]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ordered-data.c
btrfs: Fix error handling in zlib
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
d352ac68
CM
62/*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
e6dcd2dc
CM
66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
dc17ff8f 68{
d397712b 69 struct rb_node *n = root->rb_node;
dc17ff8f 70 struct rb_node *prev = NULL;
e6dcd2dc
CM
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 74
d397712b 75 while (n) {
e6dcd2dc 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
77 prev = n;
78 prev_entry = entry;
dc17ff8f 79
e6dcd2dc 80 if (file_offset < entry->file_offset)
dc17ff8f 81 n = n->rb_left;
e6dcd2dc 82 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
d397712b 90 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
d397712b 104 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
dc17ff8f
CM
111 }
112 *prev_ret = prev;
113 return NULL;
114}
115
d352ac68
CM
116/*
117 * helper to check if a given offset is inside a given entry
118 */
e6dcd2dc
CM
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125}
126
4b46fce2
JB
127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
129{
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
134}
135
d352ac68
CM
136/*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
e6dcd2dc
CM
140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
dc17ff8f 142{
e6dcd2dc 143 struct rb_root *root = &tree->tree;
dc17ff8f
CM
144 struct rb_node *prev;
145 struct rb_node *ret;
e6dcd2dc
CM
146 struct btrfs_ordered_extent *entry;
147
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
153 }
154 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 155 if (!ret)
e6dcd2dc
CM
156 ret = prev;
157 if (ret)
158 tree->last = ret;
dc17ff8f
CM
159 return ret;
160}
161
eb84ae03
CM
162/* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
167 *
168 * len is the length of the extent
169 *
eb84ae03
CM
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
4b46fce2
JB
173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
175 int type, int dio)
dc17ff8f 176{
dc17ff8f 177 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
dc17ff8f 180
e6dcd2dc
CM
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
183 if (!entry)
184 return -ENOMEM;
185
e6dcd2dc
CM
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
c8b97818 189 entry->disk_len = disk_len;
8b62b72b 190 entry->bytes_left = len;
3eaa2885 191 entry->inode = inode;
d899e052 192 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 193 set_bit(type, &entry->flags);
3eaa2885 194
4b46fce2
JB
195 if (dio)
196 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
197
e6dcd2dc
CM
198 /* one ref for the tree */
199 atomic_set(&entry->refs, 1);
200 init_waitqueue_head(&entry->wait);
201 INIT_LIST_HEAD(&entry->list);
3eaa2885 202 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 203
49958fd7 204 spin_lock(&tree->lock);
e6dcd2dc
CM
205 node = tree_insert(&tree->tree, file_offset,
206 &entry->rb_node);
d397712b 207 BUG_ON(node);
49958fd7 208 spin_unlock(&tree->lock);
d397712b 209
3eaa2885
CM
210 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
211 list_add_tail(&entry->root_extent_list,
212 &BTRFS_I(inode)->root->fs_info->ordered_extents);
213 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214
e6dcd2dc 215 BUG_ON(node);
dc17ff8f
CM
216 return 0;
217}
218
4b46fce2
JB
219int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
220 u64 start, u64 len, u64 disk_len, int type)
221{
222 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
223 disk_len, type, 0);
224}
225
226int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
227 u64 start, u64 len, u64 disk_len, int type)
228{
229 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
230 disk_len, type, 1);
231}
232
eb84ae03
CM
233/*
234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
235 * when an ordered extent is finished. If the list covers more than one
236 * ordered extent, it is split across multiples.
eb84ae03 237 */
3edf7d33
CM
238int btrfs_add_ordered_sum(struct inode *inode,
239 struct btrfs_ordered_extent *entry,
240 struct btrfs_ordered_sum *sum)
dc17ff8f 241{
e6dcd2dc 242 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 243
e6dcd2dc 244 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 245 spin_lock(&tree->lock);
e6dcd2dc 246 list_add_tail(&sum->list, &entry->list);
49958fd7 247 spin_unlock(&tree->lock);
e6dcd2dc 248 return 0;
dc17ff8f
CM
249}
250
163cf09c
CM
251/*
252 * this is used to account for finished IO across a given range
253 * of the file. The IO may span ordered extents. If
254 * a given ordered_extent is completely done, 1 is returned, otherwise
255 * 0.
256 *
257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258 * to make sure this function only returns 1 once for a given ordered extent.
259 *
260 * file_offset is updated to one byte past the range that is recorded as
261 * complete. This allows you to walk forward in the file.
262 */
263int btrfs_dec_test_first_ordered_pending(struct inode *inode,
264 struct btrfs_ordered_extent **cached,
265 u64 *file_offset, u64 io_size)
266{
267 struct btrfs_ordered_inode_tree *tree;
268 struct rb_node *node;
269 struct btrfs_ordered_extent *entry = NULL;
270 int ret;
271 u64 dec_end;
272 u64 dec_start;
273 u64 to_dec;
274
275 tree = &BTRFS_I(inode)->ordered_tree;
276 spin_lock(&tree->lock);
277 node = tree_search(tree, *file_offset);
278 if (!node) {
279 ret = 1;
280 goto out;
281 }
282
283 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
284 if (!offset_in_entry(entry, *file_offset)) {
285 ret = 1;
286 goto out;
287 }
288
289 dec_start = max(*file_offset, entry->file_offset);
290 dec_end = min(*file_offset + io_size, entry->file_offset +
291 entry->len);
292 *file_offset = dec_end;
293 if (dec_start > dec_end) {
294 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
295 (unsigned long long)dec_start,
296 (unsigned long long)dec_end);
297 }
298 to_dec = dec_end - dec_start;
299 if (to_dec > entry->bytes_left) {
300 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
301 (unsigned long long)entry->bytes_left,
302 (unsigned long long)to_dec);
303 }
304 entry->bytes_left -= to_dec;
305 if (entry->bytes_left == 0)
306 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
307 else
308 ret = 1;
309out:
310 if (!ret && cached && entry) {
311 *cached = entry;
312 atomic_inc(&entry->refs);
313 }
314 spin_unlock(&tree->lock);
315 return ret == 0;
316}
317
eb84ae03
CM
318/*
319 * this is used to account for finished IO across a given range
320 * of the file. The IO should not span ordered extents. If
321 * a given ordered_extent is completely done, 1 is returned, otherwise
322 * 0.
323 *
324 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
325 * to make sure this function only returns 1 once for a given ordered extent.
326 */
e6dcd2dc 327int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 328 struct btrfs_ordered_extent **cached,
e6dcd2dc 329 u64 file_offset, u64 io_size)
dc17ff8f 330{
e6dcd2dc 331 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 332 struct rb_node *node;
5a1a3df1 333 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
334 int ret;
335
336 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 337 spin_lock(&tree->lock);
e6dcd2dc 338 node = tree_search(tree, file_offset);
dc17ff8f 339 if (!node) {
e6dcd2dc
CM
340 ret = 1;
341 goto out;
dc17ff8f
CM
342 }
343
e6dcd2dc
CM
344 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
345 if (!offset_in_entry(entry, file_offset)) {
346 ret = 1;
347 goto out;
dc17ff8f 348 }
e6dcd2dc 349
8b62b72b
CM
350 if (io_size > entry->bytes_left) {
351 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
352 (unsigned long long)entry->bytes_left,
353 (unsigned long long)io_size);
354 }
355 entry->bytes_left -= io_size;
356 if (entry->bytes_left == 0)
e6dcd2dc 357 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
358 else
359 ret = 1;
e6dcd2dc 360out:
5a1a3df1
JB
361 if (!ret && cached && entry) {
362 *cached = entry;
363 atomic_inc(&entry->refs);
364 }
49958fd7 365 spin_unlock(&tree->lock);
e6dcd2dc
CM
366 return ret == 0;
367}
dc17ff8f 368
eb84ae03
CM
369/*
370 * used to drop a reference on an ordered extent. This will free
371 * the extent if the last reference is dropped
372 */
e6dcd2dc
CM
373int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
374{
ba1da2f4
CM
375 struct list_head *cur;
376 struct btrfs_ordered_sum *sum;
377
378 if (atomic_dec_and_test(&entry->refs)) {
d397712b 379 while (!list_empty(&entry->list)) {
ba1da2f4
CM
380 cur = entry->list.next;
381 sum = list_entry(cur, struct btrfs_ordered_sum, list);
382 list_del(&sum->list);
383 kfree(sum);
384 }
e6dcd2dc 385 kfree(entry);
ba1da2f4 386 }
e6dcd2dc 387 return 0;
dc17ff8f 388}
cee36a03 389
eb84ae03
CM
390/*
391 * remove an ordered extent from the tree. No references are dropped
49958fd7 392 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 393 * while you call this function.
eb84ae03 394 */
c2167754 395static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 396 struct btrfs_ordered_extent *entry)
cee36a03 397{
e6dcd2dc 398 struct btrfs_ordered_inode_tree *tree;
287a0ab9 399 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 400 struct rb_node *node;
cee36a03 401
e6dcd2dc 402 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 403 node = &entry->rb_node;
cee36a03 404 rb_erase(node, &tree->tree);
e6dcd2dc
CM
405 tree->last = NULL;
406 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 407
287a0ab9 408 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 409 list_del_init(&entry->root_extent_list);
5a3f23d5
CM
410
411 /*
412 * we have no more ordered extents for this inode and
413 * no dirty pages. We can safely remove it from the
414 * list of ordered extents
415 */
416 if (RB_EMPTY_ROOT(&tree->tree) &&
417 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
418 list_del_init(&BTRFS_I(inode)->ordered_operations);
419 }
287a0ab9 420 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885 421
c2167754
YZ
422 return 0;
423}
424
425/*
426 * remove an ordered extent from the tree. No references are dropped
427 * but any waiters are woken.
428 */
429int btrfs_remove_ordered_extent(struct inode *inode,
430 struct btrfs_ordered_extent *entry)
431{
432 struct btrfs_ordered_inode_tree *tree;
433 int ret;
434
435 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 436 spin_lock(&tree->lock);
c2167754 437 ret = __btrfs_remove_ordered_extent(inode, entry);
49958fd7 438 spin_unlock(&tree->lock);
e6dcd2dc 439 wake_up(&entry->wait);
c2167754
YZ
440
441 return ret;
cee36a03
CM
442}
443
d352ac68
CM
444/*
445 * wait for all the ordered extents in a root. This is done when balancing
446 * space between drives.
447 */
24bbcf04
YZ
448int btrfs_wait_ordered_extents(struct btrfs_root *root,
449 int nocow_only, int delay_iput)
3eaa2885
CM
450{
451 struct list_head splice;
452 struct list_head *cur;
453 struct btrfs_ordered_extent *ordered;
454 struct inode *inode;
455
456 INIT_LIST_HEAD(&splice);
457
458 spin_lock(&root->fs_info->ordered_extent_lock);
459 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 460 while (!list_empty(&splice)) {
3eaa2885
CM
461 cur = splice.next;
462 ordered = list_entry(cur, struct btrfs_ordered_extent,
463 root_extent_list);
7ea394f1 464 if (nocow_only &&
d899e052
YZ
465 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
466 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
467 list_move(&ordered->root_extent_list,
468 &root->fs_info->ordered_extents);
7ea394f1
YZ
469 cond_resched_lock(&root->fs_info->ordered_extent_lock);
470 continue;
471 }
472
3eaa2885
CM
473 list_del_init(&ordered->root_extent_list);
474 atomic_inc(&ordered->refs);
3eaa2885
CM
475
476 /*
5b21f2ed 477 * the inode may be getting freed (in sys_unlink path).
3eaa2885 478 */
5b21f2ed
ZY
479 inode = igrab(ordered->inode);
480
3eaa2885
CM
481 spin_unlock(&root->fs_info->ordered_extent_lock);
482
5b21f2ed
ZY
483 if (inode) {
484 btrfs_start_ordered_extent(inode, ordered, 1);
485 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
486 if (delay_iput)
487 btrfs_add_delayed_iput(inode);
488 else
489 iput(inode);
5b21f2ed
ZY
490 } else {
491 btrfs_put_ordered_extent(ordered);
492 }
3eaa2885
CM
493
494 spin_lock(&root->fs_info->ordered_extent_lock);
495 }
496 spin_unlock(&root->fs_info->ordered_extent_lock);
497 return 0;
498}
499
5a3f23d5
CM
500/*
501 * this is used during transaction commit to write all the inodes
502 * added to the ordered operation list. These files must be fully on
503 * disk before the transaction commits.
504 *
505 * we have two modes here, one is to just start the IO via filemap_flush
506 * and the other is to wait for all the io. When we wait, we have an
507 * extra check to make sure the ordered operation list really is empty
508 * before we return
509 */
510int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
511{
512 struct btrfs_inode *btrfs_inode;
513 struct inode *inode;
514 struct list_head splice;
515
516 INIT_LIST_HEAD(&splice);
517
518 mutex_lock(&root->fs_info->ordered_operations_mutex);
519 spin_lock(&root->fs_info->ordered_extent_lock);
520again:
521 list_splice_init(&root->fs_info->ordered_operations, &splice);
522
523 while (!list_empty(&splice)) {
524 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
525 ordered_operations);
526
527 inode = &btrfs_inode->vfs_inode;
528
529 list_del_init(&btrfs_inode->ordered_operations);
530
531 /*
532 * the inode may be getting freed (in sys_unlink path).
533 */
534 inode = igrab(inode);
535
536 if (!wait && inode) {
537 list_add_tail(&BTRFS_I(inode)->ordered_operations,
538 &root->fs_info->ordered_operations);
539 }
540 spin_unlock(&root->fs_info->ordered_extent_lock);
541
542 if (inode) {
543 if (wait)
544 btrfs_wait_ordered_range(inode, 0, (u64)-1);
545 else
546 filemap_flush(inode->i_mapping);
24bbcf04 547 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
548 }
549
550 cond_resched();
551 spin_lock(&root->fs_info->ordered_extent_lock);
552 }
553 if (wait && !list_empty(&root->fs_info->ordered_operations))
554 goto again;
555
556 spin_unlock(&root->fs_info->ordered_extent_lock);
557 mutex_unlock(&root->fs_info->ordered_operations_mutex);
558
559 return 0;
560}
561
eb84ae03
CM
562/*
563 * Used to start IO or wait for a given ordered extent to finish.
564 *
565 * If wait is one, this effectively waits on page writeback for all the pages
566 * in the extent, and it waits on the io completion code to insert
567 * metadata into the btree corresponding to the extent
568 */
569void btrfs_start_ordered_extent(struct inode *inode,
570 struct btrfs_ordered_extent *entry,
571 int wait)
e6dcd2dc
CM
572{
573 u64 start = entry->file_offset;
574 u64 end = start + entry->len - 1;
e1b81e67 575
eb84ae03
CM
576 /*
577 * pages in the range can be dirty, clean or writeback. We
578 * start IO on any dirty ones so the wait doesn't stall waiting
579 * for pdflush to find them
580 */
4b46fce2
JB
581 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
582 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 583 if (wait) {
e6dcd2dc
CM
584 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
585 &entry->flags));
c8b97818 586 }
e6dcd2dc 587}
cee36a03 588
eb84ae03
CM
589/*
590 * Used to wait on ordered extents across a large range of bytes.
591 */
cb843a6f 592int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
593{
594 u64 end;
e5a2217e 595 u64 orig_end;
e6dcd2dc 596 struct btrfs_ordered_extent *ordered;
8b62b72b 597 int found;
e5a2217e
CM
598
599 if (start + len < start) {
f421950f 600 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
601 } else {
602 orig_end = start + len - 1;
f421950f
CM
603 if (orig_end > INT_LIMIT(loff_t))
604 orig_end = INT_LIMIT(loff_t);
e5a2217e 605 }
4a096752 606again:
e5a2217e
CM
607 /* start IO across the range first to instantiate any delalloc
608 * extents
609 */
8aa38c31 610 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 611
771ed689
CM
612 /* The compression code will leave pages locked but return from
613 * writepage without setting the page writeback. Starting again
614 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
615 */
8aa38c31 616 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 617
8aa38c31 618 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 619
f421950f 620 end = orig_end;
8b62b72b 621 found = 0;
d397712b 622 while (1) {
e6dcd2dc 623 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 624 if (!ordered)
e6dcd2dc 625 break;
e5a2217e 626 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
627 btrfs_put_ordered_extent(ordered);
628 break;
629 }
630 if (ordered->file_offset + ordered->len < start) {
631 btrfs_put_ordered_extent(ordered);
632 break;
633 }
8b62b72b 634 found++;
e5a2217e 635 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
636 end = ordered->file_offset;
637 btrfs_put_ordered_extent(ordered);
e5a2217e 638 if (end == 0 || end == start)
e6dcd2dc
CM
639 break;
640 end--;
641 }
8b62b72b
CM
642 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
643 EXTENT_DELALLOC, 0, NULL)) {
771ed689 644 schedule_timeout(1);
4a096752
CM
645 goto again;
646 }
cb843a6f 647 return 0;
cee36a03
CM
648}
649
eb84ae03
CM
650/*
651 * find an ordered extent corresponding to file_offset. return NULL if
652 * nothing is found, otherwise take a reference on the extent and return it
653 */
e6dcd2dc
CM
654struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
655 u64 file_offset)
656{
657 struct btrfs_ordered_inode_tree *tree;
658 struct rb_node *node;
659 struct btrfs_ordered_extent *entry = NULL;
660
661 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 662 spin_lock(&tree->lock);
e6dcd2dc
CM
663 node = tree_search(tree, file_offset);
664 if (!node)
665 goto out;
666
667 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
668 if (!offset_in_entry(entry, file_offset))
669 entry = NULL;
670 if (entry)
671 atomic_inc(&entry->refs);
672out:
49958fd7 673 spin_unlock(&tree->lock);
e6dcd2dc
CM
674 return entry;
675}
676
4b46fce2
JB
677/* Since the DIO code tries to lock a wide area we need to look for any ordered
678 * extents that exist in the range, rather than just the start of the range.
679 */
680struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
681 u64 file_offset,
682 u64 len)
683{
684 struct btrfs_ordered_inode_tree *tree;
685 struct rb_node *node;
686 struct btrfs_ordered_extent *entry = NULL;
687
688 tree = &BTRFS_I(inode)->ordered_tree;
689 spin_lock(&tree->lock);
690 node = tree_search(tree, file_offset);
691 if (!node) {
692 node = tree_search(tree, file_offset + len);
693 if (!node)
694 goto out;
695 }
696
697 while (1) {
698 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
699 if (range_overlaps(entry, file_offset, len))
700 break;
701
702 if (entry->file_offset >= file_offset + len) {
703 entry = NULL;
704 break;
705 }
706 entry = NULL;
707 node = rb_next(node);
708 if (!node)
709 break;
710 }
711out:
712 if (entry)
713 atomic_inc(&entry->refs);
714 spin_unlock(&tree->lock);
715 return entry;
716}
717
eb84ae03
CM
718/*
719 * lookup and return any extent before 'file_offset'. NULL is returned
720 * if none is found
721 */
e6dcd2dc 722struct btrfs_ordered_extent *
d397712b 723btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
724{
725 struct btrfs_ordered_inode_tree *tree;
726 struct rb_node *node;
727 struct btrfs_ordered_extent *entry = NULL;
728
729 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 730 spin_lock(&tree->lock);
e6dcd2dc
CM
731 node = tree_search(tree, file_offset);
732 if (!node)
733 goto out;
734
735 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
736 atomic_inc(&entry->refs);
737out:
49958fd7 738 spin_unlock(&tree->lock);
e6dcd2dc 739 return entry;
81d7ed29 740}
dbe674a9 741
eb84ae03
CM
742/*
743 * After an extent is done, call this to conditionally update the on disk
744 * i_size. i_size is updated to cover any fully written part of the file.
745 */
c2167754 746int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
747 struct btrfs_ordered_extent *ordered)
748{
749 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
751 u64 disk_i_size;
752 u64 new_i_size;
753 u64 i_size_test;
c2167754 754 u64 i_size = i_size_read(inode);
dbe674a9 755 struct rb_node *node;
c2167754 756 struct rb_node *prev = NULL;
dbe674a9 757 struct btrfs_ordered_extent *test;
c2167754
YZ
758 int ret = 1;
759
760 if (ordered)
761 offset = entry_end(ordered);
a038fab0
YZ
762 else
763 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 764
49958fd7 765 spin_lock(&tree->lock);
dbe674a9
CM
766 disk_i_size = BTRFS_I(inode)->disk_i_size;
767
c2167754
YZ
768 /* truncate file */
769 if (disk_i_size > i_size) {
770 BTRFS_I(inode)->disk_i_size = i_size;
771 ret = 0;
772 goto out;
773 }
774
dbe674a9
CM
775 /*
776 * if the disk i_size is already at the inode->i_size, or
777 * this ordered extent is inside the disk i_size, we're done
778 */
c2167754 779 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
780 goto out;
781 }
782
783 /*
784 * we can't update the disk_isize if there are delalloc bytes
785 * between disk_i_size and this ordered extent
786 */
c2167754 787 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 788 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
789 goto out;
790 }
791 /*
792 * walk backward from this ordered extent to disk_i_size.
793 * if we find an ordered extent then we can't update disk i_size
794 * yet
795 */
c2167754
YZ
796 if (ordered) {
797 node = rb_prev(&ordered->rb_node);
798 } else {
799 prev = tree_search(tree, offset);
800 /*
801 * we insert file extents without involving ordered struct,
802 * so there should be no ordered struct cover this offset
803 */
804 if (prev) {
805 test = rb_entry(prev, struct btrfs_ordered_extent,
806 rb_node);
807 BUG_ON(offset_in_entry(test, offset));
808 }
809 node = prev;
810 }
811 while (node) {
dbe674a9
CM
812 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
813 if (test->file_offset + test->len <= disk_i_size)
814 break;
c2167754 815 if (test->file_offset >= i_size)
dbe674a9
CM
816 break;
817 if (test->file_offset >= disk_i_size)
818 goto out;
c2167754 819 node = rb_prev(node);
dbe674a9 820 }
c2167754 821 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
822
823 /*
824 * at this point, we know we can safely update i_size to at least
825 * the offset from this ordered extent. But, we need to
826 * walk forward and see if ios from higher up in the file have
827 * finished.
828 */
c2167754
YZ
829 if (ordered) {
830 node = rb_next(&ordered->rb_node);
831 } else {
832 if (prev)
833 node = rb_next(prev);
834 else
835 node = rb_first(&tree->tree);
836 }
dbe674a9
CM
837 i_size_test = 0;
838 if (node) {
839 /*
840 * do we have an area where IO might have finished
841 * between our ordered extent and the next one.
842 */
843 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 844 if (test->file_offset > offset)
b48652c1 845 i_size_test = test->file_offset;
dbe674a9 846 } else {
c2167754 847 i_size_test = i_size;
dbe674a9
CM
848 }
849
850 /*
851 * i_size_test is the end of a region after this ordered
852 * extent where there are no ordered extents. As long as there
853 * are no delalloc bytes in this area, it is safe to update
854 * disk_i_size to the end of the region.
855 */
c2167754
YZ
856 if (i_size_test > offset &&
857 !test_range_bit(io_tree, offset, i_size_test - 1,
858 EXTENT_DELALLOC, 0, NULL)) {
859 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
860 }
861 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 862 ret = 0;
dbe674a9 863out:
c2167754
YZ
864 /*
865 * we need to remove the ordered extent with the tree lock held
866 * so that other people calling this function don't find our fully
867 * processed ordered entry and skip updating the i_size
868 */
869 if (ordered)
870 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 871 spin_unlock(&tree->lock);
c2167754
YZ
872 if (ordered)
873 wake_up(&ordered->wait);
874 return ret;
dbe674a9 875}
ba1da2f4 876
eb84ae03
CM
877/*
878 * search the ordered extents for one corresponding to 'offset' and
879 * try to find a checksum. This is used because we allow pages to
880 * be reclaimed before their checksum is actually put into the btree
881 */
d20f7043
CM
882int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
883 u32 *sum)
ba1da2f4
CM
884{
885 struct btrfs_ordered_sum *ordered_sum;
886 struct btrfs_sector_sum *sector_sums;
887 struct btrfs_ordered_extent *ordered;
888 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
889 unsigned long num_sectors;
890 unsigned long i;
891 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 892 int ret = 1;
ba1da2f4
CM
893
894 ordered = btrfs_lookup_ordered_extent(inode, offset);
895 if (!ordered)
896 return 1;
897
49958fd7 898 spin_lock(&tree->lock);
c6e30871 899 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 900 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 901 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 902 sector_sums = ordered_sum->sums;
3edf7d33 903 for (i = 0; i < num_sectors; i++) {
d20f7043 904 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
905 *sum = sector_sums[i].sum;
906 ret = 0;
907 goto out;
908 }
909 }
ba1da2f4
CM
910 }
911 }
912out:
49958fd7 913 spin_unlock(&tree->lock);
89642229 914 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
915 return ret;
916}
917
f421950f 918
5a3f23d5
CM
919/*
920 * add a given inode to the list of inodes that must be fully on
921 * disk before a transaction commit finishes.
922 *
923 * This basically gives us the ext3 style data=ordered mode, and it is mostly
924 * used to make sure renamed files are fully on disk.
925 *
926 * It is a noop if the inode is already fully on disk.
927 *
928 * If trans is not null, we'll do a friendly check for a transaction that
929 * is already flushing things and force the IO down ourselves.
930 */
931int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
932 struct btrfs_root *root,
933 struct inode *inode)
934{
935 u64 last_mod;
936
937 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
938
939 /*
940 * if this file hasn't been changed since the last transaction
941 * commit, we can safely return without doing anything
942 */
943 if (last_mod < root->fs_info->last_trans_committed)
944 return 0;
945
946 /*
947 * the transaction is already committing. Just start the IO and
948 * don't bother with all of this list nonsense
949 */
950 if (trans && root->fs_info->running_transaction->blocked) {
951 btrfs_wait_ordered_range(inode, 0, (u64)-1);
952 return 0;
953 }
954
955 spin_lock(&root->fs_info->ordered_extent_lock);
956 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
957 list_add_tail(&BTRFS_I(inode)->ordered_operations,
958 &root->fs_info->ordered_operations);
959 }
960 spin_unlock(&root->fs_info->ordered_extent_lock);
961
962 return 0;
963}