]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/inode.c
Btrfs: fix infinite loop during nocow writeback due to race
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
b1c16ac9 31#include <linux/sched/mm.h>
92d32170 32#include <asm/unaligned.h>
602cbe91 33#include "misc.h"
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e6dcd2dc 39#include "ordered-data.h"
95819c05 40#include "xattr.h"
e02119d5 41#include "tree-log.h"
4a54c8c1 42#include "volumes.h"
c8b97818 43#include "compression.h"
b4ce94de 44#include "locking.h"
dc89e982 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
38c227d8 47#include "backref.h"
63541927 48#include "props.h"
31193213 49#include "qgroup.h"
86736342 50#include "delalloc-space.h"
aac0023c 51#include "block-group.h"
39279cc3
CM
52
53struct btrfs_iget_args {
90d3e592 54 struct btrfs_key *location;
39279cc3
CM
55 struct btrfs_root *root;
56};
57
f28a4928 58struct btrfs_dio_data {
f28a4928
FM
59 u64 reserve;
60 u64 unsubmitted_oe_range_start;
61 u64 unsubmitted_oe_range_end;
4aaedfb0 62 int overwrite;
f28a4928
FM
63};
64
6e1d5dcc
AD
65static const struct inode_operations btrfs_dir_inode_operations;
66static const struct inode_operations btrfs_symlink_inode_operations;
67static const struct inode_operations btrfs_dir_ro_inode_operations;
68static const struct inode_operations btrfs_special_inode_operations;
69static const struct inode_operations btrfs_file_inode_operations;
7f09410b 70static const struct address_space_operations btrfs_aops;
828c0950 71static const struct file_operations btrfs_dir_file_operations;
20e5506b 72static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
73
74static struct kmem_cache *btrfs_inode_cachep;
75struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
3acd4850 78struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 79
3972f260 80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
83static noinline int cow_file_range(struct inode *inode,
84 struct page *locked_page,
74e9194a 85 u64 start, u64 end, int *page_started,
330a5827 86 unsigned long *nr_written, int unlock);
6f9994db
LB
87static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88 u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
91 int type);
7b128766 92
52427260
QW
93static void __endio_write_update_ordered(struct inode *inode,
94 const u64 offset, const u64 bytes,
95 const bool uptodate);
96
97/*
98 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 99 * from the btrfs_run_delalloc_range() callback.
52427260
QW
100 *
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
d1051d6e 105 * extent (btrfs_finish_ordered_io()).
52427260
QW
106 */
107static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
108 struct page *locked_page,
109 u64 offset, u64 bytes)
52427260 110{
63d71450
NA
111 unsigned long index = offset >> PAGE_SHIFT;
112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
113 u64 page_start = page_offset(locked_page);
114 u64 page_end = page_start + PAGE_SIZE - 1;
115
63d71450
NA
116 struct page *page;
117
118 while (index <= end_index) {
119 page = find_get_page(inode->i_mapping, index);
120 index++;
121 if (!page)
122 continue;
123 ClearPagePrivate2(page);
124 put_page(page);
125 }
d1051d6e
NB
126
127 /*
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
131 */
132 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133 offset += PAGE_SIZE;
134 bytes -= PAGE_SIZE;
135 }
136
137 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
138}
139
48a3b636 140static int btrfs_dirty_inode(struct inode *inode);
7b128766 141
6a3891c5
JB
142#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143void btrfs_test_inode_set_ops(struct inode *inode)
144{
145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146}
147#endif
148
f34f57a3 149static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
150 struct inode *inode, struct inode *dir,
151 const struct qstr *qstr)
0279b4cd
JO
152{
153 int err;
154
f34f57a3 155 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 156 if (!err)
2a7dba39 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
158 return err;
159}
160
c8b97818
CM
161/*
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
165 */
40f76580 166static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 167 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
168 struct btrfs_root *root, struct inode *inode,
169 u64 start, size_t size, size_t compressed_size,
fe3f566c 170 int compress_type,
c8b97818
CM
171 struct page **compressed_pages)
172{
c8b97818
CM
173 struct extent_buffer *leaf;
174 struct page *page = NULL;
175 char *kaddr;
176 unsigned long ptr;
177 struct btrfs_file_extent_item *ei;
c8b97818
CM
178 int ret;
179 size_t cur_size = size;
c8b97818 180 unsigned long offset;
c8b97818 181
982f1f5d
JJB
182 ASSERT((compressed_size > 0 && compressed_pages) ||
183 (compressed_size == 0 && !compressed_pages));
184
fe3f566c 185 if (compressed_size && compressed_pages)
c8b97818 186 cur_size = compressed_size;
c8b97818 187
1acae57b 188 inode_add_bytes(inode, size);
c8b97818 189
1acae57b
FDBM
190 if (!extent_inserted) {
191 struct btrfs_key key;
192 size_t datasize;
c8b97818 193
4a0cc7ca 194 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 195 key.offset = start;
962a298f 196 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 197
1acae57b
FDBM
198 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199 path->leave_spinning = 1;
200 ret = btrfs_insert_empty_item(trans, root, path, &key,
201 datasize);
79b4f4c6 202 if (ret)
1acae57b 203 goto fail;
c8b97818
CM
204 }
205 leaf = path->nodes[0];
206 ei = btrfs_item_ptr(leaf, path->slots[0],
207 struct btrfs_file_extent_item);
208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210 btrfs_set_file_extent_encryption(leaf, ei, 0);
211 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213 ptr = btrfs_file_extent_inline_start(ei);
214
261507a0 215 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
216 struct page *cpage;
217 int i = 0;
d397712b 218 while (compressed_size > 0) {
c8b97818 219 cpage = compressed_pages[i];
5b050f04 220 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 221 PAGE_SIZE);
c8b97818 222
7ac687d9 223 kaddr = kmap_atomic(cpage);
c8b97818 224 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 225 kunmap_atomic(kaddr);
c8b97818
CM
226
227 i++;
228 ptr += cur_size;
229 compressed_size -= cur_size;
230 }
231 btrfs_set_file_extent_compression(leaf, ei,
261507a0 232 compress_type);
c8b97818
CM
233 } else {
234 page = find_get_page(inode->i_mapping,
09cbfeaf 235 start >> PAGE_SHIFT);
c8b97818 236 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 237 kaddr = kmap_atomic(page);
7073017a 238 offset = offset_in_page(start);
c8b97818 239 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 240 kunmap_atomic(kaddr);
09cbfeaf 241 put_page(page);
c8b97818
CM
242 }
243 btrfs_mark_buffer_dirty(leaf);
1acae57b 244 btrfs_release_path(path);
c8b97818 245
c2167754
YZ
246 /*
247 * we're an inline extent, so nobody can
248 * extend the file past i_size without locking
249 * a page we already have locked.
250 *
251 * We must do any isize and inode updates
252 * before we unlock the pages. Otherwise we
253 * could end up racing with unlink.
254 */
c8b97818 255 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 256 ret = btrfs_update_inode(trans, root, inode);
c2167754 257
c8b97818 258fail:
79b4f4c6 259 return ret;
c8b97818
CM
260}
261
262
263/*
264 * conditionally insert an inline extent into the file. This
265 * does the checks required to make sure the data is small enough
266 * to fit as an inline extent.
267 */
d02c0e20 268static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
c8b97818 272{
d02c0e20 273 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 274 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 275 struct btrfs_trans_handle *trans;
c8b97818
CM
276 u64 isize = i_size_read(inode);
277 u64 actual_end = min(end + 1, isize);
278 u64 inline_len = actual_end - start;
0b246afa 279 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
280 u64 data_len = inline_len;
281 int ret;
1acae57b
FDBM
282 struct btrfs_path *path;
283 int extent_inserted = 0;
284 u32 extent_item_size;
c8b97818
CM
285
286 if (compressed_size)
287 data_len = compressed_size;
288
289 if (start > 0 ||
0b246afa
JM
290 actual_end > fs_info->sectorsize ||
291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 292 (!compressed_size &&
0b246afa 293 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 294 end + 1 < isize ||
0b246afa 295 data_len > fs_info->max_inline) {
c8b97818
CM
296 return 1;
297 }
298
1acae57b
FDBM
299 path = btrfs_alloc_path();
300 if (!path)
301 return -ENOMEM;
302
00361589 303 trans = btrfs_join_transaction(root);
1acae57b
FDBM
304 if (IS_ERR(trans)) {
305 btrfs_free_path(path);
00361589 306 return PTR_ERR(trans);
1acae57b 307 }
69fe2d75 308 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 309
1acae57b
FDBM
310 if (compressed_size && compressed_pages)
311 extent_item_size = btrfs_file_extent_calc_inline_size(
312 compressed_size);
313 else
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 inline_len);
316
317 ret = __btrfs_drop_extents(trans, root, inode, path,
318 start, aligned_end, NULL,
319 1, 1, extent_item_size, &extent_inserted);
00361589 320 if (ret) {
66642832 321 btrfs_abort_transaction(trans, ret);
00361589
JB
322 goto out;
323 }
c8b97818
CM
324
325 if (isize > actual_end)
326 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
327 ret = insert_inline_extent(trans, path, extent_inserted,
328 root, inode, start,
c8b97818 329 inline_len, compressed_size,
fe3f566c 330 compress_type, compressed_pages);
2adcac1a 331 if (ret && ret != -ENOSPC) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589 333 goto out;
2adcac1a 334 } else if (ret == -ENOSPC) {
00361589
JB
335 ret = 1;
336 goto out;
79787eaa 337 }
2adcac1a 338
bdc20e67 339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 341out:
94ed938a
QW
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
bc42bda2 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 349 btrfs_free_path(path);
3a45bb20 350 btrfs_end_transaction(trans);
00361589 351 return ret;
c8b97818
CM
352}
353
771ed689
CM
354struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
261507a0 360 int compress_type;
771ed689
CM
361 struct list_head list;
362};
363
97db1204 364struct async_chunk {
771ed689 365 struct inode *inode;
771ed689
CM
366 struct page *locked_page;
367 u64 start;
368 u64 end;
f82b7359 369 unsigned int write_flags;
771ed689 370 struct list_head extents;
ec39f769 371 struct cgroup_subsys_state *blkcg_css;
771ed689 372 struct btrfs_work work;
97db1204 373 atomic_t *pending;
771ed689
CM
374};
375
97db1204
NB
376struct async_cow {
377 /* Number of chunks in flight; must be first in the structure */
378 atomic_t num_chunks;
379 struct async_chunk chunks[];
771ed689
CM
380};
381
97db1204 382static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
383 u64 start, u64 ram_size,
384 u64 compressed_size,
385 struct page **pages,
261507a0
LZ
386 unsigned long nr_pages,
387 int compress_type)
771ed689
CM
388{
389 struct async_extent *async_extent;
390
391 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 392 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
393 async_extent->start = start;
394 async_extent->ram_size = ram_size;
395 async_extent->compressed_size = compressed_size;
396 async_extent->pages = pages;
397 async_extent->nr_pages = nr_pages;
261507a0 398 async_extent->compress_type = compress_type;
771ed689
CM
399 list_add_tail(&async_extent->list, &cow->extents);
400 return 0;
401}
402
42c16da6
QW
403/*
404 * Check if the inode has flags compatible with compression
405 */
406static inline bool inode_can_compress(struct inode *inode)
407{
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
409 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
410 return false;
411 return true;
412}
413
414/*
415 * Check if the inode needs to be submitted to compression, based on mount
416 * options, defragmentation, properties or heuristics.
417 */
c2fcdcdf 418static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 419{
0b246afa 420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0 421
42c16da6
QW
422 if (!inode_can_compress(inode)) {
423 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
424 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
425 btrfs_ino(BTRFS_I(inode)));
426 return 0;
427 }
f79707b0 428 /* force compress */
0b246afa 429 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 430 return 1;
eec63c65
DS
431 /* defrag ioctl */
432 if (BTRFS_I(inode)->defrag_compress)
433 return 1;
f79707b0
WS
434 /* bad compression ratios */
435 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
436 return 0;
0b246afa 437 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 438 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 439 BTRFS_I(inode)->prop_compress)
c2fcdcdf 440 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
441 return 0;
442}
443
6158e1ce 444static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
445 u64 start, u64 end, u64 num_bytes, u64 small_write)
446{
447 /* If this is a small write inside eof, kick off a defrag */
448 if (num_bytes < small_write &&
6158e1ce 449 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
450 btrfs_add_inode_defrag(NULL, inode);
451}
452
d352ac68 453/*
771ed689
CM
454 * we create compressed extents in two phases. The first
455 * phase compresses a range of pages that have already been
456 * locked (both pages and state bits are locked).
c8b97818 457 *
771ed689
CM
458 * This is done inside an ordered work queue, and the compression
459 * is spread across many cpus. The actual IO submission is step
460 * two, and the ordered work queue takes care of making sure that
461 * happens in the same order things were put onto the queue by
462 * writepages and friends.
c8b97818 463 *
771ed689
CM
464 * If this code finds it can't get good compression, it puts an
465 * entry onto the work queue to write the uncompressed bytes. This
466 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
467 * are written in the same order that the flusher thread sent them
468 * down.
d352ac68 469 */
ac3e9933 470static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 471{
1368c6da 472 struct inode *inode = async_chunk->inode;
0b246afa 473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 474 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
475 u64 start = async_chunk->start;
476 u64 end = async_chunk->end;
c8b97818 477 u64 actual_end;
d98da499 478 u64 i_size;
e6dcd2dc 479 int ret = 0;
c8b97818
CM
480 struct page **pages = NULL;
481 unsigned long nr_pages;
c8b97818
CM
482 unsigned long total_compressed = 0;
483 unsigned long total_in = 0;
c8b97818
CM
484 int i;
485 int will_compress;
0b246afa 486 int compress_type = fs_info->compress_type;
ac3e9933 487 int compressed_extents = 0;
4adaa611 488 int redirty = 0;
b888db2b 489
6158e1ce
NB
490 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
491 SZ_16K);
4cb5300b 492
d98da499
JB
493 /*
494 * We need to save i_size before now because it could change in between
495 * us evaluating the size and assigning it. This is because we lock and
496 * unlock the page in truncate and fallocate, and then modify the i_size
497 * later on.
498 *
499 * The barriers are to emulate READ_ONCE, remove that once i_size_read
500 * does that for us.
501 */
502 barrier();
503 i_size = i_size_read(inode);
504 barrier();
505 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
506again:
507 will_compress = 0;
09cbfeaf 508 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
509 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
510 nr_pages = min_t(unsigned long, nr_pages,
511 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 512
f03d9301
CM
513 /*
514 * we don't want to send crud past the end of i_size through
515 * compression, that's just a waste of CPU time. So, if the
516 * end of the file is before the start of our current
517 * requested range of bytes, we bail out to the uncompressed
518 * cleanup code that can deal with all of this.
519 *
520 * It isn't really the fastest way to fix things, but this is a
521 * very uncommon corner.
522 */
523 if (actual_end <= start)
524 goto cleanup_and_bail_uncompressed;
525
c8b97818
CM
526 total_compressed = actual_end - start;
527
4bcbb332
SW
528 /*
529 * skip compression for a small file range(<=blocksize) that
01327610 530 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
531 */
532 if (total_compressed <= blocksize &&
533 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
534 goto cleanup_and_bail_uncompressed;
535
069eac78
DS
536 total_compressed = min_t(unsigned long, total_compressed,
537 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
538 total_in = 0;
539 ret = 0;
db94535d 540
771ed689
CM
541 /*
542 * we do compression for mount -o compress and when the
543 * inode has not been flagged as nocompress. This flag can
544 * change at any time if we discover bad compression ratios.
c8b97818 545 */
c2fcdcdf 546 if (inode_need_compress(inode, start, end)) {
c8b97818 547 WARN_ON(pages);
31e818fe 548 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
549 if (!pages) {
550 /* just bail out to the uncompressed code */
3527a018 551 nr_pages = 0;
560f7d75
LZ
552 goto cont;
553 }
c8b97818 554
eec63c65
DS
555 if (BTRFS_I(inode)->defrag_compress)
556 compress_type = BTRFS_I(inode)->defrag_compress;
557 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 558 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 559
4adaa611
CM
560 /*
561 * we need to call clear_page_dirty_for_io on each
562 * page in the range. Otherwise applications with the file
563 * mmap'd can wander in and change the page contents while
564 * we are compressing them.
565 *
566 * If the compression fails for any reason, we set the pages
567 * dirty again later on.
e9679de3
TT
568 *
569 * Note that the remaining part is redirtied, the start pointer
570 * has moved, the end is the original one.
4adaa611 571 */
e9679de3
TT
572 if (!redirty) {
573 extent_range_clear_dirty_for_io(inode, start, end);
574 redirty = 1;
575 }
f51d2b59
DS
576
577 /* Compression level is applied here and only here */
578 ret = btrfs_compress_pages(
579 compress_type | (fs_info->compress_level << 4),
261507a0 580 inode->i_mapping, start,
38c31464 581 pages,
4d3a800e 582 &nr_pages,
261507a0 583 &total_in,
e5d74902 584 &total_compressed);
c8b97818
CM
585
586 if (!ret) {
7073017a 587 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 588 struct page *page = pages[nr_pages - 1];
c8b97818
CM
589 char *kaddr;
590
591 /* zero the tail end of the last page, we might be
592 * sending it down to disk
593 */
594 if (offset) {
7ac687d9 595 kaddr = kmap_atomic(page);
c8b97818 596 memset(kaddr + offset, 0,
09cbfeaf 597 PAGE_SIZE - offset);
7ac687d9 598 kunmap_atomic(kaddr);
c8b97818
CM
599 }
600 will_compress = 1;
601 }
602 }
560f7d75 603cont:
c8b97818
CM
604 if (start == 0) {
605 /* lets try to make an inline extent */
6018ba0a 606 if (ret || total_in < actual_end) {
c8b97818 607 /* we didn't compress the entire range, try
771ed689 608 * to make an uncompressed inline extent.
c8b97818 609 */
d02c0e20
NB
610 ret = cow_file_range_inline(inode, start, end, 0,
611 BTRFS_COMPRESS_NONE, NULL);
c8b97818 612 } else {
771ed689 613 /* try making a compressed inline extent */
d02c0e20 614 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
615 total_compressed,
616 compress_type, pages);
c8b97818 617 }
79787eaa 618 if (ret <= 0) {
151a41bc 619 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
620 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
621 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
622 unsigned long page_error_op;
623
e6eb4314 624 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 625
771ed689 626 /*
79787eaa
JM
627 * inline extent creation worked or returned error,
628 * we don't need to create any more async work items.
629 * Unlock and free up our temp pages.
8b62f87b
JB
630 *
631 * We use DO_ACCOUNTING here because we need the
632 * delalloc_release_metadata to be done _after_ we drop
633 * our outstanding extent for clearing delalloc for this
634 * range.
771ed689 635 */
74e9194a
NB
636 extent_clear_unlock_delalloc(inode, start, end, NULL,
637 clear_flags,
ba8b04c1 638 PAGE_UNLOCK |
c2790a2e
JB
639 PAGE_CLEAR_DIRTY |
640 PAGE_SET_WRITEBACK |
e6eb4314 641 page_error_op |
c2790a2e 642 PAGE_END_WRITEBACK);
cecc8d90
NB
643
644 for (i = 0; i < nr_pages; i++) {
645 WARN_ON(pages[i]->mapping);
646 put_page(pages[i]);
647 }
648 kfree(pages);
649
650 return 0;
c8b97818
CM
651 }
652 }
653
654 if (will_compress) {
655 /*
656 * we aren't doing an inline extent round the compressed size
657 * up to a block size boundary so the allocator does sane
658 * things
659 */
fda2832f 660 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
661
662 /*
663 * one last check to make sure the compression is really a
170607eb
TT
664 * win, compare the page count read with the blocks on disk,
665 * compression must free at least one sector size
c8b97818 666 */
09cbfeaf 667 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 668 if (total_compressed + blocksize <= total_in) {
ac3e9933 669 compressed_extents++;
c8bb0c8b
AS
670
671 /*
672 * The async work queues will take care of doing actual
673 * allocation on disk for these compressed pages, and
674 * will submit them to the elevator.
675 */
b5326271 676 add_async_extent(async_chunk, start, total_in,
4d3a800e 677 total_compressed, pages, nr_pages,
c8bb0c8b
AS
678 compress_type);
679
1170862d
TT
680 if (start + total_in < end) {
681 start += total_in;
c8bb0c8b
AS
682 pages = NULL;
683 cond_resched();
684 goto again;
685 }
ac3e9933 686 return compressed_extents;
c8b97818
CM
687 }
688 }
c8bb0c8b 689 if (pages) {
c8b97818
CM
690 /*
691 * the compression code ran but failed to make things smaller,
692 * free any pages it allocated and our page pointer array
693 */
4d3a800e 694 for (i = 0; i < nr_pages; i++) {
70b99e69 695 WARN_ON(pages[i]->mapping);
09cbfeaf 696 put_page(pages[i]);
c8b97818
CM
697 }
698 kfree(pages);
699 pages = NULL;
700 total_compressed = 0;
4d3a800e 701 nr_pages = 0;
c8b97818
CM
702
703 /* flag the file so we don't compress in the future */
0b246afa 704 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 705 !(BTRFS_I(inode)->prop_compress)) {
a555f810 706 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 707 }
c8b97818 708 }
f03d9301 709cleanup_and_bail_uncompressed:
c8bb0c8b
AS
710 /*
711 * No compression, but we still need to write the pages in the file
712 * we've been given so far. redirty the locked page if it corresponds
713 * to our extent and set things up for the async work queue to run
714 * cow_file_range to do the normal delalloc dance.
715 */
1d53c9e6
CM
716 if (async_chunk->locked_page &&
717 (page_offset(async_chunk->locked_page) >= start &&
718 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 719 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 720 /* unlocked later on in the async handlers */
1d53c9e6 721 }
c8bb0c8b
AS
722
723 if (redirty)
724 extent_range_redirty_for_io(inode, start, end);
b5326271 725 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 726 BTRFS_COMPRESS_NONE);
ac3e9933 727 compressed_extents++;
3b951516 728
ac3e9933 729 return compressed_extents;
771ed689 730}
771ed689 731
40ae837b
FM
732static void free_async_extent_pages(struct async_extent *async_extent)
733{
734 int i;
735
736 if (!async_extent->pages)
737 return;
738
739 for (i = 0; i < async_extent->nr_pages; i++) {
740 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 741 put_page(async_extent->pages[i]);
40ae837b
FM
742 }
743 kfree(async_extent->pages);
744 async_extent->nr_pages = 0;
745 async_extent->pages = NULL;
771ed689
CM
746}
747
748/*
749 * phase two of compressed writeback. This is the ordered portion
750 * of the code, which only gets called in the order the work was
751 * queued. We walk all the async extents created by compress_file_range
752 * and send them down to the disk.
753 */
b5326271 754static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 755{
b5326271 756 struct inode *inode = async_chunk->inode;
0b246afa 757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
758 struct async_extent *async_extent;
759 u64 alloc_hint = 0;
771ed689
CM
760 struct btrfs_key ins;
761 struct extent_map *em;
762 struct btrfs_root *root = BTRFS_I(inode)->root;
4336650a 763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
f5a84ee3 764 int ret = 0;
771ed689 765
3e04e7f1 766again:
b5326271
NB
767 while (!list_empty(&async_chunk->extents)) {
768 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
769 struct async_extent, list);
770 list_del(&async_extent->list);
c8b97818 771
f5a84ee3 772retry:
7447555f
NB
773 lock_extent(io_tree, async_extent->start,
774 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
775 /* did the compression code fall back to uncompressed IO? */
776 if (!async_extent->pages) {
777 int page_started = 0;
778 unsigned long nr_written = 0;
779
771ed689 780 /* allocate blocks */
b5326271 781 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
782 async_extent->start,
783 async_extent->start +
784 async_extent->ram_size - 1,
330a5827 785 &page_started, &nr_written, 0);
771ed689 786
79787eaa
JM
787 /* JDM XXX */
788
771ed689
CM
789 /*
790 * if page_started, cow_file_range inserted an
791 * inline extent and took care of all the unlocking
792 * and IO for us. Otherwise, we need to submit
793 * all those pages down to the drive.
794 */
f5a84ee3 795 if (!page_started && !ret)
5e3ee236
NB
796 extent_write_locked_range(inode,
797 async_extent->start,
d397712b 798 async_extent->start +
771ed689 799 async_extent->ram_size - 1,
771ed689 800 WB_SYNC_ALL);
1d53c9e6 801 else if (ret && async_chunk->locked_page)
b5326271 802 unlock_page(async_chunk->locked_page);
771ed689
CM
803 kfree(async_extent);
804 cond_resched();
805 continue;
806 }
807
18513091 808 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
809 async_extent->compressed_size,
810 async_extent->compressed_size,
e570fd27 811 0, alloc_hint, &ins, 1, 1);
f5a84ee3 812 if (ret) {
40ae837b 813 free_async_extent_pages(async_extent);
3e04e7f1 814
fdf8e2ea
JB
815 if (ret == -ENOSPC) {
816 unlock_extent(io_tree, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1);
ce62003f
LB
819
820 /*
821 * we need to redirty the pages if we decide to
822 * fallback to uncompressed IO, otherwise we
823 * will not submit these pages down to lower
824 * layers.
825 */
826 extent_range_redirty_for_io(inode,
827 async_extent->start,
828 async_extent->start +
829 async_extent->ram_size - 1);
830
79787eaa 831 goto retry;
fdf8e2ea 832 }
3e04e7f1 833 goto out_free;
f5a84ee3 834 }
c2167754
YZ
835 /*
836 * here we're doing allocation and writeback of the
837 * compressed pages
838 */
6f9994db
LB
839 em = create_io_em(inode, async_extent->start,
840 async_extent->ram_size, /* len */
841 async_extent->start, /* orig_start */
842 ins.objectid, /* block_start */
843 ins.offset, /* block_len */
844 ins.offset, /* orig_block_len */
845 async_extent->ram_size, /* ram_bytes */
846 async_extent->compress_type,
847 BTRFS_ORDERED_COMPRESSED);
848 if (IS_ERR(em))
849 /* ret value is not necessary due to void function */
3e04e7f1 850 goto out_free_reserve;
6f9994db 851 free_extent_map(em);
3e04e7f1 852
261507a0
LZ
853 ret = btrfs_add_ordered_extent_compress(inode,
854 async_extent->start,
855 ins.objectid,
856 async_extent->ram_size,
857 ins.offset,
858 BTRFS_ORDERED_COMPRESSED,
859 async_extent->compress_type);
d9f85963 860 if (ret) {
dcdbc059
NB
861 btrfs_drop_extent_cache(BTRFS_I(inode),
862 async_extent->start,
d9f85963
FM
863 async_extent->start +
864 async_extent->ram_size - 1, 0);
3e04e7f1 865 goto out_free_reserve;
d9f85963 866 }
0b246afa 867 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 868
771ed689
CM
869 /*
870 * clear dirty, set writeback and unlock the pages.
871 */
c2790a2e 872 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
873 async_extent->start +
874 async_extent->ram_size - 1,
151a41bc
JB
875 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 877 PAGE_SET_WRITEBACK);
4e4cbee9 878 if (btrfs_submit_compressed_write(inode,
d397712b
CM
879 async_extent->start,
880 async_extent->ram_size,
881 ins.objectid,
882 ins.offset, async_extent->pages,
f82b7359 883 async_extent->nr_pages,
ec39f769
CM
884 async_chunk->write_flags,
885 async_chunk->blkcg_css)) {
fce2a4e6
FM
886 struct page *p = async_extent->pages[0];
887 const u64 start = async_extent->start;
888 const u64 end = start + async_extent->ram_size - 1;
889
890 p->mapping = inode->i_mapping;
c629732d 891 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 892
fce2a4e6 893 p->mapping = NULL;
74e9194a 894 extent_clear_unlock_delalloc(inode, start, end,
ba8b04c1 895 NULL, 0,
fce2a4e6
FM
896 PAGE_END_WRITEBACK |
897 PAGE_SET_ERROR);
40ae837b 898 free_async_extent_pages(async_extent);
fce2a4e6 899 }
771ed689
CM
900 alloc_hint = ins.objectid + ins.offset;
901 kfree(async_extent);
902 cond_resched();
903 }
dec8f175 904 return;
3e04e7f1 905out_free_reserve:
0b246afa 906 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 907 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 908out_free:
c2790a2e 909 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
910 async_extent->start +
911 async_extent->ram_size - 1,
c2790a2e 912 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 913 EXTENT_DELALLOC_NEW |
151a41bc
JB
914 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
915 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
916 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
917 PAGE_SET_ERROR);
40ae837b 918 free_async_extent_pages(async_extent);
79787eaa 919 kfree(async_extent);
3e04e7f1 920 goto again;
771ed689
CM
921}
922
4b46fce2
JB
923static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
924 u64 num_bytes)
925{
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 struct extent_map *em;
928 u64 alloc_hint = 0;
929
930 read_lock(&em_tree->lock);
931 em = search_extent_mapping(em_tree, start, num_bytes);
932 if (em) {
933 /*
934 * if block start isn't an actual block number then find the
935 * first block in this inode and use that as a hint. If that
936 * block is also bogus then just don't worry about it.
937 */
938 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
939 free_extent_map(em);
940 em = search_extent_mapping(em_tree, 0, 0);
941 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
942 alloc_hint = em->block_start;
943 if (em)
944 free_extent_map(em);
945 } else {
946 alloc_hint = em->block_start;
947 free_extent_map(em);
948 }
949 }
950 read_unlock(&em_tree->lock);
951
952 return alloc_hint;
953}
954
771ed689
CM
955/*
956 * when extent_io.c finds a delayed allocation range in the file,
957 * the call backs end up in this code. The basic idea is to
958 * allocate extents on disk for the range, and create ordered data structs
959 * in ram to track those extents.
960 *
961 * locked_page is the page that writepage had locked already. We use
962 * it to make sure we don't do extra locks or unlocks.
963 *
964 * *page_started is set to one if we unlock locked_page and do everything
965 * required to start IO on it. It may be clean and already done with
966 * IO when we return.
967 */
00361589
JB
968static noinline int cow_file_range(struct inode *inode,
969 struct page *locked_page,
74e9194a 970 u64 start, u64 end, int *page_started,
330a5827 971 unsigned long *nr_written, int unlock)
771ed689 972{
0b246afa 973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 974 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
975 u64 alloc_hint = 0;
976 u64 num_bytes;
977 unsigned long ram_size;
a315e68f 978 u64 cur_alloc_size = 0;
0b246afa 979 u64 blocksize = fs_info->sectorsize;
771ed689
CM
980 struct btrfs_key ins;
981 struct extent_map *em;
a315e68f
FM
982 unsigned clear_bits;
983 unsigned long page_ops;
984 bool extent_reserved = false;
771ed689
CM
985 int ret = 0;
986
70ddc553 987 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 988 WARN_ON_ONCE(1);
29bce2f3
JB
989 ret = -EINVAL;
990 goto out_unlock;
02ecd2c2 991 }
771ed689 992
fda2832f 993 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 994 num_bytes = max(blocksize, num_bytes);
566b1760 995 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 996
6158e1ce 997 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 998
771ed689
CM
999 if (start == 0) {
1000 /* lets try to make an inline extent */
d02c0e20
NB
1001 ret = cow_file_range_inline(inode, start, end, 0,
1002 BTRFS_COMPRESS_NONE, NULL);
771ed689 1003 if (ret == 0) {
8b62f87b
JB
1004 /*
1005 * We use DO_ACCOUNTING here because we need the
1006 * delalloc_release_metadata to be run _after_ we drop
1007 * our outstanding extent for clearing delalloc for this
1008 * range.
1009 */
74e9194a 1010 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1011 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1012 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1013 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1014 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1015 PAGE_END_WRITEBACK);
771ed689 1016 *nr_written = *nr_written +
09cbfeaf 1017 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1018 *page_started = 1;
771ed689 1019 goto out;
79787eaa 1020 } else if (ret < 0) {
79787eaa 1021 goto out_unlock;
771ed689
CM
1022 }
1023 }
1024
4b46fce2 1025 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1026 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1027 start + num_bytes - 1, 0);
771ed689 1028
3752d22f
AJ
1029 while (num_bytes > 0) {
1030 cur_alloc_size = num_bytes;
18513091 1031 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1032 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1033 &ins, 1, 1);
00361589 1034 if (ret < 0)
79787eaa 1035 goto out_unlock;
a315e68f
FM
1036 cur_alloc_size = ins.offset;
1037 extent_reserved = true;
d397712b 1038
771ed689 1039 ram_size = ins.offset;
6f9994db
LB
1040 em = create_io_em(inode, start, ins.offset, /* len */
1041 start, /* orig_start */
1042 ins.objectid, /* block_start */
1043 ins.offset, /* block_len */
1044 ins.offset, /* orig_block_len */
1045 ram_size, /* ram_bytes */
1046 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1047 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1048 if (IS_ERR(em)) {
1049 ret = PTR_ERR(em);
ace68bac 1050 goto out_reserve;
090a127a 1051 }
6f9994db 1052 free_extent_map(em);
e6dcd2dc 1053
e6dcd2dc 1054 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1055 ram_size, cur_alloc_size, 0);
ace68bac 1056 if (ret)
d9f85963 1057 goto out_drop_extent_cache;
c8b97818 1058
17d217fe
YZ
1059 if (root->root_key.objectid ==
1060 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1061 ret = btrfs_reloc_clone_csums(inode, start,
1062 cur_alloc_size);
4dbd80fb
QW
1063 /*
1064 * Only drop cache here, and process as normal.
1065 *
1066 * We must not allow extent_clear_unlock_delalloc()
1067 * at out_unlock label to free meta of this ordered
1068 * extent, as its meta should be freed by
1069 * btrfs_finish_ordered_io().
1070 *
1071 * So we must continue until @start is increased to
1072 * skip current ordered extent.
1073 */
00361589 1074 if (ret)
4dbd80fb
QW
1075 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1076 start + ram_size - 1, 0);
17d217fe
YZ
1077 }
1078
0b246afa 1079 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1080
c8b97818
CM
1081 /* we're not doing compressed IO, don't unlock the first
1082 * page (which the caller expects to stay locked), don't
1083 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1084 *
1085 * Do set the Private2 bit so we know this page was properly
1086 * setup for writepage
c8b97818 1087 */
a315e68f
FM
1088 page_ops = unlock ? PAGE_UNLOCK : 0;
1089 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1090
c2790a2e 1091 extent_clear_unlock_delalloc(inode, start,
ba8b04c1 1092 start + ram_size - 1,
74e9194a 1093 locked_page,
c2790a2e 1094 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1095 page_ops);
3752d22f
AJ
1096 if (num_bytes < cur_alloc_size)
1097 num_bytes = 0;
4dbd80fb 1098 else
3752d22f 1099 num_bytes -= cur_alloc_size;
c59f8951
CM
1100 alloc_hint = ins.objectid + ins.offset;
1101 start += cur_alloc_size;
a315e68f 1102 extent_reserved = false;
4dbd80fb
QW
1103
1104 /*
1105 * btrfs_reloc_clone_csums() error, since start is increased
1106 * extent_clear_unlock_delalloc() at out_unlock label won't
1107 * free metadata of current ordered extent, we're OK to exit.
1108 */
1109 if (ret)
1110 goto out_unlock;
b888db2b 1111 }
79787eaa 1112out:
be20aa9d 1113 return ret;
b7d5b0a8 1114
d9f85963 1115out_drop_extent_cache:
dcdbc059 1116 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1117out_reserve:
0b246afa 1118 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1119 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1120out_unlock:
a7e3b975
FM
1121 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1122 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1123 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1124 PAGE_END_WRITEBACK;
1125 /*
1126 * If we reserved an extent for our delalloc range (or a subrange) and
1127 * failed to create the respective ordered extent, then it means that
1128 * when we reserved the extent we decremented the extent's size from
1129 * the data space_info's bytes_may_use counter and incremented the
1130 * space_info's bytes_reserved counter by the same amount. We must make
1131 * sure extent_clear_unlock_delalloc() does not try to decrement again
1132 * the data space_info's bytes_may_use counter, therefore we do not pass
1133 * it the flag EXTENT_CLEAR_DATA_RESV.
1134 */
1135 if (extent_reserved) {
1136 extent_clear_unlock_delalloc(inode, start,
a315e68f
FM
1137 start + cur_alloc_size,
1138 locked_page,
1139 clear_bits,
1140 page_ops);
1141 start += cur_alloc_size;
1142 if (start >= end)
1143 goto out;
1144 }
74e9194a 1145 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1146 clear_bits | EXTENT_CLEAR_DATA_RESV,
1147 page_ops);
79787eaa 1148 goto out;
771ed689 1149}
c8b97818 1150
771ed689
CM
1151/*
1152 * work queue call back to started compression on a file and pages
1153 */
1154static noinline void async_cow_start(struct btrfs_work *work)
1155{
b5326271 1156 struct async_chunk *async_chunk;
ac3e9933 1157 int compressed_extents;
771ed689 1158
b5326271 1159 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1160
ac3e9933
NB
1161 compressed_extents = compress_file_range(async_chunk);
1162 if (compressed_extents == 0) {
b5326271
NB
1163 btrfs_add_delayed_iput(async_chunk->inode);
1164 async_chunk->inode = NULL;
8180ef88 1165 }
771ed689
CM
1166}
1167
1168/*
1169 * work queue call back to submit previously compressed pages
1170 */
1171static noinline void async_cow_submit(struct btrfs_work *work)
1172{
c5a68aec
NB
1173 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1174 work);
1175 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1176 unsigned long nr_pages;
1177
b5326271 1178 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1179 PAGE_SHIFT;
771ed689 1180
093258e6 1181 /* atomic_sub_return implies a barrier */
0b246afa 1182 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1183 5 * SZ_1M)
1184 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1185
4546d178 1186 /*
b5326271 1187 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1188 * in which case we don't have anything to submit, yet we need to
1189 * always adjust ->async_delalloc_pages as its paired with the init
1190 * happening in cow_file_range_async
1191 */
b5326271
NB
1192 if (async_chunk->inode)
1193 submit_compressed_extents(async_chunk);
771ed689 1194}
c8b97818 1195
771ed689
CM
1196static noinline void async_cow_free(struct btrfs_work *work)
1197{
b5326271 1198 struct async_chunk *async_chunk;
97db1204 1199
b5326271
NB
1200 async_chunk = container_of(work, struct async_chunk, work);
1201 if (async_chunk->inode)
1202 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1203 if (async_chunk->blkcg_css)
1204 css_put(async_chunk->blkcg_css);
97db1204
NB
1205 /*
1206 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1207 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1208 */
b5326271 1209 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1210 kvfree(async_chunk->pending);
771ed689
CM
1211}
1212
ec39f769
CM
1213static int cow_file_range_async(struct inode *inode,
1214 struct writeback_control *wbc,
1215 struct page *locked_page,
771ed689 1216 u64 start, u64 end, int *page_started,
fac07d2b 1217 unsigned long *nr_written)
771ed689 1218{
0b246afa 1219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ec39f769 1220 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1221 struct async_cow *ctx;
1222 struct async_chunk *async_chunk;
771ed689
CM
1223 unsigned long nr_pages;
1224 u64 cur_end;
97db1204
NB
1225 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1226 int i;
1227 bool should_compress;
b1c16ac9 1228 unsigned nofs_flag;
fac07d2b 1229 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1230
69684c5a 1231 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
97db1204
NB
1232
1233 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1234 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1235 num_chunks = 1;
1236 should_compress = false;
1237 } else {
1238 should_compress = true;
1239 }
1240
b1c16ac9
NB
1241 nofs_flag = memalloc_nofs_save();
1242 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1243 memalloc_nofs_restore(nofs_flag);
1244
97db1204
NB
1245 if (!ctx) {
1246 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1247 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1248 EXTENT_DO_ACCOUNTING;
1249 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1251 PAGE_SET_ERROR;
1252
74e9194a 1253 extent_clear_unlock_delalloc(inode, start, end, locked_page,
97db1204
NB
1254 clear_bits, page_ops);
1255 return -ENOMEM;
1256 }
1257
1258 async_chunk = ctx->chunks;
1259 atomic_set(&ctx->num_chunks, num_chunks);
1260
1261 for (i = 0; i < num_chunks; i++) {
1262 if (should_compress)
1263 cur_end = min(end, start + SZ_512K - 1);
1264 else
1265 cur_end = end;
771ed689 1266
bd4691a0
NB
1267 /*
1268 * igrab is called higher up in the call chain, take only the
1269 * lightweight reference for the callback lifetime
1270 */
1271 ihold(inode);
97db1204
NB
1272 async_chunk[i].pending = &ctx->num_chunks;
1273 async_chunk[i].inode = inode;
1274 async_chunk[i].start = start;
1275 async_chunk[i].end = cur_end;
97db1204
NB
1276 async_chunk[i].write_flags = write_flags;
1277 INIT_LIST_HEAD(&async_chunk[i].extents);
1278
1d53c9e6
CM
1279 /*
1280 * The locked_page comes all the way from writepage and its
1281 * the original page we were actually given. As we spread
1282 * this large delalloc region across multiple async_chunk
1283 * structs, only the first struct needs a pointer to locked_page
1284 *
1285 * This way we don't need racey decisions about who is supposed
1286 * to unlock it.
1287 */
1288 if (locked_page) {
ec39f769
CM
1289 /*
1290 * Depending on the compressibility, the pages might or
1291 * might not go through async. We want all of them to
1292 * be accounted against wbc once. Let's do it here
1293 * before the paths diverge. wbc accounting is used
1294 * only for foreign writeback detection and doesn't
1295 * need full accuracy. Just account the whole thing
1296 * against the first page.
1297 */
1298 wbc_account_cgroup_owner(wbc, locked_page,
1299 cur_end - start);
1d53c9e6
CM
1300 async_chunk[i].locked_page = locked_page;
1301 locked_page = NULL;
1302 } else {
1303 async_chunk[i].locked_page = NULL;
1304 }
1305
ec39f769
CM
1306 if (blkcg_css != blkcg_root_css) {
1307 css_get(blkcg_css);
1308 async_chunk[i].blkcg_css = blkcg_css;
1309 } else {
1310 async_chunk[i].blkcg_css = NULL;
1311 }
1312
a0cac0ec
OS
1313 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1314 async_cow_submit, async_cow_free);
771ed689 1315
97db1204 1316 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1317 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1318
97db1204 1319 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1320
771ed689
CM
1321 *nr_written += nr_pages;
1322 start = cur_end + 1;
1323 }
1324 *page_started = 1;
1325 return 0;
be20aa9d
CM
1326}
1327
2ff7e61e 1328static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1329 u64 bytenr, u64 num_bytes)
1330{
1331 int ret;
1332 struct btrfs_ordered_sum *sums;
1333 LIST_HEAD(list);
1334
0b246afa 1335 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1336 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1337 if (ret == 0 && list_empty(&list))
1338 return 0;
1339
1340 while (!list_empty(&list)) {
1341 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1342 list_del(&sums->list);
1343 kfree(sums);
1344 }
58113753
LB
1345 if (ret < 0)
1346 return ret;
17d217fe
YZ
1347 return 1;
1348}
1349
d352ac68
CM
1350/*
1351 * when nowcow writeback call back. This checks for snapshots or COW copies
1352 * of the extents that exist in the file, and COWs the file as required.
1353 *
1354 * If no cow copies or snapshots exist, we write directly to the existing
1355 * blocks on disk
1356 */
7f366cfe
CM
1357static noinline int run_delalloc_nocow(struct inode *inode,
1358 struct page *locked_page,
3e024846
NB
1359 const u64 start, const u64 end,
1360 int *page_started, int force,
1361 unsigned long *nr_written)
be20aa9d 1362{
0b246afa 1363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d 1364 struct btrfs_root *root = BTRFS_I(inode)->root;
be20aa9d 1365 struct btrfs_path *path;
3e024846
NB
1366 u64 cow_start = (u64)-1;
1367 u64 cur_offset = start;
8ecebf4d 1368 int ret;
3e024846
NB
1369 bool check_prev = true;
1370 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
4a0cc7ca 1371 u64 ino = btrfs_ino(BTRFS_I(inode));
762bf098
NB
1372 bool nocow = false;
1373 u64 disk_bytenr = 0;
be20aa9d
CM
1374
1375 path = btrfs_alloc_path();
17ca04af 1376 if (!path) {
74e9194a 1377 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1378 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1379 EXTENT_DO_ACCOUNTING |
1380 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1381 PAGE_CLEAR_DIRTY |
1382 PAGE_SET_WRITEBACK |
1383 PAGE_END_WRITEBACK);
d8926bb3 1384 return -ENOMEM;
17ca04af 1385 }
82d5902d 1386
80ff3856 1387 while (1) {
3e024846
NB
1388 struct btrfs_key found_key;
1389 struct btrfs_file_extent_item *fi;
1390 struct extent_buffer *leaf;
1391 u64 extent_end;
1392 u64 extent_offset;
3e024846
NB
1393 u64 num_bytes = 0;
1394 u64 disk_num_bytes;
3e024846
NB
1395 u64 ram_bytes;
1396 int extent_type;
762bf098
NB
1397
1398 nocow = false;
3e024846 1399
e4c3b2dc 1400 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1401 cur_offset, 0);
d788a349 1402 if (ret < 0)
79787eaa 1403 goto error;
a6bd9cd1
NB
1404
1405 /*
1406 * If there is no extent for our range when doing the initial
1407 * search, then go back to the previous slot as it will be the
1408 * one containing the search offset
1409 */
80ff3856
YZ
1410 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1411 leaf = path->nodes[0];
1412 btrfs_item_key_to_cpu(leaf, &found_key,
1413 path->slots[0] - 1);
33345d01 1414 if (found_key.objectid == ino &&
80ff3856
YZ
1415 found_key.type == BTRFS_EXTENT_DATA_KEY)
1416 path->slots[0]--;
1417 }
3e024846 1418 check_prev = false;
80ff3856 1419next_slot:
a6bd9cd1 1420 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1421 leaf = path->nodes[0];
1422 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1423 ret = btrfs_next_leaf(root, path);
e8916699
LB
1424 if (ret < 0) {
1425 if (cow_start != (u64)-1)
1426 cur_offset = cow_start;
79787eaa 1427 goto error;
e8916699 1428 }
80ff3856
YZ
1429 if (ret > 0)
1430 break;
1431 leaf = path->nodes[0];
1432 }
be20aa9d 1433
80ff3856
YZ
1434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1435
a6bd9cd1 1436 /* Didn't find anything for our INO */
1d512cb7
FM
1437 if (found_key.objectid > ino)
1438 break;
a6bd9cd1
NB
1439 /*
1440 * Keep searching until we find an EXTENT_ITEM or there are no
1441 * more extents for this inode
1442 */
1d512cb7
FM
1443 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1444 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1445 path->slots[0]++;
1446 goto next_slot;
1447 }
a6bd9cd1
NB
1448
1449 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1450 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1451 found_key.offset > end)
1452 break;
1453
a6bd9cd1
NB
1454 /*
1455 * If the found extent starts after requested offset, then
1456 * adjust extent_end to be right before this extent begins
1457 */
80ff3856
YZ
1458 if (found_key.offset > cur_offset) {
1459 extent_end = found_key.offset;
e9061e21 1460 extent_type = 0;
80ff3856
YZ
1461 goto out_check;
1462 }
1463
a6bd9cd1
NB
1464 /*
1465 * Found extent which begins before our range and potentially
1466 * intersect it
1467 */
80ff3856
YZ
1468 fi = btrfs_item_ptr(leaf, path->slots[0],
1469 struct btrfs_file_extent_item);
1470 extent_type = btrfs_file_extent_type(leaf, fi);
1471
cc95bef6 1472 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1473 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1474 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1475 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1476 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1477 extent_end = found_key.offset +
1478 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1479 disk_num_bytes =
1480 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1481 /*
de7999af
FM
1482 * If the extent we got ends before our current offset,
1483 * skip to the next extent.
a6bd9cd1 1484 */
de7999af 1485 if (extent_end <= cur_offset) {
80ff3856
YZ
1486 path->slots[0]++;
1487 goto next_slot;
1488 }
a6bd9cd1 1489 /* Skip holes */
17d217fe
YZ
1490 if (disk_bytenr == 0)
1491 goto out_check;
a6bd9cd1 1492 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1493 if (btrfs_file_extent_compression(leaf, fi) ||
1494 btrfs_file_extent_encryption(leaf, fi) ||
1495 btrfs_file_extent_other_encoding(leaf, fi))
1496 goto out_check;
78d4295b 1497 /*
a6bd9cd1
NB
1498 * If extent is created before the last volume's snapshot
1499 * this implies the extent is shared, hence we can't do
1500 * nocow. This is the same check as in
1501 * btrfs_cross_ref_exist but without calling
1502 * btrfs_search_slot.
78d4295b 1503 */
3e024846 1504 if (!freespace_inode &&
27a7ff55 1505 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1506 btrfs_root_last_snapshot(&root->root_item))
1507 goto out_check;
d899e052
YZ
1508 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1509 goto out_check;
a6bd9cd1 1510 /* If extent is RO, we must COW it */
2ff7e61e 1511 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1512 goto out_check;
58113753
LB
1513 ret = btrfs_cross_ref_exist(root, ino,
1514 found_key.offset -
1515 extent_offset, disk_bytenr);
1516 if (ret) {
1517 /*
1518 * ret could be -EIO if the above fails to read
1519 * metadata.
1520 */
1521 if (ret < 0) {
1522 if (cow_start != (u64)-1)
1523 cur_offset = cow_start;
1524 goto error;
1525 }
1526
3e024846 1527 WARN_ON_ONCE(freespace_inode);
17d217fe 1528 goto out_check;
58113753 1529 }
5d4f98a2 1530 disk_bytenr += extent_offset;
17d217fe
YZ
1531 disk_bytenr += cur_offset - found_key.offset;
1532 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1533 /*
a6bd9cd1
NB
1534 * If there are pending snapshots for this root, we
1535 * fall into common COW way
e9894fd3 1536 */
3e024846 1537 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1538 goto out_check;
17d217fe
YZ
1539 /*
1540 * force cow if csum exists in the range.
1541 * this ensure that csum for a given extent are
1542 * either valid or do not exist.
1543 */
58113753
LB
1544 ret = csum_exist_in_range(fs_info, disk_bytenr,
1545 num_bytes);
1546 if (ret) {
58113753
LB
1547 /*
1548 * ret could be -EIO if the above fails to read
1549 * metadata.
1550 */
1551 if (ret < 0) {
1552 if (cow_start != (u64)-1)
1553 cur_offset = cow_start;
1554 goto error;
1555 }
3e024846 1556 WARN_ON_ONCE(freespace_inode);
17d217fe 1557 goto out_check;
91e1f56a 1558 }
8ecebf4d 1559 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1560 goto out_check;
3e024846 1561 nocow = true;
80ff3856 1562 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1563 extent_end = found_key.offset + ram_bytes;
1564 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1565 /* Skip extents outside of our requested range */
1566 if (extent_end <= start) {
1567 path->slots[0]++;
1568 goto next_slot;
1569 }
80ff3856 1570 } else {
e8e21007 1571 /* If this triggers then we have a memory corruption */
290342f6 1572 BUG();
80ff3856
YZ
1573 }
1574out_check:
a6bd9cd1
NB
1575 /*
1576 * If nocow is false then record the beginning of the range
1577 * that needs to be COWed
1578 */
80ff3856
YZ
1579 if (!nocow) {
1580 if (cow_start == (u64)-1)
1581 cow_start = cur_offset;
1582 cur_offset = extent_end;
1583 if (cur_offset > end)
1584 break;
1585 path->slots[0]++;
1586 goto next_slot;
7ea394f1
YZ
1587 }
1588
b3b4aa74 1589 btrfs_release_path(path);
a6bd9cd1
NB
1590
1591 /*
1592 * COW range from cow_start to found_key.offset - 1. As the key
1593 * will contain the beginning of the first extent that can be
1594 * NOCOW, following one which needs to be COW'ed
1595 */
80ff3856 1596 if (cow_start != (u64)-1) {
00361589
JB
1597 ret = cow_file_range(inode, locked_page,
1598 cow_start, found_key.offset - 1,
330a5827 1599 page_started, nr_written, 1);
e9894fd3 1600 if (ret) {
f78c436c 1601 if (nocow)
0b246afa 1602 btrfs_dec_nocow_writers(fs_info,
f78c436c 1603 disk_bytenr);
79787eaa 1604 goto error;
e9894fd3 1605 }
80ff3856 1606 cow_start = (u64)-1;
7ea394f1 1607 }
80ff3856 1608
d899e052 1609 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1610 u64 orig_start = found_key.offset - extent_offset;
3e024846 1611 struct extent_map *em;
6f9994db
LB
1612
1613 em = create_io_em(inode, cur_offset, num_bytes,
1614 orig_start,
1615 disk_bytenr, /* block_start */
1616 num_bytes, /* block_len */
1617 disk_num_bytes, /* orig_block_len */
1618 ram_bytes, BTRFS_COMPRESS_NONE,
1619 BTRFS_ORDERED_PREALLOC);
1620 if (IS_ERR(em)) {
6f9994db
LB
1621 if (nocow)
1622 btrfs_dec_nocow_writers(fs_info,
1623 disk_bytenr);
1624 ret = PTR_ERR(em);
1625 goto error;
d899e052 1626 }
6f9994db 1627 free_extent_map(em);
bb55f626
NB
1628 ret = btrfs_add_ordered_extent(inode, cur_offset,
1629 disk_bytenr, num_bytes,
1630 num_bytes,
1631 BTRFS_ORDERED_PREALLOC);
762bf098
NB
1632 if (ret) {
1633 btrfs_drop_extent_cache(BTRFS_I(inode),
1634 cur_offset,
1635 cur_offset + num_bytes - 1,
1636 0);
1637 goto error;
1638 }
d899e052 1639 } else {
bb55f626
NB
1640 ret = btrfs_add_ordered_extent(inode, cur_offset,
1641 disk_bytenr, num_bytes,
1642 num_bytes,
1643 BTRFS_ORDERED_NOCOW);
762bf098
NB
1644 if (ret)
1645 goto error;
d899e052 1646 }
80ff3856 1647
f78c436c 1648 if (nocow)
0b246afa 1649 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1650 nocow = false;
771ed689 1651
efa56464 1652 if (root->root_key.objectid ==
4dbd80fb
QW
1653 BTRFS_DATA_RELOC_TREE_OBJECTID)
1654 /*
1655 * Error handled later, as we must prevent
1656 * extent_clear_unlock_delalloc() in error handler
1657 * from freeing metadata of created ordered extent.
1658 */
efa56464
YZ
1659 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1660 num_bytes);
efa56464 1661
c2790a2e 1662 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1663 cur_offset + num_bytes - 1,
c2790a2e 1664 locked_page, EXTENT_LOCKED |
18513091
WX
1665 EXTENT_DELALLOC |
1666 EXTENT_CLEAR_DATA_RESV,
1667 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1668
80ff3856 1669 cur_offset = extent_end;
4dbd80fb
QW
1670
1671 /*
1672 * btrfs_reloc_clone_csums() error, now we're OK to call error
1673 * handler, as metadata for created ordered extent will only
1674 * be freed by btrfs_finish_ordered_io().
1675 */
1676 if (ret)
1677 goto error;
80ff3856
YZ
1678 if (cur_offset > end)
1679 break;
be20aa9d 1680 }
b3b4aa74 1681 btrfs_release_path(path);
80ff3856 1682
506481b2 1683 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1684 cow_start = cur_offset;
17ca04af 1685
80ff3856 1686 if (cow_start != (u64)-1) {
506481b2 1687 cur_offset = end;
74e9194a 1688 ret = cow_file_range(inode, locked_page, cow_start, end,
330a5827 1689 page_started, nr_written, 1);
d788a349 1690 if (ret)
79787eaa 1691 goto error;
80ff3856
YZ
1692 }
1693
79787eaa 1694error:
762bf098
NB
1695 if (nocow)
1696 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1697
17ca04af 1698 if (ret && cur_offset < end)
74e9194a 1699 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1700 locked_page, EXTENT_LOCKED |
151a41bc
JB
1701 EXTENT_DELALLOC | EXTENT_DEFRAG |
1702 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1703 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1704 PAGE_SET_WRITEBACK |
1705 PAGE_END_WRITEBACK);
7ea394f1 1706 btrfs_free_path(path);
79787eaa 1707 return ret;
be20aa9d
CM
1708}
1709
47059d93
WS
1710static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1711{
1712
1713 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1714 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1715 return 0;
1716
1717 /*
1718 * @defrag_bytes is a hint value, no spinlock held here,
1719 * if is not zero, it means the file is defragging.
1720 * Force cow if given extent needs to be defragged.
1721 */
1722 if (BTRFS_I(inode)->defrag_bytes &&
1723 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1724 EXTENT_DEFRAG, 0, NULL))
1725 return 1;
1726
1727 return 0;
1728}
1729
d352ac68 1730/*
5eaad97a
NB
1731 * Function to process delayed allocation (create CoW) for ranges which are
1732 * being touched for the first time.
d352ac68 1733 */
bc9a8bf7 1734int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
5eaad97a
NB
1735 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1736 struct writeback_control *wbc)
be20aa9d 1737{
be20aa9d 1738 int ret;
47059d93 1739 int force_cow = need_force_cow(inode, start, end);
a2135011 1740
47059d93 1741 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1742 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1743 page_started, 1, nr_written);
47059d93 1744 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1745 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1746 page_started, 0, nr_written);
42c16da6
QW
1747 } else if (!inode_can_compress(inode) ||
1748 !inode_need_compress(inode, start, end)) {
74e9194a 1749 ret = cow_file_range(inode, locked_page, start, end,
330a5827 1750 page_started, nr_written, 1);
7ddf5a42
JB
1751 } else {
1752 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1753 &BTRFS_I(inode)->runtime_flags);
ec39f769 1754 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1755 page_started, nr_written);
7ddf5a42 1756 }
52427260 1757 if (ret)
d1051d6e
NB
1758 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1759 end - start + 1);
b888db2b
CM
1760 return ret;
1761}
1762
abbb55f4
NB
1763void btrfs_split_delalloc_extent(struct inode *inode,
1764 struct extent_state *orig, u64 split)
9ed74f2d 1765{
dcab6a3b
JB
1766 u64 size;
1767
0ca1f7ce 1768 /* not delalloc, ignore it */
9ed74f2d 1769 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1770 return;
9ed74f2d 1771
dcab6a3b
JB
1772 size = orig->end - orig->start + 1;
1773 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1774 u32 num_extents;
dcab6a3b
JB
1775 u64 new_size;
1776
1777 /*
5c848198 1778 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1779 * applies here, just in reverse.
dcab6a3b
JB
1780 */
1781 new_size = orig->end - split + 1;
823bb20a 1782 num_extents = count_max_extents(new_size);
ba117213 1783 new_size = split - orig->start;
823bb20a
DS
1784 num_extents += count_max_extents(new_size);
1785 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1786 return;
1787 }
1788
9e0baf60 1789 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1790 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1791 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1792}
1793
1794/*
5c848198
NB
1795 * Handle merged delayed allocation extents so we can keep track of new extents
1796 * that are just merged onto old extents, such as when we are doing sequential
1797 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1798 */
5c848198
NB
1799void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1800 struct extent_state *other)
9ed74f2d 1801{
dcab6a3b 1802 u64 new_size, old_size;
823bb20a 1803 u32 num_extents;
dcab6a3b 1804
9ed74f2d
JB
1805 /* not delalloc, ignore it */
1806 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1807 return;
9ed74f2d 1808
8461a3de
JB
1809 if (new->start > other->start)
1810 new_size = new->end - other->start + 1;
1811 else
1812 new_size = other->end - new->start + 1;
dcab6a3b
JB
1813
1814 /* we're not bigger than the max, unreserve the space and go */
1815 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1816 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1817 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1818 spin_unlock(&BTRFS_I(inode)->lock);
1819 return;
1820 }
1821
1822 /*
ba117213
JB
1823 * We have to add up either side to figure out how many extents were
1824 * accounted for before we merged into one big extent. If the number of
1825 * extents we accounted for is <= the amount we need for the new range
1826 * then we can return, otherwise drop. Think of it like this
1827 *
1828 * [ 4k][MAX_SIZE]
1829 *
1830 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1831 * need 2 outstanding extents, on one side we have 1 and the other side
1832 * we have 1 so they are == and we can return. But in this case
1833 *
1834 * [MAX_SIZE+4k][MAX_SIZE+4k]
1835 *
1836 * Each range on their own accounts for 2 extents, but merged together
1837 * they are only 3 extents worth of accounting, so we need to drop in
1838 * this case.
dcab6a3b 1839 */
ba117213 1840 old_size = other->end - other->start + 1;
823bb20a 1841 num_extents = count_max_extents(old_size);
ba117213 1842 old_size = new->end - new->start + 1;
823bb20a
DS
1843 num_extents += count_max_extents(old_size);
1844 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1845 return;
1846
9e0baf60 1847 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1848 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1849 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1850}
1851
eb73c1b7
MX
1852static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1853 struct inode *inode)
1854{
0b246afa
JM
1855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1856
eb73c1b7
MX
1857 spin_lock(&root->delalloc_lock);
1858 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1859 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1860 &root->delalloc_inodes);
1861 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1862 &BTRFS_I(inode)->runtime_flags);
1863 root->nr_delalloc_inodes++;
1864 if (root->nr_delalloc_inodes == 1) {
0b246afa 1865 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1866 BUG_ON(!list_empty(&root->delalloc_root));
1867 list_add_tail(&root->delalloc_root,
0b246afa
JM
1868 &fs_info->delalloc_roots);
1869 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1870 }
1871 }
1872 spin_unlock(&root->delalloc_lock);
1873}
1874
2b877331
NB
1875
1876void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1877 struct btrfs_inode *inode)
eb73c1b7 1878{
3ffbd68c 1879 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1880
9e3e97f4
NB
1881 if (!list_empty(&inode->delalloc_inodes)) {
1882 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1883 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1884 &inode->runtime_flags);
eb73c1b7
MX
1885 root->nr_delalloc_inodes--;
1886 if (!root->nr_delalloc_inodes) {
7c8a0d36 1887 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1888 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1889 BUG_ON(list_empty(&root->delalloc_root));
1890 list_del_init(&root->delalloc_root);
0b246afa 1891 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1892 }
1893 }
2b877331
NB
1894}
1895
1896static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1897 struct btrfs_inode *inode)
1898{
1899 spin_lock(&root->delalloc_lock);
1900 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1901 spin_unlock(&root->delalloc_lock);
1902}
1903
d352ac68 1904/*
e06a1fc9
NB
1905 * Properly track delayed allocation bytes in the inode and to maintain the
1906 * list of inodes that have pending delalloc work to be done.
d352ac68 1907 */
e06a1fc9
NB
1908void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1909 unsigned *bits)
291d673e 1910{
0b246afa
JM
1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1912
47059d93
WS
1913 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1914 WARN_ON(1);
75eff68e
CM
1915 /*
1916 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1917 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1918 * bit, which is only set or cleared with irqs on
1919 */
0ca1f7ce 1920 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1921 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1922 u64 len = state->end + 1 - state->start;
8b62f87b 1923 u32 num_extents = count_max_extents(len);
70ddc553 1924 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1925
8b62f87b
JB
1926 spin_lock(&BTRFS_I(inode)->lock);
1927 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1928 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1929
6a3891c5 1930 /* For sanity tests */
0b246afa 1931 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1932 return;
1933
104b4e51
NB
1934 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1935 fs_info->delalloc_batch);
df0af1a5 1936 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1937 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1938 if (*bits & EXTENT_DEFRAG)
1939 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1940 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1941 &BTRFS_I(inode)->runtime_flags))
1942 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1943 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1944 }
a7e3b975
FM
1945
1946 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1947 (*bits & EXTENT_DELALLOC_NEW)) {
1948 spin_lock(&BTRFS_I(inode)->lock);
1949 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1950 state->start;
1951 spin_unlock(&BTRFS_I(inode)->lock);
1952 }
291d673e
CM
1953}
1954
d352ac68 1955/*
a36bb5f9
NB
1956 * Once a range is no longer delalloc this function ensures that proper
1957 * accounting happens.
d352ac68 1958 */
a36bb5f9
NB
1959void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1960 struct extent_state *state, unsigned *bits)
291d673e 1961{
a36bb5f9
NB
1962 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1963 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 1964 u64 len = state->end + 1 - state->start;
823bb20a 1965 u32 num_extents = count_max_extents(len);
47059d93 1966
4a4b964f
FM
1967 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1968 spin_lock(&inode->lock);
6fc0ef68 1969 inode->defrag_bytes -= len;
4a4b964f
FM
1970 spin_unlock(&inode->lock);
1971 }
47059d93 1972
75eff68e
CM
1973 /*
1974 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1975 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1976 * bit, which is only set or cleared with irqs on
1977 */
0ca1f7ce 1978 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1979 struct btrfs_root *root = inode->root;
83eea1f1 1980 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1981
8b62f87b
JB
1982 spin_lock(&inode->lock);
1983 btrfs_mod_outstanding_extents(inode, -num_extents);
1984 spin_unlock(&inode->lock);
0ca1f7ce 1985
b6d08f06
JB
1986 /*
1987 * We don't reserve metadata space for space cache inodes so we
52042d8e 1988 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
1989 * error.
1990 */
a315e68f 1991 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1992 root != fs_info->tree_root)
43b18595 1993 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1994
6a3891c5 1995 /* For sanity tests. */
0b246afa 1996 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1997 return;
1998
a315e68f
FM
1999 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2000 do_list && !(state->state & EXTENT_NORESERVE) &&
2001 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
2002 btrfs_free_reserved_data_space_noquota(
2003 &inode->vfs_inode,
51773bec 2004 state->start, len);
9ed74f2d 2005
104b4e51
NB
2006 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2007 fs_info->delalloc_batch);
6fc0ef68
NB
2008 spin_lock(&inode->lock);
2009 inode->delalloc_bytes -= len;
2010 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2011 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2012 &inode->runtime_flags))
eb73c1b7 2013 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2014 spin_unlock(&inode->lock);
291d673e 2015 }
a7e3b975
FM
2016
2017 if ((state->state & EXTENT_DELALLOC_NEW) &&
2018 (*bits & EXTENT_DELALLOC_NEW)) {
2019 spin_lock(&inode->lock);
2020 ASSERT(inode->new_delalloc_bytes >= len);
2021 inode->new_delalloc_bytes -= len;
2022 spin_unlock(&inode->lock);
2023 }
291d673e
CM
2024}
2025
d352ac68 2026/*
da12fe54
NB
2027 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2028 * in a chunk's stripe. This function ensures that bios do not span a
2029 * stripe/chunk
6f034ece 2030 *
da12fe54
NB
2031 * @page - The page we are about to add to the bio
2032 * @size - size we want to add to the bio
2033 * @bio - bio we want to ensure is smaller than a stripe
2034 * @bio_flags - flags of the bio
2035 *
2036 * return 1 if page cannot be added to the bio
2037 * return 0 if page can be added to the bio
6f034ece 2038 * return error otherwise
d352ac68 2039 */
da12fe54
NB
2040int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2041 unsigned long bio_flags)
239b14b3 2042{
0b246afa
JM
2043 struct inode *inode = page->mapping->host;
2044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2045 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2046 u64 length = 0;
2047 u64 map_length;
239b14b3 2048 int ret;
89b798ad 2049 struct btrfs_io_geometry geom;
239b14b3 2050
771ed689
CM
2051 if (bio_flags & EXTENT_BIO_COMPRESSED)
2052 return 0;
2053
4f024f37 2054 length = bio->bi_iter.bi_size;
239b14b3 2055 map_length = length;
89b798ad
NB
2056 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2057 &geom);
6f034ece
LB
2058 if (ret < 0)
2059 return ret;
89b798ad
NB
2060
2061 if (geom.len < length + size)
239b14b3 2062 return 1;
3444a972 2063 return 0;
239b14b3
CM
2064}
2065
d352ac68
CM
2066/*
2067 * in order to insert checksums into the metadata in large chunks,
2068 * we wait until bio submission time. All the pages in the bio are
2069 * checksummed and sums are attached onto the ordered extent record.
2070 *
2071 * At IO completion time the cums attached on the ordered extent record
2072 * are inserted into the btree
2073 */
d0ee3934 2074static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2075 u64 bio_offset)
065631f6 2076{
c6100a4b 2077 struct inode *inode = private_data;
4e4cbee9 2078 blk_status_t ret = 0;
e015640f 2079
2ff7e61e 2080 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 2081 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
2082 return 0;
2083}
e015640f 2084
d352ac68 2085/*
cad321ad 2086 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2087 * on write, or reading the csums from the tree before a read.
2088 *
2089 * Rules about async/sync submit,
2090 * a) read: sync submit
2091 *
2092 * b) write without checksum: sync submit
2093 *
2094 * c) write with checksum:
2095 * c-1) if bio is issued by fsync: sync submit
2096 * (sync_writers != 0)
2097 *
2098 * c-2) if root is reloc root: sync submit
2099 * (only in case of buffered IO)
2100 *
2101 * c-3) otherwise: async submit
d352ac68 2102 */
a56b1c7b 2103static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2104 int mirror_num,
2105 unsigned long bio_flags)
2106
44b8bd7e 2107{
0b246afa 2108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2109 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2110 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2111 blk_status_t ret = 0;
19b9bdb0 2112 int skip_sum;
b812ce28 2113 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2114
6cbff00f 2115 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2116
70ddc553 2117 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2118 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2119
37226b21 2120 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2121 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2122 if (ret)
61891923 2123 goto out;
5fd02043 2124
d20f7043 2125 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2126 ret = btrfs_submit_compressed_read(inode, bio,
2127 mirror_num,
2128 bio_flags);
2129 goto out;
c2db1073 2130 } else if (!skip_sum) {
2ff7e61e 2131 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2132 if (ret)
61891923 2133 goto out;
c2db1073 2134 }
4d1b5fb4 2135 goto mapit;
b812ce28 2136 } else if (async && !skip_sum) {
17d217fe
YZ
2137 /* csum items have already been cloned */
2138 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2139 goto mapit;
19b9bdb0 2140 /* we're doing a write, do the async checksumming */
c6100a4b 2141 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2142 0, inode, btrfs_submit_bio_start);
61891923 2143 goto out;
b812ce28 2144 } else if (!skip_sum) {
2ff7e61e 2145 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2146 if (ret)
2147 goto out;
19b9bdb0
CM
2148 }
2149
0b86a832 2150mapit:
08635bae 2151 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2152
2153out:
4e4cbee9
CH
2154 if (ret) {
2155 bio->bi_status = ret;
4246a0b6
CH
2156 bio_endio(bio);
2157 }
61891923 2158 return ret;
065631f6 2159}
6885f308 2160
d352ac68
CM
2161/*
2162 * given a list of ordered sums record them in the inode. This happens
2163 * at IO completion time based on sums calculated at bio submission time.
2164 */
ba1da2f4 2165static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2166 struct inode *inode, struct list_head *list)
e6dcd2dc 2167{
e6dcd2dc 2168 struct btrfs_ordered_sum *sum;
ac01f26a 2169 int ret;
e6dcd2dc 2170
c6e30871 2171 list_for_each_entry(sum, list, list) {
7c2871a2 2172 trans->adding_csums = true;
ac01f26a 2173 ret = btrfs_csum_file_blocks(trans,
d20f7043 2174 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2175 trans->adding_csums = false;
ac01f26a
NB
2176 if (ret)
2177 return ret;
e6dcd2dc
CM
2178 }
2179 return 0;
2180}
2181
2ac55d41 2182int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2183 unsigned int extra_bits,
330a5827 2184 struct extent_state **cached_state)
ea8c2819 2185{
fdb1e121 2186 WARN_ON(PAGE_ALIGNED(end));
ea8c2819 2187 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2188 extra_bits, cached_state);
ea8c2819
CM
2189}
2190
d352ac68 2191/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2192struct btrfs_writepage_fixup {
2193 struct page *page;
2194 struct btrfs_work work;
2195};
2196
b2950863 2197static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2198{
2199 struct btrfs_writepage_fixup *fixup;
2200 struct btrfs_ordered_extent *ordered;
2ac55d41 2201 struct extent_state *cached_state = NULL;
364ecf36 2202 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2203 struct page *page;
2204 struct inode *inode;
2205 u64 page_start;
2206 u64 page_end;
87826df0 2207 int ret;
247e743c
CM
2208
2209 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2210 page = fixup->page;
4a096752 2211again:
247e743c
CM
2212 lock_page(page);
2213 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2214 ClearPageChecked(page);
2215 goto out_page;
2216 }
2217
2218 inode = page->mapping->host;
2219 page_start = page_offset(page);
09cbfeaf 2220 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2221
ff13db41 2222 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2223 &cached_state);
4a096752
CM
2224
2225 /* already ordered? We're done */
8b62b72b 2226 if (PagePrivate2(page))
247e743c 2227 goto out;
4a096752 2228
a776c6fa 2229 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2230 PAGE_SIZE);
4a096752 2231 if (ordered) {
2ac55d41 2232 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2233 page_end, &cached_state);
4a096752
CM
2234 unlock_page(page);
2235 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2236 btrfs_put_ordered_extent(ordered);
4a096752
CM
2237 goto again;
2238 }
247e743c 2239
364ecf36 2240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2241 PAGE_SIZE);
87826df0
JM
2242 if (ret) {
2243 mapping_set_error(page->mapping, ret);
2244 end_extent_writepage(page, ret, page_start, page_end);
2245 ClearPageChecked(page);
2246 goto out;
2247 }
2248
f3038ee3 2249 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2250 &cached_state);
f3038ee3
NB
2251 if (ret) {
2252 mapping_set_error(page->mapping, ret);
2253 end_extent_writepage(page, ret, page_start, page_end);
2254 ClearPageChecked(page);
53687007 2255 goto out_reserved;
f3038ee3
NB
2256 }
2257
247e743c 2258 ClearPageChecked(page);
87826df0 2259 set_page_dirty(page);
53687007 2260out_reserved:
8702ba93 2261 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
53687007
FM
2262 if (ret)
2263 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2264 PAGE_SIZE, true);
247e743c 2265out:
2ac55d41 2266 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2267 &cached_state);
247e743c
CM
2268out_page:
2269 unlock_page(page);
09cbfeaf 2270 put_page(page);
b897abec 2271 kfree(fixup);
364ecf36 2272 extent_changeset_free(data_reserved);
247e743c
CM
2273}
2274
2275/*
2276 * There are a few paths in the higher layers of the kernel that directly
2277 * set the page dirty bit without asking the filesystem if it is a
2278 * good idea. This causes problems because we want to make sure COW
2279 * properly happens and the data=ordered rules are followed.
2280 *
c8b97818 2281 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2282 * hasn't been properly setup for IO. We kick off an async process
2283 * to fix it up. The async helper will wait for ordered extents, set
2284 * the delalloc bit and make it safe to write the page.
2285 */
d75855b4 2286int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2287{
2288 struct inode *inode = page->mapping->host;
0b246afa 2289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2290 struct btrfs_writepage_fixup *fixup;
247e743c 2291
8b62b72b
CM
2292 /* this page is properly in the ordered list */
2293 if (TestClearPagePrivate2(page))
247e743c
CM
2294 return 0;
2295
2296 if (PageChecked(page))
2297 return -EAGAIN;
2298
2299 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2300 if (!fixup)
2301 return -EAGAIN;
f421950f 2302
247e743c 2303 SetPageChecked(page);
09cbfeaf 2304 get_page(page);
a0cac0ec 2305 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2306 fixup->page = page;
0b246afa 2307 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2308 return -EBUSY;
247e743c
CM
2309}
2310
d899e052
YZ
2311static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2312 struct inode *inode, u64 file_pos,
2313 u64 disk_bytenr, u64 disk_num_bytes,
2314 u64 num_bytes, u64 ram_bytes,
2315 u8 compression, u8 encryption,
2316 u16 other_encoding, int extent_type)
2317{
2318 struct btrfs_root *root = BTRFS_I(inode)->root;
2319 struct btrfs_file_extent_item *fi;
2320 struct btrfs_path *path;
2321 struct extent_buffer *leaf;
2322 struct btrfs_key ins;
a12b877b 2323 u64 qg_released;
1acae57b 2324 int extent_inserted = 0;
d899e052
YZ
2325 int ret;
2326
2327 path = btrfs_alloc_path();
d8926bb3
MF
2328 if (!path)
2329 return -ENOMEM;
d899e052 2330
a1ed835e
CM
2331 /*
2332 * we may be replacing one extent in the tree with another.
2333 * The new extent is pinned in the extent map, and we don't want
2334 * to drop it from the cache until it is completely in the btree.
2335 *
2336 * So, tell btrfs_drop_extents to leave this extent in the cache.
2337 * the caller is expected to unpin it and allow it to be merged
2338 * with the others.
2339 */
1acae57b
FDBM
2340 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2341 file_pos + num_bytes, NULL, 0,
2342 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2343 if (ret)
2344 goto out;
d899e052 2345
1acae57b 2346 if (!extent_inserted) {
4a0cc7ca 2347 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2348 ins.offset = file_pos;
2349 ins.type = BTRFS_EXTENT_DATA_KEY;
2350
2351 path->leave_spinning = 1;
2352 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2353 sizeof(*fi));
2354 if (ret)
2355 goto out;
2356 }
d899e052
YZ
2357 leaf = path->nodes[0];
2358 fi = btrfs_item_ptr(leaf, path->slots[0],
2359 struct btrfs_file_extent_item);
2360 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2361 btrfs_set_file_extent_type(leaf, fi, extent_type);
2362 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2363 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2364 btrfs_set_file_extent_offset(leaf, fi, 0);
2365 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2366 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2367 btrfs_set_file_extent_compression(leaf, fi, compression);
2368 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2369 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2370
d899e052 2371 btrfs_mark_buffer_dirty(leaf);
ce195332 2372 btrfs_release_path(path);
d899e052
YZ
2373
2374 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2375
2376 ins.objectid = disk_bytenr;
2377 ins.offset = disk_num_bytes;
2378 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2379
297d750b 2380 /*
5846a3c2
QW
2381 * Release the reserved range from inode dirty range map, as it is
2382 * already moved into delayed_ref_head
297d750b 2383 */
a12b877b
QW
2384 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2385 if (ret < 0)
2386 goto out;
2387 qg_released = ret;
84f7d8e6
JB
2388 ret = btrfs_alloc_reserved_file_extent(trans, root,
2389 btrfs_ino(BTRFS_I(inode)),
2390 file_pos, qg_released, &ins);
79787eaa 2391out:
d899e052 2392 btrfs_free_path(path);
b9473439 2393
79787eaa 2394 return ret;
d899e052
YZ
2395}
2396
38c227d8
LB
2397/* snapshot-aware defrag */
2398struct sa_defrag_extent_backref {
2399 struct rb_node node;
2400 struct old_sa_defrag_extent *old;
2401 u64 root_id;
2402 u64 inum;
2403 u64 file_pos;
2404 u64 extent_offset;
2405 u64 num_bytes;
2406 u64 generation;
2407};
2408
2409struct old_sa_defrag_extent {
2410 struct list_head list;
2411 struct new_sa_defrag_extent *new;
2412
2413 u64 extent_offset;
2414 u64 bytenr;
2415 u64 offset;
2416 u64 len;
2417 int count;
2418};
2419
2420struct new_sa_defrag_extent {
2421 struct rb_root root;
2422 struct list_head head;
2423 struct btrfs_path *path;
2424 struct inode *inode;
2425 u64 file_pos;
2426 u64 len;
2427 u64 bytenr;
2428 u64 disk_len;
2429 u8 compress_type;
2430};
2431
2432static int backref_comp(struct sa_defrag_extent_backref *b1,
2433 struct sa_defrag_extent_backref *b2)
2434{
2435 if (b1->root_id < b2->root_id)
2436 return -1;
2437 else if (b1->root_id > b2->root_id)
2438 return 1;
2439
2440 if (b1->inum < b2->inum)
2441 return -1;
2442 else if (b1->inum > b2->inum)
2443 return 1;
2444
2445 if (b1->file_pos < b2->file_pos)
2446 return -1;
2447 else if (b1->file_pos > b2->file_pos)
2448 return 1;
2449
2450 /*
2451 * [------------------------------] ===> (a range of space)
2452 * |<--->| |<---->| =============> (fs/file tree A)
2453 * |<---------------------------->| ===> (fs/file tree B)
2454 *
2455 * A range of space can refer to two file extents in one tree while
2456 * refer to only one file extent in another tree.
2457 *
2458 * So we may process a disk offset more than one time(two extents in A)
2459 * and locate at the same extent(one extent in B), then insert two same
2460 * backrefs(both refer to the extent in B).
2461 */
2462 return 0;
2463}
2464
2465static void backref_insert(struct rb_root *root,
2466 struct sa_defrag_extent_backref *backref)
2467{
2468 struct rb_node **p = &root->rb_node;
2469 struct rb_node *parent = NULL;
2470 struct sa_defrag_extent_backref *entry;
2471 int ret;
2472
2473 while (*p) {
2474 parent = *p;
2475 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2476
2477 ret = backref_comp(backref, entry);
2478 if (ret < 0)
2479 p = &(*p)->rb_left;
2480 else
2481 p = &(*p)->rb_right;
2482 }
2483
2484 rb_link_node(&backref->node, parent, p);
2485 rb_insert_color(&backref->node, root);
2486}
2487
2488/*
2489 * Note the backref might has changed, and in this case we just return 0.
2490 */
2491static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2492 void *ctx)
2493{
2494 struct btrfs_file_extent_item *extent;
38c227d8
LB
2495 struct old_sa_defrag_extent *old = ctx;
2496 struct new_sa_defrag_extent *new = old->new;
2497 struct btrfs_path *path = new->path;
2498 struct btrfs_key key;
2499 struct btrfs_root *root;
2500 struct sa_defrag_extent_backref *backref;
2501 struct extent_buffer *leaf;
2502 struct inode *inode = new->inode;
0b246afa 2503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2504 int slot;
2505 int ret;
2506 u64 extent_offset;
2507 u64 num_bytes;
2508
2509 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2510 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2511 return 0;
2512
2513 key.objectid = root_id;
2514 key.type = BTRFS_ROOT_ITEM_KEY;
2515 key.offset = (u64)-1;
2516
38c227d8
LB
2517 root = btrfs_read_fs_root_no_name(fs_info, &key);
2518 if (IS_ERR(root)) {
2519 if (PTR_ERR(root) == -ENOENT)
2520 return 0;
2521 WARN_ON(1);
ab8d0fc4 2522 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2523 inum, offset, root_id);
2524 return PTR_ERR(root);
2525 }
2526
2527 key.objectid = inum;
2528 key.type = BTRFS_EXTENT_DATA_KEY;
2529 if (offset > (u64)-1 << 32)
2530 key.offset = 0;
2531 else
2532 key.offset = offset;
2533
2534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2535 if (WARN_ON(ret < 0))
38c227d8 2536 return ret;
50f1319c 2537 ret = 0;
38c227d8
LB
2538
2539 while (1) {
2540 cond_resched();
2541
2542 leaf = path->nodes[0];
2543 slot = path->slots[0];
2544
2545 if (slot >= btrfs_header_nritems(leaf)) {
2546 ret = btrfs_next_leaf(root, path);
2547 if (ret < 0) {
2548 goto out;
2549 } else if (ret > 0) {
2550 ret = 0;
2551 goto out;
2552 }
2553 continue;
2554 }
2555
2556 path->slots[0]++;
2557
2558 btrfs_item_key_to_cpu(leaf, &key, slot);
2559
2560 if (key.objectid > inum)
2561 goto out;
2562
2563 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2564 continue;
2565
2566 extent = btrfs_item_ptr(leaf, slot,
2567 struct btrfs_file_extent_item);
2568
2569 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2570 continue;
2571
e68afa49
LB
2572 /*
2573 * 'offset' refers to the exact key.offset,
2574 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2575 * (key.offset - extent_offset).
2576 */
2577 if (key.offset != offset)
38c227d8
LB
2578 continue;
2579
e68afa49 2580 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2581 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2582
38c227d8
LB
2583 if (extent_offset >= old->extent_offset + old->offset +
2584 old->len || extent_offset + num_bytes <=
2585 old->extent_offset + old->offset)
2586 continue;
38c227d8
LB
2587 break;
2588 }
2589
2590 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2591 if (!backref) {
2592 ret = -ENOENT;
2593 goto out;
2594 }
2595
2596 backref->root_id = root_id;
2597 backref->inum = inum;
e68afa49 2598 backref->file_pos = offset;
38c227d8
LB
2599 backref->num_bytes = num_bytes;
2600 backref->extent_offset = extent_offset;
2601 backref->generation = btrfs_file_extent_generation(leaf, extent);
2602 backref->old = old;
2603 backref_insert(&new->root, backref);
2604 old->count++;
2605out:
2606 btrfs_release_path(path);
2607 WARN_ON(ret);
2608 return ret;
2609}
2610
2611static noinline bool record_extent_backrefs(struct btrfs_path *path,
2612 struct new_sa_defrag_extent *new)
2613{
0b246afa 2614 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2615 struct old_sa_defrag_extent *old, *tmp;
2616 int ret;
2617
2618 new->path = path;
2619
2620 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2621 ret = iterate_inodes_from_logical(old->bytenr +
2622 old->extent_offset, fs_info,
38c227d8 2623 path, record_one_backref,
c995ab3c 2624 old, false);
4724b106
JB
2625 if (ret < 0 && ret != -ENOENT)
2626 return false;
38c227d8
LB
2627
2628 /* no backref to be processed for this extent */
2629 if (!old->count) {
2630 list_del(&old->list);
2631 kfree(old);
2632 }
2633 }
2634
2635 if (list_empty(&new->head))
2636 return false;
2637
2638 return true;
2639}
2640
2641static int relink_is_mergable(struct extent_buffer *leaf,
2642 struct btrfs_file_extent_item *fi,
116e0024 2643 struct new_sa_defrag_extent *new)
38c227d8 2644{
116e0024 2645 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2646 return 0;
2647
2648 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2649 return 0;
2650
116e0024
LB
2651 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2652 return 0;
2653
2654 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2655 btrfs_file_extent_other_encoding(leaf, fi))
2656 return 0;
2657
2658 return 1;
2659}
2660
2661/*
2662 * Note the backref might has changed, and in this case we just return 0.
2663 */
2664static noinline int relink_extent_backref(struct btrfs_path *path,
2665 struct sa_defrag_extent_backref *prev,
2666 struct sa_defrag_extent_backref *backref)
2667{
2668 struct btrfs_file_extent_item *extent;
2669 struct btrfs_file_extent_item *item;
2670 struct btrfs_ordered_extent *ordered;
2671 struct btrfs_trans_handle *trans;
82fa113f 2672 struct btrfs_ref ref = { 0 };
38c227d8
LB
2673 struct btrfs_root *root;
2674 struct btrfs_key key;
2675 struct extent_buffer *leaf;
2676 struct old_sa_defrag_extent *old = backref->old;
2677 struct new_sa_defrag_extent *new = old->new;
0b246afa 2678 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2679 struct inode *inode;
2680 struct extent_state *cached = NULL;
2681 int ret = 0;
2682 u64 start;
2683 u64 len;
2684 u64 lock_start;
2685 u64 lock_end;
2686 bool merge = false;
2687 int index;
2688
2689 if (prev && prev->root_id == backref->root_id &&
2690 prev->inum == backref->inum &&
2691 prev->file_pos + prev->num_bytes == backref->file_pos)
2692 merge = true;
2693
2694 /* step 1: get root */
2695 key.objectid = backref->root_id;
2696 key.type = BTRFS_ROOT_ITEM_KEY;
2697 key.offset = (u64)-1;
2698
38c227d8
LB
2699 index = srcu_read_lock(&fs_info->subvol_srcu);
2700
2701 root = btrfs_read_fs_root_no_name(fs_info, &key);
2702 if (IS_ERR(root)) {
2703 srcu_read_unlock(&fs_info->subvol_srcu, index);
2704 if (PTR_ERR(root) == -ENOENT)
2705 return 0;
2706 return PTR_ERR(root);
2707 }
38c227d8 2708
bcbba5e6
WS
2709 if (btrfs_root_readonly(root)) {
2710 srcu_read_unlock(&fs_info->subvol_srcu, index);
2711 return 0;
2712 }
2713
38c227d8
LB
2714 /* step 2: get inode */
2715 key.objectid = backref->inum;
2716 key.type = BTRFS_INODE_ITEM_KEY;
2717 key.offset = 0;
2718
4c66e0d4 2719 inode = btrfs_iget(fs_info->sb, &key, root);
38c227d8
LB
2720 if (IS_ERR(inode)) {
2721 srcu_read_unlock(&fs_info->subvol_srcu, index);
2722 return 0;
2723 }
2724
2725 srcu_read_unlock(&fs_info->subvol_srcu, index);
2726
2727 /* step 3: relink backref */
2728 lock_start = backref->file_pos;
2729 lock_end = backref->file_pos + backref->num_bytes - 1;
2730 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2731 &cached);
38c227d8
LB
2732
2733 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2734 if (ordered) {
2735 btrfs_put_ordered_extent(ordered);
2736 goto out_unlock;
2737 }
2738
2739 trans = btrfs_join_transaction(root);
2740 if (IS_ERR(trans)) {
2741 ret = PTR_ERR(trans);
2742 goto out_unlock;
2743 }
2744
2745 key.objectid = backref->inum;
2746 key.type = BTRFS_EXTENT_DATA_KEY;
2747 key.offset = backref->file_pos;
2748
2749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2750 if (ret < 0) {
2751 goto out_free_path;
2752 } else if (ret > 0) {
2753 ret = 0;
2754 goto out_free_path;
2755 }
2756
2757 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2758 struct btrfs_file_extent_item);
2759
2760 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2761 backref->generation)
2762 goto out_free_path;
2763
2764 btrfs_release_path(path);
2765
2766 start = backref->file_pos;
2767 if (backref->extent_offset < old->extent_offset + old->offset)
2768 start += old->extent_offset + old->offset -
2769 backref->extent_offset;
2770
2771 len = min(backref->extent_offset + backref->num_bytes,
2772 old->extent_offset + old->offset + old->len);
2773 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2774
2775 ret = btrfs_drop_extents(trans, root, inode, start,
2776 start + len, 1);
2777 if (ret)
2778 goto out_free_path;
2779again:
4a0cc7ca 2780 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2781 key.type = BTRFS_EXTENT_DATA_KEY;
2782 key.offset = start;
2783
a09a0a70 2784 path->leave_spinning = 1;
38c227d8
LB
2785 if (merge) {
2786 struct btrfs_file_extent_item *fi;
2787 u64 extent_len;
2788 struct btrfs_key found_key;
2789
3c9665df 2790 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2791 if (ret < 0)
2792 goto out_free_path;
2793
2794 path->slots[0]--;
2795 leaf = path->nodes[0];
2796 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2797
2798 fi = btrfs_item_ptr(leaf, path->slots[0],
2799 struct btrfs_file_extent_item);
2800 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2801
116e0024
LB
2802 if (extent_len + found_key.offset == start &&
2803 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2804 btrfs_set_file_extent_num_bytes(leaf, fi,
2805 extent_len + len);
2806 btrfs_mark_buffer_dirty(leaf);
2807 inode_add_bytes(inode, len);
2808
2809 ret = 1;
2810 goto out_free_path;
2811 } else {
2812 merge = false;
2813 btrfs_release_path(path);
2814 goto again;
2815 }
2816 }
2817
2818 ret = btrfs_insert_empty_item(trans, root, path, &key,
2819 sizeof(*extent));
2820 if (ret) {
66642832 2821 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2822 goto out_free_path;
2823 }
2824
2825 leaf = path->nodes[0];
2826 item = btrfs_item_ptr(leaf, path->slots[0],
2827 struct btrfs_file_extent_item);
2828 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2829 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2830 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2831 btrfs_set_file_extent_num_bytes(leaf, item, len);
2832 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2833 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2834 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2835 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2836 btrfs_set_file_extent_encryption(leaf, item, 0);
2837 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2838
2839 btrfs_mark_buffer_dirty(leaf);
2840 inode_add_bytes(inode, len);
a09a0a70 2841 btrfs_release_path(path);
38c227d8 2842
82fa113f
QW
2843 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2844 new->disk_len, 0);
2845 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2846 new->file_pos); /* start - extent_offset */
2847 ret = btrfs_inc_extent_ref(trans, &ref);
38c227d8 2848 if (ret) {
66642832 2849 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2850 goto out_free_path;
2851 }
2852
2853 ret = 1;
2854out_free_path:
2855 btrfs_release_path(path);
a09a0a70 2856 path->leave_spinning = 0;
3a45bb20 2857 btrfs_end_transaction(trans);
38c227d8
LB
2858out_unlock:
2859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2860 &cached);
38c227d8
LB
2861 iput(inode);
2862 return ret;
2863}
2864
6f519564
LB
2865static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2866{
2867 struct old_sa_defrag_extent *old, *tmp;
2868
2869 if (!new)
2870 return;
2871
2872 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2873 kfree(old);
2874 }
2875 kfree(new);
2876}
2877
38c227d8
LB
2878static void relink_file_extents(struct new_sa_defrag_extent *new)
2879{
0b246afa 2880 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2881 struct btrfs_path *path;
38c227d8
LB
2882 struct sa_defrag_extent_backref *backref;
2883 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2884 struct rb_node *node;
2885 int ret;
2886
38c227d8
LB
2887 path = btrfs_alloc_path();
2888 if (!path)
2889 return;
2890
2891 if (!record_extent_backrefs(path, new)) {
2892 btrfs_free_path(path);
2893 goto out;
2894 }
2895 btrfs_release_path(path);
2896
2897 while (1) {
2898 node = rb_first(&new->root);
2899 if (!node)
2900 break;
2901 rb_erase(node, &new->root);
2902
2903 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2904
2905 ret = relink_extent_backref(path, prev, backref);
2906 WARN_ON(ret < 0);
2907
2908 kfree(prev);
2909
2910 if (ret == 1)
2911 prev = backref;
2912 else
2913 prev = NULL;
2914 cond_resched();
2915 }
2916 kfree(prev);
2917
2918 btrfs_free_path(path);
38c227d8 2919out:
6f519564
LB
2920 free_sa_defrag_extent(new);
2921
0b246afa
JM
2922 atomic_dec(&fs_info->defrag_running);
2923 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2924}
2925
2926static struct new_sa_defrag_extent *
2927record_old_file_extents(struct inode *inode,
2928 struct btrfs_ordered_extent *ordered)
2929{
0b246afa 2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2931 struct btrfs_root *root = BTRFS_I(inode)->root;
2932 struct btrfs_path *path;
2933 struct btrfs_key key;
6f519564 2934 struct old_sa_defrag_extent *old;
38c227d8
LB
2935 struct new_sa_defrag_extent *new;
2936 int ret;
2937
2938 new = kmalloc(sizeof(*new), GFP_NOFS);
2939 if (!new)
2940 return NULL;
2941
2942 new->inode = inode;
2943 new->file_pos = ordered->file_offset;
2944 new->len = ordered->len;
2945 new->bytenr = ordered->start;
2946 new->disk_len = ordered->disk_len;
2947 new->compress_type = ordered->compress_type;
2948 new->root = RB_ROOT;
2949 INIT_LIST_HEAD(&new->head);
2950
2951 path = btrfs_alloc_path();
2952 if (!path)
2953 goto out_kfree;
2954
4a0cc7ca 2955 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2956 key.type = BTRFS_EXTENT_DATA_KEY;
2957 key.offset = new->file_pos;
2958
2959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2960 if (ret < 0)
2961 goto out_free_path;
2962 if (ret > 0 && path->slots[0] > 0)
2963 path->slots[0]--;
2964
2965 /* find out all the old extents for the file range */
2966 while (1) {
2967 struct btrfs_file_extent_item *extent;
2968 struct extent_buffer *l;
2969 int slot;
2970 u64 num_bytes;
2971 u64 offset;
2972 u64 end;
2973 u64 disk_bytenr;
2974 u64 extent_offset;
2975
2976 l = path->nodes[0];
2977 slot = path->slots[0];
2978
2979 if (slot >= btrfs_header_nritems(l)) {
2980 ret = btrfs_next_leaf(root, path);
2981 if (ret < 0)
6f519564 2982 goto out_free_path;
38c227d8
LB
2983 else if (ret > 0)
2984 break;
2985 continue;
2986 }
2987
2988 btrfs_item_key_to_cpu(l, &key, slot);
2989
4a0cc7ca 2990 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2991 break;
2992 if (key.type != BTRFS_EXTENT_DATA_KEY)
2993 break;
2994 if (key.offset >= new->file_pos + new->len)
2995 break;
2996
2997 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2998
2999 num_bytes = btrfs_file_extent_num_bytes(l, extent);
3000 if (key.offset + num_bytes < new->file_pos)
3001 goto next;
3002
3003 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
3004 if (!disk_bytenr)
3005 goto next;
3006
3007 extent_offset = btrfs_file_extent_offset(l, extent);
3008
3009 old = kmalloc(sizeof(*old), GFP_NOFS);
3010 if (!old)
6f519564 3011 goto out_free_path;
38c227d8
LB
3012
3013 offset = max(new->file_pos, key.offset);
3014 end = min(new->file_pos + new->len, key.offset + num_bytes);
3015
3016 old->bytenr = disk_bytenr;
3017 old->extent_offset = extent_offset;
3018 old->offset = offset - key.offset;
3019 old->len = end - offset;
3020 old->new = new;
3021 old->count = 0;
3022 list_add_tail(&old->list, &new->head);
3023next:
3024 path->slots[0]++;
3025 cond_resched();
3026 }
3027
3028 btrfs_free_path(path);
0b246afa 3029 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
3030
3031 return new;
3032
38c227d8
LB
3033out_free_path:
3034 btrfs_free_path(path);
3035out_kfree:
6f519564 3036 free_sa_defrag_extent(new);
38c227d8
LB
3037 return NULL;
3038}
3039
2ff7e61e 3040static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
3041 u64 start, u64 len)
3042{
32da5386 3043 struct btrfs_block_group *cache;
e570fd27 3044
0b246afa 3045 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
3046 ASSERT(cache);
3047
3048 spin_lock(&cache->lock);
3049 cache->delalloc_bytes -= len;
3050 spin_unlock(&cache->lock);
3051
3052 btrfs_put_block_group(cache);
3053}
3054
d352ac68
CM
3055/* as ordered data IO finishes, this gets called so we can finish
3056 * an ordered extent if the range of bytes in the file it covers are
3057 * fully written.
3058 */
5fd02043 3059static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3060{
5fd02043 3061 struct inode *inode = ordered_extent->inode;
0b246afa 3062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 3063 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 3064 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 3065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 3066 struct extent_state *cached_state = NULL;
38c227d8 3067 struct new_sa_defrag_extent *new = NULL;
261507a0 3068 int compress_type = 0;
77cef2ec
JB
3069 int ret = 0;
3070 u64 logical_len = ordered_extent->len;
8d510121 3071 bool freespace_inode;
77cef2ec 3072 bool truncated = false;
a7e3b975
FM
3073 bool range_locked = false;
3074 bool clear_new_delalloc_bytes = false;
49940bdd 3075 bool clear_reserved_extent = true;
a7e3b975
FM
3076
3077 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3078 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3079 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3080 clear_new_delalloc_bytes = true;
e6dcd2dc 3081
8d510121 3082 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 3083
5fd02043
JB
3084 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3085 ret = -EIO;
3086 goto out;
3087 }
3088
7ab7956e
NB
3089 btrfs_free_io_failure_record(BTRFS_I(inode),
3090 ordered_extent->file_offset,
3091 ordered_extent->file_offset +
3092 ordered_extent->len - 1);
f612496b 3093
77cef2ec
JB
3094 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3095 truncated = true;
3096 logical_len = ordered_extent->truncated_len;
3097 /* Truncated the entire extent, don't bother adding */
3098 if (!logical_len)
3099 goto out;
3100 }
3101
c2167754 3102 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3103 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
3104
3105 /*
3106 * For mwrite(mmap + memset to write) case, we still reserve
3107 * space for NOCOW range.
3108 * As NOCOW won't cause a new delayed ref, just free the space
3109 */
bc42bda2 3110 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 3111 ordered_extent->len);
6c760c07 3112 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
8d510121
NB
3113 if (freespace_inode)
3114 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3115 else
3116 trans = btrfs_join_transaction(root);
3117 if (IS_ERR(trans)) {
3118 ret = PTR_ERR(trans);
3119 trans = NULL;
3120 goto out;
c2167754 3121 }
69fe2d75 3122 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3123 ret = btrfs_update_inode_fallback(trans, root, inode);
3124 if (ret) /* -ENOMEM or corruption */
66642832 3125 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3126 goto out;
3127 }
e6dcd2dc 3128
a7e3b975 3129 range_locked = true;
2ac55d41
JB
3130 lock_extent_bits(io_tree, ordered_extent->file_offset,
3131 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3132 &cached_state);
e6dcd2dc 3133
38c227d8
LB
3134 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3135 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3136 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3137 if (ret) {
3138 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3139 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3140 /* the inode is shared */
3141 new = record_old_file_extents(inode, ordered_extent);
3142
3143 clear_extent_bit(io_tree, ordered_extent->file_offset,
3144 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3145 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3146 }
3147
8d510121
NB
3148 if (freespace_inode)
3149 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3150 else
7a7eaa40 3151 trans = btrfs_join_transaction(root);
79787eaa
JM
3152 if (IS_ERR(trans)) {
3153 ret = PTR_ERR(trans);
3154 trans = NULL;
a7e3b975 3155 goto out;
79787eaa 3156 }
a79b7d4b 3157
69fe2d75 3158 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3159
c8b97818 3160 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3161 compress_type = ordered_extent->compress_type;
d899e052 3162 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3163 BUG_ON(compress_type);
b430b775
JM
3164 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3165 ordered_extent->len);
7a6d7067 3166 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3167 ordered_extent->file_offset,
3168 ordered_extent->file_offset +
77cef2ec 3169 logical_len);
d899e052 3170 } else {
0b246afa 3171 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3172 ret = insert_reserved_file_extent(trans, inode,
3173 ordered_extent->file_offset,
3174 ordered_extent->start,
3175 ordered_extent->disk_len,
77cef2ec 3176 logical_len, logical_len,
261507a0 3177 compress_type, 0, 0,
d899e052 3178 BTRFS_FILE_EXTENT_REG);
49940bdd
JB
3179 if (!ret) {
3180 clear_reserved_extent = false;
2ff7e61e 3181 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3182 ordered_extent->start,
3183 ordered_extent->disk_len);
49940bdd 3184 }
d899e052 3185 }
5dc562c5
JB
3186 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3187 ordered_extent->file_offset, ordered_extent->len,
3188 trans->transid);
79787eaa 3189 if (ret < 0) {
66642832 3190 btrfs_abort_transaction(trans, ret);
a7e3b975 3191 goto out;
79787eaa 3192 }
2ac55d41 3193
ac01f26a
NB
3194 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3195 if (ret) {
3196 btrfs_abort_transaction(trans, ret);
3197 goto out;
3198 }
e6dcd2dc 3199
6c760c07
JB
3200 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3201 ret = btrfs_update_inode_fallback(trans, root, inode);
3202 if (ret) { /* -ENOMEM or corruption */
66642832 3203 btrfs_abort_transaction(trans, ret);
a7e3b975 3204 goto out;
1ef30be1
JB
3205 }
3206 ret = 0;
c2167754 3207out:
a7e3b975
FM
3208 if (range_locked || clear_new_delalloc_bytes) {
3209 unsigned int clear_bits = 0;
3210
3211 if (range_locked)
3212 clear_bits |= EXTENT_LOCKED;
3213 if (clear_new_delalloc_bytes)
3214 clear_bits |= EXTENT_DELALLOC_NEW;
3215 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3216 ordered_extent->file_offset,
3217 ordered_extent->file_offset +
3218 ordered_extent->len - 1,
3219 clear_bits,
3220 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3221 0, &cached_state);
a7e3b975
FM
3222 }
3223
a698d075 3224 if (trans)
3a45bb20 3225 btrfs_end_transaction(trans);
0cb59c99 3226
77cef2ec
JB
3227 if (ret || truncated) {
3228 u64 start, end;
3229
3230 if (truncated)
3231 start = ordered_extent->file_offset + logical_len;
3232 else
3233 start = ordered_extent->file_offset;
3234 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3235 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3236
3237 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3238 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3239
0bec9ef5
JB
3240 /*
3241 * If the ordered extent had an IOERR or something else went
3242 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3243 * back to the allocator. We only free the extent in the
3244 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3245 *
3246 * If we made it past insert_reserved_file_extent before we
3247 * errored out then we don't need to do this as the accounting
3248 * has already been done.
0bec9ef5 3249 */
77cef2ec 3250 if ((ret || !logical_len) &&
49940bdd 3251 clear_reserved_extent &&
77cef2ec 3252 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3253 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3254 btrfs_free_reserved_extent(fs_info,
3255 ordered_extent->start,
e570fd27 3256 ordered_extent->disk_len, 1);
0bec9ef5
JB
3257 }
3258
3259
5fd02043 3260 /*
8bad3c02
LB
3261 * This needs to be done to make sure anybody waiting knows we are done
3262 * updating everything for this ordered extent.
5fd02043
JB
3263 */
3264 btrfs_remove_ordered_extent(inode, ordered_extent);
3265
38c227d8 3266 /* for snapshot-aware defrag */
6f519564
LB
3267 if (new) {
3268 if (ret) {
3269 free_sa_defrag_extent(new);
0b246afa 3270 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3271 } else {
3272 relink_file_extents(new);
3273 }
3274 }
38c227d8 3275
e6dcd2dc
CM
3276 /* once for us */
3277 btrfs_put_ordered_extent(ordered_extent);
3278 /* once for the tree */
3279 btrfs_put_ordered_extent(ordered_extent);
3280
5fd02043
JB
3281 return ret;
3282}
3283
3284static void finish_ordered_fn(struct btrfs_work *work)
3285{
3286 struct btrfs_ordered_extent *ordered_extent;
3287 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3288 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3289}
3290
c629732d
NB
3291void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3292 u64 end, int uptodate)
211f90e6 3293{
5fd02043 3294 struct inode *inode = page->mapping->host;
0b246afa 3295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3296 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 3297 struct btrfs_workqueue *wq;
5fd02043 3298
1abe9b8a 3299 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3300
8b62b72b 3301 ClearPagePrivate2(page);
5fd02043
JB
3302 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3303 end - start + 1, uptodate))
c3988d63 3304 return;
5fd02043 3305
a0cac0ec 3306 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 3307 wq = fs_info->endio_freespace_worker;
a0cac0ec 3308 else
0b246afa 3309 wq = fs_info->endio_write_workers;
5fd02043 3310
a0cac0ec 3311 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 3312 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3313}
3314
dc380aea
MX
3315static int __readpage_endio_check(struct inode *inode,
3316 struct btrfs_io_bio *io_bio,
3317 int icsum, struct page *page,
3318 int pgoff, u64 start, size_t len)
3319{
d5178578
JT
3320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3321 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 3322 char *kaddr;
d5178578
JT
3323 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3324 u8 *csum_expected;
3325 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3326
d5178578 3327 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
3328
3329 kaddr = kmap_atomic(page);
d5178578
JT
3330 shash->tfm = fs_info->csum_shash;
3331
3332 crypto_shash_init(shash);
3333 crypto_shash_update(shash, kaddr + pgoff, len);
3334 crypto_shash_final(shash, csum);
3335
3336 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
3337 goto zeroit;
3338
3339 kunmap_atomic(kaddr);
3340 return 0;
3341zeroit:
ea41d6b2
JT
3342 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3343 io_bio->mirror_num);
dc380aea
MX
3344 memset(kaddr + pgoff, 1, len);
3345 flush_dcache_page(page);
3346 kunmap_atomic(kaddr);
dc380aea
MX
3347 return -EIO;
3348}
3349
d352ac68
CM
3350/*
3351 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3352 * if there's a match, we allow the bio to finish. If not, the code in
3353 * extent_io.c will try to find good copies for us.
d352ac68 3354 */
facc8a22
MX
3355static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3356 u64 phy_offset, struct page *page,
3357 u64 start, u64 end, int mirror)
07157aac 3358{
4eee4fa4 3359 size_t offset = start - page_offset(page);
07157aac 3360 struct inode *inode = page->mapping->host;
d1310b2e 3361 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3362 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3363
d20f7043
CM
3364 if (PageChecked(page)) {
3365 ClearPageChecked(page);
dc380aea 3366 return 0;
d20f7043 3367 }
6cbff00f
CH
3368
3369 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3370 return 0;
17d217fe
YZ
3371
3372 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3373 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3374 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3375 return 0;
17d217fe 3376 }
d20f7043 3377
facc8a22 3378 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3379 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3380 start, (size_t)(end - start + 1));
07157aac 3381}
b888db2b 3382
c1c3fac2
NB
3383/*
3384 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3385 *
3386 * @inode: The inode we want to perform iput on
3387 *
3388 * This function uses the generic vfs_inode::i_count to track whether we should
3389 * just decrement it (in case it's > 1) or if this is the last iput then link
3390 * the inode to the delayed iput machinery. Delayed iputs are processed at
3391 * transaction commit time/superblock commit/cleaner kthread.
3392 */
24bbcf04
YZ
3393void btrfs_add_delayed_iput(struct inode *inode)
3394{
0b246afa 3395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3396 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3397
3398 if (atomic_add_unless(&inode->i_count, -1, 1))
3399 return;
3400
034f784d 3401 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 3402 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3403 ASSERT(list_empty(&binode->delayed_iput));
3404 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3405 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3406 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3407 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3408}
3409
63611e73
JB
3410static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3411 struct btrfs_inode *inode)
3412{
3413 list_del_init(&inode->delayed_iput);
3414 spin_unlock(&fs_info->delayed_iput_lock);
3415 iput(&inode->vfs_inode);
3416 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3417 wake_up(&fs_info->delayed_iputs_wait);
3418 spin_lock(&fs_info->delayed_iput_lock);
3419}
3420
3421static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3422 struct btrfs_inode *inode)
3423{
3424 if (!list_empty(&inode->delayed_iput)) {
3425 spin_lock(&fs_info->delayed_iput_lock);
3426 if (!list_empty(&inode->delayed_iput))
3427 run_delayed_iput_locked(fs_info, inode);
3428 spin_unlock(&fs_info->delayed_iput_lock);
3429 }
3430}
3431
2ff7e61e 3432void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3433{
24bbcf04 3434
24bbcf04 3435 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3436 while (!list_empty(&fs_info->delayed_iputs)) {
3437 struct btrfs_inode *inode;
3438
3439 inode = list_first_entry(&fs_info->delayed_iputs,
3440 struct btrfs_inode, delayed_iput);
63611e73 3441 run_delayed_iput_locked(fs_info, inode);
24bbcf04 3442 }
8089fe62 3443 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3444}
3445
034f784d
JB
3446/**
3447 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3448 * @fs_info - the fs_info for this fs
3449 * @return - EINTR if we were killed, 0 if nothing's pending
3450 *
3451 * This will wait on any delayed iputs that are currently running with KILLABLE
3452 * set. Once they are all done running we will return, unless we are killed in
3453 * which case we return EINTR. This helps in user operations like fallocate etc
3454 * that might get blocked on the iputs.
3455 */
3456int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3457{
3458 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3459 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3460 if (ret)
3461 return -EINTR;
3462 return 0;
3463}
3464
7b128766 3465/*
f7e9e8fc
OS
3466 * This creates an orphan entry for the given inode in case something goes wrong
3467 * in the middle of an unlink.
7b128766 3468 */
73f2e545 3469int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3470 struct btrfs_inode *inode)
7b128766 3471{
d68fc57b 3472 int ret;
7b128766 3473
27919067
OS
3474 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3475 if (ret && ret != -EEXIST) {
3476 btrfs_abort_transaction(trans, ret);
3477 return ret;
d68fc57b
YZ
3478 }
3479
d68fc57b 3480 return 0;
7b128766
JB
3481}
3482
3483/*
f7e9e8fc
OS
3484 * We have done the delete so we can go ahead and remove the orphan item for
3485 * this particular inode.
7b128766 3486 */
48a3b636 3487static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3488 struct btrfs_inode *inode)
7b128766 3489{
27919067 3490 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3491}
3492
3493/*
3494 * this cleans up any orphans that may be left on the list from the last use
3495 * of this root.
3496 */
66b4ffd1 3497int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3498{
0b246afa 3499 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3500 struct btrfs_path *path;
3501 struct extent_buffer *leaf;
7b128766
JB
3502 struct btrfs_key key, found_key;
3503 struct btrfs_trans_handle *trans;
3504 struct inode *inode;
8f6d7f4f 3505 u64 last_objectid = 0;
f7e9e8fc 3506 int ret = 0, nr_unlink = 0;
7b128766 3507
d68fc57b 3508 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3509 return 0;
c71bf099
YZ
3510
3511 path = btrfs_alloc_path();
66b4ffd1
JB
3512 if (!path) {
3513 ret = -ENOMEM;
3514 goto out;
3515 }
e4058b54 3516 path->reada = READA_BACK;
7b128766
JB
3517
3518 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3519 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3520 key.offset = (u64)-1;
3521
7b128766
JB
3522 while (1) {
3523 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3524 if (ret < 0)
3525 goto out;
7b128766
JB
3526
3527 /*
3528 * if ret == 0 means we found what we were searching for, which
25985edc 3529 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3530 * find the key and see if we have stuff that matches
3531 */
3532 if (ret > 0) {
66b4ffd1 3533 ret = 0;
7b128766
JB
3534 if (path->slots[0] == 0)
3535 break;
3536 path->slots[0]--;
3537 }
3538
3539 /* pull out the item */
3540 leaf = path->nodes[0];
7b128766
JB
3541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3542
3543 /* make sure the item matches what we want */
3544 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3545 break;
962a298f 3546 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3547 break;
3548
3549 /* release the path since we're done with it */
b3b4aa74 3550 btrfs_release_path(path);
7b128766
JB
3551
3552 /*
3553 * this is where we are basically btrfs_lookup, without the
3554 * crossing root thing. we store the inode number in the
3555 * offset of the orphan item.
3556 */
8f6d7f4f
JB
3557
3558 if (found_key.offset == last_objectid) {
0b246afa
JM
3559 btrfs_err(fs_info,
3560 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3561 ret = -EINVAL;
3562 goto out;
3563 }
3564
3565 last_objectid = found_key.offset;
3566
5d4f98a2
YZ
3567 found_key.objectid = found_key.offset;
3568 found_key.type = BTRFS_INODE_ITEM_KEY;
3569 found_key.offset = 0;
4c66e0d4 3570 inode = btrfs_iget(fs_info->sb, &found_key, root);
8c6ffba0 3571 ret = PTR_ERR_OR_ZERO(inode);
67710892 3572 if (ret && ret != -ENOENT)
66b4ffd1 3573 goto out;
7b128766 3574
0b246afa 3575 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3576 struct btrfs_root *dead_root;
3577 struct btrfs_fs_info *fs_info = root->fs_info;
3578 int is_dead_root = 0;
3579
3580 /*
3581 * this is an orphan in the tree root. Currently these
3582 * could come from 2 sources:
3583 * a) a snapshot deletion in progress
3584 * b) a free space cache inode
3585 * We need to distinguish those two, as the snapshot
3586 * orphan must not get deleted.
3587 * find_dead_roots already ran before us, so if this
3588 * is a snapshot deletion, we should find the root
3589 * in the dead_roots list
3590 */
3591 spin_lock(&fs_info->trans_lock);
3592 list_for_each_entry(dead_root, &fs_info->dead_roots,
3593 root_list) {
3594 if (dead_root->root_key.objectid ==
3595 found_key.objectid) {
3596 is_dead_root = 1;
3597 break;
3598 }
3599 }
3600 spin_unlock(&fs_info->trans_lock);
3601 if (is_dead_root) {
3602 /* prevent this orphan from being found again */
3603 key.offset = found_key.objectid - 1;
3604 continue;
3605 }
f7e9e8fc 3606
f8e9e0b0 3607 }
f7e9e8fc 3608
7b128766 3609 /*
f7e9e8fc
OS
3610 * If we have an inode with links, there are a couple of
3611 * possibilities. Old kernels (before v3.12) used to create an
3612 * orphan item for truncate indicating that there were possibly
3613 * extent items past i_size that needed to be deleted. In v3.12,
3614 * truncate was changed to update i_size in sync with the extent
3615 * items, but the (useless) orphan item was still created. Since
3616 * v4.18, we don't create the orphan item for truncate at all.
3617 *
3618 * So, this item could mean that we need to do a truncate, but
3619 * only if this filesystem was last used on a pre-v3.12 kernel
3620 * and was not cleanly unmounted. The odds of that are quite
3621 * slim, and it's a pain to do the truncate now, so just delete
3622 * the orphan item.
3623 *
3624 * It's also possible that this orphan item was supposed to be
3625 * deleted but wasn't. The inode number may have been reused,
3626 * but either way, we can delete the orphan item.
7b128766 3627 */
f7e9e8fc
OS
3628 if (ret == -ENOENT || inode->i_nlink) {
3629 if (!ret)
3630 iput(inode);
a8c9e576 3631 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3632 if (IS_ERR(trans)) {
3633 ret = PTR_ERR(trans);
3634 goto out;
3635 }
0b246afa
JM
3636 btrfs_debug(fs_info, "auto deleting %Lu",
3637 found_key.objectid);
a8c9e576
JB
3638 ret = btrfs_del_orphan_item(trans, root,
3639 found_key.objectid);
3a45bb20 3640 btrfs_end_transaction(trans);
4ef31a45
JB
3641 if (ret)
3642 goto out;
7b128766
JB
3643 continue;
3644 }
3645
f7e9e8fc 3646 nr_unlink++;
7b128766
JB
3647
3648 /* this will do delete_inode and everything for us */
3649 iput(inode);
3650 }
3254c876
MX
3651 /* release the path since we're done with it */
3652 btrfs_release_path(path);
3653
d68fc57b
YZ
3654 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3655
a575ceeb 3656 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3657 trans = btrfs_join_transaction(root);
66b4ffd1 3658 if (!IS_ERR(trans))
3a45bb20 3659 btrfs_end_transaction(trans);
d68fc57b 3660 }
7b128766
JB
3661
3662 if (nr_unlink)
0b246afa 3663 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3664
3665out:
3666 if (ret)
0b246afa 3667 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3668 btrfs_free_path(path);
3669 return ret;
7b128766
JB
3670}
3671
46a53cca
CM
3672/*
3673 * very simple check to peek ahead in the leaf looking for xattrs. If we
3674 * don't find any xattrs, we know there can't be any acls.
3675 *
3676 * slot is the slot the inode is in, objectid is the objectid of the inode
3677 */
3678static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3679 int slot, u64 objectid,
3680 int *first_xattr_slot)
46a53cca
CM
3681{
3682 u32 nritems = btrfs_header_nritems(leaf);
3683 struct btrfs_key found_key;
f23b5a59
JB
3684 static u64 xattr_access = 0;
3685 static u64 xattr_default = 0;
46a53cca
CM
3686 int scanned = 0;
3687
f23b5a59 3688 if (!xattr_access) {
97d79299
AG
3689 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3690 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3691 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3692 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3693 }
3694
46a53cca 3695 slot++;
63541927 3696 *first_xattr_slot = -1;
46a53cca
CM
3697 while (slot < nritems) {
3698 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699
3700 /* we found a different objectid, there must not be acls */
3701 if (found_key.objectid != objectid)
3702 return 0;
3703
3704 /* we found an xattr, assume we've got an acl */
f23b5a59 3705 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3706 if (*first_xattr_slot == -1)
3707 *first_xattr_slot = slot;
f23b5a59
JB
3708 if (found_key.offset == xattr_access ||
3709 found_key.offset == xattr_default)
3710 return 1;
3711 }
46a53cca
CM
3712
3713 /*
3714 * we found a key greater than an xattr key, there can't
3715 * be any acls later on
3716 */
3717 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3718 return 0;
3719
3720 slot++;
3721 scanned++;
3722
3723 /*
3724 * it goes inode, inode backrefs, xattrs, extents,
3725 * so if there are a ton of hard links to an inode there can
3726 * be a lot of backrefs. Don't waste time searching too hard,
3727 * this is just an optimization
3728 */
3729 if (scanned >= 8)
3730 break;
3731 }
3732 /* we hit the end of the leaf before we found an xattr or
3733 * something larger than an xattr. We have to assume the inode
3734 * has acls
3735 */
63541927
FDBM
3736 if (*first_xattr_slot == -1)
3737 *first_xattr_slot = slot;
46a53cca
CM
3738 return 1;
3739}
3740
d352ac68
CM
3741/*
3742 * read an inode from the btree into the in-memory inode
3743 */
4222ea71
FM
3744static int btrfs_read_locked_inode(struct inode *inode,
3745 struct btrfs_path *in_path)
39279cc3 3746{
0b246afa 3747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3748 struct btrfs_path *path = in_path;
5f39d397 3749 struct extent_buffer *leaf;
39279cc3
CM
3750 struct btrfs_inode_item *inode_item;
3751 struct btrfs_root *root = BTRFS_I(inode)->root;
3752 struct btrfs_key location;
67de1176 3753 unsigned long ptr;
46a53cca 3754 int maybe_acls;
618e21d5 3755 u32 rdev;
39279cc3 3756 int ret;
2f7e33d4 3757 bool filled = false;
63541927 3758 int first_xattr_slot;
2f7e33d4
MX
3759
3760 ret = btrfs_fill_inode(inode, &rdev);
3761 if (!ret)
3762 filled = true;
39279cc3 3763
4222ea71
FM
3764 if (!path) {
3765 path = btrfs_alloc_path();
3766 if (!path)
3767 return -ENOMEM;
3768 }
1748f843 3769
39279cc3 3770 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3771
39279cc3 3772 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3773 if (ret) {
4222ea71
FM
3774 if (path != in_path)
3775 btrfs_free_path(path);
f5b3a417 3776 return ret;
67710892 3777 }
39279cc3 3778
5f39d397 3779 leaf = path->nodes[0];
2f7e33d4
MX
3780
3781 if (filled)
67de1176 3782 goto cache_index;
2f7e33d4 3783
5f39d397
CM
3784 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3785 struct btrfs_inode_item);
5f39d397 3786 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3787 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3788 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3789 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3790 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3791
a937b979
DS
3792 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3793 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3794
a937b979
DS
3795 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3796 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3797
a937b979
DS
3798 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3799 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3800
9cc97d64 3801 BTRFS_I(inode)->i_otime.tv_sec =
3802 btrfs_timespec_sec(leaf, &inode_item->otime);
3803 BTRFS_I(inode)->i_otime.tv_nsec =
3804 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3805
a76a3cd4 3806 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3807 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3808 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3809
c7f88c4e
JL
3810 inode_set_iversion_queried(inode,
3811 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3812 inode->i_generation = BTRFS_I(inode)->generation;
3813 inode->i_rdev = 0;
3814 rdev = btrfs_inode_rdev(leaf, inode_item);
3815
3816 BTRFS_I(inode)->index_cnt = (u64)-1;
3817 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3818
3819cache_index:
5dc562c5
JB
3820 /*
3821 * If we were modified in the current generation and evicted from memory
3822 * and then re-read we need to do a full sync since we don't have any
3823 * idea about which extents were modified before we were evicted from
3824 * cache.
6e17d30b
YD
3825 *
3826 * This is required for both inode re-read from disk and delayed inode
3827 * in delayed_nodes_tree.
5dc562c5 3828 */
0b246afa 3829 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3830 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3831 &BTRFS_I(inode)->runtime_flags);
3832
bde6c242
FM
3833 /*
3834 * We don't persist the id of the transaction where an unlink operation
3835 * against the inode was last made. So here we assume the inode might
3836 * have been evicted, and therefore the exact value of last_unlink_trans
3837 * lost, and set it to last_trans to avoid metadata inconsistencies
3838 * between the inode and its parent if the inode is fsync'ed and the log
3839 * replayed. For example, in the scenario:
3840 *
3841 * touch mydir/foo
3842 * ln mydir/foo mydir/bar
3843 * sync
3844 * unlink mydir/bar
3845 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3846 * xfs_io -c fsync mydir/foo
3847 * <power failure>
3848 * mount fs, triggers fsync log replay
3849 *
3850 * We must make sure that when we fsync our inode foo we also log its
3851 * parent inode, otherwise after log replay the parent still has the
3852 * dentry with the "bar" name but our inode foo has a link count of 1
3853 * and doesn't have an inode ref with the name "bar" anymore.
3854 *
3855 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3856 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3857 * transaction commits on fsync if our inode is a directory, or if our
3858 * inode is not a directory, logging its parent unnecessarily.
3859 */
3860 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3861
67de1176
MX
3862 path->slots[0]++;
3863 if (inode->i_nlink != 1 ||
3864 path->slots[0] >= btrfs_header_nritems(leaf))
3865 goto cache_acl;
3866
3867 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3868 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3869 goto cache_acl;
3870
3871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3872 if (location.type == BTRFS_INODE_REF_KEY) {
3873 struct btrfs_inode_ref *ref;
3874
3875 ref = (struct btrfs_inode_ref *)ptr;
3876 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3877 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3878 struct btrfs_inode_extref *extref;
3879
3880 extref = (struct btrfs_inode_extref *)ptr;
3881 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3882 extref);
3883 }
2f7e33d4 3884cache_acl:
46a53cca
CM
3885 /*
3886 * try to precache a NULL acl entry for files that don't have
3887 * any xattrs or acls
3888 */
33345d01 3889 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3890 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3891 if (first_xattr_slot != -1) {
3892 path->slots[0] = first_xattr_slot;
3893 ret = btrfs_load_inode_props(inode, path);
3894 if (ret)
0b246afa 3895 btrfs_err(fs_info,
351fd353 3896 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3897 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3898 root->root_key.objectid, ret);
3899 }
4222ea71
FM
3900 if (path != in_path)
3901 btrfs_free_path(path);
63541927 3902
72c04902
AV
3903 if (!maybe_acls)
3904 cache_no_acl(inode);
46a53cca 3905
39279cc3 3906 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3907 case S_IFREG:
3908 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3909 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3910 inode->i_fop = &btrfs_file_operations;
3911 inode->i_op = &btrfs_file_inode_operations;
3912 break;
3913 case S_IFDIR:
3914 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3915 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3916 break;
3917 case S_IFLNK:
3918 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3919 inode_nohighmem(inode);
4779cc04 3920 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3921 break;
618e21d5 3922 default:
0279b4cd 3923 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3924 init_special_inode(inode, inode->i_mode, rdev);
3925 break;
39279cc3 3926 }
6cbff00f 3927
7b6a221e 3928 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3929 return 0;
39279cc3
CM
3930}
3931
d352ac68
CM
3932/*
3933 * given a leaf and an inode, copy the inode fields into the leaf
3934 */
e02119d5
CM
3935static void fill_inode_item(struct btrfs_trans_handle *trans,
3936 struct extent_buffer *leaf,
5f39d397 3937 struct btrfs_inode_item *item,
39279cc3
CM
3938 struct inode *inode)
3939{
51fab693
LB
3940 struct btrfs_map_token token;
3941
c82f823c 3942 btrfs_init_map_token(&token, leaf);
5f39d397 3943
51fab693
LB
3944 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3945 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3946 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3947 &token);
3948 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3949 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3950
a937b979 3951 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3952 inode->i_atime.tv_sec, &token);
a937b979 3953 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3954 inode->i_atime.tv_nsec, &token);
5f39d397 3955
a937b979 3956 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3957 inode->i_mtime.tv_sec, &token);
a937b979 3958 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3959 inode->i_mtime.tv_nsec, &token);
5f39d397 3960
a937b979 3961 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3962 inode->i_ctime.tv_sec, &token);
a937b979 3963 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3964 inode->i_ctime.tv_nsec, &token);
5f39d397 3965
9cc97d64 3966 btrfs_set_token_timespec_sec(leaf, &item->otime,
3967 BTRFS_I(inode)->i_otime.tv_sec, &token);
3968 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3969 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3970
51fab693
LB
3971 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3972 &token);
3973 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3974 &token);
c7f88c4e
JL
3975 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3976 &token);
51fab693
LB
3977 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3978 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3979 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3980 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3981}
3982
d352ac68
CM
3983/*
3984 * copy everything in the in-memory inode into the btree.
3985 */
2115133f 3986static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3987 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3988{
3989 struct btrfs_inode_item *inode_item;
3990 struct btrfs_path *path;
5f39d397 3991 struct extent_buffer *leaf;
39279cc3
CM
3992 int ret;
3993
3994 path = btrfs_alloc_path();
16cdcec7
MX
3995 if (!path)
3996 return -ENOMEM;
3997
b9473439 3998 path->leave_spinning = 1;
16cdcec7
MX
3999 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4000 1);
39279cc3
CM
4001 if (ret) {
4002 if (ret > 0)
4003 ret = -ENOENT;
4004 goto failed;
4005 }
4006
5f39d397
CM
4007 leaf = path->nodes[0];
4008 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4009 struct btrfs_inode_item);
39279cc3 4010
e02119d5 4011 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 4012 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 4013 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4014 ret = 0;
4015failed:
39279cc3
CM
4016 btrfs_free_path(path);
4017 return ret;
4018}
4019
2115133f
CM
4020/*
4021 * copy everything in the in-memory inode into the btree.
4022 */
4023noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root, struct inode *inode)
4025{
0b246afa 4026 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4027 int ret;
4028
4029 /*
4030 * If the inode is a free space inode, we can deadlock during commit
4031 * if we put it into the delayed code.
4032 *
4033 * The data relocation inode should also be directly updated
4034 * without delay
4035 */
70ddc553 4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4037 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4039 btrfs_update_root_times(trans, root);
4040
2115133f
CM
4041 ret = btrfs_delayed_update_inode(trans, root, inode);
4042 if (!ret)
4043 btrfs_set_inode_last_trans(trans, inode);
4044 return ret;
4045 }
4046
4047 return btrfs_update_inode_item(trans, root, inode);
4048}
4049
be6aef60
JB
4050noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4051 struct btrfs_root *root,
4052 struct inode *inode)
2115133f
CM
4053{
4054 int ret;
4055
4056 ret = btrfs_update_inode(trans, root, inode);
4057 if (ret == -ENOSPC)
4058 return btrfs_update_inode_item(trans, root, inode);
4059 return ret;
4060}
4061
d352ac68
CM
4062/*
4063 * unlink helper that gets used here in inode.c and in the tree logging
4064 * recovery code. It remove a link in a directory with a given name, and
4065 * also drops the back refs in the inode to the directory
4066 */
92986796
AV
4067static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4068 struct btrfs_root *root,
4ec5934e
NB
4069 struct btrfs_inode *dir,
4070 struct btrfs_inode *inode,
92986796 4071 const char *name, int name_len)
39279cc3 4072{
0b246afa 4073 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4074 struct btrfs_path *path;
39279cc3 4075 int ret = 0;
39279cc3 4076 struct btrfs_dir_item *di;
aec7477b 4077 u64 index;
33345d01
LZ
4078 u64 ino = btrfs_ino(inode);
4079 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4080
4081 path = btrfs_alloc_path();
54aa1f4d
CM
4082 if (!path) {
4083 ret = -ENOMEM;
554233a6 4084 goto out;
54aa1f4d
CM
4085 }
4086
b9473439 4087 path->leave_spinning = 1;
33345d01 4088 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 4089 name, name_len, -1);
3cf5068f
LB
4090 if (IS_ERR_OR_NULL(di)) {
4091 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4092 goto err;
4093 }
39279cc3 4094 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4095 if (ret)
4096 goto err;
b3b4aa74 4097 btrfs_release_path(path);
39279cc3 4098
67de1176
MX
4099 /*
4100 * If we don't have dir index, we have to get it by looking up
4101 * the inode ref, since we get the inode ref, remove it directly,
4102 * it is unnecessary to do delayed deletion.
4103 *
4104 * But if we have dir index, needn't search inode ref to get it.
4105 * Since the inode ref is close to the inode item, it is better
4106 * that we delay to delete it, and just do this deletion when
4107 * we update the inode item.
4108 */
4ec5934e 4109 if (inode->dir_index) {
67de1176
MX
4110 ret = btrfs_delayed_delete_inode_ref(inode);
4111 if (!ret) {
4ec5934e 4112 index = inode->dir_index;
67de1176
MX
4113 goto skip_backref;
4114 }
4115 }
4116
33345d01
LZ
4117 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4118 dir_ino, &index);
aec7477b 4119 if (ret) {
0b246afa 4120 btrfs_info(fs_info,
c2cf52eb 4121 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4122 name_len, name, ino, dir_ino);
66642832 4123 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4124 goto err;
4125 }
67de1176 4126skip_backref:
9add2945 4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4128 if (ret) {
66642832 4129 btrfs_abort_transaction(trans, ret);
39279cc3 4130 goto err;
79787eaa 4131 }
39279cc3 4132
4ec5934e
NB
4133 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4134 dir_ino);
79787eaa 4135 if (ret != 0 && ret != -ENOENT) {
66642832 4136 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4137 goto err;
4138 }
e02119d5 4139
4ec5934e
NB
4140 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4141 index);
6418c961
CM
4142 if (ret == -ENOENT)
4143 ret = 0;
d4e3991b 4144 else if (ret)
66642832 4145 btrfs_abort_transaction(trans, ret);
63611e73
JB
4146
4147 /*
4148 * If we have a pending delayed iput we could end up with the final iput
4149 * being run in btrfs-cleaner context. If we have enough of these built
4150 * up we can end up burning a lot of time in btrfs-cleaner without any
4151 * way to throttle the unlinks. Since we're currently holding a ref on
4152 * the inode we can run the delayed iput here without any issues as the
4153 * final iput won't be done until after we drop the ref we're currently
4154 * holding.
4155 */
4156 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4157err:
4158 btrfs_free_path(path);
e02119d5
CM
4159 if (ret)
4160 goto out;
4161
6ef06d27 4162 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4163 inode_inc_iversion(&inode->vfs_inode);
4164 inode_inc_iversion(&dir->vfs_inode);
4165 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4166 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4167 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4168out:
39279cc3
CM
4169 return ret;
4170}
4171
92986796
AV
4172int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *root,
4ec5934e 4174 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4175 const char *name, int name_len)
4176{
4177 int ret;
4178 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4179 if (!ret) {
4ec5934e
NB
4180 drop_nlink(&inode->vfs_inode);
4181 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4182 }
4183 return ret;
4184}
39279cc3 4185
a22285a6
YZ
4186/*
4187 * helper to start transaction for unlink and rmdir.
4188 *
d52be818
JB
4189 * unlink and rmdir are special in btrfs, they do not always free space, so
4190 * if we cannot make our reservations the normal way try and see if there is
4191 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4192 * allow the unlink to occur.
a22285a6 4193 */
d52be818 4194static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4195{
a22285a6 4196 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4197
e70bea5f
JB
4198 /*
4199 * 1 for the possible orphan item
4200 * 1 for the dir item
4201 * 1 for the dir index
4202 * 1 for the inode ref
e70bea5f
JB
4203 * 1 for the inode
4204 */
8eab77ff 4205 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4206}
4207
4208static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4209{
4210 struct btrfs_root *root = BTRFS_I(dir)->root;
4211 struct btrfs_trans_handle *trans;
2b0143b5 4212 struct inode *inode = d_inode(dentry);
a22285a6 4213 int ret;
a22285a6 4214
d52be818 4215 trans = __unlink_start_trans(dir);
a22285a6
YZ
4216 if (IS_ERR(trans))
4217 return PTR_ERR(trans);
5f39d397 4218
4ec5934e
NB
4219 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4220 0);
12fcfd22 4221
4ec5934e
NB
4222 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4223 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4224 dentry->d_name.len);
b532402e
TI
4225 if (ret)
4226 goto out;
7b128766 4227
a22285a6 4228 if (inode->i_nlink == 0) {
73f2e545 4229 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4230 if (ret)
4231 goto out;
a22285a6 4232 }
7b128766 4233
b532402e 4234out:
3a45bb20 4235 btrfs_end_transaction(trans);
2ff7e61e 4236 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4237 return ret;
4238}
4239
f60a2364 4240static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4241 struct inode *dir, u64 objectid,
4242 const char *name, int name_len)
4df27c4d 4243{
401b3b19 4244 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4245 struct btrfs_path *path;
4246 struct extent_buffer *leaf;
4247 struct btrfs_dir_item *di;
4248 struct btrfs_key key;
4249 u64 index;
4250 int ret;
4a0cc7ca 4251 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4252
4253 path = btrfs_alloc_path();
4254 if (!path)
4255 return -ENOMEM;
4256
33345d01 4257 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4258 name, name_len, -1);
79787eaa 4259 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4260 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4261 goto out;
4262 }
4df27c4d
YZ
4263
4264 leaf = path->nodes[0];
4265 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4266 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4267 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4268 if (ret) {
66642832 4269 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4270 goto out;
4271 }
b3b4aa74 4272 btrfs_release_path(path);
4df27c4d 4273
3ee1c553
LF
4274 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4275 dir_ino, &index, name, name_len);
4df27c4d 4276 if (ret < 0) {
79787eaa 4277 if (ret != -ENOENT) {
66642832 4278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4279 goto out;
4280 }
33345d01 4281 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4282 name, name_len);
79787eaa
JM
4283 if (IS_ERR_OR_NULL(di)) {
4284 if (!di)
4285 ret = -ENOENT;
4286 else
4287 ret = PTR_ERR(di);
66642832 4288 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4289 goto out;
4290 }
4df27c4d
YZ
4291
4292 leaf = path->nodes[0];
4293 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4294 index = key.offset;
4295 }
945d8962 4296 btrfs_release_path(path);
4df27c4d 4297
9add2945 4298 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4299 if (ret) {
66642832 4300 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4301 goto out;
4302 }
4df27c4d 4303
6ef06d27 4304 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4305 inode_inc_iversion(dir);
c2050a45 4306 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4307 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4308 if (ret)
66642832 4309 btrfs_abort_transaction(trans, ret);
79787eaa 4310out:
71d7aed0 4311 btrfs_free_path(path);
79787eaa 4312 return ret;
4df27c4d
YZ
4313}
4314
ec42f167
MT
4315/*
4316 * Helper to check if the subvolume references other subvolumes or if it's
4317 * default.
4318 */
f60a2364 4319static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4320{
4321 struct btrfs_fs_info *fs_info = root->fs_info;
4322 struct btrfs_path *path;
4323 struct btrfs_dir_item *di;
4324 struct btrfs_key key;
4325 u64 dir_id;
4326 int ret;
4327
4328 path = btrfs_alloc_path();
4329 if (!path)
4330 return -ENOMEM;
4331
4332 /* Make sure this root isn't set as the default subvol */
4333 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4334 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4335 dir_id, "default", 7, 0);
4336 if (di && !IS_ERR(di)) {
4337 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4338 if (key.objectid == root->root_key.objectid) {
4339 ret = -EPERM;
4340 btrfs_err(fs_info,
4341 "deleting default subvolume %llu is not allowed",
4342 key.objectid);
4343 goto out;
4344 }
4345 btrfs_release_path(path);
4346 }
4347
4348 key.objectid = root->root_key.objectid;
4349 key.type = BTRFS_ROOT_REF_KEY;
4350 key.offset = (u64)-1;
4351
4352 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4353 if (ret < 0)
4354 goto out;
4355 BUG_ON(ret == 0);
4356
4357 ret = 0;
4358 if (path->slots[0] > 0) {
4359 path->slots[0]--;
4360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4361 if (key.objectid == root->root_key.objectid &&
4362 key.type == BTRFS_ROOT_REF_KEY)
4363 ret = -ENOTEMPTY;
4364 }
4365out:
4366 btrfs_free_path(path);
4367 return ret;
4368}
4369
20a68004
NB
4370/* Delete all dentries for inodes belonging to the root */
4371static void btrfs_prune_dentries(struct btrfs_root *root)
4372{
4373 struct btrfs_fs_info *fs_info = root->fs_info;
4374 struct rb_node *node;
4375 struct rb_node *prev;
4376 struct btrfs_inode *entry;
4377 struct inode *inode;
4378 u64 objectid = 0;
4379
4380 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4381 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4382
4383 spin_lock(&root->inode_lock);
4384again:
4385 node = root->inode_tree.rb_node;
4386 prev = NULL;
4387 while (node) {
4388 prev = node;
4389 entry = rb_entry(node, struct btrfs_inode, rb_node);
4390
37508515 4391 if (objectid < btrfs_ino(entry))
20a68004 4392 node = node->rb_left;
37508515 4393 else if (objectid > btrfs_ino(entry))
20a68004
NB
4394 node = node->rb_right;
4395 else
4396 break;
4397 }
4398 if (!node) {
4399 while (prev) {
4400 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4401 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4402 node = prev;
4403 break;
4404 }
4405 prev = rb_next(prev);
4406 }
4407 }
4408 while (node) {
4409 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4410 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4411 inode = igrab(&entry->vfs_inode);
4412 if (inode) {
4413 spin_unlock(&root->inode_lock);
4414 if (atomic_read(&inode->i_count) > 1)
4415 d_prune_aliases(inode);
4416 /*
4417 * btrfs_drop_inode will have it removed from the inode
4418 * cache when its usage count hits zero.
4419 */
4420 iput(inode);
4421 cond_resched();
4422 spin_lock(&root->inode_lock);
4423 goto again;
4424 }
4425
4426 if (cond_resched_lock(&root->inode_lock))
4427 goto again;
4428
4429 node = rb_next(node);
4430 }
4431 spin_unlock(&root->inode_lock);
4432}
4433
f60a2364
MT
4434int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4435{
4436 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4437 struct btrfs_root *root = BTRFS_I(dir)->root;
4438 struct inode *inode = d_inode(dentry);
4439 struct btrfs_root *dest = BTRFS_I(inode)->root;
4440 struct btrfs_trans_handle *trans;
4441 struct btrfs_block_rsv block_rsv;
4442 u64 root_flags;
f60a2364
MT
4443 int ret;
4444 int err;
4445
4446 /*
4447 * Don't allow to delete a subvolume with send in progress. This is
4448 * inside the inode lock so the error handling that has to drop the bit
4449 * again is not run concurrently.
4450 */
4451 spin_lock(&dest->root_item_lock);
a7176f74 4452 if (dest->send_in_progress) {
f60a2364
MT
4453 spin_unlock(&dest->root_item_lock);
4454 btrfs_warn(fs_info,
4455 "attempt to delete subvolume %llu during send",
4456 dest->root_key.objectid);
4457 return -EPERM;
4458 }
a7176f74
LF
4459 root_flags = btrfs_root_flags(&dest->root_item);
4460 btrfs_set_root_flags(&dest->root_item,
4461 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4462 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4463
4464 down_write(&fs_info->subvol_sem);
4465
4466 err = may_destroy_subvol(dest);
4467 if (err)
4468 goto out_up_write;
4469
4470 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4471 /*
4472 * One for dir inode,
4473 * two for dir entries,
4474 * two for root ref/backref.
4475 */
c4c129db 4476 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4477 if (err)
4478 goto out_up_write;
4479
4480 trans = btrfs_start_transaction(root, 0);
4481 if (IS_ERR(trans)) {
4482 err = PTR_ERR(trans);
4483 goto out_release;
4484 }
4485 trans->block_rsv = &block_rsv;
4486 trans->bytes_reserved = block_rsv.size;
4487
4488 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4489
401b3b19
LF
4490 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4491 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4492 if (ret) {
4493 err = ret;
4494 btrfs_abort_transaction(trans, ret);
4495 goto out_end_trans;
4496 }
4497
4498 btrfs_record_root_in_trans(trans, dest);
4499
4500 memset(&dest->root_item.drop_progress, 0,
4501 sizeof(dest->root_item.drop_progress));
4502 dest->root_item.drop_level = 0;
4503 btrfs_set_root_refs(&dest->root_item, 0);
4504
4505 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4506 ret = btrfs_insert_orphan_item(trans,
4507 fs_info->tree_root,
4508 dest->root_key.objectid);
4509 if (ret) {
4510 btrfs_abort_transaction(trans, ret);
4511 err = ret;
4512 goto out_end_trans;
4513 }
4514 }
4515
d1957791 4516 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4517 BTRFS_UUID_KEY_SUBVOL,
4518 dest->root_key.objectid);
4519 if (ret && ret != -ENOENT) {
4520 btrfs_abort_transaction(trans, ret);
4521 err = ret;
4522 goto out_end_trans;
4523 }
4524 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4525 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4526 dest->root_item.received_uuid,
4527 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4528 dest->root_key.objectid);
4529 if (ret && ret != -ENOENT) {
4530 btrfs_abort_transaction(trans, ret);
4531 err = ret;
4532 goto out_end_trans;
4533 }
4534 }
4535
4536out_end_trans:
4537 trans->block_rsv = NULL;
4538 trans->bytes_reserved = 0;
4539 ret = btrfs_end_transaction(trans);
4540 if (ret && !err)
4541 err = ret;
4542 inode->i_flags |= S_DEAD;
4543out_release:
4544 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4545out_up_write:
4546 up_write(&fs_info->subvol_sem);
4547 if (err) {
4548 spin_lock(&dest->root_item_lock);
4549 root_flags = btrfs_root_flags(&dest->root_item);
4550 btrfs_set_root_flags(&dest->root_item,
4551 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4552 spin_unlock(&dest->root_item_lock);
4553 } else {
4554 d_invalidate(dentry);
20a68004 4555 btrfs_prune_dentries(dest);
f60a2364
MT
4556 ASSERT(dest->send_in_progress == 0);
4557
4558 /* the last ref */
4559 if (dest->ino_cache_inode) {
4560 iput(dest->ino_cache_inode);
4561 dest->ino_cache_inode = NULL;
4562 }
4563 }
4564
4565 return err;
4566}
4567
39279cc3
CM
4568static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4569{
2b0143b5 4570 struct inode *inode = d_inode(dentry);
1832a6d5 4571 int err = 0;
39279cc3 4572 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4573 struct btrfs_trans_handle *trans;
44f714da 4574 u64 last_unlink_trans;
39279cc3 4575
b3ae244e 4576 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4577 return -ENOTEMPTY;
4a0cc7ca 4578 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4579 return btrfs_delete_subvolume(dir, dentry);
134d4512 4580
d52be818 4581 trans = __unlink_start_trans(dir);
a22285a6 4582 if (IS_ERR(trans))
5df6a9f6 4583 return PTR_ERR(trans);
5df6a9f6 4584
4a0cc7ca 4585 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4586 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4587 BTRFS_I(inode)->location.objectid,
4588 dentry->d_name.name,
4589 dentry->d_name.len);
4590 goto out;
4591 }
4592
73f2e545 4593 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4594 if (err)
4df27c4d 4595 goto out;
7b128766 4596
44f714da
FM
4597 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4598
39279cc3 4599 /* now the directory is empty */
4ec5934e
NB
4600 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4601 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4602 dentry->d_name.len);
44f714da 4603 if (!err) {
6ef06d27 4604 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4605 /*
4606 * Propagate the last_unlink_trans value of the deleted dir to
4607 * its parent directory. This is to prevent an unrecoverable
4608 * log tree in the case we do something like this:
4609 * 1) create dir foo
4610 * 2) create snapshot under dir foo
4611 * 3) delete the snapshot
4612 * 4) rmdir foo
4613 * 5) mkdir foo
4614 * 6) fsync foo or some file inside foo
4615 */
4616 if (last_unlink_trans >= trans->transid)
4617 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4618 }
4df27c4d 4619out:
3a45bb20 4620 btrfs_end_transaction(trans);
2ff7e61e 4621 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4622
39279cc3
CM
4623 return err;
4624}
4625
ddfae63c
JB
4626/*
4627 * Return this if we need to call truncate_block for the last bit of the
4628 * truncate.
4629 */
4630#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4631
39279cc3
CM
4632/*
4633 * this can truncate away extent items, csum items and directory items.
4634 * It starts at a high offset and removes keys until it can't find
d352ac68 4635 * any higher than new_size
39279cc3
CM
4636 *
4637 * csum items that cross the new i_size are truncated to the new size
4638 * as well.
7b128766
JB
4639 *
4640 * min_type is the minimum key type to truncate down to. If set to 0, this
4641 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4642 */
8082510e
YZ
4643int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4644 struct btrfs_root *root,
4645 struct inode *inode,
4646 u64 new_size, u32 min_type)
39279cc3 4647{
0b246afa 4648 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4649 struct btrfs_path *path;
5f39d397 4650 struct extent_buffer *leaf;
39279cc3 4651 struct btrfs_file_extent_item *fi;
8082510e
YZ
4652 struct btrfs_key key;
4653 struct btrfs_key found_key;
39279cc3 4654 u64 extent_start = 0;
db94535d 4655 u64 extent_num_bytes = 0;
5d4f98a2 4656 u64 extent_offset = 0;
39279cc3 4657 u64 item_end = 0;
c1aa4575 4658 u64 last_size = new_size;
8082510e 4659 u32 found_type = (u8)-1;
39279cc3
CM
4660 int found_extent;
4661 int del_item;
85e21bac
CM
4662 int pending_del_nr = 0;
4663 int pending_del_slot = 0;
179e29e4 4664 int extent_type = -1;
8082510e 4665 int ret;
4a0cc7ca 4666 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4667 u64 bytes_deleted = 0;
897ca819
TM
4668 bool be_nice = false;
4669 bool should_throttle = false;
8082510e
YZ
4670
4671 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4672
28ed1345
CM
4673 /*
4674 * for non-free space inodes and ref cows, we want to back off from
4675 * time to time
4676 */
70ddc553 4677 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4678 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4679 be_nice = true;
28ed1345 4680
0eb0e19c
MF
4681 path = btrfs_alloc_path();
4682 if (!path)
4683 return -ENOMEM;
e4058b54 4684 path->reada = READA_BACK;
0eb0e19c 4685
5dc562c5
JB
4686 /*
4687 * We want to drop from the next block forward in case this new size is
4688 * not block aligned since we will be keeping the last block of the
4689 * extent just the way it is.
4690 */
27cdeb70 4691 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4692 root == fs_info->tree_root)
dcdbc059 4693 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4694 fs_info->sectorsize),
da17066c 4695 (u64)-1, 0);
8082510e 4696
16cdcec7
MX
4697 /*
4698 * This function is also used to drop the items in the log tree before
4699 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4700 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4701 * items.
4702 */
4703 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4704 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4705
33345d01 4706 key.objectid = ino;
39279cc3 4707 key.offset = (u64)-1;
5f39d397
CM
4708 key.type = (u8)-1;
4709
85e21bac 4710search_again:
28ed1345
CM
4711 /*
4712 * with a 16K leaf size and 128MB extents, you can actually queue
4713 * up a huge file in a single leaf. Most of the time that
4714 * bytes_deleted is > 0, it will be huge by the time we get here
4715 */
fd86a3a3
OS
4716 if (be_nice && bytes_deleted > SZ_32M &&
4717 btrfs_should_end_transaction(trans)) {
4718 ret = -EAGAIN;
4719 goto out;
28ed1345
CM
4720 }
4721
b9473439 4722 path->leave_spinning = 1;
85e21bac 4723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4724 if (ret < 0)
8082510e 4725 goto out;
d397712b 4726
85e21bac 4727 if (ret > 0) {
fd86a3a3 4728 ret = 0;
e02119d5
CM
4729 /* there are no items in the tree for us to truncate, we're
4730 * done
4731 */
8082510e
YZ
4732 if (path->slots[0] == 0)
4733 goto out;
85e21bac
CM
4734 path->slots[0]--;
4735 }
4736
d397712b 4737 while (1) {
39279cc3 4738 fi = NULL;
5f39d397
CM
4739 leaf = path->nodes[0];
4740 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4741 found_type = found_key.type;
39279cc3 4742
33345d01 4743 if (found_key.objectid != ino)
39279cc3 4744 break;
5f39d397 4745
85e21bac 4746 if (found_type < min_type)
39279cc3
CM
4747 break;
4748
5f39d397 4749 item_end = found_key.offset;
39279cc3 4750 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4751 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4752 struct btrfs_file_extent_item);
179e29e4
CM
4753 extent_type = btrfs_file_extent_type(leaf, fi);
4754 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4755 item_end +=
db94535d 4756 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4757
4758 trace_btrfs_truncate_show_fi_regular(
4759 BTRFS_I(inode), leaf, fi,
4760 found_key.offset);
179e29e4 4761 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4762 item_end += btrfs_file_extent_ram_bytes(leaf,
4763 fi);
09ed2f16
LB
4764
4765 trace_btrfs_truncate_show_fi_inline(
4766 BTRFS_I(inode), leaf, fi, path->slots[0],
4767 found_key.offset);
39279cc3 4768 }
008630c1 4769 item_end--;
39279cc3 4770 }
8082510e
YZ
4771 if (found_type > min_type) {
4772 del_item = 1;
4773 } else {
76b42abb 4774 if (item_end < new_size)
b888db2b 4775 break;
8082510e
YZ
4776 if (found_key.offset >= new_size)
4777 del_item = 1;
4778 else
4779 del_item = 0;
39279cc3 4780 }
39279cc3 4781 found_extent = 0;
39279cc3 4782 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4783 if (found_type != BTRFS_EXTENT_DATA_KEY)
4784 goto delete;
4785
4786 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4787 u64 num_dec;
db94535d 4788 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4789 if (!del_item) {
db94535d
CM
4790 u64 orig_num_bytes =
4791 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4792 extent_num_bytes = ALIGN(new_size -
4793 found_key.offset,
0b246afa 4794 fs_info->sectorsize);
db94535d
CM
4795 btrfs_set_file_extent_num_bytes(leaf, fi,
4796 extent_num_bytes);
4797 num_dec = (orig_num_bytes -
9069218d 4798 extent_num_bytes);
27cdeb70
MX
4799 if (test_bit(BTRFS_ROOT_REF_COWS,
4800 &root->state) &&
4801 extent_start != 0)
a76a3cd4 4802 inode_sub_bytes(inode, num_dec);
5f39d397 4803 btrfs_mark_buffer_dirty(leaf);
39279cc3 4804 } else {
db94535d
CM
4805 extent_num_bytes =
4806 btrfs_file_extent_disk_num_bytes(leaf,
4807 fi);
5d4f98a2
YZ
4808 extent_offset = found_key.offset -
4809 btrfs_file_extent_offset(leaf, fi);
4810
39279cc3 4811 /* FIXME blocksize != 4096 */
9069218d 4812 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4813 if (extent_start != 0) {
4814 found_extent = 1;
27cdeb70
MX
4815 if (test_bit(BTRFS_ROOT_REF_COWS,
4816 &root->state))
a76a3cd4 4817 inode_sub_bytes(inode, num_dec);
e02119d5 4818 }
39279cc3 4819 }
9069218d 4820 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4821 /*
4822 * we can't truncate inline items that have had
4823 * special encodings
4824 */
4825 if (!del_item &&
c8b97818 4826 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4827 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4828 btrfs_file_extent_compression(leaf, fi) == 0) {
4829 u32 size = (u32)(new_size - found_key.offset);
4830
4831 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4832 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4833 btrfs_truncate_item(path, size, 1);
ddfae63c 4834 } else if (!del_item) {
514ac8ad 4835 /*
ddfae63c
JB
4836 * We have to bail so the last_size is set to
4837 * just before this extent.
514ac8ad 4838 */
fd86a3a3 4839 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4840 break;
4841 }
0305cd5f 4842
ddfae63c 4843 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4844 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4845 }
179e29e4 4846delete:
ddfae63c
JB
4847 if (del_item)
4848 last_size = found_key.offset;
4849 else
4850 last_size = new_size;
39279cc3 4851 if (del_item) {
85e21bac
CM
4852 if (!pending_del_nr) {
4853 /* no pending yet, add ourselves */
4854 pending_del_slot = path->slots[0];
4855 pending_del_nr = 1;
4856 } else if (pending_del_nr &&
4857 path->slots[0] + 1 == pending_del_slot) {
4858 /* hop on the pending chunk */
4859 pending_del_nr++;
4860 pending_del_slot = path->slots[0];
4861 } else {
d397712b 4862 BUG();
85e21bac 4863 }
39279cc3
CM
4864 } else {
4865 break;
4866 }
897ca819 4867 should_throttle = false;
28f75a0e 4868
27cdeb70
MX
4869 if (found_extent &&
4870 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4871 root == fs_info->tree_root)) {
ffd4bb2a
QW
4872 struct btrfs_ref ref = { 0 };
4873
b9473439 4874 btrfs_set_path_blocking(path);
28ed1345 4875 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4876
4877 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4878 extent_start, extent_num_bytes, 0);
4879 ref.real_root = root->root_key.objectid;
4880 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4881 ino, extent_offset);
4882 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4883 if (ret) {
4884 btrfs_abort_transaction(trans, ret);
4885 break;
4886 }
28f75a0e 4887 if (be_nice) {
7c861627 4888 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4889 should_throttle = true;
28f75a0e 4890 }
39279cc3 4891 }
85e21bac 4892
8082510e
YZ
4893 if (found_type == BTRFS_INODE_ITEM_KEY)
4894 break;
4895
4896 if (path->slots[0] == 0 ||
1262133b 4897 path->slots[0] != pending_del_slot ||
28bad212 4898 should_throttle) {
8082510e
YZ
4899 if (pending_del_nr) {
4900 ret = btrfs_del_items(trans, root, path,
4901 pending_del_slot,
4902 pending_del_nr);
79787eaa 4903 if (ret) {
66642832 4904 btrfs_abort_transaction(trans, ret);
fd86a3a3 4905 break;
79787eaa 4906 }
8082510e
YZ
4907 pending_del_nr = 0;
4908 }
b3b4aa74 4909 btrfs_release_path(path);
28bad212 4910
28f75a0e 4911 /*
28bad212
JB
4912 * We can generate a lot of delayed refs, so we need to
4913 * throttle every once and a while and make sure we're
4914 * adding enough space to keep up with the work we are
4915 * generating. Since we hold a transaction here we
4916 * can't flush, and we don't want to FLUSH_LIMIT because
4917 * we could have generated too many delayed refs to
4918 * actually allocate, so just bail if we're short and
4919 * let the normal reservation dance happen higher up.
28f75a0e 4920 */
28bad212
JB
4921 if (should_throttle) {
4922 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4923 BTRFS_RESERVE_NO_FLUSH);
4924 if (ret) {
4925 ret = -EAGAIN;
4926 break;
4927 }
28f75a0e 4928 }
85e21bac 4929 goto search_again;
8082510e
YZ
4930 } else {
4931 path->slots[0]--;
85e21bac 4932 }
39279cc3 4933 }
8082510e 4934out:
fd86a3a3
OS
4935 if (ret >= 0 && pending_del_nr) {
4936 int err;
4937
4938 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4939 pending_del_nr);
fd86a3a3
OS
4940 if (err) {
4941 btrfs_abort_transaction(trans, err);
4942 ret = err;
4943 }
85e21bac 4944 }
76b42abb
FM
4945 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4946 ASSERT(last_size >= new_size);
fd86a3a3 4947 if (!ret && last_size > new_size)
76b42abb 4948 last_size = new_size;
7f4f6e0a 4949 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4950 }
28ed1345 4951
39279cc3 4952 btrfs_free_path(path);
fd86a3a3 4953 return ret;
39279cc3
CM
4954}
4955
4956/*
9703fefe 4957 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4958 * @inode - inode that we're zeroing
4959 * @from - the offset to start zeroing
4960 * @len - the length to zero, 0 to zero the entire range respective to the
4961 * offset
4962 * @front - zero up to the offset instead of from the offset on
4963 *
9703fefe 4964 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4965 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4966 */
9703fefe 4967int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4968 int front)
39279cc3 4969{
0b246afa 4970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4971 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4972 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4973 struct btrfs_ordered_extent *ordered;
2ac55d41 4974 struct extent_state *cached_state = NULL;
364ecf36 4975 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4976 char *kaddr;
0b246afa 4977 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4978 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4979 unsigned offset = from & (blocksize - 1);
39279cc3 4980 struct page *page;
3b16a4e3 4981 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4982 int ret = 0;
9703fefe
CR
4983 u64 block_start;
4984 u64 block_end;
39279cc3 4985
b03ebd99
NB
4986 if (IS_ALIGNED(offset, blocksize) &&
4987 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4988 goto out;
9703fefe 4989
8b62f87b
JB
4990 block_start = round_down(from, blocksize);
4991 block_end = block_start + blocksize - 1;
4992
364ecf36 4993 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4994 block_start, blocksize);
5d5e103a
JB
4995 if (ret)
4996 goto out;
39279cc3 4997
211c17f5 4998again:
3b16a4e3 4999 page = find_or_create_page(mapping, index, mask);
5d5e103a 5000 if (!page) {
bc42bda2 5001 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 5002 block_start, blocksize, true);
8702ba93 5003 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 5004 ret = -ENOMEM;
39279cc3 5005 goto out;
5d5e103a 5006 }
e6dcd2dc 5007
39279cc3 5008 if (!PageUptodate(page)) {
9ebefb18 5009 ret = btrfs_readpage(NULL, page);
39279cc3 5010 lock_page(page);
211c17f5
CM
5011 if (page->mapping != mapping) {
5012 unlock_page(page);
09cbfeaf 5013 put_page(page);
211c17f5
CM
5014 goto again;
5015 }
39279cc3
CM
5016 if (!PageUptodate(page)) {
5017 ret = -EIO;
89642229 5018 goto out_unlock;
39279cc3
CM
5019 }
5020 }
211c17f5 5021 wait_on_page_writeback(page);
e6dcd2dc 5022
9703fefe 5023 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
5024 set_page_extent_mapped(page);
5025
9703fefe 5026 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 5027 if (ordered) {
9703fefe 5028 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5029 &cached_state);
e6dcd2dc 5030 unlock_page(page);
09cbfeaf 5031 put_page(page);
eb84ae03 5032 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5033 btrfs_put_ordered_extent(ordered);
5034 goto again;
5035 }
5036
9703fefe 5037 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
5038 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5039 0, 0, &cached_state);
5d5e103a 5040
e3b8a485 5041 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 5042 &cached_state);
9ed74f2d 5043 if (ret) {
9703fefe 5044 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 5045 &cached_state);
9ed74f2d
JB
5046 goto out_unlock;
5047 }
5048
9703fefe 5049 if (offset != blocksize) {
2aaa6655 5050 if (!len)
9703fefe 5051 len = blocksize - offset;
e6dcd2dc 5052 kaddr = kmap(page);
2aaa6655 5053 if (front)
9703fefe
CR
5054 memset(kaddr + (block_start - page_offset(page)),
5055 0, offset);
2aaa6655 5056 else
9703fefe
CR
5057 memset(kaddr + (block_start - page_offset(page)) + offset,
5058 0, len);
e6dcd2dc
CM
5059 flush_dcache_page(page);
5060 kunmap(page);
5061 }
247e743c 5062 ClearPageChecked(page);
e6dcd2dc 5063 set_page_dirty(page);
e43bbe5e 5064 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 5065
89642229 5066out_unlock:
5d5e103a 5067 if (ret)
bc42bda2 5068 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595 5069 blocksize, true);
8702ba93 5070 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 5071 unlock_page(page);
09cbfeaf 5072 put_page(page);
39279cc3 5073out:
364ecf36 5074 extent_changeset_free(data_reserved);
39279cc3
CM
5075 return ret;
5076}
5077
16e7549f
JB
5078static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5079 u64 offset, u64 len)
5080{
0b246afa 5081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
5082 struct btrfs_trans_handle *trans;
5083 int ret;
5084
5085 /*
5086 * Still need to make sure the inode looks like it's been updated so
5087 * that any holes get logged if we fsync.
5088 */
0b246afa
JM
5089 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5090 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
5091 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5092 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5093 return 0;
5094 }
5095
5096 /*
5097 * 1 - for the one we're dropping
5098 * 1 - for the one we're adding
5099 * 1 - for updating the inode.
5100 */
5101 trans = btrfs_start_transaction(root, 3);
5102 if (IS_ERR(trans))
5103 return PTR_ERR(trans);
5104
5105 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5106 if (ret) {
66642832 5107 btrfs_abort_transaction(trans, ret);
3a45bb20 5108 btrfs_end_transaction(trans);
16e7549f
JB
5109 return ret;
5110 }
5111
f85b7379
DS
5112 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5113 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 5114 if (ret)
66642832 5115 btrfs_abort_transaction(trans, ret);
16e7549f
JB
5116 else
5117 btrfs_update_inode(trans, root, inode);
3a45bb20 5118 btrfs_end_transaction(trans);
16e7549f
JB
5119 return ret;
5120}
5121
695a0d0d
JB
5122/*
5123 * This function puts in dummy file extents for the area we're creating a hole
5124 * for. So if we are truncating this file to a larger size we need to insert
5125 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5126 * the range between oldsize and size
5127 */
a41ad394 5128int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 5129{
0b246afa 5130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
5131 struct btrfs_root *root = BTRFS_I(inode)->root;
5132 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 5133 struct extent_map *em = NULL;
2ac55d41 5134 struct extent_state *cached_state = NULL;
5dc562c5 5135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
5136 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5137 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5138 u64 last_byte;
5139 u64 cur_offset;
5140 u64 hole_size;
9ed74f2d 5141 int err = 0;
39279cc3 5142
a71754fc 5143 /*
9703fefe
CR
5144 * If our size started in the middle of a block we need to zero out the
5145 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5146 * expose stale data.
5147 */
9703fefe 5148 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5149 if (err)
5150 return err;
5151
9036c102
YZ
5152 if (size <= hole_start)
5153 return 0;
5154
23d31bd4
NB
5155 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5156 block_end - 1, &cached_state);
9036c102
YZ
5157 cur_offset = hole_start;
5158 while (1) {
fc4f21b1 5159 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5160 block_end - cur_offset, 0);
79787eaa
JM
5161 if (IS_ERR(em)) {
5162 err = PTR_ERR(em);
f2767956 5163 em = NULL;
79787eaa
JM
5164 break;
5165 }
9036c102 5166 last_byte = min(extent_map_end(em), block_end);
0b246afa 5167 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5168 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5169 struct extent_map *hole_em;
9036c102 5170 hole_size = last_byte - cur_offset;
9ed74f2d 5171
16e7549f
JB
5172 err = maybe_insert_hole(root, inode, cur_offset,
5173 hole_size);
5174 if (err)
3893e33b 5175 break;
dcdbc059 5176 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5177 cur_offset + hole_size - 1, 0);
5178 hole_em = alloc_extent_map();
5179 if (!hole_em) {
5180 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5181 &BTRFS_I(inode)->runtime_flags);
5182 goto next;
5183 }
5184 hole_em->start = cur_offset;
5185 hole_em->len = hole_size;
5186 hole_em->orig_start = cur_offset;
8082510e 5187
5dc562c5
JB
5188 hole_em->block_start = EXTENT_MAP_HOLE;
5189 hole_em->block_len = 0;
b4939680 5190 hole_em->orig_block_len = 0;
cc95bef6 5191 hole_em->ram_bytes = hole_size;
5dc562c5 5192 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5193 hole_em->generation = fs_info->generation;
8082510e 5194
5dc562c5
JB
5195 while (1) {
5196 write_lock(&em_tree->lock);
09a2a8f9 5197 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5198 write_unlock(&em_tree->lock);
5199 if (err != -EEXIST)
5200 break;
dcdbc059
NB
5201 btrfs_drop_extent_cache(BTRFS_I(inode),
5202 cur_offset,
5dc562c5
JB
5203 cur_offset +
5204 hole_size - 1, 0);
5205 }
5206 free_extent_map(hole_em);
9036c102 5207 }
16e7549f 5208next:
9036c102 5209 free_extent_map(em);
a22285a6 5210 em = NULL;
9036c102 5211 cur_offset = last_byte;
8082510e 5212 if (cur_offset >= block_end)
9036c102
YZ
5213 break;
5214 }
a22285a6 5215 free_extent_map(em);
e43bbe5e 5216 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5217 return err;
5218}
39279cc3 5219
3972f260 5220static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5221{
f4a2f4c5
MX
5222 struct btrfs_root *root = BTRFS_I(inode)->root;
5223 struct btrfs_trans_handle *trans;
a41ad394 5224 loff_t oldsize = i_size_read(inode);
3972f260
ES
5225 loff_t newsize = attr->ia_size;
5226 int mask = attr->ia_valid;
8082510e
YZ
5227 int ret;
5228
3972f260
ES
5229 /*
5230 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5231 * special case where we need to update the times despite not having
5232 * these flags set. For all other operations the VFS set these flags
5233 * explicitly if it wants a timestamp update.
5234 */
dff6efc3
CH
5235 if (newsize != oldsize) {
5236 inode_inc_iversion(inode);
5237 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5238 inode->i_ctime = inode->i_mtime =
c2050a45 5239 current_time(inode);
dff6efc3 5240 }
3972f260 5241
a41ad394 5242 if (newsize > oldsize) {
9ea24bbe 5243 /*
ea14b57f 5244 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5245 * This is to ensure the snapshot captures a fully consistent
5246 * state of this file - if the snapshot captures this expanding
5247 * truncation, it must capture all writes that happened before
5248 * this truncation.
5249 */
0bc19f90 5250 btrfs_wait_for_snapshot_creation(root);
a41ad394 5251 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5252 if (ret) {
ea14b57f 5253 btrfs_end_write_no_snapshotting(root);
8082510e 5254 return ret;
9ea24bbe 5255 }
8082510e 5256
f4a2f4c5 5257 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5258 if (IS_ERR(trans)) {
ea14b57f 5259 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5260 return PTR_ERR(trans);
9ea24bbe 5261 }
f4a2f4c5
MX
5262
5263 i_size_write(inode, newsize);
5264 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5265 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5266 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5267 btrfs_end_write_no_snapshotting(root);
3a45bb20 5268 btrfs_end_transaction(trans);
a41ad394 5269 } else {
8082510e 5270
a41ad394
JB
5271 /*
5272 * We're truncating a file that used to have good data down to
5273 * zero. Make sure it gets into the ordered flush list so that
5274 * any new writes get down to disk quickly.
5275 */
5276 if (newsize == 0)
72ac3c0d
JB
5277 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5278 &BTRFS_I(inode)->runtime_flags);
8082510e 5279
a41ad394 5280 truncate_setsize(inode, newsize);
2e60a51e 5281
52042d8e 5282 /* Disable nonlocked read DIO to avoid the endless truncate */
abcefb1e 5283 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5284 inode_dio_wait(inode);
0b581701 5285 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5286
213e8c55 5287 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5288 if (ret && inode->i_nlink) {
5289 int err;
5290
5291 /*
f7e9e8fc
OS
5292 * Truncate failed, so fix up the in-memory size. We
5293 * adjusted disk_i_size down as we removed extents, so
5294 * wait for disk_i_size to be stable and then update the
5295 * in-memory size to match.
7f4f6e0a 5296 */
f7e9e8fc 5297 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5298 if (err)
f7e9e8fc
OS
5299 return err;
5300 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5301 }
8082510e
YZ
5302 }
5303
a41ad394 5304 return ret;
8082510e
YZ
5305}
5306
9036c102
YZ
5307static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5308{
2b0143b5 5309 struct inode *inode = d_inode(dentry);
b83cc969 5310 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5311 int err;
39279cc3 5312
b83cc969
LZ
5313 if (btrfs_root_readonly(root))
5314 return -EROFS;
5315
31051c85 5316 err = setattr_prepare(dentry, attr);
9036c102
YZ
5317 if (err)
5318 return err;
2bf5a725 5319
5a3f23d5 5320 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5321 err = btrfs_setsize(inode, attr);
8082510e
YZ
5322 if (err)
5323 return err;
39279cc3 5324 }
9036c102 5325
1025774c
CH
5326 if (attr->ia_valid) {
5327 setattr_copy(inode, attr);
0c4d2d95 5328 inode_inc_iversion(inode);
22c44fe6 5329 err = btrfs_dirty_inode(inode);
1025774c 5330
22c44fe6 5331 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5332 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5333 }
33268eaf 5334
39279cc3
CM
5335 return err;
5336}
61295eb8 5337
131e404a
FDBM
5338/*
5339 * While truncating the inode pages during eviction, we get the VFS calling
5340 * btrfs_invalidatepage() against each page of the inode. This is slow because
5341 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5342 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5343 * extent_state structures over and over, wasting lots of time.
5344 *
5345 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5346 * those expensive operations on a per page basis and do only the ordered io
5347 * finishing, while we release here the extent_map and extent_state structures,
5348 * without the excessive merging and splitting.
5349 */
5350static void evict_inode_truncate_pages(struct inode *inode)
5351{
5352 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5353 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5354 struct rb_node *node;
5355
5356 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5357 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5358
5359 write_lock(&map_tree->lock);
07e1ce09 5360 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5361 struct extent_map *em;
5362
07e1ce09 5363 node = rb_first_cached(&map_tree->map);
131e404a 5364 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5365 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5366 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5367 remove_extent_mapping(map_tree, em);
5368 free_extent_map(em);
7064dd5c
FM
5369 if (need_resched()) {
5370 write_unlock(&map_tree->lock);
5371 cond_resched();
5372 write_lock(&map_tree->lock);
5373 }
131e404a
FDBM
5374 }
5375 write_unlock(&map_tree->lock);
5376
6ca07097
FM
5377 /*
5378 * Keep looping until we have no more ranges in the io tree.
5379 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5380 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5381 * still in progress (unlocked the pages in the bio but did not yet
5382 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5383 * ranges can still be locked and eviction started because before
5384 * submitting those bios, which are executed by a separate task (work
5385 * queue kthread), inode references (inode->i_count) were not taken
5386 * (which would be dropped in the end io callback of each bio).
5387 * Therefore here we effectively end up waiting for those bios and
5388 * anyone else holding locked ranges without having bumped the inode's
5389 * reference count - if we don't do it, when they access the inode's
5390 * io_tree to unlock a range it may be too late, leading to an
5391 * use-after-free issue.
5392 */
131e404a
FDBM
5393 spin_lock(&io_tree->lock);
5394 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5395 struct extent_state *state;
5396 struct extent_state *cached_state = NULL;
6ca07097
FM
5397 u64 start;
5398 u64 end;
421f0922 5399 unsigned state_flags;
131e404a
FDBM
5400
5401 node = rb_first(&io_tree->state);
5402 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5403 start = state->start;
5404 end = state->end;
421f0922 5405 state_flags = state->state;
131e404a
FDBM
5406 spin_unlock(&io_tree->lock);
5407
ff13db41 5408 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5409
5410 /*
5411 * If still has DELALLOC flag, the extent didn't reach disk,
5412 * and its reserved space won't be freed by delayed_ref.
5413 * So we need to free its reserved space here.
5414 * (Refer to comment in btrfs_invalidatepage, case 2)
5415 *
5416 * Note, end is the bytenr of last byte, so we need + 1 here.
5417 */
421f0922 5418 if (state_flags & EXTENT_DELALLOC)
bc42bda2 5419 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5420
6ca07097 5421 clear_extent_bit(io_tree, start, end,
e182163d
OS
5422 EXTENT_LOCKED | EXTENT_DELALLOC |
5423 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5424 &cached_state);
131e404a 5425
7064dd5c 5426 cond_resched();
131e404a
FDBM
5427 spin_lock(&io_tree->lock);
5428 }
5429 spin_unlock(&io_tree->lock);
5430}
5431
4b9d7b59 5432static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5433 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5434{
5435 struct btrfs_fs_info *fs_info = root->fs_info;
5436 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5437 struct btrfs_trans_handle *trans;
2bd36e7b 5438 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5439 int ret;
4b9d7b59 5440
d3984c90
JB
5441 /*
5442 * Eviction should be taking place at some place safe because of our
5443 * delayed iputs. However the normal flushing code will run delayed
5444 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5445 *
5446 * We reserve the delayed_refs_extra here again because we can't use
5447 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5448 * above. We reserve our extra bit here because we generate a ton of
5449 * delayed refs activity by truncating.
5450 *
5451 * If we cannot make our reservation we'll attempt to steal from the
5452 * global reserve, because we really want to be able to free up space.
5453 */
5454 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5455 BTRFS_RESERVE_FLUSH_EVICT);
5456 if (ret) {
4b9d7b59
OS
5457 /*
5458 * Try to steal from the global reserve if there is space for
5459 * it.
5460 */
d3984c90
JB
5461 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5462 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5463 btrfs_warn(fs_info,
5464 "could not allocate space for delete; will truncate on mount");
5465 return ERR_PTR(-ENOSPC);
5466 }
5467 delayed_refs_extra = 0;
5468 }
4b9d7b59 5469
d3984c90
JB
5470 trans = btrfs_join_transaction(root);
5471 if (IS_ERR(trans))
5472 return trans;
5473
5474 if (delayed_refs_extra) {
5475 trans->block_rsv = &fs_info->trans_block_rsv;
5476 trans->bytes_reserved = delayed_refs_extra;
5477 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5478 delayed_refs_extra, 1);
4b9d7b59 5479 }
d3984c90 5480 return trans;
4b9d7b59
OS
5481}
5482
bd555975 5483void btrfs_evict_inode(struct inode *inode)
39279cc3 5484{
0b246afa 5485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5486 struct btrfs_trans_handle *trans;
5487 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5488 struct btrfs_block_rsv *rsv;
39279cc3
CM
5489 int ret;
5490
1abe9b8a 5491 trace_btrfs_inode_evict(inode);
5492
3d48d981 5493 if (!root) {
e8f1bc14 5494 clear_inode(inode);
3d48d981
NB
5495 return;
5496 }
5497
131e404a
FDBM
5498 evict_inode_truncate_pages(inode);
5499
69e9c6c6
SB
5500 if (inode->i_nlink &&
5501 ((btrfs_root_refs(&root->root_item) != 0 &&
5502 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5503 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5504 goto no_delete;
5505
27919067 5506 if (is_bad_inode(inode))
39279cc3 5507 goto no_delete;
5f39d397 5508
7ab7956e 5509 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5510
7b40b695 5511 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5512 goto no_delete;
c71bf099 5513
76dda93c 5514 if (inode->i_nlink > 0) {
69e9c6c6
SB
5515 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5516 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5517 goto no_delete;
5518 }
5519
aa79021f 5520 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5521 if (ret)
0e8c36a9 5522 goto no_delete;
0e8c36a9 5523
2ff7e61e 5524 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5525 if (!rsv)
4289a667 5526 goto no_delete;
2bd36e7b 5527 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5528 rsv->failfast = 1;
4289a667 5529
6ef06d27 5530 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5531
8082510e 5532 while (1) {
ad80cf50 5533 trans = evict_refill_and_join(root, rsv);
27919067
OS
5534 if (IS_ERR(trans))
5535 goto free_rsv;
7b128766 5536
4289a667
JB
5537 trans->block_rsv = rsv;
5538
d68fc57b 5539 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5540 trans->block_rsv = &fs_info->trans_block_rsv;
5541 btrfs_end_transaction(trans);
5542 btrfs_btree_balance_dirty(fs_info);
5543 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5544 goto free_rsv;
5545 else if (!ret)
8082510e 5546 break;
8082510e 5547 }
5f39d397 5548
4ef31a45 5549 /*
27919067
OS
5550 * Errors here aren't a big deal, it just means we leave orphan items in
5551 * the tree. They will be cleaned up on the next mount. If the inode
5552 * number gets reused, cleanup deletes the orphan item without doing
5553 * anything, and unlink reuses the existing orphan item.
5554 *
5555 * If it turns out that we are dropping too many of these, we might want
5556 * to add a mechanism for retrying these after a commit.
4ef31a45 5557 */
ad80cf50 5558 trans = evict_refill_and_join(root, rsv);
27919067
OS
5559 if (!IS_ERR(trans)) {
5560 trans->block_rsv = rsv;
5561 btrfs_orphan_del(trans, BTRFS_I(inode));
5562 trans->block_rsv = &fs_info->trans_block_rsv;
5563 btrfs_end_transaction(trans);
5564 }
54aa1f4d 5565
0b246afa 5566 if (!(root == fs_info->tree_root ||
581bb050 5567 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5568 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5569
27919067
OS
5570free_rsv:
5571 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5572no_delete:
27919067
OS
5573 /*
5574 * If we didn't successfully delete, the orphan item will still be in
5575 * the tree and we'll retry on the next mount. Again, we might also want
5576 * to retry these periodically in the future.
5577 */
f48d1cf5 5578 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5579 clear_inode(inode);
39279cc3
CM
5580}
5581
5582/*
6bf9e4bd
QW
5583 * Return the key found in the dir entry in the location pointer, fill @type
5584 * with BTRFS_FT_*, and return 0.
5585 *
005d6712
SY
5586 * If no dir entries were found, returns -ENOENT.
5587 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5588 */
5589static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5590 struct btrfs_key *location, u8 *type)
39279cc3
CM
5591{
5592 const char *name = dentry->d_name.name;
5593 int namelen = dentry->d_name.len;
5594 struct btrfs_dir_item *di;
5595 struct btrfs_path *path;
5596 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5597 int ret = 0;
39279cc3
CM
5598
5599 path = btrfs_alloc_path();
d8926bb3
MF
5600 if (!path)
5601 return -ENOMEM;
3954401f 5602
f85b7379
DS
5603 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5604 name, namelen, 0);
3cf5068f
LB
5605 if (IS_ERR_OR_NULL(di)) {
5606 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5607 goto out;
5608 }
d397712b 5609
5f39d397 5610 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5611 if (location->type != BTRFS_INODE_ITEM_KEY &&
5612 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5613 ret = -EUCLEAN;
56a0e706
LB
5614 btrfs_warn(root->fs_info,
5615"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5616 __func__, name, btrfs_ino(BTRFS_I(dir)),
5617 location->objectid, location->type, location->offset);
56a0e706 5618 }
6bf9e4bd
QW
5619 if (!ret)
5620 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5621out:
39279cc3
CM
5622 btrfs_free_path(path);
5623 return ret;
5624}
5625
5626/*
5627 * when we hit a tree root in a directory, the btrfs part of the inode
5628 * needs to be changed to reflect the root directory of the tree root. This
5629 * is kind of like crossing a mount point.
5630 */
2ff7e61e 5631static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5632 struct inode *dir,
5633 struct dentry *dentry,
5634 struct btrfs_key *location,
5635 struct btrfs_root **sub_root)
39279cc3 5636{
4df27c4d
YZ
5637 struct btrfs_path *path;
5638 struct btrfs_root *new_root;
5639 struct btrfs_root_ref *ref;
5640 struct extent_buffer *leaf;
1d4c08e0 5641 struct btrfs_key key;
4df27c4d
YZ
5642 int ret;
5643 int err = 0;
39279cc3 5644
4df27c4d
YZ
5645 path = btrfs_alloc_path();
5646 if (!path) {
5647 err = -ENOMEM;
5648 goto out;
5649 }
39279cc3 5650
4df27c4d 5651 err = -ENOENT;
1d4c08e0
DS
5652 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5653 key.type = BTRFS_ROOT_REF_KEY;
5654 key.offset = location->objectid;
5655
0b246afa 5656 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5657 if (ret) {
5658 if (ret < 0)
5659 err = ret;
5660 goto out;
5661 }
39279cc3 5662
4df27c4d
YZ
5663 leaf = path->nodes[0];
5664 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5665 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5666 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5667 goto out;
39279cc3 5668
4df27c4d
YZ
5669 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5670 (unsigned long)(ref + 1),
5671 dentry->d_name.len);
5672 if (ret)
5673 goto out;
5674
b3b4aa74 5675 btrfs_release_path(path);
4df27c4d 5676
0b246afa 5677 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5678 if (IS_ERR(new_root)) {
5679 err = PTR_ERR(new_root);
5680 goto out;
5681 }
5682
4df27c4d
YZ
5683 *sub_root = new_root;
5684 location->objectid = btrfs_root_dirid(&new_root->root_item);
5685 location->type = BTRFS_INODE_ITEM_KEY;
5686 location->offset = 0;
5687 err = 0;
5688out:
5689 btrfs_free_path(path);
5690 return err;
39279cc3
CM
5691}
5692
5d4f98a2
YZ
5693static void inode_tree_add(struct inode *inode)
5694{
5695 struct btrfs_root *root = BTRFS_I(inode)->root;
5696 struct btrfs_inode *entry;
03e860bd
NP
5697 struct rb_node **p;
5698 struct rb_node *parent;
cef21937 5699 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5700 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5701
1d3382cb 5702 if (inode_unhashed(inode))
76dda93c 5703 return;
e1409cef 5704 parent = NULL;
5d4f98a2 5705 spin_lock(&root->inode_lock);
e1409cef 5706 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5707 while (*p) {
5708 parent = *p;
5709 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5710
37508515 5711 if (ino < btrfs_ino(entry))
03e860bd 5712 p = &parent->rb_left;
37508515 5713 else if (ino > btrfs_ino(entry))
03e860bd 5714 p = &parent->rb_right;
5d4f98a2
YZ
5715 else {
5716 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5717 (I_WILL_FREE | I_FREEING)));
cef21937 5718 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5719 RB_CLEAR_NODE(parent);
5720 spin_unlock(&root->inode_lock);
cef21937 5721 return;
5d4f98a2
YZ
5722 }
5723 }
cef21937
FDBM
5724 rb_link_node(new, parent, p);
5725 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5726 spin_unlock(&root->inode_lock);
5727}
5728
5729static void inode_tree_del(struct inode *inode)
5730{
5731 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5732 int empty = 0;
5d4f98a2 5733
03e860bd 5734 spin_lock(&root->inode_lock);
5d4f98a2 5735 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5736 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5737 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5738 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5739 }
03e860bd 5740 spin_unlock(&root->inode_lock);
76dda93c 5741
69e9c6c6 5742 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5743 spin_lock(&root->inode_lock);
5744 empty = RB_EMPTY_ROOT(&root->inode_tree);
5745 spin_unlock(&root->inode_lock);
5746 if (empty)
5747 btrfs_add_dead_root(root);
5748 }
5749}
5750
5d4f98a2 5751
e02119d5
CM
5752static int btrfs_init_locked_inode(struct inode *inode, void *p)
5753{
5754 struct btrfs_iget_args *args = p;
90d3e592
CM
5755 inode->i_ino = args->location->objectid;
5756 memcpy(&BTRFS_I(inode)->location, args->location,
5757 sizeof(*args->location));
e02119d5 5758 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5759 return 0;
5760}
5761
5762static int btrfs_find_actor(struct inode *inode, void *opaque)
5763{
5764 struct btrfs_iget_args *args = opaque;
90d3e592 5765 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5766 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5767}
5768
5d4f98a2 5769static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5770 struct btrfs_key *location,
5d4f98a2 5771 struct btrfs_root *root)
39279cc3
CM
5772{
5773 struct inode *inode;
5774 struct btrfs_iget_args args;
90d3e592 5775 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5776
90d3e592 5777 args.location = location;
39279cc3
CM
5778 args.root = root;
5779
778ba82b 5780 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5781 btrfs_init_locked_inode,
5782 (void *)&args);
5783 return inode;
5784}
5785
4c66e0d4
DS
5786/*
5787 * Get an inode object given its location and corresponding root.
5788 * Path can be preallocated to prevent recursing back to iget through
5789 * allocator. NULL is also valid but may require an additional allocation
5790 * later.
1a54ef8c 5791 */
4222ea71 5792struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
4c66e0d4 5793 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5794{
5795 struct inode *inode;
5796
90d3e592 5797 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5798 if (!inode)
5d4f98a2 5799 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5800
5801 if (inode->i_state & I_NEW) {
67710892
FM
5802 int ret;
5803
4222ea71 5804 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5805 if (!ret) {
1748f843
MF
5806 inode_tree_add(inode);
5807 unlock_new_inode(inode);
1748f843 5808 } else {
f5b3a417
AV
5809 iget_failed(inode);
5810 /*
5811 * ret > 0 can come from btrfs_search_slot called by
5812 * btrfs_read_locked_inode, this means the inode item
5813 * was not found.
5814 */
5815 if (ret > 0)
5816 ret = -ENOENT;
5817 inode = ERR_PTR(ret);
1748f843
MF
5818 }
5819 }
5820
1a54ef8c
BR
5821 return inode;
5822}
5823
4222ea71 5824struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4c66e0d4 5825 struct btrfs_root *root)
4222ea71 5826{
4c66e0d4 5827 return btrfs_iget_path(s, location, root, NULL);
4222ea71
FM
5828}
5829
4df27c4d
YZ
5830static struct inode *new_simple_dir(struct super_block *s,
5831 struct btrfs_key *key,
5832 struct btrfs_root *root)
5833{
5834 struct inode *inode = new_inode(s);
5835
5836 if (!inode)
5837 return ERR_PTR(-ENOMEM);
5838
4df27c4d
YZ
5839 BTRFS_I(inode)->root = root;
5840 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5841 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5842
5843 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5844 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5845 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5846 inode->i_fop = &simple_dir_operations;
5847 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5848 inode->i_mtime = current_time(inode);
9cc97d64 5849 inode->i_atime = inode->i_mtime;
5850 inode->i_ctime = inode->i_mtime;
d3c6be6f 5851 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5852
5853 return inode;
5854}
5855
6bf9e4bd
QW
5856static inline u8 btrfs_inode_type(struct inode *inode)
5857{
5858 /*
5859 * Compile-time asserts that generic FT_* types still match
5860 * BTRFS_FT_* types
5861 */
5862 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5863 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5864 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5865 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5866 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5867 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5868 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5869 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5870
5871 return fs_umode_to_ftype(inode->i_mode);
5872}
5873
3de4586c 5874struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5875{
0b246afa 5876 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5877 struct inode *inode;
4df27c4d 5878 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5879 struct btrfs_root *sub_root = root;
5880 struct btrfs_key location;
6bf9e4bd 5881 u8 di_type = 0;
76dda93c 5882 int index;
b4aff1f8 5883 int ret = 0;
39279cc3
CM
5884
5885 if (dentry->d_name.len > BTRFS_NAME_LEN)
5886 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5887
6bf9e4bd 5888 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5889 if (ret < 0)
5890 return ERR_PTR(ret);
5f39d397 5891
4df27c4d 5892 if (location.type == BTRFS_INODE_ITEM_KEY) {
4c66e0d4 5893 inode = btrfs_iget(dir->i_sb, &location, root);
6bf9e4bd
QW
5894 if (IS_ERR(inode))
5895 return inode;
5896
5897 /* Do extra check against inode mode with di_type */
5898 if (btrfs_inode_type(inode) != di_type) {
5899 btrfs_crit(fs_info,
5900"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5901 inode->i_mode, btrfs_inode_type(inode),
5902 di_type);
5903 iput(inode);
5904 return ERR_PTR(-EUCLEAN);
5905 }
4df27c4d
YZ
5906 return inode;
5907 }
5908
0b246afa 5909 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5910 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5911 &location, &sub_root);
5912 if (ret < 0) {
5913 if (ret != -ENOENT)
5914 inode = ERR_PTR(ret);
5915 else
5916 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5917 } else {
4c66e0d4 5918 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 5919 }
0b246afa 5920 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5921
34d19bad 5922 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5923 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5924 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5925 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5926 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5927 if (ret) {
5928 iput(inode);
66b4ffd1 5929 inode = ERR_PTR(ret);
01cd3367 5930 }
c71bf099
YZ
5931 }
5932
3de4586c
CM
5933 return inode;
5934}
5935
fe15ce44 5936static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5937{
5938 struct btrfs_root *root;
2b0143b5 5939 struct inode *inode = d_inode(dentry);
76dda93c 5940
848cce0d 5941 if (!inode && !IS_ROOT(dentry))
2b0143b5 5942 inode = d_inode(dentry->d_parent);
76dda93c 5943
848cce0d
LZ
5944 if (inode) {
5945 root = BTRFS_I(inode)->root;
efefb143
YZ
5946 if (btrfs_root_refs(&root->root_item) == 0)
5947 return 1;
848cce0d 5948
4a0cc7ca 5949 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5950 return 1;
efefb143 5951 }
76dda93c
YZ
5952 return 0;
5953}
5954
3de4586c 5955static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5956 unsigned int flags)
3de4586c 5957{
3837d208 5958 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5959
3837d208
AV
5960 if (inode == ERR_PTR(-ENOENT))
5961 inode = NULL;
41d28bca 5962 return d_splice_alias(inode, dentry);
39279cc3
CM
5963}
5964
23b5ec74
JB
5965/*
5966 * All this infrastructure exists because dir_emit can fault, and we are holding
5967 * the tree lock when doing readdir. For now just allocate a buffer and copy
5968 * our information into that, and then dir_emit from the buffer. This is
5969 * similar to what NFS does, only we don't keep the buffer around in pagecache
5970 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5971 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5972 * tree lock.
5973 */
5974static int btrfs_opendir(struct inode *inode, struct file *file)
5975{
5976 struct btrfs_file_private *private;
5977
5978 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5979 if (!private)
5980 return -ENOMEM;
5981 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5982 if (!private->filldir_buf) {
5983 kfree(private);
5984 return -ENOMEM;
5985 }
5986 file->private_data = private;
5987 return 0;
5988}
5989
5990struct dir_entry {
5991 u64 ino;
5992 u64 offset;
5993 unsigned type;
5994 int name_len;
5995};
5996
5997static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5998{
5999 while (entries--) {
6000 struct dir_entry *entry = addr;
6001 char *name = (char *)(entry + 1);
6002
92d32170
DS
6003 ctx->pos = get_unaligned(&entry->offset);
6004 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6005 get_unaligned(&entry->ino),
6006 get_unaligned(&entry->type)))
23b5ec74 6007 return 1;
92d32170
DS
6008 addr += sizeof(struct dir_entry) +
6009 get_unaligned(&entry->name_len);
23b5ec74
JB
6010 ctx->pos++;
6011 }
6012 return 0;
6013}
6014
9cdda8d3 6015static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 6016{
9cdda8d3 6017 struct inode *inode = file_inode(file);
39279cc3 6018 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 6019 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
6020 struct btrfs_dir_item *di;
6021 struct btrfs_key key;
5f39d397 6022 struct btrfs_key found_key;
39279cc3 6023 struct btrfs_path *path;
23b5ec74 6024 void *addr;
16cdcec7
MX
6025 struct list_head ins_list;
6026 struct list_head del_list;
39279cc3 6027 int ret;
5f39d397 6028 struct extent_buffer *leaf;
39279cc3 6029 int slot;
5f39d397
CM
6030 char *name_ptr;
6031 int name_len;
23b5ec74
JB
6032 int entries = 0;
6033 int total_len = 0;
02dbfc99 6034 bool put = false;
c2951f32 6035 struct btrfs_key location;
5f39d397 6036
9cdda8d3
AV
6037 if (!dir_emit_dots(file, ctx))
6038 return 0;
6039
49593bfa 6040 path = btrfs_alloc_path();
16cdcec7
MX
6041 if (!path)
6042 return -ENOMEM;
ff5714cc 6043
23b5ec74 6044 addr = private->filldir_buf;
e4058b54 6045 path->reada = READA_FORWARD;
49593bfa 6046
c2951f32
JM
6047 INIT_LIST_HEAD(&ins_list);
6048 INIT_LIST_HEAD(&del_list);
6049 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 6050
23b5ec74 6051again:
c2951f32 6052 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 6053 key.offset = ctx->pos;
4a0cc7ca 6054 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 6055
39279cc3
CM
6056 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6057 if (ret < 0)
6058 goto err;
49593bfa
DW
6059
6060 while (1) {
23b5ec74
JB
6061 struct dir_entry *entry;
6062
5f39d397 6063 leaf = path->nodes[0];
39279cc3 6064 slot = path->slots[0];
b9e03af0
LZ
6065 if (slot >= btrfs_header_nritems(leaf)) {
6066 ret = btrfs_next_leaf(root, path);
6067 if (ret < 0)
6068 goto err;
6069 else if (ret > 0)
6070 break;
6071 continue;
39279cc3 6072 }
3de4586c 6073
5f39d397
CM
6074 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6075
6076 if (found_key.objectid != key.objectid)
39279cc3 6077 break;
c2951f32 6078 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6079 break;
9cdda8d3 6080 if (found_key.offset < ctx->pos)
b9e03af0 6081 goto next;
c2951f32 6082 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 6083 goto next;
39279cc3 6084 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 6085 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6086 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6087 PAGE_SIZE) {
6088 btrfs_release_path(path);
6089 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6090 if (ret)
6091 goto nopos;
6092 addr = private->filldir_buf;
6093 entries = 0;
6094 total_len = 0;
6095 goto again;
c2951f32 6096 }
23b5ec74
JB
6097
6098 entry = addr;
92d32170 6099 put_unaligned(name_len, &entry->name_len);
23b5ec74 6100 name_ptr = (char *)(entry + 1);
c2951f32
JM
6101 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6102 name_len);
7d157c3d 6103 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 6104 &entry->type);
c2951f32 6105 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6106 put_unaligned(location.objectid, &entry->ino);
6107 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6108 entries++;
6109 addr += sizeof(struct dir_entry) + name_len;
6110 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6111next:
6112 path->slots[0]++;
39279cc3 6113 }
23b5ec74
JB
6114 btrfs_release_path(path);
6115
6116 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6117 if (ret)
6118 goto nopos;
49593bfa 6119
d2fbb2b5 6120 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6121 if (ret)
bc4ef759
DS
6122 goto nopos;
6123
db62efbb
ZB
6124 /*
6125 * Stop new entries from being returned after we return the last
6126 * entry.
6127 *
6128 * New directory entries are assigned a strictly increasing
6129 * offset. This means that new entries created during readdir
6130 * are *guaranteed* to be seen in the future by that readdir.
6131 * This has broken buggy programs which operate on names as
6132 * they're returned by readdir. Until we re-use freed offsets
6133 * we have this hack to stop new entries from being returned
6134 * under the assumption that they'll never reach this huge
6135 * offset.
6136 *
6137 * This is being careful not to overflow 32bit loff_t unless the
6138 * last entry requires it because doing so has broken 32bit apps
6139 * in the past.
6140 */
c2951f32
JM
6141 if (ctx->pos >= INT_MAX)
6142 ctx->pos = LLONG_MAX;
6143 else
6144 ctx->pos = INT_MAX;
39279cc3
CM
6145nopos:
6146 ret = 0;
6147err:
02dbfc99
OS
6148 if (put)
6149 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6150 btrfs_free_path(path);
39279cc3
CM
6151 return ret;
6152}
6153
39279cc3 6154/*
54aa1f4d 6155 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6156 * inode changes. But, it is most likely to find the inode in cache.
6157 * FIXME, needs more benchmarking...there are no reasons other than performance
6158 * to keep or drop this code.
6159 */
48a3b636 6160static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6161{
2ff7e61e 6162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6163 struct btrfs_root *root = BTRFS_I(inode)->root;
6164 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6165 int ret;
6166
72ac3c0d 6167 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6168 return 0;
39279cc3 6169
7a7eaa40 6170 trans = btrfs_join_transaction(root);
22c44fe6
JB
6171 if (IS_ERR(trans))
6172 return PTR_ERR(trans);
8929ecfa
YZ
6173
6174 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6175 if (ret && ret == -ENOSPC) {
6176 /* whoops, lets try again with the full transaction */
3a45bb20 6177 btrfs_end_transaction(trans);
94b60442 6178 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6179 if (IS_ERR(trans))
6180 return PTR_ERR(trans);
8929ecfa 6181
94b60442 6182 ret = btrfs_update_inode(trans, root, inode);
94b60442 6183 }
3a45bb20 6184 btrfs_end_transaction(trans);
16cdcec7 6185 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6186 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6187
6188 return ret;
6189}
6190
6191/*
6192 * This is a copy of file_update_time. We need this so we can return error on
6193 * ENOSPC for updating the inode in the case of file write and mmap writes.
6194 */
95582b00 6195static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6196 int flags)
22c44fe6 6197{
2bc55652 6198 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6199 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6200
6201 if (btrfs_root_readonly(root))
6202 return -EROFS;
6203
e41f941a 6204 if (flags & S_VERSION)
3a8c7231 6205 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6206 if (flags & S_CTIME)
6207 inode->i_ctime = *now;
6208 if (flags & S_MTIME)
6209 inode->i_mtime = *now;
6210 if (flags & S_ATIME)
6211 inode->i_atime = *now;
3a8c7231 6212 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6213}
6214
d352ac68
CM
6215/*
6216 * find the highest existing sequence number in a directory
6217 * and then set the in-memory index_cnt variable to reflect
6218 * free sequence numbers
6219 */
4c570655 6220static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6221{
4c570655 6222 struct btrfs_root *root = inode->root;
aec7477b
JB
6223 struct btrfs_key key, found_key;
6224 struct btrfs_path *path;
6225 struct extent_buffer *leaf;
6226 int ret;
6227
4c570655 6228 key.objectid = btrfs_ino(inode);
962a298f 6229 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6230 key.offset = (u64)-1;
6231
6232 path = btrfs_alloc_path();
6233 if (!path)
6234 return -ENOMEM;
6235
6236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6237 if (ret < 0)
6238 goto out;
6239 /* FIXME: we should be able to handle this */
6240 if (ret == 0)
6241 goto out;
6242 ret = 0;
6243
6244 /*
6245 * MAGIC NUMBER EXPLANATION:
6246 * since we search a directory based on f_pos we have to start at 2
6247 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6248 * else has to start at 2
6249 */
6250 if (path->slots[0] == 0) {
4c570655 6251 inode->index_cnt = 2;
aec7477b
JB
6252 goto out;
6253 }
6254
6255 path->slots[0]--;
6256
6257 leaf = path->nodes[0];
6258 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6259
4c570655 6260 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6261 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6262 inode->index_cnt = 2;
aec7477b
JB
6263 goto out;
6264 }
6265
4c570655 6266 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6267out:
6268 btrfs_free_path(path);
6269 return ret;
6270}
6271
d352ac68
CM
6272/*
6273 * helper to find a free sequence number in a given directory. This current
6274 * code is very simple, later versions will do smarter things in the btree
6275 */
877574e2 6276int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6277{
6278 int ret = 0;
6279
877574e2
NB
6280 if (dir->index_cnt == (u64)-1) {
6281 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6282 if (ret) {
6283 ret = btrfs_set_inode_index_count(dir);
6284 if (ret)
6285 return ret;
6286 }
aec7477b
JB
6287 }
6288
877574e2
NB
6289 *index = dir->index_cnt;
6290 dir->index_cnt++;
aec7477b
JB
6291
6292 return ret;
6293}
6294
b0d5d10f
CM
6295static int btrfs_insert_inode_locked(struct inode *inode)
6296{
6297 struct btrfs_iget_args args;
6298 args.location = &BTRFS_I(inode)->location;
6299 args.root = BTRFS_I(inode)->root;
6300
6301 return insert_inode_locked4(inode,
6302 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6303 btrfs_find_actor, &args);
6304}
6305
19aee8de
AJ
6306/*
6307 * Inherit flags from the parent inode.
6308 *
6309 * Currently only the compression flags and the cow flags are inherited.
6310 */
6311static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6312{
6313 unsigned int flags;
6314
6315 if (!dir)
6316 return;
6317
6318 flags = BTRFS_I(dir)->flags;
6319
6320 if (flags & BTRFS_INODE_NOCOMPRESS) {
6321 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6322 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6323 } else if (flags & BTRFS_INODE_COMPRESS) {
6324 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6325 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6326 }
6327
6328 if (flags & BTRFS_INODE_NODATACOW) {
6329 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6330 if (S_ISREG(inode->i_mode))
6331 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6332 }
6333
7b6a221e 6334 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6335}
6336
39279cc3
CM
6337static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6338 struct btrfs_root *root,
aec7477b 6339 struct inode *dir,
9c58309d 6340 const char *name, int name_len,
175a4eb7
AV
6341 u64 ref_objectid, u64 objectid,
6342 umode_t mode, u64 *index)
39279cc3 6343{
0b246afa 6344 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6345 struct inode *inode;
5f39d397 6346 struct btrfs_inode_item *inode_item;
39279cc3 6347 struct btrfs_key *location;
5f39d397 6348 struct btrfs_path *path;
9c58309d
CM
6349 struct btrfs_inode_ref *ref;
6350 struct btrfs_key key[2];
6351 u32 sizes[2];
ef3b9af5 6352 int nitems = name ? 2 : 1;
9c58309d 6353 unsigned long ptr;
11a19a90 6354 unsigned int nofs_flag;
39279cc3 6355 int ret;
39279cc3 6356
5f39d397 6357 path = btrfs_alloc_path();
d8926bb3
MF
6358 if (!path)
6359 return ERR_PTR(-ENOMEM);
5f39d397 6360
11a19a90 6361 nofs_flag = memalloc_nofs_save();
0b246afa 6362 inode = new_inode(fs_info->sb);
11a19a90 6363 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
6364 if (!inode) {
6365 btrfs_free_path(path);
39279cc3 6366 return ERR_PTR(-ENOMEM);
8fb27640 6367 }
39279cc3 6368
5762b5c9
FM
6369 /*
6370 * O_TMPFILE, set link count to 0, so that after this point,
6371 * we fill in an inode item with the correct link count.
6372 */
6373 if (!name)
6374 set_nlink(inode, 0);
6375
581bb050
LZ
6376 /*
6377 * we have to initialize this early, so we can reclaim the inode
6378 * number if we fail afterwards in this function.
6379 */
6380 inode->i_ino = objectid;
6381
ef3b9af5 6382 if (dir && name) {
1abe9b8a 6383 trace_btrfs_inode_request(dir);
6384
877574e2 6385 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6386 if (ret) {
8fb27640 6387 btrfs_free_path(path);
09771430 6388 iput(inode);
aec7477b 6389 return ERR_PTR(ret);
09771430 6390 }
ef3b9af5
FM
6391 } else if (dir) {
6392 *index = 0;
aec7477b
JB
6393 }
6394 /*
6395 * index_cnt is ignored for everything but a dir,
df6703e1 6396 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6397 * number
6398 */
6399 BTRFS_I(inode)->index_cnt = 2;
67de1176 6400 BTRFS_I(inode)->dir_index = *index;
39279cc3 6401 BTRFS_I(inode)->root = root;
e02119d5 6402 BTRFS_I(inode)->generation = trans->transid;
76195853 6403 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6404
5dc562c5
JB
6405 /*
6406 * We could have gotten an inode number from somebody who was fsynced
6407 * and then removed in this same transaction, so let's just set full
6408 * sync since it will be a full sync anyway and this will blow away the
6409 * old info in the log.
6410 */
6411 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6412
9c58309d 6413 key[0].objectid = objectid;
962a298f 6414 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6415 key[0].offset = 0;
6416
9c58309d 6417 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6418
6419 if (name) {
6420 /*
6421 * Start new inodes with an inode_ref. This is slightly more
6422 * efficient for small numbers of hard links since they will
6423 * be packed into one item. Extended refs will kick in if we
6424 * add more hard links than can fit in the ref item.
6425 */
6426 key[1].objectid = objectid;
962a298f 6427 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6428 key[1].offset = ref_objectid;
6429
6430 sizes[1] = name_len + sizeof(*ref);
6431 }
9c58309d 6432
b0d5d10f
CM
6433 location = &BTRFS_I(inode)->location;
6434 location->objectid = objectid;
6435 location->offset = 0;
962a298f 6436 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6437
6438 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6439 if (ret < 0) {
6440 iput(inode);
b0d5d10f 6441 goto fail;
32955c54 6442 }
b0d5d10f 6443
b9473439 6444 path->leave_spinning = 1;
ef3b9af5 6445 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6446 if (ret != 0)
b0d5d10f 6447 goto fail_unlock;
5f39d397 6448
ecc11fab 6449 inode_init_owner(inode, dir, mode);
a76a3cd4 6450 inode_set_bytes(inode, 0);
9cc97d64 6451
c2050a45 6452 inode->i_mtime = current_time(inode);
9cc97d64 6453 inode->i_atime = inode->i_mtime;
6454 inode->i_ctime = inode->i_mtime;
d3c6be6f 6455 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6456
5f39d397
CM
6457 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6458 struct btrfs_inode_item);
b159fa28 6459 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6460 sizeof(*inode_item));
e02119d5 6461 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6462
ef3b9af5
FM
6463 if (name) {
6464 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6465 struct btrfs_inode_ref);
6466 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6467 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6468 ptr = (unsigned long)(ref + 1);
6469 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6470 }
9c58309d 6471
5f39d397
CM
6472 btrfs_mark_buffer_dirty(path->nodes[0]);
6473 btrfs_free_path(path);
6474
6cbff00f
CH
6475 btrfs_inherit_iflags(inode, dir);
6476
569254b0 6477 if (S_ISREG(mode)) {
0b246afa 6478 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6479 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6480 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6481 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6482 BTRFS_INODE_NODATASUM;
94272164
CM
6483 }
6484
5d4f98a2 6485 inode_tree_add(inode);
1abe9b8a 6486
6487 trace_btrfs_inode_new(inode);
1973f0fa 6488 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6489
8ea05e3a
AB
6490 btrfs_update_root_times(trans, root);
6491
63541927
FDBM
6492 ret = btrfs_inode_inherit_props(trans, inode, dir);
6493 if (ret)
0b246afa 6494 btrfs_err(fs_info,
63541927 6495 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6496 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6497
39279cc3 6498 return inode;
b0d5d10f
CM
6499
6500fail_unlock:
32955c54 6501 discard_new_inode(inode);
5f39d397 6502fail:
ef3b9af5 6503 if (dir && name)
aec7477b 6504 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6505 btrfs_free_path(path);
6506 return ERR_PTR(ret);
39279cc3
CM
6507}
6508
d352ac68
CM
6509/*
6510 * utility function to add 'inode' into 'parent_inode' with
6511 * a give name and a given sequence number.
6512 * if 'add_backref' is true, also insert a backref from the
6513 * inode to the parent directory.
6514 */
e02119d5 6515int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6516 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6517 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6518{
4df27c4d 6519 int ret = 0;
39279cc3 6520 struct btrfs_key key;
db0a669f
NB
6521 struct btrfs_root *root = parent_inode->root;
6522 u64 ino = btrfs_ino(inode);
6523 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6524
33345d01 6525 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6526 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6527 } else {
33345d01 6528 key.objectid = ino;
962a298f 6529 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6530 key.offset = 0;
6531 }
6532
33345d01 6533 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6534 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6535 root->root_key.objectid, parent_ino,
6536 index, name, name_len);
4df27c4d 6537 } else if (add_backref) {
33345d01
LZ
6538 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6539 parent_ino, index);
4df27c4d 6540 }
39279cc3 6541
79787eaa
JM
6542 /* Nothing to clean up yet */
6543 if (ret)
6544 return ret;
4df27c4d 6545
684572df 6546 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6547 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6548 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6549 goto fail_dir_item;
6550 else if (ret) {
66642832 6551 btrfs_abort_transaction(trans, ret);
79787eaa 6552 return ret;
39279cc3 6553 }
79787eaa 6554
db0a669f 6555 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6556 name_len * 2);
db0a669f 6557 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6558 /*
6559 * If we are replaying a log tree, we do not want to update the mtime
6560 * and ctime of the parent directory with the current time, since the
6561 * log replay procedure is responsible for setting them to their correct
6562 * values (the ones it had when the fsync was done).
6563 */
6564 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6565 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6566
6567 parent_inode->vfs_inode.i_mtime = now;
6568 parent_inode->vfs_inode.i_ctime = now;
6569 }
db0a669f 6570 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6571 if (ret)
66642832 6572 btrfs_abort_transaction(trans, ret);
39279cc3 6573 return ret;
fe66a05a
CM
6574
6575fail_dir_item:
6576 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6577 u64 local_index;
6578 int err;
3ee1c553 6579 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6580 root->root_key.objectid, parent_ino,
6581 &local_index, name, name_len);
1690dd41
JT
6582 if (err)
6583 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6584 } else if (add_backref) {
6585 u64 local_index;
6586 int err;
6587
6588 err = btrfs_del_inode_ref(trans, root, name, name_len,
6589 ino, parent_ino, &local_index);
1690dd41
JT
6590 if (err)
6591 btrfs_abort_transaction(trans, err);
fe66a05a 6592 }
1690dd41
JT
6593
6594 /* Return the original error code */
fe66a05a 6595 return ret;
39279cc3
CM
6596}
6597
6598static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6599 struct btrfs_inode *dir, struct dentry *dentry,
6600 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6601{
a1b075d2
JB
6602 int err = btrfs_add_link(trans, dir, inode,
6603 dentry->d_name.name, dentry->d_name.len,
6604 backref, index);
39279cc3
CM
6605 if (err > 0)
6606 err = -EEXIST;
6607 return err;
6608}
6609
618e21d5 6610static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6611 umode_t mode, dev_t rdev)
618e21d5 6612{
2ff7e61e 6613 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6614 struct btrfs_trans_handle *trans;
6615 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6616 struct inode *inode = NULL;
618e21d5 6617 int err;
618e21d5 6618 u64 objectid;
00e4e6b3 6619 u64 index = 0;
618e21d5 6620
9ed74f2d
JB
6621 /*
6622 * 2 for inode item and ref
6623 * 2 for dir items
6624 * 1 for xattr if selinux is on
6625 */
a22285a6
YZ
6626 trans = btrfs_start_transaction(root, 5);
6627 if (IS_ERR(trans))
6628 return PTR_ERR(trans);
1832a6d5 6629
581bb050
LZ
6630 err = btrfs_find_free_ino(root, &objectid);
6631 if (err)
6632 goto out_unlock;
6633
aec7477b 6634 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6635 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6636 mode, &index);
7cf96da3
TI
6637 if (IS_ERR(inode)) {
6638 err = PTR_ERR(inode);
32955c54 6639 inode = NULL;
618e21d5 6640 goto out_unlock;
7cf96da3 6641 }
618e21d5 6642
ad19db71
CS
6643 /*
6644 * If the active LSM wants to access the inode during
6645 * d_instantiate it needs these. Smack checks to see
6646 * if the filesystem supports xattrs by looking at the
6647 * ops vector.
6648 */
ad19db71 6649 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6650 init_special_inode(inode, inode->i_mode, rdev);
6651
6652 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6653 if (err)
32955c54 6654 goto out_unlock;
b0d5d10f 6655
cef415af
NB
6656 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6657 0, index);
32955c54
AV
6658 if (err)
6659 goto out_unlock;
6660
6661 btrfs_update_inode(trans, root, inode);
6662 d_instantiate_new(dentry, inode);
b0d5d10f 6663
618e21d5 6664out_unlock:
3a45bb20 6665 btrfs_end_transaction(trans);
2ff7e61e 6666 btrfs_btree_balance_dirty(fs_info);
32955c54 6667 if (err && inode) {
618e21d5 6668 inode_dec_link_count(inode);
32955c54 6669 discard_new_inode(inode);
618e21d5 6670 }
618e21d5
JB
6671 return err;
6672}
6673
39279cc3 6674static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6675 umode_t mode, bool excl)
39279cc3 6676{
2ff7e61e 6677 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6678 struct btrfs_trans_handle *trans;
6679 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6680 struct inode *inode = NULL;
a22285a6 6681 int err;
39279cc3 6682 u64 objectid;
00e4e6b3 6683 u64 index = 0;
39279cc3 6684
9ed74f2d
JB
6685 /*
6686 * 2 for inode item and ref
6687 * 2 for dir items
6688 * 1 for xattr if selinux is on
6689 */
a22285a6
YZ
6690 trans = btrfs_start_transaction(root, 5);
6691 if (IS_ERR(trans))
6692 return PTR_ERR(trans);
9ed74f2d 6693
581bb050
LZ
6694 err = btrfs_find_free_ino(root, &objectid);
6695 if (err)
6696 goto out_unlock;
6697
aec7477b 6698 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6699 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6700 mode, &index);
7cf96da3
TI
6701 if (IS_ERR(inode)) {
6702 err = PTR_ERR(inode);
32955c54 6703 inode = NULL;
39279cc3 6704 goto out_unlock;
7cf96da3 6705 }
ad19db71
CS
6706 /*
6707 * If the active LSM wants to access the inode during
6708 * d_instantiate it needs these. Smack checks to see
6709 * if the filesystem supports xattrs by looking at the
6710 * ops vector.
6711 */
6712 inode->i_fop = &btrfs_file_operations;
6713 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6714 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6715
6716 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6717 if (err)
32955c54 6718 goto out_unlock;
b0d5d10f
CM
6719
6720 err = btrfs_update_inode(trans, root, inode);
6721 if (err)
32955c54 6722 goto out_unlock;
ad19db71 6723
cef415af
NB
6724 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6725 0, index);
39279cc3 6726 if (err)
32955c54 6727 goto out_unlock;
43baa579 6728
43baa579 6729 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6730 d_instantiate_new(dentry, inode);
43baa579 6731
39279cc3 6732out_unlock:
3a45bb20 6733 btrfs_end_transaction(trans);
32955c54 6734 if (err && inode) {
39279cc3 6735 inode_dec_link_count(inode);
32955c54 6736 discard_new_inode(inode);
39279cc3 6737 }
2ff7e61e 6738 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6739 return err;
6740}
6741
6742static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6743 struct dentry *dentry)
6744{
271dba45 6745 struct btrfs_trans_handle *trans = NULL;
39279cc3 6746 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6747 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6749 u64 index;
39279cc3
CM
6750 int err;
6751 int drop_inode = 0;
6752
4a8be425 6753 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6754 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6755 return -EXDEV;
4a8be425 6756
f186373f 6757 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6758 return -EMLINK;
4a8be425 6759
877574e2 6760 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6761 if (err)
6762 goto fail;
6763
a22285a6 6764 /*
7e6b6465 6765 * 2 items for inode and inode ref
a22285a6 6766 * 2 items for dir items
7e6b6465 6767 * 1 item for parent inode
399b0bbf 6768 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6769 */
399b0bbf 6770 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6771 if (IS_ERR(trans)) {
6772 err = PTR_ERR(trans);
271dba45 6773 trans = NULL;
a22285a6
YZ
6774 goto fail;
6775 }
5f39d397 6776
67de1176
MX
6777 /* There are several dir indexes for this inode, clear the cache. */
6778 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6779 inc_nlink(inode);
0c4d2d95 6780 inode_inc_iversion(inode);
c2050a45 6781 inode->i_ctime = current_time(inode);
7de9c6ee 6782 ihold(inode);
e9976151 6783 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6784
cef415af
NB
6785 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6786 1, index);
5f39d397 6787
a5719521 6788 if (err) {
54aa1f4d 6789 drop_inode = 1;
a5719521 6790 } else {
10d9f309 6791 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6792 int ret;
6793
a5719521 6794 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6795 if (err)
6796 goto fail;
ef3b9af5
FM
6797 if (inode->i_nlink == 1) {
6798 /*
6799 * If new hard link count is 1, it's a file created
6800 * with open(2) O_TMPFILE flag.
6801 */
3d6ae7bb 6802 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6803 if (err)
6804 goto fail;
6805 }
08c422c2 6806 d_instantiate(dentry, inode);
d4682ba0
FM
6807 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6808 true, NULL);
6809 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6810 err = btrfs_commit_transaction(trans);
6811 trans = NULL;
6812 }
a5719521 6813 }
39279cc3 6814
1832a6d5 6815fail:
271dba45 6816 if (trans)
3a45bb20 6817 btrfs_end_transaction(trans);
39279cc3
CM
6818 if (drop_inode) {
6819 inode_dec_link_count(inode);
6820 iput(inode);
6821 }
2ff7e61e 6822 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6823 return err;
6824}
6825
18bb1db3 6826static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6827{
2ff7e61e 6828 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6829 struct inode *inode = NULL;
39279cc3
CM
6830 struct btrfs_trans_handle *trans;
6831 struct btrfs_root *root = BTRFS_I(dir)->root;
6832 int err = 0;
b9d86667 6833 u64 objectid = 0;
00e4e6b3 6834 u64 index = 0;
39279cc3 6835
9ed74f2d
JB
6836 /*
6837 * 2 items for inode and ref
6838 * 2 items for dir items
6839 * 1 for xattr if selinux is on
6840 */
a22285a6
YZ
6841 trans = btrfs_start_transaction(root, 5);
6842 if (IS_ERR(trans))
6843 return PTR_ERR(trans);
39279cc3 6844
581bb050
LZ
6845 err = btrfs_find_free_ino(root, &objectid);
6846 if (err)
6847 goto out_fail;
6848
aec7477b 6849 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6850 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6851 S_IFDIR | mode, &index);
39279cc3
CM
6852 if (IS_ERR(inode)) {
6853 err = PTR_ERR(inode);
32955c54 6854 inode = NULL;
39279cc3
CM
6855 goto out_fail;
6856 }
5f39d397 6857
b0d5d10f
CM
6858 /* these must be set before we unlock the inode */
6859 inode->i_op = &btrfs_dir_inode_operations;
6860 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6861
2a7dba39 6862 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6863 if (err)
32955c54 6864 goto out_fail;
39279cc3 6865
6ef06d27 6866 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6867 err = btrfs_update_inode(trans, root, inode);
6868 if (err)
32955c54 6869 goto out_fail;
5f39d397 6870
db0a669f
NB
6871 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6872 dentry->d_name.name,
6873 dentry->d_name.len, 0, index);
39279cc3 6874 if (err)
32955c54 6875 goto out_fail;
5f39d397 6876
1e2e547a 6877 d_instantiate_new(dentry, inode);
39279cc3
CM
6878
6879out_fail:
3a45bb20 6880 btrfs_end_transaction(trans);
32955c54 6881 if (err && inode) {
c7cfb8a5 6882 inode_dec_link_count(inode);
32955c54 6883 discard_new_inode(inode);
c7cfb8a5 6884 }
2ff7e61e 6885 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6886 return err;
6887}
6888
c8b97818 6889static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6890 struct page *page,
c8b97818
CM
6891 size_t pg_offset, u64 extent_offset,
6892 struct btrfs_file_extent_item *item)
6893{
6894 int ret;
6895 struct extent_buffer *leaf = path->nodes[0];
6896 char *tmp;
6897 size_t max_size;
6898 unsigned long inline_size;
6899 unsigned long ptr;
261507a0 6900 int compress_type;
c8b97818
CM
6901
6902 WARN_ON(pg_offset != 0);
261507a0 6903 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6904 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6905 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6906 btrfs_item_nr(path->slots[0]));
c8b97818 6907 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6908 if (!tmp)
6909 return -ENOMEM;
c8b97818
CM
6910 ptr = btrfs_file_extent_inline_start(item);
6911
6912 read_extent_buffer(leaf, tmp, ptr, inline_size);
6913
09cbfeaf 6914 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6915 ret = btrfs_decompress(compress_type, tmp, page,
6916 extent_offset, inline_size, max_size);
e1699d2d
ZB
6917
6918 /*
6919 * decompression code contains a memset to fill in any space between the end
6920 * of the uncompressed data and the end of max_size in case the decompressed
6921 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6922 * the end of an inline extent and the beginning of the next block, so we
6923 * cover that region here.
6924 */
6925
6926 if (max_size + pg_offset < PAGE_SIZE) {
6927 char *map = kmap(page);
6928 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6929 kunmap(page);
6930 }
c8b97818 6931 kfree(tmp);
166ae5a4 6932 return ret;
c8b97818
CM
6933}
6934
d352ac68
CM
6935/*
6936 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6937 * the ugly parts come from merging extents from the disk with the in-ram
6938 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6939 * where the in-ram extents might be locked pending data=ordered completion.
6940 *
6941 * This also copies inline extents directly into the page.
6942 */
fc4f21b1 6943struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6944 struct page *page,
6945 size_t pg_offset, u64 start, u64 len,
6946 int create)
a52d9a80 6947{
3ffbd68c 6948 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6949 int ret;
6950 int err = 0;
a52d9a80
CM
6951 u64 extent_start = 0;
6952 u64 extent_end = 0;
fc4f21b1 6953 u64 objectid = btrfs_ino(inode);
7e74e235 6954 int extent_type = -1;
f421950f 6955 struct btrfs_path *path = NULL;
fc4f21b1 6956 struct btrfs_root *root = inode->root;
a52d9a80 6957 struct btrfs_file_extent_item *item;
5f39d397
CM
6958 struct extent_buffer *leaf;
6959 struct btrfs_key found_key;
a52d9a80 6960 struct extent_map *em = NULL;
fc4f21b1
NB
6961 struct extent_map_tree *em_tree = &inode->extent_tree;
6962 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6963 const bool new_inline = !page || create;
a52d9a80 6964
890871be 6965 read_lock(&em_tree->lock);
d1310b2e 6966 em = lookup_extent_mapping(em_tree, start, len);
890871be 6967 read_unlock(&em_tree->lock);
d1310b2e 6968
a52d9a80 6969 if (em) {
e1c4b745
CM
6970 if (em->start > start || em->start + em->len <= start)
6971 free_extent_map(em);
6972 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6973 free_extent_map(em);
6974 else
6975 goto out;
a52d9a80 6976 }
172ddd60 6977 em = alloc_extent_map();
a52d9a80 6978 if (!em) {
d1310b2e
CM
6979 err = -ENOMEM;
6980 goto out;
a52d9a80 6981 }
d1310b2e 6982 em->start = EXTENT_MAP_HOLE;
445a6944 6983 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6984 em->len = (u64)-1;
c8b97818 6985 em->block_len = (u64)-1;
f421950f 6986
bee6ec82 6987 path = btrfs_alloc_path();
f421950f 6988 if (!path) {
bee6ec82
LB
6989 err = -ENOMEM;
6990 goto out;
f421950f
CM
6991 }
6992
bee6ec82
LB
6993 /* Chances are we'll be called again, so go ahead and do readahead */
6994 path->reada = READA_FORWARD;
6995
e49aabd9
LB
6996 /*
6997 * Unless we're going to uncompress the inline extent, no sleep would
6998 * happen.
6999 */
7000 path->leave_spinning = 1;
7001
5c9a702e 7002 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
7003 if (ret < 0) {
7004 err = ret;
7005 goto out;
b8eeab7f 7006 } else if (ret > 0) {
a52d9a80
CM
7007 if (path->slots[0] == 0)
7008 goto not_found;
7009 path->slots[0]--;
7010 }
7011
5f39d397
CM
7012 leaf = path->nodes[0];
7013 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 7014 struct btrfs_file_extent_item);
5f39d397 7015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 7016 if (found_key.objectid != objectid ||
694c12ed 7017 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7018 /*
7019 * If we backup past the first extent we want to move forward
7020 * and see if there is an extent in front of us, otherwise we'll
7021 * say there is a hole for our whole search range which can
7022 * cause problems.
7023 */
7024 extent_end = start;
7025 goto next;
a52d9a80
CM
7026 }
7027
694c12ed 7028 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 7029 extent_start = found_key.offset;
694c12ed
NB
7030 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7031 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
7032 /* Only regular file could have regular/prealloc extent */
7033 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7034 ret = -EUCLEAN;
7035 btrfs_crit(fs_info,
7036 "regular/prealloc extent found for non-regular inode %llu",
7037 btrfs_ino(inode));
7038 goto out;
7039 }
a52d9a80 7040 extent_end = extent_start +
db94535d 7041 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7042
7043 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7044 extent_start);
694c12ed 7045 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
9036c102 7046 size_t size;
e41ca589
QW
7047
7048 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 7049 extent_end = ALIGN(extent_start + size,
0b246afa 7050 fs_info->sectorsize);
09ed2f16
LB
7051
7052 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7053 path->slots[0],
7054 extent_start);
9036c102 7055 }
25a50341 7056next:
9036c102
YZ
7057 if (start >= extent_end) {
7058 path->slots[0]++;
7059 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7060 ret = btrfs_next_leaf(root, path);
7061 if (ret < 0) {
7062 err = ret;
7063 goto out;
b8eeab7f 7064 } else if (ret > 0) {
9036c102 7065 goto not_found;
b8eeab7f 7066 }
9036c102 7067 leaf = path->nodes[0];
a52d9a80 7068 }
9036c102
YZ
7069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7070 if (found_key.objectid != objectid ||
7071 found_key.type != BTRFS_EXTENT_DATA_KEY)
7072 goto not_found;
7073 if (start + len <= found_key.offset)
7074 goto not_found;
e2eca69d
WS
7075 if (start > found_key.offset)
7076 goto next;
02a033df
NB
7077
7078 /* New extent overlaps with existing one */
9036c102 7079 em->start = start;
70c8a91c 7080 em->orig_start = start;
9036c102 7081 em->len = found_key.offset - start;
02a033df
NB
7082 em->block_start = EXTENT_MAP_HOLE;
7083 goto insert;
9036c102
YZ
7084 }
7085
fc4f21b1 7086 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7087 new_inline, em);
7ffbb598 7088
694c12ed
NB
7089 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7090 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7091 goto insert;
694c12ed 7092 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7093 unsigned long ptr;
a52d9a80 7094 char *map;
3326d1b0
CM
7095 size_t size;
7096 size_t extent_offset;
7097 size_t copy_size;
a52d9a80 7098
7ffbb598 7099 if (new_inline)
689f9346 7100 goto out;
5f39d397 7101
e41ca589 7102 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 7103 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7104 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7105 size - extent_offset);
3326d1b0 7106 em->start = extent_start + extent_offset;
0b246afa 7107 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7108 em->orig_block_len = em->len;
70c8a91c 7109 em->orig_start = em->start;
689f9346 7110 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
7111
7112 btrfs_set_path_blocking(path);
bf46f52d 7113 if (!PageUptodate(page)) {
261507a0
LZ
7114 if (btrfs_file_extent_compression(leaf, item) !=
7115 BTRFS_COMPRESS_NONE) {
e40da0e5 7116 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7117 extent_offset, item);
166ae5a4
ZB
7118 if (ret) {
7119 err = ret;
7120 goto out;
7121 }
c8b97818
CM
7122 } else {
7123 map = kmap(page);
7124 read_extent_buffer(leaf, map + pg_offset, ptr,
7125 copy_size);
09cbfeaf 7126 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7127 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7128 PAGE_SIZE - pg_offset -
93c82d57
CM
7129 copy_size);
7130 }
c8b97818
CM
7131 kunmap(page);
7132 }
179e29e4 7133 flush_dcache_page(page);
a52d9a80 7134 }
d1310b2e 7135 set_extent_uptodate(io_tree, em->start,
507903b8 7136 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7137 goto insert;
a52d9a80
CM
7138 }
7139not_found:
7140 em->start = start;
70c8a91c 7141 em->orig_start = start;
d1310b2e 7142 em->len = len;
5f39d397 7143 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7144insert:
b3b4aa74 7145 btrfs_release_path(path);
d1310b2e 7146 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7147 btrfs_err(fs_info,
5d163e0e
JM
7148 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7149 em->start, em->len, start, len);
a52d9a80
CM
7150 err = -EIO;
7151 goto out;
7152 }
d1310b2e
CM
7153
7154 err = 0;
890871be 7155 write_lock(&em_tree->lock);
f46b24c9 7156 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7157 write_unlock(&em_tree->lock);
a52d9a80 7158out:
c6414280 7159 btrfs_free_path(path);
1abe9b8a 7160
fc4f21b1 7161 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7162
a52d9a80
CM
7163 if (err) {
7164 free_extent_map(em);
a52d9a80
CM
7165 return ERR_PTR(err);
7166 }
79787eaa 7167 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7168 return em;
7169}
7170
fc4f21b1 7171struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 7172 u64 start, u64 len)
ec29ed5b
CM
7173{
7174 struct extent_map *em;
7175 struct extent_map *hole_em = NULL;
f3714ef4 7176 u64 delalloc_start = start;
ec29ed5b 7177 u64 end;
f3714ef4
NB
7178 u64 delalloc_len;
7179 u64 delalloc_end;
ec29ed5b
CM
7180 int err = 0;
7181
4ab47a8d 7182 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
ec29ed5b
CM
7183 if (IS_ERR(em))
7184 return em;
9986277e
DC
7185 /*
7186 * If our em maps to:
7187 * - a hole or
7188 * - a pre-alloc extent,
7189 * there might actually be delalloc bytes behind it.
7190 */
7191 if (em->block_start != EXTENT_MAP_HOLE &&
7192 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7193 return em;
7194 else
7195 hole_em = em;
ec29ed5b
CM
7196
7197 /* check to see if we've wrapped (len == -1 or similar) */
7198 end = start + len;
7199 if (end < start)
7200 end = (u64)-1;
7201 else
7202 end -= 1;
7203
7204 em = NULL;
7205
7206 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 7207 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 7208 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
7209 delalloc_end = delalloc_start + delalloc_len;
7210 if (delalloc_end < delalloc_start)
7211 delalloc_end = (u64)-1;
ec29ed5b
CM
7212
7213 /*
f3714ef4
NB
7214 * We didn't find anything useful, return the original results from
7215 * get_extent()
ec29ed5b 7216 */
f3714ef4 7217 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
7218 em = hole_em;
7219 hole_em = NULL;
7220 goto out;
7221 }
7222
f3714ef4
NB
7223 /*
7224 * Adjust the delalloc_start to make sure it doesn't go backwards from
7225 * the start they passed in
ec29ed5b 7226 */
f3714ef4
NB
7227 delalloc_start = max(start, delalloc_start);
7228 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 7229
f3714ef4
NB
7230 if (delalloc_len > 0) {
7231 u64 hole_start;
02950af4 7232 u64 hole_len;
f3714ef4 7233 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 7234
172ddd60 7235 em = alloc_extent_map();
ec29ed5b
CM
7236 if (!em) {
7237 err = -ENOMEM;
7238 goto out;
7239 }
f3714ef4
NB
7240
7241 ASSERT(hole_em);
ec29ed5b 7242 /*
f3714ef4
NB
7243 * When btrfs_get_extent can't find anything it returns one
7244 * huge hole
ec29ed5b 7245 *
f3714ef4
NB
7246 * Make sure what it found really fits our range, and adjust to
7247 * make sure it is based on the start from the caller
ec29ed5b 7248 */
f3714ef4
NB
7249 if (hole_end <= start || hole_em->start > end) {
7250 free_extent_map(hole_em);
7251 hole_em = NULL;
7252 } else {
7253 hole_start = max(hole_em->start, start);
7254 hole_len = hole_end - hole_start;
ec29ed5b 7255 }
f3714ef4
NB
7256
7257 if (hole_em && delalloc_start > hole_start) {
7258 /*
7259 * Our hole starts before our delalloc, so we have to
7260 * return just the parts of the hole that go until the
7261 * delalloc starts
ec29ed5b 7262 */
f3714ef4 7263 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
7264 em->start = hole_start;
7265 em->orig_start = hole_start;
7266 /*
f3714ef4
NB
7267 * Don't adjust block start at all, it is fixed at
7268 * EXTENT_MAP_HOLE
ec29ed5b
CM
7269 */
7270 em->block_start = hole_em->block_start;
7271 em->block_len = hole_len;
f9e4fb53
LB
7272 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7273 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 7274 } else {
f3714ef4
NB
7275 /*
7276 * Hole is out of passed range or it starts after
7277 * delalloc range
7278 */
7279 em->start = delalloc_start;
7280 em->len = delalloc_len;
7281 em->orig_start = delalloc_start;
ec29ed5b 7282 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 7283 em->block_len = delalloc_len;
ec29ed5b 7284 }
bf8d32b9 7285 } else {
ec29ed5b
CM
7286 return hole_em;
7287 }
7288out:
7289
7290 free_extent_map(hole_em);
7291 if (err) {
7292 free_extent_map(em);
7293 return ERR_PTR(err);
7294 }
7295 return em;
7296}
7297
5f9a8a51
FM
7298static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7299 const u64 start,
7300 const u64 len,
7301 const u64 orig_start,
7302 const u64 block_start,
7303 const u64 block_len,
7304 const u64 orig_block_len,
7305 const u64 ram_bytes,
7306 const int type)
7307{
7308 struct extent_map *em = NULL;
7309 int ret;
7310
5f9a8a51 7311 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7312 em = create_io_em(inode, start, len, orig_start,
7313 block_start, block_len, orig_block_len,
7314 ram_bytes,
7315 BTRFS_COMPRESS_NONE, /* compress_type */
7316 type);
5f9a8a51
FM
7317 if (IS_ERR(em))
7318 goto out;
7319 }
7320 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7321 len, block_len, type);
7322 if (ret) {
7323 if (em) {
7324 free_extent_map(em);
dcdbc059 7325 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7326 start + len - 1, 0);
7327 }
7328 em = ERR_PTR(ret);
7329 }
7330 out:
5f9a8a51
FM
7331
7332 return em;
7333}
7334
4b46fce2
JB
7335static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7336 u64 start, u64 len)
7337{
0b246afa 7338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7339 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7340 struct extent_map *em;
4b46fce2
JB
7341 struct btrfs_key ins;
7342 u64 alloc_hint;
7343 int ret;
4b46fce2 7344
4b46fce2 7345 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7346 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7347 0, alloc_hint, &ins, 1, 1);
00361589
JB
7348 if (ret)
7349 return ERR_PTR(ret);
4b46fce2 7350
5f9a8a51
FM
7351 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7352 ins.objectid, ins.offset, ins.offset,
6288d6ea 7353 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7354 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7355 if (IS_ERR(em))
2ff7e61e
JM
7356 btrfs_free_reserved_extent(fs_info, ins.objectid,
7357 ins.offset, 1);
de0ee0ed 7358
4b46fce2
JB
7359 return em;
7360}
7361
46bfbb5c
CM
7362/*
7363 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7364 * block must be cow'd
7365 */
00361589 7366noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7367 u64 *orig_start, u64 *orig_block_len,
7368 u64 *ram_bytes)
46bfbb5c 7369{
2ff7e61e 7370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7371 struct btrfs_path *path;
7372 int ret;
7373 struct extent_buffer *leaf;
7374 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7375 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7376 struct btrfs_file_extent_item *fi;
7377 struct btrfs_key key;
7378 u64 disk_bytenr;
7379 u64 backref_offset;
7380 u64 extent_end;
7381 u64 num_bytes;
7382 int slot;
7383 int found_type;
7ee9e440 7384 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7385
46bfbb5c
CM
7386 path = btrfs_alloc_path();
7387 if (!path)
7388 return -ENOMEM;
7389
f85b7379
DS
7390 ret = btrfs_lookup_file_extent(NULL, root, path,
7391 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7392 if (ret < 0)
7393 goto out;
7394
7395 slot = path->slots[0];
7396 if (ret == 1) {
7397 if (slot == 0) {
7398 /* can't find the item, must cow */
7399 ret = 0;
7400 goto out;
7401 }
7402 slot--;
7403 }
7404 ret = 0;
7405 leaf = path->nodes[0];
7406 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7407 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7408 key.type != BTRFS_EXTENT_DATA_KEY) {
7409 /* not our file or wrong item type, must cow */
7410 goto out;
7411 }
7412
7413 if (key.offset > offset) {
7414 /* Wrong offset, must cow */
7415 goto out;
7416 }
7417
7418 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7419 found_type = btrfs_file_extent_type(leaf, fi);
7420 if (found_type != BTRFS_FILE_EXTENT_REG &&
7421 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7422 /* not a regular extent, must cow */
7423 goto out;
7424 }
7ee9e440
JB
7425
7426 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7427 goto out;
7428
e77751aa
MX
7429 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7430 if (extent_end <= offset)
7431 goto out;
7432
46bfbb5c 7433 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7434 if (disk_bytenr == 0)
7435 goto out;
7436
7437 if (btrfs_file_extent_compression(leaf, fi) ||
7438 btrfs_file_extent_encryption(leaf, fi) ||
7439 btrfs_file_extent_other_encoding(leaf, fi))
7440 goto out;
7441
78d4295b
EL
7442 /*
7443 * Do the same check as in btrfs_cross_ref_exist but without the
7444 * unnecessary search.
7445 */
7446 if (btrfs_file_extent_generation(leaf, fi) <=
7447 btrfs_root_last_snapshot(&root->root_item))
7448 goto out;
7449
46bfbb5c
CM
7450 backref_offset = btrfs_file_extent_offset(leaf, fi);
7451
7ee9e440
JB
7452 if (orig_start) {
7453 *orig_start = key.offset - backref_offset;
7454 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7455 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7456 }
eb384b55 7457
2ff7e61e 7458 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7459 goto out;
7b2b7085
MX
7460
7461 num_bytes = min(offset + *len, extent_end) - offset;
7462 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7463 u64 range_end;
7464
da17066c
JM
7465 range_end = round_up(offset + num_bytes,
7466 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7467 ret = test_range_bit(io_tree, offset, range_end,
7468 EXTENT_DELALLOC, 0, NULL);
7469 if (ret) {
7470 ret = -EAGAIN;
7471 goto out;
7472 }
7473 }
7474
1bda19eb 7475 btrfs_release_path(path);
46bfbb5c
CM
7476
7477 /*
7478 * look for other files referencing this extent, if we
7479 * find any we must cow
7480 */
00361589 7481
e4c3b2dc 7482 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7483 key.offset - backref_offset, disk_bytenr);
00361589
JB
7484 if (ret) {
7485 ret = 0;
7486 goto out;
7487 }
46bfbb5c
CM
7488
7489 /*
7490 * adjust disk_bytenr and num_bytes to cover just the bytes
7491 * in this extent we are about to write. If there
7492 * are any csums in that range we have to cow in order
7493 * to keep the csums correct
7494 */
7495 disk_bytenr += backref_offset;
7496 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7497 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7498 goto out;
46bfbb5c
CM
7499 /*
7500 * all of the above have passed, it is safe to overwrite this extent
7501 * without cow
7502 */
eb384b55 7503 *len = num_bytes;
46bfbb5c
CM
7504 ret = 1;
7505out:
7506 btrfs_free_path(path);
7507 return ret;
7508}
7509
eb838e73
JB
7510static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7511 struct extent_state **cached_state, int writing)
7512{
7513 struct btrfs_ordered_extent *ordered;
7514 int ret = 0;
7515
7516 while (1) {
7517 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7518 cached_state);
eb838e73
JB
7519 /*
7520 * We're concerned with the entire range that we're going to be
01327610 7521 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7522 * extents in this range.
7523 */
a776c6fa 7524 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7525 lockend - lockstart + 1);
7526
7527 /*
7528 * We need to make sure there are no buffered pages in this
7529 * range either, we could have raced between the invalidate in
7530 * generic_file_direct_write and locking the extent. The
7531 * invalidate needs to happen so that reads after a write do not
7532 * get stale data.
7533 */
fc4adbff 7534 if (!ordered &&
051c98eb
DS
7535 (!writing || !filemap_range_has_page(inode->i_mapping,
7536 lockstart, lockend)))
eb838e73
JB
7537 break;
7538
7539 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7540 cached_state);
eb838e73
JB
7541
7542 if (ordered) {
ade77029
FM
7543 /*
7544 * If we are doing a DIO read and the ordered extent we
7545 * found is for a buffered write, we can not wait for it
7546 * to complete and retry, because if we do so we can
7547 * deadlock with concurrent buffered writes on page
7548 * locks. This happens only if our DIO read covers more
7549 * than one extent map, if at this point has already
7550 * created an ordered extent for a previous extent map
7551 * and locked its range in the inode's io tree, and a
7552 * concurrent write against that previous extent map's
7553 * range and this range started (we unlock the ranges
7554 * in the io tree only when the bios complete and
7555 * buffered writes always lock pages before attempting
7556 * to lock range in the io tree).
7557 */
7558 if (writing ||
7559 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7560 btrfs_start_ordered_extent(inode, ordered, 1);
7561 else
7562 ret = -ENOTBLK;
eb838e73
JB
7563 btrfs_put_ordered_extent(ordered);
7564 } else {
eb838e73 7565 /*
b850ae14
FM
7566 * We could trigger writeback for this range (and wait
7567 * for it to complete) and then invalidate the pages for
7568 * this range (through invalidate_inode_pages2_range()),
7569 * but that can lead us to a deadlock with a concurrent
7570 * call to readpages() (a buffered read or a defrag call
7571 * triggered a readahead) on a page lock due to an
7572 * ordered dio extent we created before but did not have
7573 * yet a corresponding bio submitted (whence it can not
7574 * complete), which makes readpages() wait for that
7575 * ordered extent to complete while holding a lock on
7576 * that page.
eb838e73 7577 */
b850ae14 7578 ret = -ENOTBLK;
eb838e73
JB
7579 }
7580
ade77029
FM
7581 if (ret)
7582 break;
7583
eb838e73
JB
7584 cond_resched();
7585 }
7586
7587 return ret;
7588}
7589
6f9994db
LB
7590/* The callers of this must take lock_extent() */
7591static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7592 u64 orig_start, u64 block_start,
7593 u64 block_len, u64 orig_block_len,
7594 u64 ram_bytes, int compress_type,
7595 int type)
69ffb543
JB
7596{
7597 struct extent_map_tree *em_tree;
7598 struct extent_map *em;
69ffb543
JB
7599 int ret;
7600
6f9994db
LB
7601 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7602 type == BTRFS_ORDERED_COMPRESSED ||
7603 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7604 type == BTRFS_ORDERED_REGULAR);
6f9994db 7605
69ffb543
JB
7606 em_tree = &BTRFS_I(inode)->extent_tree;
7607 em = alloc_extent_map();
7608 if (!em)
7609 return ERR_PTR(-ENOMEM);
7610
7611 em->start = start;
7612 em->orig_start = orig_start;
7613 em->len = len;
7614 em->block_len = block_len;
7615 em->block_start = block_start;
b4939680 7616 em->orig_block_len = orig_block_len;
cc95bef6 7617 em->ram_bytes = ram_bytes;
70c8a91c 7618 em->generation = -1;
69ffb543 7619 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7620 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7621 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7622 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7623 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7624 em->compress_type = compress_type;
7625 }
69ffb543
JB
7626
7627 do {
dcdbc059 7628 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7629 em->start + em->len - 1, 0);
7630 write_lock(&em_tree->lock);
09a2a8f9 7631 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7632 write_unlock(&em_tree->lock);
6f9994db
LB
7633 /*
7634 * The caller has taken lock_extent(), who could race with us
7635 * to add em?
7636 */
69ffb543
JB
7637 } while (ret == -EEXIST);
7638
7639 if (ret) {
7640 free_extent_map(em);
7641 return ERR_PTR(ret);
7642 }
7643
6f9994db 7644 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7645 return em;
7646}
7647
1c8d0175
NB
7648
7649static int btrfs_get_blocks_direct_read(struct extent_map *em,
7650 struct buffer_head *bh_result,
7651 struct inode *inode,
7652 u64 start, u64 len)
7653{
8530c37a
DS
7654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7655
1c8d0175
NB
7656 if (em->block_start == EXTENT_MAP_HOLE ||
7657 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7658 return -ENOENT;
7659
7660 len = min(len, em->len - (start - em->start));
7661
7662 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7663 inode->i_blkbits;
7664 bh_result->b_size = len;
8530c37a 7665 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
1c8d0175
NB
7666 set_buffer_mapped(bh_result);
7667
7668 return 0;
7669}
7670
c5794e51
NB
7671static int btrfs_get_blocks_direct_write(struct extent_map **map,
7672 struct buffer_head *bh_result,
7673 struct inode *inode,
7674 struct btrfs_dio_data *dio_data,
7675 u64 start, u64 len)
7676{
7677 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7678 struct extent_map *em = *map;
7679 int ret = 0;
7680
7681 /*
7682 * We don't allocate a new extent in the following cases
7683 *
7684 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7685 * existing extent.
7686 * 2) The extent is marked as PREALLOC. We're good to go here and can
7687 * just use the extent.
7688 *
7689 */
7690 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7691 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7692 em->block_start != EXTENT_MAP_HOLE)) {
7693 int type;
7694 u64 block_start, orig_start, orig_block_len, ram_bytes;
7695
7696 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7697 type = BTRFS_ORDERED_PREALLOC;
7698 else
7699 type = BTRFS_ORDERED_NOCOW;
7700 len = min(len, em->len - (start - em->start));
7701 block_start = em->block_start + (start - em->start);
7702
7703 if (can_nocow_extent(inode, start, &len, &orig_start,
7704 &orig_block_len, &ram_bytes) == 1 &&
7705 btrfs_inc_nocow_writers(fs_info, block_start)) {
7706 struct extent_map *em2;
7707
7708 em2 = btrfs_create_dio_extent(inode, start, len,
7709 orig_start, block_start,
7710 len, orig_block_len,
7711 ram_bytes, type);
7712 btrfs_dec_nocow_writers(fs_info, block_start);
7713 if (type == BTRFS_ORDERED_PREALLOC) {
7714 free_extent_map(em);
7715 *map = em = em2;
7716 }
7717
7718 if (em2 && IS_ERR(em2)) {
7719 ret = PTR_ERR(em2);
7720 goto out;
7721 }
7722 /*
7723 * For inode marked NODATACOW or extent marked PREALLOC,
7724 * use the existing or preallocated extent, so does not
7725 * need to adjust btrfs_space_info's bytes_may_use.
7726 */
7727 btrfs_free_reserved_data_space_noquota(inode, start,
7728 len);
7729 goto skip_cow;
7730 }
7731 }
7732
7733 /* this will cow the extent */
7734 len = bh_result->b_size;
7735 free_extent_map(em);
7736 *map = em = btrfs_new_extent_direct(inode, start, len);
7737 if (IS_ERR(em)) {
7738 ret = PTR_ERR(em);
7739 goto out;
7740 }
7741
7742 len = min(len, em->len - (start - em->start));
7743
7744skip_cow:
7745 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7746 inode->i_blkbits;
7747 bh_result->b_size = len;
8530c37a 7748 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
c5794e51
NB
7749 set_buffer_mapped(bh_result);
7750
7751 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7752 set_buffer_new(bh_result);
7753
7754 /*
7755 * Need to update the i_size under the extent lock so buffered
7756 * readers will get the updated i_size when we unlock.
7757 */
7758 if (!dio_data->overwrite && start + len > i_size_read(inode))
7759 i_size_write(inode, start + len);
7760
7761 WARN_ON(dio_data->reserve < len);
7762 dio_data->reserve -= len;
7763 dio_data->unsubmitted_oe_range_end = start + len;
7764 current->journal_info = dio_data;
7765out:
7766 return ret;
7767}
7768
4b46fce2
JB
7769static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7770 struct buffer_head *bh_result, int create)
7771{
0b246afa 7772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7773 struct extent_map *em;
eb838e73 7774 struct extent_state *cached_state = NULL;
50745b0a 7775 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7776 u64 start = iblock << inode->i_blkbits;
eb838e73 7777 u64 lockstart, lockend;
4b46fce2 7778 u64 len = bh_result->b_size;
0934856d 7779 int ret = 0;
eb838e73 7780
e182163d 7781 if (!create)
0b246afa 7782 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7783
c329861d
JB
7784 lockstart = start;
7785 lockend = start + len - 1;
7786
e1cbbfa5
JB
7787 if (current->journal_info) {
7788 /*
7789 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7790 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7791 * confused.
7792 */
50745b0a 7793 dio_data = current->journal_info;
e1cbbfa5
JB
7794 current->journal_info = NULL;
7795 }
7796
eb838e73
JB
7797 /*
7798 * If this errors out it's because we couldn't invalidate pagecache for
7799 * this range and we need to fallback to buffered.
7800 */
9c9464cc
FM
7801 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7802 create)) {
7803 ret = -ENOTBLK;
7804 goto err;
7805 }
eb838e73 7806
fc4f21b1 7807 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7808 if (IS_ERR(em)) {
7809 ret = PTR_ERR(em);
7810 goto unlock_err;
7811 }
4b46fce2
JB
7812
7813 /*
7814 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7815 * io. INLINE is special, and we could probably kludge it in here, but
7816 * it's still buffered so for safety lets just fall back to the generic
7817 * buffered path.
7818 *
7819 * For COMPRESSED we _have_ to read the entire extent in so we can
7820 * decompress it, so there will be buffering required no matter what we
7821 * do, so go ahead and fallback to buffered.
7822 *
01327610 7823 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7824 * to buffered IO. Don't blame me, this is the price we pay for using
7825 * the generic code.
7826 */
7827 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7828 em->block_start == EXTENT_MAP_INLINE) {
7829 free_extent_map(em);
eb838e73
JB
7830 ret = -ENOTBLK;
7831 goto unlock_err;
4b46fce2
JB
7832 }
7833
c5794e51
NB
7834 if (create) {
7835 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7836 dio_data, start, len);
7837 if (ret < 0)
7838 goto unlock_err;
7839
e182163d
OS
7840 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7841 lockend, &cached_state);
c5794e51 7842 } else {
1c8d0175
NB
7843 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7844 start, len);
7845 /* Can be negative only if we read from a hole */
7846 if (ret < 0) {
7847 ret = 0;
7848 free_extent_map(em);
7849 goto unlock_err;
7850 }
7851 /*
7852 * We need to unlock only the end area that we aren't using.
7853 * The rest is going to be unlocked by the endio routine.
7854 */
7855 lockstart = start + bh_result->b_size;
7856 if (lockstart < lockend) {
e182163d
OS
7857 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7858 lockstart, lockend, &cached_state);
1c8d0175
NB
7859 } else {
7860 free_extent_state(cached_state);
7861 }
4b46fce2
JB
7862 }
7863
4b46fce2
JB
7864 free_extent_map(em);
7865
7866 return 0;
eb838e73
JB
7867
7868unlock_err:
e182163d
OS
7869 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7870 &cached_state);
9c9464cc 7871err:
50745b0a 7872 if (dio_data)
7873 current->journal_info = dio_data;
eb838e73 7874 return ret;
4b46fce2
JB
7875}
7876
58efbc9f
OS
7877static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7878 struct bio *bio,
7879 int mirror_num)
8b110e39 7880{
2ff7e61e 7881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7882 blk_status_t ret;
8b110e39 7883
37226b21 7884 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7885
2ff7e61e 7886 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7887 if (ret)
ea057f6d 7888 return ret;
8b110e39 7889
08635bae 7890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
ea057f6d 7891
8b110e39
MX
7892 return ret;
7893}
7894
7895static int btrfs_check_dio_repairable(struct inode *inode,
7896 struct bio *failed_bio,
7897 struct io_failure_record *failrec,
7898 int failed_mirror)
7899{
ab8d0fc4 7900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7901 int num_copies;
7902
ab8d0fc4 7903 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7904 if (num_copies == 1) {
7905 /*
7906 * we only have a single copy of the data, so don't bother with
7907 * all the retry and error correction code that follows. no
7908 * matter what the error is, it is very likely to persist.
7909 */
ab8d0fc4
JM
7910 btrfs_debug(fs_info,
7911 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7912 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7913 return 0;
7914 }
7915
7916 failrec->failed_mirror = failed_mirror;
7917 failrec->this_mirror++;
7918 if (failrec->this_mirror == failed_mirror)
7919 failrec->this_mirror++;
7920
7921 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7922 btrfs_debug(fs_info,
7923 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7924 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7925 return 0;
7926 }
7927
7928 return 1;
7929}
7930
58efbc9f
OS
7931static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7932 struct page *page, unsigned int pgoff,
7933 u64 start, u64 end, int failed_mirror,
7934 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7935{
7936 struct io_failure_record *failrec;
7870d082
JB
7937 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7938 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7939 struct bio *bio;
7940 int isector;
f1c77c55 7941 unsigned int read_mode = 0;
17347cec 7942 int segs;
8b110e39 7943 int ret;
58efbc9f 7944 blk_status_t status;
c16a8ac3 7945 struct bio_vec bvec;
8b110e39 7946
37226b21 7947 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7948
7949 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7950 if (ret)
58efbc9f 7951 return errno_to_blk_status(ret);
8b110e39
MX
7952
7953 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7954 failed_mirror);
7955 if (!ret) {
7870d082 7956 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7957 return BLK_STS_IOERR;
8b110e39
MX
7958 }
7959
17347cec 7960 segs = bio_segments(failed_bio);
c16a8ac3 7961 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7962 if (segs > 1 ||
c16a8ac3 7963 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7964 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7965
7966 isector = start - btrfs_io_bio(failed_bio)->logical;
7967 isector >>= inode->i_sb->s_blocksize_bits;
7968 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7969 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7970 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7971
7972 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7973 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7974 read_mode, failrec->this_mirror, failrec->in_validation);
7975
58efbc9f
OS
7976 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7977 if (status) {
7870d082 7978 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7979 bio_put(bio);
7980 }
7981
58efbc9f 7982 return status;
8b110e39
MX
7983}
7984
7985struct btrfs_retry_complete {
7986 struct completion done;
7987 struct inode *inode;
7988 u64 start;
7989 int uptodate;
7990};
7991
4246a0b6 7992static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7993{
7994 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7995 struct inode *inode = done->inode;
8b110e39 7996 struct bio_vec *bvec;
7870d082 7997 struct extent_io_tree *io_tree, *failure_tree;
6dc4f100 7998 struct bvec_iter_all iter_all;
8b110e39 7999
4e4cbee9 8000 if (bio->bi_status)
8b110e39
MX
8001 goto end;
8002
2dabb324 8003 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8004 io_tree = &BTRFS_I(inode)->io_tree;
8005 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 8006 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8007
8b110e39 8008 done->uptodate = 1;
c09abff8 8009 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 8010 bio_for_each_segment_all(bvec, bio, iter_all)
7870d082
JB
8011 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8012 io_tree, done->start, bvec->bv_page,
8013 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8014end:
8015 complete(&done->done);
8016 bio_put(bio);
8017}
8018
58efbc9f
OS
8019static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8020 struct btrfs_io_bio *io_bio)
4b46fce2 8021{
2dabb324 8022 struct btrfs_fs_info *fs_info;
17347cec
LB
8023 struct bio_vec bvec;
8024 struct bvec_iter iter;
8b110e39 8025 struct btrfs_retry_complete done;
4b46fce2 8026 u64 start;
2dabb324
CR
8027 unsigned int pgoff;
8028 u32 sectorsize;
8029 int nr_sectors;
58efbc9f
OS
8030 blk_status_t ret;
8031 blk_status_t err = BLK_STS_OK;
4b46fce2 8032
2dabb324 8033 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8034 sectorsize = fs_info->sectorsize;
2dabb324 8035
8b110e39
MX
8036 start = io_bio->logical;
8037 done.inode = inode;
17347cec 8038 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8039
17347cec
LB
8040 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8041 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8042 pgoff = bvec.bv_offset;
2dabb324
CR
8043
8044next_block_or_try_again:
8b110e39
MX
8045 done.uptodate = 0;
8046 done.start = start;
8047 init_completion(&done.done);
8048
17347cec 8049 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8050 pgoff, start, start + sectorsize - 1,
8051 io_bio->mirror_num,
8052 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8053 if (ret) {
8054 err = ret;
8055 goto next;
8056 }
8b110e39 8057
9c17f6cd 8058 wait_for_completion_io(&done.done);
8b110e39
MX
8059
8060 if (!done.uptodate) {
8061 /* We might have another mirror, so try again */
2dabb324 8062 goto next_block_or_try_again;
8b110e39
MX
8063 }
8064
629ebf4f 8065next:
2dabb324
CR
8066 start += sectorsize;
8067
97bf5a55
LB
8068 nr_sectors--;
8069 if (nr_sectors) {
2dabb324 8070 pgoff += sectorsize;
97bf5a55 8071 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8072 goto next_block_or_try_again;
8073 }
8b110e39
MX
8074 }
8075
629ebf4f 8076 return err;
8b110e39
MX
8077}
8078
4246a0b6 8079static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8080{
8081 struct btrfs_retry_complete *done = bio->bi_private;
8082 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8083 struct extent_io_tree *io_tree, *failure_tree;
8084 struct inode *inode = done->inode;
8b110e39
MX
8085 struct bio_vec *bvec;
8086 int uptodate;
8087 int ret;
2b070cfe 8088 int i = 0;
6dc4f100 8089 struct bvec_iter_all iter_all;
8b110e39 8090
4e4cbee9 8091 if (bio->bi_status)
8b110e39
MX
8092 goto end;
8093
8094 uptodate = 1;
2dabb324 8095
2dabb324 8096 ASSERT(bio->bi_vcnt == 1);
263663cd 8097 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8098
7870d082
JB
8099 io_tree = &BTRFS_I(inode)->io_tree;
8100 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8101
c09abff8 8102 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 8103 bio_for_each_segment_all(bvec, bio, iter_all) {
7870d082
JB
8104 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8105 bvec->bv_offset, done->start,
8106 bvec->bv_len);
8b110e39 8107 if (!ret)
7870d082
JB
8108 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8109 failure_tree, io_tree, done->start,
8110 bvec->bv_page,
8111 btrfs_ino(BTRFS_I(inode)),
8112 bvec->bv_offset);
8b110e39
MX
8113 else
8114 uptodate = 0;
2b070cfe 8115 i++;
8b110e39
MX
8116 }
8117
8118 done->uptodate = uptodate;
8119end:
8120 complete(&done->done);
8121 bio_put(bio);
8122}
8123
4e4cbee9
CH
8124static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8125 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8126{
2dabb324 8127 struct btrfs_fs_info *fs_info;
17347cec
LB
8128 struct bio_vec bvec;
8129 struct bvec_iter iter;
8b110e39
MX
8130 struct btrfs_retry_complete done;
8131 u64 start;
8132 u64 offset = 0;
2dabb324
CR
8133 u32 sectorsize;
8134 int nr_sectors;
8135 unsigned int pgoff;
8136 int csum_pos;
ef7cdac1 8137 bool uptodate = (err == 0);
8b110e39 8138 int ret;
58efbc9f 8139 blk_status_t status;
dc380aea 8140
2dabb324 8141 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8142 sectorsize = fs_info->sectorsize;
2dabb324 8143
58efbc9f 8144 err = BLK_STS_OK;
c1dc0896 8145 start = io_bio->logical;
8b110e39 8146 done.inode = inode;
17347cec 8147 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8148
17347cec
LB
8149 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8150 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8151
17347cec 8152 pgoff = bvec.bv_offset;
2dabb324 8153next_block:
ef7cdac1
LB
8154 if (uptodate) {
8155 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8156 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8157 bvec.bv_page, pgoff, start, sectorsize);
8158 if (likely(!ret))
8159 goto next;
8160 }
8b110e39
MX
8161try_again:
8162 done.uptodate = 0;
8163 done.start = start;
8164 init_completion(&done.done);
8165
58efbc9f
OS
8166 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8167 pgoff, start, start + sectorsize - 1,
8168 io_bio->mirror_num, btrfs_retry_endio,
8169 &done);
8170 if (status) {
8171 err = status;
8b110e39
MX
8172 goto next;
8173 }
8174
9c17f6cd 8175 wait_for_completion_io(&done.done);
8b110e39
MX
8176
8177 if (!done.uptodate) {
8178 /* We might have another mirror, so try again */
8179 goto try_again;
8180 }
8181next:
2dabb324
CR
8182 offset += sectorsize;
8183 start += sectorsize;
8184
8185 ASSERT(nr_sectors);
8186
97bf5a55
LB
8187 nr_sectors--;
8188 if (nr_sectors) {
2dabb324 8189 pgoff += sectorsize;
97bf5a55 8190 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8191 goto next_block;
8192 }
2c30c71b 8193 }
c1dc0896
MX
8194
8195 return err;
8196}
8197
4e4cbee9
CH
8198static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8199 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8200{
8201 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8202
8203 if (skip_csum) {
8204 if (unlikely(err))
8205 return __btrfs_correct_data_nocsum(inode, io_bio);
8206 else
58efbc9f 8207 return BLK_STS_OK;
8b110e39
MX
8208 } else {
8209 return __btrfs_subio_endio_read(inode, io_bio, err);
8210 }
8211}
8212
4246a0b6 8213static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8214{
8215 struct btrfs_dio_private *dip = bio->bi_private;
8216 struct inode *inode = dip->inode;
8217 struct bio *dio_bio;
8218 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8219 blk_status_t err = bio->bi_status;
c1dc0896 8220
99c4e3b9 8221 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8222 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8223
4b46fce2 8224 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8225 dip->logical_offset + dip->bytes - 1);
9be3395b 8226 dio_bio = dip->dio_bio;
4b46fce2 8227
4b46fce2 8228 kfree(dip);
c0da7aa1 8229
99c4e3b9 8230 dio_bio->bi_status = err;
4055351c 8231 dio_end_io(dio_bio);
b3a0dd50 8232 btrfs_io_bio_free_csum(io_bio);
9be3395b 8233 bio_put(bio);
4b46fce2
JB
8234}
8235
52427260
QW
8236static void __endio_write_update_ordered(struct inode *inode,
8237 const u64 offset, const u64 bytes,
8238 const bool uptodate)
4b46fce2 8239{
0b246afa 8240 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8241 struct btrfs_ordered_extent *ordered = NULL;
52427260 8242 struct btrfs_workqueue *wq;
14543774
FM
8243 u64 ordered_offset = offset;
8244 u64 ordered_bytes = bytes;
67c003f9 8245 u64 last_offset;
4b46fce2 8246
a0cac0ec 8247 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
52427260 8248 wq = fs_info->endio_freespace_worker;
a0cac0ec 8249 else
52427260 8250 wq = fs_info->endio_write_workers;
52427260 8251
b25f0d00
NB
8252 while (ordered_offset < offset + bytes) {
8253 last_offset = ordered_offset;
8254 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8255 &ordered_offset,
8256 ordered_bytes,
8257 uptodate)) {
a0cac0ec
OS
8258 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8259 NULL);
b25f0d00
NB
8260 btrfs_queue_work(wq, &ordered->work);
8261 }
8262 /*
8263 * If btrfs_dec_test_ordered_pending does not find any ordered
8264 * extent in the range, we can exit.
8265 */
8266 if (ordered_offset == last_offset)
8267 return;
8268 /*
8269 * Our bio might span multiple ordered extents. In this case
52042d8e 8270 * we keep going until we have accounted the whole dio.
b25f0d00
NB
8271 */
8272 if (ordered_offset < offset + bytes) {
8273 ordered_bytes = offset + bytes - ordered_offset;
8274 ordered = NULL;
8275 }
163cf09c 8276 }
14543774
FM
8277}
8278
8279static void btrfs_endio_direct_write(struct bio *bio)
8280{
8281 struct btrfs_dio_private *dip = bio->bi_private;
8282 struct bio *dio_bio = dip->dio_bio;
8283
52427260 8284 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8285 dip->bytes, !bio->bi_status);
4b46fce2 8286
4b46fce2 8287 kfree(dip);
c0da7aa1 8288
4e4cbee9 8289 dio_bio->bi_status = bio->bi_status;
4055351c 8290 dio_end_io(dio_bio);
9be3395b 8291 bio_put(bio);
4b46fce2
JB
8292}
8293
d0ee3934 8294static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8295 struct bio *bio, u64 offset)
eaf25d93 8296{
c6100a4b 8297 struct inode *inode = private_data;
4e4cbee9 8298 blk_status_t ret;
2ff7e61e 8299 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8300 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8301 return 0;
8302}
8303
4246a0b6 8304static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8305{
8306 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8307 blk_status_t err = bio->bi_status;
e65e1535 8308
8b110e39
MX
8309 if (err)
8310 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8311 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8312 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8313 bio->bi_opf,
8b110e39
MX
8314 (unsigned long long)bio->bi_iter.bi_sector,
8315 bio->bi_iter.bi_size, err);
8316
8317 if (dip->subio_endio)
8318 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8319
8320 if (err) {
e65e1535 8321 /*
de224b7c
NB
8322 * We want to perceive the errors flag being set before
8323 * decrementing the reference count. We don't need a barrier
8324 * since atomic operations with a return value are fully
8325 * ordered as per atomic_t.txt
e65e1535 8326 */
de224b7c 8327 dip->errors = 1;
e65e1535
MX
8328 }
8329
8330 /* if there are more bios still pending for this dio, just exit */
8331 if (!atomic_dec_and_test(&dip->pending_bios))
8332 goto out;
8333
9be3395b 8334 if (dip->errors) {
e65e1535 8335 bio_io_error(dip->orig_bio);
9be3395b 8336 } else {
2dbe0c77 8337 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8338 bio_endio(dip->orig_bio);
e65e1535
MX
8339 }
8340out:
8341 bio_put(bio);
8342}
8343
4e4cbee9 8344static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8345 struct btrfs_dio_private *dip,
8346 struct bio *bio,
8347 u64 file_offset)
8348{
8349 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8350 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8351 blk_status_t ret;
c1dc0896
MX
8352
8353 /*
8354 * We load all the csum data we need when we submit
8355 * the first bio to reduce the csum tree search and
8356 * contention.
8357 */
8358 if (dip->logical_offset == file_offset) {
2ff7e61e 8359 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8360 file_offset);
8361 if (ret)
8362 return ret;
8363 }
8364
8365 if (bio == dip->orig_bio)
8366 return 0;
8367
8368 file_offset -= dip->logical_offset;
8369 file_offset >>= inode->i_sb->s_blocksize_bits;
8370 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8371
8372 return 0;
8373}
8374
d0ee3934
DS
8375static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8376 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8377{
0b246afa 8378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8379 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8380 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8381 blk_status_t ret;
e65e1535 8382
4c274bc6 8383 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8384 if (async_submit)
8385 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8386
5fd02043 8387 if (!write) {
0b246afa 8388 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8389 if (ret)
8390 goto err;
8391 }
e65e1535 8392
e6961cac 8393 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8394 goto map;
8395
8396 if (write && async_submit) {
c6100a4b
JB
8397 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8398 file_offset, inode,
e288c080 8399 btrfs_submit_bio_start_direct_io);
e65e1535 8400 goto err;
1ae39938
JB
8401 } else if (write) {
8402 /*
8403 * If we aren't doing async submit, calculate the csum of the
8404 * bio now.
8405 */
2ff7e61e 8406 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8407 if (ret)
8408 goto err;
23ea8e5a 8409 } else {
2ff7e61e 8410 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8411 file_offset);
c2db1073
TI
8412 if (ret)
8413 goto err;
8414 }
1ae39938 8415map:
08635bae 8416 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 8417err:
e65e1535
MX
8418 return ret;
8419}
8420
e6961cac 8421static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8422{
8423 struct inode *inode = dip->inode;
0b246afa 8424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8425 struct bio *bio;
8426 struct bio *orig_bio = dip->orig_bio;
4f024f37 8427 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8428 u64 file_offset = dip->logical_offset;
1ae39938 8429 int async_submit = 0;
725130ba
LB
8430 u64 submit_len;
8431 int clone_offset = 0;
8432 int clone_len;
5f4dc8fc 8433 int ret;
58efbc9f 8434 blk_status_t status;
89b798ad 8435 struct btrfs_io_geometry geom;
e65e1535 8436
89b798ad
NB
8437 submit_len = orig_bio->bi_iter.bi_size;
8438 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8439 start_sector << 9, submit_len, &geom);
7a5c3c9b 8440 if (ret)
e65e1535 8441 return -EIO;
facc8a22 8442
89b798ad 8443 if (geom.len >= submit_len) {
02f57c7a 8444 bio = orig_bio;
c1dc0896 8445 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8446 goto submit;
8447 }
8448
53b381b3 8449 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8450 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8451 async_submit = 0;
8452 else
8453 async_submit = 1;
8454
725130ba 8455 /* bio split */
89b798ad 8456 ASSERT(geom.len <= INT_MAX);
02f57c7a 8457 atomic_inc(&dip->pending_bios);
3c91ee69 8458 do {
89b798ad 8459 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 8460
725130ba
LB
8461 /*
8462 * This will never fail as it's passing GPF_NOFS and
8463 * the allocation is backed by btrfs_bioset.
8464 */
e477094f 8465 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8466 clone_len);
8467 bio->bi_private = dip;
8468 bio->bi_end_io = btrfs_end_dio_bio;
8469 btrfs_io_bio(bio)->logical = file_offset;
8470
8471 ASSERT(submit_len >= clone_len);
8472 submit_len -= clone_len;
8473 if (submit_len == 0)
8474 break;
e65e1535 8475
725130ba
LB
8476 /*
8477 * Increase the count before we submit the bio so we know
8478 * the end IO handler won't happen before we increase the
8479 * count. Otherwise, the dip might get freed before we're
8480 * done setting it up.
8481 */
8482 atomic_inc(&dip->pending_bios);
e65e1535 8483
d0ee3934 8484 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8485 async_submit);
8486 if (status) {
725130ba
LB
8487 bio_put(bio);
8488 atomic_dec(&dip->pending_bios);
8489 goto out_err;
8490 }
e65e1535 8491
725130ba
LB
8492 clone_offset += clone_len;
8493 start_sector += clone_len >> 9;
8494 file_offset += clone_len;
5f4dc8fc 8495
89b798ad
NB
8496 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8497 start_sector << 9, submit_len, &geom);
725130ba
LB
8498 if (ret)
8499 goto out_err;
3c91ee69 8500 } while (submit_len > 0);
e65e1535 8501
02f57c7a 8502submit:
d0ee3934 8503 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8504 if (!status)
e65e1535
MX
8505 return 0;
8506
8507 bio_put(bio);
8508out_err:
8509 dip->errors = 1;
8510 /*
de224b7c
NB
8511 * Before atomic variable goto zero, we must make sure dip->errors is
8512 * perceived to be set. This ordering is ensured by the fact that an
8513 * atomic operations with a return value are fully ordered as per
8514 * atomic_t.txt
e65e1535 8515 */
e65e1535
MX
8516 if (atomic_dec_and_test(&dip->pending_bios))
8517 bio_io_error(dip->orig_bio);
8518
8519 /* bio_end_io() will handle error, so we needn't return it */
8520 return 0;
8521}
8522
8a4c1e42
MC
8523static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8524 loff_t file_offset)
4b46fce2 8525{
61de718f 8526 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8527 struct bio *bio = NULL;
8528 struct btrfs_io_bio *io_bio;
8a4c1e42 8529 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8530 int ret = 0;
8531
8b6c1d56 8532 bio = btrfs_bio_clone(dio_bio);
9be3395b 8533
c1dc0896 8534 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8535 if (!dip) {
8536 ret = -ENOMEM;
61de718f 8537 goto free_ordered;
4b46fce2 8538 }
4b46fce2 8539
9be3395b 8540 dip->private = dio_bio->bi_private;
4b46fce2
JB
8541 dip->inode = inode;
8542 dip->logical_offset = file_offset;
4f024f37
KO
8543 dip->bytes = dio_bio->bi_iter.bi_size;
8544 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8545 bio->bi_private = dip;
8546 dip->orig_bio = bio;
9be3395b 8547 dip->dio_bio = dio_bio;
e65e1535 8548 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8549 io_bio = btrfs_io_bio(bio);
8550 io_bio->logical = file_offset;
4b46fce2 8551
c1dc0896 8552 if (write) {
3892ac90 8553 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8554 } else {
3892ac90 8555 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8556 dip->subio_endio = btrfs_subio_endio_read;
8557 }
4b46fce2 8558
f28a4928
FM
8559 /*
8560 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8561 * even if we fail to submit a bio, because in such case we do the
8562 * corresponding error handling below and it must not be done a second
8563 * time by btrfs_direct_IO().
8564 */
8565 if (write) {
8566 struct btrfs_dio_data *dio_data = current->journal_info;
8567
8568 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8569 dip->bytes;
8570 dio_data->unsubmitted_oe_range_start =
8571 dio_data->unsubmitted_oe_range_end;
8572 }
8573
e6961cac 8574 ret = btrfs_submit_direct_hook(dip);
e65e1535 8575 if (!ret)
eaf25d93 8576 return;
9be3395b 8577
b3a0dd50 8578 btrfs_io_bio_free_csum(io_bio);
9be3395b 8579
4b46fce2
JB
8580free_ordered:
8581 /*
61de718f
FM
8582 * If we arrived here it means either we failed to submit the dip
8583 * or we either failed to clone the dio_bio or failed to allocate the
8584 * dip. If we cloned the dio_bio and allocated the dip, we can just
8585 * call bio_endio against our io_bio so that we get proper resource
8586 * cleanup if we fail to submit the dip, otherwise, we must do the
8587 * same as btrfs_endio_direct_[write|read] because we can't call these
8588 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8589 */
3892ac90 8590 if (bio && dip) {
054ec2f6 8591 bio_io_error(bio);
61de718f 8592 /*
3892ac90 8593 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8594 * and all the cleanup and final put for dio_bio (through
8595 * dio_end_io()).
8596 */
8597 dip = NULL;
3892ac90 8598 bio = NULL;
61de718f 8599 } else {
14543774 8600 if (write)
52427260 8601 __endio_write_update_ordered(inode,
14543774
FM
8602 file_offset,
8603 dio_bio->bi_iter.bi_size,
52427260 8604 false);
14543774 8605 else
61de718f
FM
8606 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8607 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8608
4e4cbee9 8609 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8610 /*
8611 * Releases and cleans up our dio_bio, no need to bio_put()
8612 * nor bio_endio()/bio_io_error() against dio_bio.
8613 */
4055351c 8614 dio_end_io(dio_bio);
4b46fce2 8615 }
3892ac90
LB
8616 if (bio)
8617 bio_put(bio);
61de718f 8618 kfree(dip);
4b46fce2
JB
8619}
8620
2ff7e61e 8621static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8622 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8623{
8624 int seg;
a1b75f7d 8625 int i;
0b246afa 8626 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8627 ssize_t retval = -EINVAL;
5a5f79b5
CM
8628
8629 if (offset & blocksize_mask)
8630 goto out;
8631
28060d5d
AV
8632 if (iov_iter_alignment(iter) & blocksize_mask)
8633 goto out;
a1b75f7d 8634
28060d5d 8635 /* If this is a write we don't need to check anymore */
cd27e455 8636 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8637 return 0;
8638 /*
8639 * Check to make sure we don't have duplicate iov_base's in this
8640 * iovec, if so return EINVAL, otherwise we'll get csum errors
8641 * when reading back.
8642 */
8643 for (seg = 0; seg < iter->nr_segs; seg++) {
8644 for (i = seg + 1; i < iter->nr_segs; i++) {
8645 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8646 goto out;
8647 }
5a5f79b5
CM
8648 }
8649 retval = 0;
8650out:
8651 return retval;
8652}
eb838e73 8653
c8b8e32d 8654static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8655{
4b46fce2
JB
8656 struct file *file = iocb->ki_filp;
8657 struct inode *inode = file->f_mapping->host;
0b246afa 8658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8659 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8660 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8661 loff_t offset = iocb->ki_pos;
0934856d 8662 size_t count = 0;
2e60a51e 8663 int flags = 0;
38851cc1
MX
8664 bool wakeup = true;
8665 bool relock = false;
0934856d 8666 ssize_t ret;
4b46fce2 8667
8c70c9f8 8668 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8669 return 0;
3f7c579c 8670
fe0f07d0 8671 inode_dio_begin(inode);
38851cc1 8672
0e267c44 8673 /*
41bd9ca4
MX
8674 * The generic stuff only does filemap_write_and_wait_range, which
8675 * isn't enough if we've written compressed pages to this area, so
8676 * we need to flush the dirty pages again to make absolutely sure
8677 * that any outstanding dirty pages are on disk.
0e267c44 8678 */
a6cbcd4a 8679 count = iov_iter_count(iter);
41bd9ca4
MX
8680 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8681 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8682 filemap_fdatawrite_range(inode->i_mapping, offset,
8683 offset + count - 1);
0e267c44 8684
6f673763 8685 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8686 /*
8687 * If the write DIO is beyond the EOF, we need update
8688 * the isize, but it is protected by i_mutex. So we can
8689 * not unlock the i_mutex at this case.
8690 */
8691 if (offset + count <= inode->i_size) {
4aaedfb0 8692 dio_data.overwrite = 1;
5955102c 8693 inode_unlock(inode);
38851cc1 8694 relock = true;
edf064e7
GR
8695 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8696 ret = -EAGAIN;
8697 goto out;
38851cc1 8698 }
364ecf36
QW
8699 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8700 offset, count);
0934856d 8701 if (ret)
38851cc1 8702 goto out;
e1cbbfa5
JB
8703
8704 /*
8705 * We need to know how many extents we reserved so that we can
8706 * do the accounting properly if we go over the number we
8707 * originally calculated. Abuse current->journal_info for this.
8708 */
da17066c 8709 dio_data.reserve = round_up(count,
0b246afa 8710 fs_info->sectorsize);
f28a4928
FM
8711 dio_data.unsubmitted_oe_range_start = (u64)offset;
8712 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8713 current->journal_info = &dio_data;
97dcdea0 8714 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8715 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8716 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8717 inode_dio_end(inode);
38851cc1
MX
8718 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8719 wakeup = false;
0934856d
MX
8720 }
8721
17f8c842 8722 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8723 fs_info->fs_devices->latest_bdev,
c8b8e32d 8724 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8725 btrfs_submit_direct, flags);
6f673763 8726 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8727 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8728 current->journal_info = NULL;
ddba1bfc 8729 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8730 if (dio_data.reserve)
bc42bda2 8731 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8732 offset, dio_data.reserve, true);
f28a4928
FM
8733 /*
8734 * On error we might have left some ordered extents
8735 * without submitting corresponding bios for them, so
8736 * cleanup them up to avoid other tasks getting them
8737 * and waiting for them to complete forever.
8738 */
8739 if (dio_data.unsubmitted_oe_range_start <
8740 dio_data.unsubmitted_oe_range_end)
52427260 8741 __endio_write_update_ordered(inode,
f28a4928
FM
8742 dio_data.unsubmitted_oe_range_start,
8743 dio_data.unsubmitted_oe_range_end -
8744 dio_data.unsubmitted_oe_range_start,
52427260 8745 false);
ddba1bfc 8746 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8747 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8748 offset, count - (size_t)ret, true);
8702ba93 8749 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8750 }
38851cc1 8751out:
2e60a51e 8752 if (wakeup)
fe0f07d0 8753 inode_dio_end(inode);
38851cc1 8754 if (relock)
5955102c 8755 inode_lock(inode);
0934856d 8756
364ecf36 8757 extent_changeset_free(data_reserved);
0934856d 8758 return ret;
16432985
CM
8759}
8760
05dadc09
TI
8761#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8762
1506fcc8
YS
8763static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8764 __u64 start, __u64 len)
8765{
05dadc09
TI
8766 int ret;
8767
8768 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8769 if (ret)
8770 return ret;
8771
2135fb9b 8772 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8773}
8774
a52d9a80 8775int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8776{
d1310b2e
CM
8777 struct extent_io_tree *tree;
8778 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8779 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8780}
1832a6d5 8781
a52d9a80 8782static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8783{
be7bd730
JB
8784 struct inode *inode = page->mapping->host;
8785 int ret;
b888db2b
CM
8786
8787 if (current->flags & PF_MEMALLOC) {
8788 redirty_page_for_writepage(wbc, page);
8789 unlock_page(page);
8790 return 0;
8791 }
be7bd730
JB
8792
8793 /*
8794 * If we are under memory pressure we will call this directly from the
8795 * VM, we need to make sure we have the inode referenced for the ordered
8796 * extent. If not just return like we didn't do anything.
8797 */
8798 if (!igrab(inode)) {
8799 redirty_page_for_writepage(wbc, page);
8800 return AOP_WRITEPAGE_ACTIVATE;
8801 }
0a9b0e53 8802 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8803 btrfs_add_delayed_iput(inode);
8804 return ret;
9ebefb18
CM
8805}
8806
48a3b636
ES
8807static int btrfs_writepages(struct address_space *mapping,
8808 struct writeback_control *wbc)
b293f02e 8809{
8ae225a8 8810 return extent_writepages(mapping, wbc);
b293f02e
CM
8811}
8812
3ab2fb5a
CM
8813static int
8814btrfs_readpages(struct file *file, struct address_space *mapping,
8815 struct list_head *pages, unsigned nr_pages)
8816{
2a3ff0ad 8817 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8818}
2a3ff0ad 8819
e6dcd2dc 8820static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8821{
477a30ba 8822 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8823 if (ret == 1) {
8824 ClearPagePrivate(page);
8825 set_page_private(page, 0);
09cbfeaf 8826 put_page(page);
39279cc3 8827 }
a52d9a80 8828 return ret;
39279cc3
CM
8829}
8830
e6dcd2dc
CM
8831static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8832{
98509cfc
CM
8833 if (PageWriteback(page) || PageDirty(page))
8834 return 0;
3ba7ab22 8835 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8836}
8837
d47992f8
LC
8838static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8839 unsigned int length)
39279cc3 8840{
5fd02043 8841 struct inode *inode = page->mapping->host;
d1310b2e 8842 struct extent_io_tree *tree;
e6dcd2dc 8843 struct btrfs_ordered_extent *ordered;
2ac55d41 8844 struct extent_state *cached_state = NULL;
e6dcd2dc 8845 u64 page_start = page_offset(page);
09cbfeaf 8846 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8847 u64 start;
8848 u64 end;
131e404a 8849 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8850
8b62b72b
CM
8851 /*
8852 * we have the page locked, so new writeback can't start,
8853 * and the dirty bit won't be cleared while we are here.
8854 *
8855 * Wait for IO on this page so that we can safely clear
8856 * the PagePrivate2 bit and do ordered accounting
8857 */
e6dcd2dc 8858 wait_on_page_writeback(page);
8b62b72b 8859
5fd02043 8860 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8861 if (offset) {
8862 btrfs_releasepage(page, GFP_NOFS);
8863 return;
8864 }
131e404a
FDBM
8865
8866 if (!inode_evicting)
ff13db41 8867 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8868again:
8869 start = page_start;
a776c6fa 8870 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8871 page_end - start + 1);
e6dcd2dc 8872 if (ordered) {
dbfdb6d1 8873 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8874 /*
8875 * IO on this page will never be started, so we need
8876 * to account for any ordered extents now
8877 */
131e404a 8878 if (!inode_evicting)
dbfdb6d1 8879 clear_extent_bit(tree, start, end,
e182163d 8880 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8881 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8882 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8883 /*
8884 * whoever cleared the private bit is responsible
8885 * for the finish_ordered_io
8886 */
77cef2ec
JB
8887 if (TestClearPagePrivate2(page)) {
8888 struct btrfs_ordered_inode_tree *tree;
8889 u64 new_len;
8890
8891 tree = &BTRFS_I(inode)->ordered_tree;
8892
8893 spin_lock_irq(&tree->lock);
8894 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8895 new_len = start - ordered->file_offset;
77cef2ec
JB
8896 if (new_len < ordered->truncated_len)
8897 ordered->truncated_len = new_len;
8898 spin_unlock_irq(&tree->lock);
8899
8900 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8901 start,
8902 end - start + 1, 1))
77cef2ec 8903 btrfs_finish_ordered_io(ordered);
8b62b72b 8904 }
e6dcd2dc 8905 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8906 if (!inode_evicting) {
8907 cached_state = NULL;
dbfdb6d1 8908 lock_extent_bits(tree, start, end,
131e404a
FDBM
8909 &cached_state);
8910 }
dbfdb6d1
CR
8911
8912 start = end + 1;
8913 if (start < page_end)
8914 goto again;
131e404a
FDBM
8915 }
8916
b9d0b389
QW
8917 /*
8918 * Qgroup reserved space handler
8919 * Page here will be either
8920 * 1) Already written to disk
8921 * In this case, its reserved space is released from data rsv map
8922 * and will be freed by delayed_ref handler finally.
8923 * So even we call qgroup_free_data(), it won't decrease reserved
8924 * space.
8925 * 2) Not written to disk
0b34c261
GR
8926 * This means the reserved space should be freed here. However,
8927 * if a truncate invalidates the page (by clearing PageDirty)
8928 * and the page is accounted for while allocating extent
8929 * in btrfs_check_data_free_space() we let delayed_ref to
8930 * free the entire extent.
b9d0b389 8931 */
0b34c261 8932 if (PageDirty(page))
bc42bda2 8933 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a 8934 if (!inode_evicting) {
e182163d 8935 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8936 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8937 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8938 &cached_state);
131e404a
FDBM
8939
8940 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8941 }
e6dcd2dc 8942
4a096752 8943 ClearPageChecked(page);
9ad6b7bc 8944 if (PagePrivate(page)) {
9ad6b7bc
CM
8945 ClearPagePrivate(page);
8946 set_page_private(page, 0);
09cbfeaf 8947 put_page(page);
9ad6b7bc 8948 }
39279cc3
CM
8949}
8950
9ebefb18
CM
8951/*
8952 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8953 * called from a page fault handler when a page is first dirtied. Hence we must
8954 * be careful to check for EOF conditions here. We set the page up correctly
8955 * for a written page which means we get ENOSPC checking when writing into
8956 * holes and correct delalloc and unwritten extent mapping on filesystems that
8957 * support these features.
8958 *
8959 * We are not allowed to take the i_mutex here so we have to play games to
8960 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8961 * truncate_setsize() writes the inode size before removing pages, once we have
8962 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8963 * beyond EOF, then the page is guaranteed safe against truncation until we
8964 * unlock the page.
8965 */
a528a241 8966vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8967{
c2ec175c 8968 struct page *page = vmf->page;
11bac800 8969 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8971 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8972 struct btrfs_ordered_extent *ordered;
2ac55d41 8973 struct extent_state *cached_state = NULL;
364ecf36 8974 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8975 char *kaddr;
8976 unsigned long zero_start;
9ebefb18 8977 loff_t size;
a528a241
SJ
8978 vm_fault_t ret;
8979 int ret2;
9998eb70 8980 int reserved = 0;
d0b7da88 8981 u64 reserved_space;
a52d9a80 8982 u64 page_start;
e6dcd2dc 8983 u64 page_end;
d0b7da88
CR
8984 u64 end;
8985
09cbfeaf 8986 reserved_space = PAGE_SIZE;
9ebefb18 8987
b2b5ef5c 8988 sb_start_pagefault(inode->i_sb);
df480633 8989 page_start = page_offset(page);
09cbfeaf 8990 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8991 end = page_end;
df480633 8992
d0b7da88
CR
8993 /*
8994 * Reserving delalloc space after obtaining the page lock can lead to
8995 * deadlock. For example, if a dirty page is locked by this function
8996 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8997 * dirty page write out, then the btrfs_writepage() function could
8998 * end up waiting indefinitely to get a lock on the page currently
8999 * being processed by btrfs_page_mkwrite() function.
9000 */
a528a241 9001 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9002 reserved_space);
a528a241
SJ
9003 if (!ret2) {
9004 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9005 reserved = 1;
9006 }
a528a241
SJ
9007 if (ret2) {
9008 ret = vmf_error(ret2);
9998eb70
CM
9009 if (reserved)
9010 goto out;
9011 goto out_noreserve;
56a76f82 9012 }
1832a6d5 9013
56a76f82 9014 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9015again:
9ebefb18 9016 lock_page(page);
9ebefb18 9017 size = i_size_read(inode);
a52d9a80 9018
9ebefb18 9019 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9020 (page_start >= size)) {
9ebefb18
CM
9021 /* page got truncated out from underneath us */
9022 goto out_unlock;
9023 }
e6dcd2dc
CM
9024 wait_on_page_writeback(page);
9025
ff13db41 9026 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9027 set_page_extent_mapped(page);
9028
eb84ae03
CM
9029 /*
9030 * we can't set the delalloc bits if there are pending ordered
9031 * extents. Drop our locks and wait for them to finish
9032 */
a776c6fa
NB
9033 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9034 PAGE_SIZE);
e6dcd2dc 9035 if (ordered) {
2ac55d41 9036 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9037 &cached_state);
e6dcd2dc 9038 unlock_page(page);
eb84ae03 9039 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9040 btrfs_put_ordered_extent(ordered);
9041 goto again;
9042 }
9043
09cbfeaf 9044 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9045 reserved_space = round_up(size - page_start,
0b246afa 9046 fs_info->sectorsize);
09cbfeaf 9047 if (reserved_space < PAGE_SIZE) {
d0b7da88 9048 end = page_start + reserved_space - 1;
bc42bda2 9049 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
9050 page_start, PAGE_SIZE - reserved_space,
9051 true);
d0b7da88
CR
9052 }
9053 }
9054
fbf19087 9055 /*
5416034f
LB
9056 * page_mkwrite gets called when the page is firstly dirtied after it's
9057 * faulted in, but write(2) could also dirty a page and set delalloc
9058 * bits, thus in this case for space account reason, we still need to
9059 * clear any delalloc bits within this page range since we have to
9060 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9061 */
d0b7da88 9062 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
9063 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9064 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 9065
a528a241 9066 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
330a5827 9067 &cached_state);
a528a241 9068 if (ret2) {
2ac55d41 9069 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9070 &cached_state);
9ed74f2d
JB
9071 ret = VM_FAULT_SIGBUS;
9072 goto out_unlock;
9073 }
a528a241 9074 ret2 = 0;
9ebefb18
CM
9075
9076 /* page is wholly or partially inside EOF */
09cbfeaf 9077 if (page_start + PAGE_SIZE > size)
7073017a 9078 zero_start = offset_in_page(size);
9ebefb18 9079 else
09cbfeaf 9080 zero_start = PAGE_SIZE;
9ebefb18 9081
09cbfeaf 9082 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9083 kaddr = kmap(page);
09cbfeaf 9084 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9085 flush_dcache_page(page);
9086 kunmap(page);
9087 }
247e743c 9088 ClearPageChecked(page);
e6dcd2dc 9089 set_page_dirty(page);
50a9b214 9090 SetPageUptodate(page);
5a3f23d5 9091
0b246afa 9092 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9093 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9094 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9095
e43bbe5e 9096 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 9097
a528a241 9098 if (!ret2) {
8702ba93 9099 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9100 sb_end_pagefault(inode->i_sb);
364ecf36 9101 extent_changeset_free(data_reserved);
50a9b214 9102 return VM_FAULT_LOCKED;
b2b5ef5c 9103 }
717beb96
CM
9104
9105out_unlock:
9ebefb18 9106 unlock_page(page);
1832a6d5 9107out:
8702ba93 9108 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2 9109 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 9110 reserved_space, (ret != 0));
9998eb70 9111out_noreserve:
b2b5ef5c 9112 sb_end_pagefault(inode->i_sb);
364ecf36 9113 extent_changeset_free(data_reserved);
9ebefb18
CM
9114 return ret;
9115}
9116
213e8c55 9117static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9118{
0b246afa 9119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9120 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9121 struct btrfs_block_rsv *rsv;
ad7e1a74 9122 int ret;
39279cc3 9123 struct btrfs_trans_handle *trans;
0b246afa 9124 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 9125 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 9126
213e8c55
FM
9127 if (!skip_writeback) {
9128 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9129 (u64)-1);
9130 if (ret)
9131 return ret;
9132 }
39279cc3 9133
fcb80c2a 9134 /*
f7e9e8fc
OS
9135 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9136 * things going on here:
fcb80c2a 9137 *
f7e9e8fc 9138 * 1) We need to reserve space to update our inode.
fcb80c2a 9139 *
f7e9e8fc 9140 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
9141 * be free'd up by the truncate operation, but also have some slack
9142 * space reserved in case it uses space during the truncate (thank you
9143 * very much snapshotting).
9144 *
f7e9e8fc 9145 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 9146 * space doing the truncate, and we have no earthly idea how much space
01327610 9147 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
9148 * doesn't end up using space reserved for updating the inode. We also
9149 * need to be able to stop the transaction and start a new one, which
9150 * means we need to be able to update the inode several times, and we
9151 * have no idea of knowing how many times that will be, so we can't just
9152 * reserve 1 item for the entirety of the operation, so that has to be
9153 * done separately as well.
fcb80c2a
JB
9154 *
9155 * So that leaves us with
9156 *
f7e9e8fc 9157 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 9158 * transaction reservation.
f7e9e8fc 9159 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
9160 * updating the inode.
9161 */
2ff7e61e 9162 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9163 if (!rsv)
9164 return -ENOMEM;
4a338542 9165 rsv->size = min_size;
ca7e70f5 9166 rsv->failfast = 1;
f0cd846e 9167
907cbceb 9168 /*
07127184 9169 * 1 for the truncate slack space
907cbceb
JB
9170 * 1 for updating the inode.
9171 */
f3fe820c 9172 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9173 if (IS_ERR(trans)) {
ad7e1a74 9174 ret = PTR_ERR(trans);
fcb80c2a
JB
9175 goto out;
9176 }
f0cd846e 9177
907cbceb 9178 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9179 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 9180 min_size, false);
fcb80c2a 9181 BUG_ON(ret);
f0cd846e 9182
5dc562c5
JB
9183 /*
9184 * So if we truncate and then write and fsync we normally would just
9185 * write the extents that changed, which is a problem if we need to
9186 * first truncate that entire inode. So set this flag so we write out
9187 * all of the extents in the inode to the sync log so we're completely
9188 * safe.
9189 */
9190 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9191 trans->block_rsv = rsv;
907cbceb 9192
8082510e
YZ
9193 while (1) {
9194 ret = btrfs_truncate_inode_items(trans, root, inode,
9195 inode->i_size,
9196 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9197 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9198 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9199 break;
39279cc3 9200
8082510e 9201 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9202 if (ret)
3893e33b 9203 break;
ca7e70f5 9204
3a45bb20 9205 btrfs_end_transaction(trans);
2ff7e61e 9206 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9207
9208 trans = btrfs_start_transaction(root, 2);
9209 if (IS_ERR(trans)) {
ad7e1a74 9210 ret = PTR_ERR(trans);
ca7e70f5
JB
9211 trans = NULL;
9212 break;
9213 }
9214
47b5d646 9215 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9216 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9217 rsv, min_size, false);
ca7e70f5
JB
9218 BUG_ON(ret); /* shouldn't happen */
9219 trans->block_rsv = rsv;
8082510e
YZ
9220 }
9221
ddfae63c
JB
9222 /*
9223 * We can't call btrfs_truncate_block inside a trans handle as we could
9224 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9225 * we've truncated everything except the last little bit, and can do
9226 * btrfs_truncate_block and then update the disk_i_size.
9227 */
9228 if (ret == NEED_TRUNCATE_BLOCK) {
9229 btrfs_end_transaction(trans);
9230 btrfs_btree_balance_dirty(fs_info);
9231
9232 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9233 if (ret)
9234 goto out;
9235 trans = btrfs_start_transaction(root, 1);
9236 if (IS_ERR(trans)) {
9237 ret = PTR_ERR(trans);
9238 goto out;
9239 }
9240 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9241 }
9242
917c16b2 9243 if (trans) {
ad7e1a74
OS
9244 int ret2;
9245
0b246afa 9246 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9247 ret2 = btrfs_update_inode(trans, root, inode);
9248 if (ret2 && !ret)
9249 ret = ret2;
7b128766 9250
ad7e1a74
OS
9251 ret2 = btrfs_end_transaction(trans);
9252 if (ret2 && !ret)
9253 ret = ret2;
2ff7e61e 9254 btrfs_btree_balance_dirty(fs_info);
917c16b2 9255 }
fcb80c2a 9256out:
2ff7e61e 9257 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9258
ad7e1a74 9259 return ret;
39279cc3
CM
9260}
9261
d352ac68
CM
9262/*
9263 * create a new subvolume directory/inode (helper for the ioctl).
9264 */
d2fb3437 9265int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9266 struct btrfs_root *new_root,
9267 struct btrfs_root *parent_root,
9268 u64 new_dirid)
39279cc3 9269{
39279cc3 9270 struct inode *inode;
76dda93c 9271 int err;
00e4e6b3 9272 u64 index = 0;
39279cc3 9273
12fc9d09
FA
9274 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9275 new_dirid, new_dirid,
9276 S_IFDIR | (~current_umask() & S_IRWXUGO),
9277 &index);
54aa1f4d 9278 if (IS_ERR(inode))
f46b5a66 9279 return PTR_ERR(inode);
39279cc3
CM
9280 inode->i_op = &btrfs_dir_inode_operations;
9281 inode->i_fop = &btrfs_dir_file_operations;
9282
bfe86848 9283 set_nlink(inode, 1);
6ef06d27 9284 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9285 unlock_new_inode(inode);
3b96362c 9286
63541927
FDBM
9287 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9288 if (err)
9289 btrfs_err(new_root->fs_info,
351fd353 9290 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9291 new_root->root_key.objectid, err);
9292
76dda93c 9293 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9294
76dda93c 9295 iput(inode);
ce598979 9296 return err;
39279cc3
CM
9297}
9298
39279cc3
CM
9299struct inode *btrfs_alloc_inode(struct super_block *sb)
9300{
69fe2d75 9301 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9302 struct btrfs_inode *ei;
2ead6ae7 9303 struct inode *inode;
39279cc3 9304
712e36c5 9305 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9306 if (!ei)
9307 return NULL;
2ead6ae7
YZ
9308
9309 ei->root = NULL;
2ead6ae7 9310 ei->generation = 0;
15ee9bc7 9311 ei->last_trans = 0;
257c62e1 9312 ei->last_sub_trans = 0;
e02119d5 9313 ei->logged_trans = 0;
2ead6ae7 9314 ei->delalloc_bytes = 0;
a7e3b975 9315 ei->new_delalloc_bytes = 0;
47059d93 9316 ei->defrag_bytes = 0;
2ead6ae7
YZ
9317 ei->disk_i_size = 0;
9318 ei->flags = 0;
7709cde3 9319 ei->csum_bytes = 0;
2ead6ae7 9320 ei->index_cnt = (u64)-1;
67de1176 9321 ei->dir_index = 0;
2ead6ae7 9322 ei->last_unlink_trans = 0;
46d8bc34 9323 ei->last_log_commit = 0;
2ead6ae7 9324
9e0baf60
JB
9325 spin_lock_init(&ei->lock);
9326 ei->outstanding_extents = 0;
69fe2d75
JB
9327 if (sb->s_magic != BTRFS_TEST_MAGIC)
9328 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9329 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9330 ei->runtime_flags = 0;
b52aa8c9 9331 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9332 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9333
16cdcec7
MX
9334 ei->delayed_node = NULL;
9335
9cc97d64 9336 ei->i_otime.tv_sec = 0;
9337 ei->i_otime.tv_nsec = 0;
9338
2ead6ae7 9339 inode = &ei->vfs_inode;
a8067e02 9340 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
9341 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9342 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9343 IO_TREE_INODE_IO_FAILURE, inode);
7b439738
DS
9344 ei->io_tree.track_uptodate = true;
9345 ei->io_failure_tree.track_uptodate = true;
b812ce28 9346 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9347 mutex_init(&ei->log_mutex);
e6dcd2dc 9348 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9349 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9350 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9351 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9352 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9353
9354 return inode;
39279cc3
CM
9355}
9356
aaedb55b
JB
9357#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9358void btrfs_test_destroy_inode(struct inode *inode)
9359{
dcdbc059 9360 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9361 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9362}
9363#endif
9364
26602cab 9365void btrfs_free_inode(struct inode *inode)
fa0d7e3d 9366{
fa0d7e3d
NP
9367 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9368}
9369
39279cc3
CM
9370void btrfs_destroy_inode(struct inode *inode)
9371{
0b246afa 9372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9373 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9374 struct btrfs_root *root = BTRFS_I(inode)->root;
9375
b3d9b7a3 9376 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9377 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9378 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9379 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9380 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9381 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9382 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9383 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9384 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9385
a6dbd429
JB
9386 /*
9387 * This can happen where we create an inode, but somebody else also
9388 * created the same inode and we need to destroy the one we already
9389 * created.
9390 */
9391 if (!root)
26602cab 9392 return;
a6dbd429 9393
d397712b 9394 while (1) {
e6dcd2dc
CM
9395 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9396 if (!ordered)
9397 break;
9398 else {
0b246afa 9399 btrfs_err(fs_info,
5d163e0e
JM
9400 "found ordered extent %llu %llu on inode cleanup",
9401 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9402 btrfs_remove_ordered_extent(inode, ordered);
9403 btrfs_put_ordered_extent(ordered);
9404 btrfs_put_ordered_extent(ordered);
9405 }
9406 }
56fa9d07 9407 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9408 inode_tree_del(inode);
dcdbc059 9409 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
39279cc3
CM
9410}
9411
45321ac5 9412int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9413{
9414 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9415
6379ef9f
NA
9416 if (root == NULL)
9417 return 1;
9418
fa6ac876 9419 /* the snap/subvol tree is on deleting */
69e9c6c6 9420 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9421 return 1;
76dda93c 9422 else
45321ac5 9423 return generic_drop_inode(inode);
76dda93c
YZ
9424}
9425
0ee0fda0 9426static void init_once(void *foo)
39279cc3
CM
9427{
9428 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9429
9430 inode_init_once(&ei->vfs_inode);
9431}
9432
e67c718b 9433void __cold btrfs_destroy_cachep(void)
39279cc3 9434{
8c0a8537
KS
9435 /*
9436 * Make sure all delayed rcu free inodes are flushed before we
9437 * destroy cache.
9438 */
9439 rcu_barrier();
5598e900
KM
9440 kmem_cache_destroy(btrfs_inode_cachep);
9441 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9442 kmem_cache_destroy(btrfs_path_cachep);
9443 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 9444 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
9445}
9446
f5c29bd9 9447int __init btrfs_init_cachep(void)
39279cc3 9448{
837e1972 9449 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9450 sizeof(struct btrfs_inode), 0,
5d097056
VD
9451 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9452 init_once);
39279cc3
CM
9453 if (!btrfs_inode_cachep)
9454 goto fail;
9601e3f6 9455
837e1972 9456 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9457 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9458 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9459 if (!btrfs_trans_handle_cachep)
9460 goto fail;
9601e3f6 9461
837e1972 9462 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9463 sizeof(struct btrfs_path), 0,
fba4b697 9464 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9465 if (!btrfs_path_cachep)
9466 goto fail;
9601e3f6 9467
837e1972 9468 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9469 sizeof(struct btrfs_free_space), 0,
fba4b697 9470 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9471 if (!btrfs_free_space_cachep)
9472 goto fail;
9473
3acd4850
CL
9474 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9475 PAGE_SIZE, PAGE_SIZE,
9476 SLAB_RED_ZONE, NULL);
9477 if (!btrfs_free_space_bitmap_cachep)
9478 goto fail;
9479
39279cc3
CM
9480 return 0;
9481fail:
9482 btrfs_destroy_cachep();
9483 return -ENOMEM;
9484}
9485
a528d35e
DH
9486static int btrfs_getattr(const struct path *path, struct kstat *stat,
9487 u32 request_mask, unsigned int flags)
39279cc3 9488{
df0af1a5 9489 u64 delalloc_bytes;
a528d35e 9490 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9491 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9492 u32 bi_flags = BTRFS_I(inode)->flags;
9493
9494 stat->result_mask |= STATX_BTIME;
9495 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9496 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9497 if (bi_flags & BTRFS_INODE_APPEND)
9498 stat->attributes |= STATX_ATTR_APPEND;
9499 if (bi_flags & BTRFS_INODE_COMPRESS)
9500 stat->attributes |= STATX_ATTR_COMPRESSED;
9501 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9502 stat->attributes |= STATX_ATTR_IMMUTABLE;
9503 if (bi_flags & BTRFS_INODE_NODUMP)
9504 stat->attributes |= STATX_ATTR_NODUMP;
9505
9506 stat->attributes_mask |= (STATX_ATTR_APPEND |
9507 STATX_ATTR_COMPRESSED |
9508 STATX_ATTR_IMMUTABLE |
9509 STATX_ATTR_NODUMP);
fadc0d8b 9510
39279cc3 9511 generic_fillattr(inode, stat);
0ee5dc67 9512 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9513
9514 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9515 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9516 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9517 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9518 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9519 return 0;
9520}
9521
cdd1fedf
DF
9522static int btrfs_rename_exchange(struct inode *old_dir,
9523 struct dentry *old_dentry,
9524 struct inode *new_dir,
9525 struct dentry *new_dentry)
9526{
0b246afa 9527 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9528 struct btrfs_trans_handle *trans;
9529 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9530 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9531 struct inode *new_inode = new_dentry->d_inode;
9532 struct inode *old_inode = old_dentry->d_inode;
95582b00 9533 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9534 struct dentry *parent;
4a0cc7ca
NB
9535 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9536 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9537 u64 old_idx = 0;
9538 u64 new_idx = 0;
9539 u64 root_objectid;
9540 int ret;
86e8aa0e
FM
9541 bool root_log_pinned = false;
9542 bool dest_log_pinned = false;
d4682ba0
FM
9543 struct btrfs_log_ctx ctx_root;
9544 struct btrfs_log_ctx ctx_dest;
9545 bool sync_log_root = false;
9546 bool sync_log_dest = false;
9547 bool commit_transaction = false;
cdd1fedf
DF
9548
9549 /* we only allow rename subvolume link between subvolumes */
9550 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9551 return -EXDEV;
9552
d4682ba0
FM
9553 btrfs_init_log_ctx(&ctx_root, old_inode);
9554 btrfs_init_log_ctx(&ctx_dest, new_inode);
9555
cdd1fedf 9556 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
9557 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9558 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9559 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9560
9561 /*
9562 * We want to reserve the absolute worst case amount of items. So if
9563 * both inodes are subvols and we need to unlink them then that would
9564 * require 4 item modifications, but if they are both normal inodes it
9565 * would require 5 item modifications, so we'll assume their normal
9566 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9567 * should cover the worst case number of items we'll modify.
9568 */
9569 trans = btrfs_start_transaction(root, 12);
9570 if (IS_ERR(trans)) {
9571 ret = PTR_ERR(trans);
9572 goto out_notrans;
9573 }
9574
3e174099
JB
9575 if (dest != root)
9576 btrfs_record_root_in_trans(trans, dest);
9577
cdd1fedf
DF
9578 /*
9579 * We need to find a free sequence number both in the source and
9580 * in the destination directory for the exchange.
9581 */
877574e2 9582 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9583 if (ret)
9584 goto out_fail;
877574e2 9585 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9586 if (ret)
9587 goto out_fail;
9588
9589 BTRFS_I(old_inode)->dir_index = 0ULL;
9590 BTRFS_I(new_inode)->dir_index = 0ULL;
9591
9592 /* Reference for the source. */
9593 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9594 /* force full log commit if subvolume involved. */
90787766 9595 btrfs_set_log_full_commit(trans);
cdd1fedf 9596 } else {
376e5a57
FM
9597 btrfs_pin_log_trans(root);
9598 root_log_pinned = true;
cdd1fedf
DF
9599 ret = btrfs_insert_inode_ref(trans, dest,
9600 new_dentry->d_name.name,
9601 new_dentry->d_name.len,
9602 old_ino,
f85b7379
DS
9603 btrfs_ino(BTRFS_I(new_dir)),
9604 old_idx);
cdd1fedf
DF
9605 if (ret)
9606 goto out_fail;
cdd1fedf
DF
9607 }
9608
9609 /* And now for the dest. */
9610 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9611 /* force full log commit if subvolume involved. */
90787766 9612 btrfs_set_log_full_commit(trans);
cdd1fedf 9613 } else {
376e5a57
FM
9614 btrfs_pin_log_trans(dest);
9615 dest_log_pinned = true;
cdd1fedf
DF
9616 ret = btrfs_insert_inode_ref(trans, root,
9617 old_dentry->d_name.name,
9618 old_dentry->d_name.len,
9619 new_ino,
f85b7379
DS
9620 btrfs_ino(BTRFS_I(old_dir)),
9621 new_idx);
cdd1fedf
DF
9622 if (ret)
9623 goto out_fail;
cdd1fedf
DF
9624 }
9625
9626 /* Update inode version and ctime/mtime. */
9627 inode_inc_iversion(old_dir);
9628 inode_inc_iversion(new_dir);
9629 inode_inc_iversion(old_inode);
9630 inode_inc_iversion(new_inode);
9631 old_dir->i_ctime = old_dir->i_mtime = ctime;
9632 new_dir->i_ctime = new_dir->i_mtime = ctime;
9633 old_inode->i_ctime = ctime;
9634 new_inode->i_ctime = ctime;
9635
9636 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9637 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9638 BTRFS_I(old_inode), 1);
9639 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9640 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9641 }
9642
9643 /* src is a subvolume */
9644 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9645 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9646 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9647 old_dentry->d_name.name,
9648 old_dentry->d_name.len);
9649 } else { /* src is an inode */
4ec5934e
NB
9650 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9651 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9652 old_dentry->d_name.name,
9653 old_dentry->d_name.len);
9654 if (!ret)
9655 ret = btrfs_update_inode(trans, root, old_inode);
9656 }
9657 if (ret) {
66642832 9658 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9659 goto out_fail;
9660 }
9661
9662 /* dest is a subvolume */
9663 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9664 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9665 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9666 new_dentry->d_name.name,
9667 new_dentry->d_name.len);
9668 } else { /* dest is an inode */
4ec5934e
NB
9669 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9670 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9671 new_dentry->d_name.name,
9672 new_dentry->d_name.len);
9673 if (!ret)
9674 ret = btrfs_update_inode(trans, dest, new_inode);
9675 }
9676 if (ret) {
66642832 9677 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9678 goto out_fail;
9679 }
9680
db0a669f 9681 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9682 new_dentry->d_name.name,
9683 new_dentry->d_name.len, 0, old_idx);
9684 if (ret) {
66642832 9685 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9686 goto out_fail;
9687 }
9688
db0a669f 9689 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9690 old_dentry->d_name.name,
9691 old_dentry->d_name.len, 0, new_idx);
9692 if (ret) {
66642832 9693 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9694 goto out_fail;
9695 }
9696
9697 if (old_inode->i_nlink == 1)
9698 BTRFS_I(old_inode)->dir_index = old_idx;
9699 if (new_inode->i_nlink == 1)
9700 BTRFS_I(new_inode)->dir_index = new_idx;
9701
86e8aa0e 9702 if (root_log_pinned) {
cdd1fedf 9703 parent = new_dentry->d_parent;
d4682ba0
FM
9704 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9705 BTRFS_I(old_dir), parent,
9706 false, &ctx_root);
9707 if (ret == BTRFS_NEED_LOG_SYNC)
9708 sync_log_root = true;
9709 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9710 commit_transaction = true;
9711 ret = 0;
cdd1fedf 9712 btrfs_end_log_trans(root);
86e8aa0e 9713 root_log_pinned = false;
cdd1fedf 9714 }
86e8aa0e 9715 if (dest_log_pinned) {
d4682ba0
FM
9716 if (!commit_transaction) {
9717 parent = old_dentry->d_parent;
9718 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9719 BTRFS_I(new_dir), parent,
9720 false, &ctx_dest);
9721 if (ret == BTRFS_NEED_LOG_SYNC)
9722 sync_log_dest = true;
9723 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9724 commit_transaction = true;
9725 ret = 0;
9726 }
cdd1fedf 9727 btrfs_end_log_trans(dest);
86e8aa0e 9728 dest_log_pinned = false;
cdd1fedf
DF
9729 }
9730out_fail:
86e8aa0e
FM
9731 /*
9732 * If we have pinned a log and an error happened, we unpin tasks
9733 * trying to sync the log and force them to fallback to a transaction
9734 * commit if the log currently contains any of the inodes involved in
9735 * this rename operation (to ensure we do not persist a log with an
9736 * inconsistent state for any of these inodes or leading to any
9737 * inconsistencies when replayed). If the transaction was aborted, the
9738 * abortion reason is propagated to userspace when attempting to commit
9739 * the transaction. If the log does not contain any of these inodes, we
9740 * allow the tasks to sync it.
9741 */
9742 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9743 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9744 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9745 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9746 (new_inode &&
0f8939b8 9747 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9748 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
9749
9750 if (root_log_pinned) {
9751 btrfs_end_log_trans(root);
9752 root_log_pinned = false;
9753 }
9754 if (dest_log_pinned) {
9755 btrfs_end_log_trans(dest);
9756 dest_log_pinned = false;
9757 }
9758 }
d4682ba0
FM
9759 if (!ret && sync_log_root && !commit_transaction) {
9760 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9761 &ctx_root);
9762 if (ret)
9763 commit_transaction = true;
9764 }
9765 if (!ret && sync_log_dest && !commit_transaction) {
9766 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9767 &ctx_dest);
9768 if (ret)
9769 commit_transaction = true;
9770 }
9771 if (commit_transaction) {
e6c61710
FM
9772 /*
9773 * We may have set commit_transaction when logging the new name
9774 * in the destination root, in which case we left the source
9775 * root context in the list of log contextes. So make sure we
9776 * remove it to avoid invalid memory accesses, since the context
9777 * was allocated in our stack frame.
9778 */
9779 if (sync_log_root) {
9780 mutex_lock(&root->log_mutex);
9781 list_del_init(&ctx_root.list);
9782 mutex_unlock(&root->log_mutex);
9783 }
d4682ba0
FM
9784 ret = btrfs_commit_transaction(trans);
9785 } else {
9786 int ret2;
9787
9788 ret2 = btrfs_end_transaction(trans);
9789 ret = ret ? ret : ret2;
9790 }
cdd1fedf 9791out_notrans:
943eb3bf
JB
9792 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9793 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9794 up_read(&fs_info->subvol_sem);
cdd1fedf 9795
e6c61710
FM
9796 ASSERT(list_empty(&ctx_root.list));
9797 ASSERT(list_empty(&ctx_dest.list));
9798
cdd1fedf
DF
9799 return ret;
9800}
9801
9802static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9803 struct btrfs_root *root,
9804 struct inode *dir,
9805 struct dentry *dentry)
9806{
9807 int ret;
9808 struct inode *inode;
9809 u64 objectid;
9810 u64 index;
9811
9812 ret = btrfs_find_free_ino(root, &objectid);
9813 if (ret)
9814 return ret;
9815
9816 inode = btrfs_new_inode(trans, root, dir,
9817 dentry->d_name.name,
9818 dentry->d_name.len,
4a0cc7ca 9819 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9820 objectid,
9821 S_IFCHR | WHITEOUT_MODE,
9822 &index);
9823
9824 if (IS_ERR(inode)) {
9825 ret = PTR_ERR(inode);
9826 return ret;
9827 }
9828
9829 inode->i_op = &btrfs_special_inode_operations;
9830 init_special_inode(inode, inode->i_mode,
9831 WHITEOUT_DEV);
9832
9833 ret = btrfs_init_inode_security(trans, inode, dir,
9834 &dentry->d_name);
9835 if (ret)
c9901618 9836 goto out;
cdd1fedf 9837
cef415af
NB
9838 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9839 BTRFS_I(inode), 0, index);
cdd1fedf 9840 if (ret)
c9901618 9841 goto out;
cdd1fedf
DF
9842
9843 ret = btrfs_update_inode(trans, root, inode);
c9901618 9844out:
cdd1fedf 9845 unlock_new_inode(inode);
c9901618
FM
9846 if (ret)
9847 inode_dec_link_count(inode);
cdd1fedf
DF
9848 iput(inode);
9849
c9901618 9850 return ret;
cdd1fedf
DF
9851}
9852
d397712b 9853static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9854 struct inode *new_dir, struct dentry *new_dentry,
9855 unsigned int flags)
39279cc3 9856{
0b246afa 9857 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9858 struct btrfs_trans_handle *trans;
5062af35 9859 unsigned int trans_num_items;
39279cc3 9860 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9861 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9862 struct inode *new_inode = d_inode(new_dentry);
9863 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9864 u64 index = 0;
4df27c4d 9865 u64 root_objectid;
39279cc3 9866 int ret;
4a0cc7ca 9867 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9868 bool log_pinned = false;
d4682ba0
FM
9869 struct btrfs_log_ctx ctx;
9870 bool sync_log = false;
9871 bool commit_transaction = false;
39279cc3 9872
4a0cc7ca 9873 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9874 return -EPERM;
9875
4df27c4d 9876 /* we only allow rename subvolume link between subvolumes */
33345d01 9877 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9878 return -EXDEV;
9879
33345d01 9880 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9881 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9882 return -ENOTEMPTY;
5f39d397 9883
4df27c4d
YZ
9884 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9885 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9886 return -ENOTEMPTY;
9c52057c
CM
9887
9888
9889 /* check for collisions, even if the name isn't there */
4871c158 9890 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9891 new_dentry->d_name.name,
9892 new_dentry->d_name.len);
9893
9894 if (ret) {
9895 if (ret == -EEXIST) {
9896 /* we shouldn't get
9897 * eexist without a new_inode */
fae7f21c 9898 if (WARN_ON(!new_inode)) {
9c52057c
CM
9899 return ret;
9900 }
9901 } else {
9902 /* maybe -EOVERFLOW */
9903 return ret;
9904 }
9905 }
9906 ret = 0;
9907
5a3f23d5 9908 /*
8d875f95
CM
9909 * we're using rename to replace one file with another. Start IO on it
9910 * now so we don't add too much work to the end of the transaction
5a3f23d5 9911 */
8d875f95 9912 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9913 filemap_flush(old_inode->i_mapping);
9914
76dda93c 9915 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9916 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9917 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9918 /*
9919 * We want to reserve the absolute worst case amount of items. So if
9920 * both inodes are subvols and we need to unlink them then that would
9921 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9922 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9923 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9924 * should cover the worst case number of items we'll modify.
5062af35
FM
9925 * If our rename has the whiteout flag, we need more 5 units for the
9926 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9927 * when selinux is enabled).
a22285a6 9928 */
5062af35
FM
9929 trans_num_items = 11;
9930 if (flags & RENAME_WHITEOUT)
9931 trans_num_items += 5;
9932 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9933 if (IS_ERR(trans)) {
cdd1fedf
DF
9934 ret = PTR_ERR(trans);
9935 goto out_notrans;
9936 }
76dda93c 9937
4df27c4d
YZ
9938 if (dest != root)
9939 btrfs_record_root_in_trans(trans, dest);
5f39d397 9940
877574e2 9941 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9942 if (ret)
9943 goto out_fail;
5a3f23d5 9944
67de1176 9945 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9946 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9947 /* force full log commit if subvolume involved. */
90787766 9948 btrfs_set_log_full_commit(trans);
4df27c4d 9949 } else {
c4aba954
FM
9950 btrfs_pin_log_trans(root);
9951 log_pinned = true;
a5719521
YZ
9952 ret = btrfs_insert_inode_ref(trans, dest,
9953 new_dentry->d_name.name,
9954 new_dentry->d_name.len,
33345d01 9955 old_ino,
4a0cc7ca 9956 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9957 if (ret)
9958 goto out_fail;
4df27c4d 9959 }
5a3f23d5 9960
0c4d2d95
JB
9961 inode_inc_iversion(old_dir);
9962 inode_inc_iversion(new_dir);
9963 inode_inc_iversion(old_inode);
04b285f3
DD
9964 old_dir->i_ctime = old_dir->i_mtime =
9965 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9966 old_inode->i_ctime = current_time(old_dir);
5f39d397 9967
12fcfd22 9968 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9969 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9970 BTRFS_I(old_inode), 1);
12fcfd22 9971
33345d01 9972 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9973 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9974 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9975 old_dentry->d_name.name,
9976 old_dentry->d_name.len);
9977 } else {
4ec5934e
NB
9978 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9979 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9980 old_dentry->d_name.name,
9981 old_dentry->d_name.len);
9982 if (!ret)
9983 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9984 }
79787eaa 9985 if (ret) {
66642832 9986 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9987 goto out_fail;
9988 }
39279cc3
CM
9989
9990 if (new_inode) {
0c4d2d95 9991 inode_inc_iversion(new_inode);
c2050a45 9992 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9993 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9994 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9995 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 9996 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
9997 new_dentry->d_name.name,
9998 new_dentry->d_name.len);
9999 BUG_ON(new_inode->i_nlink == 0);
10000 } else {
4ec5934e
NB
10001 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10002 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10003 new_dentry->d_name.name,
10004 new_dentry->d_name.len);
10005 }
4ef31a45 10006 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10007 ret = btrfs_orphan_add(trans,
10008 BTRFS_I(d_inode(new_dentry)));
79787eaa 10009 if (ret) {
66642832 10010 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10011 goto out_fail;
10012 }
39279cc3 10013 }
aec7477b 10014
db0a669f 10015 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10016 new_dentry->d_name.name,
a5719521 10017 new_dentry->d_name.len, 0, index);
79787eaa 10018 if (ret) {
66642832 10019 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10020 goto out_fail;
10021 }
39279cc3 10022
67de1176
MX
10023 if (old_inode->i_nlink == 1)
10024 BTRFS_I(old_inode)->dir_index = index;
10025
3dc9e8f7 10026 if (log_pinned) {
10d9f309 10027 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10028
d4682ba0
FM
10029 btrfs_init_log_ctx(&ctx, old_inode);
10030 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10031 BTRFS_I(old_dir), parent,
10032 false, &ctx);
10033 if (ret == BTRFS_NEED_LOG_SYNC)
10034 sync_log = true;
10035 else if (ret == BTRFS_NEED_TRANS_COMMIT)
10036 commit_transaction = true;
10037 ret = 0;
4df27c4d 10038 btrfs_end_log_trans(root);
3dc9e8f7 10039 log_pinned = false;
4df27c4d 10040 }
cdd1fedf
DF
10041
10042 if (flags & RENAME_WHITEOUT) {
10043 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10044 old_dentry);
10045
10046 if (ret) {
66642832 10047 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10048 goto out_fail;
10049 }
4df27c4d 10050 }
39279cc3 10051out_fail:
3dc9e8f7
FM
10052 /*
10053 * If we have pinned the log and an error happened, we unpin tasks
10054 * trying to sync the log and force them to fallback to a transaction
10055 * commit if the log currently contains any of the inodes involved in
10056 * this rename operation (to ensure we do not persist a log with an
10057 * inconsistent state for any of these inodes or leading to any
10058 * inconsistencies when replayed). If the transaction was aborted, the
10059 * abortion reason is propagated to userspace when attempting to commit
10060 * the transaction. If the log does not contain any of these inodes, we
10061 * allow the tasks to sync it.
10062 */
10063 if (ret && log_pinned) {
0f8939b8
NB
10064 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10065 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10066 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10067 (new_inode &&
0f8939b8 10068 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 10069 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
10070
10071 btrfs_end_log_trans(root);
10072 log_pinned = false;
10073 }
d4682ba0
FM
10074 if (!ret && sync_log) {
10075 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10076 if (ret)
10077 commit_transaction = true;
10078 }
10079 if (commit_transaction) {
10080 ret = btrfs_commit_transaction(trans);
10081 } else {
10082 int ret2;
10083
10084 ret2 = btrfs_end_transaction(trans);
10085 ret = ret ? ret : ret2;
10086 }
b44c59a8 10087out_notrans:
33345d01 10088 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10089 up_read(&fs_info->subvol_sem);
9ed74f2d 10090
39279cc3
CM
10091 return ret;
10092}
10093
80ace85c
MS
10094static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10095 struct inode *new_dir, struct dentry *new_dentry,
10096 unsigned int flags)
10097{
cdd1fedf 10098 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10099 return -EINVAL;
10100
cdd1fedf
DF
10101 if (flags & RENAME_EXCHANGE)
10102 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10103 new_dentry);
10104
10105 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10106}
10107
3a2f8c07
NB
10108struct btrfs_delalloc_work {
10109 struct inode *inode;
10110 struct completion completion;
10111 struct list_head list;
10112 struct btrfs_work work;
10113};
10114
8ccf6f19
MX
10115static void btrfs_run_delalloc_work(struct btrfs_work *work)
10116{
10117 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10118 struct inode *inode;
8ccf6f19
MX
10119
10120 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10121 work);
9f23e289 10122 inode = delalloc_work->inode;
30424601
DS
10123 filemap_flush(inode->i_mapping);
10124 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10125 &BTRFS_I(inode)->runtime_flags))
9f23e289 10126 filemap_flush(inode->i_mapping);
8ccf6f19 10127
076da91c 10128 iput(inode);
8ccf6f19
MX
10129 complete(&delalloc_work->completion);
10130}
10131
3a2f8c07 10132static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
10133{
10134 struct btrfs_delalloc_work *work;
10135
100d5702 10136 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10137 if (!work)
10138 return NULL;
10139
10140 init_completion(&work->completion);
10141 INIT_LIST_HEAD(&work->list);
10142 work->inode = inode;
a0cac0ec 10143 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10144
10145 return work;
10146}
10147
d352ac68
CM
10148/*
10149 * some fairly slow code that needs optimization. This walks the list
10150 * of all the inodes with pending delalloc and forces them to disk.
10151 */
3cd24c69 10152static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 10153{
ea8c2819 10154 struct btrfs_inode *binode;
5b21f2ed 10155 struct inode *inode;
8ccf6f19
MX
10156 struct btrfs_delalloc_work *work, *next;
10157 struct list_head works;
1eafa6c7 10158 struct list_head splice;
8ccf6f19 10159 int ret = 0;
ea8c2819 10160
8ccf6f19 10161 INIT_LIST_HEAD(&works);
1eafa6c7 10162 INIT_LIST_HEAD(&splice);
63607cc8 10163
573bfb72 10164 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10165 spin_lock(&root->delalloc_lock);
10166 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10167 while (!list_empty(&splice)) {
10168 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10169 delalloc_inodes);
1eafa6c7 10170
eb73c1b7
MX
10171 list_move_tail(&binode->delalloc_inodes,
10172 &root->delalloc_inodes);
5b21f2ed 10173 inode = igrab(&binode->vfs_inode);
df0af1a5 10174 if (!inode) {
eb73c1b7 10175 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10176 continue;
df0af1a5 10177 }
eb73c1b7 10178 spin_unlock(&root->delalloc_lock);
1eafa6c7 10179
3cd24c69
EL
10180 if (snapshot)
10181 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10182 &binode->runtime_flags);
076da91c 10183 work = btrfs_alloc_delalloc_work(inode);
5d99a998 10184 if (!work) {
4fbb5147 10185 iput(inode);
1eafa6c7 10186 ret = -ENOMEM;
a1ecaabb 10187 goto out;
5b21f2ed 10188 }
1eafa6c7 10189 list_add_tail(&work->list, &works);
a44903ab
QW
10190 btrfs_queue_work(root->fs_info->flush_workers,
10191 &work->work);
6c255e67
MX
10192 ret++;
10193 if (nr != -1 && ret >= nr)
a1ecaabb 10194 goto out;
5b21f2ed 10195 cond_resched();
eb73c1b7 10196 spin_lock(&root->delalloc_lock);
ea8c2819 10197 }
eb73c1b7 10198 spin_unlock(&root->delalloc_lock);
8c8bee1d 10199
a1ecaabb 10200out:
eb73c1b7
MX
10201 list_for_each_entry_safe(work, next, &works, list) {
10202 list_del_init(&work->list);
40012f96
NB
10203 wait_for_completion(&work->completion);
10204 kfree(work);
eb73c1b7
MX
10205 }
10206
81f1d390 10207 if (!list_empty(&splice)) {
eb73c1b7
MX
10208 spin_lock(&root->delalloc_lock);
10209 list_splice_tail(&splice, &root->delalloc_inodes);
10210 spin_unlock(&root->delalloc_lock);
10211 }
573bfb72 10212 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10213 return ret;
10214}
1eafa6c7 10215
3cd24c69 10216int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 10217{
0b246afa 10218 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10219 int ret;
1eafa6c7 10220
0b246afa 10221 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10222 return -EROFS;
10223
3cd24c69 10224 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
10225 if (ret > 0)
10226 ret = 0;
eb73c1b7
MX
10227 return ret;
10228}
10229
82b3e53b 10230int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10231{
10232 struct btrfs_root *root;
10233 struct list_head splice;
10234 int ret;
10235
2c21b4d7 10236 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10237 return -EROFS;
10238
10239 INIT_LIST_HEAD(&splice);
10240
573bfb72 10241 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10242 spin_lock(&fs_info->delalloc_root_lock);
10243 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10244 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10245 root = list_first_entry(&splice, struct btrfs_root,
10246 delalloc_root);
10247 root = btrfs_grab_fs_root(root);
10248 BUG_ON(!root);
10249 list_move_tail(&root->delalloc_root,
10250 &fs_info->delalloc_roots);
10251 spin_unlock(&fs_info->delalloc_root_lock);
10252
3cd24c69 10253 ret = start_delalloc_inodes(root, nr, false);
eb73c1b7 10254 btrfs_put_fs_root(root);
6c255e67 10255 if (ret < 0)
eb73c1b7
MX
10256 goto out;
10257
6c255e67
MX
10258 if (nr != -1) {
10259 nr -= ret;
10260 WARN_ON(nr < 0);
10261 }
eb73c1b7 10262 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10263 }
eb73c1b7 10264 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10265
6c255e67 10266 ret = 0;
eb73c1b7 10267out:
81f1d390 10268 if (!list_empty(&splice)) {
eb73c1b7
MX
10269 spin_lock(&fs_info->delalloc_root_lock);
10270 list_splice_tail(&splice, &fs_info->delalloc_roots);
10271 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10272 }
573bfb72 10273 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10274 return ret;
ea8c2819
CM
10275}
10276
39279cc3
CM
10277static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10278 const char *symname)
10279{
0b246afa 10280 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10281 struct btrfs_trans_handle *trans;
10282 struct btrfs_root *root = BTRFS_I(dir)->root;
10283 struct btrfs_path *path;
10284 struct btrfs_key key;
1832a6d5 10285 struct inode *inode = NULL;
39279cc3 10286 int err;
39279cc3 10287 u64 objectid;
67871254 10288 u64 index = 0;
39279cc3
CM
10289 int name_len;
10290 int datasize;
5f39d397 10291 unsigned long ptr;
39279cc3 10292 struct btrfs_file_extent_item *ei;
5f39d397 10293 struct extent_buffer *leaf;
39279cc3 10294
f06becc4 10295 name_len = strlen(symname);
0b246afa 10296 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10297 return -ENAMETOOLONG;
1832a6d5 10298
9ed74f2d
JB
10299 /*
10300 * 2 items for inode item and ref
10301 * 2 items for dir items
9269d12b
FM
10302 * 1 item for updating parent inode item
10303 * 1 item for the inline extent item
9ed74f2d
JB
10304 * 1 item for xattr if selinux is on
10305 */
9269d12b 10306 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10307 if (IS_ERR(trans))
10308 return PTR_ERR(trans);
1832a6d5 10309
581bb050
LZ
10310 err = btrfs_find_free_ino(root, &objectid);
10311 if (err)
10312 goto out_unlock;
10313
aec7477b 10314 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10315 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10316 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10317 if (IS_ERR(inode)) {
10318 err = PTR_ERR(inode);
32955c54 10319 inode = NULL;
39279cc3 10320 goto out_unlock;
7cf96da3 10321 }
39279cc3 10322
ad19db71
CS
10323 /*
10324 * If the active LSM wants to access the inode during
10325 * d_instantiate it needs these. Smack checks to see
10326 * if the filesystem supports xattrs by looking at the
10327 * ops vector.
10328 */
10329 inode->i_fop = &btrfs_file_operations;
10330 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10331 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10332 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10333
10334 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10335 if (err)
32955c54 10336 goto out_unlock;
ad19db71 10337
39279cc3 10338 path = btrfs_alloc_path();
d8926bb3
MF
10339 if (!path) {
10340 err = -ENOMEM;
32955c54 10341 goto out_unlock;
d8926bb3 10342 }
4a0cc7ca 10343 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10344 key.offset = 0;
962a298f 10345 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10346 datasize = btrfs_file_extent_calc_inline_size(name_len);
10347 err = btrfs_insert_empty_item(trans, root, path, &key,
10348 datasize);
54aa1f4d 10349 if (err) {
b0839166 10350 btrfs_free_path(path);
32955c54 10351 goto out_unlock;
54aa1f4d 10352 }
5f39d397
CM
10353 leaf = path->nodes[0];
10354 ei = btrfs_item_ptr(leaf, path->slots[0],
10355 struct btrfs_file_extent_item);
10356 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10357 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10358 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10359 btrfs_set_file_extent_encryption(leaf, ei, 0);
10360 btrfs_set_file_extent_compression(leaf, ei, 0);
10361 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10362 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10363
39279cc3 10364 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10365 write_extent_buffer(leaf, symname, ptr, name_len);
10366 btrfs_mark_buffer_dirty(leaf);
39279cc3 10367 btrfs_free_path(path);
5f39d397 10368
39279cc3 10369 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10370 inode_nohighmem(inode);
d899e052 10371 inode_set_bytes(inode, name_len);
6ef06d27 10372 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10373 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10374 /*
10375 * Last step, add directory indexes for our symlink inode. This is the
10376 * last step to avoid extra cleanup of these indexes if an error happens
10377 * elsewhere above.
10378 */
10379 if (!err)
cef415af
NB
10380 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10381 BTRFS_I(inode), 0, index);
32955c54
AV
10382 if (err)
10383 goto out_unlock;
b0d5d10f 10384
1e2e547a 10385 d_instantiate_new(dentry, inode);
39279cc3
CM
10386
10387out_unlock:
3a45bb20 10388 btrfs_end_transaction(trans);
32955c54 10389 if (err && inode) {
39279cc3 10390 inode_dec_link_count(inode);
32955c54 10391 discard_new_inode(inode);
39279cc3 10392 }
2ff7e61e 10393 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10394 return err;
10395}
16432985 10396
0af3d00b
JB
10397static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10398 u64 start, u64 num_bytes, u64 min_size,
10399 loff_t actual_len, u64 *alloc_hint,
10400 struct btrfs_trans_handle *trans)
d899e052 10401{
0b246afa 10402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10403 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10404 struct extent_map *em;
d899e052
YZ
10405 struct btrfs_root *root = BTRFS_I(inode)->root;
10406 struct btrfs_key ins;
d899e052 10407 u64 cur_offset = start;
55a61d1d 10408 u64 i_size;
154ea289 10409 u64 cur_bytes;
0b670dc4 10410 u64 last_alloc = (u64)-1;
d899e052 10411 int ret = 0;
0af3d00b 10412 bool own_trans = true;
18513091 10413 u64 end = start + num_bytes - 1;
d899e052 10414
0af3d00b
JB
10415 if (trans)
10416 own_trans = false;
d899e052 10417 while (num_bytes > 0) {
0af3d00b
JB
10418 if (own_trans) {
10419 trans = btrfs_start_transaction(root, 3);
10420 if (IS_ERR(trans)) {
10421 ret = PTR_ERR(trans);
10422 break;
10423 }
5a303d5d
YZ
10424 }
10425
ee22184b 10426 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10427 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10428 /*
10429 * If we are severely fragmented we could end up with really
10430 * small allocations, so if the allocator is returning small
10431 * chunks lets make its job easier by only searching for those
10432 * sized chunks.
10433 */
10434 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10435 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10436 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10437 if (ret) {
0af3d00b 10438 if (own_trans)
3a45bb20 10439 btrfs_end_transaction(trans);
a22285a6 10440 break;
d899e052 10441 }
0b246afa 10442 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10443
0b670dc4 10444 last_alloc = ins.offset;
d899e052
YZ
10445 ret = insert_reserved_file_extent(trans, inode,
10446 cur_offset, ins.objectid,
10447 ins.offset, ins.offset,
920bbbfb 10448 ins.offset, 0, 0, 0,
d899e052 10449 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10450 if (ret) {
2ff7e61e 10451 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10452 ins.offset, 0);
66642832 10453 btrfs_abort_transaction(trans, ret);
79787eaa 10454 if (own_trans)
3a45bb20 10455 btrfs_end_transaction(trans);
79787eaa
JM
10456 break;
10457 }
31193213 10458
dcdbc059 10459 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10460 cur_offset + ins.offset -1, 0);
5a303d5d 10461
5dc562c5
JB
10462 em = alloc_extent_map();
10463 if (!em) {
10464 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10465 &BTRFS_I(inode)->runtime_flags);
10466 goto next;
10467 }
10468
10469 em->start = cur_offset;
10470 em->orig_start = cur_offset;
10471 em->len = ins.offset;
10472 em->block_start = ins.objectid;
10473 em->block_len = ins.offset;
b4939680 10474 em->orig_block_len = ins.offset;
cc95bef6 10475 em->ram_bytes = ins.offset;
5dc562c5
JB
10476 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10477 em->generation = trans->transid;
10478
10479 while (1) {
10480 write_lock(&em_tree->lock);
09a2a8f9 10481 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10482 write_unlock(&em_tree->lock);
10483 if (ret != -EEXIST)
10484 break;
dcdbc059 10485 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10486 cur_offset + ins.offset - 1,
10487 0);
10488 }
10489 free_extent_map(em);
10490next:
d899e052
YZ
10491 num_bytes -= ins.offset;
10492 cur_offset += ins.offset;
efa56464 10493 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10494
0c4d2d95 10495 inode_inc_iversion(inode);
c2050a45 10496 inode->i_ctime = current_time(inode);
6cbff00f 10497 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10498 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10499 (actual_len > inode->i_size) &&
10500 (cur_offset > inode->i_size)) {
d1ea6a61 10501 if (cur_offset > actual_len)
55a61d1d 10502 i_size = actual_len;
d1ea6a61 10503 else
55a61d1d
JB
10504 i_size = cur_offset;
10505 i_size_write(inode, i_size);
10506 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10507 }
10508
d899e052 10509 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10510
10511 if (ret) {
66642832 10512 btrfs_abort_transaction(trans, ret);
79787eaa 10513 if (own_trans)
3a45bb20 10514 btrfs_end_transaction(trans);
79787eaa
JM
10515 break;
10516 }
d899e052 10517
0af3d00b 10518 if (own_trans)
3a45bb20 10519 btrfs_end_transaction(trans);
5a303d5d 10520 }
18513091 10521 if (cur_offset < end)
bc42bda2 10522 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10523 end - cur_offset + 1);
d899e052
YZ
10524 return ret;
10525}
10526
0af3d00b
JB
10527int btrfs_prealloc_file_range(struct inode *inode, int mode,
10528 u64 start, u64 num_bytes, u64 min_size,
10529 loff_t actual_len, u64 *alloc_hint)
10530{
10531 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10532 min_size, actual_len, alloc_hint,
10533 NULL);
10534}
10535
10536int btrfs_prealloc_file_range_trans(struct inode *inode,
10537 struct btrfs_trans_handle *trans, int mode,
10538 u64 start, u64 num_bytes, u64 min_size,
10539 loff_t actual_len, u64 *alloc_hint)
10540{
10541 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10542 min_size, actual_len, alloc_hint, trans);
10543}
10544
e6dcd2dc
CM
10545static int btrfs_set_page_dirty(struct page *page)
10546{
e6dcd2dc
CM
10547 return __set_page_dirty_nobuffers(page);
10548}
10549
10556cb2 10550static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10551{
b83cc969 10552 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10553 umode_t mode = inode->i_mode;
b83cc969 10554
cb6db4e5
JM
10555 if (mask & MAY_WRITE &&
10556 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10557 if (btrfs_root_readonly(root))
10558 return -EROFS;
10559 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10560 return -EACCES;
10561 }
2830ba7f 10562 return generic_permission(inode, mask);
fdebe2bd 10563}
39279cc3 10564
ef3b9af5
FM
10565static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10566{
2ff7e61e 10567 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10568 struct btrfs_trans_handle *trans;
10569 struct btrfs_root *root = BTRFS_I(dir)->root;
10570 struct inode *inode = NULL;
10571 u64 objectid;
10572 u64 index;
10573 int ret = 0;
10574
10575 /*
10576 * 5 units required for adding orphan entry
10577 */
10578 trans = btrfs_start_transaction(root, 5);
10579 if (IS_ERR(trans))
10580 return PTR_ERR(trans);
10581
10582 ret = btrfs_find_free_ino(root, &objectid);
10583 if (ret)
10584 goto out;
10585
10586 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10587 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10588 if (IS_ERR(inode)) {
10589 ret = PTR_ERR(inode);
10590 inode = NULL;
10591 goto out;
10592 }
10593
ef3b9af5
FM
10594 inode->i_fop = &btrfs_file_operations;
10595 inode->i_op = &btrfs_file_inode_operations;
10596
10597 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10598 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10599
b0d5d10f
CM
10600 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10601 if (ret)
32955c54 10602 goto out;
b0d5d10f
CM
10603
10604 ret = btrfs_update_inode(trans, root, inode);
10605 if (ret)
32955c54 10606 goto out;
73f2e545 10607 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10608 if (ret)
32955c54 10609 goto out;
ef3b9af5 10610
5762b5c9
FM
10611 /*
10612 * We set number of links to 0 in btrfs_new_inode(), and here we set
10613 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10614 * through:
10615 *
10616 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10617 */
10618 set_nlink(inode, 1);
ef3b9af5 10619 d_tmpfile(dentry, inode);
32955c54 10620 unlock_new_inode(inode);
ef3b9af5 10621 mark_inode_dirty(inode);
ef3b9af5 10622out:
3a45bb20 10623 btrfs_end_transaction(trans);
32955c54
AV
10624 if (ret && inode)
10625 discard_new_inode(inode);
2ff7e61e 10626 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10627 return ret;
10628}
10629
5cdc84bf 10630void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10631{
5cdc84bf 10632 struct inode *inode = tree->private_data;
c6100a4b
JB
10633 unsigned long index = start >> PAGE_SHIFT;
10634 unsigned long end_index = end >> PAGE_SHIFT;
10635 struct page *page;
10636
10637 while (index <= end_index) {
10638 page = find_get_page(inode->i_mapping, index);
10639 ASSERT(page); /* Pages should be in the extent_io_tree */
10640 set_page_writeback(page);
10641 put_page(page);
10642 index++;
10643 }
10644}
10645
ed46ff3d
OS
10646#ifdef CONFIG_SWAP
10647/*
10648 * Add an entry indicating a block group or device which is pinned by a
10649 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10650 * negative errno on failure.
10651 */
10652static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10653 bool is_block_group)
10654{
10655 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10656 struct btrfs_swapfile_pin *sp, *entry;
10657 struct rb_node **p;
10658 struct rb_node *parent = NULL;
10659
10660 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10661 if (!sp)
10662 return -ENOMEM;
10663 sp->ptr = ptr;
10664 sp->inode = inode;
10665 sp->is_block_group = is_block_group;
10666
10667 spin_lock(&fs_info->swapfile_pins_lock);
10668 p = &fs_info->swapfile_pins.rb_node;
10669 while (*p) {
10670 parent = *p;
10671 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10672 if (sp->ptr < entry->ptr ||
10673 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10674 p = &(*p)->rb_left;
10675 } else if (sp->ptr > entry->ptr ||
10676 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10677 p = &(*p)->rb_right;
10678 } else {
10679 spin_unlock(&fs_info->swapfile_pins_lock);
10680 kfree(sp);
10681 return 1;
10682 }
10683 }
10684 rb_link_node(&sp->node, parent, p);
10685 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10686 spin_unlock(&fs_info->swapfile_pins_lock);
10687 return 0;
10688}
10689
10690/* Free all of the entries pinned by this swapfile. */
10691static void btrfs_free_swapfile_pins(struct inode *inode)
10692{
10693 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10694 struct btrfs_swapfile_pin *sp;
10695 struct rb_node *node, *next;
10696
10697 spin_lock(&fs_info->swapfile_pins_lock);
10698 node = rb_first(&fs_info->swapfile_pins);
10699 while (node) {
10700 next = rb_next(node);
10701 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10702 if (sp->inode == inode) {
10703 rb_erase(&sp->node, &fs_info->swapfile_pins);
10704 if (sp->is_block_group)
10705 btrfs_put_block_group(sp->ptr);
10706 kfree(sp);
10707 }
10708 node = next;
10709 }
10710 spin_unlock(&fs_info->swapfile_pins_lock);
10711}
10712
10713struct btrfs_swap_info {
10714 u64 start;
10715 u64 block_start;
10716 u64 block_len;
10717 u64 lowest_ppage;
10718 u64 highest_ppage;
10719 unsigned long nr_pages;
10720 int nr_extents;
10721};
10722
10723static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10724 struct btrfs_swap_info *bsi)
10725{
10726 unsigned long nr_pages;
10727 u64 first_ppage, first_ppage_reported, next_ppage;
10728 int ret;
10729
10730 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10731 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10732 PAGE_SIZE) >> PAGE_SHIFT;
10733
10734 if (first_ppage >= next_ppage)
10735 return 0;
10736 nr_pages = next_ppage - first_ppage;
10737
10738 first_ppage_reported = first_ppage;
10739 if (bsi->start == 0)
10740 first_ppage_reported++;
10741 if (bsi->lowest_ppage > first_ppage_reported)
10742 bsi->lowest_ppage = first_ppage_reported;
10743 if (bsi->highest_ppage < (next_ppage - 1))
10744 bsi->highest_ppage = next_ppage - 1;
10745
10746 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10747 if (ret < 0)
10748 return ret;
10749 bsi->nr_extents += ret;
10750 bsi->nr_pages += nr_pages;
10751 return 0;
10752}
10753
10754static void btrfs_swap_deactivate(struct file *file)
10755{
10756 struct inode *inode = file_inode(file);
10757
10758 btrfs_free_swapfile_pins(inode);
10759 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10760}
10761
10762static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10763 sector_t *span)
10764{
10765 struct inode *inode = file_inode(file);
10766 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10767 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10768 struct extent_state *cached_state = NULL;
10769 struct extent_map *em = NULL;
10770 struct btrfs_device *device = NULL;
10771 struct btrfs_swap_info bsi = {
10772 .lowest_ppage = (sector_t)-1ULL,
10773 };
10774 int ret = 0;
10775 u64 isize;
10776 u64 start;
10777
10778 /*
10779 * If the swap file was just created, make sure delalloc is done. If the
10780 * file changes again after this, the user is doing something stupid and
10781 * we don't really care.
10782 */
10783 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10784 if (ret)
10785 return ret;
10786
10787 /*
10788 * The inode is locked, so these flags won't change after we check them.
10789 */
10790 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10791 btrfs_warn(fs_info, "swapfile must not be compressed");
10792 return -EINVAL;
10793 }
10794 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10795 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10796 return -EINVAL;
10797 }
10798 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10799 btrfs_warn(fs_info, "swapfile must not be checksummed");
10800 return -EINVAL;
10801 }
10802
10803 /*
10804 * Balance or device remove/replace/resize can move stuff around from
10805 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10806 * concurrently while we are mapping the swap extents, and
10807 * fs_info->swapfile_pins prevents them from running while the swap file
10808 * is active and moving the extents. Note that this also prevents a
10809 * concurrent device add which isn't actually necessary, but it's not
10810 * really worth the trouble to allow it.
10811 */
10812 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10813 btrfs_warn(fs_info,
10814 "cannot activate swapfile while exclusive operation is running");
10815 return -EBUSY;
10816 }
10817 /*
10818 * Snapshots can create extents which require COW even if NODATACOW is
10819 * set. We use this counter to prevent snapshots. We must increment it
10820 * before walking the extents because we don't want a concurrent
10821 * snapshot to run after we've already checked the extents.
10822 */
10823 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10824
10825 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10826
10827 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10828 start = 0;
10829 while (start < isize) {
10830 u64 logical_block_start, physical_block_start;
32da5386 10831 struct btrfs_block_group *bg;
ed46ff3d
OS
10832 u64 len = isize - start;
10833
10834 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10835 if (IS_ERR(em)) {
10836 ret = PTR_ERR(em);
10837 goto out;
10838 }
10839
10840 if (em->block_start == EXTENT_MAP_HOLE) {
10841 btrfs_warn(fs_info, "swapfile must not have holes");
10842 ret = -EINVAL;
10843 goto out;
10844 }
10845 if (em->block_start == EXTENT_MAP_INLINE) {
10846 /*
10847 * It's unlikely we'll ever actually find ourselves
10848 * here, as a file small enough to fit inline won't be
10849 * big enough to store more than the swap header, but in
10850 * case something changes in the future, let's catch it
10851 * here rather than later.
10852 */
10853 btrfs_warn(fs_info, "swapfile must not be inline");
10854 ret = -EINVAL;
10855 goto out;
10856 }
10857 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10858 btrfs_warn(fs_info, "swapfile must not be compressed");
10859 ret = -EINVAL;
10860 goto out;
10861 }
10862
10863 logical_block_start = em->block_start + (start - em->start);
10864 len = min(len, em->len - (start - em->start));
10865 free_extent_map(em);
10866 em = NULL;
10867
10868 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10869 if (ret < 0) {
10870 goto out;
10871 } else if (ret) {
10872 ret = 0;
10873 } else {
10874 btrfs_warn(fs_info,
10875 "swapfile must not be copy-on-write");
10876 ret = -EINVAL;
10877 goto out;
10878 }
10879
10880 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10881 if (IS_ERR(em)) {
10882 ret = PTR_ERR(em);
10883 goto out;
10884 }
10885
10886 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10887 btrfs_warn(fs_info,
10888 "swapfile must have single data profile");
10889 ret = -EINVAL;
10890 goto out;
10891 }
10892
10893 if (device == NULL) {
10894 device = em->map_lookup->stripes[0].dev;
10895 ret = btrfs_add_swapfile_pin(inode, device, false);
10896 if (ret == 1)
10897 ret = 0;
10898 else if (ret)
10899 goto out;
10900 } else if (device != em->map_lookup->stripes[0].dev) {
10901 btrfs_warn(fs_info, "swapfile must be on one device");
10902 ret = -EINVAL;
10903 goto out;
10904 }
10905
10906 physical_block_start = (em->map_lookup->stripes[0].physical +
10907 (logical_block_start - em->start));
10908 len = min(len, em->len - (logical_block_start - em->start));
10909 free_extent_map(em);
10910 em = NULL;
10911
10912 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10913 if (!bg) {
10914 btrfs_warn(fs_info,
10915 "could not find block group containing swapfile");
10916 ret = -EINVAL;
10917 goto out;
10918 }
10919
10920 ret = btrfs_add_swapfile_pin(inode, bg, true);
10921 if (ret) {
10922 btrfs_put_block_group(bg);
10923 if (ret == 1)
10924 ret = 0;
10925 else
10926 goto out;
10927 }
10928
10929 if (bsi.block_len &&
10930 bsi.block_start + bsi.block_len == physical_block_start) {
10931 bsi.block_len += len;
10932 } else {
10933 if (bsi.block_len) {
10934 ret = btrfs_add_swap_extent(sis, &bsi);
10935 if (ret)
10936 goto out;
10937 }
10938 bsi.start = start;
10939 bsi.block_start = physical_block_start;
10940 bsi.block_len = len;
10941 }
10942
10943 start += len;
10944 }
10945
10946 if (bsi.block_len)
10947 ret = btrfs_add_swap_extent(sis, &bsi);
10948
10949out:
10950 if (!IS_ERR_OR_NULL(em))
10951 free_extent_map(em);
10952
10953 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10954
10955 if (ret)
10956 btrfs_swap_deactivate(file);
10957
10958 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10959
10960 if (ret)
10961 return ret;
10962
10963 if (device)
10964 sis->bdev = device->bdev;
10965 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10966 sis->max = bsi.nr_pages;
10967 sis->pages = bsi.nr_pages - 1;
10968 sis->highest_bit = bsi.nr_pages - 1;
10969 return bsi.nr_extents;
10970}
10971#else
10972static void btrfs_swap_deactivate(struct file *file)
10973{
10974}
10975
10976static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10977 sector_t *span)
10978{
10979 return -EOPNOTSUPP;
10980}
10981#endif
10982
6e1d5dcc 10983static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10984 .getattr = btrfs_getattr,
39279cc3
CM
10985 .lookup = btrfs_lookup,
10986 .create = btrfs_create,
10987 .unlink = btrfs_unlink,
10988 .link = btrfs_link,
10989 .mkdir = btrfs_mkdir,
10990 .rmdir = btrfs_rmdir,
2773bf00 10991 .rename = btrfs_rename2,
39279cc3
CM
10992 .symlink = btrfs_symlink,
10993 .setattr = btrfs_setattr,
618e21d5 10994 .mknod = btrfs_mknod,
5103e947 10995 .listxattr = btrfs_listxattr,
fdebe2bd 10996 .permission = btrfs_permission,
4e34e719 10997 .get_acl = btrfs_get_acl,
996a710d 10998 .set_acl = btrfs_set_acl,
93fd63c2 10999 .update_time = btrfs_update_time,
ef3b9af5 11000 .tmpfile = btrfs_tmpfile,
39279cc3 11001};
6e1d5dcc 11002static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 11003 .lookup = btrfs_lookup,
fdebe2bd 11004 .permission = btrfs_permission,
93fd63c2 11005 .update_time = btrfs_update_time,
39279cc3 11006};
76dda93c 11007
828c0950 11008static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
11009 .llseek = generic_file_llseek,
11010 .read = generic_read_dir,
02dbfc99 11011 .iterate_shared = btrfs_real_readdir,
23b5ec74 11012 .open = btrfs_opendir,
34287aa3 11013 .unlocked_ioctl = btrfs_ioctl,
39279cc3 11014#ifdef CONFIG_COMPAT
4c63c245 11015 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 11016#endif
6bf13c0c 11017 .release = btrfs_release_file,
e02119d5 11018 .fsync = btrfs_sync_file,
39279cc3
CM
11019};
11020
20e5506b 11021static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 11022 /* mandatory callbacks */
065631f6 11023 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
11024 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
11025};
11026
35054394
CM
11027/*
11028 * btrfs doesn't support the bmap operation because swapfiles
11029 * use bmap to make a mapping of extents in the file. They assume
11030 * these extents won't change over the life of the file and they
11031 * use the bmap result to do IO directly to the drive.
11032 *
11033 * the btrfs bmap call would return logical addresses that aren't
11034 * suitable for IO and they also will change frequently as COW
11035 * operations happen. So, swapfile + btrfs == corruption.
11036 *
11037 * For now we're avoiding this by dropping bmap.
11038 */
7f09410b 11039static const struct address_space_operations btrfs_aops = {
39279cc3
CM
11040 .readpage = btrfs_readpage,
11041 .writepage = btrfs_writepage,
b293f02e 11042 .writepages = btrfs_writepages,
3ab2fb5a 11043 .readpages = btrfs_readpages,
16432985 11044 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
11045 .invalidatepage = btrfs_invalidatepage,
11046 .releasepage = btrfs_releasepage,
e6dcd2dc 11047 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 11048 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
11049 .swap_activate = btrfs_swap_activate,
11050 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
11051};
11052
6e1d5dcc 11053static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
11054 .getattr = btrfs_getattr,
11055 .setattr = btrfs_setattr,
5103e947 11056 .listxattr = btrfs_listxattr,
fdebe2bd 11057 .permission = btrfs_permission,
1506fcc8 11058 .fiemap = btrfs_fiemap,
4e34e719 11059 .get_acl = btrfs_get_acl,
996a710d 11060 .set_acl = btrfs_set_acl,
e41f941a 11061 .update_time = btrfs_update_time,
39279cc3 11062};
6e1d5dcc 11063static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
11064 .getattr = btrfs_getattr,
11065 .setattr = btrfs_setattr,
fdebe2bd 11066 .permission = btrfs_permission,
33268eaf 11067 .listxattr = btrfs_listxattr,
4e34e719 11068 .get_acl = btrfs_get_acl,
996a710d 11069 .set_acl = btrfs_set_acl,
e41f941a 11070 .update_time = btrfs_update_time,
618e21d5 11071};
6e1d5dcc 11072static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 11073 .get_link = page_get_link,
f209561a 11074 .getattr = btrfs_getattr,
22c44fe6 11075 .setattr = btrfs_setattr,
fdebe2bd 11076 .permission = btrfs_permission,
0279b4cd 11077 .listxattr = btrfs_listxattr,
e41f941a 11078 .update_time = btrfs_update_time,
39279cc3 11079};
76dda93c 11080
82d339d9 11081const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11082 .d_delete = btrfs_dentry_delete,
11083};