]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/ordered-data.c
btrfs: make __btrfs_qgroup_release_data take btrfs_inode
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
dc17ff8f
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
dc17ff8f
CM
4 */
5
dc17ff8f 6#include <linux/slab.h>
d6bfde87 7#include <linux/blkdev.h>
f421950f 8#include <linux/writeback.h>
a3d46aea 9#include <linux/sched/mm.h>
602cbe91 10#include "misc.h"
dc17ff8f
CM
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
e6dcd2dc 14#include "extent_io.h"
199c2a9c 15#include "disk-io.h"
ebb8765b 16#include "compression.h"
86736342 17#include "delalloc-space.h"
7dbeaad0 18#include "qgroup.h"
dc17ff8f 19
6352b91d
MX
20static struct kmem_cache *btrfs_ordered_extent_cache;
21
e6dcd2dc 22static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 23{
bffe633e 24 if (entry->file_offset + entry->num_bytes < entry->file_offset)
e6dcd2dc 25 return (u64)-1;
bffe633e 26 return entry->file_offset + entry->num_bytes;
dc17ff8f
CM
27}
28
d352ac68
CM
29/* returns NULL if the insertion worked, or it returns the node it did find
30 * in the tree
31 */
e6dcd2dc
CM
32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33 struct rb_node *node)
dc17ff8f 34{
d397712b
CM
35 struct rb_node **p = &root->rb_node;
36 struct rb_node *parent = NULL;
e6dcd2dc 37 struct btrfs_ordered_extent *entry;
dc17ff8f 38
d397712b 39 while (*p) {
dc17ff8f 40 parent = *p;
e6dcd2dc 41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 42
e6dcd2dc 43 if (file_offset < entry->file_offset)
dc17ff8f 44 p = &(*p)->rb_left;
e6dcd2dc 45 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
46 p = &(*p)->rb_right;
47 else
48 return parent;
49 }
50
51 rb_link_node(node, parent, p);
52 rb_insert_color(node, root);
53 return NULL;
54}
55
d352ac68
CM
56/*
57 * look for a given offset in the tree, and if it can't be found return the
58 * first lesser offset
59 */
e6dcd2dc
CM
60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61 struct rb_node **prev_ret)
dc17ff8f 62{
d397712b 63 struct rb_node *n = root->rb_node;
dc17ff8f 64 struct rb_node *prev = NULL;
e6dcd2dc
CM
65 struct rb_node *test;
66 struct btrfs_ordered_extent *entry;
67 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 68
d397712b 69 while (n) {
e6dcd2dc 70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
71 prev = n;
72 prev_entry = entry;
dc17ff8f 73
e6dcd2dc 74 if (file_offset < entry->file_offset)
dc17ff8f 75 n = n->rb_left;
e6dcd2dc 76 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
77 n = n->rb_right;
78 else
79 return n;
80 }
81 if (!prev_ret)
82 return NULL;
83
d397712b 84 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
85 test = rb_next(prev);
86 if (!test)
87 break;
88 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89 rb_node);
90 if (file_offset < entry_end(prev_entry))
91 break;
92
93 prev = test;
94 }
95 if (prev)
96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97 rb_node);
d397712b 98 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
99 test = rb_prev(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 prev = test;
dc17ff8f
CM
105 }
106 *prev_ret = prev;
107 return NULL;
108}
109
d352ac68
CM
110/*
111 * helper to check if a given offset is inside a given entry
112 */
e6dcd2dc
CM
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115 if (file_offset < entry->file_offset ||
bffe633e 116 entry->file_offset + entry->num_bytes <= file_offset)
e6dcd2dc
CM
117 return 0;
118 return 1;
119}
120
4b46fce2
JB
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122 u64 len)
123{
124 if (file_offset + len <= entry->file_offset ||
bffe633e 125 entry->file_offset + entry->num_bytes <= file_offset)
4b46fce2
JB
126 return 0;
127 return 1;
128}
129
d352ac68
CM
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
e6dcd2dc
CM
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135 u64 file_offset)
dc17ff8f 136{
e6dcd2dc 137 struct rb_root *root = &tree->tree;
c87fb6fd 138 struct rb_node *prev = NULL;
dc17ff8f 139 struct rb_node *ret;
e6dcd2dc
CM
140 struct btrfs_ordered_extent *entry;
141
142 if (tree->last) {
143 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144 rb_node);
145 if (offset_in_entry(entry, file_offset))
146 return tree->last;
147 }
148 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 149 if (!ret)
e6dcd2dc
CM
150 ret = prev;
151 if (ret)
152 tree->last = ret;
dc17ff8f
CM
153 return ret;
154}
155
7dbeaad0
QW
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
eb84ae03 158 *
eb84ae03
CM
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
da69fea9 162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
bffe633e
OS
163 u64 disk_bytenr, u64 num_bytes,
164 u64 disk_num_bytes, int type, int dio,
165 int compress_type)
dc17ff8f 166{
da69fea9
NB
167 struct btrfs_root *root = inode->root;
168 struct btrfs_fs_info *fs_info = root->fs_info;
169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
e6dcd2dc
CM
170 struct rb_node *node;
171 struct btrfs_ordered_extent *entry;
7dbeaad0
QW
172 int ret;
173
174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175 /* For nocow write, we can release the qgroup rsv right now */
da69fea9 176 ret = btrfs_qgroup_free_data(&inode->vfs_inode, NULL, file_offset,
7dbeaad0
QW
177 num_bytes);
178 if (ret < 0)
179 return ret;
180 ret = 0;
181 } else {
182 /*
183 * The ordered extent has reserved qgroup space, release now
184 * and pass the reserved number for qgroup_record to free.
185 */
da69fea9
NB
186 ret = btrfs_qgroup_release_data(&inode->vfs_inode, file_offset,
187 num_bytes);
7dbeaad0
QW
188 if (ret < 0)
189 return ret;
190 }
6352b91d 191 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
192 if (!entry)
193 return -ENOMEM;
194
e6dcd2dc 195 entry->file_offset = file_offset;
bffe633e
OS
196 entry->disk_bytenr = disk_bytenr;
197 entry->num_bytes = num_bytes;
198 entry->disk_num_bytes = disk_num_bytes;
199 entry->bytes_left = num_bytes;
da69fea9 200 entry->inode = igrab(&inode->vfs_inode);
261507a0 201 entry->compress_type = compress_type;
77cef2ec 202 entry->truncated_len = (u64)-1;
7dbeaad0 203 entry->qgroup_rsv = ret;
d899e052 204 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 205 set_bit(type, &entry->flags);
3eaa2885 206
4297ff84 207 if (dio) {
bffe633e 208 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
4297ff84 209 fs_info->delalloc_batch);
4b46fce2 210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
4297ff84 211 }
4b46fce2 212
e6dcd2dc 213 /* one ref for the tree */
e76edab7 214 refcount_set(&entry->refs, 1);
e6dcd2dc
CM
215 init_waitqueue_head(&entry->wait);
216 INIT_LIST_HEAD(&entry->list);
3eaa2885 217 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
218 INIT_LIST_HEAD(&entry->work_list);
219 init_completion(&entry->completion);
dc17ff8f 220
da69fea9 221 trace_btrfs_ordered_extent_add(&inode->vfs_inode, entry);
1abe9b8a 222
5fd02043 223 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
224 node = tree_insert(&tree->tree, file_offset,
225 &entry->rb_node);
43c04fb1 226 if (node)
511a32b5
NB
227 btrfs_panic(fs_info, -EEXIST,
228 "inconsistency in ordered tree at offset %llu",
229 file_offset);
5fd02043 230 spin_unlock_irq(&tree->lock);
d397712b 231
199c2a9c 232 spin_lock(&root->ordered_extent_lock);
3eaa2885 233 list_add_tail(&entry->root_extent_list,
199c2a9c
MX
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
0b246afa 237 spin_lock(&fs_info->ordered_root_lock);
199c2a9c 238 BUG_ON(!list_empty(&root->ordered_root));
0b246afa
JM
239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
241 }
242 spin_unlock(&root->ordered_extent_lock);
3eaa2885 243
8b62f87b
JB
244 /*
245 * We don't need the count_max_extents here, we can assume that all of
246 * that work has been done at higher layers, so this is truly the
247 * smallest the extent is going to get.
248 */
da69fea9
NB
249 spin_lock(&inode->lock);
250 btrfs_mod_outstanding_extents(inode, 1);
251 spin_unlock(&inode->lock);
8b62f87b 252
dc17ff8f
CM
253 return 0;
254}
255
4b46fce2 256int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
bffe633e
OS
257 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
258 int type)
4b46fce2 259{
da69fea9 260 return __btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, disk_bytenr,
bffe633e 261 num_bytes, disk_num_bytes, type, 0,
261507a0 262 BTRFS_COMPRESS_NONE);
4b46fce2
JB
263}
264
265int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
bffe633e
OS
266 u64 disk_bytenr, u64 num_bytes,
267 u64 disk_num_bytes, int type)
4b46fce2 268{
da69fea9 269 return __btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, disk_bytenr,
bffe633e 270 num_bytes, disk_num_bytes, type, 1,
261507a0
LZ
271 BTRFS_COMPRESS_NONE);
272}
273
274int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
bffe633e
OS
275 u64 disk_bytenr, u64 num_bytes,
276 u64 disk_num_bytes, int type,
277 int compress_type)
261507a0 278{
da69fea9 279 return __btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, disk_bytenr,
bffe633e 280 num_bytes, disk_num_bytes, type, 0,
261507a0 281 compress_type);
4b46fce2
JB
282}
283
eb84ae03
CM
284/*
285 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
286 * when an ordered extent is finished. If the list covers more than one
287 * ordered extent, it is split across multiples.
eb84ae03 288 */
f9756261 289void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
143bede5 290 struct btrfs_ordered_sum *sum)
dc17ff8f 291{
e6dcd2dc 292 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 293
f9756261 294 tree = &BTRFS_I(entry->inode)->ordered_tree;
5fd02043 295 spin_lock_irq(&tree->lock);
e6dcd2dc 296 list_add_tail(&sum->list, &entry->list);
5fd02043 297 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
298}
299
163cf09c
CM
300/*
301 * this is used to account for finished IO across a given range
302 * of the file. The IO may span ordered extents. If
303 * a given ordered_extent is completely done, 1 is returned, otherwise
304 * 0.
305 *
306 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
307 * to make sure this function only returns 1 once for a given ordered extent.
308 *
309 * file_offset is updated to one byte past the range that is recorded as
310 * complete. This allows you to walk forward in the file.
311 */
312int btrfs_dec_test_first_ordered_pending(struct inode *inode,
313 struct btrfs_ordered_extent **cached,
5fd02043 314 u64 *file_offset, u64 io_size, int uptodate)
163cf09c 315{
0b246afa 316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
163cf09c
CM
317 struct btrfs_ordered_inode_tree *tree;
318 struct rb_node *node;
319 struct btrfs_ordered_extent *entry = NULL;
320 int ret;
5fd02043 321 unsigned long flags;
163cf09c
CM
322 u64 dec_end;
323 u64 dec_start;
324 u64 to_dec;
325
326 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 327 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
328 node = tree_search(tree, *file_offset);
329 if (!node) {
330 ret = 1;
331 goto out;
332 }
333
334 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
335 if (!offset_in_entry(entry, *file_offset)) {
336 ret = 1;
337 goto out;
338 }
339
340 dec_start = max(*file_offset, entry->file_offset);
bffe633e
OS
341 dec_end = min(*file_offset + io_size,
342 entry->file_offset + entry->num_bytes);
163cf09c
CM
343 *file_offset = dec_end;
344 if (dec_start > dec_end) {
0b246afa
JM
345 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
346 dec_start, dec_end);
163cf09c
CM
347 }
348 to_dec = dec_end - dec_start;
349 if (to_dec > entry->bytes_left) {
0b246afa
JM
350 btrfs_crit(fs_info,
351 "bad ordered accounting left %llu size %llu",
352 entry->bytes_left, to_dec);
163cf09c
CM
353 }
354 entry->bytes_left -= to_dec;
5fd02043
JB
355 if (!uptodate)
356 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
357
af7a6509 358 if (entry->bytes_left == 0) {
163cf09c 359 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
093258e6
DS
360 /* test_and_set_bit implies a barrier */
361 cond_wake_up_nomb(&entry->wait);
af7a6509 362 } else {
163cf09c 363 ret = 1;
af7a6509 364 }
163cf09c
CM
365out:
366 if (!ret && cached && entry) {
367 *cached = entry;
e76edab7 368 refcount_inc(&entry->refs);
163cf09c 369 }
5fd02043 370 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
371 return ret == 0;
372}
373
eb84ae03
CM
374/*
375 * this is used to account for finished IO across a given range
376 * of the file. The IO should not span ordered extents. If
377 * a given ordered_extent is completely done, 1 is returned, otherwise
378 * 0.
379 *
380 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
381 * to make sure this function only returns 1 once for a given ordered extent.
382 */
e6dcd2dc 383int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 384 struct btrfs_ordered_extent **cached,
5fd02043 385 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 386{
e6dcd2dc 387 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 388 struct rb_node *node;
5a1a3df1 389 struct btrfs_ordered_extent *entry = NULL;
5fd02043 390 unsigned long flags;
e6dcd2dc
CM
391 int ret;
392
393 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
394 spin_lock_irqsave(&tree->lock, flags);
395 if (cached && *cached) {
396 entry = *cached;
397 goto have_entry;
398 }
399
e6dcd2dc 400 node = tree_search(tree, file_offset);
dc17ff8f 401 if (!node) {
e6dcd2dc
CM
402 ret = 1;
403 goto out;
dc17ff8f
CM
404 }
405
e6dcd2dc 406 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 407have_entry:
e6dcd2dc
CM
408 if (!offset_in_entry(entry, file_offset)) {
409 ret = 1;
410 goto out;
dc17ff8f 411 }
e6dcd2dc 412
8b62b72b 413 if (io_size > entry->bytes_left) {
efe120a0
FH
414 btrfs_crit(BTRFS_I(inode)->root->fs_info,
415 "bad ordered accounting left %llu size %llu",
c1c9ff7c 416 entry->bytes_left, io_size);
8b62b72b
CM
417 }
418 entry->bytes_left -= io_size;
5fd02043
JB
419 if (!uptodate)
420 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
421
af7a6509 422 if (entry->bytes_left == 0) {
e6dcd2dc 423 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
093258e6
DS
424 /* test_and_set_bit implies a barrier */
425 cond_wake_up_nomb(&entry->wait);
af7a6509 426 } else {
8b62b72b 427 ret = 1;
af7a6509 428 }
e6dcd2dc 429out:
5a1a3df1
JB
430 if (!ret && cached && entry) {
431 *cached = entry;
e76edab7 432 refcount_inc(&entry->refs);
5a1a3df1 433 }
5fd02043 434 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
435 return ret == 0;
436}
dc17ff8f 437
eb84ae03
CM
438/*
439 * used to drop a reference on an ordered extent. This will free
440 * the extent if the last reference is dropped
441 */
143bede5 442void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 443{
ba1da2f4
CM
444 struct list_head *cur;
445 struct btrfs_ordered_sum *sum;
446
1abe9b8a 447 trace_btrfs_ordered_extent_put(entry->inode, entry);
448
e76edab7 449 if (refcount_dec_and_test(&entry->refs)) {
61de718f
FM
450 ASSERT(list_empty(&entry->root_extent_list));
451 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
5fd02043
JB
452 if (entry->inode)
453 btrfs_add_delayed_iput(entry->inode);
d397712b 454 while (!list_empty(&entry->list)) {
ba1da2f4
CM
455 cur = entry->list.next;
456 sum = list_entry(cur, struct btrfs_ordered_sum, list);
457 list_del(&sum->list);
a3d46aea 458 kvfree(sum);
ba1da2f4 459 }
6352b91d 460 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 461 }
dc17ff8f 462}
cee36a03 463
eb84ae03
CM
464/*
465 * remove an ordered extent from the tree. No references are dropped
5fd02043 466 * and waiters are woken up.
eb84ae03 467 */
5fd02043
JB
468void btrfs_remove_ordered_extent(struct inode *inode,
469 struct btrfs_ordered_extent *entry)
cee36a03 470{
0b246afa 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 472 struct btrfs_ordered_inode_tree *tree;
8b62f87b
JB
473 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
474 struct btrfs_root *root = btrfs_inode->root;
cee36a03 475 struct rb_node *node;
cee36a03 476
8b62f87b
JB
477 /* This is paired with btrfs_add_ordered_extent. */
478 spin_lock(&btrfs_inode->lock);
479 btrfs_mod_outstanding_extents(btrfs_inode, -1);
480 spin_unlock(&btrfs_inode->lock);
481 if (root != fs_info->tree_root)
bffe633e
OS
482 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
483 false);
8b62f87b 484
4297ff84 485 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
bffe633e 486 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
4297ff84
JB
487 fs_info->delalloc_batch);
488
8b62f87b 489 tree = &btrfs_inode->ordered_tree;
5fd02043 490 spin_lock_irq(&tree->lock);
e6dcd2dc 491 node = &entry->rb_node;
cee36a03 492 rb_erase(node, &tree->tree);
61de718f 493 RB_CLEAR_NODE(node);
1b8e7e45
FDBM
494 if (tree->last == node)
495 tree->last = NULL;
e6dcd2dc 496 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 497 spin_unlock_irq(&tree->lock);
3eaa2885 498
199c2a9c 499 spin_lock(&root->ordered_extent_lock);
3eaa2885 500 list_del_init(&entry->root_extent_list);
199c2a9c 501 root->nr_ordered_extents--;
5a3f23d5 502
1abe9b8a 503 trace_btrfs_ordered_extent_remove(inode, entry);
504
199c2a9c 505 if (!root->nr_ordered_extents) {
0b246afa 506 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
507 BUG_ON(list_empty(&root->ordered_root));
508 list_del_init(&root->ordered_root);
0b246afa 509 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
510 }
511 spin_unlock(&root->ordered_extent_lock);
e6dcd2dc 512 wake_up(&entry->wait);
cee36a03
CM
513}
514
d458b054 515static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
9afab882
MX
516{
517 struct btrfs_ordered_extent *ordered;
518
519 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
520 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
521 complete(&ordered->completion);
522}
523
d352ac68
CM
524/*
525 * wait for all the ordered extents in a root. This is done when balancing
526 * space between drives.
527 */
6374e57a 528u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
578def7c 529 const u64 range_start, const u64 range_len)
3eaa2885 530{
0b246afa 531 struct btrfs_fs_info *fs_info = root->fs_info;
578def7c
FM
532 LIST_HEAD(splice);
533 LIST_HEAD(skipped);
534 LIST_HEAD(works);
9afab882 535 struct btrfs_ordered_extent *ordered, *next;
6374e57a 536 u64 count = 0;
578def7c 537 const u64 range_end = range_start + range_len;
3eaa2885 538
31f3d255 539 mutex_lock(&root->ordered_extent_mutex);
199c2a9c
MX
540 spin_lock(&root->ordered_extent_lock);
541 list_splice_init(&root->ordered_extents, &splice);
b0244199 542 while (!list_empty(&splice) && nr) {
199c2a9c
MX
543 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
544 root_extent_list);
578def7c 545
bffe633e
OS
546 if (range_end <= ordered->disk_bytenr ||
547 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
578def7c
FM
548 list_move_tail(&ordered->root_extent_list, &skipped);
549 cond_resched_lock(&root->ordered_extent_lock);
550 continue;
551 }
552
199c2a9c
MX
553 list_move_tail(&ordered->root_extent_list,
554 &root->ordered_extents);
e76edab7 555 refcount_inc(&ordered->refs);
199c2a9c 556 spin_unlock(&root->ordered_extent_lock);
3eaa2885 557
a44903ab
QW
558 btrfs_init_work(&ordered->flush_work,
559 btrfs_run_ordered_extent_work, NULL, NULL);
199c2a9c 560 list_add_tail(&ordered->work_list, &works);
0b246afa 561 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
3eaa2885 562
9afab882 563 cond_resched();
199c2a9c 564 spin_lock(&root->ordered_extent_lock);
6374e57a 565 if (nr != U64_MAX)
b0244199
MX
566 nr--;
567 count++;
3eaa2885 568 }
578def7c 569 list_splice_tail(&skipped, &root->ordered_extents);
b0244199 570 list_splice_tail(&splice, &root->ordered_extents);
199c2a9c 571 spin_unlock(&root->ordered_extent_lock);
9afab882
MX
572
573 list_for_each_entry_safe(ordered, next, &works, work_list) {
574 list_del_init(&ordered->work_list);
575 wait_for_completion(&ordered->completion);
9afab882 576 btrfs_put_ordered_extent(ordered);
9afab882
MX
577 cond_resched();
578 }
31f3d255 579 mutex_unlock(&root->ordered_extent_mutex);
b0244199
MX
580
581 return count;
3eaa2885
CM
582}
583
042528f8 584void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
6374e57a 585 const u64 range_start, const u64 range_len)
199c2a9c
MX
586{
587 struct btrfs_root *root;
588 struct list_head splice;
6374e57a 589 u64 done;
199c2a9c
MX
590
591 INIT_LIST_HEAD(&splice);
592
8b9d83cd 593 mutex_lock(&fs_info->ordered_operations_mutex);
199c2a9c
MX
594 spin_lock(&fs_info->ordered_root_lock);
595 list_splice_init(&fs_info->ordered_roots, &splice);
b0244199 596 while (!list_empty(&splice) && nr) {
199c2a9c
MX
597 root = list_first_entry(&splice, struct btrfs_root,
598 ordered_root);
00246528 599 root = btrfs_grab_root(root);
199c2a9c
MX
600 BUG_ON(!root);
601 list_move_tail(&root->ordered_root,
602 &fs_info->ordered_roots);
603 spin_unlock(&fs_info->ordered_root_lock);
604
578def7c
FM
605 done = btrfs_wait_ordered_extents(root, nr,
606 range_start, range_len);
00246528 607 btrfs_put_root(root);
199c2a9c
MX
608
609 spin_lock(&fs_info->ordered_root_lock);
6374e57a 610 if (nr != U64_MAX) {
b0244199 611 nr -= done;
b0244199 612 }
199c2a9c 613 }
931aa877 614 list_splice_tail(&splice, &fs_info->ordered_roots);
199c2a9c 615 spin_unlock(&fs_info->ordered_root_lock);
8b9d83cd 616 mutex_unlock(&fs_info->ordered_operations_mutex);
199c2a9c
MX
617}
618
eb84ae03
CM
619/*
620 * Used to start IO or wait for a given ordered extent to finish.
621 *
622 * If wait is one, this effectively waits on page writeback for all the pages
623 * in the extent, and it waits on the io completion code to insert
624 * metadata into the btree corresponding to the extent
625 */
626void btrfs_start_ordered_extent(struct inode *inode,
627 struct btrfs_ordered_extent *entry,
628 int wait)
e6dcd2dc
CM
629{
630 u64 start = entry->file_offset;
bffe633e 631 u64 end = start + entry->num_bytes - 1;
e1b81e67 632
1abe9b8a 633 trace_btrfs_ordered_extent_start(inode, entry);
634
eb84ae03
CM
635 /*
636 * pages in the range can be dirty, clean or writeback. We
637 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 638 * for the flusher thread to find them
eb84ae03 639 */
4b46fce2
JB
640 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
641 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 642 if (wait) {
e6dcd2dc
CM
643 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
644 &entry->flags));
c8b97818 645 }
e6dcd2dc 646}
cee36a03 647
eb84ae03
CM
648/*
649 * Used to wait on ordered extents across a large range of bytes.
650 */
0ef8b726 651int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc 652{
0ef8b726 653 int ret = 0;
28aeeac1 654 int ret_wb = 0;
e6dcd2dc 655 u64 end;
e5a2217e 656 u64 orig_end;
e6dcd2dc 657 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
658
659 if (start + len < start) {
f421950f 660 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
661 } else {
662 orig_end = start + len - 1;
f421950f
CM
663 if (orig_end > INT_LIMIT(loff_t))
664 orig_end = INT_LIMIT(loff_t);
e5a2217e 665 }
551ebb2d 666
e5a2217e
CM
667 /* start IO across the range first to instantiate any delalloc
668 * extents
669 */
728404da 670 ret = btrfs_fdatawrite_range(inode, start, orig_end);
0ef8b726
JB
671 if (ret)
672 return ret;
728404da 673
28aeeac1
FM
674 /*
675 * If we have a writeback error don't return immediately. Wait first
676 * for any ordered extents that haven't completed yet. This is to make
677 * sure no one can dirty the same page ranges and call writepages()
678 * before the ordered extents complete - to avoid failures (-EEXIST)
679 * when adding the new ordered extents to the ordered tree.
680 */
681 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 682
f421950f 683 end = orig_end;
d397712b 684 while (1) {
e6dcd2dc 685 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 686 if (!ordered)
e6dcd2dc 687 break;
e5a2217e 688 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
689 btrfs_put_ordered_extent(ordered);
690 break;
691 }
bffe633e 692 if (ordered->file_offset + ordered->num_bytes <= start) {
e6dcd2dc
CM
693 btrfs_put_ordered_extent(ordered);
694 break;
695 }
e5a2217e 696 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc 697 end = ordered->file_offset;
e75fd33b
FM
698 /*
699 * If the ordered extent had an error save the error but don't
700 * exit without waiting first for all other ordered extents in
701 * the range to complete.
702 */
0ef8b726
JB
703 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
704 ret = -EIO;
e6dcd2dc 705 btrfs_put_ordered_extent(ordered);
e75fd33b 706 if (end == 0 || end == start)
e6dcd2dc
CM
707 break;
708 end--;
709 }
28aeeac1 710 return ret_wb ? ret_wb : ret;
cee36a03
CM
711}
712
eb84ae03
CM
713/*
714 * find an ordered extent corresponding to file_offset. return NULL if
715 * nothing is found, otherwise take a reference on the extent and return it
716 */
c3504372 717struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
e6dcd2dc
CM
718 u64 file_offset)
719{
720 struct btrfs_ordered_inode_tree *tree;
721 struct rb_node *node;
722 struct btrfs_ordered_extent *entry = NULL;
723
c3504372 724 tree = &inode->ordered_tree;
5fd02043 725 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
726 node = tree_search(tree, file_offset);
727 if (!node)
728 goto out;
729
730 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
731 if (!offset_in_entry(entry, file_offset))
732 entry = NULL;
733 if (entry)
e76edab7 734 refcount_inc(&entry->refs);
e6dcd2dc 735out:
5fd02043 736 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
737 return entry;
738}
739
4b46fce2
JB
740/* Since the DIO code tries to lock a wide area we need to look for any ordered
741 * extents that exist in the range, rather than just the start of the range.
742 */
a776c6fa
NB
743struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
744 struct btrfs_inode *inode, u64 file_offset, u64 len)
4b46fce2
JB
745{
746 struct btrfs_ordered_inode_tree *tree;
747 struct rb_node *node;
748 struct btrfs_ordered_extent *entry = NULL;
749
a776c6fa 750 tree = &inode->ordered_tree;
5fd02043 751 spin_lock_irq(&tree->lock);
4b46fce2
JB
752 node = tree_search(tree, file_offset);
753 if (!node) {
754 node = tree_search(tree, file_offset + len);
755 if (!node)
756 goto out;
757 }
758
759 while (1) {
760 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
761 if (range_overlaps(entry, file_offset, len))
762 break;
763
764 if (entry->file_offset >= file_offset + len) {
765 entry = NULL;
766 break;
767 }
768 entry = NULL;
769 node = rb_next(node);
770 if (!node)
771 break;
772 }
773out:
774 if (entry)
e76edab7 775 refcount_inc(&entry->refs);
5fd02043 776 spin_unlock_irq(&tree->lock);
4b46fce2
JB
777 return entry;
778}
779
eb84ae03
CM
780/*
781 * lookup and return any extent before 'file_offset'. NULL is returned
782 * if none is found
783 */
e6dcd2dc 784struct btrfs_ordered_extent *
d397712b 785btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
786{
787 struct btrfs_ordered_inode_tree *tree;
788 struct rb_node *node;
789 struct btrfs_ordered_extent *entry = NULL;
790
791 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 792 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
793 node = tree_search(tree, file_offset);
794 if (!node)
795 goto out;
796
797 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
e76edab7 798 refcount_inc(&entry->refs);
e6dcd2dc 799out:
5fd02043 800 spin_unlock_irq(&tree->lock);
e6dcd2dc 801 return entry;
81d7ed29 802}
dbe674a9 803
eb84ae03
CM
804/*
805 * search the ordered extents for one corresponding to 'offset' and
806 * try to find a checksum. This is used because we allow pages to
807 * be reclaimed before their checksum is actually put into the btree
808 */
d20f7043 809int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1e25a2e3 810 u8 *sum, int len)
ba1da2f4 811{
1e25a2e3 812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ba1da2f4 813 struct btrfs_ordered_sum *ordered_sum;
ba1da2f4
CM
814 struct btrfs_ordered_extent *ordered;
815 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
816 unsigned long num_sectors;
817 unsigned long i;
da17066c 818 u32 sectorsize = btrfs_inode_sectorsize(inode);
1e25a2e3 819 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
e4100d98 820 int index = 0;
ba1da2f4 821
c3504372 822 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset);
ba1da2f4 823 if (!ordered)
e4100d98 824 return 0;
ba1da2f4 825
5fd02043 826 spin_lock_irq(&tree->lock);
c6e30871 827 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
e4100d98
MX
828 if (disk_bytenr >= ordered_sum->bytenr &&
829 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
830 i = (disk_bytenr - ordered_sum->bytenr) >>
831 inode->i_sb->s_blocksize_bits;
e4100d98
MX
832 num_sectors = ordered_sum->len >>
833 inode->i_sb->s_blocksize_bits;
f51a4a18 834 num_sectors = min_t(int, len - index, num_sectors - i);
1e25a2e3
JT
835 memcpy(sum + index, ordered_sum->sums + i * csum_size,
836 num_sectors * csum_size);
f51a4a18 837
1e25a2e3 838 index += (int)num_sectors * csum_size;
f51a4a18
MX
839 if (index == len)
840 goto out;
841 disk_bytenr += num_sectors * sectorsize;
ba1da2f4
CM
842 }
843 }
844out:
5fd02043 845 spin_unlock_irq(&tree->lock);
89642229 846 btrfs_put_ordered_extent(ordered);
e4100d98 847 return index;
ba1da2f4
CM
848}
849
ffa87214
NB
850/*
851 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
852 * ordered extents in it are run to completion.
853 *
ffa87214
NB
854 * @inode: Inode whose ordered tree is to be searched
855 * @start: Beginning of range to flush
856 * @end: Last byte of range to lock
857 * @cached_state: If passed, will return the extent state responsible for the
858 * locked range. It's the caller's responsibility to free the cached state.
859 *
860 * This function always returns with the given range locked, ensuring after it's
861 * called no order extent can be pending.
862 */
b272ae22 863void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
ffa87214
NB
864 u64 end,
865 struct extent_state **cached_state)
866{
867 struct btrfs_ordered_extent *ordered;
a3b46b86
NA
868 struct extent_state *cache = NULL;
869 struct extent_state **cachedp = &cache;
bd80d94e
NB
870
871 if (cached_state)
a3b46b86 872 cachedp = cached_state;
ffa87214
NB
873
874 while (1) {
b272ae22 875 lock_extent_bits(&inode->io_tree, start, end, cachedp);
ffa87214
NB
876 ordered = btrfs_lookup_ordered_range(inode, start,
877 end - start + 1);
bd80d94e
NB
878 if (!ordered) {
879 /*
880 * If no external cached_state has been passed then
881 * decrement the extra ref taken for cachedp since we
882 * aren't exposing it outside of this function
883 */
884 if (!cached_state)
a3b46b86 885 refcount_dec(&cache->refs);
ffa87214 886 break;
bd80d94e 887 }
b272ae22 888 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
ffa87214
NB
889 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
890 btrfs_put_ordered_extent(ordered);
891 }
892}
893
6352b91d
MX
894int __init ordered_data_init(void)
895{
896 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
897 sizeof(struct btrfs_ordered_extent), 0,
fba4b697 898 SLAB_MEM_SPREAD,
6352b91d
MX
899 NULL);
900 if (!btrfs_ordered_extent_cache)
901 return -ENOMEM;
25287e0a 902
6352b91d
MX
903 return 0;
904}
905
e67c718b 906void __cold ordered_data_exit(void)
6352b91d 907{
5598e900 908 kmem_cache_destroy(btrfs_ordered_extent_cache);
6352b91d 909}