]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/ordered-data.c
direct-io: do not merge logically non-contiguous requests
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
d352ac68
CM
62/*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
e6dcd2dc
CM
66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
dc17ff8f 68{
d397712b 69 struct rb_node *n = root->rb_node;
dc17ff8f 70 struct rb_node *prev = NULL;
e6dcd2dc
CM
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 74
d397712b 75 while (n) {
e6dcd2dc 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
77 prev = n;
78 prev_entry = entry;
dc17ff8f 79
e6dcd2dc 80 if (file_offset < entry->file_offset)
dc17ff8f 81 n = n->rb_left;
e6dcd2dc 82 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
d397712b 90 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
d397712b 104 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
dc17ff8f
CM
111 }
112 *prev_ret = prev;
113 return NULL;
114}
115
d352ac68
CM
116/*
117 * helper to check if a given offset is inside a given entry
118 */
e6dcd2dc
CM
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125}
126
d352ac68
CM
127/*
128 * look find the first ordered struct that has this offset, otherwise
129 * the first one less than this offset
130 */
e6dcd2dc
CM
131static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
132 u64 file_offset)
dc17ff8f 133{
e6dcd2dc 134 struct rb_root *root = &tree->tree;
dc17ff8f
CM
135 struct rb_node *prev;
136 struct rb_node *ret;
e6dcd2dc
CM
137 struct btrfs_ordered_extent *entry;
138
139 if (tree->last) {
140 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
141 rb_node);
142 if (offset_in_entry(entry, file_offset))
143 return tree->last;
144 }
145 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 146 if (!ret)
e6dcd2dc
CM
147 ret = prev;
148 if (ret)
149 tree->last = ret;
dc17ff8f
CM
150 return ret;
151}
152
eb84ae03
CM
153/* allocate and add a new ordered_extent into the per-inode tree.
154 * file_offset is the logical offset in the file
155 *
156 * start is the disk block number of an extent already reserved in the
157 * extent allocation tree
158 *
159 * len is the length of the extent
160 *
eb84ae03
CM
161 * The tree is given a single reference on the ordered extent that was
162 * inserted.
163 */
e6dcd2dc 164int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
80ff3856 165 u64 start, u64 len, u64 disk_len, int type)
dc17ff8f 166{
dc17ff8f 167 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
168 struct rb_node *node;
169 struct btrfs_ordered_extent *entry;
dc17ff8f 170
e6dcd2dc
CM
171 tree = &BTRFS_I(inode)->ordered_tree;
172 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
173 if (!entry)
174 return -ENOMEM;
175
e6dcd2dc
CM
176 entry->file_offset = file_offset;
177 entry->start = start;
178 entry->len = len;
c8b97818 179 entry->disk_len = disk_len;
8b62b72b 180 entry->bytes_left = len;
3eaa2885 181 entry->inode = inode;
d899e052 182 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 183 set_bit(type, &entry->flags);
3eaa2885 184
e6dcd2dc
CM
185 /* one ref for the tree */
186 atomic_set(&entry->refs, 1);
187 init_waitqueue_head(&entry->wait);
188 INIT_LIST_HEAD(&entry->list);
3eaa2885 189 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 190
49958fd7 191 spin_lock(&tree->lock);
e6dcd2dc
CM
192 node = tree_insert(&tree->tree, file_offset,
193 &entry->rb_node);
d397712b 194 BUG_ON(node);
49958fd7 195 spin_unlock(&tree->lock);
d397712b 196
3eaa2885
CM
197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 list_add_tail(&entry->root_extent_list,
199 &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201
e6dcd2dc 202 BUG_ON(node);
dc17ff8f
CM
203 return 0;
204}
205
eb84ae03
CM
206/*
207 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
208 * when an ordered extent is finished. If the list covers more than one
209 * ordered extent, it is split across multiples.
eb84ae03 210 */
3edf7d33
CM
211int btrfs_add_ordered_sum(struct inode *inode,
212 struct btrfs_ordered_extent *entry,
213 struct btrfs_ordered_sum *sum)
dc17ff8f 214{
e6dcd2dc 215 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 216
e6dcd2dc 217 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 218 spin_lock(&tree->lock);
e6dcd2dc 219 list_add_tail(&sum->list, &entry->list);
49958fd7 220 spin_unlock(&tree->lock);
e6dcd2dc 221 return 0;
dc17ff8f
CM
222}
223
eb84ae03
CM
224/*
225 * this is used to account for finished IO across a given range
226 * of the file. The IO should not span ordered extents. If
227 * a given ordered_extent is completely done, 1 is returned, otherwise
228 * 0.
229 *
230 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
231 * to make sure this function only returns 1 once for a given ordered extent.
232 */
e6dcd2dc 233int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 234 struct btrfs_ordered_extent **cached,
e6dcd2dc 235 u64 file_offset, u64 io_size)
dc17ff8f 236{
e6dcd2dc 237 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 238 struct rb_node *node;
5a1a3df1 239 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
240 int ret;
241
242 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 243 spin_lock(&tree->lock);
e6dcd2dc 244 node = tree_search(tree, file_offset);
dc17ff8f 245 if (!node) {
e6dcd2dc
CM
246 ret = 1;
247 goto out;
dc17ff8f
CM
248 }
249
e6dcd2dc
CM
250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 if (!offset_in_entry(entry, file_offset)) {
252 ret = 1;
253 goto out;
dc17ff8f 254 }
e6dcd2dc 255
8b62b72b
CM
256 if (io_size > entry->bytes_left) {
257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry->bytes_left,
259 (unsigned long long)io_size);
260 }
261 entry->bytes_left -= io_size;
262 if (entry->bytes_left == 0)
e6dcd2dc 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
264 else
265 ret = 1;
e6dcd2dc 266out:
5a1a3df1
JB
267 if (!ret && cached && entry) {
268 *cached = entry;
269 atomic_inc(&entry->refs);
270 }
49958fd7 271 spin_unlock(&tree->lock);
e6dcd2dc
CM
272 return ret == 0;
273}
dc17ff8f 274
eb84ae03
CM
275/*
276 * used to drop a reference on an ordered extent. This will free
277 * the extent if the last reference is dropped
278 */
e6dcd2dc
CM
279int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
280{
ba1da2f4
CM
281 struct list_head *cur;
282 struct btrfs_ordered_sum *sum;
283
284 if (atomic_dec_and_test(&entry->refs)) {
d397712b 285 while (!list_empty(&entry->list)) {
ba1da2f4
CM
286 cur = entry->list.next;
287 sum = list_entry(cur, struct btrfs_ordered_sum, list);
288 list_del(&sum->list);
289 kfree(sum);
290 }
e6dcd2dc 291 kfree(entry);
ba1da2f4 292 }
e6dcd2dc 293 return 0;
dc17ff8f 294}
cee36a03 295
eb84ae03
CM
296/*
297 * remove an ordered extent from the tree. No references are dropped
49958fd7 298 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 299 * while you call this function.
eb84ae03 300 */
c2167754 301static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 302 struct btrfs_ordered_extent *entry)
cee36a03 303{
e6dcd2dc 304 struct btrfs_ordered_inode_tree *tree;
287a0ab9 305 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 306 struct rb_node *node;
cee36a03 307
e6dcd2dc 308 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 309 node = &entry->rb_node;
cee36a03 310 rb_erase(node, &tree->tree);
e6dcd2dc
CM
311 tree->last = NULL;
312 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 313
287a0ab9 314 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 315 list_del_init(&entry->root_extent_list);
5a3f23d5
CM
316
317 /*
318 * we have no more ordered extents for this inode and
319 * no dirty pages. We can safely remove it from the
320 * list of ordered extents
321 */
322 if (RB_EMPTY_ROOT(&tree->tree) &&
323 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
324 list_del_init(&BTRFS_I(inode)->ordered_operations);
325 }
287a0ab9 326 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885 327
c2167754
YZ
328 return 0;
329}
330
331/*
332 * remove an ordered extent from the tree. No references are dropped
333 * but any waiters are woken.
334 */
335int btrfs_remove_ordered_extent(struct inode *inode,
336 struct btrfs_ordered_extent *entry)
337{
338 struct btrfs_ordered_inode_tree *tree;
339 int ret;
340
341 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 342 spin_lock(&tree->lock);
c2167754 343 ret = __btrfs_remove_ordered_extent(inode, entry);
49958fd7 344 spin_unlock(&tree->lock);
e6dcd2dc 345 wake_up(&entry->wait);
c2167754
YZ
346
347 return ret;
cee36a03
CM
348}
349
d352ac68
CM
350/*
351 * wait for all the ordered extents in a root. This is done when balancing
352 * space between drives.
353 */
24bbcf04
YZ
354int btrfs_wait_ordered_extents(struct btrfs_root *root,
355 int nocow_only, int delay_iput)
3eaa2885
CM
356{
357 struct list_head splice;
358 struct list_head *cur;
359 struct btrfs_ordered_extent *ordered;
360 struct inode *inode;
361
362 INIT_LIST_HEAD(&splice);
363
364 spin_lock(&root->fs_info->ordered_extent_lock);
365 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 366 while (!list_empty(&splice)) {
3eaa2885
CM
367 cur = splice.next;
368 ordered = list_entry(cur, struct btrfs_ordered_extent,
369 root_extent_list);
7ea394f1 370 if (nocow_only &&
d899e052
YZ
371 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
372 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
373 list_move(&ordered->root_extent_list,
374 &root->fs_info->ordered_extents);
7ea394f1
YZ
375 cond_resched_lock(&root->fs_info->ordered_extent_lock);
376 continue;
377 }
378
3eaa2885
CM
379 list_del_init(&ordered->root_extent_list);
380 atomic_inc(&ordered->refs);
3eaa2885
CM
381
382 /*
5b21f2ed 383 * the inode may be getting freed (in sys_unlink path).
3eaa2885 384 */
5b21f2ed
ZY
385 inode = igrab(ordered->inode);
386
3eaa2885
CM
387 spin_unlock(&root->fs_info->ordered_extent_lock);
388
5b21f2ed
ZY
389 if (inode) {
390 btrfs_start_ordered_extent(inode, ordered, 1);
391 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
392 if (delay_iput)
393 btrfs_add_delayed_iput(inode);
394 else
395 iput(inode);
5b21f2ed
ZY
396 } else {
397 btrfs_put_ordered_extent(ordered);
398 }
3eaa2885
CM
399
400 spin_lock(&root->fs_info->ordered_extent_lock);
401 }
402 spin_unlock(&root->fs_info->ordered_extent_lock);
403 return 0;
404}
405
5a3f23d5
CM
406/*
407 * this is used during transaction commit to write all the inodes
408 * added to the ordered operation list. These files must be fully on
409 * disk before the transaction commits.
410 *
411 * we have two modes here, one is to just start the IO via filemap_flush
412 * and the other is to wait for all the io. When we wait, we have an
413 * extra check to make sure the ordered operation list really is empty
414 * before we return
415 */
416int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
417{
418 struct btrfs_inode *btrfs_inode;
419 struct inode *inode;
420 struct list_head splice;
421
422 INIT_LIST_HEAD(&splice);
423
424 mutex_lock(&root->fs_info->ordered_operations_mutex);
425 spin_lock(&root->fs_info->ordered_extent_lock);
426again:
427 list_splice_init(&root->fs_info->ordered_operations, &splice);
428
429 while (!list_empty(&splice)) {
430 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
431 ordered_operations);
432
433 inode = &btrfs_inode->vfs_inode;
434
435 list_del_init(&btrfs_inode->ordered_operations);
436
437 /*
438 * the inode may be getting freed (in sys_unlink path).
439 */
440 inode = igrab(inode);
441
442 if (!wait && inode) {
443 list_add_tail(&BTRFS_I(inode)->ordered_operations,
444 &root->fs_info->ordered_operations);
445 }
446 spin_unlock(&root->fs_info->ordered_extent_lock);
447
448 if (inode) {
449 if (wait)
450 btrfs_wait_ordered_range(inode, 0, (u64)-1);
451 else
452 filemap_flush(inode->i_mapping);
24bbcf04 453 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
454 }
455
456 cond_resched();
457 spin_lock(&root->fs_info->ordered_extent_lock);
458 }
459 if (wait && !list_empty(&root->fs_info->ordered_operations))
460 goto again;
461
462 spin_unlock(&root->fs_info->ordered_extent_lock);
463 mutex_unlock(&root->fs_info->ordered_operations_mutex);
464
465 return 0;
466}
467
eb84ae03
CM
468/*
469 * Used to start IO or wait for a given ordered extent to finish.
470 *
471 * If wait is one, this effectively waits on page writeback for all the pages
472 * in the extent, and it waits on the io completion code to insert
473 * metadata into the btree corresponding to the extent
474 */
475void btrfs_start_ordered_extent(struct inode *inode,
476 struct btrfs_ordered_extent *entry,
477 int wait)
e6dcd2dc
CM
478{
479 u64 start = entry->file_offset;
480 u64 end = start + entry->len - 1;
e1b81e67 481
eb84ae03
CM
482 /*
483 * pages in the range can be dirty, clean or writeback. We
484 * start IO on any dirty ones so the wait doesn't stall waiting
485 * for pdflush to find them
486 */
8aa38c31 487 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 488 if (wait) {
e6dcd2dc
CM
489 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
490 &entry->flags));
c8b97818 491 }
e6dcd2dc 492}
cee36a03 493
eb84ae03
CM
494/*
495 * Used to wait on ordered extents across a large range of bytes.
496 */
cb843a6f 497int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
498{
499 u64 end;
e5a2217e
CM
500 u64 orig_end;
501 u64 wait_end;
e6dcd2dc 502 struct btrfs_ordered_extent *ordered;
8b62b72b 503 int found;
e5a2217e
CM
504
505 if (start + len < start) {
f421950f 506 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
507 } else {
508 orig_end = start + len - 1;
f421950f
CM
509 if (orig_end > INT_LIMIT(loff_t))
510 orig_end = INT_LIMIT(loff_t);
e5a2217e 511 }
f421950f 512 wait_end = orig_end;
4a096752 513again:
e5a2217e
CM
514 /* start IO across the range first to instantiate any delalloc
515 * extents
516 */
8aa38c31 517 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 518
771ed689
CM
519 /* The compression code will leave pages locked but return from
520 * writepage without setting the page writeback. Starting again
521 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
522 */
8aa38c31 523 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 524
8aa38c31 525 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 526
f421950f 527 end = orig_end;
8b62b72b 528 found = 0;
d397712b 529 while (1) {
e6dcd2dc 530 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 531 if (!ordered)
e6dcd2dc 532 break;
e5a2217e 533 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
534 btrfs_put_ordered_extent(ordered);
535 break;
536 }
537 if (ordered->file_offset + ordered->len < start) {
538 btrfs_put_ordered_extent(ordered);
539 break;
540 }
8b62b72b 541 found++;
e5a2217e 542 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
543 end = ordered->file_offset;
544 btrfs_put_ordered_extent(ordered);
e5a2217e 545 if (end == 0 || end == start)
e6dcd2dc
CM
546 break;
547 end--;
548 }
8b62b72b
CM
549 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
550 EXTENT_DELALLOC, 0, NULL)) {
771ed689 551 schedule_timeout(1);
4a096752
CM
552 goto again;
553 }
cb843a6f 554 return 0;
cee36a03
CM
555}
556
eb84ae03
CM
557/*
558 * find an ordered extent corresponding to file_offset. return NULL if
559 * nothing is found, otherwise take a reference on the extent and return it
560 */
e6dcd2dc
CM
561struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
562 u64 file_offset)
563{
564 struct btrfs_ordered_inode_tree *tree;
565 struct rb_node *node;
566 struct btrfs_ordered_extent *entry = NULL;
567
568 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 569 spin_lock(&tree->lock);
e6dcd2dc
CM
570 node = tree_search(tree, file_offset);
571 if (!node)
572 goto out;
573
574 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
575 if (!offset_in_entry(entry, file_offset))
576 entry = NULL;
577 if (entry)
578 atomic_inc(&entry->refs);
579out:
49958fd7 580 spin_unlock(&tree->lock);
e6dcd2dc
CM
581 return entry;
582}
583
eb84ae03
CM
584/*
585 * lookup and return any extent before 'file_offset'. NULL is returned
586 * if none is found
587 */
e6dcd2dc 588struct btrfs_ordered_extent *
d397712b 589btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
590{
591 struct btrfs_ordered_inode_tree *tree;
592 struct rb_node *node;
593 struct btrfs_ordered_extent *entry = NULL;
594
595 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 596 spin_lock(&tree->lock);
e6dcd2dc
CM
597 node = tree_search(tree, file_offset);
598 if (!node)
599 goto out;
600
601 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
602 atomic_inc(&entry->refs);
603out:
49958fd7 604 spin_unlock(&tree->lock);
e6dcd2dc 605 return entry;
81d7ed29 606}
dbe674a9 607
eb84ae03
CM
608/*
609 * After an extent is done, call this to conditionally update the on disk
610 * i_size. i_size is updated to cover any fully written part of the file.
611 */
c2167754 612int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
613 struct btrfs_ordered_extent *ordered)
614{
615 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
616 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
617 u64 disk_i_size;
618 u64 new_i_size;
619 u64 i_size_test;
c2167754 620 u64 i_size = i_size_read(inode);
dbe674a9 621 struct rb_node *node;
c2167754 622 struct rb_node *prev = NULL;
dbe674a9 623 struct btrfs_ordered_extent *test;
c2167754
YZ
624 int ret = 1;
625
626 if (ordered)
627 offset = entry_end(ordered);
a038fab0
YZ
628 else
629 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 630
49958fd7 631 spin_lock(&tree->lock);
dbe674a9
CM
632 disk_i_size = BTRFS_I(inode)->disk_i_size;
633
c2167754
YZ
634 /* truncate file */
635 if (disk_i_size > i_size) {
636 BTRFS_I(inode)->disk_i_size = i_size;
637 ret = 0;
638 goto out;
639 }
640
dbe674a9
CM
641 /*
642 * if the disk i_size is already at the inode->i_size, or
643 * this ordered extent is inside the disk i_size, we're done
644 */
c2167754 645 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
646 goto out;
647 }
648
649 /*
650 * we can't update the disk_isize if there are delalloc bytes
651 * between disk_i_size and this ordered extent
652 */
c2167754 653 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 654 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
655 goto out;
656 }
657 /*
658 * walk backward from this ordered extent to disk_i_size.
659 * if we find an ordered extent then we can't update disk i_size
660 * yet
661 */
c2167754
YZ
662 if (ordered) {
663 node = rb_prev(&ordered->rb_node);
664 } else {
665 prev = tree_search(tree, offset);
666 /*
667 * we insert file extents without involving ordered struct,
668 * so there should be no ordered struct cover this offset
669 */
670 if (prev) {
671 test = rb_entry(prev, struct btrfs_ordered_extent,
672 rb_node);
673 BUG_ON(offset_in_entry(test, offset));
674 }
675 node = prev;
676 }
677 while (node) {
dbe674a9
CM
678 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
679 if (test->file_offset + test->len <= disk_i_size)
680 break;
c2167754 681 if (test->file_offset >= i_size)
dbe674a9
CM
682 break;
683 if (test->file_offset >= disk_i_size)
684 goto out;
c2167754 685 node = rb_prev(node);
dbe674a9 686 }
c2167754 687 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
688
689 /*
690 * at this point, we know we can safely update i_size to at least
691 * the offset from this ordered extent. But, we need to
692 * walk forward and see if ios from higher up in the file have
693 * finished.
694 */
c2167754
YZ
695 if (ordered) {
696 node = rb_next(&ordered->rb_node);
697 } else {
698 if (prev)
699 node = rb_next(prev);
700 else
701 node = rb_first(&tree->tree);
702 }
dbe674a9
CM
703 i_size_test = 0;
704 if (node) {
705 /*
706 * do we have an area where IO might have finished
707 * between our ordered extent and the next one.
708 */
709 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 710 if (test->file_offset > offset)
b48652c1 711 i_size_test = test->file_offset;
dbe674a9 712 } else {
c2167754 713 i_size_test = i_size;
dbe674a9
CM
714 }
715
716 /*
717 * i_size_test is the end of a region after this ordered
718 * extent where there are no ordered extents. As long as there
719 * are no delalloc bytes in this area, it is safe to update
720 * disk_i_size to the end of the region.
721 */
c2167754
YZ
722 if (i_size_test > offset &&
723 !test_range_bit(io_tree, offset, i_size_test - 1,
724 EXTENT_DELALLOC, 0, NULL)) {
725 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
726 }
727 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 728 ret = 0;
dbe674a9 729out:
c2167754
YZ
730 /*
731 * we need to remove the ordered extent with the tree lock held
732 * so that other people calling this function don't find our fully
733 * processed ordered entry and skip updating the i_size
734 */
735 if (ordered)
736 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 737 spin_unlock(&tree->lock);
c2167754
YZ
738 if (ordered)
739 wake_up(&ordered->wait);
740 return ret;
dbe674a9 741}
ba1da2f4 742
eb84ae03
CM
743/*
744 * search the ordered extents for one corresponding to 'offset' and
745 * try to find a checksum. This is used because we allow pages to
746 * be reclaimed before their checksum is actually put into the btree
747 */
d20f7043
CM
748int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
749 u32 *sum)
ba1da2f4
CM
750{
751 struct btrfs_ordered_sum *ordered_sum;
752 struct btrfs_sector_sum *sector_sums;
753 struct btrfs_ordered_extent *ordered;
754 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
755 unsigned long num_sectors;
756 unsigned long i;
757 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 758 int ret = 1;
ba1da2f4
CM
759
760 ordered = btrfs_lookup_ordered_extent(inode, offset);
761 if (!ordered)
762 return 1;
763
49958fd7 764 spin_lock(&tree->lock);
c6e30871 765 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 766 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 767 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 768 sector_sums = ordered_sum->sums;
3edf7d33 769 for (i = 0; i < num_sectors; i++) {
d20f7043 770 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
771 *sum = sector_sums[i].sum;
772 ret = 0;
773 goto out;
774 }
775 }
ba1da2f4
CM
776 }
777 }
778out:
49958fd7 779 spin_unlock(&tree->lock);
89642229 780 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
781 return ret;
782}
783
f421950f 784
5a3f23d5
CM
785/*
786 * add a given inode to the list of inodes that must be fully on
787 * disk before a transaction commit finishes.
788 *
789 * This basically gives us the ext3 style data=ordered mode, and it is mostly
790 * used to make sure renamed files are fully on disk.
791 *
792 * It is a noop if the inode is already fully on disk.
793 *
794 * If trans is not null, we'll do a friendly check for a transaction that
795 * is already flushing things and force the IO down ourselves.
796 */
797int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
798 struct btrfs_root *root,
799 struct inode *inode)
800{
801 u64 last_mod;
802
803 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
804
805 /*
806 * if this file hasn't been changed since the last transaction
807 * commit, we can safely return without doing anything
808 */
809 if (last_mod < root->fs_info->last_trans_committed)
810 return 0;
811
812 /*
813 * the transaction is already committing. Just start the IO and
814 * don't bother with all of this list nonsense
815 */
816 if (trans && root->fs_info->running_transaction->blocked) {
817 btrfs_wait_ordered_range(inode, 0, (u64)-1);
818 return 0;
819 }
820
821 spin_lock(&root->fs_info->ordered_extent_lock);
822 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
823 list_add_tail(&BTRFS_I(inode)->ordered_operations,
824 &root->fs_info->ordered_operations);
825 }
826 spin_unlock(&root->fs_info->ordered_extent_lock);
827
828 return 0;
829}