]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/inode.c
Btrfs: remove unused argument of fixup_low_keys()
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
4b4e25f2 44#include "compat.h"
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
39279cc3
CM
59
60struct btrfs_iget_args {
61 u64 ino;
62 struct btrfs_root *root;
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
70static const struct address_space_operations btrfs_aops;
71static const struct address_space_operations btrfs_symlink_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
d1310b2e 73static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 76static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
77struct kmem_cache *btrfs_trans_handle_cachep;
78struct kmem_cache *btrfs_transaction_cachep;
39279cc3 79struct kmem_cache *btrfs_path_cachep;
dc89e982 80struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
81
82#define S_SHIFT 12
83static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
84 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
85 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
86 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
87 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
88 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
89 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
90 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
91};
92
3972f260 93static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 94static int btrfs_truncate(struct inode *inode);
5fd02043 95static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
96static noinline int cow_file_range(struct inode *inode,
97 struct page *locked_page,
98 u64 start, u64 end, int *page_started,
99 unsigned long *nr_written, int unlock);
70c8a91c
JB
100static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
101 u64 len, u64 orig_start,
102 u64 block_start, u64 block_len,
cc95bef6
JB
103 u64 orig_block_len, u64 ram_bytes,
104 int type);
7b128766 105
f34f57a3 106static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
107 struct inode *inode, struct inode *dir,
108 const struct qstr *qstr)
0279b4cd
JO
109{
110 int err;
111
f34f57a3 112 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 113 if (!err)
2a7dba39 114 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
115 return err;
116}
117
c8b97818
CM
118/*
119 * this does all the hard work for inserting an inline extent into
120 * the btree. The caller should have done a btrfs_drop_extents so that
121 * no overlapping inline items exist in the btree
122 */
d397712b 123static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
124 struct btrfs_root *root, struct inode *inode,
125 u64 start, size_t size, size_t compressed_size,
fe3f566c 126 int compress_type,
c8b97818
CM
127 struct page **compressed_pages)
128{
129 struct btrfs_key key;
130 struct btrfs_path *path;
131 struct extent_buffer *leaf;
132 struct page *page = NULL;
133 char *kaddr;
134 unsigned long ptr;
135 struct btrfs_file_extent_item *ei;
136 int err = 0;
137 int ret;
138 size_t cur_size = size;
139 size_t datasize;
140 unsigned long offset;
c8b97818 141
fe3f566c 142 if (compressed_size && compressed_pages)
c8b97818 143 cur_size = compressed_size;
c8b97818 144
d397712b
CM
145 path = btrfs_alloc_path();
146 if (!path)
c8b97818
CM
147 return -ENOMEM;
148
b9473439 149 path->leave_spinning = 1;
c8b97818 150
33345d01 151 key.objectid = btrfs_ino(inode);
c8b97818
CM
152 key.offset = start;
153 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
154 datasize = btrfs_file_extent_calc_inline_size(cur_size);
155
156 inode_add_bytes(inode, size);
157 ret = btrfs_insert_empty_item(trans, root, path, &key,
158 datasize);
c8b97818
CM
159 if (ret) {
160 err = ret;
c8b97818
CM
161 goto fail;
162 }
163 leaf = path->nodes[0];
164 ei = btrfs_item_ptr(leaf, path->slots[0],
165 struct btrfs_file_extent_item);
166 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
167 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
168 btrfs_set_file_extent_encryption(leaf, ei, 0);
169 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
170 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
171 ptr = btrfs_file_extent_inline_start(ei);
172
261507a0 173 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
174 struct page *cpage;
175 int i = 0;
d397712b 176 while (compressed_size > 0) {
c8b97818 177 cpage = compressed_pages[i];
5b050f04 178 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
179 PAGE_CACHE_SIZE);
180
7ac687d9 181 kaddr = kmap_atomic(cpage);
c8b97818 182 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 183 kunmap_atomic(kaddr);
c8b97818
CM
184
185 i++;
186 ptr += cur_size;
187 compressed_size -= cur_size;
188 }
189 btrfs_set_file_extent_compression(leaf, ei,
261507a0 190 compress_type);
c8b97818
CM
191 } else {
192 page = find_get_page(inode->i_mapping,
193 start >> PAGE_CACHE_SHIFT);
194 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 195 kaddr = kmap_atomic(page);
c8b97818
CM
196 offset = start & (PAGE_CACHE_SIZE - 1);
197 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 198 kunmap_atomic(kaddr);
c8b97818
CM
199 page_cache_release(page);
200 }
201 btrfs_mark_buffer_dirty(leaf);
202 btrfs_free_path(path);
203
c2167754
YZ
204 /*
205 * we're an inline extent, so nobody can
206 * extend the file past i_size without locking
207 * a page we already have locked.
208 *
209 * We must do any isize and inode updates
210 * before we unlock the pages. Otherwise we
211 * could end up racing with unlink.
212 */
c8b97818 213 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 214 ret = btrfs_update_inode(trans, root, inode);
c2167754 215
79787eaa 216 return ret;
c8b97818
CM
217fail:
218 btrfs_free_path(path);
219 return err;
220}
221
222
223/*
224 * conditionally insert an inline extent into the file. This
225 * does the checks required to make sure the data is small enough
226 * to fit as an inline extent.
227 */
7f366cfe 228static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
229 struct btrfs_root *root,
230 struct inode *inode, u64 start, u64 end,
fe3f566c 231 size_t compressed_size, int compress_type,
c8b97818
CM
232 struct page **compressed_pages)
233{
234 u64 isize = i_size_read(inode);
235 u64 actual_end = min(end + 1, isize);
236 u64 inline_len = actual_end - start;
fda2832f 237 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
238 u64 data_len = inline_len;
239 int ret;
240
241 if (compressed_size)
242 data_len = compressed_size;
243
244 if (start > 0 ||
70b99e69 245 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
246 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
247 (!compressed_size &&
248 (actual_end & (root->sectorsize - 1)) == 0) ||
249 end + 1 < isize ||
250 data_len > root->fs_info->max_inline) {
251 return 1;
252 }
253
2671485d 254 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
255 if (ret)
256 return ret;
c8b97818
CM
257
258 if (isize > actual_end)
259 inline_len = min_t(u64, isize, actual_end);
260 ret = insert_inline_extent(trans, root, inode, start,
261 inline_len, compressed_size,
fe3f566c 262 compress_type, compressed_pages);
2adcac1a 263 if (ret && ret != -ENOSPC) {
79787eaa
JM
264 btrfs_abort_transaction(trans, root, ret);
265 return ret;
2adcac1a
JB
266 } else if (ret == -ENOSPC) {
267 return 1;
79787eaa 268 }
2adcac1a 269
bdc20e67 270 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 271 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 272 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
273 return 0;
274}
275
771ed689
CM
276struct async_extent {
277 u64 start;
278 u64 ram_size;
279 u64 compressed_size;
280 struct page **pages;
281 unsigned long nr_pages;
261507a0 282 int compress_type;
771ed689
CM
283 struct list_head list;
284};
285
286struct async_cow {
287 struct inode *inode;
288 struct btrfs_root *root;
289 struct page *locked_page;
290 u64 start;
291 u64 end;
292 struct list_head extents;
293 struct btrfs_work work;
294};
295
296static noinline int add_async_extent(struct async_cow *cow,
297 u64 start, u64 ram_size,
298 u64 compressed_size,
299 struct page **pages,
261507a0
LZ
300 unsigned long nr_pages,
301 int compress_type)
771ed689
CM
302{
303 struct async_extent *async_extent;
304
305 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 306 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
307 async_extent->start = start;
308 async_extent->ram_size = ram_size;
309 async_extent->compressed_size = compressed_size;
310 async_extent->pages = pages;
311 async_extent->nr_pages = nr_pages;
261507a0 312 async_extent->compress_type = compress_type;
771ed689
CM
313 list_add_tail(&async_extent->list, &cow->extents);
314 return 0;
315}
316
d352ac68 317/*
771ed689
CM
318 * we create compressed extents in two phases. The first
319 * phase compresses a range of pages that have already been
320 * locked (both pages and state bits are locked).
c8b97818 321 *
771ed689
CM
322 * This is done inside an ordered work queue, and the compression
323 * is spread across many cpus. The actual IO submission is step
324 * two, and the ordered work queue takes care of making sure that
325 * happens in the same order things were put onto the queue by
326 * writepages and friends.
c8b97818 327 *
771ed689
CM
328 * If this code finds it can't get good compression, it puts an
329 * entry onto the work queue to write the uncompressed bytes. This
330 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
331 * are written in the same order that the flusher thread sent them
332 * down.
d352ac68 333 */
771ed689
CM
334static noinline int compress_file_range(struct inode *inode,
335 struct page *locked_page,
336 u64 start, u64 end,
337 struct async_cow *async_cow,
338 int *num_added)
b888db2b
CM
339{
340 struct btrfs_root *root = BTRFS_I(inode)->root;
341 struct btrfs_trans_handle *trans;
db94535d 342 u64 num_bytes;
db94535d 343 u64 blocksize = root->sectorsize;
c8b97818 344 u64 actual_end;
42dc7bab 345 u64 isize = i_size_read(inode);
e6dcd2dc 346 int ret = 0;
c8b97818
CM
347 struct page **pages = NULL;
348 unsigned long nr_pages;
349 unsigned long nr_pages_ret = 0;
350 unsigned long total_compressed = 0;
351 unsigned long total_in = 0;
352 unsigned long max_compressed = 128 * 1024;
771ed689 353 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
354 int i;
355 int will_compress;
261507a0 356 int compress_type = root->fs_info->compress_type;
4adaa611 357 int redirty = 0;
b888db2b 358
4cb13e5d
LB
359 /* if this is a small write inside eof, kick off a defrag */
360 if ((end - start + 1) < 16 * 1024 &&
361 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
362 btrfs_add_inode_defrag(NULL, inode);
363
42dc7bab 364 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
365again:
366 will_compress = 0;
367 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
368 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 369
f03d9301
CM
370 /*
371 * we don't want to send crud past the end of i_size through
372 * compression, that's just a waste of CPU time. So, if the
373 * end of the file is before the start of our current
374 * requested range of bytes, we bail out to the uncompressed
375 * cleanup code that can deal with all of this.
376 *
377 * It isn't really the fastest way to fix things, but this is a
378 * very uncommon corner.
379 */
380 if (actual_end <= start)
381 goto cleanup_and_bail_uncompressed;
382
c8b97818
CM
383 total_compressed = actual_end - start;
384
385 /* we want to make sure that amount of ram required to uncompress
386 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
387 * of a compressed extent to 128k. This is a crucial number
388 * because it also controls how easily we can spread reads across
389 * cpus for decompression.
390 *
391 * We also want to make sure the amount of IO required to do
392 * a random read is reasonably small, so we limit the size of
393 * a compressed extent to 128k.
c8b97818
CM
394 */
395 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 396 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 397 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
398 total_in = 0;
399 ret = 0;
db94535d 400
771ed689
CM
401 /*
402 * we do compression for mount -o compress and when the
403 * inode has not been flagged as nocompress. This flag can
404 * change at any time if we discover bad compression ratios.
c8b97818 405 */
6cbff00f 406 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 407 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
408 (BTRFS_I(inode)->force_compress) ||
409 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 410 WARN_ON(pages);
cfbc246e 411 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
412 if (!pages) {
413 /* just bail out to the uncompressed code */
414 goto cont;
415 }
c8b97818 416
261507a0
LZ
417 if (BTRFS_I(inode)->force_compress)
418 compress_type = BTRFS_I(inode)->force_compress;
419
4adaa611
CM
420 /*
421 * we need to call clear_page_dirty_for_io on each
422 * page in the range. Otherwise applications with the file
423 * mmap'd can wander in and change the page contents while
424 * we are compressing them.
425 *
426 * If the compression fails for any reason, we set the pages
427 * dirty again later on.
428 */
429 extent_range_clear_dirty_for_io(inode, start, end);
430 redirty = 1;
261507a0
LZ
431 ret = btrfs_compress_pages(compress_type,
432 inode->i_mapping, start,
433 total_compressed, pages,
434 nr_pages, &nr_pages_ret,
435 &total_in,
436 &total_compressed,
437 max_compressed);
c8b97818
CM
438
439 if (!ret) {
440 unsigned long offset = total_compressed &
441 (PAGE_CACHE_SIZE - 1);
442 struct page *page = pages[nr_pages_ret - 1];
443 char *kaddr;
444
445 /* zero the tail end of the last page, we might be
446 * sending it down to disk
447 */
448 if (offset) {
7ac687d9 449 kaddr = kmap_atomic(page);
c8b97818
CM
450 memset(kaddr + offset, 0,
451 PAGE_CACHE_SIZE - offset);
7ac687d9 452 kunmap_atomic(kaddr);
c8b97818
CM
453 }
454 will_compress = 1;
455 }
456 }
560f7d75 457cont:
c8b97818 458 if (start == 0) {
7a7eaa40 459 trans = btrfs_join_transaction(root);
79787eaa
JM
460 if (IS_ERR(trans)) {
461 ret = PTR_ERR(trans);
462 trans = NULL;
463 goto cleanup_and_out;
464 }
0ca1f7ce 465 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 466
c8b97818 467 /* lets try to make an inline extent */
771ed689 468 if (ret || total_in < (actual_end - start)) {
c8b97818 469 /* we didn't compress the entire range, try
771ed689 470 * to make an uncompressed inline extent.
c8b97818
CM
471 */
472 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 473 start, end, 0, 0, NULL);
c8b97818 474 } else {
771ed689 475 /* try making a compressed inline extent */
c8b97818
CM
476 ret = cow_file_range_inline(trans, root, inode,
477 start, end,
fe3f566c
LZ
478 total_compressed,
479 compress_type, pages);
c8b97818 480 }
79787eaa 481 if (ret <= 0) {
771ed689 482 /*
79787eaa
JM
483 * inline extent creation worked or returned error,
484 * we don't need to create any more async work items.
485 * Unlock and free up our temp pages.
771ed689 486 */
c8b97818 487 extent_clear_unlock_delalloc(inode,
a791e35e
CM
488 &BTRFS_I(inode)->io_tree,
489 start, end, NULL,
490 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 491 EXTENT_CLEAR_DELALLOC |
a791e35e 492 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
493
494 btrfs_end_transaction(trans, root);
c8b97818
CM
495 goto free_pages_out;
496 }
c2167754 497 btrfs_end_transaction(trans, root);
c8b97818
CM
498 }
499
500 if (will_compress) {
501 /*
502 * we aren't doing an inline extent round the compressed size
503 * up to a block size boundary so the allocator does sane
504 * things
505 */
fda2832f 506 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
507
508 /*
509 * one last check to make sure the compression is really a
510 * win, compare the page count read with the blocks on disk
511 */
fda2832f 512 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
513 if (total_compressed >= total_in) {
514 will_compress = 0;
515 } else {
c8b97818
CM
516 num_bytes = total_in;
517 }
518 }
519 if (!will_compress && pages) {
520 /*
521 * the compression code ran but failed to make things smaller,
522 * free any pages it allocated and our page pointer array
523 */
524 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 525 WARN_ON(pages[i]->mapping);
c8b97818
CM
526 page_cache_release(pages[i]);
527 }
528 kfree(pages);
529 pages = NULL;
530 total_compressed = 0;
531 nr_pages_ret = 0;
532
533 /* flag the file so we don't compress in the future */
1e701a32
CM
534 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
535 !(BTRFS_I(inode)->force_compress)) {
a555f810 536 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 537 }
c8b97818 538 }
771ed689
CM
539 if (will_compress) {
540 *num_added += 1;
c8b97818 541
771ed689
CM
542 /* the async work queues will take care of doing actual
543 * allocation on disk for these compressed pages,
544 * and will submit them to the elevator.
545 */
546 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
547 total_compressed, pages, nr_pages_ret,
548 compress_type);
179e29e4 549
24ae6365 550 if (start + num_bytes < end) {
771ed689
CM
551 start += num_bytes;
552 pages = NULL;
553 cond_resched();
554 goto again;
555 }
556 } else {
f03d9301 557cleanup_and_bail_uncompressed:
771ed689
CM
558 /*
559 * No compression, but we still need to write the pages in
560 * the file we've been given so far. redirty the locked
561 * page if it corresponds to our extent and set things up
562 * for the async work queue to run cow_file_range to do
563 * the normal delalloc dance
564 */
565 if (page_offset(locked_page) >= start &&
566 page_offset(locked_page) <= end) {
567 __set_page_dirty_nobuffers(locked_page);
568 /* unlocked later on in the async handlers */
569 }
4adaa611
CM
570 if (redirty)
571 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
572 add_async_extent(async_cow, start, end - start + 1,
573 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
574 *num_added += 1;
575 }
3b951516 576
771ed689 577out:
79787eaa 578 return ret;
771ed689
CM
579
580free_pages_out:
581 for (i = 0; i < nr_pages_ret; i++) {
582 WARN_ON(pages[i]->mapping);
583 page_cache_release(pages[i]);
584 }
d397712b 585 kfree(pages);
771ed689
CM
586
587 goto out;
79787eaa
JM
588
589cleanup_and_out:
590 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
591 start, end, NULL,
592 EXTENT_CLEAR_UNLOCK_PAGE |
593 EXTENT_CLEAR_DIRTY |
594 EXTENT_CLEAR_DELALLOC |
595 EXTENT_SET_WRITEBACK |
596 EXTENT_END_WRITEBACK);
597 if (!trans || IS_ERR(trans))
598 btrfs_error(root->fs_info, ret, "Failed to join transaction");
599 else
600 btrfs_abort_transaction(trans, root, ret);
601 goto free_pages_out;
771ed689
CM
602}
603
604/*
605 * phase two of compressed writeback. This is the ordered portion
606 * of the code, which only gets called in the order the work was
607 * queued. We walk all the async extents created by compress_file_range
608 * and send them down to the disk.
609 */
610static noinline int submit_compressed_extents(struct inode *inode,
611 struct async_cow *async_cow)
612{
613 struct async_extent *async_extent;
614 u64 alloc_hint = 0;
615 struct btrfs_trans_handle *trans;
616 struct btrfs_key ins;
617 struct extent_map *em;
618 struct btrfs_root *root = BTRFS_I(inode)->root;
619 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
620 struct extent_io_tree *io_tree;
f5a84ee3 621 int ret = 0;
771ed689
CM
622
623 if (list_empty(&async_cow->extents))
624 return 0;
625
3e04e7f1 626again:
d397712b 627 while (!list_empty(&async_cow->extents)) {
771ed689
CM
628 async_extent = list_entry(async_cow->extents.next,
629 struct async_extent, list);
630 list_del(&async_extent->list);
c8b97818 631
771ed689
CM
632 io_tree = &BTRFS_I(inode)->io_tree;
633
f5a84ee3 634retry:
771ed689
CM
635 /* did the compression code fall back to uncompressed IO? */
636 if (!async_extent->pages) {
637 int page_started = 0;
638 unsigned long nr_written = 0;
639
640 lock_extent(io_tree, async_extent->start,
2ac55d41 641 async_extent->start +
d0082371 642 async_extent->ram_size - 1);
771ed689
CM
643
644 /* allocate blocks */
f5a84ee3
JB
645 ret = cow_file_range(inode, async_cow->locked_page,
646 async_extent->start,
647 async_extent->start +
648 async_extent->ram_size - 1,
649 &page_started, &nr_written, 0);
771ed689 650
79787eaa
JM
651 /* JDM XXX */
652
771ed689
CM
653 /*
654 * if page_started, cow_file_range inserted an
655 * inline extent and took care of all the unlocking
656 * and IO for us. Otherwise, we need to submit
657 * all those pages down to the drive.
658 */
f5a84ee3 659 if (!page_started && !ret)
771ed689
CM
660 extent_write_locked_range(io_tree,
661 inode, async_extent->start,
d397712b 662 async_extent->start +
771ed689
CM
663 async_extent->ram_size - 1,
664 btrfs_get_extent,
665 WB_SYNC_ALL);
3e04e7f1
JB
666 else if (ret)
667 unlock_page(async_cow->locked_page);
771ed689
CM
668 kfree(async_extent);
669 cond_resched();
670 continue;
671 }
672
673 lock_extent(io_tree, async_extent->start,
d0082371 674 async_extent->start + async_extent->ram_size - 1);
771ed689 675
7a7eaa40 676 trans = btrfs_join_transaction(root);
79787eaa
JM
677 if (IS_ERR(trans)) {
678 ret = PTR_ERR(trans);
679 } else {
680 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
681 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
682 async_extent->compressed_size,
683 async_extent->compressed_size,
81c9ad23 684 0, alloc_hint, &ins, 1);
962197ba 685 if (ret && ret != -ENOSPC)
79787eaa
JM
686 btrfs_abort_transaction(trans, root, ret);
687 btrfs_end_transaction(trans, root);
688 }
c2167754 689
f5a84ee3
JB
690 if (ret) {
691 int i;
3e04e7f1 692
f5a84ee3
JB
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
695 page_cache_release(async_extent->pages[i]);
696 }
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
3e04e7f1 700
79787eaa
JM
701 if (ret == -ENOSPC)
702 goto retry;
3e04e7f1 703 goto out_free;
f5a84ee3
JB
704 }
705
c2167754
YZ
706 /*
707 * here we're doing allocation and writeback of the
708 * compressed pages
709 */
710 btrfs_drop_extent_cache(inode, async_extent->start,
711 async_extent->start +
712 async_extent->ram_size - 1, 0);
713
172ddd60 714 em = alloc_extent_map();
3e04e7f1
JB
715 if (!em)
716 goto out_free_reserve;
771ed689
CM
717 em->start = async_extent->start;
718 em->len = async_extent->ram_size;
445a6944 719 em->orig_start = em->start;
2ab28f32
JB
720 em->mod_start = em->start;
721 em->mod_len = em->len;
c8b97818 722
771ed689
CM
723 em->block_start = ins.objectid;
724 em->block_len = ins.offset;
b4939680 725 em->orig_block_len = ins.offset;
cc95bef6 726 em->ram_bytes = async_extent->ram_size;
771ed689 727 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 728 em->compress_type = async_extent->compress_type;
771ed689
CM
729 set_bit(EXTENT_FLAG_PINNED, &em->flags);
730 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 731 em->generation = -1;
771ed689 732
d397712b 733 while (1) {
890871be 734 write_lock(&em_tree->lock);
09a2a8f9 735 ret = add_extent_mapping(em_tree, em, 1);
890871be 736 write_unlock(&em_tree->lock);
771ed689
CM
737 if (ret != -EEXIST) {
738 free_extent_map(em);
739 break;
740 }
741 btrfs_drop_extent_cache(inode, async_extent->start,
742 async_extent->start +
743 async_extent->ram_size - 1, 0);
744 }
745
3e04e7f1
JB
746 if (ret)
747 goto out_free_reserve;
748
261507a0
LZ
749 ret = btrfs_add_ordered_extent_compress(inode,
750 async_extent->start,
751 ins.objectid,
752 async_extent->ram_size,
753 ins.offset,
754 BTRFS_ORDERED_COMPRESSED,
755 async_extent->compress_type);
3e04e7f1
JB
756 if (ret)
757 goto out_free_reserve;
771ed689 758
771ed689
CM
759 /*
760 * clear dirty, set writeback and unlock the pages.
761 */
762 extent_clear_unlock_delalloc(inode,
a791e35e
CM
763 &BTRFS_I(inode)->io_tree,
764 async_extent->start,
765 async_extent->start +
766 async_extent->ram_size - 1,
767 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
768 EXTENT_CLEAR_UNLOCK |
a3429ab7 769 EXTENT_CLEAR_DELALLOC |
a791e35e 770 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
771
772 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
773 async_extent->start,
774 async_extent->ram_size,
775 ins.objectid,
776 ins.offset, async_extent->pages,
777 async_extent->nr_pages);
771ed689
CM
778 alloc_hint = ins.objectid + ins.offset;
779 kfree(async_extent);
3e04e7f1
JB
780 if (ret)
781 goto out;
771ed689
CM
782 cond_resched();
783 }
79787eaa
JM
784 ret = 0;
785out:
786 return ret;
3e04e7f1
JB
787out_free_reserve:
788 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 789out_free:
3e04e7f1
JB
790 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
791 async_extent->start,
792 async_extent->start +
793 async_extent->ram_size - 1,
794 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
795 EXTENT_CLEAR_UNLOCK |
796 EXTENT_CLEAR_DELALLOC |
797 EXTENT_CLEAR_DIRTY |
798 EXTENT_SET_WRITEBACK |
799 EXTENT_END_WRITEBACK);
79787eaa 800 kfree(async_extent);
3e04e7f1 801 goto again;
771ed689
CM
802}
803
4b46fce2
JB
804static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
805 u64 num_bytes)
806{
807 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
808 struct extent_map *em;
809 u64 alloc_hint = 0;
810
811 read_lock(&em_tree->lock);
812 em = search_extent_mapping(em_tree, start, num_bytes);
813 if (em) {
814 /*
815 * if block start isn't an actual block number then find the
816 * first block in this inode and use that as a hint. If that
817 * block is also bogus then just don't worry about it.
818 */
819 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
820 free_extent_map(em);
821 em = search_extent_mapping(em_tree, 0, 0);
822 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
823 alloc_hint = em->block_start;
824 if (em)
825 free_extent_map(em);
826 } else {
827 alloc_hint = em->block_start;
828 free_extent_map(em);
829 }
830 }
831 read_unlock(&em_tree->lock);
832
833 return alloc_hint;
834}
835
771ed689
CM
836/*
837 * when extent_io.c finds a delayed allocation range in the file,
838 * the call backs end up in this code. The basic idea is to
839 * allocate extents on disk for the range, and create ordered data structs
840 * in ram to track those extents.
841 *
842 * locked_page is the page that writepage had locked already. We use
843 * it to make sure we don't do extra locks or unlocks.
844 *
845 * *page_started is set to one if we unlock locked_page and do everything
846 * required to start IO on it. It may be clean and already done with
847 * IO when we return.
848 */
b7d5b0a8
MX
849static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
850 struct inode *inode,
851 struct btrfs_root *root,
852 struct page *locked_page,
853 u64 start, u64 end, int *page_started,
854 unsigned long *nr_written,
855 int unlock)
771ed689 856{
771ed689
CM
857 u64 alloc_hint = 0;
858 u64 num_bytes;
859 unsigned long ram_size;
860 u64 disk_num_bytes;
861 u64 cur_alloc_size;
862 u64 blocksize = root->sectorsize;
771ed689
CM
863 struct btrfs_key ins;
864 struct extent_map *em;
865 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
866 int ret = 0;
867
83eea1f1 868 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 869
fda2832f 870 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
871 num_bytes = max(blocksize, num_bytes);
872 disk_num_bytes = num_bytes;
771ed689 873
4cb5300b 874 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
875 if (num_bytes < 64 * 1024 &&
876 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
877 btrfs_add_inode_defrag(trans, inode);
878
771ed689
CM
879 if (start == 0) {
880 /* lets try to make an inline extent */
881 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 882 start, end, 0, 0, NULL);
771ed689
CM
883 if (ret == 0) {
884 extent_clear_unlock_delalloc(inode,
a791e35e
CM
885 &BTRFS_I(inode)->io_tree,
886 start, end, NULL,
887 EXTENT_CLEAR_UNLOCK_PAGE |
888 EXTENT_CLEAR_UNLOCK |
889 EXTENT_CLEAR_DELALLOC |
890 EXTENT_CLEAR_DIRTY |
891 EXTENT_SET_WRITEBACK |
892 EXTENT_END_WRITEBACK);
c2167754 893
771ed689
CM
894 *nr_written = *nr_written +
895 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
896 *page_started = 1;
771ed689 897 goto out;
79787eaa
JM
898 } else if (ret < 0) {
899 btrfs_abort_transaction(trans, root, ret);
900 goto out_unlock;
771ed689
CM
901 }
902 }
903
904 BUG_ON(disk_num_bytes >
6c41761f 905 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 906
4b46fce2 907 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
908 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
909
d397712b 910 while (disk_num_bytes > 0) {
a791e35e
CM
911 unsigned long op;
912
287a0ab9 913 cur_alloc_size = disk_num_bytes;
e6dcd2dc 914 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 915 root->sectorsize, 0, alloc_hint,
81c9ad23 916 &ins, 1);
79787eaa
JM
917 if (ret < 0) {
918 btrfs_abort_transaction(trans, root, ret);
919 goto out_unlock;
920 }
d397712b 921
172ddd60 922 em = alloc_extent_map();
79787eaa 923 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 924 em->start = start;
445a6944 925 em->orig_start = em->start;
771ed689
CM
926 ram_size = ins.offset;
927 em->len = ins.offset;
2ab28f32
JB
928 em->mod_start = em->start;
929 em->mod_len = em->len;
c8b97818 930
e6dcd2dc 931 em->block_start = ins.objectid;
c8b97818 932 em->block_len = ins.offset;
b4939680 933 em->orig_block_len = ins.offset;
cc95bef6 934 em->ram_bytes = ram_size;
e6dcd2dc 935 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 936 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 937 em->generation = -1;
c8b97818 938
d397712b 939 while (1) {
890871be 940 write_lock(&em_tree->lock);
09a2a8f9 941 ret = add_extent_mapping(em_tree, em, 1);
890871be 942 write_unlock(&em_tree->lock);
e6dcd2dc
CM
943 if (ret != -EEXIST) {
944 free_extent_map(em);
945 break;
946 }
947 btrfs_drop_extent_cache(inode, start,
c8b97818 948 start + ram_size - 1, 0);
e6dcd2dc
CM
949 }
950
98d20f67 951 cur_alloc_size = ins.offset;
e6dcd2dc 952 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 953 ram_size, cur_alloc_size, 0);
79787eaa 954 BUG_ON(ret); /* -ENOMEM */
c8b97818 955
17d217fe
YZ
956 if (root->root_key.objectid ==
957 BTRFS_DATA_RELOC_TREE_OBJECTID) {
958 ret = btrfs_reloc_clone_csums(inode, start,
959 cur_alloc_size);
79787eaa
JM
960 if (ret) {
961 btrfs_abort_transaction(trans, root, ret);
962 goto out_unlock;
963 }
17d217fe
YZ
964 }
965
d397712b 966 if (disk_num_bytes < cur_alloc_size)
3b951516 967 break;
d397712b 968
c8b97818
CM
969 /* we're not doing compressed IO, don't unlock the first
970 * page (which the caller expects to stay locked), don't
971 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
972 *
973 * Do set the Private2 bit so we know this page was properly
974 * setup for writepage
c8b97818 975 */
a791e35e
CM
976 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
977 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
978 EXTENT_SET_PRIVATE2;
979
c8b97818
CM
980 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
981 start, start + ram_size - 1,
a791e35e 982 locked_page, op);
c8b97818 983 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
984 num_bytes -= cur_alloc_size;
985 alloc_hint = ins.objectid + ins.offset;
986 start += cur_alloc_size;
b888db2b 987 }
79787eaa 988out:
be20aa9d 989 return ret;
b7d5b0a8 990
79787eaa
JM
991out_unlock:
992 extent_clear_unlock_delalloc(inode,
993 &BTRFS_I(inode)->io_tree,
beb42dd7 994 start, end, locked_page,
79787eaa
JM
995 EXTENT_CLEAR_UNLOCK_PAGE |
996 EXTENT_CLEAR_UNLOCK |
997 EXTENT_CLEAR_DELALLOC |
998 EXTENT_CLEAR_DIRTY |
999 EXTENT_SET_WRITEBACK |
1000 EXTENT_END_WRITEBACK);
1001
1002 goto out;
771ed689 1003}
c8b97818 1004
b7d5b0a8
MX
1005static noinline int cow_file_range(struct inode *inode,
1006 struct page *locked_page,
1007 u64 start, u64 end, int *page_started,
1008 unsigned long *nr_written,
1009 int unlock)
1010{
1011 struct btrfs_trans_handle *trans;
1012 struct btrfs_root *root = BTRFS_I(inode)->root;
1013 int ret;
1014
1015 trans = btrfs_join_transaction(root);
1016 if (IS_ERR(trans)) {
1017 extent_clear_unlock_delalloc(inode,
1018 &BTRFS_I(inode)->io_tree,
1019 start, end, locked_page,
1020 EXTENT_CLEAR_UNLOCK_PAGE |
1021 EXTENT_CLEAR_UNLOCK |
1022 EXTENT_CLEAR_DELALLOC |
1023 EXTENT_CLEAR_DIRTY |
1024 EXTENT_SET_WRITEBACK |
1025 EXTENT_END_WRITEBACK);
1026 return PTR_ERR(trans);
1027 }
1028 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1029
1030 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1031 page_started, nr_written, unlock);
1032
1033 btrfs_end_transaction(trans, root);
1034
1035 return ret;
1036}
1037
771ed689
CM
1038/*
1039 * work queue call back to started compression on a file and pages
1040 */
1041static noinline void async_cow_start(struct btrfs_work *work)
1042{
1043 struct async_cow *async_cow;
1044 int num_added = 0;
1045 async_cow = container_of(work, struct async_cow, work);
1046
1047 compress_file_range(async_cow->inode, async_cow->locked_page,
1048 async_cow->start, async_cow->end, async_cow,
1049 &num_added);
8180ef88 1050 if (num_added == 0) {
cb77fcd8 1051 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1052 async_cow->inode = NULL;
8180ef88 1053 }
771ed689
CM
1054}
1055
1056/*
1057 * work queue call back to submit previously compressed pages
1058 */
1059static noinline void async_cow_submit(struct btrfs_work *work)
1060{
1061 struct async_cow *async_cow;
1062 struct btrfs_root *root;
1063 unsigned long nr_pages;
1064
1065 async_cow = container_of(work, struct async_cow, work);
1066
1067 root = async_cow->root;
1068 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1069 PAGE_CACHE_SHIFT;
1070
66657b31 1071 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1072 5 * 1024 * 1024 &&
771ed689
CM
1073 waitqueue_active(&root->fs_info->async_submit_wait))
1074 wake_up(&root->fs_info->async_submit_wait);
1075
d397712b 1076 if (async_cow->inode)
771ed689 1077 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1078}
c8b97818 1079
771ed689
CM
1080static noinline void async_cow_free(struct btrfs_work *work)
1081{
1082 struct async_cow *async_cow;
1083 async_cow = container_of(work, struct async_cow, work);
8180ef88 1084 if (async_cow->inode)
cb77fcd8 1085 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1086 kfree(async_cow);
1087}
1088
1089static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1090 u64 start, u64 end, int *page_started,
1091 unsigned long *nr_written)
1092{
1093 struct async_cow *async_cow;
1094 struct btrfs_root *root = BTRFS_I(inode)->root;
1095 unsigned long nr_pages;
1096 u64 cur_end;
287082b0 1097 int limit = 10 * 1024 * 1024;
771ed689 1098
a3429ab7
CM
1099 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1100 1, 0, NULL, GFP_NOFS);
d397712b 1101 while (start < end) {
771ed689 1102 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1103 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1104 async_cow->inode = igrab(inode);
771ed689
CM
1105 async_cow->root = root;
1106 async_cow->locked_page = locked_page;
1107 async_cow->start = start;
1108
6cbff00f 1109 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1110 cur_end = end;
1111 else
1112 cur_end = min(end, start + 512 * 1024 - 1);
1113
1114 async_cow->end = cur_end;
1115 INIT_LIST_HEAD(&async_cow->extents);
1116
1117 async_cow->work.func = async_cow_start;
1118 async_cow->work.ordered_func = async_cow_submit;
1119 async_cow->work.ordered_free = async_cow_free;
1120 async_cow->work.flags = 0;
1121
771ed689
CM
1122 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1123 PAGE_CACHE_SHIFT;
1124 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1125
1126 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1127 &async_cow->work);
1128
1129 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1130 wait_event(root->fs_info->async_submit_wait,
1131 (atomic_read(&root->fs_info->async_delalloc_pages) <
1132 limit));
1133 }
1134
d397712b 1135 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1136 atomic_read(&root->fs_info->async_delalloc_pages)) {
1137 wait_event(root->fs_info->async_submit_wait,
1138 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1139 0));
1140 }
1141
1142 *nr_written += nr_pages;
1143 start = cur_end + 1;
1144 }
1145 *page_started = 1;
1146 return 0;
be20aa9d
CM
1147}
1148
d397712b 1149static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1150 u64 bytenr, u64 num_bytes)
1151{
1152 int ret;
1153 struct btrfs_ordered_sum *sums;
1154 LIST_HEAD(list);
1155
07d400a6 1156 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1157 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1158 if (ret == 0 && list_empty(&list))
1159 return 0;
1160
1161 while (!list_empty(&list)) {
1162 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1163 list_del(&sums->list);
1164 kfree(sums);
1165 }
1166 return 1;
1167}
1168
d352ac68
CM
1169/*
1170 * when nowcow writeback call back. This checks for snapshots or COW copies
1171 * of the extents that exist in the file, and COWs the file as required.
1172 *
1173 * If no cow copies or snapshots exist, we write directly to the existing
1174 * blocks on disk
1175 */
7f366cfe
CM
1176static noinline int run_delalloc_nocow(struct inode *inode,
1177 struct page *locked_page,
771ed689
CM
1178 u64 start, u64 end, int *page_started, int force,
1179 unsigned long *nr_written)
be20aa9d 1180{
be20aa9d 1181 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1182 struct btrfs_trans_handle *trans;
be20aa9d 1183 struct extent_buffer *leaf;
be20aa9d 1184 struct btrfs_path *path;
80ff3856 1185 struct btrfs_file_extent_item *fi;
be20aa9d 1186 struct btrfs_key found_key;
80ff3856
YZ
1187 u64 cow_start;
1188 u64 cur_offset;
1189 u64 extent_end;
5d4f98a2 1190 u64 extent_offset;
80ff3856
YZ
1191 u64 disk_bytenr;
1192 u64 num_bytes;
b4939680 1193 u64 disk_num_bytes;
cc95bef6 1194 u64 ram_bytes;
80ff3856 1195 int extent_type;
79787eaa 1196 int ret, err;
d899e052 1197 int type;
80ff3856
YZ
1198 int nocow;
1199 int check_prev = 1;
82d5902d 1200 bool nolock;
33345d01 1201 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1202
1203 path = btrfs_alloc_path();
17ca04af
JB
1204 if (!path) {
1205 extent_clear_unlock_delalloc(inode,
1206 &BTRFS_I(inode)->io_tree,
1207 start, end, locked_page,
1208 EXTENT_CLEAR_UNLOCK_PAGE |
1209 EXTENT_CLEAR_UNLOCK |
1210 EXTENT_CLEAR_DELALLOC |
1211 EXTENT_CLEAR_DIRTY |
1212 EXTENT_SET_WRITEBACK |
1213 EXTENT_END_WRITEBACK);
d8926bb3 1214 return -ENOMEM;
17ca04af 1215 }
82d5902d 1216
83eea1f1 1217 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1218
1219 if (nolock)
7a7eaa40 1220 trans = btrfs_join_transaction_nolock(root);
82d5902d 1221 else
7a7eaa40 1222 trans = btrfs_join_transaction(root);
ff5714cc 1223
79787eaa 1224 if (IS_ERR(trans)) {
17ca04af
JB
1225 extent_clear_unlock_delalloc(inode,
1226 &BTRFS_I(inode)->io_tree,
1227 start, end, locked_page,
1228 EXTENT_CLEAR_UNLOCK_PAGE |
1229 EXTENT_CLEAR_UNLOCK |
1230 EXTENT_CLEAR_DELALLOC |
1231 EXTENT_CLEAR_DIRTY |
1232 EXTENT_SET_WRITEBACK |
1233 EXTENT_END_WRITEBACK);
79787eaa
JM
1234 btrfs_free_path(path);
1235 return PTR_ERR(trans);
1236 }
1237
74b21075 1238 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1239
80ff3856
YZ
1240 cow_start = (u64)-1;
1241 cur_offset = start;
1242 while (1) {
33345d01 1243 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1244 cur_offset, 0);
79787eaa
JM
1245 if (ret < 0) {
1246 btrfs_abort_transaction(trans, root, ret);
1247 goto error;
1248 }
80ff3856
YZ
1249 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &found_key,
1252 path->slots[0] - 1);
33345d01 1253 if (found_key.objectid == ino &&
80ff3856
YZ
1254 found_key.type == BTRFS_EXTENT_DATA_KEY)
1255 path->slots[0]--;
1256 }
1257 check_prev = 0;
1258next_slot:
1259 leaf = path->nodes[0];
1260 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1261 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1262 if (ret < 0) {
1263 btrfs_abort_transaction(trans, root, ret);
1264 goto error;
1265 }
80ff3856
YZ
1266 if (ret > 0)
1267 break;
1268 leaf = path->nodes[0];
1269 }
be20aa9d 1270
80ff3856
YZ
1271 nocow = 0;
1272 disk_bytenr = 0;
17d217fe 1273 num_bytes = 0;
80ff3856
YZ
1274 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1275
33345d01 1276 if (found_key.objectid > ino ||
80ff3856
YZ
1277 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1278 found_key.offset > end)
1279 break;
1280
1281 if (found_key.offset > cur_offset) {
1282 extent_end = found_key.offset;
e9061e21 1283 extent_type = 0;
80ff3856
YZ
1284 goto out_check;
1285 }
1286
1287 fi = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_file_extent_item);
1289 extent_type = btrfs_file_extent_type(leaf, fi);
1290
cc95bef6 1291 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1292 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1293 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1294 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1295 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1296 extent_end = found_key.offset +
1297 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1298 disk_num_bytes =
1299 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1300 if (extent_end <= start) {
1301 path->slots[0]++;
1302 goto next_slot;
1303 }
17d217fe
YZ
1304 if (disk_bytenr == 0)
1305 goto out_check;
80ff3856
YZ
1306 if (btrfs_file_extent_compression(leaf, fi) ||
1307 btrfs_file_extent_encryption(leaf, fi) ||
1308 btrfs_file_extent_other_encoding(leaf, fi))
1309 goto out_check;
d899e052
YZ
1310 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1311 goto out_check;
d2fb3437 1312 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1313 goto out_check;
33345d01 1314 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1315 found_key.offset -
1316 extent_offset, disk_bytenr))
17d217fe 1317 goto out_check;
5d4f98a2 1318 disk_bytenr += extent_offset;
17d217fe
YZ
1319 disk_bytenr += cur_offset - found_key.offset;
1320 num_bytes = min(end + 1, extent_end) - cur_offset;
1321 /*
1322 * force cow if csum exists in the range.
1323 * this ensure that csum for a given extent are
1324 * either valid or do not exist.
1325 */
1326 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1327 goto out_check;
80ff3856
YZ
1328 nocow = 1;
1329 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1330 extent_end = found_key.offset +
1331 btrfs_file_extent_inline_len(leaf, fi);
1332 extent_end = ALIGN(extent_end, root->sectorsize);
1333 } else {
1334 BUG_ON(1);
1335 }
1336out_check:
1337 if (extent_end <= start) {
1338 path->slots[0]++;
1339 goto next_slot;
1340 }
1341 if (!nocow) {
1342 if (cow_start == (u64)-1)
1343 cow_start = cur_offset;
1344 cur_offset = extent_end;
1345 if (cur_offset > end)
1346 break;
1347 path->slots[0]++;
1348 goto next_slot;
7ea394f1
YZ
1349 }
1350
b3b4aa74 1351 btrfs_release_path(path);
80ff3856 1352 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1353 ret = __cow_file_range(trans, inode, root, locked_page,
1354 cow_start, found_key.offset - 1,
1355 page_started, nr_written, 1);
79787eaa
JM
1356 if (ret) {
1357 btrfs_abort_transaction(trans, root, ret);
1358 goto error;
1359 }
80ff3856 1360 cow_start = (u64)-1;
7ea394f1 1361 }
80ff3856 1362
d899e052
YZ
1363 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1364 struct extent_map *em;
1365 struct extent_map_tree *em_tree;
1366 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1367 em = alloc_extent_map();
79787eaa 1368 BUG_ON(!em); /* -ENOMEM */
d899e052 1369 em->start = cur_offset;
70c8a91c 1370 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1371 em->len = num_bytes;
1372 em->block_len = num_bytes;
1373 em->block_start = disk_bytenr;
b4939680 1374 em->orig_block_len = disk_num_bytes;
cc95bef6 1375 em->ram_bytes = ram_bytes;
d899e052 1376 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1377 em->mod_start = em->start;
1378 em->mod_len = em->len;
d899e052 1379 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1380 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1381 em->generation = -1;
d899e052 1382 while (1) {
890871be 1383 write_lock(&em_tree->lock);
09a2a8f9 1384 ret = add_extent_mapping(em_tree, em, 1);
890871be 1385 write_unlock(&em_tree->lock);
d899e052
YZ
1386 if (ret != -EEXIST) {
1387 free_extent_map(em);
1388 break;
1389 }
1390 btrfs_drop_extent_cache(inode, em->start,
1391 em->start + em->len - 1, 0);
1392 }
1393 type = BTRFS_ORDERED_PREALLOC;
1394 } else {
1395 type = BTRFS_ORDERED_NOCOW;
1396 }
80ff3856
YZ
1397
1398 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1399 num_bytes, num_bytes, type);
79787eaa 1400 BUG_ON(ret); /* -ENOMEM */
771ed689 1401
efa56464
YZ
1402 if (root->root_key.objectid ==
1403 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1404 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1405 num_bytes);
79787eaa
JM
1406 if (ret) {
1407 btrfs_abort_transaction(trans, root, ret);
1408 goto error;
1409 }
efa56464
YZ
1410 }
1411
d899e052 1412 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1413 cur_offset, cur_offset + num_bytes - 1,
1414 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1415 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1416 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1417 cur_offset = extent_end;
1418 if (cur_offset > end)
1419 break;
be20aa9d 1420 }
b3b4aa74 1421 btrfs_release_path(path);
80ff3856 1422
17ca04af 1423 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1424 cow_start = cur_offset;
17ca04af
JB
1425 cur_offset = end;
1426 }
1427
80ff3856 1428 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1429 ret = __cow_file_range(trans, inode, root, locked_page,
1430 cow_start, end,
1431 page_started, nr_written, 1);
79787eaa
JM
1432 if (ret) {
1433 btrfs_abort_transaction(trans, root, ret);
1434 goto error;
1435 }
80ff3856
YZ
1436 }
1437
79787eaa 1438error:
a698d075 1439 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1440 if (!ret)
1441 ret = err;
1442
17ca04af
JB
1443 if (ret && cur_offset < end)
1444 extent_clear_unlock_delalloc(inode,
1445 &BTRFS_I(inode)->io_tree,
1446 cur_offset, end, locked_page,
1447 EXTENT_CLEAR_UNLOCK_PAGE |
1448 EXTENT_CLEAR_UNLOCK |
1449 EXTENT_CLEAR_DELALLOC |
1450 EXTENT_CLEAR_DIRTY |
1451 EXTENT_SET_WRITEBACK |
1452 EXTENT_END_WRITEBACK);
1453
7ea394f1 1454 btrfs_free_path(path);
79787eaa 1455 return ret;
be20aa9d
CM
1456}
1457
d352ac68
CM
1458/*
1459 * extent_io.c call back to do delayed allocation processing
1460 */
c8b97818 1461static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1462 u64 start, u64 end, int *page_started,
1463 unsigned long *nr_written)
be20aa9d 1464{
be20aa9d 1465 int ret;
7f366cfe 1466 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1467
7ddf5a42 1468 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1469 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1470 page_started, 1, nr_written);
7ddf5a42 1471 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1472 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1473 page_started, 0, nr_written);
7ddf5a42
JB
1474 } else if (!btrfs_test_opt(root, COMPRESS) &&
1475 !(BTRFS_I(inode)->force_compress) &&
1476 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1477 ret = cow_file_range(inode, locked_page, start, end,
1478 page_started, nr_written, 1);
7ddf5a42
JB
1479 } else {
1480 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1481 &BTRFS_I(inode)->runtime_flags);
771ed689 1482 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1483 page_started, nr_written);
7ddf5a42 1484 }
b888db2b
CM
1485 return ret;
1486}
1487
1bf85046
JM
1488static void btrfs_split_extent_hook(struct inode *inode,
1489 struct extent_state *orig, u64 split)
9ed74f2d 1490{
0ca1f7ce 1491 /* not delalloc, ignore it */
9ed74f2d 1492 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1493 return;
9ed74f2d 1494
9e0baf60
JB
1495 spin_lock(&BTRFS_I(inode)->lock);
1496 BTRFS_I(inode)->outstanding_extents++;
1497 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1498}
1499
1500/*
1501 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1502 * extents so we can keep track of new extents that are just merged onto old
1503 * extents, such as when we are doing sequential writes, so we can properly
1504 * account for the metadata space we'll need.
1505 */
1bf85046
JM
1506static void btrfs_merge_extent_hook(struct inode *inode,
1507 struct extent_state *new,
1508 struct extent_state *other)
9ed74f2d 1509{
9ed74f2d
JB
1510 /* not delalloc, ignore it */
1511 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1512 return;
9ed74f2d 1513
9e0baf60
JB
1514 spin_lock(&BTRFS_I(inode)->lock);
1515 BTRFS_I(inode)->outstanding_extents--;
1516 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1517}
1518
d352ac68
CM
1519/*
1520 * extent_io.c set_bit_hook, used to track delayed allocation
1521 * bytes in this file, and to maintain the list of inodes that
1522 * have pending delalloc work to be done.
1523 */
1bf85046
JM
1524static void btrfs_set_bit_hook(struct inode *inode,
1525 struct extent_state *state, int *bits)
291d673e 1526{
9ed74f2d 1527
75eff68e
CM
1528 /*
1529 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1530 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1531 * bit, which is only set or cleared with irqs on
1532 */
0ca1f7ce 1533 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1534 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1535 u64 len = state->end + 1 - state->start;
83eea1f1 1536 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1537
9e0baf60 1538 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1539 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1540 } else {
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents++;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1544 }
287a0ab9 1545
963d678b
MX
1546 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1547 root->fs_info->delalloc_batch);
df0af1a5 1548 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1549 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5
MX
1550 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1551 &BTRFS_I(inode)->runtime_flags)) {
1552 spin_lock(&root->fs_info->delalloc_lock);
1553 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1554 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1555 &root->fs_info->delalloc_inodes);
1556 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1557 &BTRFS_I(inode)->runtime_flags);
1558 }
1559 spin_unlock(&root->fs_info->delalloc_lock);
ea8c2819 1560 }
df0af1a5 1561 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1562 }
291d673e
CM
1563}
1564
d352ac68
CM
1565/*
1566 * extent_io.c clear_bit_hook, see set_bit_hook for why
1567 */
1bf85046
JM
1568static void btrfs_clear_bit_hook(struct inode *inode,
1569 struct extent_state *state, int *bits)
291d673e 1570{
75eff68e
CM
1571 /*
1572 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1573 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1574 * bit, which is only set or cleared with irqs on
1575 */
0ca1f7ce 1576 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1577 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1578 u64 len = state->end + 1 - state->start;
83eea1f1 1579 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1580
9e0baf60 1581 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1582 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1583 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1584 spin_lock(&BTRFS_I(inode)->lock);
1585 BTRFS_I(inode)->outstanding_extents--;
1586 spin_unlock(&BTRFS_I(inode)->lock);
1587 }
0ca1f7ce
YZ
1588
1589 if (*bits & EXTENT_DO_ACCOUNTING)
1590 btrfs_delalloc_release_metadata(inode, len);
1591
0cb59c99
JB
1592 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1593 && do_list)
0ca1f7ce 1594 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1595
963d678b
MX
1596 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1597 root->fs_info->delalloc_batch);
df0af1a5 1598 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1599 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1600 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5
MX
1601 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1602 &BTRFS_I(inode)->runtime_flags)) {
1603 spin_lock(&root->fs_info->delalloc_lock);
1604 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1605 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1606 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1607 &BTRFS_I(inode)->runtime_flags);
1608 }
1609 spin_unlock(&root->fs_info->delalloc_lock);
ea8c2819 1610 }
df0af1a5 1611 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1612 }
291d673e
CM
1613}
1614
d352ac68
CM
1615/*
1616 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1617 * we don't create bios that span stripes or chunks
1618 */
64a16701 1619int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1620 size_t size, struct bio *bio,
1621 unsigned long bio_flags)
239b14b3
CM
1622{
1623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1624 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1625 u64 length = 0;
1626 u64 map_length;
239b14b3
CM
1627 int ret;
1628
771ed689
CM
1629 if (bio_flags & EXTENT_BIO_COMPRESSED)
1630 return 0;
1631
f2d8d74d 1632 length = bio->bi_size;
239b14b3 1633 map_length = length;
64a16701 1634 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1635 &map_length, NULL, 0);
3ec706c8 1636 /* Will always return 0 with map_multi == NULL */
3444a972 1637 BUG_ON(ret < 0);
d397712b 1638 if (map_length < length + size)
239b14b3 1639 return 1;
3444a972 1640 return 0;
239b14b3
CM
1641}
1642
d352ac68
CM
1643/*
1644 * in order to insert checksums into the metadata in large chunks,
1645 * we wait until bio submission time. All the pages in the bio are
1646 * checksummed and sums are attached onto the ordered extent record.
1647 *
1648 * At IO completion time the cums attached on the ordered extent record
1649 * are inserted into the btree
1650 */
d397712b
CM
1651static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1652 struct bio *bio, int mirror_num,
eaf25d93
CM
1653 unsigned long bio_flags,
1654 u64 bio_offset)
065631f6 1655{
065631f6 1656 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1657 int ret = 0;
e015640f 1658
d20f7043 1659 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1660 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1661 return 0;
1662}
e015640f 1663
4a69a410
CM
1664/*
1665 * in order to insert checksums into the metadata in large chunks,
1666 * we wait until bio submission time. All the pages in the bio are
1667 * checksummed and sums are attached onto the ordered extent record.
1668 *
1669 * At IO completion time the cums attached on the ordered extent record
1670 * are inserted into the btree
1671 */
b2950863 1672static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1673 int mirror_num, unsigned long bio_flags,
1674 u64 bio_offset)
4a69a410
CM
1675{
1676 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1677 int ret;
1678
1679 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1680 if (ret)
1681 bio_endio(bio, ret);
1682 return ret;
44b8bd7e
CM
1683}
1684
d352ac68 1685/*
cad321ad
CM
1686 * extent_io.c submission hook. This does the right thing for csum calculation
1687 * on write, or reading the csums from the tree before a read
d352ac68 1688 */
b2950863 1689static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1690 int mirror_num, unsigned long bio_flags,
1691 u64 bio_offset)
44b8bd7e
CM
1692{
1693 struct btrfs_root *root = BTRFS_I(inode)->root;
1694 int ret = 0;
19b9bdb0 1695 int skip_sum;
0417341e 1696 int metadata = 0;
b812ce28 1697 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1698
6cbff00f 1699 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1700
83eea1f1 1701 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1702 metadata = 2;
1703
7b6d91da 1704 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1705 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1706 if (ret)
61891923 1707 goto out;
5fd02043 1708
d20f7043 1709 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1710 ret = btrfs_submit_compressed_read(inode, bio,
1711 mirror_num,
1712 bio_flags);
1713 goto out;
c2db1073
TI
1714 } else if (!skip_sum) {
1715 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1716 if (ret)
61891923 1717 goto out;
c2db1073 1718 }
4d1b5fb4 1719 goto mapit;
b812ce28 1720 } else if (async && !skip_sum) {
17d217fe
YZ
1721 /* csum items have already been cloned */
1722 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1723 goto mapit;
19b9bdb0 1724 /* we're doing a write, do the async checksumming */
61891923 1725 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1726 inode, rw, bio, mirror_num,
eaf25d93
CM
1727 bio_flags, bio_offset,
1728 __btrfs_submit_bio_start,
4a69a410 1729 __btrfs_submit_bio_done);
61891923 1730 goto out;
b812ce28
JB
1731 } else if (!skip_sum) {
1732 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1733 if (ret)
1734 goto out;
19b9bdb0
CM
1735 }
1736
0b86a832 1737mapit:
61891923
SB
1738 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1739
1740out:
1741 if (ret < 0)
1742 bio_endio(bio, ret);
1743 return ret;
065631f6 1744}
6885f308 1745
d352ac68
CM
1746/*
1747 * given a list of ordered sums record them in the inode. This happens
1748 * at IO completion time based on sums calculated at bio submission time.
1749 */
ba1da2f4 1750static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1751 struct inode *inode, u64 file_offset,
1752 struct list_head *list)
1753{
e6dcd2dc
CM
1754 struct btrfs_ordered_sum *sum;
1755
c6e30871 1756 list_for_each_entry(sum, list, list) {
39847c4d 1757 trans->adding_csums = 1;
d20f7043
CM
1758 btrfs_csum_file_blocks(trans,
1759 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1760 trans->adding_csums = 0;
e6dcd2dc
CM
1761 }
1762 return 0;
1763}
1764
2ac55d41
JB
1765int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1766 struct extent_state **cached_state)
ea8c2819 1767{
6c1500f2 1768 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1769 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1770 cached_state, GFP_NOFS);
ea8c2819
CM
1771}
1772
d352ac68 1773/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1774struct btrfs_writepage_fixup {
1775 struct page *page;
1776 struct btrfs_work work;
1777};
1778
b2950863 1779static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1780{
1781 struct btrfs_writepage_fixup *fixup;
1782 struct btrfs_ordered_extent *ordered;
2ac55d41 1783 struct extent_state *cached_state = NULL;
247e743c
CM
1784 struct page *page;
1785 struct inode *inode;
1786 u64 page_start;
1787 u64 page_end;
87826df0 1788 int ret;
247e743c
CM
1789
1790 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1791 page = fixup->page;
4a096752 1792again:
247e743c
CM
1793 lock_page(page);
1794 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1795 ClearPageChecked(page);
1796 goto out_page;
1797 }
1798
1799 inode = page->mapping->host;
1800 page_start = page_offset(page);
1801 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1802
2ac55d41 1803 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1804 &cached_state);
4a096752
CM
1805
1806 /* already ordered? We're done */
8b62b72b 1807 if (PagePrivate2(page))
247e743c 1808 goto out;
4a096752
CM
1809
1810 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1811 if (ordered) {
2ac55d41
JB
1812 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1813 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1814 unlock_page(page);
1815 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1816 btrfs_put_ordered_extent(ordered);
4a096752
CM
1817 goto again;
1818 }
247e743c 1819
87826df0
JM
1820 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1821 if (ret) {
1822 mapping_set_error(page->mapping, ret);
1823 end_extent_writepage(page, ret, page_start, page_end);
1824 ClearPageChecked(page);
1825 goto out;
1826 }
1827
2ac55d41 1828 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1829 ClearPageChecked(page);
87826df0 1830 set_page_dirty(page);
247e743c 1831out:
2ac55d41
JB
1832 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1833 &cached_state, GFP_NOFS);
247e743c
CM
1834out_page:
1835 unlock_page(page);
1836 page_cache_release(page);
b897abec 1837 kfree(fixup);
247e743c
CM
1838}
1839
1840/*
1841 * There are a few paths in the higher layers of the kernel that directly
1842 * set the page dirty bit without asking the filesystem if it is a
1843 * good idea. This causes problems because we want to make sure COW
1844 * properly happens and the data=ordered rules are followed.
1845 *
c8b97818 1846 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1847 * hasn't been properly setup for IO. We kick off an async process
1848 * to fix it up. The async helper will wait for ordered extents, set
1849 * the delalloc bit and make it safe to write the page.
1850 */
b2950863 1851static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1852{
1853 struct inode *inode = page->mapping->host;
1854 struct btrfs_writepage_fixup *fixup;
1855 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1856
8b62b72b
CM
1857 /* this page is properly in the ordered list */
1858 if (TestClearPagePrivate2(page))
247e743c
CM
1859 return 0;
1860
1861 if (PageChecked(page))
1862 return -EAGAIN;
1863
1864 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1865 if (!fixup)
1866 return -EAGAIN;
f421950f 1867
247e743c
CM
1868 SetPageChecked(page);
1869 page_cache_get(page);
1870 fixup->work.func = btrfs_writepage_fixup_worker;
1871 fixup->page = page;
1872 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1873 return -EBUSY;
247e743c
CM
1874}
1875
d899e052
YZ
1876static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1877 struct inode *inode, u64 file_pos,
1878 u64 disk_bytenr, u64 disk_num_bytes,
1879 u64 num_bytes, u64 ram_bytes,
1880 u8 compression, u8 encryption,
1881 u16 other_encoding, int extent_type)
1882{
1883 struct btrfs_root *root = BTRFS_I(inode)->root;
1884 struct btrfs_file_extent_item *fi;
1885 struct btrfs_path *path;
1886 struct extent_buffer *leaf;
1887 struct btrfs_key ins;
d899e052
YZ
1888 int ret;
1889
1890 path = btrfs_alloc_path();
d8926bb3
MF
1891 if (!path)
1892 return -ENOMEM;
d899e052 1893
b9473439 1894 path->leave_spinning = 1;
a1ed835e
CM
1895
1896 /*
1897 * we may be replacing one extent in the tree with another.
1898 * The new extent is pinned in the extent map, and we don't want
1899 * to drop it from the cache until it is completely in the btree.
1900 *
1901 * So, tell btrfs_drop_extents to leave this extent in the cache.
1902 * the caller is expected to unpin it and allow it to be merged
1903 * with the others.
1904 */
5dc562c5 1905 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1906 file_pos + num_bytes, 0);
79787eaa
JM
1907 if (ret)
1908 goto out;
d899e052 1909
33345d01 1910 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1911 ins.offset = file_pos;
1912 ins.type = BTRFS_EXTENT_DATA_KEY;
1913 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1914 if (ret)
1915 goto out;
d899e052
YZ
1916 leaf = path->nodes[0];
1917 fi = btrfs_item_ptr(leaf, path->slots[0],
1918 struct btrfs_file_extent_item);
1919 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1920 btrfs_set_file_extent_type(leaf, fi, extent_type);
1921 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1922 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1923 btrfs_set_file_extent_offset(leaf, fi, 0);
1924 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1925 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1926 btrfs_set_file_extent_compression(leaf, fi, compression);
1927 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1928 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1929
d899e052 1930 btrfs_mark_buffer_dirty(leaf);
ce195332 1931 btrfs_release_path(path);
d899e052
YZ
1932
1933 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1934
1935 ins.objectid = disk_bytenr;
1936 ins.offset = disk_num_bytes;
1937 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1938 ret = btrfs_alloc_reserved_file_extent(trans, root,
1939 root->root_key.objectid,
33345d01 1940 btrfs_ino(inode), file_pos, &ins);
79787eaa 1941out:
d899e052 1942 btrfs_free_path(path);
b9473439 1943
79787eaa 1944 return ret;
d899e052
YZ
1945}
1946
38c227d8
LB
1947/* snapshot-aware defrag */
1948struct sa_defrag_extent_backref {
1949 struct rb_node node;
1950 struct old_sa_defrag_extent *old;
1951 u64 root_id;
1952 u64 inum;
1953 u64 file_pos;
1954 u64 extent_offset;
1955 u64 num_bytes;
1956 u64 generation;
1957};
1958
1959struct old_sa_defrag_extent {
1960 struct list_head list;
1961 struct new_sa_defrag_extent *new;
1962
1963 u64 extent_offset;
1964 u64 bytenr;
1965 u64 offset;
1966 u64 len;
1967 int count;
1968};
1969
1970struct new_sa_defrag_extent {
1971 struct rb_root root;
1972 struct list_head head;
1973 struct btrfs_path *path;
1974 struct inode *inode;
1975 u64 file_pos;
1976 u64 len;
1977 u64 bytenr;
1978 u64 disk_len;
1979 u8 compress_type;
1980};
1981
1982static int backref_comp(struct sa_defrag_extent_backref *b1,
1983 struct sa_defrag_extent_backref *b2)
1984{
1985 if (b1->root_id < b2->root_id)
1986 return -1;
1987 else if (b1->root_id > b2->root_id)
1988 return 1;
1989
1990 if (b1->inum < b2->inum)
1991 return -1;
1992 else if (b1->inum > b2->inum)
1993 return 1;
1994
1995 if (b1->file_pos < b2->file_pos)
1996 return -1;
1997 else if (b1->file_pos > b2->file_pos)
1998 return 1;
1999
2000 /*
2001 * [------------------------------] ===> (a range of space)
2002 * |<--->| |<---->| =============> (fs/file tree A)
2003 * |<---------------------------->| ===> (fs/file tree B)
2004 *
2005 * A range of space can refer to two file extents in one tree while
2006 * refer to only one file extent in another tree.
2007 *
2008 * So we may process a disk offset more than one time(two extents in A)
2009 * and locate at the same extent(one extent in B), then insert two same
2010 * backrefs(both refer to the extent in B).
2011 */
2012 return 0;
2013}
2014
2015static void backref_insert(struct rb_root *root,
2016 struct sa_defrag_extent_backref *backref)
2017{
2018 struct rb_node **p = &root->rb_node;
2019 struct rb_node *parent = NULL;
2020 struct sa_defrag_extent_backref *entry;
2021 int ret;
2022
2023 while (*p) {
2024 parent = *p;
2025 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2026
2027 ret = backref_comp(backref, entry);
2028 if (ret < 0)
2029 p = &(*p)->rb_left;
2030 else
2031 p = &(*p)->rb_right;
2032 }
2033
2034 rb_link_node(&backref->node, parent, p);
2035 rb_insert_color(&backref->node, root);
2036}
2037
2038/*
2039 * Note the backref might has changed, and in this case we just return 0.
2040 */
2041static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2042 void *ctx)
2043{
2044 struct btrfs_file_extent_item *extent;
2045 struct btrfs_fs_info *fs_info;
2046 struct old_sa_defrag_extent *old = ctx;
2047 struct new_sa_defrag_extent *new = old->new;
2048 struct btrfs_path *path = new->path;
2049 struct btrfs_key key;
2050 struct btrfs_root *root;
2051 struct sa_defrag_extent_backref *backref;
2052 struct extent_buffer *leaf;
2053 struct inode *inode = new->inode;
2054 int slot;
2055 int ret;
2056 u64 extent_offset;
2057 u64 num_bytes;
2058
2059 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2060 inum == btrfs_ino(inode))
2061 return 0;
2062
2063 key.objectid = root_id;
2064 key.type = BTRFS_ROOT_ITEM_KEY;
2065 key.offset = (u64)-1;
2066
2067 fs_info = BTRFS_I(inode)->root->fs_info;
2068 root = btrfs_read_fs_root_no_name(fs_info, &key);
2069 if (IS_ERR(root)) {
2070 if (PTR_ERR(root) == -ENOENT)
2071 return 0;
2072 WARN_ON(1);
2073 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2074 inum, offset, root_id);
2075 return PTR_ERR(root);
2076 }
2077
2078 key.objectid = inum;
2079 key.type = BTRFS_EXTENT_DATA_KEY;
2080 if (offset > (u64)-1 << 32)
2081 key.offset = 0;
2082 else
2083 key.offset = offset;
2084
2085 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2086 if (ret < 0) {
2087 WARN_ON(1);
2088 return ret;
2089 }
2090
2091 while (1) {
2092 cond_resched();
2093
2094 leaf = path->nodes[0];
2095 slot = path->slots[0];
2096
2097 if (slot >= btrfs_header_nritems(leaf)) {
2098 ret = btrfs_next_leaf(root, path);
2099 if (ret < 0) {
2100 goto out;
2101 } else if (ret > 0) {
2102 ret = 0;
2103 goto out;
2104 }
2105 continue;
2106 }
2107
2108 path->slots[0]++;
2109
2110 btrfs_item_key_to_cpu(leaf, &key, slot);
2111
2112 if (key.objectid > inum)
2113 goto out;
2114
2115 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2116 continue;
2117
2118 extent = btrfs_item_ptr(leaf, slot,
2119 struct btrfs_file_extent_item);
2120
2121 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2122 continue;
2123
2124 extent_offset = btrfs_file_extent_offset(leaf, extent);
2125 if (key.offset - extent_offset != offset)
2126 continue;
2127
2128 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2129 if (extent_offset >= old->extent_offset + old->offset +
2130 old->len || extent_offset + num_bytes <=
2131 old->extent_offset + old->offset)
2132 continue;
2133
2134 break;
2135 }
2136
2137 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2138 if (!backref) {
2139 ret = -ENOENT;
2140 goto out;
2141 }
2142
2143 backref->root_id = root_id;
2144 backref->inum = inum;
2145 backref->file_pos = offset + extent_offset;
2146 backref->num_bytes = num_bytes;
2147 backref->extent_offset = extent_offset;
2148 backref->generation = btrfs_file_extent_generation(leaf, extent);
2149 backref->old = old;
2150 backref_insert(&new->root, backref);
2151 old->count++;
2152out:
2153 btrfs_release_path(path);
2154 WARN_ON(ret);
2155 return ret;
2156}
2157
2158static noinline bool record_extent_backrefs(struct btrfs_path *path,
2159 struct new_sa_defrag_extent *new)
2160{
2161 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2162 struct old_sa_defrag_extent *old, *tmp;
2163 int ret;
2164
2165 new->path = path;
2166
2167 list_for_each_entry_safe(old, tmp, &new->head, list) {
2168 ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2169 path, record_one_backref,
2170 old);
2171 BUG_ON(ret < 0 && ret != -ENOENT);
2172
2173 /* no backref to be processed for this extent */
2174 if (!old->count) {
2175 list_del(&old->list);
2176 kfree(old);
2177 }
2178 }
2179
2180 if (list_empty(&new->head))
2181 return false;
2182
2183 return true;
2184}
2185
2186static int relink_is_mergable(struct extent_buffer *leaf,
2187 struct btrfs_file_extent_item *fi,
2188 u64 disk_bytenr)
2189{
2190 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2191 return 0;
2192
2193 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2194 return 0;
2195
2196 if (btrfs_file_extent_compression(leaf, fi) ||
2197 btrfs_file_extent_encryption(leaf, fi) ||
2198 btrfs_file_extent_other_encoding(leaf, fi))
2199 return 0;
2200
2201 return 1;
2202}
2203
2204/*
2205 * Note the backref might has changed, and in this case we just return 0.
2206 */
2207static noinline int relink_extent_backref(struct btrfs_path *path,
2208 struct sa_defrag_extent_backref *prev,
2209 struct sa_defrag_extent_backref *backref)
2210{
2211 struct btrfs_file_extent_item *extent;
2212 struct btrfs_file_extent_item *item;
2213 struct btrfs_ordered_extent *ordered;
2214 struct btrfs_trans_handle *trans;
2215 struct btrfs_fs_info *fs_info;
2216 struct btrfs_root *root;
2217 struct btrfs_key key;
2218 struct extent_buffer *leaf;
2219 struct old_sa_defrag_extent *old = backref->old;
2220 struct new_sa_defrag_extent *new = old->new;
2221 struct inode *src_inode = new->inode;
2222 struct inode *inode;
2223 struct extent_state *cached = NULL;
2224 int ret = 0;
2225 u64 start;
2226 u64 len;
2227 u64 lock_start;
2228 u64 lock_end;
2229 bool merge = false;
2230 int index;
2231
2232 if (prev && prev->root_id == backref->root_id &&
2233 prev->inum == backref->inum &&
2234 prev->file_pos + prev->num_bytes == backref->file_pos)
2235 merge = true;
2236
2237 /* step 1: get root */
2238 key.objectid = backref->root_id;
2239 key.type = BTRFS_ROOT_ITEM_KEY;
2240 key.offset = (u64)-1;
2241
2242 fs_info = BTRFS_I(src_inode)->root->fs_info;
2243 index = srcu_read_lock(&fs_info->subvol_srcu);
2244
2245 root = btrfs_read_fs_root_no_name(fs_info, &key);
2246 if (IS_ERR(root)) {
2247 srcu_read_unlock(&fs_info->subvol_srcu, index);
2248 if (PTR_ERR(root) == -ENOENT)
2249 return 0;
2250 return PTR_ERR(root);
2251 }
2252 if (btrfs_root_refs(&root->root_item) == 0) {
2253 srcu_read_unlock(&fs_info->subvol_srcu, index);
2254 /* parse ENOENT to 0 */
2255 return 0;
2256 }
2257
2258 /* step 2: get inode */
2259 key.objectid = backref->inum;
2260 key.type = BTRFS_INODE_ITEM_KEY;
2261 key.offset = 0;
2262
2263 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2264 if (IS_ERR(inode)) {
2265 srcu_read_unlock(&fs_info->subvol_srcu, index);
2266 return 0;
2267 }
2268
2269 srcu_read_unlock(&fs_info->subvol_srcu, index);
2270
2271 /* step 3: relink backref */
2272 lock_start = backref->file_pos;
2273 lock_end = backref->file_pos + backref->num_bytes - 1;
2274 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2275 0, &cached);
2276
2277 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2278 if (ordered) {
2279 btrfs_put_ordered_extent(ordered);
2280 goto out_unlock;
2281 }
2282
2283 trans = btrfs_join_transaction(root);
2284 if (IS_ERR(trans)) {
2285 ret = PTR_ERR(trans);
2286 goto out_unlock;
2287 }
2288
2289 key.objectid = backref->inum;
2290 key.type = BTRFS_EXTENT_DATA_KEY;
2291 key.offset = backref->file_pos;
2292
2293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2294 if (ret < 0) {
2295 goto out_free_path;
2296 } else if (ret > 0) {
2297 ret = 0;
2298 goto out_free_path;
2299 }
2300
2301 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2302 struct btrfs_file_extent_item);
2303
2304 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2305 backref->generation)
2306 goto out_free_path;
2307
2308 btrfs_release_path(path);
2309
2310 start = backref->file_pos;
2311 if (backref->extent_offset < old->extent_offset + old->offset)
2312 start += old->extent_offset + old->offset -
2313 backref->extent_offset;
2314
2315 len = min(backref->extent_offset + backref->num_bytes,
2316 old->extent_offset + old->offset + old->len);
2317 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2318
2319 ret = btrfs_drop_extents(trans, root, inode, start,
2320 start + len, 1);
2321 if (ret)
2322 goto out_free_path;
2323again:
2324 key.objectid = btrfs_ino(inode);
2325 key.type = BTRFS_EXTENT_DATA_KEY;
2326 key.offset = start;
2327
a09a0a70 2328 path->leave_spinning = 1;
38c227d8
LB
2329 if (merge) {
2330 struct btrfs_file_extent_item *fi;
2331 u64 extent_len;
2332 struct btrfs_key found_key;
2333
2334 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2335 if (ret < 0)
2336 goto out_free_path;
2337
2338 path->slots[0]--;
2339 leaf = path->nodes[0];
2340 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2341
2342 fi = btrfs_item_ptr(leaf, path->slots[0],
2343 struct btrfs_file_extent_item);
2344 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2345
2346 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2347 extent_len + found_key.offset == start) {
2348 btrfs_set_file_extent_num_bytes(leaf, fi,
2349 extent_len + len);
2350 btrfs_mark_buffer_dirty(leaf);
2351 inode_add_bytes(inode, len);
2352
2353 ret = 1;
2354 goto out_free_path;
2355 } else {
2356 merge = false;
2357 btrfs_release_path(path);
2358 goto again;
2359 }
2360 }
2361
2362 ret = btrfs_insert_empty_item(trans, root, path, &key,
2363 sizeof(*extent));
2364 if (ret) {
2365 btrfs_abort_transaction(trans, root, ret);
2366 goto out_free_path;
2367 }
2368
2369 leaf = path->nodes[0];
2370 item = btrfs_item_ptr(leaf, path->slots[0],
2371 struct btrfs_file_extent_item);
2372 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2373 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2374 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2375 btrfs_set_file_extent_num_bytes(leaf, item, len);
2376 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2377 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2378 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2379 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2380 btrfs_set_file_extent_encryption(leaf, item, 0);
2381 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2382
2383 btrfs_mark_buffer_dirty(leaf);
2384 inode_add_bytes(inode, len);
a09a0a70 2385 btrfs_release_path(path);
38c227d8
LB
2386
2387 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2388 new->disk_len, 0,
2389 backref->root_id, backref->inum,
2390 new->file_pos, 0); /* start - extent_offset */
2391 if (ret) {
2392 btrfs_abort_transaction(trans, root, ret);
2393 goto out_free_path;
2394 }
2395
2396 ret = 1;
2397out_free_path:
2398 btrfs_release_path(path);
a09a0a70 2399 path->leave_spinning = 0;
38c227d8
LB
2400 btrfs_end_transaction(trans, root);
2401out_unlock:
2402 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2403 &cached, GFP_NOFS);
2404 iput(inode);
2405 return ret;
2406}
2407
2408static void relink_file_extents(struct new_sa_defrag_extent *new)
2409{
2410 struct btrfs_path *path;
2411 struct old_sa_defrag_extent *old, *tmp;
2412 struct sa_defrag_extent_backref *backref;
2413 struct sa_defrag_extent_backref *prev = NULL;
2414 struct inode *inode;
2415 struct btrfs_root *root;
2416 struct rb_node *node;
2417 int ret;
2418
2419 inode = new->inode;
2420 root = BTRFS_I(inode)->root;
2421
2422 path = btrfs_alloc_path();
2423 if (!path)
2424 return;
2425
2426 if (!record_extent_backrefs(path, new)) {
2427 btrfs_free_path(path);
2428 goto out;
2429 }
2430 btrfs_release_path(path);
2431
2432 while (1) {
2433 node = rb_first(&new->root);
2434 if (!node)
2435 break;
2436 rb_erase(node, &new->root);
2437
2438 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2439
2440 ret = relink_extent_backref(path, prev, backref);
2441 WARN_ON(ret < 0);
2442
2443 kfree(prev);
2444
2445 if (ret == 1)
2446 prev = backref;
2447 else
2448 prev = NULL;
2449 cond_resched();
2450 }
2451 kfree(prev);
2452
2453 btrfs_free_path(path);
2454
2455 list_for_each_entry_safe(old, tmp, &new->head, list) {
2456 list_del(&old->list);
2457 kfree(old);
2458 }
2459out:
2460 atomic_dec(&root->fs_info->defrag_running);
2461 wake_up(&root->fs_info->transaction_wait);
2462
2463 kfree(new);
2464}
2465
2466static struct new_sa_defrag_extent *
2467record_old_file_extents(struct inode *inode,
2468 struct btrfs_ordered_extent *ordered)
2469{
2470 struct btrfs_root *root = BTRFS_I(inode)->root;
2471 struct btrfs_path *path;
2472 struct btrfs_key key;
2473 struct old_sa_defrag_extent *old, *tmp;
2474 struct new_sa_defrag_extent *new;
2475 int ret;
2476
2477 new = kmalloc(sizeof(*new), GFP_NOFS);
2478 if (!new)
2479 return NULL;
2480
2481 new->inode = inode;
2482 new->file_pos = ordered->file_offset;
2483 new->len = ordered->len;
2484 new->bytenr = ordered->start;
2485 new->disk_len = ordered->disk_len;
2486 new->compress_type = ordered->compress_type;
2487 new->root = RB_ROOT;
2488 INIT_LIST_HEAD(&new->head);
2489
2490 path = btrfs_alloc_path();
2491 if (!path)
2492 goto out_kfree;
2493
2494 key.objectid = btrfs_ino(inode);
2495 key.type = BTRFS_EXTENT_DATA_KEY;
2496 key.offset = new->file_pos;
2497
2498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2499 if (ret < 0)
2500 goto out_free_path;
2501 if (ret > 0 && path->slots[0] > 0)
2502 path->slots[0]--;
2503
2504 /* find out all the old extents for the file range */
2505 while (1) {
2506 struct btrfs_file_extent_item *extent;
2507 struct extent_buffer *l;
2508 int slot;
2509 u64 num_bytes;
2510 u64 offset;
2511 u64 end;
2512 u64 disk_bytenr;
2513 u64 extent_offset;
2514
2515 l = path->nodes[0];
2516 slot = path->slots[0];
2517
2518 if (slot >= btrfs_header_nritems(l)) {
2519 ret = btrfs_next_leaf(root, path);
2520 if (ret < 0)
2521 goto out_free_list;
2522 else if (ret > 0)
2523 break;
2524 continue;
2525 }
2526
2527 btrfs_item_key_to_cpu(l, &key, slot);
2528
2529 if (key.objectid != btrfs_ino(inode))
2530 break;
2531 if (key.type != BTRFS_EXTENT_DATA_KEY)
2532 break;
2533 if (key.offset >= new->file_pos + new->len)
2534 break;
2535
2536 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2537
2538 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2539 if (key.offset + num_bytes < new->file_pos)
2540 goto next;
2541
2542 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2543 if (!disk_bytenr)
2544 goto next;
2545
2546 extent_offset = btrfs_file_extent_offset(l, extent);
2547
2548 old = kmalloc(sizeof(*old), GFP_NOFS);
2549 if (!old)
2550 goto out_free_list;
2551
2552 offset = max(new->file_pos, key.offset);
2553 end = min(new->file_pos + new->len, key.offset + num_bytes);
2554
2555 old->bytenr = disk_bytenr;
2556 old->extent_offset = extent_offset;
2557 old->offset = offset - key.offset;
2558 old->len = end - offset;
2559 old->new = new;
2560 old->count = 0;
2561 list_add_tail(&old->list, &new->head);
2562next:
2563 path->slots[0]++;
2564 cond_resched();
2565 }
2566
2567 btrfs_free_path(path);
2568 atomic_inc(&root->fs_info->defrag_running);
2569
2570 return new;
2571
2572out_free_list:
2573 list_for_each_entry_safe(old, tmp, &new->head, list) {
2574 list_del(&old->list);
2575 kfree(old);
2576 }
2577out_free_path:
2578 btrfs_free_path(path);
2579out_kfree:
2580 kfree(new);
2581 return NULL;
2582}
2583
5d13a98f
CM
2584/*
2585 * helper function for btrfs_finish_ordered_io, this
2586 * just reads in some of the csum leaves to prime them into ram
2587 * before we start the transaction. It limits the amount of btree
2588 * reads required while inside the transaction.
2589 */
d352ac68
CM
2590/* as ordered data IO finishes, this gets called so we can finish
2591 * an ordered extent if the range of bytes in the file it covers are
2592 * fully written.
2593 */
5fd02043 2594static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2595{
5fd02043 2596 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2597 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2598 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2599 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2600 struct extent_state *cached_state = NULL;
38c227d8 2601 struct new_sa_defrag_extent *new = NULL;
261507a0 2602 int compress_type = 0;
e6dcd2dc 2603 int ret;
82d5902d 2604 bool nolock;
e6dcd2dc 2605
83eea1f1 2606 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2607
5fd02043
JB
2608 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2609 ret = -EIO;
2610 goto out;
2611 }
2612
c2167754 2613 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2614 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2615 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2616 if (nolock)
2617 trans = btrfs_join_transaction_nolock(root);
2618 else
2619 trans = btrfs_join_transaction(root);
2620 if (IS_ERR(trans)) {
2621 ret = PTR_ERR(trans);
2622 trans = NULL;
2623 goto out;
c2167754 2624 }
6c760c07
JB
2625 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2626 ret = btrfs_update_inode_fallback(trans, root, inode);
2627 if (ret) /* -ENOMEM or corruption */
2628 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2629 goto out;
2630 }
e6dcd2dc 2631
2ac55d41
JB
2632 lock_extent_bits(io_tree, ordered_extent->file_offset,
2633 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2634 0, &cached_state);
e6dcd2dc 2635
38c227d8
LB
2636 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2637 ordered_extent->file_offset + ordered_extent->len - 1,
2638 EXTENT_DEFRAG, 1, cached_state);
2639 if (ret) {
2640 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2641 if (last_snapshot >= BTRFS_I(inode)->generation)
2642 /* the inode is shared */
2643 new = record_old_file_extents(inode, ordered_extent);
2644
2645 clear_extent_bit(io_tree, ordered_extent->file_offset,
2646 ordered_extent->file_offset + ordered_extent->len - 1,
2647 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2648 }
2649
0cb59c99 2650 if (nolock)
7a7eaa40 2651 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2652 else
7a7eaa40 2653 trans = btrfs_join_transaction(root);
79787eaa
JM
2654 if (IS_ERR(trans)) {
2655 ret = PTR_ERR(trans);
2656 trans = NULL;
2657 goto out_unlock;
2658 }
0ca1f7ce 2659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2660
c8b97818 2661 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2662 compress_type = ordered_extent->compress_type;
d899e052 2663 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2664 BUG_ON(compress_type);
920bbbfb 2665 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2666 ordered_extent->file_offset,
2667 ordered_extent->file_offset +
2668 ordered_extent->len);
d899e052 2669 } else {
0af3d00b 2670 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2671 ret = insert_reserved_file_extent(trans, inode,
2672 ordered_extent->file_offset,
2673 ordered_extent->start,
2674 ordered_extent->disk_len,
2675 ordered_extent->len,
2676 ordered_extent->len,
261507a0 2677 compress_type, 0, 0,
d899e052 2678 BTRFS_FILE_EXTENT_REG);
d899e052 2679 }
5dc562c5
JB
2680 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2681 ordered_extent->file_offset, ordered_extent->len,
2682 trans->transid);
79787eaa
JM
2683 if (ret < 0) {
2684 btrfs_abort_transaction(trans, root, ret);
5fd02043 2685 goto out_unlock;
79787eaa 2686 }
2ac55d41 2687
e6dcd2dc
CM
2688 add_pending_csums(trans, inode, ordered_extent->file_offset,
2689 &ordered_extent->list);
2690
6c760c07
JB
2691 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2692 ret = btrfs_update_inode_fallback(trans, root, inode);
2693 if (ret) { /* -ENOMEM or corruption */
2694 btrfs_abort_transaction(trans, root, ret);
2695 goto out_unlock;
1ef30be1
JB
2696 }
2697 ret = 0;
5fd02043
JB
2698out_unlock:
2699 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2700 ordered_extent->file_offset +
2701 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2702out:
5b0e95bf 2703 if (root != root->fs_info->tree_root)
0cb59c99 2704 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2705 if (trans)
2706 btrfs_end_transaction(trans, root);
0cb59c99 2707
0bec9ef5 2708 if (ret) {
5fd02043
JB
2709 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2710 ordered_extent->file_offset +
2711 ordered_extent->len - 1, NULL, GFP_NOFS);
2712
0bec9ef5
JB
2713 /*
2714 * If the ordered extent had an IOERR or something else went
2715 * wrong we need to return the space for this ordered extent
2716 * back to the allocator.
2717 */
2718 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2719 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2720 btrfs_free_reserved_extent(root, ordered_extent->start,
2721 ordered_extent->disk_len);
2722 }
2723
2724
5fd02043 2725 /*
8bad3c02
LB
2726 * This needs to be done to make sure anybody waiting knows we are done
2727 * updating everything for this ordered extent.
5fd02043
JB
2728 */
2729 btrfs_remove_ordered_extent(inode, ordered_extent);
2730
38c227d8
LB
2731 /* for snapshot-aware defrag */
2732 if (new)
2733 relink_file_extents(new);
2734
e6dcd2dc
CM
2735 /* once for us */
2736 btrfs_put_ordered_extent(ordered_extent);
2737 /* once for the tree */
2738 btrfs_put_ordered_extent(ordered_extent);
2739
5fd02043
JB
2740 return ret;
2741}
2742
2743static void finish_ordered_fn(struct btrfs_work *work)
2744{
2745 struct btrfs_ordered_extent *ordered_extent;
2746 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2747 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2748}
2749
b2950863 2750static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2751 struct extent_state *state, int uptodate)
2752{
5fd02043
JB
2753 struct inode *inode = page->mapping->host;
2754 struct btrfs_root *root = BTRFS_I(inode)->root;
2755 struct btrfs_ordered_extent *ordered_extent = NULL;
2756 struct btrfs_workers *workers;
2757
1abe9b8a 2758 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2759
8b62b72b 2760 ClearPagePrivate2(page);
5fd02043
JB
2761 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2762 end - start + 1, uptodate))
2763 return 0;
2764
2765 ordered_extent->work.func = finish_ordered_fn;
2766 ordered_extent->work.flags = 0;
2767
83eea1f1 2768 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2769 workers = &root->fs_info->endio_freespace_worker;
2770 else
2771 workers = &root->fs_info->endio_write_workers;
2772 btrfs_queue_worker(workers, &ordered_extent->work);
2773
2774 return 0;
211f90e6
CM
2775}
2776
d352ac68
CM
2777/*
2778 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2779 * if there's a match, we allow the bio to finish. If not, the code in
2780 * extent_io.c will try to find good copies for us.
d352ac68 2781 */
b2950863 2782static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2783 struct extent_state *state, int mirror)
07157aac 2784{
4eee4fa4 2785 size_t offset = start - page_offset(page);
07157aac 2786 struct inode *inode = page->mapping->host;
d1310b2e 2787 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2788 char *kaddr;
aadfeb6e 2789 u64 private = ~(u32)0;
07157aac 2790 int ret;
ff79f819
CM
2791 struct btrfs_root *root = BTRFS_I(inode)->root;
2792 u32 csum = ~(u32)0;
c2cf52eb
SK
2793 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2794 DEFAULT_RATELIMIT_BURST);
d1310b2e 2795
d20f7043
CM
2796 if (PageChecked(page)) {
2797 ClearPageChecked(page);
2798 goto good;
2799 }
6cbff00f
CH
2800
2801 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2802 goto good;
17d217fe
YZ
2803
2804 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2805 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2806 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2807 GFP_NOFS);
b6cda9bc 2808 return 0;
17d217fe 2809 }
d20f7043 2810
c2e639f0 2811 if (state && state->start == start) {
70dec807
CM
2812 private = state->private;
2813 ret = 0;
2814 } else {
2815 ret = get_state_private(io_tree, start, &private);
2816 }
7ac687d9 2817 kaddr = kmap_atomic(page);
d397712b 2818 if (ret)
07157aac 2819 goto zeroit;
d397712b 2820
b0496686 2821 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2822 btrfs_csum_final(csum, (char *)&csum);
d397712b 2823 if (csum != private)
07157aac 2824 goto zeroit;
d397712b 2825
7ac687d9 2826 kunmap_atomic(kaddr);
d20f7043 2827good:
07157aac
CM
2828 return 0;
2829
2830zeroit:
c2cf52eb
SK
2831 if (__ratelimit(&_rs))
2832 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2833 (unsigned long long)btrfs_ino(page->mapping->host),
2834 (unsigned long long)start, csum,
2835 (unsigned long long)private);
db94535d
CM
2836 memset(kaddr + offset, 1, end - start + 1);
2837 flush_dcache_page(page);
7ac687d9 2838 kunmap_atomic(kaddr);
3b951516
CM
2839 if (private == 0)
2840 return 0;
7e38326f 2841 return -EIO;
07157aac 2842}
b888db2b 2843
24bbcf04
YZ
2844struct delayed_iput {
2845 struct list_head list;
2846 struct inode *inode;
2847};
2848
79787eaa
JM
2849/* JDM: If this is fs-wide, why can't we add a pointer to
2850 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2851void btrfs_add_delayed_iput(struct inode *inode)
2852{
2853 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2854 struct delayed_iput *delayed;
2855
2856 if (atomic_add_unless(&inode->i_count, -1, 1))
2857 return;
2858
2859 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2860 delayed->inode = inode;
2861
2862 spin_lock(&fs_info->delayed_iput_lock);
2863 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2864 spin_unlock(&fs_info->delayed_iput_lock);
2865}
2866
2867void btrfs_run_delayed_iputs(struct btrfs_root *root)
2868{
2869 LIST_HEAD(list);
2870 struct btrfs_fs_info *fs_info = root->fs_info;
2871 struct delayed_iput *delayed;
2872 int empty;
2873
2874 spin_lock(&fs_info->delayed_iput_lock);
2875 empty = list_empty(&fs_info->delayed_iputs);
2876 spin_unlock(&fs_info->delayed_iput_lock);
2877 if (empty)
2878 return;
2879
24bbcf04
YZ
2880 spin_lock(&fs_info->delayed_iput_lock);
2881 list_splice_init(&fs_info->delayed_iputs, &list);
2882 spin_unlock(&fs_info->delayed_iput_lock);
2883
2884 while (!list_empty(&list)) {
2885 delayed = list_entry(list.next, struct delayed_iput, list);
2886 list_del(&delayed->list);
2887 iput(delayed->inode);
2888 kfree(delayed);
2889 }
24bbcf04
YZ
2890}
2891
d68fc57b 2892/*
42b2aa86 2893 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2894 * files in the subvolume, it removes orphan item and frees block_rsv
2895 * structure.
2896 */
2897void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2898 struct btrfs_root *root)
2899{
90290e19 2900 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2901 int ret;
2902
8a35d95f 2903 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2904 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2905 return;
2906
90290e19 2907 spin_lock(&root->orphan_lock);
8a35d95f 2908 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2909 spin_unlock(&root->orphan_lock);
2910 return;
2911 }
2912
2913 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2914 spin_unlock(&root->orphan_lock);
2915 return;
2916 }
2917
2918 block_rsv = root->orphan_block_rsv;
2919 root->orphan_block_rsv = NULL;
2920 spin_unlock(&root->orphan_lock);
2921
d68fc57b
YZ
2922 if (root->orphan_item_inserted &&
2923 btrfs_root_refs(&root->root_item) > 0) {
2924 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2925 root->root_key.objectid);
2926 BUG_ON(ret);
2927 root->orphan_item_inserted = 0;
2928 }
2929
90290e19
JB
2930 if (block_rsv) {
2931 WARN_ON(block_rsv->size > 0);
2932 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2933 }
2934}
2935
7b128766
JB
2936/*
2937 * This creates an orphan entry for the given inode in case something goes
2938 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2939 *
2940 * NOTE: caller of this function should reserve 5 units of metadata for
2941 * this function.
7b128766
JB
2942 */
2943int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2944{
2945 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2946 struct btrfs_block_rsv *block_rsv = NULL;
2947 int reserve = 0;
2948 int insert = 0;
2949 int ret;
7b128766 2950
d68fc57b 2951 if (!root->orphan_block_rsv) {
66d8f3dd 2952 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2953 if (!block_rsv)
2954 return -ENOMEM;
d68fc57b 2955 }
7b128766 2956
d68fc57b
YZ
2957 spin_lock(&root->orphan_lock);
2958 if (!root->orphan_block_rsv) {
2959 root->orphan_block_rsv = block_rsv;
2960 } else if (block_rsv) {
2961 btrfs_free_block_rsv(root, block_rsv);
2962 block_rsv = NULL;
7b128766 2963 }
7b128766 2964
8a35d95f
JB
2965 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2966 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2967#if 0
2968 /*
2969 * For proper ENOSPC handling, we should do orphan
2970 * cleanup when mounting. But this introduces backward
2971 * compatibility issue.
2972 */
2973 if (!xchg(&root->orphan_item_inserted, 1))
2974 insert = 2;
2975 else
2976 insert = 1;
2977#endif
2978 insert = 1;
321f0e70 2979 atomic_inc(&root->orphan_inodes);
7b128766
JB
2980 }
2981
72ac3c0d
JB
2982 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2983 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2984 reserve = 1;
d68fc57b 2985 spin_unlock(&root->orphan_lock);
7b128766 2986
d68fc57b
YZ
2987 /* grab metadata reservation from transaction handle */
2988 if (reserve) {
2989 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2990 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2991 }
7b128766 2992
d68fc57b
YZ
2993 /* insert an orphan item to track this unlinked/truncated file */
2994 if (insert >= 1) {
33345d01 2995 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2996 if (ret && ret != -EEXIST) {
8a35d95f
JB
2997 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2998 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2999 btrfs_abort_transaction(trans, root, ret);
3000 return ret;
3001 }
3002 ret = 0;
d68fc57b
YZ
3003 }
3004
3005 /* insert an orphan item to track subvolume contains orphan files */
3006 if (insert >= 2) {
3007 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3008 root->root_key.objectid);
79787eaa
JM
3009 if (ret && ret != -EEXIST) {
3010 btrfs_abort_transaction(trans, root, ret);
3011 return ret;
3012 }
d68fc57b
YZ
3013 }
3014 return 0;
7b128766
JB
3015}
3016
3017/*
3018 * We have done the truncate/delete so we can go ahead and remove the orphan
3019 * item for this particular inode.
3020 */
3021int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
3022{
3023 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3024 int delete_item = 0;
3025 int release_rsv = 0;
7b128766
JB
3026 int ret = 0;
3027
d68fc57b 3028 spin_lock(&root->orphan_lock);
8a35d95f
JB
3029 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3030 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3031 delete_item = 1;
7b128766 3032
72ac3c0d
JB
3033 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3034 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3035 release_rsv = 1;
d68fc57b 3036 spin_unlock(&root->orphan_lock);
7b128766 3037
d68fc57b 3038 if (trans && delete_item) {
33345d01 3039 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3040 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 3041 }
7b128766 3042
8a35d95f 3043 if (release_rsv) {
d68fc57b 3044 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3045 atomic_dec(&root->orphan_inodes);
3046 }
7b128766 3047
d68fc57b 3048 return 0;
7b128766
JB
3049}
3050
3051/*
3052 * this cleans up any orphans that may be left on the list from the last use
3053 * of this root.
3054 */
66b4ffd1 3055int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3056{
3057 struct btrfs_path *path;
3058 struct extent_buffer *leaf;
7b128766
JB
3059 struct btrfs_key key, found_key;
3060 struct btrfs_trans_handle *trans;
3061 struct inode *inode;
8f6d7f4f 3062 u64 last_objectid = 0;
7b128766
JB
3063 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3064
d68fc57b 3065 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3066 return 0;
c71bf099
YZ
3067
3068 path = btrfs_alloc_path();
66b4ffd1
JB
3069 if (!path) {
3070 ret = -ENOMEM;
3071 goto out;
3072 }
7b128766
JB
3073 path->reada = -1;
3074
3075 key.objectid = BTRFS_ORPHAN_OBJECTID;
3076 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3077 key.offset = (u64)-1;
3078
7b128766
JB
3079 while (1) {
3080 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3081 if (ret < 0)
3082 goto out;
7b128766
JB
3083
3084 /*
3085 * if ret == 0 means we found what we were searching for, which
25985edc 3086 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3087 * find the key and see if we have stuff that matches
3088 */
3089 if (ret > 0) {
66b4ffd1 3090 ret = 0;
7b128766
JB
3091 if (path->slots[0] == 0)
3092 break;
3093 path->slots[0]--;
3094 }
3095
3096 /* pull out the item */
3097 leaf = path->nodes[0];
7b128766
JB
3098 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3099
3100 /* make sure the item matches what we want */
3101 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3102 break;
3103 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3104 break;
3105
3106 /* release the path since we're done with it */
b3b4aa74 3107 btrfs_release_path(path);
7b128766
JB
3108
3109 /*
3110 * this is where we are basically btrfs_lookup, without the
3111 * crossing root thing. we store the inode number in the
3112 * offset of the orphan item.
3113 */
8f6d7f4f
JB
3114
3115 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3116 btrfs_err(root->fs_info,
3117 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3118 ret = -EINVAL;
3119 goto out;
3120 }
3121
3122 last_objectid = found_key.offset;
3123
5d4f98a2
YZ
3124 found_key.objectid = found_key.offset;
3125 found_key.type = BTRFS_INODE_ITEM_KEY;
3126 found_key.offset = 0;
73f73415 3127 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3128 ret = PTR_RET(inode);
3129 if (ret && ret != -ESTALE)
66b4ffd1 3130 goto out;
7b128766 3131
f8e9e0b0
AJ
3132 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3133 struct btrfs_root *dead_root;
3134 struct btrfs_fs_info *fs_info = root->fs_info;
3135 int is_dead_root = 0;
3136
3137 /*
3138 * this is an orphan in the tree root. Currently these
3139 * could come from 2 sources:
3140 * a) a snapshot deletion in progress
3141 * b) a free space cache inode
3142 * We need to distinguish those two, as the snapshot
3143 * orphan must not get deleted.
3144 * find_dead_roots already ran before us, so if this
3145 * is a snapshot deletion, we should find the root
3146 * in the dead_roots list
3147 */
3148 spin_lock(&fs_info->trans_lock);
3149 list_for_each_entry(dead_root, &fs_info->dead_roots,
3150 root_list) {
3151 if (dead_root->root_key.objectid ==
3152 found_key.objectid) {
3153 is_dead_root = 1;
3154 break;
3155 }
3156 }
3157 spin_unlock(&fs_info->trans_lock);
3158 if (is_dead_root) {
3159 /* prevent this orphan from being found again */
3160 key.offset = found_key.objectid - 1;
3161 continue;
3162 }
3163 }
7b128766 3164 /*
a8c9e576
JB
3165 * Inode is already gone but the orphan item is still there,
3166 * kill the orphan item.
7b128766 3167 */
a8c9e576
JB
3168 if (ret == -ESTALE) {
3169 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3170 if (IS_ERR(trans)) {
3171 ret = PTR_ERR(trans);
3172 goto out;
3173 }
c2cf52eb
SK
3174 btrfs_debug(root->fs_info, "auto deleting %Lu",
3175 found_key.objectid);
a8c9e576
JB
3176 ret = btrfs_del_orphan_item(trans, root,
3177 found_key.objectid);
79787eaa 3178 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 3179 btrfs_end_transaction(trans, root);
7b128766
JB
3180 continue;
3181 }
3182
a8c9e576
JB
3183 /*
3184 * add this inode to the orphan list so btrfs_orphan_del does
3185 * the proper thing when we hit it
3186 */
8a35d95f
JB
3187 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3188 &BTRFS_I(inode)->runtime_flags);
925396ec 3189 atomic_inc(&root->orphan_inodes);
a8c9e576 3190
7b128766
JB
3191 /* if we have links, this was a truncate, lets do that */
3192 if (inode->i_nlink) {
a41ad394
JB
3193 if (!S_ISREG(inode->i_mode)) {
3194 WARN_ON(1);
3195 iput(inode);
3196 continue;
3197 }
7b128766 3198 nr_truncate++;
f3fe820c
JB
3199
3200 /* 1 for the orphan item deletion. */
3201 trans = btrfs_start_transaction(root, 1);
3202 if (IS_ERR(trans)) {
3203 ret = PTR_ERR(trans);
3204 goto out;
3205 }
3206 ret = btrfs_orphan_add(trans, inode);
3207 btrfs_end_transaction(trans, root);
3208 if (ret)
3209 goto out;
3210
66b4ffd1 3211 ret = btrfs_truncate(inode);
4a7d0f68
JB
3212 if (ret)
3213 btrfs_orphan_del(NULL, inode);
7b128766
JB
3214 } else {
3215 nr_unlink++;
3216 }
3217
3218 /* this will do delete_inode and everything for us */
3219 iput(inode);
66b4ffd1
JB
3220 if (ret)
3221 goto out;
7b128766 3222 }
3254c876
MX
3223 /* release the path since we're done with it */
3224 btrfs_release_path(path);
3225
d68fc57b
YZ
3226 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3227
3228 if (root->orphan_block_rsv)
3229 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3230 (u64)-1);
3231
3232 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3233 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3234 if (!IS_ERR(trans))
3235 btrfs_end_transaction(trans, root);
d68fc57b 3236 }
7b128766
JB
3237
3238 if (nr_unlink)
4884b476 3239 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3240 if (nr_truncate)
4884b476 3241 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3242
3243out:
3244 if (ret)
c2cf52eb
SK
3245 btrfs_crit(root->fs_info,
3246 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3247 btrfs_free_path(path);
3248 return ret;
7b128766
JB
3249}
3250
46a53cca
CM
3251/*
3252 * very simple check to peek ahead in the leaf looking for xattrs. If we
3253 * don't find any xattrs, we know there can't be any acls.
3254 *
3255 * slot is the slot the inode is in, objectid is the objectid of the inode
3256 */
3257static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3258 int slot, u64 objectid)
3259{
3260 u32 nritems = btrfs_header_nritems(leaf);
3261 struct btrfs_key found_key;
3262 int scanned = 0;
3263
3264 slot++;
3265 while (slot < nritems) {
3266 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3267
3268 /* we found a different objectid, there must not be acls */
3269 if (found_key.objectid != objectid)
3270 return 0;
3271
3272 /* we found an xattr, assume we've got an acl */
3273 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
3274 return 1;
3275
3276 /*
3277 * we found a key greater than an xattr key, there can't
3278 * be any acls later on
3279 */
3280 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3281 return 0;
3282
3283 slot++;
3284 scanned++;
3285
3286 /*
3287 * it goes inode, inode backrefs, xattrs, extents,
3288 * so if there are a ton of hard links to an inode there can
3289 * be a lot of backrefs. Don't waste time searching too hard,
3290 * this is just an optimization
3291 */
3292 if (scanned >= 8)
3293 break;
3294 }
3295 /* we hit the end of the leaf before we found an xattr or
3296 * something larger than an xattr. We have to assume the inode
3297 * has acls
3298 */
3299 return 1;
3300}
3301
d352ac68
CM
3302/*
3303 * read an inode from the btree into the in-memory inode
3304 */
5d4f98a2 3305static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3306{
3307 struct btrfs_path *path;
5f39d397 3308 struct extent_buffer *leaf;
39279cc3 3309 struct btrfs_inode_item *inode_item;
0b86a832 3310 struct btrfs_timespec *tspec;
39279cc3
CM
3311 struct btrfs_root *root = BTRFS_I(inode)->root;
3312 struct btrfs_key location;
46a53cca 3313 int maybe_acls;
618e21d5 3314 u32 rdev;
39279cc3 3315 int ret;
2f7e33d4
MX
3316 bool filled = false;
3317
3318 ret = btrfs_fill_inode(inode, &rdev);
3319 if (!ret)
3320 filled = true;
39279cc3
CM
3321
3322 path = btrfs_alloc_path();
1748f843
MF
3323 if (!path)
3324 goto make_bad;
3325
d90c7321 3326 path->leave_spinning = 1;
39279cc3 3327 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3328
39279cc3 3329 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3330 if (ret)
39279cc3 3331 goto make_bad;
39279cc3 3332
5f39d397 3333 leaf = path->nodes[0];
2f7e33d4
MX
3334
3335 if (filled)
3336 goto cache_acl;
3337
5f39d397
CM
3338 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3339 struct btrfs_inode_item);
5f39d397 3340 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3341 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3342 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3343 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3344 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3345
3346 tspec = btrfs_inode_atime(inode_item);
3347 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3348 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3349
3350 tspec = btrfs_inode_mtime(inode_item);
3351 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3352 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3353
3354 tspec = btrfs_inode_ctime(inode_item);
3355 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3356 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3357
a76a3cd4 3358 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3359 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3360 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3361
3362 /*
3363 * If we were modified in the current generation and evicted from memory
3364 * and then re-read we need to do a full sync since we don't have any
3365 * idea about which extents were modified before we were evicted from
3366 * cache.
3367 */
3368 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 &BTRFS_I(inode)->runtime_flags);
3371
0c4d2d95 3372 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3373 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3374 inode->i_rdev = 0;
5f39d397
CM
3375 rdev = btrfs_inode_rdev(leaf, inode_item);
3376
aec7477b 3377 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3378 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3379cache_acl:
46a53cca
CM
3380 /*
3381 * try to precache a NULL acl entry for files that don't have
3382 * any xattrs or acls
3383 */
33345d01
LZ
3384 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3385 btrfs_ino(inode));
72c04902
AV
3386 if (!maybe_acls)
3387 cache_no_acl(inode);
46a53cca 3388
39279cc3 3389 btrfs_free_path(path);
39279cc3 3390
39279cc3 3391 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3392 case S_IFREG:
3393 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3394 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3395 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3396 inode->i_fop = &btrfs_file_operations;
3397 inode->i_op = &btrfs_file_inode_operations;
3398 break;
3399 case S_IFDIR:
3400 inode->i_fop = &btrfs_dir_file_operations;
3401 if (root == root->fs_info->tree_root)
3402 inode->i_op = &btrfs_dir_ro_inode_operations;
3403 else
3404 inode->i_op = &btrfs_dir_inode_operations;
3405 break;
3406 case S_IFLNK:
3407 inode->i_op = &btrfs_symlink_inode_operations;
3408 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3409 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3410 break;
618e21d5 3411 default:
0279b4cd 3412 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3413 init_special_inode(inode, inode->i_mode, rdev);
3414 break;
39279cc3 3415 }
6cbff00f
CH
3416
3417 btrfs_update_iflags(inode);
39279cc3
CM
3418 return;
3419
3420make_bad:
39279cc3 3421 btrfs_free_path(path);
39279cc3
CM
3422 make_bad_inode(inode);
3423}
3424
d352ac68
CM
3425/*
3426 * given a leaf and an inode, copy the inode fields into the leaf
3427 */
e02119d5
CM
3428static void fill_inode_item(struct btrfs_trans_handle *trans,
3429 struct extent_buffer *leaf,
5f39d397 3430 struct btrfs_inode_item *item,
39279cc3
CM
3431 struct inode *inode)
3432{
51fab693
LB
3433 struct btrfs_map_token token;
3434
3435 btrfs_init_map_token(&token);
5f39d397 3436
51fab693
LB
3437 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3438 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3439 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3440 &token);
3441 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3442 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3443
51fab693
LB
3444 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3445 inode->i_atime.tv_sec, &token);
3446 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3447 inode->i_atime.tv_nsec, &token);
5f39d397 3448
51fab693
LB
3449 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3450 inode->i_mtime.tv_sec, &token);
3451 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3452 inode->i_mtime.tv_nsec, &token);
5f39d397 3453
51fab693
LB
3454 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3455 inode->i_ctime.tv_sec, &token);
3456 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3457 inode->i_ctime.tv_nsec, &token);
5f39d397 3458
51fab693
LB
3459 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3460 &token);
3461 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3462 &token);
3463 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3464 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3465 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3466 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3467 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3468}
3469
d352ac68
CM
3470/*
3471 * copy everything in the in-memory inode into the btree.
3472 */
2115133f 3473static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3474 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3475{
3476 struct btrfs_inode_item *inode_item;
3477 struct btrfs_path *path;
5f39d397 3478 struct extent_buffer *leaf;
39279cc3
CM
3479 int ret;
3480
3481 path = btrfs_alloc_path();
16cdcec7
MX
3482 if (!path)
3483 return -ENOMEM;
3484
b9473439 3485 path->leave_spinning = 1;
16cdcec7
MX
3486 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3487 1);
39279cc3
CM
3488 if (ret) {
3489 if (ret > 0)
3490 ret = -ENOENT;
3491 goto failed;
3492 }
3493
b4ce94de 3494 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3495 leaf = path->nodes[0];
3496 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3497 struct btrfs_inode_item);
39279cc3 3498
e02119d5 3499 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3500 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3501 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3502 ret = 0;
3503failed:
39279cc3
CM
3504 btrfs_free_path(path);
3505 return ret;
3506}
3507
2115133f
CM
3508/*
3509 * copy everything in the in-memory inode into the btree.
3510 */
3511noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root, struct inode *inode)
3513{
3514 int ret;
3515
3516 /*
3517 * If the inode is a free space inode, we can deadlock during commit
3518 * if we put it into the delayed code.
3519 *
3520 * The data relocation inode should also be directly updated
3521 * without delay
3522 */
83eea1f1 3523 if (!btrfs_is_free_space_inode(inode)
2115133f 3524 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3525 btrfs_update_root_times(trans, root);
3526
2115133f
CM
3527 ret = btrfs_delayed_update_inode(trans, root, inode);
3528 if (!ret)
3529 btrfs_set_inode_last_trans(trans, inode);
3530 return ret;
3531 }
3532
3533 return btrfs_update_inode_item(trans, root, inode);
3534}
3535
be6aef60
JB
3536noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode)
2115133f
CM
3539{
3540 int ret;
3541
3542 ret = btrfs_update_inode(trans, root, inode);
3543 if (ret == -ENOSPC)
3544 return btrfs_update_inode_item(trans, root, inode);
3545 return ret;
3546}
3547
d352ac68
CM
3548/*
3549 * unlink helper that gets used here in inode.c and in the tree logging
3550 * recovery code. It remove a link in a directory with a given name, and
3551 * also drops the back refs in the inode to the directory
3552 */
92986796
AV
3553static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root,
3555 struct inode *dir, struct inode *inode,
3556 const char *name, int name_len)
39279cc3
CM
3557{
3558 struct btrfs_path *path;
39279cc3 3559 int ret = 0;
5f39d397 3560 struct extent_buffer *leaf;
39279cc3 3561 struct btrfs_dir_item *di;
5f39d397 3562 struct btrfs_key key;
aec7477b 3563 u64 index;
33345d01
LZ
3564 u64 ino = btrfs_ino(inode);
3565 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3566
3567 path = btrfs_alloc_path();
54aa1f4d
CM
3568 if (!path) {
3569 ret = -ENOMEM;
554233a6 3570 goto out;
54aa1f4d
CM
3571 }
3572
b9473439 3573 path->leave_spinning = 1;
33345d01 3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3575 name, name_len, -1);
3576 if (IS_ERR(di)) {
3577 ret = PTR_ERR(di);
3578 goto err;
3579 }
3580 if (!di) {
3581 ret = -ENOENT;
3582 goto err;
3583 }
5f39d397
CM
3584 leaf = path->nodes[0];
3585 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3586 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3587 if (ret)
3588 goto err;
b3b4aa74 3589 btrfs_release_path(path);
39279cc3 3590
33345d01
LZ
3591 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3592 dir_ino, &index);
aec7477b 3593 if (ret) {
c2cf52eb
SK
3594 btrfs_info(root->fs_info,
3595 "failed to delete reference to %.*s, inode %llu parent %llu",
3596 name_len, name,
3597 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3598 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3599 goto err;
3600 }
3601
16cdcec7 3602 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3603 if (ret) {
3604 btrfs_abort_transaction(trans, root, ret);
39279cc3 3605 goto err;
79787eaa 3606 }
39279cc3 3607
e02119d5 3608 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3609 inode, dir_ino);
79787eaa
JM
3610 if (ret != 0 && ret != -ENOENT) {
3611 btrfs_abort_transaction(trans, root, ret);
3612 goto err;
3613 }
e02119d5
CM
3614
3615 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3616 dir, index);
6418c961
CM
3617 if (ret == -ENOENT)
3618 ret = 0;
d4e3991b
ZB
3619 else if (ret)
3620 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3621err:
3622 btrfs_free_path(path);
e02119d5
CM
3623 if (ret)
3624 goto out;
3625
3626 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3627 inode_inc_iversion(inode);
3628 inode_inc_iversion(dir);
e02119d5 3629 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3630 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3631out:
39279cc3
CM
3632 return ret;
3633}
3634
92986796
AV
3635int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3636 struct btrfs_root *root,
3637 struct inode *dir, struct inode *inode,
3638 const char *name, int name_len)
3639{
3640 int ret;
3641 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3642 if (!ret) {
3643 btrfs_drop_nlink(inode);
3644 ret = btrfs_update_inode(trans, root, inode);
3645 }
3646 return ret;
3647}
3648
3649
a22285a6
YZ
3650/* helper to check if there is any shared block in the path */
3651static int check_path_shared(struct btrfs_root *root,
3652 struct btrfs_path *path)
39279cc3 3653{
a22285a6
YZ
3654 struct extent_buffer *eb;
3655 int level;
0e4dcbef 3656 u64 refs = 1;
5df6a9f6 3657
a22285a6 3658 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
3659 int ret;
3660
a22285a6
YZ
3661 if (!path->nodes[level])
3662 break;
3663 eb = path->nodes[level];
3664 if (!btrfs_block_can_be_shared(root, eb))
3665 continue;
3173a18f 3666 ret = btrfs_lookup_extent_info(NULL, root, eb->start, level, 1,
a22285a6
YZ
3667 &refs, NULL);
3668 if (refs > 1)
3669 return 1;
5df6a9f6 3670 }
dedefd72 3671 return 0;
39279cc3
CM
3672}
3673
a22285a6
YZ
3674/*
3675 * helper to start transaction for unlink and rmdir.
3676 *
3677 * unlink and rmdir are special in btrfs, they do not always free space.
3678 * so in enospc case, we should make sure they will free space before
3679 * allowing them to use the global metadata reservation.
3680 */
3681static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3682 struct dentry *dentry)
4df27c4d 3683{
39279cc3 3684 struct btrfs_trans_handle *trans;
a22285a6 3685 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3686 struct btrfs_path *path;
4df27c4d 3687 struct btrfs_dir_item *di;
7b128766 3688 struct inode *inode = dentry->d_inode;
4df27c4d 3689 u64 index;
a22285a6
YZ
3690 int check_link = 1;
3691 int err = -ENOSPC;
4df27c4d 3692 int ret;
33345d01
LZ
3693 u64 ino = btrfs_ino(inode);
3694 u64 dir_ino = btrfs_ino(dir);
4df27c4d 3695
e70bea5f
JB
3696 /*
3697 * 1 for the possible orphan item
3698 * 1 for the dir item
3699 * 1 for the dir index
3700 * 1 for the inode ref
e70bea5f
JB
3701 * 1 for the inode
3702 */
6e137ed3 3703 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3704 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3705 return trans;
4df27c4d 3706
33345d01 3707 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 3708 return ERR_PTR(-ENOSPC);
4df27c4d 3709
a22285a6
YZ
3710 /* check if there is someone else holds reference */
3711 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3712 return ERR_PTR(-ENOSPC);
4df27c4d 3713
a22285a6
YZ
3714 if (atomic_read(&inode->i_count) > 2)
3715 return ERR_PTR(-ENOSPC);
4df27c4d 3716
a22285a6
YZ
3717 if (xchg(&root->fs_info->enospc_unlink, 1))
3718 return ERR_PTR(-ENOSPC);
3719
3720 path = btrfs_alloc_path();
3721 if (!path) {
3722 root->fs_info->enospc_unlink = 0;
3723 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
3724 }
3725
3880a1b4
JB
3726 /* 1 for the orphan item */
3727 trans = btrfs_start_transaction(root, 1);
5df6a9f6 3728 if (IS_ERR(trans)) {
a22285a6
YZ
3729 btrfs_free_path(path);
3730 root->fs_info->enospc_unlink = 0;
3731 return trans;
3732 }
4df27c4d 3733
a22285a6
YZ
3734 path->skip_locking = 1;
3735 path->search_commit_root = 1;
4df27c4d 3736
a22285a6
YZ
3737 ret = btrfs_lookup_inode(trans, root, path,
3738 &BTRFS_I(dir)->location, 0);
3739 if (ret < 0) {
3740 err = ret;
3741 goto out;
3742 }
3743 if (ret == 0) {
3744 if (check_path_shared(root, path))
3745 goto out;
3746 } else {
3747 check_link = 0;
5df6a9f6 3748 }
b3b4aa74 3749 btrfs_release_path(path);
a22285a6
YZ
3750
3751 ret = btrfs_lookup_inode(trans, root, path,
3752 &BTRFS_I(inode)->location, 0);
3753 if (ret < 0) {
3754 err = ret;
3755 goto out;
3756 }
3757 if (ret == 0) {
3758 if (check_path_shared(root, path))
3759 goto out;
3760 } else {
3761 check_link = 0;
3762 }
b3b4aa74 3763 btrfs_release_path(path);
a22285a6
YZ
3764
3765 if (ret == 0 && S_ISREG(inode->i_mode)) {
3766 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3767 ino, (u64)-1, 0);
a22285a6
YZ
3768 if (ret < 0) {
3769 err = ret;
3770 goto out;
3771 }
79787eaa 3772 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3773 if (check_path_shared(root, path))
3774 goto out;
b3b4aa74 3775 btrfs_release_path(path);
a22285a6
YZ
3776 }
3777
3778 if (!check_link) {
3779 err = 0;
3780 goto out;
3781 }
3782
33345d01 3783 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3784 dentry->d_name.name, dentry->d_name.len, 0);
3785 if (IS_ERR(di)) {
3786 err = PTR_ERR(di);
3787 goto out;
3788 }
3789 if (di) {
3790 if (check_path_shared(root, path))
3791 goto out;
3792 } else {
3793 err = 0;
3794 goto out;
3795 }
b3b4aa74 3796 btrfs_release_path(path);
a22285a6 3797
f186373f
MF
3798 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3799 dentry->d_name.len, ino, dir_ino, 0,
3800 &index);
3801 if (ret) {
3802 err = ret;
a22285a6
YZ
3803 goto out;
3804 }
f186373f 3805
a22285a6
YZ
3806 if (check_path_shared(root, path))
3807 goto out;
f186373f 3808
b3b4aa74 3809 btrfs_release_path(path);
a22285a6 3810
16cdcec7
MX
3811 /*
3812 * This is a commit root search, if we can lookup inode item and other
3813 * relative items in the commit root, it means the transaction of
3814 * dir/file creation has been committed, and the dir index item that we
3815 * delay to insert has also been inserted into the commit root. So
3816 * we needn't worry about the delayed insertion of the dir index item
3817 * here.
3818 */
33345d01 3819 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3820 dentry->d_name.name, dentry->d_name.len, 0);
3821 if (IS_ERR(di)) {
3822 err = PTR_ERR(di);
3823 goto out;
3824 }
3825 BUG_ON(ret == -ENOENT);
3826 if (check_path_shared(root, path))
3827 goto out;
3828
3829 err = 0;
3830out:
3831 btrfs_free_path(path);
3880a1b4
JB
3832 /* Migrate the orphan reservation over */
3833 if (!err)
3834 err = btrfs_block_rsv_migrate(trans->block_rsv,
3835 &root->fs_info->global_block_rsv,
5a77d76c 3836 trans->bytes_reserved);
3880a1b4 3837
a22285a6
YZ
3838 if (err) {
3839 btrfs_end_transaction(trans, root);
3840 root->fs_info->enospc_unlink = 0;
3841 return ERR_PTR(err);
3842 }
3843
3844 trans->block_rsv = &root->fs_info->global_block_rsv;
3845 return trans;
3846}
3847
3848static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root)
3850{
66d8f3dd 3851 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3852 btrfs_block_rsv_release(root, trans->block_rsv,
3853 trans->bytes_reserved);
3854 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3855 BUG_ON(!root->fs_info->enospc_unlink);
3856 root->fs_info->enospc_unlink = 0;
3857 }
7ad85bb7 3858 btrfs_end_transaction(trans, root);
a22285a6
YZ
3859}
3860
3861static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3862{
3863 struct btrfs_root *root = BTRFS_I(dir)->root;
3864 struct btrfs_trans_handle *trans;
3865 struct inode *inode = dentry->d_inode;
3866 int ret;
a22285a6
YZ
3867
3868 trans = __unlink_start_trans(dir, dentry);
3869 if (IS_ERR(trans))
3870 return PTR_ERR(trans);
5f39d397 3871
12fcfd22
CM
3872 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3873
e02119d5
CM
3874 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3875 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3876 if (ret)
3877 goto out;
7b128766 3878
a22285a6 3879 if (inode->i_nlink == 0) {
7b128766 3880 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3881 if (ret)
3882 goto out;
a22285a6 3883 }
7b128766 3884
b532402e 3885out:
a22285a6 3886 __unlink_end_trans(trans, root);
b53d3f5d 3887 btrfs_btree_balance_dirty(root);
39279cc3
CM
3888 return ret;
3889}
3890
4df27c4d
YZ
3891int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3892 struct btrfs_root *root,
3893 struct inode *dir, u64 objectid,
3894 const char *name, int name_len)
3895{
3896 struct btrfs_path *path;
3897 struct extent_buffer *leaf;
3898 struct btrfs_dir_item *di;
3899 struct btrfs_key key;
3900 u64 index;
3901 int ret;
33345d01 3902 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3903
3904 path = btrfs_alloc_path();
3905 if (!path)
3906 return -ENOMEM;
3907
33345d01 3908 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3909 name, name_len, -1);
79787eaa
JM
3910 if (IS_ERR_OR_NULL(di)) {
3911 if (!di)
3912 ret = -ENOENT;
3913 else
3914 ret = PTR_ERR(di);
3915 goto out;
3916 }
4df27c4d
YZ
3917
3918 leaf = path->nodes[0];
3919 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3920 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3921 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3922 if (ret) {
3923 btrfs_abort_transaction(trans, root, ret);
3924 goto out;
3925 }
b3b4aa74 3926 btrfs_release_path(path);
4df27c4d
YZ
3927
3928 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3929 objectid, root->root_key.objectid,
33345d01 3930 dir_ino, &index, name, name_len);
4df27c4d 3931 if (ret < 0) {
79787eaa
JM
3932 if (ret != -ENOENT) {
3933 btrfs_abort_transaction(trans, root, ret);
3934 goto out;
3935 }
33345d01 3936 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3937 name, name_len);
79787eaa
JM
3938 if (IS_ERR_OR_NULL(di)) {
3939 if (!di)
3940 ret = -ENOENT;
3941 else
3942 ret = PTR_ERR(di);
3943 btrfs_abort_transaction(trans, root, ret);
3944 goto out;
3945 }
4df27c4d
YZ
3946
3947 leaf = path->nodes[0];
3948 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3949 btrfs_release_path(path);
4df27c4d
YZ
3950 index = key.offset;
3951 }
945d8962 3952 btrfs_release_path(path);
4df27c4d 3953
16cdcec7 3954 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3955 if (ret) {
3956 btrfs_abort_transaction(trans, root, ret);
3957 goto out;
3958 }
4df27c4d
YZ
3959
3960 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3961 inode_inc_iversion(dir);
4df27c4d 3962 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3963 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3964 if (ret)
3965 btrfs_abort_transaction(trans, root, ret);
3966out:
71d7aed0 3967 btrfs_free_path(path);
79787eaa 3968 return ret;
4df27c4d
YZ
3969}
3970
39279cc3
CM
3971static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3972{
3973 struct inode *inode = dentry->d_inode;
1832a6d5 3974 int err = 0;
39279cc3 3975 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3976 struct btrfs_trans_handle *trans;
39279cc3 3977
b3ae244e 3978 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3979 return -ENOTEMPTY;
b3ae244e
DS
3980 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3981 return -EPERM;
134d4512 3982
a22285a6
YZ
3983 trans = __unlink_start_trans(dir, dentry);
3984 if (IS_ERR(trans))
5df6a9f6 3985 return PTR_ERR(trans);
5df6a9f6 3986
33345d01 3987 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3988 err = btrfs_unlink_subvol(trans, root, dir,
3989 BTRFS_I(inode)->location.objectid,
3990 dentry->d_name.name,
3991 dentry->d_name.len);
3992 goto out;
3993 }
3994
7b128766
JB
3995 err = btrfs_orphan_add(trans, inode);
3996 if (err)
4df27c4d 3997 goto out;
7b128766 3998
39279cc3 3999 /* now the directory is empty */
e02119d5
CM
4000 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4001 dentry->d_name.name, dentry->d_name.len);
d397712b 4002 if (!err)
dbe674a9 4003 btrfs_i_size_write(inode, 0);
4df27c4d 4004out:
a22285a6 4005 __unlink_end_trans(trans, root);
b53d3f5d 4006 btrfs_btree_balance_dirty(root);
3954401f 4007
39279cc3
CM
4008 return err;
4009}
4010
39279cc3
CM
4011/*
4012 * this can truncate away extent items, csum items and directory items.
4013 * It starts at a high offset and removes keys until it can't find
d352ac68 4014 * any higher than new_size
39279cc3
CM
4015 *
4016 * csum items that cross the new i_size are truncated to the new size
4017 * as well.
7b128766
JB
4018 *
4019 * min_type is the minimum key type to truncate down to. If set to 0, this
4020 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4021 */
8082510e
YZ
4022int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4023 struct btrfs_root *root,
4024 struct inode *inode,
4025 u64 new_size, u32 min_type)
39279cc3 4026{
39279cc3 4027 struct btrfs_path *path;
5f39d397 4028 struct extent_buffer *leaf;
39279cc3 4029 struct btrfs_file_extent_item *fi;
8082510e
YZ
4030 struct btrfs_key key;
4031 struct btrfs_key found_key;
39279cc3 4032 u64 extent_start = 0;
db94535d 4033 u64 extent_num_bytes = 0;
5d4f98a2 4034 u64 extent_offset = 0;
39279cc3 4035 u64 item_end = 0;
8082510e 4036 u32 found_type = (u8)-1;
39279cc3
CM
4037 int found_extent;
4038 int del_item;
85e21bac
CM
4039 int pending_del_nr = 0;
4040 int pending_del_slot = 0;
179e29e4 4041 int extent_type = -1;
8082510e
YZ
4042 int ret;
4043 int err = 0;
33345d01 4044 u64 ino = btrfs_ino(inode);
8082510e
YZ
4045
4046 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4047
0eb0e19c
MF
4048 path = btrfs_alloc_path();
4049 if (!path)
4050 return -ENOMEM;
4051 path->reada = -1;
4052
5dc562c5
JB
4053 /*
4054 * We want to drop from the next block forward in case this new size is
4055 * not block aligned since we will be keeping the last block of the
4056 * extent just the way it is.
4057 */
0af3d00b 4058 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
4059 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4060 root->sectorsize), (u64)-1, 0);
8082510e 4061
16cdcec7
MX
4062 /*
4063 * This function is also used to drop the items in the log tree before
4064 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4065 * it is used to drop the loged items. So we shouldn't kill the delayed
4066 * items.
4067 */
4068 if (min_type == 0 && root == BTRFS_I(inode)->root)
4069 btrfs_kill_delayed_inode_items(inode);
4070
33345d01 4071 key.objectid = ino;
39279cc3 4072 key.offset = (u64)-1;
5f39d397
CM
4073 key.type = (u8)-1;
4074
85e21bac 4075search_again:
b9473439 4076 path->leave_spinning = 1;
85e21bac 4077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4078 if (ret < 0) {
4079 err = ret;
4080 goto out;
4081 }
d397712b 4082
85e21bac 4083 if (ret > 0) {
e02119d5
CM
4084 /* there are no items in the tree for us to truncate, we're
4085 * done
4086 */
8082510e
YZ
4087 if (path->slots[0] == 0)
4088 goto out;
85e21bac
CM
4089 path->slots[0]--;
4090 }
4091
d397712b 4092 while (1) {
39279cc3 4093 fi = NULL;
5f39d397
CM
4094 leaf = path->nodes[0];
4095 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4096 found_type = btrfs_key_type(&found_key);
39279cc3 4097
33345d01 4098 if (found_key.objectid != ino)
39279cc3 4099 break;
5f39d397 4100
85e21bac 4101 if (found_type < min_type)
39279cc3
CM
4102 break;
4103
5f39d397 4104 item_end = found_key.offset;
39279cc3 4105 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4106 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4107 struct btrfs_file_extent_item);
179e29e4
CM
4108 extent_type = btrfs_file_extent_type(leaf, fi);
4109 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4110 item_end +=
db94535d 4111 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4112 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4113 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 4114 fi);
39279cc3 4115 }
008630c1 4116 item_end--;
39279cc3 4117 }
8082510e
YZ
4118 if (found_type > min_type) {
4119 del_item = 1;
4120 } else {
4121 if (item_end < new_size)
b888db2b 4122 break;
8082510e
YZ
4123 if (found_key.offset >= new_size)
4124 del_item = 1;
4125 else
4126 del_item = 0;
39279cc3 4127 }
39279cc3 4128 found_extent = 0;
39279cc3 4129 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4130 if (found_type != BTRFS_EXTENT_DATA_KEY)
4131 goto delete;
4132
4133 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4134 u64 num_dec;
db94535d 4135 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4136 if (!del_item) {
db94535d
CM
4137 u64 orig_num_bytes =
4138 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4139 extent_num_bytes = ALIGN(new_size -
4140 found_key.offset,
4141 root->sectorsize);
db94535d
CM
4142 btrfs_set_file_extent_num_bytes(leaf, fi,
4143 extent_num_bytes);
4144 num_dec = (orig_num_bytes -
9069218d 4145 extent_num_bytes);
e02119d5 4146 if (root->ref_cows && extent_start != 0)
a76a3cd4 4147 inode_sub_bytes(inode, num_dec);
5f39d397 4148 btrfs_mark_buffer_dirty(leaf);
39279cc3 4149 } else {
db94535d
CM
4150 extent_num_bytes =
4151 btrfs_file_extent_disk_num_bytes(leaf,
4152 fi);
5d4f98a2
YZ
4153 extent_offset = found_key.offset -
4154 btrfs_file_extent_offset(leaf, fi);
4155
39279cc3 4156 /* FIXME blocksize != 4096 */
9069218d 4157 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4158 if (extent_start != 0) {
4159 found_extent = 1;
e02119d5 4160 if (root->ref_cows)
a76a3cd4 4161 inode_sub_bytes(inode, num_dec);
e02119d5 4162 }
39279cc3 4163 }
9069218d 4164 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4165 /*
4166 * we can't truncate inline items that have had
4167 * special encodings
4168 */
4169 if (!del_item &&
4170 btrfs_file_extent_compression(leaf, fi) == 0 &&
4171 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4172 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4173 u32 size = new_size - found_key.offset;
4174
4175 if (root->ref_cows) {
a76a3cd4
YZ
4176 inode_sub_bytes(inode, item_end + 1 -
4177 new_size);
e02119d5
CM
4178 }
4179 size =
4180 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
4181 btrfs_truncate_item(trans, root, path,
4182 size, 1);
e02119d5 4183 } else if (root->ref_cows) {
a76a3cd4
YZ
4184 inode_sub_bytes(inode, item_end + 1 -
4185 found_key.offset);
9069218d 4186 }
39279cc3 4187 }
179e29e4 4188delete:
39279cc3 4189 if (del_item) {
85e21bac
CM
4190 if (!pending_del_nr) {
4191 /* no pending yet, add ourselves */
4192 pending_del_slot = path->slots[0];
4193 pending_del_nr = 1;
4194 } else if (pending_del_nr &&
4195 path->slots[0] + 1 == pending_del_slot) {
4196 /* hop on the pending chunk */
4197 pending_del_nr++;
4198 pending_del_slot = path->slots[0];
4199 } else {
d397712b 4200 BUG();
85e21bac 4201 }
39279cc3
CM
4202 } else {
4203 break;
4204 }
0af3d00b
JB
4205 if (found_extent && (root->ref_cows ||
4206 root == root->fs_info->tree_root)) {
b9473439 4207 btrfs_set_path_blocking(path);
39279cc3 4208 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4209 extent_num_bytes, 0,
4210 btrfs_header_owner(leaf),
66d7e7f0 4211 ino, extent_offset, 0);
39279cc3
CM
4212 BUG_ON(ret);
4213 }
85e21bac 4214
8082510e
YZ
4215 if (found_type == BTRFS_INODE_ITEM_KEY)
4216 break;
4217
4218 if (path->slots[0] == 0 ||
4219 path->slots[0] != pending_del_slot) {
8082510e
YZ
4220 if (pending_del_nr) {
4221 ret = btrfs_del_items(trans, root, path,
4222 pending_del_slot,
4223 pending_del_nr);
79787eaa
JM
4224 if (ret) {
4225 btrfs_abort_transaction(trans,
4226 root, ret);
4227 goto error;
4228 }
8082510e
YZ
4229 pending_del_nr = 0;
4230 }
b3b4aa74 4231 btrfs_release_path(path);
85e21bac 4232 goto search_again;
8082510e
YZ
4233 } else {
4234 path->slots[0]--;
85e21bac 4235 }
39279cc3 4236 }
8082510e 4237out:
85e21bac
CM
4238 if (pending_del_nr) {
4239 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4240 pending_del_nr);
79787eaa
JM
4241 if (ret)
4242 btrfs_abort_transaction(trans, root, ret);
85e21bac 4243 }
79787eaa 4244error:
39279cc3 4245 btrfs_free_path(path);
8082510e 4246 return err;
39279cc3
CM
4247}
4248
4249/*
2aaa6655
JB
4250 * btrfs_truncate_page - read, zero a chunk and write a page
4251 * @inode - inode that we're zeroing
4252 * @from - the offset to start zeroing
4253 * @len - the length to zero, 0 to zero the entire range respective to the
4254 * offset
4255 * @front - zero up to the offset instead of from the offset on
4256 *
4257 * This will find the page for the "from" offset and cow the page and zero the
4258 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4259 */
2aaa6655
JB
4260int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4261 int front)
39279cc3 4262{
2aaa6655 4263 struct address_space *mapping = inode->i_mapping;
db94535d 4264 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4265 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4266 struct btrfs_ordered_extent *ordered;
2ac55d41 4267 struct extent_state *cached_state = NULL;
e6dcd2dc 4268 char *kaddr;
db94535d 4269 u32 blocksize = root->sectorsize;
39279cc3
CM
4270 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4271 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4272 struct page *page;
3b16a4e3 4273 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4274 int ret = 0;
a52d9a80 4275 u64 page_start;
e6dcd2dc 4276 u64 page_end;
39279cc3 4277
2aaa6655
JB
4278 if ((offset & (blocksize - 1)) == 0 &&
4279 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4280 goto out;
0ca1f7ce 4281 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4282 if (ret)
4283 goto out;
39279cc3 4284
211c17f5 4285again:
3b16a4e3 4286 page = find_or_create_page(mapping, index, mask);
5d5e103a 4287 if (!page) {
0ca1f7ce 4288 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4289 ret = -ENOMEM;
39279cc3 4290 goto out;
5d5e103a 4291 }
e6dcd2dc
CM
4292
4293 page_start = page_offset(page);
4294 page_end = page_start + PAGE_CACHE_SIZE - 1;
4295
39279cc3 4296 if (!PageUptodate(page)) {
9ebefb18 4297 ret = btrfs_readpage(NULL, page);
39279cc3 4298 lock_page(page);
211c17f5
CM
4299 if (page->mapping != mapping) {
4300 unlock_page(page);
4301 page_cache_release(page);
4302 goto again;
4303 }
39279cc3
CM
4304 if (!PageUptodate(page)) {
4305 ret = -EIO;
89642229 4306 goto out_unlock;
39279cc3
CM
4307 }
4308 }
211c17f5 4309 wait_on_page_writeback(page);
e6dcd2dc 4310
d0082371 4311 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4312 set_page_extent_mapped(page);
4313
4314 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4315 if (ordered) {
2ac55d41
JB
4316 unlock_extent_cached(io_tree, page_start, page_end,
4317 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4318 unlock_page(page);
4319 page_cache_release(page);
eb84ae03 4320 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4321 btrfs_put_ordered_extent(ordered);
4322 goto again;
4323 }
4324
2ac55d41 4325 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4326 EXTENT_DIRTY | EXTENT_DELALLOC |
4327 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4328 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4329
2ac55d41
JB
4330 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4331 &cached_state);
9ed74f2d 4332 if (ret) {
2ac55d41
JB
4333 unlock_extent_cached(io_tree, page_start, page_end,
4334 &cached_state, GFP_NOFS);
9ed74f2d
JB
4335 goto out_unlock;
4336 }
4337
e6dcd2dc 4338 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4339 if (!len)
4340 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4341 kaddr = kmap(page);
2aaa6655
JB
4342 if (front)
4343 memset(kaddr, 0, offset);
4344 else
4345 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4346 flush_dcache_page(page);
4347 kunmap(page);
4348 }
247e743c 4349 ClearPageChecked(page);
e6dcd2dc 4350 set_page_dirty(page);
2ac55d41
JB
4351 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4352 GFP_NOFS);
39279cc3 4353
89642229 4354out_unlock:
5d5e103a 4355 if (ret)
0ca1f7ce 4356 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4357 unlock_page(page);
4358 page_cache_release(page);
4359out:
4360 return ret;
4361}
4362
695a0d0d
JB
4363/*
4364 * This function puts in dummy file extents for the area we're creating a hole
4365 * for. So if we are truncating this file to a larger size we need to insert
4366 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4367 * the range between oldsize and size
4368 */
a41ad394 4369int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4370{
9036c102
YZ
4371 struct btrfs_trans_handle *trans;
4372 struct btrfs_root *root = BTRFS_I(inode)->root;
4373 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4374 struct extent_map *em = NULL;
2ac55d41 4375 struct extent_state *cached_state = NULL;
5dc562c5 4376 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4377 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4378 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4379 u64 last_byte;
4380 u64 cur_offset;
4381 u64 hole_size;
9ed74f2d 4382 int err = 0;
39279cc3 4383
9036c102
YZ
4384 if (size <= hole_start)
4385 return 0;
4386
9036c102
YZ
4387 while (1) {
4388 struct btrfs_ordered_extent *ordered;
4389 btrfs_wait_ordered_range(inode, hole_start,
4390 block_end - hole_start);
2ac55d41 4391 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4392 &cached_state);
9036c102
YZ
4393 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4394 if (!ordered)
4395 break;
2ac55d41
JB
4396 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4397 &cached_state, GFP_NOFS);
9036c102
YZ
4398 btrfs_put_ordered_extent(ordered);
4399 }
39279cc3 4400
9036c102
YZ
4401 cur_offset = hole_start;
4402 while (1) {
4403 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4404 block_end - cur_offset, 0);
79787eaa
JM
4405 if (IS_ERR(em)) {
4406 err = PTR_ERR(em);
f2767956 4407 em = NULL;
79787eaa
JM
4408 break;
4409 }
9036c102 4410 last_byte = min(extent_map_end(em), block_end);
fda2832f 4411 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4412 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4413 struct extent_map *hole_em;
9036c102 4414 hole_size = last_byte - cur_offset;
9ed74f2d 4415
3642320e 4416 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4417 if (IS_ERR(trans)) {
4418 err = PTR_ERR(trans);
9ed74f2d 4419 break;
a22285a6 4420 }
8082510e 4421
5dc562c5
JB
4422 err = btrfs_drop_extents(trans, root, inode,
4423 cur_offset,
2671485d 4424 cur_offset + hole_size, 1);
5b397377 4425 if (err) {
79787eaa 4426 btrfs_abort_transaction(trans, root, err);
5b397377 4427 btrfs_end_transaction(trans, root);
3893e33b 4428 break;
5b397377 4429 }
8082510e 4430
9036c102 4431 err = btrfs_insert_file_extent(trans, root,
33345d01 4432 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4433 0, hole_size, 0, hole_size,
4434 0, 0, 0);
5b397377 4435 if (err) {
79787eaa 4436 btrfs_abort_transaction(trans, root, err);
5b397377 4437 btrfs_end_transaction(trans, root);
3893e33b 4438 break;
5b397377 4439 }
8082510e 4440
5dc562c5
JB
4441 btrfs_drop_extent_cache(inode, cur_offset,
4442 cur_offset + hole_size - 1, 0);
4443 hole_em = alloc_extent_map();
4444 if (!hole_em) {
4445 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4446 &BTRFS_I(inode)->runtime_flags);
4447 goto next;
4448 }
4449 hole_em->start = cur_offset;
4450 hole_em->len = hole_size;
4451 hole_em->orig_start = cur_offset;
8082510e 4452
5dc562c5
JB
4453 hole_em->block_start = EXTENT_MAP_HOLE;
4454 hole_em->block_len = 0;
b4939680 4455 hole_em->orig_block_len = 0;
cc95bef6 4456 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4457 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4458 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4459 hole_em->generation = trans->transid;
8082510e 4460
5dc562c5
JB
4461 while (1) {
4462 write_lock(&em_tree->lock);
09a2a8f9 4463 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4464 write_unlock(&em_tree->lock);
4465 if (err != -EEXIST)
4466 break;
4467 btrfs_drop_extent_cache(inode, cur_offset,
4468 cur_offset +
4469 hole_size - 1, 0);
4470 }
4471 free_extent_map(hole_em);
4472next:
3642320e 4473 btrfs_update_inode(trans, root, inode);
8082510e 4474 btrfs_end_transaction(trans, root);
9036c102
YZ
4475 }
4476 free_extent_map(em);
a22285a6 4477 em = NULL;
9036c102 4478 cur_offset = last_byte;
8082510e 4479 if (cur_offset >= block_end)
9036c102
YZ
4480 break;
4481 }
1832a6d5 4482
a22285a6 4483 free_extent_map(em);
2ac55d41
JB
4484 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4485 GFP_NOFS);
9036c102
YZ
4486 return err;
4487}
39279cc3 4488
3972f260 4489static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4490{
f4a2f4c5
MX
4491 struct btrfs_root *root = BTRFS_I(inode)->root;
4492 struct btrfs_trans_handle *trans;
a41ad394 4493 loff_t oldsize = i_size_read(inode);
3972f260
ES
4494 loff_t newsize = attr->ia_size;
4495 int mask = attr->ia_valid;
8082510e
YZ
4496 int ret;
4497
a41ad394 4498 if (newsize == oldsize)
8082510e
YZ
4499 return 0;
4500
3972f260
ES
4501 /*
4502 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4503 * special case where we need to update the times despite not having
4504 * these flags set. For all other operations the VFS set these flags
4505 * explicitly if it wants a timestamp update.
4506 */
4507 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4508 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4509
a41ad394 4510 if (newsize > oldsize) {
a41ad394
JB
4511 truncate_pagecache(inode, oldsize, newsize);
4512 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4513 if (ret)
8082510e 4514 return ret;
8082510e 4515
f4a2f4c5
MX
4516 trans = btrfs_start_transaction(root, 1);
4517 if (IS_ERR(trans))
4518 return PTR_ERR(trans);
4519
4520 i_size_write(inode, newsize);
4521 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4522 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4523 btrfs_end_transaction(trans, root);
a41ad394 4524 } else {
8082510e 4525
a41ad394
JB
4526 /*
4527 * We're truncating a file that used to have good data down to
4528 * zero. Make sure it gets into the ordered flush list so that
4529 * any new writes get down to disk quickly.
4530 */
4531 if (newsize == 0)
72ac3c0d
JB
4532 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4533 &BTRFS_I(inode)->runtime_flags);
8082510e 4534
f3fe820c
JB
4535 /*
4536 * 1 for the orphan item we're going to add
4537 * 1 for the orphan item deletion.
4538 */
4539 trans = btrfs_start_transaction(root, 2);
4540 if (IS_ERR(trans))
4541 return PTR_ERR(trans);
4542
4543 /*
4544 * We need to do this in case we fail at _any_ point during the
4545 * actual truncate. Once we do the truncate_setsize we could
4546 * invalidate pages which forces any outstanding ordered io to
4547 * be instantly completed which will give us extents that need
4548 * to be truncated. If we fail to get an orphan inode down we
4549 * could have left over extents that were never meant to live,
4550 * so we need to garuntee from this point on that everything
4551 * will be consistent.
4552 */
4553 ret = btrfs_orphan_add(trans, inode);
4554 btrfs_end_transaction(trans, root);
4555 if (ret)
4556 return ret;
4557
a41ad394
JB
4558 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4559 truncate_setsize(inode, newsize);
2e60a51e
MX
4560
4561 /* Disable nonlocked read DIO to avoid the end less truncate */
4562 btrfs_inode_block_unlocked_dio(inode);
4563 inode_dio_wait(inode);
4564 btrfs_inode_resume_unlocked_dio(inode);
4565
a41ad394 4566 ret = btrfs_truncate(inode);
f3fe820c
JB
4567 if (ret && inode->i_nlink)
4568 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4569 }
4570
a41ad394 4571 return ret;
8082510e
YZ
4572}
4573
9036c102
YZ
4574static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4575{
4576 struct inode *inode = dentry->d_inode;
b83cc969 4577 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4578 int err;
39279cc3 4579
b83cc969
LZ
4580 if (btrfs_root_readonly(root))
4581 return -EROFS;
4582
9036c102
YZ
4583 err = inode_change_ok(inode, attr);
4584 if (err)
4585 return err;
2bf5a725 4586
5a3f23d5 4587 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4588 err = btrfs_setsize(inode, attr);
8082510e
YZ
4589 if (err)
4590 return err;
39279cc3 4591 }
9036c102 4592
1025774c
CH
4593 if (attr->ia_valid) {
4594 setattr_copy(inode, attr);
0c4d2d95 4595 inode_inc_iversion(inode);
22c44fe6 4596 err = btrfs_dirty_inode(inode);
1025774c 4597
22c44fe6 4598 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4599 err = btrfs_acl_chmod(inode);
4600 }
33268eaf 4601
39279cc3
CM
4602 return err;
4603}
61295eb8 4604
bd555975 4605void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4606{
4607 struct btrfs_trans_handle *trans;
4608 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4609 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4610 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4611 int ret;
4612
1abe9b8a 4613 trace_btrfs_inode_evict(inode);
4614
39279cc3 4615 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4616 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4617 btrfs_is_free_space_inode(inode)))
bd555975
AV
4618 goto no_delete;
4619
39279cc3 4620 if (is_bad_inode(inode)) {
7b128766 4621 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4622 goto no_delete;
4623 }
bd555975 4624 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4625 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4626
c71bf099 4627 if (root->fs_info->log_root_recovering) {
6bf02314 4628 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4629 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4630 goto no_delete;
4631 }
4632
76dda93c
YZ
4633 if (inode->i_nlink > 0) {
4634 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4635 goto no_delete;
4636 }
4637
0e8c36a9
MX
4638 ret = btrfs_commit_inode_delayed_inode(inode);
4639 if (ret) {
4640 btrfs_orphan_del(NULL, inode);
4641 goto no_delete;
4642 }
4643
66d8f3dd 4644 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4645 if (!rsv) {
4646 btrfs_orphan_del(NULL, inode);
4647 goto no_delete;
4648 }
4a338542 4649 rsv->size = min_size;
ca7e70f5 4650 rsv->failfast = 1;
726c35fa 4651 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4652
dbe674a9 4653 btrfs_i_size_write(inode, 0);
5f39d397 4654
4289a667 4655 /*
8407aa46
MX
4656 * This is a bit simpler than btrfs_truncate since we've already
4657 * reserved our space for our orphan item in the unlink, so we just
4658 * need to reserve some slack space in case we add bytes and update
4659 * inode item when doing the truncate.
4289a667 4660 */
8082510e 4661 while (1) {
08e007d2
MX
4662 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4663 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4664
4665 /*
4666 * Try and steal from the global reserve since we will
4667 * likely not use this space anyway, we want to try as
4668 * hard as possible to get this to work.
4669 */
4670 if (ret)
4671 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4672
d68fc57b 4673 if (ret) {
c2cf52eb
SK
4674 btrfs_warn(root->fs_info,
4675 "Could not get space for a delete, will truncate on mount %d",
4676 ret);
4289a667
JB
4677 btrfs_orphan_del(NULL, inode);
4678 btrfs_free_block_rsv(root, rsv);
4679 goto no_delete;
d68fc57b 4680 }
7b128766 4681
0e8c36a9 4682 trans = btrfs_join_transaction(root);
4289a667
JB
4683 if (IS_ERR(trans)) {
4684 btrfs_orphan_del(NULL, inode);
4685 btrfs_free_block_rsv(root, rsv);
4686 goto no_delete;
d68fc57b 4687 }
7b128766 4688
4289a667
JB
4689 trans->block_rsv = rsv;
4690
d68fc57b 4691 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4692 if (ret != -ENOSPC)
8082510e 4693 break;
85e21bac 4694
8407aa46 4695 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4696 btrfs_end_transaction(trans, root);
4697 trans = NULL;
b53d3f5d 4698 btrfs_btree_balance_dirty(root);
8082510e 4699 }
5f39d397 4700
4289a667
JB
4701 btrfs_free_block_rsv(root, rsv);
4702
8082510e 4703 if (ret == 0) {
4289a667 4704 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4705 ret = btrfs_orphan_del(trans, inode);
4706 BUG_ON(ret);
4707 }
54aa1f4d 4708
4289a667 4709 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4710 if (!(root == root->fs_info->tree_root ||
4711 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4712 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4713
54aa1f4d 4714 btrfs_end_transaction(trans, root);
b53d3f5d 4715 btrfs_btree_balance_dirty(root);
39279cc3 4716no_delete:
dbd5768f 4717 clear_inode(inode);
8082510e 4718 return;
39279cc3
CM
4719}
4720
4721/*
4722 * this returns the key found in the dir entry in the location pointer.
4723 * If no dir entries were found, location->objectid is 0.
4724 */
4725static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4726 struct btrfs_key *location)
4727{
4728 const char *name = dentry->d_name.name;
4729 int namelen = dentry->d_name.len;
4730 struct btrfs_dir_item *di;
4731 struct btrfs_path *path;
4732 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4733 int ret = 0;
39279cc3
CM
4734
4735 path = btrfs_alloc_path();
d8926bb3
MF
4736 if (!path)
4737 return -ENOMEM;
3954401f 4738
33345d01 4739 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4740 namelen, 0);
0d9f7f3e
Y
4741 if (IS_ERR(di))
4742 ret = PTR_ERR(di);
d397712b 4743
c704005d 4744 if (IS_ERR_OR_NULL(di))
3954401f 4745 goto out_err;
d397712b 4746
5f39d397 4747 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4748out:
39279cc3
CM
4749 btrfs_free_path(path);
4750 return ret;
3954401f
CM
4751out_err:
4752 location->objectid = 0;
4753 goto out;
39279cc3
CM
4754}
4755
4756/*
4757 * when we hit a tree root in a directory, the btrfs part of the inode
4758 * needs to be changed to reflect the root directory of the tree root. This
4759 * is kind of like crossing a mount point.
4760 */
4761static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4762 struct inode *dir,
4763 struct dentry *dentry,
4764 struct btrfs_key *location,
4765 struct btrfs_root **sub_root)
39279cc3 4766{
4df27c4d
YZ
4767 struct btrfs_path *path;
4768 struct btrfs_root *new_root;
4769 struct btrfs_root_ref *ref;
4770 struct extent_buffer *leaf;
4771 int ret;
4772 int err = 0;
39279cc3 4773
4df27c4d
YZ
4774 path = btrfs_alloc_path();
4775 if (!path) {
4776 err = -ENOMEM;
4777 goto out;
4778 }
39279cc3 4779
4df27c4d
YZ
4780 err = -ENOENT;
4781 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4782 BTRFS_I(dir)->root->root_key.objectid,
4783 location->objectid);
4784 if (ret) {
4785 if (ret < 0)
4786 err = ret;
4787 goto out;
4788 }
39279cc3 4789
4df27c4d
YZ
4790 leaf = path->nodes[0];
4791 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4792 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4793 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4794 goto out;
39279cc3 4795
4df27c4d
YZ
4796 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4797 (unsigned long)(ref + 1),
4798 dentry->d_name.len);
4799 if (ret)
4800 goto out;
4801
b3b4aa74 4802 btrfs_release_path(path);
4df27c4d
YZ
4803
4804 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4805 if (IS_ERR(new_root)) {
4806 err = PTR_ERR(new_root);
4807 goto out;
4808 }
4809
4810 if (btrfs_root_refs(&new_root->root_item) == 0) {
4811 err = -ENOENT;
4812 goto out;
4813 }
4814
4815 *sub_root = new_root;
4816 location->objectid = btrfs_root_dirid(&new_root->root_item);
4817 location->type = BTRFS_INODE_ITEM_KEY;
4818 location->offset = 0;
4819 err = 0;
4820out:
4821 btrfs_free_path(path);
4822 return err;
39279cc3
CM
4823}
4824
5d4f98a2
YZ
4825static void inode_tree_add(struct inode *inode)
4826{
4827 struct btrfs_root *root = BTRFS_I(inode)->root;
4828 struct btrfs_inode *entry;
03e860bd
FNP
4829 struct rb_node **p;
4830 struct rb_node *parent;
33345d01 4831 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4832again:
4833 p = &root->inode_tree.rb_node;
4834 parent = NULL;
5d4f98a2 4835
1d3382cb 4836 if (inode_unhashed(inode))
76dda93c
YZ
4837 return;
4838
5d4f98a2
YZ
4839 spin_lock(&root->inode_lock);
4840 while (*p) {
4841 parent = *p;
4842 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4843
33345d01 4844 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4845 p = &parent->rb_left;
33345d01 4846 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4847 p = &parent->rb_right;
5d4f98a2
YZ
4848 else {
4849 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4850 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4851 rb_erase(parent, &root->inode_tree);
4852 RB_CLEAR_NODE(parent);
4853 spin_unlock(&root->inode_lock);
4854 goto again;
5d4f98a2
YZ
4855 }
4856 }
4857 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4858 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4859 spin_unlock(&root->inode_lock);
4860}
4861
4862static void inode_tree_del(struct inode *inode)
4863{
4864 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4865 int empty = 0;
5d4f98a2 4866
03e860bd 4867 spin_lock(&root->inode_lock);
5d4f98a2 4868 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4869 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4870 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4871 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4872 }
03e860bd 4873 spin_unlock(&root->inode_lock);
76dda93c 4874
0af3d00b
JB
4875 /*
4876 * Free space cache has inodes in the tree root, but the tree root has a
4877 * root_refs of 0, so this could end up dropping the tree root as a
4878 * snapshot, so we need the extra !root->fs_info->tree_root check to
4879 * make sure we don't drop it.
4880 */
4881 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4882 root != root->fs_info->tree_root) {
76dda93c
YZ
4883 synchronize_srcu(&root->fs_info->subvol_srcu);
4884 spin_lock(&root->inode_lock);
4885 empty = RB_EMPTY_ROOT(&root->inode_tree);
4886 spin_unlock(&root->inode_lock);
4887 if (empty)
4888 btrfs_add_dead_root(root);
4889 }
4890}
4891
143bede5 4892void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4893{
4894 struct rb_node *node;
4895 struct rb_node *prev;
4896 struct btrfs_inode *entry;
4897 struct inode *inode;
4898 u64 objectid = 0;
4899
4900 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4901
4902 spin_lock(&root->inode_lock);
4903again:
4904 node = root->inode_tree.rb_node;
4905 prev = NULL;
4906 while (node) {
4907 prev = node;
4908 entry = rb_entry(node, struct btrfs_inode, rb_node);
4909
33345d01 4910 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4911 node = node->rb_left;
33345d01 4912 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4913 node = node->rb_right;
4914 else
4915 break;
4916 }
4917 if (!node) {
4918 while (prev) {
4919 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4920 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4921 node = prev;
4922 break;
4923 }
4924 prev = rb_next(prev);
4925 }
4926 }
4927 while (node) {
4928 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4929 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4930 inode = igrab(&entry->vfs_inode);
4931 if (inode) {
4932 spin_unlock(&root->inode_lock);
4933 if (atomic_read(&inode->i_count) > 1)
4934 d_prune_aliases(inode);
4935 /*
45321ac5 4936 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4937 * the inode cache when its usage count
4938 * hits zero.
4939 */
4940 iput(inode);
4941 cond_resched();
4942 spin_lock(&root->inode_lock);
4943 goto again;
4944 }
4945
4946 if (cond_resched_lock(&root->inode_lock))
4947 goto again;
4948
4949 node = rb_next(node);
4950 }
4951 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4952}
4953
e02119d5
CM
4954static int btrfs_init_locked_inode(struct inode *inode, void *p)
4955{
4956 struct btrfs_iget_args *args = p;
4957 inode->i_ino = args->ino;
e02119d5 4958 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4959 return 0;
4960}
4961
4962static int btrfs_find_actor(struct inode *inode, void *opaque)
4963{
4964 struct btrfs_iget_args *args = opaque;
33345d01 4965 return args->ino == btrfs_ino(inode) &&
d397712b 4966 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4967}
4968
5d4f98a2
YZ
4969static struct inode *btrfs_iget_locked(struct super_block *s,
4970 u64 objectid,
4971 struct btrfs_root *root)
39279cc3
CM
4972{
4973 struct inode *inode;
4974 struct btrfs_iget_args args;
4975 args.ino = objectid;
4976 args.root = root;
4977
4978 inode = iget5_locked(s, objectid, btrfs_find_actor,
4979 btrfs_init_locked_inode,
4980 (void *)&args);
4981 return inode;
4982}
4983
1a54ef8c
BR
4984/* Get an inode object given its location and corresponding root.
4985 * Returns in *is_new if the inode was read from disk
4986 */
4987struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4988 struct btrfs_root *root, int *new)
1a54ef8c
BR
4989{
4990 struct inode *inode;
4991
4992 inode = btrfs_iget_locked(s, location->objectid, root);
4993 if (!inode)
5d4f98a2 4994 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4995
4996 if (inode->i_state & I_NEW) {
4997 BTRFS_I(inode)->root = root;
4998 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4999 btrfs_read_locked_inode(inode);
1748f843
MF
5000 if (!is_bad_inode(inode)) {
5001 inode_tree_add(inode);
5002 unlock_new_inode(inode);
5003 if (new)
5004 *new = 1;
5005 } else {
e0b6d65b
ST
5006 unlock_new_inode(inode);
5007 iput(inode);
5008 inode = ERR_PTR(-ESTALE);
1748f843
MF
5009 }
5010 }
5011
1a54ef8c
BR
5012 return inode;
5013}
5014
4df27c4d
YZ
5015static struct inode *new_simple_dir(struct super_block *s,
5016 struct btrfs_key *key,
5017 struct btrfs_root *root)
5018{
5019 struct inode *inode = new_inode(s);
5020
5021 if (!inode)
5022 return ERR_PTR(-ENOMEM);
5023
4df27c4d
YZ
5024 BTRFS_I(inode)->root = root;
5025 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5026 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5027
5028 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5029 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5030 inode->i_fop = &simple_dir_operations;
5031 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5032 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5033
5034 return inode;
5035}
5036
3de4586c 5037struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5038{
d397712b 5039 struct inode *inode;
4df27c4d 5040 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5041 struct btrfs_root *sub_root = root;
5042 struct btrfs_key location;
76dda93c 5043 int index;
b4aff1f8 5044 int ret = 0;
39279cc3
CM
5045
5046 if (dentry->d_name.len > BTRFS_NAME_LEN)
5047 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5048
39e3c955 5049 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5050 if (ret < 0)
5051 return ERR_PTR(ret);
5f39d397 5052
4df27c4d
YZ
5053 if (location.objectid == 0)
5054 return NULL;
5055
5056 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5057 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5058 return inode;
5059 }
5060
5061 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5062
76dda93c 5063 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5064 ret = fixup_tree_root_location(root, dir, dentry,
5065 &location, &sub_root);
5066 if (ret < 0) {
5067 if (ret != -ENOENT)
5068 inode = ERR_PTR(ret);
5069 else
5070 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5071 } else {
73f73415 5072 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5073 }
76dda93c
YZ
5074 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5075
34d19bad 5076 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5077 down_read(&root->fs_info->cleanup_work_sem);
5078 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5079 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5080 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
5081 if (ret)
5082 inode = ERR_PTR(ret);
c71bf099
YZ
5083 }
5084
3de4586c
CM
5085 return inode;
5086}
5087
fe15ce44 5088static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5089{
5090 struct btrfs_root *root;
848cce0d 5091 struct inode *inode = dentry->d_inode;
76dda93c 5092
848cce0d
LZ
5093 if (!inode && !IS_ROOT(dentry))
5094 inode = dentry->d_parent->d_inode;
76dda93c 5095
848cce0d
LZ
5096 if (inode) {
5097 root = BTRFS_I(inode)->root;
efefb143
YZ
5098 if (btrfs_root_refs(&root->root_item) == 0)
5099 return 1;
848cce0d
LZ
5100
5101 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5102 return 1;
efefb143 5103 }
76dda93c
YZ
5104 return 0;
5105}
5106
b4aff1f8
JB
5107static void btrfs_dentry_release(struct dentry *dentry)
5108{
5109 if (dentry->d_fsdata)
5110 kfree(dentry->d_fsdata);
5111}
5112
3de4586c 5113static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5114 unsigned int flags)
3de4586c 5115{
a66e7cc6
JB
5116 struct dentry *ret;
5117
5118 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 5119 return ret;
39279cc3
CM
5120}
5121
16cdcec7 5122unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5123 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5124};
5125
cbdf5a24
DW
5126static int btrfs_real_readdir(struct file *filp, void *dirent,
5127 filldir_t filldir)
39279cc3 5128{
496ad9aa 5129 struct inode *inode = file_inode(filp);
39279cc3
CM
5130 struct btrfs_root *root = BTRFS_I(inode)->root;
5131 struct btrfs_item *item;
5132 struct btrfs_dir_item *di;
5133 struct btrfs_key key;
5f39d397 5134 struct btrfs_key found_key;
39279cc3 5135 struct btrfs_path *path;
16cdcec7
MX
5136 struct list_head ins_list;
5137 struct list_head del_list;
39279cc3 5138 int ret;
5f39d397 5139 struct extent_buffer *leaf;
39279cc3 5140 int slot;
39279cc3
CM
5141 unsigned char d_type;
5142 int over = 0;
5143 u32 di_cur;
5144 u32 di_total;
5145 u32 di_len;
5146 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5147 char tmp_name[32];
5148 char *name_ptr;
5149 int name_len;
16cdcec7 5150 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
5151
5152 /* FIXME, use a real flag for deciding about the key type */
5153 if (root->fs_info->tree_root == root)
5154 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5155
3954401f
CM
5156 /* special case for "." */
5157 if (filp->f_pos == 0) {
3765fefa
HS
5158 over = filldir(dirent, ".", 1,
5159 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
5160 if (over)
5161 return 0;
5162 filp->f_pos = 1;
5163 }
3954401f
CM
5164 /* special case for .., just use the back ref */
5165 if (filp->f_pos == 1) {
5ecc7e5d 5166 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 5167 over = filldir(dirent, "..", 2,
3765fefa 5168 filp->f_pos, pino, DT_DIR);
3954401f 5169 if (over)
49593bfa 5170 return 0;
3954401f
CM
5171 filp->f_pos = 2;
5172 }
49593bfa 5173 path = btrfs_alloc_path();
16cdcec7
MX
5174 if (!path)
5175 return -ENOMEM;
ff5714cc 5176
026fd317 5177 path->reada = 1;
49593bfa 5178
16cdcec7
MX
5179 if (key_type == BTRFS_DIR_INDEX_KEY) {
5180 INIT_LIST_HEAD(&ins_list);
5181 INIT_LIST_HEAD(&del_list);
5182 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5183 }
5184
39279cc3
CM
5185 btrfs_set_key_type(&key, key_type);
5186 key.offset = filp->f_pos;
33345d01 5187 key.objectid = btrfs_ino(inode);
5f39d397 5188
39279cc3
CM
5189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5190 if (ret < 0)
5191 goto err;
49593bfa
DW
5192
5193 while (1) {
5f39d397 5194 leaf = path->nodes[0];
39279cc3 5195 slot = path->slots[0];
b9e03af0
LZ
5196 if (slot >= btrfs_header_nritems(leaf)) {
5197 ret = btrfs_next_leaf(root, path);
5198 if (ret < 0)
5199 goto err;
5200 else if (ret > 0)
5201 break;
5202 continue;
39279cc3 5203 }
3de4586c 5204
5f39d397
CM
5205 item = btrfs_item_nr(leaf, slot);
5206 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5207
5208 if (found_key.objectid != key.objectid)
39279cc3 5209 break;
5f39d397 5210 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5211 break;
5f39d397 5212 if (found_key.offset < filp->f_pos)
b9e03af0 5213 goto next;
16cdcec7
MX
5214 if (key_type == BTRFS_DIR_INDEX_KEY &&
5215 btrfs_should_delete_dir_index(&del_list,
5216 found_key.offset))
5217 goto next;
5f39d397
CM
5218
5219 filp->f_pos = found_key.offset;
16cdcec7 5220 is_curr = 1;
49593bfa 5221
39279cc3
CM
5222 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5223 di_cur = 0;
5f39d397 5224 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5225
5226 while (di_cur < di_total) {
5f39d397
CM
5227 struct btrfs_key location;
5228
22a94d44
JB
5229 if (verify_dir_item(root, leaf, di))
5230 break;
5231
5f39d397 5232 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5233 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5234 name_ptr = tmp_name;
5235 } else {
5236 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5237 if (!name_ptr) {
5238 ret = -ENOMEM;
5239 goto err;
5240 }
5f39d397
CM
5241 }
5242 read_extent_buffer(leaf, name_ptr,
5243 (unsigned long)(di + 1), name_len);
5244
5245 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5246 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5247
fede766f 5248
3de4586c 5249 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5250 * skip it.
5251 *
5252 * In contrast to old kernels, we insert the snapshot's
5253 * dir item and dir index after it has been created, so
5254 * we won't find a reference to our own snapshot. We
5255 * still keep the following code for backward
5256 * compatibility.
3de4586c
CM
5257 */
5258 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5259 location.objectid == root->root_key.objectid) {
5260 over = 0;
5261 goto skip;
5262 }
5f39d397 5263 over = filldir(dirent, name_ptr, name_len,
49593bfa 5264 found_key.offset, location.objectid,
39279cc3 5265 d_type);
5f39d397 5266
3de4586c 5267skip:
5f39d397
CM
5268 if (name_ptr != tmp_name)
5269 kfree(name_ptr);
5270
39279cc3
CM
5271 if (over)
5272 goto nopos;
5103e947 5273 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5274 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5275 di_cur += di_len;
5276 di = (struct btrfs_dir_item *)((char *)di + di_len);
5277 }
b9e03af0
LZ
5278next:
5279 path->slots[0]++;
39279cc3 5280 }
49593bfa 5281
16cdcec7
MX
5282 if (key_type == BTRFS_DIR_INDEX_KEY) {
5283 if (is_curr)
5284 filp->f_pos++;
5285 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
5286 &ins_list);
5287 if (ret)
5288 goto nopos;
5289 }
5290
49593bfa 5291 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 5292 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
5293 /*
5294 * 32-bit glibc will use getdents64, but then strtol -
5295 * so the last number we can serve is this.
5296 */
5297 filp->f_pos = 0x7fffffff;
5e591a07
YZ
5298 else
5299 filp->f_pos++;
39279cc3
CM
5300nopos:
5301 ret = 0;
5302err:
16cdcec7
MX
5303 if (key_type == BTRFS_DIR_INDEX_KEY)
5304 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5305 btrfs_free_path(path);
39279cc3
CM
5306 return ret;
5307}
5308
a9185b41 5309int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5310{
5311 struct btrfs_root *root = BTRFS_I(inode)->root;
5312 struct btrfs_trans_handle *trans;
5313 int ret = 0;
0af3d00b 5314 bool nolock = false;
39279cc3 5315
72ac3c0d 5316 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5317 return 0;
5318
83eea1f1 5319 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5320 nolock = true;
0af3d00b 5321
a9185b41 5322 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5323 if (nolock)
7a7eaa40 5324 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5325 else
7a7eaa40 5326 trans = btrfs_join_transaction(root);
3612b495
TI
5327 if (IS_ERR(trans))
5328 return PTR_ERR(trans);
a698d075 5329 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5330 }
5331 return ret;
5332}
5333
5334/*
54aa1f4d 5335 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5336 * inode changes. But, it is most likely to find the inode in cache.
5337 * FIXME, needs more benchmarking...there are no reasons other than performance
5338 * to keep or drop this code.
5339 */
22c44fe6 5340int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5341{
5342 struct btrfs_root *root = BTRFS_I(inode)->root;
5343 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5344 int ret;
5345
72ac3c0d 5346 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5347 return 0;
39279cc3 5348
7a7eaa40 5349 trans = btrfs_join_transaction(root);
22c44fe6
JB
5350 if (IS_ERR(trans))
5351 return PTR_ERR(trans);
8929ecfa
YZ
5352
5353 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5354 if (ret && ret == -ENOSPC) {
5355 /* whoops, lets try again with the full transaction */
5356 btrfs_end_transaction(trans, root);
5357 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5358 if (IS_ERR(trans))
5359 return PTR_ERR(trans);
8929ecfa 5360
94b60442 5361 ret = btrfs_update_inode(trans, root, inode);
94b60442 5362 }
39279cc3 5363 btrfs_end_transaction(trans, root);
16cdcec7
MX
5364 if (BTRFS_I(inode)->delayed_node)
5365 btrfs_balance_delayed_items(root);
22c44fe6
JB
5366
5367 return ret;
5368}
5369
5370/*
5371 * This is a copy of file_update_time. We need this so we can return error on
5372 * ENOSPC for updating the inode in the case of file write and mmap writes.
5373 */
e41f941a
JB
5374static int btrfs_update_time(struct inode *inode, struct timespec *now,
5375 int flags)
22c44fe6 5376{
2bc55652
AB
5377 struct btrfs_root *root = BTRFS_I(inode)->root;
5378
5379 if (btrfs_root_readonly(root))
5380 return -EROFS;
5381
e41f941a 5382 if (flags & S_VERSION)
22c44fe6 5383 inode_inc_iversion(inode);
e41f941a
JB
5384 if (flags & S_CTIME)
5385 inode->i_ctime = *now;
5386 if (flags & S_MTIME)
5387 inode->i_mtime = *now;
5388 if (flags & S_ATIME)
5389 inode->i_atime = *now;
5390 return btrfs_dirty_inode(inode);
39279cc3
CM
5391}
5392
d352ac68
CM
5393/*
5394 * find the highest existing sequence number in a directory
5395 * and then set the in-memory index_cnt variable to reflect
5396 * free sequence numbers
5397 */
aec7477b
JB
5398static int btrfs_set_inode_index_count(struct inode *inode)
5399{
5400 struct btrfs_root *root = BTRFS_I(inode)->root;
5401 struct btrfs_key key, found_key;
5402 struct btrfs_path *path;
5403 struct extent_buffer *leaf;
5404 int ret;
5405
33345d01 5406 key.objectid = btrfs_ino(inode);
aec7477b
JB
5407 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5408 key.offset = (u64)-1;
5409
5410 path = btrfs_alloc_path();
5411 if (!path)
5412 return -ENOMEM;
5413
5414 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5415 if (ret < 0)
5416 goto out;
5417 /* FIXME: we should be able to handle this */
5418 if (ret == 0)
5419 goto out;
5420 ret = 0;
5421
5422 /*
5423 * MAGIC NUMBER EXPLANATION:
5424 * since we search a directory based on f_pos we have to start at 2
5425 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5426 * else has to start at 2
5427 */
5428 if (path->slots[0] == 0) {
5429 BTRFS_I(inode)->index_cnt = 2;
5430 goto out;
5431 }
5432
5433 path->slots[0]--;
5434
5435 leaf = path->nodes[0];
5436 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5437
33345d01 5438 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5439 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5440 BTRFS_I(inode)->index_cnt = 2;
5441 goto out;
5442 }
5443
5444 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5445out:
5446 btrfs_free_path(path);
5447 return ret;
5448}
5449
d352ac68
CM
5450/*
5451 * helper to find a free sequence number in a given directory. This current
5452 * code is very simple, later versions will do smarter things in the btree
5453 */
3de4586c 5454int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5455{
5456 int ret = 0;
5457
5458 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5459 ret = btrfs_inode_delayed_dir_index_count(dir);
5460 if (ret) {
5461 ret = btrfs_set_inode_index_count(dir);
5462 if (ret)
5463 return ret;
5464 }
aec7477b
JB
5465 }
5466
00e4e6b3 5467 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5468 BTRFS_I(dir)->index_cnt++;
5469
5470 return ret;
5471}
5472
39279cc3
CM
5473static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5474 struct btrfs_root *root,
aec7477b 5475 struct inode *dir,
9c58309d 5476 const char *name, int name_len,
175a4eb7
AV
5477 u64 ref_objectid, u64 objectid,
5478 umode_t mode, u64 *index)
39279cc3
CM
5479{
5480 struct inode *inode;
5f39d397 5481 struct btrfs_inode_item *inode_item;
39279cc3 5482 struct btrfs_key *location;
5f39d397 5483 struct btrfs_path *path;
9c58309d
CM
5484 struct btrfs_inode_ref *ref;
5485 struct btrfs_key key[2];
5486 u32 sizes[2];
5487 unsigned long ptr;
39279cc3
CM
5488 int ret;
5489 int owner;
5490
5f39d397 5491 path = btrfs_alloc_path();
d8926bb3
MF
5492 if (!path)
5493 return ERR_PTR(-ENOMEM);
5f39d397 5494
39279cc3 5495 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5496 if (!inode) {
5497 btrfs_free_path(path);
39279cc3 5498 return ERR_PTR(-ENOMEM);
8fb27640 5499 }
39279cc3 5500
581bb050
LZ
5501 /*
5502 * we have to initialize this early, so we can reclaim the inode
5503 * number if we fail afterwards in this function.
5504 */
5505 inode->i_ino = objectid;
5506
aec7477b 5507 if (dir) {
1abe9b8a 5508 trace_btrfs_inode_request(dir);
5509
3de4586c 5510 ret = btrfs_set_inode_index(dir, index);
09771430 5511 if (ret) {
8fb27640 5512 btrfs_free_path(path);
09771430 5513 iput(inode);
aec7477b 5514 return ERR_PTR(ret);
09771430 5515 }
aec7477b
JB
5516 }
5517 /*
5518 * index_cnt is ignored for everything but a dir,
5519 * btrfs_get_inode_index_count has an explanation for the magic
5520 * number
5521 */
5522 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5523 BTRFS_I(inode)->root = root;
e02119d5 5524 BTRFS_I(inode)->generation = trans->transid;
76195853 5525 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5526
5dc562c5
JB
5527 /*
5528 * We could have gotten an inode number from somebody who was fsynced
5529 * and then removed in this same transaction, so let's just set full
5530 * sync since it will be a full sync anyway and this will blow away the
5531 * old info in the log.
5532 */
5533 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5534
569254b0 5535 if (S_ISDIR(mode))
39279cc3
CM
5536 owner = 0;
5537 else
5538 owner = 1;
9c58309d
CM
5539
5540 key[0].objectid = objectid;
5541 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5542 key[0].offset = 0;
5543
f186373f
MF
5544 /*
5545 * Start new inodes with an inode_ref. This is slightly more
5546 * efficient for small numbers of hard links since they will
5547 * be packed into one item. Extended refs will kick in if we
5548 * add more hard links than can fit in the ref item.
5549 */
9c58309d
CM
5550 key[1].objectid = objectid;
5551 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5552 key[1].offset = ref_objectid;
5553
5554 sizes[0] = sizeof(struct btrfs_inode_item);
5555 sizes[1] = name_len + sizeof(*ref);
5556
b9473439 5557 path->leave_spinning = 1;
9c58309d
CM
5558 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5559 if (ret != 0)
5f39d397
CM
5560 goto fail;
5561
ecc11fab 5562 inode_init_owner(inode, dir, mode);
a76a3cd4 5563 inode_set_bytes(inode, 0);
39279cc3 5564 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5565 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5566 struct btrfs_inode_item);
293f7e07
LZ
5567 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5568 sizeof(*inode_item));
e02119d5 5569 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5570
5571 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5572 struct btrfs_inode_ref);
5573 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5574 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5575 ptr = (unsigned long)(ref + 1);
5576 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5577
5f39d397
CM
5578 btrfs_mark_buffer_dirty(path->nodes[0]);
5579 btrfs_free_path(path);
5580
39279cc3
CM
5581 location = &BTRFS_I(inode)->location;
5582 location->objectid = objectid;
39279cc3
CM
5583 location->offset = 0;
5584 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5585
6cbff00f
CH
5586 btrfs_inherit_iflags(inode, dir);
5587
569254b0 5588 if (S_ISREG(mode)) {
94272164
CM
5589 if (btrfs_test_opt(root, NODATASUM))
5590 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5591 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5592 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5593 BTRFS_INODE_NODATASUM;
94272164
CM
5594 }
5595
39279cc3 5596 insert_inode_hash(inode);
5d4f98a2 5597 inode_tree_add(inode);
1abe9b8a 5598
5599 trace_btrfs_inode_new(inode);
1973f0fa 5600 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5601
8ea05e3a
AB
5602 btrfs_update_root_times(trans, root);
5603
39279cc3 5604 return inode;
5f39d397 5605fail:
aec7477b
JB
5606 if (dir)
5607 BTRFS_I(dir)->index_cnt--;
5f39d397 5608 btrfs_free_path(path);
09771430 5609 iput(inode);
5f39d397 5610 return ERR_PTR(ret);
39279cc3
CM
5611}
5612
5613static inline u8 btrfs_inode_type(struct inode *inode)
5614{
5615 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5616}
5617
d352ac68
CM
5618/*
5619 * utility function to add 'inode' into 'parent_inode' with
5620 * a give name and a given sequence number.
5621 * if 'add_backref' is true, also insert a backref from the
5622 * inode to the parent directory.
5623 */
e02119d5
CM
5624int btrfs_add_link(struct btrfs_trans_handle *trans,
5625 struct inode *parent_inode, struct inode *inode,
5626 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5627{
4df27c4d 5628 int ret = 0;
39279cc3 5629 struct btrfs_key key;
e02119d5 5630 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5631 u64 ino = btrfs_ino(inode);
5632 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5633
33345d01 5634 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5635 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5636 } else {
33345d01 5637 key.objectid = ino;
4df27c4d
YZ
5638 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5639 key.offset = 0;
5640 }
5641
33345d01 5642 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5643 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5644 key.objectid, root->root_key.objectid,
33345d01 5645 parent_ino, index, name, name_len);
4df27c4d 5646 } else if (add_backref) {
33345d01
LZ
5647 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5648 parent_ino, index);
4df27c4d 5649 }
39279cc3 5650
79787eaa
JM
5651 /* Nothing to clean up yet */
5652 if (ret)
5653 return ret;
4df27c4d 5654
79787eaa
JM
5655 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5656 parent_inode, &key,
5657 btrfs_inode_type(inode), index);
9c52057c 5658 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5659 goto fail_dir_item;
5660 else if (ret) {
5661 btrfs_abort_transaction(trans, root, ret);
5662 return ret;
39279cc3 5663 }
79787eaa
JM
5664
5665 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5666 name_len * 2);
0c4d2d95 5667 inode_inc_iversion(parent_inode);
79787eaa
JM
5668 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5669 ret = btrfs_update_inode(trans, root, parent_inode);
5670 if (ret)
5671 btrfs_abort_transaction(trans, root, ret);
39279cc3 5672 return ret;
fe66a05a
CM
5673
5674fail_dir_item:
5675 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5676 u64 local_index;
5677 int err;
5678 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5679 key.objectid, root->root_key.objectid,
5680 parent_ino, &local_index, name, name_len);
5681
5682 } else if (add_backref) {
5683 u64 local_index;
5684 int err;
5685
5686 err = btrfs_del_inode_ref(trans, root, name, name_len,
5687 ino, parent_ino, &local_index);
5688 }
5689 return ret;
39279cc3
CM
5690}
5691
5692static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5693 struct inode *dir, struct dentry *dentry,
5694 struct inode *inode, int backref, u64 index)
39279cc3 5695{
a1b075d2
JB
5696 int err = btrfs_add_link(trans, dir, inode,
5697 dentry->d_name.name, dentry->d_name.len,
5698 backref, index);
39279cc3
CM
5699 if (err > 0)
5700 err = -EEXIST;
5701 return err;
5702}
5703
618e21d5 5704static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5705 umode_t mode, dev_t rdev)
618e21d5
JB
5706{
5707 struct btrfs_trans_handle *trans;
5708 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5709 struct inode *inode = NULL;
618e21d5
JB
5710 int err;
5711 int drop_inode = 0;
5712 u64 objectid;
00e4e6b3 5713 u64 index = 0;
618e21d5
JB
5714
5715 if (!new_valid_dev(rdev))
5716 return -EINVAL;
5717
9ed74f2d
JB
5718 /*
5719 * 2 for inode item and ref
5720 * 2 for dir items
5721 * 1 for xattr if selinux is on
5722 */
a22285a6
YZ
5723 trans = btrfs_start_transaction(root, 5);
5724 if (IS_ERR(trans))
5725 return PTR_ERR(trans);
1832a6d5 5726
581bb050
LZ
5727 err = btrfs_find_free_ino(root, &objectid);
5728 if (err)
5729 goto out_unlock;
5730
aec7477b 5731 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5732 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5733 mode, &index);
7cf96da3
TI
5734 if (IS_ERR(inode)) {
5735 err = PTR_ERR(inode);
618e21d5 5736 goto out_unlock;
7cf96da3 5737 }
618e21d5 5738
2a7dba39 5739 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5740 if (err) {
5741 drop_inode = 1;
5742 goto out_unlock;
5743 }
5744
ad19db71
CS
5745 /*
5746 * If the active LSM wants to access the inode during
5747 * d_instantiate it needs these. Smack checks to see
5748 * if the filesystem supports xattrs by looking at the
5749 * ops vector.
5750 */
5751
5752 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5753 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5754 if (err)
5755 drop_inode = 1;
5756 else {
618e21d5 5757 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5758 btrfs_update_inode(trans, root, inode);
08c422c2 5759 d_instantiate(dentry, inode);
618e21d5 5760 }
618e21d5 5761out_unlock:
7ad85bb7 5762 btrfs_end_transaction(trans, root);
b53d3f5d 5763 btrfs_btree_balance_dirty(root);
618e21d5
JB
5764 if (drop_inode) {
5765 inode_dec_link_count(inode);
5766 iput(inode);
5767 }
618e21d5
JB
5768 return err;
5769}
5770
39279cc3 5771static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5772 umode_t mode, bool excl)
39279cc3
CM
5773{
5774 struct btrfs_trans_handle *trans;
5775 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5776 struct inode *inode = NULL;
43baa579 5777 int drop_inode_on_err = 0;
a22285a6 5778 int err;
39279cc3 5779 u64 objectid;
00e4e6b3 5780 u64 index = 0;
39279cc3 5781
9ed74f2d
JB
5782 /*
5783 * 2 for inode item and ref
5784 * 2 for dir items
5785 * 1 for xattr if selinux is on
5786 */
a22285a6
YZ
5787 trans = btrfs_start_transaction(root, 5);
5788 if (IS_ERR(trans))
5789 return PTR_ERR(trans);
9ed74f2d 5790
581bb050
LZ
5791 err = btrfs_find_free_ino(root, &objectid);
5792 if (err)
5793 goto out_unlock;
5794
aec7477b 5795 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5796 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5797 mode, &index);
7cf96da3
TI
5798 if (IS_ERR(inode)) {
5799 err = PTR_ERR(inode);
39279cc3 5800 goto out_unlock;
7cf96da3 5801 }
43baa579 5802 drop_inode_on_err = 1;
39279cc3 5803
2a7dba39 5804 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5805 if (err)
33268eaf 5806 goto out_unlock;
33268eaf 5807
9185aa58
FB
5808 err = btrfs_update_inode(trans, root, inode);
5809 if (err)
5810 goto out_unlock;
5811
ad19db71
CS
5812 /*
5813 * If the active LSM wants to access the inode during
5814 * d_instantiate it needs these. Smack checks to see
5815 * if the filesystem supports xattrs by looking at the
5816 * ops vector.
5817 */
5818 inode->i_fop = &btrfs_file_operations;
5819 inode->i_op = &btrfs_file_inode_operations;
5820
a1b075d2 5821 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5822 if (err)
43baa579
FB
5823 goto out_unlock;
5824
5825 inode->i_mapping->a_ops = &btrfs_aops;
5826 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5827 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5828 d_instantiate(dentry, inode);
5829
39279cc3 5830out_unlock:
7ad85bb7 5831 btrfs_end_transaction(trans, root);
43baa579 5832 if (err && drop_inode_on_err) {
39279cc3
CM
5833 inode_dec_link_count(inode);
5834 iput(inode);
5835 }
b53d3f5d 5836 btrfs_btree_balance_dirty(root);
39279cc3
CM
5837 return err;
5838}
5839
5840static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5841 struct dentry *dentry)
5842{
5843 struct btrfs_trans_handle *trans;
5844 struct btrfs_root *root = BTRFS_I(dir)->root;
5845 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5846 u64 index;
39279cc3
CM
5847 int err;
5848 int drop_inode = 0;
5849
4a8be425
TH
5850 /* do not allow sys_link's with other subvols of the same device */
5851 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5852 return -EXDEV;
4a8be425 5853
f186373f 5854 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5855 return -EMLINK;
4a8be425 5856
3de4586c 5857 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5858 if (err)
5859 goto fail;
5860
a22285a6 5861 /*
7e6b6465 5862 * 2 items for inode and inode ref
a22285a6 5863 * 2 items for dir items
7e6b6465 5864 * 1 item for parent inode
a22285a6 5865 */
7e6b6465 5866 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5867 if (IS_ERR(trans)) {
5868 err = PTR_ERR(trans);
5869 goto fail;
5870 }
5f39d397 5871
3153495d 5872 btrfs_inc_nlink(inode);
0c4d2d95 5873 inode_inc_iversion(inode);
3153495d 5874 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5875 ihold(inode);
e9976151 5876 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5877
a1b075d2 5878 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5879
a5719521 5880 if (err) {
54aa1f4d 5881 drop_inode = 1;
a5719521 5882 } else {
10d9f309 5883 struct dentry *parent = dentry->d_parent;
a5719521 5884 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5885 if (err)
5886 goto fail;
08c422c2 5887 d_instantiate(dentry, inode);
6a912213 5888 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5889 }
39279cc3 5890
7ad85bb7 5891 btrfs_end_transaction(trans, root);
1832a6d5 5892fail:
39279cc3
CM
5893 if (drop_inode) {
5894 inode_dec_link_count(inode);
5895 iput(inode);
5896 }
b53d3f5d 5897 btrfs_btree_balance_dirty(root);
39279cc3
CM
5898 return err;
5899}
5900
18bb1db3 5901static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5902{
b9d86667 5903 struct inode *inode = NULL;
39279cc3
CM
5904 struct btrfs_trans_handle *trans;
5905 struct btrfs_root *root = BTRFS_I(dir)->root;
5906 int err = 0;
5907 int drop_on_err = 0;
b9d86667 5908 u64 objectid = 0;
00e4e6b3 5909 u64 index = 0;
39279cc3 5910
9ed74f2d
JB
5911 /*
5912 * 2 items for inode and ref
5913 * 2 items for dir items
5914 * 1 for xattr if selinux is on
5915 */
a22285a6
YZ
5916 trans = btrfs_start_transaction(root, 5);
5917 if (IS_ERR(trans))
5918 return PTR_ERR(trans);
39279cc3 5919
581bb050
LZ
5920 err = btrfs_find_free_ino(root, &objectid);
5921 if (err)
5922 goto out_fail;
5923
aec7477b 5924 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5925 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5926 S_IFDIR | mode, &index);
39279cc3
CM
5927 if (IS_ERR(inode)) {
5928 err = PTR_ERR(inode);
5929 goto out_fail;
5930 }
5f39d397 5931
39279cc3 5932 drop_on_err = 1;
33268eaf 5933
2a7dba39 5934 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5935 if (err)
5936 goto out_fail;
5937
39279cc3
CM
5938 inode->i_op = &btrfs_dir_inode_operations;
5939 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5940
dbe674a9 5941 btrfs_i_size_write(inode, 0);
39279cc3
CM
5942 err = btrfs_update_inode(trans, root, inode);
5943 if (err)
5944 goto out_fail;
5f39d397 5945
a1b075d2
JB
5946 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5947 dentry->d_name.len, 0, index);
39279cc3
CM
5948 if (err)
5949 goto out_fail;
5f39d397 5950
39279cc3
CM
5951 d_instantiate(dentry, inode);
5952 drop_on_err = 0;
39279cc3
CM
5953
5954out_fail:
7ad85bb7 5955 btrfs_end_transaction(trans, root);
39279cc3
CM
5956 if (drop_on_err)
5957 iput(inode);
b53d3f5d 5958 btrfs_btree_balance_dirty(root);
39279cc3
CM
5959 return err;
5960}
5961
d352ac68
CM
5962/* helper for btfs_get_extent. Given an existing extent in the tree,
5963 * and an extent that you want to insert, deal with overlap and insert
5964 * the new extent into the tree.
5965 */
3b951516
CM
5966static int merge_extent_mapping(struct extent_map_tree *em_tree,
5967 struct extent_map *existing,
e6dcd2dc
CM
5968 struct extent_map *em,
5969 u64 map_start, u64 map_len)
3b951516
CM
5970{
5971 u64 start_diff;
3b951516 5972
e6dcd2dc
CM
5973 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5974 start_diff = map_start - em->start;
5975 em->start = map_start;
5976 em->len = map_len;
c8b97818
CM
5977 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5978 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5979 em->block_start += start_diff;
c8b97818
CM
5980 em->block_len -= start_diff;
5981 }
09a2a8f9 5982 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5983}
5984
c8b97818
CM
5985static noinline int uncompress_inline(struct btrfs_path *path,
5986 struct inode *inode, struct page *page,
5987 size_t pg_offset, u64 extent_offset,
5988 struct btrfs_file_extent_item *item)
5989{
5990 int ret;
5991 struct extent_buffer *leaf = path->nodes[0];
5992 char *tmp;
5993 size_t max_size;
5994 unsigned long inline_size;
5995 unsigned long ptr;
261507a0 5996 int compress_type;
c8b97818
CM
5997
5998 WARN_ON(pg_offset != 0);
261507a0 5999 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6000 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6001 inline_size = btrfs_file_extent_inline_item_len(leaf,
6002 btrfs_item_nr(leaf, path->slots[0]));
6003 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6004 if (!tmp)
6005 return -ENOMEM;
c8b97818
CM
6006 ptr = btrfs_file_extent_inline_start(item);
6007
6008 read_extent_buffer(leaf, tmp, ptr, inline_size);
6009
5b050f04 6010 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6011 ret = btrfs_decompress(compress_type, tmp, page,
6012 extent_offset, inline_size, max_size);
c8b97818 6013 if (ret) {
7ac687d9 6014 char *kaddr = kmap_atomic(page);
c8b97818
CM
6015 unsigned long copy_size = min_t(u64,
6016 PAGE_CACHE_SIZE - pg_offset,
6017 max_size - extent_offset);
6018 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 6019 kunmap_atomic(kaddr);
c8b97818
CM
6020 }
6021 kfree(tmp);
6022 return 0;
6023}
6024
d352ac68
CM
6025/*
6026 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6027 * the ugly parts come from merging extents from the disk with the in-ram
6028 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6029 * where the in-ram extents might be locked pending data=ordered completion.
6030 *
6031 * This also copies inline extents directly into the page.
6032 */
d397712b 6033
a52d9a80 6034struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6035 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6036 int create)
6037{
6038 int ret;
6039 int err = 0;
db94535d 6040 u64 bytenr;
a52d9a80
CM
6041 u64 extent_start = 0;
6042 u64 extent_end = 0;
33345d01 6043 u64 objectid = btrfs_ino(inode);
a52d9a80 6044 u32 found_type;
f421950f 6045 struct btrfs_path *path = NULL;
a52d9a80
CM
6046 struct btrfs_root *root = BTRFS_I(inode)->root;
6047 struct btrfs_file_extent_item *item;
5f39d397
CM
6048 struct extent_buffer *leaf;
6049 struct btrfs_key found_key;
a52d9a80
CM
6050 struct extent_map *em = NULL;
6051 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6052 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6053 struct btrfs_trans_handle *trans = NULL;
261507a0 6054 int compress_type;
a52d9a80 6055
a52d9a80 6056again:
890871be 6057 read_lock(&em_tree->lock);
d1310b2e 6058 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6059 if (em)
6060 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6061 read_unlock(&em_tree->lock);
d1310b2e 6062
a52d9a80 6063 if (em) {
e1c4b745
CM
6064 if (em->start > start || em->start + em->len <= start)
6065 free_extent_map(em);
6066 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6067 free_extent_map(em);
6068 else
6069 goto out;
a52d9a80 6070 }
172ddd60 6071 em = alloc_extent_map();
a52d9a80 6072 if (!em) {
d1310b2e
CM
6073 err = -ENOMEM;
6074 goto out;
a52d9a80 6075 }
e6dcd2dc 6076 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6077 em->start = EXTENT_MAP_HOLE;
445a6944 6078 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6079 em->len = (u64)-1;
c8b97818 6080 em->block_len = (u64)-1;
f421950f
CM
6081
6082 if (!path) {
6083 path = btrfs_alloc_path();
026fd317
JB
6084 if (!path) {
6085 err = -ENOMEM;
6086 goto out;
6087 }
6088 /*
6089 * Chances are we'll be called again, so go ahead and do
6090 * readahead
6091 */
6092 path->reada = 1;
f421950f
CM
6093 }
6094
179e29e4
CM
6095 ret = btrfs_lookup_file_extent(trans, root, path,
6096 objectid, start, trans != NULL);
a52d9a80
CM
6097 if (ret < 0) {
6098 err = ret;
6099 goto out;
6100 }
6101
6102 if (ret != 0) {
6103 if (path->slots[0] == 0)
6104 goto not_found;
6105 path->slots[0]--;
6106 }
6107
5f39d397
CM
6108 leaf = path->nodes[0];
6109 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6110 struct btrfs_file_extent_item);
a52d9a80 6111 /* are we inside the extent that was found? */
5f39d397
CM
6112 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6113 found_type = btrfs_key_type(&found_key);
6114 if (found_key.objectid != objectid ||
a52d9a80
CM
6115 found_type != BTRFS_EXTENT_DATA_KEY) {
6116 goto not_found;
6117 }
6118
5f39d397
CM
6119 found_type = btrfs_file_extent_type(leaf, item);
6120 extent_start = found_key.offset;
261507a0 6121 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6122 if (found_type == BTRFS_FILE_EXTENT_REG ||
6123 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6124 extent_end = extent_start +
db94535d 6125 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6126 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6127 size_t size;
6128 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 6129 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
6130 }
6131
6132 if (start >= extent_end) {
6133 path->slots[0]++;
6134 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6135 ret = btrfs_next_leaf(root, path);
6136 if (ret < 0) {
6137 err = ret;
6138 goto out;
a52d9a80 6139 }
9036c102
YZ
6140 if (ret > 0)
6141 goto not_found;
6142 leaf = path->nodes[0];
a52d9a80 6143 }
9036c102
YZ
6144 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6145 if (found_key.objectid != objectid ||
6146 found_key.type != BTRFS_EXTENT_DATA_KEY)
6147 goto not_found;
6148 if (start + len <= found_key.offset)
6149 goto not_found;
6150 em->start = start;
70c8a91c 6151 em->orig_start = start;
9036c102
YZ
6152 em->len = found_key.offset - start;
6153 goto not_found_em;
6154 }
6155
cc95bef6 6156 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6157 if (found_type == BTRFS_FILE_EXTENT_REG ||
6158 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6159 em->start = extent_start;
6160 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6161 em->orig_start = extent_start -
6162 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6163 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6164 item);
db94535d
CM
6165 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6166 if (bytenr == 0) {
5f39d397 6167 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6168 goto insert;
6169 }
261507a0 6170 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6171 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6172 em->compress_type = compress_type;
c8b97818 6173 em->block_start = bytenr;
b4939680 6174 em->block_len = em->orig_block_len;
c8b97818
CM
6175 } else {
6176 bytenr += btrfs_file_extent_offset(leaf, item);
6177 em->block_start = bytenr;
6178 em->block_len = em->len;
d899e052
YZ
6179 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6180 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6181 }
a52d9a80
CM
6182 goto insert;
6183 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6184 unsigned long ptr;
a52d9a80 6185 char *map;
3326d1b0
CM
6186 size_t size;
6187 size_t extent_offset;
6188 size_t copy_size;
a52d9a80 6189
689f9346 6190 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6191 if (!page || create) {
689f9346 6192 em->start = extent_start;
9036c102 6193 em->len = extent_end - extent_start;
689f9346
Y
6194 goto out;
6195 }
5f39d397 6196
9036c102
YZ
6197 size = btrfs_file_extent_inline_len(leaf, item);
6198 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6199 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6200 size - extent_offset);
3326d1b0 6201 em->start = extent_start + extent_offset;
fda2832f 6202 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6203 em->orig_block_len = em->len;
70c8a91c 6204 em->orig_start = em->start;
261507a0 6205 if (compress_type) {
c8b97818 6206 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6207 em->compress_type = compress_type;
6208 }
689f9346 6209 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6210 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6211 if (btrfs_file_extent_compression(leaf, item) !=
6212 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6213 ret = uncompress_inline(path, inode, page,
6214 pg_offset,
6215 extent_offset, item);
79787eaa 6216 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6217 } else {
6218 map = kmap(page);
6219 read_extent_buffer(leaf, map + pg_offset, ptr,
6220 copy_size);
93c82d57
CM
6221 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6222 memset(map + pg_offset + copy_size, 0,
6223 PAGE_CACHE_SIZE - pg_offset -
6224 copy_size);
6225 }
c8b97818
CM
6226 kunmap(page);
6227 }
179e29e4
CM
6228 flush_dcache_page(page);
6229 } else if (create && PageUptodate(page)) {
6bf7e080 6230 BUG();
179e29e4
CM
6231 if (!trans) {
6232 kunmap(page);
6233 free_extent_map(em);
6234 em = NULL;
ff5714cc 6235
b3b4aa74 6236 btrfs_release_path(path);
7a7eaa40 6237 trans = btrfs_join_transaction(root);
ff5714cc 6238
3612b495
TI
6239 if (IS_ERR(trans))
6240 return ERR_CAST(trans);
179e29e4
CM
6241 goto again;
6242 }
c8b97818 6243 map = kmap(page);
70dec807 6244 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6245 copy_size);
c8b97818 6246 kunmap(page);
179e29e4 6247 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6248 }
d1310b2e 6249 set_extent_uptodate(io_tree, em->start,
507903b8 6250 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6251 goto insert;
6252 } else {
31b1a2bd 6253 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6254 }
6255not_found:
6256 em->start = start;
70c8a91c 6257 em->orig_start = start;
d1310b2e 6258 em->len = len;
a52d9a80 6259not_found_em:
5f39d397 6260 em->block_start = EXTENT_MAP_HOLE;
9036c102 6261 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6262insert:
b3b4aa74 6263 btrfs_release_path(path);
d1310b2e 6264 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6265 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6266 (unsigned long long)em->start,
6267 (unsigned long long)em->len,
6268 (unsigned long long)start,
6269 (unsigned long long)len);
a52d9a80
CM
6270 err = -EIO;
6271 goto out;
6272 }
d1310b2e
CM
6273
6274 err = 0;
890871be 6275 write_lock(&em_tree->lock);
09a2a8f9 6276 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6277 /* it is possible that someone inserted the extent into the tree
6278 * while we had the lock dropped. It is also possible that
6279 * an overlapping map exists in the tree
6280 */
a52d9a80 6281 if (ret == -EEXIST) {
3b951516 6282 struct extent_map *existing;
e6dcd2dc
CM
6283
6284 ret = 0;
6285
3b951516 6286 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6287 if (existing && (existing->start > start ||
6288 existing->start + existing->len <= start)) {
6289 free_extent_map(existing);
6290 existing = NULL;
6291 }
3b951516
CM
6292 if (!existing) {
6293 existing = lookup_extent_mapping(em_tree, em->start,
6294 em->len);
6295 if (existing) {
6296 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6297 em, start,
6298 root->sectorsize);
3b951516
CM
6299 free_extent_map(existing);
6300 if (err) {
6301 free_extent_map(em);
6302 em = NULL;
6303 }
6304 } else {
6305 err = -EIO;
3b951516
CM
6306 free_extent_map(em);
6307 em = NULL;
6308 }
6309 } else {
6310 free_extent_map(em);
6311 em = existing;
e6dcd2dc 6312 err = 0;
a52d9a80 6313 }
a52d9a80 6314 }
890871be 6315 write_unlock(&em_tree->lock);
a52d9a80 6316out:
1abe9b8a 6317
f0bd95ea
TI
6318 if (em)
6319 trace_btrfs_get_extent(root, em);
1abe9b8a 6320
f421950f
CM
6321 if (path)
6322 btrfs_free_path(path);
a52d9a80
CM
6323 if (trans) {
6324 ret = btrfs_end_transaction(trans, root);
d397712b 6325 if (!err)
a52d9a80
CM
6326 err = ret;
6327 }
a52d9a80
CM
6328 if (err) {
6329 free_extent_map(em);
a52d9a80
CM
6330 return ERR_PTR(err);
6331 }
79787eaa 6332 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6333 return em;
6334}
6335
ec29ed5b
CM
6336struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6337 size_t pg_offset, u64 start, u64 len,
6338 int create)
6339{
6340 struct extent_map *em;
6341 struct extent_map *hole_em = NULL;
6342 u64 range_start = start;
6343 u64 end;
6344 u64 found;
6345 u64 found_end;
6346 int err = 0;
6347
6348 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6349 if (IS_ERR(em))
6350 return em;
6351 if (em) {
6352 /*
f9e4fb53
LB
6353 * if our em maps to
6354 * - a hole or
6355 * - a pre-alloc extent,
6356 * there might actually be delalloc bytes behind it.
ec29ed5b 6357 */
f9e4fb53
LB
6358 if (em->block_start != EXTENT_MAP_HOLE &&
6359 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6360 return em;
6361 else
6362 hole_em = em;
6363 }
6364
6365 /* check to see if we've wrapped (len == -1 or similar) */
6366 end = start + len;
6367 if (end < start)
6368 end = (u64)-1;
6369 else
6370 end -= 1;
6371
6372 em = NULL;
6373
6374 /* ok, we didn't find anything, lets look for delalloc */
6375 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6376 end, len, EXTENT_DELALLOC, 1);
6377 found_end = range_start + found;
6378 if (found_end < range_start)
6379 found_end = (u64)-1;
6380
6381 /*
6382 * we didn't find anything useful, return
6383 * the original results from get_extent()
6384 */
6385 if (range_start > end || found_end <= start) {
6386 em = hole_em;
6387 hole_em = NULL;
6388 goto out;
6389 }
6390
6391 /* adjust the range_start to make sure it doesn't
6392 * go backwards from the start they passed in
6393 */
6394 range_start = max(start,range_start);
6395 found = found_end - range_start;
6396
6397 if (found > 0) {
6398 u64 hole_start = start;
6399 u64 hole_len = len;
6400
172ddd60 6401 em = alloc_extent_map();
ec29ed5b
CM
6402 if (!em) {
6403 err = -ENOMEM;
6404 goto out;
6405 }
6406 /*
6407 * when btrfs_get_extent can't find anything it
6408 * returns one huge hole
6409 *
6410 * make sure what it found really fits our range, and
6411 * adjust to make sure it is based on the start from
6412 * the caller
6413 */
6414 if (hole_em) {
6415 u64 calc_end = extent_map_end(hole_em);
6416
6417 if (calc_end <= start || (hole_em->start > end)) {
6418 free_extent_map(hole_em);
6419 hole_em = NULL;
6420 } else {
6421 hole_start = max(hole_em->start, start);
6422 hole_len = calc_end - hole_start;
6423 }
6424 }
6425 em->bdev = NULL;
6426 if (hole_em && range_start > hole_start) {
6427 /* our hole starts before our delalloc, so we
6428 * have to return just the parts of the hole
6429 * that go until the delalloc starts
6430 */
6431 em->len = min(hole_len,
6432 range_start - hole_start);
6433 em->start = hole_start;
6434 em->orig_start = hole_start;
6435 /*
6436 * don't adjust block start at all,
6437 * it is fixed at EXTENT_MAP_HOLE
6438 */
6439 em->block_start = hole_em->block_start;
6440 em->block_len = hole_len;
f9e4fb53
LB
6441 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6442 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6443 } else {
6444 em->start = range_start;
6445 em->len = found;
6446 em->orig_start = range_start;
6447 em->block_start = EXTENT_MAP_DELALLOC;
6448 em->block_len = found;
6449 }
6450 } else if (hole_em) {
6451 return hole_em;
6452 }
6453out:
6454
6455 free_extent_map(hole_em);
6456 if (err) {
6457 free_extent_map(em);
6458 return ERR_PTR(err);
6459 }
6460 return em;
6461}
6462
4b46fce2
JB
6463static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6464 u64 start, u64 len)
6465{
6466 struct btrfs_root *root = BTRFS_I(inode)->root;
6467 struct btrfs_trans_handle *trans;
70c8a91c 6468 struct extent_map *em;
4b46fce2
JB
6469 struct btrfs_key ins;
6470 u64 alloc_hint;
6471 int ret;
4b46fce2 6472
7a7eaa40 6473 trans = btrfs_join_transaction(root);
3612b495
TI
6474 if (IS_ERR(trans))
6475 return ERR_CAST(trans);
4b46fce2
JB
6476
6477 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6478
6479 alloc_hint = get_extent_allocation_hint(inode, start, len);
6480 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 6481 alloc_hint, &ins, 1);
4b46fce2
JB
6482 if (ret) {
6483 em = ERR_PTR(ret);
6484 goto out;
6485 }
6486
70c8a91c 6487 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6488 ins.offset, ins.offset, ins.offset, 0);
70c8a91c
JB
6489 if (IS_ERR(em))
6490 goto out;
4b46fce2
JB
6491
6492 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6493 ins.offset, ins.offset, 0);
6494 if (ret) {
6495 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6496 em = ERR_PTR(ret);
6497 }
6498out:
6499 btrfs_end_transaction(trans, root);
6500 return em;
6501}
6502
46bfbb5c
CM
6503/*
6504 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6505 * block must be cow'd
6506 */
6507static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
6508 struct inode *inode, u64 offset, u64 len)
6509{
6510 struct btrfs_path *path;
6511 int ret;
6512 struct extent_buffer *leaf;
6513 struct btrfs_root *root = BTRFS_I(inode)->root;
6514 struct btrfs_file_extent_item *fi;
6515 struct btrfs_key key;
6516 u64 disk_bytenr;
6517 u64 backref_offset;
6518 u64 extent_end;
6519 u64 num_bytes;
6520 int slot;
6521 int found_type;
6522
6523 path = btrfs_alloc_path();
6524 if (!path)
6525 return -ENOMEM;
6526
33345d01 6527 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
6528 offset, 0);
6529 if (ret < 0)
6530 goto out;
6531
6532 slot = path->slots[0];
6533 if (ret == 1) {
6534 if (slot == 0) {
6535 /* can't find the item, must cow */
6536 ret = 0;
6537 goto out;
6538 }
6539 slot--;
6540 }
6541 ret = 0;
6542 leaf = path->nodes[0];
6543 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6544 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6545 key.type != BTRFS_EXTENT_DATA_KEY) {
6546 /* not our file or wrong item type, must cow */
6547 goto out;
6548 }
6549
6550 if (key.offset > offset) {
6551 /* Wrong offset, must cow */
6552 goto out;
6553 }
6554
6555 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6556 found_type = btrfs_file_extent_type(leaf, fi);
6557 if (found_type != BTRFS_FILE_EXTENT_REG &&
6558 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6559 /* not a regular extent, must cow */
6560 goto out;
6561 }
6562 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6563 backref_offset = btrfs_file_extent_offset(leaf, fi);
6564
6565 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6566 if (extent_end < offset + len) {
6567 /* extent doesn't include our full range, must cow */
6568 goto out;
6569 }
6570
6571 if (btrfs_extent_readonly(root, disk_bytenr))
6572 goto out;
6573
6574 /*
6575 * look for other files referencing this extent, if we
6576 * find any we must cow
6577 */
33345d01 6578 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
6579 key.offset - backref_offset, disk_bytenr))
6580 goto out;
6581
6582 /*
6583 * adjust disk_bytenr and num_bytes to cover just the bytes
6584 * in this extent we are about to write. If there
6585 * are any csums in that range we have to cow in order
6586 * to keep the csums correct
6587 */
6588 disk_bytenr += backref_offset;
6589 disk_bytenr += offset - key.offset;
6590 num_bytes = min(offset + len, extent_end) - offset;
6591 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6592 goto out;
6593 /*
6594 * all of the above have passed, it is safe to overwrite this extent
6595 * without cow
6596 */
6597 ret = 1;
6598out:
6599 btrfs_free_path(path);
6600 return ret;
6601}
6602
eb838e73
JB
6603static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6604 struct extent_state **cached_state, int writing)
6605{
6606 struct btrfs_ordered_extent *ordered;
6607 int ret = 0;
6608
6609 while (1) {
6610 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6611 0, cached_state);
6612 /*
6613 * We're concerned with the entire range that we're going to be
6614 * doing DIO to, so we need to make sure theres no ordered
6615 * extents in this range.
6616 */
6617 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6618 lockend - lockstart + 1);
6619
6620 /*
6621 * We need to make sure there are no buffered pages in this
6622 * range either, we could have raced between the invalidate in
6623 * generic_file_direct_write and locking the extent. The
6624 * invalidate needs to happen so that reads after a write do not
6625 * get stale data.
6626 */
6627 if (!ordered && (!writing ||
6628 !test_range_bit(&BTRFS_I(inode)->io_tree,
6629 lockstart, lockend, EXTENT_UPTODATE, 0,
6630 *cached_state)))
6631 break;
6632
6633 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6634 cached_state, GFP_NOFS);
6635
6636 if (ordered) {
6637 btrfs_start_ordered_extent(inode, ordered, 1);
6638 btrfs_put_ordered_extent(ordered);
6639 } else {
6640 /* Screw you mmap */
6641 ret = filemap_write_and_wait_range(inode->i_mapping,
6642 lockstart,
6643 lockend);
6644 if (ret)
6645 break;
6646
6647 /*
6648 * If we found a page that couldn't be invalidated just
6649 * fall back to buffered.
6650 */
6651 ret = invalidate_inode_pages2_range(inode->i_mapping,
6652 lockstart >> PAGE_CACHE_SHIFT,
6653 lockend >> PAGE_CACHE_SHIFT);
6654 if (ret)
6655 break;
6656 }
6657
6658 cond_resched();
6659 }
6660
6661 return ret;
6662}
6663
69ffb543
JB
6664static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6665 u64 len, u64 orig_start,
6666 u64 block_start, u64 block_len,
cc95bef6
JB
6667 u64 orig_block_len, u64 ram_bytes,
6668 int type)
69ffb543
JB
6669{
6670 struct extent_map_tree *em_tree;
6671 struct extent_map *em;
6672 struct btrfs_root *root = BTRFS_I(inode)->root;
6673 int ret;
6674
6675 em_tree = &BTRFS_I(inode)->extent_tree;
6676 em = alloc_extent_map();
6677 if (!em)
6678 return ERR_PTR(-ENOMEM);
6679
6680 em->start = start;
6681 em->orig_start = orig_start;
2ab28f32
JB
6682 em->mod_start = start;
6683 em->mod_len = len;
69ffb543
JB
6684 em->len = len;
6685 em->block_len = block_len;
6686 em->block_start = block_start;
6687 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6688 em->orig_block_len = orig_block_len;
cc95bef6 6689 em->ram_bytes = ram_bytes;
70c8a91c 6690 em->generation = -1;
69ffb543
JB
6691 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6692 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6693 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6694
6695 do {
6696 btrfs_drop_extent_cache(inode, em->start,
6697 em->start + em->len - 1, 0);
6698 write_lock(&em_tree->lock);
09a2a8f9 6699 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6700 write_unlock(&em_tree->lock);
6701 } while (ret == -EEXIST);
6702
6703 if (ret) {
6704 free_extent_map(em);
6705 return ERR_PTR(ret);
6706 }
6707
6708 return em;
6709}
6710
6711
4b46fce2
JB
6712static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6713 struct buffer_head *bh_result, int create)
6714{
6715 struct extent_map *em;
6716 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6717 struct extent_state *cached_state = NULL;
4b46fce2 6718 u64 start = iblock << inode->i_blkbits;
eb838e73 6719 u64 lockstart, lockend;
4b46fce2 6720 u64 len = bh_result->b_size;
46bfbb5c 6721 struct btrfs_trans_handle *trans;
eb838e73 6722 int unlock_bits = EXTENT_LOCKED;
0934856d 6723 int ret = 0;
eb838e73 6724
172a5049 6725 if (create)
eb838e73 6726 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6727 else
c329861d 6728 len = min_t(u64, len, root->sectorsize);
eb838e73 6729
c329861d
JB
6730 lockstart = start;
6731 lockend = start + len - 1;
6732
eb838e73
JB
6733 /*
6734 * If this errors out it's because we couldn't invalidate pagecache for
6735 * this range and we need to fallback to buffered.
6736 */
6737 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6738 return -ENOTBLK;
6739
4b46fce2 6740 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6741 if (IS_ERR(em)) {
6742 ret = PTR_ERR(em);
6743 goto unlock_err;
6744 }
4b46fce2
JB
6745
6746 /*
6747 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6748 * io. INLINE is special, and we could probably kludge it in here, but
6749 * it's still buffered so for safety lets just fall back to the generic
6750 * buffered path.
6751 *
6752 * For COMPRESSED we _have_ to read the entire extent in so we can
6753 * decompress it, so there will be buffering required no matter what we
6754 * do, so go ahead and fallback to buffered.
6755 *
6756 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6757 * to buffered IO. Don't blame me, this is the price we pay for using
6758 * the generic code.
6759 */
6760 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6761 em->block_start == EXTENT_MAP_INLINE) {
6762 free_extent_map(em);
eb838e73
JB
6763 ret = -ENOTBLK;
6764 goto unlock_err;
4b46fce2
JB
6765 }
6766
6767 /* Just a good old fashioned hole, return */
6768 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6769 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6770 free_extent_map(em);
eb838e73 6771 goto unlock_err;
4b46fce2
JB
6772 }
6773
6774 /*
6775 * We don't allocate a new extent in the following cases
6776 *
6777 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6778 * existing extent.
6779 * 2) The extent is marked as PREALLOC. We're good to go here and can
6780 * just use the extent.
6781 *
6782 */
46bfbb5c 6783 if (!create) {
eb838e73
JB
6784 len = min(len, em->len - (start - em->start));
6785 lockstart = start + len;
6786 goto unlock;
46bfbb5c 6787 }
4b46fce2
JB
6788
6789 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6790 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6791 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6792 int type;
6793 int ret;
46bfbb5c 6794 u64 block_start;
4b46fce2
JB
6795
6796 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6797 type = BTRFS_ORDERED_PREALLOC;
6798 else
6799 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6800 len = min(len, em->len - (start - em->start));
4b46fce2 6801 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6802
6803 /*
6804 * we're not going to log anything, but we do need
6805 * to make sure the current transaction stays open
6806 * while we look for nocow cross refs
6807 */
7a7eaa40 6808 trans = btrfs_join_transaction(root);
3612b495 6809 if (IS_ERR(trans))
46bfbb5c
CM
6810 goto must_cow;
6811
6812 if (can_nocow_odirect(trans, inode, start, len) == 1) {
70c8a91c 6813 u64 orig_start = em->orig_start;
b4939680 6814 u64 orig_block_len = em->orig_block_len;
cc95bef6 6815 u64 ram_bytes = em->ram_bytes;
69ffb543
JB
6816
6817 if (type == BTRFS_ORDERED_PREALLOC) {
6818 free_extent_map(em);
6819 em = create_pinned_em(inode, start, len,
6820 orig_start,
b4939680 6821 block_start, len,
cc95bef6
JB
6822 orig_block_len,
6823 ram_bytes, type);
69ffb543
JB
6824 if (IS_ERR(em)) {
6825 btrfs_end_transaction(trans, root);
6826 goto unlock_err;
6827 }
6828 }
6829
46bfbb5c
CM
6830 ret = btrfs_add_ordered_extent_dio(inode, start,
6831 block_start, len, len, type);
6832 btrfs_end_transaction(trans, root);
6833 if (ret) {
6834 free_extent_map(em);
eb838e73 6835 goto unlock_err;
46bfbb5c
CM
6836 }
6837 goto unlock;
4b46fce2 6838 }
46bfbb5c 6839 btrfs_end_transaction(trans, root);
4b46fce2 6840 }
46bfbb5c
CM
6841must_cow:
6842 /*
6843 * this will cow the extent, reset the len in case we changed
6844 * it above
6845 */
6846 len = bh_result->b_size;
70c8a91c
JB
6847 free_extent_map(em);
6848 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6849 if (IS_ERR(em)) {
6850 ret = PTR_ERR(em);
6851 goto unlock_err;
6852 }
46bfbb5c
CM
6853 len = min(len, em->len - (start - em->start));
6854unlock:
4b46fce2
JB
6855 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6856 inode->i_blkbits;
46bfbb5c 6857 bh_result->b_size = len;
4b46fce2
JB
6858 bh_result->b_bdev = em->bdev;
6859 set_buffer_mapped(bh_result);
c3473e83
JB
6860 if (create) {
6861 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6862 set_buffer_new(bh_result);
6863
6864 /*
6865 * Need to update the i_size under the extent lock so buffered
6866 * readers will get the updated i_size when we unlock.
6867 */
6868 if (start + len > i_size_read(inode))
6869 i_size_write(inode, start + len);
0934856d 6870
172a5049
MX
6871 spin_lock(&BTRFS_I(inode)->lock);
6872 BTRFS_I(inode)->outstanding_extents++;
6873 spin_unlock(&BTRFS_I(inode)->lock);
6874
0934856d
MX
6875 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6876 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6877 &cached_state, GFP_NOFS);
6878 BUG_ON(ret);
c3473e83 6879 }
4b46fce2 6880
eb838e73
JB
6881 /*
6882 * In the case of write we need to clear and unlock the entire range,
6883 * in the case of read we need to unlock only the end area that we
6884 * aren't using if there is any left over space.
6885 */
24c03fa5 6886 if (lockstart < lockend) {
0934856d
MX
6887 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6888 lockend, unlock_bits, 1, 0,
6889 &cached_state, GFP_NOFS);
24c03fa5 6890 } else {
eb838e73 6891 free_extent_state(cached_state);
24c03fa5 6892 }
eb838e73 6893
4b46fce2
JB
6894 free_extent_map(em);
6895
6896 return 0;
eb838e73
JB
6897
6898unlock_err:
eb838e73
JB
6899 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6900 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6901 return ret;
4b46fce2
JB
6902}
6903
6904struct btrfs_dio_private {
6905 struct inode *inode;
6906 u64 logical_offset;
6907 u64 disk_bytenr;
6908 u64 bytes;
4b46fce2 6909 void *private;
e65e1535
MX
6910
6911 /* number of bios pending for this dio */
6912 atomic_t pending_bios;
6913
6914 /* IO errors */
6915 int errors;
6916
6917 struct bio *orig_bio;
4b46fce2
JB
6918};
6919
6920static void btrfs_endio_direct_read(struct bio *bio, int err)
6921{
e65e1535 6922 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6923 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6924 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6925 struct inode *inode = dip->inode;
c2cf52eb 6926 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6927 u64 start;
4b46fce2
JB
6928
6929 start = dip->logical_offset;
6930 do {
6931 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6932 struct page *page = bvec->bv_page;
6933 char *kaddr;
6934 u32 csum = ~(u32)0;
c329861d 6935 u64 private = ~(u32)0;
4b46fce2
JB
6936 unsigned long flags;
6937
c329861d
JB
6938 if (get_state_private(&BTRFS_I(inode)->io_tree,
6939 start, &private))
6940 goto failed;
4b46fce2 6941 local_irq_save(flags);
7ac687d9 6942 kaddr = kmap_atomic(page);
b0496686 6943 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6944 csum, bvec->bv_len);
6945 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6946 kunmap_atomic(kaddr);
4b46fce2
JB
6947 local_irq_restore(flags);
6948
6949 flush_dcache_page(bvec->bv_page);
c329861d
JB
6950 if (csum != private) {
6951failed:
c2cf52eb
SK
6952 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6953 (unsigned long long)btrfs_ino(inode),
6954 (unsigned long long)start,
6955 csum, (unsigned)private);
4b46fce2
JB
6956 err = -EIO;
6957 }
6958 }
6959
6960 start += bvec->bv_len;
4b46fce2
JB
6961 bvec++;
6962 } while (bvec <= bvec_end);
6963
6964 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6965 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6966 bio->bi_private = dip->private;
6967
4b46fce2 6968 kfree(dip);
c0da7aa1
JB
6969
6970 /* If we had a csum failure make sure to clear the uptodate flag */
6971 if (err)
6972 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6973 dio_end_io(bio, err);
6974}
6975
6976static void btrfs_endio_direct_write(struct bio *bio, int err)
6977{
6978 struct btrfs_dio_private *dip = bio->bi_private;
6979 struct inode *inode = dip->inode;
6980 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6981 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6982 u64 ordered_offset = dip->logical_offset;
6983 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6984 int ret;
6985
6986 if (err)
6987 goto out_done;
163cf09c
CM
6988again:
6989 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6990 &ordered_offset,
5fd02043 6991 ordered_bytes, !err);
4b46fce2 6992 if (!ret)
163cf09c 6993 goto out_test;
4b46fce2 6994
5fd02043
JB
6995 ordered->work.func = finish_ordered_fn;
6996 ordered->work.flags = 0;
6997 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6998 &ordered->work);
163cf09c
CM
6999out_test:
7000 /*
7001 * our bio might span multiple ordered extents. If we haven't
7002 * completed the accounting for the whole dio, go back and try again
7003 */
7004 if (ordered_offset < dip->logical_offset + dip->bytes) {
7005 ordered_bytes = dip->logical_offset + dip->bytes -
7006 ordered_offset;
5fd02043 7007 ordered = NULL;
163cf09c
CM
7008 goto again;
7009 }
4b46fce2
JB
7010out_done:
7011 bio->bi_private = dip->private;
7012
4b46fce2 7013 kfree(dip);
c0da7aa1
JB
7014
7015 /* If we had an error make sure to clear the uptodate flag */
7016 if (err)
7017 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
7018 dio_end_io(bio, err);
7019}
7020
eaf25d93
CM
7021static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7022 struct bio *bio, int mirror_num,
7023 unsigned long bio_flags, u64 offset)
7024{
7025 int ret;
7026 struct btrfs_root *root = BTRFS_I(inode)->root;
7027 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7028 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7029 return 0;
7030}
7031
e65e1535
MX
7032static void btrfs_end_dio_bio(struct bio *bio, int err)
7033{
7034 struct btrfs_dio_private *dip = bio->bi_private;
7035
7036 if (err) {
33345d01 7037 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 7038 "sector %#Lx len %u err no %d\n",
33345d01 7039 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 7040 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
7041 dip->errors = 1;
7042
7043 /*
7044 * before atomic variable goto zero, we must make sure
7045 * dip->errors is perceived to be set.
7046 */
7047 smp_mb__before_atomic_dec();
7048 }
7049
7050 /* if there are more bios still pending for this dio, just exit */
7051 if (!atomic_dec_and_test(&dip->pending_bios))
7052 goto out;
7053
7054 if (dip->errors)
7055 bio_io_error(dip->orig_bio);
7056 else {
7057 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
7058 bio_endio(dip->orig_bio, 0);
7059 }
7060out:
7061 bio_put(bio);
7062}
7063
7064static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7065 u64 first_sector, gfp_t gfp_flags)
7066{
7067 int nr_vecs = bio_get_nr_vecs(bdev);
7068 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7069}
7070
7071static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7072 int rw, u64 file_offset, int skip_sum,
c329861d 7073 int async_submit)
e65e1535
MX
7074{
7075 int write = rw & REQ_WRITE;
7076 struct btrfs_root *root = BTRFS_I(inode)->root;
7077 int ret;
7078
b812ce28
JB
7079 if (async_submit)
7080 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7081
e65e1535 7082 bio_get(bio);
5fd02043
JB
7083
7084 if (!write) {
7085 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7086 if (ret)
7087 goto err;
7088 }
e65e1535 7089
1ae39938
JB
7090 if (skip_sum)
7091 goto map;
7092
7093 if (write && async_submit) {
e65e1535
MX
7094 ret = btrfs_wq_submit_bio(root->fs_info,
7095 inode, rw, bio, 0, 0,
7096 file_offset,
7097 __btrfs_submit_bio_start_direct_io,
7098 __btrfs_submit_bio_done);
7099 goto err;
1ae39938
JB
7100 } else if (write) {
7101 /*
7102 * If we aren't doing async submit, calculate the csum of the
7103 * bio now.
7104 */
7105 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7106 if (ret)
7107 goto err;
c2db1073 7108 } else if (!skip_sum) {
c329861d 7109 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
7110 if (ret)
7111 goto err;
7112 }
e65e1535 7113
1ae39938
JB
7114map:
7115 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7116err:
7117 bio_put(bio);
7118 return ret;
7119}
7120
7121static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7122 int skip_sum)
7123{
7124 struct inode *inode = dip->inode;
7125 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7126 struct bio *bio;
7127 struct bio *orig_bio = dip->orig_bio;
7128 struct bio_vec *bvec = orig_bio->bi_io_vec;
7129 u64 start_sector = orig_bio->bi_sector;
7130 u64 file_offset = dip->logical_offset;
7131 u64 submit_len = 0;
7132 u64 map_length;
7133 int nr_pages = 0;
e65e1535 7134 int ret = 0;
1ae39938 7135 int async_submit = 0;
e65e1535 7136
e65e1535 7137 map_length = orig_bio->bi_size;
53b381b3 7138 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7139 &map_length, NULL, 0);
7140 if (ret) {
64728bbb 7141 bio_put(orig_bio);
e65e1535
MX
7142 return -EIO;
7143 }
02f57c7a
JB
7144 if (map_length >= orig_bio->bi_size) {
7145 bio = orig_bio;
7146 goto submit;
7147 }
7148
53b381b3
DW
7149 /* async crcs make it difficult to collect full stripe writes. */
7150 if (btrfs_get_alloc_profile(root, 1) &
7151 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7152 async_submit = 0;
7153 else
7154 async_submit = 1;
7155
02f57c7a
JB
7156 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7157 if (!bio)
7158 return -ENOMEM;
7159 bio->bi_private = dip;
7160 bio->bi_end_io = btrfs_end_dio_bio;
7161 atomic_inc(&dip->pending_bios);
7162
e65e1535
MX
7163 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7164 if (unlikely(map_length < submit_len + bvec->bv_len ||
7165 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7166 bvec->bv_offset) < bvec->bv_len)) {
7167 /*
7168 * inc the count before we submit the bio so
7169 * we know the end IO handler won't happen before
7170 * we inc the count. Otherwise, the dip might get freed
7171 * before we're done setting it up
7172 */
7173 atomic_inc(&dip->pending_bios);
7174 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7175 file_offset, skip_sum,
c329861d 7176 async_submit);
e65e1535
MX
7177 if (ret) {
7178 bio_put(bio);
7179 atomic_dec(&dip->pending_bios);
7180 goto out_err;
7181 }
7182
e65e1535
MX
7183 start_sector += submit_len >> 9;
7184 file_offset += submit_len;
7185
7186 submit_len = 0;
7187 nr_pages = 0;
7188
7189 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7190 start_sector, GFP_NOFS);
7191 if (!bio)
7192 goto out_err;
7193 bio->bi_private = dip;
7194 bio->bi_end_io = btrfs_end_dio_bio;
7195
7196 map_length = orig_bio->bi_size;
53b381b3 7197 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7198 start_sector << 9,
e65e1535
MX
7199 &map_length, NULL, 0);
7200 if (ret) {
7201 bio_put(bio);
7202 goto out_err;
7203 }
7204 } else {
7205 submit_len += bvec->bv_len;
7206 nr_pages ++;
7207 bvec++;
7208 }
7209 }
7210
02f57c7a 7211submit:
e65e1535 7212 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7213 async_submit);
e65e1535
MX
7214 if (!ret)
7215 return 0;
7216
7217 bio_put(bio);
7218out_err:
7219 dip->errors = 1;
7220 /*
7221 * before atomic variable goto zero, we must
7222 * make sure dip->errors is perceived to be set.
7223 */
7224 smp_mb__before_atomic_dec();
7225 if (atomic_dec_and_test(&dip->pending_bios))
7226 bio_io_error(dip->orig_bio);
7227
7228 /* bio_end_io() will handle error, so we needn't return it */
7229 return 0;
7230}
7231
4b46fce2
JB
7232static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
7233 loff_t file_offset)
7234{
7235 struct btrfs_root *root = BTRFS_I(inode)->root;
7236 struct btrfs_dio_private *dip;
7237 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 7238 int skip_sum;
7b6d91da 7239 int write = rw & REQ_WRITE;
4b46fce2
JB
7240 int ret = 0;
7241
7242 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7243
7244 dip = kmalloc(sizeof(*dip), GFP_NOFS);
7245 if (!dip) {
7246 ret = -ENOMEM;
7247 goto free_ordered;
7248 }
4b46fce2
JB
7249
7250 dip->private = bio->bi_private;
7251 dip->inode = inode;
7252 dip->logical_offset = file_offset;
7253
4b46fce2
JB
7254 dip->bytes = 0;
7255 do {
7256 dip->bytes += bvec->bv_len;
7257 bvec++;
7258 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
7259
46bfbb5c 7260 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 7261 bio->bi_private = dip;
e65e1535
MX
7262 dip->errors = 0;
7263 dip->orig_bio = bio;
7264 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7265
7266 if (write)
7267 bio->bi_end_io = btrfs_endio_direct_write;
7268 else
7269 bio->bi_end_io = btrfs_endio_direct_read;
7270
e65e1535
MX
7271 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7272 if (!ret)
eaf25d93 7273 return;
4b46fce2
JB
7274free_ordered:
7275 /*
7276 * If this is a write, we need to clean up the reserved space and kill
7277 * the ordered extent.
7278 */
7279 if (write) {
7280 struct btrfs_ordered_extent *ordered;
955256f2 7281 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7282 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7284 btrfs_free_reserved_extent(root, ordered->start,
7285 ordered->disk_len);
7286 btrfs_put_ordered_extent(ordered);
7287 btrfs_put_ordered_extent(ordered);
7288 }
7289 bio_endio(bio, ret);
7290}
7291
5a5f79b5
CM
7292static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7293 const struct iovec *iov, loff_t offset,
7294 unsigned long nr_segs)
7295{
7296 int seg;
a1b75f7d 7297 int i;
5a5f79b5
CM
7298 size_t size;
7299 unsigned long addr;
7300 unsigned blocksize_mask = root->sectorsize - 1;
7301 ssize_t retval = -EINVAL;
7302 loff_t end = offset;
7303
7304 if (offset & blocksize_mask)
7305 goto out;
7306
7307 /* Check the memory alignment. Blocks cannot straddle pages */
7308 for (seg = 0; seg < nr_segs; seg++) {
7309 addr = (unsigned long)iov[seg].iov_base;
7310 size = iov[seg].iov_len;
7311 end += size;
a1b75f7d 7312 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7313 goto out;
a1b75f7d
JB
7314
7315 /* If this is a write we don't need to check anymore */
7316 if (rw & WRITE)
7317 continue;
7318
7319 /*
7320 * Check to make sure we don't have duplicate iov_base's in this
7321 * iovec, if so return EINVAL, otherwise we'll get csum errors
7322 * when reading back.
7323 */
7324 for (i = seg + 1; i < nr_segs; i++) {
7325 if (iov[seg].iov_base == iov[i].iov_base)
7326 goto out;
7327 }
5a5f79b5
CM
7328 }
7329 retval = 0;
7330out:
7331 return retval;
7332}
eb838e73 7333
16432985
CM
7334static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7335 const struct iovec *iov, loff_t offset,
7336 unsigned long nr_segs)
7337{
4b46fce2
JB
7338 struct file *file = iocb->ki_filp;
7339 struct inode *inode = file->f_mapping->host;
0934856d 7340 size_t count = 0;
2e60a51e 7341 int flags = 0;
38851cc1
MX
7342 bool wakeup = true;
7343 bool relock = false;
0934856d 7344 ssize_t ret;
4b46fce2 7345
5a5f79b5 7346 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7347 offset, nr_segs))
5a5f79b5 7348 return 0;
3f7c579c 7349
38851cc1
MX
7350 atomic_inc(&inode->i_dio_count);
7351 smp_mb__after_atomic_inc();
7352
0934856d
MX
7353 if (rw & WRITE) {
7354 count = iov_length(iov, nr_segs);
38851cc1
MX
7355 /*
7356 * If the write DIO is beyond the EOF, we need update
7357 * the isize, but it is protected by i_mutex. So we can
7358 * not unlock the i_mutex at this case.
7359 */
7360 if (offset + count <= inode->i_size) {
7361 mutex_unlock(&inode->i_mutex);
7362 relock = true;
7363 }
0934856d
MX
7364 ret = btrfs_delalloc_reserve_space(inode, count);
7365 if (ret)
38851cc1
MX
7366 goto out;
7367 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7368 &BTRFS_I(inode)->runtime_flags))) {
7369 inode_dio_done(inode);
7370 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7371 wakeup = false;
0934856d
MX
7372 }
7373
7374 ret = __blockdev_direct_IO(rw, iocb, inode,
7375 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7376 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7377 btrfs_submit_direct, flags);
0934856d
MX
7378 if (rw & WRITE) {
7379 if (ret < 0 && ret != -EIOCBQUEUED)
7380 btrfs_delalloc_release_space(inode, count);
172a5049 7381 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7382 btrfs_delalloc_release_space(inode,
7383 count - (size_t)ret);
172a5049
MX
7384 else
7385 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7386 }
38851cc1 7387out:
2e60a51e
MX
7388 if (wakeup)
7389 inode_dio_done(inode);
38851cc1
MX
7390 if (relock)
7391 mutex_lock(&inode->i_mutex);
0934856d
MX
7392
7393 return ret;
16432985
CM
7394}
7395
05dadc09
TI
7396#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7397
1506fcc8
YS
7398static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7399 __u64 start, __u64 len)
7400{
05dadc09
TI
7401 int ret;
7402
7403 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7404 if (ret)
7405 return ret;
7406
ec29ed5b 7407 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7408}
7409
a52d9a80 7410int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7411{
d1310b2e
CM
7412 struct extent_io_tree *tree;
7413 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7414 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7415}
1832a6d5 7416
a52d9a80 7417static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7418{
d1310b2e 7419 struct extent_io_tree *tree;
b888db2b
CM
7420
7421
7422 if (current->flags & PF_MEMALLOC) {
7423 redirty_page_for_writepage(wbc, page);
7424 unlock_page(page);
7425 return 0;
7426 }
d1310b2e 7427 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7428 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7429}
7430
f421950f
CM
7431int btrfs_writepages(struct address_space *mapping,
7432 struct writeback_control *wbc)
b293f02e 7433{
d1310b2e 7434 struct extent_io_tree *tree;
771ed689 7435
d1310b2e 7436 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7437 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7438}
7439
3ab2fb5a
CM
7440static int
7441btrfs_readpages(struct file *file, struct address_space *mapping,
7442 struct list_head *pages, unsigned nr_pages)
7443{
d1310b2e
CM
7444 struct extent_io_tree *tree;
7445 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7446 return extent_readpages(tree, mapping, pages, nr_pages,
7447 btrfs_get_extent);
7448}
e6dcd2dc 7449static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7450{
d1310b2e
CM
7451 struct extent_io_tree *tree;
7452 struct extent_map_tree *map;
a52d9a80 7453 int ret;
8c2383c3 7454
d1310b2e
CM
7455 tree = &BTRFS_I(page->mapping->host)->io_tree;
7456 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7457 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7458 if (ret == 1) {
7459 ClearPagePrivate(page);
7460 set_page_private(page, 0);
7461 page_cache_release(page);
39279cc3 7462 }
a52d9a80 7463 return ret;
39279cc3
CM
7464}
7465
e6dcd2dc
CM
7466static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7467{
98509cfc
CM
7468 if (PageWriteback(page) || PageDirty(page))
7469 return 0;
b335b003 7470 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7471}
7472
a52d9a80 7473static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 7474{
5fd02043 7475 struct inode *inode = page->mapping->host;
d1310b2e 7476 struct extent_io_tree *tree;
e6dcd2dc 7477 struct btrfs_ordered_extent *ordered;
2ac55d41 7478 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7479 u64 page_start = page_offset(page);
7480 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7481
8b62b72b
CM
7482 /*
7483 * we have the page locked, so new writeback can't start,
7484 * and the dirty bit won't be cleared while we are here.
7485 *
7486 * Wait for IO on this page so that we can safely clear
7487 * the PagePrivate2 bit and do ordered accounting
7488 */
e6dcd2dc 7489 wait_on_page_writeback(page);
8b62b72b 7490
5fd02043 7491 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7492 if (offset) {
7493 btrfs_releasepage(page, GFP_NOFS);
7494 return;
7495 }
d0082371 7496 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7497 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7498 if (ordered) {
eb84ae03
CM
7499 /*
7500 * IO on this page will never be started, so we need
7501 * to account for any ordered extents now
7502 */
e6dcd2dc
CM
7503 clear_extent_bit(tree, page_start, page_end,
7504 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7505 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7506 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7507 /*
7508 * whoever cleared the private bit is responsible
7509 * for the finish_ordered_io
7510 */
5fd02043
JB
7511 if (TestClearPagePrivate2(page) &&
7512 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7513 PAGE_CACHE_SIZE, 1)) {
7514 btrfs_finish_ordered_io(ordered);
8b62b72b 7515 }
e6dcd2dc 7516 btrfs_put_ordered_extent(ordered);
2ac55d41 7517 cached_state = NULL;
d0082371 7518 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7519 }
7520 clear_extent_bit(tree, page_start, page_end,
32c00aff 7521 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7522 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7523 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7524 __btrfs_releasepage(page, GFP_NOFS);
7525
4a096752 7526 ClearPageChecked(page);
9ad6b7bc 7527 if (PagePrivate(page)) {
9ad6b7bc
CM
7528 ClearPagePrivate(page);
7529 set_page_private(page, 0);
7530 page_cache_release(page);
7531 }
39279cc3
CM
7532}
7533
9ebefb18
CM
7534/*
7535 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7536 * called from a page fault handler when a page is first dirtied. Hence we must
7537 * be careful to check for EOF conditions here. We set the page up correctly
7538 * for a written page which means we get ENOSPC checking when writing into
7539 * holes and correct delalloc and unwritten extent mapping on filesystems that
7540 * support these features.
7541 *
7542 * We are not allowed to take the i_mutex here so we have to play games to
7543 * protect against truncate races as the page could now be beyond EOF. Because
7544 * vmtruncate() writes the inode size before removing pages, once we have the
7545 * page lock we can determine safely if the page is beyond EOF. If it is not
7546 * beyond EOF, then the page is guaranteed safe against truncation until we
7547 * unlock the page.
7548 */
c2ec175c 7549int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7550{
c2ec175c 7551 struct page *page = vmf->page;
496ad9aa 7552 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7553 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7554 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7555 struct btrfs_ordered_extent *ordered;
2ac55d41 7556 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7557 char *kaddr;
7558 unsigned long zero_start;
9ebefb18 7559 loff_t size;
1832a6d5 7560 int ret;
9998eb70 7561 int reserved = 0;
a52d9a80 7562 u64 page_start;
e6dcd2dc 7563 u64 page_end;
9ebefb18 7564
b2b5ef5c 7565 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7566 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7567 if (!ret) {
e41f941a 7568 ret = file_update_time(vma->vm_file);
9998eb70
CM
7569 reserved = 1;
7570 }
56a76f82
NP
7571 if (ret) {
7572 if (ret == -ENOMEM)
7573 ret = VM_FAULT_OOM;
7574 else /* -ENOSPC, -EIO, etc */
7575 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7576 if (reserved)
7577 goto out;
7578 goto out_noreserve;
56a76f82 7579 }
1832a6d5 7580
56a76f82 7581 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7582again:
9ebefb18 7583 lock_page(page);
9ebefb18 7584 size = i_size_read(inode);
e6dcd2dc
CM
7585 page_start = page_offset(page);
7586 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7587
9ebefb18 7588 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7589 (page_start >= size)) {
9ebefb18
CM
7590 /* page got truncated out from underneath us */
7591 goto out_unlock;
7592 }
e6dcd2dc
CM
7593 wait_on_page_writeback(page);
7594
d0082371 7595 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7596 set_page_extent_mapped(page);
7597
eb84ae03
CM
7598 /*
7599 * we can't set the delalloc bits if there are pending ordered
7600 * extents. Drop our locks and wait for them to finish
7601 */
e6dcd2dc
CM
7602 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7603 if (ordered) {
2ac55d41
JB
7604 unlock_extent_cached(io_tree, page_start, page_end,
7605 &cached_state, GFP_NOFS);
e6dcd2dc 7606 unlock_page(page);
eb84ae03 7607 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7608 btrfs_put_ordered_extent(ordered);
7609 goto again;
7610 }
7611
fbf19087
JB
7612 /*
7613 * XXX - page_mkwrite gets called every time the page is dirtied, even
7614 * if it was already dirty, so for space accounting reasons we need to
7615 * clear any delalloc bits for the range we are fixing to save. There
7616 * is probably a better way to do this, but for now keep consistent with
7617 * prepare_pages in the normal write path.
7618 */
2ac55d41 7619 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7620 EXTENT_DIRTY | EXTENT_DELALLOC |
7621 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7622 0, 0, &cached_state, GFP_NOFS);
fbf19087 7623
2ac55d41
JB
7624 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7625 &cached_state);
9ed74f2d 7626 if (ret) {
2ac55d41
JB
7627 unlock_extent_cached(io_tree, page_start, page_end,
7628 &cached_state, GFP_NOFS);
9ed74f2d
JB
7629 ret = VM_FAULT_SIGBUS;
7630 goto out_unlock;
7631 }
e6dcd2dc 7632 ret = 0;
9ebefb18
CM
7633
7634 /* page is wholly or partially inside EOF */
a52d9a80 7635 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7636 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7637 else
e6dcd2dc 7638 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7639
e6dcd2dc
CM
7640 if (zero_start != PAGE_CACHE_SIZE) {
7641 kaddr = kmap(page);
7642 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7643 flush_dcache_page(page);
7644 kunmap(page);
7645 }
247e743c 7646 ClearPageChecked(page);
e6dcd2dc 7647 set_page_dirty(page);
50a9b214 7648 SetPageUptodate(page);
5a3f23d5 7649
257c62e1
CM
7650 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7651 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7652 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7653
2ac55d41 7654 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7655
7656out_unlock:
b2b5ef5c
JK
7657 if (!ret) {
7658 sb_end_pagefault(inode->i_sb);
50a9b214 7659 return VM_FAULT_LOCKED;
b2b5ef5c 7660 }
9ebefb18 7661 unlock_page(page);
1832a6d5 7662out:
ec39e180 7663 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7664out_noreserve:
b2b5ef5c 7665 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7666 return ret;
7667}
7668
a41ad394 7669static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7670{
7671 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7672 struct btrfs_block_rsv *rsv;
39279cc3 7673 int ret;
3893e33b 7674 int err = 0;
39279cc3 7675 struct btrfs_trans_handle *trans;
dbe674a9 7676 u64 mask = root->sectorsize - 1;
07127184 7677 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7678
2aaa6655 7679 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 7680 if (ret)
a41ad394 7681 return ret;
8082510e 7682
4a096752 7683 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7684 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7685
fcb80c2a
JB
7686 /*
7687 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7688 * 3 things going on here
7689 *
7690 * 1) We need to reserve space for our orphan item and the space to
7691 * delete our orphan item. Lord knows we don't want to have a dangling
7692 * orphan item because we didn't reserve space to remove it.
7693 *
7694 * 2) We need to reserve space to update our inode.
7695 *
7696 * 3) We need to have something to cache all the space that is going to
7697 * be free'd up by the truncate operation, but also have some slack
7698 * space reserved in case it uses space during the truncate (thank you
7699 * very much snapshotting).
7700 *
7701 * And we need these to all be seperate. The fact is we can use alot of
7702 * space doing the truncate, and we have no earthly idea how much space
7703 * we will use, so we need the truncate reservation to be seperate so it
7704 * doesn't end up using space reserved for updating the inode or
7705 * removing the orphan item. We also need to be able to stop the
7706 * transaction and start a new one, which means we need to be able to
7707 * update the inode several times, and we have no idea of knowing how
7708 * many times that will be, so we can't just reserve 1 item for the
7709 * entirety of the opration, so that has to be done seperately as well.
7710 * Then there is the orphan item, which does indeed need to be held on
7711 * to for the whole operation, and we need nobody to touch this reserved
7712 * space except the orphan code.
7713 *
7714 * So that leaves us with
7715 *
7716 * 1) root->orphan_block_rsv - for the orphan deletion.
7717 * 2) rsv - for the truncate reservation, which we will steal from the
7718 * transaction reservation.
7719 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7720 * updating the inode.
7721 */
66d8f3dd 7722 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7723 if (!rsv)
7724 return -ENOMEM;
4a338542 7725 rsv->size = min_size;
ca7e70f5 7726 rsv->failfast = 1;
f0cd846e 7727
907cbceb 7728 /*
07127184 7729 * 1 for the truncate slack space
907cbceb
JB
7730 * 1 for updating the inode.
7731 */
f3fe820c 7732 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7733 if (IS_ERR(trans)) {
7734 err = PTR_ERR(trans);
7735 goto out;
7736 }
f0cd846e 7737
907cbceb
JB
7738 /* Migrate the slack space for the truncate to our reserve */
7739 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7740 min_size);
fcb80c2a 7741 BUG_ON(ret);
f0cd846e 7742
5a3f23d5
CM
7743 /*
7744 * setattr is responsible for setting the ordered_data_close flag,
7745 * but that is only tested during the last file release. That
7746 * could happen well after the next commit, leaving a great big
7747 * window where new writes may get lost if someone chooses to write
7748 * to this file after truncating to zero
7749 *
7750 * The inode doesn't have any dirty data here, and so if we commit
7751 * this is a noop. If someone immediately starts writing to the inode
7752 * it is very likely we'll catch some of their writes in this
7753 * transaction, and the commit will find this file on the ordered
7754 * data list with good things to send down.
7755 *
7756 * This is a best effort solution, there is still a window where
7757 * using truncate to replace the contents of the file will
7758 * end up with a zero length file after a crash.
7759 */
72ac3c0d
JB
7760 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7761 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7762 btrfs_add_ordered_operation(trans, root, inode);
7763
5dc562c5
JB
7764 /*
7765 * So if we truncate and then write and fsync we normally would just
7766 * write the extents that changed, which is a problem if we need to
7767 * first truncate that entire inode. So set this flag so we write out
7768 * all of the extents in the inode to the sync log so we're completely
7769 * safe.
7770 */
7771 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7772 trans->block_rsv = rsv;
907cbceb 7773
8082510e
YZ
7774 while (1) {
7775 ret = btrfs_truncate_inode_items(trans, root, inode,
7776 inode->i_size,
7777 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7778 if (ret != -ENOSPC) {
3893e33b 7779 err = ret;
8082510e 7780 break;
3893e33b 7781 }
39279cc3 7782
fcb80c2a 7783 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7784 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7785 if (ret) {
7786 err = ret;
7787 break;
7788 }
ca7e70f5 7789
8082510e 7790 btrfs_end_transaction(trans, root);
b53d3f5d 7791 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7792
7793 trans = btrfs_start_transaction(root, 2);
7794 if (IS_ERR(trans)) {
7795 ret = err = PTR_ERR(trans);
7796 trans = NULL;
7797 break;
7798 }
7799
7800 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7801 rsv, min_size);
7802 BUG_ON(ret); /* shouldn't happen */
7803 trans->block_rsv = rsv;
8082510e
YZ
7804 }
7805
7806 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7807 trans->block_rsv = root->orphan_block_rsv;
8082510e 7808 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7809 if (ret)
7810 err = ret;
8082510e
YZ
7811 }
7812
917c16b2
CM
7813 if (trans) {
7814 trans->block_rsv = &root->fs_info->trans_block_rsv;
7815 ret = btrfs_update_inode(trans, root, inode);
7816 if (ret && !err)
7817 err = ret;
7b128766 7818
7ad85bb7 7819 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7820 btrfs_btree_balance_dirty(root);
917c16b2 7821 }
fcb80c2a
JB
7822
7823out:
7824 btrfs_free_block_rsv(root, rsv);
7825
3893e33b
JB
7826 if (ret && !err)
7827 err = ret;
a41ad394 7828
3893e33b 7829 return err;
39279cc3
CM
7830}
7831
d352ac68
CM
7832/*
7833 * create a new subvolume directory/inode (helper for the ioctl).
7834 */
d2fb3437 7835int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7836 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7837{
39279cc3 7838 struct inode *inode;
76dda93c 7839 int err;
00e4e6b3 7840 u64 index = 0;
39279cc3 7841
12fc9d09
FA
7842 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7843 new_dirid, new_dirid,
7844 S_IFDIR | (~current_umask() & S_IRWXUGO),
7845 &index);
54aa1f4d 7846 if (IS_ERR(inode))
f46b5a66 7847 return PTR_ERR(inode);
39279cc3
CM
7848 inode->i_op = &btrfs_dir_inode_operations;
7849 inode->i_fop = &btrfs_dir_file_operations;
7850
bfe86848 7851 set_nlink(inode, 1);
dbe674a9 7852 btrfs_i_size_write(inode, 0);
3b96362c 7853
76dda93c 7854 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7855
76dda93c 7856 iput(inode);
ce598979 7857 return err;
39279cc3
CM
7858}
7859
39279cc3
CM
7860struct inode *btrfs_alloc_inode(struct super_block *sb)
7861{
7862 struct btrfs_inode *ei;
2ead6ae7 7863 struct inode *inode;
39279cc3
CM
7864
7865 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7866 if (!ei)
7867 return NULL;
2ead6ae7
YZ
7868
7869 ei->root = NULL;
2ead6ae7 7870 ei->generation = 0;
15ee9bc7 7871 ei->last_trans = 0;
257c62e1 7872 ei->last_sub_trans = 0;
e02119d5 7873 ei->logged_trans = 0;
2ead6ae7 7874 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7875 ei->disk_i_size = 0;
7876 ei->flags = 0;
7709cde3 7877 ei->csum_bytes = 0;
2ead6ae7
YZ
7878 ei->index_cnt = (u64)-1;
7879 ei->last_unlink_trans = 0;
46d8bc34 7880 ei->last_log_commit = 0;
2ead6ae7 7881
9e0baf60
JB
7882 spin_lock_init(&ei->lock);
7883 ei->outstanding_extents = 0;
7884 ei->reserved_extents = 0;
2ead6ae7 7885
72ac3c0d 7886 ei->runtime_flags = 0;
261507a0 7887 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7888
16cdcec7
MX
7889 ei->delayed_node = NULL;
7890
2ead6ae7 7891 inode = &ei->vfs_inode;
a8067e02 7892 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7893 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7894 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7895 ei->io_tree.track_uptodate = 1;
7896 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7897 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7898 mutex_init(&ei->log_mutex);
f248679e 7899 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7900 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7901 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7902 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7903 RB_CLEAR_NODE(&ei->rb_node);
7904
7905 return inode;
39279cc3
CM
7906}
7907
fa0d7e3d
NP
7908static void btrfs_i_callback(struct rcu_head *head)
7909{
7910 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7911 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7912}
7913
39279cc3
CM
7914void btrfs_destroy_inode(struct inode *inode)
7915{
e6dcd2dc 7916 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7917 struct btrfs_root *root = BTRFS_I(inode)->root;
7918
b3d9b7a3 7919 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7920 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7921 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7922 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7923 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7924 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7925
a6dbd429
JB
7926 /*
7927 * This can happen where we create an inode, but somebody else also
7928 * created the same inode and we need to destroy the one we already
7929 * created.
7930 */
7931 if (!root)
7932 goto free;
7933
5a3f23d5
CM
7934 /*
7935 * Make sure we're properly removed from the ordered operation
7936 * lists.
7937 */
7938 smp_mb();
7939 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7940 spin_lock(&root->fs_info->ordered_extent_lock);
7941 list_del_init(&BTRFS_I(inode)->ordered_operations);
7942 spin_unlock(&root->fs_info->ordered_extent_lock);
7943 }
7944
8a35d95f
JB
7945 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7946 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7947 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7948 (unsigned long long)btrfs_ino(inode));
8a35d95f 7949 atomic_dec(&root->orphan_inodes);
7b128766 7950 }
7b128766 7951
d397712b 7952 while (1) {
e6dcd2dc
CM
7953 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7954 if (!ordered)
7955 break;
7956 else {
c2cf52eb
SK
7957 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7958 (unsigned long long)ordered->file_offset,
7959 (unsigned long long)ordered->len);
e6dcd2dc
CM
7960 btrfs_remove_ordered_extent(inode, ordered);
7961 btrfs_put_ordered_extent(ordered);
7962 btrfs_put_ordered_extent(ordered);
7963 }
7964 }
5d4f98a2 7965 inode_tree_del(inode);
5b21f2ed 7966 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7967free:
16cdcec7 7968 btrfs_remove_delayed_node(inode);
fa0d7e3d 7969 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7970}
7971
45321ac5 7972int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7973{
7974 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7975
fa6ac876 7976 /* the snap/subvol tree is on deleting */
0af3d00b 7977 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7978 root != root->fs_info->tree_root)
45321ac5 7979 return 1;
76dda93c 7980 else
45321ac5 7981 return generic_drop_inode(inode);
76dda93c
YZ
7982}
7983
0ee0fda0 7984static void init_once(void *foo)
39279cc3
CM
7985{
7986 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7987
7988 inode_init_once(&ei->vfs_inode);
7989}
7990
7991void btrfs_destroy_cachep(void)
7992{
8c0a8537
KS
7993 /*
7994 * Make sure all delayed rcu free inodes are flushed before we
7995 * destroy cache.
7996 */
7997 rcu_barrier();
39279cc3
CM
7998 if (btrfs_inode_cachep)
7999 kmem_cache_destroy(btrfs_inode_cachep);
8000 if (btrfs_trans_handle_cachep)
8001 kmem_cache_destroy(btrfs_trans_handle_cachep);
8002 if (btrfs_transaction_cachep)
8003 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8004 if (btrfs_path_cachep)
8005 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8006 if (btrfs_free_space_cachep)
8007 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8008 if (btrfs_delalloc_work_cachep)
8009 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8010}
8011
8012int btrfs_init_cachep(void)
8013{
837e1972 8014 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8015 sizeof(struct btrfs_inode), 0,
8016 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8017 if (!btrfs_inode_cachep)
8018 goto fail;
9601e3f6 8019
837e1972 8020 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8021 sizeof(struct btrfs_trans_handle), 0,
8022 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8023 if (!btrfs_trans_handle_cachep)
8024 goto fail;
9601e3f6 8025
837e1972 8026 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8027 sizeof(struct btrfs_transaction), 0,
8028 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8029 if (!btrfs_transaction_cachep)
8030 goto fail;
9601e3f6 8031
837e1972 8032 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8033 sizeof(struct btrfs_path), 0,
8034 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8035 if (!btrfs_path_cachep)
8036 goto fail;
9601e3f6 8037
837e1972 8038 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8039 sizeof(struct btrfs_free_space), 0,
8040 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8041 if (!btrfs_free_space_cachep)
8042 goto fail;
8043
8ccf6f19
MX
8044 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8045 sizeof(struct btrfs_delalloc_work), 0,
8046 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8047 NULL);
8048 if (!btrfs_delalloc_work_cachep)
8049 goto fail;
8050
39279cc3
CM
8051 return 0;
8052fail:
8053 btrfs_destroy_cachep();
8054 return -ENOMEM;
8055}
8056
8057static int btrfs_getattr(struct vfsmount *mnt,
8058 struct dentry *dentry, struct kstat *stat)
8059{
df0af1a5 8060 u64 delalloc_bytes;
39279cc3 8061 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8062 u32 blocksize = inode->i_sb->s_blocksize;
8063
39279cc3 8064 generic_fillattr(inode, stat);
0ee5dc67 8065 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8066 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8067
8068 spin_lock(&BTRFS_I(inode)->lock);
8069 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8070 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8071 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8072 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8073 return 0;
8074}
8075
d397712b
CM
8076static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8077 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8078{
8079 struct btrfs_trans_handle *trans;
8080 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8081 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8082 struct inode *new_inode = new_dentry->d_inode;
8083 struct inode *old_inode = old_dentry->d_inode;
8084 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8085 u64 index = 0;
4df27c4d 8086 u64 root_objectid;
39279cc3 8087 int ret;
33345d01 8088 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8089
33345d01 8090 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8091 return -EPERM;
8092
4df27c4d 8093 /* we only allow rename subvolume link between subvolumes */
33345d01 8094 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8095 return -EXDEV;
8096
33345d01
LZ
8097 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8098 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8099 return -ENOTEMPTY;
5f39d397 8100
4df27c4d
YZ
8101 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8102 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8103 return -ENOTEMPTY;
9c52057c
CM
8104
8105
8106 /* check for collisions, even if the name isn't there */
8107 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8108 new_dentry->d_name.name,
8109 new_dentry->d_name.len);
8110
8111 if (ret) {
8112 if (ret == -EEXIST) {
8113 /* we shouldn't get
8114 * eexist without a new_inode */
8115 if (!new_inode) {
8116 WARN_ON(1);
8117 return ret;
8118 }
8119 } else {
8120 /* maybe -EOVERFLOW */
8121 return ret;
8122 }
8123 }
8124 ret = 0;
8125
5a3f23d5
CM
8126 /*
8127 * we're using rename to replace one file with another.
8128 * and the replacement file is large. Start IO on it now so
8129 * we don't add too much work to the end of the transaction
8130 */
4baf8c92 8131 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8132 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8133 filemap_flush(old_inode->i_mapping);
8134
76dda93c 8135 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8136 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8137 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8138 /*
8139 * We want to reserve the absolute worst case amount of items. So if
8140 * both inodes are subvols and we need to unlink them then that would
8141 * require 4 item modifications, but if they are both normal inodes it
8142 * would require 5 item modifications, so we'll assume their normal
8143 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8144 * should cover the worst case number of items we'll modify.
8145 */
6e137ed3 8146 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8147 if (IS_ERR(trans)) {
8148 ret = PTR_ERR(trans);
8149 goto out_notrans;
8150 }
76dda93c 8151
4df27c4d
YZ
8152 if (dest != root)
8153 btrfs_record_root_in_trans(trans, dest);
5f39d397 8154
a5719521
YZ
8155 ret = btrfs_set_inode_index(new_dir, &index);
8156 if (ret)
8157 goto out_fail;
5a3f23d5 8158
33345d01 8159 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8160 /* force full log commit if subvolume involved. */
8161 root->fs_info->last_trans_log_full_commit = trans->transid;
8162 } else {
a5719521
YZ
8163 ret = btrfs_insert_inode_ref(trans, dest,
8164 new_dentry->d_name.name,
8165 new_dentry->d_name.len,
33345d01
LZ
8166 old_ino,
8167 btrfs_ino(new_dir), index);
a5719521
YZ
8168 if (ret)
8169 goto out_fail;
4df27c4d
YZ
8170 /*
8171 * this is an ugly little race, but the rename is required
8172 * to make sure that if we crash, the inode is either at the
8173 * old name or the new one. pinning the log transaction lets
8174 * us make sure we don't allow a log commit to come in after
8175 * we unlink the name but before we add the new name back in.
8176 */
8177 btrfs_pin_log_trans(root);
8178 }
5a3f23d5
CM
8179 /*
8180 * make sure the inode gets flushed if it is replacing
8181 * something.
8182 */
33345d01 8183 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8184 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8185
0c4d2d95
JB
8186 inode_inc_iversion(old_dir);
8187 inode_inc_iversion(new_dir);
8188 inode_inc_iversion(old_inode);
39279cc3
CM
8189 old_dir->i_ctime = old_dir->i_mtime = ctime;
8190 new_dir->i_ctime = new_dir->i_mtime = ctime;
8191 old_inode->i_ctime = ctime;
5f39d397 8192
12fcfd22
CM
8193 if (old_dentry->d_parent != new_dentry->d_parent)
8194 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8195
33345d01 8196 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8197 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8198 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8199 old_dentry->d_name.name,
8200 old_dentry->d_name.len);
8201 } else {
92986796
AV
8202 ret = __btrfs_unlink_inode(trans, root, old_dir,
8203 old_dentry->d_inode,
8204 old_dentry->d_name.name,
8205 old_dentry->d_name.len);
8206 if (!ret)
8207 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8208 }
79787eaa
JM
8209 if (ret) {
8210 btrfs_abort_transaction(trans, root, ret);
8211 goto out_fail;
8212 }
39279cc3
CM
8213
8214 if (new_inode) {
0c4d2d95 8215 inode_inc_iversion(new_inode);
39279cc3 8216 new_inode->i_ctime = CURRENT_TIME;
33345d01 8217 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8218 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8219 root_objectid = BTRFS_I(new_inode)->location.objectid;
8220 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8221 root_objectid,
8222 new_dentry->d_name.name,
8223 new_dentry->d_name.len);
8224 BUG_ON(new_inode->i_nlink == 0);
8225 } else {
8226 ret = btrfs_unlink_inode(trans, dest, new_dir,
8227 new_dentry->d_inode,
8228 new_dentry->d_name.name,
8229 new_dentry->d_name.len);
8230 }
79787eaa 8231 if (!ret && new_inode->i_nlink == 0) {
e02119d5 8232 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 8233 BUG_ON(ret);
7b128766 8234 }
79787eaa
JM
8235 if (ret) {
8236 btrfs_abort_transaction(trans, root, ret);
8237 goto out_fail;
8238 }
39279cc3 8239 }
aec7477b 8240
4df27c4d
YZ
8241 ret = btrfs_add_link(trans, new_dir, old_inode,
8242 new_dentry->d_name.name,
a5719521 8243 new_dentry->d_name.len, 0, index);
79787eaa
JM
8244 if (ret) {
8245 btrfs_abort_transaction(trans, root, ret);
8246 goto out_fail;
8247 }
39279cc3 8248
33345d01 8249 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8250 struct dentry *parent = new_dentry->d_parent;
6a912213 8251 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8252 btrfs_end_log_trans(root);
8253 }
39279cc3 8254out_fail:
7ad85bb7 8255 btrfs_end_transaction(trans, root);
b44c59a8 8256out_notrans:
33345d01 8257 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8258 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8259
39279cc3
CM
8260 return ret;
8261}
8262
8ccf6f19
MX
8263static void btrfs_run_delalloc_work(struct btrfs_work *work)
8264{
8265 struct btrfs_delalloc_work *delalloc_work;
8266
8267 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8268 work);
8269 if (delalloc_work->wait)
8270 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8271 else
8272 filemap_flush(delalloc_work->inode->i_mapping);
8273
8274 if (delalloc_work->delay_iput)
8275 btrfs_add_delayed_iput(delalloc_work->inode);
8276 else
8277 iput(delalloc_work->inode);
8278 complete(&delalloc_work->completion);
8279}
8280
8281struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8282 int wait, int delay_iput)
8283{
8284 struct btrfs_delalloc_work *work;
8285
8286 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8287 if (!work)
8288 return NULL;
8289
8290 init_completion(&work->completion);
8291 INIT_LIST_HEAD(&work->list);
8292 work->inode = inode;
8293 work->wait = wait;
8294 work->delay_iput = delay_iput;
8295 work->work.func = btrfs_run_delalloc_work;
8296
8297 return work;
8298}
8299
8300void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8301{
8302 wait_for_completion(&work->completion);
8303 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8304}
8305
d352ac68
CM
8306/*
8307 * some fairly slow code that needs optimization. This walks the list
8308 * of all the inodes with pending delalloc and forces them to disk.
8309 */
24bbcf04 8310int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8311{
ea8c2819 8312 struct btrfs_inode *binode;
5b21f2ed 8313 struct inode *inode;
8ccf6f19
MX
8314 struct btrfs_delalloc_work *work, *next;
8315 struct list_head works;
1eafa6c7 8316 struct list_head splice;
8ccf6f19 8317 int ret = 0;
ea8c2819 8318
c146afad
YZ
8319 if (root->fs_info->sb->s_flags & MS_RDONLY)
8320 return -EROFS;
8321
8ccf6f19 8322 INIT_LIST_HEAD(&works);
1eafa6c7 8323 INIT_LIST_HEAD(&splice);
63607cc8 8324
75eff68e 8325 spin_lock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
8326 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
8327 while (!list_empty(&splice)) {
8328 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8329 delalloc_inodes);
1eafa6c7
MX
8330
8331 list_del_init(&binode->delalloc_inodes);
8332
5b21f2ed 8333 inode = igrab(&binode->vfs_inode);
df0af1a5
MX
8334 if (!inode) {
8335 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
8336 &binode->runtime_flags);
1eafa6c7 8337 continue;
df0af1a5 8338 }
1eafa6c7
MX
8339
8340 list_add_tail(&binode->delalloc_inodes,
8341 &root->fs_info->delalloc_inodes);
75eff68e 8342 spin_unlock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
8343
8344 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8345 if (unlikely(!work)) {
8346 ret = -ENOMEM;
8347 goto out;
5b21f2ed 8348 }
1eafa6c7
MX
8349 list_add_tail(&work->list, &works);
8350 btrfs_queue_worker(&root->fs_info->flush_workers,
8351 &work->work);
8352
5b21f2ed 8353 cond_resched();
75eff68e 8354 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 8355 }
75eff68e 8356 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d 8357
1eafa6c7
MX
8358 list_for_each_entry_safe(work, next, &works, list) {
8359 list_del_init(&work->list);
8360 btrfs_wait_and_free_delalloc_work(work);
8361 }
8362
8c8bee1d
CM
8363 /* the filemap_flush will queue IO into the worker threads, but
8364 * we have to make sure the IO is actually started and that
8365 * ordered extents get created before we return
8366 */
8367 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8368 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8369 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8370 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8371 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8372 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8373 }
8374 atomic_dec(&root->fs_info->async_submit_draining);
1eafa6c7 8375 return 0;
8ccf6f19
MX
8376out:
8377 list_for_each_entry_safe(work, next, &works, list) {
8378 list_del_init(&work->list);
8379 btrfs_wait_and_free_delalloc_work(work);
8380 }
1eafa6c7
MX
8381
8382 if (!list_empty_careful(&splice)) {
8383 spin_lock(&root->fs_info->delalloc_lock);
8384 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
8385 spin_unlock(&root->fs_info->delalloc_lock);
8386 }
8ccf6f19 8387 return ret;
ea8c2819
CM
8388}
8389
39279cc3
CM
8390static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8391 const char *symname)
8392{
8393 struct btrfs_trans_handle *trans;
8394 struct btrfs_root *root = BTRFS_I(dir)->root;
8395 struct btrfs_path *path;
8396 struct btrfs_key key;
1832a6d5 8397 struct inode *inode = NULL;
39279cc3
CM
8398 int err;
8399 int drop_inode = 0;
8400 u64 objectid;
00e4e6b3 8401 u64 index = 0 ;
39279cc3
CM
8402 int name_len;
8403 int datasize;
5f39d397 8404 unsigned long ptr;
39279cc3 8405 struct btrfs_file_extent_item *ei;
5f39d397 8406 struct extent_buffer *leaf;
39279cc3
CM
8407
8408 name_len = strlen(symname) + 1;
8409 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8410 return -ENAMETOOLONG;
1832a6d5 8411
9ed74f2d
JB
8412 /*
8413 * 2 items for inode item and ref
8414 * 2 items for dir items
8415 * 1 item for xattr if selinux is on
8416 */
a22285a6
YZ
8417 trans = btrfs_start_transaction(root, 5);
8418 if (IS_ERR(trans))
8419 return PTR_ERR(trans);
1832a6d5 8420
581bb050
LZ
8421 err = btrfs_find_free_ino(root, &objectid);
8422 if (err)
8423 goto out_unlock;
8424
aec7477b 8425 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8426 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8427 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8428 if (IS_ERR(inode)) {
8429 err = PTR_ERR(inode);
39279cc3 8430 goto out_unlock;
7cf96da3 8431 }
39279cc3 8432
2a7dba39 8433 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8434 if (err) {
8435 drop_inode = 1;
8436 goto out_unlock;
8437 }
8438
ad19db71
CS
8439 /*
8440 * If the active LSM wants to access the inode during
8441 * d_instantiate it needs these. Smack checks to see
8442 * if the filesystem supports xattrs by looking at the
8443 * ops vector.
8444 */
8445 inode->i_fop = &btrfs_file_operations;
8446 inode->i_op = &btrfs_file_inode_operations;
8447
a1b075d2 8448 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8449 if (err)
8450 drop_inode = 1;
8451 else {
8452 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8453 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8454 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8455 }
39279cc3
CM
8456 if (drop_inode)
8457 goto out_unlock;
8458
8459 path = btrfs_alloc_path();
d8926bb3
MF
8460 if (!path) {
8461 err = -ENOMEM;
8462 drop_inode = 1;
8463 goto out_unlock;
8464 }
33345d01 8465 key.objectid = btrfs_ino(inode);
39279cc3 8466 key.offset = 0;
39279cc3
CM
8467 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8468 datasize = btrfs_file_extent_calc_inline_size(name_len);
8469 err = btrfs_insert_empty_item(trans, root, path, &key,
8470 datasize);
54aa1f4d
CM
8471 if (err) {
8472 drop_inode = 1;
b0839166 8473 btrfs_free_path(path);
54aa1f4d
CM
8474 goto out_unlock;
8475 }
5f39d397
CM
8476 leaf = path->nodes[0];
8477 ei = btrfs_item_ptr(leaf, path->slots[0],
8478 struct btrfs_file_extent_item);
8479 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8480 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8481 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8482 btrfs_set_file_extent_encryption(leaf, ei, 0);
8483 btrfs_set_file_extent_compression(leaf, ei, 0);
8484 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8485 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8486
39279cc3 8487 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8488 write_extent_buffer(leaf, symname, ptr, name_len);
8489 btrfs_mark_buffer_dirty(leaf);
39279cc3 8490 btrfs_free_path(path);
5f39d397 8491
39279cc3
CM
8492 inode->i_op = &btrfs_symlink_inode_operations;
8493 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8494 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8495 inode_set_bytes(inode, name_len);
dbe674a9 8496 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8497 err = btrfs_update_inode(trans, root, inode);
8498 if (err)
8499 drop_inode = 1;
39279cc3
CM
8500
8501out_unlock:
08c422c2
AV
8502 if (!err)
8503 d_instantiate(dentry, inode);
7ad85bb7 8504 btrfs_end_transaction(trans, root);
39279cc3
CM
8505 if (drop_inode) {
8506 inode_dec_link_count(inode);
8507 iput(inode);
8508 }
b53d3f5d 8509 btrfs_btree_balance_dirty(root);
39279cc3
CM
8510 return err;
8511}
16432985 8512
0af3d00b
JB
8513static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8514 u64 start, u64 num_bytes, u64 min_size,
8515 loff_t actual_len, u64 *alloc_hint,
8516 struct btrfs_trans_handle *trans)
d899e052 8517{
5dc562c5
JB
8518 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8519 struct extent_map *em;
d899e052
YZ
8520 struct btrfs_root *root = BTRFS_I(inode)->root;
8521 struct btrfs_key ins;
d899e052 8522 u64 cur_offset = start;
55a61d1d 8523 u64 i_size;
154ea289 8524 u64 cur_bytes;
d899e052 8525 int ret = 0;
0af3d00b 8526 bool own_trans = true;
d899e052 8527
0af3d00b
JB
8528 if (trans)
8529 own_trans = false;
d899e052 8530 while (num_bytes > 0) {
0af3d00b
JB
8531 if (own_trans) {
8532 trans = btrfs_start_transaction(root, 3);
8533 if (IS_ERR(trans)) {
8534 ret = PTR_ERR(trans);
8535 break;
8536 }
5a303d5d
YZ
8537 }
8538
154ea289
CM
8539 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8540 cur_bytes = max(cur_bytes, min_size);
8541 ret = btrfs_reserve_extent(trans, root, cur_bytes,
24542bf7 8542 min_size, 0, *alloc_hint, &ins, 1);
5a303d5d 8543 if (ret) {
0af3d00b
JB
8544 if (own_trans)
8545 btrfs_end_transaction(trans, root);
a22285a6 8546 break;
d899e052 8547 }
5a303d5d 8548
d899e052
YZ
8549 ret = insert_reserved_file_extent(trans, inode,
8550 cur_offset, ins.objectid,
8551 ins.offset, ins.offset,
920bbbfb 8552 ins.offset, 0, 0, 0,
d899e052 8553 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8554 if (ret) {
8555 btrfs_abort_transaction(trans, root, ret);
8556 if (own_trans)
8557 btrfs_end_transaction(trans, root);
8558 break;
8559 }
a1ed835e
CM
8560 btrfs_drop_extent_cache(inode, cur_offset,
8561 cur_offset + ins.offset -1, 0);
5a303d5d 8562
5dc562c5
JB
8563 em = alloc_extent_map();
8564 if (!em) {
8565 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8566 &BTRFS_I(inode)->runtime_flags);
8567 goto next;
8568 }
8569
8570 em->start = cur_offset;
8571 em->orig_start = cur_offset;
8572 em->len = ins.offset;
8573 em->block_start = ins.objectid;
8574 em->block_len = ins.offset;
b4939680 8575 em->orig_block_len = ins.offset;
cc95bef6 8576 em->ram_bytes = ins.offset;
5dc562c5
JB
8577 em->bdev = root->fs_info->fs_devices->latest_bdev;
8578 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8579 em->generation = trans->transid;
8580
8581 while (1) {
8582 write_lock(&em_tree->lock);
09a2a8f9 8583 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8584 write_unlock(&em_tree->lock);
8585 if (ret != -EEXIST)
8586 break;
8587 btrfs_drop_extent_cache(inode, cur_offset,
8588 cur_offset + ins.offset - 1,
8589 0);
8590 }
8591 free_extent_map(em);
8592next:
d899e052
YZ
8593 num_bytes -= ins.offset;
8594 cur_offset += ins.offset;
efa56464 8595 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8596
0c4d2d95 8597 inode_inc_iversion(inode);
d899e052 8598 inode->i_ctime = CURRENT_TIME;
6cbff00f 8599 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8600 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8601 (actual_len > inode->i_size) &&
8602 (cur_offset > inode->i_size)) {
d1ea6a61 8603 if (cur_offset > actual_len)
55a61d1d 8604 i_size = actual_len;
d1ea6a61 8605 else
55a61d1d
JB
8606 i_size = cur_offset;
8607 i_size_write(inode, i_size);
8608 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8609 }
8610
d899e052 8611 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8612
8613 if (ret) {
8614 btrfs_abort_transaction(trans, root, ret);
8615 if (own_trans)
8616 btrfs_end_transaction(trans, root);
8617 break;
8618 }
d899e052 8619
0af3d00b
JB
8620 if (own_trans)
8621 btrfs_end_transaction(trans, root);
5a303d5d 8622 }
d899e052
YZ
8623 return ret;
8624}
8625
0af3d00b
JB
8626int btrfs_prealloc_file_range(struct inode *inode, int mode,
8627 u64 start, u64 num_bytes, u64 min_size,
8628 loff_t actual_len, u64 *alloc_hint)
8629{
8630 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8631 min_size, actual_len, alloc_hint,
8632 NULL);
8633}
8634
8635int btrfs_prealloc_file_range_trans(struct inode *inode,
8636 struct btrfs_trans_handle *trans, int mode,
8637 u64 start, u64 num_bytes, u64 min_size,
8638 loff_t actual_len, u64 *alloc_hint)
8639{
8640 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8641 min_size, actual_len, alloc_hint, trans);
8642}
8643
e6dcd2dc
CM
8644static int btrfs_set_page_dirty(struct page *page)
8645{
e6dcd2dc
CM
8646 return __set_page_dirty_nobuffers(page);
8647}
8648
10556cb2 8649static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8650{
b83cc969 8651 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8652 umode_t mode = inode->i_mode;
b83cc969 8653
cb6db4e5
JM
8654 if (mask & MAY_WRITE &&
8655 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8656 if (btrfs_root_readonly(root))
8657 return -EROFS;
8658 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8659 return -EACCES;
8660 }
2830ba7f 8661 return generic_permission(inode, mask);
fdebe2bd 8662}
39279cc3 8663
6e1d5dcc 8664static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8665 .getattr = btrfs_getattr,
39279cc3
CM
8666 .lookup = btrfs_lookup,
8667 .create = btrfs_create,
8668 .unlink = btrfs_unlink,
8669 .link = btrfs_link,
8670 .mkdir = btrfs_mkdir,
8671 .rmdir = btrfs_rmdir,
8672 .rename = btrfs_rename,
8673 .symlink = btrfs_symlink,
8674 .setattr = btrfs_setattr,
618e21d5 8675 .mknod = btrfs_mknod,
95819c05
CH
8676 .setxattr = btrfs_setxattr,
8677 .getxattr = btrfs_getxattr,
5103e947 8678 .listxattr = btrfs_listxattr,
95819c05 8679 .removexattr = btrfs_removexattr,
fdebe2bd 8680 .permission = btrfs_permission,
4e34e719 8681 .get_acl = btrfs_get_acl,
39279cc3 8682};
6e1d5dcc 8683static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8684 .lookup = btrfs_lookup,
fdebe2bd 8685 .permission = btrfs_permission,
4e34e719 8686 .get_acl = btrfs_get_acl,
39279cc3 8687};
76dda93c 8688
828c0950 8689static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8690 .llseek = generic_file_llseek,
8691 .read = generic_read_dir,
cbdf5a24 8692 .readdir = btrfs_real_readdir,
34287aa3 8693 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8694#ifdef CONFIG_COMPAT
34287aa3 8695 .compat_ioctl = btrfs_ioctl,
39279cc3 8696#endif
6bf13c0c 8697 .release = btrfs_release_file,
e02119d5 8698 .fsync = btrfs_sync_file,
39279cc3
CM
8699};
8700
d1310b2e 8701static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8702 .fill_delalloc = run_delalloc_range,
065631f6 8703 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8704 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8705 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8706 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8707 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8708 .set_bit_hook = btrfs_set_bit_hook,
8709 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8710 .merge_extent_hook = btrfs_merge_extent_hook,
8711 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8712};
8713
35054394
CM
8714/*
8715 * btrfs doesn't support the bmap operation because swapfiles
8716 * use bmap to make a mapping of extents in the file. They assume
8717 * these extents won't change over the life of the file and they
8718 * use the bmap result to do IO directly to the drive.
8719 *
8720 * the btrfs bmap call would return logical addresses that aren't
8721 * suitable for IO and they also will change frequently as COW
8722 * operations happen. So, swapfile + btrfs == corruption.
8723 *
8724 * For now we're avoiding this by dropping bmap.
8725 */
7f09410b 8726static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8727 .readpage = btrfs_readpage,
8728 .writepage = btrfs_writepage,
b293f02e 8729 .writepages = btrfs_writepages,
3ab2fb5a 8730 .readpages = btrfs_readpages,
16432985 8731 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8732 .invalidatepage = btrfs_invalidatepage,
8733 .releasepage = btrfs_releasepage,
e6dcd2dc 8734 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8735 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8736};
8737
7f09410b 8738static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8739 .readpage = btrfs_readpage,
8740 .writepage = btrfs_writepage,
2bf5a725
CM
8741 .invalidatepage = btrfs_invalidatepage,
8742 .releasepage = btrfs_releasepage,
39279cc3
CM
8743};
8744
6e1d5dcc 8745static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8746 .getattr = btrfs_getattr,
8747 .setattr = btrfs_setattr,
95819c05
CH
8748 .setxattr = btrfs_setxattr,
8749 .getxattr = btrfs_getxattr,
5103e947 8750 .listxattr = btrfs_listxattr,
95819c05 8751 .removexattr = btrfs_removexattr,
fdebe2bd 8752 .permission = btrfs_permission,
1506fcc8 8753 .fiemap = btrfs_fiemap,
4e34e719 8754 .get_acl = btrfs_get_acl,
e41f941a 8755 .update_time = btrfs_update_time,
39279cc3 8756};
6e1d5dcc 8757static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8758 .getattr = btrfs_getattr,
8759 .setattr = btrfs_setattr,
fdebe2bd 8760 .permission = btrfs_permission,
95819c05
CH
8761 .setxattr = btrfs_setxattr,
8762 .getxattr = btrfs_getxattr,
33268eaf 8763 .listxattr = btrfs_listxattr,
95819c05 8764 .removexattr = btrfs_removexattr,
4e34e719 8765 .get_acl = btrfs_get_acl,
e41f941a 8766 .update_time = btrfs_update_time,
618e21d5 8767};
6e1d5dcc 8768static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8769 .readlink = generic_readlink,
8770 .follow_link = page_follow_link_light,
8771 .put_link = page_put_link,
f209561a 8772 .getattr = btrfs_getattr,
22c44fe6 8773 .setattr = btrfs_setattr,
fdebe2bd 8774 .permission = btrfs_permission,
0279b4cd
JO
8775 .setxattr = btrfs_setxattr,
8776 .getxattr = btrfs_getxattr,
8777 .listxattr = btrfs_listxattr,
8778 .removexattr = btrfs_removexattr,
4e34e719 8779 .get_acl = btrfs_get_acl,
e41f941a 8780 .update_time = btrfs_update_time,
39279cc3 8781};
76dda93c 8782
82d339d9 8783const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8784 .d_delete = btrfs_dentry_delete,
b4aff1f8 8785 .d_release = btrfs_dentry_release,
76dda93c 8786};