]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/inode.c
Btrfs: properly honor wbc->nr_to_write changes
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
58static struct inode_operations btrfs_dir_inode_operations;
59static struct inode_operations btrfs_symlink_inode_operations;
60static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 61static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
62static struct inode_operations btrfs_file_inode_operations;
63static struct address_space_operations btrfs_aops;
64static struct address_space_operations btrfs_symlink_aops;
65static struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
0279b4cd
JO
91static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92{
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99}
100
c8b97818
CM
101/*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
d397712b 106static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110{
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
d397712b
CM
130 path = btrfs_alloc_path();
131 if (!path)
c8b97818
CM
132 return -ENOMEM;
133
b9473439 134 path->leave_spinning = 1;
c8b97818
CM
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
c8b97818
CM
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
d397712b 163 while (compressed_size > 0) {
c8b97818 164 cpage = compressed_pages[i];
5b050f04 165 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
166 PAGE_CACHE_SIZE);
167
b9473439 168 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 170 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194fail:
195 btrfs_free_path(path);
196 return err;
197}
198
199
200/*
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
204 */
7f366cfe 205static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
210{
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
219
220 if (compressed_size)
221 data_len = compressed_size;
222
223 if (start > 0 ||
70b99e69 224 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
231 }
232
c8b97818 233 ret = btrfs_drop_extents(trans, root, inode, start,
a1ed835e
CM
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
a1ed835e 244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818 370 */
6cbff00f 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818
CM
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
771ed689 428 start, end, NULL, 1, 0,
8b62b72b 429 0, 1, 1, 1, 0);
c8b97818
CM
430 ret = 0;
431 goto free_pages_out;
432 }
433 }
434
435 if (will_compress) {
436 /*
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
439 * things
440 */
441 total_compressed = (total_compressed + blocksize - 1) &
442 ~(blocksize - 1);
443
444 /*
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
447 */
448 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 ~(PAGE_CACHE_SIZE - 1);
450 if (total_compressed >= total_in) {
451 will_compress = 0;
452 } else {
453 disk_num_bytes = total_compressed;
454 num_bytes = total_in;
455 }
456 }
457 if (!will_compress && pages) {
458 /*
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
461 */
462 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 463 WARN_ON(pages[i]->mapping);
c8b97818
CM
464 page_cache_release(pages[i]);
465 }
466 kfree(pages);
467 pages = NULL;
468 total_compressed = 0;
469 nr_pages_ret = 0;
470
471 /* flag the file so we don't compress in the future */
6cbff00f 472 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 473 }
771ed689
CM
474 if (will_compress) {
475 *num_added += 1;
c8b97818 476
771ed689
CM
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
480 */
481 add_async_extent(async_cow, start, num_bytes,
482 total_compressed, pages, nr_pages_ret);
179e29e4 483
42dc7bab 484 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
485 start += num_bytes;
486 pages = NULL;
487 cond_resched();
488 goto again;
489 }
490 } else {
f03d9301 491cleanup_and_bail_uncompressed:
771ed689
CM
492 /*
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
498 */
499 if (page_offset(locked_page) >= start &&
500 page_offset(locked_page) <= end) {
501 __set_page_dirty_nobuffers(locked_page);
502 /* unlocked later on in the async handlers */
503 }
504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 *num_added += 1;
506 }
3b951516 507
771ed689
CM
508out:
509 return 0;
510
511free_pages_out:
512 for (i = 0; i < nr_pages_ret; i++) {
513 WARN_ON(pages[i]->mapping);
514 page_cache_release(pages[i]);
515 }
d397712b 516 kfree(pages);
771ed689
CM
517
518 goto out;
519}
520
521/*
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
526 */
527static noinline int submit_compressed_extents(struct inode *inode,
528 struct async_cow *async_cow)
529{
530 struct async_extent *async_extent;
531 u64 alloc_hint = 0;
532 struct btrfs_trans_handle *trans;
533 struct btrfs_key ins;
534 struct extent_map *em;
535 struct btrfs_root *root = BTRFS_I(inode)->root;
536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 struct extent_io_tree *io_tree;
538 int ret;
539
540 if (list_empty(&async_cow->extents))
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
d397712b 545 while (!list_empty(&async_cow->extents)) {
771ed689
CM
546 async_extent = list_entry(async_cow->extents.next,
547 struct async_extent, list);
548 list_del(&async_extent->list);
c8b97818 549
771ed689
CM
550 io_tree = &BTRFS_I(inode)->io_tree;
551
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent->pages) {
554 int page_started = 0;
555 unsigned long nr_written = 0;
556
557 lock_extent(io_tree, async_extent->start,
d397712b
CM
558 async_extent->start +
559 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
560
561 /* allocate blocks */
562 cow_file_range(inode, async_cow->locked_page,
563 async_extent->start,
564 async_extent->start +
565 async_extent->ram_size - 1,
566 &page_started, &nr_written, 0);
567
568 /*
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
573 */
574 if (!page_started)
575 extent_write_locked_range(io_tree,
576 inode, async_extent->start,
d397712b 577 async_extent->start +
771ed689
CM
578 async_extent->ram_size - 1,
579 btrfs_get_extent,
580 WB_SYNC_ALL);
581 kfree(async_extent);
582 cond_resched();
583 continue;
584 }
585
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start + async_extent->ram_size - 1,
588 GFP_NOFS);
c8b97818 589 /*
771ed689
CM
590 * here we're doing allocation and writeback of the
591 * compressed pages
c8b97818 592 */
771ed689
CM
593 btrfs_drop_extent_cache(inode, async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1, 0);
596
597 ret = btrfs_reserve_extent(trans, root,
598 async_extent->compressed_size,
599 async_extent->compressed_size,
600 0, alloc_hint,
601 (u64)-1, &ins, 1);
602 BUG_ON(ret);
603 em = alloc_extent_map(GFP_NOFS);
604 em->start = async_extent->start;
605 em->len = async_extent->ram_size;
445a6944 606 em->orig_start = em->start;
c8b97818 607
771ed689
CM
608 em->block_start = ins.objectid;
609 em->block_len = ins.offset;
610 em->bdev = root->fs_info->fs_devices->latest_bdev;
611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613
d397712b 614 while (1) {
890871be 615 write_lock(&em_tree->lock);
771ed689 616 ret = add_extent_mapping(em_tree, em);
890871be 617 write_unlock(&em_tree->lock);
771ed689
CM
618 if (ret != -EEXIST) {
619 free_extent_map(em);
620 break;
621 }
622 btrfs_drop_extent_cache(inode, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, 0);
625 }
626
627 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 ins.objectid,
629 async_extent->ram_size,
630 ins.offset,
631 BTRFS_ORDERED_COMPRESSED);
632 BUG_ON(ret);
633
634 btrfs_end_transaction(trans, root);
635
636 /*
637 * clear dirty, set writeback and unlock the pages.
638 */
639 extent_clear_unlock_delalloc(inode,
640 &BTRFS_I(inode)->io_tree,
641 async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
8b62b72b 644 NULL, 1, 1, 0, 1, 1, 0, 0);
771ed689
CM
645
646 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
647 async_extent->start,
648 async_extent->ram_size,
649 ins.objectid,
650 ins.offset, async_extent->pages,
651 async_extent->nr_pages);
771ed689
CM
652
653 BUG_ON(ret);
654 trans = btrfs_join_transaction(root, 1);
655 alloc_hint = ins.objectid + ins.offset;
656 kfree(async_extent);
657 cond_resched();
658 }
659
660 btrfs_end_transaction(trans, root);
661 return 0;
662}
663
664/*
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
669 *
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
672 *
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
675 * IO when we return.
676 */
677static noinline int cow_file_range(struct inode *inode,
678 struct page *locked_page,
679 u64 start, u64 end, int *page_started,
680 unsigned long *nr_written,
681 int unlock)
682{
683 struct btrfs_root *root = BTRFS_I(inode)->root;
684 struct btrfs_trans_handle *trans;
685 u64 alloc_hint = 0;
686 u64 num_bytes;
687 unsigned long ram_size;
688 u64 disk_num_bytes;
689 u64 cur_alloc_size;
690 u64 blocksize = root->sectorsize;
691 u64 actual_end;
42dc7bab 692 u64 isize = i_size_read(inode);
771ed689
CM
693 struct btrfs_key ins;
694 struct extent_map *em;
695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 int ret = 0;
697
698 trans = btrfs_join_transaction(root, 1);
699 BUG_ON(!trans);
700 btrfs_set_trans_block_group(trans, inode);
701
42dc7bab 702 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
703
704 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 num_bytes = max(blocksize, num_bytes);
706 disk_num_bytes = num_bytes;
707 ret = 0;
708
709 if (start == 0) {
710 /* lets try to make an inline extent */
711 ret = cow_file_range_inline(trans, root, inode,
712 start, end, 0, NULL);
713 if (ret == 0) {
714 extent_clear_unlock_delalloc(inode,
715 &BTRFS_I(inode)->io_tree,
716 start, end, NULL, 1, 1,
8b62b72b 717 1, 1, 1, 1, 0);
771ed689
CM
718 *nr_written = *nr_written +
719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 *page_started = 1;
721 ret = 0;
722 goto out;
723 }
724 }
725
726 BUG_ON(disk_num_bytes >
727 btrfs_super_total_bytes(&root->fs_info->super_copy));
728
729 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730
d397712b 731 while (disk_num_bytes > 0) {
c8b97818 732 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 733 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 734 root->sectorsize, 0, alloc_hint,
e6dcd2dc 735 (u64)-1, &ins, 1);
d397712b
CM
736 BUG_ON(ret);
737
e6dcd2dc
CM
738 em = alloc_extent_map(GFP_NOFS);
739 em->start = start;
445a6944 740 em->orig_start = em->start;
c8b97818 741
771ed689
CM
742 ram_size = ins.offset;
743 em->len = ins.offset;
c8b97818 744
e6dcd2dc 745 em->block_start = ins.objectid;
c8b97818 746 em->block_len = ins.offset;
e6dcd2dc 747 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 748 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 749
d397712b 750 while (1) {
890871be 751 write_lock(&em_tree->lock);
e6dcd2dc 752 ret = add_extent_mapping(em_tree, em);
890871be 753 write_unlock(&em_tree->lock);
e6dcd2dc
CM
754 if (ret != -EEXIST) {
755 free_extent_map(em);
756 break;
757 }
758 btrfs_drop_extent_cache(inode, start,
c8b97818 759 start + ram_size - 1, 0);
e6dcd2dc
CM
760 }
761
98d20f67 762 cur_alloc_size = ins.offset;
e6dcd2dc 763 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 764 ram_size, cur_alloc_size, 0);
e6dcd2dc 765 BUG_ON(ret);
c8b97818 766
17d217fe
YZ
767 if (root->root_key.objectid ==
768 BTRFS_DATA_RELOC_TREE_OBJECTID) {
769 ret = btrfs_reloc_clone_csums(inode, start,
770 cur_alloc_size);
771 BUG_ON(ret);
772 }
773
d397712b 774 if (disk_num_bytes < cur_alloc_size)
3b951516 775 break;
d397712b 776
c8b97818
CM
777 /* we're not doing compressed IO, don't unlock the first
778 * page (which the caller expects to stay locked), don't
779 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
780 *
781 * Do set the Private2 bit so we know this page was properly
782 * setup for writepage
c8b97818
CM
783 */
784 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
785 start, start + ram_size - 1,
771ed689 786 locked_page, unlock, 1,
8b62b72b 787 1, 0, 0, 0, 1);
c8b97818 788 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
789 num_bytes -= cur_alloc_size;
790 alloc_hint = ins.objectid + ins.offset;
791 start += cur_alloc_size;
b888db2b 792 }
b888db2b 793out:
771ed689 794 ret = 0;
b888db2b 795 btrfs_end_transaction(trans, root);
c8b97818 796
be20aa9d 797 return ret;
771ed689 798}
c8b97818 799
771ed689
CM
800/*
801 * work queue call back to started compression on a file and pages
802 */
803static noinline void async_cow_start(struct btrfs_work *work)
804{
805 struct async_cow *async_cow;
806 int num_added = 0;
807 async_cow = container_of(work, struct async_cow, work);
808
809 compress_file_range(async_cow->inode, async_cow->locked_page,
810 async_cow->start, async_cow->end, async_cow,
811 &num_added);
812 if (num_added == 0)
813 async_cow->inode = NULL;
814}
815
816/*
817 * work queue call back to submit previously compressed pages
818 */
819static noinline void async_cow_submit(struct btrfs_work *work)
820{
821 struct async_cow *async_cow;
822 struct btrfs_root *root;
823 unsigned long nr_pages;
824
825 async_cow = container_of(work, struct async_cow, work);
826
827 root = async_cow->root;
828 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
829 PAGE_CACHE_SHIFT;
830
831 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
832
833 if (atomic_read(&root->fs_info->async_delalloc_pages) <
834 5 * 1042 * 1024 &&
835 waitqueue_active(&root->fs_info->async_submit_wait))
836 wake_up(&root->fs_info->async_submit_wait);
837
d397712b 838 if (async_cow->inode)
771ed689 839 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 840}
c8b97818 841
771ed689
CM
842static noinline void async_cow_free(struct btrfs_work *work)
843{
844 struct async_cow *async_cow;
845 async_cow = container_of(work, struct async_cow, work);
846 kfree(async_cow);
847}
848
849static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850 u64 start, u64 end, int *page_started,
851 unsigned long *nr_written)
852{
853 struct async_cow *async_cow;
854 struct btrfs_root *root = BTRFS_I(inode)->root;
855 unsigned long nr_pages;
856 u64 cur_end;
857 int limit = 10 * 1024 * 1042;
858
771ed689 859 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
2c64c53d 860 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
d397712b 861 while (start < end) {
771ed689
CM
862 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
863 async_cow->inode = inode;
864 async_cow->root = root;
865 async_cow->locked_page = locked_page;
866 async_cow->start = start;
867
6cbff00f 868 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
869 cur_end = end;
870 else
871 cur_end = min(end, start + 512 * 1024 - 1);
872
873 async_cow->end = cur_end;
874 INIT_LIST_HEAD(&async_cow->extents);
875
876 async_cow->work.func = async_cow_start;
877 async_cow->work.ordered_func = async_cow_submit;
878 async_cow->work.ordered_free = async_cow_free;
879 async_cow->work.flags = 0;
880
771ed689
CM
881 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
882 PAGE_CACHE_SHIFT;
883 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
884
885 btrfs_queue_worker(&root->fs_info->delalloc_workers,
886 &async_cow->work);
887
888 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
889 wait_event(root->fs_info->async_submit_wait,
890 (atomic_read(&root->fs_info->async_delalloc_pages) <
891 limit));
892 }
893
d397712b 894 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
895 atomic_read(&root->fs_info->async_delalloc_pages)) {
896 wait_event(root->fs_info->async_submit_wait,
897 (atomic_read(&root->fs_info->async_delalloc_pages) ==
898 0));
899 }
900
901 *nr_written += nr_pages;
902 start = cur_end + 1;
903 }
904 *page_started = 1;
905 return 0;
be20aa9d
CM
906}
907
d397712b 908static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
909 u64 bytenr, u64 num_bytes)
910{
911 int ret;
912 struct btrfs_ordered_sum *sums;
913 LIST_HEAD(list);
914
07d400a6
YZ
915 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
916 bytenr + num_bytes - 1, &list);
17d217fe
YZ
917 if (ret == 0 && list_empty(&list))
918 return 0;
919
920 while (!list_empty(&list)) {
921 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
922 list_del(&sums->list);
923 kfree(sums);
924 }
925 return 1;
926}
927
d352ac68
CM
928/*
929 * when nowcow writeback call back. This checks for snapshots or COW copies
930 * of the extents that exist in the file, and COWs the file as required.
931 *
932 * If no cow copies or snapshots exist, we write directly to the existing
933 * blocks on disk
934 */
7f366cfe
CM
935static noinline int run_delalloc_nocow(struct inode *inode,
936 struct page *locked_page,
771ed689
CM
937 u64 start, u64 end, int *page_started, int force,
938 unsigned long *nr_written)
be20aa9d 939{
be20aa9d 940 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 941 struct btrfs_trans_handle *trans;
be20aa9d 942 struct extent_buffer *leaf;
be20aa9d 943 struct btrfs_path *path;
80ff3856 944 struct btrfs_file_extent_item *fi;
be20aa9d 945 struct btrfs_key found_key;
80ff3856
YZ
946 u64 cow_start;
947 u64 cur_offset;
948 u64 extent_end;
5d4f98a2 949 u64 extent_offset;
80ff3856
YZ
950 u64 disk_bytenr;
951 u64 num_bytes;
952 int extent_type;
953 int ret;
d899e052 954 int type;
80ff3856
YZ
955 int nocow;
956 int check_prev = 1;
be20aa9d
CM
957
958 path = btrfs_alloc_path();
959 BUG_ON(!path);
7ea394f1
YZ
960 trans = btrfs_join_transaction(root, 1);
961 BUG_ON(!trans);
be20aa9d 962
80ff3856
YZ
963 cow_start = (u64)-1;
964 cur_offset = start;
965 while (1) {
966 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
967 cur_offset, 0);
968 BUG_ON(ret < 0);
969 if (ret > 0 && path->slots[0] > 0 && check_prev) {
970 leaf = path->nodes[0];
971 btrfs_item_key_to_cpu(leaf, &found_key,
972 path->slots[0] - 1);
973 if (found_key.objectid == inode->i_ino &&
974 found_key.type == BTRFS_EXTENT_DATA_KEY)
975 path->slots[0]--;
976 }
977 check_prev = 0;
978next_slot:
979 leaf = path->nodes[0];
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 BUG_ON(1);
984 if (ret > 0)
985 break;
986 leaf = path->nodes[0];
987 }
be20aa9d 988
80ff3856
YZ
989 nocow = 0;
990 disk_bytenr = 0;
17d217fe 991 num_bytes = 0;
80ff3856
YZ
992 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
993
994 if (found_key.objectid > inode->i_ino ||
995 found_key.type > BTRFS_EXTENT_DATA_KEY ||
996 found_key.offset > end)
997 break;
998
999 if (found_key.offset > cur_offset) {
1000 extent_end = found_key.offset;
1001 goto out_check;
1002 }
1003
1004 fi = btrfs_item_ptr(leaf, path->slots[0],
1005 struct btrfs_file_extent_item);
1006 extent_type = btrfs_file_extent_type(leaf, fi);
1007
d899e052
YZ
1008 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1009 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1010 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1011 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1012 extent_end = found_key.offset +
1013 btrfs_file_extent_num_bytes(leaf, fi);
1014 if (extent_end <= start) {
1015 path->slots[0]++;
1016 goto next_slot;
1017 }
17d217fe
YZ
1018 if (disk_bytenr == 0)
1019 goto out_check;
80ff3856
YZ
1020 if (btrfs_file_extent_compression(leaf, fi) ||
1021 btrfs_file_extent_encryption(leaf, fi) ||
1022 btrfs_file_extent_other_encoding(leaf, fi))
1023 goto out_check;
d899e052
YZ
1024 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1025 goto out_check;
d2fb3437 1026 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1027 goto out_check;
17d217fe 1028 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1029 found_key.offset -
1030 extent_offset, disk_bytenr))
17d217fe 1031 goto out_check;
5d4f98a2 1032 disk_bytenr += extent_offset;
17d217fe
YZ
1033 disk_bytenr += cur_offset - found_key.offset;
1034 num_bytes = min(end + 1, extent_end) - cur_offset;
1035 /*
1036 * force cow if csum exists in the range.
1037 * this ensure that csum for a given extent are
1038 * either valid or do not exist.
1039 */
1040 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1041 goto out_check;
80ff3856
YZ
1042 nocow = 1;
1043 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1044 extent_end = found_key.offset +
1045 btrfs_file_extent_inline_len(leaf, fi);
1046 extent_end = ALIGN(extent_end, root->sectorsize);
1047 } else {
1048 BUG_ON(1);
1049 }
1050out_check:
1051 if (extent_end <= start) {
1052 path->slots[0]++;
1053 goto next_slot;
1054 }
1055 if (!nocow) {
1056 if (cow_start == (u64)-1)
1057 cow_start = cur_offset;
1058 cur_offset = extent_end;
1059 if (cur_offset > end)
1060 break;
1061 path->slots[0]++;
1062 goto next_slot;
7ea394f1
YZ
1063 }
1064
1065 btrfs_release_path(root, path);
80ff3856
YZ
1066 if (cow_start != (u64)-1) {
1067 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1068 found_key.offset - 1, page_started,
1069 nr_written, 1);
80ff3856
YZ
1070 BUG_ON(ret);
1071 cow_start = (u64)-1;
7ea394f1 1072 }
80ff3856 1073
d899e052
YZ
1074 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1075 struct extent_map *em;
1076 struct extent_map_tree *em_tree;
1077 em_tree = &BTRFS_I(inode)->extent_tree;
1078 em = alloc_extent_map(GFP_NOFS);
1079 em->start = cur_offset;
445a6944 1080 em->orig_start = em->start;
d899e052
YZ
1081 em->len = num_bytes;
1082 em->block_len = num_bytes;
1083 em->block_start = disk_bytenr;
1084 em->bdev = root->fs_info->fs_devices->latest_bdev;
1085 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1086 while (1) {
890871be 1087 write_lock(&em_tree->lock);
d899e052 1088 ret = add_extent_mapping(em_tree, em);
890871be 1089 write_unlock(&em_tree->lock);
d899e052
YZ
1090 if (ret != -EEXIST) {
1091 free_extent_map(em);
1092 break;
1093 }
1094 btrfs_drop_extent_cache(inode, em->start,
1095 em->start + em->len - 1, 0);
1096 }
1097 type = BTRFS_ORDERED_PREALLOC;
1098 } else {
1099 type = BTRFS_ORDERED_NOCOW;
1100 }
80ff3856
YZ
1101
1102 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1103 num_bytes, num_bytes, type);
1104 BUG_ON(ret);
771ed689 1105
d899e052
YZ
1106 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1107 cur_offset, cur_offset + num_bytes - 1,
8b62b72b 1108 locked_page, 1, 1, 1, 0, 0, 0, 1);
80ff3856
YZ
1109 cur_offset = extent_end;
1110 if (cur_offset > end)
1111 break;
be20aa9d 1112 }
80ff3856
YZ
1113 btrfs_release_path(root, path);
1114
1115 if (cur_offset <= end && cow_start == (u64)-1)
1116 cow_start = cur_offset;
1117 if (cow_start != (u64)-1) {
1118 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1119 page_started, nr_written, 1);
80ff3856
YZ
1120 BUG_ON(ret);
1121 }
1122
1123 ret = btrfs_end_transaction(trans, root);
1124 BUG_ON(ret);
7ea394f1 1125 btrfs_free_path(path);
80ff3856 1126 return 0;
be20aa9d
CM
1127}
1128
d352ac68
CM
1129/*
1130 * extent_io.c call back to do delayed allocation processing
1131 */
c8b97818 1132static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1133 u64 start, u64 end, int *page_started,
1134 unsigned long *nr_written)
be20aa9d 1135{
be20aa9d 1136 int ret;
7f366cfe 1137 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1138
6cbff00f 1139 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1140 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1141 page_started, 1, nr_written);
6cbff00f 1142 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1143 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1144 page_started, 0, nr_written);
7f366cfe
CM
1145 else if (!btrfs_test_opt(root, COMPRESS))
1146 ret = cow_file_range(inode, locked_page, start, end,
1147 page_started, nr_written, 1);
be20aa9d 1148 else
771ed689 1149 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1150 page_started, nr_written);
b888db2b
CM
1151 return ret;
1152}
1153
d352ac68
CM
1154/*
1155 * extent_io.c set_bit_hook, used to track delayed allocation
1156 * bytes in this file, and to maintain the list of inodes that
1157 * have pending delalloc work to be done.
1158 */
b2950863 1159static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1160 unsigned long old, unsigned long bits)
291d673e 1161{
75eff68e
CM
1162 /*
1163 * set_bit and clear bit hooks normally require _irqsave/restore
1164 * but in this case, we are only testeing for the DELALLOC
1165 * bit, which is only set or cleared with irqs on
1166 */
b0c68f8b 1167 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1168 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 1169 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1170 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1171 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1172 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1173 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1174 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1175 &root->fs_info->delalloc_inodes);
1176 }
75eff68e 1177 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1178 }
1179 return 0;
1180}
1181
d352ac68
CM
1182/*
1183 * extent_io.c clear_bit_hook, see set_bit_hook for why
1184 */
b2950863 1185static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1186 unsigned long old, unsigned long bits)
291d673e 1187{
75eff68e
CM
1188 /*
1189 * set_bit and clear bit hooks normally require _irqsave/restore
1190 * but in this case, we are only testeing for the DELALLOC
1191 * bit, which is only set or cleared with irqs on
1192 */
b0c68f8b 1193 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1194 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1195
75eff68e 1196 spin_lock(&root->fs_info->delalloc_lock);
b0c68f8b 1197 if (end - start + 1 > root->fs_info->delalloc_bytes) {
d397712b
CM
1198 printk(KERN_INFO "btrfs warning: delalloc account "
1199 "%llu %llu\n",
1200 (unsigned long long)end - start + 1,
1201 (unsigned long long)
1202 root->fs_info->delalloc_bytes);
6a63209f 1203 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1204 root->fs_info->delalloc_bytes = 0;
9069218d 1205 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1206 } else {
6a63209f
JB
1207 btrfs_delalloc_free_space(root, inode,
1208 end - start + 1);
b0c68f8b 1209 root->fs_info->delalloc_bytes -= end - start + 1;
9069218d 1210 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
b0c68f8b 1211 }
ea8c2819
CM
1212 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1213 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1214 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1215 }
75eff68e 1216 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1217 }
1218 return 0;
1219}
1220
d352ac68
CM
1221/*
1222 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1223 * we don't create bios that span stripes or chunks
1224 */
239b14b3 1225int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1226 size_t size, struct bio *bio,
1227 unsigned long bio_flags)
239b14b3
CM
1228{
1229 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1230 struct btrfs_mapping_tree *map_tree;
a62b9401 1231 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1232 u64 length = 0;
1233 u64 map_length;
239b14b3
CM
1234 int ret;
1235
771ed689
CM
1236 if (bio_flags & EXTENT_BIO_COMPRESSED)
1237 return 0;
1238
f2d8d74d 1239 length = bio->bi_size;
239b14b3
CM
1240 map_tree = &root->fs_info->mapping_tree;
1241 map_length = length;
cea9e445 1242 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1243 &map_length, NULL, 0);
cea9e445 1244
d397712b 1245 if (map_length < length + size)
239b14b3 1246 return 1;
239b14b3
CM
1247 return 0;
1248}
1249
d352ac68
CM
1250/*
1251 * in order to insert checksums into the metadata in large chunks,
1252 * we wait until bio submission time. All the pages in the bio are
1253 * checksummed and sums are attached onto the ordered extent record.
1254 *
1255 * At IO completion time the cums attached on the ordered extent record
1256 * are inserted into the btree
1257 */
d397712b
CM
1258static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1259 struct bio *bio, int mirror_num,
1260 unsigned long bio_flags)
065631f6 1261{
065631f6 1262 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1263 int ret = 0;
e015640f 1264
d20f7043 1265 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1266 BUG_ON(ret);
4a69a410
CM
1267 return 0;
1268}
e015640f 1269
4a69a410
CM
1270/*
1271 * in order to insert checksums into the metadata in large chunks,
1272 * we wait until bio submission time. All the pages in the bio are
1273 * checksummed and sums are attached onto the ordered extent record.
1274 *
1275 * At IO completion time the cums attached on the ordered extent record
1276 * are inserted into the btree
1277 */
b2950863 1278static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1279 int mirror_num, unsigned long bio_flags)
1280{
1281 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1282 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1283}
1284
d352ac68 1285/*
cad321ad
CM
1286 * extent_io.c submission hook. This does the right thing for csum calculation
1287 * on write, or reading the csums from the tree before a read
d352ac68 1288 */
b2950863 1289static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1290 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1291{
1292 struct btrfs_root *root = BTRFS_I(inode)->root;
1293 int ret = 0;
19b9bdb0 1294 int skip_sum;
44b8bd7e 1295
6cbff00f 1296 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1297
e6dcd2dc
CM
1298 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1299 BUG_ON(ret);
065631f6 1300
4d1b5fb4 1301 if (!(rw & (1 << BIO_RW))) {
d20f7043 1302 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1303 return btrfs_submit_compressed_read(inode, bio,
1304 mirror_num, bio_flags);
d20f7043
CM
1305 } else if (!skip_sum)
1306 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1307 goto mapit;
19b9bdb0 1308 } else if (!skip_sum) {
17d217fe
YZ
1309 /* csum items have already been cloned */
1310 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1311 goto mapit;
19b9bdb0
CM
1312 /* we're doing a write, do the async checksumming */
1313 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1314 inode, rw, bio, mirror_num,
4a69a410
CM
1315 bio_flags, __btrfs_submit_bio_start,
1316 __btrfs_submit_bio_done);
19b9bdb0
CM
1317 }
1318
0b86a832 1319mapit:
8b712842 1320 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1321}
6885f308 1322
d352ac68
CM
1323/*
1324 * given a list of ordered sums record them in the inode. This happens
1325 * at IO completion time based on sums calculated at bio submission time.
1326 */
ba1da2f4 1327static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1328 struct inode *inode, u64 file_offset,
1329 struct list_head *list)
1330{
e6dcd2dc
CM
1331 struct btrfs_ordered_sum *sum;
1332
1333 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1334
1335 list_for_each_entry(sum, list, list) {
d20f7043
CM
1336 btrfs_csum_file_blocks(trans,
1337 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1338 }
1339 return 0;
1340}
1341
ea8c2819
CM
1342int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1343{
d397712b 1344 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1345 WARN_ON(1);
ea8c2819
CM
1346 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1347 GFP_NOFS);
1348}
1349
d352ac68 1350/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1351struct btrfs_writepage_fixup {
1352 struct page *page;
1353 struct btrfs_work work;
1354};
1355
b2950863 1356static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1357{
1358 struct btrfs_writepage_fixup *fixup;
1359 struct btrfs_ordered_extent *ordered;
1360 struct page *page;
1361 struct inode *inode;
1362 u64 page_start;
1363 u64 page_end;
1364
1365 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1366 page = fixup->page;
4a096752 1367again:
247e743c
CM
1368 lock_page(page);
1369 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1370 ClearPageChecked(page);
1371 goto out_page;
1372 }
1373
1374 inode = page->mapping->host;
1375 page_start = page_offset(page);
1376 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1377
1378 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1379
1380 /* already ordered? We're done */
8b62b72b 1381 if (PagePrivate2(page))
247e743c 1382 goto out;
4a096752
CM
1383
1384 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385 if (ordered) {
1386 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1387 page_end, GFP_NOFS);
1388 unlock_page(page);
1389 btrfs_start_ordered_extent(inode, ordered, 1);
1390 goto again;
1391 }
247e743c 1392
ea8c2819 1393 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1394 ClearPageChecked(page);
1395out:
1396 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1397out_page:
1398 unlock_page(page);
1399 page_cache_release(page);
1400}
1401
1402/*
1403 * There are a few paths in the higher layers of the kernel that directly
1404 * set the page dirty bit without asking the filesystem if it is a
1405 * good idea. This causes problems because we want to make sure COW
1406 * properly happens and the data=ordered rules are followed.
1407 *
c8b97818 1408 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1409 * hasn't been properly setup for IO. We kick off an async process
1410 * to fix it up. The async helper will wait for ordered extents, set
1411 * the delalloc bit and make it safe to write the page.
1412 */
b2950863 1413static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1414{
1415 struct inode *inode = page->mapping->host;
1416 struct btrfs_writepage_fixup *fixup;
1417 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1418
8b62b72b
CM
1419 /* this page is properly in the ordered list */
1420 if (TestClearPagePrivate2(page))
247e743c
CM
1421 return 0;
1422
1423 if (PageChecked(page))
1424 return -EAGAIN;
1425
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 if (!fixup)
1428 return -EAGAIN;
f421950f 1429
247e743c
CM
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1433 fixup->page = page;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 return -EAGAIN;
1436}
1437
d899e052
YZ
1438static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
e980b50c 1442 u64 locked_end,
d899e052
YZ
1443 u8 compression, u8 encryption,
1444 u16 other_encoding, int extent_type)
1445{
1446 struct btrfs_root *root = BTRFS_I(inode)->root;
1447 struct btrfs_file_extent_item *fi;
1448 struct btrfs_path *path;
1449 struct extent_buffer *leaf;
1450 struct btrfs_key ins;
1451 u64 hint;
1452 int ret;
1453
1454 path = btrfs_alloc_path();
1455 BUG_ON(!path);
1456
b9473439 1457 path->leave_spinning = 1;
a1ed835e
CM
1458
1459 /*
1460 * we may be replacing one extent in the tree with another.
1461 * The new extent is pinned in the extent map, and we don't want
1462 * to drop it from the cache until it is completely in the btree.
1463 *
1464 * So, tell btrfs_drop_extents to leave this extent in the cache.
1465 * the caller is expected to unpin it and allow it to be merged
1466 * with the others.
1467 */
d899e052 1468 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c 1469 file_pos + num_bytes, locked_end,
a1ed835e 1470 file_pos, &hint, 0);
d899e052
YZ
1471 BUG_ON(ret);
1472
1473 ins.objectid = inode->i_ino;
1474 ins.offset = file_pos;
1475 ins.type = BTRFS_EXTENT_DATA_KEY;
1476 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1477 BUG_ON(ret);
1478 leaf = path->nodes[0];
1479 fi = btrfs_item_ptr(leaf, path->slots[0],
1480 struct btrfs_file_extent_item);
1481 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1482 btrfs_set_file_extent_type(leaf, fi, extent_type);
1483 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1484 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1485 btrfs_set_file_extent_offset(leaf, fi, 0);
1486 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1487 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1488 btrfs_set_file_extent_compression(leaf, fi, compression);
1489 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1490 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1491
1492 btrfs_unlock_up_safe(path, 1);
1493 btrfs_set_lock_blocking(leaf);
1494
d899e052
YZ
1495 btrfs_mark_buffer_dirty(leaf);
1496
1497 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1498
1499 ins.objectid = disk_bytenr;
1500 ins.offset = disk_num_bytes;
1501 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1502 ret = btrfs_alloc_reserved_file_extent(trans, root,
1503 root->root_key.objectid,
1504 inode->i_ino, file_pos, &ins);
d899e052 1505 BUG_ON(ret);
d899e052 1506 btrfs_free_path(path);
b9473439 1507
d899e052
YZ
1508 return 0;
1509}
1510
5d13a98f
CM
1511/*
1512 * helper function for btrfs_finish_ordered_io, this
1513 * just reads in some of the csum leaves to prime them into ram
1514 * before we start the transaction. It limits the amount of btree
1515 * reads required while inside the transaction.
1516 */
1517static noinline void reada_csum(struct btrfs_root *root,
1518 struct btrfs_path *path,
1519 struct btrfs_ordered_extent *ordered_extent)
1520{
1521 struct btrfs_ordered_sum *sum;
1522 u64 bytenr;
1523
1524 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1525 list);
1526 bytenr = sum->sums[0].bytenr;
1527
1528 /*
1529 * we don't care about the results, the point of this search is
1530 * just to get the btree leaves into ram
1531 */
1532 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1533}
1534
d352ac68
CM
1535/* as ordered data IO finishes, this gets called so we can finish
1536 * an ordered extent if the range of bytes in the file it covers are
1537 * fully written.
1538 */
211f90e6 1539static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1540{
e6dcd2dc
CM
1541 struct btrfs_root *root = BTRFS_I(inode)->root;
1542 struct btrfs_trans_handle *trans;
5d13a98f 1543 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1544 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1545 struct btrfs_path *path;
d899e052 1546 int compressed = 0;
e6dcd2dc
CM
1547 int ret;
1548
1549 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1550 if (!ret)
e6dcd2dc 1551 return 0;
e6dcd2dc 1552
b7ec40d7
CM
1553 /*
1554 * before we join the transaction, try to do some of our IO.
1555 * This will limit the amount of IO that we have to do with
1556 * the transaction running. We're unlikely to need to do any
1557 * IO if the file extents are new, the disk_i_size checks
1558 * covers the most common case.
1559 */
1560 if (start < BTRFS_I(inode)->disk_i_size) {
1561 path = btrfs_alloc_path();
1562 if (path) {
1563 ret = btrfs_lookup_file_extent(NULL, root, path,
1564 inode->i_ino,
1565 start, 0);
5d13a98f
CM
1566 ordered_extent = btrfs_lookup_ordered_extent(inode,
1567 start);
1568 if (!list_empty(&ordered_extent->list)) {
1569 btrfs_release_path(root, path);
1570 reada_csum(root, path, ordered_extent);
1571 }
b7ec40d7
CM
1572 btrfs_free_path(path);
1573 }
1574 }
1575
f9295749 1576 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1577
5d13a98f
CM
1578 if (!ordered_extent)
1579 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1580 BUG_ON(!ordered_extent);
7ea394f1
YZ
1581 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1582 goto nocow;
e6dcd2dc
CM
1583
1584 lock_extent(io_tree, ordered_extent->file_offset,
1585 ordered_extent->file_offset + ordered_extent->len - 1,
1586 GFP_NOFS);
1587
c8b97818 1588 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1589 compressed = 1;
1590 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1591 BUG_ON(compressed);
1592 ret = btrfs_mark_extent_written(trans, root, inode,
1593 ordered_extent->file_offset,
1594 ordered_extent->file_offset +
1595 ordered_extent->len);
1596 BUG_ON(ret);
1597 } else {
1598 ret = insert_reserved_file_extent(trans, inode,
1599 ordered_extent->file_offset,
1600 ordered_extent->start,
1601 ordered_extent->disk_len,
1602 ordered_extent->len,
1603 ordered_extent->len,
e980b50c
CM
1604 ordered_extent->file_offset +
1605 ordered_extent->len,
d899e052
YZ
1606 compressed, 0, 0,
1607 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1608 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1609 ordered_extent->file_offset,
1610 ordered_extent->len);
d899e052
YZ
1611 BUG_ON(ret);
1612 }
e6dcd2dc
CM
1613 unlock_extent(io_tree, ordered_extent->file_offset,
1614 ordered_extent->file_offset + ordered_extent->len - 1,
1615 GFP_NOFS);
7ea394f1 1616nocow:
e6dcd2dc
CM
1617 add_pending_csums(trans, inode, ordered_extent->file_offset,
1618 &ordered_extent->list);
1619
34353029 1620 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1621 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1622 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1623 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1624 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1625
e6dcd2dc
CM
1626 /* once for us */
1627 btrfs_put_ordered_extent(ordered_extent);
1628 /* once for the tree */
1629 btrfs_put_ordered_extent(ordered_extent);
1630
e6dcd2dc
CM
1631 btrfs_end_transaction(trans, root);
1632 return 0;
1633}
1634
b2950863 1635static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1636 struct extent_state *state, int uptodate)
1637{
8b62b72b 1638 ClearPagePrivate2(page);
211f90e6
CM
1639 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1640}
1641
d352ac68
CM
1642/*
1643 * When IO fails, either with EIO or csum verification fails, we
1644 * try other mirrors that might have a good copy of the data. This
1645 * io_failure_record is used to record state as we go through all the
1646 * mirrors. If another mirror has good data, the page is set up to date
1647 * and things continue. If a good mirror can't be found, the original
1648 * bio end_io callback is called to indicate things have failed.
1649 */
7e38326f
CM
1650struct io_failure_record {
1651 struct page *page;
1652 u64 start;
1653 u64 len;
1654 u64 logical;
d20f7043 1655 unsigned long bio_flags;
7e38326f
CM
1656 int last_mirror;
1657};
1658
b2950863 1659static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1660 struct page *page, u64 start, u64 end,
1661 struct extent_state *state)
7e38326f
CM
1662{
1663 struct io_failure_record *failrec = NULL;
1664 u64 private;
1665 struct extent_map *em;
1666 struct inode *inode = page->mapping->host;
1667 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1668 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1669 struct bio *bio;
1670 int num_copies;
1671 int ret;
1259ab75 1672 int rw;
7e38326f
CM
1673 u64 logical;
1674
1675 ret = get_state_private(failure_tree, start, &private);
1676 if (ret) {
7e38326f
CM
1677 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1678 if (!failrec)
1679 return -ENOMEM;
1680 failrec->start = start;
1681 failrec->len = end - start + 1;
1682 failrec->last_mirror = 0;
d20f7043 1683 failrec->bio_flags = 0;
7e38326f 1684
890871be 1685 read_lock(&em_tree->lock);
3b951516
CM
1686 em = lookup_extent_mapping(em_tree, start, failrec->len);
1687 if (em->start > start || em->start + em->len < start) {
1688 free_extent_map(em);
1689 em = NULL;
1690 }
890871be 1691 read_unlock(&em_tree->lock);
7e38326f
CM
1692
1693 if (!em || IS_ERR(em)) {
1694 kfree(failrec);
1695 return -EIO;
1696 }
1697 logical = start - em->start;
1698 logical = em->block_start + logical;
d20f7043
CM
1699 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1700 logical = em->block_start;
1701 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1702 }
7e38326f
CM
1703 failrec->logical = logical;
1704 free_extent_map(em);
1705 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1706 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1707 set_state_private(failure_tree, start,
1708 (u64)(unsigned long)failrec);
7e38326f 1709 } else {
587f7704 1710 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1711 }
1712 num_copies = btrfs_num_copies(
1713 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1714 failrec->logical, failrec->len);
1715 failrec->last_mirror++;
1716 if (!state) {
cad321ad 1717 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1718 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1719 failrec->start,
1720 EXTENT_LOCKED);
1721 if (state && state->start != failrec->start)
1722 state = NULL;
cad321ad 1723 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1724 }
1725 if (!state || failrec->last_mirror > num_copies) {
1726 set_state_private(failure_tree, failrec->start, 0);
1727 clear_extent_bits(failure_tree, failrec->start,
1728 failrec->start + failrec->len - 1,
1729 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1730 kfree(failrec);
1731 return -EIO;
1732 }
1733 bio = bio_alloc(GFP_NOFS, 1);
1734 bio->bi_private = state;
1735 bio->bi_end_io = failed_bio->bi_end_io;
1736 bio->bi_sector = failrec->logical >> 9;
1737 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1738 bio->bi_size = 0;
d20f7043 1739
7e38326f 1740 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1741 if (failed_bio->bi_rw & (1 << BIO_RW))
1742 rw = WRITE;
1743 else
1744 rw = READ;
1745
1746 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1747 failrec->last_mirror,
d20f7043 1748 failrec->bio_flags);
1259ab75
CM
1749 return 0;
1750}
1751
d352ac68
CM
1752/*
1753 * each time an IO finishes, we do a fast check in the IO failure tree
1754 * to see if we need to process or clean up an io_failure_record
1755 */
b2950863 1756static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1757{
1758 u64 private;
1759 u64 private_failure;
1760 struct io_failure_record *failure;
1761 int ret;
1762
1763 private = 0;
1764 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1765 (u64)-1, 1, EXTENT_DIRTY)) {
1766 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1767 start, &private_failure);
1768 if (ret == 0) {
1769 failure = (struct io_failure_record *)(unsigned long)
1770 private_failure;
1771 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1772 failure->start, 0);
1773 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1774 failure->start,
1775 failure->start + failure->len - 1,
1776 EXTENT_DIRTY | EXTENT_LOCKED,
1777 GFP_NOFS);
1778 kfree(failure);
1779 }
1780 }
7e38326f
CM
1781 return 0;
1782}
1783
d352ac68
CM
1784/*
1785 * when reads are done, we need to check csums to verify the data is correct
1786 * if there's a match, we allow the bio to finish. If not, we go through
1787 * the io_failure_record routines to find good copies
1788 */
b2950863 1789static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1790 struct extent_state *state)
07157aac 1791{
35ebb934 1792 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1793 struct inode *inode = page->mapping->host;
d1310b2e 1794 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1795 char *kaddr;
aadfeb6e 1796 u64 private = ~(u32)0;
07157aac 1797 int ret;
ff79f819
CM
1798 struct btrfs_root *root = BTRFS_I(inode)->root;
1799 u32 csum = ~(u32)0;
d1310b2e 1800
d20f7043
CM
1801 if (PageChecked(page)) {
1802 ClearPageChecked(page);
1803 goto good;
1804 }
6cbff00f
CH
1805
1806 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1807 return 0;
1808
1809 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1810 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1811 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1812 GFP_NOFS);
b6cda9bc 1813 return 0;
17d217fe 1814 }
d20f7043 1815
c2e639f0 1816 if (state && state->start == start) {
70dec807
CM
1817 private = state->private;
1818 ret = 0;
1819 } else {
1820 ret = get_state_private(io_tree, start, &private);
1821 }
9ab86c8e 1822 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1823 if (ret)
07157aac 1824 goto zeroit;
d397712b 1825
ff79f819
CM
1826 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1827 btrfs_csum_final(csum, (char *)&csum);
d397712b 1828 if (csum != private)
07157aac 1829 goto zeroit;
d397712b 1830
9ab86c8e 1831 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1832good:
7e38326f
CM
1833 /* if the io failure tree for this inode is non-empty,
1834 * check to see if we've recovered from a failed IO
1835 */
1259ab75 1836 btrfs_clean_io_failures(inode, start);
07157aac
CM
1837 return 0;
1838
1839zeroit:
193f284d
CM
1840 if (printk_ratelimit()) {
1841 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1842 "private %llu\n", page->mapping->host->i_ino,
1843 (unsigned long long)start, csum,
1844 (unsigned long long)private);
1845 }
db94535d
CM
1846 memset(kaddr + offset, 1, end - start + 1);
1847 flush_dcache_page(page);
9ab86c8e 1848 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1849 if (private == 0)
1850 return 0;
7e38326f 1851 return -EIO;
07157aac 1852}
b888db2b 1853
7b128766
JB
1854/*
1855 * This creates an orphan entry for the given inode in case something goes
1856 * wrong in the middle of an unlink/truncate.
1857 */
1858int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1859{
1860 struct btrfs_root *root = BTRFS_I(inode)->root;
1861 int ret = 0;
1862
bcc63abb 1863 spin_lock(&root->list_lock);
7b128766
JB
1864
1865 /* already on the orphan list, we're good */
1866 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1867 spin_unlock(&root->list_lock);
7b128766
JB
1868 return 0;
1869 }
1870
1871 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1872
bcc63abb 1873 spin_unlock(&root->list_lock);
7b128766
JB
1874
1875 /*
1876 * insert an orphan item to track this unlinked/truncated file
1877 */
1878 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1879
1880 return ret;
1881}
1882
1883/*
1884 * We have done the truncate/delete so we can go ahead and remove the orphan
1885 * item for this particular inode.
1886 */
1887int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1888{
1889 struct btrfs_root *root = BTRFS_I(inode)->root;
1890 int ret = 0;
1891
bcc63abb 1892 spin_lock(&root->list_lock);
7b128766
JB
1893
1894 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1895 spin_unlock(&root->list_lock);
7b128766
JB
1896 return 0;
1897 }
1898
1899 list_del_init(&BTRFS_I(inode)->i_orphan);
1900 if (!trans) {
bcc63abb 1901 spin_unlock(&root->list_lock);
7b128766
JB
1902 return 0;
1903 }
1904
bcc63abb 1905 spin_unlock(&root->list_lock);
7b128766
JB
1906
1907 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1908
1909 return ret;
1910}
1911
1912/*
1913 * this cleans up any orphans that may be left on the list from the last use
1914 * of this root.
1915 */
1916void btrfs_orphan_cleanup(struct btrfs_root *root)
1917{
1918 struct btrfs_path *path;
1919 struct extent_buffer *leaf;
1920 struct btrfs_item *item;
1921 struct btrfs_key key, found_key;
1922 struct btrfs_trans_handle *trans;
1923 struct inode *inode;
1924 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1925
7b128766
JB
1926 path = btrfs_alloc_path();
1927 if (!path)
1928 return;
1929 path->reada = -1;
1930
1931 key.objectid = BTRFS_ORPHAN_OBJECTID;
1932 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1933 key.offset = (u64)-1;
1934
7b128766
JB
1935
1936 while (1) {
1937 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1938 if (ret < 0) {
1939 printk(KERN_ERR "Error searching slot for orphan: %d"
1940 "\n", ret);
1941 break;
1942 }
1943
1944 /*
1945 * if ret == 0 means we found what we were searching for, which
1946 * is weird, but possible, so only screw with path if we didnt
1947 * find the key and see if we have stuff that matches
1948 */
1949 if (ret > 0) {
1950 if (path->slots[0] == 0)
1951 break;
1952 path->slots[0]--;
1953 }
1954
1955 /* pull out the item */
1956 leaf = path->nodes[0];
1957 item = btrfs_item_nr(leaf, path->slots[0]);
1958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1959
1960 /* make sure the item matches what we want */
1961 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1962 break;
1963 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1964 break;
1965
1966 /* release the path since we're done with it */
1967 btrfs_release_path(root, path);
1968
1969 /*
1970 * this is where we are basically btrfs_lookup, without the
1971 * crossing root thing. we store the inode number in the
1972 * offset of the orphan item.
1973 */
5d4f98a2
YZ
1974 found_key.objectid = found_key.offset;
1975 found_key.type = BTRFS_INODE_ITEM_KEY;
1976 found_key.offset = 0;
1977 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1978 if (IS_ERR(inode))
7b128766
JB
1979 break;
1980
7b128766
JB
1981 /*
1982 * add this inode to the orphan list so btrfs_orphan_del does
1983 * the proper thing when we hit it
1984 */
bcc63abb 1985 spin_lock(&root->list_lock);
7b128766 1986 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 1987 spin_unlock(&root->list_lock);
7b128766
JB
1988
1989 /*
1990 * if this is a bad inode, means we actually succeeded in
1991 * removing the inode, but not the orphan record, which means
1992 * we need to manually delete the orphan since iput will just
1993 * do a destroy_inode
1994 */
1995 if (is_bad_inode(inode)) {
5b21f2ed 1996 trans = btrfs_start_transaction(root, 1);
7b128766 1997 btrfs_orphan_del(trans, inode);
5b21f2ed 1998 btrfs_end_transaction(trans, root);
7b128766
JB
1999 iput(inode);
2000 continue;
2001 }
2002
2003 /* if we have links, this was a truncate, lets do that */
2004 if (inode->i_nlink) {
2005 nr_truncate++;
2006 btrfs_truncate(inode);
2007 } else {
2008 nr_unlink++;
2009 }
2010
2011 /* this will do delete_inode and everything for us */
2012 iput(inode);
2013 }
2014
2015 if (nr_unlink)
2016 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2017 if (nr_truncate)
2018 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2019
2020 btrfs_free_path(path);
7b128766
JB
2021}
2022
46a53cca
CM
2023/*
2024 * very simple check to peek ahead in the leaf looking for xattrs. If we
2025 * don't find any xattrs, we know there can't be any acls.
2026 *
2027 * slot is the slot the inode is in, objectid is the objectid of the inode
2028 */
2029static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2030 int slot, u64 objectid)
2031{
2032 u32 nritems = btrfs_header_nritems(leaf);
2033 struct btrfs_key found_key;
2034 int scanned = 0;
2035
2036 slot++;
2037 while (slot < nritems) {
2038 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2039
2040 /* we found a different objectid, there must not be acls */
2041 if (found_key.objectid != objectid)
2042 return 0;
2043
2044 /* we found an xattr, assume we've got an acl */
2045 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2046 return 1;
2047
2048 /*
2049 * we found a key greater than an xattr key, there can't
2050 * be any acls later on
2051 */
2052 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2053 return 0;
2054
2055 slot++;
2056 scanned++;
2057
2058 /*
2059 * it goes inode, inode backrefs, xattrs, extents,
2060 * so if there are a ton of hard links to an inode there can
2061 * be a lot of backrefs. Don't waste time searching too hard,
2062 * this is just an optimization
2063 */
2064 if (scanned >= 8)
2065 break;
2066 }
2067 /* we hit the end of the leaf before we found an xattr or
2068 * something larger than an xattr. We have to assume the inode
2069 * has acls
2070 */
2071 return 1;
2072}
2073
d352ac68
CM
2074/*
2075 * read an inode from the btree into the in-memory inode
2076 */
5d4f98a2 2077static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2078{
2079 struct btrfs_path *path;
5f39d397 2080 struct extent_buffer *leaf;
39279cc3 2081 struct btrfs_inode_item *inode_item;
0b86a832 2082 struct btrfs_timespec *tspec;
39279cc3
CM
2083 struct btrfs_root *root = BTRFS_I(inode)->root;
2084 struct btrfs_key location;
46a53cca 2085 int maybe_acls;
39279cc3 2086 u64 alloc_group_block;
618e21d5 2087 u32 rdev;
39279cc3
CM
2088 int ret;
2089
2090 path = btrfs_alloc_path();
2091 BUG_ON(!path);
39279cc3 2092 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2093
39279cc3 2094 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2095 if (ret)
39279cc3 2096 goto make_bad;
39279cc3 2097
5f39d397
CM
2098 leaf = path->nodes[0];
2099 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2100 struct btrfs_inode_item);
2101
2102 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2103 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2104 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2105 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2106 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2107
2108 tspec = btrfs_inode_atime(inode_item);
2109 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2110 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2111
2112 tspec = btrfs_inode_mtime(inode_item);
2113 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2114 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2115
2116 tspec = btrfs_inode_ctime(inode_item);
2117 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2118 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2119
a76a3cd4 2120 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2121 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2122 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2123 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2124 inode->i_rdev = 0;
5f39d397
CM
2125 rdev = btrfs_inode_rdev(leaf, inode_item);
2126
aec7477b 2127 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2128 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2129
5f39d397 2130 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2131
46a53cca
CM
2132 /*
2133 * try to precache a NULL acl entry for files that don't have
2134 * any xattrs or acls
2135 */
2136 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2137 if (!maybe_acls)
2138 cache_no_acl(inode);
46a53cca 2139
d2fb3437
YZ
2140 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2141 alloc_group_block, 0);
39279cc3
CM
2142 btrfs_free_path(path);
2143 inode_item = NULL;
2144
39279cc3 2145 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2146 case S_IFREG:
2147 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2148 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2149 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2150 inode->i_fop = &btrfs_file_operations;
2151 inode->i_op = &btrfs_file_inode_operations;
2152 break;
2153 case S_IFDIR:
2154 inode->i_fop = &btrfs_dir_file_operations;
2155 if (root == root->fs_info->tree_root)
2156 inode->i_op = &btrfs_dir_ro_inode_operations;
2157 else
2158 inode->i_op = &btrfs_dir_inode_operations;
2159 break;
2160 case S_IFLNK:
2161 inode->i_op = &btrfs_symlink_inode_operations;
2162 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2163 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2164 break;
618e21d5 2165 default:
0279b4cd 2166 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2167 init_special_inode(inode, inode->i_mode, rdev);
2168 break;
39279cc3 2169 }
6cbff00f
CH
2170
2171 btrfs_update_iflags(inode);
39279cc3
CM
2172 return;
2173
2174make_bad:
39279cc3 2175 btrfs_free_path(path);
39279cc3
CM
2176 make_bad_inode(inode);
2177}
2178
d352ac68
CM
2179/*
2180 * given a leaf and an inode, copy the inode fields into the leaf
2181 */
e02119d5
CM
2182static void fill_inode_item(struct btrfs_trans_handle *trans,
2183 struct extent_buffer *leaf,
5f39d397 2184 struct btrfs_inode_item *item,
39279cc3
CM
2185 struct inode *inode)
2186{
5f39d397
CM
2187 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2188 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2189 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2190 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2191 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2192
2193 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2194 inode->i_atime.tv_sec);
2195 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2196 inode->i_atime.tv_nsec);
2197
2198 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2199 inode->i_mtime.tv_sec);
2200 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2201 inode->i_mtime.tv_nsec);
2202
2203 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2204 inode->i_ctime.tv_sec);
2205 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2206 inode->i_ctime.tv_nsec);
2207
a76a3cd4 2208 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2209 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2210 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2211 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2212 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2213 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2214 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2215}
2216
d352ac68
CM
2217/*
2218 * copy everything in the in-memory inode into the btree.
2219 */
d397712b
CM
2220noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2221 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2222{
2223 struct btrfs_inode_item *inode_item;
2224 struct btrfs_path *path;
5f39d397 2225 struct extent_buffer *leaf;
39279cc3
CM
2226 int ret;
2227
2228 path = btrfs_alloc_path();
2229 BUG_ON(!path);
b9473439 2230 path->leave_spinning = 1;
39279cc3
CM
2231 ret = btrfs_lookup_inode(trans, root, path,
2232 &BTRFS_I(inode)->location, 1);
2233 if (ret) {
2234 if (ret > 0)
2235 ret = -ENOENT;
2236 goto failed;
2237 }
2238
b4ce94de 2239 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2240 leaf = path->nodes[0];
2241 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2242 struct btrfs_inode_item);
2243
e02119d5 2244 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2245 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2246 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2247 ret = 0;
2248failed:
39279cc3
CM
2249 btrfs_free_path(path);
2250 return ret;
2251}
2252
2253
d352ac68
CM
2254/*
2255 * unlink helper that gets used here in inode.c and in the tree logging
2256 * recovery code. It remove a link in a directory with a given name, and
2257 * also drops the back refs in the inode to the directory
2258 */
e02119d5
CM
2259int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2260 struct btrfs_root *root,
2261 struct inode *dir, struct inode *inode,
2262 const char *name, int name_len)
39279cc3
CM
2263{
2264 struct btrfs_path *path;
39279cc3 2265 int ret = 0;
5f39d397 2266 struct extent_buffer *leaf;
39279cc3 2267 struct btrfs_dir_item *di;
5f39d397 2268 struct btrfs_key key;
aec7477b 2269 u64 index;
39279cc3
CM
2270
2271 path = btrfs_alloc_path();
54aa1f4d
CM
2272 if (!path) {
2273 ret = -ENOMEM;
2274 goto err;
2275 }
2276
b9473439 2277 path->leave_spinning = 1;
39279cc3
CM
2278 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2279 name, name_len, -1);
2280 if (IS_ERR(di)) {
2281 ret = PTR_ERR(di);
2282 goto err;
2283 }
2284 if (!di) {
2285 ret = -ENOENT;
2286 goto err;
2287 }
5f39d397
CM
2288 leaf = path->nodes[0];
2289 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2290 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2291 if (ret)
2292 goto err;
39279cc3
CM
2293 btrfs_release_path(root, path);
2294
aec7477b 2295 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2296 inode->i_ino,
2297 dir->i_ino, &index);
aec7477b 2298 if (ret) {
d397712b 2299 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2300 "inode %lu parent %lu\n", name_len, name,
e02119d5 2301 inode->i_ino, dir->i_ino);
aec7477b
JB
2302 goto err;
2303 }
2304
39279cc3 2305 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2306 index, name, name_len, -1);
39279cc3
CM
2307 if (IS_ERR(di)) {
2308 ret = PTR_ERR(di);
2309 goto err;
2310 }
2311 if (!di) {
2312 ret = -ENOENT;
2313 goto err;
2314 }
2315 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2316 btrfs_release_path(root, path);
39279cc3 2317
e02119d5
CM
2318 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2319 inode, dir->i_ino);
49eb7e46 2320 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2321
2322 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2323 dir, index);
2324 BUG_ON(ret);
39279cc3
CM
2325err:
2326 btrfs_free_path(path);
e02119d5
CM
2327 if (ret)
2328 goto out;
2329
2330 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2331 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2332 btrfs_update_inode(trans, root, dir);
2333 btrfs_drop_nlink(inode);
2334 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2335out:
39279cc3
CM
2336 return ret;
2337}
2338
2339static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2340{
2341 struct btrfs_root *root;
2342 struct btrfs_trans_handle *trans;
7b128766 2343 struct inode *inode = dentry->d_inode;
39279cc3 2344 int ret;
1832a6d5 2345 unsigned long nr = 0;
39279cc3
CM
2346
2347 root = BTRFS_I(dir)->root;
1832a6d5 2348
39279cc3 2349 trans = btrfs_start_transaction(root, 1);
5f39d397 2350
39279cc3 2351 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2352
2353 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2354
e02119d5
CM
2355 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2356 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2357
2358 if (inode->i_nlink == 0)
2359 ret = btrfs_orphan_add(trans, inode);
2360
d3c2fdcf 2361 nr = trans->blocks_used;
5f39d397 2362
89ce8a63 2363 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2364 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2365 return ret;
2366}
2367
2368static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2369{
2370 struct inode *inode = dentry->d_inode;
1832a6d5 2371 int err = 0;
39279cc3
CM
2372 int ret;
2373 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2374 struct btrfs_trans_handle *trans;
1832a6d5 2375 unsigned long nr = 0;
39279cc3 2376
3394e160
CM
2377 /*
2378 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2379 * the root of a subvolume or snapshot
2380 */
2381 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2382 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
134d4512 2383 return -ENOTEMPTY;
925baedd 2384 }
134d4512 2385
39279cc3
CM
2386 trans = btrfs_start_transaction(root, 1);
2387 btrfs_set_trans_block_group(trans, dir);
39279cc3 2388
7b128766
JB
2389 err = btrfs_orphan_add(trans, inode);
2390 if (err)
2391 goto fail_trans;
2392
39279cc3 2393 /* now the directory is empty */
e02119d5
CM
2394 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2395 dentry->d_name.name, dentry->d_name.len);
d397712b 2396 if (!err)
dbe674a9 2397 btrfs_i_size_write(inode, 0);
3954401f 2398
7b128766 2399fail_trans:
d3c2fdcf 2400 nr = trans->blocks_used;
89ce8a63 2401 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2402 btrfs_btree_balance_dirty(root, nr);
3954401f 2403
39279cc3
CM
2404 if (ret && !err)
2405 err = ret;
2406 return err;
2407}
2408
d20f7043 2409#if 0
323ac95b
CM
2410/*
2411 * when truncating bytes in a file, it is possible to avoid reading
2412 * the leaves that contain only checksum items. This can be the
2413 * majority of the IO required to delete a large file, but it must
2414 * be done carefully.
2415 *
2416 * The keys in the level just above the leaves are checked to make sure
2417 * the lowest key in a given leaf is a csum key, and starts at an offset
2418 * after the new size.
2419 *
2420 * Then the key for the next leaf is checked to make sure it also has
2421 * a checksum item for the same file. If it does, we know our target leaf
2422 * contains only checksum items, and it can be safely freed without reading
2423 * it.
2424 *
2425 * This is just an optimization targeted at large files. It may do
2426 * nothing. It will return 0 unless things went badly.
2427 */
2428static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2429 struct btrfs_root *root,
2430 struct btrfs_path *path,
2431 struct inode *inode, u64 new_size)
2432{
2433 struct btrfs_key key;
2434 int ret;
2435 int nritems;
2436 struct btrfs_key found_key;
2437 struct btrfs_key other_key;
5b84e8d6
YZ
2438 struct btrfs_leaf_ref *ref;
2439 u64 leaf_gen;
2440 u64 leaf_start;
323ac95b
CM
2441
2442 path->lowest_level = 1;
2443 key.objectid = inode->i_ino;
2444 key.type = BTRFS_CSUM_ITEM_KEY;
2445 key.offset = new_size;
2446again:
2447 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2448 if (ret < 0)
2449 goto out;
2450
2451 if (path->nodes[1] == NULL) {
2452 ret = 0;
2453 goto out;
2454 }
2455 ret = 0;
2456 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2457 nritems = btrfs_header_nritems(path->nodes[1]);
2458
2459 if (!nritems)
2460 goto out;
2461
2462 if (path->slots[1] >= nritems)
2463 goto next_node;
2464
2465 /* did we find a key greater than anything we want to delete? */
2466 if (found_key.objectid > inode->i_ino ||
2467 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2468 goto out;
2469
2470 /* we check the next key in the node to make sure the leave contains
2471 * only checksum items. This comparison doesn't work if our
2472 * leaf is the last one in the node
2473 */
2474 if (path->slots[1] + 1 >= nritems) {
2475next_node:
2476 /* search forward from the last key in the node, this
2477 * will bring us into the next node in the tree
2478 */
2479 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2480
2481 /* unlikely, but we inc below, so check to be safe */
2482 if (found_key.offset == (u64)-1)
2483 goto out;
2484
2485 /* search_forward needs a path with locks held, do the
2486 * search again for the original key. It is possible
2487 * this will race with a balance and return a path that
2488 * we could modify, but this drop is just an optimization
2489 * and is allowed to miss some leaves.
2490 */
2491 btrfs_release_path(root, path);
2492 found_key.offset++;
2493
2494 /* setup a max key for search_forward */
2495 other_key.offset = (u64)-1;
2496 other_key.type = key.type;
2497 other_key.objectid = key.objectid;
2498
2499 path->keep_locks = 1;
2500 ret = btrfs_search_forward(root, &found_key, &other_key,
2501 path, 0, 0);
2502 path->keep_locks = 0;
2503 if (ret || found_key.objectid != key.objectid ||
2504 found_key.type != key.type) {
2505 ret = 0;
2506 goto out;
2507 }
2508
2509 key.offset = found_key.offset;
2510 btrfs_release_path(root, path);
2511 cond_resched();
2512 goto again;
2513 }
2514
2515 /* we know there's one more slot after us in the tree,
2516 * read that key so we can verify it is also a checksum item
2517 */
2518 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2519
2520 if (found_key.objectid < inode->i_ino)
2521 goto next_key;
2522
2523 if (found_key.type != key.type || found_key.offset < new_size)
2524 goto next_key;
2525
2526 /*
2527 * if the key for the next leaf isn't a csum key from this objectid,
2528 * we can't be sure there aren't good items inside this leaf.
2529 * Bail out
2530 */
2531 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2532 goto out;
2533
5b84e8d6
YZ
2534 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2535 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2536 /*
2537 * it is safe to delete this leaf, it contains only
2538 * csum items from this inode at an offset >= new_size
2539 */
5b84e8d6 2540 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2541 BUG_ON(ret);
2542
5b84e8d6
YZ
2543 if (root->ref_cows && leaf_gen < trans->transid) {
2544 ref = btrfs_alloc_leaf_ref(root, 0);
2545 if (ref) {
2546 ref->root_gen = root->root_key.offset;
2547 ref->bytenr = leaf_start;
2548 ref->owner = 0;
2549 ref->generation = leaf_gen;
2550 ref->nritems = 0;
2551
bd56b302
CM
2552 btrfs_sort_leaf_ref(ref);
2553
5b84e8d6
YZ
2554 ret = btrfs_add_leaf_ref(root, ref, 0);
2555 WARN_ON(ret);
2556 btrfs_free_leaf_ref(root, ref);
2557 } else {
2558 WARN_ON(1);
2559 }
2560 }
323ac95b
CM
2561next_key:
2562 btrfs_release_path(root, path);
2563
2564 if (other_key.objectid == inode->i_ino &&
2565 other_key.type == key.type && other_key.offset > key.offset) {
2566 key.offset = other_key.offset;
2567 cond_resched();
2568 goto again;
2569 }
2570 ret = 0;
2571out:
2572 /* fixup any changes we've made to the path */
2573 path->lowest_level = 0;
2574 path->keep_locks = 0;
2575 btrfs_release_path(root, path);
2576 return ret;
2577}
2578
d20f7043
CM
2579#endif
2580
39279cc3
CM
2581/*
2582 * this can truncate away extent items, csum items and directory items.
2583 * It starts at a high offset and removes keys until it can't find
d352ac68 2584 * any higher than new_size
39279cc3
CM
2585 *
2586 * csum items that cross the new i_size are truncated to the new size
2587 * as well.
7b128766
JB
2588 *
2589 * min_type is the minimum key type to truncate down to. If set to 0, this
2590 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2591 */
e02119d5
CM
2592noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2593 struct btrfs_root *root,
2594 struct inode *inode,
2595 u64 new_size, u32 min_type)
39279cc3
CM
2596{
2597 int ret;
2598 struct btrfs_path *path;
2599 struct btrfs_key key;
5f39d397 2600 struct btrfs_key found_key;
06d9a8d7 2601 u32 found_type = (u8)-1;
5f39d397 2602 struct extent_buffer *leaf;
39279cc3
CM
2603 struct btrfs_file_extent_item *fi;
2604 u64 extent_start = 0;
db94535d 2605 u64 extent_num_bytes = 0;
5d4f98a2 2606 u64 extent_offset = 0;
39279cc3
CM
2607 u64 item_end = 0;
2608 int found_extent;
2609 int del_item;
85e21bac
CM
2610 int pending_del_nr = 0;
2611 int pending_del_slot = 0;
179e29e4 2612 int extent_type = -1;
771ed689 2613 int encoding;
3b951516 2614 u64 mask = root->sectorsize - 1;
39279cc3 2615
e02119d5 2616 if (root->ref_cows)
5b21f2ed 2617 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2618 path = btrfs_alloc_path();
2619 BUG_ON(!path);
33c17ad5 2620 path->reada = -1;
5f39d397 2621
39279cc3
CM
2622 /* FIXME, add redo link to tree so we don't leak on crash */
2623 key.objectid = inode->i_ino;
2624 key.offset = (u64)-1;
5f39d397
CM
2625 key.type = (u8)-1;
2626
85e21bac 2627search_again:
b9473439 2628 path->leave_spinning = 1;
85e21bac 2629 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2630 if (ret < 0)
85e21bac 2631 goto error;
d397712b 2632
85e21bac 2633 if (ret > 0) {
e02119d5
CM
2634 /* there are no items in the tree for us to truncate, we're
2635 * done
2636 */
2637 if (path->slots[0] == 0) {
2638 ret = 0;
2639 goto error;
2640 }
85e21bac
CM
2641 path->slots[0]--;
2642 }
2643
d397712b 2644 while (1) {
39279cc3 2645 fi = NULL;
5f39d397
CM
2646 leaf = path->nodes[0];
2647 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2648 found_type = btrfs_key_type(&found_key);
771ed689 2649 encoding = 0;
39279cc3 2650
5f39d397 2651 if (found_key.objectid != inode->i_ino)
39279cc3 2652 break;
5f39d397 2653
85e21bac 2654 if (found_type < min_type)
39279cc3
CM
2655 break;
2656
5f39d397 2657 item_end = found_key.offset;
39279cc3 2658 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2659 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2660 struct btrfs_file_extent_item);
179e29e4 2661 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2662 encoding = btrfs_file_extent_compression(leaf, fi);
2663 encoding |= btrfs_file_extent_encryption(leaf, fi);
2664 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2665
179e29e4 2666 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2667 item_end +=
db94535d 2668 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2669 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2670 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2671 fi);
39279cc3 2672 }
008630c1 2673 item_end--;
39279cc3 2674 }
e02119d5 2675 if (item_end < new_size) {
d397712b 2676 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2677 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2678 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2679 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2680 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2681 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2682 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2683 found_type = BTRFS_INODE_REF_KEY;
d397712b 2684 else if (found_type)
b888db2b 2685 found_type--;
d397712b 2686 else
b888db2b 2687 break;
a61721d5 2688 btrfs_set_key_type(&key, found_type);
85e21bac 2689 goto next;
39279cc3 2690 }
e02119d5 2691 if (found_key.offset >= new_size)
39279cc3
CM
2692 del_item = 1;
2693 else
2694 del_item = 0;
2695 found_extent = 0;
2696
2697 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2698 if (found_type != BTRFS_EXTENT_DATA_KEY)
2699 goto delete;
2700
2701 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2702 u64 num_dec;
db94535d 2703 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2704 if (!del_item && !encoding) {
db94535d
CM
2705 u64 orig_num_bytes =
2706 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2707 extent_num_bytes = new_size -
5f39d397 2708 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2709 extent_num_bytes = extent_num_bytes &
2710 ~((u64)root->sectorsize - 1);
db94535d
CM
2711 btrfs_set_file_extent_num_bytes(leaf, fi,
2712 extent_num_bytes);
2713 num_dec = (orig_num_bytes -
9069218d 2714 extent_num_bytes);
e02119d5 2715 if (root->ref_cows && extent_start != 0)
a76a3cd4 2716 inode_sub_bytes(inode, num_dec);
5f39d397 2717 btrfs_mark_buffer_dirty(leaf);
39279cc3 2718 } else {
db94535d
CM
2719 extent_num_bytes =
2720 btrfs_file_extent_disk_num_bytes(leaf,
2721 fi);
5d4f98a2
YZ
2722 extent_offset = found_key.offset -
2723 btrfs_file_extent_offset(leaf, fi);
2724
39279cc3 2725 /* FIXME blocksize != 4096 */
9069218d 2726 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2727 if (extent_start != 0) {
2728 found_extent = 1;
e02119d5 2729 if (root->ref_cows)
a76a3cd4 2730 inode_sub_bytes(inode, num_dec);
e02119d5 2731 }
39279cc3 2732 }
9069218d 2733 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2734 /*
2735 * we can't truncate inline items that have had
2736 * special encodings
2737 */
2738 if (!del_item &&
2739 btrfs_file_extent_compression(leaf, fi) == 0 &&
2740 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2741 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2742 u32 size = new_size - found_key.offset;
2743
2744 if (root->ref_cows) {
a76a3cd4
YZ
2745 inode_sub_bytes(inode, item_end + 1 -
2746 new_size);
e02119d5
CM
2747 }
2748 size =
2749 btrfs_file_extent_calc_inline_size(size);
9069218d 2750 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2751 size, 1);
9069218d 2752 BUG_ON(ret);
e02119d5 2753 } else if (root->ref_cows) {
a76a3cd4
YZ
2754 inode_sub_bytes(inode, item_end + 1 -
2755 found_key.offset);
9069218d 2756 }
39279cc3 2757 }
179e29e4 2758delete:
39279cc3 2759 if (del_item) {
85e21bac
CM
2760 if (!pending_del_nr) {
2761 /* no pending yet, add ourselves */
2762 pending_del_slot = path->slots[0];
2763 pending_del_nr = 1;
2764 } else if (pending_del_nr &&
2765 path->slots[0] + 1 == pending_del_slot) {
2766 /* hop on the pending chunk */
2767 pending_del_nr++;
2768 pending_del_slot = path->slots[0];
2769 } else {
d397712b 2770 BUG();
85e21bac 2771 }
39279cc3
CM
2772 } else {
2773 break;
2774 }
5d4f98a2 2775 if (found_extent && root->ref_cows) {
b9473439 2776 btrfs_set_path_blocking(path);
39279cc3 2777 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2778 extent_num_bytes, 0,
2779 btrfs_header_owner(leaf),
2780 inode->i_ino, extent_offset);
39279cc3
CM
2781 BUG_ON(ret);
2782 }
85e21bac
CM
2783next:
2784 if (path->slots[0] == 0) {
2785 if (pending_del_nr)
2786 goto del_pending;
2787 btrfs_release_path(root, path);
06d9a8d7
CM
2788 if (found_type == BTRFS_INODE_ITEM_KEY)
2789 break;
85e21bac
CM
2790 goto search_again;
2791 }
2792
2793 path->slots[0]--;
2794 if (pending_del_nr &&
2795 path->slots[0] + 1 != pending_del_slot) {
2796 struct btrfs_key debug;
2797del_pending:
2798 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2799 pending_del_slot);
2800 ret = btrfs_del_items(trans, root, path,
2801 pending_del_slot,
2802 pending_del_nr);
2803 BUG_ON(ret);
2804 pending_del_nr = 0;
2805 btrfs_release_path(root, path);
06d9a8d7
CM
2806 if (found_type == BTRFS_INODE_ITEM_KEY)
2807 break;
85e21bac
CM
2808 goto search_again;
2809 }
39279cc3
CM
2810 }
2811 ret = 0;
2812error:
85e21bac
CM
2813 if (pending_del_nr) {
2814 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2815 pending_del_nr);
2816 }
39279cc3 2817 btrfs_free_path(path);
39279cc3
CM
2818 return ret;
2819}
2820
2821/*
2822 * taken from block_truncate_page, but does cow as it zeros out
2823 * any bytes left in the last page in the file.
2824 */
2825static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2826{
2827 struct inode *inode = mapping->host;
db94535d 2828 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
2829 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2830 struct btrfs_ordered_extent *ordered;
2831 char *kaddr;
db94535d 2832 u32 blocksize = root->sectorsize;
39279cc3
CM
2833 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2834 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2835 struct page *page;
39279cc3 2836 int ret = 0;
a52d9a80 2837 u64 page_start;
e6dcd2dc 2838 u64 page_end;
39279cc3
CM
2839
2840 if ((offset & (blocksize - 1)) == 0)
2841 goto out;
2842
2843 ret = -ENOMEM;
211c17f5 2844again:
39279cc3
CM
2845 page = grab_cache_page(mapping, index);
2846 if (!page)
2847 goto out;
e6dcd2dc
CM
2848
2849 page_start = page_offset(page);
2850 page_end = page_start + PAGE_CACHE_SIZE - 1;
2851
39279cc3 2852 if (!PageUptodate(page)) {
9ebefb18 2853 ret = btrfs_readpage(NULL, page);
39279cc3 2854 lock_page(page);
211c17f5
CM
2855 if (page->mapping != mapping) {
2856 unlock_page(page);
2857 page_cache_release(page);
2858 goto again;
2859 }
39279cc3
CM
2860 if (!PageUptodate(page)) {
2861 ret = -EIO;
89642229 2862 goto out_unlock;
39279cc3
CM
2863 }
2864 }
211c17f5 2865 wait_on_page_writeback(page);
e6dcd2dc
CM
2866
2867 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2868 set_page_extent_mapped(page);
2869
2870 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2871 if (ordered) {
2872 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2873 unlock_page(page);
2874 page_cache_release(page);
eb84ae03 2875 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
2876 btrfs_put_ordered_extent(ordered);
2877 goto again;
2878 }
2879
ea8c2819 2880 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc
CM
2881 ret = 0;
2882 if (offset != PAGE_CACHE_SIZE) {
2883 kaddr = kmap(page);
2884 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2885 flush_dcache_page(page);
2886 kunmap(page);
2887 }
247e743c 2888 ClearPageChecked(page);
e6dcd2dc
CM
2889 set_page_dirty(page);
2890 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 2891
89642229 2892out_unlock:
39279cc3
CM
2893 unlock_page(page);
2894 page_cache_release(page);
2895out:
2896 return ret;
2897}
2898
9036c102 2899int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 2900{
9036c102
YZ
2901 struct btrfs_trans_handle *trans;
2902 struct btrfs_root *root = BTRFS_I(inode)->root;
2903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2904 struct extent_map *em;
2905 u64 mask = root->sectorsize - 1;
2906 u64 hole_start = (inode->i_size + mask) & ~mask;
2907 u64 block_end = (size + mask) & ~mask;
2908 u64 last_byte;
2909 u64 cur_offset;
2910 u64 hole_size;
39279cc3
CM
2911 int err;
2912
9036c102
YZ
2913 if (size <= hole_start)
2914 return 0;
2915
6a63209f 2916 err = btrfs_check_metadata_free_space(root);
39279cc3
CM
2917 if (err)
2918 return err;
2919
9036c102 2920 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 2921
9036c102
YZ
2922 while (1) {
2923 struct btrfs_ordered_extent *ordered;
2924 btrfs_wait_ordered_range(inode, hole_start,
2925 block_end - hole_start);
2926 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2927 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2928 if (!ordered)
2929 break;
2930 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2931 btrfs_put_ordered_extent(ordered);
2932 }
39279cc3 2933
9036c102
YZ
2934 trans = btrfs_start_transaction(root, 1);
2935 btrfs_set_trans_block_group(trans, inode);
39279cc3 2936
9036c102
YZ
2937 cur_offset = hole_start;
2938 while (1) {
2939 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2940 block_end - cur_offset, 0);
2941 BUG_ON(IS_ERR(em) || !em);
2942 last_byte = min(extent_map_end(em), block_end);
2943 last_byte = (last_byte + mask) & ~mask;
2944 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 2945 u64 hint_byte = 0;
9036c102 2946 hole_size = last_byte - cur_offset;
771ed689
CM
2947 err = btrfs_drop_extents(trans, root, inode,
2948 cur_offset,
2949 cur_offset + hole_size,
e980b50c 2950 block_end,
a1ed835e 2951 cur_offset, &hint_byte, 1);
771ed689
CM
2952 if (err)
2953 break;
9036c102
YZ
2954 err = btrfs_insert_file_extent(trans, root,
2955 inode->i_ino, cur_offset, 0,
2956 0, hole_size, 0, hole_size,
2957 0, 0, 0);
2958 btrfs_drop_extent_cache(inode, hole_start,
2959 last_byte - 1, 0);
2960 }
2961 free_extent_map(em);
2962 cur_offset = last_byte;
2963 if (err || cur_offset >= block_end)
2964 break;
2965 }
1832a6d5 2966
9036c102
YZ
2967 btrfs_end_transaction(trans, root);
2968 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2969 return err;
2970}
39279cc3 2971
9036c102
YZ
2972static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2973{
2974 struct inode *inode = dentry->d_inode;
2975 int err;
39279cc3 2976
9036c102
YZ
2977 err = inode_change_ok(inode, attr);
2978 if (err)
2979 return err;
2bf5a725 2980
5a3f23d5
CM
2981 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2982 if (attr->ia_size > inode->i_size) {
2983 err = btrfs_cont_expand(inode, attr->ia_size);
2984 if (err)
2985 return err;
2986 } else if (inode->i_size > 0 &&
2987 attr->ia_size == 0) {
2988
2989 /* we're truncating a file that used to have good
2990 * data down to zero. Make sure it gets into
2991 * the ordered flush list so that any new writes
2992 * get down to disk quickly.
2993 */
2994 BTRFS_I(inode)->ordered_data_close = 1;
2995 }
39279cc3 2996 }
9036c102 2997
39279cc3 2998 err = inode_setattr(inode, attr);
33268eaf
JB
2999
3000 if (!err && ((attr->ia_valid & ATTR_MODE)))
3001 err = btrfs_acl_chmod(inode);
39279cc3
CM
3002 return err;
3003}
61295eb8 3004
39279cc3
CM
3005void btrfs_delete_inode(struct inode *inode)
3006{
3007 struct btrfs_trans_handle *trans;
3008 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3009 unsigned long nr;
39279cc3
CM
3010 int ret;
3011
3012 truncate_inode_pages(&inode->i_data, 0);
3013 if (is_bad_inode(inode)) {
7b128766 3014 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3015 goto no_delete;
3016 }
4a096752 3017 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3018
dbe674a9 3019 btrfs_i_size_write(inode, 0);
180591bc 3020 trans = btrfs_join_transaction(root, 1);
5f39d397 3021
39279cc3 3022 btrfs_set_trans_block_group(trans, inode);
e02119d5 3023 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3024 if (ret) {
3025 btrfs_orphan_del(NULL, inode);
54aa1f4d 3026 goto no_delete_lock;
7b128766
JB
3027 }
3028
3029 btrfs_orphan_del(trans, inode);
85e21bac 3030
d3c2fdcf 3031 nr = trans->blocks_used;
85e21bac 3032 clear_inode(inode);
5f39d397 3033
39279cc3 3034 btrfs_end_transaction(trans, root);
d3c2fdcf 3035 btrfs_btree_balance_dirty(root, nr);
39279cc3 3036 return;
54aa1f4d
CM
3037
3038no_delete_lock:
d3c2fdcf 3039 nr = trans->blocks_used;
54aa1f4d 3040 btrfs_end_transaction(trans, root);
d3c2fdcf 3041 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3042no_delete:
3043 clear_inode(inode);
3044}
3045
3046/*
3047 * this returns the key found in the dir entry in the location pointer.
3048 * If no dir entries were found, location->objectid is 0.
3049 */
3050static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3051 struct btrfs_key *location)
3052{
3053 const char *name = dentry->d_name.name;
3054 int namelen = dentry->d_name.len;
3055 struct btrfs_dir_item *di;
3056 struct btrfs_path *path;
3057 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3058 int ret = 0;
39279cc3
CM
3059
3060 path = btrfs_alloc_path();
3061 BUG_ON(!path);
3954401f 3062
39279cc3
CM
3063 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3064 namelen, 0);
0d9f7f3e
Y
3065 if (IS_ERR(di))
3066 ret = PTR_ERR(di);
d397712b
CM
3067
3068 if (!di || IS_ERR(di))
3954401f 3069 goto out_err;
d397712b 3070
5f39d397 3071 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3072out:
39279cc3
CM
3073 btrfs_free_path(path);
3074 return ret;
3954401f
CM
3075out_err:
3076 location->objectid = 0;
3077 goto out;
39279cc3
CM
3078}
3079
3080/*
3081 * when we hit a tree root in a directory, the btrfs part of the inode
3082 * needs to be changed to reflect the root directory of the tree root. This
3083 * is kind of like crossing a mount point.
3084 */
3085static int fixup_tree_root_location(struct btrfs_root *root,
3086 struct btrfs_key *location,
58176a96
JB
3087 struct btrfs_root **sub_root,
3088 struct dentry *dentry)
39279cc3 3089{
39279cc3
CM
3090 struct btrfs_root_item *ri;
3091
3092 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3093 return 0;
3094 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3095 return 0;
3096
58176a96
JB
3097 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3098 dentry->d_name.name,
3099 dentry->d_name.len);
39279cc3
CM
3100 if (IS_ERR(*sub_root))
3101 return PTR_ERR(*sub_root);
3102
3103 ri = &(*sub_root)->root_item;
3104 location->objectid = btrfs_root_dirid(ri);
39279cc3
CM
3105 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3106 location->offset = 0;
3107
39279cc3
CM
3108 return 0;
3109}
3110
5d4f98a2
YZ
3111static void inode_tree_add(struct inode *inode)
3112{
3113 struct btrfs_root *root = BTRFS_I(inode)->root;
3114 struct btrfs_inode *entry;
03e860bd
FNP
3115 struct rb_node **p;
3116 struct rb_node *parent;
3117
3118again:
3119 p = &root->inode_tree.rb_node;
3120 parent = NULL;
5d4f98a2
YZ
3121
3122 spin_lock(&root->inode_lock);
3123 while (*p) {
3124 parent = *p;
3125 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3126
3127 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3128 p = &parent->rb_left;
5d4f98a2 3129 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3130 p = &parent->rb_right;
5d4f98a2
YZ
3131 else {
3132 WARN_ON(!(entry->vfs_inode.i_state &
3133 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3134 rb_erase(parent, &root->inode_tree);
3135 RB_CLEAR_NODE(parent);
3136 spin_unlock(&root->inode_lock);
3137 goto again;
5d4f98a2
YZ
3138 }
3139 }
3140 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3141 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3142 spin_unlock(&root->inode_lock);
3143}
3144
3145static void inode_tree_del(struct inode *inode)
3146{
3147 struct btrfs_root *root = BTRFS_I(inode)->root;
3148
03e860bd 3149 spin_lock(&root->inode_lock);
5d4f98a2 3150 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3151 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2
YZ
3152 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3153 }
03e860bd 3154 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
3155}
3156
e02119d5 3157static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3158{
e02119d5
CM
3159 struct btrfs_inode *bi = BTRFS_I(inode);
3160
e02119d5 3161 bi->generation = 0;
c3027eb5 3162 bi->sequence = 0;
e02119d5
CM
3163 bi->last_trans = 0;
3164 bi->logged_trans = 0;
3165 bi->delalloc_bytes = 0;
6a63209f 3166 bi->reserved_bytes = 0;
e02119d5
CM
3167 bi->disk_i_size = 0;
3168 bi->flags = 0;
3169 bi->index_cnt = (u64)-1;
12fcfd22 3170 bi->last_unlink_trans = 0;
2757495c 3171 bi->ordered_data_close = 0;
d1310b2e
CM
3172 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3173 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3174 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3175 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3176 inode->i_mapping, GFP_NOFS);
ea8c2819 3177 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3178 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3179 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3180 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3181 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3182 mutex_init(&BTRFS_I(inode)->log_mutex);
3183}
3184
3185static int btrfs_init_locked_inode(struct inode *inode, void *p)
3186{
3187 struct btrfs_iget_args *args = p;
3188 inode->i_ino = args->ino;
3189 init_btrfs_i(inode);
3190 BTRFS_I(inode)->root = args->root;
6a63209f 3191 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3192 return 0;
3193}
3194
3195static int btrfs_find_actor(struct inode *inode, void *opaque)
3196{
3197 struct btrfs_iget_args *args = opaque;
d397712b
CM
3198 return args->ino == inode->i_ino &&
3199 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3200}
3201
5d4f98a2
YZ
3202static struct inode *btrfs_iget_locked(struct super_block *s,
3203 u64 objectid,
3204 struct btrfs_root *root)
39279cc3
CM
3205{
3206 struct inode *inode;
3207 struct btrfs_iget_args args;
3208 args.ino = objectid;
3209 args.root = root;
3210
3211 inode = iget5_locked(s, objectid, btrfs_find_actor,
3212 btrfs_init_locked_inode,
3213 (void *)&args);
3214 return inode;
3215}
3216
1a54ef8c
BR
3217/* Get an inode object given its location and corresponding root.
3218 * Returns in *is_new if the inode was read from disk
3219 */
3220struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3221 struct btrfs_root *root)
1a54ef8c
BR
3222{
3223 struct inode *inode;
3224
3225 inode = btrfs_iget_locked(s, location->objectid, root);
3226 if (!inode)
5d4f98a2 3227 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3228
3229 if (inode->i_state & I_NEW) {
3230 BTRFS_I(inode)->root = root;
3231 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3232 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3233
3234 inode_tree_add(inode);
1a54ef8c 3235 unlock_new_inode(inode);
1a54ef8c
BR
3236 }
3237
3238 return inode;
3239}
3240
3de4586c 3241struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3242{
d397712b 3243 struct inode *inode;
39279cc3
CM
3244 struct btrfs_inode *bi = BTRFS_I(dir);
3245 struct btrfs_root *root = bi->root;
3246 struct btrfs_root *sub_root = root;
3247 struct btrfs_key location;
5d4f98a2 3248 int ret;
39279cc3
CM
3249
3250 if (dentry->d_name.len > BTRFS_NAME_LEN)
3251 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3252
39279cc3 3253 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3254
39279cc3
CM
3255 if (ret < 0)
3256 return ERR_PTR(ret);
5f39d397 3257
39279cc3
CM
3258 inode = NULL;
3259 if (location.objectid) {
58176a96
JB
3260 ret = fixup_tree_root_location(root, &location, &sub_root,
3261 dentry);
39279cc3
CM
3262 if (ret < 0)
3263 return ERR_PTR(ret);
3264 if (ret > 0)
3265 return ERR_PTR(-ENOENT);
5d4f98a2 3266 inode = btrfs_iget(dir->i_sb, &location, sub_root);
1a54ef8c
BR
3267 if (IS_ERR(inode))
3268 return ERR_CAST(inode);
39279cc3 3269 }
3de4586c
CM
3270 return inode;
3271}
3272
3273static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3274 struct nameidata *nd)
3275{
3276 struct inode *inode;
3277
3278 if (dentry->d_name.len > BTRFS_NAME_LEN)
3279 return ERR_PTR(-ENAMETOOLONG);
3280
3281 inode = btrfs_lookup_dentry(dir, dentry);
3282 if (IS_ERR(inode))
3283 return ERR_CAST(inode);
7b128766 3284
39279cc3
CM
3285 return d_splice_alias(inode, dentry);
3286}
3287
39279cc3
CM
3288static unsigned char btrfs_filetype_table[] = {
3289 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3290};
3291
cbdf5a24
DW
3292static int btrfs_real_readdir(struct file *filp, void *dirent,
3293 filldir_t filldir)
39279cc3 3294{
6da6abae 3295 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3296 struct btrfs_root *root = BTRFS_I(inode)->root;
3297 struct btrfs_item *item;
3298 struct btrfs_dir_item *di;
3299 struct btrfs_key key;
5f39d397 3300 struct btrfs_key found_key;
39279cc3
CM
3301 struct btrfs_path *path;
3302 int ret;
3303 u32 nritems;
5f39d397 3304 struct extent_buffer *leaf;
39279cc3
CM
3305 int slot;
3306 int advance;
3307 unsigned char d_type;
3308 int over = 0;
3309 u32 di_cur;
3310 u32 di_total;
3311 u32 di_len;
3312 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3313 char tmp_name[32];
3314 char *name_ptr;
3315 int name_len;
39279cc3
CM
3316
3317 /* FIXME, use a real flag for deciding about the key type */
3318 if (root->fs_info->tree_root == root)
3319 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3320
3954401f
CM
3321 /* special case for "." */
3322 if (filp->f_pos == 0) {
3323 over = filldir(dirent, ".", 1,
3324 1, inode->i_ino,
3325 DT_DIR);
3326 if (over)
3327 return 0;
3328 filp->f_pos = 1;
3329 }
3954401f
CM
3330 /* special case for .., just use the back ref */
3331 if (filp->f_pos == 1) {
5ecc7e5d 3332 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3333 over = filldir(dirent, "..", 2,
5ecc7e5d 3334 2, pino, DT_DIR);
3954401f 3335 if (over)
49593bfa 3336 return 0;
3954401f
CM
3337 filp->f_pos = 2;
3338 }
49593bfa
DW
3339 path = btrfs_alloc_path();
3340 path->reada = 2;
3341
39279cc3
CM
3342 btrfs_set_key_type(&key, key_type);
3343 key.offset = filp->f_pos;
49593bfa 3344 key.objectid = inode->i_ino;
5f39d397 3345
39279cc3
CM
3346 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3347 if (ret < 0)
3348 goto err;
3349 advance = 0;
49593bfa
DW
3350
3351 while (1) {
5f39d397
CM
3352 leaf = path->nodes[0];
3353 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3354 slot = path->slots[0];
3355 if (advance || slot >= nritems) {
49593bfa 3356 if (slot >= nritems - 1) {
39279cc3
CM
3357 ret = btrfs_next_leaf(root, path);
3358 if (ret)
3359 break;
5f39d397
CM
3360 leaf = path->nodes[0];
3361 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3362 slot = path->slots[0];
3363 } else {
3364 slot++;
3365 path->slots[0]++;
3366 }
3367 }
3de4586c 3368
39279cc3 3369 advance = 1;
5f39d397
CM
3370 item = btrfs_item_nr(leaf, slot);
3371 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3372
3373 if (found_key.objectid != key.objectid)
39279cc3 3374 break;
5f39d397 3375 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3376 break;
5f39d397 3377 if (found_key.offset < filp->f_pos)
39279cc3 3378 continue;
5f39d397
CM
3379
3380 filp->f_pos = found_key.offset;
49593bfa 3381
39279cc3
CM
3382 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3383 di_cur = 0;
5f39d397 3384 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3385
3386 while (di_cur < di_total) {
5f39d397
CM
3387 struct btrfs_key location;
3388
3389 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3390 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3391 name_ptr = tmp_name;
3392 } else {
3393 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3394 if (!name_ptr) {
3395 ret = -ENOMEM;
3396 goto err;
3397 }
5f39d397
CM
3398 }
3399 read_extent_buffer(leaf, name_ptr,
3400 (unsigned long)(di + 1), name_len);
3401
3402 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3403 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3404
3405 /* is this a reference to our own snapshot? If so
3406 * skip it
3407 */
3408 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3409 location.objectid == root->root_key.objectid) {
3410 over = 0;
3411 goto skip;
3412 }
5f39d397 3413 over = filldir(dirent, name_ptr, name_len,
49593bfa 3414 found_key.offset, location.objectid,
39279cc3 3415 d_type);
5f39d397 3416
3de4586c 3417skip:
5f39d397
CM
3418 if (name_ptr != tmp_name)
3419 kfree(name_ptr);
3420
39279cc3
CM
3421 if (over)
3422 goto nopos;
5103e947 3423 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3424 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3425 di_cur += di_len;
3426 di = (struct btrfs_dir_item *)((char *)di + di_len);
3427 }
3428 }
49593bfa
DW
3429
3430 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3431 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3432 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3433 else
3434 filp->f_pos++;
39279cc3
CM
3435nopos:
3436 ret = 0;
3437err:
39279cc3 3438 btrfs_free_path(path);
39279cc3
CM
3439 return ret;
3440}
3441
3442int btrfs_write_inode(struct inode *inode, int wait)
3443{
3444 struct btrfs_root *root = BTRFS_I(inode)->root;
3445 struct btrfs_trans_handle *trans;
3446 int ret = 0;
3447
c146afad 3448 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3449 return 0;
3450
39279cc3 3451 if (wait) {
f9295749 3452 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3453 btrfs_set_trans_block_group(trans, inode);
3454 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3455 }
3456 return ret;
3457}
3458
3459/*
54aa1f4d 3460 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3461 * inode changes. But, it is most likely to find the inode in cache.
3462 * FIXME, needs more benchmarking...there are no reasons other than performance
3463 * to keep or drop this code.
3464 */
3465void btrfs_dirty_inode(struct inode *inode)
3466{
3467 struct btrfs_root *root = BTRFS_I(inode)->root;
3468 struct btrfs_trans_handle *trans;
3469
f9295749 3470 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3471 btrfs_set_trans_block_group(trans, inode);
3472 btrfs_update_inode(trans, root, inode);
3473 btrfs_end_transaction(trans, root);
39279cc3
CM
3474}
3475
d352ac68
CM
3476/*
3477 * find the highest existing sequence number in a directory
3478 * and then set the in-memory index_cnt variable to reflect
3479 * free sequence numbers
3480 */
aec7477b
JB
3481static int btrfs_set_inode_index_count(struct inode *inode)
3482{
3483 struct btrfs_root *root = BTRFS_I(inode)->root;
3484 struct btrfs_key key, found_key;
3485 struct btrfs_path *path;
3486 struct extent_buffer *leaf;
3487 int ret;
3488
3489 key.objectid = inode->i_ino;
3490 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3491 key.offset = (u64)-1;
3492
3493 path = btrfs_alloc_path();
3494 if (!path)
3495 return -ENOMEM;
3496
3497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3498 if (ret < 0)
3499 goto out;
3500 /* FIXME: we should be able to handle this */
3501 if (ret == 0)
3502 goto out;
3503 ret = 0;
3504
3505 /*
3506 * MAGIC NUMBER EXPLANATION:
3507 * since we search a directory based on f_pos we have to start at 2
3508 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3509 * else has to start at 2
3510 */
3511 if (path->slots[0] == 0) {
3512 BTRFS_I(inode)->index_cnt = 2;
3513 goto out;
3514 }
3515
3516 path->slots[0]--;
3517
3518 leaf = path->nodes[0];
3519 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3520
3521 if (found_key.objectid != inode->i_ino ||
3522 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3523 BTRFS_I(inode)->index_cnt = 2;
3524 goto out;
3525 }
3526
3527 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3528out:
3529 btrfs_free_path(path);
3530 return ret;
3531}
3532
d352ac68
CM
3533/*
3534 * helper to find a free sequence number in a given directory. This current
3535 * code is very simple, later versions will do smarter things in the btree
3536 */
3de4586c 3537int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3538{
3539 int ret = 0;
3540
3541 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3542 ret = btrfs_set_inode_index_count(dir);
d397712b 3543 if (ret)
aec7477b
JB
3544 return ret;
3545 }
3546
00e4e6b3 3547 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3548 BTRFS_I(dir)->index_cnt++;
3549
3550 return ret;
3551}
3552
39279cc3
CM
3553static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root,
aec7477b 3555 struct inode *dir,
9c58309d 3556 const char *name, int name_len,
d2fb3437
YZ
3557 u64 ref_objectid, u64 objectid,
3558 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3559{
3560 struct inode *inode;
5f39d397 3561 struct btrfs_inode_item *inode_item;
39279cc3 3562 struct btrfs_key *location;
5f39d397 3563 struct btrfs_path *path;
9c58309d
CM
3564 struct btrfs_inode_ref *ref;
3565 struct btrfs_key key[2];
3566 u32 sizes[2];
3567 unsigned long ptr;
39279cc3
CM
3568 int ret;
3569 int owner;
3570
5f39d397
CM
3571 path = btrfs_alloc_path();
3572 BUG_ON(!path);
3573
39279cc3
CM
3574 inode = new_inode(root->fs_info->sb);
3575 if (!inode)
3576 return ERR_PTR(-ENOMEM);
3577
aec7477b 3578 if (dir) {
3de4586c 3579 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3580 if (ret) {
3581 iput(inode);
aec7477b 3582 return ERR_PTR(ret);
09771430 3583 }
aec7477b
JB
3584 }
3585 /*
3586 * index_cnt is ignored for everything but a dir,
3587 * btrfs_get_inode_index_count has an explanation for the magic
3588 * number
3589 */
e02119d5 3590 init_btrfs_i(inode);
aec7477b 3591 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3592 BTRFS_I(inode)->root = root;
e02119d5 3593 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3594 btrfs_set_inode_space_info(root, inode);
b888db2b 3595
39279cc3
CM
3596 if (mode & S_IFDIR)
3597 owner = 0;
3598 else
3599 owner = 1;
d2fb3437
YZ
3600 BTRFS_I(inode)->block_group =
3601 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
3602
3603 key[0].objectid = objectid;
3604 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3605 key[0].offset = 0;
3606
3607 key[1].objectid = objectid;
3608 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3609 key[1].offset = ref_objectid;
3610
3611 sizes[0] = sizeof(struct btrfs_inode_item);
3612 sizes[1] = name_len + sizeof(*ref);
3613
b9473439 3614 path->leave_spinning = 1;
9c58309d
CM
3615 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3616 if (ret != 0)
5f39d397
CM
3617 goto fail;
3618
9c58309d
CM
3619 if (objectid > root->highest_inode)
3620 root->highest_inode = objectid;
3621
79683f2d 3622 inode->i_uid = current_fsuid();
8c087b51 3623
42f15d77 3624 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3625 inode->i_gid = dir->i_gid;
3626 if (S_ISDIR(mode))
3627 mode |= S_ISGID;
3628 } else
3629 inode->i_gid = current_fsgid();
3630
39279cc3
CM
3631 inode->i_mode = mode;
3632 inode->i_ino = objectid;
a76a3cd4 3633 inode_set_bytes(inode, 0);
39279cc3 3634 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3635 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3636 struct btrfs_inode_item);
e02119d5 3637 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
3638
3639 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3640 struct btrfs_inode_ref);
3641 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 3642 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
3643 ptr = (unsigned long)(ref + 1);
3644 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3645
5f39d397
CM
3646 btrfs_mark_buffer_dirty(path->nodes[0]);
3647 btrfs_free_path(path);
3648
39279cc3
CM
3649 location = &BTRFS_I(inode)->location;
3650 location->objectid = objectid;
39279cc3
CM
3651 location->offset = 0;
3652 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3653
6cbff00f
CH
3654 btrfs_inherit_iflags(inode, dir);
3655
94272164
CM
3656 if ((mode & S_IFREG)) {
3657 if (btrfs_test_opt(root, NODATASUM))
3658 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3659 if (btrfs_test_opt(root, NODATACOW))
3660 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3661 }
3662
39279cc3 3663 insert_inode_hash(inode);
5d4f98a2 3664 inode_tree_add(inode);
39279cc3 3665 return inode;
5f39d397 3666fail:
aec7477b
JB
3667 if (dir)
3668 BTRFS_I(dir)->index_cnt--;
5f39d397 3669 btrfs_free_path(path);
09771430 3670 iput(inode);
5f39d397 3671 return ERR_PTR(ret);
39279cc3
CM
3672}
3673
3674static inline u8 btrfs_inode_type(struct inode *inode)
3675{
3676 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3677}
3678
d352ac68
CM
3679/*
3680 * utility function to add 'inode' into 'parent_inode' with
3681 * a give name and a given sequence number.
3682 * if 'add_backref' is true, also insert a backref from the
3683 * inode to the parent directory.
3684 */
e02119d5
CM
3685int btrfs_add_link(struct btrfs_trans_handle *trans,
3686 struct inode *parent_inode, struct inode *inode,
3687 const char *name, int name_len, int add_backref, u64 index)
39279cc3
CM
3688{
3689 int ret;
3690 struct btrfs_key key;
e02119d5 3691 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 3692
39279cc3 3693 key.objectid = inode->i_ino;
39279cc3
CM
3694 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3695 key.offset = 0;
3696
e02119d5
CM
3697 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3698 parent_inode->i_ino,
aec7477b 3699 &key, btrfs_inode_type(inode),
00e4e6b3 3700 index);
39279cc3 3701 if (ret == 0) {
9c58309d
CM
3702 if (add_backref) {
3703 ret = btrfs_insert_inode_ref(trans, root,
e02119d5
CM
3704 name, name_len,
3705 inode->i_ino,
3706 parent_inode->i_ino,
3707 index);
9c58309d 3708 }
dbe674a9 3709 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 3710 name_len * 2);
79c44584 3711 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 3712 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
3713 }
3714 return ret;
3715}
3716
3717static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 3718 struct dentry *dentry, struct inode *inode,
00e4e6b3 3719 int backref, u64 index)
39279cc3 3720{
e02119d5
CM
3721 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3722 inode, dentry->d_name.name,
3723 dentry->d_name.len, backref, index);
39279cc3
CM
3724 if (!err) {
3725 d_instantiate(dentry, inode);
3726 return 0;
3727 }
3728 if (err > 0)
3729 err = -EEXIST;
3730 return err;
3731}
3732
618e21d5
JB
3733static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3734 int mode, dev_t rdev)
3735{
3736 struct btrfs_trans_handle *trans;
3737 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3738 struct inode *inode = NULL;
618e21d5
JB
3739 int err;
3740 int drop_inode = 0;
3741 u64 objectid;
1832a6d5 3742 unsigned long nr = 0;
00e4e6b3 3743 u64 index = 0;
618e21d5
JB
3744
3745 if (!new_valid_dev(rdev))
3746 return -EINVAL;
3747
6a63209f 3748 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3749 if (err)
3750 goto fail;
3751
618e21d5
JB
3752 trans = btrfs_start_transaction(root, 1);
3753 btrfs_set_trans_block_group(trans, dir);
3754
3755 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3756 if (err) {
3757 err = -ENOSPC;
3758 goto out_unlock;
3759 }
3760
aec7477b 3761 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3762 dentry->d_name.len,
3763 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 3764 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
3765 err = PTR_ERR(inode);
3766 if (IS_ERR(inode))
3767 goto out_unlock;
3768
0279b4cd 3769 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3770 if (err) {
3771 drop_inode = 1;
3772 goto out_unlock;
3773 }
3774
618e21d5 3775 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3776 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
3777 if (err)
3778 drop_inode = 1;
3779 else {
3780 inode->i_op = &btrfs_special_inode_operations;
3781 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 3782 btrfs_update_inode(trans, root, inode);
618e21d5 3783 }
618e21d5
JB
3784 btrfs_update_inode_block_group(trans, inode);
3785 btrfs_update_inode_block_group(trans, dir);
3786out_unlock:
d3c2fdcf 3787 nr = trans->blocks_used;
89ce8a63 3788 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3789fail:
618e21d5
JB
3790 if (drop_inode) {
3791 inode_dec_link_count(inode);
3792 iput(inode);
3793 }
d3c2fdcf 3794 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
3795 return err;
3796}
3797
39279cc3
CM
3798static int btrfs_create(struct inode *dir, struct dentry *dentry,
3799 int mode, struct nameidata *nd)
3800{
3801 struct btrfs_trans_handle *trans;
3802 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3803 struct inode *inode = NULL;
39279cc3
CM
3804 int err;
3805 int drop_inode = 0;
1832a6d5 3806 unsigned long nr = 0;
39279cc3 3807 u64 objectid;
00e4e6b3 3808 u64 index = 0;
39279cc3 3809
6a63209f 3810 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3811 if (err)
3812 goto fail;
39279cc3
CM
3813 trans = btrfs_start_transaction(root, 1);
3814 btrfs_set_trans_block_group(trans, dir);
3815
3816 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3817 if (err) {
3818 err = -ENOSPC;
3819 goto out_unlock;
3820 }
3821
aec7477b 3822 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3823 dentry->d_name.len,
3824 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
3825 objectid, BTRFS_I(dir)->block_group, mode,
3826 &index);
39279cc3
CM
3827 err = PTR_ERR(inode);
3828 if (IS_ERR(inode))
3829 goto out_unlock;
3830
0279b4cd 3831 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3832 if (err) {
3833 drop_inode = 1;
3834 goto out_unlock;
3835 }
3836
39279cc3 3837 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3838 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
3839 if (err)
3840 drop_inode = 1;
3841 else {
3842 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3843 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
3844 inode->i_fop = &btrfs_file_operations;
3845 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 3846 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 3847 }
39279cc3
CM
3848 btrfs_update_inode_block_group(trans, inode);
3849 btrfs_update_inode_block_group(trans, dir);
3850out_unlock:
d3c2fdcf 3851 nr = trans->blocks_used;
ab78c84d 3852 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3853fail:
39279cc3
CM
3854 if (drop_inode) {
3855 inode_dec_link_count(inode);
3856 iput(inode);
3857 }
d3c2fdcf 3858 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3859 return err;
3860}
3861
3862static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3863 struct dentry *dentry)
3864{
3865 struct btrfs_trans_handle *trans;
3866 struct btrfs_root *root = BTRFS_I(dir)->root;
3867 struct inode *inode = old_dentry->d_inode;
00e4e6b3 3868 u64 index;
1832a6d5 3869 unsigned long nr = 0;
39279cc3
CM
3870 int err;
3871 int drop_inode = 0;
3872
3873 if (inode->i_nlink == 0)
3874 return -ENOENT;
3875
e02119d5 3876 btrfs_inc_nlink(inode);
6a63209f 3877 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3878 if (err)
3879 goto fail;
3de4586c 3880 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
3881 if (err)
3882 goto fail;
3883
39279cc3 3884 trans = btrfs_start_transaction(root, 1);
5f39d397 3885
39279cc3
CM
3886 btrfs_set_trans_block_group(trans, dir);
3887 atomic_inc(&inode->i_count);
aec7477b 3888
00e4e6b3 3889 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 3890
39279cc3
CM
3891 if (err)
3892 drop_inode = 1;
5f39d397 3893
39279cc3 3894 btrfs_update_inode_block_group(trans, dir);
54aa1f4d 3895 err = btrfs_update_inode(trans, root, inode);
5f39d397 3896
54aa1f4d
CM
3897 if (err)
3898 drop_inode = 1;
39279cc3 3899
d3c2fdcf 3900 nr = trans->blocks_used;
12fcfd22
CM
3901
3902 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
ab78c84d 3903 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3904fail:
39279cc3
CM
3905 if (drop_inode) {
3906 inode_dec_link_count(inode);
3907 iput(inode);
3908 }
d3c2fdcf 3909 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3910 return err;
3911}
3912
39279cc3
CM
3913static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3914{
b9d86667 3915 struct inode *inode = NULL;
39279cc3
CM
3916 struct btrfs_trans_handle *trans;
3917 struct btrfs_root *root = BTRFS_I(dir)->root;
3918 int err = 0;
3919 int drop_on_err = 0;
b9d86667 3920 u64 objectid = 0;
00e4e6b3 3921 u64 index = 0;
d3c2fdcf 3922 unsigned long nr = 1;
39279cc3 3923
6a63209f 3924 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3925 if (err)
3926 goto out_unlock;
3927
39279cc3
CM
3928 trans = btrfs_start_transaction(root, 1);
3929 btrfs_set_trans_block_group(trans, dir);
5f39d397 3930
39279cc3
CM
3931 if (IS_ERR(trans)) {
3932 err = PTR_ERR(trans);
3933 goto out_unlock;
3934 }
3935
3936 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3937 if (err) {
3938 err = -ENOSPC;
3939 goto out_unlock;
3940 }
3941
aec7477b 3942 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3943 dentry->d_name.len,
3944 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
3945 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3946 &index);
39279cc3
CM
3947 if (IS_ERR(inode)) {
3948 err = PTR_ERR(inode);
3949 goto out_fail;
3950 }
5f39d397 3951
39279cc3 3952 drop_on_err = 1;
33268eaf 3953
0279b4cd 3954 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3955 if (err)
3956 goto out_fail;
3957
39279cc3
CM
3958 inode->i_op = &btrfs_dir_inode_operations;
3959 inode->i_fop = &btrfs_dir_file_operations;
3960 btrfs_set_trans_block_group(trans, inode);
3961
dbe674a9 3962 btrfs_i_size_write(inode, 0);
39279cc3
CM
3963 err = btrfs_update_inode(trans, root, inode);
3964 if (err)
3965 goto out_fail;
5f39d397 3966
e02119d5
CM
3967 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3968 inode, dentry->d_name.name,
3969 dentry->d_name.len, 0, index);
39279cc3
CM
3970 if (err)
3971 goto out_fail;
5f39d397 3972
39279cc3
CM
3973 d_instantiate(dentry, inode);
3974 drop_on_err = 0;
39279cc3
CM
3975 btrfs_update_inode_block_group(trans, inode);
3976 btrfs_update_inode_block_group(trans, dir);
3977
3978out_fail:
d3c2fdcf 3979 nr = trans->blocks_used;
ab78c84d 3980 btrfs_end_transaction_throttle(trans, root);
5f39d397 3981
39279cc3 3982out_unlock:
39279cc3
CM
3983 if (drop_on_err)
3984 iput(inode);
d3c2fdcf 3985 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3986 return err;
3987}
3988
d352ac68
CM
3989/* helper for btfs_get_extent. Given an existing extent in the tree,
3990 * and an extent that you want to insert, deal with overlap and insert
3991 * the new extent into the tree.
3992 */
3b951516
CM
3993static int merge_extent_mapping(struct extent_map_tree *em_tree,
3994 struct extent_map *existing,
e6dcd2dc
CM
3995 struct extent_map *em,
3996 u64 map_start, u64 map_len)
3b951516
CM
3997{
3998 u64 start_diff;
3b951516 3999
e6dcd2dc
CM
4000 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4001 start_diff = map_start - em->start;
4002 em->start = map_start;
4003 em->len = map_len;
c8b97818
CM
4004 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4005 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4006 em->block_start += start_diff;
c8b97818
CM
4007 em->block_len -= start_diff;
4008 }
e6dcd2dc 4009 return add_extent_mapping(em_tree, em);
3b951516
CM
4010}
4011
c8b97818
CM
4012static noinline int uncompress_inline(struct btrfs_path *path,
4013 struct inode *inode, struct page *page,
4014 size_t pg_offset, u64 extent_offset,
4015 struct btrfs_file_extent_item *item)
4016{
4017 int ret;
4018 struct extent_buffer *leaf = path->nodes[0];
4019 char *tmp;
4020 size_t max_size;
4021 unsigned long inline_size;
4022 unsigned long ptr;
4023
4024 WARN_ON(pg_offset != 0);
4025 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4026 inline_size = btrfs_file_extent_inline_item_len(leaf,
4027 btrfs_item_nr(leaf, path->slots[0]));
4028 tmp = kmalloc(inline_size, GFP_NOFS);
4029 ptr = btrfs_file_extent_inline_start(item);
4030
4031 read_extent_buffer(leaf, tmp, ptr, inline_size);
4032
5b050f04 4033 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4034 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4035 inline_size, max_size);
4036 if (ret) {
4037 char *kaddr = kmap_atomic(page, KM_USER0);
4038 unsigned long copy_size = min_t(u64,
4039 PAGE_CACHE_SIZE - pg_offset,
4040 max_size - extent_offset);
4041 memset(kaddr + pg_offset, 0, copy_size);
4042 kunmap_atomic(kaddr, KM_USER0);
4043 }
4044 kfree(tmp);
4045 return 0;
4046}
4047
d352ac68
CM
4048/*
4049 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4050 * the ugly parts come from merging extents from the disk with the in-ram
4051 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4052 * where the in-ram extents might be locked pending data=ordered completion.
4053 *
4054 * This also copies inline extents directly into the page.
4055 */
d397712b 4056
a52d9a80 4057struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4058 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4059 int create)
4060{
4061 int ret;
4062 int err = 0;
db94535d 4063 u64 bytenr;
a52d9a80
CM
4064 u64 extent_start = 0;
4065 u64 extent_end = 0;
4066 u64 objectid = inode->i_ino;
4067 u32 found_type;
f421950f 4068 struct btrfs_path *path = NULL;
a52d9a80
CM
4069 struct btrfs_root *root = BTRFS_I(inode)->root;
4070 struct btrfs_file_extent_item *item;
5f39d397
CM
4071 struct extent_buffer *leaf;
4072 struct btrfs_key found_key;
a52d9a80
CM
4073 struct extent_map *em = NULL;
4074 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4076 struct btrfs_trans_handle *trans = NULL;
c8b97818 4077 int compressed;
a52d9a80 4078
a52d9a80 4079again:
890871be 4080 read_lock(&em_tree->lock);
d1310b2e 4081 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4082 if (em)
4083 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4084 read_unlock(&em_tree->lock);
d1310b2e 4085
a52d9a80 4086 if (em) {
e1c4b745
CM
4087 if (em->start > start || em->start + em->len <= start)
4088 free_extent_map(em);
4089 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4090 free_extent_map(em);
4091 else
4092 goto out;
a52d9a80 4093 }
d1310b2e 4094 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4095 if (!em) {
d1310b2e
CM
4096 err = -ENOMEM;
4097 goto out;
a52d9a80 4098 }
e6dcd2dc 4099 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4100 em->start = EXTENT_MAP_HOLE;
445a6944 4101 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4102 em->len = (u64)-1;
c8b97818 4103 em->block_len = (u64)-1;
f421950f
CM
4104
4105 if (!path) {
4106 path = btrfs_alloc_path();
4107 BUG_ON(!path);
4108 }
4109
179e29e4
CM
4110 ret = btrfs_lookup_file_extent(trans, root, path,
4111 objectid, start, trans != NULL);
a52d9a80
CM
4112 if (ret < 0) {
4113 err = ret;
4114 goto out;
4115 }
4116
4117 if (ret != 0) {
4118 if (path->slots[0] == 0)
4119 goto not_found;
4120 path->slots[0]--;
4121 }
4122
5f39d397
CM
4123 leaf = path->nodes[0];
4124 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4125 struct btrfs_file_extent_item);
a52d9a80 4126 /* are we inside the extent that was found? */
5f39d397
CM
4127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4128 found_type = btrfs_key_type(&found_key);
4129 if (found_key.objectid != objectid ||
a52d9a80
CM
4130 found_type != BTRFS_EXTENT_DATA_KEY) {
4131 goto not_found;
4132 }
4133
5f39d397
CM
4134 found_type = btrfs_file_extent_type(leaf, item);
4135 extent_start = found_key.offset;
c8b97818 4136 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4137 if (found_type == BTRFS_FILE_EXTENT_REG ||
4138 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4139 extent_end = extent_start +
db94535d 4140 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4141 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4142 size_t size;
4143 size = btrfs_file_extent_inline_len(leaf, item);
4144 extent_end = (extent_start + size + root->sectorsize - 1) &
4145 ~((u64)root->sectorsize - 1);
4146 }
4147
4148 if (start >= extent_end) {
4149 path->slots[0]++;
4150 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4151 ret = btrfs_next_leaf(root, path);
4152 if (ret < 0) {
4153 err = ret;
4154 goto out;
a52d9a80 4155 }
9036c102
YZ
4156 if (ret > 0)
4157 goto not_found;
4158 leaf = path->nodes[0];
a52d9a80 4159 }
9036c102
YZ
4160 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4161 if (found_key.objectid != objectid ||
4162 found_key.type != BTRFS_EXTENT_DATA_KEY)
4163 goto not_found;
4164 if (start + len <= found_key.offset)
4165 goto not_found;
4166 em->start = start;
4167 em->len = found_key.offset - start;
4168 goto not_found_em;
4169 }
4170
d899e052
YZ
4171 if (found_type == BTRFS_FILE_EXTENT_REG ||
4172 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4173 em->start = extent_start;
4174 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4175 em->orig_start = extent_start -
4176 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4177 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4178 if (bytenr == 0) {
5f39d397 4179 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4180 goto insert;
4181 }
c8b97818
CM
4182 if (compressed) {
4183 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4184 em->block_start = bytenr;
4185 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4186 item);
4187 } else {
4188 bytenr += btrfs_file_extent_offset(leaf, item);
4189 em->block_start = bytenr;
4190 em->block_len = em->len;
d899e052
YZ
4191 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4192 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4193 }
a52d9a80
CM
4194 goto insert;
4195 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4196 unsigned long ptr;
a52d9a80 4197 char *map;
3326d1b0
CM
4198 size_t size;
4199 size_t extent_offset;
4200 size_t copy_size;
a52d9a80 4201
689f9346 4202 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4203 if (!page || create) {
689f9346 4204 em->start = extent_start;
9036c102 4205 em->len = extent_end - extent_start;
689f9346
Y
4206 goto out;
4207 }
5f39d397 4208
9036c102
YZ
4209 size = btrfs_file_extent_inline_len(leaf, item);
4210 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4211 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4212 size - extent_offset);
3326d1b0 4213 em->start = extent_start + extent_offset;
70dec807
CM
4214 em->len = (copy_size + root->sectorsize - 1) &
4215 ~((u64)root->sectorsize - 1);
ff5b7ee3 4216 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4217 if (compressed)
4218 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4219 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4220 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4221 if (btrfs_file_extent_compression(leaf, item) ==
4222 BTRFS_COMPRESS_ZLIB) {
4223 ret = uncompress_inline(path, inode, page,
4224 pg_offset,
4225 extent_offset, item);
4226 BUG_ON(ret);
4227 } else {
4228 map = kmap(page);
4229 read_extent_buffer(leaf, map + pg_offset, ptr,
4230 copy_size);
93c82d57
CM
4231 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4232 memset(map + pg_offset + copy_size, 0,
4233 PAGE_CACHE_SIZE - pg_offset -
4234 copy_size);
4235 }
c8b97818
CM
4236 kunmap(page);
4237 }
179e29e4
CM
4238 flush_dcache_page(page);
4239 } else if (create && PageUptodate(page)) {
4240 if (!trans) {
4241 kunmap(page);
4242 free_extent_map(em);
4243 em = NULL;
4244 btrfs_release_path(root, path);
f9295749 4245 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4246 goto again;
4247 }
c8b97818 4248 map = kmap(page);
70dec807 4249 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4250 copy_size);
c8b97818 4251 kunmap(page);
179e29e4 4252 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4253 }
d1310b2e
CM
4254 set_extent_uptodate(io_tree, em->start,
4255 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4256 goto insert;
4257 } else {
d397712b 4258 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4259 WARN_ON(1);
4260 }
4261not_found:
4262 em->start = start;
d1310b2e 4263 em->len = len;
a52d9a80 4264not_found_em:
5f39d397 4265 em->block_start = EXTENT_MAP_HOLE;
9036c102 4266 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4267insert:
4268 btrfs_release_path(root, path);
d1310b2e 4269 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4270 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4271 "[%llu %llu]\n", (unsigned long long)em->start,
4272 (unsigned long long)em->len,
4273 (unsigned long long)start,
4274 (unsigned long long)len);
a52d9a80
CM
4275 err = -EIO;
4276 goto out;
4277 }
d1310b2e
CM
4278
4279 err = 0;
890871be 4280 write_lock(&em_tree->lock);
a52d9a80 4281 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4282 /* it is possible that someone inserted the extent into the tree
4283 * while we had the lock dropped. It is also possible that
4284 * an overlapping map exists in the tree
4285 */
a52d9a80 4286 if (ret == -EEXIST) {
3b951516 4287 struct extent_map *existing;
e6dcd2dc
CM
4288
4289 ret = 0;
4290
3b951516 4291 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4292 if (existing && (existing->start > start ||
4293 existing->start + existing->len <= start)) {
4294 free_extent_map(existing);
4295 existing = NULL;
4296 }
3b951516
CM
4297 if (!existing) {
4298 existing = lookup_extent_mapping(em_tree, em->start,
4299 em->len);
4300 if (existing) {
4301 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4302 em, start,
4303 root->sectorsize);
3b951516
CM
4304 free_extent_map(existing);
4305 if (err) {
4306 free_extent_map(em);
4307 em = NULL;
4308 }
4309 } else {
4310 err = -EIO;
3b951516
CM
4311 free_extent_map(em);
4312 em = NULL;
4313 }
4314 } else {
4315 free_extent_map(em);
4316 em = existing;
e6dcd2dc 4317 err = 0;
a52d9a80 4318 }
a52d9a80 4319 }
890871be 4320 write_unlock(&em_tree->lock);
a52d9a80 4321out:
f421950f
CM
4322 if (path)
4323 btrfs_free_path(path);
a52d9a80
CM
4324 if (trans) {
4325 ret = btrfs_end_transaction(trans, root);
d397712b 4326 if (!err)
a52d9a80
CM
4327 err = ret;
4328 }
a52d9a80
CM
4329 if (err) {
4330 free_extent_map(em);
a52d9a80
CM
4331 return ERR_PTR(err);
4332 }
4333 return em;
4334}
4335
16432985
CM
4336static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4337 const struct iovec *iov, loff_t offset,
4338 unsigned long nr_segs)
4339{
e1c4b745 4340 return -EINVAL;
16432985
CM
4341}
4342
1506fcc8
YS
4343static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4344 __u64 start, __u64 len)
4345{
4346 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4347}
4348
a52d9a80 4349int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4350{
d1310b2e
CM
4351 struct extent_io_tree *tree;
4352 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4353 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4354}
1832a6d5 4355
a52d9a80 4356static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4357{
d1310b2e 4358 struct extent_io_tree *tree;
b888db2b
CM
4359
4360
4361 if (current->flags & PF_MEMALLOC) {
4362 redirty_page_for_writepage(wbc, page);
4363 unlock_page(page);
4364 return 0;
4365 }
d1310b2e 4366 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4367 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4368}
4369
f421950f
CM
4370int btrfs_writepages(struct address_space *mapping,
4371 struct writeback_control *wbc)
b293f02e 4372{
d1310b2e 4373 struct extent_io_tree *tree;
771ed689 4374
d1310b2e 4375 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4376 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4377}
4378
3ab2fb5a
CM
4379static int
4380btrfs_readpages(struct file *file, struct address_space *mapping,
4381 struct list_head *pages, unsigned nr_pages)
4382{
d1310b2e
CM
4383 struct extent_io_tree *tree;
4384 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4385 return extent_readpages(tree, mapping, pages, nr_pages,
4386 btrfs_get_extent);
4387}
e6dcd2dc 4388static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4389{
d1310b2e
CM
4390 struct extent_io_tree *tree;
4391 struct extent_map_tree *map;
a52d9a80 4392 int ret;
8c2383c3 4393
d1310b2e
CM
4394 tree = &BTRFS_I(page->mapping->host)->io_tree;
4395 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4396 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4397 if (ret == 1) {
4398 ClearPagePrivate(page);
4399 set_page_private(page, 0);
4400 page_cache_release(page);
39279cc3 4401 }
a52d9a80 4402 return ret;
39279cc3
CM
4403}
4404
e6dcd2dc
CM
4405static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4406{
98509cfc
CM
4407 if (PageWriteback(page) || PageDirty(page))
4408 return 0;
b335b003 4409 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4410}
4411
a52d9a80 4412static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4413{
d1310b2e 4414 struct extent_io_tree *tree;
e6dcd2dc
CM
4415 struct btrfs_ordered_extent *ordered;
4416 u64 page_start = page_offset(page);
4417 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4418
8b62b72b
CM
4419
4420 /*
4421 * we have the page locked, so new writeback can't start,
4422 * and the dirty bit won't be cleared while we are here.
4423 *
4424 * Wait for IO on this page so that we can safely clear
4425 * the PagePrivate2 bit and do ordered accounting
4426 */
e6dcd2dc 4427 wait_on_page_writeback(page);
8b62b72b 4428
d1310b2e 4429 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4430 if (offset) {
4431 btrfs_releasepage(page, GFP_NOFS);
4432 return;
4433 }
e6dcd2dc
CM
4434 lock_extent(tree, page_start, page_end, GFP_NOFS);
4435 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4436 page_offset(page));
4437 if (ordered) {
eb84ae03
CM
4438 /*
4439 * IO on this page will never be started, so we need
4440 * to account for any ordered extents now
4441 */
e6dcd2dc
CM
4442 clear_extent_bit(tree, page_start, page_end,
4443 EXTENT_DIRTY | EXTENT_DELALLOC |
2c64c53d 4444 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
8b62b72b
CM
4445 /*
4446 * whoever cleared the private bit is responsible
4447 * for the finish_ordered_io
4448 */
4449 if (TestClearPagePrivate2(page)) {
4450 btrfs_finish_ordered_io(page->mapping->host,
4451 page_start, page_end);
4452 }
e6dcd2dc
CM
4453 btrfs_put_ordered_extent(ordered);
4454 lock_extent(tree, page_start, page_end, GFP_NOFS);
4455 }
4456 clear_extent_bit(tree, page_start, page_end,
8b62b72b 4457 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2c64c53d 4458 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4459 __btrfs_releasepage(page, GFP_NOFS);
4460
4a096752 4461 ClearPageChecked(page);
9ad6b7bc 4462 if (PagePrivate(page)) {
9ad6b7bc
CM
4463 ClearPagePrivate(page);
4464 set_page_private(page, 0);
4465 page_cache_release(page);
4466 }
39279cc3
CM
4467}
4468
9ebefb18
CM
4469/*
4470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4471 * called from a page fault handler when a page is first dirtied. Hence we must
4472 * be careful to check for EOF conditions here. We set the page up correctly
4473 * for a written page which means we get ENOSPC checking when writing into
4474 * holes and correct delalloc and unwritten extent mapping on filesystems that
4475 * support these features.
4476 *
4477 * We are not allowed to take the i_mutex here so we have to play games to
4478 * protect against truncate races as the page could now be beyond EOF. Because
4479 * vmtruncate() writes the inode size before removing pages, once we have the
4480 * page lock we can determine safely if the page is beyond EOF. If it is not
4481 * beyond EOF, then the page is guaranteed safe against truncation until we
4482 * unlock the page.
4483 */
c2ec175c 4484int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4485{
c2ec175c 4486 struct page *page = vmf->page;
6da6abae 4487 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4488 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4490 struct btrfs_ordered_extent *ordered;
4491 char *kaddr;
4492 unsigned long zero_start;
9ebefb18 4493 loff_t size;
1832a6d5 4494 int ret;
a52d9a80 4495 u64 page_start;
e6dcd2dc 4496 u64 page_end;
9ebefb18 4497
6a63209f 4498 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4499 if (ret) {
4500 if (ret == -ENOMEM)
4501 ret = VM_FAULT_OOM;
4502 else /* -ENOSPC, -EIO, etc */
4503 ret = VM_FAULT_SIGBUS;
1832a6d5 4504 goto out;
56a76f82 4505 }
1832a6d5 4506
56a76f82 4507 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4508again:
9ebefb18 4509 lock_page(page);
9ebefb18 4510 size = i_size_read(inode);
e6dcd2dc
CM
4511 page_start = page_offset(page);
4512 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4513
9ebefb18 4514 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4515 (page_start >= size)) {
6a63209f 4516 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4517 /* page got truncated out from underneath us */
4518 goto out_unlock;
4519 }
e6dcd2dc
CM
4520 wait_on_page_writeback(page);
4521
4522 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4523 set_page_extent_mapped(page);
4524
eb84ae03
CM
4525 /*
4526 * we can't set the delalloc bits if there are pending ordered
4527 * extents. Drop our locks and wait for them to finish
4528 */
e6dcd2dc
CM
4529 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4530 if (ordered) {
4531 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4532 unlock_page(page);
eb84ae03 4533 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4534 btrfs_put_ordered_extent(ordered);
4535 goto again;
4536 }
4537
ea8c2819 4538 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc 4539 ret = 0;
9ebefb18
CM
4540
4541 /* page is wholly or partially inside EOF */
a52d9a80 4542 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4543 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4544 else
e6dcd2dc 4545 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4546
e6dcd2dc
CM
4547 if (zero_start != PAGE_CACHE_SIZE) {
4548 kaddr = kmap(page);
4549 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4550 flush_dcache_page(page);
4551 kunmap(page);
4552 }
247e743c 4553 ClearPageChecked(page);
e6dcd2dc 4554 set_page_dirty(page);
50a9b214 4555 SetPageUptodate(page);
5a3f23d5
CM
4556
4557 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4558 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4559
4560out_unlock:
50a9b214
CM
4561 if (!ret)
4562 return VM_FAULT_LOCKED;
9ebefb18 4563 unlock_page(page);
1832a6d5 4564out:
9ebefb18
CM
4565 return ret;
4566}
4567
39279cc3
CM
4568static void btrfs_truncate(struct inode *inode)
4569{
4570 struct btrfs_root *root = BTRFS_I(inode)->root;
4571 int ret;
4572 struct btrfs_trans_handle *trans;
d3c2fdcf 4573 unsigned long nr;
dbe674a9 4574 u64 mask = root->sectorsize - 1;
39279cc3
CM
4575
4576 if (!S_ISREG(inode->i_mode))
4577 return;
4578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4579 return;
4580
4581 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 4582 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 4583
39279cc3 4584 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
4585
4586 /*
4587 * setattr is responsible for setting the ordered_data_close flag,
4588 * but that is only tested during the last file release. That
4589 * could happen well after the next commit, leaving a great big
4590 * window where new writes may get lost if someone chooses to write
4591 * to this file after truncating to zero
4592 *
4593 * The inode doesn't have any dirty data here, and so if we commit
4594 * this is a noop. If someone immediately starts writing to the inode
4595 * it is very likely we'll catch some of their writes in this
4596 * transaction, and the commit will find this file on the ordered
4597 * data list with good things to send down.
4598 *
4599 * This is a best effort solution, there is still a window where
4600 * using truncate to replace the contents of the file will
4601 * end up with a zero length file after a crash.
4602 */
4603 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4604 btrfs_add_ordered_operation(trans, root, inode);
4605
39279cc3 4606 btrfs_set_trans_block_group(trans, inode);
dbe674a9 4607 btrfs_i_size_write(inode, inode->i_size);
39279cc3 4608
7b128766
JB
4609 ret = btrfs_orphan_add(trans, inode);
4610 if (ret)
4611 goto out;
39279cc3 4612 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 4613 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 4614 BTRFS_EXTENT_DATA_KEY);
39279cc3 4615 btrfs_update_inode(trans, root, inode);
5f39d397 4616
7b128766
JB
4617 ret = btrfs_orphan_del(trans, inode);
4618 BUG_ON(ret);
4619
4620out:
4621 nr = trans->blocks_used;
89ce8a63 4622 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 4623 BUG_ON(ret);
d3c2fdcf 4624 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4625}
4626
d352ac68
CM
4627/*
4628 * create a new subvolume directory/inode (helper for the ioctl).
4629 */
d2fb3437
YZ
4630int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4631 struct btrfs_root *new_root, struct dentry *dentry,
4632 u64 new_dirid, u64 alloc_hint)
39279cc3 4633{
39279cc3 4634 struct inode *inode;
cb8e7090 4635 int error;
00e4e6b3 4636 u64 index = 0;
39279cc3 4637
aec7477b 4638 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 4639 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 4640 if (IS_ERR(inode))
f46b5a66 4641 return PTR_ERR(inode);
39279cc3
CM
4642 inode->i_op = &btrfs_dir_inode_operations;
4643 inode->i_fop = &btrfs_dir_file_operations;
4644
39279cc3 4645 inode->i_nlink = 1;
dbe674a9 4646 btrfs_i_size_write(inode, 0);
3b96362c 4647
cb8e7090
CH
4648 error = btrfs_update_inode(trans, new_root, inode);
4649 if (error)
4650 return error;
4651
4652 d_instantiate(dentry, inode);
4653 return 0;
39279cc3
CM
4654}
4655
d352ac68
CM
4656/* helper function for file defrag and space balancing. This
4657 * forces readahead on a given range of bytes in an inode
4658 */
edbd8d4e 4659unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
4660 struct file_ra_state *ra, struct file *file,
4661 pgoff_t offset, pgoff_t last_index)
4662{
8e7bf94f 4663 pgoff_t req_size = last_index - offset + 1;
86479a04 4664
86479a04
CM
4665 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4666 return offset + req_size;
86479a04
CM
4667}
4668
39279cc3
CM
4669struct inode *btrfs_alloc_inode(struct super_block *sb)
4670{
4671 struct btrfs_inode *ei;
4672
4673 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4674 if (!ei)
4675 return NULL;
15ee9bc7 4676 ei->last_trans = 0;
e02119d5 4677 ei->logged_trans = 0;
e6dcd2dc 4678 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 4679 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 4680 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
4681 return &ei->vfs_inode;
4682}
4683
4684void btrfs_destroy_inode(struct inode *inode)
4685{
e6dcd2dc 4686 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
4687 struct btrfs_root *root = BTRFS_I(inode)->root;
4688
39279cc3
CM
4689 WARN_ON(!list_empty(&inode->i_dentry));
4690 WARN_ON(inode->i_data.nrpages);
4691
5a3f23d5
CM
4692 /*
4693 * Make sure we're properly removed from the ordered operation
4694 * lists.
4695 */
4696 smp_mb();
4697 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4698 spin_lock(&root->fs_info->ordered_extent_lock);
4699 list_del_init(&BTRFS_I(inode)->ordered_operations);
4700 spin_unlock(&root->fs_info->ordered_extent_lock);
4701 }
4702
4703 spin_lock(&root->list_lock);
7b128766
JB
4704 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4705 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4706 " list\n", inode->i_ino);
4707 dump_stack();
4708 }
5a3f23d5 4709 spin_unlock(&root->list_lock);
7b128766 4710
d397712b 4711 while (1) {
e6dcd2dc
CM
4712 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4713 if (!ordered)
4714 break;
4715 else {
d397712b
CM
4716 printk(KERN_ERR "btrfs found ordered "
4717 "extent %llu %llu on inode cleanup\n",
4718 (unsigned long long)ordered->file_offset,
4719 (unsigned long long)ordered->len);
e6dcd2dc
CM
4720 btrfs_remove_ordered_extent(inode, ordered);
4721 btrfs_put_ordered_extent(ordered);
4722 btrfs_put_ordered_extent(ordered);
4723 }
4724 }
5d4f98a2 4725 inode_tree_del(inode);
5b21f2ed 4726 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
4727 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4728}
4729
0ee0fda0 4730static void init_once(void *foo)
39279cc3
CM
4731{
4732 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4733
4734 inode_init_once(&ei->vfs_inode);
4735}
4736
4737void btrfs_destroy_cachep(void)
4738{
4739 if (btrfs_inode_cachep)
4740 kmem_cache_destroy(btrfs_inode_cachep);
4741 if (btrfs_trans_handle_cachep)
4742 kmem_cache_destroy(btrfs_trans_handle_cachep);
4743 if (btrfs_transaction_cachep)
4744 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
4745 if (btrfs_path_cachep)
4746 kmem_cache_destroy(btrfs_path_cachep);
4747}
4748
4749int btrfs_init_cachep(void)
4750{
9601e3f6
CH
4751 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4752 sizeof(struct btrfs_inode), 0,
4753 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
4754 if (!btrfs_inode_cachep)
4755 goto fail;
9601e3f6
CH
4756
4757 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4758 sizeof(struct btrfs_trans_handle), 0,
4759 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4760 if (!btrfs_trans_handle_cachep)
4761 goto fail;
9601e3f6
CH
4762
4763 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4764 sizeof(struct btrfs_transaction), 0,
4765 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4766 if (!btrfs_transaction_cachep)
4767 goto fail;
9601e3f6
CH
4768
4769 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4770 sizeof(struct btrfs_path), 0,
4771 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4772 if (!btrfs_path_cachep)
4773 goto fail;
9601e3f6 4774
39279cc3
CM
4775 return 0;
4776fail:
4777 btrfs_destroy_cachep();
4778 return -ENOMEM;
4779}
4780
4781static int btrfs_getattr(struct vfsmount *mnt,
4782 struct dentry *dentry, struct kstat *stat)
4783{
4784 struct inode *inode = dentry->d_inode;
4785 generic_fillattr(inode, stat);
3394e160 4786 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 4787 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
4788 stat->blocks = (inode_get_bytes(inode) +
4789 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
4790 return 0;
4791}
4792
d397712b
CM
4793static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4794 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
4795{
4796 struct btrfs_trans_handle *trans;
4797 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4798 struct inode *new_inode = new_dentry->d_inode;
4799 struct inode *old_inode = old_dentry->d_inode;
4800 struct timespec ctime = CURRENT_TIME;
00e4e6b3 4801 u64 index = 0;
39279cc3
CM
4802 int ret;
4803
3394e160
CM
4804 /* we're not allowed to rename between subvolumes */
4805 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4806 BTRFS_I(new_dir)->root->root_key.objectid)
4807 return -EXDEV;
4808
39279cc3
CM
4809 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4810 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4811 return -ENOTEMPTY;
4812 }
5f39d397 4813
0660b5af
CM
4814 /* to rename a snapshot or subvolume, we need to juggle the
4815 * backrefs. This isn't coded yet
4816 */
4817 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4818 return -EXDEV;
4819
6a63209f 4820 ret = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4821 if (ret)
4822 goto out_unlock;
4823
5a3f23d5
CM
4824 /*
4825 * we're using rename to replace one file with another.
4826 * and the replacement file is large. Start IO on it now so
4827 * we don't add too much work to the end of the transaction
4828 */
4baf8c92 4829 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
4830 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4831 filemap_flush(old_inode->i_mapping);
4832
39279cc3 4833 trans = btrfs_start_transaction(root, 1);
5f39d397 4834
5a3f23d5
CM
4835 /*
4836 * make sure the inode gets flushed if it is replacing
4837 * something.
4838 */
4839 if (new_inode && new_inode->i_size &&
4840 old_inode && S_ISREG(old_inode->i_mode)) {
4841 btrfs_add_ordered_operation(trans, root, old_inode);
4842 }
4843
12fcfd22
CM
4844 /*
4845 * this is an ugly little race, but the rename is required to make
4846 * sure that if we crash, the inode is either at the old name
4847 * or the new one. pinning the log transaction lets us make sure
4848 * we don't allow a log commit to come in after we unlink the
4849 * name but before we add the new name back in.
4850 */
4851 btrfs_pin_log_trans(root);
4852
39279cc3 4853 btrfs_set_trans_block_group(trans, new_dir);
39279cc3 4854
e02119d5 4855 btrfs_inc_nlink(old_dentry->d_inode);
39279cc3
CM
4856 old_dir->i_ctime = old_dir->i_mtime = ctime;
4857 new_dir->i_ctime = new_dir->i_mtime = ctime;
4858 old_inode->i_ctime = ctime;
5f39d397 4859
12fcfd22
CM
4860 if (old_dentry->d_parent != new_dentry->d_parent)
4861 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4862
e02119d5
CM
4863 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4864 old_dentry->d_name.name,
4865 old_dentry->d_name.len);
39279cc3
CM
4866 if (ret)
4867 goto out_fail;
4868
4869 if (new_inode) {
4870 new_inode->i_ctime = CURRENT_TIME;
e02119d5
CM
4871 ret = btrfs_unlink_inode(trans, root, new_dir,
4872 new_dentry->d_inode,
4873 new_dentry->d_name.name,
4874 new_dentry->d_name.len);
39279cc3
CM
4875 if (ret)
4876 goto out_fail;
7b128766 4877 if (new_inode->i_nlink == 0) {
e02119d5 4878 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7b128766
JB
4879 if (ret)
4880 goto out_fail;
4881 }
e02119d5 4882
39279cc3 4883 }
3de4586c 4884 ret = btrfs_set_inode_index(new_dir, &index);
aec7477b
JB
4885 if (ret)
4886 goto out_fail;
4887
e02119d5
CM
4888 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4889 old_inode, new_dentry->d_name.name,
4890 new_dentry->d_name.len, 1, index);
39279cc3
CM
4891 if (ret)
4892 goto out_fail;
4893
12fcfd22
CM
4894 btrfs_log_new_name(trans, old_inode, old_dir,
4895 new_dentry->d_parent);
39279cc3 4896out_fail:
12fcfd22
CM
4897
4898 /* this btrfs_end_log_trans just allows the current
4899 * log-sub transaction to complete
4900 */
4901 btrfs_end_log_trans(root);
ab78c84d 4902 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4903out_unlock:
39279cc3
CM
4904 return ret;
4905}
4906
d352ac68
CM
4907/*
4908 * some fairly slow code that needs optimization. This walks the list
4909 * of all the inodes with pending delalloc and forces them to disk.
4910 */
ea8c2819
CM
4911int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4912{
4913 struct list_head *head = &root->fs_info->delalloc_inodes;
4914 struct btrfs_inode *binode;
5b21f2ed 4915 struct inode *inode;
ea8c2819 4916
c146afad
YZ
4917 if (root->fs_info->sb->s_flags & MS_RDONLY)
4918 return -EROFS;
4919
75eff68e 4920 spin_lock(&root->fs_info->delalloc_lock);
d397712b 4921 while (!list_empty(head)) {
ea8c2819
CM
4922 binode = list_entry(head->next, struct btrfs_inode,
4923 delalloc_inodes);
5b21f2ed
ZY
4924 inode = igrab(&binode->vfs_inode);
4925 if (!inode)
4926 list_del_init(&binode->delalloc_inodes);
75eff68e 4927 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 4928 if (inode) {
8c8bee1d 4929 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
4930 iput(inode);
4931 }
4932 cond_resched();
75eff68e 4933 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 4934 }
75eff68e 4935 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
4936
4937 /* the filemap_flush will queue IO into the worker threads, but
4938 * we have to make sure the IO is actually started and that
4939 * ordered extents get created before we return
4940 */
4941 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 4942 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 4943 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 4944 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
4945 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4946 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
4947 }
4948 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
4949 return 0;
4950}
4951
39279cc3
CM
4952static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4953 const char *symname)
4954{
4955 struct btrfs_trans_handle *trans;
4956 struct btrfs_root *root = BTRFS_I(dir)->root;
4957 struct btrfs_path *path;
4958 struct btrfs_key key;
1832a6d5 4959 struct inode *inode = NULL;
39279cc3
CM
4960 int err;
4961 int drop_inode = 0;
4962 u64 objectid;
00e4e6b3 4963 u64 index = 0 ;
39279cc3
CM
4964 int name_len;
4965 int datasize;
5f39d397 4966 unsigned long ptr;
39279cc3 4967 struct btrfs_file_extent_item *ei;
5f39d397 4968 struct extent_buffer *leaf;
1832a6d5 4969 unsigned long nr = 0;
39279cc3
CM
4970
4971 name_len = strlen(symname) + 1;
4972 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4973 return -ENAMETOOLONG;
1832a6d5 4974
6a63209f 4975 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4976 if (err)
4977 goto out_fail;
4978
39279cc3
CM
4979 trans = btrfs_start_transaction(root, 1);
4980 btrfs_set_trans_block_group(trans, dir);
4981
4982 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4983 if (err) {
4984 err = -ENOSPC;
4985 goto out_unlock;
4986 }
4987
aec7477b 4988 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4989 dentry->d_name.len,
4990 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4991 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4992 &index);
39279cc3
CM
4993 err = PTR_ERR(inode);
4994 if (IS_ERR(inode))
4995 goto out_unlock;
4996
0279b4cd 4997 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4998 if (err) {
4999 drop_inode = 1;
5000 goto out_unlock;
5001 }
5002
39279cc3 5003 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5004 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5005 if (err)
5006 drop_inode = 1;
5007 else {
5008 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5009 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5010 inode->i_fop = &btrfs_file_operations;
5011 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5012 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5013 }
39279cc3
CM
5014 btrfs_update_inode_block_group(trans, inode);
5015 btrfs_update_inode_block_group(trans, dir);
5016 if (drop_inode)
5017 goto out_unlock;
5018
5019 path = btrfs_alloc_path();
5020 BUG_ON(!path);
5021 key.objectid = inode->i_ino;
5022 key.offset = 0;
39279cc3
CM
5023 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5024 datasize = btrfs_file_extent_calc_inline_size(name_len);
5025 err = btrfs_insert_empty_item(trans, root, path, &key,
5026 datasize);
54aa1f4d
CM
5027 if (err) {
5028 drop_inode = 1;
5029 goto out_unlock;
5030 }
5f39d397
CM
5031 leaf = path->nodes[0];
5032 ei = btrfs_item_ptr(leaf, path->slots[0],
5033 struct btrfs_file_extent_item);
5034 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5035 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5036 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5037 btrfs_set_file_extent_encryption(leaf, ei, 0);
5038 btrfs_set_file_extent_compression(leaf, ei, 0);
5039 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5040 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5041
39279cc3 5042 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5043 write_extent_buffer(leaf, symname, ptr, name_len);
5044 btrfs_mark_buffer_dirty(leaf);
39279cc3 5045 btrfs_free_path(path);
5f39d397 5046
39279cc3
CM
5047 inode->i_op = &btrfs_symlink_inode_operations;
5048 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5049 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5050 inode_set_bytes(inode, name_len);
dbe674a9 5051 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5052 err = btrfs_update_inode(trans, root, inode);
5053 if (err)
5054 drop_inode = 1;
39279cc3
CM
5055
5056out_unlock:
d3c2fdcf 5057 nr = trans->blocks_used;
ab78c84d 5058 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5059out_fail:
39279cc3
CM
5060 if (drop_inode) {
5061 inode_dec_link_count(inode);
5062 iput(inode);
5063 }
d3c2fdcf 5064 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5065 return err;
5066}
16432985 5067
546888da
CM
5068static int prealloc_file_range(struct btrfs_trans_handle *trans,
5069 struct inode *inode, u64 start, u64 end,
e980b50c 5070 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5071{
d899e052
YZ
5072 struct btrfs_root *root = BTRFS_I(inode)->root;
5073 struct btrfs_key ins;
5074 u64 alloc_size;
5075 u64 cur_offset = start;
5076 u64 num_bytes = end - start;
5077 int ret = 0;
5078
d899e052
YZ
5079 while (num_bytes > 0) {
5080 alloc_size = min(num_bytes, root->fs_info->max_extent);
5081 ret = btrfs_reserve_extent(trans, root, alloc_size,
5082 root->sectorsize, 0, alloc_hint,
5083 (u64)-1, &ins, 1);
5084 if (ret) {
5085 WARN_ON(1);
5086 goto out;
5087 }
5088 ret = insert_reserved_file_extent(trans, inode,
5089 cur_offset, ins.objectid,
5090 ins.offset, ins.offset,
e980b50c
CM
5091 ins.offset, locked_end,
5092 0, 0, 0,
d899e052
YZ
5093 BTRFS_FILE_EXTENT_PREALLOC);
5094 BUG_ON(ret);
a1ed835e
CM
5095 btrfs_drop_extent_cache(inode, cur_offset,
5096 cur_offset + ins.offset -1, 0);
d899e052
YZ
5097 num_bytes -= ins.offset;
5098 cur_offset += ins.offset;
5099 alloc_hint = ins.objectid + ins.offset;
5100 }
5101out:
5102 if (cur_offset > start) {
5103 inode->i_ctime = CURRENT_TIME;
6cbff00f 5104 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5105 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5106 cur_offset > i_size_read(inode))
5107 btrfs_i_size_write(inode, cur_offset);
5108 ret = btrfs_update_inode(trans, root, inode);
5109 BUG_ON(ret);
5110 }
5111
d899e052
YZ
5112 return ret;
5113}
5114
5115static long btrfs_fallocate(struct inode *inode, int mode,
5116 loff_t offset, loff_t len)
5117{
5118 u64 cur_offset;
5119 u64 last_byte;
5120 u64 alloc_start;
5121 u64 alloc_end;
5122 u64 alloc_hint = 0;
e980b50c 5123 u64 locked_end;
d899e052
YZ
5124 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5125 struct extent_map *em;
546888da 5126 struct btrfs_trans_handle *trans;
a970b0a1 5127 struct btrfs_root *root;
d899e052
YZ
5128 int ret;
5129
5130 alloc_start = offset & ~mask;
5131 alloc_end = (offset + len + mask) & ~mask;
5132
546888da
CM
5133 /*
5134 * wait for ordered IO before we have any locks. We'll loop again
5135 * below with the locks held.
5136 */
5137 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5138
d899e052
YZ
5139 mutex_lock(&inode->i_mutex);
5140 if (alloc_start > inode->i_size) {
5141 ret = btrfs_cont_expand(inode, alloc_start);
5142 if (ret)
5143 goto out;
5144 }
5145
a970b0a1
JB
5146 root = BTRFS_I(inode)->root;
5147
5148 ret = btrfs_check_data_free_space(root, inode,
5149 alloc_end - alloc_start);
5150 if (ret)
5151 goto out;
5152
e980b50c 5153 locked_end = alloc_end - 1;
d899e052
YZ
5154 while (1) {
5155 struct btrfs_ordered_extent *ordered;
546888da
CM
5156
5157 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5158 if (!trans) {
5159 ret = -EIO;
a970b0a1 5160 goto out_free;
546888da
CM
5161 }
5162
5163 /* the extent lock is ordered inside the running
5164 * transaction
5165 */
e980b50c
CM
5166 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5167 GFP_NOFS);
d899e052
YZ
5168 ordered = btrfs_lookup_first_ordered_extent(inode,
5169 alloc_end - 1);
5170 if (ordered &&
5171 ordered->file_offset + ordered->len > alloc_start &&
5172 ordered->file_offset < alloc_end) {
5173 btrfs_put_ordered_extent(ordered);
5174 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5175 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5176 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5177
5178 /*
5179 * we can't wait on the range with the transaction
5180 * running or with the extent lock held
5181 */
d899e052
YZ
5182 btrfs_wait_ordered_range(inode, alloc_start,
5183 alloc_end - alloc_start);
5184 } else {
5185 if (ordered)
5186 btrfs_put_ordered_extent(ordered);
5187 break;
5188 }
5189 }
5190
5191 cur_offset = alloc_start;
5192 while (1) {
5193 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5194 alloc_end - cur_offset, 0);
5195 BUG_ON(IS_ERR(em) || !em);
5196 last_byte = min(extent_map_end(em), alloc_end);
5197 last_byte = (last_byte + mask) & ~mask;
5198 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5199 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5200 last_byte, locked_end + 1,
5201 alloc_hint, mode);
d899e052
YZ
5202 if (ret < 0) {
5203 free_extent_map(em);
5204 break;
5205 }
5206 }
5207 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5208 alloc_hint = em->block_start;
5209 free_extent_map(em);
5210
5211 cur_offset = last_byte;
5212 if (cur_offset >= alloc_end) {
5213 ret = 0;
5214 break;
5215 }
5216 }
e980b50c 5217 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5218 GFP_NOFS);
546888da
CM
5219
5220 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5221out_free:
5222 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5223out:
5224 mutex_unlock(&inode->i_mutex);
5225 return ret;
5226}
5227
e6dcd2dc
CM
5228static int btrfs_set_page_dirty(struct page *page)
5229{
e6dcd2dc
CM
5230 return __set_page_dirty_nobuffers(page);
5231}
5232
0ee0fda0 5233static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5234{
6cbff00f 5235 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5236 return -EACCES;
33268eaf 5237 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5238}
39279cc3
CM
5239
5240static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5241 .getattr = btrfs_getattr,
39279cc3
CM
5242 .lookup = btrfs_lookup,
5243 .create = btrfs_create,
5244 .unlink = btrfs_unlink,
5245 .link = btrfs_link,
5246 .mkdir = btrfs_mkdir,
5247 .rmdir = btrfs_rmdir,
5248 .rename = btrfs_rename,
5249 .symlink = btrfs_symlink,
5250 .setattr = btrfs_setattr,
618e21d5 5251 .mknod = btrfs_mknod,
95819c05
CH
5252 .setxattr = btrfs_setxattr,
5253 .getxattr = btrfs_getxattr,
5103e947 5254 .listxattr = btrfs_listxattr,
95819c05 5255 .removexattr = btrfs_removexattr,
fdebe2bd 5256 .permission = btrfs_permission,
39279cc3 5257};
39279cc3
CM
5258static struct inode_operations btrfs_dir_ro_inode_operations = {
5259 .lookup = btrfs_lookup,
fdebe2bd 5260 .permission = btrfs_permission,
39279cc3 5261};
39279cc3
CM
5262static struct file_operations btrfs_dir_file_operations = {
5263 .llseek = generic_file_llseek,
5264 .read = generic_read_dir,
cbdf5a24 5265 .readdir = btrfs_real_readdir,
34287aa3 5266 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5267#ifdef CONFIG_COMPAT
34287aa3 5268 .compat_ioctl = btrfs_ioctl,
39279cc3 5269#endif
6bf13c0c 5270 .release = btrfs_release_file,
e02119d5 5271 .fsync = btrfs_sync_file,
39279cc3
CM
5272};
5273
d1310b2e 5274static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5275 .fill_delalloc = run_delalloc_range,
065631f6 5276 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5277 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5278 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5279 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5280 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5281 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5282 .set_bit_hook = btrfs_set_bit_hook,
5283 .clear_bit_hook = btrfs_clear_bit_hook,
07157aac
CM
5284};
5285
35054394
CM
5286/*
5287 * btrfs doesn't support the bmap operation because swapfiles
5288 * use bmap to make a mapping of extents in the file. They assume
5289 * these extents won't change over the life of the file and they
5290 * use the bmap result to do IO directly to the drive.
5291 *
5292 * the btrfs bmap call would return logical addresses that aren't
5293 * suitable for IO and they also will change frequently as COW
5294 * operations happen. So, swapfile + btrfs == corruption.
5295 *
5296 * For now we're avoiding this by dropping bmap.
5297 */
39279cc3
CM
5298static struct address_space_operations btrfs_aops = {
5299 .readpage = btrfs_readpage,
5300 .writepage = btrfs_writepage,
b293f02e 5301 .writepages = btrfs_writepages,
3ab2fb5a 5302 .readpages = btrfs_readpages,
39279cc3 5303 .sync_page = block_sync_page,
16432985 5304 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5305 .invalidatepage = btrfs_invalidatepage,
5306 .releasepage = btrfs_releasepage,
e6dcd2dc 5307 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5308};
5309
5310static struct address_space_operations btrfs_symlink_aops = {
5311 .readpage = btrfs_readpage,
5312 .writepage = btrfs_writepage,
2bf5a725
CM
5313 .invalidatepage = btrfs_invalidatepage,
5314 .releasepage = btrfs_releasepage,
39279cc3
CM
5315};
5316
5317static struct inode_operations btrfs_file_inode_operations = {
5318 .truncate = btrfs_truncate,
5319 .getattr = btrfs_getattr,
5320 .setattr = btrfs_setattr,
95819c05
CH
5321 .setxattr = btrfs_setxattr,
5322 .getxattr = btrfs_getxattr,
5103e947 5323 .listxattr = btrfs_listxattr,
95819c05 5324 .removexattr = btrfs_removexattr,
fdebe2bd 5325 .permission = btrfs_permission,
d899e052 5326 .fallocate = btrfs_fallocate,
1506fcc8 5327 .fiemap = btrfs_fiemap,
39279cc3 5328};
618e21d5
JB
5329static struct inode_operations btrfs_special_inode_operations = {
5330 .getattr = btrfs_getattr,
5331 .setattr = btrfs_setattr,
fdebe2bd 5332 .permission = btrfs_permission,
95819c05
CH
5333 .setxattr = btrfs_setxattr,
5334 .getxattr = btrfs_getxattr,
33268eaf 5335 .listxattr = btrfs_listxattr,
95819c05 5336 .removexattr = btrfs_removexattr,
618e21d5 5337};
39279cc3
CM
5338static struct inode_operations btrfs_symlink_inode_operations = {
5339 .readlink = generic_readlink,
5340 .follow_link = page_follow_link_light,
5341 .put_link = page_put_link,
fdebe2bd 5342 .permission = btrfs_permission,
0279b4cd
JO
5343 .setxattr = btrfs_setxattr,
5344 .getxattr = btrfs_getxattr,
5345 .listxattr = btrfs_listxattr,
5346 .removexattr = btrfs_removexattr,
39279cc3 5347};