode *inode;
8ccf6f19
MX
10127
10128 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10129 work);
9f23e289 10130 inode = delalloc_work->inode;
30424601
DS
10131 filemap_flush(inode->i_mapping);
10132 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10133 &BTRFS_I(inode)->runtime_flags))
9f23e289 10134 filemap_flush(inode->i_mapping);
8ccf6f19 10135
076da91c 10136 iput(inode);
8ccf6f19
MX
10137 complete(&delalloc_work->completion);
10138}
10139
3a2f8c07 10140static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
10141{
10142 struct btrfs_delalloc_work *work;
10143
100d5702 10144 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10145 if (!work)
10146 return NULL;
10147
10148 init_completion(&work->completion);
10149 INIT_LIST_HEAD(&work->list);
10150 work->inode = inode;
a0cac0ec 10151 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10152
10153 return work;
10154}
10155
d352ac68
CM
10156/*
10157 * some fairly slow code that needs optimization. This walks the list
10158 * of all the inodes with pending delalloc and forces them to disk.
10159 */
3cd24c69 10160static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 10161{
ea8c2819 10162 struct btrfs_inode *binode;
5b21f2ed 10163 struct inode *inode;
8ccf6f19
MX
10164 struct btrfs_delalloc_work *work, *next;
10165 struct list_head works;
1eafa6c7 10166 struct list_head splice;
8ccf6f19 10167 int ret = 0;
ea8c2819 10168
8ccf6f19 10169 INIT_LIST_HEAD(&works);
1eafa6c7 10170 INIT_LIST_HEAD(&splice);
63607cc8 10171
573bfb72 10172 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10173 spin_lock(&root->delalloc_lock);
10174 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10175 while (!list_empty(&splice)) {
10176 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10177 delalloc_inodes);
1eafa6c7 10178
eb73c1b7
MX
10179 list_move_tail(&binode->delalloc_inodes,
10180 &root->delalloc_inodes);
5b21f2ed 10181 inode = igrab(&binode->vfs_inode);
df0af1a5 10182 if (!inode) {
eb73c1b7 10183 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10184 continue;
df0af1a5 10185 }
eb73c1b7 10186 spin_unlock(&root->delalloc_lock);
1eafa6c7 10187
3cd24c69
EL
10188 if (snapshot)
10189 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10190 &binode->runtime_flags);
076da91c 10191 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10192 if (!work) {
4fbb5147 10193 iput(inode);
1eafa6c7 10194 ret = -ENOMEM;
a1ecaabb 10195 goto out;
5b21f2ed 10196 }
1eafa6c7 10197 list_add_tail(&work->list, &works);
a44903ab
QW
10198 btrfs_queue_work(root->fs_info->flush_workers,
10199 &work->work);
6c255e67
MX
10200 ret++;
10201 if (nr != -1 && ret >= nr)
a1ecaabb 10202 goto out;
5b21f2ed 10203 cond_resched();
eb73c1b7 10204 spin_lock(&root->delalloc_lock);
ea8c2819 10205 }
eb73c1b7 10206 spin_unlock(&root->delalloc_lock);
8c8bee1d 10207
a1ecaabb 10208out:
eb73c1b7
MX
10209 list_for_each_entry_safe(work, next, &works, list) {
10210 list_del_init(&work->list);
40012f96
NB
10211 wait_for_completion(&work->completion);
10212 kfree(work);
eb73c1b7
MX
10213 }
10214
81f1d390 10215 if (!list_empty(&splice)) {
eb73c1b7
MX
10216 spin_lock(&root->delalloc_lock);
10217 list_splice_tail(&splice, &root->delalloc_inodes);
10218 spin_unlock(&root->delalloc_lock);
10219 }
573bfb72 10220 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10221 return ret;
10222}
1eafa6c7 10223
3cd24c69 10224int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 10225{
0b246afa 10226 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10227 int ret;
1eafa6c7 10228
0b246afa 10229 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10230 return -EROFS;
10231
3cd24c69 10232 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
10233 if (ret > 0)
10234 ret = 0;
eb73c1b7
MX
10235 return ret;
10236}
10237
82b3e53b 10238int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10239{
10240 struct btrfs_root *root;
10241 struct list_head splice;
10242 int ret;
10243
2c21b4d7 10244 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10245 return -EROFS;
10246
10247 INIT_LIST_HEAD(&splice);
10248
573bfb72 10249 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10250 spin_lock(&fs_info->delalloc_root_lock);
10251 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10252 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10253 root = list_first_entry(&splice, struct btrfs_root,
10254 delalloc_root);
10255 root = btrfs_grab_fs_root(root);
10256 BUG_ON(!root);
10257 list_move_tail(&root->delalloc_root,
10258 &fs_info->delalloc_roots);
10259 spin_unlock(&fs_info->delalloc_root_lock);
10260
3cd24c69 10261 ret = start_delalloc_inodes(root, nr, false);
eb73c1b7 10262 btrfs_put_fs_root(root);
6c255e67 10263 if (ret < 0)
eb73c1b7
MX
10264 goto out;
10265
6c255e67
MX
10266 if (nr != -1) {
10267 nr -= ret;
10268 WARN_ON(nr < 0);
10269 }
eb73c1b7 10270 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10271 }
eb73c1b7 10272 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10273
6c255e67 10274 ret = 0;
eb73c1b7 10275out:
81f1d390 10276 if (!list_empty(&splice)) {
eb73c1b7
MX
10277 spin_lock(&fs_info->delalloc_root_lock);
10278 list_splice_tail(&splice, &fs_info->delalloc_roots);
10279 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10280 }
573bfb72 10281 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10282 return ret;
ea8c2819
CM
10283}
10284
39279cc3
CM
10285static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10286 const char *symname)
10287{
0b246afa 10288 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10289 struct btrfs_trans_handle *trans;
10290 struct btrfs_root *root = BTRFS_I(dir)->root;
10291 struct btrfs_path *path;
10292 struct btrfs_key key;
1832a6d5 10293 struct inode *inode = NULL;
39279cc3 10294 int err;
39279cc3 10295 u64 objectid;
67871254 10296 u64 index = 0;
39279cc3
CM
10297 int name_len;
10298 int datasize;
5f39d397 10299 unsigned long ptr;
39279cc3 10300 struct btrfs_file_extent_item *ei;
5f39d397 10301 struct extent_buffer *leaf;
39279cc3 10302
f06becc4 10303 name_len = strlen(symname);
0b246afa 10304 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10305 return -ENAMETOOLONG;
1832a6d5 10306
9ed74f2d
JB
10307 /*
10308 * 2 items for inode item and ref
10309 * 2 items for dir items
9269d12b
FM
10310 * 1 item for updating parent inode item
10311 * 1 item for the inline extent item
9ed74f2d
JB
10312 * 1 item for xattr if selinux is on
10313 */
9269d12b 10314 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10315 if (IS_ERR(trans))
10316 return PTR_ERR(trans);
1832a6d5 10317
581bb050
LZ
10318 err = btrfs_find_free_ino(root, &objectid);
10319 if (err)
10320 goto out_unlock;
10321
aec7477b 10322 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10323 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10324 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10325 if (IS_ERR(inode)) {
10326 err = PTR_ERR(inode);
32955c54 10327 inode = NULL;
39279cc3 10328 goto out_unlock;
7cf96da3 10329 }
39279cc3 10330
ad19db71
CS
10331 /*
10332 * If the active LSM wants to access the inode during
10333 * d_instantiate it needs these. Smack checks to see
10334 * if the filesystem supports xattrs by looking at the
10335 * ops vector.
10336 */
10337 inode->i_fop = &btrfs_file_operations;
10338 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10339 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10340 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10341
10342 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10343 if (err)
32955c54 10344 goto out_unlock;
ad19db71 10345
39279cc3 10346 path = btrfs_alloc_path();
d8926bb3
MF
10347 if (!path) {
10348 err = -ENOMEM;
32955c54 10349 goto out_unlock;
d8926bb3 10350 }
4a0cc7ca 10351 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10352 key.offset = 0;
962a298f 10353 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10354 datasize = btrfs_file_extent_calc_inline_size(name_len);
10355 err = btrfs_insert_empty_item(trans, root, path, &key,
10356 datasize);
54aa1f4d 10357 if (err) {
b0839166 10358 btrfs_free_path(path);
32955c54 10359 goto out_unlock;
54aa1f4d 10360 }
5f39d397
CM
10361 leaf = path->nodes[0];
10362 ei = btrfs_item_ptr(leaf, path->slots[0],
10363 struct btrfs_file_extent_item);
10364 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10365 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10366 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10367 btrfs_set_file_extent_encryption(leaf, ei, 0);
10368 btrfs_set_file_extent_compression(leaf, ei, 0);
10369 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10370 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10371
39279cc3 10372 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10373 write_extent_buffer(leaf, symname, ptr, name_len);
10374 btrfs_mark_buffer_dirty(leaf);
39279cc3 10375 btrfs_free_path(path);
5f39d397 10376
39279cc3 10377 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10378 inode_nohighmem(inode);
d899e052 10379 inode_set_bytes(inode, name_len);
6ef06d27 10380 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10381 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10382 /*
10383 * Last step, add directory indexes for our symlink inode. This is the
10384 * last step to avoid extra cleanup of these indexes if an error happens
10385 * elsewhere above.
10386 */
10387 if (!err)
cef415af
NB
10388 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10389 BTRFS_I(inode), 0, index);
32955c54
AV
10390 if (err)
10391 goto out_unlock;
b0d5d10f 10392
1e2e547a 10393 d_instantiate_new(dentry, inode);
39279cc3
CM
10394
10395out_unlock:
3a45bb20 10396 btrfs_end_transaction(trans);
32955c54 10397 if (err && inode) {
39279cc3 10398 inode_dec_link_count(inode);
32955c54 10399 discard_new_inode(inode);
39279cc3 10400 }
2ff7e61e 10401 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10402 return err;
10403}
16432985 10404
0af3d00b
JB
10405static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10406 u64 start, u64 num_bytes, u64 min_size,
10407 loff_t actual_len, u64 *alloc_hint,
10408 struct btrfs_trans_handle *trans)
d899e052 10409{
0b246afa 10410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10411 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10412 struct extent_map *em;
d899e052
YZ
10413 struct btrfs_root *root = BTRFS_I(inode)->root;
10414 struct btrfs_key ins;
d899e052 10415 u64 cur_offset = start;
55a61d1d 10416 u64 i_size;
154ea289 10417 u64 cur_bytes;
0b670dc4 10418 u64 last_alloc = (u64)-1;
d899e052 10419 int ret = 0;
0af3d00b 10420 bool own_trans = true;
18513091 10421 u64 end = start + num_bytes - 1;
d899e052 10422
0af3d00b
JB
10423 if (trans)
10424 own_trans = false;
d899e052 10425 while (num_bytes > 0) {
0af3d00b
JB
10426 if (own_trans) {
10427 trans = btrfs_start_transaction(root, 3);
10428 if (IS_ERR(trans)) {
10429 ret = PTR_ERR(trans);
10430 break;
10431 }
5a303d5d
YZ
10432 }
10433
ee22184b 10434 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10435 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10436 /*
10437 * If we are severely fragmented we could end up with really
10438 * small allocations, so if the allocator is returning small
10439 * chunks lets make its job easier by only searching for those
10440 * sized chunks.
10441 */
10442 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10443 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10444 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10445 if (ret) {
0af3d00b 10446 if (own_trans)
3a45bb20 10447 btrfs_end_transaction(trans);
a22285a6 10448 break;
d899e052 10449 }
0b246afa 10450 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10451
0b670dc4 10452 last_alloc = ins.offset;
d899e052
YZ
10453 ret = insert_reserved_file_extent(trans, inode,
10454 cur_offset, ins.objectid,
10455 ins.offset, ins.offset,
920bbbfb 10456 ins.offset, 0, 0, 0,
d899e052 10457 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10458 if (ret) {
2ff7e61e 10459 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10460 ins.offset, 0);
66642832 10461 btrfs_abort_transaction(trans, ret);
79787eaa 10462 if (own_trans)
3a45bb20 10463 btrfs_end_transaction(trans);
79787eaa
JM
10464 break;
10465 }
31193213 10466
dcdbc059 10467 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10468 cur_offset + ins.offset -1, 0);
5a303d5d 10469
5dc562c5
JB
10470 em = alloc_extent_map();
10471 if (!em) {
10472 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10473 &BTRFS_I(inode)->runtime_flags);
10474 goto next;
10475 }
10476
10477 em->start = cur_offset;
10478 em->orig_start = cur_offset;
10479 em->len = ins.offset;
10480 em->block_start = ins.objectid;
10481 em->block_len = ins.offset;
b4939680 10482 em->orig_block_len = ins.offset;
cc95bef6 10483 em->ram_bytes = ins.offset;
0b246afa 10484 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10485 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10486 em->generation = trans->transid;
10487
10488 while (1) {
10489 write_lock(&em_tree->lock);
09a2a8f9 10490 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10491 write_unlock(&em_tree->lock);
10492 if (ret != -EEXIST)
10493 break;
dcdbc059 10494 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10495 cur_offset + ins.offset - 1,
10496 0);
10497 }
10498 free_extent_map(em);
10499next:
d899e052
YZ
10500 num_bytes -= ins.offset;
10501 cur_offset += ins.offset;
efa56464 10502 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10503
0c4d2d95 10504 inode_inc_iversion(inode);
c2050a45 10505 inode->i_ctime = current_time(inode);
6cbff00f 10506 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10507 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10508 (actual_len > inode->i_size) &&
10509 (cur_offset > inode->i_size)) {
d1ea6a61 10510 if (cur_offset > actual_len)
55a61d1d 10511 i_size = actual_len;
d1ea6a61 10512 else
55a61d1d
JB
10513 i_size = cur_offset;
10514 i_size_write(inode, i_size);
10515 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10516 }
10517
d899e052 10518 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10519
10520 if (ret) {
66642832 10521 btrfs_abort_transaction(trans, ret);
79787eaa 10522 if (own_trans)
3a45bb20 10523 btrfs_end_transaction(trans);
79787eaa
JM
10524 break;
10525 }
d899e052 10526
0af3d00b 10527 if (own_trans)
3a45bb20 10528 btrfs_end_transaction(trans);
5a303d5d 10529 }
18513091 10530 if (cur_offset < end)
bc42bda2 10531 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10532 end - cur_offset + 1);
d899e052
YZ
10533 return ret;
10534}
10535
0af3d00b
JB
10536int btrfs_prealloc_file_range(struct inode *inode, int mode,
10537 u64 start, u64 num_bytes, u64 min_size,
10538 loff_t actual_len, u64 *alloc_hint)
10539{
10540 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10541 min_size, actual_len, alloc_hint,
10542 NULL);
10543}
10544
10545int btrfs_prealloc_file_range_trans(struct inode *inode,
10546 struct btrfs_trans_handle *trans, int mode,
10547 u64 start, u64 num_bytes, u64 min_size,
10548 loff_t actual_len, u64 *alloc_hint)
10549{
10550 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10551 min_size, actual_len, alloc_hint, trans);
10552}
10553
e6dcd2dc
CM
10554static int btrfs_set_page_dirty(struct page *page)
10555{
e6dcd2dc
CM
10556 return __set_page_dirty_nobuffers(page);
10557}
10558
10556cb2 10559static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10560{
b83cc969 10561 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10562 umode_t mode = inode->i_mode;
b83cc969 10563
cb6db4e5
JM
10564 if (mask & MAY_WRITE &&
10565 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10566 if (btrfs_root_readonly(root))
10567 return -EROFS;
10568 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10569 return -EACCES;
10570 }
2830ba7f 10571 return generic_permission(inode, mask);
fdebe2bd 10572}
39279cc3 10573
ef3b9af5
FM
10574static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10575{
2ff7e61e 10576 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10577 struct btrfs_trans_handle *trans;
10578 struct btrfs_root *root = BTRFS_I(dir)->root;
10579 struct inode *inode = NULL;
10580 u64 objectid;
10581 u64 index;
10582 int ret = 0;
10583
10584 /*
10585 * 5 units required for adding orphan entry
10586 */
10587 trans = btrfs_start_transaction(root, 5);
10588 if (IS_ERR(trans))
10589 return PTR_ERR(trans);
10590
10591 ret = btrfs_find_free_ino(root, &objectid);
10592 if (ret)
10593 goto out;
10594
10595 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10596 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10597 if (IS_ERR(inode)) {
10598 ret = PTR_ERR(inode);
10599 inode = NULL;
10600 goto out;
10601 }
10602
ef3b9af5
FM
10603 inode->i_fop = &btrfs_file_operations;
10604 inode->i_op = &btrfs_file_inode_operations;
10605
10606 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10607 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10608
b0d5d10f
CM
10609 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10610 if (ret)
32955c54 10611 goto out;
b0d5d10f
CM
10612
10613 ret = btrfs_update_inode(trans, root, inode);
10614 if (ret)
32955c54 10615 goto out;
73f2e545 10616 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10617 if (ret)
32955c54 10618 goto out;
ef3b9af5 10619
5762b5c9
FM
10620 /*
10621 * We set number of links to 0 in btrfs_new_inode(), and here we set
10622 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10623 * through:
10624 *
10625 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10626 */
10627 set_nlink(inode, 1);
ef3b9af5 10628 d_tmpfile(dentry, inode);
32955c54 10629 unlock_new_inode(inode);
ef3b9af5 10630 mark_inode_dirty(inode);
ef3b9af5 10631out:
3a45bb20 10632 btrfs_end_transaction(trans);
32955c54
AV
10633 if (ret && inode)
10634 discard_new_inode(inode);
2ff7e61e 10635 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10636 return ret;
10637}
10638
5cdc84bf 10639void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10640{
5cdc84bf 10641 struct inode *inode = tree->private_data;
c6100a4b
JB
10642 unsigned long index = start >> PAGE_SHIFT;
10643 unsigned long end_index = end >> PAGE_SHIFT;
10644 struct page *page;
10645
10646 while (index <= end_index) {
10647 page = find_get_page(inode->i_mapping, index);
10648 ASSERT(page); /* Pages should be in the extent_io_tree */
10649 set_page_writeback(page);
10650 put_page(page);
10651 index++;
10652 }
10653}
10654
ed46ff3d
OS
10655#ifdef CONFIG_SWAP
10656/*
10657 * Add an entry indicating a block group or device which is pinned by a
10658 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10659 * negative errno on failure.
10660 */
10661static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10662 bool is_block_group)
10663{
10664 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10665 struct btrfs_swapfile_pin *sp, *entry;
10666 struct rb_node **p;
10667 struct rb_node *parent = NULL;
10668
10669 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10670 if (!sp)
10671 return -ENOMEM;
10672 sp->ptr = ptr;
10673 sp->inode = inode;
10674 sp->is_block_group = is_block_group;
10675
10676 spin_lock(&fs_info->swapfile_pins_lock);
10677 p = &fs_info->swapfile_pins.rb_node;
10678 while (*p) {
10679 parent = *p;
10680 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10681 if (sp->ptr < entry->ptr ||
10682 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10683 p = &(*p)->rb_left;
10684 } else if (sp->ptr > entry->ptr ||
10685 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10686 p = &(*p)->rb_right;
10687 } else {
10688 spin_unlock(&fs_info->swapfile_pins_lock);
10689 kfree(sp);
10690 return 1;
10691 }
10692 }
10693 rb_link_node(&sp->node, parent, p);
10694 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10695 spin_unlock(&fs_info->swapfile_pins_lock);
10696 return 0;
10697}
10698
10699/* Free all of the entries pinned by this swapfile. */
10700static void btrfs_free_swapfile_pins(struct inode *inode)
10701{
10702 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10703 struct btrfs_swapfile_pin *sp;
10704 struct rb_node *node, *next;
10705
10706 spin_lock(&fs_info->swapfile_pins_lock);
10707 node = rb_first(&fs_info->swapfile_pins);
10708 while (node) {
10709 next = rb_next(node);
10710 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10711 if (sp->inode == inode) {
10712 rb_erase(&sp->node, &fs_info->swapfile_pins);
10713 if (sp->is_block_group)
10714 btrfs_put_block_group(sp->ptr);
10715 kfree(sp);
10716 }
10717 node = next;
10718 }
10719 spin_unlock(&fs_info->swapfile_pins_lock);
10720}
10721
10722struct btrfs_swap_info {
10723 u64 start;
10724 u64 block_start;
10725 u64 block_len;
10726 u64 lowest_ppage;
10727 u64 highest_ppage;
10728 unsigned long nr_pages;
10729 int nr_extents;
10730};
10731
10732static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10733 struct btrfs_swap_info *bsi)
10734{
10735 unsigned long nr_pages;
10736 u64 first_ppage, first_ppage_reported, next_ppage;
10737 int ret;
10738
10739 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10740 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10741 PAGE_SIZE) >> PAGE_SHIFT;
10742
10743 if (first_ppage >= next_ppage)
10744 return 0;
10745 nr_pages = next_ppage - first_ppage;
10746
10747 first_ppage_reported = first_ppage;
10748 if (bsi->start == 0)
10749 first_ppage_reported++;
10750 if (bsi->lowest_ppage > first_ppage_reported)
10751 bsi->lowest_ppage = first_ppage_reported;
10752 if (bsi->highest_ppage < (next_ppage - 1))
10753 bsi->highest_ppage = next_ppage - 1;
10754
10755 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10756 if (ret < 0)
10757 return ret;
10758 bsi->nr_extents += ret;
10759 bsi->nr_pages += nr_pages;
10760 return 0;
10761}
10762
10763static void btrfs_swap_deactivate(struct file *file)
10764{
10765 struct inode *inode = file_inode(file);
10766
10767 btrfs_free_swapfile_pins(inode);
10768 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10769}
10770
10771static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10772 sector_t *span)
10773{
10774 struct inode *inode = file_inode(file);
10775 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10776 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10777 struct extent_state *cached_state = NULL;
10778 struct extent_map *em = NULL;
10779 struct btrfs_device *device = NULL;
10780 struct btrfs_swap_info bsi = {
10781 .lowest_ppage = (sector_t)-1ULL,
10782 };
10783 int ret = 0;
10784 u64 isize;
10785 u64 start;
10786
10787 /*
10788 * If the swap file was just created, make sure delalloc is done. If the
10789 * file changes again after this, the user is doing something stupid and
10790 * we don't really care.
10791 */
10792 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10793 if (ret)
10794 return ret;
10795
10796 /*
10797 * The inode is locked, so these flags won't change after we check them.
10798 */
10799 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10800 btrfs_warn(fs_info, "swapfile must not be compressed");
10801 return -EINVAL;
10802 }
10803 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10804 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10805 return -EINVAL;
10806 }
10807 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10808 btrfs_warn(fs_info, "swapfile must not be checksummed");
10809 return -EINVAL;
10810 }
10811
10812 /*
10813 * Balance or device remove/replace/resize can move stuff around from
10814 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10815 * concurrently while we are mapping the swap extents, and
10816 * fs_info->swapfile_pins prevents them from running while the swap file
10817 * is active and moving the extents. Note that this also prevents a
10818 * concurrent device add which isn't actually necessary, but it's not
10819 * really worth the trouble to allow it.
10820 */
10821 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10822 btrfs_warn(fs_info,
10823 "cannot activate swapfile while exclusive operation is running");
10824 return -EBUSY;
10825 }
10826 /*
10827 * Snapshots can create extents which require COW even if NODATACOW is
10828 * set. We use this counter to prevent snapshots. We must increment it
10829 * before walking the extents because we don't want a concurrent
10830 * snapshot to run after we've already checked the extents.
10831 */
10832 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10833
10834 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10835
10836 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10837 start = 0;
10838 while (start < isize) {
10839 u64 logical_block_start, physical_block_start;
10840 struct btrfs_block_group_cache *bg;
10841 u64 len = isize - start;
10842
10843 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10844 if (IS_ERR(em)) {
10845 ret = PTR_ERR(em);
10846 goto out;
10847 }
10848
10849 if (em->block_start == EXTENT_MAP_HOLE) {
10850 btrfs_warn(fs_info, "swapfile must not have holes");
10851 ret = -EINVAL;
10852 goto out;
10853 }
10854 if (em->block_start == EXTENT_MAP_INLINE) {
10855 /*
10856 * It's unlikely we'll ever actually find ourselves
10857 * here, as a file small enough to fit inline won't be
10858 * big enough to store more than the swap header, but in
10859 * case something changes in the future, let's catch it
10860 * here rather than later.
10861 */
10862 btrfs_warn(fs_info, "swapfile must not be inline");
10863 ret = -EINVAL;
10864 goto out;
10865 }
10866 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10867 btrfs_warn(fs_info, "swapfile must not be compressed");
10868 ret = -EINVAL;
10869 goto out;
10870 }
10871
10872 logical_block_start = em->block_start + (start - em->start);
10873 len = min(len, em->len - (start - em->start));
10874 free_extent_map(em);
10875 em = NULL;
10876
10877 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10878 if (ret < 0) {
10879 goto out;
10880 } else if (ret) {
10881 ret = 0;
10882 } else {
10883 btrfs_warn(fs_info,
10884 "swapfile must not be copy-on-write");
10885 ret = -EINVAL;
10886 goto out;
10887 }
10888
10889 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10890 if (IS_ERR(em)) {
10891 ret = PTR_ERR(em);
10892 goto out;
10893 }
10894
10895 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10896 btrfs_warn(fs_info,
10897 "swapfile must have single data profile");
10898 ret = -EINVAL;
10899 goto out;
10900 }
10901
10902 if (device == NULL) {
10903 device = em->map_lookup->stripes[0].dev;
10904 ret = btrfs_add_swapfile_pin(inode, device, false);
10905 if (ret == 1)
10906 ret = 0;
10907 else if (ret)
10908 goto out;
10909 } else if (device != em->map_lookup->stripes[0].dev) {
10910 btrfs_warn(fs_info, "swapfile must be on one device");
10911 ret = -EINVAL;
10912 goto out;
10913 }
10914
10915 physical_block_start = (em->map_lookup->stripes[0].physical +
10916 (logical_block_start - em->start));
10917 len = min(len, em->len - (logical_block_start - em->start));
10918 free_extent_map(em);
10919 em = NULL;
10920
10921 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10922 if (!bg) {
10923 btrfs_warn(fs_info,
10924 "could not find block group containing swapfile");
10925 ret = -EINVAL;
10926 goto out;
10927 }
10928
10929 ret = btrfs_add_swapfile_pin(inode, bg, true);
10930 if (ret) {
10931 btrfs_put_block_group(bg);
10932 if (ret == 1)
10933 ret = 0;
10934 else
10935 goto out;
10936 }
10937
10938 if (bsi.block_len &&
10939 bsi.block_start + bsi.block_len == physical_block_start) {
10940 bsi.block_len += len;
10941 } else {
10942 if (bsi.block_len) {
10943 ret = btrfs_add_swap_extent(sis, &bsi);
10944 if (ret)
10945 goto out;
10946 }
10947 bsi.start = start;
10948 bsi.block_start = physical_block_start;
10949 bsi.block_len = len;
10950 }
10951
10952 start += len;
10953 }
10954
10955 if (bsi.block_len)
10956 ret = btrfs_add_swap_extent(sis, &bsi);
10957
10958out:
10959 if (!IS_ERR_OR_NULL(em))
10960 free_extent_map(em);
10961
10962 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10963
10964 if (ret)
10965 btrfs_swap_deactivate(file);
10966
10967 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10968
10969 if (ret)
10970 return ret;
10971
10972 if (device)
10973 sis->bdev = device->bdev;
10974 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10975 sis->max = bsi.nr_pages;
10976 sis->pages = bsi.nr_pages - 1;
10977 sis->highest_bit = bsi.nr_pages - 1;
10978 return bsi.nr_extents;
10979}
10980#else
10981static void btrfs_swap_deactivate(struct file *file)
10982{
10983}
10984
10985static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10986 sector_t *span)
10987{
10988 return -EOPNOTSUPP;
10989}
10990#endif
10991
6e1d5dcc 10992static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10993 .getattr = btrfs_getattr,
39279cc3
CM
10994 .lookup = btrfs_lookup,
10995 .create = btrfs_create,
10996 .unlink = btrfs_unlink,
10997 .link = btrfs_link,
10998 .mkdir = btrfs_mkdir,
10999 .rmdir = btrfs_rmdir,
2773bf00 11000 .rename = btrfs_rename2,
39279cc3
CM
11001 .symlink = btrfs_symlink,
11002 .setattr = btrfs_setattr,
618e21d5 11003 .mknod = btrfs_mknod,
5103e947 11004 .listxattr = btrfs_listxattr,
fdebe2bd 11005 .permission = btrfs_permission,
4e34e719 11006 .get_acl = btrfs_get_acl,
996a710d 11007 .set_acl = btrfs_set_acl,
93fd63c2 11008 .update_time = btrfs_update_time,
ef3b9af5 11009 .tmpfile = btrfs_tmpfile,
39279cc3 11010};
6e1d5dcc 11011static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 11012 .lookup = btrfs_lookup,
fdebe2bd 11013 .permission = btrfs_permission,
93fd63c2 11014 .update_time = btrfs_update_time,
39279cc3 11015};
76dda93c 11016
828c0950 11017static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
11018 .llseek = generic_file_llseek,
11019 .read = generic_read_dir,
02dbfc99 11020 .iterate_shared = btrfs_real_readdir,
23b5ec74 11021 .open = btrfs_opendir,
34287aa3 11022 .unlocked_ioctl = btrfs_ioctl,
39279cc3 11023#ifdef CONFIG_COMPAT
4c63c245 11024 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 11025#endif
6bf13c0c 11026 .release = btrfs_release_file,
e02119d5 11027 .fsync = btrfs_sync_file,
39279cc3
CM
11028};
11029
20e5506b 11030static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 11031 /* mandatory callbacks */
065631f6 11032 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
11033 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
11034};
11035
35054394
CM
11036/*
11037 * btrfs doesn't support the bmap operation because swapfiles
11038 * use bmap to make a mapping of extents in the file. They assume
11039 * these extents won't change over the life of the file and they
11040 * use the bmap result to do IO directly to the drive.
11041 *
11042 * the btrfs bmap call would return logical addresses that aren't
11043 * suitable for IO and they also will change frequently as COW
11044 * operations happen. So, swapfile + btrfs == corruption.
11045 *
11046 * For now we're avoiding this by dropping bmap.
11047 */
7f09410b 11048static const struct address_space_operations btrfs_aops = {
39279cc3
CM
11049 .readpage = btrfs_readpage,
11050 .writepage = btrfs_writepage,
b293f02e 11051 .writepages = btrfs_writepages,
3ab2fb5a 11052 .readpages = btrfs_readpages,
16432985 11053 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
11054 .invalidatepage = btrfs_invalidatepage,
11055 .releasepage = btrfs_releasepage,
e6dcd2dc 11056 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 11057 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
11058 .swap_activate = btrfs_swap_activate,
11059 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
11060};
11061
6e1d5dcc 11062static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
11063 .getattr = btrfs_getattr,
11064 .setattr = btrfs_setattr,
5103e947 11065 .listxattr = btrfs_listxattr,
fdebe2bd 11066 .permission = btrfs_permission,
1506fcc8 11067 .fiemap = btrfs_fiemap,
4e34e719 11068 .get_acl = btrfs_get_acl,
996a710d 11069 .set_acl = btrfs_set_acl,
e41f941a 11070 .update_time = btrfs_update_time,
39279cc3 11071};
6e1d5dcc 11072static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
11073 .getattr = btrfs_getattr,
11074 .setattr = btrfs_setattr,
fdebe2bd 11075 .permission = btrfs_permission,
33268eaf 11076 .listxattr = btrfs_listxattr,
4e34e719 11077 .get_acl = btrfs_get_acl,
996a710d 11078 .set_acl = btrfs_set_acl,
e41f941a 11079 .update_time = btrfs_update_time,
618e21d5 11080};
6e1d5dcc 11081static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 11082 .get_link = page_get_link,
f209561a 11083 .getattr = btrfs_getattr,
22c44fe6 11084 .setattr = btrfs_setattr,
fdebe2bd 11085 .permission = btrfs_permission,
0279b4cd 11086 .listxattr = btrfs_listxattr,
e41f941a 11087 .update_time = btrfs_update_time,
39279cc3 11088};
76dda93c 11089
82d339d9 11090const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11091 .d_delete = btrfs_dentry_delete,
11092};