]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/raid56.c
Merge branch 'pm-pci'
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
818e010b 34#include <linux/mm.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
dec95574 152 refcount_t refs;
53b381b3 153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
818e010b
DS
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
53b381b3 224
4ae10b3a
CM
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
227
53b381b3
DW
228 h = table->table;
229
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
234 init_waitqueue_head(&cur->wait);
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
238 if (x)
239 kvfree(x);
53b381b3
DW
240 return 0;
241}
242
4ae10b3a
CM
243/*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253{
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
09cbfeaf 270 memcpy(d, s, PAGE_SIZE);
4ae10b3a
CM
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277}
278
53b381b3
DW
279/*
280 * we hash on the first logical address of the stripe
281 */
282static int rbio_bucket(struct btrfs_raid_bio *rbio)
283{
8e5cfb55 284 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295}
296
4ae10b3a
CM
297/*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302{
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 337 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
338 bio_list_init(&victim->bio_list);
339}
340
341/*
4ae10b3a
CM
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346{
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
dec95574 389 refcount_dec(&rbio->refs);
4ae10b3a
CM
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400}
401
402/*
403 * prune a given rbio from the cache
404 */
405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406{
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418}
419
420/*
421 * remove everything in the cache
422 */
48a3b636 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
424{
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
53b381b3
DW
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
4ae10b3a 449 btrfs_clear_rbio_cache(info);
f749303b 450 kvfree(info->stripe_hash_table);
53b381b3
DW
451 info->stripe_hash_table = NULL;
452}
453
4ae10b3a
CM
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 480 refcount_inc(&rbio->refs);
4ae10b3a
CM
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
503}
504
53b381b3
DW
505/*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
510static void run_xor(void **pages, int src_cnt, ssize_t len)
511{
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523}
524
525/*
526 * returns true if the bio list inside this rbio
527 * covers an entire stripe (no rmw required).
528 * Must be called with the bio list lock held, or
529 * at a time when you know it is impossible to add
530 * new bios into the list
531 */
532static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533{
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
536
537 if (size != rbio->nr_data * rbio->stripe_len)
538 ret = 0;
539
540 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 return ret;
542}
543
544static int rbio_is_full(struct btrfs_raid_bio *rbio)
545{
546 unsigned long flags;
547 int ret;
548
549 spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 ret = __rbio_is_full(rbio);
551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 return ret;
553}
554
555/*
556 * returns 1 if it is safe to merge two rbios together.
557 * The merging is safe if the two rbios correspond to
558 * the same stripe and if they are both going in the same
559 * direction (read vs write), and if neither one is
560 * locked for final IO
561 *
562 * The caller is responsible for locking such that
563 * rmw_locked is safe to test
564 */
565static int rbio_can_merge(struct btrfs_raid_bio *last,
566 struct btrfs_raid_bio *cur)
567{
568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 return 0;
571
4ae10b3a
CM
572 /*
573 * we can't merge with cached rbios, since the
574 * idea is that when we merge the destination
575 * rbio is going to run our IO for us. We can
01327610 576 * steal from cached rbios though, other functions
4ae10b3a
CM
577 * handle that.
578 */
579 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 test_bit(RBIO_CACHE_BIT, &cur->flags))
581 return 0;
582
8e5cfb55
ZL
583 if (last->bbio->raid_map[0] !=
584 cur->bbio->raid_map[0])
53b381b3
DW
585 return 0;
586
5a6ac9ea
MX
587 /* we can't merge with different operations */
588 if (last->operation != cur->operation)
589 return 0;
590 /*
591 * We've need read the full stripe from the drive.
592 * check and repair the parity and write the new results.
593 *
594 * We're not allowed to add any new bios to the
595 * bio list here, anyone else that wants to
596 * change this stripe needs to do their own rmw.
597 */
598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 600 return 0;
53b381b3 601
b4ee1782
OS
602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 return 0;
605
53b381b3
DW
606 return 1;
607}
608
b7178a5f
ZL
609static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 int index)
611{
612 return stripe * rbio->stripe_npages + index;
613}
614
615/*
616 * these are just the pages from the rbio array, not from anything
617 * the FS sent down to us
618 */
619static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 int index)
621{
622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623}
624
53b381b3
DW
625/*
626 * helper to index into the pstripe
627 */
628static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629{
b7178a5f 630 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
631}
632
633/*
634 * helper to index into the qstripe, returns null
635 * if there is no qstripe
636 */
637static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638{
2c8cdd6e 639 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 640 return NULL;
b7178a5f 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
642}
643
644/*
645 * The first stripe in the table for a logical address
646 * has the lock. rbios are added in one of three ways:
647 *
648 * 1) Nobody has the stripe locked yet. The rbio is given
649 * the lock and 0 is returned. The caller must start the IO
650 * themselves.
651 *
652 * 2) Someone has the stripe locked, but we're able to merge
653 * with the lock owner. The rbio is freed and the IO will
654 * start automatically along with the existing rbio. 1 is returned.
655 *
656 * 3) Someone has the stripe locked, but we're not able to merge.
657 * The rbio is added to the lock owner's plug list, or merged into
658 * an rbio already on the plug list. When the lock owner unlocks,
659 * the next rbio on the list is run and the IO is started automatically.
660 * 1 is returned
661 *
662 * If we return 0, the caller still owns the rbio and must continue with
663 * IO submission. If we return 1, the caller must assume the rbio has
664 * already been freed.
665 */
666static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667{
668 int bucket = rbio_bucket(rbio);
669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 struct btrfs_raid_bio *cur;
671 struct btrfs_raid_bio *pending;
672 unsigned long flags;
673 DEFINE_WAIT(wait);
674 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 675 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 676 int ret = 0;
53b381b3
DW
677
678 spin_lock_irqsave(&h->lock, flags);
679 list_for_each_entry(cur, &h->hash_list, hash_list) {
8e5cfb55 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
681 spin_lock(&cur->bio_list_lock);
682
4ae10b3a
CM
683 /* can we steal this cached rbio's pages? */
684 if (bio_list_empty(&cur->bio_list) &&
685 list_empty(&cur->plug_list) &&
686 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 list_del_init(&cur->hash_list);
dec95574 689 refcount_dec(&cur->refs);
4ae10b3a
CM
690
691 steal_rbio(cur, rbio);
692 cache_drop = cur;
693 spin_unlock(&cur->bio_list_lock);
694
695 goto lockit;
696 }
697
53b381b3
DW
698 /* can we merge into the lock owner? */
699 if (rbio_can_merge(cur, rbio)) {
700 merge_rbio(cur, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
705 }
706
4ae10b3a 707
53b381b3
DW
708 /*
709 * we couldn't merge with the running
710 * rbio, see if we can merge with the
711 * pending ones. We don't have to
712 * check for rmw_locked because there
713 * is no way they are inside finish_rmw
714 * right now
715 */
716 list_for_each_entry(pending, &cur->plug_list,
717 plug_list) {
718 if (rbio_can_merge(pending, rbio)) {
719 merge_rbio(pending, rbio);
720 spin_unlock(&cur->bio_list_lock);
721 freeit = rbio;
722 ret = 1;
723 goto out;
724 }
725 }
726
727 /* no merging, put us on the tail of the plug list,
728 * our rbio will be started with the currently
729 * running rbio unlocks
730 */
731 list_add_tail(&rbio->plug_list, &cur->plug_list);
732 spin_unlock(&cur->bio_list_lock);
733 ret = 1;
734 goto out;
735 }
736 }
4ae10b3a 737lockit:
dec95574 738 refcount_inc(&rbio->refs);
53b381b3
DW
739 list_add(&rbio->hash_list, &h->hash_list);
740out:
741 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
742 if (cache_drop)
743 remove_rbio_from_cache(cache_drop);
53b381b3
DW
744 if (freeit)
745 __free_raid_bio(freeit);
746 return ret;
747}
748
749/*
750 * called as rmw or parity rebuild is completed. If the plug list has more
751 * rbios waiting for this stripe, the next one on the list will be started
752 */
753static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754{
755 int bucket;
756 struct btrfs_stripe_hash *h;
757 unsigned long flags;
4ae10b3a 758 int keep_cache = 0;
53b381b3
DW
759
760 bucket = rbio_bucket(rbio);
761 h = rbio->fs_info->stripe_hash_table->table + bucket;
762
4ae10b3a
CM
763 if (list_empty(&rbio->plug_list))
764 cache_rbio(rbio);
765
53b381b3
DW
766 spin_lock_irqsave(&h->lock, flags);
767 spin_lock(&rbio->bio_list_lock);
768
769 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
770 /*
771 * if we're still cached and there is no other IO
772 * to perform, just leave this rbio here for others
773 * to steal from later
774 */
775 if (list_empty(&rbio->plug_list) &&
776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 keep_cache = 1;
778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 BUG_ON(!bio_list_empty(&rbio->bio_list));
780 goto done;
781 }
53b381b3
DW
782
783 list_del_init(&rbio->hash_list);
dec95574 784 refcount_dec(&rbio->refs);
53b381b3
DW
785
786 /*
787 * we use the plug list to hold all the rbios
788 * waiting for the chance to lock this stripe.
789 * hand the lock over to one of them.
790 */
791 if (!list_empty(&rbio->plug_list)) {
792 struct btrfs_raid_bio *next;
793 struct list_head *head = rbio->plug_list.next;
794
795 next = list_entry(head, struct btrfs_raid_bio,
796 plug_list);
797
798 list_del_init(&rbio->plug_list);
799
800 list_add(&next->hash_list, &h->hash_list);
dec95574 801 refcount_inc(&next->refs);
53b381b3
DW
802 spin_unlock(&rbio->bio_list_lock);
803 spin_unlock_irqrestore(&h->lock, flags);
804
1b94b556 805 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 806 async_read_rebuild(next);
b4ee1782
OS
807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 steal_rbio(rbio, next);
809 async_read_rebuild(next);
810 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 811 steal_rbio(rbio, next);
53b381b3 812 async_rmw_stripe(next);
5a6ac9ea
MX
813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 steal_rbio(rbio, next);
815 async_scrub_parity(next);
4ae10b3a 816 }
53b381b3
DW
817
818 goto done_nolock;
33a9eca7
DS
819 /*
820 * The barrier for this waitqueue_active is not needed,
821 * we're protected by h->lock and can't miss a wakeup.
822 */
823 } else if (waitqueue_active(&h->wait)) {
53b381b3
DW
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826 wake_up(&h->wait);
827 goto done_nolock;
828 }
829 }
4ae10b3a 830done:
53b381b3
DW
831 spin_unlock(&rbio->bio_list_lock);
832 spin_unlock_irqrestore(&h->lock, flags);
833
834done_nolock:
4ae10b3a
CM
835 if (!keep_cache)
836 remove_rbio_from_cache(rbio);
53b381b3
DW
837}
838
839static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840{
841 int i;
842
dec95574 843 if (!refcount_dec_and_test(&rbio->refs))
53b381b3
DW
844 return;
845
4ae10b3a 846 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
847 WARN_ON(!list_empty(&rbio->hash_list));
848 WARN_ON(!bio_list_empty(&rbio->bio_list));
849
850 for (i = 0; i < rbio->nr_pages; i++) {
851 if (rbio->stripe_pages[i]) {
852 __free_page(rbio->stripe_pages[i]);
853 rbio->stripe_pages[i] = NULL;
854 }
855 }
af8e2d1d 856
6e9606d2 857 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
858 kfree(rbio);
859}
860
861static void free_raid_bio(struct btrfs_raid_bio *rbio)
862{
863 unlock_stripe(rbio);
864 __free_raid_bio(rbio);
865}
866
867/*
868 * this frees the rbio and runs through all the bios in the
869 * bio_list and calls end_io on them
870 */
4e4cbee9 871static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
872{
873 struct bio *cur = bio_list_get(&rbio->bio_list);
874 struct bio *next;
4245215d
MX
875
876 if (rbio->generic_bio_cnt)
877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
878
53b381b3
DW
879 free_raid_bio(rbio);
880
881 while (cur) {
882 next = cur->bi_next;
883 cur->bi_next = NULL;
4e4cbee9 884 cur->bi_status = err;
4246a0b6 885 bio_endio(cur);
53b381b3
DW
886 cur = next;
887 }
888}
889
890/*
891 * end io function used by finish_rmw. When we finally
892 * get here, we've written a full stripe
893 */
4246a0b6 894static void raid_write_end_io(struct bio *bio)
53b381b3
DW
895{
896 struct btrfs_raid_bio *rbio = bio->bi_private;
4e4cbee9 897 blk_status_t err = bio->bi_status;
a6111d11 898 int max_errors;
53b381b3
DW
899
900 if (err)
901 fail_bio_stripe(rbio, bio);
902
903 bio_put(bio);
904
b89e1b01 905 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
906 return;
907
908 err = 0;
909
910 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
912 0 : rbio->bbio->max_errors;
913 if (atomic_read(&rbio->error) > max_errors)
4e4cbee9 914 err = BLK_STS_IOERR;
53b381b3 915
4246a0b6 916 rbio_orig_end_io(rbio, err);
53b381b3
DW
917}
918
919/*
920 * the read/modify/write code wants to use the original bio for
921 * any pages it included, and then use the rbio for everything
922 * else. This function decides if a given index (stripe number)
923 * and page number in that stripe fall inside the original bio
924 * or the rbio.
925 *
926 * if you set bio_list_only, you'll get a NULL back for any ranges
927 * that are outside the bio_list
928 *
929 * This doesn't take any refs on anything, you get a bare page pointer
930 * and the caller must bump refs as required.
931 *
932 * You must call index_rbio_pages once before you can trust
933 * the answers from this function.
934 */
935static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
936 int index, int pagenr, int bio_list_only)
937{
938 int chunk_page;
939 struct page *p = NULL;
940
941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
942
943 spin_lock_irq(&rbio->bio_list_lock);
944 p = rbio->bio_pages[chunk_page];
945 spin_unlock_irq(&rbio->bio_list_lock);
946
947 if (p || bio_list_only)
948 return p;
949
950 return rbio->stripe_pages[chunk_page];
951}
952
953/*
954 * number of pages we need for the entire stripe across all the
955 * drives
956 */
957static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
958{
09cbfeaf 959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
960}
961
962/*
963 * allocation and initial setup for the btrfs_raid_bio. Not
964 * this does not allocate any pages for rbio->pages.
965 */
2ff7e61e
JM
966static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
967 struct btrfs_bio *bbio,
968 u64 stripe_len)
53b381b3
DW
969{
970 struct btrfs_raid_bio *rbio;
971 int nr_data = 0;
2c8cdd6e
MX
972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
973 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
975 void *p;
976
5a6ac9ea 977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
979 sizeof(long), GFP_NOFS);
af8e2d1d 980 if (!rbio)
53b381b3 981 return ERR_PTR(-ENOMEM);
53b381b3
DW
982
983 bio_list_init(&rbio->bio_list);
984 INIT_LIST_HEAD(&rbio->plug_list);
985 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 986 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
987 INIT_LIST_HEAD(&rbio->hash_list);
988 rbio->bbio = bbio;
2ff7e61e 989 rbio->fs_info = fs_info;
53b381b3
DW
990 rbio->stripe_len = stripe_len;
991 rbio->nr_pages = num_pages;
2c8cdd6e 992 rbio->real_stripes = real_stripes;
5a6ac9ea 993 rbio->stripe_npages = stripe_npages;
53b381b3
DW
994 rbio->faila = -1;
995 rbio->failb = -1;
dec95574 996 refcount_set(&rbio->refs, 1);
b89e1b01
MX
997 atomic_set(&rbio->error, 0);
998 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
999
1000 /*
1001 * the stripe_pages and bio_pages array point to the extra
1002 * memory we allocated past the end of the rbio
1003 */
1004 p = rbio + 1;
1005 rbio->stripe_pages = p;
1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1008
10f11900
ZL
1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010 nr_data = real_stripes - 1;
1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1012 nr_data = real_stripes - 2;
53b381b3 1013 else
10f11900 1014 BUG();
53b381b3
DW
1015
1016 rbio->nr_data = nr_data;
1017 return rbio;
1018}
1019
1020/* allocate pages for all the stripes in the bio, including parity */
1021static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1022{
1023 int i;
1024 struct page *page;
1025
1026 for (i = 0; i < rbio->nr_pages; i++) {
1027 if (rbio->stripe_pages[i])
1028 continue;
1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030 if (!page)
1031 return -ENOMEM;
1032 rbio->stripe_pages[i] = page;
53b381b3
DW
1033 }
1034 return 0;
1035}
1036
b7178a5f 1037/* only allocate pages for p/q stripes */
53b381b3
DW
1038static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1039{
1040 int i;
1041 struct page *page;
1042
b7178a5f 1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1044
1045 for (; i < rbio->nr_pages; i++) {
1046 if (rbio->stripe_pages[i])
1047 continue;
1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 if (!page)
1050 return -ENOMEM;
1051 rbio->stripe_pages[i] = page;
1052 }
1053 return 0;
1054}
1055
1056/*
1057 * add a single page from a specific stripe into our list of bios for IO
1058 * this will try to merge into existing bios if possible, and returns
1059 * zero if all went well.
1060 */
48a3b636
ES
1061static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062 struct bio_list *bio_list,
1063 struct page *page,
1064 int stripe_nr,
1065 unsigned long page_index,
1066 unsigned long bio_max_len)
53b381b3
DW
1067{
1068 struct bio *last = bio_list->tail;
1069 u64 last_end = 0;
1070 int ret;
1071 struct bio *bio;
1072 struct btrfs_bio_stripe *stripe;
1073 u64 disk_start;
1074
1075 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1077
1078 /* if the device is missing, just fail this stripe */
1079 if (!stripe->dev->bdev)
1080 return fail_rbio_index(rbio, stripe_nr);
1081
1082 /* see if we can add this page onto our existing bio */
1083 if (last) {
4f024f37
KO
1084 last_end = (u64)last->bi_iter.bi_sector << 9;
1085 last_end += last->bi_iter.bi_size;
53b381b3
DW
1086
1087 /*
1088 * we can't merge these if they are from different
1089 * devices or if they are not contiguous
1090 */
1091 if (last_end == disk_start && stripe->dev->bdev &&
4e4cbee9 1092 !last->bi_status &&
53b381b3 1093 last->bi_bdev == stripe->dev->bdev) {
09cbfeaf
KS
1094 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1095 if (ret == PAGE_SIZE)
53b381b3
DW
1096 return 0;
1097 }
1098 }
1099
1100 /* put a new bio on the list */
c5e4c3d7 1101 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
4f024f37 1102 bio->bi_iter.bi_size = 0;
53b381b3 1103 bio->bi_bdev = stripe->dev->bdev;
4f024f37 1104 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1105
09cbfeaf 1106 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1107 bio_list_add(bio_list, bio);
1108 return 0;
1109}
1110
1111/*
1112 * while we're doing the read/modify/write cycle, we could
1113 * have errors in reading pages off the disk. This checks
1114 * for errors and if we're not able to read the page it'll
1115 * trigger parity reconstruction. The rmw will be finished
1116 * after we've reconstructed the failed stripes
1117 */
1118static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1119{
1120 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1121 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1122 __raid56_parity_recover(rbio);
1123 } else {
1124 finish_rmw(rbio);
1125 }
1126}
1127
53b381b3
DW
1128/*
1129 * helper function to walk our bio list and populate the bio_pages array with
1130 * the result. This seems expensive, but it is faster than constantly
1131 * searching through the bio list as we setup the IO in finish_rmw or stripe
1132 * reconstruction.
1133 *
1134 * This must be called before you trust the answers from page_in_rbio
1135 */
1136static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1137{
1138 struct bio *bio;
80ace3e4 1139 struct bio_vec *bvec;
53b381b3
DW
1140 u64 start;
1141 unsigned long stripe_offset;
1142 unsigned long page_index;
53b381b3
DW
1143 int i;
1144
1145 spin_lock_irq(&rbio->bio_list_lock);
1146 bio_list_for_each(bio, &rbio->bio_list) {
4f024f37 1147 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1148 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1149 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1150
80ace3e4
CH
1151 bio_for_each_segment_all(bvec, bio, i)
1152 rbio->bio_pages[page_index + i] = bvec->bv_page;
53b381b3
DW
1153 }
1154 spin_unlock_irq(&rbio->bio_list_lock);
1155}
1156
1157/*
1158 * this is called from one of two situations. We either
1159 * have a full stripe from the higher layers, or we've read all
1160 * the missing bits off disk.
1161 *
1162 * This will calculate the parity and then send down any
1163 * changed blocks.
1164 */
1165static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1166{
1167 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1168 void *pointers[rbio->real_stripes];
53b381b3
DW
1169 int nr_data = rbio->nr_data;
1170 int stripe;
1171 int pagenr;
1172 int p_stripe = -1;
1173 int q_stripe = -1;
1174 struct bio_list bio_list;
1175 struct bio *bio;
53b381b3
DW
1176 int ret;
1177
1178 bio_list_init(&bio_list);
1179
2c8cdd6e
MX
1180 if (rbio->real_stripes - rbio->nr_data == 1) {
1181 p_stripe = rbio->real_stripes - 1;
1182 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1183 p_stripe = rbio->real_stripes - 2;
1184 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1185 } else {
1186 BUG();
1187 }
1188
1189 /* at this point we either have a full stripe,
1190 * or we've read the full stripe from the drive.
1191 * recalculate the parity and write the new results.
1192 *
1193 * We're not allowed to add any new bios to the
1194 * bio list here, anyone else that wants to
1195 * change this stripe needs to do their own rmw.
1196 */
1197 spin_lock_irq(&rbio->bio_list_lock);
1198 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1199 spin_unlock_irq(&rbio->bio_list_lock);
1200
b89e1b01 1201 atomic_set(&rbio->error, 0);
53b381b3
DW
1202
1203 /*
1204 * now that we've set rmw_locked, run through the
1205 * bio list one last time and map the page pointers
4ae10b3a
CM
1206 *
1207 * We don't cache full rbios because we're assuming
1208 * the higher layers are unlikely to use this area of
1209 * the disk again soon. If they do use it again,
1210 * hopefully they will send another full bio.
53b381b3
DW
1211 */
1212 index_rbio_pages(rbio);
4ae10b3a
CM
1213 if (!rbio_is_full(rbio))
1214 cache_rbio_pages(rbio);
1215 else
1216 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1217
915e2290 1218 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1219 struct page *p;
1220 /* first collect one page from each data stripe */
1221 for (stripe = 0; stripe < nr_data; stripe++) {
1222 p = page_in_rbio(rbio, stripe, pagenr, 0);
1223 pointers[stripe] = kmap(p);
1224 }
1225
1226 /* then add the parity stripe */
1227 p = rbio_pstripe_page(rbio, pagenr);
1228 SetPageUptodate(p);
1229 pointers[stripe++] = kmap(p);
1230
1231 if (q_stripe != -1) {
1232
1233 /*
1234 * raid6, add the qstripe and call the
1235 * library function to fill in our p/q
1236 */
1237 p = rbio_qstripe_page(rbio, pagenr);
1238 SetPageUptodate(p);
1239 pointers[stripe++] = kmap(p);
1240
2c8cdd6e 1241 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1242 pointers);
1243 } else {
1244 /* raid5 */
1245 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 1246 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1247 }
1248
1249
2c8cdd6e 1250 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1251 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1252 }
1253
1254 /*
1255 * time to start writing. Make bios for everything from the
1256 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1257 * everything else.
1258 */
2c8cdd6e 1259 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1260 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1261 struct page *page;
1262 if (stripe < rbio->nr_data) {
1263 page = page_in_rbio(rbio, stripe, pagenr, 1);
1264 if (!page)
1265 continue;
1266 } else {
1267 page = rbio_stripe_page(rbio, stripe, pagenr);
1268 }
1269
1270 ret = rbio_add_io_page(rbio, &bio_list,
1271 page, stripe, pagenr, rbio->stripe_len);
1272 if (ret)
1273 goto cleanup;
1274 }
1275 }
1276
2c8cdd6e
MX
1277 if (likely(!bbio->num_tgtdevs))
1278 goto write_data;
1279
1280 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1281 if (!bbio->tgtdev_map[stripe])
1282 continue;
1283
915e2290 1284 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1285 struct page *page;
1286 if (stripe < rbio->nr_data) {
1287 page = page_in_rbio(rbio, stripe, pagenr, 1);
1288 if (!page)
1289 continue;
1290 } else {
1291 page = rbio_stripe_page(rbio, stripe, pagenr);
1292 }
1293
1294 ret = rbio_add_io_page(rbio, &bio_list, page,
1295 rbio->bbio->tgtdev_map[stripe],
1296 pagenr, rbio->stripe_len);
1297 if (ret)
1298 goto cleanup;
1299 }
1300 }
1301
1302write_data:
b89e1b01
MX
1303 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1304 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1305
1306 while (1) {
1307 bio = bio_list_pop(&bio_list);
1308 if (!bio)
1309 break;
1310
1311 bio->bi_private = rbio;
1312 bio->bi_end_io = raid_write_end_io;
37226b21 1313 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
1314
1315 submit_bio(bio);
53b381b3
DW
1316 }
1317 return;
1318
1319cleanup:
4246a0b6 1320 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1321}
1322
1323/*
1324 * helper to find the stripe number for a given bio. Used to figure out which
1325 * stripe has failed. This expects the bio to correspond to a physical disk,
1326 * so it looks up based on physical sector numbers.
1327 */
1328static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1329 struct bio *bio)
1330{
4f024f37 1331 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1332 u64 stripe_start;
1333 int i;
1334 struct btrfs_bio_stripe *stripe;
1335
1336 physical <<= 9;
1337
1338 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1339 stripe = &rbio->bbio->stripes[i];
1340 stripe_start = stripe->physical;
1341 if (physical >= stripe_start &&
2c8cdd6e
MX
1342 physical < stripe_start + rbio->stripe_len &&
1343 bio->bi_bdev == stripe->dev->bdev) {
53b381b3
DW
1344 return i;
1345 }
1346 }
1347 return -1;
1348}
1349
1350/*
1351 * helper to find the stripe number for a given
1352 * bio (before mapping). Used to figure out which stripe has
1353 * failed. This looks up based on logical block numbers.
1354 */
1355static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1356 struct bio *bio)
1357{
4f024f37 1358 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1359 u64 stripe_start;
1360 int i;
1361
1362 logical <<= 9;
1363
1364 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1365 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1366 if (logical >= stripe_start &&
1367 logical < stripe_start + rbio->stripe_len) {
1368 return i;
1369 }
1370 }
1371 return -1;
1372}
1373
1374/*
1375 * returns -EIO if we had too many failures
1376 */
1377static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1378{
1379 unsigned long flags;
1380 int ret = 0;
1381
1382 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1383
1384 /* we already know this stripe is bad, move on */
1385 if (rbio->faila == failed || rbio->failb == failed)
1386 goto out;
1387
1388 if (rbio->faila == -1) {
1389 /* first failure on this rbio */
1390 rbio->faila = failed;
b89e1b01 1391 atomic_inc(&rbio->error);
53b381b3
DW
1392 } else if (rbio->failb == -1) {
1393 /* second failure on this rbio */
1394 rbio->failb = failed;
b89e1b01 1395 atomic_inc(&rbio->error);
53b381b3
DW
1396 } else {
1397 ret = -EIO;
1398 }
1399out:
1400 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1401
1402 return ret;
1403}
1404
1405/*
1406 * helper to fail a stripe based on a physical disk
1407 * bio.
1408 */
1409static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1410 struct bio *bio)
1411{
1412 int failed = find_bio_stripe(rbio, bio);
1413
1414 if (failed < 0)
1415 return -EIO;
1416
1417 return fail_rbio_index(rbio, failed);
1418}
1419
1420/*
1421 * this sets each page in the bio uptodate. It should only be used on private
1422 * rbio pages, nothing that comes in from the higher layers
1423 */
1424static void set_bio_pages_uptodate(struct bio *bio)
1425{
80ace3e4 1426 struct bio_vec *bvec;
53b381b3 1427 int i;
53b381b3 1428
80ace3e4
CH
1429 bio_for_each_segment_all(bvec, bio, i)
1430 SetPageUptodate(bvec->bv_page);
53b381b3
DW
1431}
1432
1433/*
1434 * end io for the read phase of the rmw cycle. All the bios here are physical
1435 * stripe bios we've read from the disk so we can recalculate the parity of the
1436 * stripe.
1437 *
1438 * This will usually kick off finish_rmw once all the bios are read in, but it
1439 * may trigger parity reconstruction if we had any errors along the way
1440 */
4246a0b6 1441static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1442{
1443 struct btrfs_raid_bio *rbio = bio->bi_private;
1444
4e4cbee9 1445 if (bio->bi_status)
53b381b3
DW
1446 fail_bio_stripe(rbio, bio);
1447 else
1448 set_bio_pages_uptodate(bio);
1449
1450 bio_put(bio);
1451
b89e1b01 1452 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1453 return;
1454
b89e1b01 1455 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1456 goto cleanup;
1457
1458 /*
1459 * this will normally call finish_rmw to start our write
1460 * but if there are any failed stripes we'll reconstruct
1461 * from parity first
1462 */
1463 validate_rbio_for_rmw(rbio);
1464 return;
1465
1466cleanup:
1467
4246a0b6 1468 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1469}
1470
1471static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1472{
0b246afa
JM
1473 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1474 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1475}
1476
1477static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1478{
9e0af237
LB
1479 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1480 read_rebuild_work, NULL, NULL);
53b381b3 1481
0b246afa 1482 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1483}
1484
1485/*
1486 * the stripe must be locked by the caller. It will
1487 * unlock after all the writes are done
1488 */
1489static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1490{
1491 int bios_to_read = 0;
53b381b3
DW
1492 struct bio_list bio_list;
1493 int ret;
53b381b3
DW
1494 int pagenr;
1495 int stripe;
1496 struct bio *bio;
1497
1498 bio_list_init(&bio_list);
1499
1500 ret = alloc_rbio_pages(rbio);
1501 if (ret)
1502 goto cleanup;
1503
1504 index_rbio_pages(rbio);
1505
b89e1b01 1506 atomic_set(&rbio->error, 0);
53b381b3
DW
1507 /*
1508 * build a list of bios to read all the missing parts of this
1509 * stripe
1510 */
1511 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1512 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1513 struct page *page;
1514 /*
1515 * we want to find all the pages missing from
1516 * the rbio and read them from the disk. If
1517 * page_in_rbio finds a page in the bio list
1518 * we don't need to read it off the stripe.
1519 */
1520 page = page_in_rbio(rbio, stripe, pagenr, 1);
1521 if (page)
1522 continue;
1523
1524 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1525 /*
1526 * the bio cache may have handed us an uptodate
1527 * page. If so, be happy and use it
1528 */
1529 if (PageUptodate(page))
1530 continue;
1531
53b381b3
DW
1532 ret = rbio_add_io_page(rbio, &bio_list, page,
1533 stripe, pagenr, rbio->stripe_len);
1534 if (ret)
1535 goto cleanup;
1536 }
1537 }
1538
1539 bios_to_read = bio_list_size(&bio_list);
1540 if (!bios_to_read) {
1541 /*
1542 * this can happen if others have merged with
1543 * us, it means there is nothing left to read.
1544 * But if there are missing devices it may not be
1545 * safe to do the full stripe write yet.
1546 */
1547 goto finish;
1548 }
1549
1550 /*
1551 * the bbio may be freed once we submit the last bio. Make sure
1552 * not to touch it after that
1553 */
b89e1b01 1554 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1555 while (1) {
1556 bio = bio_list_pop(&bio_list);
1557 if (!bio)
1558 break;
1559
1560 bio->bi_private = rbio;
1561 bio->bi_end_io = raid_rmw_end_io;
37226b21 1562 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 1563
0b246afa 1564 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1565
4e49ea4a 1566 submit_bio(bio);
53b381b3
DW
1567 }
1568 /* the actual write will happen once the reads are done */
1569 return 0;
1570
1571cleanup:
4246a0b6 1572 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1573 return -EIO;
1574
1575finish:
1576 validate_rbio_for_rmw(rbio);
1577 return 0;
1578}
1579
1580/*
1581 * if the upper layers pass in a full stripe, we thank them by only allocating
1582 * enough pages to hold the parity, and sending it all down quickly.
1583 */
1584static int full_stripe_write(struct btrfs_raid_bio *rbio)
1585{
1586 int ret;
1587
1588 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1589 if (ret) {
1590 __free_raid_bio(rbio);
53b381b3 1591 return ret;
3cd846d1 1592 }
53b381b3
DW
1593
1594 ret = lock_stripe_add(rbio);
1595 if (ret == 0)
1596 finish_rmw(rbio);
1597 return 0;
1598}
1599
1600/*
1601 * partial stripe writes get handed over to async helpers.
1602 * We're really hoping to merge a few more writes into this
1603 * rbio before calculating new parity
1604 */
1605static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1606{
1607 int ret;
1608
1609 ret = lock_stripe_add(rbio);
1610 if (ret == 0)
1611 async_rmw_stripe(rbio);
1612 return 0;
1613}
1614
1615/*
1616 * sometimes while we were reading from the drive to
1617 * recalculate parity, enough new bios come into create
1618 * a full stripe. So we do a check here to see if we can
1619 * go directly to finish_rmw
1620 */
1621static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1622{
1623 /* head off into rmw land if we don't have a full stripe */
1624 if (!rbio_is_full(rbio))
1625 return partial_stripe_write(rbio);
1626 return full_stripe_write(rbio);
1627}
1628
6ac0f488
CM
1629/*
1630 * We use plugging call backs to collect full stripes.
1631 * Any time we get a partial stripe write while plugged
1632 * we collect it into a list. When the unplug comes down,
1633 * we sort the list by logical block number and merge
1634 * everything we can into the same rbios
1635 */
1636struct btrfs_plug_cb {
1637 struct blk_plug_cb cb;
1638 struct btrfs_fs_info *info;
1639 struct list_head rbio_list;
1640 struct btrfs_work work;
1641};
1642
1643/*
1644 * rbios on the plug list are sorted for easier merging.
1645 */
1646static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1647{
1648 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1649 plug_list);
1650 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1651 plug_list);
4f024f37
KO
1652 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1653 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1654
1655 if (a_sector < b_sector)
1656 return -1;
1657 if (a_sector > b_sector)
1658 return 1;
1659 return 0;
1660}
1661
1662static void run_plug(struct btrfs_plug_cb *plug)
1663{
1664 struct btrfs_raid_bio *cur;
1665 struct btrfs_raid_bio *last = NULL;
1666
1667 /*
1668 * sort our plug list then try to merge
1669 * everything we can in hopes of creating full
1670 * stripes.
1671 */
1672 list_sort(NULL, &plug->rbio_list, plug_cmp);
1673 while (!list_empty(&plug->rbio_list)) {
1674 cur = list_entry(plug->rbio_list.next,
1675 struct btrfs_raid_bio, plug_list);
1676 list_del_init(&cur->plug_list);
1677
1678 if (rbio_is_full(cur)) {
1679 /* we have a full stripe, send it down */
1680 full_stripe_write(cur);
1681 continue;
1682 }
1683 if (last) {
1684 if (rbio_can_merge(last, cur)) {
1685 merge_rbio(last, cur);
1686 __free_raid_bio(cur);
1687 continue;
1688
1689 }
1690 __raid56_parity_write(last);
1691 }
1692 last = cur;
1693 }
1694 if (last) {
1695 __raid56_parity_write(last);
1696 }
1697 kfree(plug);
1698}
1699
1700/*
1701 * if the unplug comes from schedule, we have to push the
1702 * work off to a helper thread
1703 */
1704static void unplug_work(struct btrfs_work *work)
1705{
1706 struct btrfs_plug_cb *plug;
1707 plug = container_of(work, struct btrfs_plug_cb, work);
1708 run_plug(plug);
1709}
1710
1711static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1712{
1713 struct btrfs_plug_cb *plug;
1714 plug = container_of(cb, struct btrfs_plug_cb, cb);
1715
1716 if (from_schedule) {
9e0af237
LB
1717 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1718 unplug_work, NULL, NULL);
d05a33ac
QW
1719 btrfs_queue_work(plug->info->rmw_workers,
1720 &plug->work);
6ac0f488
CM
1721 return;
1722 }
1723 run_plug(plug);
1724}
1725
53b381b3
DW
1726/*
1727 * our main entry point for writes from the rest of the FS.
1728 */
2ff7e61e 1729int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1730 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1731{
1732 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1733 struct btrfs_plug_cb *plug = NULL;
1734 struct blk_plug_cb *cb;
4245215d 1735 int ret;
53b381b3 1736
2ff7e61e 1737 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1738 if (IS_ERR(rbio)) {
6e9606d2 1739 btrfs_put_bbio(bbio);
53b381b3 1740 return PTR_ERR(rbio);
af8e2d1d 1741 }
53b381b3 1742 bio_list_add(&rbio->bio_list, bio);
4f024f37 1743 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1744 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1745
0b246afa 1746 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1747 rbio->generic_bio_cnt = 1;
1748
6ac0f488
CM
1749 /*
1750 * don't plug on full rbios, just get them out the door
1751 * as quickly as we can
1752 */
4245215d
MX
1753 if (rbio_is_full(rbio)) {
1754 ret = full_stripe_write(rbio);
1755 if (ret)
0b246afa 1756 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1757 return ret;
1758 }
6ac0f488 1759
0b246afa 1760 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1761 if (cb) {
1762 plug = container_of(cb, struct btrfs_plug_cb, cb);
1763 if (!plug->info) {
0b246afa 1764 plug->info = fs_info;
6ac0f488
CM
1765 INIT_LIST_HEAD(&plug->rbio_list);
1766 }
1767 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1768 ret = 0;
6ac0f488 1769 } else {
4245215d
MX
1770 ret = __raid56_parity_write(rbio);
1771 if (ret)
0b246afa 1772 btrfs_bio_counter_dec(fs_info);
6ac0f488 1773 }
4245215d 1774 return ret;
53b381b3
DW
1775}
1776
1777/*
1778 * all parity reconstruction happens here. We've read in everything
1779 * we can find from the drives and this does the heavy lifting of
1780 * sorting the good from the bad.
1781 */
1782static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1783{
1784 int pagenr, stripe;
1785 void **pointers;
1786 int faila = -1, failb = -1;
53b381b3
DW
1787 struct page *page;
1788 int err;
1789 int i;
1790
31e818fe 1791 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3
DW
1792 if (!pointers) {
1793 err = -ENOMEM;
1794 goto cleanup_io;
1795 }
1796
1797 faila = rbio->faila;
1798 failb = rbio->failb;
1799
b4ee1782
OS
1800 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1801 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1802 spin_lock_irq(&rbio->bio_list_lock);
1803 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1804 spin_unlock_irq(&rbio->bio_list_lock);
1805 }
1806
1807 index_rbio_pages(rbio);
1808
915e2290 1809 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1810 /*
1811 * Now we just use bitmap to mark the horizontal stripes in
1812 * which we have data when doing parity scrub.
1813 */
1814 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1815 !test_bit(pagenr, rbio->dbitmap))
1816 continue;
1817
53b381b3
DW
1818 /* setup our array of pointers with pages
1819 * from each stripe
1820 */
2c8cdd6e 1821 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1822 /*
1823 * if we're rebuilding a read, we have to use
1824 * pages from the bio list
1825 */
b4ee1782
OS
1826 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1827 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1828 (stripe == faila || stripe == failb)) {
1829 page = page_in_rbio(rbio, stripe, pagenr, 0);
1830 } else {
1831 page = rbio_stripe_page(rbio, stripe, pagenr);
1832 }
1833 pointers[stripe] = kmap(page);
1834 }
1835
1836 /* all raid6 handling here */
10f11900 1837 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1838 /*
1839 * single failure, rebuild from parity raid5
1840 * style
1841 */
1842 if (failb < 0) {
1843 if (faila == rbio->nr_data) {
1844 /*
1845 * Just the P stripe has failed, without
1846 * a bad data or Q stripe.
1847 * TODO, we should redo the xor here.
1848 */
1849 err = -EIO;
1850 goto cleanup;
1851 }
1852 /*
1853 * a single failure in raid6 is rebuilt
1854 * in the pstripe code below
1855 */
1856 goto pstripe;
1857 }
1858
1859 /* make sure our ps and qs are in order */
1860 if (faila > failb) {
1861 int tmp = failb;
1862 failb = faila;
1863 faila = tmp;
1864 }
1865
1866 /* if the q stripe is failed, do a pstripe reconstruction
1867 * from the xors.
1868 * If both the q stripe and the P stripe are failed, we're
1869 * here due to a crc mismatch and we can't give them the
1870 * data they want
1871 */
8e5cfb55
ZL
1872 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1873 if (rbio->bbio->raid_map[faila] ==
1874 RAID5_P_STRIPE) {
53b381b3
DW
1875 err = -EIO;
1876 goto cleanup;
1877 }
1878 /*
1879 * otherwise we have one bad data stripe and
1880 * a good P stripe. raid5!
1881 */
1882 goto pstripe;
1883 }
1884
8e5cfb55 1885 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1886 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1887 PAGE_SIZE, faila, pointers);
1888 } else {
2c8cdd6e 1889 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1890 PAGE_SIZE, faila, failb,
1891 pointers);
1892 }
1893 } else {
1894 void *p;
1895
1896 /* rebuild from P stripe here (raid5 or raid6) */
1897 BUG_ON(failb != -1);
1898pstripe:
1899 /* Copy parity block into failed block to start with */
1900 memcpy(pointers[faila],
1901 pointers[rbio->nr_data],
09cbfeaf 1902 PAGE_SIZE);
53b381b3
DW
1903
1904 /* rearrange the pointer array */
1905 p = pointers[faila];
1906 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1907 pointers[stripe] = pointers[stripe + 1];
1908 pointers[rbio->nr_data - 1] = p;
1909
1910 /* xor in the rest */
09cbfeaf 1911 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1912 }
1913 /* if we're doing this rebuild as part of an rmw, go through
1914 * and set all of our private rbio pages in the
1915 * failed stripes as uptodate. This way finish_rmw will
1916 * know they can be trusted. If this was a read reconstruction,
1917 * other endio functions will fiddle the uptodate bits
1918 */
1b94b556 1919 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1920 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1921 if (faila != -1) {
1922 page = rbio_stripe_page(rbio, faila, i);
1923 SetPageUptodate(page);
1924 }
1925 if (failb != -1) {
1926 page = rbio_stripe_page(rbio, failb, i);
1927 SetPageUptodate(page);
1928 }
1929 }
1930 }
2c8cdd6e 1931 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1932 /*
1933 * if we're rebuilding a read, we have to use
1934 * pages from the bio list
1935 */
b4ee1782
OS
1936 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1937 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1938 (stripe == faila || stripe == failb)) {
1939 page = page_in_rbio(rbio, stripe, pagenr, 0);
1940 } else {
1941 page = rbio_stripe_page(rbio, stripe, pagenr);
1942 }
1943 kunmap(page);
1944 }
1945 }
1946
1947 err = 0;
1948cleanup:
1949 kfree(pointers);
1950
1951cleanup_io:
1b94b556 1952 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
6e9606d2 1953 if (err == 0)
4ae10b3a
CM
1954 cache_rbio_pages(rbio);
1955 else
1956 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1957
22365979 1958 rbio_orig_end_io(rbio, err);
b4ee1782 1959 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1960 rbio_orig_end_io(rbio, err);
53b381b3
DW
1961 } else if (err == 0) {
1962 rbio->faila = -1;
1963 rbio->failb = -1;
5a6ac9ea
MX
1964
1965 if (rbio->operation == BTRFS_RBIO_WRITE)
1966 finish_rmw(rbio);
1967 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1968 finish_parity_scrub(rbio, 0);
1969 else
1970 BUG();
53b381b3 1971 } else {
4246a0b6 1972 rbio_orig_end_io(rbio, err);
53b381b3
DW
1973 }
1974}
1975
1976/*
1977 * This is called only for stripes we've read from disk to
1978 * reconstruct the parity.
1979 */
4246a0b6 1980static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
1981{
1982 struct btrfs_raid_bio *rbio = bio->bi_private;
1983
1984 /*
1985 * we only read stripe pages off the disk, set them
1986 * up to date if there were no errors
1987 */
4e4cbee9 1988 if (bio->bi_status)
53b381b3
DW
1989 fail_bio_stripe(rbio, bio);
1990 else
1991 set_bio_pages_uptodate(bio);
1992 bio_put(bio);
1993
b89e1b01 1994 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1995 return;
1996
b89e1b01 1997 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
4246a0b6 1998 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1999 else
2000 __raid_recover_end_io(rbio);
2001}
2002
2003/*
2004 * reads everything we need off the disk to reconstruct
2005 * the parity. endio handlers trigger final reconstruction
2006 * when the IO is done.
2007 *
2008 * This is used both for reads from the higher layers and for
2009 * parity construction required to finish a rmw cycle.
2010 */
2011static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2012{
2013 int bios_to_read = 0;
53b381b3
DW
2014 struct bio_list bio_list;
2015 int ret;
53b381b3
DW
2016 int pagenr;
2017 int stripe;
2018 struct bio *bio;
2019
2020 bio_list_init(&bio_list);
2021
2022 ret = alloc_rbio_pages(rbio);
2023 if (ret)
2024 goto cleanup;
2025
b89e1b01 2026 atomic_set(&rbio->error, 0);
53b381b3
DW
2027
2028 /*
4ae10b3a
CM
2029 * read everything that hasn't failed. Thanks to the
2030 * stripe cache, it is possible that some or all of these
2031 * pages are going to be uptodate.
53b381b3 2032 */
2c8cdd6e 2033 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2034 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2035 atomic_inc(&rbio->error);
53b381b3 2036 continue;
5588383e 2037 }
53b381b3 2038
915e2290 2039 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2040 struct page *p;
2041
2042 /*
2043 * the rmw code may have already read this
2044 * page in
2045 */
2046 p = rbio_stripe_page(rbio, stripe, pagenr);
2047 if (PageUptodate(p))
2048 continue;
2049
2050 ret = rbio_add_io_page(rbio, &bio_list,
2051 rbio_stripe_page(rbio, stripe, pagenr),
2052 stripe, pagenr, rbio->stripe_len);
2053 if (ret < 0)
2054 goto cleanup;
2055 }
2056 }
2057
2058 bios_to_read = bio_list_size(&bio_list);
2059 if (!bios_to_read) {
2060 /*
2061 * we might have no bios to read just because the pages
2062 * were up to date, or we might have no bios to read because
2063 * the devices were gone.
2064 */
b89e1b01 2065 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2066 __raid_recover_end_io(rbio);
2067 goto out;
2068 } else {
2069 goto cleanup;
2070 }
2071 }
2072
2073 /*
2074 * the bbio may be freed once we submit the last bio. Make sure
2075 * not to touch it after that
2076 */
b89e1b01 2077 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2078 while (1) {
2079 bio = bio_list_pop(&bio_list);
2080 if (!bio)
2081 break;
2082
2083 bio->bi_private = rbio;
2084 bio->bi_end_io = raid_recover_end_io;
37226b21 2085 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 2086
0b246afa 2087 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2088
4e49ea4a 2089 submit_bio(bio);
53b381b3
DW
2090 }
2091out:
2092 return 0;
2093
2094cleanup:
b4ee1782
OS
2095 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2096 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
4246a0b6 2097 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2098 return -EIO;
2099}
2100
2101/*
2102 * the main entry point for reads from the higher layers. This
2103 * is really only called when the normal read path had a failure,
2104 * so we assume the bio they send down corresponds to a failed part
2105 * of the drive.
2106 */
2ff7e61e 2107int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2108 struct btrfs_bio *bbio, u64 stripe_len,
2109 int mirror_num, int generic_io)
53b381b3
DW
2110{
2111 struct btrfs_raid_bio *rbio;
2112 int ret;
2113
abad60c6
LB
2114 if (generic_io) {
2115 ASSERT(bbio->mirror_num == mirror_num);
2116 btrfs_io_bio(bio)->mirror_num = mirror_num;
2117 }
2118
2ff7e61e 2119 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2120 if (IS_ERR(rbio)) {
6e9606d2
ZL
2121 if (generic_io)
2122 btrfs_put_bbio(bbio);
53b381b3 2123 return PTR_ERR(rbio);
af8e2d1d 2124 }
53b381b3 2125
1b94b556 2126 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2127 bio_list_add(&rbio->bio_list, bio);
4f024f37 2128 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2129
2130 rbio->faila = find_logical_bio_stripe(rbio, bio);
2131 if (rbio->faila == -1) {
0b246afa 2132 btrfs_warn(fs_info,
e46a28ca
LB
2133 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2134 __func__, (u64)bio->bi_iter.bi_sector << 9,
2135 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2136 if (generic_io)
2137 btrfs_put_bbio(bbio);
53b381b3
DW
2138 kfree(rbio);
2139 return -EIO;
2140 }
2141
4245215d 2142 if (generic_io) {
0b246afa 2143 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2144 rbio->generic_bio_cnt = 1;
2145 } else {
6e9606d2 2146 btrfs_get_bbio(bbio);
4245215d
MX
2147 }
2148
53b381b3
DW
2149 /*
2150 * reconstruct from the q stripe if they are
2151 * asking for mirror 3
2152 */
2153 if (mirror_num == 3)
2c8cdd6e 2154 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2155
2156 ret = lock_stripe_add(rbio);
2157
2158 /*
2159 * __raid56_parity_recover will end the bio with
2160 * any errors it hits. We don't want to return
2161 * its error value up the stack because our caller
2162 * will end up calling bio_endio with any nonzero
2163 * return
2164 */
2165 if (ret == 0)
2166 __raid56_parity_recover(rbio);
2167 /*
2168 * our rbio has been added to the list of
2169 * rbios that will be handled after the
2170 * currently lock owner is done
2171 */
2172 return 0;
2173
2174}
2175
2176static void rmw_work(struct btrfs_work *work)
2177{
2178 struct btrfs_raid_bio *rbio;
2179
2180 rbio = container_of(work, struct btrfs_raid_bio, work);
2181 raid56_rmw_stripe(rbio);
2182}
2183
2184static void read_rebuild_work(struct btrfs_work *work)
2185{
2186 struct btrfs_raid_bio *rbio;
2187
2188 rbio = container_of(work, struct btrfs_raid_bio, work);
2189 __raid56_parity_recover(rbio);
2190}
5a6ac9ea
MX
2191
2192/*
2193 * The following code is used to scrub/replace the parity stripe
2194 *
ae6529c3
QW
2195 * Caller must have already increased bio_counter for getting @bbio.
2196 *
5a6ac9ea
MX
2197 * Note: We need make sure all the pages that add into the scrub/replace
2198 * raid bio are correct and not be changed during the scrub/replace. That
2199 * is those pages just hold metadata or file data with checksum.
2200 */
2201
2202struct btrfs_raid_bio *
2ff7e61e 2203raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2204 struct btrfs_bio *bbio, u64 stripe_len,
2205 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2206 unsigned long *dbitmap, int stripe_nsectors)
2207{
2208 struct btrfs_raid_bio *rbio;
2209 int i;
2210
2ff7e61e 2211 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2212 if (IS_ERR(rbio))
2213 return NULL;
2214 bio_list_add(&rbio->bio_list, bio);
2215 /*
2216 * This is a special bio which is used to hold the completion handler
2217 * and make the scrub rbio is similar to the other types
2218 */
2219 ASSERT(!bio->bi_iter.bi_size);
2220 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2221
2c8cdd6e 2222 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2223 if (bbio->stripes[i].dev == scrub_dev) {
2224 rbio->scrubp = i;
2225 break;
2226 }
2227 }
2228
2229 /* Now we just support the sectorsize equals to page size */
0b246afa 2230 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2231 ASSERT(rbio->stripe_npages == stripe_nsectors);
2232 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2233
ae6529c3
QW
2234 /*
2235 * We have already increased bio_counter when getting bbio, record it
2236 * so we can free it at rbio_orig_end_io().
2237 */
2238 rbio->generic_bio_cnt = 1;
2239
5a6ac9ea
MX
2240 return rbio;
2241}
2242
b4ee1782
OS
2243/* Used for both parity scrub and missing. */
2244void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2245 u64 logical)
5a6ac9ea
MX
2246{
2247 int stripe_offset;
2248 int index;
2249
8e5cfb55
ZL
2250 ASSERT(logical >= rbio->bbio->raid_map[0]);
2251 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2252 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2253 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2254 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2255 rbio->bio_pages[index] = page;
2256}
2257
2258/*
2259 * We just scrub the parity that we have correct data on the same horizontal,
2260 * so we needn't allocate all pages for all the stripes.
2261 */
2262static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2263{
2264 int i;
2265 int bit;
2266 int index;
2267 struct page *page;
2268
2269 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2270 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2271 index = i * rbio->stripe_npages + bit;
2272 if (rbio->stripe_pages[index])
2273 continue;
2274
2275 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2276 if (!page)
2277 return -ENOMEM;
2278 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2279 }
2280 }
2281 return 0;
2282}
2283
5a6ac9ea
MX
2284static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2285 int need_check)
2286{
76035976 2287 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2288 void *pointers[rbio->real_stripes];
76035976 2289 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2290 int nr_data = rbio->nr_data;
2291 int stripe;
2292 int pagenr;
2293 int p_stripe = -1;
2294 int q_stripe = -1;
2295 struct page *p_page = NULL;
2296 struct page *q_page = NULL;
2297 struct bio_list bio_list;
2298 struct bio *bio;
76035976 2299 int is_replace = 0;
5a6ac9ea
MX
2300 int ret;
2301
2302 bio_list_init(&bio_list);
2303
2c8cdd6e
MX
2304 if (rbio->real_stripes - rbio->nr_data == 1) {
2305 p_stripe = rbio->real_stripes - 1;
2306 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2307 p_stripe = rbio->real_stripes - 2;
2308 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2309 } else {
2310 BUG();
2311 }
2312
76035976
MX
2313 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2314 is_replace = 1;
2315 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2316 }
2317
5a6ac9ea
MX
2318 /*
2319 * Because the higher layers(scrubber) are unlikely to
2320 * use this area of the disk again soon, so don't cache
2321 * it.
2322 */
2323 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2324
2325 if (!need_check)
2326 goto writeback;
2327
2328 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2329 if (!p_page)
2330 goto cleanup;
2331 SetPageUptodate(p_page);
2332
2333 if (q_stripe != -1) {
2334 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2335 if (!q_page) {
2336 __free_page(p_page);
2337 goto cleanup;
2338 }
2339 SetPageUptodate(q_page);
2340 }
2341
2342 atomic_set(&rbio->error, 0);
2343
2344 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2345 struct page *p;
2346 void *parity;
2347 /* first collect one page from each data stripe */
2348 for (stripe = 0; stripe < nr_data; stripe++) {
2349 p = page_in_rbio(rbio, stripe, pagenr, 0);
2350 pointers[stripe] = kmap(p);
2351 }
2352
2353 /* then add the parity stripe */
2354 pointers[stripe++] = kmap(p_page);
2355
2356 if (q_stripe != -1) {
2357
2358 /*
2359 * raid6, add the qstripe and call the
2360 * library function to fill in our p/q
2361 */
2362 pointers[stripe++] = kmap(q_page);
2363
2c8cdd6e 2364 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2365 pointers);
2366 } else {
2367 /* raid5 */
2368 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 2369 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2370 }
2371
01327610 2372 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2373 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2374 parity = kmap(p);
09cbfeaf
KS
2375 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2376 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
5a6ac9ea
MX
2377 else
2378 /* Parity is right, needn't writeback */
2379 bitmap_clear(rbio->dbitmap, pagenr, 1);
2380 kunmap(p);
2381
2c8cdd6e 2382 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2383 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2384 }
2385
2386 __free_page(p_page);
2387 if (q_page)
2388 __free_page(q_page);
2389
2390writeback:
2391 /*
2392 * time to start writing. Make bios for everything from the
2393 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2394 * everything else.
2395 */
2396 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2397 struct page *page;
2398
2399 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2400 ret = rbio_add_io_page(rbio, &bio_list,
2401 page, rbio->scrubp, pagenr, rbio->stripe_len);
2402 if (ret)
2403 goto cleanup;
2404 }
2405
76035976
MX
2406 if (!is_replace)
2407 goto submit_write;
2408
2409 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2410 struct page *page;
2411
2412 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2413 ret = rbio_add_io_page(rbio, &bio_list, page,
2414 bbio->tgtdev_map[rbio->scrubp],
2415 pagenr, rbio->stripe_len);
2416 if (ret)
2417 goto cleanup;
2418 }
2419
2420submit_write:
5a6ac9ea
MX
2421 nr_data = bio_list_size(&bio_list);
2422 if (!nr_data) {
2423 /* Every parity is right */
4246a0b6 2424 rbio_orig_end_io(rbio, 0);
5a6ac9ea
MX
2425 return;
2426 }
2427
2428 atomic_set(&rbio->stripes_pending, nr_data);
2429
2430 while (1) {
2431 bio = bio_list_pop(&bio_list);
2432 if (!bio)
2433 break;
2434
2435 bio->bi_private = rbio;
a6111d11 2436 bio->bi_end_io = raid_write_end_io;
37226b21 2437 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2438
2439 submit_bio(bio);
5a6ac9ea
MX
2440 }
2441 return;
2442
2443cleanup:
4246a0b6 2444 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2445}
2446
2447static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2448{
2449 if (stripe >= 0 && stripe < rbio->nr_data)
2450 return 1;
2451 return 0;
2452}
2453
2454/*
2455 * While we're doing the parity check and repair, we could have errors
2456 * in reading pages off the disk. This checks for errors and if we're
2457 * not able to read the page it'll trigger parity reconstruction. The
2458 * parity scrub will be finished after we've reconstructed the failed
2459 * stripes
2460 */
2461static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2462{
2463 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2464 goto cleanup;
2465
2466 if (rbio->faila >= 0 || rbio->failb >= 0) {
2467 int dfail = 0, failp = -1;
2468
2469 if (is_data_stripe(rbio, rbio->faila))
2470 dfail++;
2471 else if (is_parity_stripe(rbio->faila))
2472 failp = rbio->faila;
2473
2474 if (is_data_stripe(rbio, rbio->failb))
2475 dfail++;
2476 else if (is_parity_stripe(rbio->failb))
2477 failp = rbio->failb;
2478
2479 /*
2480 * Because we can not use a scrubbing parity to repair
2481 * the data, so the capability of the repair is declined.
2482 * (In the case of RAID5, we can not repair anything)
2483 */
2484 if (dfail > rbio->bbio->max_errors - 1)
2485 goto cleanup;
2486
2487 /*
2488 * If all data is good, only parity is correctly, just
2489 * repair the parity.
2490 */
2491 if (dfail == 0) {
2492 finish_parity_scrub(rbio, 0);
2493 return;
2494 }
2495
2496 /*
2497 * Here means we got one corrupted data stripe and one
2498 * corrupted parity on RAID6, if the corrupted parity
01327610 2499 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2500 * the data, or we can not repair the data stripe.
2501 */
2502 if (failp != rbio->scrubp)
2503 goto cleanup;
2504
2505 __raid_recover_end_io(rbio);
2506 } else {
2507 finish_parity_scrub(rbio, 1);
2508 }
2509 return;
2510
2511cleanup:
4246a0b6 2512 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2513}
2514
2515/*
2516 * end io for the read phase of the rmw cycle. All the bios here are physical
2517 * stripe bios we've read from the disk so we can recalculate the parity of the
2518 * stripe.
2519 *
2520 * This will usually kick off finish_rmw once all the bios are read in, but it
2521 * may trigger parity reconstruction if we had any errors along the way
2522 */
4246a0b6 2523static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2524{
2525 struct btrfs_raid_bio *rbio = bio->bi_private;
2526
4e4cbee9 2527 if (bio->bi_status)
5a6ac9ea
MX
2528 fail_bio_stripe(rbio, bio);
2529 else
2530 set_bio_pages_uptodate(bio);
2531
2532 bio_put(bio);
2533
2534 if (!atomic_dec_and_test(&rbio->stripes_pending))
2535 return;
2536
2537 /*
2538 * this will normally call finish_rmw to start our write
2539 * but if there are any failed stripes we'll reconstruct
2540 * from parity first
2541 */
2542 validate_rbio_for_parity_scrub(rbio);
2543}
2544
2545static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2546{
2547 int bios_to_read = 0;
5a6ac9ea
MX
2548 struct bio_list bio_list;
2549 int ret;
2550 int pagenr;
2551 int stripe;
2552 struct bio *bio;
2553
2554 ret = alloc_rbio_essential_pages(rbio);
2555 if (ret)
2556 goto cleanup;
2557
2558 bio_list_init(&bio_list);
2559
2560 atomic_set(&rbio->error, 0);
2561 /*
2562 * build a list of bios to read all the missing parts of this
2563 * stripe
2564 */
2c8cdd6e 2565 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2566 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2567 struct page *page;
2568 /*
2569 * we want to find all the pages missing from
2570 * the rbio and read them from the disk. If
2571 * page_in_rbio finds a page in the bio list
2572 * we don't need to read it off the stripe.
2573 */
2574 page = page_in_rbio(rbio, stripe, pagenr, 1);
2575 if (page)
2576 continue;
2577
2578 page = rbio_stripe_page(rbio, stripe, pagenr);
2579 /*
2580 * the bio cache may have handed us an uptodate
2581 * page. If so, be happy and use it
2582 */
2583 if (PageUptodate(page))
2584 continue;
2585
2586 ret = rbio_add_io_page(rbio, &bio_list, page,
2587 stripe, pagenr, rbio->stripe_len);
2588 if (ret)
2589 goto cleanup;
2590 }
2591 }
2592
2593 bios_to_read = bio_list_size(&bio_list);
2594 if (!bios_to_read) {
2595 /*
2596 * this can happen if others have merged with
2597 * us, it means there is nothing left to read.
2598 * But if there are missing devices it may not be
2599 * safe to do the full stripe write yet.
2600 */
2601 goto finish;
2602 }
2603
2604 /*
2605 * the bbio may be freed once we submit the last bio. Make sure
2606 * not to touch it after that
2607 */
2608 atomic_set(&rbio->stripes_pending, bios_to_read);
2609 while (1) {
2610 bio = bio_list_pop(&bio_list);
2611 if (!bio)
2612 break;
2613
2614 bio->bi_private = rbio;
2615 bio->bi_end_io = raid56_parity_scrub_end_io;
37226b21 2616 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5a6ac9ea 2617
0b246afa 2618 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2619
4e49ea4a 2620 submit_bio(bio);
5a6ac9ea
MX
2621 }
2622 /* the actual write will happen once the reads are done */
2623 return;
2624
2625cleanup:
4246a0b6 2626 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2627 return;
2628
2629finish:
2630 validate_rbio_for_parity_scrub(rbio);
2631}
2632
2633static void scrub_parity_work(struct btrfs_work *work)
2634{
2635 struct btrfs_raid_bio *rbio;
2636
2637 rbio = container_of(work, struct btrfs_raid_bio, work);
2638 raid56_parity_scrub_stripe(rbio);
2639}
2640
2641static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2642{
2643 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2644 scrub_parity_work, NULL, NULL);
2645
0b246afa 2646 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
5a6ac9ea
MX
2647}
2648
2649void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2650{
2651 if (!lock_stripe_add(rbio))
2652 async_scrub_parity(rbio);
2653}
b4ee1782
OS
2654
2655/* The following code is used for dev replace of a missing RAID 5/6 device. */
2656
2657struct btrfs_raid_bio *
2ff7e61e 2658raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2659 struct btrfs_bio *bbio, u64 length)
2660{
2661 struct btrfs_raid_bio *rbio;
2662
2ff7e61e 2663 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2664 if (IS_ERR(rbio))
2665 return NULL;
2666
2667 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2668 bio_list_add(&rbio->bio_list, bio);
2669 /*
2670 * This is a special bio which is used to hold the completion handler
2671 * and make the scrub rbio is similar to the other types
2672 */
2673 ASSERT(!bio->bi_iter.bi_size);
2674
2675 rbio->faila = find_logical_bio_stripe(rbio, bio);
2676 if (rbio->faila == -1) {
2677 BUG();
2678 kfree(rbio);
2679 return NULL;
2680 }
2681
ae6529c3
QW
2682 /*
2683 * When we get bbio, we have already increased bio_counter, record it
2684 * so we can free it at rbio_orig_end_io()
2685 */
2686 rbio->generic_bio_cnt = 1;
2687
b4ee1782
OS
2688 return rbio;
2689}
2690
2691static void missing_raid56_work(struct btrfs_work *work)
2692{
2693 struct btrfs_raid_bio *rbio;
2694
2695 rbio = container_of(work, struct btrfs_raid_bio, work);
2696 __raid56_parity_recover(rbio);
2697}
2698
2699static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2700{
2701 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2702 missing_raid56_work, NULL, NULL);
2703
2704 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2705}
2706
2707void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2708{
2709 if (!lock_stripe_add(rbio))
2710 async_missing_raid56(rbio);
2711}