]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ordered-data.c
Btrfs: Fix bookend extent race v2
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
f421950f
CM
22#include <linux/writeback.h>
23#include <linux/pagevec.h>
dc17ff8f
CM
24#include "ctree.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
e6dcd2dc 27#include "extent_io.h"
dc17ff8f 28
e6dcd2dc 29static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 30{
e6dcd2dc
CM
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
dc17ff8f
CM
34}
35
d352ac68
CM
36/* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
38 */
e6dcd2dc
CM
39static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
dc17ff8f
CM
41{
42 struct rb_node ** p = &root->rb_node;
43 struct rb_node * parent = NULL;
e6dcd2dc 44 struct btrfs_ordered_extent *entry;
dc17ff8f
CM
45
46 while(*p) {
47 parent = *p;
e6dcd2dc 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 49
e6dcd2dc 50 if (file_offset < entry->file_offset)
dc17ff8f 51 p = &(*p)->rb_left;
e6dcd2dc 52 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
53 p = &(*p)->rb_right;
54 else
55 return parent;
56 }
57
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
61}
62
d352ac68
CM
63/*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
e6dcd2dc
CM
67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
dc17ff8f
CM
69{
70 struct rb_node * n = root->rb_node;
71 struct rb_node *prev = NULL;
e6dcd2dc
CM
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f
CM
75
76 while(n) {
e6dcd2dc 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
78 prev = n;
79 prev_entry = entry;
dc17ff8f 80
e6dcd2dc 81 if (file_offset < entry->file_offset)
dc17ff8f 82 n = n->rb_left;
e6dcd2dc 83 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
e6dcd2dc
CM
91 while(prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while(prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
dc17ff8f
CM
112 }
113 *prev_ret = prev;
114 return NULL;
115}
116
d352ac68
CM
117/*
118 * helper to check if a given offset is inside a given entry
119 */
e6dcd2dc
CM
120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121{
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126}
127
d352ac68
CM
128/*
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
131 */
e6dcd2dc
CM
132static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
dc17ff8f 134{
e6dcd2dc 135 struct rb_root *root = &tree->tree;
dc17ff8f
CM
136 struct rb_node *prev;
137 struct rb_node *ret;
e6dcd2dc
CM
138 struct btrfs_ordered_extent *entry;
139
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
145 }
146 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 147 if (!ret)
e6dcd2dc
CM
148 ret = prev;
149 if (ret)
150 tree->last = ret;
dc17ff8f
CM
151 return ret;
152}
153
eb84ae03
CM
154/* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
156 *
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
159 *
160 * len is the length of the extent
161 *
162 * This also sets the EXTENT_ORDERED bit on the range in the inode.
163 *
164 * The tree is given a single reference on the ordered extent that was
165 * inserted.
166 */
e6dcd2dc 167int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
c8b97818
CM
168 u64 start, u64 len, u64 disk_len, int nocow,
169 int compressed)
dc17ff8f 170{
dc17ff8f 171 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
172 struct rb_node *node;
173 struct btrfs_ordered_extent *entry;
dc17ff8f 174
e6dcd2dc
CM
175 tree = &BTRFS_I(inode)->ordered_tree;
176 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
177 if (!entry)
178 return -ENOMEM;
179
e6dcd2dc
CM
180 mutex_lock(&tree->mutex);
181 entry->file_offset = file_offset;
182 entry->start = start;
183 entry->len = len;
c8b97818 184 entry->disk_len = disk_len;
3eaa2885 185 entry->inode = inode;
7ea394f1
YZ
186 if (nocow)
187 set_bit(BTRFS_ORDERED_NOCOW, &entry->flags);
c8b97818
CM
188 if (compressed)
189 set_bit(BTRFS_ORDERED_COMPRESSED, &entry->flags);
3eaa2885 190
e6dcd2dc
CM
191 /* one ref for the tree */
192 atomic_set(&entry->refs, 1);
193 init_waitqueue_head(&entry->wait);
194 INIT_LIST_HEAD(&entry->list);
3eaa2885 195 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 196
e6dcd2dc
CM
197 node = tree_insert(&tree->tree, file_offset,
198 &entry->rb_node);
199 if (node) {
3eaa2885
CM
200 printk("warning dup entry from add_ordered_extent\n");
201 BUG();
e6dcd2dc
CM
202 }
203 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
204 entry_end(entry) - 1, GFP_NOFS);
1b1e2135 205
3eaa2885
CM
206 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
207 list_add_tail(&entry->root_extent_list,
208 &BTRFS_I(inode)->root->fs_info->ordered_extents);
209 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
210
e6dcd2dc
CM
211 mutex_unlock(&tree->mutex);
212 BUG_ON(node);
dc17ff8f
CM
213 return 0;
214}
215
eb84ae03
CM
216/*
217 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
218 * when an ordered extent is finished. If the list covers more than one
219 * ordered extent, it is split across multiples.
eb84ae03 220 */
3edf7d33
CM
221int btrfs_add_ordered_sum(struct inode *inode,
222 struct btrfs_ordered_extent *entry,
223 struct btrfs_ordered_sum *sum)
dc17ff8f 224{
e6dcd2dc 225 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 226
e6dcd2dc
CM
227 tree = &BTRFS_I(inode)->ordered_tree;
228 mutex_lock(&tree->mutex);
e6dcd2dc
CM
229 list_add_tail(&sum->list, &entry->list);
230 mutex_unlock(&tree->mutex);
231 return 0;
dc17ff8f
CM
232}
233
eb84ae03
CM
234/*
235 * this is used to account for finished IO across a given range
236 * of the file. The IO should not span ordered extents. If
237 * a given ordered_extent is completely done, 1 is returned, otherwise
238 * 0.
239 *
240 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
241 * to make sure this function only returns 1 once for a given ordered extent.
242 */
e6dcd2dc
CM
243int btrfs_dec_test_ordered_pending(struct inode *inode,
244 u64 file_offset, u64 io_size)
dc17ff8f 245{
e6dcd2dc 246 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 247 struct rb_node *node;
e6dcd2dc
CM
248 struct btrfs_ordered_extent *entry;
249 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
250 int ret;
251
252 tree = &BTRFS_I(inode)->ordered_tree;
253 mutex_lock(&tree->mutex);
254 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
255 GFP_NOFS);
256 node = tree_search(tree, file_offset);
dc17ff8f 257 if (!node) {
e6dcd2dc
CM
258 ret = 1;
259 goto out;
dc17ff8f
CM
260 }
261
e6dcd2dc
CM
262 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
263 if (!offset_in_entry(entry, file_offset)) {
264 ret = 1;
265 goto out;
dc17ff8f 266 }
e6dcd2dc
CM
267
268 ret = test_range_bit(io_tree, entry->file_offset,
269 entry->file_offset + entry->len - 1,
270 EXTENT_ORDERED, 0);
e6dcd2dc
CM
271 if (ret == 0)
272 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
273out:
274 mutex_unlock(&tree->mutex);
275 return ret == 0;
276}
dc17ff8f 277
eb84ae03
CM
278/*
279 * used to drop a reference on an ordered extent. This will free
280 * the extent if the last reference is dropped
281 */
e6dcd2dc
CM
282int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
283{
ba1da2f4
CM
284 struct list_head *cur;
285 struct btrfs_ordered_sum *sum;
286
287 if (atomic_dec_and_test(&entry->refs)) {
288 while(!list_empty(&entry->list)) {
289 cur = entry->list.next;
290 sum = list_entry(cur, struct btrfs_ordered_sum, list);
291 list_del(&sum->list);
292 kfree(sum);
293 }
e6dcd2dc 294 kfree(entry);
ba1da2f4 295 }
e6dcd2dc 296 return 0;
dc17ff8f 297}
cee36a03 298
eb84ae03
CM
299/*
300 * remove an ordered extent from the tree. No references are dropped
301 * but, anyone waiting on this extent is woken up.
302 */
e6dcd2dc
CM
303int btrfs_remove_ordered_extent(struct inode *inode,
304 struct btrfs_ordered_extent *entry)
cee36a03 305{
e6dcd2dc 306 struct btrfs_ordered_inode_tree *tree;
cee36a03 307 struct rb_node *node;
cee36a03 308
e6dcd2dc
CM
309 tree = &BTRFS_I(inode)->ordered_tree;
310 mutex_lock(&tree->mutex);
311 node = &entry->rb_node;
cee36a03 312 rb_erase(node, &tree->tree);
e6dcd2dc
CM
313 tree->last = NULL;
314 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885
CM
315
316 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
317 list_del_init(&entry->root_extent_list);
318 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
319
e6dcd2dc
CM
320 mutex_unlock(&tree->mutex);
321 wake_up(&entry->wait);
322 return 0;
cee36a03
CM
323}
324
d352ac68
CM
325/*
326 * wait for all the ordered extents in a root. This is done when balancing
327 * space between drives.
328 */
7ea394f1 329int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
3eaa2885
CM
330{
331 struct list_head splice;
332 struct list_head *cur;
333 struct btrfs_ordered_extent *ordered;
334 struct inode *inode;
335
336 INIT_LIST_HEAD(&splice);
337
338 spin_lock(&root->fs_info->ordered_extent_lock);
339 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 340 while (!list_empty(&splice)) {
3eaa2885
CM
341 cur = splice.next;
342 ordered = list_entry(cur, struct btrfs_ordered_extent,
343 root_extent_list);
7ea394f1
YZ
344 if (nocow_only &&
345 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5b21f2ed
ZY
346 list_move(&ordered->root_extent_list,
347 &root->fs_info->ordered_extents);
7ea394f1
YZ
348 cond_resched_lock(&root->fs_info->ordered_extent_lock);
349 continue;
350 }
351
3eaa2885
CM
352 list_del_init(&ordered->root_extent_list);
353 atomic_inc(&ordered->refs);
3eaa2885
CM
354
355 /*
5b21f2ed 356 * the inode may be getting freed (in sys_unlink path).
3eaa2885 357 */
5b21f2ed
ZY
358 inode = igrab(ordered->inode);
359
3eaa2885
CM
360 spin_unlock(&root->fs_info->ordered_extent_lock);
361
5b21f2ed
ZY
362 if (inode) {
363 btrfs_start_ordered_extent(inode, ordered, 1);
364 btrfs_put_ordered_extent(ordered);
365 iput(inode);
366 } else {
367 btrfs_put_ordered_extent(ordered);
368 }
3eaa2885
CM
369
370 spin_lock(&root->fs_info->ordered_extent_lock);
371 }
372 spin_unlock(&root->fs_info->ordered_extent_lock);
373 return 0;
374}
375
eb84ae03
CM
376/*
377 * Used to start IO or wait for a given ordered extent to finish.
378 *
379 * If wait is one, this effectively waits on page writeback for all the pages
380 * in the extent, and it waits on the io completion code to insert
381 * metadata into the btree corresponding to the extent
382 */
383void btrfs_start_ordered_extent(struct inode *inode,
384 struct btrfs_ordered_extent *entry,
385 int wait)
e6dcd2dc
CM
386{
387 u64 start = entry->file_offset;
388 u64 end = start + entry->len - 1;
e1b81e67 389
eb84ae03
CM
390 /*
391 * pages in the range can be dirty, clean or writeback. We
392 * start IO on any dirty ones so the wait doesn't stall waiting
393 * for pdflush to find them
394 */
f421950f 395 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
c8b97818 396 if (wait) {
e6dcd2dc
CM
397 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
398 &entry->flags));
c8b97818 399 }
e6dcd2dc 400}
cee36a03 401
eb84ae03
CM
402/*
403 * Used to wait on ordered extents across a large range of bytes.
404 */
cb843a6f 405int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
406{
407 u64 end;
e5a2217e
CM
408 u64 orig_end;
409 u64 wait_end;
e6dcd2dc 410 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
411
412 if (start + len < start) {
f421950f 413 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
414 } else {
415 orig_end = start + len - 1;
f421950f
CM
416 if (orig_end > INT_LIMIT(loff_t))
417 orig_end = INT_LIMIT(loff_t);
e5a2217e 418 }
f421950f 419 wait_end = orig_end;
4a096752 420again:
e5a2217e
CM
421 /* start IO across the range first to instantiate any delalloc
422 * extents
423 */
f421950f
CM
424 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
425
426 btrfs_wait_on_page_writeback_range(inode->i_mapping,
427 start >> PAGE_CACHE_SHIFT,
428 orig_end >> PAGE_CACHE_SHIFT);
e5a2217e 429
f421950f 430 end = orig_end;
e6dcd2dc
CM
431 while(1) {
432 ordered = btrfs_lookup_first_ordered_extent(inode, end);
433 if (!ordered) {
434 break;
435 }
e5a2217e 436 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
437 btrfs_put_ordered_extent(ordered);
438 break;
439 }
440 if (ordered->file_offset + ordered->len < start) {
441 btrfs_put_ordered_extent(ordered);
442 break;
443 }
e5a2217e 444 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
445 end = ordered->file_offset;
446 btrfs_put_ordered_extent(ordered);
e5a2217e 447 if (end == 0 || end == start)
e6dcd2dc
CM
448 break;
449 end--;
450 }
4a096752
CM
451 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
452 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
453 printk("inode %lu still ordered or delalloc after wait "
454 "%llu %llu\n", inode->i_ino,
455 (unsigned long long)start,
456 (unsigned long long)orig_end);
457 goto again;
458 }
cb843a6f 459 return 0;
cee36a03
CM
460}
461
eb84ae03
CM
462/*
463 * find an ordered extent corresponding to file_offset. return NULL if
464 * nothing is found, otherwise take a reference on the extent and return it
465 */
e6dcd2dc
CM
466struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
467 u64 file_offset)
468{
469 struct btrfs_ordered_inode_tree *tree;
470 struct rb_node *node;
471 struct btrfs_ordered_extent *entry = NULL;
472
473 tree = &BTRFS_I(inode)->ordered_tree;
474 mutex_lock(&tree->mutex);
475 node = tree_search(tree, file_offset);
476 if (!node)
477 goto out;
478
479 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
480 if (!offset_in_entry(entry, file_offset))
481 entry = NULL;
482 if (entry)
483 atomic_inc(&entry->refs);
484out:
485 mutex_unlock(&tree->mutex);
486 return entry;
487}
488
eb84ae03
CM
489/*
490 * lookup and return any extent before 'file_offset'. NULL is returned
491 * if none is found
492 */
e6dcd2dc
CM
493struct btrfs_ordered_extent *
494btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
495{
496 struct btrfs_ordered_inode_tree *tree;
497 struct rb_node *node;
498 struct btrfs_ordered_extent *entry = NULL;
499
500 tree = &BTRFS_I(inode)->ordered_tree;
501 mutex_lock(&tree->mutex);
502 node = tree_search(tree, file_offset);
503 if (!node)
504 goto out;
505
506 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
507 atomic_inc(&entry->refs);
508out:
509 mutex_unlock(&tree->mutex);
510 return entry;
81d7ed29 511}
dbe674a9 512
eb84ae03
CM
513/*
514 * After an extent is done, call this to conditionally update the on disk
515 * i_size. i_size is updated to cover any fully written part of the file.
516 */
dbe674a9
CM
517int btrfs_ordered_update_i_size(struct inode *inode,
518 struct btrfs_ordered_extent *ordered)
519{
520 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
521 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
522 u64 disk_i_size;
523 u64 new_i_size;
524 u64 i_size_test;
525 struct rb_node *node;
526 struct btrfs_ordered_extent *test;
527
528 mutex_lock(&tree->mutex);
529 disk_i_size = BTRFS_I(inode)->disk_i_size;
530
531 /*
532 * if the disk i_size is already at the inode->i_size, or
533 * this ordered extent is inside the disk i_size, we're done
534 */
535 if (disk_i_size >= inode->i_size ||
536 ordered->file_offset + ordered->len <= disk_i_size) {
537 goto out;
538 }
539
540 /*
541 * we can't update the disk_isize if there are delalloc bytes
542 * between disk_i_size and this ordered extent
543 */
544 if (test_range_bit(io_tree, disk_i_size,
545 ordered->file_offset + ordered->len - 1,
546 EXTENT_DELALLOC, 0)) {
547 goto out;
548 }
549 /*
550 * walk backward from this ordered extent to disk_i_size.
551 * if we find an ordered extent then we can't update disk i_size
552 * yet
553 */
ba1da2f4 554 node = &ordered->rb_node;
dbe674a9 555 while(1) {
ba1da2f4 556 node = rb_prev(node);
dbe674a9
CM
557 if (!node)
558 break;
559 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
560 if (test->file_offset + test->len <= disk_i_size)
561 break;
562 if (test->file_offset >= inode->i_size)
563 break;
564 if (test->file_offset >= disk_i_size)
565 goto out;
566 }
567 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
568
569 /*
570 * at this point, we know we can safely update i_size to at least
571 * the offset from this ordered extent. But, we need to
572 * walk forward and see if ios from higher up in the file have
573 * finished.
574 */
575 node = rb_next(&ordered->rb_node);
576 i_size_test = 0;
577 if (node) {
578 /*
579 * do we have an area where IO might have finished
580 * between our ordered extent and the next one.
581 */
582 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
583 if (test->file_offset > entry_end(ordered)) {
b48652c1 584 i_size_test = test->file_offset;
dbe674a9
CM
585 }
586 } else {
587 i_size_test = i_size_read(inode);
588 }
589
590 /*
591 * i_size_test is the end of a region after this ordered
592 * extent where there are no ordered extents. As long as there
593 * are no delalloc bytes in this area, it is safe to update
594 * disk_i_size to the end of the region.
595 */
596 if (i_size_test > entry_end(ordered) &&
b48652c1 597 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
dbe674a9
CM
598 EXTENT_DELALLOC, 0)) {
599 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
600 }
601 BTRFS_I(inode)->disk_i_size = new_i_size;
602out:
603 mutex_unlock(&tree->mutex);
604 return 0;
605}
ba1da2f4 606
eb84ae03
CM
607/*
608 * search the ordered extents for one corresponding to 'offset' and
609 * try to find a checksum. This is used because we allow pages to
610 * be reclaimed before their checksum is actually put into the btree
611 */
ba1da2f4
CM
612int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
613{
614 struct btrfs_ordered_sum *ordered_sum;
615 struct btrfs_sector_sum *sector_sums;
616 struct btrfs_ordered_extent *ordered;
617 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
618 struct list_head *cur;
3edf7d33
CM
619 unsigned long num_sectors;
620 unsigned long i;
621 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 622 int ret = 1;
ba1da2f4
CM
623
624 ordered = btrfs_lookup_ordered_extent(inode, offset);
625 if (!ordered)
626 return 1;
627
628 mutex_lock(&tree->mutex);
629 list_for_each_prev(cur, &ordered->list) {
630 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
3edf7d33
CM
631 if (offset >= ordered_sum->file_offset) {
632 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 633 sector_sums = ordered_sum->sums;
3edf7d33
CM
634 for (i = 0; i < num_sectors; i++) {
635 if (sector_sums[i].offset == offset) {
3edf7d33
CM
636 *sum = sector_sums[i].sum;
637 ret = 0;
638 goto out;
639 }
640 }
ba1da2f4
CM
641 }
642 }
643out:
644 mutex_unlock(&tree->mutex);
89642229 645 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
646 return ret;
647}
648
f421950f
CM
649
650/**
651 * taken from mm/filemap.c because it isn't exported
652 *
653 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
654 * @mapping: address space structure to write
655 * @start: offset in bytes where the range starts
656 * @end: offset in bytes where the range ends (inclusive)
657 * @sync_mode: enable synchronous operation
658 *
659 * Start writeback against all of a mapping's dirty pages that lie
660 * within the byte offsets <start, end> inclusive.
661 *
662 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
663 * opposed to a regular memory cleansing writeback. The difference between
664 * these two operations is that if a dirty page/buffer is encountered, it must
665 * be waited upon, and not just skipped over.
666 */
667int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
668 loff_t end, int sync_mode)
669{
670 struct writeback_control wbc = {
671 .sync_mode = sync_mode,
672 .nr_to_write = mapping->nrpages * 2,
673 .range_start = start,
674 .range_end = end,
675 .for_writepages = 1,
676 };
677 return btrfs_writepages(mapping, &wbc);
678}
679
680/**
681 * taken from mm/filemap.c because it isn't exported
682 *
683 * wait_on_page_writeback_range - wait for writeback to complete
684 * @mapping: target address_space
685 * @start: beginning page index
686 * @end: ending page index
687 *
688 * Wait for writeback to complete against pages indexed by start->end
689 * inclusive
690 */
691int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
692 pgoff_t start, pgoff_t end)
693{
694 struct pagevec pvec;
695 int nr_pages;
696 int ret = 0;
697 pgoff_t index;
698
699 if (end < start)
700 return 0;
701
702 pagevec_init(&pvec, 0);
703 index = start;
704 while ((index <= end) &&
705 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
706 PAGECACHE_TAG_WRITEBACK,
707 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
708 unsigned i;
709
710 for (i = 0; i < nr_pages; i++) {
711 struct page *page = pvec.pages[i];
712
713 /* until radix tree lookup accepts end_index */
714 if (page->index > end)
715 continue;
716
717 wait_on_page_writeback(page);
718 if (PageError(page))
719 ret = -EIO;
720 }
721 pagevec_release(&pvec);
722 cond_resched();
723 }
724
725 /* Check for outstanding write errors */
726 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
727 ret = -ENOSPC;
728 if (test_and_clear_bit(AS_EIO, &mapping->flags))
729 ret = -EIO;
730
731 return ret;
732}