]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/inode.c
Merge branch 'dev-replace-fixes-4.7' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 197 PAGE_SIZE);
c8b97818 198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
09cbfeaf 211 start >> PAGE_SHIFT);
c8b97818 212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
09cbfeaf 214 offset = start & (PAGE_SIZE - 1);
c8b97818 215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
09cbfeaf 217 put_page(page);
c8b97818
CM
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
0c29ba99 266 actual_end > root->sectorsize ||
354877be 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
09cbfeaf 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
09cbfeaf
KS
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
01327610 458 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
c8b97818
CM
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
09cbfeaf 583 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
09cbfeaf 597 put_page(pages[i]);
c8b97818
CM
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
9cfa3e34 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 828
771ed689
CM
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
c2790a2e 832 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
833 async_extent->start +
834 async_extent->ram_size - 1,
151a41bc
JB
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 837 PAGE_SET_WRITEBACK);
771ed689 838 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
fce2a4e6
FM
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
40ae837b 857 free_async_extent_pages(async_extent);
fce2a4e6 858 }
771ed689
CM
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
dec8f175 863 return;
3e04e7f1 864out_free_reserve:
9cfa3e34 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 867out_free:
c2790a2e 868 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
869 async_extent->start +
870 async_extent->ram_size - 1,
c2790a2e 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
79787eaa 877 kfree(async_extent);
3e04e7f1 878 goto again;
771ed689
CM
879}
880
4b46fce2
JB
881static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883{
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911}
912
771ed689
CM
913/*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
00361589
JB
926static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
771ed689 931{
00361589 932 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
771ed689
CM
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
02ecd2c2
JB
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
29bce2f3
JB
946 ret = -EINVAL;
947 goto out_unlock;
02ecd2c2 948 }
771ed689 949
fda2832f 950 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
771ed689 953
4cb5300b 954 /* if this is a small write inside eof, kick off defrag */
ee22184b 955 if (num_bytes < SZ_64K &&
4cb13e5d 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 957 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 958
771ed689
CM
959 if (start == 0) {
960 /* lets try to make an inline extent */
00361589
JB
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
771ed689 963 if (ret == 0) {
c2790a2e
JB
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 966 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
c2167754 969
771ed689 970 *nr_written = *nr_written +
09cbfeaf 971 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 972 *page_started = 1;
771ed689 973 goto out;
79787eaa 974 } else if (ret < 0) {
79787eaa 975 goto out_unlock;
771ed689
CM
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
6c41761f 980 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 981
4b46fce2 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
d397712b 985 while (disk_num_bytes > 0) {
a791e35e
CM
986 unsigned long op;
987
287a0ab9 988 cur_alloc_size = disk_num_bytes;
00361589 989 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 990 root->sectorsize, 0, alloc_hint,
e570fd27 991 &ins, 1, 1);
00361589 992 if (ret < 0)
79787eaa 993 goto out_unlock;
d397712b 994
172ddd60 995 em = alloc_extent_map();
b9aa55be
LB
996 if (!em) {
997 ret = -ENOMEM;
ace68bac 998 goto out_reserve;
b9aa55be 999 }
e6dcd2dc 1000 em->start = start;
445a6944 1001 em->orig_start = em->start;
771ed689
CM
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
2ab28f32
JB
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
c8b97818 1006
e6dcd2dc 1007 em->block_start = ins.objectid;
c8b97818 1008 em->block_len = ins.offset;
b4939680 1009 em->orig_block_len = ins.offset;
cc95bef6 1010 em->ram_bytes = ram_size;
e6dcd2dc 1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1013 em->generation = -1;
c8b97818 1014
d397712b 1015 while (1) {
890871be 1016 write_lock(&em_tree->lock);
09a2a8f9 1017 ret = add_extent_mapping(em_tree, em, 1);
890871be 1018 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
c8b97818 1024 start + ram_size - 1, 0);
e6dcd2dc 1025 }
ace68bac
LB
1026 if (ret)
1027 goto out_reserve;
e6dcd2dc 1028
98d20f67 1029 cur_alloc_size = ins.offset;
e6dcd2dc 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1031 ram_size, cur_alloc_size, 0);
ace68bac 1032 if (ret)
d9f85963 1033 goto out_drop_extent_cache;
c8b97818 1034
17d217fe
YZ
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
00361589 1039 if (ret)
d9f85963 1040 goto out_drop_extent_cache;
17d217fe
YZ
1041 }
1042
9cfa3e34
FM
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
d397712b 1045 if (disk_num_bytes < cur_alloc_size)
3b951516 1046 break;
d397712b 1047
c8b97818
CM
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
c8b97818 1054 */
c2790a2e
JB
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
a791e35e 1057
c2790a2e
JB
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
c8b97818 1062 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
b888db2b 1066 }
79787eaa 1067out:
be20aa9d 1068 return ret;
b7d5b0a8 1069
d9f85963
FM
1070out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1072out_reserve:
9cfa3e34 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1075out_unlock:
c2790a2e 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1081 goto out;
771ed689 1082}
c8b97818 1083
771ed689
CM
1084/*
1085 * work queue call back to started compression on a file and pages
1086 */
1087static noinline void async_cow_start(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
8180ef88 1096 if (num_added == 0) {
cb77fcd8 1097 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1098 async_cow->inode = NULL;
8180ef88 1099 }
771ed689
CM
1100}
1101
1102/*
1103 * work queue call back to submit previously compressed pages
1104 */
1105static noinline void async_cow_submit(struct btrfs_work *work)
1106{
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
09cbfeaf
KS
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
771ed689 1116
ee863954
DS
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
66657b31 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1121 5 * SZ_1M &&
771ed689
CM
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
d397712b 1125 if (async_cow->inode)
771ed689 1126 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1127}
c8b97818 1128
771ed689
CM
1129static noinline void async_cow_free(struct btrfs_work *work)
1130{
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
8180ef88 1133 if (async_cow->inode)
cb77fcd8 1134 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1135 kfree(async_cow);
1136}
1137
1138static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141{
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
ee22184b 1146 int limit = 10 * SZ_1M;
771ed689 1147
a3429ab7
CM
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
d397712b 1150 while (start < end) {
771ed689 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1152 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1153 async_cow->inode = igrab(inode);
771ed689
CM
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
f79707b0
WS
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1160 cur_end = end;
1161 else
ee22184b 1162 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
9e0af237
LB
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
771ed689 1171
09cbfeaf
KS
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
771ed689
CM
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
afe3d242
QW
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
771ed689
CM
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
d397712b 1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
be20aa9d
CM
1197}
1198
d397712b 1199static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1200 u64 bytenr, u64 num_bytes)
1201{
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
07d400a6 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1207 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217}
1218
d352ac68
CM
1219/*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
7f366cfe
CM
1226static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
771ed689
CM
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
be20aa9d 1230{
be20aa9d 1231 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1232 struct btrfs_trans_handle *trans;
be20aa9d 1233 struct extent_buffer *leaf;
be20aa9d 1234 struct btrfs_path *path;
80ff3856 1235 struct btrfs_file_extent_item *fi;
be20aa9d 1236 struct btrfs_key found_key;
80ff3856
YZ
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
5d4f98a2 1240 u64 extent_offset;
80ff3856
YZ
1241 u64 disk_bytenr;
1242 u64 num_bytes;
b4939680 1243 u64 disk_num_bytes;
cc95bef6 1244 u64 ram_bytes;
80ff3856 1245 int extent_type;
79787eaa 1246 int ret, err;
d899e052 1247 int type;
80ff3856
YZ
1248 int nocow;
1249 int check_prev = 1;
82d5902d 1250 bool nolock;
33345d01 1251 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1252
1253 path = btrfs_alloc_path();
17ca04af 1254 if (!path) {
c2790a2e
JB
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
d8926bb3 1262 return -ENOMEM;
17ca04af 1263 }
82d5902d 1264
83eea1f1 1265 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1266
1267 if (nolock)
7a7eaa40 1268 trans = btrfs_join_transaction_nolock(root);
82d5902d 1269 else
7a7eaa40 1270 trans = btrfs_join_transaction(root);
ff5714cc 1271
79787eaa 1272 if (IS_ERR(trans)) {
c2790a2e
JB
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
79787eaa
JM
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
74b21075 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1285
80ff3856
YZ
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
33345d01 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1290 cur_offset, 0);
d788a349 1291 if (ret < 0)
79787eaa 1292 goto error;
80ff3856
YZ
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
33345d01 1297 if (found_key.objectid == ino &&
80ff3856
YZ
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
be20aa9d 1312
80ff3856
YZ
1313 nocow = 0;
1314 disk_bytenr = 0;
17d217fe 1315 num_bytes = 0;
80ff3856
YZ
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1d512cb7
FM
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
e9061e21 1331 extent_type = 0;
80ff3856
YZ
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
cc95bef6 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
17d217fe
YZ
1352 if (disk_bytenr == 0)
1353 goto out_check;
80ff3856
YZ
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
d899e052
YZ
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
d2fb3437 1360 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1361 goto out_check;
33345d01 1362 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
17d217fe 1365 goto out_check;
5d4f98a2 1366 disk_bytenr += extent_offset;
17d217fe
YZ
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
9ea24bbe 1374 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1375 if (!err)
1376 goto out_check;
1377 }
17d217fe
YZ
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
f78c436c
FM
1385 if (!btrfs_inc_nocow_writers(root->fs_info,
1386 disk_bytenr))
1387 goto out_check;
80ff3856
YZ
1388 nocow = 1;
1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 extent_end = found_key.offset +
514ac8ad
CM
1391 btrfs_file_extent_inline_len(leaf,
1392 path->slots[0], fi);
80ff3856
YZ
1393 extent_end = ALIGN(extent_end, root->sectorsize);
1394 } else {
1395 BUG_ON(1);
1396 }
1397out_check:
1398 if (extent_end <= start) {
1399 path->slots[0]++;
e9894fd3 1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1402 if (nocow)
1403 btrfs_dec_nocow_writers(root->fs_info,
1404 disk_bytenr);
80ff3856
YZ
1405 goto next_slot;
1406 }
1407 if (!nocow) {
1408 if (cow_start == (u64)-1)
1409 cow_start = cur_offset;
1410 cur_offset = extent_end;
1411 if (cur_offset > end)
1412 break;
1413 path->slots[0]++;
1414 goto next_slot;
7ea394f1
YZ
1415 }
1416
b3b4aa74 1417 btrfs_release_path(path);
80ff3856 1418 if (cow_start != (u64)-1) {
00361589
JB
1419 ret = cow_file_range(inode, locked_page,
1420 cow_start, found_key.offset - 1,
1421 page_started, nr_written, 1);
e9894fd3
WS
1422 if (ret) {
1423 if (!nolock && nocow)
9ea24bbe 1424 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1425 if (nocow)
1426 btrfs_dec_nocow_writers(root->fs_info,
1427 disk_bytenr);
79787eaa 1428 goto error;
e9894fd3 1429 }
80ff3856 1430 cow_start = (u64)-1;
7ea394f1 1431 }
80ff3856 1432
d899e052
YZ
1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 struct extent_map *em;
1435 struct extent_map_tree *em_tree;
1436 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1437 em = alloc_extent_map();
79787eaa 1438 BUG_ON(!em); /* -ENOMEM */
d899e052 1439 em->start = cur_offset;
70c8a91c 1440 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1441 em->len = num_bytes;
1442 em->block_len = num_bytes;
1443 em->block_start = disk_bytenr;
b4939680 1444 em->orig_block_len = disk_num_bytes;
cc95bef6 1445 em->ram_bytes = ram_bytes;
d899e052 1446 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1447 em->mod_start = em->start;
1448 em->mod_len = em->len;
d899e052 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1451 em->generation = -1;
d899e052 1452 while (1) {
890871be 1453 write_lock(&em_tree->lock);
09a2a8f9 1454 ret = add_extent_mapping(em_tree, em, 1);
890871be 1455 write_unlock(&em_tree->lock);
d899e052
YZ
1456 if (ret != -EEXIST) {
1457 free_extent_map(em);
1458 break;
1459 }
1460 btrfs_drop_extent_cache(inode, em->start,
1461 em->start + em->len - 1, 0);
1462 }
1463 type = BTRFS_ORDERED_PREALLOC;
1464 } else {
1465 type = BTRFS_ORDERED_NOCOW;
1466 }
80ff3856
YZ
1467
1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1469 num_bytes, num_bytes, type);
f78c436c
FM
1470 if (nocow)
1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1472 BUG_ON(ret); /* -ENOMEM */
771ed689 1473
efa56464
YZ
1474 if (root->root_key.objectid ==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 num_bytes);
e9894fd3
WS
1478 if (ret) {
1479 if (!nolock && nocow)
9ea24bbe 1480 btrfs_end_write_no_snapshoting(root);
79787eaa 1481 goto error;
e9894fd3 1482 }
efa56464
YZ
1483 }
1484
c2790a2e
JB
1485 extent_clear_unlock_delalloc(inode, cur_offset,
1486 cur_offset + num_bytes - 1,
1487 locked_page, EXTENT_LOCKED |
1488 EXTENT_DELALLOC, PAGE_UNLOCK |
1489 PAGE_SET_PRIVATE2);
e9894fd3 1490 if (!nolock && nocow)
9ea24bbe 1491 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1492 cur_offset = extent_end;
1493 if (cur_offset > end)
1494 break;
be20aa9d 1495 }
b3b4aa74 1496 btrfs_release_path(path);
80ff3856 1497
17ca04af 1498 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1499 cow_start = cur_offset;
17ca04af
JB
1500 cur_offset = end;
1501 }
1502
80ff3856 1503 if (cow_start != (u64)-1) {
00361589
JB
1504 ret = cow_file_range(inode, locked_page, cow_start, end,
1505 page_started, nr_written, 1);
d788a349 1506 if (ret)
79787eaa 1507 goto error;
80ff3856
YZ
1508 }
1509
79787eaa 1510error:
a698d075 1511 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1512 if (!ret)
1513 ret = err;
1514
17ca04af 1515 if (ret && cur_offset < end)
c2790a2e
JB
1516 extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 locked_page, EXTENT_LOCKED |
151a41bc
JB
1518 EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1521 PAGE_SET_WRITEBACK |
1522 PAGE_END_WRITEBACK);
7ea394f1 1523 btrfs_free_path(path);
79787eaa 1524 return ret;
be20aa9d
CM
1525}
1526
47059d93
WS
1527static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528{
1529
1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 return 0;
1533
1534 /*
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1538 */
1539 if (BTRFS_I(inode)->defrag_bytes &&
1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 EXTENT_DEFRAG, 0, NULL))
1542 return 1;
1543
1544 return 0;
1545}
1546
d352ac68
CM
1547/*
1548 * extent_io.c call back to do delayed allocation processing
1549 */
c8b97818 1550static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1551 u64 start, u64 end, int *page_started,
1552 unsigned long *nr_written)
be20aa9d 1553{
be20aa9d 1554 int ret;
47059d93 1555 int force_cow = need_force_cow(inode, start, end);
a2135011 1556
47059d93 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1558 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1559 page_started, 1, nr_written);
47059d93 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1561 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1562 page_started, 0, nr_written);
7816030e 1563 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1564 ret = cow_file_range(inode, locked_page, start, end,
1565 page_started, nr_written, 1);
7ddf5a42
JB
1566 } else {
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 &BTRFS_I(inode)->runtime_flags);
771ed689 1569 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1570 page_started, nr_written);
7ddf5a42 1571 }
b888db2b
CM
1572 return ret;
1573}
1574
1bf85046
JM
1575static void btrfs_split_extent_hook(struct inode *inode,
1576 struct extent_state *orig, u64 split)
9ed74f2d 1577{
dcab6a3b
JB
1578 u64 size;
1579
0ca1f7ce 1580 /* not delalloc, ignore it */
9ed74f2d 1581 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1582 return;
9ed74f2d 1583
dcab6a3b
JB
1584 size = orig->end - orig->start + 1;
1585 if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 u64 num_extents;
1587 u64 new_size;
1588
1589 /*
ba117213
JB
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
dcab6a3b
JB
1592 */
1593 new_size = orig->end - split + 1;
ba117213 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1595 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1596 new_size = split - orig->start;
1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 BTRFS_MAX_EXTENT_SIZE);
1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1601 return;
1602 }
1603
9e0baf60
JB
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents++;
1606 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1607}
1608
1609/*
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1614 */
1bf85046
JM
1615static void btrfs_merge_extent_hook(struct inode *inode,
1616 struct extent_state *new,
1617 struct extent_state *other)
9ed74f2d 1618{
dcab6a3b
JB
1619 u64 new_size, old_size;
1620 u64 num_extents;
1621
9ed74f2d
JB
1622 /* not delalloc, ignore it */
1623 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1624 return;
9ed74f2d 1625
8461a3de
JB
1626 if (new->start > other->start)
1627 new_size = new->end - other->start + 1;
1628 else
1629 new_size = other->end - new->start + 1;
dcab6a3b
JB
1630
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 return;
1637 }
1638
1639 /*
ba117213
JB
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1644 *
1645 * [ 4k][MAX_SIZE]
1646 *
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1650 *
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 *
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1655 * this case.
dcab6a3b 1656 */
ba117213 1657 old_size = other->end - other->start + 1;
dcab6a3b
JB
1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1660 old_size = new->end - new->start + 1;
1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 BTRFS_MAX_EXTENT_SIZE);
1663
dcab6a3b 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1666 return;
1667
9e0baf60
JB
1668 spin_lock(&BTRFS_I(inode)->lock);
1669 BTRFS_I(inode)->outstanding_extents--;
1670 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1671}
1672
eb73c1b7
MX
1673static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 struct inode *inode)
1675{
1676 spin_lock(&root->delalloc_lock);
1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 &root->delalloc_inodes);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 &BTRFS_I(inode)->runtime_flags);
1682 root->nr_delalloc_inodes++;
1683 if (root->nr_delalloc_inodes == 1) {
1684 spin_lock(&root->fs_info->delalloc_root_lock);
1685 BUG_ON(!list_empty(&root->delalloc_root));
1686 list_add_tail(&root->delalloc_root,
1687 &root->fs_info->delalloc_roots);
1688 spin_unlock(&root->fs_info->delalloc_root_lock);
1689 }
1690 }
1691 spin_unlock(&root->delalloc_lock);
1692}
1693
1694static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 struct inode *inode)
1696{
1697 spin_lock(&root->delalloc_lock);
1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes--;
1703 if (!root->nr_delalloc_inodes) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(list_empty(&root->delalloc_root));
1706 list_del_init(&root->delalloc_root);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711}
1712
d352ac68
CM
1713/*
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1717 */
1bf85046 1718static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1719 struct extent_state *state, unsigned *bits)
291d673e 1720{
9ed74f2d 1721
47059d93
WS
1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 WARN_ON(1);
75eff68e
CM
1724 /*
1725 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1726 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1727 * bit, which is only set or cleared with irqs on
1728 */
0ca1f7ce 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1730 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1731 u64 len = state->end + 1 - state->start;
83eea1f1 1732 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1733
9e0baf60 1734 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1735 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1736 } else {
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->outstanding_extents++;
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
287a0ab9 1741
6a3891c5
JB
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root))
1744 return;
1745
963d678b
MX
1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 root->fs_info->delalloc_batch);
df0af1a5 1748 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1749 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1750 if (*bits & EXTENT_DEFRAG)
1751 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1753 &BTRFS_I(inode)->runtime_flags))
1754 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1755 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1756 }
291d673e
CM
1757}
1758
d352ac68
CM
1759/*
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1761 */
1bf85046 1762static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1763 struct extent_state *state,
9ee49a04 1764 unsigned *bits)
291d673e 1765{
47059d93 1766 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1769
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 BTRFS_I(inode)->defrag_bytes -= len;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774
75eff68e
CM
1775 /*
1776 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1777 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1778 * bit, which is only set or cleared with irqs on
1779 */
0ca1f7ce 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1781 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1782 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1783
9e0baf60 1784 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1785 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1788 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1789 spin_unlock(&BTRFS_I(inode)->lock);
1790 }
0ca1f7ce 1791
b6d08f06
JB
1792 /*
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1795 * error.
1796 */
1797 if (*bits & EXTENT_DO_ACCOUNTING &&
1798 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1799 btrfs_delalloc_release_metadata(inode, len);
1800
6a3891c5
JB
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root))
1803 return;
1804
0cb59c99 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1806 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1807 btrfs_free_reserved_data_space_noquota(inode,
1808 state->start, len);
9ed74f2d 1809
963d678b
MX
1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 root->fs_info->delalloc_batch);
df0af1a5 1812 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1813 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1816 &BTRFS_I(inode)->runtime_flags))
1817 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1818 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1819 }
291d673e
CM
1820}
1821
d352ac68
CM
1822/*
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1825 */
64a16701 1826int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1827 size_t size, struct bio *bio,
1828 unsigned long bio_flags)
239b14b3
CM
1829{
1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1832 u64 length = 0;
1833 u64 map_length;
239b14b3
CM
1834 int ret;
1835
771ed689
CM
1836 if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 return 0;
1838
4f024f37 1839 length = bio->bi_iter.bi_size;
239b14b3 1840 map_length = length;
64a16701 1841 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1842 &map_length, NULL, 0);
3ec706c8 1843 /* Will always return 0 with map_multi == NULL */
3444a972 1844 BUG_ON(ret < 0);
d397712b 1845 if (map_length < length + size)
239b14b3 1846 return 1;
3444a972 1847 return 0;
239b14b3
CM
1848}
1849
d352ac68
CM
1850/*
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1854 *
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1857 */
d397712b
CM
1858static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1859 struct bio *bio, int mirror_num,
eaf25d93
CM
1860 unsigned long bio_flags,
1861 u64 bio_offset)
065631f6 1862{
065631f6 1863 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1864 int ret = 0;
e015640f 1865
d20f7043 1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1867 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1868 return 0;
1869}
e015640f 1870
4a69a410
CM
1871/*
1872 * in order to insert checksums into the metadata in large chunks,
1873 * we wait until bio submission time. All the pages in the bio are
1874 * checksummed and sums are attached onto the ordered extent record.
1875 *
1876 * At IO completion time the cums attached on the ordered extent record
1877 * are inserted into the btree
1878 */
b2950863 1879static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1880 int mirror_num, unsigned long bio_flags,
1881 u64 bio_offset)
4a69a410
CM
1882{
1883 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1884 int ret;
1885
1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1887 if (ret) {
1888 bio->bi_error = ret;
1889 bio_endio(bio);
1890 }
61891923 1891 return ret;
44b8bd7e
CM
1892}
1893
d352ac68 1894/*
cad321ad
CM
1895 * extent_io.c submission hook. This does the right thing for csum calculation
1896 * on write, or reading the csums from the tree before a read
d352ac68 1897 */
b2950863 1898static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1899 int mirror_num, unsigned long bio_flags,
1900 u64 bio_offset)
44b8bd7e
CM
1901{
1902 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1904 int ret = 0;
19b9bdb0 1905 int skip_sum;
b812ce28 1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1907
6cbff00f 1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1909
83eea1f1 1910 if (btrfs_is_free_space_inode(inode))
0d51e28a 1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1912
7b6d91da 1913 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1915 if (ret)
61891923 1916 goto out;
5fd02043 1917
d20f7043 1918 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1919 ret = btrfs_submit_compressed_read(inode, bio,
1920 mirror_num,
1921 bio_flags);
1922 goto out;
c2db1073
TI
1923 } else if (!skip_sum) {
1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1925 if (ret)
61891923 1926 goto out;
c2db1073 1927 }
4d1b5fb4 1928 goto mapit;
b812ce28 1929 } else if (async && !skip_sum) {
17d217fe
YZ
1930 /* csum items have already been cloned */
1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1932 goto mapit;
19b9bdb0 1933 /* we're doing a write, do the async checksumming */
61891923 1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1935 inode, rw, bio, mirror_num,
eaf25d93
CM
1936 bio_flags, bio_offset,
1937 __btrfs_submit_bio_start,
4a69a410 1938 __btrfs_submit_bio_done);
61891923 1939 goto out;
b812ce28
JB
1940 } else if (!skip_sum) {
1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1942 if (ret)
1943 goto out;
19b9bdb0
CM
1944 }
1945
0b86a832 1946mapit:
61891923
SB
1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1948
1949out:
4246a0b6
CH
1950 if (ret < 0) {
1951 bio->bi_error = ret;
1952 bio_endio(bio);
1953 }
61891923 1954 return ret;
065631f6 1955}
6885f308 1956
d352ac68
CM
1957/*
1958 * given a list of ordered sums record them in the inode. This happens
1959 * at IO completion time based on sums calculated at bio submission time.
1960 */
ba1da2f4 1961static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1962 struct inode *inode, u64 file_offset,
1963 struct list_head *list)
1964{
e6dcd2dc
CM
1965 struct btrfs_ordered_sum *sum;
1966
c6e30871 1967 list_for_each_entry(sum, list, list) {
39847c4d 1968 trans->adding_csums = 1;
d20f7043
CM
1969 btrfs_csum_file_blocks(trans,
1970 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1971 trans->adding_csums = 0;
e6dcd2dc
CM
1972 }
1973 return 0;
1974}
1975
2ac55d41
JB
1976int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1977 struct extent_state **cached_state)
ea8c2819 1978{
09cbfeaf 1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1981 cached_state);
ea8c2819
CM
1982}
1983
d352ac68 1984/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1985struct btrfs_writepage_fixup {
1986 struct page *page;
1987 struct btrfs_work work;
1988};
1989
b2950863 1990static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1991{
1992 struct btrfs_writepage_fixup *fixup;
1993 struct btrfs_ordered_extent *ordered;
2ac55d41 1994 struct extent_state *cached_state = NULL;
247e743c
CM
1995 struct page *page;
1996 struct inode *inode;
1997 u64 page_start;
1998 u64 page_end;
87826df0 1999 int ret;
247e743c
CM
2000
2001 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2002 page = fixup->page;
4a096752 2003again:
247e743c
CM
2004 lock_page(page);
2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2006 ClearPageChecked(page);
2007 goto out_page;
2008 }
2009
2010 inode = page->mapping->host;
2011 page_start = page_offset(page);
09cbfeaf 2012 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2013
ff13db41 2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2015 &cached_state);
4a096752
CM
2016
2017 /* already ordered? We're done */
8b62b72b 2018 if (PagePrivate2(page))
247e743c 2019 goto out;
4a096752 2020
dbfdb6d1 2021 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2022 PAGE_SIZE);
4a096752 2023 if (ordered) {
2ac55d41
JB
2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2025 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2026 unlock_page(page);
2027 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2028 btrfs_put_ordered_extent(ordered);
4a096752
CM
2029 goto again;
2030 }
247e743c 2031
7cf5b976 2032 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2033 PAGE_SIZE);
87826df0
JM
2034 if (ret) {
2035 mapping_set_error(page->mapping, ret);
2036 end_extent_writepage(page, ret, page_start, page_end);
2037 ClearPageChecked(page);
2038 goto out;
2039 }
2040
2ac55d41 2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2042 ClearPageChecked(page);
87826df0 2043 set_page_dirty(page);
247e743c 2044out:
2ac55d41
JB
2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2046 &cached_state, GFP_NOFS);
247e743c
CM
2047out_page:
2048 unlock_page(page);
09cbfeaf 2049 put_page(page);
b897abec 2050 kfree(fixup);
247e743c
CM
2051}
2052
2053/*
2054 * There are a few paths in the higher layers of the kernel that directly
2055 * set the page dirty bit without asking the filesystem if it is a
2056 * good idea. This causes problems because we want to make sure COW
2057 * properly happens and the data=ordered rules are followed.
2058 *
c8b97818 2059 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2060 * hasn't been properly setup for IO. We kick off an async process
2061 * to fix it up. The async helper will wait for ordered extents, set
2062 * the delalloc bit and make it safe to write the page.
2063 */
b2950863 2064static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2065{
2066 struct inode *inode = page->mapping->host;
2067 struct btrfs_writepage_fixup *fixup;
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2069
8b62b72b
CM
2070 /* this page is properly in the ordered list */
2071 if (TestClearPagePrivate2(page))
247e743c
CM
2072 return 0;
2073
2074 if (PageChecked(page))
2075 return -EAGAIN;
2076
2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2078 if (!fixup)
2079 return -EAGAIN;
f421950f 2080
247e743c 2081 SetPageChecked(page);
09cbfeaf 2082 get_page(page);
9e0af237
LB
2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2084 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2085 fixup->page = page;
dc6e3209 2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2087 return -EBUSY;
247e743c
CM
2088}
2089
d899e052
YZ
2090static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2091 struct inode *inode, u64 file_pos,
2092 u64 disk_bytenr, u64 disk_num_bytes,
2093 u64 num_bytes, u64 ram_bytes,
2094 u8 compression, u8 encryption,
2095 u16 other_encoding, int extent_type)
2096{
2097 struct btrfs_root *root = BTRFS_I(inode)->root;
2098 struct btrfs_file_extent_item *fi;
2099 struct btrfs_path *path;
2100 struct extent_buffer *leaf;
2101 struct btrfs_key ins;
1acae57b 2102 int extent_inserted = 0;
d899e052
YZ
2103 int ret;
2104
2105 path = btrfs_alloc_path();
d8926bb3
MF
2106 if (!path)
2107 return -ENOMEM;
d899e052 2108
a1ed835e
CM
2109 /*
2110 * we may be replacing one extent in the tree with another.
2111 * The new extent is pinned in the extent map, and we don't want
2112 * to drop it from the cache until it is completely in the btree.
2113 *
2114 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 * the caller is expected to unpin it and allow it to be merged
2116 * with the others.
2117 */
1acae57b
FDBM
2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2119 file_pos + num_bytes, NULL, 0,
2120 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2121 if (ret)
2122 goto out;
d899e052 2123
1acae57b
FDBM
2124 if (!extent_inserted) {
2125 ins.objectid = btrfs_ino(inode);
2126 ins.offset = file_pos;
2127 ins.type = BTRFS_EXTENT_DATA_KEY;
2128
2129 path->leave_spinning = 1;
2130 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2131 sizeof(*fi));
2132 if (ret)
2133 goto out;
2134 }
d899e052
YZ
2135 leaf = path->nodes[0];
2136 fi = btrfs_item_ptr(leaf, path->slots[0],
2137 struct btrfs_file_extent_item);
2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2139 btrfs_set_file_extent_type(leaf, fi, extent_type);
2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2142 btrfs_set_file_extent_offset(leaf, fi, 0);
2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2145 btrfs_set_file_extent_compression(leaf, fi, compression);
2146 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2148
d899e052 2149 btrfs_mark_buffer_dirty(leaf);
ce195332 2150 btrfs_release_path(path);
d899e052
YZ
2151
2152 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2153
2154 ins.objectid = disk_bytenr;
2155 ins.offset = disk_num_bytes;
2156 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2157 ret = btrfs_alloc_reserved_file_extent(trans, root,
2158 root->root_key.objectid,
5846a3c2
QW
2159 btrfs_ino(inode), file_pos,
2160 ram_bytes, &ins);
297d750b 2161 /*
5846a3c2
QW
2162 * Release the reserved range from inode dirty range map, as it is
2163 * already moved into delayed_ref_head
297d750b
QW
2164 */
2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2166out:
d899e052 2167 btrfs_free_path(path);
b9473439 2168
79787eaa 2169 return ret;
d899e052
YZ
2170}
2171
38c227d8
LB
2172/* snapshot-aware defrag */
2173struct sa_defrag_extent_backref {
2174 struct rb_node node;
2175 struct old_sa_defrag_extent *old;
2176 u64 root_id;
2177 u64 inum;
2178 u64 file_pos;
2179 u64 extent_offset;
2180 u64 num_bytes;
2181 u64 generation;
2182};
2183
2184struct old_sa_defrag_extent {
2185 struct list_head list;
2186 struct new_sa_defrag_extent *new;
2187
2188 u64 extent_offset;
2189 u64 bytenr;
2190 u64 offset;
2191 u64 len;
2192 int count;
2193};
2194
2195struct new_sa_defrag_extent {
2196 struct rb_root root;
2197 struct list_head head;
2198 struct btrfs_path *path;
2199 struct inode *inode;
2200 u64 file_pos;
2201 u64 len;
2202 u64 bytenr;
2203 u64 disk_len;
2204 u8 compress_type;
2205};
2206
2207static int backref_comp(struct sa_defrag_extent_backref *b1,
2208 struct sa_defrag_extent_backref *b2)
2209{
2210 if (b1->root_id < b2->root_id)
2211 return -1;
2212 else if (b1->root_id > b2->root_id)
2213 return 1;
2214
2215 if (b1->inum < b2->inum)
2216 return -1;
2217 else if (b1->inum > b2->inum)
2218 return 1;
2219
2220 if (b1->file_pos < b2->file_pos)
2221 return -1;
2222 else if (b1->file_pos > b2->file_pos)
2223 return 1;
2224
2225 /*
2226 * [------------------------------] ===> (a range of space)
2227 * |<--->| |<---->| =============> (fs/file tree A)
2228 * |<---------------------------->| ===> (fs/file tree B)
2229 *
2230 * A range of space can refer to two file extents in one tree while
2231 * refer to only one file extent in another tree.
2232 *
2233 * So we may process a disk offset more than one time(two extents in A)
2234 * and locate at the same extent(one extent in B), then insert two same
2235 * backrefs(both refer to the extent in B).
2236 */
2237 return 0;
2238}
2239
2240static void backref_insert(struct rb_root *root,
2241 struct sa_defrag_extent_backref *backref)
2242{
2243 struct rb_node **p = &root->rb_node;
2244 struct rb_node *parent = NULL;
2245 struct sa_defrag_extent_backref *entry;
2246 int ret;
2247
2248 while (*p) {
2249 parent = *p;
2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2251
2252 ret = backref_comp(backref, entry);
2253 if (ret < 0)
2254 p = &(*p)->rb_left;
2255 else
2256 p = &(*p)->rb_right;
2257 }
2258
2259 rb_link_node(&backref->node, parent, p);
2260 rb_insert_color(&backref->node, root);
2261}
2262
2263/*
2264 * Note the backref might has changed, and in this case we just return 0.
2265 */
2266static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2267 void *ctx)
2268{
2269 struct btrfs_file_extent_item *extent;
2270 struct btrfs_fs_info *fs_info;
2271 struct old_sa_defrag_extent *old = ctx;
2272 struct new_sa_defrag_extent *new = old->new;
2273 struct btrfs_path *path = new->path;
2274 struct btrfs_key key;
2275 struct btrfs_root *root;
2276 struct sa_defrag_extent_backref *backref;
2277 struct extent_buffer *leaf;
2278 struct inode *inode = new->inode;
2279 int slot;
2280 int ret;
2281 u64 extent_offset;
2282 u64 num_bytes;
2283
2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2285 inum == btrfs_ino(inode))
2286 return 0;
2287
2288 key.objectid = root_id;
2289 key.type = BTRFS_ROOT_ITEM_KEY;
2290 key.offset = (u64)-1;
2291
2292 fs_info = BTRFS_I(inode)->root->fs_info;
2293 root = btrfs_read_fs_root_no_name(fs_info, &key);
2294 if (IS_ERR(root)) {
2295 if (PTR_ERR(root) == -ENOENT)
2296 return 0;
2297 WARN_ON(1);
2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 inum, offset, root_id);
2300 return PTR_ERR(root);
2301 }
2302
2303 key.objectid = inum;
2304 key.type = BTRFS_EXTENT_DATA_KEY;
2305 if (offset > (u64)-1 << 32)
2306 key.offset = 0;
2307 else
2308 key.offset = offset;
2309
2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2311 if (WARN_ON(ret < 0))
38c227d8 2312 return ret;
50f1319c 2313 ret = 0;
38c227d8
LB
2314
2315 while (1) {
2316 cond_resched();
2317
2318 leaf = path->nodes[0];
2319 slot = path->slots[0];
2320
2321 if (slot >= btrfs_header_nritems(leaf)) {
2322 ret = btrfs_next_leaf(root, path);
2323 if (ret < 0) {
2324 goto out;
2325 } else if (ret > 0) {
2326 ret = 0;
2327 goto out;
2328 }
2329 continue;
2330 }
2331
2332 path->slots[0]++;
2333
2334 btrfs_item_key_to_cpu(leaf, &key, slot);
2335
2336 if (key.objectid > inum)
2337 goto out;
2338
2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2340 continue;
2341
2342 extent = btrfs_item_ptr(leaf, slot,
2343 struct btrfs_file_extent_item);
2344
2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2346 continue;
2347
e68afa49
LB
2348 /*
2349 * 'offset' refers to the exact key.offset,
2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 * (key.offset - extent_offset).
2352 */
2353 if (key.offset != offset)
38c227d8
LB
2354 continue;
2355
e68afa49 2356 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2358
38c227d8
LB
2359 if (extent_offset >= old->extent_offset + old->offset +
2360 old->len || extent_offset + num_bytes <=
2361 old->extent_offset + old->offset)
2362 continue;
38c227d8
LB
2363 break;
2364 }
2365
2366 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2367 if (!backref) {
2368 ret = -ENOENT;
2369 goto out;
2370 }
2371
2372 backref->root_id = root_id;
2373 backref->inum = inum;
e68afa49 2374 backref->file_pos = offset;
38c227d8
LB
2375 backref->num_bytes = num_bytes;
2376 backref->extent_offset = extent_offset;
2377 backref->generation = btrfs_file_extent_generation(leaf, extent);
2378 backref->old = old;
2379 backref_insert(&new->root, backref);
2380 old->count++;
2381out:
2382 btrfs_release_path(path);
2383 WARN_ON(ret);
2384 return ret;
2385}
2386
2387static noinline bool record_extent_backrefs(struct btrfs_path *path,
2388 struct new_sa_defrag_extent *new)
2389{
2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2391 struct old_sa_defrag_extent *old, *tmp;
2392 int ret;
2393
2394 new->path = path;
2395
2396 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2397 ret = iterate_inodes_from_logical(old->bytenr +
2398 old->extent_offset, fs_info,
38c227d8
LB
2399 path, record_one_backref,
2400 old);
4724b106
JB
2401 if (ret < 0 && ret != -ENOENT)
2402 return false;
38c227d8
LB
2403
2404 /* no backref to be processed for this extent */
2405 if (!old->count) {
2406 list_del(&old->list);
2407 kfree(old);
2408 }
2409 }
2410
2411 if (list_empty(&new->head))
2412 return false;
2413
2414 return true;
2415}
2416
2417static int relink_is_mergable(struct extent_buffer *leaf,
2418 struct btrfs_file_extent_item *fi,
116e0024 2419 struct new_sa_defrag_extent *new)
38c227d8 2420{
116e0024 2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2422 return 0;
2423
2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2425 return 0;
2426
116e0024
LB
2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2428 return 0;
2429
2430 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2431 btrfs_file_extent_other_encoding(leaf, fi))
2432 return 0;
2433
2434 return 1;
2435}
2436
2437/*
2438 * Note the backref might has changed, and in this case we just return 0.
2439 */
2440static noinline int relink_extent_backref(struct btrfs_path *path,
2441 struct sa_defrag_extent_backref *prev,
2442 struct sa_defrag_extent_backref *backref)
2443{
2444 struct btrfs_file_extent_item *extent;
2445 struct btrfs_file_extent_item *item;
2446 struct btrfs_ordered_extent *ordered;
2447 struct btrfs_trans_handle *trans;
2448 struct btrfs_fs_info *fs_info;
2449 struct btrfs_root *root;
2450 struct btrfs_key key;
2451 struct extent_buffer *leaf;
2452 struct old_sa_defrag_extent *old = backref->old;
2453 struct new_sa_defrag_extent *new = old->new;
2454 struct inode *src_inode = new->inode;
2455 struct inode *inode;
2456 struct extent_state *cached = NULL;
2457 int ret = 0;
2458 u64 start;
2459 u64 len;
2460 u64 lock_start;
2461 u64 lock_end;
2462 bool merge = false;
2463 int index;
2464
2465 if (prev && prev->root_id == backref->root_id &&
2466 prev->inum == backref->inum &&
2467 prev->file_pos + prev->num_bytes == backref->file_pos)
2468 merge = true;
2469
2470 /* step 1: get root */
2471 key.objectid = backref->root_id;
2472 key.type = BTRFS_ROOT_ITEM_KEY;
2473 key.offset = (u64)-1;
2474
2475 fs_info = BTRFS_I(src_inode)->root->fs_info;
2476 index = srcu_read_lock(&fs_info->subvol_srcu);
2477
2478 root = btrfs_read_fs_root_no_name(fs_info, &key);
2479 if (IS_ERR(root)) {
2480 srcu_read_unlock(&fs_info->subvol_srcu, index);
2481 if (PTR_ERR(root) == -ENOENT)
2482 return 0;
2483 return PTR_ERR(root);
2484 }
38c227d8 2485
bcbba5e6
WS
2486 if (btrfs_root_readonly(root)) {
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 return 0;
2489 }
2490
38c227d8
LB
2491 /* step 2: get inode */
2492 key.objectid = backref->inum;
2493 key.type = BTRFS_INODE_ITEM_KEY;
2494 key.offset = 0;
2495
2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2497 if (IS_ERR(inode)) {
2498 srcu_read_unlock(&fs_info->subvol_srcu, index);
2499 return 0;
2500 }
2501
2502 srcu_read_unlock(&fs_info->subvol_srcu, index);
2503
2504 /* step 3: relink backref */
2505 lock_start = backref->file_pos;
2506 lock_end = backref->file_pos + backref->num_bytes - 1;
2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2508 &cached);
38c227d8
LB
2509
2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2511 if (ordered) {
2512 btrfs_put_ordered_extent(ordered);
2513 goto out_unlock;
2514 }
2515
2516 trans = btrfs_join_transaction(root);
2517 if (IS_ERR(trans)) {
2518 ret = PTR_ERR(trans);
2519 goto out_unlock;
2520 }
2521
2522 key.objectid = backref->inum;
2523 key.type = BTRFS_EXTENT_DATA_KEY;
2524 key.offset = backref->file_pos;
2525
2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2527 if (ret < 0) {
2528 goto out_free_path;
2529 } else if (ret > 0) {
2530 ret = 0;
2531 goto out_free_path;
2532 }
2533
2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2535 struct btrfs_file_extent_item);
2536
2537 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2538 backref->generation)
2539 goto out_free_path;
2540
2541 btrfs_release_path(path);
2542
2543 start = backref->file_pos;
2544 if (backref->extent_offset < old->extent_offset + old->offset)
2545 start += old->extent_offset + old->offset -
2546 backref->extent_offset;
2547
2548 len = min(backref->extent_offset + backref->num_bytes,
2549 old->extent_offset + old->offset + old->len);
2550 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2551
2552 ret = btrfs_drop_extents(trans, root, inode, start,
2553 start + len, 1);
2554 if (ret)
2555 goto out_free_path;
2556again:
2557 key.objectid = btrfs_ino(inode);
2558 key.type = BTRFS_EXTENT_DATA_KEY;
2559 key.offset = start;
2560
a09a0a70 2561 path->leave_spinning = 1;
38c227d8
LB
2562 if (merge) {
2563 struct btrfs_file_extent_item *fi;
2564 u64 extent_len;
2565 struct btrfs_key found_key;
2566
3c9665df 2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2568 if (ret < 0)
2569 goto out_free_path;
2570
2571 path->slots[0]--;
2572 leaf = path->nodes[0];
2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2574
2575 fi = btrfs_item_ptr(leaf, path->slots[0],
2576 struct btrfs_file_extent_item);
2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2578
116e0024
LB
2579 if (extent_len + found_key.offset == start &&
2580 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2581 btrfs_set_file_extent_num_bytes(leaf, fi,
2582 extent_len + len);
2583 btrfs_mark_buffer_dirty(leaf);
2584 inode_add_bytes(inode, len);
2585
2586 ret = 1;
2587 goto out_free_path;
2588 } else {
2589 merge = false;
2590 btrfs_release_path(path);
2591 goto again;
2592 }
2593 }
2594
2595 ret = btrfs_insert_empty_item(trans, root, path, &key,
2596 sizeof(*extent));
2597 if (ret) {
2598 btrfs_abort_transaction(trans, root, ret);
2599 goto out_free_path;
2600 }
2601
2602 leaf = path->nodes[0];
2603 item = btrfs_item_ptr(leaf, path->slots[0],
2604 struct btrfs_file_extent_item);
2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2608 btrfs_set_file_extent_num_bytes(leaf, item, len);
2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2610 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2613 btrfs_set_file_extent_encryption(leaf, item, 0);
2614 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2615
2616 btrfs_mark_buffer_dirty(leaf);
2617 inode_add_bytes(inode, len);
a09a0a70 2618 btrfs_release_path(path);
38c227d8
LB
2619
2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2621 new->disk_len, 0,
2622 backref->root_id, backref->inum,
b06c4bf5 2623 new->file_pos); /* start - extent_offset */
38c227d8
LB
2624 if (ret) {
2625 btrfs_abort_transaction(trans, root, ret);
2626 goto out_free_path;
2627 }
2628
2629 ret = 1;
2630out_free_path:
2631 btrfs_release_path(path);
a09a0a70 2632 path->leave_spinning = 0;
38c227d8
LB
2633 btrfs_end_transaction(trans, root);
2634out_unlock:
2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2636 &cached, GFP_NOFS);
2637 iput(inode);
2638 return ret;
2639}
2640
6f519564
LB
2641static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2642{
2643 struct old_sa_defrag_extent *old, *tmp;
2644
2645 if (!new)
2646 return;
2647
2648 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2649 kfree(old);
2650 }
2651 kfree(new);
2652}
2653
38c227d8
LB
2654static void relink_file_extents(struct new_sa_defrag_extent *new)
2655{
2656 struct btrfs_path *path;
38c227d8
LB
2657 struct sa_defrag_extent_backref *backref;
2658 struct sa_defrag_extent_backref *prev = NULL;
2659 struct inode *inode;
2660 struct btrfs_root *root;
2661 struct rb_node *node;
2662 int ret;
2663
2664 inode = new->inode;
2665 root = BTRFS_I(inode)->root;
2666
2667 path = btrfs_alloc_path();
2668 if (!path)
2669 return;
2670
2671 if (!record_extent_backrefs(path, new)) {
2672 btrfs_free_path(path);
2673 goto out;
2674 }
2675 btrfs_release_path(path);
2676
2677 while (1) {
2678 node = rb_first(&new->root);
2679 if (!node)
2680 break;
2681 rb_erase(node, &new->root);
2682
2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2684
2685 ret = relink_extent_backref(path, prev, backref);
2686 WARN_ON(ret < 0);
2687
2688 kfree(prev);
2689
2690 if (ret == 1)
2691 prev = backref;
2692 else
2693 prev = NULL;
2694 cond_resched();
2695 }
2696 kfree(prev);
2697
2698 btrfs_free_path(path);
38c227d8 2699out:
6f519564
LB
2700 free_sa_defrag_extent(new);
2701
38c227d8
LB
2702 atomic_dec(&root->fs_info->defrag_running);
2703 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2704}
2705
2706static struct new_sa_defrag_extent *
2707record_old_file_extents(struct inode *inode,
2708 struct btrfs_ordered_extent *ordered)
2709{
2710 struct btrfs_root *root = BTRFS_I(inode)->root;
2711 struct btrfs_path *path;
2712 struct btrfs_key key;
6f519564 2713 struct old_sa_defrag_extent *old;
38c227d8
LB
2714 struct new_sa_defrag_extent *new;
2715 int ret;
2716
2717 new = kmalloc(sizeof(*new), GFP_NOFS);
2718 if (!new)
2719 return NULL;
2720
2721 new->inode = inode;
2722 new->file_pos = ordered->file_offset;
2723 new->len = ordered->len;
2724 new->bytenr = ordered->start;
2725 new->disk_len = ordered->disk_len;
2726 new->compress_type = ordered->compress_type;
2727 new->root = RB_ROOT;
2728 INIT_LIST_HEAD(&new->head);
2729
2730 path = btrfs_alloc_path();
2731 if (!path)
2732 goto out_kfree;
2733
2734 key.objectid = btrfs_ino(inode);
2735 key.type = BTRFS_EXTENT_DATA_KEY;
2736 key.offset = new->file_pos;
2737
2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2739 if (ret < 0)
2740 goto out_free_path;
2741 if (ret > 0 && path->slots[0] > 0)
2742 path->slots[0]--;
2743
2744 /* find out all the old extents for the file range */
2745 while (1) {
2746 struct btrfs_file_extent_item *extent;
2747 struct extent_buffer *l;
2748 int slot;
2749 u64 num_bytes;
2750 u64 offset;
2751 u64 end;
2752 u64 disk_bytenr;
2753 u64 extent_offset;
2754
2755 l = path->nodes[0];
2756 slot = path->slots[0];
2757
2758 if (slot >= btrfs_header_nritems(l)) {
2759 ret = btrfs_next_leaf(root, path);
2760 if (ret < 0)
6f519564 2761 goto out_free_path;
38c227d8
LB
2762 else if (ret > 0)
2763 break;
2764 continue;
2765 }
2766
2767 btrfs_item_key_to_cpu(l, &key, slot);
2768
2769 if (key.objectid != btrfs_ino(inode))
2770 break;
2771 if (key.type != BTRFS_EXTENT_DATA_KEY)
2772 break;
2773 if (key.offset >= new->file_pos + new->len)
2774 break;
2775
2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2777
2778 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2779 if (key.offset + num_bytes < new->file_pos)
2780 goto next;
2781
2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2783 if (!disk_bytenr)
2784 goto next;
2785
2786 extent_offset = btrfs_file_extent_offset(l, extent);
2787
2788 old = kmalloc(sizeof(*old), GFP_NOFS);
2789 if (!old)
6f519564 2790 goto out_free_path;
38c227d8
LB
2791
2792 offset = max(new->file_pos, key.offset);
2793 end = min(new->file_pos + new->len, key.offset + num_bytes);
2794
2795 old->bytenr = disk_bytenr;
2796 old->extent_offset = extent_offset;
2797 old->offset = offset - key.offset;
2798 old->len = end - offset;
2799 old->new = new;
2800 old->count = 0;
2801 list_add_tail(&old->list, &new->head);
2802next:
2803 path->slots[0]++;
2804 cond_resched();
2805 }
2806
2807 btrfs_free_path(path);
2808 atomic_inc(&root->fs_info->defrag_running);
2809
2810 return new;
2811
38c227d8
LB
2812out_free_path:
2813 btrfs_free_path(path);
2814out_kfree:
6f519564 2815 free_sa_defrag_extent(new);
38c227d8
LB
2816 return NULL;
2817}
2818
e570fd27
MX
2819static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2820 u64 start, u64 len)
2821{
2822 struct btrfs_block_group_cache *cache;
2823
2824 cache = btrfs_lookup_block_group(root->fs_info, start);
2825 ASSERT(cache);
2826
2827 spin_lock(&cache->lock);
2828 cache->delalloc_bytes -= len;
2829 spin_unlock(&cache->lock);
2830
2831 btrfs_put_block_group(cache);
2832}
2833
d352ac68
CM
2834/* as ordered data IO finishes, this gets called so we can finish
2835 * an ordered extent if the range of bytes in the file it covers are
2836 * fully written.
2837 */
5fd02043 2838static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2839{
5fd02043 2840 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2841 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2842 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2844 struct extent_state *cached_state = NULL;
38c227d8 2845 struct new_sa_defrag_extent *new = NULL;
261507a0 2846 int compress_type = 0;
77cef2ec
JB
2847 int ret = 0;
2848 u64 logical_len = ordered_extent->len;
82d5902d 2849 bool nolock;
77cef2ec 2850 bool truncated = false;
e6dcd2dc 2851
83eea1f1 2852 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2853
5fd02043
JB
2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2855 ret = -EIO;
2856 goto out;
2857 }
2858
f612496b
MX
2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2860 ordered_extent->file_offset +
2861 ordered_extent->len - 1);
2862
77cef2ec
JB
2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2864 truncated = true;
2865 logical_len = ordered_extent->truncated_len;
2866 /* Truncated the entire extent, don't bother adding */
2867 if (!logical_len)
2868 goto out;
2869 }
2870
c2167754 2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2873
2874 /*
2875 * For mwrite(mmap + memset to write) case, we still reserve
2876 * space for NOCOW range.
2877 * As NOCOW won't cause a new delayed ref, just free the space
2878 */
2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2880 ordered_extent->len);
6c760c07
JB
2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2882 if (nolock)
2883 trans = btrfs_join_transaction_nolock(root);
2884 else
2885 trans = btrfs_join_transaction(root);
2886 if (IS_ERR(trans)) {
2887 ret = PTR_ERR(trans);
2888 trans = NULL;
2889 goto out;
c2167754 2890 }
6c760c07
JB
2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2892 ret = btrfs_update_inode_fallback(trans, root, inode);
2893 if (ret) /* -ENOMEM or corruption */
2894 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2895 goto out;
2896 }
e6dcd2dc 2897
2ac55d41
JB
2898 lock_extent_bits(io_tree, ordered_extent->file_offset,
2899 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2900 &cached_state);
e6dcd2dc 2901
38c227d8
LB
2902 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2903 ordered_extent->file_offset + ordered_extent->len - 1,
2904 EXTENT_DEFRAG, 1, cached_state);
2905 if (ret) {
2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2908 /* the inode is shared */
2909 new = record_old_file_extents(inode, ordered_extent);
2910
2911 clear_extent_bit(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset + ordered_extent->len - 1,
2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2914 }
2915
0cb59c99 2916 if (nolock)
7a7eaa40 2917 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2918 else
7a7eaa40 2919 trans = btrfs_join_transaction(root);
79787eaa
JM
2920 if (IS_ERR(trans)) {
2921 ret = PTR_ERR(trans);
2922 trans = NULL;
2923 goto out_unlock;
2924 }
a79b7d4b 2925
0ca1f7ce 2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2927
c8b97818 2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2929 compress_type = ordered_extent->compress_type;
d899e052 2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2931 BUG_ON(compress_type);
920bbbfb 2932 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2933 ordered_extent->file_offset,
2934 ordered_extent->file_offset +
77cef2ec 2935 logical_len);
d899e052 2936 } else {
0af3d00b 2937 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2938 ret = insert_reserved_file_extent(trans, inode,
2939 ordered_extent->file_offset,
2940 ordered_extent->start,
2941 ordered_extent->disk_len,
77cef2ec 2942 logical_len, logical_len,
261507a0 2943 compress_type, 0, 0,
d899e052 2944 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2945 if (!ret)
2946 btrfs_release_delalloc_bytes(root,
2947 ordered_extent->start,
2948 ordered_extent->disk_len);
d899e052 2949 }
5dc562c5
JB
2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2951 ordered_extent->file_offset, ordered_extent->len,
2952 trans->transid);
79787eaa
JM
2953 if (ret < 0) {
2954 btrfs_abort_transaction(trans, root, ret);
5fd02043 2955 goto out_unlock;
79787eaa 2956 }
2ac55d41 2957
e6dcd2dc
CM
2958 add_pending_csums(trans, inode, ordered_extent->file_offset,
2959 &ordered_extent->list);
2960
6c760c07
JB
2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2962 ret = btrfs_update_inode_fallback(trans, root, inode);
2963 if (ret) { /* -ENOMEM or corruption */
2964 btrfs_abort_transaction(trans, root, ret);
2965 goto out_unlock;
1ef30be1
JB
2966 }
2967 ret = 0;
5fd02043
JB
2968out_unlock:
2969 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2970 ordered_extent->file_offset +
2971 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2972out:
5b0e95bf 2973 if (root != root->fs_info->tree_root)
0cb59c99 2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2975 if (trans)
2976 btrfs_end_transaction(trans, root);
0cb59c99 2977
77cef2ec
JB
2978 if (ret || truncated) {
2979 u64 start, end;
2980
2981 if (truncated)
2982 start = ordered_extent->file_offset + logical_len;
2983 else
2984 start = ordered_extent->file_offset;
2985 end = ordered_extent->file_offset + ordered_extent->len - 1;
2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2987
2988 /* Drop the cache for the part of the extent we didn't write. */
2989 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2990
0bec9ef5
JB
2991 /*
2992 * If the ordered extent had an IOERR or something else went
2993 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2994 * back to the allocator. We only free the extent in the
2995 * truncated case if we didn't write out the extent at all.
0bec9ef5 2996 */
77cef2ec
JB
2997 if ((ret || !logical_len) &&
2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3000 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3001 ordered_extent->disk_len, 1);
0bec9ef5
JB
3002 }
3003
3004
5fd02043 3005 /*
8bad3c02
LB
3006 * This needs to be done to make sure anybody waiting knows we are done
3007 * updating everything for this ordered extent.
5fd02043
JB
3008 */
3009 btrfs_remove_ordered_extent(inode, ordered_extent);
3010
38c227d8 3011 /* for snapshot-aware defrag */
6f519564
LB
3012 if (new) {
3013 if (ret) {
3014 free_sa_defrag_extent(new);
3015 atomic_dec(&root->fs_info->defrag_running);
3016 } else {
3017 relink_file_extents(new);
3018 }
3019 }
38c227d8 3020
e6dcd2dc
CM
3021 /* once for us */
3022 btrfs_put_ordered_extent(ordered_extent);
3023 /* once for the tree */
3024 btrfs_put_ordered_extent(ordered_extent);
3025
5fd02043
JB
3026 return ret;
3027}
3028
3029static void finish_ordered_fn(struct btrfs_work *work)
3030{
3031 struct btrfs_ordered_extent *ordered_extent;
3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3033 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3034}
3035
b2950863 3036static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3037 struct extent_state *state, int uptodate)
3038{
5fd02043
JB
3039 struct inode *inode = page->mapping->host;
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3042 struct btrfs_workqueue *wq;
3043 btrfs_work_func_t func;
5fd02043 3044
1abe9b8a 3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3046
8b62b72b 3047 ClearPagePrivate2(page);
5fd02043
JB
3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3049 end - start + 1, uptodate))
3050 return 0;
3051
9e0af237
LB
3052 if (btrfs_is_free_space_inode(inode)) {
3053 wq = root->fs_info->endio_freespace_worker;
3054 func = btrfs_freespace_write_helper;
3055 } else {
3056 wq = root->fs_info->endio_write_workers;
3057 func = btrfs_endio_write_helper;
3058 }
5fd02043 3059
9e0af237
LB
3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3061 NULL);
3062 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3063
3064 return 0;
211f90e6
CM
3065}
3066
dc380aea
MX
3067static int __readpage_endio_check(struct inode *inode,
3068 struct btrfs_io_bio *io_bio,
3069 int icsum, struct page *page,
3070 int pgoff, u64 start, size_t len)
3071{
3072 char *kaddr;
3073 u32 csum_expected;
3074 u32 csum = ~(u32)0;
dc380aea
MX
3075
3076 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3077
3078 kaddr = kmap_atomic(page);
3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3080 btrfs_csum_final(csum, (char *)&csum);
3081 if (csum != csum_expected)
3082 goto zeroit;
3083
3084 kunmap_atomic(kaddr);
3085 return 0;
3086zeroit:
94647322
DS
3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3088 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3089 btrfs_ino(inode), start, csum, csum_expected);
3090 memset(kaddr + pgoff, 1, len);
3091 flush_dcache_page(page);
3092 kunmap_atomic(kaddr);
3093 if (csum_expected == 0)
3094 return 0;
3095 return -EIO;
3096}
3097
d352ac68
CM
3098/*
3099 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3100 * if there's a match, we allow the bio to finish. If not, the code in
3101 * extent_io.c will try to find good copies for us.
d352ac68 3102 */
facc8a22
MX
3103static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3104 u64 phy_offset, struct page *page,
3105 u64 start, u64 end, int mirror)
07157aac 3106{
4eee4fa4 3107 size_t offset = start - page_offset(page);
07157aac 3108 struct inode *inode = page->mapping->host;
d1310b2e 3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3110 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3111
d20f7043
CM
3112 if (PageChecked(page)) {
3113 ClearPageChecked(page);
dc380aea 3114 return 0;
d20f7043 3115 }
6cbff00f
CH
3116
3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3118 return 0;
17d217fe
YZ
3119
3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3123 return 0;
17d217fe 3124 }
d20f7043 3125
facc8a22 3126 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3127 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3128 start, (size_t)(end - start + 1));
07157aac 3129}
b888db2b 3130
24bbcf04
YZ
3131void btrfs_add_delayed_iput(struct inode *inode)
3132{
3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3134 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3135
3136 if (atomic_add_unless(&inode->i_count, -1, 1))
3137 return;
3138
24bbcf04 3139 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3140 if (binode->delayed_iput_count == 0) {
3141 ASSERT(list_empty(&binode->delayed_iput));
3142 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3143 } else {
3144 binode->delayed_iput_count++;
3145 }
24bbcf04
YZ
3146 spin_unlock(&fs_info->delayed_iput_lock);
3147}
3148
3149void btrfs_run_delayed_iputs(struct btrfs_root *root)
3150{
24bbcf04 3151 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3152
24bbcf04 3153 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3154 while (!list_empty(&fs_info->delayed_iputs)) {
3155 struct btrfs_inode *inode;
3156
3157 inode = list_first_entry(&fs_info->delayed_iputs,
3158 struct btrfs_inode, delayed_iput);
3159 if (inode->delayed_iput_count) {
3160 inode->delayed_iput_count--;
3161 list_move_tail(&inode->delayed_iput,
3162 &fs_info->delayed_iputs);
3163 } else {
3164 list_del_init(&inode->delayed_iput);
3165 }
3166 spin_unlock(&fs_info->delayed_iput_lock);
3167 iput(&inode->vfs_inode);
3168 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3169 }
8089fe62 3170 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3171}
3172
d68fc57b 3173/*
42b2aa86 3174 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3175 * files in the subvolume, it removes orphan item and frees block_rsv
3176 * structure.
3177 */
3178void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3179 struct btrfs_root *root)
3180{
90290e19 3181 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3182 int ret;
3183
8a35d95f 3184 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3186 return;
3187
90290e19 3188 spin_lock(&root->orphan_lock);
8a35d95f 3189 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3190 spin_unlock(&root->orphan_lock);
3191 return;
3192 }
3193
3194 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3195 spin_unlock(&root->orphan_lock);
3196 return;
3197 }
3198
3199 block_rsv = root->orphan_block_rsv;
3200 root->orphan_block_rsv = NULL;
3201 spin_unlock(&root->orphan_lock);
3202
27cdeb70 3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3204 btrfs_root_refs(&root->root_item) > 0) {
3205 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3206 root->root_key.objectid);
4ef31a45
JB
3207 if (ret)
3208 btrfs_abort_transaction(trans, root, ret);
3209 else
27cdeb70
MX
3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3211 &root->state);
d68fc57b
YZ
3212 }
3213
90290e19
JB
3214 if (block_rsv) {
3215 WARN_ON(block_rsv->size > 0);
3216 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3217 }
3218}
3219
7b128766
JB
3220/*
3221 * This creates an orphan entry for the given inode in case something goes
3222 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3223 *
3224 * NOTE: caller of this function should reserve 5 units of metadata for
3225 * this function.
7b128766
JB
3226 */
3227int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3228{
3229 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3230 struct btrfs_block_rsv *block_rsv = NULL;
3231 int reserve = 0;
3232 int insert = 0;
3233 int ret;
7b128766 3234
d68fc57b 3235 if (!root->orphan_block_rsv) {
66d8f3dd 3236 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3237 if (!block_rsv)
3238 return -ENOMEM;
d68fc57b 3239 }
7b128766 3240
d68fc57b
YZ
3241 spin_lock(&root->orphan_lock);
3242 if (!root->orphan_block_rsv) {
3243 root->orphan_block_rsv = block_rsv;
3244 } else if (block_rsv) {
3245 btrfs_free_block_rsv(root, block_rsv);
3246 block_rsv = NULL;
7b128766 3247 }
7b128766 3248
8a35d95f
JB
3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3250 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3251#if 0
3252 /*
3253 * For proper ENOSPC handling, we should do orphan
3254 * cleanup when mounting. But this introduces backward
3255 * compatibility issue.
3256 */
3257 if (!xchg(&root->orphan_item_inserted, 1))
3258 insert = 2;
3259 else
3260 insert = 1;
3261#endif
3262 insert = 1;
321f0e70 3263 atomic_inc(&root->orphan_inodes);
7b128766
JB
3264 }
3265
72ac3c0d
JB
3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3267 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3268 reserve = 1;
d68fc57b 3269 spin_unlock(&root->orphan_lock);
7b128766 3270
d68fc57b
YZ
3271 /* grab metadata reservation from transaction handle */
3272 if (reserve) {
3273 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3274 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3275 }
7b128766 3276
d68fc57b
YZ
3277 /* insert an orphan item to track this unlinked/truncated file */
3278 if (insert >= 1) {
33345d01 3279 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3280 if (ret) {
703c88e0 3281 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3282 if (reserve) {
3283 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3284 &BTRFS_I(inode)->runtime_flags);
3285 btrfs_orphan_release_metadata(inode);
3286 }
3287 if (ret != -EEXIST) {
e8e7cff6
JB
3288 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3289 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3290 btrfs_abort_transaction(trans, root, ret);
3291 return ret;
3292 }
79787eaa
JM
3293 }
3294 ret = 0;
d68fc57b
YZ
3295 }
3296
3297 /* insert an orphan item to track subvolume contains orphan files */
3298 if (insert >= 2) {
3299 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3300 root->root_key.objectid);
79787eaa
JM
3301 if (ret && ret != -EEXIST) {
3302 btrfs_abort_transaction(trans, root, ret);
3303 return ret;
3304 }
d68fc57b
YZ
3305 }
3306 return 0;
7b128766
JB
3307}
3308
3309/*
3310 * We have done the truncate/delete so we can go ahead and remove the orphan
3311 * item for this particular inode.
3312 */
48a3b636
ES
3313static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3314 struct inode *inode)
7b128766
JB
3315{
3316 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3317 int delete_item = 0;
3318 int release_rsv = 0;
7b128766
JB
3319 int ret = 0;
3320
d68fc57b 3321 spin_lock(&root->orphan_lock);
8a35d95f
JB
3322 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3323 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3324 delete_item = 1;
7b128766 3325
72ac3c0d
JB
3326 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3327 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3328 release_rsv = 1;
d68fc57b 3329 spin_unlock(&root->orphan_lock);
7b128766 3330
703c88e0 3331 if (delete_item) {
8a35d95f 3332 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3333 if (trans)
3334 ret = btrfs_del_orphan_item(trans, root,
3335 btrfs_ino(inode));
8a35d95f 3336 }
7b128766 3337
703c88e0
FDBM
3338 if (release_rsv)
3339 btrfs_orphan_release_metadata(inode);
3340
4ef31a45 3341 return ret;
7b128766
JB
3342}
3343
3344/*
3345 * this cleans up any orphans that may be left on the list from the last use
3346 * of this root.
3347 */
66b4ffd1 3348int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3349{
3350 struct btrfs_path *path;
3351 struct extent_buffer *leaf;
7b128766
JB
3352 struct btrfs_key key, found_key;
3353 struct btrfs_trans_handle *trans;
3354 struct inode *inode;
8f6d7f4f 3355 u64 last_objectid = 0;
7b128766
JB
3356 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3357
d68fc57b 3358 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3359 return 0;
c71bf099
YZ
3360
3361 path = btrfs_alloc_path();
66b4ffd1
JB
3362 if (!path) {
3363 ret = -ENOMEM;
3364 goto out;
3365 }
e4058b54 3366 path->reada = READA_BACK;
7b128766
JB
3367
3368 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3369 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3370 key.offset = (u64)-1;
3371
7b128766
JB
3372 while (1) {
3373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3374 if (ret < 0)
3375 goto out;
7b128766
JB
3376
3377 /*
3378 * if ret == 0 means we found what we were searching for, which
25985edc 3379 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3380 * find the key and see if we have stuff that matches
3381 */
3382 if (ret > 0) {
66b4ffd1 3383 ret = 0;
7b128766
JB
3384 if (path->slots[0] == 0)
3385 break;
3386 path->slots[0]--;
3387 }
3388
3389 /* pull out the item */
3390 leaf = path->nodes[0];
7b128766
JB
3391 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3392
3393 /* make sure the item matches what we want */
3394 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3395 break;
962a298f 3396 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3397 break;
3398
3399 /* release the path since we're done with it */
b3b4aa74 3400 btrfs_release_path(path);
7b128766
JB
3401
3402 /*
3403 * this is where we are basically btrfs_lookup, without the
3404 * crossing root thing. we store the inode number in the
3405 * offset of the orphan item.
3406 */
8f6d7f4f
JB
3407
3408 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3409 btrfs_err(root->fs_info,
3410 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3411 ret = -EINVAL;
3412 goto out;
3413 }
3414
3415 last_objectid = found_key.offset;
3416
5d4f98a2
YZ
3417 found_key.objectid = found_key.offset;
3418 found_key.type = BTRFS_INODE_ITEM_KEY;
3419 found_key.offset = 0;
73f73415 3420 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3421 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3422 if (ret && ret != -ESTALE)
66b4ffd1 3423 goto out;
7b128766 3424
f8e9e0b0
AJ
3425 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3426 struct btrfs_root *dead_root;
3427 struct btrfs_fs_info *fs_info = root->fs_info;
3428 int is_dead_root = 0;
3429
3430 /*
3431 * this is an orphan in the tree root. Currently these
3432 * could come from 2 sources:
3433 * a) a snapshot deletion in progress
3434 * b) a free space cache inode
3435 * We need to distinguish those two, as the snapshot
3436 * orphan must not get deleted.
3437 * find_dead_roots already ran before us, so if this
3438 * is a snapshot deletion, we should find the root
3439 * in the dead_roots list
3440 */
3441 spin_lock(&fs_info->trans_lock);
3442 list_for_each_entry(dead_root, &fs_info->dead_roots,
3443 root_list) {
3444 if (dead_root->root_key.objectid ==
3445 found_key.objectid) {
3446 is_dead_root = 1;
3447 break;
3448 }
3449 }
3450 spin_unlock(&fs_info->trans_lock);
3451 if (is_dead_root) {
3452 /* prevent this orphan from being found again */
3453 key.offset = found_key.objectid - 1;
3454 continue;
3455 }
3456 }
7b128766 3457 /*
a8c9e576
JB
3458 * Inode is already gone but the orphan item is still there,
3459 * kill the orphan item.
7b128766 3460 */
a8c9e576
JB
3461 if (ret == -ESTALE) {
3462 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3463 if (IS_ERR(trans)) {
3464 ret = PTR_ERR(trans);
3465 goto out;
3466 }
c2cf52eb
SK
3467 btrfs_debug(root->fs_info, "auto deleting %Lu",
3468 found_key.objectid);
a8c9e576
JB
3469 ret = btrfs_del_orphan_item(trans, root,
3470 found_key.objectid);
5b21f2ed 3471 btrfs_end_transaction(trans, root);
4ef31a45
JB
3472 if (ret)
3473 goto out;
7b128766
JB
3474 continue;
3475 }
3476
a8c9e576
JB
3477 /*
3478 * add this inode to the orphan list so btrfs_orphan_del does
3479 * the proper thing when we hit it
3480 */
8a35d95f
JB
3481 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3482 &BTRFS_I(inode)->runtime_flags);
925396ec 3483 atomic_inc(&root->orphan_inodes);
a8c9e576 3484
7b128766
JB
3485 /* if we have links, this was a truncate, lets do that */
3486 if (inode->i_nlink) {
fae7f21c 3487 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3488 iput(inode);
3489 continue;
3490 }
7b128766 3491 nr_truncate++;
f3fe820c
JB
3492
3493 /* 1 for the orphan item deletion. */
3494 trans = btrfs_start_transaction(root, 1);
3495 if (IS_ERR(trans)) {
c69b26b0 3496 iput(inode);
f3fe820c
JB
3497 ret = PTR_ERR(trans);
3498 goto out;
3499 }
3500 ret = btrfs_orphan_add(trans, inode);
3501 btrfs_end_transaction(trans, root);
c69b26b0
JB
3502 if (ret) {
3503 iput(inode);
f3fe820c 3504 goto out;
c69b26b0 3505 }
f3fe820c 3506
66b4ffd1 3507 ret = btrfs_truncate(inode);
4a7d0f68
JB
3508 if (ret)
3509 btrfs_orphan_del(NULL, inode);
7b128766
JB
3510 } else {
3511 nr_unlink++;
3512 }
3513
3514 /* this will do delete_inode and everything for us */
3515 iput(inode);
66b4ffd1
JB
3516 if (ret)
3517 goto out;
7b128766 3518 }
3254c876
MX
3519 /* release the path since we're done with it */
3520 btrfs_release_path(path);
3521
d68fc57b
YZ
3522 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3523
3524 if (root->orphan_block_rsv)
3525 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3526 (u64)-1);
3527
27cdeb70
MX
3528 if (root->orphan_block_rsv ||
3529 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3530 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3531 if (!IS_ERR(trans))
3532 btrfs_end_transaction(trans, root);
d68fc57b 3533 }
7b128766
JB
3534
3535 if (nr_unlink)
4884b476 3536 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3537 if (nr_truncate)
4884b476 3538 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3539
3540out:
3541 if (ret)
68b663d1 3542 btrfs_err(root->fs_info,
c2cf52eb 3543 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3544 btrfs_free_path(path);
3545 return ret;
7b128766
JB
3546}
3547
46a53cca
CM
3548/*
3549 * very simple check to peek ahead in the leaf looking for xattrs. If we
3550 * don't find any xattrs, we know there can't be any acls.
3551 *
3552 * slot is the slot the inode is in, objectid is the objectid of the inode
3553 */
3554static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3555 int slot, u64 objectid,
3556 int *first_xattr_slot)
46a53cca
CM
3557{
3558 u32 nritems = btrfs_header_nritems(leaf);
3559 struct btrfs_key found_key;
f23b5a59
JB
3560 static u64 xattr_access = 0;
3561 static u64 xattr_default = 0;
46a53cca
CM
3562 int scanned = 0;
3563
f23b5a59 3564 if (!xattr_access) {
97d79299
AG
3565 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3566 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3567 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3568 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3569 }
3570
46a53cca 3571 slot++;
63541927 3572 *first_xattr_slot = -1;
46a53cca
CM
3573 while (slot < nritems) {
3574 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3575
3576 /* we found a different objectid, there must not be acls */
3577 if (found_key.objectid != objectid)
3578 return 0;
3579
3580 /* we found an xattr, assume we've got an acl */
f23b5a59 3581 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3582 if (*first_xattr_slot == -1)
3583 *first_xattr_slot = slot;
f23b5a59
JB
3584 if (found_key.offset == xattr_access ||
3585 found_key.offset == xattr_default)
3586 return 1;
3587 }
46a53cca
CM
3588
3589 /*
3590 * we found a key greater than an xattr key, there can't
3591 * be any acls later on
3592 */
3593 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3594 return 0;
3595
3596 slot++;
3597 scanned++;
3598
3599 /*
3600 * it goes inode, inode backrefs, xattrs, extents,
3601 * so if there are a ton of hard links to an inode there can
3602 * be a lot of backrefs. Don't waste time searching too hard,
3603 * this is just an optimization
3604 */
3605 if (scanned >= 8)
3606 break;
3607 }
3608 /* we hit the end of the leaf before we found an xattr or
3609 * something larger than an xattr. We have to assume the inode
3610 * has acls
3611 */
63541927
FDBM
3612 if (*first_xattr_slot == -1)
3613 *first_xattr_slot = slot;
46a53cca
CM
3614 return 1;
3615}
3616
d352ac68
CM
3617/*
3618 * read an inode from the btree into the in-memory inode
3619 */
5d4f98a2 3620static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3621{
3622 struct btrfs_path *path;
5f39d397 3623 struct extent_buffer *leaf;
39279cc3
CM
3624 struct btrfs_inode_item *inode_item;
3625 struct btrfs_root *root = BTRFS_I(inode)->root;
3626 struct btrfs_key location;
67de1176 3627 unsigned long ptr;
46a53cca 3628 int maybe_acls;
618e21d5 3629 u32 rdev;
39279cc3 3630 int ret;
2f7e33d4 3631 bool filled = false;
63541927 3632 int first_xattr_slot;
2f7e33d4
MX
3633
3634 ret = btrfs_fill_inode(inode, &rdev);
3635 if (!ret)
3636 filled = true;
39279cc3
CM
3637
3638 path = btrfs_alloc_path();
1748f843
MF
3639 if (!path)
3640 goto make_bad;
3641
39279cc3 3642 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3643
39279cc3 3644 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3645 if (ret)
39279cc3 3646 goto make_bad;
39279cc3 3647
5f39d397 3648 leaf = path->nodes[0];
2f7e33d4
MX
3649
3650 if (filled)
67de1176 3651 goto cache_index;
2f7e33d4 3652
5f39d397
CM
3653 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3654 struct btrfs_inode_item);
5f39d397 3655 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3656 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3657 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3658 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3659 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3660
a937b979
DS
3661 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3662 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3663
a937b979
DS
3664 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3665 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3666
a937b979
DS
3667 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3668 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3669
9cc97d64 3670 BTRFS_I(inode)->i_otime.tv_sec =
3671 btrfs_timespec_sec(leaf, &inode_item->otime);
3672 BTRFS_I(inode)->i_otime.tv_nsec =
3673 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3674
a76a3cd4 3675 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3676 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3677 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3678
6e17d30b
YD
3679 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3680 inode->i_generation = BTRFS_I(inode)->generation;
3681 inode->i_rdev = 0;
3682 rdev = btrfs_inode_rdev(leaf, inode_item);
3683
3684 BTRFS_I(inode)->index_cnt = (u64)-1;
3685 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3686
3687cache_index:
5dc562c5
JB
3688 /*
3689 * If we were modified in the current generation and evicted from memory
3690 * and then re-read we need to do a full sync since we don't have any
3691 * idea about which extents were modified before we were evicted from
3692 * cache.
6e17d30b
YD
3693 *
3694 * This is required for both inode re-read from disk and delayed inode
3695 * in delayed_nodes_tree.
5dc562c5
JB
3696 */
3697 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3698 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3699 &BTRFS_I(inode)->runtime_flags);
3700
bde6c242
FM
3701 /*
3702 * We don't persist the id of the transaction where an unlink operation
3703 * against the inode was last made. So here we assume the inode might
3704 * have been evicted, and therefore the exact value of last_unlink_trans
3705 * lost, and set it to last_trans to avoid metadata inconsistencies
3706 * between the inode and its parent if the inode is fsync'ed and the log
3707 * replayed. For example, in the scenario:
3708 *
3709 * touch mydir/foo
3710 * ln mydir/foo mydir/bar
3711 * sync
3712 * unlink mydir/bar
3713 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3714 * xfs_io -c fsync mydir/foo
3715 * <power failure>
3716 * mount fs, triggers fsync log replay
3717 *
3718 * We must make sure that when we fsync our inode foo we also log its
3719 * parent inode, otherwise after log replay the parent still has the
3720 * dentry with the "bar" name but our inode foo has a link count of 1
3721 * and doesn't have an inode ref with the name "bar" anymore.
3722 *
3723 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3724 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3725 * transaction commits on fsync if our inode is a directory, or if our
3726 * inode is not a directory, logging its parent unnecessarily.
3727 */
3728 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3729
67de1176
MX
3730 path->slots[0]++;
3731 if (inode->i_nlink != 1 ||
3732 path->slots[0] >= btrfs_header_nritems(leaf))
3733 goto cache_acl;
3734
3735 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3736 if (location.objectid != btrfs_ino(inode))
3737 goto cache_acl;
3738
3739 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3740 if (location.type == BTRFS_INODE_REF_KEY) {
3741 struct btrfs_inode_ref *ref;
3742
3743 ref = (struct btrfs_inode_ref *)ptr;
3744 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3745 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3746 struct btrfs_inode_extref *extref;
3747
3748 extref = (struct btrfs_inode_extref *)ptr;
3749 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3750 extref);
3751 }
2f7e33d4 3752cache_acl:
46a53cca
CM
3753 /*
3754 * try to precache a NULL acl entry for files that don't have
3755 * any xattrs or acls
3756 */
33345d01 3757 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3758 btrfs_ino(inode), &first_xattr_slot);
3759 if (first_xattr_slot != -1) {
3760 path->slots[0] = first_xattr_slot;
3761 ret = btrfs_load_inode_props(inode, path);
3762 if (ret)
3763 btrfs_err(root->fs_info,
351fd353 3764 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3765 btrfs_ino(inode),
3766 root->root_key.objectid, ret);
3767 }
3768 btrfs_free_path(path);
3769
72c04902
AV
3770 if (!maybe_acls)
3771 cache_no_acl(inode);
46a53cca 3772
39279cc3 3773 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3774 case S_IFREG:
3775 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3776 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3777 inode->i_fop = &btrfs_file_operations;
3778 inode->i_op = &btrfs_file_inode_operations;
3779 break;
3780 case S_IFDIR:
3781 inode->i_fop = &btrfs_dir_file_operations;
3782 if (root == root->fs_info->tree_root)
3783 inode->i_op = &btrfs_dir_ro_inode_operations;
3784 else
3785 inode->i_op = &btrfs_dir_inode_operations;
3786 break;
3787 case S_IFLNK:
3788 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3789 inode_nohighmem(inode);
39279cc3
CM
3790 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3791 break;
618e21d5 3792 default:
0279b4cd 3793 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3794 init_special_inode(inode, inode->i_mode, rdev);
3795 break;
39279cc3 3796 }
6cbff00f
CH
3797
3798 btrfs_update_iflags(inode);
39279cc3
CM
3799 return;
3800
3801make_bad:
39279cc3 3802 btrfs_free_path(path);
39279cc3
CM
3803 make_bad_inode(inode);
3804}
3805
d352ac68
CM
3806/*
3807 * given a leaf and an inode, copy the inode fields into the leaf
3808 */
e02119d5
CM
3809static void fill_inode_item(struct btrfs_trans_handle *trans,
3810 struct extent_buffer *leaf,
5f39d397 3811 struct btrfs_inode_item *item,
39279cc3
CM
3812 struct inode *inode)
3813{
51fab693
LB
3814 struct btrfs_map_token token;
3815
3816 btrfs_init_map_token(&token);
5f39d397 3817
51fab693
LB
3818 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3819 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3820 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3821 &token);
3822 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3823 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3824
a937b979 3825 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3826 inode->i_atime.tv_sec, &token);
a937b979 3827 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3828 inode->i_atime.tv_nsec, &token);
5f39d397 3829
a937b979 3830 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3831 inode->i_mtime.tv_sec, &token);
a937b979 3832 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3833 inode->i_mtime.tv_nsec, &token);
5f39d397 3834
a937b979 3835 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3836 inode->i_ctime.tv_sec, &token);
a937b979 3837 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3838 inode->i_ctime.tv_nsec, &token);
5f39d397 3839
9cc97d64 3840 btrfs_set_token_timespec_sec(leaf, &item->otime,
3841 BTRFS_I(inode)->i_otime.tv_sec, &token);
3842 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3843 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3844
51fab693
LB
3845 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3846 &token);
3847 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3848 &token);
3849 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3850 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3851 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3852 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3853 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3854}
3855
d352ac68
CM
3856/*
3857 * copy everything in the in-memory inode into the btree.
3858 */
2115133f 3859static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3860 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3861{
3862 struct btrfs_inode_item *inode_item;
3863 struct btrfs_path *path;
5f39d397 3864 struct extent_buffer *leaf;
39279cc3
CM
3865 int ret;
3866
3867 path = btrfs_alloc_path();
16cdcec7
MX
3868 if (!path)
3869 return -ENOMEM;
3870
b9473439 3871 path->leave_spinning = 1;
16cdcec7
MX
3872 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3873 1);
39279cc3
CM
3874 if (ret) {
3875 if (ret > 0)
3876 ret = -ENOENT;
3877 goto failed;
3878 }
3879
5f39d397
CM
3880 leaf = path->nodes[0];
3881 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3882 struct btrfs_inode_item);
39279cc3 3883
e02119d5 3884 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3885 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3886 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3887 ret = 0;
3888failed:
39279cc3
CM
3889 btrfs_free_path(path);
3890 return ret;
3891}
3892
2115133f
CM
3893/*
3894 * copy everything in the in-memory inode into the btree.
3895 */
3896noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3897 struct btrfs_root *root, struct inode *inode)
3898{
3899 int ret;
3900
3901 /*
3902 * If the inode is a free space inode, we can deadlock during commit
3903 * if we put it into the delayed code.
3904 *
3905 * The data relocation inode should also be directly updated
3906 * without delay
3907 */
83eea1f1 3908 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3909 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3910 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3911 btrfs_update_root_times(trans, root);
3912
2115133f
CM
3913 ret = btrfs_delayed_update_inode(trans, root, inode);
3914 if (!ret)
3915 btrfs_set_inode_last_trans(trans, inode);
3916 return ret;
3917 }
3918
3919 return btrfs_update_inode_item(trans, root, inode);
3920}
3921
be6aef60
JB
3922noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3923 struct btrfs_root *root,
3924 struct inode *inode)
2115133f
CM
3925{
3926 int ret;
3927
3928 ret = btrfs_update_inode(trans, root, inode);
3929 if (ret == -ENOSPC)
3930 return btrfs_update_inode_item(trans, root, inode);
3931 return ret;
3932}
3933
d352ac68
CM
3934/*
3935 * unlink helper that gets used here in inode.c and in the tree logging
3936 * recovery code. It remove a link in a directory with a given name, and
3937 * also drops the back refs in the inode to the directory
3938 */
92986796
AV
3939static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3940 struct btrfs_root *root,
3941 struct inode *dir, struct inode *inode,
3942 const char *name, int name_len)
39279cc3
CM
3943{
3944 struct btrfs_path *path;
39279cc3 3945 int ret = 0;
5f39d397 3946 struct extent_buffer *leaf;
39279cc3 3947 struct btrfs_dir_item *di;
5f39d397 3948 struct btrfs_key key;
aec7477b 3949 u64 index;
33345d01
LZ
3950 u64 ino = btrfs_ino(inode);
3951 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3952
3953 path = btrfs_alloc_path();
54aa1f4d
CM
3954 if (!path) {
3955 ret = -ENOMEM;
554233a6 3956 goto out;
54aa1f4d
CM
3957 }
3958
b9473439 3959 path->leave_spinning = 1;
33345d01 3960 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3961 name, name_len, -1);
3962 if (IS_ERR(di)) {
3963 ret = PTR_ERR(di);
3964 goto err;
3965 }
3966 if (!di) {
3967 ret = -ENOENT;
3968 goto err;
3969 }
5f39d397
CM
3970 leaf = path->nodes[0];
3971 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3972 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3973 if (ret)
3974 goto err;
b3b4aa74 3975 btrfs_release_path(path);
39279cc3 3976
67de1176
MX
3977 /*
3978 * If we don't have dir index, we have to get it by looking up
3979 * the inode ref, since we get the inode ref, remove it directly,
3980 * it is unnecessary to do delayed deletion.
3981 *
3982 * But if we have dir index, needn't search inode ref to get it.
3983 * Since the inode ref is close to the inode item, it is better
3984 * that we delay to delete it, and just do this deletion when
3985 * we update the inode item.
3986 */
3987 if (BTRFS_I(inode)->dir_index) {
3988 ret = btrfs_delayed_delete_inode_ref(inode);
3989 if (!ret) {
3990 index = BTRFS_I(inode)->dir_index;
3991 goto skip_backref;
3992 }
3993 }
3994
33345d01
LZ
3995 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3996 dir_ino, &index);
aec7477b 3997 if (ret) {
c2cf52eb
SK
3998 btrfs_info(root->fs_info,
3999 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4000 name_len, name, ino, dir_ino);
79787eaa 4001 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
4002 goto err;
4003 }
67de1176 4004skip_backref:
16cdcec7 4005 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4006 if (ret) {
4007 btrfs_abort_transaction(trans, root, ret);
39279cc3 4008 goto err;
79787eaa 4009 }
39279cc3 4010
e02119d5 4011 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4012 inode, dir_ino);
79787eaa
JM
4013 if (ret != 0 && ret != -ENOENT) {
4014 btrfs_abort_transaction(trans, root, ret);
4015 goto err;
4016 }
e02119d5
CM
4017
4018 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4019 dir, index);
6418c961
CM
4020 if (ret == -ENOENT)
4021 ret = 0;
d4e3991b
ZB
4022 else if (ret)
4023 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4024err:
4025 btrfs_free_path(path);
e02119d5
CM
4026 if (ret)
4027 goto out;
4028
4029 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4030 inode_inc_iversion(inode);
4031 inode_inc_iversion(dir);
04b285f3
DD
4032 inode->i_ctime = dir->i_mtime =
4033 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4034 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4035out:
39279cc3
CM
4036 return ret;
4037}
4038
92986796
AV
4039int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 struct btrfs_root *root,
4041 struct inode *dir, struct inode *inode,
4042 const char *name, int name_len)
4043{
4044 int ret;
4045 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4046 if (!ret) {
8b558c5f 4047 drop_nlink(inode);
92986796
AV
4048 ret = btrfs_update_inode(trans, root, inode);
4049 }
4050 return ret;
4051}
39279cc3 4052
a22285a6
YZ
4053/*
4054 * helper to start transaction for unlink and rmdir.
4055 *
d52be818
JB
4056 * unlink and rmdir are special in btrfs, they do not always free space, so
4057 * if we cannot make our reservations the normal way try and see if there is
4058 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4059 * allow the unlink to occur.
a22285a6 4060 */
d52be818 4061static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4062{
a22285a6 4063 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4064
e70bea5f
JB
4065 /*
4066 * 1 for the possible orphan item
4067 * 1 for the dir item
4068 * 1 for the dir index
4069 * 1 for the inode ref
e70bea5f
JB
4070 * 1 for the inode
4071 */
8eab77ff 4072 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4073}
4074
4075static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4076{
4077 struct btrfs_root *root = BTRFS_I(dir)->root;
4078 struct btrfs_trans_handle *trans;
2b0143b5 4079 struct inode *inode = d_inode(dentry);
a22285a6 4080 int ret;
a22285a6 4081
d52be818 4082 trans = __unlink_start_trans(dir);
a22285a6
YZ
4083 if (IS_ERR(trans))
4084 return PTR_ERR(trans);
5f39d397 4085
2b0143b5 4086 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4087
2b0143b5 4088 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4089 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4090 if (ret)
4091 goto out;
7b128766 4092
a22285a6 4093 if (inode->i_nlink == 0) {
7b128766 4094 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4095 if (ret)
4096 goto out;
a22285a6 4097 }
7b128766 4098
b532402e 4099out:
d52be818 4100 btrfs_end_transaction(trans, root);
b53d3f5d 4101 btrfs_btree_balance_dirty(root);
39279cc3
CM
4102 return ret;
4103}
4104
4df27c4d
YZ
4105int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4106 struct btrfs_root *root,
4107 struct inode *dir, u64 objectid,
4108 const char *name, int name_len)
4109{
4110 struct btrfs_path *path;
4111 struct extent_buffer *leaf;
4112 struct btrfs_dir_item *di;
4113 struct btrfs_key key;
4114 u64 index;
4115 int ret;
33345d01 4116 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4117
4118 path = btrfs_alloc_path();
4119 if (!path)
4120 return -ENOMEM;
4121
33345d01 4122 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4123 name, name_len, -1);
79787eaa
JM
4124 if (IS_ERR_OR_NULL(di)) {
4125 if (!di)
4126 ret = -ENOENT;
4127 else
4128 ret = PTR_ERR(di);
4129 goto out;
4130 }
4df27c4d
YZ
4131
4132 leaf = path->nodes[0];
4133 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4134 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4135 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4136 if (ret) {
4137 btrfs_abort_transaction(trans, root, ret);
4138 goto out;
4139 }
b3b4aa74 4140 btrfs_release_path(path);
4df27c4d
YZ
4141
4142 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4143 objectid, root->root_key.objectid,
33345d01 4144 dir_ino, &index, name, name_len);
4df27c4d 4145 if (ret < 0) {
79787eaa
JM
4146 if (ret != -ENOENT) {
4147 btrfs_abort_transaction(trans, root, ret);
4148 goto out;
4149 }
33345d01 4150 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4151 name, name_len);
79787eaa
JM
4152 if (IS_ERR_OR_NULL(di)) {
4153 if (!di)
4154 ret = -ENOENT;
4155 else
4156 ret = PTR_ERR(di);
4157 btrfs_abort_transaction(trans, root, ret);
4158 goto out;
4159 }
4df27c4d
YZ
4160
4161 leaf = path->nodes[0];
4162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4163 btrfs_release_path(path);
4df27c4d
YZ
4164 index = key.offset;
4165 }
945d8962 4166 btrfs_release_path(path);
4df27c4d 4167
16cdcec7 4168 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4169 if (ret) {
4170 btrfs_abort_transaction(trans, root, ret);
4171 goto out;
4172 }
4df27c4d
YZ
4173
4174 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4175 inode_inc_iversion(dir);
04b285f3 4176 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4177 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4178 if (ret)
4179 btrfs_abort_transaction(trans, root, ret);
4180out:
71d7aed0 4181 btrfs_free_path(path);
79787eaa 4182 return ret;
4df27c4d
YZ
4183}
4184
39279cc3
CM
4185static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4186{
2b0143b5 4187 struct inode *inode = d_inode(dentry);
1832a6d5 4188 int err = 0;
39279cc3 4189 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4190 struct btrfs_trans_handle *trans;
39279cc3 4191
b3ae244e 4192 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4193 return -ENOTEMPTY;
b3ae244e
DS
4194 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4195 return -EPERM;
134d4512 4196
d52be818 4197 trans = __unlink_start_trans(dir);
a22285a6 4198 if (IS_ERR(trans))
5df6a9f6 4199 return PTR_ERR(trans);
5df6a9f6 4200
33345d01 4201 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4202 err = btrfs_unlink_subvol(trans, root, dir,
4203 BTRFS_I(inode)->location.objectid,
4204 dentry->d_name.name,
4205 dentry->d_name.len);
4206 goto out;
4207 }
4208
7b128766
JB
4209 err = btrfs_orphan_add(trans, inode);
4210 if (err)
4df27c4d 4211 goto out;
7b128766 4212
39279cc3 4213 /* now the directory is empty */
2b0143b5 4214 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4215 dentry->d_name.name, dentry->d_name.len);
d397712b 4216 if (!err)
dbe674a9 4217 btrfs_i_size_write(inode, 0);
4df27c4d 4218out:
d52be818 4219 btrfs_end_transaction(trans, root);
b53d3f5d 4220 btrfs_btree_balance_dirty(root);
3954401f 4221
39279cc3
CM
4222 return err;
4223}
4224
28f75a0e
CM
4225static int truncate_space_check(struct btrfs_trans_handle *trans,
4226 struct btrfs_root *root,
4227 u64 bytes_deleted)
4228{
4229 int ret;
4230
dc95f7bf
JB
4231 /*
4232 * This is only used to apply pressure to the enospc system, we don't
4233 * intend to use this reservation at all.
4234 */
28f75a0e 4235 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4236 bytes_deleted *= root->nodesize;
28f75a0e
CM
4237 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4238 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4239 if (!ret) {
4240 trace_btrfs_space_reservation(root->fs_info, "transaction",
4241 trans->transid,
4242 bytes_deleted, 1);
28f75a0e 4243 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4244 }
28f75a0e
CM
4245 return ret;
4246
4247}
4248
0305cd5f
FM
4249static int truncate_inline_extent(struct inode *inode,
4250 struct btrfs_path *path,
4251 struct btrfs_key *found_key,
4252 const u64 item_end,
4253 const u64 new_size)
4254{
4255 struct extent_buffer *leaf = path->nodes[0];
4256 int slot = path->slots[0];
4257 struct btrfs_file_extent_item *fi;
4258 u32 size = (u32)(new_size - found_key->offset);
4259 struct btrfs_root *root = BTRFS_I(inode)->root;
4260
4261 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4262
4263 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4264 loff_t offset = new_size;
09cbfeaf 4265 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4266
4267 /*
4268 * Zero out the remaining of the last page of our inline extent,
4269 * instead of directly truncating our inline extent here - that
4270 * would be much more complex (decompressing all the data, then
4271 * compressing the truncated data, which might be bigger than
4272 * the size of the inline extent, resize the extent, etc).
4273 * We release the path because to get the page we might need to
4274 * read the extent item from disk (data not in the page cache).
4275 */
4276 btrfs_release_path(path);
9703fefe
CR
4277 return btrfs_truncate_block(inode, offset, page_end - offset,
4278 0);
0305cd5f
FM
4279 }
4280
4281 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4282 size = btrfs_file_extent_calc_inline_size(size);
4283 btrfs_truncate_item(root, path, size, 1);
4284
4285 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4286 inode_sub_bytes(inode, item_end + 1 - new_size);
4287
4288 return 0;
4289}
4290
39279cc3
CM
4291/*
4292 * this can truncate away extent items, csum items and directory items.
4293 * It starts at a high offset and removes keys until it can't find
d352ac68 4294 * any higher than new_size
39279cc3
CM
4295 *
4296 * csum items that cross the new i_size are truncated to the new size
4297 * as well.
7b128766
JB
4298 *
4299 * min_type is the minimum key type to truncate down to. If set to 0, this
4300 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4301 */
8082510e
YZ
4302int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4303 struct btrfs_root *root,
4304 struct inode *inode,
4305 u64 new_size, u32 min_type)
39279cc3 4306{
39279cc3 4307 struct btrfs_path *path;
5f39d397 4308 struct extent_buffer *leaf;
39279cc3 4309 struct btrfs_file_extent_item *fi;
8082510e
YZ
4310 struct btrfs_key key;
4311 struct btrfs_key found_key;
39279cc3 4312 u64 extent_start = 0;
db94535d 4313 u64 extent_num_bytes = 0;
5d4f98a2 4314 u64 extent_offset = 0;
39279cc3 4315 u64 item_end = 0;
c1aa4575 4316 u64 last_size = new_size;
8082510e 4317 u32 found_type = (u8)-1;
39279cc3
CM
4318 int found_extent;
4319 int del_item;
85e21bac
CM
4320 int pending_del_nr = 0;
4321 int pending_del_slot = 0;
179e29e4 4322 int extent_type = -1;
8082510e
YZ
4323 int ret;
4324 int err = 0;
33345d01 4325 u64 ino = btrfs_ino(inode);
28ed1345 4326 u64 bytes_deleted = 0;
1262133b
JB
4327 bool be_nice = 0;
4328 bool should_throttle = 0;
28f75a0e 4329 bool should_end = 0;
8082510e
YZ
4330
4331 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4332
28ed1345
CM
4333 /*
4334 * for non-free space inodes and ref cows, we want to back off from
4335 * time to time
4336 */
4337 if (!btrfs_is_free_space_inode(inode) &&
4338 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4339 be_nice = 1;
4340
0eb0e19c
MF
4341 path = btrfs_alloc_path();
4342 if (!path)
4343 return -ENOMEM;
e4058b54 4344 path->reada = READA_BACK;
0eb0e19c 4345
5dc562c5
JB
4346 /*
4347 * We want to drop from the next block forward in case this new size is
4348 * not block aligned since we will be keeping the last block of the
4349 * extent just the way it is.
4350 */
27cdeb70
MX
4351 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4352 root == root->fs_info->tree_root)
fda2832f
QW
4353 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4354 root->sectorsize), (u64)-1, 0);
8082510e 4355
16cdcec7
MX
4356 /*
4357 * This function is also used to drop the items in the log tree before
4358 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4359 * it is used to drop the loged items. So we shouldn't kill the delayed
4360 * items.
4361 */
4362 if (min_type == 0 && root == BTRFS_I(inode)->root)
4363 btrfs_kill_delayed_inode_items(inode);
4364
33345d01 4365 key.objectid = ino;
39279cc3 4366 key.offset = (u64)-1;
5f39d397
CM
4367 key.type = (u8)-1;
4368
85e21bac 4369search_again:
28ed1345
CM
4370 /*
4371 * with a 16K leaf size and 128MB extents, you can actually queue
4372 * up a huge file in a single leaf. Most of the time that
4373 * bytes_deleted is > 0, it will be huge by the time we get here
4374 */
ee22184b 4375 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4376 if (btrfs_should_end_transaction(trans, root)) {
4377 err = -EAGAIN;
4378 goto error;
4379 }
4380 }
4381
4382
b9473439 4383 path->leave_spinning = 1;
85e21bac 4384 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4385 if (ret < 0) {
4386 err = ret;
4387 goto out;
4388 }
d397712b 4389
85e21bac 4390 if (ret > 0) {
e02119d5
CM
4391 /* there are no items in the tree for us to truncate, we're
4392 * done
4393 */
8082510e
YZ
4394 if (path->slots[0] == 0)
4395 goto out;
85e21bac
CM
4396 path->slots[0]--;
4397 }
4398
d397712b 4399 while (1) {
39279cc3 4400 fi = NULL;
5f39d397
CM
4401 leaf = path->nodes[0];
4402 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4403 found_type = found_key.type;
39279cc3 4404
33345d01 4405 if (found_key.objectid != ino)
39279cc3 4406 break;
5f39d397 4407
85e21bac 4408 if (found_type < min_type)
39279cc3
CM
4409 break;
4410
5f39d397 4411 item_end = found_key.offset;
39279cc3 4412 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4413 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4414 struct btrfs_file_extent_item);
179e29e4
CM
4415 extent_type = btrfs_file_extent_type(leaf, fi);
4416 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4417 item_end +=
db94535d 4418 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4419 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4420 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4421 path->slots[0], fi);
39279cc3 4422 }
008630c1 4423 item_end--;
39279cc3 4424 }
8082510e
YZ
4425 if (found_type > min_type) {
4426 del_item = 1;
4427 } else {
4428 if (item_end < new_size)
b888db2b 4429 break;
8082510e
YZ
4430 if (found_key.offset >= new_size)
4431 del_item = 1;
4432 else
4433 del_item = 0;
39279cc3 4434 }
39279cc3 4435 found_extent = 0;
39279cc3 4436 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4437 if (found_type != BTRFS_EXTENT_DATA_KEY)
4438 goto delete;
4439
7f4f6e0a
JB
4440 if (del_item)
4441 last_size = found_key.offset;
4442 else
4443 last_size = new_size;
4444
179e29e4 4445 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4446 u64 num_dec;
db94535d 4447 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4448 if (!del_item) {
db94535d
CM
4449 u64 orig_num_bytes =
4450 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4451 extent_num_bytes = ALIGN(new_size -
4452 found_key.offset,
4453 root->sectorsize);
db94535d
CM
4454 btrfs_set_file_extent_num_bytes(leaf, fi,
4455 extent_num_bytes);
4456 num_dec = (orig_num_bytes -
9069218d 4457 extent_num_bytes);
27cdeb70
MX
4458 if (test_bit(BTRFS_ROOT_REF_COWS,
4459 &root->state) &&
4460 extent_start != 0)
a76a3cd4 4461 inode_sub_bytes(inode, num_dec);
5f39d397 4462 btrfs_mark_buffer_dirty(leaf);
39279cc3 4463 } else {
db94535d
CM
4464 extent_num_bytes =
4465 btrfs_file_extent_disk_num_bytes(leaf,
4466 fi);
5d4f98a2
YZ
4467 extent_offset = found_key.offset -
4468 btrfs_file_extent_offset(leaf, fi);
4469
39279cc3 4470 /* FIXME blocksize != 4096 */
9069218d 4471 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4472 if (extent_start != 0) {
4473 found_extent = 1;
27cdeb70
MX
4474 if (test_bit(BTRFS_ROOT_REF_COWS,
4475 &root->state))
a76a3cd4 4476 inode_sub_bytes(inode, num_dec);
e02119d5 4477 }
39279cc3 4478 }
9069218d 4479 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4480 /*
4481 * we can't truncate inline items that have had
4482 * special encodings
4483 */
4484 if (!del_item &&
c8b97818
CM
4485 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4486 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4487
4488 /*
0305cd5f
FM
4489 * Need to release path in order to truncate a
4490 * compressed extent. So delete any accumulated
4491 * extent items so far.
514ac8ad 4492 */
0305cd5f
FM
4493 if (btrfs_file_extent_compression(leaf, fi) !=
4494 BTRFS_COMPRESS_NONE && pending_del_nr) {
4495 err = btrfs_del_items(trans, root, path,
4496 pending_del_slot,
4497 pending_del_nr);
4498 if (err) {
4499 btrfs_abort_transaction(trans,
4500 root,
4501 err);
4502 goto error;
4503 }
4504 pending_del_nr = 0;
4505 }
4506
4507 err = truncate_inline_extent(inode, path,
4508 &found_key,
4509 item_end,
4510 new_size);
4511 if (err) {
4512 btrfs_abort_transaction(trans,
4513 root, err);
4514 goto error;
4515 }
27cdeb70
MX
4516 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4517 &root->state)) {
0305cd5f 4518 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4519 }
39279cc3 4520 }
179e29e4 4521delete:
39279cc3 4522 if (del_item) {
85e21bac
CM
4523 if (!pending_del_nr) {
4524 /* no pending yet, add ourselves */
4525 pending_del_slot = path->slots[0];
4526 pending_del_nr = 1;
4527 } else if (pending_del_nr &&
4528 path->slots[0] + 1 == pending_del_slot) {
4529 /* hop on the pending chunk */
4530 pending_del_nr++;
4531 pending_del_slot = path->slots[0];
4532 } else {
d397712b 4533 BUG();
85e21bac 4534 }
39279cc3
CM
4535 } else {
4536 break;
4537 }
28f75a0e
CM
4538 should_throttle = 0;
4539
27cdeb70
MX
4540 if (found_extent &&
4541 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4542 root == root->fs_info->tree_root)) {
b9473439 4543 btrfs_set_path_blocking(path);
28ed1345 4544 bytes_deleted += extent_num_bytes;
39279cc3 4545 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4546 extent_num_bytes, 0,
4547 btrfs_header_owner(leaf),
b06c4bf5 4548 ino, extent_offset);
39279cc3 4549 BUG_ON(ret);
1262133b 4550 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4551 btrfs_async_run_delayed_refs(root,
4552 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4553 if (be_nice) {
4554 if (truncate_space_check(trans, root,
4555 extent_num_bytes)) {
4556 should_end = 1;
4557 }
4558 if (btrfs_should_throttle_delayed_refs(trans,
4559 root)) {
4560 should_throttle = 1;
4561 }
4562 }
39279cc3 4563 }
85e21bac 4564
8082510e
YZ
4565 if (found_type == BTRFS_INODE_ITEM_KEY)
4566 break;
4567
4568 if (path->slots[0] == 0 ||
1262133b 4569 path->slots[0] != pending_del_slot ||
28f75a0e 4570 should_throttle || should_end) {
8082510e
YZ
4571 if (pending_del_nr) {
4572 ret = btrfs_del_items(trans, root, path,
4573 pending_del_slot,
4574 pending_del_nr);
79787eaa
JM
4575 if (ret) {
4576 btrfs_abort_transaction(trans,
4577 root, ret);
4578 goto error;
4579 }
8082510e
YZ
4580 pending_del_nr = 0;
4581 }
b3b4aa74 4582 btrfs_release_path(path);
28f75a0e 4583 if (should_throttle) {
1262133b
JB
4584 unsigned long updates = trans->delayed_ref_updates;
4585 if (updates) {
4586 trans->delayed_ref_updates = 0;
4587 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4588 if (ret && !err)
4589 err = ret;
4590 }
4591 }
28f75a0e
CM
4592 /*
4593 * if we failed to refill our space rsv, bail out
4594 * and let the transaction restart
4595 */
4596 if (should_end) {
4597 err = -EAGAIN;
4598 goto error;
4599 }
85e21bac 4600 goto search_again;
8082510e
YZ
4601 } else {
4602 path->slots[0]--;
85e21bac 4603 }
39279cc3 4604 }
8082510e 4605out:
85e21bac
CM
4606 if (pending_del_nr) {
4607 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4608 pending_del_nr);
79787eaa
JM
4609 if (ret)
4610 btrfs_abort_transaction(trans, root, ret);
85e21bac 4611 }
79787eaa 4612error:
c1aa4575 4613 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4614 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4615
39279cc3 4616 btrfs_free_path(path);
28ed1345 4617
ee22184b 4618 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4619 unsigned long updates = trans->delayed_ref_updates;
4620 if (updates) {
4621 trans->delayed_ref_updates = 0;
4622 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4623 if (ret && !err)
4624 err = ret;
4625 }
4626 }
8082510e 4627 return err;
39279cc3
CM
4628}
4629
4630/*
9703fefe 4631 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4632 * @inode - inode that we're zeroing
4633 * @from - the offset to start zeroing
4634 * @len - the length to zero, 0 to zero the entire range respective to the
4635 * offset
4636 * @front - zero up to the offset instead of from the offset on
4637 *
9703fefe 4638 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4639 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4640 */
9703fefe 4641int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4642 int front)
39279cc3 4643{
2aaa6655 4644 struct address_space *mapping = inode->i_mapping;
db94535d 4645 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4646 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4647 struct btrfs_ordered_extent *ordered;
2ac55d41 4648 struct extent_state *cached_state = NULL;
e6dcd2dc 4649 char *kaddr;
db94535d 4650 u32 blocksize = root->sectorsize;
09cbfeaf 4651 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4652 unsigned offset = from & (blocksize - 1);
39279cc3 4653 struct page *page;
3b16a4e3 4654 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4655 int ret = 0;
9703fefe
CR
4656 u64 block_start;
4657 u64 block_end;
39279cc3 4658
2aaa6655
JB
4659 if ((offset & (blocksize - 1)) == 0 &&
4660 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4661 goto out;
9703fefe 4662
7cf5b976 4663 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4664 round_down(from, blocksize), blocksize);
5d5e103a
JB
4665 if (ret)
4666 goto out;
39279cc3 4667
211c17f5 4668again:
3b16a4e3 4669 page = find_or_create_page(mapping, index, mask);
5d5e103a 4670 if (!page) {
7cf5b976 4671 btrfs_delalloc_release_space(inode,
9703fefe
CR
4672 round_down(from, blocksize),
4673 blocksize);
ac6a2b36 4674 ret = -ENOMEM;
39279cc3 4675 goto out;
5d5e103a 4676 }
e6dcd2dc 4677
9703fefe
CR
4678 block_start = round_down(from, blocksize);
4679 block_end = block_start + blocksize - 1;
e6dcd2dc 4680
39279cc3 4681 if (!PageUptodate(page)) {
9ebefb18 4682 ret = btrfs_readpage(NULL, page);
39279cc3 4683 lock_page(page);
211c17f5
CM
4684 if (page->mapping != mapping) {
4685 unlock_page(page);
09cbfeaf 4686 put_page(page);
211c17f5
CM
4687 goto again;
4688 }
39279cc3
CM
4689 if (!PageUptodate(page)) {
4690 ret = -EIO;
89642229 4691 goto out_unlock;
39279cc3
CM
4692 }
4693 }
211c17f5 4694 wait_on_page_writeback(page);
e6dcd2dc 4695
9703fefe 4696 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4697 set_page_extent_mapped(page);
4698
9703fefe 4699 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4700 if (ordered) {
9703fefe 4701 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4702 &cached_state, GFP_NOFS);
e6dcd2dc 4703 unlock_page(page);
09cbfeaf 4704 put_page(page);
eb84ae03 4705 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4706 btrfs_put_ordered_extent(ordered);
4707 goto again;
4708 }
4709
9703fefe 4710 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4711 EXTENT_DIRTY | EXTENT_DELALLOC |
4712 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4713 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4714
9703fefe 4715 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4716 &cached_state);
9ed74f2d 4717 if (ret) {
9703fefe 4718 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4719 &cached_state, GFP_NOFS);
9ed74f2d
JB
4720 goto out_unlock;
4721 }
4722
9703fefe 4723 if (offset != blocksize) {
2aaa6655 4724 if (!len)
9703fefe 4725 len = blocksize - offset;
e6dcd2dc 4726 kaddr = kmap(page);
2aaa6655 4727 if (front)
9703fefe
CR
4728 memset(kaddr + (block_start - page_offset(page)),
4729 0, offset);
2aaa6655 4730 else
9703fefe
CR
4731 memset(kaddr + (block_start - page_offset(page)) + offset,
4732 0, len);
e6dcd2dc
CM
4733 flush_dcache_page(page);
4734 kunmap(page);
4735 }
247e743c 4736 ClearPageChecked(page);
e6dcd2dc 4737 set_page_dirty(page);
9703fefe 4738 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4739 GFP_NOFS);
39279cc3 4740
89642229 4741out_unlock:
5d5e103a 4742 if (ret)
9703fefe
CR
4743 btrfs_delalloc_release_space(inode, block_start,
4744 blocksize);
39279cc3 4745 unlock_page(page);
09cbfeaf 4746 put_page(page);
39279cc3
CM
4747out:
4748 return ret;
4749}
4750
16e7549f
JB
4751static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4752 u64 offset, u64 len)
4753{
4754 struct btrfs_trans_handle *trans;
4755 int ret;
4756
4757 /*
4758 * Still need to make sure the inode looks like it's been updated so
4759 * that any holes get logged if we fsync.
4760 */
4761 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4762 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4763 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4764 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4765 return 0;
4766 }
4767
4768 /*
4769 * 1 - for the one we're dropping
4770 * 1 - for the one we're adding
4771 * 1 - for updating the inode.
4772 */
4773 trans = btrfs_start_transaction(root, 3);
4774 if (IS_ERR(trans))
4775 return PTR_ERR(trans);
4776
4777 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4778 if (ret) {
4779 btrfs_abort_transaction(trans, root, ret);
4780 btrfs_end_transaction(trans, root);
4781 return ret;
4782 }
4783
4784 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4785 0, 0, len, 0, len, 0, 0, 0);
4786 if (ret)
4787 btrfs_abort_transaction(trans, root, ret);
4788 else
4789 btrfs_update_inode(trans, root, inode);
4790 btrfs_end_transaction(trans, root);
4791 return ret;
4792}
4793
695a0d0d
JB
4794/*
4795 * This function puts in dummy file extents for the area we're creating a hole
4796 * for. So if we are truncating this file to a larger size we need to insert
4797 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4798 * the range between oldsize and size
4799 */
a41ad394 4800int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4801{
9036c102
YZ
4802 struct btrfs_root *root = BTRFS_I(inode)->root;
4803 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4804 struct extent_map *em = NULL;
2ac55d41 4805 struct extent_state *cached_state = NULL;
5dc562c5 4806 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4807 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4808 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4809 u64 last_byte;
4810 u64 cur_offset;
4811 u64 hole_size;
9ed74f2d 4812 int err = 0;
39279cc3 4813
a71754fc 4814 /*
9703fefe
CR
4815 * If our size started in the middle of a block we need to zero out the
4816 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4817 * expose stale data.
4818 */
9703fefe 4819 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4820 if (err)
4821 return err;
4822
9036c102
YZ
4823 if (size <= hole_start)
4824 return 0;
4825
9036c102
YZ
4826 while (1) {
4827 struct btrfs_ordered_extent *ordered;
fa7c1494 4828
ff13db41 4829 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4830 &cached_state);
fa7c1494
MX
4831 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4832 block_end - hole_start);
9036c102
YZ
4833 if (!ordered)
4834 break;
2ac55d41
JB
4835 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4836 &cached_state, GFP_NOFS);
fa7c1494 4837 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4838 btrfs_put_ordered_extent(ordered);
4839 }
39279cc3 4840
9036c102
YZ
4841 cur_offset = hole_start;
4842 while (1) {
4843 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4844 block_end - cur_offset, 0);
79787eaa
JM
4845 if (IS_ERR(em)) {
4846 err = PTR_ERR(em);
f2767956 4847 em = NULL;
79787eaa
JM
4848 break;
4849 }
9036c102 4850 last_byte = min(extent_map_end(em), block_end);
fda2832f 4851 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4852 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4853 struct extent_map *hole_em;
9036c102 4854 hole_size = last_byte - cur_offset;
9ed74f2d 4855
16e7549f
JB
4856 err = maybe_insert_hole(root, inode, cur_offset,
4857 hole_size);
4858 if (err)
3893e33b 4859 break;
5dc562c5
JB
4860 btrfs_drop_extent_cache(inode, cur_offset,
4861 cur_offset + hole_size - 1, 0);
4862 hole_em = alloc_extent_map();
4863 if (!hole_em) {
4864 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4865 &BTRFS_I(inode)->runtime_flags);
4866 goto next;
4867 }
4868 hole_em->start = cur_offset;
4869 hole_em->len = hole_size;
4870 hole_em->orig_start = cur_offset;
8082510e 4871
5dc562c5
JB
4872 hole_em->block_start = EXTENT_MAP_HOLE;
4873 hole_em->block_len = 0;
b4939680 4874 hole_em->orig_block_len = 0;
cc95bef6 4875 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4876 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4877 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4878 hole_em->generation = root->fs_info->generation;
8082510e 4879
5dc562c5
JB
4880 while (1) {
4881 write_lock(&em_tree->lock);
09a2a8f9 4882 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4883 write_unlock(&em_tree->lock);
4884 if (err != -EEXIST)
4885 break;
4886 btrfs_drop_extent_cache(inode, cur_offset,
4887 cur_offset +
4888 hole_size - 1, 0);
4889 }
4890 free_extent_map(hole_em);
9036c102 4891 }
16e7549f 4892next:
9036c102 4893 free_extent_map(em);
a22285a6 4894 em = NULL;
9036c102 4895 cur_offset = last_byte;
8082510e 4896 if (cur_offset >= block_end)
9036c102
YZ
4897 break;
4898 }
a22285a6 4899 free_extent_map(em);
2ac55d41
JB
4900 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4901 GFP_NOFS);
9036c102
YZ
4902 return err;
4903}
39279cc3 4904
3972f260 4905static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4906{
f4a2f4c5
MX
4907 struct btrfs_root *root = BTRFS_I(inode)->root;
4908 struct btrfs_trans_handle *trans;
a41ad394 4909 loff_t oldsize = i_size_read(inode);
3972f260
ES
4910 loff_t newsize = attr->ia_size;
4911 int mask = attr->ia_valid;
8082510e
YZ
4912 int ret;
4913
3972f260
ES
4914 /*
4915 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4916 * special case where we need to update the times despite not having
4917 * these flags set. For all other operations the VFS set these flags
4918 * explicitly if it wants a timestamp update.
4919 */
dff6efc3
CH
4920 if (newsize != oldsize) {
4921 inode_inc_iversion(inode);
4922 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4923 inode->i_ctime = inode->i_mtime =
4924 current_fs_time(inode->i_sb);
4925 }
3972f260 4926
a41ad394 4927 if (newsize > oldsize) {
9ea24bbe
FM
4928 /*
4929 * Don't do an expanding truncate while snapshoting is ongoing.
4930 * This is to ensure the snapshot captures a fully consistent
4931 * state of this file - if the snapshot captures this expanding
4932 * truncation, it must capture all writes that happened before
4933 * this truncation.
4934 */
0bc19f90 4935 btrfs_wait_for_snapshot_creation(root);
a41ad394 4936 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4937 if (ret) {
4938 btrfs_end_write_no_snapshoting(root);
8082510e 4939 return ret;
9ea24bbe 4940 }
8082510e 4941
f4a2f4c5 4942 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4943 if (IS_ERR(trans)) {
4944 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4945 return PTR_ERR(trans);
9ea24bbe 4946 }
f4a2f4c5
MX
4947
4948 i_size_write(inode, newsize);
4949 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4950 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4951 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4952 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4953 btrfs_end_transaction(trans, root);
a41ad394 4954 } else {
8082510e 4955
a41ad394
JB
4956 /*
4957 * We're truncating a file that used to have good data down to
4958 * zero. Make sure it gets into the ordered flush list so that
4959 * any new writes get down to disk quickly.
4960 */
4961 if (newsize == 0)
72ac3c0d
JB
4962 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4963 &BTRFS_I(inode)->runtime_flags);
8082510e 4964
f3fe820c
JB
4965 /*
4966 * 1 for the orphan item we're going to add
4967 * 1 for the orphan item deletion.
4968 */
4969 trans = btrfs_start_transaction(root, 2);
4970 if (IS_ERR(trans))
4971 return PTR_ERR(trans);
4972
4973 /*
4974 * We need to do this in case we fail at _any_ point during the
4975 * actual truncate. Once we do the truncate_setsize we could
4976 * invalidate pages which forces any outstanding ordered io to
4977 * be instantly completed which will give us extents that need
4978 * to be truncated. If we fail to get an orphan inode down we
4979 * could have left over extents that were never meant to live,
01327610 4980 * so we need to guarantee from this point on that everything
f3fe820c
JB
4981 * will be consistent.
4982 */
4983 ret = btrfs_orphan_add(trans, inode);
4984 btrfs_end_transaction(trans, root);
4985 if (ret)
4986 return ret;
4987
a41ad394
JB
4988 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4989 truncate_setsize(inode, newsize);
2e60a51e
MX
4990
4991 /* Disable nonlocked read DIO to avoid the end less truncate */
4992 btrfs_inode_block_unlocked_dio(inode);
4993 inode_dio_wait(inode);
4994 btrfs_inode_resume_unlocked_dio(inode);
4995
a41ad394 4996 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4997 if (ret && inode->i_nlink) {
4998 int err;
4999
5000 /*
5001 * failed to truncate, disk_i_size is only adjusted down
5002 * as we remove extents, so it should represent the true
5003 * size of the inode, so reset the in memory size and
5004 * delete our orphan entry.
5005 */
5006 trans = btrfs_join_transaction(root);
5007 if (IS_ERR(trans)) {
5008 btrfs_orphan_del(NULL, inode);
5009 return ret;
5010 }
5011 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5012 err = btrfs_orphan_del(trans, inode);
5013 if (err)
5014 btrfs_abort_transaction(trans, root, err);
5015 btrfs_end_transaction(trans, root);
5016 }
8082510e
YZ
5017 }
5018
a41ad394 5019 return ret;
8082510e
YZ
5020}
5021
9036c102
YZ
5022static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5023{
2b0143b5 5024 struct inode *inode = d_inode(dentry);
b83cc969 5025 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5026 int err;
39279cc3 5027
b83cc969
LZ
5028 if (btrfs_root_readonly(root))
5029 return -EROFS;
5030
9036c102
YZ
5031 err = inode_change_ok(inode, attr);
5032 if (err)
5033 return err;
2bf5a725 5034
5a3f23d5 5035 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5036 err = btrfs_setsize(inode, attr);
8082510e
YZ
5037 if (err)
5038 return err;
39279cc3 5039 }
9036c102 5040
1025774c
CH
5041 if (attr->ia_valid) {
5042 setattr_copy(inode, attr);
0c4d2d95 5043 inode_inc_iversion(inode);
22c44fe6 5044 err = btrfs_dirty_inode(inode);
1025774c 5045
22c44fe6 5046 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5047 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5048 }
33268eaf 5049
39279cc3
CM
5050 return err;
5051}
61295eb8 5052
131e404a
FDBM
5053/*
5054 * While truncating the inode pages during eviction, we get the VFS calling
5055 * btrfs_invalidatepage() against each page of the inode. This is slow because
5056 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5057 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5058 * extent_state structures over and over, wasting lots of time.
5059 *
5060 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5061 * those expensive operations on a per page basis and do only the ordered io
5062 * finishing, while we release here the extent_map and extent_state structures,
5063 * without the excessive merging and splitting.
5064 */
5065static void evict_inode_truncate_pages(struct inode *inode)
5066{
5067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5068 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5069 struct rb_node *node;
5070
5071 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5072 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5073
5074 write_lock(&map_tree->lock);
5075 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5076 struct extent_map *em;
5077
5078 node = rb_first(&map_tree->map);
5079 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5080 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5081 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5082 remove_extent_mapping(map_tree, em);
5083 free_extent_map(em);
7064dd5c
FM
5084 if (need_resched()) {
5085 write_unlock(&map_tree->lock);
5086 cond_resched();
5087 write_lock(&map_tree->lock);
5088 }
131e404a
FDBM
5089 }
5090 write_unlock(&map_tree->lock);
5091
6ca07097
FM
5092 /*
5093 * Keep looping until we have no more ranges in the io tree.
5094 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5095 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5096 * still in progress (unlocked the pages in the bio but did not yet
5097 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5098 * ranges can still be locked and eviction started because before
5099 * submitting those bios, which are executed by a separate task (work
5100 * queue kthread), inode references (inode->i_count) were not taken
5101 * (which would be dropped in the end io callback of each bio).
5102 * Therefore here we effectively end up waiting for those bios and
5103 * anyone else holding locked ranges without having bumped the inode's
5104 * reference count - if we don't do it, when they access the inode's
5105 * io_tree to unlock a range it may be too late, leading to an
5106 * use-after-free issue.
5107 */
131e404a
FDBM
5108 spin_lock(&io_tree->lock);
5109 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5110 struct extent_state *state;
5111 struct extent_state *cached_state = NULL;
6ca07097
FM
5112 u64 start;
5113 u64 end;
131e404a
FDBM
5114
5115 node = rb_first(&io_tree->state);
5116 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5117 start = state->start;
5118 end = state->end;
131e404a
FDBM
5119 spin_unlock(&io_tree->lock);
5120
ff13db41 5121 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5122
5123 /*
5124 * If still has DELALLOC flag, the extent didn't reach disk,
5125 * and its reserved space won't be freed by delayed_ref.
5126 * So we need to free its reserved space here.
5127 * (Refer to comment in btrfs_invalidatepage, case 2)
5128 *
5129 * Note, end is the bytenr of last byte, so we need + 1 here.
5130 */
5131 if (state->state & EXTENT_DELALLOC)
5132 btrfs_qgroup_free_data(inode, start, end - start + 1);
5133
6ca07097 5134 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5135 EXTENT_LOCKED | EXTENT_DIRTY |
5136 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5137 EXTENT_DEFRAG, 1, 1,
5138 &cached_state, GFP_NOFS);
131e404a 5139
7064dd5c 5140 cond_resched();
131e404a
FDBM
5141 spin_lock(&io_tree->lock);
5142 }
5143 spin_unlock(&io_tree->lock);
5144}
5145
bd555975 5146void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5147{
5148 struct btrfs_trans_handle *trans;
5149 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5150 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5151 int steal_from_global = 0;
07127184 5152 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5153 int ret;
5154
1abe9b8a 5155 trace_btrfs_inode_evict(inode);
5156
131e404a
FDBM
5157 evict_inode_truncate_pages(inode);
5158
69e9c6c6
SB
5159 if (inode->i_nlink &&
5160 ((btrfs_root_refs(&root->root_item) != 0 &&
5161 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5162 btrfs_is_free_space_inode(inode)))
bd555975
AV
5163 goto no_delete;
5164
39279cc3 5165 if (is_bad_inode(inode)) {
7b128766 5166 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5167 goto no_delete;
5168 }
bd555975 5169 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5170 if (!special_file(inode->i_mode))
5171 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5172
f612496b
MX
5173 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5174
c71bf099 5175 if (root->fs_info->log_root_recovering) {
6bf02314 5176 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5177 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5178 goto no_delete;
5179 }
5180
76dda93c 5181 if (inode->i_nlink > 0) {
69e9c6c6
SB
5182 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5183 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5184 goto no_delete;
5185 }
5186
0e8c36a9
MX
5187 ret = btrfs_commit_inode_delayed_inode(inode);
5188 if (ret) {
5189 btrfs_orphan_del(NULL, inode);
5190 goto no_delete;
5191 }
5192
66d8f3dd 5193 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5194 if (!rsv) {
5195 btrfs_orphan_del(NULL, inode);
5196 goto no_delete;
5197 }
4a338542 5198 rsv->size = min_size;
ca7e70f5 5199 rsv->failfast = 1;
726c35fa 5200 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5201
dbe674a9 5202 btrfs_i_size_write(inode, 0);
5f39d397 5203
4289a667 5204 /*
8407aa46
MX
5205 * This is a bit simpler than btrfs_truncate since we've already
5206 * reserved our space for our orphan item in the unlink, so we just
5207 * need to reserve some slack space in case we add bytes and update
5208 * inode item when doing the truncate.
4289a667 5209 */
8082510e 5210 while (1) {
08e007d2
MX
5211 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5212 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5213
5214 /*
5215 * Try and steal from the global reserve since we will
5216 * likely not use this space anyway, we want to try as
5217 * hard as possible to get this to work.
5218 */
5219 if (ret)
3bce876f
JB
5220 steal_from_global++;
5221 else
5222 steal_from_global = 0;
5223 ret = 0;
d68fc57b 5224
3bce876f
JB
5225 /*
5226 * steal_from_global == 0: we reserved stuff, hooray!
5227 * steal_from_global == 1: we didn't reserve stuff, boo!
5228 * steal_from_global == 2: we've committed, still not a lot of
5229 * room but maybe we'll have room in the global reserve this
5230 * time.
5231 * steal_from_global == 3: abandon all hope!
5232 */
5233 if (steal_from_global > 2) {
c2cf52eb
SK
5234 btrfs_warn(root->fs_info,
5235 "Could not get space for a delete, will truncate on mount %d",
5236 ret);
4289a667
JB
5237 btrfs_orphan_del(NULL, inode);
5238 btrfs_free_block_rsv(root, rsv);
5239 goto no_delete;
d68fc57b 5240 }
7b128766 5241
0e8c36a9 5242 trans = btrfs_join_transaction(root);
4289a667
JB
5243 if (IS_ERR(trans)) {
5244 btrfs_orphan_del(NULL, inode);
5245 btrfs_free_block_rsv(root, rsv);
5246 goto no_delete;
d68fc57b 5247 }
7b128766 5248
3bce876f 5249 /*
01327610 5250 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5251 * sure there is room to do it, if not we need to commit and try
5252 * again.
5253 */
5254 if (steal_from_global) {
5255 if (!btrfs_check_space_for_delayed_refs(trans, root))
5256 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5257 min_size);
5258 else
5259 ret = -ENOSPC;
5260 }
5261
5262 /*
5263 * Couldn't steal from the global reserve, we have too much
5264 * pending stuff built up, commit the transaction and try it
5265 * again.
5266 */
5267 if (ret) {
5268 ret = btrfs_commit_transaction(trans, root);
5269 if (ret) {
5270 btrfs_orphan_del(NULL, inode);
5271 btrfs_free_block_rsv(root, rsv);
5272 goto no_delete;
5273 }
5274 continue;
5275 } else {
5276 steal_from_global = 0;
5277 }
5278
4289a667
JB
5279 trans->block_rsv = rsv;
5280
d68fc57b 5281 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5282 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5283 break;
85e21bac 5284
8407aa46 5285 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5286 btrfs_end_transaction(trans, root);
5287 trans = NULL;
b53d3f5d 5288 btrfs_btree_balance_dirty(root);
8082510e 5289 }
5f39d397 5290
4289a667
JB
5291 btrfs_free_block_rsv(root, rsv);
5292
4ef31a45
JB
5293 /*
5294 * Errors here aren't a big deal, it just means we leave orphan items
5295 * in the tree. They will be cleaned up on the next mount.
5296 */
8082510e 5297 if (ret == 0) {
4289a667 5298 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5299 btrfs_orphan_del(trans, inode);
5300 } else {
5301 btrfs_orphan_del(NULL, inode);
8082510e 5302 }
54aa1f4d 5303
4289a667 5304 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5305 if (!(root == root->fs_info->tree_root ||
5306 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5307 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5308
54aa1f4d 5309 btrfs_end_transaction(trans, root);
b53d3f5d 5310 btrfs_btree_balance_dirty(root);
39279cc3 5311no_delete:
89042e5a 5312 btrfs_remove_delayed_node(inode);
dbd5768f 5313 clear_inode(inode);
39279cc3
CM
5314}
5315
5316/*
5317 * this returns the key found in the dir entry in the location pointer.
5318 * If no dir entries were found, location->objectid is 0.
5319 */
5320static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5321 struct btrfs_key *location)
5322{
5323 const char *name = dentry->d_name.name;
5324 int namelen = dentry->d_name.len;
5325 struct btrfs_dir_item *di;
5326 struct btrfs_path *path;
5327 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5328 int ret = 0;
39279cc3
CM
5329
5330 path = btrfs_alloc_path();
d8926bb3
MF
5331 if (!path)
5332 return -ENOMEM;
3954401f 5333
33345d01 5334 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5335 namelen, 0);
0d9f7f3e
Y
5336 if (IS_ERR(di))
5337 ret = PTR_ERR(di);
d397712b 5338
c704005d 5339 if (IS_ERR_OR_NULL(di))
3954401f 5340 goto out_err;
d397712b 5341
5f39d397 5342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5343out:
39279cc3
CM
5344 btrfs_free_path(path);
5345 return ret;
3954401f
CM
5346out_err:
5347 location->objectid = 0;
5348 goto out;
39279cc3
CM
5349}
5350
5351/*
5352 * when we hit a tree root in a directory, the btrfs part of the inode
5353 * needs to be changed to reflect the root directory of the tree root. This
5354 * is kind of like crossing a mount point.
5355 */
5356static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5357 struct inode *dir,
5358 struct dentry *dentry,
5359 struct btrfs_key *location,
5360 struct btrfs_root **sub_root)
39279cc3 5361{
4df27c4d
YZ
5362 struct btrfs_path *path;
5363 struct btrfs_root *new_root;
5364 struct btrfs_root_ref *ref;
5365 struct extent_buffer *leaf;
1d4c08e0 5366 struct btrfs_key key;
4df27c4d
YZ
5367 int ret;
5368 int err = 0;
39279cc3 5369
4df27c4d
YZ
5370 path = btrfs_alloc_path();
5371 if (!path) {
5372 err = -ENOMEM;
5373 goto out;
5374 }
39279cc3 5375
4df27c4d 5376 err = -ENOENT;
1d4c08e0
DS
5377 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5378 key.type = BTRFS_ROOT_REF_KEY;
5379 key.offset = location->objectid;
5380
5381 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5382 0, 0);
4df27c4d
YZ
5383 if (ret) {
5384 if (ret < 0)
5385 err = ret;
5386 goto out;
5387 }
39279cc3 5388
4df27c4d
YZ
5389 leaf = path->nodes[0];
5390 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5391 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5392 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5393 goto out;
39279cc3 5394
4df27c4d
YZ
5395 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5396 (unsigned long)(ref + 1),
5397 dentry->d_name.len);
5398 if (ret)
5399 goto out;
5400
b3b4aa74 5401 btrfs_release_path(path);
4df27c4d
YZ
5402
5403 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5404 if (IS_ERR(new_root)) {
5405 err = PTR_ERR(new_root);
5406 goto out;
5407 }
5408
4df27c4d
YZ
5409 *sub_root = new_root;
5410 location->objectid = btrfs_root_dirid(&new_root->root_item);
5411 location->type = BTRFS_INODE_ITEM_KEY;
5412 location->offset = 0;
5413 err = 0;
5414out:
5415 btrfs_free_path(path);
5416 return err;
39279cc3
CM
5417}
5418
5d4f98a2
YZ
5419static void inode_tree_add(struct inode *inode)
5420{
5421 struct btrfs_root *root = BTRFS_I(inode)->root;
5422 struct btrfs_inode *entry;
03e860bd
FNP
5423 struct rb_node **p;
5424 struct rb_node *parent;
cef21937 5425 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5426 u64 ino = btrfs_ino(inode);
5d4f98a2 5427
1d3382cb 5428 if (inode_unhashed(inode))
76dda93c 5429 return;
e1409cef 5430 parent = NULL;
5d4f98a2 5431 spin_lock(&root->inode_lock);
e1409cef 5432 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5433 while (*p) {
5434 parent = *p;
5435 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5436
33345d01 5437 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5438 p = &parent->rb_left;
33345d01 5439 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5440 p = &parent->rb_right;
5d4f98a2
YZ
5441 else {
5442 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5443 (I_WILL_FREE | I_FREEING)));
cef21937 5444 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5445 RB_CLEAR_NODE(parent);
5446 spin_unlock(&root->inode_lock);
cef21937 5447 return;
5d4f98a2
YZ
5448 }
5449 }
cef21937
FDBM
5450 rb_link_node(new, parent, p);
5451 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5452 spin_unlock(&root->inode_lock);
5453}
5454
5455static void inode_tree_del(struct inode *inode)
5456{
5457 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5458 int empty = 0;
5d4f98a2 5459
03e860bd 5460 spin_lock(&root->inode_lock);
5d4f98a2 5461 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5462 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5463 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5464 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5465 }
03e860bd 5466 spin_unlock(&root->inode_lock);
76dda93c 5467
69e9c6c6 5468 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5469 synchronize_srcu(&root->fs_info->subvol_srcu);
5470 spin_lock(&root->inode_lock);
5471 empty = RB_EMPTY_ROOT(&root->inode_tree);
5472 spin_unlock(&root->inode_lock);
5473 if (empty)
5474 btrfs_add_dead_root(root);
5475 }
5476}
5477
143bede5 5478void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5479{
5480 struct rb_node *node;
5481 struct rb_node *prev;
5482 struct btrfs_inode *entry;
5483 struct inode *inode;
5484 u64 objectid = 0;
5485
7813b3db
LB
5486 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5487 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5488
5489 spin_lock(&root->inode_lock);
5490again:
5491 node = root->inode_tree.rb_node;
5492 prev = NULL;
5493 while (node) {
5494 prev = node;
5495 entry = rb_entry(node, struct btrfs_inode, rb_node);
5496
33345d01 5497 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5498 node = node->rb_left;
33345d01 5499 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5500 node = node->rb_right;
5501 else
5502 break;
5503 }
5504 if (!node) {
5505 while (prev) {
5506 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5507 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5508 node = prev;
5509 break;
5510 }
5511 prev = rb_next(prev);
5512 }
5513 }
5514 while (node) {
5515 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5516 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5517 inode = igrab(&entry->vfs_inode);
5518 if (inode) {
5519 spin_unlock(&root->inode_lock);
5520 if (atomic_read(&inode->i_count) > 1)
5521 d_prune_aliases(inode);
5522 /*
45321ac5 5523 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5524 * the inode cache when its usage count
5525 * hits zero.
5526 */
5527 iput(inode);
5528 cond_resched();
5529 spin_lock(&root->inode_lock);
5530 goto again;
5531 }
5532
5533 if (cond_resched_lock(&root->inode_lock))
5534 goto again;
5535
5536 node = rb_next(node);
5537 }
5538 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5539}
5540
e02119d5
CM
5541static int btrfs_init_locked_inode(struct inode *inode, void *p)
5542{
5543 struct btrfs_iget_args *args = p;
90d3e592
CM
5544 inode->i_ino = args->location->objectid;
5545 memcpy(&BTRFS_I(inode)->location, args->location,
5546 sizeof(*args->location));
e02119d5 5547 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5548 return 0;
5549}
5550
5551static int btrfs_find_actor(struct inode *inode, void *opaque)
5552{
5553 struct btrfs_iget_args *args = opaque;
90d3e592 5554 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5555 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5556}
5557
5d4f98a2 5558static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5559 struct btrfs_key *location,
5d4f98a2 5560 struct btrfs_root *root)
39279cc3
CM
5561{
5562 struct inode *inode;
5563 struct btrfs_iget_args args;
90d3e592 5564 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5565
90d3e592 5566 args.location = location;
39279cc3
CM
5567 args.root = root;
5568
778ba82b 5569 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5570 btrfs_init_locked_inode,
5571 (void *)&args);
5572 return inode;
5573}
5574
1a54ef8c
BR
5575/* Get an inode object given its location and corresponding root.
5576 * Returns in *is_new if the inode was read from disk
5577 */
5578struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5579 struct btrfs_root *root, int *new)
1a54ef8c
BR
5580{
5581 struct inode *inode;
5582
90d3e592 5583 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5584 if (!inode)
5d4f98a2 5585 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5586
5587 if (inode->i_state & I_NEW) {
1a54ef8c 5588 btrfs_read_locked_inode(inode);
1748f843
MF
5589 if (!is_bad_inode(inode)) {
5590 inode_tree_add(inode);
5591 unlock_new_inode(inode);
5592 if (new)
5593 *new = 1;
5594 } else {
e0b6d65b
ST
5595 unlock_new_inode(inode);
5596 iput(inode);
5597 inode = ERR_PTR(-ESTALE);
1748f843
MF
5598 }
5599 }
5600
1a54ef8c
BR
5601 return inode;
5602}
5603
4df27c4d
YZ
5604static struct inode *new_simple_dir(struct super_block *s,
5605 struct btrfs_key *key,
5606 struct btrfs_root *root)
5607{
5608 struct inode *inode = new_inode(s);
5609
5610 if (!inode)
5611 return ERR_PTR(-ENOMEM);
5612
4df27c4d
YZ
5613 BTRFS_I(inode)->root = root;
5614 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5615 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5616
5617 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5618 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5619 inode->i_fop = &simple_dir_operations;
5620 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5621 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5622 inode->i_atime = inode->i_mtime;
5623 inode->i_ctime = inode->i_mtime;
5624 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5625
5626 return inode;
5627}
5628
3de4586c 5629struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5630{
d397712b 5631 struct inode *inode;
4df27c4d 5632 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5633 struct btrfs_root *sub_root = root;
5634 struct btrfs_key location;
76dda93c 5635 int index;
b4aff1f8 5636 int ret = 0;
39279cc3
CM
5637
5638 if (dentry->d_name.len > BTRFS_NAME_LEN)
5639 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5640
39e3c955 5641 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5642 if (ret < 0)
5643 return ERR_PTR(ret);
5f39d397 5644
4df27c4d 5645 if (location.objectid == 0)
5662344b 5646 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5647
5648 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5649 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5650 return inode;
5651 }
5652
5653 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5654
76dda93c 5655 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5656 ret = fixup_tree_root_location(root, dir, dentry,
5657 &location, &sub_root);
5658 if (ret < 0) {
5659 if (ret != -ENOENT)
5660 inode = ERR_PTR(ret);
5661 else
5662 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5663 } else {
73f73415 5664 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5665 }
76dda93c
YZ
5666 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5667
34d19bad 5668 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5669 down_read(&root->fs_info->cleanup_work_sem);
5670 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5671 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5672 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5673 if (ret) {
5674 iput(inode);
66b4ffd1 5675 inode = ERR_PTR(ret);
01cd3367 5676 }
c71bf099
YZ
5677 }
5678
3de4586c
CM
5679 return inode;
5680}
5681
fe15ce44 5682static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5683{
5684 struct btrfs_root *root;
2b0143b5 5685 struct inode *inode = d_inode(dentry);
76dda93c 5686
848cce0d 5687 if (!inode && !IS_ROOT(dentry))
2b0143b5 5688 inode = d_inode(dentry->d_parent);
76dda93c 5689
848cce0d
LZ
5690 if (inode) {
5691 root = BTRFS_I(inode)->root;
efefb143
YZ
5692 if (btrfs_root_refs(&root->root_item) == 0)
5693 return 1;
848cce0d
LZ
5694
5695 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5696 return 1;
efefb143 5697 }
76dda93c
YZ
5698 return 0;
5699}
5700
b4aff1f8
JB
5701static void btrfs_dentry_release(struct dentry *dentry)
5702{
944a4515 5703 kfree(dentry->d_fsdata);
b4aff1f8
JB
5704}
5705
3de4586c 5706static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5707 unsigned int flags)
3de4586c 5708{
5662344b 5709 struct inode *inode;
a66e7cc6 5710
5662344b
TI
5711 inode = btrfs_lookup_dentry(dir, dentry);
5712 if (IS_ERR(inode)) {
5713 if (PTR_ERR(inode) == -ENOENT)
5714 inode = NULL;
5715 else
5716 return ERR_CAST(inode);
5717 }
5718
41d28bca 5719 return d_splice_alias(inode, dentry);
39279cc3
CM
5720}
5721
16cdcec7 5722unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5723 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5724};
5725
9cdda8d3 5726static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5727{
9cdda8d3 5728 struct inode *inode = file_inode(file);
39279cc3
CM
5729 struct btrfs_root *root = BTRFS_I(inode)->root;
5730 struct btrfs_item *item;
5731 struct btrfs_dir_item *di;
5732 struct btrfs_key key;
5f39d397 5733 struct btrfs_key found_key;
39279cc3 5734 struct btrfs_path *path;
16cdcec7
MX
5735 struct list_head ins_list;
5736 struct list_head del_list;
39279cc3 5737 int ret;
5f39d397 5738 struct extent_buffer *leaf;
39279cc3 5739 int slot;
39279cc3
CM
5740 unsigned char d_type;
5741 int over = 0;
5742 u32 di_cur;
5743 u32 di_total;
5744 u32 di_len;
5745 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5746 char tmp_name[32];
5747 char *name_ptr;
5748 int name_len;
9cdda8d3 5749 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5750 bool emitted;
39279cc3
CM
5751
5752 /* FIXME, use a real flag for deciding about the key type */
5753 if (root->fs_info->tree_root == root)
5754 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5755
9cdda8d3
AV
5756 if (!dir_emit_dots(file, ctx))
5757 return 0;
5758
49593bfa 5759 path = btrfs_alloc_path();
16cdcec7
MX
5760 if (!path)
5761 return -ENOMEM;
ff5714cc 5762
e4058b54 5763 path->reada = READA_FORWARD;
49593bfa 5764
16cdcec7
MX
5765 if (key_type == BTRFS_DIR_INDEX_KEY) {
5766 INIT_LIST_HEAD(&ins_list);
5767 INIT_LIST_HEAD(&del_list);
5768 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5769 }
5770
962a298f 5771 key.type = key_type;
9cdda8d3 5772 key.offset = ctx->pos;
33345d01 5773 key.objectid = btrfs_ino(inode);
5f39d397 5774
39279cc3
CM
5775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5776 if (ret < 0)
5777 goto err;
49593bfa 5778
bc4ef759 5779 emitted = false;
49593bfa 5780 while (1) {
5f39d397 5781 leaf = path->nodes[0];
39279cc3 5782 slot = path->slots[0];
b9e03af0
LZ
5783 if (slot >= btrfs_header_nritems(leaf)) {
5784 ret = btrfs_next_leaf(root, path);
5785 if (ret < 0)
5786 goto err;
5787 else if (ret > 0)
5788 break;
5789 continue;
39279cc3 5790 }
3de4586c 5791
dd3cc16b 5792 item = btrfs_item_nr(slot);
5f39d397
CM
5793 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5794
5795 if (found_key.objectid != key.objectid)
39279cc3 5796 break;
962a298f 5797 if (found_key.type != key_type)
39279cc3 5798 break;
9cdda8d3 5799 if (found_key.offset < ctx->pos)
b9e03af0 5800 goto next;
16cdcec7
MX
5801 if (key_type == BTRFS_DIR_INDEX_KEY &&
5802 btrfs_should_delete_dir_index(&del_list,
5803 found_key.offset))
5804 goto next;
5f39d397 5805
9cdda8d3 5806 ctx->pos = found_key.offset;
16cdcec7 5807 is_curr = 1;
49593bfa 5808
39279cc3
CM
5809 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5810 di_cur = 0;
5f39d397 5811 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5812
5813 while (di_cur < di_total) {
5f39d397
CM
5814 struct btrfs_key location;
5815
22a94d44
JB
5816 if (verify_dir_item(root, leaf, di))
5817 break;
5818
5f39d397 5819 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5820 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5821 name_ptr = tmp_name;
5822 } else {
49e350a4 5823 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5824 if (!name_ptr) {
5825 ret = -ENOMEM;
5826 goto err;
5827 }
5f39d397
CM
5828 }
5829 read_extent_buffer(leaf, name_ptr,
5830 (unsigned long)(di + 1), name_len);
5831
5832 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5833 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5834
fede766f 5835
3de4586c 5836 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5837 * skip it.
5838 *
5839 * In contrast to old kernels, we insert the snapshot's
5840 * dir item and dir index after it has been created, so
5841 * we won't find a reference to our own snapshot. We
5842 * still keep the following code for backward
5843 * compatibility.
3de4586c
CM
5844 */
5845 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5846 location.objectid == root->root_key.objectid) {
5847 over = 0;
5848 goto skip;
5849 }
9cdda8d3
AV
5850 over = !dir_emit(ctx, name_ptr, name_len,
5851 location.objectid, d_type);
5f39d397 5852
3de4586c 5853skip:
5f39d397
CM
5854 if (name_ptr != tmp_name)
5855 kfree(name_ptr);
5856
39279cc3
CM
5857 if (over)
5858 goto nopos;
bc4ef759 5859 emitted = true;
5103e947 5860 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5861 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5862 di_cur += di_len;
5863 di = (struct btrfs_dir_item *)((char *)di + di_len);
5864 }
b9e03af0
LZ
5865next:
5866 path->slots[0]++;
39279cc3 5867 }
49593bfa 5868
16cdcec7
MX
5869 if (key_type == BTRFS_DIR_INDEX_KEY) {
5870 if (is_curr)
9cdda8d3 5871 ctx->pos++;
bc4ef759 5872 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5873 if (ret)
5874 goto nopos;
5875 }
5876
bc4ef759
DS
5877 /*
5878 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5879 * it was was set to the termination value in previous call. We assume
5880 * that "." and ".." were emitted if we reach this point and set the
5881 * termination value as well for an empty directory.
5882 */
5883 if (ctx->pos > 2 && !emitted)
5884 goto nopos;
5885
49593bfa 5886 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5887 ctx->pos++;
5888
5889 /*
5890 * Stop new entries from being returned after we return the last
5891 * entry.
5892 *
5893 * New directory entries are assigned a strictly increasing
5894 * offset. This means that new entries created during readdir
5895 * are *guaranteed* to be seen in the future by that readdir.
5896 * This has broken buggy programs which operate on names as
5897 * they're returned by readdir. Until we re-use freed offsets
5898 * we have this hack to stop new entries from being returned
5899 * under the assumption that they'll never reach this huge
5900 * offset.
5901 *
5902 * This is being careful not to overflow 32bit loff_t unless the
5903 * last entry requires it because doing so has broken 32bit apps
5904 * in the past.
5905 */
5906 if (key_type == BTRFS_DIR_INDEX_KEY) {
5907 if (ctx->pos >= INT_MAX)
5908 ctx->pos = LLONG_MAX;
5909 else
5910 ctx->pos = INT_MAX;
5911 }
39279cc3
CM
5912nopos:
5913 ret = 0;
5914err:
16cdcec7
MX
5915 if (key_type == BTRFS_DIR_INDEX_KEY)
5916 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5917 btrfs_free_path(path);
39279cc3
CM
5918 return ret;
5919}
5920
a9185b41 5921int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5922{
5923 struct btrfs_root *root = BTRFS_I(inode)->root;
5924 struct btrfs_trans_handle *trans;
5925 int ret = 0;
0af3d00b 5926 bool nolock = false;
39279cc3 5927
72ac3c0d 5928 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5929 return 0;
5930
83eea1f1 5931 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5932 nolock = true;
0af3d00b 5933
a9185b41 5934 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5935 if (nolock)
7a7eaa40 5936 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5937 else
7a7eaa40 5938 trans = btrfs_join_transaction(root);
3612b495
TI
5939 if (IS_ERR(trans))
5940 return PTR_ERR(trans);
a698d075 5941 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5942 }
5943 return ret;
5944}
5945
5946/*
54aa1f4d 5947 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5948 * inode changes. But, it is most likely to find the inode in cache.
5949 * FIXME, needs more benchmarking...there are no reasons other than performance
5950 * to keep or drop this code.
5951 */
48a3b636 5952static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5953{
5954 struct btrfs_root *root = BTRFS_I(inode)->root;
5955 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5956 int ret;
5957
72ac3c0d 5958 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5959 return 0;
39279cc3 5960
7a7eaa40 5961 trans = btrfs_join_transaction(root);
22c44fe6
JB
5962 if (IS_ERR(trans))
5963 return PTR_ERR(trans);
8929ecfa
YZ
5964
5965 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5966 if (ret && ret == -ENOSPC) {
5967 /* whoops, lets try again with the full transaction */
5968 btrfs_end_transaction(trans, root);
5969 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5970 if (IS_ERR(trans))
5971 return PTR_ERR(trans);
8929ecfa 5972
94b60442 5973 ret = btrfs_update_inode(trans, root, inode);
94b60442 5974 }
39279cc3 5975 btrfs_end_transaction(trans, root);
16cdcec7
MX
5976 if (BTRFS_I(inode)->delayed_node)
5977 btrfs_balance_delayed_items(root);
22c44fe6
JB
5978
5979 return ret;
5980}
5981
5982/*
5983 * This is a copy of file_update_time. We need this so we can return error on
5984 * ENOSPC for updating the inode in the case of file write and mmap writes.
5985 */
e41f941a
JB
5986static int btrfs_update_time(struct inode *inode, struct timespec *now,
5987 int flags)
22c44fe6 5988{
2bc55652
AB
5989 struct btrfs_root *root = BTRFS_I(inode)->root;
5990
5991 if (btrfs_root_readonly(root))
5992 return -EROFS;
5993
e41f941a 5994 if (flags & S_VERSION)
22c44fe6 5995 inode_inc_iversion(inode);
e41f941a
JB
5996 if (flags & S_CTIME)
5997 inode->i_ctime = *now;
5998 if (flags & S_MTIME)
5999 inode->i_mtime = *now;
6000 if (flags & S_ATIME)
6001 inode->i_atime = *now;
6002 return btrfs_dirty_inode(inode);
39279cc3
CM
6003}
6004
d352ac68
CM
6005/*
6006 * find the highest existing sequence number in a directory
6007 * and then set the in-memory index_cnt variable to reflect
6008 * free sequence numbers
6009 */
aec7477b
JB
6010static int btrfs_set_inode_index_count(struct inode *inode)
6011{
6012 struct btrfs_root *root = BTRFS_I(inode)->root;
6013 struct btrfs_key key, found_key;
6014 struct btrfs_path *path;
6015 struct extent_buffer *leaf;
6016 int ret;
6017
33345d01 6018 key.objectid = btrfs_ino(inode);
962a298f 6019 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6020 key.offset = (u64)-1;
6021
6022 path = btrfs_alloc_path();
6023 if (!path)
6024 return -ENOMEM;
6025
6026 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6027 if (ret < 0)
6028 goto out;
6029 /* FIXME: we should be able to handle this */
6030 if (ret == 0)
6031 goto out;
6032 ret = 0;
6033
6034 /*
6035 * MAGIC NUMBER EXPLANATION:
6036 * since we search a directory based on f_pos we have to start at 2
6037 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6038 * else has to start at 2
6039 */
6040 if (path->slots[0] == 0) {
6041 BTRFS_I(inode)->index_cnt = 2;
6042 goto out;
6043 }
6044
6045 path->slots[0]--;
6046
6047 leaf = path->nodes[0];
6048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6049
33345d01 6050 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6051 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6052 BTRFS_I(inode)->index_cnt = 2;
6053 goto out;
6054 }
6055
6056 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6057out:
6058 btrfs_free_path(path);
6059 return ret;
6060}
6061
d352ac68
CM
6062/*
6063 * helper to find a free sequence number in a given directory. This current
6064 * code is very simple, later versions will do smarter things in the btree
6065 */
3de4586c 6066int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6067{
6068 int ret = 0;
6069
6070 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6071 ret = btrfs_inode_delayed_dir_index_count(dir);
6072 if (ret) {
6073 ret = btrfs_set_inode_index_count(dir);
6074 if (ret)
6075 return ret;
6076 }
aec7477b
JB
6077 }
6078
00e4e6b3 6079 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6080 BTRFS_I(dir)->index_cnt++;
6081
6082 return ret;
6083}
6084
b0d5d10f
CM
6085static int btrfs_insert_inode_locked(struct inode *inode)
6086{
6087 struct btrfs_iget_args args;
6088 args.location = &BTRFS_I(inode)->location;
6089 args.root = BTRFS_I(inode)->root;
6090
6091 return insert_inode_locked4(inode,
6092 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6093 btrfs_find_actor, &args);
6094}
6095
39279cc3
CM
6096static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6097 struct btrfs_root *root,
aec7477b 6098 struct inode *dir,
9c58309d 6099 const char *name, int name_len,
175a4eb7
AV
6100 u64 ref_objectid, u64 objectid,
6101 umode_t mode, u64 *index)
39279cc3
CM
6102{
6103 struct inode *inode;
5f39d397 6104 struct btrfs_inode_item *inode_item;
39279cc3 6105 struct btrfs_key *location;
5f39d397 6106 struct btrfs_path *path;
9c58309d
CM
6107 struct btrfs_inode_ref *ref;
6108 struct btrfs_key key[2];
6109 u32 sizes[2];
ef3b9af5 6110 int nitems = name ? 2 : 1;
9c58309d 6111 unsigned long ptr;
39279cc3 6112 int ret;
39279cc3 6113
5f39d397 6114 path = btrfs_alloc_path();
d8926bb3
MF
6115 if (!path)
6116 return ERR_PTR(-ENOMEM);
5f39d397 6117
39279cc3 6118 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6119 if (!inode) {
6120 btrfs_free_path(path);
39279cc3 6121 return ERR_PTR(-ENOMEM);
8fb27640 6122 }
39279cc3 6123
5762b5c9
FM
6124 /*
6125 * O_TMPFILE, set link count to 0, so that after this point,
6126 * we fill in an inode item with the correct link count.
6127 */
6128 if (!name)
6129 set_nlink(inode, 0);
6130
581bb050
LZ
6131 /*
6132 * we have to initialize this early, so we can reclaim the inode
6133 * number if we fail afterwards in this function.
6134 */
6135 inode->i_ino = objectid;
6136
ef3b9af5 6137 if (dir && name) {
1abe9b8a 6138 trace_btrfs_inode_request(dir);
6139
3de4586c 6140 ret = btrfs_set_inode_index(dir, index);
09771430 6141 if (ret) {
8fb27640 6142 btrfs_free_path(path);
09771430 6143 iput(inode);
aec7477b 6144 return ERR_PTR(ret);
09771430 6145 }
ef3b9af5
FM
6146 } else if (dir) {
6147 *index = 0;
aec7477b
JB
6148 }
6149 /*
6150 * index_cnt is ignored for everything but a dir,
6151 * btrfs_get_inode_index_count has an explanation for the magic
6152 * number
6153 */
6154 BTRFS_I(inode)->index_cnt = 2;
67de1176 6155 BTRFS_I(inode)->dir_index = *index;
39279cc3 6156 BTRFS_I(inode)->root = root;
e02119d5 6157 BTRFS_I(inode)->generation = trans->transid;
76195853 6158 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6159
5dc562c5
JB
6160 /*
6161 * We could have gotten an inode number from somebody who was fsynced
6162 * and then removed in this same transaction, so let's just set full
6163 * sync since it will be a full sync anyway and this will blow away the
6164 * old info in the log.
6165 */
6166 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6167
9c58309d 6168 key[0].objectid = objectid;
962a298f 6169 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6170 key[0].offset = 0;
6171
9c58309d 6172 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6173
6174 if (name) {
6175 /*
6176 * Start new inodes with an inode_ref. This is slightly more
6177 * efficient for small numbers of hard links since they will
6178 * be packed into one item. Extended refs will kick in if we
6179 * add more hard links than can fit in the ref item.
6180 */
6181 key[1].objectid = objectid;
962a298f 6182 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6183 key[1].offset = ref_objectid;
6184
6185 sizes[1] = name_len + sizeof(*ref);
6186 }
9c58309d 6187
b0d5d10f
CM
6188 location = &BTRFS_I(inode)->location;
6189 location->objectid = objectid;
6190 location->offset = 0;
962a298f 6191 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6192
6193 ret = btrfs_insert_inode_locked(inode);
6194 if (ret < 0)
6195 goto fail;
6196
b9473439 6197 path->leave_spinning = 1;
ef3b9af5 6198 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6199 if (ret != 0)
b0d5d10f 6200 goto fail_unlock;
5f39d397 6201
ecc11fab 6202 inode_init_owner(inode, dir, mode);
a76a3cd4 6203 inode_set_bytes(inode, 0);
9cc97d64 6204
04b285f3 6205 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6206 inode->i_atime = inode->i_mtime;
6207 inode->i_ctime = inode->i_mtime;
6208 BTRFS_I(inode)->i_otime = inode->i_mtime;
6209
5f39d397
CM
6210 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6211 struct btrfs_inode_item);
293f7e07
LZ
6212 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6213 sizeof(*inode_item));
e02119d5 6214 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6215
ef3b9af5
FM
6216 if (name) {
6217 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6218 struct btrfs_inode_ref);
6219 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6220 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6221 ptr = (unsigned long)(ref + 1);
6222 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6223 }
9c58309d 6224
5f39d397
CM
6225 btrfs_mark_buffer_dirty(path->nodes[0]);
6226 btrfs_free_path(path);
6227
6cbff00f
CH
6228 btrfs_inherit_iflags(inode, dir);
6229
569254b0 6230 if (S_ISREG(mode)) {
94272164
CM
6231 if (btrfs_test_opt(root, NODATASUM))
6232 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6233 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6234 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6235 BTRFS_INODE_NODATASUM;
94272164
CM
6236 }
6237
5d4f98a2 6238 inode_tree_add(inode);
1abe9b8a 6239
6240 trace_btrfs_inode_new(inode);
1973f0fa 6241 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6242
8ea05e3a
AB
6243 btrfs_update_root_times(trans, root);
6244
63541927
FDBM
6245 ret = btrfs_inode_inherit_props(trans, inode, dir);
6246 if (ret)
6247 btrfs_err(root->fs_info,
6248 "error inheriting props for ino %llu (root %llu): %d",
6249 btrfs_ino(inode), root->root_key.objectid, ret);
6250
39279cc3 6251 return inode;
b0d5d10f
CM
6252
6253fail_unlock:
6254 unlock_new_inode(inode);
5f39d397 6255fail:
ef3b9af5 6256 if (dir && name)
aec7477b 6257 BTRFS_I(dir)->index_cnt--;
5f39d397 6258 btrfs_free_path(path);
09771430 6259 iput(inode);
5f39d397 6260 return ERR_PTR(ret);
39279cc3
CM
6261}
6262
6263static inline u8 btrfs_inode_type(struct inode *inode)
6264{
6265 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6266}
6267
d352ac68
CM
6268/*
6269 * utility function to add 'inode' into 'parent_inode' with
6270 * a give name and a given sequence number.
6271 * if 'add_backref' is true, also insert a backref from the
6272 * inode to the parent directory.
6273 */
e02119d5
CM
6274int btrfs_add_link(struct btrfs_trans_handle *trans,
6275 struct inode *parent_inode, struct inode *inode,
6276 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6277{
4df27c4d 6278 int ret = 0;
39279cc3 6279 struct btrfs_key key;
e02119d5 6280 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6281 u64 ino = btrfs_ino(inode);
6282 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6283
33345d01 6284 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6285 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6286 } else {
33345d01 6287 key.objectid = ino;
962a298f 6288 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6289 key.offset = 0;
6290 }
6291
33345d01 6292 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6293 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6294 key.objectid, root->root_key.objectid,
33345d01 6295 parent_ino, index, name, name_len);
4df27c4d 6296 } else if (add_backref) {
33345d01
LZ
6297 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6298 parent_ino, index);
4df27c4d 6299 }
39279cc3 6300
79787eaa
JM
6301 /* Nothing to clean up yet */
6302 if (ret)
6303 return ret;
4df27c4d 6304
79787eaa
JM
6305 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6306 parent_inode, &key,
6307 btrfs_inode_type(inode), index);
9c52057c 6308 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6309 goto fail_dir_item;
6310 else if (ret) {
6311 btrfs_abort_transaction(trans, root, ret);
6312 return ret;
39279cc3 6313 }
79787eaa
JM
6314
6315 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6316 name_len * 2);
0c4d2d95 6317 inode_inc_iversion(parent_inode);
04b285f3
DD
6318 parent_inode->i_mtime = parent_inode->i_ctime =
6319 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6320 ret = btrfs_update_inode(trans, root, parent_inode);
6321 if (ret)
6322 btrfs_abort_transaction(trans, root, ret);
39279cc3 6323 return ret;
fe66a05a
CM
6324
6325fail_dir_item:
6326 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6327 u64 local_index;
6328 int err;
6329 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6330 key.objectid, root->root_key.objectid,
6331 parent_ino, &local_index, name, name_len);
6332
6333 } else if (add_backref) {
6334 u64 local_index;
6335 int err;
6336
6337 err = btrfs_del_inode_ref(trans, root, name, name_len,
6338 ino, parent_ino, &local_index);
6339 }
6340 return ret;
39279cc3
CM
6341}
6342
6343static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6344 struct inode *dir, struct dentry *dentry,
6345 struct inode *inode, int backref, u64 index)
39279cc3 6346{
a1b075d2
JB
6347 int err = btrfs_add_link(trans, dir, inode,
6348 dentry->d_name.name, dentry->d_name.len,
6349 backref, index);
39279cc3
CM
6350 if (err > 0)
6351 err = -EEXIST;
6352 return err;
6353}
6354
618e21d5 6355static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6356 umode_t mode, dev_t rdev)
618e21d5
JB
6357{
6358 struct btrfs_trans_handle *trans;
6359 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6360 struct inode *inode = NULL;
618e21d5
JB
6361 int err;
6362 int drop_inode = 0;
6363 u64 objectid;
00e4e6b3 6364 u64 index = 0;
618e21d5 6365
9ed74f2d
JB
6366 /*
6367 * 2 for inode item and ref
6368 * 2 for dir items
6369 * 1 for xattr if selinux is on
6370 */
a22285a6
YZ
6371 trans = btrfs_start_transaction(root, 5);
6372 if (IS_ERR(trans))
6373 return PTR_ERR(trans);
1832a6d5 6374
581bb050
LZ
6375 err = btrfs_find_free_ino(root, &objectid);
6376 if (err)
6377 goto out_unlock;
6378
aec7477b 6379 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6380 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6381 mode, &index);
7cf96da3
TI
6382 if (IS_ERR(inode)) {
6383 err = PTR_ERR(inode);
618e21d5 6384 goto out_unlock;
7cf96da3 6385 }
618e21d5 6386
ad19db71
CS
6387 /*
6388 * If the active LSM wants to access the inode during
6389 * d_instantiate it needs these. Smack checks to see
6390 * if the filesystem supports xattrs by looking at the
6391 * ops vector.
6392 */
ad19db71 6393 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6394 init_special_inode(inode, inode->i_mode, rdev);
6395
6396 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6397 if (err)
b0d5d10f
CM
6398 goto out_unlock_inode;
6399
6400 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6401 if (err) {
6402 goto out_unlock_inode;
6403 } else {
1b4ab1bb 6404 btrfs_update_inode(trans, root, inode);
b0d5d10f 6405 unlock_new_inode(inode);
08c422c2 6406 d_instantiate(dentry, inode);
618e21d5 6407 }
b0d5d10f 6408
618e21d5 6409out_unlock:
7ad85bb7 6410 btrfs_end_transaction(trans, root);
c581afc8 6411 btrfs_balance_delayed_items(root);
b53d3f5d 6412 btrfs_btree_balance_dirty(root);
618e21d5
JB
6413 if (drop_inode) {
6414 inode_dec_link_count(inode);
6415 iput(inode);
6416 }
618e21d5 6417 return err;
b0d5d10f
CM
6418
6419out_unlock_inode:
6420 drop_inode = 1;
6421 unlock_new_inode(inode);
6422 goto out_unlock;
6423
618e21d5
JB
6424}
6425
39279cc3 6426static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6427 umode_t mode, bool excl)
39279cc3
CM
6428{
6429 struct btrfs_trans_handle *trans;
6430 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6431 struct inode *inode = NULL;
43baa579 6432 int drop_inode_on_err = 0;
a22285a6 6433 int err;
39279cc3 6434 u64 objectid;
00e4e6b3 6435 u64 index = 0;
39279cc3 6436
9ed74f2d
JB
6437 /*
6438 * 2 for inode item and ref
6439 * 2 for dir items
6440 * 1 for xattr if selinux is on
6441 */
a22285a6
YZ
6442 trans = btrfs_start_transaction(root, 5);
6443 if (IS_ERR(trans))
6444 return PTR_ERR(trans);
9ed74f2d 6445
581bb050
LZ
6446 err = btrfs_find_free_ino(root, &objectid);
6447 if (err)
6448 goto out_unlock;
6449
aec7477b 6450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6451 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6452 mode, &index);
7cf96da3
TI
6453 if (IS_ERR(inode)) {
6454 err = PTR_ERR(inode);
39279cc3 6455 goto out_unlock;
7cf96da3 6456 }
43baa579 6457 drop_inode_on_err = 1;
ad19db71
CS
6458 /*
6459 * If the active LSM wants to access the inode during
6460 * d_instantiate it needs these. Smack checks to see
6461 * if the filesystem supports xattrs by looking at the
6462 * ops vector.
6463 */
6464 inode->i_fop = &btrfs_file_operations;
6465 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6466 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6467
6468 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6469 if (err)
6470 goto out_unlock_inode;
6471
6472 err = btrfs_update_inode(trans, root, inode);
6473 if (err)
6474 goto out_unlock_inode;
ad19db71 6475
a1b075d2 6476 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6477 if (err)
b0d5d10f 6478 goto out_unlock_inode;
43baa579 6479
43baa579 6480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6481 unlock_new_inode(inode);
43baa579
FB
6482 d_instantiate(dentry, inode);
6483
39279cc3 6484out_unlock:
7ad85bb7 6485 btrfs_end_transaction(trans, root);
43baa579 6486 if (err && drop_inode_on_err) {
39279cc3
CM
6487 inode_dec_link_count(inode);
6488 iput(inode);
6489 }
c581afc8 6490 btrfs_balance_delayed_items(root);
b53d3f5d 6491 btrfs_btree_balance_dirty(root);
39279cc3 6492 return err;
b0d5d10f
CM
6493
6494out_unlock_inode:
6495 unlock_new_inode(inode);
6496 goto out_unlock;
6497
39279cc3
CM
6498}
6499
6500static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6501 struct dentry *dentry)
6502{
271dba45 6503 struct btrfs_trans_handle *trans = NULL;
39279cc3 6504 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6505 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6506 u64 index;
39279cc3
CM
6507 int err;
6508 int drop_inode = 0;
6509
4a8be425
TH
6510 /* do not allow sys_link's with other subvols of the same device */
6511 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6512 return -EXDEV;
4a8be425 6513
f186373f 6514 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6515 return -EMLINK;
4a8be425 6516
3de4586c 6517 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6518 if (err)
6519 goto fail;
6520
a22285a6 6521 /*
7e6b6465 6522 * 2 items for inode and inode ref
a22285a6 6523 * 2 items for dir items
7e6b6465 6524 * 1 item for parent inode
a22285a6 6525 */
7e6b6465 6526 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6527 if (IS_ERR(trans)) {
6528 err = PTR_ERR(trans);
271dba45 6529 trans = NULL;
a22285a6
YZ
6530 goto fail;
6531 }
5f39d397 6532
67de1176
MX
6533 /* There are several dir indexes for this inode, clear the cache. */
6534 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6535 inc_nlink(inode);
0c4d2d95 6536 inode_inc_iversion(inode);
04b285f3 6537 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6538 ihold(inode);
e9976151 6539 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6540
a1b075d2 6541 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6542
a5719521 6543 if (err) {
54aa1f4d 6544 drop_inode = 1;
a5719521 6545 } else {
10d9f309 6546 struct dentry *parent = dentry->d_parent;
a5719521 6547 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6548 if (err)
6549 goto fail;
ef3b9af5
FM
6550 if (inode->i_nlink == 1) {
6551 /*
6552 * If new hard link count is 1, it's a file created
6553 * with open(2) O_TMPFILE flag.
6554 */
6555 err = btrfs_orphan_del(trans, inode);
6556 if (err)
6557 goto fail;
6558 }
08c422c2 6559 d_instantiate(dentry, inode);
6a912213 6560 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6561 }
39279cc3 6562
c581afc8 6563 btrfs_balance_delayed_items(root);
1832a6d5 6564fail:
271dba45
FM
6565 if (trans)
6566 btrfs_end_transaction(trans, root);
39279cc3
CM
6567 if (drop_inode) {
6568 inode_dec_link_count(inode);
6569 iput(inode);
6570 }
b53d3f5d 6571 btrfs_btree_balance_dirty(root);
39279cc3
CM
6572 return err;
6573}
6574
18bb1db3 6575static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6576{
b9d86667 6577 struct inode *inode = NULL;
39279cc3
CM
6578 struct btrfs_trans_handle *trans;
6579 struct btrfs_root *root = BTRFS_I(dir)->root;
6580 int err = 0;
6581 int drop_on_err = 0;
b9d86667 6582 u64 objectid = 0;
00e4e6b3 6583 u64 index = 0;
39279cc3 6584
9ed74f2d
JB
6585 /*
6586 * 2 items for inode and ref
6587 * 2 items for dir items
6588 * 1 for xattr if selinux is on
6589 */
a22285a6
YZ
6590 trans = btrfs_start_transaction(root, 5);
6591 if (IS_ERR(trans))
6592 return PTR_ERR(trans);
39279cc3 6593
581bb050
LZ
6594 err = btrfs_find_free_ino(root, &objectid);
6595 if (err)
6596 goto out_fail;
6597
aec7477b 6598 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6599 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6600 S_IFDIR | mode, &index);
39279cc3
CM
6601 if (IS_ERR(inode)) {
6602 err = PTR_ERR(inode);
6603 goto out_fail;
6604 }
5f39d397 6605
39279cc3 6606 drop_on_err = 1;
b0d5d10f
CM
6607 /* these must be set before we unlock the inode */
6608 inode->i_op = &btrfs_dir_inode_operations;
6609 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6610
2a7dba39 6611 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6612 if (err)
b0d5d10f 6613 goto out_fail_inode;
39279cc3 6614
dbe674a9 6615 btrfs_i_size_write(inode, 0);
39279cc3
CM
6616 err = btrfs_update_inode(trans, root, inode);
6617 if (err)
b0d5d10f 6618 goto out_fail_inode;
5f39d397 6619
a1b075d2
JB
6620 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6621 dentry->d_name.len, 0, index);
39279cc3 6622 if (err)
b0d5d10f 6623 goto out_fail_inode;
5f39d397 6624
39279cc3 6625 d_instantiate(dentry, inode);
b0d5d10f
CM
6626 /*
6627 * mkdir is special. We're unlocking after we call d_instantiate
6628 * to avoid a race with nfsd calling d_instantiate.
6629 */
6630 unlock_new_inode(inode);
39279cc3 6631 drop_on_err = 0;
39279cc3
CM
6632
6633out_fail:
7ad85bb7 6634 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6635 if (drop_on_err) {
6636 inode_dec_link_count(inode);
39279cc3 6637 iput(inode);
c7cfb8a5 6638 }
c581afc8 6639 btrfs_balance_delayed_items(root);
b53d3f5d 6640 btrfs_btree_balance_dirty(root);
39279cc3 6641 return err;
b0d5d10f
CM
6642
6643out_fail_inode:
6644 unlock_new_inode(inode);
6645 goto out_fail;
39279cc3
CM
6646}
6647
e6c4efd8
QW
6648/* Find next extent map of a given extent map, caller needs to ensure locks */
6649static struct extent_map *next_extent_map(struct extent_map *em)
6650{
6651 struct rb_node *next;
6652
6653 next = rb_next(&em->rb_node);
6654 if (!next)
6655 return NULL;
6656 return container_of(next, struct extent_map, rb_node);
6657}
6658
6659static struct extent_map *prev_extent_map(struct extent_map *em)
6660{
6661 struct rb_node *prev;
6662
6663 prev = rb_prev(&em->rb_node);
6664 if (!prev)
6665 return NULL;
6666 return container_of(prev, struct extent_map, rb_node);
6667}
6668
d352ac68 6669/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6670 * the existing extent is the nearest extent to map_start,
d352ac68 6671 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6672 * the best fitted new extent into the tree.
d352ac68 6673 */
3b951516
CM
6674static int merge_extent_mapping(struct extent_map_tree *em_tree,
6675 struct extent_map *existing,
e6dcd2dc 6676 struct extent_map *em,
51f395ad 6677 u64 map_start)
3b951516 6678{
e6c4efd8
QW
6679 struct extent_map *prev;
6680 struct extent_map *next;
6681 u64 start;
6682 u64 end;
3b951516 6683 u64 start_diff;
3b951516 6684
e6dcd2dc 6685 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6686
6687 if (existing->start > map_start) {
6688 next = existing;
6689 prev = prev_extent_map(next);
6690 } else {
6691 prev = existing;
6692 next = next_extent_map(prev);
6693 }
6694
6695 start = prev ? extent_map_end(prev) : em->start;
6696 start = max_t(u64, start, em->start);
6697 end = next ? next->start : extent_map_end(em);
6698 end = min_t(u64, end, extent_map_end(em));
6699 start_diff = start - em->start;
6700 em->start = start;
6701 em->len = end - start;
c8b97818
CM
6702 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6703 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6704 em->block_start += start_diff;
c8b97818
CM
6705 em->block_len -= start_diff;
6706 }
09a2a8f9 6707 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6708}
6709
c8b97818 6710static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6711 struct page *page,
c8b97818
CM
6712 size_t pg_offset, u64 extent_offset,
6713 struct btrfs_file_extent_item *item)
6714{
6715 int ret;
6716 struct extent_buffer *leaf = path->nodes[0];
6717 char *tmp;
6718 size_t max_size;
6719 unsigned long inline_size;
6720 unsigned long ptr;
261507a0 6721 int compress_type;
c8b97818
CM
6722
6723 WARN_ON(pg_offset != 0);
261507a0 6724 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6725 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6726 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6727 btrfs_item_nr(path->slots[0]));
c8b97818 6728 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6729 if (!tmp)
6730 return -ENOMEM;
c8b97818
CM
6731 ptr = btrfs_file_extent_inline_start(item);
6732
6733 read_extent_buffer(leaf, tmp, ptr, inline_size);
6734
09cbfeaf 6735 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6736 ret = btrfs_decompress(compress_type, tmp, page,
6737 extent_offset, inline_size, max_size);
c8b97818 6738 kfree(tmp);
166ae5a4 6739 return ret;
c8b97818
CM
6740}
6741
d352ac68
CM
6742/*
6743 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6744 * the ugly parts come from merging extents from the disk with the in-ram
6745 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6746 * where the in-ram extents might be locked pending data=ordered completion.
6747 *
6748 * This also copies inline extents directly into the page.
6749 */
d397712b 6750
a52d9a80 6751struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6752 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6753 int create)
6754{
6755 int ret;
6756 int err = 0;
a52d9a80
CM
6757 u64 extent_start = 0;
6758 u64 extent_end = 0;
33345d01 6759 u64 objectid = btrfs_ino(inode);
a52d9a80 6760 u32 found_type;
f421950f 6761 struct btrfs_path *path = NULL;
a52d9a80
CM
6762 struct btrfs_root *root = BTRFS_I(inode)->root;
6763 struct btrfs_file_extent_item *item;
5f39d397
CM
6764 struct extent_buffer *leaf;
6765 struct btrfs_key found_key;
a52d9a80
CM
6766 struct extent_map *em = NULL;
6767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6768 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6769 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6770 const bool new_inline = !page || create;
a52d9a80 6771
a52d9a80 6772again:
890871be 6773 read_lock(&em_tree->lock);
d1310b2e 6774 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6775 if (em)
6776 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6777 read_unlock(&em_tree->lock);
d1310b2e 6778
a52d9a80 6779 if (em) {
e1c4b745
CM
6780 if (em->start > start || em->start + em->len <= start)
6781 free_extent_map(em);
6782 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6783 free_extent_map(em);
6784 else
6785 goto out;
a52d9a80 6786 }
172ddd60 6787 em = alloc_extent_map();
a52d9a80 6788 if (!em) {
d1310b2e
CM
6789 err = -ENOMEM;
6790 goto out;
a52d9a80 6791 }
e6dcd2dc 6792 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6793 em->start = EXTENT_MAP_HOLE;
445a6944 6794 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6795 em->len = (u64)-1;
c8b97818 6796 em->block_len = (u64)-1;
f421950f
CM
6797
6798 if (!path) {
6799 path = btrfs_alloc_path();
026fd317
JB
6800 if (!path) {
6801 err = -ENOMEM;
6802 goto out;
6803 }
6804 /*
6805 * Chances are we'll be called again, so go ahead and do
6806 * readahead
6807 */
e4058b54 6808 path->reada = READA_FORWARD;
f421950f
CM
6809 }
6810
179e29e4
CM
6811 ret = btrfs_lookup_file_extent(trans, root, path,
6812 objectid, start, trans != NULL);
a52d9a80
CM
6813 if (ret < 0) {
6814 err = ret;
6815 goto out;
6816 }
6817
6818 if (ret != 0) {
6819 if (path->slots[0] == 0)
6820 goto not_found;
6821 path->slots[0]--;
6822 }
6823
5f39d397
CM
6824 leaf = path->nodes[0];
6825 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6826 struct btrfs_file_extent_item);
a52d9a80 6827 /* are we inside the extent that was found? */
5f39d397 6828 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6829 found_type = found_key.type;
5f39d397 6830 if (found_key.objectid != objectid ||
a52d9a80 6831 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6832 /*
6833 * If we backup past the first extent we want to move forward
6834 * and see if there is an extent in front of us, otherwise we'll
6835 * say there is a hole for our whole search range which can
6836 * cause problems.
6837 */
6838 extent_end = start;
6839 goto next;
a52d9a80
CM
6840 }
6841
5f39d397
CM
6842 found_type = btrfs_file_extent_type(leaf, item);
6843 extent_start = found_key.offset;
d899e052
YZ
6844 if (found_type == BTRFS_FILE_EXTENT_REG ||
6845 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6846 extent_end = extent_start +
db94535d 6847 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6848 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6849 size_t size;
514ac8ad 6850 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6851 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6852 }
25a50341 6853next:
9036c102
YZ
6854 if (start >= extent_end) {
6855 path->slots[0]++;
6856 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6857 ret = btrfs_next_leaf(root, path);
6858 if (ret < 0) {
6859 err = ret;
6860 goto out;
a52d9a80 6861 }
9036c102
YZ
6862 if (ret > 0)
6863 goto not_found;
6864 leaf = path->nodes[0];
a52d9a80 6865 }
9036c102
YZ
6866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6867 if (found_key.objectid != objectid ||
6868 found_key.type != BTRFS_EXTENT_DATA_KEY)
6869 goto not_found;
6870 if (start + len <= found_key.offset)
6871 goto not_found;
e2eca69d
WS
6872 if (start > found_key.offset)
6873 goto next;
9036c102 6874 em->start = start;
70c8a91c 6875 em->orig_start = start;
9036c102
YZ
6876 em->len = found_key.offset - start;
6877 goto not_found_em;
6878 }
6879
7ffbb598
FM
6880 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6881
d899e052
YZ
6882 if (found_type == BTRFS_FILE_EXTENT_REG ||
6883 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6884 goto insert;
6885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6886 unsigned long ptr;
a52d9a80 6887 char *map;
3326d1b0
CM
6888 size_t size;
6889 size_t extent_offset;
6890 size_t copy_size;
a52d9a80 6891
7ffbb598 6892 if (new_inline)
689f9346 6893 goto out;
5f39d397 6894
514ac8ad 6895 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6896 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6897 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6898 size - extent_offset);
3326d1b0 6899 em->start = extent_start + extent_offset;
fda2832f 6900 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6901 em->orig_block_len = em->len;
70c8a91c 6902 em->orig_start = em->start;
689f9346 6903 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6904 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6905 if (btrfs_file_extent_compression(leaf, item) !=
6906 BTRFS_COMPRESS_NONE) {
e40da0e5 6907 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6908 extent_offset, item);
166ae5a4
ZB
6909 if (ret) {
6910 err = ret;
6911 goto out;
6912 }
c8b97818
CM
6913 } else {
6914 map = kmap(page);
6915 read_extent_buffer(leaf, map + pg_offset, ptr,
6916 copy_size);
09cbfeaf 6917 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6918 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6919 PAGE_SIZE - pg_offset -
93c82d57
CM
6920 copy_size);
6921 }
c8b97818
CM
6922 kunmap(page);
6923 }
179e29e4
CM
6924 flush_dcache_page(page);
6925 } else if (create && PageUptodate(page)) {
6bf7e080 6926 BUG();
179e29e4
CM
6927 if (!trans) {
6928 kunmap(page);
6929 free_extent_map(em);
6930 em = NULL;
ff5714cc 6931
b3b4aa74 6932 btrfs_release_path(path);
7a7eaa40 6933 trans = btrfs_join_transaction(root);
ff5714cc 6934
3612b495
TI
6935 if (IS_ERR(trans))
6936 return ERR_CAST(trans);
179e29e4
CM
6937 goto again;
6938 }
c8b97818 6939 map = kmap(page);
70dec807 6940 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6941 copy_size);
c8b97818 6942 kunmap(page);
179e29e4 6943 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6944 }
d1310b2e 6945 set_extent_uptodate(io_tree, em->start,
507903b8 6946 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6947 goto insert;
a52d9a80
CM
6948 }
6949not_found:
6950 em->start = start;
70c8a91c 6951 em->orig_start = start;
d1310b2e 6952 em->len = len;
a52d9a80 6953not_found_em:
5f39d397 6954 em->block_start = EXTENT_MAP_HOLE;
9036c102 6955 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6956insert:
b3b4aa74 6957 btrfs_release_path(path);
d1310b2e 6958 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6959 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6960 em->start, em->len, start, len);
a52d9a80
CM
6961 err = -EIO;
6962 goto out;
6963 }
d1310b2e
CM
6964
6965 err = 0;
890871be 6966 write_lock(&em_tree->lock);
09a2a8f9 6967 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6968 /* it is possible that someone inserted the extent into the tree
6969 * while we had the lock dropped. It is also possible that
6970 * an overlapping map exists in the tree
6971 */
a52d9a80 6972 if (ret == -EEXIST) {
3b951516 6973 struct extent_map *existing;
e6dcd2dc
CM
6974
6975 ret = 0;
6976
e6c4efd8
QW
6977 existing = search_extent_mapping(em_tree, start, len);
6978 /*
6979 * existing will always be non-NULL, since there must be
6980 * extent causing the -EEXIST.
6981 */
6982 if (start >= extent_map_end(existing) ||
32be3a1a 6983 start <= existing->start) {
e6c4efd8
QW
6984 /*
6985 * The existing extent map is the one nearest to
6986 * the [start, start + len) range which overlaps
6987 */
6988 err = merge_extent_mapping(em_tree, existing,
6989 em, start);
e1c4b745 6990 free_extent_map(existing);
e6c4efd8 6991 if (err) {
3b951516
CM
6992 free_extent_map(em);
6993 em = NULL;
6994 }
6995 } else {
6996 free_extent_map(em);
6997 em = existing;
e6dcd2dc 6998 err = 0;
a52d9a80 6999 }
a52d9a80 7000 }
890871be 7001 write_unlock(&em_tree->lock);
a52d9a80 7002out:
1abe9b8a 7003
4cd8587c 7004 trace_btrfs_get_extent(root, em);
1abe9b8a 7005
527afb44 7006 btrfs_free_path(path);
a52d9a80
CM
7007 if (trans) {
7008 ret = btrfs_end_transaction(trans, root);
d397712b 7009 if (!err)
a52d9a80
CM
7010 err = ret;
7011 }
a52d9a80
CM
7012 if (err) {
7013 free_extent_map(em);
a52d9a80
CM
7014 return ERR_PTR(err);
7015 }
79787eaa 7016 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7017 return em;
7018}
7019
ec29ed5b
CM
7020struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7021 size_t pg_offset, u64 start, u64 len,
7022 int create)
7023{
7024 struct extent_map *em;
7025 struct extent_map *hole_em = NULL;
7026 u64 range_start = start;
7027 u64 end;
7028 u64 found;
7029 u64 found_end;
7030 int err = 0;
7031
7032 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7033 if (IS_ERR(em))
7034 return em;
7035 if (em) {
7036 /*
f9e4fb53
LB
7037 * if our em maps to
7038 * - a hole or
7039 * - a pre-alloc extent,
7040 * there might actually be delalloc bytes behind it.
ec29ed5b 7041 */
f9e4fb53
LB
7042 if (em->block_start != EXTENT_MAP_HOLE &&
7043 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7044 return em;
7045 else
7046 hole_em = em;
7047 }
7048
7049 /* check to see if we've wrapped (len == -1 or similar) */
7050 end = start + len;
7051 if (end < start)
7052 end = (u64)-1;
7053 else
7054 end -= 1;
7055
7056 em = NULL;
7057
7058 /* ok, we didn't find anything, lets look for delalloc */
7059 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7060 end, len, EXTENT_DELALLOC, 1);
7061 found_end = range_start + found;
7062 if (found_end < range_start)
7063 found_end = (u64)-1;
7064
7065 /*
7066 * we didn't find anything useful, return
7067 * the original results from get_extent()
7068 */
7069 if (range_start > end || found_end <= start) {
7070 em = hole_em;
7071 hole_em = NULL;
7072 goto out;
7073 }
7074
7075 /* adjust the range_start to make sure it doesn't
7076 * go backwards from the start they passed in
7077 */
67871254 7078 range_start = max(start, range_start);
ec29ed5b
CM
7079 found = found_end - range_start;
7080
7081 if (found > 0) {
7082 u64 hole_start = start;
7083 u64 hole_len = len;
7084
172ddd60 7085 em = alloc_extent_map();
ec29ed5b
CM
7086 if (!em) {
7087 err = -ENOMEM;
7088 goto out;
7089 }
7090 /*
7091 * when btrfs_get_extent can't find anything it
7092 * returns one huge hole
7093 *
7094 * make sure what it found really fits our range, and
7095 * adjust to make sure it is based on the start from
7096 * the caller
7097 */
7098 if (hole_em) {
7099 u64 calc_end = extent_map_end(hole_em);
7100
7101 if (calc_end <= start || (hole_em->start > end)) {
7102 free_extent_map(hole_em);
7103 hole_em = NULL;
7104 } else {
7105 hole_start = max(hole_em->start, start);
7106 hole_len = calc_end - hole_start;
7107 }
7108 }
7109 em->bdev = NULL;
7110 if (hole_em && range_start > hole_start) {
7111 /* our hole starts before our delalloc, so we
7112 * have to return just the parts of the hole
7113 * that go until the delalloc starts
7114 */
7115 em->len = min(hole_len,
7116 range_start - hole_start);
7117 em->start = hole_start;
7118 em->orig_start = hole_start;
7119 /*
7120 * don't adjust block start at all,
7121 * it is fixed at EXTENT_MAP_HOLE
7122 */
7123 em->block_start = hole_em->block_start;
7124 em->block_len = hole_len;
f9e4fb53
LB
7125 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7126 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7127 } else {
7128 em->start = range_start;
7129 em->len = found;
7130 em->orig_start = range_start;
7131 em->block_start = EXTENT_MAP_DELALLOC;
7132 em->block_len = found;
7133 }
7134 } else if (hole_em) {
7135 return hole_em;
7136 }
7137out:
7138
7139 free_extent_map(hole_em);
7140 if (err) {
7141 free_extent_map(em);
7142 return ERR_PTR(err);
7143 }
7144 return em;
7145}
7146
5f9a8a51
FM
7147static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7148 const u64 start,
7149 const u64 len,
7150 const u64 orig_start,
7151 const u64 block_start,
7152 const u64 block_len,
7153 const u64 orig_block_len,
7154 const u64 ram_bytes,
7155 const int type)
7156{
7157 struct extent_map *em = NULL;
7158 int ret;
7159
7160 down_read(&BTRFS_I(inode)->dio_sem);
7161 if (type != BTRFS_ORDERED_NOCOW) {
7162 em = create_pinned_em(inode, start, len, orig_start,
7163 block_start, block_len, orig_block_len,
7164 ram_bytes, type);
7165 if (IS_ERR(em))
7166 goto out;
7167 }
7168 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7169 len, block_len, type);
7170 if (ret) {
7171 if (em) {
7172 free_extent_map(em);
7173 btrfs_drop_extent_cache(inode, start,
7174 start + len - 1, 0);
7175 }
7176 em = ERR_PTR(ret);
7177 }
7178 out:
7179 up_read(&BTRFS_I(inode)->dio_sem);
7180
7181 return em;
7182}
7183
4b46fce2
JB
7184static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7185 u64 start, u64 len)
7186{
7187 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7188 struct extent_map *em;
4b46fce2
JB
7189 struct btrfs_key ins;
7190 u64 alloc_hint;
7191 int ret;
4b46fce2 7192
4b46fce2 7193 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7194 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7195 alloc_hint, &ins, 1, 1);
00361589
JB
7196 if (ret)
7197 return ERR_PTR(ret);
4b46fce2 7198
5f9a8a51
FM
7199 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7200 ins.objectid, ins.offset, ins.offset,
7201 ins.offset, 0);
9cfa3e34 7202 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7203 if (IS_ERR(em))
e570fd27 7204 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7205
4b46fce2
JB
7206 return em;
7207}
7208
46bfbb5c
CM
7209/*
7210 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7211 * block must be cow'd
7212 */
00361589 7213noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7214 u64 *orig_start, u64 *orig_block_len,
7215 u64 *ram_bytes)
46bfbb5c 7216{
00361589 7217 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7218 struct btrfs_path *path;
7219 int ret;
7220 struct extent_buffer *leaf;
7221 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7223 struct btrfs_file_extent_item *fi;
7224 struct btrfs_key key;
7225 u64 disk_bytenr;
7226 u64 backref_offset;
7227 u64 extent_end;
7228 u64 num_bytes;
7229 int slot;
7230 int found_type;
7ee9e440 7231 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7232
46bfbb5c
CM
7233 path = btrfs_alloc_path();
7234 if (!path)
7235 return -ENOMEM;
7236
00361589 7237 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7238 offset, 0);
7239 if (ret < 0)
7240 goto out;
7241
7242 slot = path->slots[0];
7243 if (ret == 1) {
7244 if (slot == 0) {
7245 /* can't find the item, must cow */
7246 ret = 0;
7247 goto out;
7248 }
7249 slot--;
7250 }
7251 ret = 0;
7252 leaf = path->nodes[0];
7253 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7254 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7255 key.type != BTRFS_EXTENT_DATA_KEY) {
7256 /* not our file or wrong item type, must cow */
7257 goto out;
7258 }
7259
7260 if (key.offset > offset) {
7261 /* Wrong offset, must cow */
7262 goto out;
7263 }
7264
7265 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7266 found_type = btrfs_file_extent_type(leaf, fi);
7267 if (found_type != BTRFS_FILE_EXTENT_REG &&
7268 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7269 /* not a regular extent, must cow */
7270 goto out;
7271 }
7ee9e440
JB
7272
7273 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7274 goto out;
7275
e77751aa
MX
7276 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7277 if (extent_end <= offset)
7278 goto out;
7279
46bfbb5c 7280 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7281 if (disk_bytenr == 0)
7282 goto out;
7283
7284 if (btrfs_file_extent_compression(leaf, fi) ||
7285 btrfs_file_extent_encryption(leaf, fi) ||
7286 btrfs_file_extent_other_encoding(leaf, fi))
7287 goto out;
7288
46bfbb5c
CM
7289 backref_offset = btrfs_file_extent_offset(leaf, fi);
7290
7ee9e440
JB
7291 if (orig_start) {
7292 *orig_start = key.offset - backref_offset;
7293 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7294 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7295 }
eb384b55 7296
46bfbb5c
CM
7297 if (btrfs_extent_readonly(root, disk_bytenr))
7298 goto out;
7b2b7085
MX
7299
7300 num_bytes = min(offset + *len, extent_end) - offset;
7301 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7302 u64 range_end;
7303
7304 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7305 ret = test_range_bit(io_tree, offset, range_end,
7306 EXTENT_DELALLOC, 0, NULL);
7307 if (ret) {
7308 ret = -EAGAIN;
7309 goto out;
7310 }
7311 }
7312
1bda19eb 7313 btrfs_release_path(path);
46bfbb5c
CM
7314
7315 /*
7316 * look for other files referencing this extent, if we
7317 * find any we must cow
7318 */
00361589
JB
7319 trans = btrfs_join_transaction(root);
7320 if (IS_ERR(trans)) {
7321 ret = 0;
46bfbb5c 7322 goto out;
00361589
JB
7323 }
7324
7325 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7326 key.offset - backref_offset, disk_bytenr);
7327 btrfs_end_transaction(trans, root);
7328 if (ret) {
7329 ret = 0;
7330 goto out;
7331 }
46bfbb5c
CM
7332
7333 /*
7334 * adjust disk_bytenr and num_bytes to cover just the bytes
7335 * in this extent we are about to write. If there
7336 * are any csums in that range we have to cow in order
7337 * to keep the csums correct
7338 */
7339 disk_bytenr += backref_offset;
7340 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7341 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7342 goto out;
7343 /*
7344 * all of the above have passed, it is safe to overwrite this extent
7345 * without cow
7346 */
eb384b55 7347 *len = num_bytes;
46bfbb5c
CM
7348 ret = 1;
7349out:
7350 btrfs_free_path(path);
7351 return ret;
7352}
7353
fc4adbff
AG
7354bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7355{
7356 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7357 int found = false;
7358 void **pagep = NULL;
7359 struct page *page = NULL;
7360 int start_idx;
7361 int end_idx;
7362
09cbfeaf 7363 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7364
7365 /*
7366 * end is the last byte in the last page. end == start is legal
7367 */
09cbfeaf 7368 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7369
7370 rcu_read_lock();
7371
7372 /* Most of the code in this while loop is lifted from
7373 * find_get_page. It's been modified to begin searching from a
7374 * page and return just the first page found in that range. If the
7375 * found idx is less than or equal to the end idx then we know that
7376 * a page exists. If no pages are found or if those pages are
7377 * outside of the range then we're fine (yay!) */
7378 while (page == NULL &&
7379 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7380 page = radix_tree_deref_slot(pagep);
7381 if (unlikely(!page))
7382 break;
7383
7384 if (radix_tree_exception(page)) {
809f9016
FM
7385 if (radix_tree_deref_retry(page)) {
7386 page = NULL;
fc4adbff 7387 continue;
809f9016 7388 }
fc4adbff
AG
7389 /*
7390 * Otherwise, shmem/tmpfs must be storing a swap entry
7391 * here as an exceptional entry: so return it without
7392 * attempting to raise page count.
7393 */
6fdef6d4 7394 page = NULL;
fc4adbff
AG
7395 break; /* TODO: Is this relevant for this use case? */
7396 }
7397
91405151
FM
7398 if (!page_cache_get_speculative(page)) {
7399 page = NULL;
fc4adbff 7400 continue;
91405151 7401 }
fc4adbff
AG
7402
7403 /*
7404 * Has the page moved?
7405 * This is part of the lockless pagecache protocol. See
7406 * include/linux/pagemap.h for details.
7407 */
7408 if (unlikely(page != *pagep)) {
09cbfeaf 7409 put_page(page);
fc4adbff
AG
7410 page = NULL;
7411 }
7412 }
7413
7414 if (page) {
7415 if (page->index <= end_idx)
7416 found = true;
09cbfeaf 7417 put_page(page);
fc4adbff
AG
7418 }
7419
7420 rcu_read_unlock();
7421 return found;
7422}
7423
eb838e73
JB
7424static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7425 struct extent_state **cached_state, int writing)
7426{
7427 struct btrfs_ordered_extent *ordered;
7428 int ret = 0;
7429
7430 while (1) {
7431 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7432 cached_state);
eb838e73
JB
7433 /*
7434 * We're concerned with the entire range that we're going to be
01327610 7435 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7436 * extents in this range.
7437 */
7438 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7439 lockend - lockstart + 1);
7440
7441 /*
7442 * We need to make sure there are no buffered pages in this
7443 * range either, we could have raced between the invalidate in
7444 * generic_file_direct_write and locking the extent. The
7445 * invalidate needs to happen so that reads after a write do not
7446 * get stale data.
7447 */
fc4adbff
AG
7448 if (!ordered &&
7449 (!writing ||
7450 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7451 break;
7452
7453 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7454 cached_state, GFP_NOFS);
7455
7456 if (ordered) {
ade77029
FM
7457 /*
7458 * If we are doing a DIO read and the ordered extent we
7459 * found is for a buffered write, we can not wait for it
7460 * to complete and retry, because if we do so we can
7461 * deadlock with concurrent buffered writes on page
7462 * locks. This happens only if our DIO read covers more
7463 * than one extent map, if at this point has already
7464 * created an ordered extent for a previous extent map
7465 * and locked its range in the inode's io tree, and a
7466 * concurrent write against that previous extent map's
7467 * range and this range started (we unlock the ranges
7468 * in the io tree only when the bios complete and
7469 * buffered writes always lock pages before attempting
7470 * to lock range in the io tree).
7471 */
7472 if (writing ||
7473 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7474 btrfs_start_ordered_extent(inode, ordered, 1);
7475 else
7476 ret = -ENOTBLK;
eb838e73
JB
7477 btrfs_put_ordered_extent(ordered);
7478 } else {
eb838e73 7479 /*
b850ae14
FM
7480 * We could trigger writeback for this range (and wait
7481 * for it to complete) and then invalidate the pages for
7482 * this range (through invalidate_inode_pages2_range()),
7483 * but that can lead us to a deadlock with a concurrent
7484 * call to readpages() (a buffered read or a defrag call
7485 * triggered a readahead) on a page lock due to an
7486 * ordered dio extent we created before but did not have
7487 * yet a corresponding bio submitted (whence it can not
7488 * complete), which makes readpages() wait for that
7489 * ordered extent to complete while holding a lock on
7490 * that page.
eb838e73 7491 */
b850ae14 7492 ret = -ENOTBLK;
eb838e73
JB
7493 }
7494
ade77029
FM
7495 if (ret)
7496 break;
7497
eb838e73
JB
7498 cond_resched();
7499 }
7500
7501 return ret;
7502}
7503
69ffb543
JB
7504static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7505 u64 len, u64 orig_start,
7506 u64 block_start, u64 block_len,
cc95bef6
JB
7507 u64 orig_block_len, u64 ram_bytes,
7508 int type)
69ffb543
JB
7509{
7510 struct extent_map_tree *em_tree;
7511 struct extent_map *em;
7512 struct btrfs_root *root = BTRFS_I(inode)->root;
7513 int ret;
7514
7515 em_tree = &BTRFS_I(inode)->extent_tree;
7516 em = alloc_extent_map();
7517 if (!em)
7518 return ERR_PTR(-ENOMEM);
7519
7520 em->start = start;
7521 em->orig_start = orig_start;
2ab28f32
JB
7522 em->mod_start = start;
7523 em->mod_len = len;
69ffb543
JB
7524 em->len = len;
7525 em->block_len = block_len;
7526 em->block_start = block_start;
7527 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7528 em->orig_block_len = orig_block_len;
cc95bef6 7529 em->ram_bytes = ram_bytes;
70c8a91c 7530 em->generation = -1;
69ffb543
JB
7531 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7532 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7533 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7534
7535 do {
7536 btrfs_drop_extent_cache(inode, em->start,
7537 em->start + em->len - 1, 0);
7538 write_lock(&em_tree->lock);
09a2a8f9 7539 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7540 write_unlock(&em_tree->lock);
7541 } while (ret == -EEXIST);
7542
7543 if (ret) {
7544 free_extent_map(em);
7545 return ERR_PTR(ret);
7546 }
7547
7548 return em;
7549}
7550
9c9464cc
FM
7551static void adjust_dio_outstanding_extents(struct inode *inode,
7552 struct btrfs_dio_data *dio_data,
7553 const u64 len)
7554{
7555 unsigned num_extents;
7556
7557 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7558 BTRFS_MAX_EXTENT_SIZE);
7559 /*
7560 * If we have an outstanding_extents count still set then we're
7561 * within our reservation, otherwise we need to adjust our inode
7562 * counter appropriately.
7563 */
7564 if (dio_data->outstanding_extents) {
7565 dio_data->outstanding_extents -= num_extents;
7566 } else {
7567 spin_lock(&BTRFS_I(inode)->lock);
7568 BTRFS_I(inode)->outstanding_extents += num_extents;
7569 spin_unlock(&BTRFS_I(inode)->lock);
7570 }
7571}
7572
4b46fce2
JB
7573static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7574 struct buffer_head *bh_result, int create)
7575{
7576 struct extent_map *em;
7577 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7578 struct extent_state *cached_state = NULL;
50745b0a 7579 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7580 u64 start = iblock << inode->i_blkbits;
eb838e73 7581 u64 lockstart, lockend;
4b46fce2 7582 u64 len = bh_result->b_size;
eb838e73 7583 int unlock_bits = EXTENT_LOCKED;
0934856d 7584 int ret = 0;
eb838e73 7585
172a5049 7586 if (create)
3266789f 7587 unlock_bits |= EXTENT_DIRTY;
172a5049 7588 else
c329861d 7589 len = min_t(u64, len, root->sectorsize);
eb838e73 7590
c329861d
JB
7591 lockstart = start;
7592 lockend = start + len - 1;
7593
e1cbbfa5
JB
7594 if (current->journal_info) {
7595 /*
7596 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7597 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7598 * confused.
7599 */
50745b0a 7600 dio_data = current->journal_info;
e1cbbfa5
JB
7601 current->journal_info = NULL;
7602 }
7603
eb838e73
JB
7604 /*
7605 * If this errors out it's because we couldn't invalidate pagecache for
7606 * this range and we need to fallback to buffered.
7607 */
9c9464cc
FM
7608 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7609 create)) {
7610 ret = -ENOTBLK;
7611 goto err;
7612 }
eb838e73 7613
4b46fce2 7614 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7615 if (IS_ERR(em)) {
7616 ret = PTR_ERR(em);
7617 goto unlock_err;
7618 }
4b46fce2
JB
7619
7620 /*
7621 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7622 * io. INLINE is special, and we could probably kludge it in here, but
7623 * it's still buffered so for safety lets just fall back to the generic
7624 * buffered path.
7625 *
7626 * For COMPRESSED we _have_ to read the entire extent in so we can
7627 * decompress it, so there will be buffering required no matter what we
7628 * do, so go ahead and fallback to buffered.
7629 *
01327610 7630 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7631 * to buffered IO. Don't blame me, this is the price we pay for using
7632 * the generic code.
7633 */
7634 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7635 em->block_start == EXTENT_MAP_INLINE) {
7636 free_extent_map(em);
eb838e73
JB
7637 ret = -ENOTBLK;
7638 goto unlock_err;
4b46fce2
JB
7639 }
7640
7641 /* Just a good old fashioned hole, return */
7642 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7643 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7644 free_extent_map(em);
eb838e73 7645 goto unlock_err;
4b46fce2
JB
7646 }
7647
7648 /*
7649 * We don't allocate a new extent in the following cases
7650 *
7651 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7652 * existing extent.
7653 * 2) The extent is marked as PREALLOC. We're good to go here and can
7654 * just use the extent.
7655 *
7656 */
46bfbb5c 7657 if (!create) {
eb838e73
JB
7658 len = min(len, em->len - (start - em->start));
7659 lockstart = start + len;
7660 goto unlock;
46bfbb5c 7661 }
4b46fce2
JB
7662
7663 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7664 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7665 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7666 int type;
eb384b55 7667 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7668
7669 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7670 type = BTRFS_ORDERED_PREALLOC;
7671 else
7672 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7673 len = min(len, em->len - (start - em->start));
4b46fce2 7674 block_start = em->block_start + (start - em->start);
46bfbb5c 7675
00361589 7676 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7677 &orig_block_len, &ram_bytes) == 1 &&
7678 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7679 struct extent_map *em2;
0b901916 7680
5f9a8a51
FM
7681 em2 = btrfs_create_dio_extent(inode, start, len,
7682 orig_start, block_start,
7683 len, orig_block_len,
7684 ram_bytes, type);
f78c436c 7685 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7686 if (type == BTRFS_ORDERED_PREALLOC) {
7687 free_extent_map(em);
5f9a8a51 7688 em = em2;
69ffb543 7689 }
5f9a8a51
FM
7690 if (em2 && IS_ERR(em2)) {
7691 ret = PTR_ERR(em2);
eb838e73 7692 goto unlock_err;
46bfbb5c
CM
7693 }
7694 goto unlock;
4b46fce2 7695 }
4b46fce2 7696 }
00361589 7697
46bfbb5c
CM
7698 /*
7699 * this will cow the extent, reset the len in case we changed
7700 * it above
7701 */
7702 len = bh_result->b_size;
70c8a91c
JB
7703 free_extent_map(em);
7704 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7705 if (IS_ERR(em)) {
7706 ret = PTR_ERR(em);
7707 goto unlock_err;
7708 }
46bfbb5c
CM
7709 len = min(len, em->len - (start - em->start));
7710unlock:
4b46fce2
JB
7711 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7712 inode->i_blkbits;
46bfbb5c 7713 bh_result->b_size = len;
4b46fce2
JB
7714 bh_result->b_bdev = em->bdev;
7715 set_buffer_mapped(bh_result);
c3473e83
JB
7716 if (create) {
7717 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7718 set_buffer_new(bh_result);
7719
7720 /*
7721 * Need to update the i_size under the extent lock so buffered
7722 * readers will get the updated i_size when we unlock.
7723 */
7724 if (start + len > i_size_read(inode))
7725 i_size_write(inode, start + len);
0934856d 7726
9c9464cc 7727 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7728 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7729 WARN_ON(dio_data->reserve < len);
7730 dio_data->reserve -= len;
f28a4928 7731 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7732 current->journal_info = dio_data;
c3473e83 7733 }
4b46fce2 7734
eb838e73
JB
7735 /*
7736 * In the case of write we need to clear and unlock the entire range,
7737 * in the case of read we need to unlock only the end area that we
7738 * aren't using if there is any left over space.
7739 */
24c03fa5 7740 if (lockstart < lockend) {
0934856d
MX
7741 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7742 lockend, unlock_bits, 1, 0,
7743 &cached_state, GFP_NOFS);
24c03fa5 7744 } else {
eb838e73 7745 free_extent_state(cached_state);
24c03fa5 7746 }
eb838e73 7747
4b46fce2
JB
7748 free_extent_map(em);
7749
7750 return 0;
eb838e73
JB
7751
7752unlock_err:
eb838e73
JB
7753 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7754 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7755err:
50745b0a 7756 if (dio_data)
7757 current->journal_info = dio_data;
9c9464cc
FM
7758 /*
7759 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7760 * write less data then expected, so that we don't underflow our inode's
7761 * outstanding extents counter.
7762 */
7763 if (create && dio_data)
7764 adjust_dio_outstanding_extents(inode, dio_data, len);
7765
eb838e73 7766 return ret;
4b46fce2
JB
7767}
7768
8b110e39
MX
7769static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7770 int rw, int mirror_num)
7771{
7772 struct btrfs_root *root = BTRFS_I(inode)->root;
7773 int ret;
7774
7775 BUG_ON(rw & REQ_WRITE);
7776
7777 bio_get(bio);
7778
7779 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7780 BTRFS_WQ_ENDIO_DIO_REPAIR);
7781 if (ret)
7782 goto err;
7783
7784 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7785err:
7786 bio_put(bio);
7787 return ret;
7788}
7789
7790static int btrfs_check_dio_repairable(struct inode *inode,
7791 struct bio *failed_bio,
7792 struct io_failure_record *failrec,
7793 int failed_mirror)
7794{
7795 int num_copies;
7796
7797 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7798 failrec->logical, failrec->len);
7799 if (num_copies == 1) {
7800 /*
7801 * we only have a single copy of the data, so don't bother with
7802 * all the retry and error correction code that follows. no
7803 * matter what the error is, it is very likely to persist.
7804 */
7805 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7806 num_copies, failrec->this_mirror, failed_mirror);
7807 return 0;
7808 }
7809
7810 failrec->failed_mirror = failed_mirror;
7811 failrec->this_mirror++;
7812 if (failrec->this_mirror == failed_mirror)
7813 failrec->this_mirror++;
7814
7815 if (failrec->this_mirror > num_copies) {
7816 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7817 num_copies, failrec->this_mirror, failed_mirror);
7818 return 0;
7819 }
7820
7821 return 1;
7822}
7823
7824static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7825 struct page *page, unsigned int pgoff,
7826 u64 start, u64 end, int failed_mirror,
7827 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7828{
7829 struct io_failure_record *failrec;
7830 struct bio *bio;
7831 int isector;
7832 int read_mode;
7833 int ret;
7834
7835 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7836
7837 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7838 if (ret)
7839 return ret;
7840
7841 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7842 failed_mirror);
7843 if (!ret) {
7844 free_io_failure(inode, failrec);
7845 return -EIO;
7846 }
7847
2dabb324
CR
7848 if ((failed_bio->bi_vcnt > 1)
7849 || (failed_bio->bi_io_vec->bv_len
7850 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7851 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7852 else
7853 read_mode = READ_SYNC;
7854
7855 isector = start - btrfs_io_bio(failed_bio)->logical;
7856 isector >>= inode->i_sb->s_blocksize_bits;
7857 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7858 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7859 if (!bio) {
7860 free_io_failure(inode, failrec);
7861 return -EIO;
7862 }
7863
7864 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7865 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7866 read_mode, failrec->this_mirror, failrec->in_validation);
7867
7868 ret = submit_dio_repair_bio(inode, bio, read_mode,
7869 failrec->this_mirror);
7870 if (ret) {
7871 free_io_failure(inode, failrec);
7872 bio_put(bio);
7873 }
7874
7875 return ret;
7876}
7877
7878struct btrfs_retry_complete {
7879 struct completion done;
7880 struct inode *inode;
7881 u64 start;
7882 int uptodate;
7883};
7884
4246a0b6 7885static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7886{
7887 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7888 struct inode *inode;
8b110e39
MX
7889 struct bio_vec *bvec;
7890 int i;
7891
4246a0b6 7892 if (bio->bi_error)
8b110e39
MX
7893 goto end;
7894
2dabb324
CR
7895 ASSERT(bio->bi_vcnt == 1);
7896 inode = bio->bi_io_vec->bv_page->mapping->host;
7897 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7898
8b110e39
MX
7899 done->uptodate = 1;
7900 bio_for_each_segment_all(bvec, bio, i)
7901 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7902end:
7903 complete(&done->done);
7904 bio_put(bio);
7905}
7906
7907static int __btrfs_correct_data_nocsum(struct inode *inode,
7908 struct btrfs_io_bio *io_bio)
4b46fce2 7909{
2dabb324 7910 struct btrfs_fs_info *fs_info;
2c30c71b 7911 struct bio_vec *bvec;
8b110e39 7912 struct btrfs_retry_complete done;
4b46fce2 7913 u64 start;
2dabb324
CR
7914 unsigned int pgoff;
7915 u32 sectorsize;
7916 int nr_sectors;
2c30c71b 7917 int i;
c1dc0896 7918 int ret;
4b46fce2 7919
2dabb324
CR
7920 fs_info = BTRFS_I(inode)->root->fs_info;
7921 sectorsize = BTRFS_I(inode)->root->sectorsize;
7922
8b110e39
MX
7923 start = io_bio->logical;
7924 done.inode = inode;
7925
7926 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7927 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7928 pgoff = bvec->bv_offset;
7929
7930next_block_or_try_again:
8b110e39
MX
7931 done.uptodate = 0;
7932 done.start = start;
7933 init_completion(&done.done);
7934
2dabb324
CR
7935 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7936 pgoff, start, start + sectorsize - 1,
7937 io_bio->mirror_num,
7938 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7939 if (ret)
7940 return ret;
7941
7942 wait_for_completion(&done.done);
7943
7944 if (!done.uptodate) {
7945 /* We might have another mirror, so try again */
2dabb324 7946 goto next_block_or_try_again;
8b110e39
MX
7947 }
7948
2dabb324
CR
7949 start += sectorsize;
7950
7951 if (nr_sectors--) {
7952 pgoff += sectorsize;
7953 goto next_block_or_try_again;
7954 }
8b110e39
MX
7955 }
7956
7957 return 0;
7958}
7959
4246a0b6 7960static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7961{
7962 struct btrfs_retry_complete *done = bio->bi_private;
7963 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7964 struct inode *inode;
8b110e39 7965 struct bio_vec *bvec;
2dabb324 7966 u64 start;
8b110e39
MX
7967 int uptodate;
7968 int ret;
7969 int i;
7970
4246a0b6 7971 if (bio->bi_error)
8b110e39
MX
7972 goto end;
7973
7974 uptodate = 1;
2dabb324
CR
7975
7976 start = done->start;
7977
7978 ASSERT(bio->bi_vcnt == 1);
7979 inode = bio->bi_io_vec->bv_page->mapping->host;
7980 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7981
8b110e39
MX
7982 bio_for_each_segment_all(bvec, bio, i) {
7983 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
7984 bvec->bv_page, bvec->bv_offset,
7985 done->start, bvec->bv_len);
8b110e39
MX
7986 if (!ret)
7987 clean_io_failure(done->inode, done->start,
2dabb324 7988 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
7989 else
7990 uptodate = 0;
7991 }
7992
7993 done->uptodate = uptodate;
7994end:
7995 complete(&done->done);
7996 bio_put(bio);
7997}
7998
7999static int __btrfs_subio_endio_read(struct inode *inode,
8000 struct btrfs_io_bio *io_bio, int err)
8001{
2dabb324 8002 struct btrfs_fs_info *fs_info;
8b110e39
MX
8003 struct bio_vec *bvec;
8004 struct btrfs_retry_complete done;
8005 u64 start;
8006 u64 offset = 0;
2dabb324
CR
8007 u32 sectorsize;
8008 int nr_sectors;
8009 unsigned int pgoff;
8010 int csum_pos;
8b110e39
MX
8011 int i;
8012 int ret;
dc380aea 8013
2dabb324
CR
8014 fs_info = BTRFS_I(inode)->root->fs_info;
8015 sectorsize = BTRFS_I(inode)->root->sectorsize;
8016
8b110e39 8017 err = 0;
c1dc0896 8018 start = io_bio->logical;
8b110e39
MX
8019 done.inode = inode;
8020
c1dc0896 8021 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8022 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8023
8024 pgoff = bvec->bv_offset;
8025next_block:
8026 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8027 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8028 bvec->bv_page, pgoff, start,
8029 sectorsize);
8b110e39
MX
8030 if (likely(!ret))
8031 goto next;
8032try_again:
8033 done.uptodate = 0;
8034 done.start = start;
8035 init_completion(&done.done);
8036
2dabb324
CR
8037 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8038 pgoff, start, start + sectorsize - 1,
8039 io_bio->mirror_num,
8040 btrfs_retry_endio, &done);
8b110e39
MX
8041 if (ret) {
8042 err = ret;
8043 goto next;
8044 }
8045
8046 wait_for_completion(&done.done);
8047
8048 if (!done.uptodate) {
8049 /* We might have another mirror, so try again */
8050 goto try_again;
8051 }
8052next:
2dabb324
CR
8053 offset += sectorsize;
8054 start += sectorsize;
8055
8056 ASSERT(nr_sectors);
8057
8058 if (--nr_sectors) {
8059 pgoff += sectorsize;
8060 goto next_block;
8061 }
2c30c71b 8062 }
c1dc0896
MX
8063
8064 return err;
8065}
8066
8b110e39
MX
8067static int btrfs_subio_endio_read(struct inode *inode,
8068 struct btrfs_io_bio *io_bio, int err)
8069{
8070 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8071
8072 if (skip_csum) {
8073 if (unlikely(err))
8074 return __btrfs_correct_data_nocsum(inode, io_bio);
8075 else
8076 return 0;
8077 } else {
8078 return __btrfs_subio_endio_read(inode, io_bio, err);
8079 }
8080}
8081
4246a0b6 8082static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8083{
8084 struct btrfs_dio_private *dip = bio->bi_private;
8085 struct inode *inode = dip->inode;
8086 struct bio *dio_bio;
8087 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8088 int err = bio->bi_error;
c1dc0896 8089
8b110e39
MX
8090 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8091 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8092
4b46fce2 8093 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8094 dip->logical_offset + dip->bytes - 1);
9be3395b 8095 dio_bio = dip->dio_bio;
4b46fce2 8096
4b46fce2 8097 kfree(dip);
c0da7aa1 8098
1636d1d7 8099 dio_bio->bi_error = bio->bi_error;
4246a0b6 8100 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8101
8102 if (io_bio->end_io)
8103 io_bio->end_io(io_bio, err);
9be3395b 8104 bio_put(bio);
4b46fce2
JB
8105}
8106
14543774
FM
8107static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8108 const u64 offset,
8109 const u64 bytes,
8110 const int uptodate)
4b46fce2 8111{
4b46fce2 8112 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8113 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8114 u64 ordered_offset = offset;
8115 u64 ordered_bytes = bytes;
4b46fce2
JB
8116 int ret;
8117
163cf09c
CM
8118again:
8119 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8120 &ordered_offset,
4246a0b6 8121 ordered_bytes,
14543774 8122 uptodate);
4b46fce2 8123 if (!ret)
163cf09c 8124 goto out_test;
4b46fce2 8125
9e0af237
LB
8126 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8127 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8128 btrfs_queue_work(root->fs_info->endio_write_workers,
8129 &ordered->work);
163cf09c
CM
8130out_test:
8131 /*
8132 * our bio might span multiple ordered extents. If we haven't
8133 * completed the accounting for the whole dio, go back and try again
8134 */
14543774
FM
8135 if (ordered_offset < offset + bytes) {
8136 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8137 ordered = NULL;
163cf09c
CM
8138 goto again;
8139 }
14543774
FM
8140}
8141
8142static void btrfs_endio_direct_write(struct bio *bio)
8143{
8144 struct btrfs_dio_private *dip = bio->bi_private;
8145 struct bio *dio_bio = dip->dio_bio;
8146
8147 btrfs_endio_direct_write_update_ordered(dip->inode,
8148 dip->logical_offset,
8149 dip->bytes,
8150 !bio->bi_error);
4b46fce2 8151
4b46fce2 8152 kfree(dip);
c0da7aa1 8153
1636d1d7 8154 dio_bio->bi_error = bio->bi_error;
4246a0b6 8155 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8156 bio_put(bio);
4b46fce2
JB
8157}
8158
eaf25d93
CM
8159static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8160 struct bio *bio, int mirror_num,
8161 unsigned long bio_flags, u64 offset)
8162{
8163 int ret;
8164 struct btrfs_root *root = BTRFS_I(inode)->root;
8165 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8166 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8167 return 0;
8168}
8169
4246a0b6 8170static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8171{
8172 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8173 int err = bio->bi_error;
e65e1535 8174
8b110e39
MX
8175 if (err)
8176 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8177 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8178 btrfs_ino(dip->inode), bio->bi_rw,
8179 (unsigned long long)bio->bi_iter.bi_sector,
8180 bio->bi_iter.bi_size, err);
8181
8182 if (dip->subio_endio)
8183 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8184
8185 if (err) {
e65e1535
MX
8186 dip->errors = 1;
8187
8188 /*
8189 * before atomic variable goto zero, we must make sure
8190 * dip->errors is perceived to be set.
8191 */
4e857c58 8192 smp_mb__before_atomic();
e65e1535
MX
8193 }
8194
8195 /* if there are more bios still pending for this dio, just exit */
8196 if (!atomic_dec_and_test(&dip->pending_bios))
8197 goto out;
8198
9be3395b 8199 if (dip->errors) {
e65e1535 8200 bio_io_error(dip->orig_bio);
9be3395b 8201 } else {
4246a0b6
CH
8202 dip->dio_bio->bi_error = 0;
8203 bio_endio(dip->orig_bio);
e65e1535
MX
8204 }
8205out:
8206 bio_put(bio);
8207}
8208
8209static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8210 u64 first_sector, gfp_t gfp_flags)
8211{
da2f0f74 8212 struct bio *bio;
22365979 8213 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8214 if (bio)
8215 bio_associate_current(bio);
8216 return bio;
e65e1535
MX
8217}
8218
c1dc0896
MX
8219static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8220 struct inode *inode,
8221 struct btrfs_dio_private *dip,
8222 struct bio *bio,
8223 u64 file_offset)
8224{
8225 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8226 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8227 int ret;
8228
8229 /*
8230 * We load all the csum data we need when we submit
8231 * the first bio to reduce the csum tree search and
8232 * contention.
8233 */
8234 if (dip->logical_offset == file_offset) {
8235 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8236 file_offset);
8237 if (ret)
8238 return ret;
8239 }
8240
8241 if (bio == dip->orig_bio)
8242 return 0;
8243
8244 file_offset -= dip->logical_offset;
8245 file_offset >>= inode->i_sb->s_blocksize_bits;
8246 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8247
8248 return 0;
8249}
8250
e65e1535
MX
8251static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8252 int rw, u64 file_offset, int skip_sum,
c329861d 8253 int async_submit)
e65e1535 8254{
facc8a22 8255 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8256 int write = rw & REQ_WRITE;
8257 struct btrfs_root *root = BTRFS_I(inode)->root;
8258 int ret;
8259
b812ce28
JB
8260 if (async_submit)
8261 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8262
e65e1535 8263 bio_get(bio);
5fd02043
JB
8264
8265 if (!write) {
bfebd8b5
DS
8266 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8267 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8268 if (ret)
8269 goto err;
8270 }
e65e1535 8271
1ae39938
JB
8272 if (skip_sum)
8273 goto map;
8274
8275 if (write && async_submit) {
e65e1535
MX
8276 ret = btrfs_wq_submit_bio(root->fs_info,
8277 inode, rw, bio, 0, 0,
8278 file_offset,
8279 __btrfs_submit_bio_start_direct_io,
8280 __btrfs_submit_bio_done);
8281 goto err;
1ae39938
JB
8282 } else if (write) {
8283 /*
8284 * If we aren't doing async submit, calculate the csum of the
8285 * bio now.
8286 */
8287 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8288 if (ret)
8289 goto err;
23ea8e5a 8290 } else {
c1dc0896
MX
8291 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8292 file_offset);
c2db1073
TI
8293 if (ret)
8294 goto err;
8295 }
1ae39938
JB
8296map:
8297 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8298err:
8299 bio_put(bio);
8300 return ret;
8301}
8302
8303static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8304 int skip_sum)
8305{
8306 struct inode *inode = dip->inode;
8307 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8308 struct bio *bio;
8309 struct bio *orig_bio = dip->orig_bio;
8310 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8311 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8312 u64 file_offset = dip->logical_offset;
8313 u64 submit_len = 0;
8314 u64 map_length;
5f4dc8fc 8315 u32 blocksize = root->sectorsize;
1ae39938 8316 int async_submit = 0;
5f4dc8fc
CR
8317 int nr_sectors;
8318 int ret;
8319 int i;
e65e1535 8320
4f024f37 8321 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8322 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8323 &map_length, NULL, 0);
7a5c3c9b 8324 if (ret)
e65e1535 8325 return -EIO;
facc8a22 8326
4f024f37 8327 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8328 bio = orig_bio;
c1dc0896 8329 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8330 goto submit;
8331 }
8332
53b381b3 8333 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8334 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8335 async_submit = 0;
8336 else
8337 async_submit = 1;
8338
02f57c7a
JB
8339 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8340 if (!bio)
8341 return -ENOMEM;
7a5c3c9b 8342
02f57c7a
JB
8343 bio->bi_private = dip;
8344 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8345 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8346 atomic_inc(&dip->pending_bios);
8347
e65e1535 8348 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8349 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8350 i = 0;
8351next_block:
8352 if (unlikely(map_length < submit_len + blocksize ||
8353 bio_add_page(bio, bvec->bv_page, blocksize,
8354 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8355 /*
8356 * inc the count before we submit the bio so
8357 * we know the end IO handler won't happen before
8358 * we inc the count. Otherwise, the dip might get freed
8359 * before we're done setting it up
8360 */
8361 atomic_inc(&dip->pending_bios);
8362 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8363 file_offset, skip_sum,
c329861d 8364 async_submit);
e65e1535
MX
8365 if (ret) {
8366 bio_put(bio);
8367 atomic_dec(&dip->pending_bios);
8368 goto out_err;
8369 }
8370
e65e1535
MX
8371 start_sector += submit_len >> 9;
8372 file_offset += submit_len;
8373
8374 submit_len = 0;
e65e1535
MX
8375
8376 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8377 start_sector, GFP_NOFS);
8378 if (!bio)
8379 goto out_err;
8380 bio->bi_private = dip;
8381 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8382 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8383
4f024f37 8384 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8385 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8386 start_sector << 9,
e65e1535
MX
8387 &map_length, NULL, 0);
8388 if (ret) {
8389 bio_put(bio);
8390 goto out_err;
8391 }
5f4dc8fc
CR
8392
8393 goto next_block;
e65e1535 8394 } else {
5f4dc8fc
CR
8395 submit_len += blocksize;
8396 if (--nr_sectors) {
8397 i++;
8398 goto next_block;
8399 }
e65e1535
MX
8400 bvec++;
8401 }
8402 }
8403
02f57c7a 8404submit:
e65e1535 8405 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8406 async_submit);
e65e1535
MX
8407 if (!ret)
8408 return 0;
8409
8410 bio_put(bio);
8411out_err:
8412 dip->errors = 1;
8413 /*
8414 * before atomic variable goto zero, we must
8415 * make sure dip->errors is perceived to be set.
8416 */
4e857c58 8417 smp_mb__before_atomic();
e65e1535
MX
8418 if (atomic_dec_and_test(&dip->pending_bios))
8419 bio_io_error(dip->orig_bio);
8420
8421 /* bio_end_io() will handle error, so we needn't return it */
8422 return 0;
8423}
8424
9be3395b
CM
8425static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8426 struct inode *inode, loff_t file_offset)
4b46fce2 8427{
61de718f
FM
8428 struct btrfs_dio_private *dip = NULL;
8429 struct bio *io_bio = NULL;
23ea8e5a 8430 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8431 int skip_sum;
7b6d91da 8432 int write = rw & REQ_WRITE;
4b46fce2
JB
8433 int ret = 0;
8434
8435 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8436
9be3395b 8437 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8438 if (!io_bio) {
8439 ret = -ENOMEM;
8440 goto free_ordered;
8441 }
8442
c1dc0896 8443 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8444 if (!dip) {
8445 ret = -ENOMEM;
61de718f 8446 goto free_ordered;
4b46fce2 8447 }
4b46fce2 8448
9be3395b 8449 dip->private = dio_bio->bi_private;
4b46fce2
JB
8450 dip->inode = inode;
8451 dip->logical_offset = file_offset;
4f024f37
KO
8452 dip->bytes = dio_bio->bi_iter.bi_size;
8453 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8454 io_bio->bi_private = dip;
9be3395b
CM
8455 dip->orig_bio = io_bio;
8456 dip->dio_bio = dio_bio;
e65e1535 8457 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8458 btrfs_bio = btrfs_io_bio(io_bio);
8459 btrfs_bio->logical = file_offset;
4b46fce2 8460
c1dc0896 8461 if (write) {
9be3395b 8462 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8463 } else {
9be3395b 8464 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8465 dip->subio_endio = btrfs_subio_endio_read;
8466 }
4b46fce2 8467
f28a4928
FM
8468 /*
8469 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8470 * even if we fail to submit a bio, because in such case we do the
8471 * corresponding error handling below and it must not be done a second
8472 * time by btrfs_direct_IO().
8473 */
8474 if (write) {
8475 struct btrfs_dio_data *dio_data = current->journal_info;
8476
8477 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8478 dip->bytes;
8479 dio_data->unsubmitted_oe_range_start =
8480 dio_data->unsubmitted_oe_range_end;
8481 }
8482
e65e1535
MX
8483 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8484 if (!ret)
eaf25d93 8485 return;
9be3395b 8486
23ea8e5a
MX
8487 if (btrfs_bio->end_io)
8488 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8489
4b46fce2
JB
8490free_ordered:
8491 /*
61de718f
FM
8492 * If we arrived here it means either we failed to submit the dip
8493 * or we either failed to clone the dio_bio or failed to allocate the
8494 * dip. If we cloned the dio_bio and allocated the dip, we can just
8495 * call bio_endio against our io_bio so that we get proper resource
8496 * cleanup if we fail to submit the dip, otherwise, we must do the
8497 * same as btrfs_endio_direct_[write|read] because we can't call these
8498 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8499 */
61de718f 8500 if (io_bio && dip) {
4246a0b6
CH
8501 io_bio->bi_error = -EIO;
8502 bio_endio(io_bio);
61de718f
FM
8503 /*
8504 * The end io callbacks free our dip, do the final put on io_bio
8505 * and all the cleanup and final put for dio_bio (through
8506 * dio_end_io()).
8507 */
8508 dip = NULL;
8509 io_bio = NULL;
8510 } else {
14543774
FM
8511 if (write)
8512 btrfs_endio_direct_write_update_ordered(inode,
8513 file_offset,
8514 dio_bio->bi_iter.bi_size,
8515 0);
8516 else
61de718f
FM
8517 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8518 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8519
4246a0b6 8520 dio_bio->bi_error = -EIO;
61de718f
FM
8521 /*
8522 * Releases and cleans up our dio_bio, no need to bio_put()
8523 * nor bio_endio()/bio_io_error() against dio_bio.
8524 */
8525 dio_end_io(dio_bio, ret);
4b46fce2 8526 }
61de718f
FM
8527 if (io_bio)
8528 bio_put(io_bio);
8529 kfree(dip);
4b46fce2
JB
8530}
8531
6f673763 8532static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8533 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8534{
8535 int seg;
a1b75f7d 8536 int i;
5a5f79b5
CM
8537 unsigned blocksize_mask = root->sectorsize - 1;
8538 ssize_t retval = -EINVAL;
5a5f79b5
CM
8539
8540 if (offset & blocksize_mask)
8541 goto out;
8542
28060d5d
AV
8543 if (iov_iter_alignment(iter) & blocksize_mask)
8544 goto out;
a1b75f7d 8545
28060d5d 8546 /* If this is a write we don't need to check anymore */
6f673763 8547 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8548 return 0;
8549 /*
8550 * Check to make sure we don't have duplicate iov_base's in this
8551 * iovec, if so return EINVAL, otherwise we'll get csum errors
8552 * when reading back.
8553 */
8554 for (seg = 0; seg < iter->nr_segs; seg++) {
8555 for (i = seg + 1; i < iter->nr_segs; i++) {
8556 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8557 goto out;
8558 }
5a5f79b5
CM
8559 }
8560 retval = 0;
8561out:
8562 return retval;
8563}
eb838e73 8564
22c6186e
OS
8565static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8566 loff_t offset)
16432985 8567{
4b46fce2
JB
8568 struct file *file = iocb->ki_filp;
8569 struct inode *inode = file->f_mapping->host;
50745b0a 8570 struct btrfs_root *root = BTRFS_I(inode)->root;
8571 struct btrfs_dio_data dio_data = { 0 };
0934856d 8572 size_t count = 0;
2e60a51e 8573 int flags = 0;
38851cc1
MX
8574 bool wakeup = true;
8575 bool relock = false;
0934856d 8576 ssize_t ret;
4b46fce2 8577
6f673763 8578 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8579 return 0;
3f7c579c 8580
fe0f07d0 8581 inode_dio_begin(inode);
4e857c58 8582 smp_mb__after_atomic();
38851cc1 8583
0e267c44 8584 /*
41bd9ca4
MX
8585 * The generic stuff only does filemap_write_and_wait_range, which
8586 * isn't enough if we've written compressed pages to this area, so
8587 * we need to flush the dirty pages again to make absolutely sure
8588 * that any outstanding dirty pages are on disk.
0e267c44 8589 */
a6cbcd4a 8590 count = iov_iter_count(iter);
41bd9ca4
MX
8591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8592 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8593 filemap_fdatawrite_range(inode->i_mapping, offset,
8594 offset + count - 1);
0e267c44 8595
6f673763 8596 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8597 /*
8598 * If the write DIO is beyond the EOF, we need update
8599 * the isize, but it is protected by i_mutex. So we can
8600 * not unlock the i_mutex at this case.
8601 */
8602 if (offset + count <= inode->i_size) {
5955102c 8603 inode_unlock(inode);
38851cc1
MX
8604 relock = true;
8605 }
7cf5b976 8606 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8607 if (ret)
38851cc1 8608 goto out;
50745b0a 8609 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8610 BTRFS_MAX_EXTENT_SIZE - 1,
8611 BTRFS_MAX_EXTENT_SIZE);
8612
8613 /*
8614 * We need to know how many extents we reserved so that we can
8615 * do the accounting properly if we go over the number we
8616 * originally calculated. Abuse current->journal_info for this.
8617 */
50745b0a 8618 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8619 dio_data.unsubmitted_oe_range_start = (u64)offset;
8620 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8621 current->journal_info = &dio_data;
ee39b432
DS
8622 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8623 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8624 inode_dio_end(inode);
38851cc1
MX
8625 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8626 wakeup = false;
0934856d
MX
8627 }
8628
17f8c842
OS
8629 ret = __blockdev_direct_IO(iocb, inode,
8630 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8631 iter, offset, btrfs_get_blocks_direct, NULL,
8632 btrfs_submit_direct, flags);
6f673763 8633 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8634 current->journal_info = NULL;
ddba1bfc 8635 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8636 if (dio_data.reserve)
7cf5b976
QW
8637 btrfs_delalloc_release_space(inode, offset,
8638 dio_data.reserve);
f28a4928
FM
8639 /*
8640 * On error we might have left some ordered extents
8641 * without submitting corresponding bios for them, so
8642 * cleanup them up to avoid other tasks getting them
8643 * and waiting for them to complete forever.
8644 */
8645 if (dio_data.unsubmitted_oe_range_start <
8646 dio_data.unsubmitted_oe_range_end)
8647 btrfs_endio_direct_write_update_ordered(inode,
8648 dio_data.unsubmitted_oe_range_start,
8649 dio_data.unsubmitted_oe_range_end -
8650 dio_data.unsubmitted_oe_range_start,
8651 0);
ddba1bfc 8652 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8653 btrfs_delalloc_release_space(inode, offset,
8654 count - (size_t)ret);
0934856d 8655 }
38851cc1 8656out:
2e60a51e 8657 if (wakeup)
fe0f07d0 8658 inode_dio_end(inode);
38851cc1 8659 if (relock)
5955102c 8660 inode_lock(inode);
0934856d
MX
8661
8662 return ret;
16432985
CM
8663}
8664
05dadc09
TI
8665#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8666
1506fcc8
YS
8667static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8668 __u64 start, __u64 len)
8669{
05dadc09
TI
8670 int ret;
8671
8672 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8673 if (ret)
8674 return ret;
8675
ec29ed5b 8676 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8677}
8678
a52d9a80 8679int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8680{
d1310b2e
CM
8681 struct extent_io_tree *tree;
8682 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8683 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8684}
1832a6d5 8685
a52d9a80 8686static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8687{
d1310b2e 8688 struct extent_io_tree *tree;
be7bd730
JB
8689 struct inode *inode = page->mapping->host;
8690 int ret;
b888db2b
CM
8691
8692 if (current->flags & PF_MEMALLOC) {
8693 redirty_page_for_writepage(wbc, page);
8694 unlock_page(page);
8695 return 0;
8696 }
be7bd730
JB
8697
8698 /*
8699 * If we are under memory pressure we will call this directly from the
8700 * VM, we need to make sure we have the inode referenced for the ordered
8701 * extent. If not just return like we didn't do anything.
8702 */
8703 if (!igrab(inode)) {
8704 redirty_page_for_writepage(wbc, page);
8705 return AOP_WRITEPAGE_ACTIVATE;
8706 }
d1310b2e 8707 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8708 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8709 btrfs_add_delayed_iput(inode);
8710 return ret;
9ebefb18
CM
8711}
8712
48a3b636
ES
8713static int btrfs_writepages(struct address_space *mapping,
8714 struct writeback_control *wbc)
b293f02e 8715{
d1310b2e 8716 struct extent_io_tree *tree;
771ed689 8717
d1310b2e 8718 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8719 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8720}
8721
3ab2fb5a
CM
8722static int
8723btrfs_readpages(struct file *file, struct address_space *mapping,
8724 struct list_head *pages, unsigned nr_pages)
8725{
d1310b2e
CM
8726 struct extent_io_tree *tree;
8727 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8728 return extent_readpages(tree, mapping, pages, nr_pages,
8729 btrfs_get_extent);
8730}
e6dcd2dc 8731static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8732{
d1310b2e
CM
8733 struct extent_io_tree *tree;
8734 struct extent_map_tree *map;
a52d9a80 8735 int ret;
8c2383c3 8736
d1310b2e
CM
8737 tree = &BTRFS_I(page->mapping->host)->io_tree;
8738 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8739 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8740 if (ret == 1) {
8741 ClearPagePrivate(page);
8742 set_page_private(page, 0);
09cbfeaf 8743 put_page(page);
39279cc3 8744 }
a52d9a80 8745 return ret;
39279cc3
CM
8746}
8747
e6dcd2dc
CM
8748static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8749{
98509cfc
CM
8750 if (PageWriteback(page) || PageDirty(page))
8751 return 0;
b335b003 8752 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8753}
8754
d47992f8
LC
8755static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8756 unsigned int length)
39279cc3 8757{
5fd02043 8758 struct inode *inode = page->mapping->host;
d1310b2e 8759 struct extent_io_tree *tree;
e6dcd2dc 8760 struct btrfs_ordered_extent *ordered;
2ac55d41 8761 struct extent_state *cached_state = NULL;
e6dcd2dc 8762 u64 page_start = page_offset(page);
09cbfeaf 8763 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8764 u64 start;
8765 u64 end;
131e404a 8766 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8767
8b62b72b
CM
8768 /*
8769 * we have the page locked, so new writeback can't start,
8770 * and the dirty bit won't be cleared while we are here.
8771 *
8772 * Wait for IO on this page so that we can safely clear
8773 * the PagePrivate2 bit and do ordered accounting
8774 */
e6dcd2dc 8775 wait_on_page_writeback(page);
8b62b72b 8776
5fd02043 8777 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8778 if (offset) {
8779 btrfs_releasepage(page, GFP_NOFS);
8780 return;
8781 }
131e404a
FDBM
8782
8783 if (!inode_evicting)
ff13db41 8784 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8785again:
8786 start = page_start;
8787 ordered = btrfs_lookup_ordered_range(inode, start,
8788 page_end - start + 1);
e6dcd2dc 8789 if (ordered) {
dbfdb6d1 8790 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8791 /*
8792 * IO on this page will never be started, so we need
8793 * to account for any ordered extents now
8794 */
131e404a 8795 if (!inode_evicting)
dbfdb6d1 8796 clear_extent_bit(tree, start, end,
131e404a
FDBM
8797 EXTENT_DIRTY | EXTENT_DELALLOC |
8798 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8799 EXTENT_DEFRAG, 1, 0, &cached_state,
8800 GFP_NOFS);
8b62b72b
CM
8801 /*
8802 * whoever cleared the private bit is responsible
8803 * for the finish_ordered_io
8804 */
77cef2ec
JB
8805 if (TestClearPagePrivate2(page)) {
8806 struct btrfs_ordered_inode_tree *tree;
8807 u64 new_len;
8808
8809 tree = &BTRFS_I(inode)->ordered_tree;
8810
8811 spin_lock_irq(&tree->lock);
8812 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8813 new_len = start - ordered->file_offset;
77cef2ec
JB
8814 if (new_len < ordered->truncated_len)
8815 ordered->truncated_len = new_len;
8816 spin_unlock_irq(&tree->lock);
8817
8818 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8819 start,
8820 end - start + 1, 1))
77cef2ec 8821 btrfs_finish_ordered_io(ordered);
8b62b72b 8822 }
e6dcd2dc 8823 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8824 if (!inode_evicting) {
8825 cached_state = NULL;
dbfdb6d1 8826 lock_extent_bits(tree, start, end,
131e404a
FDBM
8827 &cached_state);
8828 }
dbfdb6d1
CR
8829
8830 start = end + 1;
8831 if (start < page_end)
8832 goto again;
131e404a
FDBM
8833 }
8834
b9d0b389
QW
8835 /*
8836 * Qgroup reserved space handler
8837 * Page here will be either
8838 * 1) Already written to disk
8839 * In this case, its reserved space is released from data rsv map
8840 * and will be freed by delayed_ref handler finally.
8841 * So even we call qgroup_free_data(), it won't decrease reserved
8842 * space.
8843 * 2) Not written to disk
8844 * This means the reserved space should be freed here.
8845 */
09cbfeaf 8846 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8847 if (!inode_evicting) {
8848 clear_extent_bit(tree, page_start, page_end,
8849 EXTENT_LOCKED | EXTENT_DIRTY |
8850 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8851 EXTENT_DEFRAG, 1, 1,
8852 &cached_state, GFP_NOFS);
8853
8854 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8855 }
e6dcd2dc 8856
4a096752 8857 ClearPageChecked(page);
9ad6b7bc 8858 if (PagePrivate(page)) {
9ad6b7bc
CM
8859 ClearPagePrivate(page);
8860 set_page_private(page, 0);
09cbfeaf 8861 put_page(page);
9ad6b7bc 8862 }
39279cc3
CM
8863}
8864
9ebefb18
CM
8865/*
8866 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8867 * called from a page fault handler when a page is first dirtied. Hence we must
8868 * be careful to check for EOF conditions here. We set the page up correctly
8869 * for a written page which means we get ENOSPC checking when writing into
8870 * holes and correct delalloc and unwritten extent mapping on filesystems that
8871 * support these features.
8872 *
8873 * We are not allowed to take the i_mutex here so we have to play games to
8874 * protect against truncate races as the page could now be beyond EOF. Because
8875 * vmtruncate() writes the inode size before removing pages, once we have the
8876 * page lock we can determine safely if the page is beyond EOF. If it is not
8877 * beyond EOF, then the page is guaranteed safe against truncation until we
8878 * unlock the page.
8879 */
c2ec175c 8880int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8881{
c2ec175c 8882 struct page *page = vmf->page;
496ad9aa 8883 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8884 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8886 struct btrfs_ordered_extent *ordered;
2ac55d41 8887 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8888 char *kaddr;
8889 unsigned long zero_start;
9ebefb18 8890 loff_t size;
1832a6d5 8891 int ret;
9998eb70 8892 int reserved = 0;
d0b7da88 8893 u64 reserved_space;
a52d9a80 8894 u64 page_start;
e6dcd2dc 8895 u64 page_end;
d0b7da88
CR
8896 u64 end;
8897
09cbfeaf 8898 reserved_space = PAGE_SIZE;
9ebefb18 8899
b2b5ef5c 8900 sb_start_pagefault(inode->i_sb);
df480633 8901 page_start = page_offset(page);
09cbfeaf 8902 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8903 end = page_end;
df480633 8904
d0b7da88
CR
8905 /*
8906 * Reserving delalloc space after obtaining the page lock can lead to
8907 * deadlock. For example, if a dirty page is locked by this function
8908 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8909 * dirty page write out, then the btrfs_writepage() function could
8910 * end up waiting indefinitely to get a lock on the page currently
8911 * being processed by btrfs_page_mkwrite() function.
8912 */
7cf5b976 8913 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8914 reserved_space);
9998eb70 8915 if (!ret) {
e41f941a 8916 ret = file_update_time(vma->vm_file);
9998eb70
CM
8917 reserved = 1;
8918 }
56a76f82
NP
8919 if (ret) {
8920 if (ret == -ENOMEM)
8921 ret = VM_FAULT_OOM;
8922 else /* -ENOSPC, -EIO, etc */
8923 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8924 if (reserved)
8925 goto out;
8926 goto out_noreserve;
56a76f82 8927 }
1832a6d5 8928
56a76f82 8929 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8930again:
9ebefb18 8931 lock_page(page);
9ebefb18 8932 size = i_size_read(inode);
a52d9a80 8933
9ebefb18 8934 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8935 (page_start >= size)) {
9ebefb18
CM
8936 /* page got truncated out from underneath us */
8937 goto out_unlock;
8938 }
e6dcd2dc
CM
8939 wait_on_page_writeback(page);
8940
ff13db41 8941 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8942 set_page_extent_mapped(page);
8943
eb84ae03
CM
8944 /*
8945 * we can't set the delalloc bits if there are pending ordered
8946 * extents. Drop our locks and wait for them to finish
8947 */
d0b7da88 8948 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8949 if (ordered) {
2ac55d41
JB
8950 unlock_extent_cached(io_tree, page_start, page_end,
8951 &cached_state, GFP_NOFS);
e6dcd2dc 8952 unlock_page(page);
eb84ae03 8953 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8954 btrfs_put_ordered_extent(ordered);
8955 goto again;
8956 }
8957
09cbfeaf 8958 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8959 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8960 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8961 end = page_start + reserved_space - 1;
8962 spin_lock(&BTRFS_I(inode)->lock);
8963 BTRFS_I(inode)->outstanding_extents++;
8964 spin_unlock(&BTRFS_I(inode)->lock);
8965 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8966 PAGE_SIZE - reserved_space);
d0b7da88
CR
8967 }
8968 }
8969
fbf19087
JB
8970 /*
8971 * XXX - page_mkwrite gets called every time the page is dirtied, even
8972 * if it was already dirty, so for space accounting reasons we need to
8973 * clear any delalloc bits for the range we are fixing to save. There
8974 * is probably a better way to do this, but for now keep consistent with
8975 * prepare_pages in the normal write path.
8976 */
d0b7da88 8977 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8978 EXTENT_DIRTY | EXTENT_DELALLOC |
8979 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8980 0, 0, &cached_state, GFP_NOFS);
fbf19087 8981
d0b7da88 8982 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 8983 &cached_state);
9ed74f2d 8984 if (ret) {
2ac55d41
JB
8985 unlock_extent_cached(io_tree, page_start, page_end,
8986 &cached_state, GFP_NOFS);
9ed74f2d
JB
8987 ret = VM_FAULT_SIGBUS;
8988 goto out_unlock;
8989 }
e6dcd2dc 8990 ret = 0;
9ebefb18
CM
8991
8992 /* page is wholly or partially inside EOF */
09cbfeaf
KS
8993 if (page_start + PAGE_SIZE > size)
8994 zero_start = size & ~PAGE_MASK;
9ebefb18 8995 else
09cbfeaf 8996 zero_start = PAGE_SIZE;
9ebefb18 8997
09cbfeaf 8998 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8999 kaddr = kmap(page);
09cbfeaf 9000 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9001 flush_dcache_page(page);
9002 kunmap(page);
9003 }
247e743c 9004 ClearPageChecked(page);
e6dcd2dc 9005 set_page_dirty(page);
50a9b214 9006 SetPageUptodate(page);
5a3f23d5 9007
257c62e1
CM
9008 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9009 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9010 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9011
2ac55d41 9012 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9013
9014out_unlock:
b2b5ef5c
JK
9015 if (!ret) {
9016 sb_end_pagefault(inode->i_sb);
50a9b214 9017 return VM_FAULT_LOCKED;
b2b5ef5c 9018 }
9ebefb18 9019 unlock_page(page);
1832a6d5 9020out:
d0b7da88 9021 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9022out_noreserve:
b2b5ef5c 9023 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9024 return ret;
9025}
9026
a41ad394 9027static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9028{
9029 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9030 struct btrfs_block_rsv *rsv;
a71754fc 9031 int ret = 0;
3893e33b 9032 int err = 0;
39279cc3 9033 struct btrfs_trans_handle *trans;
dbe674a9 9034 u64 mask = root->sectorsize - 1;
07127184 9035 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9036
0ef8b726
JB
9037 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9038 (u64)-1);
9039 if (ret)
9040 return ret;
39279cc3 9041
fcb80c2a 9042 /*
01327610 9043 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9044 * 3 things going on here
9045 *
9046 * 1) We need to reserve space for our orphan item and the space to
9047 * delete our orphan item. Lord knows we don't want to have a dangling
9048 * orphan item because we didn't reserve space to remove it.
9049 *
9050 * 2) We need to reserve space to update our inode.
9051 *
9052 * 3) We need to have something to cache all the space that is going to
9053 * be free'd up by the truncate operation, but also have some slack
9054 * space reserved in case it uses space during the truncate (thank you
9055 * very much snapshotting).
9056 *
01327610 9057 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9058 * space doing the truncate, and we have no earthly idea how much space
01327610 9059 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9060 * doesn't end up using space reserved for updating the inode or
9061 * removing the orphan item. We also need to be able to stop the
9062 * transaction and start a new one, which means we need to be able to
9063 * update the inode several times, and we have no idea of knowing how
9064 * many times that will be, so we can't just reserve 1 item for the
01327610 9065 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9066 * Then there is the orphan item, which does indeed need to be held on
9067 * to for the whole operation, and we need nobody to touch this reserved
9068 * space except the orphan code.
9069 *
9070 * So that leaves us with
9071 *
9072 * 1) root->orphan_block_rsv - for the orphan deletion.
9073 * 2) rsv - for the truncate reservation, which we will steal from the
9074 * transaction reservation.
9075 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9076 * updating the inode.
9077 */
66d8f3dd 9078 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9079 if (!rsv)
9080 return -ENOMEM;
4a338542 9081 rsv->size = min_size;
ca7e70f5 9082 rsv->failfast = 1;
f0cd846e 9083
907cbceb 9084 /*
07127184 9085 * 1 for the truncate slack space
907cbceb
JB
9086 * 1 for updating the inode.
9087 */
f3fe820c 9088 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9089 if (IS_ERR(trans)) {
9090 err = PTR_ERR(trans);
9091 goto out;
9092 }
f0cd846e 9093
907cbceb
JB
9094 /* Migrate the slack space for the truncate to our reserve */
9095 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9096 min_size);
fcb80c2a 9097 BUG_ON(ret);
f0cd846e 9098
5dc562c5
JB
9099 /*
9100 * So if we truncate and then write and fsync we normally would just
9101 * write the extents that changed, which is a problem if we need to
9102 * first truncate that entire inode. So set this flag so we write out
9103 * all of the extents in the inode to the sync log so we're completely
9104 * safe.
9105 */
9106 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9107 trans->block_rsv = rsv;
907cbceb 9108
8082510e
YZ
9109 while (1) {
9110 ret = btrfs_truncate_inode_items(trans, root, inode,
9111 inode->i_size,
9112 BTRFS_EXTENT_DATA_KEY);
28ed1345 9113 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9114 err = ret;
8082510e 9115 break;
3893e33b 9116 }
39279cc3 9117
fcb80c2a 9118 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9119 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9120 if (ret) {
9121 err = ret;
9122 break;
9123 }
ca7e70f5 9124
8082510e 9125 btrfs_end_transaction(trans, root);
b53d3f5d 9126 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9127
9128 trans = btrfs_start_transaction(root, 2);
9129 if (IS_ERR(trans)) {
9130 ret = err = PTR_ERR(trans);
9131 trans = NULL;
9132 break;
9133 }
9134
9135 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9136 rsv, min_size);
9137 BUG_ON(ret); /* shouldn't happen */
9138 trans->block_rsv = rsv;
8082510e
YZ
9139 }
9140
9141 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9142 trans->block_rsv = root->orphan_block_rsv;
8082510e 9143 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9144 if (ret)
9145 err = ret;
8082510e
YZ
9146 }
9147
917c16b2
CM
9148 if (trans) {
9149 trans->block_rsv = &root->fs_info->trans_block_rsv;
9150 ret = btrfs_update_inode(trans, root, inode);
9151 if (ret && !err)
9152 err = ret;
7b128766 9153
7ad85bb7 9154 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9155 btrfs_btree_balance_dirty(root);
917c16b2 9156 }
fcb80c2a
JB
9157
9158out:
9159 btrfs_free_block_rsv(root, rsv);
9160
3893e33b
JB
9161 if (ret && !err)
9162 err = ret;
a41ad394 9163
3893e33b 9164 return err;
39279cc3
CM
9165}
9166
d352ac68
CM
9167/*
9168 * create a new subvolume directory/inode (helper for the ioctl).
9169 */
d2fb3437 9170int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9171 struct btrfs_root *new_root,
9172 struct btrfs_root *parent_root,
9173 u64 new_dirid)
39279cc3 9174{
39279cc3 9175 struct inode *inode;
76dda93c 9176 int err;
00e4e6b3 9177 u64 index = 0;
39279cc3 9178
12fc9d09
FA
9179 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9180 new_dirid, new_dirid,
9181 S_IFDIR | (~current_umask() & S_IRWXUGO),
9182 &index);
54aa1f4d 9183 if (IS_ERR(inode))
f46b5a66 9184 return PTR_ERR(inode);
39279cc3
CM
9185 inode->i_op = &btrfs_dir_inode_operations;
9186 inode->i_fop = &btrfs_dir_file_operations;
9187
bfe86848 9188 set_nlink(inode, 1);
dbe674a9 9189 btrfs_i_size_write(inode, 0);
b0d5d10f 9190 unlock_new_inode(inode);
3b96362c 9191
63541927
FDBM
9192 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9193 if (err)
9194 btrfs_err(new_root->fs_info,
351fd353 9195 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9196 new_root->root_key.objectid, err);
9197
76dda93c 9198 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9199
76dda93c 9200 iput(inode);
ce598979 9201 return err;
39279cc3
CM
9202}
9203
39279cc3
CM
9204struct inode *btrfs_alloc_inode(struct super_block *sb)
9205{
9206 struct btrfs_inode *ei;
2ead6ae7 9207 struct inode *inode;
39279cc3
CM
9208
9209 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9210 if (!ei)
9211 return NULL;
2ead6ae7
YZ
9212
9213 ei->root = NULL;
2ead6ae7 9214 ei->generation = 0;
15ee9bc7 9215 ei->last_trans = 0;
257c62e1 9216 ei->last_sub_trans = 0;
e02119d5 9217 ei->logged_trans = 0;
2ead6ae7 9218 ei->delalloc_bytes = 0;
47059d93 9219 ei->defrag_bytes = 0;
2ead6ae7
YZ
9220 ei->disk_i_size = 0;
9221 ei->flags = 0;
7709cde3 9222 ei->csum_bytes = 0;
2ead6ae7 9223 ei->index_cnt = (u64)-1;
67de1176 9224 ei->dir_index = 0;
2ead6ae7 9225 ei->last_unlink_trans = 0;
46d8bc34 9226 ei->last_log_commit = 0;
8089fe62 9227 ei->delayed_iput_count = 0;
2ead6ae7 9228
9e0baf60
JB
9229 spin_lock_init(&ei->lock);
9230 ei->outstanding_extents = 0;
9231 ei->reserved_extents = 0;
2ead6ae7 9232
72ac3c0d 9233 ei->runtime_flags = 0;
261507a0 9234 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9235
16cdcec7
MX
9236 ei->delayed_node = NULL;
9237
9cc97d64 9238 ei->i_otime.tv_sec = 0;
9239 ei->i_otime.tv_nsec = 0;
9240
2ead6ae7 9241 inode = &ei->vfs_inode;
a8067e02 9242 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9243 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9244 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9245 ei->io_tree.track_uptodate = 1;
9246 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9247 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9248 mutex_init(&ei->log_mutex);
f248679e 9249 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9250 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9251 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9252 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9253 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9254 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9255
9256 return inode;
39279cc3
CM
9257}
9258
aaedb55b
JB
9259#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9260void btrfs_test_destroy_inode(struct inode *inode)
9261{
9262 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9263 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9264}
9265#endif
9266
fa0d7e3d
NP
9267static void btrfs_i_callback(struct rcu_head *head)
9268{
9269 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9270 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9271}
9272
39279cc3
CM
9273void btrfs_destroy_inode(struct inode *inode)
9274{
e6dcd2dc 9275 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9276 struct btrfs_root *root = BTRFS_I(inode)->root;
9277
b3d9b7a3 9278 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9279 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9280 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9281 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9282 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9283 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9284 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9285
a6dbd429
JB
9286 /*
9287 * This can happen where we create an inode, but somebody else also
9288 * created the same inode and we need to destroy the one we already
9289 * created.
9290 */
9291 if (!root)
9292 goto free;
9293
8a35d95f
JB
9294 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9295 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9296 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9297 btrfs_ino(inode));
8a35d95f 9298 atomic_dec(&root->orphan_inodes);
7b128766 9299 }
7b128766 9300
d397712b 9301 while (1) {
e6dcd2dc
CM
9302 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9303 if (!ordered)
9304 break;
9305 else {
c2cf52eb 9306 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9307 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9308 btrfs_remove_ordered_extent(inode, ordered);
9309 btrfs_put_ordered_extent(ordered);
9310 btrfs_put_ordered_extent(ordered);
9311 }
9312 }
56fa9d07 9313 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9314 inode_tree_del(inode);
5b21f2ed 9315 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9316free:
fa0d7e3d 9317 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9318}
9319
45321ac5 9320int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9321{
9322 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9323
6379ef9f
NA
9324 if (root == NULL)
9325 return 1;
9326
fa6ac876 9327 /* the snap/subvol tree is on deleting */
69e9c6c6 9328 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9329 return 1;
76dda93c 9330 else
45321ac5 9331 return generic_drop_inode(inode);
76dda93c
YZ
9332}
9333
0ee0fda0 9334static void init_once(void *foo)
39279cc3
CM
9335{
9336 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9337
9338 inode_init_once(&ei->vfs_inode);
9339}
9340
9341void btrfs_destroy_cachep(void)
9342{
8c0a8537
KS
9343 /*
9344 * Make sure all delayed rcu free inodes are flushed before we
9345 * destroy cache.
9346 */
9347 rcu_barrier();
5598e900
KM
9348 kmem_cache_destroy(btrfs_inode_cachep);
9349 kmem_cache_destroy(btrfs_trans_handle_cachep);
9350 kmem_cache_destroy(btrfs_transaction_cachep);
9351 kmem_cache_destroy(btrfs_path_cachep);
9352 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9353}
9354
9355int btrfs_init_cachep(void)
9356{
837e1972 9357 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9358 sizeof(struct btrfs_inode), 0,
5d097056
VD
9359 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9360 init_once);
39279cc3
CM
9361 if (!btrfs_inode_cachep)
9362 goto fail;
9601e3f6 9363
837e1972 9364 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9365 sizeof(struct btrfs_trans_handle), 0,
9366 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9367 if (!btrfs_trans_handle_cachep)
9368 goto fail;
9601e3f6 9369
837e1972 9370 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9371 sizeof(struct btrfs_transaction), 0,
9372 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9373 if (!btrfs_transaction_cachep)
9374 goto fail;
9601e3f6 9375
837e1972 9376 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9377 sizeof(struct btrfs_path), 0,
9378 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9379 if (!btrfs_path_cachep)
9380 goto fail;
9601e3f6 9381
837e1972 9382 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9383 sizeof(struct btrfs_free_space), 0,
9384 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9385 if (!btrfs_free_space_cachep)
9386 goto fail;
9387
39279cc3
CM
9388 return 0;
9389fail:
9390 btrfs_destroy_cachep();
9391 return -ENOMEM;
9392}
9393
9394static int btrfs_getattr(struct vfsmount *mnt,
9395 struct dentry *dentry, struct kstat *stat)
9396{
df0af1a5 9397 u64 delalloc_bytes;
2b0143b5 9398 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9399 u32 blocksize = inode->i_sb->s_blocksize;
9400
39279cc3 9401 generic_fillattr(inode, stat);
0ee5dc67 9402 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9403
9404 spin_lock(&BTRFS_I(inode)->lock);
9405 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9406 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9407 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9408 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9409 return 0;
9410}
9411
cdd1fedf
DF
9412static int btrfs_rename_exchange(struct inode *old_dir,
9413 struct dentry *old_dentry,
9414 struct inode *new_dir,
9415 struct dentry *new_dentry)
9416{
9417 struct btrfs_trans_handle *trans;
9418 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9419 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9420 struct inode *new_inode = new_dentry->d_inode;
9421 struct inode *old_inode = old_dentry->d_inode;
9422 struct timespec ctime = CURRENT_TIME;
9423 struct dentry *parent;
9424 u64 old_ino = btrfs_ino(old_inode);
9425 u64 new_ino = btrfs_ino(new_inode);
9426 u64 old_idx = 0;
9427 u64 new_idx = 0;
9428 u64 root_objectid;
9429 int ret;
86e8aa0e
FM
9430 bool root_log_pinned = false;
9431 bool dest_log_pinned = false;
cdd1fedf
DF
9432
9433 /* we only allow rename subvolume link between subvolumes */
9434 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9435 return -EXDEV;
9436
9437 /* close the race window with snapshot create/destroy ioctl */
9438 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9439 down_read(&root->fs_info->subvol_sem);
9440 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9441 down_read(&dest->fs_info->subvol_sem);
9442
9443 /*
9444 * We want to reserve the absolute worst case amount of items. So if
9445 * both inodes are subvols and we need to unlink them then that would
9446 * require 4 item modifications, but if they are both normal inodes it
9447 * would require 5 item modifications, so we'll assume their normal
9448 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9449 * should cover the worst case number of items we'll modify.
9450 */
9451 trans = btrfs_start_transaction(root, 12);
9452 if (IS_ERR(trans)) {
9453 ret = PTR_ERR(trans);
9454 goto out_notrans;
9455 }
9456
9457 /*
9458 * We need to find a free sequence number both in the source and
9459 * in the destination directory for the exchange.
9460 */
9461 ret = btrfs_set_inode_index(new_dir, &old_idx);
9462 if (ret)
9463 goto out_fail;
9464 ret = btrfs_set_inode_index(old_dir, &new_idx);
9465 if (ret)
9466 goto out_fail;
9467
9468 BTRFS_I(old_inode)->dir_index = 0ULL;
9469 BTRFS_I(new_inode)->dir_index = 0ULL;
9470
9471 /* Reference for the source. */
9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9473 /* force full log commit if subvolume involved. */
9474 btrfs_set_log_full_commit(root->fs_info, trans);
9475 } else {
376e5a57
FM
9476 btrfs_pin_log_trans(root);
9477 root_log_pinned = true;
cdd1fedf
DF
9478 ret = btrfs_insert_inode_ref(trans, dest,
9479 new_dentry->d_name.name,
9480 new_dentry->d_name.len,
9481 old_ino,
9482 btrfs_ino(new_dir), old_idx);
9483 if (ret)
9484 goto out_fail;
cdd1fedf
DF
9485 }
9486
9487 /* And now for the dest. */
9488 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9489 /* force full log commit if subvolume involved. */
9490 btrfs_set_log_full_commit(dest->fs_info, trans);
9491 } else {
376e5a57
FM
9492 btrfs_pin_log_trans(dest);
9493 dest_log_pinned = true;
cdd1fedf
DF
9494 ret = btrfs_insert_inode_ref(trans, root,
9495 old_dentry->d_name.name,
9496 old_dentry->d_name.len,
9497 new_ino,
9498 btrfs_ino(old_dir), new_idx);
9499 if (ret)
9500 goto out_fail;
cdd1fedf
DF
9501 }
9502
9503 /* Update inode version and ctime/mtime. */
9504 inode_inc_iversion(old_dir);
9505 inode_inc_iversion(new_dir);
9506 inode_inc_iversion(old_inode);
9507 inode_inc_iversion(new_inode);
9508 old_dir->i_ctime = old_dir->i_mtime = ctime;
9509 new_dir->i_ctime = new_dir->i_mtime = ctime;
9510 old_inode->i_ctime = ctime;
9511 new_inode->i_ctime = ctime;
9512
9513 if (old_dentry->d_parent != new_dentry->d_parent) {
9514 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9515 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9516 }
9517
9518 /* src is a subvolume */
9519 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9520 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9521 ret = btrfs_unlink_subvol(trans, root, old_dir,
9522 root_objectid,
9523 old_dentry->d_name.name,
9524 old_dentry->d_name.len);
9525 } else { /* src is an inode */
9526 ret = __btrfs_unlink_inode(trans, root, old_dir,
9527 old_dentry->d_inode,
9528 old_dentry->d_name.name,
9529 old_dentry->d_name.len);
9530 if (!ret)
9531 ret = btrfs_update_inode(trans, root, old_inode);
9532 }
9533 if (ret) {
9534 btrfs_abort_transaction(trans, root, ret);
9535 goto out_fail;
9536 }
9537
9538 /* dest is a subvolume */
9539 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9540 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9541 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9542 root_objectid,
9543 new_dentry->d_name.name,
9544 new_dentry->d_name.len);
9545 } else { /* dest is an inode */
9546 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9547 new_dentry->d_inode,
9548 new_dentry->d_name.name,
9549 new_dentry->d_name.len);
9550 if (!ret)
9551 ret = btrfs_update_inode(trans, dest, new_inode);
9552 }
9553 if (ret) {
9554 btrfs_abort_transaction(trans, root, ret);
9555 goto out_fail;
9556 }
9557
9558 ret = btrfs_add_link(trans, new_dir, old_inode,
9559 new_dentry->d_name.name,
9560 new_dentry->d_name.len, 0, old_idx);
9561 if (ret) {
9562 btrfs_abort_transaction(trans, root, ret);
9563 goto out_fail;
9564 }
9565
9566 ret = btrfs_add_link(trans, old_dir, new_inode,
9567 old_dentry->d_name.name,
9568 old_dentry->d_name.len, 0, new_idx);
9569 if (ret) {
9570 btrfs_abort_transaction(trans, root, ret);
9571 goto out_fail;
9572 }
9573
9574 if (old_inode->i_nlink == 1)
9575 BTRFS_I(old_inode)->dir_index = old_idx;
9576 if (new_inode->i_nlink == 1)
9577 BTRFS_I(new_inode)->dir_index = new_idx;
9578
86e8aa0e 9579 if (root_log_pinned) {
cdd1fedf
DF
9580 parent = new_dentry->d_parent;
9581 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9582 btrfs_end_log_trans(root);
86e8aa0e 9583 root_log_pinned = false;
cdd1fedf 9584 }
86e8aa0e 9585 if (dest_log_pinned) {
cdd1fedf
DF
9586 parent = old_dentry->d_parent;
9587 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9588 btrfs_end_log_trans(dest);
86e8aa0e 9589 dest_log_pinned = false;
cdd1fedf
DF
9590 }
9591out_fail:
86e8aa0e
FM
9592 /*
9593 * If we have pinned a log and an error happened, we unpin tasks
9594 * trying to sync the log and force them to fallback to a transaction
9595 * commit if the log currently contains any of the inodes involved in
9596 * this rename operation (to ensure we do not persist a log with an
9597 * inconsistent state for any of these inodes or leading to any
9598 * inconsistencies when replayed). If the transaction was aborted, the
9599 * abortion reason is propagated to userspace when attempting to commit
9600 * the transaction. If the log does not contain any of these inodes, we
9601 * allow the tasks to sync it.
9602 */
9603 if (ret && (root_log_pinned || dest_log_pinned)) {
9604 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9605 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9606 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9607 (new_inode &&
9608 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9609 btrfs_set_log_full_commit(root->fs_info, trans);
9610
9611 if (root_log_pinned) {
9612 btrfs_end_log_trans(root);
9613 root_log_pinned = false;
9614 }
9615 if (dest_log_pinned) {
9616 btrfs_end_log_trans(dest);
9617 dest_log_pinned = false;
9618 }
9619 }
cdd1fedf
DF
9620 ret = btrfs_end_transaction(trans, root);
9621out_notrans:
9622 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9623 up_read(&dest->fs_info->subvol_sem);
9624 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9625 up_read(&root->fs_info->subvol_sem);
9626
9627 return ret;
9628}
9629
9630static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9631 struct btrfs_root *root,
9632 struct inode *dir,
9633 struct dentry *dentry)
9634{
9635 int ret;
9636 struct inode *inode;
9637 u64 objectid;
9638 u64 index;
9639
9640 ret = btrfs_find_free_ino(root, &objectid);
9641 if (ret)
9642 return ret;
9643
9644 inode = btrfs_new_inode(trans, root, dir,
9645 dentry->d_name.name,
9646 dentry->d_name.len,
9647 btrfs_ino(dir),
9648 objectid,
9649 S_IFCHR | WHITEOUT_MODE,
9650 &index);
9651
9652 if (IS_ERR(inode)) {
9653 ret = PTR_ERR(inode);
9654 return ret;
9655 }
9656
9657 inode->i_op = &btrfs_special_inode_operations;
9658 init_special_inode(inode, inode->i_mode,
9659 WHITEOUT_DEV);
9660
9661 ret = btrfs_init_inode_security(trans, inode, dir,
9662 &dentry->d_name);
9663 if (ret)
c9901618 9664 goto out;
cdd1fedf
DF
9665
9666 ret = btrfs_add_nondir(trans, dir, dentry,
9667 inode, 0, index);
9668 if (ret)
c9901618 9669 goto out;
cdd1fedf
DF
9670
9671 ret = btrfs_update_inode(trans, root, inode);
c9901618 9672out:
cdd1fedf 9673 unlock_new_inode(inode);
c9901618
FM
9674 if (ret)
9675 inode_dec_link_count(inode);
cdd1fedf
DF
9676 iput(inode);
9677
c9901618 9678 return ret;
cdd1fedf
DF
9679}
9680
d397712b 9681static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9682 struct inode *new_dir, struct dentry *new_dentry,
9683 unsigned int flags)
39279cc3
CM
9684{
9685 struct btrfs_trans_handle *trans;
5062af35 9686 unsigned int trans_num_items;
39279cc3 9687 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9688 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9689 struct inode *new_inode = d_inode(new_dentry);
9690 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9691 u64 index = 0;
4df27c4d 9692 u64 root_objectid;
39279cc3 9693 int ret;
33345d01 9694 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9695 bool log_pinned = false;
39279cc3 9696
33345d01 9697 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9698 return -EPERM;
9699
4df27c4d 9700 /* we only allow rename subvolume link between subvolumes */
33345d01 9701 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9702 return -EXDEV;
9703
33345d01
LZ
9704 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9705 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9706 return -ENOTEMPTY;
5f39d397 9707
4df27c4d
YZ
9708 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9709 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9710 return -ENOTEMPTY;
9c52057c
CM
9711
9712
9713 /* check for collisions, even if the name isn't there */
4871c158 9714 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9715 new_dentry->d_name.name,
9716 new_dentry->d_name.len);
9717
9718 if (ret) {
9719 if (ret == -EEXIST) {
9720 /* we shouldn't get
9721 * eexist without a new_inode */
fae7f21c 9722 if (WARN_ON(!new_inode)) {
9c52057c
CM
9723 return ret;
9724 }
9725 } else {
9726 /* maybe -EOVERFLOW */
9727 return ret;
9728 }
9729 }
9730 ret = 0;
9731
5a3f23d5 9732 /*
8d875f95
CM
9733 * we're using rename to replace one file with another. Start IO on it
9734 * now so we don't add too much work to the end of the transaction
5a3f23d5 9735 */
8d875f95 9736 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9737 filemap_flush(old_inode->i_mapping);
9738
76dda93c 9739 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9740 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9741 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9742 /*
9743 * We want to reserve the absolute worst case amount of items. So if
9744 * both inodes are subvols and we need to unlink them then that would
9745 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9746 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 * should cover the worst case number of items we'll modify.
5062af35
FM
9749 * If our rename has the whiteout flag, we need more 5 units for the
9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 * when selinux is enabled).
a22285a6 9752 */
5062af35
FM
9753 trans_num_items = 11;
9754 if (flags & RENAME_WHITEOUT)
9755 trans_num_items += 5;
9756 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9757 if (IS_ERR(trans)) {
cdd1fedf
DF
9758 ret = PTR_ERR(trans);
9759 goto out_notrans;
9760 }
76dda93c 9761
4df27c4d
YZ
9762 if (dest != root)
9763 btrfs_record_root_in_trans(trans, dest);
5f39d397 9764
a5719521
YZ
9765 ret = btrfs_set_inode_index(new_dir, &index);
9766 if (ret)
9767 goto out_fail;
5a3f23d5 9768
67de1176 9769 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9770 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9771 /* force full log commit if subvolume involved. */
995946dd 9772 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9773 } else {
c4aba954
FM
9774 btrfs_pin_log_trans(root);
9775 log_pinned = true;
a5719521
YZ
9776 ret = btrfs_insert_inode_ref(trans, dest,
9777 new_dentry->d_name.name,
9778 new_dentry->d_name.len,
33345d01
LZ
9779 old_ino,
9780 btrfs_ino(new_dir), index);
a5719521
YZ
9781 if (ret)
9782 goto out_fail;
4df27c4d 9783 }
5a3f23d5 9784
0c4d2d95
JB
9785 inode_inc_iversion(old_dir);
9786 inode_inc_iversion(new_dir);
9787 inode_inc_iversion(old_inode);
04b285f3
DD
9788 old_dir->i_ctime = old_dir->i_mtime =
9789 new_dir->i_ctime = new_dir->i_mtime =
9790 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9791
12fcfd22
CM
9792 if (old_dentry->d_parent != new_dentry->d_parent)
9793 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9794
33345d01 9795 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9796 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9797 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9798 old_dentry->d_name.name,
9799 old_dentry->d_name.len);
9800 } else {
92986796 9801 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9802 d_inode(old_dentry),
92986796
AV
9803 old_dentry->d_name.name,
9804 old_dentry->d_name.len);
9805 if (!ret)
9806 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9807 }
79787eaa
JM
9808 if (ret) {
9809 btrfs_abort_transaction(trans, root, ret);
9810 goto out_fail;
9811 }
39279cc3
CM
9812
9813 if (new_inode) {
0c4d2d95 9814 inode_inc_iversion(new_inode);
04b285f3 9815 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9816 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9817 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9818 root_objectid = BTRFS_I(new_inode)->location.objectid;
9819 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9820 root_objectid,
9821 new_dentry->d_name.name,
9822 new_dentry->d_name.len);
9823 BUG_ON(new_inode->i_nlink == 0);
9824 } else {
9825 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9826 d_inode(new_dentry),
4df27c4d
YZ
9827 new_dentry->d_name.name,
9828 new_dentry->d_name.len);
9829 }
4ef31a45 9830 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9831 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9832 if (ret) {
9833 btrfs_abort_transaction(trans, root, ret);
9834 goto out_fail;
9835 }
39279cc3 9836 }
aec7477b 9837
4df27c4d
YZ
9838 ret = btrfs_add_link(trans, new_dir, old_inode,
9839 new_dentry->d_name.name,
a5719521 9840 new_dentry->d_name.len, 0, index);
79787eaa
JM
9841 if (ret) {
9842 btrfs_abort_transaction(trans, root, ret);
9843 goto out_fail;
9844 }
39279cc3 9845
67de1176
MX
9846 if (old_inode->i_nlink == 1)
9847 BTRFS_I(old_inode)->dir_index = index;
9848
3dc9e8f7 9849 if (log_pinned) {
10d9f309 9850 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9851
6a912213 9852 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9853 btrfs_end_log_trans(root);
3dc9e8f7 9854 log_pinned = false;
4df27c4d 9855 }
cdd1fedf
DF
9856
9857 if (flags & RENAME_WHITEOUT) {
9858 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9859 old_dentry);
9860
9861 if (ret) {
9862 btrfs_abort_transaction(trans, root, ret);
9863 goto out_fail;
9864 }
4df27c4d 9865 }
39279cc3 9866out_fail:
3dc9e8f7
FM
9867 /*
9868 * If we have pinned the log and an error happened, we unpin tasks
9869 * trying to sync the log and force them to fallback to a transaction
9870 * commit if the log currently contains any of the inodes involved in
9871 * this rename operation (to ensure we do not persist a log with an
9872 * inconsistent state for any of these inodes or leading to any
9873 * inconsistencies when replayed). If the transaction was aborted, the
9874 * abortion reason is propagated to userspace when attempting to commit
9875 * the transaction. If the log does not contain any of these inodes, we
9876 * allow the tasks to sync it.
9877 */
9878 if (ret && log_pinned) {
9879 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9880 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9881 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9882 (new_inode &&
9883 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9884 btrfs_set_log_full_commit(root->fs_info, trans);
9885
9886 btrfs_end_log_trans(root);
9887 log_pinned = false;
9888 }
7ad85bb7 9889 btrfs_end_transaction(trans, root);
b44c59a8 9890out_notrans:
33345d01 9891 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9892 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9893
39279cc3
CM
9894 return ret;
9895}
9896
80ace85c
MS
9897static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9898 struct inode *new_dir, struct dentry *new_dentry,
9899 unsigned int flags)
9900{
cdd1fedf 9901 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9902 return -EINVAL;
9903
cdd1fedf
DF
9904 if (flags & RENAME_EXCHANGE)
9905 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9906 new_dentry);
9907
9908 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9909}
9910
8ccf6f19
MX
9911static void btrfs_run_delalloc_work(struct btrfs_work *work)
9912{
9913 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9914 struct inode *inode;
8ccf6f19
MX
9915
9916 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9917 work);
9f23e289 9918 inode = delalloc_work->inode;
30424601
DS
9919 filemap_flush(inode->i_mapping);
9920 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9921 &BTRFS_I(inode)->runtime_flags))
9f23e289 9922 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9923
9924 if (delalloc_work->delay_iput)
9f23e289 9925 btrfs_add_delayed_iput(inode);
8ccf6f19 9926 else
9f23e289 9927 iput(inode);
8ccf6f19
MX
9928 complete(&delalloc_work->completion);
9929}
9930
9931struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9932 int delay_iput)
8ccf6f19
MX
9933{
9934 struct btrfs_delalloc_work *work;
9935
100d5702 9936 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9937 if (!work)
9938 return NULL;
9939
9940 init_completion(&work->completion);
9941 INIT_LIST_HEAD(&work->list);
9942 work->inode = inode;
8ccf6f19 9943 work->delay_iput = delay_iput;
9e0af237
LB
9944 WARN_ON_ONCE(!inode);
9945 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9946 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9947
9948 return work;
9949}
9950
9951void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9952{
9953 wait_for_completion(&work->completion);
100d5702 9954 kfree(work);
8ccf6f19
MX
9955}
9956
d352ac68
CM
9957/*
9958 * some fairly slow code that needs optimization. This walks the list
9959 * of all the inodes with pending delalloc and forces them to disk.
9960 */
6c255e67
MX
9961static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9962 int nr)
ea8c2819 9963{
ea8c2819 9964 struct btrfs_inode *binode;
5b21f2ed 9965 struct inode *inode;
8ccf6f19
MX
9966 struct btrfs_delalloc_work *work, *next;
9967 struct list_head works;
1eafa6c7 9968 struct list_head splice;
8ccf6f19 9969 int ret = 0;
ea8c2819 9970
8ccf6f19 9971 INIT_LIST_HEAD(&works);
1eafa6c7 9972 INIT_LIST_HEAD(&splice);
63607cc8 9973
573bfb72 9974 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9975 spin_lock(&root->delalloc_lock);
9976 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9977 while (!list_empty(&splice)) {
9978 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9979 delalloc_inodes);
1eafa6c7 9980
eb73c1b7
MX
9981 list_move_tail(&binode->delalloc_inodes,
9982 &root->delalloc_inodes);
5b21f2ed 9983 inode = igrab(&binode->vfs_inode);
df0af1a5 9984 if (!inode) {
eb73c1b7 9985 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9986 continue;
df0af1a5 9987 }
eb73c1b7 9988 spin_unlock(&root->delalloc_lock);
1eafa6c7 9989
651d494a 9990 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 9991 if (!work) {
f4ab9ea7
JB
9992 if (delay_iput)
9993 btrfs_add_delayed_iput(inode);
9994 else
9995 iput(inode);
1eafa6c7 9996 ret = -ENOMEM;
a1ecaabb 9997 goto out;
5b21f2ed 9998 }
1eafa6c7 9999 list_add_tail(&work->list, &works);
a44903ab
QW
10000 btrfs_queue_work(root->fs_info->flush_workers,
10001 &work->work);
6c255e67
MX
10002 ret++;
10003 if (nr != -1 && ret >= nr)
a1ecaabb 10004 goto out;
5b21f2ed 10005 cond_resched();
eb73c1b7 10006 spin_lock(&root->delalloc_lock);
ea8c2819 10007 }
eb73c1b7 10008 spin_unlock(&root->delalloc_lock);
8c8bee1d 10009
a1ecaabb 10010out:
eb73c1b7
MX
10011 list_for_each_entry_safe(work, next, &works, list) {
10012 list_del_init(&work->list);
10013 btrfs_wait_and_free_delalloc_work(work);
10014 }
10015
10016 if (!list_empty_careful(&splice)) {
10017 spin_lock(&root->delalloc_lock);
10018 list_splice_tail(&splice, &root->delalloc_inodes);
10019 spin_unlock(&root->delalloc_lock);
10020 }
573bfb72 10021 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10022 return ret;
10023}
1eafa6c7 10024
eb73c1b7
MX
10025int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10026{
10027 int ret;
1eafa6c7 10028
2c21b4d7 10029 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10030 return -EROFS;
10031
6c255e67
MX
10032 ret = __start_delalloc_inodes(root, delay_iput, -1);
10033 if (ret > 0)
10034 ret = 0;
eb73c1b7
MX
10035 /*
10036 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10037 * we have to make sure the IO is actually started and that
10038 * ordered extents get created before we return
10039 */
10040 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10041 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10042 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10043 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10044 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10045 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10046 }
10047 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10048 return ret;
10049}
10050
6c255e67
MX
10051int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10052 int nr)
eb73c1b7
MX
10053{
10054 struct btrfs_root *root;
10055 struct list_head splice;
10056 int ret;
10057
2c21b4d7 10058 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10059 return -EROFS;
10060
10061 INIT_LIST_HEAD(&splice);
10062
573bfb72 10063 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10064 spin_lock(&fs_info->delalloc_root_lock);
10065 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10066 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10067 root = list_first_entry(&splice, struct btrfs_root,
10068 delalloc_root);
10069 root = btrfs_grab_fs_root(root);
10070 BUG_ON(!root);
10071 list_move_tail(&root->delalloc_root,
10072 &fs_info->delalloc_roots);
10073 spin_unlock(&fs_info->delalloc_root_lock);
10074
6c255e67 10075 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10076 btrfs_put_fs_root(root);
6c255e67 10077 if (ret < 0)
eb73c1b7
MX
10078 goto out;
10079
6c255e67
MX
10080 if (nr != -1) {
10081 nr -= ret;
10082 WARN_ON(nr < 0);
10083 }
eb73c1b7 10084 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10085 }
eb73c1b7 10086 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10087
6c255e67 10088 ret = 0;
eb73c1b7
MX
10089 atomic_inc(&fs_info->async_submit_draining);
10090 while (atomic_read(&fs_info->nr_async_submits) ||
10091 atomic_read(&fs_info->async_delalloc_pages)) {
10092 wait_event(fs_info->async_submit_wait,
10093 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10094 atomic_read(&fs_info->async_delalloc_pages) == 0));
10095 }
10096 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10097out:
1eafa6c7 10098 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10099 spin_lock(&fs_info->delalloc_root_lock);
10100 list_splice_tail(&splice, &fs_info->delalloc_roots);
10101 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10102 }
573bfb72 10103 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10104 return ret;
ea8c2819
CM
10105}
10106
39279cc3
CM
10107static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10108 const char *symname)
10109{
10110 struct btrfs_trans_handle *trans;
10111 struct btrfs_root *root = BTRFS_I(dir)->root;
10112 struct btrfs_path *path;
10113 struct btrfs_key key;
1832a6d5 10114 struct inode *inode = NULL;
39279cc3
CM
10115 int err;
10116 int drop_inode = 0;
10117 u64 objectid;
67871254 10118 u64 index = 0;
39279cc3
CM
10119 int name_len;
10120 int datasize;
5f39d397 10121 unsigned long ptr;
39279cc3 10122 struct btrfs_file_extent_item *ei;
5f39d397 10123 struct extent_buffer *leaf;
39279cc3 10124
f06becc4 10125 name_len = strlen(symname);
39279cc3
CM
10126 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10127 return -ENAMETOOLONG;
1832a6d5 10128
9ed74f2d
JB
10129 /*
10130 * 2 items for inode item and ref
10131 * 2 items for dir items
9269d12b
FM
10132 * 1 item for updating parent inode item
10133 * 1 item for the inline extent item
9ed74f2d
JB
10134 * 1 item for xattr if selinux is on
10135 */
9269d12b 10136 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10137 if (IS_ERR(trans))
10138 return PTR_ERR(trans);
1832a6d5 10139
581bb050
LZ
10140 err = btrfs_find_free_ino(root, &objectid);
10141 if (err)
10142 goto out_unlock;
10143
aec7477b 10144 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10145 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10146 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10147 if (IS_ERR(inode)) {
10148 err = PTR_ERR(inode);
39279cc3 10149 goto out_unlock;
7cf96da3 10150 }
39279cc3 10151
ad19db71
CS
10152 /*
10153 * If the active LSM wants to access the inode during
10154 * d_instantiate it needs these. Smack checks to see
10155 * if the filesystem supports xattrs by looking at the
10156 * ops vector.
10157 */
10158 inode->i_fop = &btrfs_file_operations;
10159 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10160 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10161 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10162
10163 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10164 if (err)
10165 goto out_unlock_inode;
ad19db71 10166
39279cc3 10167 path = btrfs_alloc_path();
d8926bb3
MF
10168 if (!path) {
10169 err = -ENOMEM;
b0d5d10f 10170 goto out_unlock_inode;
d8926bb3 10171 }
33345d01 10172 key.objectid = btrfs_ino(inode);
39279cc3 10173 key.offset = 0;
962a298f 10174 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10175 datasize = btrfs_file_extent_calc_inline_size(name_len);
10176 err = btrfs_insert_empty_item(trans, root, path, &key,
10177 datasize);
54aa1f4d 10178 if (err) {
b0839166 10179 btrfs_free_path(path);
b0d5d10f 10180 goto out_unlock_inode;
54aa1f4d 10181 }
5f39d397
CM
10182 leaf = path->nodes[0];
10183 ei = btrfs_item_ptr(leaf, path->slots[0],
10184 struct btrfs_file_extent_item);
10185 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10186 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10187 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10188 btrfs_set_file_extent_encryption(leaf, ei, 0);
10189 btrfs_set_file_extent_compression(leaf, ei, 0);
10190 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10191 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10192
39279cc3 10193 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10194 write_extent_buffer(leaf, symname, ptr, name_len);
10195 btrfs_mark_buffer_dirty(leaf);
39279cc3 10196 btrfs_free_path(path);
5f39d397 10197
39279cc3 10198 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10199 inode_nohighmem(inode);
39279cc3 10200 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10201 inode_set_bytes(inode, name_len);
f06becc4 10202 btrfs_i_size_write(inode, name_len);
54aa1f4d 10203 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10204 /*
10205 * Last step, add directory indexes for our symlink inode. This is the
10206 * last step to avoid extra cleanup of these indexes if an error happens
10207 * elsewhere above.
10208 */
10209 if (!err)
10210 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10211 if (err) {
54aa1f4d 10212 drop_inode = 1;
b0d5d10f
CM
10213 goto out_unlock_inode;
10214 }
10215
10216 unlock_new_inode(inode);
10217 d_instantiate(dentry, inode);
39279cc3
CM
10218
10219out_unlock:
7ad85bb7 10220 btrfs_end_transaction(trans, root);
39279cc3
CM
10221 if (drop_inode) {
10222 inode_dec_link_count(inode);
10223 iput(inode);
10224 }
b53d3f5d 10225 btrfs_btree_balance_dirty(root);
39279cc3 10226 return err;
b0d5d10f
CM
10227
10228out_unlock_inode:
10229 drop_inode = 1;
10230 unlock_new_inode(inode);
10231 goto out_unlock;
39279cc3 10232}
16432985 10233
0af3d00b
JB
10234static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10235 u64 start, u64 num_bytes, u64 min_size,
10236 loff_t actual_len, u64 *alloc_hint,
10237 struct btrfs_trans_handle *trans)
d899e052 10238{
5dc562c5
JB
10239 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10240 struct extent_map *em;
d899e052
YZ
10241 struct btrfs_root *root = BTRFS_I(inode)->root;
10242 struct btrfs_key ins;
d899e052 10243 u64 cur_offset = start;
55a61d1d 10244 u64 i_size;
154ea289 10245 u64 cur_bytes;
0b670dc4 10246 u64 last_alloc = (u64)-1;
d899e052 10247 int ret = 0;
0af3d00b 10248 bool own_trans = true;
d899e052 10249
0af3d00b
JB
10250 if (trans)
10251 own_trans = false;
d899e052 10252 while (num_bytes > 0) {
0af3d00b
JB
10253 if (own_trans) {
10254 trans = btrfs_start_transaction(root, 3);
10255 if (IS_ERR(trans)) {
10256 ret = PTR_ERR(trans);
10257 break;
10258 }
5a303d5d
YZ
10259 }
10260
ee22184b 10261 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10262 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10263 /*
10264 * If we are severely fragmented we could end up with really
10265 * small allocations, so if the allocator is returning small
10266 * chunks lets make its job easier by only searching for those
10267 * sized chunks.
10268 */
10269 cur_bytes = min(cur_bytes, last_alloc);
00361589 10270 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10271 *alloc_hint, &ins, 1, 0);
5a303d5d 10272 if (ret) {
0af3d00b
JB
10273 if (own_trans)
10274 btrfs_end_transaction(trans, root);
a22285a6 10275 break;
d899e052 10276 }
9cfa3e34 10277 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10278
0b670dc4 10279 last_alloc = ins.offset;
d899e052
YZ
10280 ret = insert_reserved_file_extent(trans, inode,
10281 cur_offset, ins.objectid,
10282 ins.offset, ins.offset,
920bbbfb 10283 ins.offset, 0, 0, 0,
d899e052 10284 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10285 if (ret) {
857cc2fc 10286 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10287 ins.offset, 0);
79787eaa
JM
10288 btrfs_abort_transaction(trans, root, ret);
10289 if (own_trans)
10290 btrfs_end_transaction(trans, root);
10291 break;
10292 }
31193213 10293
a1ed835e
CM
10294 btrfs_drop_extent_cache(inode, cur_offset,
10295 cur_offset + ins.offset -1, 0);
5a303d5d 10296
5dc562c5
JB
10297 em = alloc_extent_map();
10298 if (!em) {
10299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10300 &BTRFS_I(inode)->runtime_flags);
10301 goto next;
10302 }
10303
10304 em->start = cur_offset;
10305 em->orig_start = cur_offset;
10306 em->len = ins.offset;
10307 em->block_start = ins.objectid;
10308 em->block_len = ins.offset;
b4939680 10309 em->orig_block_len = ins.offset;
cc95bef6 10310 em->ram_bytes = ins.offset;
5dc562c5
JB
10311 em->bdev = root->fs_info->fs_devices->latest_bdev;
10312 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10313 em->generation = trans->transid;
10314
10315 while (1) {
10316 write_lock(&em_tree->lock);
09a2a8f9 10317 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10318 write_unlock(&em_tree->lock);
10319 if (ret != -EEXIST)
10320 break;
10321 btrfs_drop_extent_cache(inode, cur_offset,
10322 cur_offset + ins.offset - 1,
10323 0);
10324 }
10325 free_extent_map(em);
10326next:
d899e052
YZ
10327 num_bytes -= ins.offset;
10328 cur_offset += ins.offset;
efa56464 10329 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10330
0c4d2d95 10331 inode_inc_iversion(inode);
04b285f3 10332 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10333 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10334 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10335 (actual_len > inode->i_size) &&
10336 (cur_offset > inode->i_size)) {
d1ea6a61 10337 if (cur_offset > actual_len)
55a61d1d 10338 i_size = actual_len;
d1ea6a61 10339 else
55a61d1d
JB
10340 i_size = cur_offset;
10341 i_size_write(inode, i_size);
10342 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10343 }
10344
d899e052 10345 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10346
10347 if (ret) {
10348 btrfs_abort_transaction(trans, root, ret);
10349 if (own_trans)
10350 btrfs_end_transaction(trans, root);
10351 break;
10352 }
d899e052 10353
0af3d00b
JB
10354 if (own_trans)
10355 btrfs_end_transaction(trans, root);
5a303d5d 10356 }
d899e052
YZ
10357 return ret;
10358}
10359
0af3d00b
JB
10360int btrfs_prealloc_file_range(struct inode *inode, int mode,
10361 u64 start, u64 num_bytes, u64 min_size,
10362 loff_t actual_len, u64 *alloc_hint)
10363{
10364 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10365 min_size, actual_len, alloc_hint,
10366 NULL);
10367}
10368
10369int btrfs_prealloc_file_range_trans(struct inode *inode,
10370 struct btrfs_trans_handle *trans, int mode,
10371 u64 start, u64 num_bytes, u64 min_size,
10372 loff_t actual_len, u64 *alloc_hint)
10373{
10374 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10375 min_size, actual_len, alloc_hint, trans);
10376}
10377
e6dcd2dc
CM
10378static int btrfs_set_page_dirty(struct page *page)
10379{
e6dcd2dc
CM
10380 return __set_page_dirty_nobuffers(page);
10381}
10382
10556cb2 10383static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10384{
b83cc969 10385 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10386 umode_t mode = inode->i_mode;
b83cc969 10387
cb6db4e5
JM
10388 if (mask & MAY_WRITE &&
10389 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10390 if (btrfs_root_readonly(root))
10391 return -EROFS;
10392 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10393 return -EACCES;
10394 }
2830ba7f 10395 return generic_permission(inode, mask);
fdebe2bd 10396}
39279cc3 10397
ef3b9af5
FM
10398static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10399{
10400 struct btrfs_trans_handle *trans;
10401 struct btrfs_root *root = BTRFS_I(dir)->root;
10402 struct inode *inode = NULL;
10403 u64 objectid;
10404 u64 index;
10405 int ret = 0;
10406
10407 /*
10408 * 5 units required for adding orphan entry
10409 */
10410 trans = btrfs_start_transaction(root, 5);
10411 if (IS_ERR(trans))
10412 return PTR_ERR(trans);
10413
10414 ret = btrfs_find_free_ino(root, &objectid);
10415 if (ret)
10416 goto out;
10417
10418 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10419 btrfs_ino(dir), objectid, mode, &index);
10420 if (IS_ERR(inode)) {
10421 ret = PTR_ERR(inode);
10422 inode = NULL;
10423 goto out;
10424 }
10425
ef3b9af5
FM
10426 inode->i_fop = &btrfs_file_operations;
10427 inode->i_op = &btrfs_file_inode_operations;
10428
10429 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10430 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10431
b0d5d10f
CM
10432 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10433 if (ret)
10434 goto out_inode;
10435
10436 ret = btrfs_update_inode(trans, root, inode);
10437 if (ret)
10438 goto out_inode;
ef3b9af5
FM
10439 ret = btrfs_orphan_add(trans, inode);
10440 if (ret)
b0d5d10f 10441 goto out_inode;
ef3b9af5 10442
5762b5c9
FM
10443 /*
10444 * We set number of links to 0 in btrfs_new_inode(), and here we set
10445 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10446 * through:
10447 *
10448 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10449 */
10450 set_nlink(inode, 1);
b0d5d10f 10451 unlock_new_inode(inode);
ef3b9af5
FM
10452 d_tmpfile(dentry, inode);
10453 mark_inode_dirty(inode);
10454
10455out:
10456 btrfs_end_transaction(trans, root);
10457 if (ret)
10458 iput(inode);
10459 btrfs_balance_delayed_items(root);
10460 btrfs_btree_balance_dirty(root);
ef3b9af5 10461 return ret;
b0d5d10f
CM
10462
10463out_inode:
10464 unlock_new_inode(inode);
10465 goto out;
10466
ef3b9af5
FM
10467}
10468
b38ef71c
FM
10469/* Inspired by filemap_check_errors() */
10470int btrfs_inode_check_errors(struct inode *inode)
10471{
10472 int ret = 0;
10473
10474 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10475 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10476 ret = -ENOSPC;
10477 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10478 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10479 ret = -EIO;
10480
10481 return ret;
10482}
10483
6e1d5dcc 10484static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10485 .getattr = btrfs_getattr,
39279cc3
CM
10486 .lookup = btrfs_lookup,
10487 .create = btrfs_create,
10488 .unlink = btrfs_unlink,
10489 .link = btrfs_link,
10490 .mkdir = btrfs_mkdir,
10491 .rmdir = btrfs_rmdir,
80ace85c 10492 .rename2 = btrfs_rename2,
39279cc3
CM
10493 .symlink = btrfs_symlink,
10494 .setattr = btrfs_setattr,
618e21d5 10495 .mknod = btrfs_mknod,
95819c05 10496 .setxattr = btrfs_setxattr,
9172abbc 10497 .getxattr = generic_getxattr,
5103e947 10498 .listxattr = btrfs_listxattr,
95819c05 10499 .removexattr = btrfs_removexattr,
fdebe2bd 10500 .permission = btrfs_permission,
4e34e719 10501 .get_acl = btrfs_get_acl,
996a710d 10502 .set_acl = btrfs_set_acl,
93fd63c2 10503 .update_time = btrfs_update_time,
ef3b9af5 10504 .tmpfile = btrfs_tmpfile,
39279cc3 10505};
6e1d5dcc 10506static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10507 .lookup = btrfs_lookup,
fdebe2bd 10508 .permission = btrfs_permission,
4e34e719 10509 .get_acl = btrfs_get_acl,
996a710d 10510 .set_acl = btrfs_set_acl,
93fd63c2 10511 .update_time = btrfs_update_time,
39279cc3 10512};
76dda93c 10513
828c0950 10514static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10515 .llseek = generic_file_llseek,
10516 .read = generic_read_dir,
9cdda8d3 10517 .iterate = btrfs_real_readdir,
34287aa3 10518 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10519#ifdef CONFIG_COMPAT
4c63c245 10520 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10521#endif
6bf13c0c 10522 .release = btrfs_release_file,
e02119d5 10523 .fsync = btrfs_sync_file,
39279cc3
CM
10524};
10525
20e5506b 10526static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10527 .fill_delalloc = run_delalloc_range,
065631f6 10528 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10529 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10530 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10531 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10532 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10533 .set_bit_hook = btrfs_set_bit_hook,
10534 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10535 .merge_extent_hook = btrfs_merge_extent_hook,
10536 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10537};
10538
35054394
CM
10539/*
10540 * btrfs doesn't support the bmap operation because swapfiles
10541 * use bmap to make a mapping of extents in the file. They assume
10542 * these extents won't change over the life of the file and they
10543 * use the bmap result to do IO directly to the drive.
10544 *
10545 * the btrfs bmap call would return logical addresses that aren't
10546 * suitable for IO and they also will change frequently as COW
10547 * operations happen. So, swapfile + btrfs == corruption.
10548 *
10549 * For now we're avoiding this by dropping bmap.
10550 */
7f09410b 10551static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10552 .readpage = btrfs_readpage,
10553 .writepage = btrfs_writepage,
b293f02e 10554 .writepages = btrfs_writepages,
3ab2fb5a 10555 .readpages = btrfs_readpages,
16432985 10556 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10557 .invalidatepage = btrfs_invalidatepage,
10558 .releasepage = btrfs_releasepage,
e6dcd2dc 10559 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10560 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10561};
10562
7f09410b 10563static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10564 .readpage = btrfs_readpage,
10565 .writepage = btrfs_writepage,
2bf5a725
CM
10566 .invalidatepage = btrfs_invalidatepage,
10567 .releasepage = btrfs_releasepage,
39279cc3
CM
10568};
10569
6e1d5dcc 10570static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10571 .getattr = btrfs_getattr,
10572 .setattr = btrfs_setattr,
95819c05 10573 .setxattr = btrfs_setxattr,
9172abbc 10574 .getxattr = generic_getxattr,
5103e947 10575 .listxattr = btrfs_listxattr,
95819c05 10576 .removexattr = btrfs_removexattr,
fdebe2bd 10577 .permission = btrfs_permission,
1506fcc8 10578 .fiemap = btrfs_fiemap,
4e34e719 10579 .get_acl = btrfs_get_acl,
996a710d 10580 .set_acl = btrfs_set_acl,
e41f941a 10581 .update_time = btrfs_update_time,
39279cc3 10582};
6e1d5dcc 10583static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10584 .getattr = btrfs_getattr,
10585 .setattr = btrfs_setattr,
fdebe2bd 10586 .permission = btrfs_permission,
95819c05 10587 .setxattr = btrfs_setxattr,
9172abbc 10588 .getxattr = generic_getxattr,
33268eaf 10589 .listxattr = btrfs_listxattr,
95819c05 10590 .removexattr = btrfs_removexattr,
4e34e719 10591 .get_acl = btrfs_get_acl,
996a710d 10592 .set_acl = btrfs_set_acl,
e41f941a 10593 .update_time = btrfs_update_time,
618e21d5 10594};
6e1d5dcc 10595static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10596 .readlink = generic_readlink,
6b255391 10597 .get_link = page_get_link,
f209561a 10598 .getattr = btrfs_getattr,
22c44fe6 10599 .setattr = btrfs_setattr,
fdebe2bd 10600 .permission = btrfs_permission,
0279b4cd 10601 .setxattr = btrfs_setxattr,
9172abbc 10602 .getxattr = generic_getxattr,
0279b4cd
JO
10603 .listxattr = btrfs_listxattr,
10604 .removexattr = btrfs_removexattr,
e41f941a 10605 .update_time = btrfs_update_time,
39279cc3 10606};
76dda93c 10607
82d339d9 10608const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10609 .d_delete = btrfs_dentry_delete,
b4aff1f8 10610 .d_release = btrfs_dentry_release,
76dda93c 10611};