]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ordered-data.c
btrfs: __add_reloc_root error push-up
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
43c04fb1
JM
62static void ordered_data_tree_panic(struct inode *inode, int errno,
63 u64 offset)
64{
65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 "%llu\n", (unsigned long long)offset);
68}
69
d352ac68
CM
70/*
71 * look for a given offset in the tree, and if it can't be found return the
72 * first lesser offset
73 */
e6dcd2dc
CM
74static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 struct rb_node **prev_ret)
dc17ff8f 76{
d397712b 77 struct rb_node *n = root->rb_node;
dc17ff8f 78 struct rb_node *prev = NULL;
e6dcd2dc
CM
79 struct rb_node *test;
80 struct btrfs_ordered_extent *entry;
81 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 82
d397712b 83 while (n) {
e6dcd2dc 84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
85 prev = n;
86 prev_entry = entry;
dc17ff8f 87
e6dcd2dc 88 if (file_offset < entry->file_offset)
dc17ff8f 89 n = n->rb_left;
e6dcd2dc 90 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
91 n = n->rb_right;
92 else
93 return n;
94 }
95 if (!prev_ret)
96 return NULL;
97
d397712b 98 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
99 test = rb_next(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 if (file_offset < entry_end(prev_entry))
105 break;
106
107 prev = test;
108 }
109 if (prev)
110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
111 rb_node);
d397712b 112 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
113 test = rb_prev(prev);
114 if (!test)
115 break;
116 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
117 rb_node);
118 prev = test;
dc17ff8f
CM
119 }
120 *prev_ret = prev;
121 return NULL;
122}
123
d352ac68
CM
124/*
125 * helper to check if a given offset is inside a given entry
126 */
e6dcd2dc
CM
127static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
128{
129 if (file_offset < entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
4b46fce2
JB
135static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
136 u64 len)
137{
138 if (file_offset + len <= entry->file_offset ||
139 entry->file_offset + entry->len <= file_offset)
140 return 0;
141 return 1;
142}
143
d352ac68
CM
144/*
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
147 */
e6dcd2dc
CM
148static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
149 u64 file_offset)
dc17ff8f 150{
e6dcd2dc 151 struct rb_root *root = &tree->tree;
c87fb6fd 152 struct rb_node *prev = NULL;
dc17ff8f 153 struct rb_node *ret;
e6dcd2dc
CM
154 struct btrfs_ordered_extent *entry;
155
156 if (tree->last) {
157 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
158 rb_node);
159 if (offset_in_entry(entry, file_offset))
160 return tree->last;
161 }
162 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 163 if (!ret)
e6dcd2dc
CM
164 ret = prev;
165 if (ret)
166 tree->last = ret;
dc17ff8f
CM
167 return ret;
168}
169
eb84ae03
CM
170/* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
172 *
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
175 *
176 * len is the length of the extent
177 *
eb84ae03
CM
178 * The tree is given a single reference on the ordered extent that was
179 * inserted.
180 */
4b46fce2
JB
181static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 u64 start, u64 len, u64 disk_len,
261507a0 183 int type, int dio, int compress_type)
dc17ff8f 184{
dc17ff8f 185 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
186 struct rb_node *node;
187 struct btrfs_ordered_extent *entry;
dc17ff8f 188
e6dcd2dc
CM
189 tree = &BTRFS_I(inode)->ordered_tree;
190 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
191 if (!entry)
192 return -ENOMEM;
193
e6dcd2dc
CM
194 entry->file_offset = file_offset;
195 entry->start = start;
196 entry->len = len;
c8b97818 197 entry->disk_len = disk_len;
8b62b72b 198 entry->bytes_left = len;
3eaa2885 199 entry->inode = inode;
261507a0 200 entry->compress_type = compress_type;
d899e052 201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 202 set_bit(type, &entry->flags);
3eaa2885 203
4b46fce2
JB
204 if (dio)
205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
e6dcd2dc
CM
207 /* one ref for the tree */
208 atomic_set(&entry->refs, 1);
209 init_waitqueue_head(&entry->wait);
210 INIT_LIST_HEAD(&entry->list);
3eaa2885 211 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 212
1abe9b8a 213 trace_btrfs_ordered_extent_add(inode, entry);
214
49958fd7 215 spin_lock(&tree->lock);
e6dcd2dc
CM
216 node = tree_insert(&tree->tree, file_offset,
217 &entry->rb_node);
43c04fb1
JM
218 if (node)
219 ordered_data_tree_panic(inode, -EEXIST, file_offset);
49958fd7 220 spin_unlock(&tree->lock);
d397712b 221
3eaa2885
CM
222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 list_add_tail(&entry->root_extent_list,
224 &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
226
dc17ff8f
CM
227 return 0;
228}
229
4b46fce2
JB
230int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
234 disk_len, type, 0,
235 BTRFS_COMPRESS_NONE);
4b46fce2
JB
236}
237
238int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240{
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
242 disk_len, type, 1,
243 BTRFS_COMPRESS_NONE);
244}
245
246int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len,
248 int type, int compress_type)
249{
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 compress_type);
4b46fce2
JB
253}
254
eb84ae03
CM
255/*
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
257 * when an ordered extent is finished. If the list covers more than one
258 * ordered extent, it is split across multiples.
eb84ae03 259 */
3edf7d33
CM
260int btrfs_add_ordered_sum(struct inode *inode,
261 struct btrfs_ordered_extent *entry,
262 struct btrfs_ordered_sum *sum)
dc17ff8f 263{
e6dcd2dc 264 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 265
e6dcd2dc 266 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 267 spin_lock(&tree->lock);
e6dcd2dc 268 list_add_tail(&sum->list, &entry->list);
49958fd7 269 spin_unlock(&tree->lock);
e6dcd2dc 270 return 0;
dc17ff8f
CM
271}
272
163cf09c
CM
273/*
274 * this is used to account for finished IO across a given range
275 * of the file. The IO may span ordered extents. If
276 * a given ordered_extent is completely done, 1 is returned, otherwise
277 * 0.
278 *
279 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
280 * to make sure this function only returns 1 once for a given ordered extent.
281 *
282 * file_offset is updated to one byte past the range that is recorded as
283 * complete. This allows you to walk forward in the file.
284 */
285int btrfs_dec_test_first_ordered_pending(struct inode *inode,
286 struct btrfs_ordered_extent **cached,
287 u64 *file_offset, u64 io_size)
288{
289 struct btrfs_ordered_inode_tree *tree;
290 struct rb_node *node;
291 struct btrfs_ordered_extent *entry = NULL;
292 int ret;
293 u64 dec_end;
294 u64 dec_start;
295 u64 to_dec;
296
297 tree = &BTRFS_I(inode)->ordered_tree;
298 spin_lock(&tree->lock);
299 node = tree_search(tree, *file_offset);
300 if (!node) {
301 ret = 1;
302 goto out;
303 }
304
305 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306 if (!offset_in_entry(entry, *file_offset)) {
307 ret = 1;
308 goto out;
309 }
310
311 dec_start = max(*file_offset, entry->file_offset);
312 dec_end = min(*file_offset + io_size, entry->file_offset +
313 entry->len);
314 *file_offset = dec_end;
315 if (dec_start > dec_end) {
316 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317 (unsigned long long)dec_start,
318 (unsigned long long)dec_end);
319 }
320 to_dec = dec_end - dec_start;
321 if (to_dec > entry->bytes_left) {
322 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323 (unsigned long long)entry->bytes_left,
324 (unsigned long long)to_dec);
325 }
326 entry->bytes_left -= to_dec;
327 if (entry->bytes_left == 0)
328 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
329 else
330 ret = 1;
331out:
332 if (!ret && cached && entry) {
333 *cached = entry;
334 atomic_inc(&entry->refs);
335 }
336 spin_unlock(&tree->lock);
337 return ret == 0;
338}
339
eb84ae03
CM
340/*
341 * this is used to account for finished IO across a given range
342 * of the file. The IO should not span ordered extents. If
343 * a given ordered_extent is completely done, 1 is returned, otherwise
344 * 0.
345 *
346 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
347 * to make sure this function only returns 1 once for a given ordered extent.
348 */
e6dcd2dc 349int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 350 struct btrfs_ordered_extent **cached,
e6dcd2dc 351 u64 file_offset, u64 io_size)
dc17ff8f 352{
e6dcd2dc 353 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 354 struct rb_node *node;
5a1a3df1 355 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
356 int ret;
357
358 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 359 spin_lock(&tree->lock);
e6dcd2dc 360 node = tree_search(tree, file_offset);
dc17ff8f 361 if (!node) {
e6dcd2dc
CM
362 ret = 1;
363 goto out;
dc17ff8f
CM
364 }
365
e6dcd2dc
CM
366 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
367 if (!offset_in_entry(entry, file_offset)) {
368 ret = 1;
369 goto out;
dc17ff8f 370 }
e6dcd2dc 371
8b62b72b
CM
372 if (io_size > entry->bytes_left) {
373 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
374 (unsigned long long)entry->bytes_left,
375 (unsigned long long)io_size);
376 }
377 entry->bytes_left -= io_size;
378 if (entry->bytes_left == 0)
e6dcd2dc 379 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
380 else
381 ret = 1;
e6dcd2dc 382out:
5a1a3df1
JB
383 if (!ret && cached && entry) {
384 *cached = entry;
385 atomic_inc(&entry->refs);
386 }
49958fd7 387 spin_unlock(&tree->lock);
e6dcd2dc
CM
388 return ret == 0;
389}
dc17ff8f 390
eb84ae03
CM
391/*
392 * used to drop a reference on an ordered extent. This will free
393 * the extent if the last reference is dropped
394 */
e6dcd2dc
CM
395int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
396{
ba1da2f4
CM
397 struct list_head *cur;
398 struct btrfs_ordered_sum *sum;
399
1abe9b8a 400 trace_btrfs_ordered_extent_put(entry->inode, entry);
401
ba1da2f4 402 if (atomic_dec_and_test(&entry->refs)) {
d397712b 403 while (!list_empty(&entry->list)) {
ba1da2f4
CM
404 cur = entry->list.next;
405 sum = list_entry(cur, struct btrfs_ordered_sum, list);
406 list_del(&sum->list);
407 kfree(sum);
408 }
e6dcd2dc 409 kfree(entry);
ba1da2f4 410 }
e6dcd2dc 411 return 0;
dc17ff8f 412}
cee36a03 413
eb84ae03
CM
414/*
415 * remove an ordered extent from the tree. No references are dropped
49958fd7 416 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 417 * while you call this function.
eb84ae03 418 */
c2167754 419static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 420 struct btrfs_ordered_extent *entry)
cee36a03 421{
e6dcd2dc 422 struct btrfs_ordered_inode_tree *tree;
287a0ab9 423 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 424 struct rb_node *node;
cee36a03 425
e6dcd2dc 426 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 427 node = &entry->rb_node;
cee36a03 428 rb_erase(node, &tree->tree);
e6dcd2dc
CM
429 tree->last = NULL;
430 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 431
287a0ab9 432 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 433 list_del_init(&entry->root_extent_list);
5a3f23d5 434
1abe9b8a 435 trace_btrfs_ordered_extent_remove(inode, entry);
436
5a3f23d5
CM
437 /*
438 * we have no more ordered extents for this inode and
439 * no dirty pages. We can safely remove it from the
440 * list of ordered extents
441 */
442 if (RB_EMPTY_ROOT(&tree->tree) &&
443 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
444 list_del_init(&BTRFS_I(inode)->ordered_operations);
445 }
287a0ab9 446 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885 447
c2167754
YZ
448 return 0;
449}
450
451/*
452 * remove an ordered extent from the tree. No references are dropped
453 * but any waiters are woken.
454 */
455int btrfs_remove_ordered_extent(struct inode *inode,
456 struct btrfs_ordered_extent *entry)
457{
458 struct btrfs_ordered_inode_tree *tree;
459 int ret;
460
461 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 462 spin_lock(&tree->lock);
c2167754 463 ret = __btrfs_remove_ordered_extent(inode, entry);
49958fd7 464 spin_unlock(&tree->lock);
e6dcd2dc 465 wake_up(&entry->wait);
c2167754
YZ
466
467 return ret;
cee36a03
CM
468}
469
d352ac68
CM
470/*
471 * wait for all the ordered extents in a root. This is done when balancing
472 * space between drives.
473 */
24bbcf04
YZ
474int btrfs_wait_ordered_extents(struct btrfs_root *root,
475 int nocow_only, int delay_iput)
3eaa2885
CM
476{
477 struct list_head splice;
478 struct list_head *cur;
479 struct btrfs_ordered_extent *ordered;
480 struct inode *inode;
481
482 INIT_LIST_HEAD(&splice);
483
484 spin_lock(&root->fs_info->ordered_extent_lock);
485 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 486 while (!list_empty(&splice)) {
3eaa2885
CM
487 cur = splice.next;
488 ordered = list_entry(cur, struct btrfs_ordered_extent,
489 root_extent_list);
7ea394f1 490 if (nocow_only &&
d899e052
YZ
491 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
492 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
493 list_move(&ordered->root_extent_list,
494 &root->fs_info->ordered_extents);
7ea394f1
YZ
495 cond_resched_lock(&root->fs_info->ordered_extent_lock);
496 continue;
497 }
498
3eaa2885
CM
499 list_del_init(&ordered->root_extent_list);
500 atomic_inc(&ordered->refs);
3eaa2885
CM
501
502 /*
5b21f2ed 503 * the inode may be getting freed (in sys_unlink path).
3eaa2885 504 */
5b21f2ed
ZY
505 inode = igrab(ordered->inode);
506
3eaa2885
CM
507 spin_unlock(&root->fs_info->ordered_extent_lock);
508
5b21f2ed
ZY
509 if (inode) {
510 btrfs_start_ordered_extent(inode, ordered, 1);
511 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
512 if (delay_iput)
513 btrfs_add_delayed_iput(inode);
514 else
515 iput(inode);
5b21f2ed
ZY
516 } else {
517 btrfs_put_ordered_extent(ordered);
518 }
3eaa2885
CM
519
520 spin_lock(&root->fs_info->ordered_extent_lock);
521 }
522 spin_unlock(&root->fs_info->ordered_extent_lock);
523 return 0;
524}
525
5a3f23d5
CM
526/*
527 * this is used during transaction commit to write all the inodes
528 * added to the ordered operation list. These files must be fully on
529 * disk before the transaction commits.
530 *
531 * we have two modes here, one is to just start the IO via filemap_flush
532 * and the other is to wait for all the io. When we wait, we have an
533 * extra check to make sure the ordered operation list really is empty
534 * before we return
535 */
536int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
537{
538 struct btrfs_inode *btrfs_inode;
539 struct inode *inode;
540 struct list_head splice;
541
542 INIT_LIST_HEAD(&splice);
543
544 mutex_lock(&root->fs_info->ordered_operations_mutex);
545 spin_lock(&root->fs_info->ordered_extent_lock);
546again:
547 list_splice_init(&root->fs_info->ordered_operations, &splice);
548
549 while (!list_empty(&splice)) {
550 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
551 ordered_operations);
552
553 inode = &btrfs_inode->vfs_inode;
554
555 list_del_init(&btrfs_inode->ordered_operations);
556
557 /*
558 * the inode may be getting freed (in sys_unlink path).
559 */
560 inode = igrab(inode);
561
562 if (!wait && inode) {
563 list_add_tail(&BTRFS_I(inode)->ordered_operations,
564 &root->fs_info->ordered_operations);
565 }
566 spin_unlock(&root->fs_info->ordered_extent_lock);
567
568 if (inode) {
569 if (wait)
570 btrfs_wait_ordered_range(inode, 0, (u64)-1);
571 else
572 filemap_flush(inode->i_mapping);
24bbcf04 573 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
574 }
575
576 cond_resched();
577 spin_lock(&root->fs_info->ordered_extent_lock);
578 }
579 if (wait && !list_empty(&root->fs_info->ordered_operations))
580 goto again;
581
582 spin_unlock(&root->fs_info->ordered_extent_lock);
583 mutex_unlock(&root->fs_info->ordered_operations_mutex);
584
585 return 0;
586}
587
eb84ae03
CM
588/*
589 * Used to start IO or wait for a given ordered extent to finish.
590 *
591 * If wait is one, this effectively waits on page writeback for all the pages
592 * in the extent, and it waits on the io completion code to insert
593 * metadata into the btree corresponding to the extent
594 */
595void btrfs_start_ordered_extent(struct inode *inode,
596 struct btrfs_ordered_extent *entry,
597 int wait)
e6dcd2dc
CM
598{
599 u64 start = entry->file_offset;
600 u64 end = start + entry->len - 1;
e1b81e67 601
1abe9b8a 602 trace_btrfs_ordered_extent_start(inode, entry);
603
eb84ae03
CM
604 /*
605 * pages in the range can be dirty, clean or writeback. We
606 * start IO on any dirty ones so the wait doesn't stall waiting
607 * for pdflush to find them
608 */
4b46fce2
JB
609 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
610 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 611 if (wait) {
e6dcd2dc
CM
612 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
613 &entry->flags));
c8b97818 614 }
e6dcd2dc 615}
cee36a03 616
eb84ae03
CM
617/*
618 * Used to wait on ordered extents across a large range of bytes.
619 */
cb843a6f 620int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
621{
622 u64 end;
e5a2217e 623 u64 orig_end;
e6dcd2dc 624 struct btrfs_ordered_extent *ordered;
8b62b72b 625 int found;
e5a2217e
CM
626
627 if (start + len < start) {
f421950f 628 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
629 } else {
630 orig_end = start + len - 1;
f421950f
CM
631 if (orig_end > INT_LIMIT(loff_t))
632 orig_end = INT_LIMIT(loff_t);
e5a2217e 633 }
4a096752 634again:
e5a2217e
CM
635 /* start IO across the range first to instantiate any delalloc
636 * extents
637 */
8aa38c31 638 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 639
771ed689
CM
640 /* The compression code will leave pages locked but return from
641 * writepage without setting the page writeback. Starting again
642 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
643 */
8aa38c31 644 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 645
8aa38c31 646 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 647
f421950f 648 end = orig_end;
8b62b72b 649 found = 0;
d397712b 650 while (1) {
e6dcd2dc 651 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 652 if (!ordered)
e6dcd2dc 653 break;
e5a2217e 654 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
655 btrfs_put_ordered_extent(ordered);
656 break;
657 }
658 if (ordered->file_offset + ordered->len < start) {
659 btrfs_put_ordered_extent(ordered);
660 break;
661 }
8b62b72b 662 found++;
e5a2217e 663 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
664 end = ordered->file_offset;
665 btrfs_put_ordered_extent(ordered);
e5a2217e 666 if (end == 0 || end == start)
e6dcd2dc
CM
667 break;
668 end--;
669 }
8b62b72b
CM
670 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
671 EXTENT_DELALLOC, 0, NULL)) {
771ed689 672 schedule_timeout(1);
4a096752
CM
673 goto again;
674 }
cb843a6f 675 return 0;
cee36a03
CM
676}
677
eb84ae03
CM
678/*
679 * find an ordered extent corresponding to file_offset. return NULL if
680 * nothing is found, otherwise take a reference on the extent and return it
681 */
e6dcd2dc
CM
682struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
683 u64 file_offset)
684{
685 struct btrfs_ordered_inode_tree *tree;
686 struct rb_node *node;
687 struct btrfs_ordered_extent *entry = NULL;
688
689 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 690 spin_lock(&tree->lock);
e6dcd2dc
CM
691 node = tree_search(tree, file_offset);
692 if (!node)
693 goto out;
694
695 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
696 if (!offset_in_entry(entry, file_offset))
697 entry = NULL;
698 if (entry)
699 atomic_inc(&entry->refs);
700out:
49958fd7 701 spin_unlock(&tree->lock);
e6dcd2dc
CM
702 return entry;
703}
704
4b46fce2
JB
705/* Since the DIO code tries to lock a wide area we need to look for any ordered
706 * extents that exist in the range, rather than just the start of the range.
707 */
708struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
709 u64 file_offset,
710 u64 len)
711{
712 struct btrfs_ordered_inode_tree *tree;
713 struct rb_node *node;
714 struct btrfs_ordered_extent *entry = NULL;
715
716 tree = &BTRFS_I(inode)->ordered_tree;
717 spin_lock(&tree->lock);
718 node = tree_search(tree, file_offset);
719 if (!node) {
720 node = tree_search(tree, file_offset + len);
721 if (!node)
722 goto out;
723 }
724
725 while (1) {
726 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
727 if (range_overlaps(entry, file_offset, len))
728 break;
729
730 if (entry->file_offset >= file_offset + len) {
731 entry = NULL;
732 break;
733 }
734 entry = NULL;
735 node = rb_next(node);
736 if (!node)
737 break;
738 }
739out:
740 if (entry)
741 atomic_inc(&entry->refs);
742 spin_unlock(&tree->lock);
743 return entry;
744}
745
eb84ae03
CM
746/*
747 * lookup and return any extent before 'file_offset'. NULL is returned
748 * if none is found
749 */
e6dcd2dc 750struct btrfs_ordered_extent *
d397712b 751btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
752{
753 struct btrfs_ordered_inode_tree *tree;
754 struct rb_node *node;
755 struct btrfs_ordered_extent *entry = NULL;
756
757 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 758 spin_lock(&tree->lock);
e6dcd2dc
CM
759 node = tree_search(tree, file_offset);
760 if (!node)
761 goto out;
762
763 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
764 atomic_inc(&entry->refs);
765out:
49958fd7 766 spin_unlock(&tree->lock);
e6dcd2dc 767 return entry;
81d7ed29 768}
dbe674a9 769
eb84ae03
CM
770/*
771 * After an extent is done, call this to conditionally update the on disk
772 * i_size. i_size is updated to cover any fully written part of the file.
773 */
c2167754 774int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
775 struct btrfs_ordered_extent *ordered)
776{
777 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
778 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
779 u64 disk_i_size;
780 u64 new_i_size;
781 u64 i_size_test;
c2167754 782 u64 i_size = i_size_read(inode);
dbe674a9 783 struct rb_node *node;
c2167754 784 struct rb_node *prev = NULL;
dbe674a9 785 struct btrfs_ordered_extent *test;
c2167754
YZ
786 int ret = 1;
787
788 if (ordered)
789 offset = entry_end(ordered);
a038fab0
YZ
790 else
791 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 792
49958fd7 793 spin_lock(&tree->lock);
dbe674a9
CM
794 disk_i_size = BTRFS_I(inode)->disk_i_size;
795
c2167754
YZ
796 /* truncate file */
797 if (disk_i_size > i_size) {
798 BTRFS_I(inode)->disk_i_size = i_size;
799 ret = 0;
800 goto out;
801 }
802
dbe674a9
CM
803 /*
804 * if the disk i_size is already at the inode->i_size, or
805 * this ordered extent is inside the disk i_size, we're done
806 */
c2167754 807 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
808 goto out;
809 }
810
811 /*
812 * we can't update the disk_isize if there are delalloc bytes
813 * between disk_i_size and this ordered extent
814 */
c2167754 815 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 816 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
817 goto out;
818 }
819 /*
820 * walk backward from this ordered extent to disk_i_size.
821 * if we find an ordered extent then we can't update disk i_size
822 * yet
823 */
c2167754
YZ
824 if (ordered) {
825 node = rb_prev(&ordered->rb_node);
826 } else {
827 prev = tree_search(tree, offset);
828 /*
829 * we insert file extents without involving ordered struct,
830 * so there should be no ordered struct cover this offset
831 */
832 if (prev) {
833 test = rb_entry(prev, struct btrfs_ordered_extent,
834 rb_node);
835 BUG_ON(offset_in_entry(test, offset));
836 }
837 node = prev;
838 }
839 while (node) {
dbe674a9
CM
840 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
841 if (test->file_offset + test->len <= disk_i_size)
842 break;
c2167754 843 if (test->file_offset >= i_size)
dbe674a9
CM
844 break;
845 if (test->file_offset >= disk_i_size)
846 goto out;
c2167754 847 node = rb_prev(node);
dbe674a9 848 }
c2167754 849 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
850
851 /*
852 * at this point, we know we can safely update i_size to at least
853 * the offset from this ordered extent. But, we need to
854 * walk forward and see if ios from higher up in the file have
855 * finished.
856 */
c2167754
YZ
857 if (ordered) {
858 node = rb_next(&ordered->rb_node);
859 } else {
860 if (prev)
861 node = rb_next(prev);
862 else
863 node = rb_first(&tree->tree);
864 }
dbe674a9
CM
865 i_size_test = 0;
866 if (node) {
867 /*
868 * do we have an area where IO might have finished
869 * between our ordered extent and the next one.
870 */
871 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 872 if (test->file_offset > offset)
b48652c1 873 i_size_test = test->file_offset;
dbe674a9 874 } else {
c2167754 875 i_size_test = i_size;
dbe674a9
CM
876 }
877
878 /*
879 * i_size_test is the end of a region after this ordered
880 * extent where there are no ordered extents. As long as there
881 * are no delalloc bytes in this area, it is safe to update
882 * disk_i_size to the end of the region.
883 */
c2167754
YZ
884 if (i_size_test > offset &&
885 !test_range_bit(io_tree, offset, i_size_test - 1,
886 EXTENT_DELALLOC, 0, NULL)) {
887 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
888 }
889 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 890 ret = 0;
dbe674a9 891out:
c2167754
YZ
892 /*
893 * we need to remove the ordered extent with the tree lock held
894 * so that other people calling this function don't find our fully
895 * processed ordered entry and skip updating the i_size
896 */
897 if (ordered)
898 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 899 spin_unlock(&tree->lock);
c2167754
YZ
900 if (ordered)
901 wake_up(&ordered->wait);
902 return ret;
dbe674a9 903}
ba1da2f4 904
eb84ae03
CM
905/*
906 * search the ordered extents for one corresponding to 'offset' and
907 * try to find a checksum. This is used because we allow pages to
908 * be reclaimed before their checksum is actually put into the btree
909 */
d20f7043
CM
910int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
911 u32 *sum)
ba1da2f4
CM
912{
913 struct btrfs_ordered_sum *ordered_sum;
914 struct btrfs_sector_sum *sector_sums;
915 struct btrfs_ordered_extent *ordered;
916 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
917 unsigned long num_sectors;
918 unsigned long i;
919 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 920 int ret = 1;
ba1da2f4
CM
921
922 ordered = btrfs_lookup_ordered_extent(inode, offset);
923 if (!ordered)
924 return 1;
925
49958fd7 926 spin_lock(&tree->lock);
c6e30871 927 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 928 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 929 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 930 sector_sums = ordered_sum->sums;
3edf7d33 931 for (i = 0; i < num_sectors; i++) {
d20f7043 932 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
933 *sum = sector_sums[i].sum;
934 ret = 0;
935 goto out;
936 }
937 }
ba1da2f4
CM
938 }
939 }
940out:
49958fd7 941 spin_unlock(&tree->lock);
89642229 942 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
943 return ret;
944}
945
f421950f 946
5a3f23d5
CM
947/*
948 * add a given inode to the list of inodes that must be fully on
949 * disk before a transaction commit finishes.
950 *
951 * This basically gives us the ext3 style data=ordered mode, and it is mostly
952 * used to make sure renamed files are fully on disk.
953 *
954 * It is a noop if the inode is already fully on disk.
955 *
956 * If trans is not null, we'll do a friendly check for a transaction that
957 * is already flushing things and force the IO down ourselves.
958 */
959int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
960 struct btrfs_root *root,
961 struct inode *inode)
962{
963 u64 last_mod;
964
965 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
966
967 /*
968 * if this file hasn't been changed since the last transaction
969 * commit, we can safely return without doing anything
970 */
971 if (last_mod < root->fs_info->last_trans_committed)
972 return 0;
973
974 /*
975 * the transaction is already committing. Just start the IO and
976 * don't bother with all of this list nonsense
977 */
978 if (trans && root->fs_info->running_transaction->blocked) {
979 btrfs_wait_ordered_range(inode, 0, (u64)-1);
980 return 0;
981 }
982
983 spin_lock(&root->fs_info->ordered_extent_lock);
984 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
985 list_add_tail(&BTRFS_I(inode)->ordered_operations,
986 &root->fs_info->ordered_operations);
987 }
988 spin_unlock(&root->fs_info->ordered_extent_lock);
989
990 return 0;
991}