]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ordered-data.c
Btrfs: check if we can nocow if we don't have data space
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
199c2a9c 27#include "disk-io.h"
dc17ff8f 28
6352b91d
MX
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
e6dcd2dc 31static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 32{
e6dcd2dc
CM
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
dc17ff8f
CM
36}
37
d352ac68
CM
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
e6dcd2dc
CM
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
dc17ff8f 43{
d397712b
CM
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
e6dcd2dc 46 struct btrfs_ordered_extent *entry;
dc17ff8f 47
d397712b 48 while (*p) {
dc17ff8f 49 parent = *p;
e6dcd2dc 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 51
e6dcd2dc 52 if (file_offset < entry->file_offset)
dc17ff8f 53 p = &(*p)->rb_left;
e6dcd2dc 54 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
43c04fb1
JM
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", (unsigned long long)offset);
71}
72
d352ac68
CM
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
e6dcd2dc
CM
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
dc17ff8f 79{
d397712b 80 struct rb_node *n = root->rb_node;
dc17ff8f 81 struct rb_node *prev = NULL;
e6dcd2dc
CM
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 85
d397712b 86 while (n) {
e6dcd2dc 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
88 prev = n;
89 prev_entry = entry;
dc17ff8f 90
e6dcd2dc 91 if (file_offset < entry->file_offset)
dc17ff8f 92 n = n->rb_left;
e6dcd2dc 93 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
d397712b 101 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
d397712b 115 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
dc17ff8f
CM
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
d352ac68
CM
127/*
128 * helper to check if a given offset is inside a given entry
129 */
e6dcd2dc
CM
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
4b46fce2
JB
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
d352ac68
CM
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
e6dcd2dc
CM
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
dc17ff8f 153{
e6dcd2dc 154 struct rb_root *root = &tree->tree;
c87fb6fd 155 struct rb_node *prev = NULL;
dc17ff8f 156 struct rb_node *ret;
e6dcd2dc
CM
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 166 if (!ret)
e6dcd2dc
CM
167 ret = prev;
168 if (ret)
169 tree->last = ret;
dc17ff8f
CM
170 return ret;
171}
172
eb84ae03
CM
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
eb84ae03
CM
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
4b46fce2
JB
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
261507a0 186 int type, int dio, int compress_type)
dc17ff8f 187{
199c2a9c 188 struct btrfs_root *root = BTRFS_I(inode)->root;
dc17ff8f 189 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
dc17ff8f 192
e6dcd2dc 193 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
195 if (!entry)
196 return -ENOMEM;
197
e6dcd2dc
CM
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
2ab28f32
JB
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
c8b97818 204 entry->disk_len = disk_len;
8b62b72b 205 entry->bytes_left = len;
5fd02043 206 entry->inode = igrab(inode);
261507a0 207 entry->compress_type = compress_type;
d899e052 208 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 209 set_bit(type, &entry->flags);
3eaa2885 210
4b46fce2
JB
211 if (dio)
212 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213
e6dcd2dc
CM
214 /* one ref for the tree */
215 atomic_set(&entry->refs, 1);
216 init_waitqueue_head(&entry->wait);
217 INIT_LIST_HEAD(&entry->list);
3eaa2885 218 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
219 INIT_LIST_HEAD(&entry->work_list);
220 init_completion(&entry->completion);
2ab28f32 221 INIT_LIST_HEAD(&entry->log_list);
dc17ff8f 222
1abe9b8a 223 trace_btrfs_ordered_extent_add(inode, entry);
224
5fd02043 225 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
226 node = tree_insert(&tree->tree, file_offset,
227 &entry->rb_node);
43c04fb1
JM
228 if (node)
229 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 230 spin_unlock_irq(&tree->lock);
d397712b 231
199c2a9c 232 spin_lock(&root->ordered_extent_lock);
3eaa2885 233 list_add_tail(&entry->root_extent_list,
199c2a9c
MX
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
237 spin_lock(&root->fs_info->ordered_root_lock);
238 BUG_ON(!list_empty(&root->ordered_root));
239 list_add_tail(&root->ordered_root,
240 &root->fs_info->ordered_roots);
241 spin_unlock(&root->fs_info->ordered_root_lock);
242 }
243 spin_unlock(&root->ordered_extent_lock);
3eaa2885 244
dc17ff8f
CM
245 return 0;
246}
247
4b46fce2
JB
248int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249 u64 start, u64 len, u64 disk_len, int type)
250{
251 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
252 disk_len, type, 0,
253 BTRFS_COMPRESS_NONE);
4b46fce2
JB
254}
255
256int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257 u64 start, u64 len, u64 disk_len, int type)
258{
259 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
260 disk_len, type, 1,
261 BTRFS_COMPRESS_NONE);
262}
263
264int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265 u64 start, u64 len, u64 disk_len,
266 int type, int compress_type)
267{
268 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 disk_len, type, 0,
270 compress_type);
4b46fce2
JB
271}
272
eb84ae03
CM
273/*
274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
275 * when an ordered extent is finished. If the list covers more than one
276 * ordered extent, it is split across multiples.
eb84ae03 277 */
143bede5
JM
278void btrfs_add_ordered_sum(struct inode *inode,
279 struct btrfs_ordered_extent *entry,
280 struct btrfs_ordered_sum *sum)
dc17ff8f 281{
e6dcd2dc 282 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 283
e6dcd2dc 284 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 285 spin_lock_irq(&tree->lock);
e6dcd2dc 286 list_add_tail(&sum->list, &entry->list);
2ab28f32
JB
287 WARN_ON(entry->csum_bytes_left < sum->len);
288 entry->csum_bytes_left -= sum->len;
289 if (entry->csum_bytes_left == 0)
290 wake_up(&entry->wait);
5fd02043 291 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
292}
293
163cf09c
CM
294/*
295 * this is used to account for finished IO across a given range
296 * of the file. The IO may span ordered extents. If
297 * a given ordered_extent is completely done, 1 is returned, otherwise
298 * 0.
299 *
300 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
301 * to make sure this function only returns 1 once for a given ordered extent.
302 *
303 * file_offset is updated to one byte past the range that is recorded as
304 * complete. This allows you to walk forward in the file.
305 */
306int btrfs_dec_test_first_ordered_pending(struct inode *inode,
307 struct btrfs_ordered_extent **cached,
5fd02043 308 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
309{
310 struct btrfs_ordered_inode_tree *tree;
311 struct rb_node *node;
312 struct btrfs_ordered_extent *entry = NULL;
313 int ret;
5fd02043 314 unsigned long flags;
163cf09c
CM
315 u64 dec_end;
316 u64 dec_start;
317 u64 to_dec;
318
319 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 320 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
321 node = tree_search(tree, *file_offset);
322 if (!node) {
323 ret = 1;
324 goto out;
325 }
326
327 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
328 if (!offset_in_entry(entry, *file_offset)) {
329 ret = 1;
330 goto out;
331 }
332
333 dec_start = max(*file_offset, entry->file_offset);
334 dec_end = min(*file_offset + io_size, entry->file_offset +
335 entry->len);
336 *file_offset = dec_end;
337 if (dec_start > dec_end) {
338 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
339 (unsigned long long)dec_start,
340 (unsigned long long)dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
345 (unsigned long long)entry->bytes_left,
346 (unsigned long long)to_dec);
347 }
348 entry->bytes_left -= to_dec;
5fd02043
JB
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
163cf09c
CM
352 if (entry->bytes_left == 0)
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 else
355 ret = 1;
356out:
357 if (!ret && cached && entry) {
358 *cached = entry;
359 atomic_inc(&entry->refs);
360 }
5fd02043 361 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
362 return ret == 0;
363}
364
eb84ae03
CM
365/*
366 * this is used to account for finished IO across a given range
367 * of the file. The IO should not span ordered extents. If
368 * a given ordered_extent is completely done, 1 is returned, otherwise
369 * 0.
370 *
371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372 * to make sure this function only returns 1 once for a given ordered extent.
373 */
e6dcd2dc 374int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 375 struct btrfs_ordered_extent **cached,
5fd02043 376 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 377{
e6dcd2dc 378 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 379 struct rb_node *node;
5a1a3df1 380 struct btrfs_ordered_extent *entry = NULL;
5fd02043 381 unsigned long flags;
e6dcd2dc
CM
382 int ret;
383
384 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
385 spin_lock_irqsave(&tree->lock, flags);
386 if (cached && *cached) {
387 entry = *cached;
388 goto have_entry;
389 }
390
e6dcd2dc 391 node = tree_search(tree, file_offset);
dc17ff8f 392 if (!node) {
e6dcd2dc
CM
393 ret = 1;
394 goto out;
dc17ff8f
CM
395 }
396
e6dcd2dc 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 398have_entry:
e6dcd2dc
CM
399 if (!offset_in_entry(entry, file_offset)) {
400 ret = 1;
401 goto out;
dc17ff8f 402 }
e6dcd2dc 403
8b62b72b
CM
404 if (io_size > entry->bytes_left) {
405 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
406 (unsigned long long)entry->bytes_left,
407 (unsigned long long)io_size);
408 }
409 entry->bytes_left -= io_size;
5fd02043
JB
410 if (!uptodate)
411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412
8b62b72b 413 if (entry->bytes_left == 0)
e6dcd2dc 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
415 else
416 ret = 1;
e6dcd2dc 417out:
5a1a3df1
JB
418 if (!ret && cached && entry) {
419 *cached = entry;
420 atomic_inc(&entry->refs);
421 }
5fd02043 422 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
423 return ret == 0;
424}
dc17ff8f 425
2ab28f32
JB
426/* Needs to either be called under a log transaction or the log_mutex */
427void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
428{
429 struct btrfs_ordered_inode_tree *tree;
430 struct btrfs_ordered_extent *ordered;
431 struct rb_node *n;
432 int index = log->log_transid % 2;
433
434 tree = &BTRFS_I(inode)->ordered_tree;
435 spin_lock_irq(&tree->lock);
436 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
437 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
438 spin_lock(&log->log_extents_lock[index]);
439 if (list_empty(&ordered->log_list)) {
440 list_add_tail(&ordered->log_list, &log->logged_list[index]);
441 atomic_inc(&ordered->refs);
442 }
443 spin_unlock(&log->log_extents_lock[index]);
444 }
445 spin_unlock_irq(&tree->lock);
446}
447
448void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
449{
450 struct btrfs_ordered_extent *ordered;
451 int index = transid % 2;
452
453 spin_lock_irq(&log->log_extents_lock[index]);
454 while (!list_empty(&log->logged_list[index])) {
455 ordered = list_first_entry(&log->logged_list[index],
456 struct btrfs_ordered_extent,
457 log_list);
458 list_del_init(&ordered->log_list);
459 spin_unlock_irq(&log->log_extents_lock[index]);
460 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
461 &ordered->flags));
462 btrfs_put_ordered_extent(ordered);
463 spin_lock_irq(&log->log_extents_lock[index]);
464 }
465 spin_unlock_irq(&log->log_extents_lock[index]);
466}
467
468void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
469{
470 struct btrfs_ordered_extent *ordered;
471 int index = transid % 2;
472
473 spin_lock_irq(&log->log_extents_lock[index]);
474 while (!list_empty(&log->logged_list[index])) {
475 ordered = list_first_entry(&log->logged_list[index],
476 struct btrfs_ordered_extent,
477 log_list);
478 list_del_init(&ordered->log_list);
479 spin_unlock_irq(&log->log_extents_lock[index]);
480 btrfs_put_ordered_extent(ordered);
481 spin_lock_irq(&log->log_extents_lock[index]);
482 }
483 spin_unlock_irq(&log->log_extents_lock[index]);
484}
485
eb84ae03
CM
486/*
487 * used to drop a reference on an ordered extent. This will free
488 * the extent if the last reference is dropped
489 */
143bede5 490void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 491{
ba1da2f4
CM
492 struct list_head *cur;
493 struct btrfs_ordered_sum *sum;
494
1abe9b8a 495 trace_btrfs_ordered_extent_put(entry->inode, entry);
496
ba1da2f4 497 if (atomic_dec_and_test(&entry->refs)) {
5fd02043
JB
498 if (entry->inode)
499 btrfs_add_delayed_iput(entry->inode);
d397712b 500 while (!list_empty(&entry->list)) {
ba1da2f4
CM
501 cur = entry->list.next;
502 sum = list_entry(cur, struct btrfs_ordered_sum, list);
503 list_del(&sum->list);
504 kfree(sum);
505 }
6352b91d 506 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 507 }
dc17ff8f 508}
cee36a03 509
eb84ae03
CM
510/*
511 * remove an ordered extent from the tree. No references are dropped
5fd02043 512 * and waiters are woken up.
eb84ae03 513 */
5fd02043
JB
514void btrfs_remove_ordered_extent(struct inode *inode,
515 struct btrfs_ordered_extent *entry)
cee36a03 516{
e6dcd2dc 517 struct btrfs_ordered_inode_tree *tree;
287a0ab9 518 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 519 struct rb_node *node;
cee36a03 520
e6dcd2dc 521 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 522 spin_lock_irq(&tree->lock);
e6dcd2dc 523 node = &entry->rb_node;
cee36a03 524 rb_erase(node, &tree->tree);
e6dcd2dc
CM
525 tree->last = NULL;
526 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 527 spin_unlock_irq(&tree->lock);
3eaa2885 528
199c2a9c 529 spin_lock(&root->ordered_extent_lock);
3eaa2885 530 list_del_init(&entry->root_extent_list);
199c2a9c 531 root->nr_ordered_extents--;
5a3f23d5 532
1abe9b8a 533 trace_btrfs_ordered_extent_remove(inode, entry);
534
5a3f23d5
CM
535 /*
536 * we have no more ordered extents for this inode and
537 * no dirty pages. We can safely remove it from the
538 * list of ordered extents
539 */
540 if (RB_EMPTY_ROOT(&tree->tree) &&
541 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
542 list_del_init(&BTRFS_I(inode)->ordered_operations);
543 }
199c2a9c
MX
544
545 if (!root->nr_ordered_extents) {
546 spin_lock(&root->fs_info->ordered_root_lock);
547 BUG_ON(list_empty(&root->ordered_root));
548 list_del_init(&root->ordered_root);
549 spin_unlock(&root->fs_info->ordered_root_lock);
550 }
551 spin_unlock(&root->ordered_extent_lock);
e6dcd2dc 552 wake_up(&entry->wait);
cee36a03
CM
553}
554
9afab882
MX
555static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556{
557 struct btrfs_ordered_extent *ordered;
558
559 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
561 complete(&ordered->completion);
562}
563
d352ac68
CM
564/*
565 * wait for all the ordered extents in a root. This is done when balancing
566 * space between drives.
567 */
6bbe3a9c 568void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
3eaa2885 569{
9afab882 570 struct list_head splice, works;
9afab882 571 struct btrfs_ordered_extent *ordered, *next;
3eaa2885
CM
572 struct inode *inode;
573
574 INIT_LIST_HEAD(&splice);
9afab882 575 INIT_LIST_HEAD(&works);
3eaa2885 576
db1d607d 577 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c
MX
578 spin_lock(&root->ordered_extent_lock);
579 list_splice_init(&root->ordered_extents, &splice);
5b21f2ed 580 while (!list_empty(&splice)) {
199c2a9c
MX
581 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
582 root_extent_list);
583 list_move_tail(&ordered->root_extent_list,
584 &root->ordered_extents);
3eaa2885 585 /*
5b21f2ed 586 * the inode may be getting freed (in sys_unlink path).
3eaa2885 587 */
5b21f2ed 588 inode = igrab(ordered->inode);
199c2a9c
MX
589 if (!inode) {
590 cond_resched_lock(&root->ordered_extent_lock);
591 continue;
592 }
5b21f2ed 593
199c2a9c
MX
594 atomic_inc(&ordered->refs);
595 spin_unlock(&root->ordered_extent_lock);
3eaa2885 596
199c2a9c
MX
597 ordered->flush_work.func = btrfs_run_ordered_extent_work;
598 list_add_tail(&ordered->work_list, &works);
599 btrfs_queue_worker(&root->fs_info->flush_workers,
600 &ordered->flush_work);
3eaa2885 601
9afab882 602 cond_resched();
199c2a9c 603 spin_lock(&root->ordered_extent_lock);
3eaa2885 604 }
199c2a9c 605 spin_unlock(&root->ordered_extent_lock);
9afab882
MX
606
607 list_for_each_entry_safe(ordered, next, &works, work_list) {
608 list_del_init(&ordered->work_list);
609 wait_for_completion(&ordered->completion);
610
611 inode = ordered->inode;
612 btrfs_put_ordered_extent(ordered);
613 if (delay_iput)
614 btrfs_add_delayed_iput(inode);
615 else
616 iput(inode);
617
618 cond_resched();
619 }
db1d607d 620 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3eaa2885
CM
621}
622
199c2a9c
MX
623void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info,
624 int delay_iput)
625{
626 struct btrfs_root *root;
627 struct list_head splice;
628
629 INIT_LIST_HEAD(&splice);
630
631 spin_lock(&fs_info->ordered_root_lock);
632 list_splice_init(&fs_info->ordered_roots, &splice);
633 while (!list_empty(&splice)) {
634 root = list_first_entry(&splice, struct btrfs_root,
635 ordered_root);
636 root = btrfs_grab_fs_root(root);
637 BUG_ON(!root);
638 list_move_tail(&root->ordered_root,
639 &fs_info->ordered_roots);
640 spin_unlock(&fs_info->ordered_root_lock);
641
642 btrfs_wait_ordered_extents(root, delay_iput);
643 btrfs_put_fs_root(root);
644
645 spin_lock(&fs_info->ordered_root_lock);
646 }
647 spin_unlock(&fs_info->ordered_root_lock);
648}
649
5a3f23d5
CM
650/*
651 * this is used during transaction commit to write all the inodes
652 * added to the ordered operation list. These files must be fully on
653 * disk before the transaction commits.
654 *
655 * we have two modes here, one is to just start the IO via filemap_flush
656 * and the other is to wait for all the io. When we wait, we have an
657 * extra check to make sure the ordered operation list really is empty
658 * before we return
659 */
569e0f35
JB
660int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
661 struct btrfs_root *root, int wait)
5a3f23d5
CM
662{
663 struct btrfs_inode *btrfs_inode;
664 struct inode *inode;
569e0f35 665 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5 666 struct list_head splice;
25287e0a
MX
667 struct list_head works;
668 struct btrfs_delalloc_work *work, *next;
669 int ret = 0;
5a3f23d5
CM
670
671 INIT_LIST_HEAD(&splice);
25287e0a 672 INIT_LIST_HEAD(&works);
5a3f23d5
CM
673
674 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 675 spin_lock(&root->fs_info->ordered_root_lock);
569e0f35 676 list_splice_init(&cur_trans->ordered_operations, &splice);
5a3f23d5
CM
677 while (!list_empty(&splice)) {
678 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
679 ordered_operations);
5a3f23d5
CM
680 inode = &btrfs_inode->vfs_inode;
681
682 list_del_init(&btrfs_inode->ordered_operations);
683
684 /*
685 * the inode may be getting freed (in sys_unlink path).
686 */
687 inode = igrab(inode);
25287e0a
MX
688 if (!inode)
689 continue;
5b947f1b
MX
690
691 if (!wait)
692 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 693 &cur_trans->ordered_operations);
199c2a9c 694 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 695
25287e0a
MX
696 work = btrfs_alloc_delalloc_work(inode, wait, 1);
697 if (!work) {
199c2a9c 698 spin_lock(&root->fs_info->ordered_root_lock);
25287e0a
MX
699 if (list_empty(&BTRFS_I(inode)->ordered_operations))
700 list_add_tail(&btrfs_inode->ordered_operations,
701 &splice);
25287e0a 702 list_splice_tail(&splice,
569e0f35 703 &cur_trans->ordered_operations);
199c2a9c 704 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
705 ret = -ENOMEM;
706 goto out;
5a3f23d5 707 }
25287e0a
MX
708 list_add_tail(&work->list, &works);
709 btrfs_queue_worker(&root->fs_info->flush_workers,
710 &work->work);
5a3f23d5
CM
711
712 cond_resched();
199c2a9c 713 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 714 }
199c2a9c 715 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
716out:
717 list_for_each_entry_safe(work, next, &works, list) {
718 list_del_init(&work->list);
719 btrfs_wait_and_free_delalloc_work(work);
720 }
5a3f23d5 721 mutex_unlock(&root->fs_info->ordered_operations_mutex);
25287e0a 722 return ret;
5a3f23d5
CM
723}
724
eb84ae03
CM
725/*
726 * Used to start IO or wait for a given ordered extent to finish.
727 *
728 * If wait is one, this effectively waits on page writeback for all the pages
729 * in the extent, and it waits on the io completion code to insert
730 * metadata into the btree corresponding to the extent
731 */
732void btrfs_start_ordered_extent(struct inode *inode,
733 struct btrfs_ordered_extent *entry,
734 int wait)
e6dcd2dc
CM
735{
736 u64 start = entry->file_offset;
737 u64 end = start + entry->len - 1;
e1b81e67 738
1abe9b8a 739 trace_btrfs_ordered_extent_start(inode, entry);
740
eb84ae03
CM
741 /*
742 * pages in the range can be dirty, clean or writeback. We
743 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 744 * for the flusher thread to find them
eb84ae03 745 */
4b46fce2
JB
746 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
747 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 748 if (wait) {
e6dcd2dc
CM
749 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
750 &entry->flags));
c8b97818 751 }
e6dcd2dc 752}
cee36a03 753
eb84ae03
CM
754/*
755 * Used to wait on ordered extents across a large range of bytes.
756 */
143bede5 757void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
758{
759 u64 end;
e5a2217e 760 u64 orig_end;
e6dcd2dc 761 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
762
763 if (start + len < start) {
f421950f 764 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
765 } else {
766 orig_end = start + len - 1;
f421950f
CM
767 if (orig_end > INT_LIMIT(loff_t))
768 orig_end = INT_LIMIT(loff_t);
e5a2217e 769 }
551ebb2d 770
e5a2217e
CM
771 /* start IO across the range first to instantiate any delalloc
772 * extents
773 */
7ddf5a42
JB
774 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
775
776 /*
777 * So with compression we will find and lock a dirty page and clear the
778 * first one as dirty, setup an async extent, and immediately return
779 * with the entire range locked but with nobody actually marked with
780 * writeback. So we can't just filemap_write_and_wait_range() and
781 * expect it to work since it will just kick off a thread to do the
782 * actual work. So we need to call filemap_fdatawrite_range _again_
783 * since it will wait on the page lock, which won't be unlocked until
784 * after the pages have been marked as writeback and so we're good to go
785 * from there. We have to do this otherwise we'll miss the ordered
786 * extents and that results in badness. Please Josef, do not think you
787 * know better and pull this out at some point in the future, it is
788 * right and you are wrong.
789 */
790 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
791 &BTRFS_I(inode)->runtime_flags))
792 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
793
794 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 795
f421950f 796 end = orig_end;
d397712b 797 while (1) {
e6dcd2dc 798 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 799 if (!ordered)
e6dcd2dc 800 break;
e5a2217e 801 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
802 btrfs_put_ordered_extent(ordered);
803 break;
804 }
805 if (ordered->file_offset + ordered->len < start) {
806 btrfs_put_ordered_extent(ordered);
807 break;
808 }
e5a2217e 809 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
810 end = ordered->file_offset;
811 btrfs_put_ordered_extent(ordered);
e5a2217e 812 if (end == 0 || end == start)
e6dcd2dc
CM
813 break;
814 end--;
815 }
cee36a03
CM
816}
817
eb84ae03
CM
818/*
819 * find an ordered extent corresponding to file_offset. return NULL if
820 * nothing is found, otherwise take a reference on the extent and return it
821 */
e6dcd2dc
CM
822struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
823 u64 file_offset)
824{
825 struct btrfs_ordered_inode_tree *tree;
826 struct rb_node *node;
827 struct btrfs_ordered_extent *entry = NULL;
828
829 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 830 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
831 node = tree_search(tree, file_offset);
832 if (!node)
833 goto out;
834
835 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
836 if (!offset_in_entry(entry, file_offset))
837 entry = NULL;
838 if (entry)
839 atomic_inc(&entry->refs);
840out:
5fd02043 841 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
842 return entry;
843}
844
4b46fce2
JB
845/* Since the DIO code tries to lock a wide area we need to look for any ordered
846 * extents that exist in the range, rather than just the start of the range.
847 */
848struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
849 u64 file_offset,
850 u64 len)
851{
852 struct btrfs_ordered_inode_tree *tree;
853 struct rb_node *node;
854 struct btrfs_ordered_extent *entry = NULL;
855
856 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 857 spin_lock_irq(&tree->lock);
4b46fce2
JB
858 node = tree_search(tree, file_offset);
859 if (!node) {
860 node = tree_search(tree, file_offset + len);
861 if (!node)
862 goto out;
863 }
864
865 while (1) {
866 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
867 if (range_overlaps(entry, file_offset, len))
868 break;
869
870 if (entry->file_offset >= file_offset + len) {
871 entry = NULL;
872 break;
873 }
874 entry = NULL;
875 node = rb_next(node);
876 if (!node)
877 break;
878 }
879out:
880 if (entry)
881 atomic_inc(&entry->refs);
5fd02043 882 spin_unlock_irq(&tree->lock);
4b46fce2
JB
883 return entry;
884}
885
eb84ae03
CM
886/*
887 * lookup and return any extent before 'file_offset'. NULL is returned
888 * if none is found
889 */
e6dcd2dc 890struct btrfs_ordered_extent *
d397712b 891btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
892{
893 struct btrfs_ordered_inode_tree *tree;
894 struct rb_node *node;
895 struct btrfs_ordered_extent *entry = NULL;
896
897 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 898 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
899 node = tree_search(tree, file_offset);
900 if (!node)
901 goto out;
902
903 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
904 atomic_inc(&entry->refs);
905out:
5fd02043 906 spin_unlock_irq(&tree->lock);
e6dcd2dc 907 return entry;
81d7ed29 908}
dbe674a9 909
eb84ae03
CM
910/*
911 * After an extent is done, call this to conditionally update the on disk
912 * i_size. i_size is updated to cover any fully written part of the file.
913 */
c2167754 914int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
915 struct btrfs_ordered_extent *ordered)
916{
917 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
918 u64 disk_i_size;
919 u64 new_i_size;
c2167754 920 u64 i_size = i_size_read(inode);
dbe674a9 921 struct rb_node *node;
c2167754 922 struct rb_node *prev = NULL;
dbe674a9 923 struct btrfs_ordered_extent *test;
c2167754
YZ
924 int ret = 1;
925
926 if (ordered)
927 offset = entry_end(ordered);
a038fab0
YZ
928 else
929 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 930
5fd02043 931 spin_lock_irq(&tree->lock);
dbe674a9
CM
932 disk_i_size = BTRFS_I(inode)->disk_i_size;
933
c2167754
YZ
934 /* truncate file */
935 if (disk_i_size > i_size) {
936 BTRFS_I(inode)->disk_i_size = i_size;
937 ret = 0;
938 goto out;
939 }
940
dbe674a9
CM
941 /*
942 * if the disk i_size is already at the inode->i_size, or
943 * this ordered extent is inside the disk i_size, we're done
944 */
5d1f4020
JB
945 if (disk_i_size == i_size)
946 goto out;
947
948 /*
949 * We still need to update disk_i_size if outstanding_isize is greater
950 * than disk_i_size.
951 */
952 if (offset <= disk_i_size &&
953 (!ordered || ordered->outstanding_isize <= disk_i_size))
dbe674a9 954 goto out;
dbe674a9 955
dbe674a9
CM
956 /*
957 * walk backward from this ordered extent to disk_i_size.
958 * if we find an ordered extent then we can't update disk i_size
959 * yet
960 */
c2167754
YZ
961 if (ordered) {
962 node = rb_prev(&ordered->rb_node);
963 } else {
964 prev = tree_search(tree, offset);
965 /*
966 * we insert file extents without involving ordered struct,
967 * so there should be no ordered struct cover this offset
968 */
969 if (prev) {
970 test = rb_entry(prev, struct btrfs_ordered_extent,
971 rb_node);
972 BUG_ON(offset_in_entry(test, offset));
973 }
974 node = prev;
975 }
5fd02043 976 for (; node; node = rb_prev(node)) {
dbe674a9 977 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
978
979 /* We treat this entry as if it doesnt exist */
980 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
981 continue;
dbe674a9
CM
982 if (test->file_offset + test->len <= disk_i_size)
983 break;
c2167754 984 if (test->file_offset >= i_size)
dbe674a9 985 break;
59fe4f41 986 if (entry_end(test) > disk_i_size) {
b9a8cc5b
MX
987 /*
988 * we don't update disk_i_size now, so record this
989 * undealt i_size. Or we will not know the real
990 * i_size.
991 */
992 if (test->outstanding_isize < offset)
993 test->outstanding_isize = offset;
994 if (ordered &&
995 ordered->outstanding_isize >
996 test->outstanding_isize)
997 test->outstanding_isize =
998 ordered->outstanding_isize;
dbe674a9 999 goto out;
5fd02043 1000 }
dbe674a9 1001 }
b9a8cc5b 1002 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
1003
1004 /*
b9a8cc5b
MX
1005 * Some ordered extents may completed before the current one, and
1006 * we hold the real i_size in ->outstanding_isize.
dbe674a9 1007 */
b9a8cc5b
MX
1008 if (ordered && ordered->outstanding_isize > new_i_size)
1009 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 1010 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 1011 ret = 0;
dbe674a9 1012out:
c2167754 1013 /*
5fd02043
JB
1014 * We need to do this because we can't remove ordered extents until
1015 * after the i_disk_size has been updated and then the inode has been
1016 * updated to reflect the change, so we need to tell anybody who finds
1017 * this ordered extent that we've already done all the real work, we
1018 * just haven't completed all the other work.
c2167754
YZ
1019 */
1020 if (ordered)
5fd02043
JB
1021 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1022 spin_unlock_irq(&tree->lock);
c2167754 1023 return ret;
dbe674a9 1024}
ba1da2f4 1025
eb84ae03
CM
1026/*
1027 * search the ordered extents for one corresponding to 'offset' and
1028 * try to find a checksum. This is used because we allow pages to
1029 * be reclaimed before their checksum is actually put into the btree
1030 */
d20f7043 1031int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
e4100d98 1032 u32 *sum, int len)
ba1da2f4
CM
1033{
1034 struct btrfs_ordered_sum *ordered_sum;
1035 struct btrfs_sector_sum *sector_sums;
1036 struct btrfs_ordered_extent *ordered;
1037 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
1038 unsigned long num_sectors;
1039 unsigned long i;
1040 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
e4100d98 1041 int index = 0;
ba1da2f4
CM
1042
1043 ordered = btrfs_lookup_ordered_extent(inode, offset);
1044 if (!ordered)
e4100d98 1045 return 0;
ba1da2f4 1046
5fd02043 1047 spin_lock_irq(&tree->lock);
c6e30871 1048 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
e4100d98
MX
1049 if (disk_bytenr >= ordered_sum->bytenr &&
1050 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1051 i = (disk_bytenr - ordered_sum->bytenr) >>
1052 inode->i_sb->s_blocksize_bits;
1053 sector_sums = ordered_sum->sums + i;
1054 num_sectors = ordered_sum->len >>
1055 inode->i_sb->s_blocksize_bits;
1056 for (; i < num_sectors; i++) {
d20f7043 1057 if (sector_sums[i].bytenr == disk_bytenr) {
e4100d98
MX
1058 sum[index] = sector_sums[i].sum;
1059 index++;
1060 if (index == len)
1061 goto out;
1062 disk_bytenr += sectorsize;
3edf7d33
CM
1063 }
1064 }
ba1da2f4
CM
1065 }
1066 }
1067out:
5fd02043 1068 spin_unlock_irq(&tree->lock);
89642229 1069 btrfs_put_ordered_extent(ordered);
e4100d98 1070 return index;
ba1da2f4
CM
1071}
1072
f421950f 1073
5a3f23d5
CM
1074/*
1075 * add a given inode to the list of inodes that must be fully on
1076 * disk before a transaction commit finishes.
1077 *
1078 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1079 * used to make sure renamed files are fully on disk.
1080 *
1081 * It is a noop if the inode is already fully on disk.
1082 *
1083 * If trans is not null, we'll do a friendly check for a transaction that
1084 * is already flushing things and force the IO down ourselves.
1085 */
143bede5
JM
1086void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root, struct inode *inode)
5a3f23d5 1088{
569e0f35 1089 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5
CM
1090 u64 last_mod;
1091
1092 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1093
1094 /*
1095 * if this file hasn't been changed since the last transaction
1096 * commit, we can safely return without doing anything
1097 */
1098 if (last_mod < root->fs_info->last_trans_committed)
143bede5 1099 return;
5a3f23d5 1100
199c2a9c 1101 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
1102 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1103 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 1104 &cur_trans->ordered_operations);
5a3f23d5 1105 }
199c2a9c 1106 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 1107}
6352b91d
MX
1108
1109int __init ordered_data_init(void)
1110{
1111 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1112 sizeof(struct btrfs_ordered_extent), 0,
1113 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1114 NULL);
1115 if (!btrfs_ordered_extent_cache)
1116 return -ENOMEM;
25287e0a 1117
6352b91d
MX
1118 return 0;
1119}
1120
1121void ordered_data_exit(void)
1122{
1123 if (btrfs_ordered_extent_cache)
1124 kmem_cache_destroy(btrfs_ordered_extent_cache);
1125}