]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ordered-data.c
Btrfs: introduce btrfs_{start, end}_nocow_write() for each subvolume
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
199c2a9c 27#include "disk-io.h"
dc17ff8f 28
6352b91d
MX
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
e6dcd2dc 31static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 32{
e6dcd2dc
CM
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
dc17ff8f
CM
36}
37
d352ac68
CM
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
e6dcd2dc
CM
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
dc17ff8f 43{
d397712b
CM
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
e6dcd2dc 46 struct btrfs_ordered_extent *entry;
dc17ff8f 47
d397712b 48 while (*p) {
dc17ff8f 49 parent = *p;
e6dcd2dc 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 51
e6dcd2dc 52 if (file_offset < entry->file_offset)
dc17ff8f 53 p = &(*p)->rb_left;
e6dcd2dc 54 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
43c04fb1
JM
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
c1c9ff7c 70 "%llu\n", offset);
43c04fb1
JM
71}
72
d352ac68
CM
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
e6dcd2dc
CM
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
dc17ff8f 79{
d397712b 80 struct rb_node *n = root->rb_node;
dc17ff8f 81 struct rb_node *prev = NULL;
e6dcd2dc
CM
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 85
d397712b 86 while (n) {
e6dcd2dc 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
88 prev = n;
89 prev_entry = entry;
dc17ff8f 90
e6dcd2dc 91 if (file_offset < entry->file_offset)
dc17ff8f 92 n = n->rb_left;
e6dcd2dc 93 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
d397712b 101 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
d397712b 115 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
dc17ff8f
CM
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
d352ac68
CM
127/*
128 * helper to check if a given offset is inside a given entry
129 */
e6dcd2dc
CM
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
4b46fce2
JB
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
d352ac68
CM
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
e6dcd2dc
CM
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
dc17ff8f 153{
e6dcd2dc 154 struct rb_root *root = &tree->tree;
c87fb6fd 155 struct rb_node *prev = NULL;
dc17ff8f 156 struct rb_node *ret;
e6dcd2dc
CM
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 166 if (!ret)
e6dcd2dc
CM
167 ret = prev;
168 if (ret)
169 tree->last = ret;
dc17ff8f
CM
170 return ret;
171}
172
eb84ae03
CM
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
eb84ae03
CM
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
4b46fce2
JB
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
261507a0 186 int type, int dio, int compress_type)
dc17ff8f 187{
199c2a9c 188 struct btrfs_root *root = BTRFS_I(inode)->root;
dc17ff8f 189 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
dc17ff8f 192
e6dcd2dc 193 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
195 if (!entry)
196 return -ENOMEM;
197
e6dcd2dc
CM
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
2ab28f32
JB
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
c8b97818 204 entry->disk_len = disk_len;
8b62b72b 205 entry->bytes_left = len;
5fd02043 206 entry->inode = igrab(inode);
261507a0 207 entry->compress_type = compress_type;
77cef2ec 208 entry->truncated_len = (u64)-1;
d899e052 209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 210 set_bit(type, &entry->flags);
3eaa2885 211
4b46fce2
JB
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
e6dcd2dc
CM
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
3eaa2885 219 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
2ab28f32 222 INIT_LIST_HEAD(&entry->log_list);
dc17ff8f 223
1abe9b8a 224 trace_btrfs_ordered_extent_add(inode, entry);
225
5fd02043 226 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
43c04fb1
JM
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 231 spin_unlock_irq(&tree->lock);
d397712b 232
199c2a9c 233 spin_lock(&root->ordered_extent_lock);
3eaa2885 234 list_add_tail(&entry->root_extent_list,
199c2a9c
MX
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
3eaa2885 245
dc17ff8f
CM
246 return 0;
247}
248
4b46fce2
JB
249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251{
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
4b46fce2
JB
255}
256
257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259{
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263}
264
265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268{
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
4b46fce2
JB
272}
273
eb84ae03
CM
274/*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
eb84ae03 278 */
143bede5
JM
279void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
dc17ff8f 282{
e6dcd2dc 283 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 284
e6dcd2dc 285 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 286 spin_lock_irq(&tree->lock);
e6dcd2dc 287 list_add_tail(&sum->list, &entry->list);
2ab28f32
JB
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
5fd02043 292 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
293}
294
163cf09c
CM
295/*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
5fd02043 309 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
310{
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
5fd02043 315 unsigned long flags;
163cf09c
CM
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 321 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
efe120a0
FH
339 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
163cf09c
CM
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
efe120a0
FH
344 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 "bad ordered accounting left %llu size %llu",
346 entry->bytes_left, to_dec);
163cf09c
CM
347 }
348 entry->bytes_left -= to_dec;
5fd02043
JB
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
163cf09c
CM
352 if (entry->bytes_left == 0)
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 else
355 ret = 1;
356out:
357 if (!ret && cached && entry) {
358 *cached = entry;
359 atomic_inc(&entry->refs);
360 }
5fd02043 361 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
362 return ret == 0;
363}
364
eb84ae03
CM
365/*
366 * this is used to account for finished IO across a given range
367 * of the file. The IO should not span ordered extents. If
368 * a given ordered_extent is completely done, 1 is returned, otherwise
369 * 0.
370 *
371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372 * to make sure this function only returns 1 once for a given ordered extent.
373 */
e6dcd2dc 374int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 375 struct btrfs_ordered_extent **cached,
5fd02043 376 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 377{
e6dcd2dc 378 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 379 struct rb_node *node;
5a1a3df1 380 struct btrfs_ordered_extent *entry = NULL;
5fd02043 381 unsigned long flags;
e6dcd2dc
CM
382 int ret;
383
384 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
385 spin_lock_irqsave(&tree->lock, flags);
386 if (cached && *cached) {
387 entry = *cached;
388 goto have_entry;
389 }
390
e6dcd2dc 391 node = tree_search(tree, file_offset);
dc17ff8f 392 if (!node) {
e6dcd2dc
CM
393 ret = 1;
394 goto out;
dc17ff8f
CM
395 }
396
e6dcd2dc 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 398have_entry:
e6dcd2dc
CM
399 if (!offset_in_entry(entry, file_offset)) {
400 ret = 1;
401 goto out;
dc17ff8f 402 }
e6dcd2dc 403
8b62b72b 404 if (io_size > entry->bytes_left) {
efe120a0
FH
405 btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 "bad ordered accounting left %llu size %llu",
c1c9ff7c 407 entry->bytes_left, io_size);
8b62b72b
CM
408 }
409 entry->bytes_left -= io_size;
5fd02043
JB
410 if (!uptodate)
411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412
8b62b72b 413 if (entry->bytes_left == 0)
e6dcd2dc 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
415 else
416 ret = 1;
e6dcd2dc 417out:
5a1a3df1
JB
418 if (!ret && cached && entry) {
419 *cached = entry;
420 atomic_inc(&entry->refs);
421 }
5fd02043 422 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
423 return ret == 0;
424}
dc17ff8f 425
2ab28f32 426/* Needs to either be called under a log transaction or the log_mutex */
827463c4
MX
427void btrfs_get_logged_extents(struct inode *inode,
428 struct list_head *logged_list)
2ab28f32
JB
429{
430 struct btrfs_ordered_inode_tree *tree;
431 struct btrfs_ordered_extent *ordered;
432 struct rb_node *n;
2ab28f32
JB
433
434 tree = &BTRFS_I(inode)->ordered_tree;
435 spin_lock_irq(&tree->lock);
436 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
437 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
827463c4
MX
438 if (!list_empty(&ordered->log_list))
439 continue;
440 list_add_tail(&ordered->log_list, logged_list);
441 atomic_inc(&ordered->refs);
2ab28f32
JB
442 }
443 spin_unlock_irq(&tree->lock);
444}
445
827463c4
MX
446void btrfs_put_logged_extents(struct list_head *logged_list)
447{
448 struct btrfs_ordered_extent *ordered;
449
450 while (!list_empty(logged_list)) {
451 ordered = list_first_entry(logged_list,
452 struct btrfs_ordered_extent,
453 log_list);
454 list_del_init(&ordered->log_list);
455 btrfs_put_ordered_extent(ordered);
456 }
457}
458
459void btrfs_submit_logged_extents(struct list_head *logged_list,
460 struct btrfs_root *log)
461{
462 int index = log->log_transid % 2;
463
464 spin_lock_irq(&log->log_extents_lock[index]);
465 list_splice_tail(logged_list, &log->logged_list[index]);
466 spin_unlock_irq(&log->log_extents_lock[index]);
467}
468
2ab28f32
JB
469void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
470{
471 struct btrfs_ordered_extent *ordered;
472 int index = transid % 2;
473
474 spin_lock_irq(&log->log_extents_lock[index]);
475 while (!list_empty(&log->logged_list[index])) {
476 ordered = list_first_entry(&log->logged_list[index],
477 struct btrfs_ordered_extent,
478 log_list);
479 list_del_init(&ordered->log_list);
480 spin_unlock_irq(&log->log_extents_lock[index]);
481 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
482 &ordered->flags));
483 btrfs_put_ordered_extent(ordered);
484 spin_lock_irq(&log->log_extents_lock[index]);
485 }
486 spin_unlock_irq(&log->log_extents_lock[index]);
487}
488
489void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
490{
491 struct btrfs_ordered_extent *ordered;
492 int index = transid % 2;
493
494 spin_lock_irq(&log->log_extents_lock[index]);
495 while (!list_empty(&log->logged_list[index])) {
496 ordered = list_first_entry(&log->logged_list[index],
497 struct btrfs_ordered_extent,
498 log_list);
499 list_del_init(&ordered->log_list);
500 spin_unlock_irq(&log->log_extents_lock[index]);
501 btrfs_put_ordered_extent(ordered);
502 spin_lock_irq(&log->log_extents_lock[index]);
503 }
504 spin_unlock_irq(&log->log_extents_lock[index]);
505}
506
eb84ae03
CM
507/*
508 * used to drop a reference on an ordered extent. This will free
509 * the extent if the last reference is dropped
510 */
143bede5 511void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 512{
ba1da2f4
CM
513 struct list_head *cur;
514 struct btrfs_ordered_sum *sum;
515
1abe9b8a 516 trace_btrfs_ordered_extent_put(entry->inode, entry);
517
ba1da2f4 518 if (atomic_dec_and_test(&entry->refs)) {
5fd02043
JB
519 if (entry->inode)
520 btrfs_add_delayed_iput(entry->inode);
d397712b 521 while (!list_empty(&entry->list)) {
ba1da2f4
CM
522 cur = entry->list.next;
523 sum = list_entry(cur, struct btrfs_ordered_sum, list);
524 list_del(&sum->list);
525 kfree(sum);
526 }
6352b91d 527 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 528 }
dc17ff8f 529}
cee36a03 530
eb84ae03
CM
531/*
532 * remove an ordered extent from the tree. No references are dropped
5fd02043 533 * and waiters are woken up.
eb84ae03 534 */
5fd02043
JB
535void btrfs_remove_ordered_extent(struct inode *inode,
536 struct btrfs_ordered_extent *entry)
cee36a03 537{
e6dcd2dc 538 struct btrfs_ordered_inode_tree *tree;
287a0ab9 539 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 540 struct rb_node *node;
cee36a03 541
e6dcd2dc 542 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 543 spin_lock_irq(&tree->lock);
e6dcd2dc 544 node = &entry->rb_node;
cee36a03 545 rb_erase(node, &tree->tree);
1b8e7e45
FDBM
546 if (tree->last == node)
547 tree->last = NULL;
e6dcd2dc 548 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 549 spin_unlock_irq(&tree->lock);
3eaa2885 550
199c2a9c 551 spin_lock(&root->ordered_extent_lock);
3eaa2885 552 list_del_init(&entry->root_extent_list);
199c2a9c 553 root->nr_ordered_extents--;
5a3f23d5 554
1abe9b8a 555 trace_btrfs_ordered_extent_remove(inode, entry);
556
5a3f23d5
CM
557 /*
558 * we have no more ordered extents for this inode and
559 * no dirty pages. We can safely remove it from the
560 * list of ordered extents
561 */
562 if (RB_EMPTY_ROOT(&tree->tree) &&
563 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
93858769 564 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 565 list_del_init(&BTRFS_I(inode)->ordered_operations);
93858769 566 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 567 }
199c2a9c
MX
568
569 if (!root->nr_ordered_extents) {
570 spin_lock(&root->fs_info->ordered_root_lock);
571 BUG_ON(list_empty(&root->ordered_root));
572 list_del_init(&root->ordered_root);
573 spin_unlock(&root->fs_info->ordered_root_lock);
574 }
575 spin_unlock(&root->ordered_extent_lock);
e6dcd2dc 576 wake_up(&entry->wait);
cee36a03
CM
577}
578
d458b054 579static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
9afab882
MX
580{
581 struct btrfs_ordered_extent *ordered;
582
583 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
584 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
585 complete(&ordered->completion);
586}
587
d352ac68
CM
588/*
589 * wait for all the ordered extents in a root. This is done when balancing
590 * space between drives.
591 */
b0244199 592int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
3eaa2885 593{
9afab882 594 struct list_head splice, works;
9afab882 595 struct btrfs_ordered_extent *ordered, *next;
b0244199 596 int count = 0;
3eaa2885
CM
597
598 INIT_LIST_HEAD(&splice);
9afab882 599 INIT_LIST_HEAD(&works);
3eaa2885 600
db1d607d 601 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c
MX
602 spin_lock(&root->ordered_extent_lock);
603 list_splice_init(&root->ordered_extents, &splice);
b0244199 604 while (!list_empty(&splice) && nr) {
199c2a9c
MX
605 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
606 root_extent_list);
607 list_move_tail(&ordered->root_extent_list,
608 &root->ordered_extents);
199c2a9c
MX
609 atomic_inc(&ordered->refs);
610 spin_unlock(&root->ordered_extent_lock);
3eaa2885 611
a44903ab
QW
612 btrfs_init_work(&ordered->flush_work,
613 btrfs_run_ordered_extent_work, NULL, NULL);
199c2a9c 614 list_add_tail(&ordered->work_list, &works);
a44903ab
QW
615 btrfs_queue_work(root->fs_info->flush_workers,
616 &ordered->flush_work);
3eaa2885 617
9afab882 618 cond_resched();
199c2a9c 619 spin_lock(&root->ordered_extent_lock);
b0244199
MX
620 if (nr != -1)
621 nr--;
622 count++;
3eaa2885 623 }
b0244199 624 list_splice_tail(&splice, &root->ordered_extents);
199c2a9c 625 spin_unlock(&root->ordered_extent_lock);
9afab882
MX
626
627 list_for_each_entry_safe(ordered, next, &works, work_list) {
628 list_del_init(&ordered->work_list);
629 wait_for_completion(&ordered->completion);
9afab882 630 btrfs_put_ordered_extent(ordered);
9afab882
MX
631 cond_resched();
632 }
db1d607d 633 mutex_unlock(&root->fs_info->ordered_operations_mutex);
b0244199
MX
634
635 return count;
3eaa2885
CM
636}
637
b0244199 638void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
199c2a9c
MX
639{
640 struct btrfs_root *root;
641 struct list_head splice;
b0244199 642 int done;
199c2a9c
MX
643
644 INIT_LIST_HEAD(&splice);
645
646 spin_lock(&fs_info->ordered_root_lock);
647 list_splice_init(&fs_info->ordered_roots, &splice);
b0244199 648 while (!list_empty(&splice) && nr) {
199c2a9c
MX
649 root = list_first_entry(&splice, struct btrfs_root,
650 ordered_root);
651 root = btrfs_grab_fs_root(root);
652 BUG_ON(!root);
653 list_move_tail(&root->ordered_root,
654 &fs_info->ordered_roots);
655 spin_unlock(&fs_info->ordered_root_lock);
656
b0244199 657 done = btrfs_wait_ordered_extents(root, nr);
199c2a9c
MX
658 btrfs_put_fs_root(root);
659
660 spin_lock(&fs_info->ordered_root_lock);
b0244199
MX
661 if (nr != -1) {
662 nr -= done;
663 WARN_ON(nr < 0);
664 }
199c2a9c 665 }
931aa877 666 list_splice_tail(&splice, &fs_info->ordered_roots);
199c2a9c
MX
667 spin_unlock(&fs_info->ordered_root_lock);
668}
669
5a3f23d5
CM
670/*
671 * this is used during transaction commit to write all the inodes
672 * added to the ordered operation list. These files must be fully on
673 * disk before the transaction commits.
674 *
675 * we have two modes here, one is to just start the IO via filemap_flush
676 * and the other is to wait for all the io. When we wait, we have an
677 * extra check to make sure the ordered operation list really is empty
678 * before we return
679 */
569e0f35
JB
680int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
681 struct btrfs_root *root, int wait)
5a3f23d5
CM
682{
683 struct btrfs_inode *btrfs_inode;
684 struct inode *inode;
569e0f35 685 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5 686 struct list_head splice;
25287e0a
MX
687 struct list_head works;
688 struct btrfs_delalloc_work *work, *next;
689 int ret = 0;
5a3f23d5
CM
690
691 INIT_LIST_HEAD(&splice);
25287e0a 692 INIT_LIST_HEAD(&works);
5a3f23d5 693
9ffba8cd 694 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
199c2a9c 695 spin_lock(&root->fs_info->ordered_root_lock);
569e0f35 696 list_splice_init(&cur_trans->ordered_operations, &splice);
5a3f23d5
CM
697 while (!list_empty(&splice)) {
698 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
699 ordered_operations);
5a3f23d5
CM
700 inode = &btrfs_inode->vfs_inode;
701
702 list_del_init(&btrfs_inode->ordered_operations);
703
704 /*
705 * the inode may be getting freed (in sys_unlink path).
706 */
707 inode = igrab(inode);
25287e0a
MX
708 if (!inode)
709 continue;
5b947f1b
MX
710
711 if (!wait)
712 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 713 &cur_trans->ordered_operations);
199c2a9c 714 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 715
25287e0a
MX
716 work = btrfs_alloc_delalloc_work(inode, wait, 1);
717 if (!work) {
199c2a9c 718 spin_lock(&root->fs_info->ordered_root_lock);
25287e0a
MX
719 if (list_empty(&BTRFS_I(inode)->ordered_operations))
720 list_add_tail(&btrfs_inode->ordered_operations,
721 &splice);
25287e0a 722 list_splice_tail(&splice,
569e0f35 723 &cur_trans->ordered_operations);
199c2a9c 724 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
725 ret = -ENOMEM;
726 goto out;
5a3f23d5 727 }
25287e0a 728 list_add_tail(&work->list, &works);
a44903ab
QW
729 btrfs_queue_work(root->fs_info->flush_workers,
730 &work->work);
5a3f23d5
CM
731
732 cond_resched();
199c2a9c 733 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 734 }
199c2a9c 735 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
736out:
737 list_for_each_entry_safe(work, next, &works, list) {
738 list_del_init(&work->list);
739 btrfs_wait_and_free_delalloc_work(work);
740 }
9ffba8cd 741 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
25287e0a 742 return ret;
5a3f23d5
CM
743}
744
eb84ae03
CM
745/*
746 * Used to start IO or wait for a given ordered extent to finish.
747 *
748 * If wait is one, this effectively waits on page writeback for all the pages
749 * in the extent, and it waits on the io completion code to insert
750 * metadata into the btree corresponding to the extent
751 */
752void btrfs_start_ordered_extent(struct inode *inode,
753 struct btrfs_ordered_extent *entry,
754 int wait)
e6dcd2dc
CM
755{
756 u64 start = entry->file_offset;
757 u64 end = start + entry->len - 1;
e1b81e67 758
1abe9b8a 759 trace_btrfs_ordered_extent_start(inode, entry);
760
eb84ae03
CM
761 /*
762 * pages in the range can be dirty, clean or writeback. We
763 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 764 * for the flusher thread to find them
eb84ae03 765 */
4b46fce2
JB
766 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
767 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 768 if (wait) {
e6dcd2dc
CM
769 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
770 &entry->flags));
c8b97818 771 }
e6dcd2dc 772}
cee36a03 773
eb84ae03
CM
774/*
775 * Used to wait on ordered extents across a large range of bytes.
776 */
0ef8b726 777int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc 778{
0ef8b726 779 int ret = 0;
e6dcd2dc 780 u64 end;
e5a2217e 781 u64 orig_end;
e6dcd2dc 782 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
783
784 if (start + len < start) {
f421950f 785 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
786 } else {
787 orig_end = start + len - 1;
f421950f
CM
788 if (orig_end > INT_LIMIT(loff_t))
789 orig_end = INT_LIMIT(loff_t);
e5a2217e 790 }
551ebb2d 791
e5a2217e
CM
792 /* start IO across the range first to instantiate any delalloc
793 * extents
794 */
0ef8b726
JB
795 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
796 if (ret)
797 return ret;
7ddf5a42
JB
798 /*
799 * So with compression we will find and lock a dirty page and clear the
800 * first one as dirty, setup an async extent, and immediately return
801 * with the entire range locked but with nobody actually marked with
802 * writeback. So we can't just filemap_write_and_wait_range() and
803 * expect it to work since it will just kick off a thread to do the
804 * actual work. So we need to call filemap_fdatawrite_range _again_
805 * since it will wait on the page lock, which won't be unlocked until
806 * after the pages have been marked as writeback and so we're good to go
807 * from there. We have to do this otherwise we'll miss the ordered
808 * extents and that results in badness. Please Josef, do not think you
809 * know better and pull this out at some point in the future, it is
810 * right and you are wrong.
811 */
812 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
0ef8b726
JB
813 &BTRFS_I(inode)->runtime_flags)) {
814 ret = filemap_fdatawrite_range(inode->i_mapping, start,
815 orig_end);
816 if (ret)
817 return ret;
818 }
819 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
820 if (ret)
821 return ret;
e5a2217e 822
f421950f 823 end = orig_end;
d397712b 824 while (1) {
e6dcd2dc 825 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 826 if (!ordered)
e6dcd2dc 827 break;
e5a2217e 828 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
829 btrfs_put_ordered_extent(ordered);
830 break;
831 }
b52abf1e 832 if (ordered->file_offset + ordered->len <= start) {
e6dcd2dc
CM
833 btrfs_put_ordered_extent(ordered);
834 break;
835 }
e5a2217e 836 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc 837 end = ordered->file_offset;
0ef8b726
JB
838 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
839 ret = -EIO;
e6dcd2dc 840 btrfs_put_ordered_extent(ordered);
0ef8b726 841 if (ret || end == 0 || end == start)
e6dcd2dc
CM
842 break;
843 end--;
844 }
0ef8b726 845 return ret;
cee36a03
CM
846}
847
eb84ae03
CM
848/*
849 * find an ordered extent corresponding to file_offset. return NULL if
850 * nothing is found, otherwise take a reference on the extent and return it
851 */
e6dcd2dc
CM
852struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
853 u64 file_offset)
854{
855 struct btrfs_ordered_inode_tree *tree;
856 struct rb_node *node;
857 struct btrfs_ordered_extent *entry = NULL;
858
859 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 860 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
861 node = tree_search(tree, file_offset);
862 if (!node)
863 goto out;
864
865 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
866 if (!offset_in_entry(entry, file_offset))
867 entry = NULL;
868 if (entry)
869 atomic_inc(&entry->refs);
870out:
5fd02043 871 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
872 return entry;
873}
874
4b46fce2
JB
875/* Since the DIO code tries to lock a wide area we need to look for any ordered
876 * extents that exist in the range, rather than just the start of the range.
877 */
878struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
879 u64 file_offset,
880 u64 len)
881{
882 struct btrfs_ordered_inode_tree *tree;
883 struct rb_node *node;
884 struct btrfs_ordered_extent *entry = NULL;
885
886 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 887 spin_lock_irq(&tree->lock);
4b46fce2
JB
888 node = tree_search(tree, file_offset);
889 if (!node) {
890 node = tree_search(tree, file_offset + len);
891 if (!node)
892 goto out;
893 }
894
895 while (1) {
896 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
897 if (range_overlaps(entry, file_offset, len))
898 break;
899
900 if (entry->file_offset >= file_offset + len) {
901 entry = NULL;
902 break;
903 }
904 entry = NULL;
905 node = rb_next(node);
906 if (!node)
907 break;
908 }
909out:
910 if (entry)
911 atomic_inc(&entry->refs);
5fd02043 912 spin_unlock_irq(&tree->lock);
4b46fce2
JB
913 return entry;
914}
915
eb84ae03
CM
916/*
917 * lookup and return any extent before 'file_offset'. NULL is returned
918 * if none is found
919 */
e6dcd2dc 920struct btrfs_ordered_extent *
d397712b 921btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
922{
923 struct btrfs_ordered_inode_tree *tree;
924 struct rb_node *node;
925 struct btrfs_ordered_extent *entry = NULL;
926
927 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 928 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
929 node = tree_search(tree, file_offset);
930 if (!node)
931 goto out;
932
933 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
934 atomic_inc(&entry->refs);
935out:
5fd02043 936 spin_unlock_irq(&tree->lock);
e6dcd2dc 937 return entry;
81d7ed29 938}
dbe674a9 939
eb84ae03
CM
940/*
941 * After an extent is done, call this to conditionally update the on disk
942 * i_size. i_size is updated to cover any fully written part of the file.
943 */
c2167754 944int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
945 struct btrfs_ordered_extent *ordered)
946{
947 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
948 u64 disk_i_size;
949 u64 new_i_size;
c2167754 950 u64 i_size = i_size_read(inode);
dbe674a9 951 struct rb_node *node;
c2167754 952 struct rb_node *prev = NULL;
dbe674a9 953 struct btrfs_ordered_extent *test;
c2167754
YZ
954 int ret = 1;
955
77cef2ec
JB
956 spin_lock_irq(&tree->lock);
957 if (ordered) {
c2167754 958 offset = entry_end(ordered);
77cef2ec
JB
959 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
960 offset = min(offset,
961 ordered->file_offset +
962 ordered->truncated_len);
963 } else {
a038fab0 964 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
77cef2ec 965 }
dbe674a9
CM
966 disk_i_size = BTRFS_I(inode)->disk_i_size;
967
c2167754
YZ
968 /* truncate file */
969 if (disk_i_size > i_size) {
970 BTRFS_I(inode)->disk_i_size = i_size;
971 ret = 0;
972 goto out;
973 }
974
dbe674a9
CM
975 /*
976 * if the disk i_size is already at the inode->i_size, or
977 * this ordered extent is inside the disk i_size, we're done
978 */
5d1f4020
JB
979 if (disk_i_size == i_size)
980 goto out;
981
982 /*
983 * We still need to update disk_i_size if outstanding_isize is greater
984 * than disk_i_size.
985 */
986 if (offset <= disk_i_size &&
987 (!ordered || ordered->outstanding_isize <= disk_i_size))
dbe674a9 988 goto out;
dbe674a9 989
dbe674a9
CM
990 /*
991 * walk backward from this ordered extent to disk_i_size.
992 * if we find an ordered extent then we can't update disk i_size
993 * yet
994 */
c2167754
YZ
995 if (ordered) {
996 node = rb_prev(&ordered->rb_node);
997 } else {
998 prev = tree_search(tree, offset);
999 /*
1000 * we insert file extents without involving ordered struct,
1001 * so there should be no ordered struct cover this offset
1002 */
1003 if (prev) {
1004 test = rb_entry(prev, struct btrfs_ordered_extent,
1005 rb_node);
1006 BUG_ON(offset_in_entry(test, offset));
1007 }
1008 node = prev;
1009 }
5fd02043 1010 for (; node; node = rb_prev(node)) {
dbe674a9 1011 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
1012
1013 /* We treat this entry as if it doesnt exist */
1014 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1015 continue;
dbe674a9
CM
1016 if (test->file_offset + test->len <= disk_i_size)
1017 break;
c2167754 1018 if (test->file_offset >= i_size)
dbe674a9 1019 break;
59fe4f41 1020 if (entry_end(test) > disk_i_size) {
b9a8cc5b
MX
1021 /*
1022 * we don't update disk_i_size now, so record this
1023 * undealt i_size. Or we will not know the real
1024 * i_size.
1025 */
1026 if (test->outstanding_isize < offset)
1027 test->outstanding_isize = offset;
1028 if (ordered &&
1029 ordered->outstanding_isize >
1030 test->outstanding_isize)
1031 test->outstanding_isize =
1032 ordered->outstanding_isize;
dbe674a9 1033 goto out;
5fd02043 1034 }
dbe674a9 1035 }
b9a8cc5b 1036 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
1037
1038 /*
b9a8cc5b
MX
1039 * Some ordered extents may completed before the current one, and
1040 * we hold the real i_size in ->outstanding_isize.
dbe674a9 1041 */
b9a8cc5b
MX
1042 if (ordered && ordered->outstanding_isize > new_i_size)
1043 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 1044 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 1045 ret = 0;
dbe674a9 1046out:
c2167754 1047 /*
5fd02043
JB
1048 * We need to do this because we can't remove ordered extents until
1049 * after the i_disk_size has been updated and then the inode has been
1050 * updated to reflect the change, so we need to tell anybody who finds
1051 * this ordered extent that we've already done all the real work, we
1052 * just haven't completed all the other work.
c2167754
YZ
1053 */
1054 if (ordered)
5fd02043
JB
1055 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1056 spin_unlock_irq(&tree->lock);
c2167754 1057 return ret;
dbe674a9 1058}
ba1da2f4 1059
eb84ae03
CM
1060/*
1061 * search the ordered extents for one corresponding to 'offset' and
1062 * try to find a checksum. This is used because we allow pages to
1063 * be reclaimed before their checksum is actually put into the btree
1064 */
d20f7043 1065int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
e4100d98 1066 u32 *sum, int len)
ba1da2f4
CM
1067{
1068 struct btrfs_ordered_sum *ordered_sum;
ba1da2f4
CM
1069 struct btrfs_ordered_extent *ordered;
1070 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
1071 unsigned long num_sectors;
1072 unsigned long i;
1073 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
e4100d98 1074 int index = 0;
ba1da2f4
CM
1075
1076 ordered = btrfs_lookup_ordered_extent(inode, offset);
1077 if (!ordered)
e4100d98 1078 return 0;
ba1da2f4 1079
5fd02043 1080 spin_lock_irq(&tree->lock);
c6e30871 1081 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
e4100d98
MX
1082 if (disk_bytenr >= ordered_sum->bytenr &&
1083 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1084 i = (disk_bytenr - ordered_sum->bytenr) >>
1085 inode->i_sb->s_blocksize_bits;
e4100d98
MX
1086 num_sectors = ordered_sum->len >>
1087 inode->i_sb->s_blocksize_bits;
f51a4a18
MX
1088 num_sectors = min_t(int, len - index, num_sectors - i);
1089 memcpy(sum + index, ordered_sum->sums + i,
1090 num_sectors);
1091
1092 index += (int)num_sectors;
1093 if (index == len)
1094 goto out;
1095 disk_bytenr += num_sectors * sectorsize;
ba1da2f4
CM
1096 }
1097 }
1098out:
5fd02043 1099 spin_unlock_irq(&tree->lock);
89642229 1100 btrfs_put_ordered_extent(ordered);
e4100d98 1101 return index;
ba1da2f4
CM
1102}
1103
f421950f 1104
5a3f23d5
CM
1105/*
1106 * add a given inode to the list of inodes that must be fully on
1107 * disk before a transaction commit finishes.
1108 *
1109 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1110 * used to make sure renamed files are fully on disk.
1111 *
1112 * It is a noop if the inode is already fully on disk.
1113 *
1114 * If trans is not null, we'll do a friendly check for a transaction that
1115 * is already flushing things and force the IO down ourselves.
1116 */
143bede5
JM
1117void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root, struct inode *inode)
5a3f23d5 1119{
569e0f35 1120 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5
CM
1121 u64 last_mod;
1122
1123 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1124
1125 /*
1126 * if this file hasn't been changed since the last transaction
1127 * commit, we can safely return without doing anything
1128 */
5ede859b 1129 if (last_mod <= root->fs_info->last_trans_committed)
143bede5 1130 return;
5a3f23d5 1131
199c2a9c 1132 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
1133 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1134 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 1135 &cur_trans->ordered_operations);
5a3f23d5 1136 }
199c2a9c 1137 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 1138}
6352b91d
MX
1139
1140int __init ordered_data_init(void)
1141{
1142 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1143 sizeof(struct btrfs_ordered_extent), 0,
1144 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1145 NULL);
1146 if (!btrfs_ordered_extent_cache)
1147 return -ENOMEM;
25287e0a 1148
6352b91d
MX
1149 return 0;
1150}
1151
1152void ordered_data_exit(void)
1153{
1154 if (btrfs_ordered_extent_cache)
1155 kmem_cache_destroy(btrfs_ordered_extent_cache);
1156}