]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/raid56.c
btrfs: scrub: Don't use inode pages for device replace
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
818e010b 34#include <linux/mm.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
dec95574 152 refcount_t refs;
53b381b3 153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
818e010b
DS
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
53b381b3 224
4ae10b3a
CM
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
227
53b381b3
DW
228 h = table->table;
229
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
234 init_waitqueue_head(&cur->wait);
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
238 if (x)
239 kvfree(x);
53b381b3
DW
240 return 0;
241}
242
4ae10b3a
CM
243/*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253{
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
09cbfeaf 270 memcpy(d, s, PAGE_SIZE);
4ae10b3a
CM
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277}
278
53b381b3
DW
279/*
280 * we hash on the first logical address of the stripe
281 */
282static int rbio_bucket(struct btrfs_raid_bio *rbio)
283{
8e5cfb55 284 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295}
296
4ae10b3a
CM
297/*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302{
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 337 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
338 bio_list_init(&victim->bio_list);
339}
340
341/*
4ae10b3a
CM
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346{
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
dec95574 389 refcount_dec(&rbio->refs);
4ae10b3a
CM
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400}
401
402/*
403 * prune a given rbio from the cache
404 */
405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406{
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418}
419
420/*
421 * remove everything in the cache
422 */
48a3b636 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
424{
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
53b381b3
DW
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
4ae10b3a 449 btrfs_clear_rbio_cache(info);
f749303b 450 kvfree(info->stripe_hash_table);
53b381b3
DW
451 info->stripe_hash_table = NULL;
452}
453
4ae10b3a
CM
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 480 refcount_inc(&rbio->refs);
4ae10b3a
CM
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
503}
504
53b381b3
DW
505/*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
510static void run_xor(void **pages, int src_cnt, ssize_t len)
511{
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523}
524
525/*
526 * returns true if the bio list inside this rbio
527 * covers an entire stripe (no rmw required).
528 * Must be called with the bio list lock held, or
529 * at a time when you know it is impossible to add
530 * new bios into the list
531 */
532static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533{
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
536
537 if (size != rbio->nr_data * rbio->stripe_len)
538 ret = 0;
539
540 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 return ret;
542}
543
544static int rbio_is_full(struct btrfs_raid_bio *rbio)
545{
546 unsigned long flags;
547 int ret;
548
549 spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 ret = __rbio_is_full(rbio);
551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 return ret;
553}
554
555/*
556 * returns 1 if it is safe to merge two rbios together.
557 * The merging is safe if the two rbios correspond to
558 * the same stripe and if they are both going in the same
559 * direction (read vs write), and if neither one is
560 * locked for final IO
561 *
562 * The caller is responsible for locking such that
563 * rmw_locked is safe to test
564 */
565static int rbio_can_merge(struct btrfs_raid_bio *last,
566 struct btrfs_raid_bio *cur)
567{
568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 return 0;
571
4ae10b3a
CM
572 /*
573 * we can't merge with cached rbios, since the
574 * idea is that when we merge the destination
575 * rbio is going to run our IO for us. We can
01327610 576 * steal from cached rbios though, other functions
4ae10b3a
CM
577 * handle that.
578 */
579 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 test_bit(RBIO_CACHE_BIT, &cur->flags))
581 return 0;
582
8e5cfb55
ZL
583 if (last->bbio->raid_map[0] !=
584 cur->bbio->raid_map[0])
53b381b3
DW
585 return 0;
586
5a6ac9ea
MX
587 /* we can't merge with different operations */
588 if (last->operation != cur->operation)
589 return 0;
590 /*
591 * We've need read the full stripe from the drive.
592 * check and repair the parity and write the new results.
593 *
594 * We're not allowed to add any new bios to the
595 * bio list here, anyone else that wants to
596 * change this stripe needs to do their own rmw.
597 */
598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 600 return 0;
53b381b3 601
b4ee1782
OS
602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 return 0;
605
53b381b3
DW
606 return 1;
607}
608
b7178a5f
ZL
609static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 int index)
611{
612 return stripe * rbio->stripe_npages + index;
613}
614
615/*
616 * these are just the pages from the rbio array, not from anything
617 * the FS sent down to us
618 */
619static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 int index)
621{
622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623}
624
53b381b3
DW
625/*
626 * helper to index into the pstripe
627 */
628static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629{
b7178a5f 630 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
631}
632
633/*
634 * helper to index into the qstripe, returns null
635 * if there is no qstripe
636 */
637static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638{
2c8cdd6e 639 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 640 return NULL;
b7178a5f 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
642}
643
644/*
645 * The first stripe in the table for a logical address
646 * has the lock. rbios are added in one of three ways:
647 *
648 * 1) Nobody has the stripe locked yet. The rbio is given
649 * the lock and 0 is returned. The caller must start the IO
650 * themselves.
651 *
652 * 2) Someone has the stripe locked, but we're able to merge
653 * with the lock owner. The rbio is freed and the IO will
654 * start automatically along with the existing rbio. 1 is returned.
655 *
656 * 3) Someone has the stripe locked, but we're not able to merge.
657 * The rbio is added to the lock owner's plug list, or merged into
658 * an rbio already on the plug list. When the lock owner unlocks,
659 * the next rbio on the list is run and the IO is started automatically.
660 * 1 is returned
661 *
662 * If we return 0, the caller still owns the rbio and must continue with
663 * IO submission. If we return 1, the caller must assume the rbio has
664 * already been freed.
665 */
666static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667{
668 int bucket = rbio_bucket(rbio);
669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 struct btrfs_raid_bio *cur;
671 struct btrfs_raid_bio *pending;
672 unsigned long flags;
673 DEFINE_WAIT(wait);
674 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 675 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 676 int ret = 0;
53b381b3
DW
677
678 spin_lock_irqsave(&h->lock, flags);
679 list_for_each_entry(cur, &h->hash_list, hash_list) {
8e5cfb55 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
681 spin_lock(&cur->bio_list_lock);
682
4ae10b3a
CM
683 /* can we steal this cached rbio's pages? */
684 if (bio_list_empty(&cur->bio_list) &&
685 list_empty(&cur->plug_list) &&
686 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 list_del_init(&cur->hash_list);
dec95574 689 refcount_dec(&cur->refs);
4ae10b3a
CM
690
691 steal_rbio(cur, rbio);
692 cache_drop = cur;
693 spin_unlock(&cur->bio_list_lock);
694
695 goto lockit;
696 }
697
53b381b3
DW
698 /* can we merge into the lock owner? */
699 if (rbio_can_merge(cur, rbio)) {
700 merge_rbio(cur, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
705 }
706
4ae10b3a 707
53b381b3
DW
708 /*
709 * we couldn't merge with the running
710 * rbio, see if we can merge with the
711 * pending ones. We don't have to
712 * check for rmw_locked because there
713 * is no way they are inside finish_rmw
714 * right now
715 */
716 list_for_each_entry(pending, &cur->plug_list,
717 plug_list) {
718 if (rbio_can_merge(pending, rbio)) {
719 merge_rbio(pending, rbio);
720 spin_unlock(&cur->bio_list_lock);
721 freeit = rbio;
722 ret = 1;
723 goto out;
724 }
725 }
726
727 /* no merging, put us on the tail of the plug list,
728 * our rbio will be started with the currently
729 * running rbio unlocks
730 */
731 list_add_tail(&rbio->plug_list, &cur->plug_list);
732 spin_unlock(&cur->bio_list_lock);
733 ret = 1;
734 goto out;
735 }
736 }
4ae10b3a 737lockit:
dec95574 738 refcount_inc(&rbio->refs);
53b381b3
DW
739 list_add(&rbio->hash_list, &h->hash_list);
740out:
741 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
742 if (cache_drop)
743 remove_rbio_from_cache(cache_drop);
53b381b3
DW
744 if (freeit)
745 __free_raid_bio(freeit);
746 return ret;
747}
748
749/*
750 * called as rmw or parity rebuild is completed. If the plug list has more
751 * rbios waiting for this stripe, the next one on the list will be started
752 */
753static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754{
755 int bucket;
756 struct btrfs_stripe_hash *h;
757 unsigned long flags;
4ae10b3a 758 int keep_cache = 0;
53b381b3
DW
759
760 bucket = rbio_bucket(rbio);
761 h = rbio->fs_info->stripe_hash_table->table + bucket;
762
4ae10b3a
CM
763 if (list_empty(&rbio->plug_list))
764 cache_rbio(rbio);
765
53b381b3
DW
766 spin_lock_irqsave(&h->lock, flags);
767 spin_lock(&rbio->bio_list_lock);
768
769 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
770 /*
771 * if we're still cached and there is no other IO
772 * to perform, just leave this rbio here for others
773 * to steal from later
774 */
775 if (list_empty(&rbio->plug_list) &&
776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 keep_cache = 1;
778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 BUG_ON(!bio_list_empty(&rbio->bio_list));
780 goto done;
781 }
53b381b3
DW
782
783 list_del_init(&rbio->hash_list);
dec95574 784 refcount_dec(&rbio->refs);
53b381b3
DW
785
786 /*
787 * we use the plug list to hold all the rbios
788 * waiting for the chance to lock this stripe.
789 * hand the lock over to one of them.
790 */
791 if (!list_empty(&rbio->plug_list)) {
792 struct btrfs_raid_bio *next;
793 struct list_head *head = rbio->plug_list.next;
794
795 next = list_entry(head, struct btrfs_raid_bio,
796 plug_list);
797
798 list_del_init(&rbio->plug_list);
799
800 list_add(&next->hash_list, &h->hash_list);
dec95574 801 refcount_inc(&next->refs);
53b381b3
DW
802 spin_unlock(&rbio->bio_list_lock);
803 spin_unlock_irqrestore(&h->lock, flags);
804
1b94b556 805 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 806 async_read_rebuild(next);
b4ee1782
OS
807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 steal_rbio(rbio, next);
809 async_read_rebuild(next);
810 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 811 steal_rbio(rbio, next);
53b381b3 812 async_rmw_stripe(next);
5a6ac9ea
MX
813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 steal_rbio(rbio, next);
815 async_scrub_parity(next);
4ae10b3a 816 }
53b381b3
DW
817
818 goto done_nolock;
33a9eca7
DS
819 /*
820 * The barrier for this waitqueue_active is not needed,
821 * we're protected by h->lock and can't miss a wakeup.
822 */
823 } else if (waitqueue_active(&h->wait)) {
53b381b3
DW
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826 wake_up(&h->wait);
827 goto done_nolock;
828 }
829 }
4ae10b3a 830done:
53b381b3
DW
831 spin_unlock(&rbio->bio_list_lock);
832 spin_unlock_irqrestore(&h->lock, flags);
833
834done_nolock:
4ae10b3a
CM
835 if (!keep_cache)
836 remove_rbio_from_cache(rbio);
53b381b3
DW
837}
838
839static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840{
841 int i;
842
dec95574 843 if (!refcount_dec_and_test(&rbio->refs))
53b381b3
DW
844 return;
845
4ae10b3a 846 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
847 WARN_ON(!list_empty(&rbio->hash_list));
848 WARN_ON(!bio_list_empty(&rbio->bio_list));
849
850 for (i = 0; i < rbio->nr_pages; i++) {
851 if (rbio->stripe_pages[i]) {
852 __free_page(rbio->stripe_pages[i]);
853 rbio->stripe_pages[i] = NULL;
854 }
855 }
af8e2d1d 856
6e9606d2 857 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
858 kfree(rbio);
859}
860
f49732ba 861static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
53b381b3 862{
f49732ba
LB
863 struct bio *next;
864
865 while (cur) {
866 next = cur->bi_next;
867 cur->bi_next = NULL;
868 cur->bi_status = err;
869 bio_endio(cur);
870 cur = next;
871 }
53b381b3
DW
872}
873
874/*
875 * this frees the rbio and runs through all the bios in the
876 * bio_list and calls end_io on them
877 */
4e4cbee9 878static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
879{
880 struct bio *cur = bio_list_get(&rbio->bio_list);
f49732ba 881 struct bio *extra;
4245215d
MX
882
883 if (rbio->generic_bio_cnt)
884 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
885
f49732ba
LB
886 /*
887 * At this moment, rbio->bio_list is empty, however since rbio does not
888 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
889 * hash list, rbio may be merged with others so that rbio->bio_list
890 * becomes non-empty.
891 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
892 * more and we can call bio_endio() on all queued bios.
893 */
894 unlock_stripe(rbio);
895 extra = bio_list_get(&rbio->bio_list);
896 __free_raid_bio(rbio);
53b381b3 897
f49732ba
LB
898 rbio_endio_bio_list(cur, err);
899 if (extra)
900 rbio_endio_bio_list(extra, err);
53b381b3
DW
901}
902
903/*
904 * end io function used by finish_rmw. When we finally
905 * get here, we've written a full stripe
906 */
4246a0b6 907static void raid_write_end_io(struct bio *bio)
53b381b3
DW
908{
909 struct btrfs_raid_bio *rbio = bio->bi_private;
4e4cbee9 910 blk_status_t err = bio->bi_status;
a6111d11 911 int max_errors;
53b381b3
DW
912
913 if (err)
914 fail_bio_stripe(rbio, bio);
915
916 bio_put(bio);
917
b89e1b01 918 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
919 return;
920
58efbc9f 921 err = BLK_STS_OK;
53b381b3
DW
922
923 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
924 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
925 0 : rbio->bbio->max_errors;
926 if (atomic_read(&rbio->error) > max_errors)
4e4cbee9 927 err = BLK_STS_IOERR;
53b381b3 928
4246a0b6 929 rbio_orig_end_io(rbio, err);
53b381b3
DW
930}
931
932/*
933 * the read/modify/write code wants to use the original bio for
934 * any pages it included, and then use the rbio for everything
935 * else. This function decides if a given index (stripe number)
936 * and page number in that stripe fall inside the original bio
937 * or the rbio.
938 *
939 * if you set bio_list_only, you'll get a NULL back for any ranges
940 * that are outside the bio_list
941 *
942 * This doesn't take any refs on anything, you get a bare page pointer
943 * and the caller must bump refs as required.
944 *
945 * You must call index_rbio_pages once before you can trust
946 * the answers from this function.
947 */
948static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
949 int index, int pagenr, int bio_list_only)
950{
951 int chunk_page;
952 struct page *p = NULL;
953
954 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
955
956 spin_lock_irq(&rbio->bio_list_lock);
957 p = rbio->bio_pages[chunk_page];
958 spin_unlock_irq(&rbio->bio_list_lock);
959
960 if (p || bio_list_only)
961 return p;
962
963 return rbio->stripe_pages[chunk_page];
964}
965
966/*
967 * number of pages we need for the entire stripe across all the
968 * drives
969 */
970static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
971{
09cbfeaf 972 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
973}
974
975/*
976 * allocation and initial setup for the btrfs_raid_bio. Not
977 * this does not allocate any pages for rbio->pages.
978 */
2ff7e61e
JM
979static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
980 struct btrfs_bio *bbio,
981 u64 stripe_len)
53b381b3
DW
982{
983 struct btrfs_raid_bio *rbio;
984 int nr_data = 0;
2c8cdd6e
MX
985 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
986 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 987 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
988 void *p;
989
5a6ac9ea 990 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
991 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
992 sizeof(long), GFP_NOFS);
af8e2d1d 993 if (!rbio)
53b381b3 994 return ERR_PTR(-ENOMEM);
53b381b3
DW
995
996 bio_list_init(&rbio->bio_list);
997 INIT_LIST_HEAD(&rbio->plug_list);
998 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 999 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
1000 INIT_LIST_HEAD(&rbio->hash_list);
1001 rbio->bbio = bbio;
2ff7e61e 1002 rbio->fs_info = fs_info;
53b381b3
DW
1003 rbio->stripe_len = stripe_len;
1004 rbio->nr_pages = num_pages;
2c8cdd6e 1005 rbio->real_stripes = real_stripes;
5a6ac9ea 1006 rbio->stripe_npages = stripe_npages;
53b381b3
DW
1007 rbio->faila = -1;
1008 rbio->failb = -1;
dec95574 1009 refcount_set(&rbio->refs, 1);
b89e1b01
MX
1010 atomic_set(&rbio->error, 0);
1011 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
1012
1013 /*
1014 * the stripe_pages and bio_pages array point to the extra
1015 * memory we allocated past the end of the rbio
1016 */
1017 p = rbio + 1;
1018 rbio->stripe_pages = p;
1019 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1020 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1021
10f11900
ZL
1022 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1023 nr_data = real_stripes - 1;
1024 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1025 nr_data = real_stripes - 2;
53b381b3 1026 else
10f11900 1027 BUG();
53b381b3
DW
1028
1029 rbio->nr_data = nr_data;
1030 return rbio;
1031}
1032
1033/* allocate pages for all the stripes in the bio, including parity */
1034static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1035{
1036 int i;
1037 struct page *page;
1038
1039 for (i = 0; i < rbio->nr_pages; i++) {
1040 if (rbio->stripe_pages[i])
1041 continue;
1042 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1043 if (!page)
1044 return -ENOMEM;
1045 rbio->stripe_pages[i] = page;
53b381b3
DW
1046 }
1047 return 0;
1048}
1049
b7178a5f 1050/* only allocate pages for p/q stripes */
53b381b3
DW
1051static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1052{
1053 int i;
1054 struct page *page;
1055
b7178a5f 1056 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1057
1058 for (; i < rbio->nr_pages; i++) {
1059 if (rbio->stripe_pages[i])
1060 continue;
1061 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1062 if (!page)
1063 return -ENOMEM;
1064 rbio->stripe_pages[i] = page;
1065 }
1066 return 0;
1067}
1068
1069/*
1070 * add a single page from a specific stripe into our list of bios for IO
1071 * this will try to merge into existing bios if possible, and returns
1072 * zero if all went well.
1073 */
48a3b636
ES
1074static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1075 struct bio_list *bio_list,
1076 struct page *page,
1077 int stripe_nr,
1078 unsigned long page_index,
1079 unsigned long bio_max_len)
53b381b3
DW
1080{
1081 struct bio *last = bio_list->tail;
1082 u64 last_end = 0;
1083 int ret;
1084 struct bio *bio;
1085 struct btrfs_bio_stripe *stripe;
1086 u64 disk_start;
1087
1088 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1089 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1090
1091 /* if the device is missing, just fail this stripe */
1092 if (!stripe->dev->bdev)
1093 return fail_rbio_index(rbio, stripe_nr);
1094
1095 /* see if we can add this page onto our existing bio */
1096 if (last) {
4f024f37
KO
1097 last_end = (u64)last->bi_iter.bi_sector << 9;
1098 last_end += last->bi_iter.bi_size;
53b381b3
DW
1099
1100 /*
1101 * we can't merge these if they are from different
1102 * devices or if they are not contiguous
1103 */
1104 if (last_end == disk_start && stripe->dev->bdev &&
4e4cbee9 1105 !last->bi_status &&
74d46992
CH
1106 last->bi_disk == stripe->dev->bdev->bd_disk &&
1107 last->bi_partno == stripe->dev->bdev->bd_partno) {
09cbfeaf
KS
1108 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1109 if (ret == PAGE_SIZE)
53b381b3
DW
1110 return 0;
1111 }
1112 }
1113
1114 /* put a new bio on the list */
c5e4c3d7 1115 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
4f024f37 1116 bio->bi_iter.bi_size = 0;
74d46992 1117 bio_set_dev(bio, stripe->dev->bdev);
4f024f37 1118 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1119
09cbfeaf 1120 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1121 bio_list_add(bio_list, bio);
1122 return 0;
1123}
1124
1125/*
1126 * while we're doing the read/modify/write cycle, we could
1127 * have errors in reading pages off the disk. This checks
1128 * for errors and if we're not able to read the page it'll
1129 * trigger parity reconstruction. The rmw will be finished
1130 * after we've reconstructed the failed stripes
1131 */
1132static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1133{
1134 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1135 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1136 __raid56_parity_recover(rbio);
1137 } else {
1138 finish_rmw(rbio);
1139 }
1140}
1141
53b381b3
DW
1142/*
1143 * helper function to walk our bio list and populate the bio_pages array with
1144 * the result. This seems expensive, but it is faster than constantly
1145 * searching through the bio list as we setup the IO in finish_rmw or stripe
1146 * reconstruction.
1147 *
1148 * This must be called before you trust the answers from page_in_rbio
1149 */
1150static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1151{
1152 struct bio *bio;
1153 u64 start;
1154 unsigned long stripe_offset;
1155 unsigned long page_index;
53b381b3
DW
1156
1157 spin_lock_irq(&rbio->bio_list_lock);
1158 bio_list_for_each(bio, &rbio->bio_list) {
6592e58c
FM
1159 struct bio_vec bvec;
1160 struct bvec_iter iter;
1161 int i = 0;
1162
4f024f37 1163 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1164 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1165 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1166
6592e58c
FM
1167 if (bio_flagged(bio, BIO_CLONED))
1168 bio->bi_iter = btrfs_io_bio(bio)->iter;
1169
1170 bio_for_each_segment(bvec, bio, iter) {
1171 rbio->bio_pages[page_index + i] = bvec.bv_page;
1172 i++;
1173 }
53b381b3
DW
1174 }
1175 spin_unlock_irq(&rbio->bio_list_lock);
1176}
1177
1178/*
1179 * this is called from one of two situations. We either
1180 * have a full stripe from the higher layers, or we've read all
1181 * the missing bits off disk.
1182 *
1183 * This will calculate the parity and then send down any
1184 * changed blocks.
1185 */
1186static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1187{
1188 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1189 void *pointers[rbio->real_stripes];
53b381b3
DW
1190 int nr_data = rbio->nr_data;
1191 int stripe;
1192 int pagenr;
1193 int p_stripe = -1;
1194 int q_stripe = -1;
1195 struct bio_list bio_list;
1196 struct bio *bio;
53b381b3
DW
1197 int ret;
1198
1199 bio_list_init(&bio_list);
1200
2c8cdd6e
MX
1201 if (rbio->real_stripes - rbio->nr_data == 1) {
1202 p_stripe = rbio->real_stripes - 1;
1203 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1204 p_stripe = rbio->real_stripes - 2;
1205 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1206 } else {
1207 BUG();
1208 }
1209
1210 /* at this point we either have a full stripe,
1211 * or we've read the full stripe from the drive.
1212 * recalculate the parity and write the new results.
1213 *
1214 * We're not allowed to add any new bios to the
1215 * bio list here, anyone else that wants to
1216 * change this stripe needs to do their own rmw.
1217 */
1218 spin_lock_irq(&rbio->bio_list_lock);
1219 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1220 spin_unlock_irq(&rbio->bio_list_lock);
1221
b89e1b01 1222 atomic_set(&rbio->error, 0);
53b381b3
DW
1223
1224 /*
1225 * now that we've set rmw_locked, run through the
1226 * bio list one last time and map the page pointers
4ae10b3a
CM
1227 *
1228 * We don't cache full rbios because we're assuming
1229 * the higher layers are unlikely to use this area of
1230 * the disk again soon. If they do use it again,
1231 * hopefully they will send another full bio.
53b381b3
DW
1232 */
1233 index_rbio_pages(rbio);
4ae10b3a
CM
1234 if (!rbio_is_full(rbio))
1235 cache_rbio_pages(rbio);
1236 else
1237 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1238
915e2290 1239 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1240 struct page *p;
1241 /* first collect one page from each data stripe */
1242 for (stripe = 0; stripe < nr_data; stripe++) {
1243 p = page_in_rbio(rbio, stripe, pagenr, 0);
1244 pointers[stripe] = kmap(p);
1245 }
1246
1247 /* then add the parity stripe */
1248 p = rbio_pstripe_page(rbio, pagenr);
1249 SetPageUptodate(p);
1250 pointers[stripe++] = kmap(p);
1251
1252 if (q_stripe != -1) {
1253
1254 /*
1255 * raid6, add the qstripe and call the
1256 * library function to fill in our p/q
1257 */
1258 p = rbio_qstripe_page(rbio, pagenr);
1259 SetPageUptodate(p);
1260 pointers[stripe++] = kmap(p);
1261
2c8cdd6e 1262 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1263 pointers);
1264 } else {
1265 /* raid5 */
1266 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 1267 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1268 }
1269
1270
2c8cdd6e 1271 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1272 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1273 }
1274
1275 /*
1276 * time to start writing. Make bios for everything from the
1277 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1278 * everything else.
1279 */
2c8cdd6e 1280 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1281 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1282 struct page *page;
1283 if (stripe < rbio->nr_data) {
1284 page = page_in_rbio(rbio, stripe, pagenr, 1);
1285 if (!page)
1286 continue;
1287 } else {
1288 page = rbio_stripe_page(rbio, stripe, pagenr);
1289 }
1290
1291 ret = rbio_add_io_page(rbio, &bio_list,
1292 page, stripe, pagenr, rbio->stripe_len);
1293 if (ret)
1294 goto cleanup;
1295 }
1296 }
1297
2c8cdd6e
MX
1298 if (likely(!bbio->num_tgtdevs))
1299 goto write_data;
1300
1301 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1302 if (!bbio->tgtdev_map[stripe])
1303 continue;
1304
915e2290 1305 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1306 struct page *page;
1307 if (stripe < rbio->nr_data) {
1308 page = page_in_rbio(rbio, stripe, pagenr, 1);
1309 if (!page)
1310 continue;
1311 } else {
1312 page = rbio_stripe_page(rbio, stripe, pagenr);
1313 }
1314
1315 ret = rbio_add_io_page(rbio, &bio_list, page,
1316 rbio->bbio->tgtdev_map[stripe],
1317 pagenr, rbio->stripe_len);
1318 if (ret)
1319 goto cleanup;
1320 }
1321 }
1322
1323write_data:
b89e1b01
MX
1324 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1325 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1326
1327 while (1) {
1328 bio = bio_list_pop(&bio_list);
1329 if (!bio)
1330 break;
1331
1332 bio->bi_private = rbio;
1333 bio->bi_end_io = raid_write_end_io;
37226b21 1334 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
1335
1336 submit_bio(bio);
53b381b3
DW
1337 }
1338 return;
1339
1340cleanup:
58efbc9f 1341 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1342
1343 while ((bio = bio_list_pop(&bio_list)))
1344 bio_put(bio);
53b381b3
DW
1345}
1346
1347/*
1348 * helper to find the stripe number for a given bio. Used to figure out which
1349 * stripe has failed. This expects the bio to correspond to a physical disk,
1350 * so it looks up based on physical sector numbers.
1351 */
1352static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1353 struct bio *bio)
1354{
4f024f37 1355 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1356 u64 stripe_start;
1357 int i;
1358 struct btrfs_bio_stripe *stripe;
1359
1360 physical <<= 9;
1361
1362 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1363 stripe = &rbio->bbio->stripes[i];
1364 stripe_start = stripe->physical;
1365 if (physical >= stripe_start &&
2c8cdd6e 1366 physical < stripe_start + rbio->stripe_len &&
eb47d87c 1367 stripe->dev->bdev &&
74d46992
CH
1368 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1369 bio->bi_partno == stripe->dev->bdev->bd_partno) {
53b381b3
DW
1370 return i;
1371 }
1372 }
1373 return -1;
1374}
1375
1376/*
1377 * helper to find the stripe number for a given
1378 * bio (before mapping). Used to figure out which stripe has
1379 * failed. This looks up based on logical block numbers.
1380 */
1381static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1382 struct bio *bio)
1383{
4f024f37 1384 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1385 u64 stripe_start;
1386 int i;
1387
1388 logical <<= 9;
1389
1390 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1391 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1392 if (logical >= stripe_start &&
1393 logical < stripe_start + rbio->stripe_len) {
1394 return i;
1395 }
1396 }
1397 return -1;
1398}
1399
1400/*
1401 * returns -EIO if we had too many failures
1402 */
1403static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1404{
1405 unsigned long flags;
1406 int ret = 0;
1407
1408 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1409
1410 /* we already know this stripe is bad, move on */
1411 if (rbio->faila == failed || rbio->failb == failed)
1412 goto out;
1413
1414 if (rbio->faila == -1) {
1415 /* first failure on this rbio */
1416 rbio->faila = failed;
b89e1b01 1417 atomic_inc(&rbio->error);
53b381b3
DW
1418 } else if (rbio->failb == -1) {
1419 /* second failure on this rbio */
1420 rbio->failb = failed;
b89e1b01 1421 atomic_inc(&rbio->error);
53b381b3
DW
1422 } else {
1423 ret = -EIO;
1424 }
1425out:
1426 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1427
1428 return ret;
1429}
1430
1431/*
1432 * helper to fail a stripe based on a physical disk
1433 * bio.
1434 */
1435static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1436 struct bio *bio)
1437{
1438 int failed = find_bio_stripe(rbio, bio);
1439
1440 if (failed < 0)
1441 return -EIO;
1442
1443 return fail_rbio_index(rbio, failed);
1444}
1445
1446/*
1447 * this sets each page in the bio uptodate. It should only be used on private
1448 * rbio pages, nothing that comes in from the higher layers
1449 */
1450static void set_bio_pages_uptodate(struct bio *bio)
1451{
1fe3bca6
LB
1452 struct bio_vec *bvec;
1453 int i;
6592e58c 1454
1fe3bca6 1455 ASSERT(!bio_flagged(bio, BIO_CLONED));
53b381b3 1456
1fe3bca6
LB
1457 bio_for_each_segment_all(bvec, bio, i)
1458 SetPageUptodate(bvec->bv_page);
53b381b3
DW
1459}
1460
1461/*
1462 * end io for the read phase of the rmw cycle. All the bios here are physical
1463 * stripe bios we've read from the disk so we can recalculate the parity of the
1464 * stripe.
1465 *
1466 * This will usually kick off finish_rmw once all the bios are read in, but it
1467 * may trigger parity reconstruction if we had any errors along the way
1468 */
4246a0b6 1469static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1470{
1471 struct btrfs_raid_bio *rbio = bio->bi_private;
1472
4e4cbee9 1473 if (bio->bi_status)
53b381b3
DW
1474 fail_bio_stripe(rbio, bio);
1475 else
1476 set_bio_pages_uptodate(bio);
1477
1478 bio_put(bio);
1479
b89e1b01 1480 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1481 return;
1482
b89e1b01 1483 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1484 goto cleanup;
1485
1486 /*
1487 * this will normally call finish_rmw to start our write
1488 * but if there are any failed stripes we'll reconstruct
1489 * from parity first
1490 */
1491 validate_rbio_for_rmw(rbio);
1492 return;
1493
1494cleanup:
1495
58efbc9f 1496 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1497}
1498
1499static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1500{
0b246afa
JM
1501 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1502 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1503}
1504
1505static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1506{
9e0af237
LB
1507 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1508 read_rebuild_work, NULL, NULL);
53b381b3 1509
0b246afa 1510 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1511}
1512
1513/*
1514 * the stripe must be locked by the caller. It will
1515 * unlock after all the writes are done
1516 */
1517static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1518{
1519 int bios_to_read = 0;
53b381b3
DW
1520 struct bio_list bio_list;
1521 int ret;
53b381b3
DW
1522 int pagenr;
1523 int stripe;
1524 struct bio *bio;
1525
1526 bio_list_init(&bio_list);
1527
1528 ret = alloc_rbio_pages(rbio);
1529 if (ret)
1530 goto cleanup;
1531
1532 index_rbio_pages(rbio);
1533
b89e1b01 1534 atomic_set(&rbio->error, 0);
53b381b3
DW
1535 /*
1536 * build a list of bios to read all the missing parts of this
1537 * stripe
1538 */
1539 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1540 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1541 struct page *page;
1542 /*
1543 * we want to find all the pages missing from
1544 * the rbio and read them from the disk. If
1545 * page_in_rbio finds a page in the bio list
1546 * we don't need to read it off the stripe.
1547 */
1548 page = page_in_rbio(rbio, stripe, pagenr, 1);
1549 if (page)
1550 continue;
1551
1552 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1553 /*
1554 * the bio cache may have handed us an uptodate
1555 * page. If so, be happy and use it
1556 */
1557 if (PageUptodate(page))
1558 continue;
1559
53b381b3
DW
1560 ret = rbio_add_io_page(rbio, &bio_list, page,
1561 stripe, pagenr, rbio->stripe_len);
1562 if (ret)
1563 goto cleanup;
1564 }
1565 }
1566
1567 bios_to_read = bio_list_size(&bio_list);
1568 if (!bios_to_read) {
1569 /*
1570 * this can happen if others have merged with
1571 * us, it means there is nothing left to read.
1572 * But if there are missing devices it may not be
1573 * safe to do the full stripe write yet.
1574 */
1575 goto finish;
1576 }
1577
1578 /*
1579 * the bbio may be freed once we submit the last bio. Make sure
1580 * not to touch it after that
1581 */
b89e1b01 1582 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1583 while (1) {
1584 bio = bio_list_pop(&bio_list);
1585 if (!bio)
1586 break;
1587
1588 bio->bi_private = rbio;
1589 bio->bi_end_io = raid_rmw_end_io;
37226b21 1590 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 1591
0b246afa 1592 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1593
4e49ea4a 1594 submit_bio(bio);
53b381b3
DW
1595 }
1596 /* the actual write will happen once the reads are done */
1597 return 0;
1598
1599cleanup:
58efbc9f 1600 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1601
1602 while ((bio = bio_list_pop(&bio_list)))
1603 bio_put(bio);
1604
53b381b3
DW
1605 return -EIO;
1606
1607finish:
1608 validate_rbio_for_rmw(rbio);
1609 return 0;
1610}
1611
1612/*
1613 * if the upper layers pass in a full stripe, we thank them by only allocating
1614 * enough pages to hold the parity, and sending it all down quickly.
1615 */
1616static int full_stripe_write(struct btrfs_raid_bio *rbio)
1617{
1618 int ret;
1619
1620 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1621 if (ret) {
1622 __free_raid_bio(rbio);
53b381b3 1623 return ret;
3cd846d1 1624 }
53b381b3
DW
1625
1626 ret = lock_stripe_add(rbio);
1627 if (ret == 0)
1628 finish_rmw(rbio);
1629 return 0;
1630}
1631
1632/*
1633 * partial stripe writes get handed over to async helpers.
1634 * We're really hoping to merge a few more writes into this
1635 * rbio before calculating new parity
1636 */
1637static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1638{
1639 int ret;
1640
1641 ret = lock_stripe_add(rbio);
1642 if (ret == 0)
1643 async_rmw_stripe(rbio);
1644 return 0;
1645}
1646
1647/*
1648 * sometimes while we were reading from the drive to
1649 * recalculate parity, enough new bios come into create
1650 * a full stripe. So we do a check here to see if we can
1651 * go directly to finish_rmw
1652 */
1653static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1654{
1655 /* head off into rmw land if we don't have a full stripe */
1656 if (!rbio_is_full(rbio))
1657 return partial_stripe_write(rbio);
1658 return full_stripe_write(rbio);
1659}
1660
6ac0f488
CM
1661/*
1662 * We use plugging call backs to collect full stripes.
1663 * Any time we get a partial stripe write while plugged
1664 * we collect it into a list. When the unplug comes down,
1665 * we sort the list by logical block number and merge
1666 * everything we can into the same rbios
1667 */
1668struct btrfs_plug_cb {
1669 struct blk_plug_cb cb;
1670 struct btrfs_fs_info *info;
1671 struct list_head rbio_list;
1672 struct btrfs_work work;
1673};
1674
1675/*
1676 * rbios on the plug list are sorted for easier merging.
1677 */
1678static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1679{
1680 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1681 plug_list);
1682 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1683 plug_list);
4f024f37
KO
1684 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1685 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1686
1687 if (a_sector < b_sector)
1688 return -1;
1689 if (a_sector > b_sector)
1690 return 1;
1691 return 0;
1692}
1693
1694static void run_plug(struct btrfs_plug_cb *plug)
1695{
1696 struct btrfs_raid_bio *cur;
1697 struct btrfs_raid_bio *last = NULL;
1698
1699 /*
1700 * sort our plug list then try to merge
1701 * everything we can in hopes of creating full
1702 * stripes.
1703 */
1704 list_sort(NULL, &plug->rbio_list, plug_cmp);
1705 while (!list_empty(&plug->rbio_list)) {
1706 cur = list_entry(plug->rbio_list.next,
1707 struct btrfs_raid_bio, plug_list);
1708 list_del_init(&cur->plug_list);
1709
1710 if (rbio_is_full(cur)) {
1711 /* we have a full stripe, send it down */
1712 full_stripe_write(cur);
1713 continue;
1714 }
1715 if (last) {
1716 if (rbio_can_merge(last, cur)) {
1717 merge_rbio(last, cur);
1718 __free_raid_bio(cur);
1719 continue;
1720
1721 }
1722 __raid56_parity_write(last);
1723 }
1724 last = cur;
1725 }
1726 if (last) {
1727 __raid56_parity_write(last);
1728 }
1729 kfree(plug);
1730}
1731
1732/*
1733 * if the unplug comes from schedule, we have to push the
1734 * work off to a helper thread
1735 */
1736static void unplug_work(struct btrfs_work *work)
1737{
1738 struct btrfs_plug_cb *plug;
1739 plug = container_of(work, struct btrfs_plug_cb, work);
1740 run_plug(plug);
1741}
1742
1743static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1744{
1745 struct btrfs_plug_cb *plug;
1746 plug = container_of(cb, struct btrfs_plug_cb, cb);
1747
1748 if (from_schedule) {
9e0af237
LB
1749 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1750 unplug_work, NULL, NULL);
d05a33ac
QW
1751 btrfs_queue_work(plug->info->rmw_workers,
1752 &plug->work);
6ac0f488
CM
1753 return;
1754 }
1755 run_plug(plug);
1756}
1757
53b381b3
DW
1758/*
1759 * our main entry point for writes from the rest of the FS.
1760 */
2ff7e61e 1761int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1762 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1763{
1764 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1765 struct btrfs_plug_cb *plug = NULL;
1766 struct blk_plug_cb *cb;
4245215d 1767 int ret;
53b381b3 1768
2ff7e61e 1769 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1770 if (IS_ERR(rbio)) {
6e9606d2 1771 btrfs_put_bbio(bbio);
53b381b3 1772 return PTR_ERR(rbio);
af8e2d1d 1773 }
53b381b3 1774 bio_list_add(&rbio->bio_list, bio);
4f024f37 1775 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1776 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1777
0b246afa 1778 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1779 rbio->generic_bio_cnt = 1;
1780
6ac0f488
CM
1781 /*
1782 * don't plug on full rbios, just get them out the door
1783 * as quickly as we can
1784 */
4245215d
MX
1785 if (rbio_is_full(rbio)) {
1786 ret = full_stripe_write(rbio);
1787 if (ret)
0b246afa 1788 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1789 return ret;
1790 }
6ac0f488 1791
0b246afa 1792 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1793 if (cb) {
1794 plug = container_of(cb, struct btrfs_plug_cb, cb);
1795 if (!plug->info) {
0b246afa 1796 plug->info = fs_info;
6ac0f488
CM
1797 INIT_LIST_HEAD(&plug->rbio_list);
1798 }
1799 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1800 ret = 0;
6ac0f488 1801 } else {
4245215d
MX
1802 ret = __raid56_parity_write(rbio);
1803 if (ret)
0b246afa 1804 btrfs_bio_counter_dec(fs_info);
6ac0f488 1805 }
4245215d 1806 return ret;
53b381b3
DW
1807}
1808
1809/*
1810 * all parity reconstruction happens here. We've read in everything
1811 * we can find from the drives and this does the heavy lifting of
1812 * sorting the good from the bad.
1813 */
1814static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1815{
1816 int pagenr, stripe;
1817 void **pointers;
1818 int faila = -1, failb = -1;
53b381b3 1819 struct page *page;
58efbc9f 1820 blk_status_t err;
53b381b3
DW
1821 int i;
1822
31e818fe 1823 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3 1824 if (!pointers) {
58efbc9f 1825 err = BLK_STS_RESOURCE;
53b381b3
DW
1826 goto cleanup_io;
1827 }
1828
1829 faila = rbio->faila;
1830 failb = rbio->failb;
1831
b4ee1782
OS
1832 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1833 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1834 spin_lock_irq(&rbio->bio_list_lock);
1835 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1836 spin_unlock_irq(&rbio->bio_list_lock);
1837 }
1838
1839 index_rbio_pages(rbio);
1840
915e2290 1841 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1842 /*
1843 * Now we just use bitmap to mark the horizontal stripes in
1844 * which we have data when doing parity scrub.
1845 */
1846 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1847 !test_bit(pagenr, rbio->dbitmap))
1848 continue;
1849
53b381b3
DW
1850 /* setup our array of pointers with pages
1851 * from each stripe
1852 */
2c8cdd6e 1853 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1854 /*
1855 * if we're rebuilding a read, we have to use
1856 * pages from the bio list
1857 */
b4ee1782
OS
1858 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1859 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1860 (stripe == faila || stripe == failb)) {
1861 page = page_in_rbio(rbio, stripe, pagenr, 0);
1862 } else {
1863 page = rbio_stripe_page(rbio, stripe, pagenr);
1864 }
1865 pointers[stripe] = kmap(page);
1866 }
1867
1868 /* all raid6 handling here */
10f11900 1869 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1870 /*
1871 * single failure, rebuild from parity raid5
1872 * style
1873 */
1874 if (failb < 0) {
1875 if (faila == rbio->nr_data) {
1876 /*
1877 * Just the P stripe has failed, without
1878 * a bad data or Q stripe.
1879 * TODO, we should redo the xor here.
1880 */
58efbc9f 1881 err = BLK_STS_IOERR;
53b381b3
DW
1882 goto cleanup;
1883 }
1884 /*
1885 * a single failure in raid6 is rebuilt
1886 * in the pstripe code below
1887 */
1888 goto pstripe;
1889 }
1890
1891 /* make sure our ps and qs are in order */
1892 if (faila > failb) {
1893 int tmp = failb;
1894 failb = faila;
1895 faila = tmp;
1896 }
1897
1898 /* if the q stripe is failed, do a pstripe reconstruction
1899 * from the xors.
1900 * If both the q stripe and the P stripe are failed, we're
1901 * here due to a crc mismatch and we can't give them the
1902 * data they want
1903 */
8e5cfb55
ZL
1904 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1905 if (rbio->bbio->raid_map[faila] ==
1906 RAID5_P_STRIPE) {
58efbc9f 1907 err = BLK_STS_IOERR;
53b381b3
DW
1908 goto cleanup;
1909 }
1910 /*
1911 * otherwise we have one bad data stripe and
1912 * a good P stripe. raid5!
1913 */
1914 goto pstripe;
1915 }
1916
8e5cfb55 1917 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1918 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1919 PAGE_SIZE, faila, pointers);
1920 } else {
2c8cdd6e 1921 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1922 PAGE_SIZE, faila, failb,
1923 pointers);
1924 }
1925 } else {
1926 void *p;
1927
1928 /* rebuild from P stripe here (raid5 or raid6) */
1929 BUG_ON(failb != -1);
1930pstripe:
1931 /* Copy parity block into failed block to start with */
1932 memcpy(pointers[faila],
1933 pointers[rbio->nr_data],
09cbfeaf 1934 PAGE_SIZE);
53b381b3
DW
1935
1936 /* rearrange the pointer array */
1937 p = pointers[faila];
1938 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1939 pointers[stripe] = pointers[stripe + 1];
1940 pointers[rbio->nr_data - 1] = p;
1941
1942 /* xor in the rest */
09cbfeaf 1943 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1944 }
1945 /* if we're doing this rebuild as part of an rmw, go through
1946 * and set all of our private rbio pages in the
1947 * failed stripes as uptodate. This way finish_rmw will
1948 * know they can be trusted. If this was a read reconstruction,
1949 * other endio functions will fiddle the uptodate bits
1950 */
1b94b556 1951 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1952 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1953 if (faila != -1) {
1954 page = rbio_stripe_page(rbio, faila, i);
1955 SetPageUptodate(page);
1956 }
1957 if (failb != -1) {
1958 page = rbio_stripe_page(rbio, failb, i);
1959 SetPageUptodate(page);
1960 }
1961 }
1962 }
2c8cdd6e 1963 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1964 /*
1965 * if we're rebuilding a read, we have to use
1966 * pages from the bio list
1967 */
b4ee1782
OS
1968 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1969 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1970 (stripe == faila || stripe == failb)) {
1971 page = page_in_rbio(rbio, stripe, pagenr, 0);
1972 } else {
1973 page = rbio_stripe_page(rbio, stripe, pagenr);
1974 }
1975 kunmap(page);
1976 }
1977 }
1978
58efbc9f 1979 err = BLK_STS_OK;
53b381b3
DW
1980cleanup:
1981 kfree(pointers);
1982
1983cleanup_io:
1b94b556 1984 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
58efbc9f 1985 if (err == BLK_STS_OK)
4ae10b3a
CM
1986 cache_rbio_pages(rbio);
1987 else
1988 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1989
22365979 1990 rbio_orig_end_io(rbio, err);
b4ee1782 1991 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1992 rbio_orig_end_io(rbio, err);
58efbc9f 1993 } else if (err == BLK_STS_OK) {
53b381b3
DW
1994 rbio->faila = -1;
1995 rbio->failb = -1;
5a6ac9ea
MX
1996
1997 if (rbio->operation == BTRFS_RBIO_WRITE)
1998 finish_rmw(rbio);
1999 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2000 finish_parity_scrub(rbio, 0);
2001 else
2002 BUG();
53b381b3 2003 } else {
4246a0b6 2004 rbio_orig_end_io(rbio, err);
53b381b3
DW
2005 }
2006}
2007
2008/*
2009 * This is called only for stripes we've read from disk to
2010 * reconstruct the parity.
2011 */
4246a0b6 2012static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
2013{
2014 struct btrfs_raid_bio *rbio = bio->bi_private;
2015
2016 /*
2017 * we only read stripe pages off the disk, set them
2018 * up to date if there were no errors
2019 */
4e4cbee9 2020 if (bio->bi_status)
53b381b3
DW
2021 fail_bio_stripe(rbio, bio);
2022 else
2023 set_bio_pages_uptodate(bio);
2024 bio_put(bio);
2025
b89e1b01 2026 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2027 return;
2028
b89e1b01 2029 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
58efbc9f 2030 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
2031 else
2032 __raid_recover_end_io(rbio);
2033}
2034
2035/*
2036 * reads everything we need off the disk to reconstruct
2037 * the parity. endio handlers trigger final reconstruction
2038 * when the IO is done.
2039 *
2040 * This is used both for reads from the higher layers and for
2041 * parity construction required to finish a rmw cycle.
2042 */
2043static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2044{
2045 int bios_to_read = 0;
53b381b3
DW
2046 struct bio_list bio_list;
2047 int ret;
53b381b3
DW
2048 int pagenr;
2049 int stripe;
2050 struct bio *bio;
2051
2052 bio_list_init(&bio_list);
2053
2054 ret = alloc_rbio_pages(rbio);
2055 if (ret)
2056 goto cleanup;
2057
b89e1b01 2058 atomic_set(&rbio->error, 0);
53b381b3
DW
2059
2060 /*
4ae10b3a
CM
2061 * read everything that hasn't failed. Thanks to the
2062 * stripe cache, it is possible that some or all of these
2063 * pages are going to be uptodate.
53b381b3 2064 */
2c8cdd6e 2065 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2066 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2067 atomic_inc(&rbio->error);
53b381b3 2068 continue;
5588383e 2069 }
53b381b3 2070
915e2290 2071 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2072 struct page *p;
2073
2074 /*
2075 * the rmw code may have already read this
2076 * page in
2077 */
2078 p = rbio_stripe_page(rbio, stripe, pagenr);
2079 if (PageUptodate(p))
2080 continue;
2081
2082 ret = rbio_add_io_page(rbio, &bio_list,
2083 rbio_stripe_page(rbio, stripe, pagenr),
2084 stripe, pagenr, rbio->stripe_len);
2085 if (ret < 0)
2086 goto cleanup;
2087 }
2088 }
2089
2090 bios_to_read = bio_list_size(&bio_list);
2091 if (!bios_to_read) {
2092 /*
2093 * we might have no bios to read just because the pages
2094 * were up to date, or we might have no bios to read because
2095 * the devices were gone.
2096 */
b89e1b01 2097 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2098 __raid_recover_end_io(rbio);
2099 goto out;
2100 } else {
2101 goto cleanup;
2102 }
2103 }
2104
2105 /*
2106 * the bbio may be freed once we submit the last bio. Make sure
2107 * not to touch it after that
2108 */
b89e1b01 2109 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2110 while (1) {
2111 bio = bio_list_pop(&bio_list);
2112 if (!bio)
2113 break;
2114
2115 bio->bi_private = rbio;
2116 bio->bi_end_io = raid_recover_end_io;
37226b21 2117 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 2118
0b246afa 2119 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2120
4e49ea4a 2121 submit_bio(bio);
53b381b3
DW
2122 }
2123out:
2124 return 0;
2125
2126cleanup:
b4ee1782
OS
2127 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2128 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
58efbc9f 2129 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2130
2131 while ((bio = bio_list_pop(&bio_list)))
2132 bio_put(bio);
2133
53b381b3
DW
2134 return -EIO;
2135}
2136
2137/*
2138 * the main entry point for reads from the higher layers. This
2139 * is really only called when the normal read path had a failure,
2140 * so we assume the bio they send down corresponds to a failed part
2141 * of the drive.
2142 */
2ff7e61e 2143int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2144 struct btrfs_bio *bbio, u64 stripe_len,
2145 int mirror_num, int generic_io)
53b381b3
DW
2146{
2147 struct btrfs_raid_bio *rbio;
2148 int ret;
2149
abad60c6
LB
2150 if (generic_io) {
2151 ASSERT(bbio->mirror_num == mirror_num);
2152 btrfs_io_bio(bio)->mirror_num = mirror_num;
2153 }
2154
2ff7e61e 2155 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2156 if (IS_ERR(rbio)) {
6e9606d2
ZL
2157 if (generic_io)
2158 btrfs_put_bbio(bbio);
53b381b3 2159 return PTR_ERR(rbio);
af8e2d1d 2160 }
53b381b3 2161
1b94b556 2162 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2163 bio_list_add(&rbio->bio_list, bio);
4f024f37 2164 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2165
2166 rbio->faila = find_logical_bio_stripe(rbio, bio);
2167 if (rbio->faila == -1) {
0b246afa 2168 btrfs_warn(fs_info,
e46a28ca
LB
2169 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2170 __func__, (u64)bio->bi_iter.bi_sector << 9,
2171 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2172 if (generic_io)
2173 btrfs_put_bbio(bbio);
53b381b3
DW
2174 kfree(rbio);
2175 return -EIO;
2176 }
2177
4245215d 2178 if (generic_io) {
0b246afa 2179 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2180 rbio->generic_bio_cnt = 1;
2181 } else {
6e9606d2 2182 btrfs_get_bbio(bbio);
4245215d
MX
2183 }
2184
53b381b3 2185 /*
cc41f4fe
LB
2186 * Loop retry:
2187 * for 'mirror == 2', reconstruct from all other stripes.
2188 * for 'mirror_num > 2', select a stripe to fail on every retry.
53b381b3 2189 */
cc41f4fe
LB
2190 if (mirror_num > 2) {
2191 /*
2192 * 'mirror == 3' is to fail the p stripe and
2193 * reconstruct from the q stripe. 'mirror > 3' is to
2194 * fail a data stripe and reconstruct from p+q stripe.
2195 */
2196 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2197 ASSERT(rbio->failb > 0);
2198 if (rbio->failb <= rbio->faila)
2199 rbio->failb--;
2200 }
53b381b3
DW
2201
2202 ret = lock_stripe_add(rbio);
2203
2204 /*
2205 * __raid56_parity_recover will end the bio with
2206 * any errors it hits. We don't want to return
2207 * its error value up the stack because our caller
2208 * will end up calling bio_endio with any nonzero
2209 * return
2210 */
2211 if (ret == 0)
2212 __raid56_parity_recover(rbio);
2213 /*
2214 * our rbio has been added to the list of
2215 * rbios that will be handled after the
2216 * currently lock owner is done
2217 */
2218 return 0;
2219
2220}
2221
2222static void rmw_work(struct btrfs_work *work)
2223{
2224 struct btrfs_raid_bio *rbio;
2225
2226 rbio = container_of(work, struct btrfs_raid_bio, work);
2227 raid56_rmw_stripe(rbio);
2228}
2229
2230static void read_rebuild_work(struct btrfs_work *work)
2231{
2232 struct btrfs_raid_bio *rbio;
2233
2234 rbio = container_of(work, struct btrfs_raid_bio, work);
2235 __raid56_parity_recover(rbio);
2236}
5a6ac9ea
MX
2237
2238/*
2239 * The following code is used to scrub/replace the parity stripe
2240 *
ae6529c3
QW
2241 * Caller must have already increased bio_counter for getting @bbio.
2242 *
5a6ac9ea
MX
2243 * Note: We need make sure all the pages that add into the scrub/replace
2244 * raid bio are correct and not be changed during the scrub/replace. That
2245 * is those pages just hold metadata or file data with checksum.
2246 */
2247
2248struct btrfs_raid_bio *
2ff7e61e 2249raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2250 struct btrfs_bio *bbio, u64 stripe_len,
2251 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2252 unsigned long *dbitmap, int stripe_nsectors)
2253{
2254 struct btrfs_raid_bio *rbio;
2255 int i;
2256
2ff7e61e 2257 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2258 if (IS_ERR(rbio))
2259 return NULL;
2260 bio_list_add(&rbio->bio_list, bio);
2261 /*
2262 * This is a special bio which is used to hold the completion handler
2263 * and make the scrub rbio is similar to the other types
2264 */
2265 ASSERT(!bio->bi_iter.bi_size);
2266 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2267
9cd3a7eb
LB
2268 /*
2269 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2270 * to the end position, so this search can start from the first parity
2271 * stripe.
2272 */
2273 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2274 if (bbio->stripes[i].dev == scrub_dev) {
2275 rbio->scrubp = i;
2276 break;
2277 }
2278 }
9cd3a7eb 2279 ASSERT(i < rbio->real_stripes);
5a6ac9ea
MX
2280
2281 /* Now we just support the sectorsize equals to page size */
0b246afa 2282 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2283 ASSERT(rbio->stripe_npages == stripe_nsectors);
2284 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2285
ae6529c3
QW
2286 /*
2287 * We have already increased bio_counter when getting bbio, record it
2288 * so we can free it at rbio_orig_end_io().
2289 */
2290 rbio->generic_bio_cnt = 1;
2291
5a6ac9ea
MX
2292 return rbio;
2293}
2294
b4ee1782
OS
2295/* Used for both parity scrub and missing. */
2296void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2297 u64 logical)
5a6ac9ea
MX
2298{
2299 int stripe_offset;
2300 int index;
2301
8e5cfb55
ZL
2302 ASSERT(logical >= rbio->bbio->raid_map[0]);
2303 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2304 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2305 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2306 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2307 rbio->bio_pages[index] = page;
2308}
2309
2310/*
2311 * We just scrub the parity that we have correct data on the same horizontal,
2312 * so we needn't allocate all pages for all the stripes.
2313 */
2314static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2315{
2316 int i;
2317 int bit;
2318 int index;
2319 struct page *page;
2320
2321 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2322 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2323 index = i * rbio->stripe_npages + bit;
2324 if (rbio->stripe_pages[index])
2325 continue;
2326
2327 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328 if (!page)
2329 return -ENOMEM;
2330 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2331 }
2332 }
2333 return 0;
2334}
2335
5a6ac9ea
MX
2336static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2337 int need_check)
2338{
76035976 2339 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2340 void *pointers[rbio->real_stripes];
76035976 2341 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2342 int nr_data = rbio->nr_data;
2343 int stripe;
2344 int pagenr;
2345 int p_stripe = -1;
2346 int q_stripe = -1;
2347 struct page *p_page = NULL;
2348 struct page *q_page = NULL;
2349 struct bio_list bio_list;
2350 struct bio *bio;
76035976 2351 int is_replace = 0;
5a6ac9ea
MX
2352 int ret;
2353
2354 bio_list_init(&bio_list);
2355
2c8cdd6e
MX
2356 if (rbio->real_stripes - rbio->nr_data == 1) {
2357 p_stripe = rbio->real_stripes - 1;
2358 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2359 p_stripe = rbio->real_stripes - 2;
2360 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2361 } else {
2362 BUG();
2363 }
2364
76035976
MX
2365 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2366 is_replace = 1;
2367 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2368 }
2369
5a6ac9ea
MX
2370 /*
2371 * Because the higher layers(scrubber) are unlikely to
2372 * use this area of the disk again soon, so don't cache
2373 * it.
2374 */
2375 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2376
2377 if (!need_check)
2378 goto writeback;
2379
2380 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2381 if (!p_page)
2382 goto cleanup;
2383 SetPageUptodate(p_page);
2384
2385 if (q_stripe != -1) {
2386 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2387 if (!q_page) {
2388 __free_page(p_page);
2389 goto cleanup;
2390 }
2391 SetPageUptodate(q_page);
2392 }
2393
2394 atomic_set(&rbio->error, 0);
2395
2396 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2397 struct page *p;
2398 void *parity;
2399 /* first collect one page from each data stripe */
2400 for (stripe = 0; stripe < nr_data; stripe++) {
2401 p = page_in_rbio(rbio, stripe, pagenr, 0);
2402 pointers[stripe] = kmap(p);
2403 }
2404
2405 /* then add the parity stripe */
2406 pointers[stripe++] = kmap(p_page);
2407
2408 if (q_stripe != -1) {
2409
2410 /*
2411 * raid6, add the qstripe and call the
2412 * library function to fill in our p/q
2413 */
2414 pointers[stripe++] = kmap(q_page);
2415
2c8cdd6e 2416 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2417 pointers);
2418 } else {
2419 /* raid5 */
2420 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 2421 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2422 }
2423
01327610 2424 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2425 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2426 parity = kmap(p);
09cbfeaf
KS
2427 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2428 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
5a6ac9ea
MX
2429 else
2430 /* Parity is right, needn't writeback */
2431 bitmap_clear(rbio->dbitmap, pagenr, 1);
2432 kunmap(p);
2433
2c8cdd6e 2434 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2435 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2436 }
2437
2438 __free_page(p_page);
2439 if (q_page)
2440 __free_page(q_page);
2441
2442writeback:
2443 /*
2444 * time to start writing. Make bios for everything from the
2445 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2446 * everything else.
2447 */
2448 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2449 struct page *page;
2450
2451 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2452 ret = rbio_add_io_page(rbio, &bio_list,
2453 page, rbio->scrubp, pagenr, rbio->stripe_len);
2454 if (ret)
2455 goto cleanup;
2456 }
2457
76035976
MX
2458 if (!is_replace)
2459 goto submit_write;
2460
2461 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2462 struct page *page;
2463
2464 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2465 ret = rbio_add_io_page(rbio, &bio_list, page,
2466 bbio->tgtdev_map[rbio->scrubp],
2467 pagenr, rbio->stripe_len);
2468 if (ret)
2469 goto cleanup;
2470 }
2471
2472submit_write:
5a6ac9ea
MX
2473 nr_data = bio_list_size(&bio_list);
2474 if (!nr_data) {
2475 /* Every parity is right */
58efbc9f 2476 rbio_orig_end_io(rbio, BLK_STS_OK);
5a6ac9ea
MX
2477 return;
2478 }
2479
2480 atomic_set(&rbio->stripes_pending, nr_data);
2481
2482 while (1) {
2483 bio = bio_list_pop(&bio_list);
2484 if (!bio)
2485 break;
2486
2487 bio->bi_private = rbio;
a6111d11 2488 bio->bi_end_io = raid_write_end_io;
37226b21 2489 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2490
2491 submit_bio(bio);
5a6ac9ea
MX
2492 }
2493 return;
2494
2495cleanup:
58efbc9f 2496 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2497
2498 while ((bio = bio_list_pop(&bio_list)))
2499 bio_put(bio);
5a6ac9ea
MX
2500}
2501
2502static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2503{
2504 if (stripe >= 0 && stripe < rbio->nr_data)
2505 return 1;
2506 return 0;
2507}
2508
2509/*
2510 * While we're doing the parity check and repair, we could have errors
2511 * in reading pages off the disk. This checks for errors and if we're
2512 * not able to read the page it'll trigger parity reconstruction. The
2513 * parity scrub will be finished after we've reconstructed the failed
2514 * stripes
2515 */
2516static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2517{
2518 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2519 goto cleanup;
2520
2521 if (rbio->faila >= 0 || rbio->failb >= 0) {
2522 int dfail = 0, failp = -1;
2523
2524 if (is_data_stripe(rbio, rbio->faila))
2525 dfail++;
2526 else if (is_parity_stripe(rbio->faila))
2527 failp = rbio->faila;
2528
2529 if (is_data_stripe(rbio, rbio->failb))
2530 dfail++;
2531 else if (is_parity_stripe(rbio->failb))
2532 failp = rbio->failb;
2533
2534 /*
2535 * Because we can not use a scrubbing parity to repair
2536 * the data, so the capability of the repair is declined.
2537 * (In the case of RAID5, we can not repair anything)
2538 */
2539 if (dfail > rbio->bbio->max_errors - 1)
2540 goto cleanup;
2541
2542 /*
2543 * If all data is good, only parity is correctly, just
2544 * repair the parity.
2545 */
2546 if (dfail == 0) {
2547 finish_parity_scrub(rbio, 0);
2548 return;
2549 }
2550
2551 /*
2552 * Here means we got one corrupted data stripe and one
2553 * corrupted parity on RAID6, if the corrupted parity
01327610 2554 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2555 * the data, or we can not repair the data stripe.
2556 */
2557 if (failp != rbio->scrubp)
2558 goto cleanup;
2559
2560 __raid_recover_end_io(rbio);
2561 } else {
2562 finish_parity_scrub(rbio, 1);
2563 }
2564 return;
2565
2566cleanup:
58efbc9f 2567 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2568}
2569
2570/*
2571 * end io for the read phase of the rmw cycle. All the bios here are physical
2572 * stripe bios we've read from the disk so we can recalculate the parity of the
2573 * stripe.
2574 *
2575 * This will usually kick off finish_rmw once all the bios are read in, but it
2576 * may trigger parity reconstruction if we had any errors along the way
2577 */
4246a0b6 2578static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2579{
2580 struct btrfs_raid_bio *rbio = bio->bi_private;
2581
4e4cbee9 2582 if (bio->bi_status)
5a6ac9ea
MX
2583 fail_bio_stripe(rbio, bio);
2584 else
2585 set_bio_pages_uptodate(bio);
2586
2587 bio_put(bio);
2588
2589 if (!atomic_dec_and_test(&rbio->stripes_pending))
2590 return;
2591
2592 /*
2593 * this will normally call finish_rmw to start our write
2594 * but if there are any failed stripes we'll reconstruct
2595 * from parity first
2596 */
2597 validate_rbio_for_parity_scrub(rbio);
2598}
2599
2600static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2601{
2602 int bios_to_read = 0;
5a6ac9ea
MX
2603 struct bio_list bio_list;
2604 int ret;
2605 int pagenr;
2606 int stripe;
2607 struct bio *bio;
2608
785884fc
LB
2609 bio_list_init(&bio_list);
2610
5a6ac9ea
MX
2611 ret = alloc_rbio_essential_pages(rbio);
2612 if (ret)
2613 goto cleanup;
2614
5a6ac9ea
MX
2615 atomic_set(&rbio->error, 0);
2616 /*
2617 * build a list of bios to read all the missing parts of this
2618 * stripe
2619 */
2c8cdd6e 2620 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2621 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2622 struct page *page;
2623 /*
2624 * we want to find all the pages missing from
2625 * the rbio and read them from the disk. If
2626 * page_in_rbio finds a page in the bio list
2627 * we don't need to read it off the stripe.
2628 */
2629 page = page_in_rbio(rbio, stripe, pagenr, 1);
2630 if (page)
2631 continue;
2632
2633 page = rbio_stripe_page(rbio, stripe, pagenr);
2634 /*
2635 * the bio cache may have handed us an uptodate
2636 * page. If so, be happy and use it
2637 */
2638 if (PageUptodate(page))
2639 continue;
2640
2641 ret = rbio_add_io_page(rbio, &bio_list, page,
2642 stripe, pagenr, rbio->stripe_len);
2643 if (ret)
2644 goto cleanup;
2645 }
2646 }
2647
2648 bios_to_read = bio_list_size(&bio_list);
2649 if (!bios_to_read) {
2650 /*
2651 * this can happen if others have merged with
2652 * us, it means there is nothing left to read.
2653 * But if there are missing devices it may not be
2654 * safe to do the full stripe write yet.
2655 */
2656 goto finish;
2657 }
2658
2659 /*
2660 * the bbio may be freed once we submit the last bio. Make sure
2661 * not to touch it after that
2662 */
2663 atomic_set(&rbio->stripes_pending, bios_to_read);
2664 while (1) {
2665 bio = bio_list_pop(&bio_list);
2666 if (!bio)
2667 break;
2668
2669 bio->bi_private = rbio;
2670 bio->bi_end_io = raid56_parity_scrub_end_io;
37226b21 2671 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5a6ac9ea 2672
0b246afa 2673 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2674
4e49ea4a 2675 submit_bio(bio);
5a6ac9ea
MX
2676 }
2677 /* the actual write will happen once the reads are done */
2678 return;
2679
2680cleanup:
58efbc9f 2681 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2682
2683 while ((bio = bio_list_pop(&bio_list)))
2684 bio_put(bio);
2685
5a6ac9ea
MX
2686 return;
2687
2688finish:
2689 validate_rbio_for_parity_scrub(rbio);
2690}
2691
2692static void scrub_parity_work(struct btrfs_work *work)
2693{
2694 struct btrfs_raid_bio *rbio;
2695
2696 rbio = container_of(work, struct btrfs_raid_bio, work);
2697 raid56_parity_scrub_stripe(rbio);
2698}
2699
2700static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2701{
2702 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2703 scrub_parity_work, NULL, NULL);
2704
0b246afa 2705 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
5a6ac9ea
MX
2706}
2707
2708void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2709{
2710 if (!lock_stripe_add(rbio))
2711 async_scrub_parity(rbio);
2712}
b4ee1782
OS
2713
2714/* The following code is used for dev replace of a missing RAID 5/6 device. */
2715
2716struct btrfs_raid_bio *
2ff7e61e 2717raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2718 struct btrfs_bio *bbio, u64 length)
2719{
2720 struct btrfs_raid_bio *rbio;
2721
2ff7e61e 2722 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2723 if (IS_ERR(rbio))
2724 return NULL;
2725
2726 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2727 bio_list_add(&rbio->bio_list, bio);
2728 /*
2729 * This is a special bio which is used to hold the completion handler
2730 * and make the scrub rbio is similar to the other types
2731 */
2732 ASSERT(!bio->bi_iter.bi_size);
2733
2734 rbio->faila = find_logical_bio_stripe(rbio, bio);
2735 if (rbio->faila == -1) {
2736 BUG();
2737 kfree(rbio);
2738 return NULL;
2739 }
2740
ae6529c3
QW
2741 /*
2742 * When we get bbio, we have already increased bio_counter, record it
2743 * so we can free it at rbio_orig_end_io()
2744 */
2745 rbio->generic_bio_cnt = 1;
2746
b4ee1782
OS
2747 return rbio;
2748}
2749
2750static void missing_raid56_work(struct btrfs_work *work)
2751{
2752 struct btrfs_raid_bio *rbio;
2753
2754 rbio = container_of(work, struct btrfs_raid_bio, work);
2755 __raid56_parity_recover(rbio);
2756}
2757
2758static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2759{
2760 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2761 missing_raid56_work, NULL, NULL);
2762
2763 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2764}
2765
2766void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2767{
2768 if (!lock_stripe_add(rbio))
2769 async_missing_raid56(rbio);
2770}