]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/raid56.c
btrfs: Remove unused arguments in tree-log.c
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
d7011f5b 34#include <linux/vmalloc.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
53b381b3
DW
152 atomic_t refs;
153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
53b381b3 227
4ae10b3a
CM
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
53b381b3
DW
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
241 if (x)
242 kvfree(x);
53b381b3
DW
243 return 0;
244}
245
4ae10b3a
CM
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
273 memcpy(d, s, PAGE_CACHE_SIZE);
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
53b381b3
DW
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
8e5cfb55 287 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
4ae10b3a
CM
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
53b381b3
DW
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 340 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
341 bio_list_init(&victim->bio_list);
342}
343
344/*
4ae10b3a
CM
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
48a3b636 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
53b381b3
DW
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
4ae10b3a 452 btrfs_clear_rbio_cache(info);
f749303b 453 kvfree(info->stripe_hash_table);
53b381b3
DW
454 info->stripe_hash_table = NULL;
455}
456
4ae10b3a
CM
457/*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
506 return;
507}
508
53b381b3
DW
509/*
510 * helper function to run the xor_blocks api. It is only
511 * able to do MAX_XOR_BLOCKS at a time, so we need to
512 * loop through.
513 */
514static void run_xor(void **pages, int src_cnt, ssize_t len)
515{
516 int src_off = 0;
517 int xor_src_cnt = 0;
518 void *dest = pages[src_cnt];
519
520 while(src_cnt > 0) {
521 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
522 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
523
524 src_cnt -= xor_src_cnt;
525 src_off += xor_src_cnt;
526 }
527}
528
529/*
530 * returns true if the bio list inside this rbio
531 * covers an entire stripe (no rmw required).
532 * Must be called with the bio list lock held, or
533 * at a time when you know it is impossible to add
534 * new bios into the list
535 */
536static int __rbio_is_full(struct btrfs_raid_bio *rbio)
537{
538 unsigned long size = rbio->bio_list_bytes;
539 int ret = 1;
540
541 if (size != rbio->nr_data * rbio->stripe_len)
542 ret = 0;
543
544 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
545 return ret;
546}
547
548static int rbio_is_full(struct btrfs_raid_bio *rbio)
549{
550 unsigned long flags;
551 int ret;
552
553 spin_lock_irqsave(&rbio->bio_list_lock, flags);
554 ret = __rbio_is_full(rbio);
555 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
556 return ret;
557}
558
559/*
560 * returns 1 if it is safe to merge two rbios together.
561 * The merging is safe if the two rbios correspond to
562 * the same stripe and if they are both going in the same
563 * direction (read vs write), and if neither one is
564 * locked for final IO
565 *
566 * The caller is responsible for locking such that
567 * rmw_locked is safe to test
568 */
569static int rbio_can_merge(struct btrfs_raid_bio *last,
570 struct btrfs_raid_bio *cur)
571{
572 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
573 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
574 return 0;
575
4ae10b3a
CM
576 /*
577 * we can't merge with cached rbios, since the
578 * idea is that when we merge the destination
579 * rbio is going to run our IO for us. We can
580 * steal from cached rbio's though, other functions
581 * handle that.
582 */
583 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
584 test_bit(RBIO_CACHE_BIT, &cur->flags))
585 return 0;
586
8e5cfb55
ZL
587 if (last->bbio->raid_map[0] !=
588 cur->bbio->raid_map[0])
53b381b3
DW
589 return 0;
590
5a6ac9ea
MX
591 /* we can't merge with different operations */
592 if (last->operation != cur->operation)
593 return 0;
594 /*
595 * We've need read the full stripe from the drive.
596 * check and repair the parity and write the new results.
597 *
598 * We're not allowed to add any new bios to the
599 * bio list here, anyone else that wants to
600 * change this stripe needs to do their own rmw.
601 */
602 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
603 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 604 return 0;
53b381b3 605
b4ee1782
OS
606 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
607 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
608 return 0;
609
53b381b3
DW
610 return 1;
611}
612
613/*
614 * helper to index into the pstripe
615 */
616static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
617{
618 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
619 return rbio->stripe_pages[index];
620}
621
622/*
623 * helper to index into the qstripe, returns null
624 * if there is no qstripe
625 */
626static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
627{
2c8cdd6e 628 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3
DW
629 return NULL;
630
631 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
632 PAGE_CACHE_SHIFT;
633 return rbio->stripe_pages[index];
634}
635
636/*
637 * The first stripe in the table for a logical address
638 * has the lock. rbios are added in one of three ways:
639 *
640 * 1) Nobody has the stripe locked yet. The rbio is given
641 * the lock and 0 is returned. The caller must start the IO
642 * themselves.
643 *
644 * 2) Someone has the stripe locked, but we're able to merge
645 * with the lock owner. The rbio is freed and the IO will
646 * start automatically along with the existing rbio. 1 is returned.
647 *
648 * 3) Someone has the stripe locked, but we're not able to merge.
649 * The rbio is added to the lock owner's plug list, or merged into
650 * an rbio already on the plug list. When the lock owner unlocks,
651 * the next rbio on the list is run and the IO is started automatically.
652 * 1 is returned
653 *
654 * If we return 0, the caller still owns the rbio and must continue with
655 * IO submission. If we return 1, the caller must assume the rbio has
656 * already been freed.
657 */
658static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
659{
660 int bucket = rbio_bucket(rbio);
661 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
662 struct btrfs_raid_bio *cur;
663 struct btrfs_raid_bio *pending;
664 unsigned long flags;
665 DEFINE_WAIT(wait);
666 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 667 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3
DW
668 int ret = 0;
669 int walk = 0;
670
671 spin_lock_irqsave(&h->lock, flags);
672 list_for_each_entry(cur, &h->hash_list, hash_list) {
673 walk++;
8e5cfb55 674 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
675 spin_lock(&cur->bio_list_lock);
676
4ae10b3a
CM
677 /* can we steal this cached rbio's pages? */
678 if (bio_list_empty(&cur->bio_list) &&
679 list_empty(&cur->plug_list) &&
680 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
681 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
682 list_del_init(&cur->hash_list);
683 atomic_dec(&cur->refs);
684
685 steal_rbio(cur, rbio);
686 cache_drop = cur;
687 spin_unlock(&cur->bio_list_lock);
688
689 goto lockit;
690 }
691
53b381b3
DW
692 /* can we merge into the lock owner? */
693 if (rbio_can_merge(cur, rbio)) {
694 merge_rbio(cur, rbio);
695 spin_unlock(&cur->bio_list_lock);
696 freeit = rbio;
697 ret = 1;
698 goto out;
699 }
700
4ae10b3a 701
53b381b3
DW
702 /*
703 * we couldn't merge with the running
704 * rbio, see if we can merge with the
705 * pending ones. We don't have to
706 * check for rmw_locked because there
707 * is no way they are inside finish_rmw
708 * right now
709 */
710 list_for_each_entry(pending, &cur->plug_list,
711 plug_list) {
712 if (rbio_can_merge(pending, rbio)) {
713 merge_rbio(pending, rbio);
714 spin_unlock(&cur->bio_list_lock);
715 freeit = rbio;
716 ret = 1;
717 goto out;
718 }
719 }
720
721 /* no merging, put us on the tail of the plug list,
722 * our rbio will be started with the currently
723 * running rbio unlocks
724 */
725 list_add_tail(&rbio->plug_list, &cur->plug_list);
726 spin_unlock(&cur->bio_list_lock);
727 ret = 1;
728 goto out;
729 }
730 }
4ae10b3a 731lockit:
53b381b3
DW
732 atomic_inc(&rbio->refs);
733 list_add(&rbio->hash_list, &h->hash_list);
734out:
735 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
736 if (cache_drop)
737 remove_rbio_from_cache(cache_drop);
53b381b3
DW
738 if (freeit)
739 __free_raid_bio(freeit);
740 return ret;
741}
742
743/*
744 * called as rmw or parity rebuild is completed. If the plug list has more
745 * rbios waiting for this stripe, the next one on the list will be started
746 */
747static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
748{
749 int bucket;
750 struct btrfs_stripe_hash *h;
751 unsigned long flags;
4ae10b3a 752 int keep_cache = 0;
53b381b3
DW
753
754 bucket = rbio_bucket(rbio);
755 h = rbio->fs_info->stripe_hash_table->table + bucket;
756
4ae10b3a
CM
757 if (list_empty(&rbio->plug_list))
758 cache_rbio(rbio);
759
53b381b3
DW
760 spin_lock_irqsave(&h->lock, flags);
761 spin_lock(&rbio->bio_list_lock);
762
763 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
764 /*
765 * if we're still cached and there is no other IO
766 * to perform, just leave this rbio here for others
767 * to steal from later
768 */
769 if (list_empty(&rbio->plug_list) &&
770 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
771 keep_cache = 1;
772 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
773 BUG_ON(!bio_list_empty(&rbio->bio_list));
774 goto done;
775 }
53b381b3
DW
776
777 list_del_init(&rbio->hash_list);
778 atomic_dec(&rbio->refs);
779
780 /*
781 * we use the plug list to hold all the rbios
782 * waiting for the chance to lock this stripe.
783 * hand the lock over to one of them.
784 */
785 if (!list_empty(&rbio->plug_list)) {
786 struct btrfs_raid_bio *next;
787 struct list_head *head = rbio->plug_list.next;
788
789 next = list_entry(head, struct btrfs_raid_bio,
790 plug_list);
791
792 list_del_init(&rbio->plug_list);
793
794 list_add(&next->hash_list, &h->hash_list);
795 atomic_inc(&next->refs);
796 spin_unlock(&rbio->bio_list_lock);
797 spin_unlock_irqrestore(&h->lock, flags);
798
1b94b556 799 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 800 async_read_rebuild(next);
b4ee1782
OS
801 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
802 steal_rbio(rbio, next);
803 async_read_rebuild(next);
804 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 805 steal_rbio(rbio, next);
53b381b3 806 async_rmw_stripe(next);
5a6ac9ea
MX
807 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
808 steal_rbio(rbio, next);
809 async_scrub_parity(next);
4ae10b3a 810 }
53b381b3
DW
811
812 goto done_nolock;
53b381b3
DW
813 } else if (waitqueue_active(&h->wait)) {
814 spin_unlock(&rbio->bio_list_lock);
815 spin_unlock_irqrestore(&h->lock, flags);
816 wake_up(&h->wait);
817 goto done_nolock;
818 }
819 }
4ae10b3a 820done:
53b381b3
DW
821 spin_unlock(&rbio->bio_list_lock);
822 spin_unlock_irqrestore(&h->lock, flags);
823
824done_nolock:
4ae10b3a
CM
825 if (!keep_cache)
826 remove_rbio_from_cache(rbio);
53b381b3
DW
827}
828
829static void __free_raid_bio(struct btrfs_raid_bio *rbio)
830{
831 int i;
832
833 WARN_ON(atomic_read(&rbio->refs) < 0);
834 if (!atomic_dec_and_test(&rbio->refs))
835 return;
836
4ae10b3a 837 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
838 WARN_ON(!list_empty(&rbio->hash_list));
839 WARN_ON(!bio_list_empty(&rbio->bio_list));
840
841 for (i = 0; i < rbio->nr_pages; i++) {
842 if (rbio->stripe_pages[i]) {
843 __free_page(rbio->stripe_pages[i]);
844 rbio->stripe_pages[i] = NULL;
845 }
846 }
af8e2d1d 847
6e9606d2 848 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
849 kfree(rbio);
850}
851
852static void free_raid_bio(struct btrfs_raid_bio *rbio)
853{
854 unlock_stripe(rbio);
855 __free_raid_bio(rbio);
856}
857
858/*
859 * this frees the rbio and runs through all the bios in the
860 * bio_list and calls end_io on them
861 */
862static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
863{
864 struct bio *cur = bio_list_get(&rbio->bio_list);
865 struct bio *next;
4245215d
MX
866
867 if (rbio->generic_bio_cnt)
868 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
869
53b381b3
DW
870 free_raid_bio(rbio);
871
872 while (cur) {
873 next = cur->bi_next;
874 cur->bi_next = NULL;
875 if (uptodate)
876 set_bit(BIO_UPTODATE, &cur->bi_flags);
877 bio_endio(cur, err);
878 cur = next;
879 }
880}
881
882/*
883 * end io function used by finish_rmw. When we finally
884 * get here, we've written a full stripe
885 */
886static void raid_write_end_io(struct bio *bio, int err)
887{
888 struct btrfs_raid_bio *rbio = bio->bi_private;
889
890 if (err)
891 fail_bio_stripe(rbio, bio);
892
893 bio_put(bio);
894
b89e1b01 895 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
896 return;
897
898 err = 0;
899
900 /* OK, we have read all the stripes we need to. */
b89e1b01 901 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
902 err = -EIO;
903
904 rbio_orig_end_io(rbio, err, 0);
905 return;
906}
907
908/*
909 * the read/modify/write code wants to use the original bio for
910 * any pages it included, and then use the rbio for everything
911 * else. This function decides if a given index (stripe number)
912 * and page number in that stripe fall inside the original bio
913 * or the rbio.
914 *
915 * if you set bio_list_only, you'll get a NULL back for any ranges
916 * that are outside the bio_list
917 *
918 * This doesn't take any refs on anything, you get a bare page pointer
919 * and the caller must bump refs as required.
920 *
921 * You must call index_rbio_pages once before you can trust
922 * the answers from this function.
923 */
924static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
925 int index, int pagenr, int bio_list_only)
926{
927 int chunk_page;
928 struct page *p = NULL;
929
930 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
931
932 spin_lock_irq(&rbio->bio_list_lock);
933 p = rbio->bio_pages[chunk_page];
934 spin_unlock_irq(&rbio->bio_list_lock);
935
936 if (p || bio_list_only)
937 return p;
938
939 return rbio->stripe_pages[chunk_page];
940}
941
942/*
943 * number of pages we need for the entire stripe across all the
944 * drives
945 */
946static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
947{
948 unsigned long nr = stripe_len * nr_stripes;
ed6078f7 949 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
53b381b3
DW
950}
951
952/*
953 * allocation and initial setup for the btrfs_raid_bio. Not
954 * this does not allocate any pages for rbio->pages.
955 */
956static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
8e5cfb55 957 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
958{
959 struct btrfs_raid_bio *rbio;
960 int nr_data = 0;
2c8cdd6e
MX
961 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
962 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 963 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
964 void *p;
965
5a6ac9ea
MX
966 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
967 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
53b381b3 968 GFP_NOFS);
af8e2d1d 969 if (!rbio)
53b381b3 970 return ERR_PTR(-ENOMEM);
53b381b3
DW
971
972 bio_list_init(&rbio->bio_list);
973 INIT_LIST_HEAD(&rbio->plug_list);
974 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 975 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
976 INIT_LIST_HEAD(&rbio->hash_list);
977 rbio->bbio = bbio;
53b381b3
DW
978 rbio->fs_info = root->fs_info;
979 rbio->stripe_len = stripe_len;
980 rbio->nr_pages = num_pages;
2c8cdd6e 981 rbio->real_stripes = real_stripes;
5a6ac9ea 982 rbio->stripe_npages = stripe_npages;
53b381b3
DW
983 rbio->faila = -1;
984 rbio->failb = -1;
985 atomic_set(&rbio->refs, 1);
b89e1b01
MX
986 atomic_set(&rbio->error, 0);
987 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
988
989 /*
990 * the stripe_pages and bio_pages array point to the extra
991 * memory we allocated past the end of the rbio
992 */
993 p = rbio + 1;
994 rbio->stripe_pages = p;
995 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 996 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 997
10f11900
ZL
998 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
999 nr_data = real_stripes - 1;
1000 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1001 nr_data = real_stripes - 2;
53b381b3 1002 else
10f11900 1003 BUG();
53b381b3
DW
1004
1005 rbio->nr_data = nr_data;
1006 return rbio;
1007}
1008
1009/* allocate pages for all the stripes in the bio, including parity */
1010static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1011{
1012 int i;
1013 struct page *page;
1014
1015 for (i = 0; i < rbio->nr_pages; i++) {
1016 if (rbio->stripe_pages[i])
1017 continue;
1018 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1019 if (!page)
1020 return -ENOMEM;
1021 rbio->stripe_pages[i] = page;
1022 ClearPageUptodate(page);
1023 }
1024 return 0;
1025}
1026
1027/* allocate pages for just the p/q stripes */
1028static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1029{
1030 int i;
1031 struct page *page;
1032
1033 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1034
1035 for (; i < rbio->nr_pages; i++) {
1036 if (rbio->stripe_pages[i])
1037 continue;
1038 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1039 if (!page)
1040 return -ENOMEM;
1041 rbio->stripe_pages[i] = page;
1042 }
1043 return 0;
1044}
1045
1046/*
1047 * add a single page from a specific stripe into our list of bios for IO
1048 * this will try to merge into existing bios if possible, and returns
1049 * zero if all went well.
1050 */
48a3b636
ES
1051static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1052 struct bio_list *bio_list,
1053 struct page *page,
1054 int stripe_nr,
1055 unsigned long page_index,
1056 unsigned long bio_max_len)
53b381b3
DW
1057{
1058 struct bio *last = bio_list->tail;
1059 u64 last_end = 0;
1060 int ret;
1061 struct bio *bio;
1062 struct btrfs_bio_stripe *stripe;
1063 u64 disk_start;
1064
1065 stripe = &rbio->bbio->stripes[stripe_nr];
1066 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1067
1068 /* if the device is missing, just fail this stripe */
1069 if (!stripe->dev->bdev)
1070 return fail_rbio_index(rbio, stripe_nr);
1071
1072 /* see if we can add this page onto our existing bio */
1073 if (last) {
4f024f37
KO
1074 last_end = (u64)last->bi_iter.bi_sector << 9;
1075 last_end += last->bi_iter.bi_size;
53b381b3
DW
1076
1077 /*
1078 * we can't merge these if they are from different
1079 * devices or if they are not contiguous
1080 */
1081 if (last_end == disk_start && stripe->dev->bdev &&
1082 test_bit(BIO_UPTODATE, &last->bi_flags) &&
1083 last->bi_bdev == stripe->dev->bdev) {
1084 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1085 if (ret == PAGE_CACHE_SIZE)
1086 return 0;
1087 }
1088 }
1089
1090 /* put a new bio on the list */
9be3395b 1091 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
53b381b3
DW
1092 if (!bio)
1093 return -ENOMEM;
1094
4f024f37 1095 bio->bi_iter.bi_size = 0;
53b381b3 1096 bio->bi_bdev = stripe->dev->bdev;
4f024f37 1097 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3
DW
1098 set_bit(BIO_UPTODATE, &bio->bi_flags);
1099
1100 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1101 bio_list_add(bio_list, bio);
1102 return 0;
1103}
1104
1105/*
1106 * while we're doing the read/modify/write cycle, we could
1107 * have errors in reading pages off the disk. This checks
1108 * for errors and if we're not able to read the page it'll
1109 * trigger parity reconstruction. The rmw will be finished
1110 * after we've reconstructed the failed stripes
1111 */
1112static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1113{
1114 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1115 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1116 __raid56_parity_recover(rbio);
1117 } else {
1118 finish_rmw(rbio);
1119 }
1120}
1121
1122/*
1123 * these are just the pages from the rbio array, not from anything
1124 * the FS sent down to us
1125 */
1126static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1127{
1128 int index;
1129 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1130 index += page;
1131 return rbio->stripe_pages[index];
1132}
1133
1134/*
1135 * helper function to walk our bio list and populate the bio_pages array with
1136 * the result. This seems expensive, but it is faster than constantly
1137 * searching through the bio list as we setup the IO in finish_rmw or stripe
1138 * reconstruction.
1139 *
1140 * This must be called before you trust the answers from page_in_rbio
1141 */
1142static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143{
1144 struct bio *bio;
1145 u64 start;
1146 unsigned long stripe_offset;
1147 unsigned long page_index;
1148 struct page *p;
1149 int i;
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
1152 bio_list_for_each(bio, &rbio->bio_list) {
4f024f37 1153 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1154 stripe_offset = start - rbio->bbio->raid_map[0];
53b381b3
DW
1155 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1156
1157 for (i = 0; i < bio->bi_vcnt; i++) {
1158 p = bio->bi_io_vec[i].bv_page;
1159 rbio->bio_pages[page_index + i] = p;
1160 }
1161 }
1162 spin_unlock_irq(&rbio->bio_list_lock);
1163}
1164
1165/*
1166 * this is called from one of two situations. We either
1167 * have a full stripe from the higher layers, or we've read all
1168 * the missing bits off disk.
1169 *
1170 * This will calculate the parity and then send down any
1171 * changed blocks.
1172 */
1173static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174{
1175 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1176 void *pointers[rbio->real_stripes];
53b381b3
DW
1177 int stripe_len = rbio->stripe_len;
1178 int nr_data = rbio->nr_data;
1179 int stripe;
1180 int pagenr;
1181 int p_stripe = -1;
1182 int q_stripe = -1;
1183 struct bio_list bio_list;
1184 struct bio *bio;
1185 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1186 int ret;
1187
1188 bio_list_init(&bio_list);
1189
2c8cdd6e
MX
1190 if (rbio->real_stripes - rbio->nr_data == 1) {
1191 p_stripe = rbio->real_stripes - 1;
1192 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1193 p_stripe = rbio->real_stripes - 2;
1194 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1195 } else {
1196 BUG();
1197 }
1198
1199 /* at this point we either have a full stripe,
1200 * or we've read the full stripe from the drive.
1201 * recalculate the parity and write the new results.
1202 *
1203 * We're not allowed to add any new bios to the
1204 * bio list here, anyone else that wants to
1205 * change this stripe needs to do their own rmw.
1206 */
1207 spin_lock_irq(&rbio->bio_list_lock);
1208 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209 spin_unlock_irq(&rbio->bio_list_lock);
1210
b89e1b01 1211 atomic_set(&rbio->error, 0);
53b381b3
DW
1212
1213 /*
1214 * now that we've set rmw_locked, run through the
1215 * bio list one last time and map the page pointers
4ae10b3a
CM
1216 *
1217 * We don't cache full rbios because we're assuming
1218 * the higher layers are unlikely to use this area of
1219 * the disk again soon. If they do use it again,
1220 * hopefully they will send another full bio.
53b381b3
DW
1221 */
1222 index_rbio_pages(rbio);
4ae10b3a
CM
1223 if (!rbio_is_full(rbio))
1224 cache_rbio_pages(rbio);
1225 else
1226 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3
DW
1227
1228 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1229 struct page *p;
1230 /* first collect one page from each data stripe */
1231 for (stripe = 0; stripe < nr_data; stripe++) {
1232 p = page_in_rbio(rbio, stripe, pagenr, 0);
1233 pointers[stripe] = kmap(p);
1234 }
1235
1236 /* then add the parity stripe */
1237 p = rbio_pstripe_page(rbio, pagenr);
1238 SetPageUptodate(p);
1239 pointers[stripe++] = kmap(p);
1240
1241 if (q_stripe != -1) {
1242
1243 /*
1244 * raid6, add the qstripe and call the
1245 * library function to fill in our p/q
1246 */
1247 p = rbio_qstripe_page(rbio, pagenr);
1248 SetPageUptodate(p);
1249 pointers[stripe++] = kmap(p);
1250
2c8cdd6e 1251 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1252 pointers);
1253 } else {
1254 /* raid5 */
1255 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1257 }
1258
1259
2c8cdd6e 1260 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1261 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262 }
1263
1264 /*
1265 * time to start writing. Make bios for everything from the
1266 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1267 * everything else.
1268 */
2c8cdd6e 1269 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1270 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1271 struct page *page;
1272 if (stripe < rbio->nr_data) {
1273 page = page_in_rbio(rbio, stripe, pagenr, 1);
1274 if (!page)
1275 continue;
1276 } else {
1277 page = rbio_stripe_page(rbio, stripe, pagenr);
1278 }
1279
1280 ret = rbio_add_io_page(rbio, &bio_list,
1281 page, stripe, pagenr, rbio->stripe_len);
1282 if (ret)
1283 goto cleanup;
1284 }
1285 }
1286
2c8cdd6e
MX
1287 if (likely(!bbio->num_tgtdevs))
1288 goto write_data;
1289
1290 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291 if (!bbio->tgtdev_map[stripe])
1292 continue;
1293
1294 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1295 struct page *page;
1296 if (stripe < rbio->nr_data) {
1297 page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 if (!page)
1299 continue;
1300 } else {
1301 page = rbio_stripe_page(rbio, stripe, pagenr);
1302 }
1303
1304 ret = rbio_add_io_page(rbio, &bio_list, page,
1305 rbio->bbio->tgtdev_map[stripe],
1306 pagenr, rbio->stripe_len);
1307 if (ret)
1308 goto cleanup;
1309 }
1310 }
1311
1312write_data:
b89e1b01
MX
1313 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1315
1316 while (1) {
1317 bio = bio_list_pop(&bio_list);
1318 if (!bio)
1319 break;
1320
1321 bio->bi_private = rbio;
1322 bio->bi_end_io = raid_write_end_io;
1323 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1324 submit_bio(WRITE, bio);
1325 }
1326 return;
1327
1328cleanup:
1329 rbio_orig_end_io(rbio, -EIO, 0);
1330}
1331
1332/*
1333 * helper to find the stripe number for a given bio. Used to figure out which
1334 * stripe has failed. This expects the bio to correspond to a physical disk,
1335 * so it looks up based on physical sector numbers.
1336 */
1337static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338 struct bio *bio)
1339{
4f024f37 1340 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1341 u64 stripe_start;
1342 int i;
1343 struct btrfs_bio_stripe *stripe;
1344
1345 physical <<= 9;
1346
1347 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1348 stripe = &rbio->bbio->stripes[i];
1349 stripe_start = stripe->physical;
1350 if (physical >= stripe_start &&
2c8cdd6e
MX
1351 physical < stripe_start + rbio->stripe_len &&
1352 bio->bi_bdev == stripe->dev->bdev) {
53b381b3
DW
1353 return i;
1354 }
1355 }
1356 return -1;
1357}
1358
1359/*
1360 * helper to find the stripe number for a given
1361 * bio (before mapping). Used to figure out which stripe has
1362 * failed. This looks up based on logical block numbers.
1363 */
1364static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 struct bio *bio)
1366{
4f024f37 1367 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1368 u64 stripe_start;
1369 int i;
1370
1371 logical <<= 9;
1372
1373 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1374 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1375 if (logical >= stripe_start &&
1376 logical < stripe_start + rbio->stripe_len) {
1377 return i;
1378 }
1379 }
1380 return -1;
1381}
1382
1383/*
1384 * returns -EIO if we had too many failures
1385 */
1386static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1387{
1388 unsigned long flags;
1389 int ret = 0;
1390
1391 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1392
1393 /* we already know this stripe is bad, move on */
1394 if (rbio->faila == failed || rbio->failb == failed)
1395 goto out;
1396
1397 if (rbio->faila == -1) {
1398 /* first failure on this rbio */
1399 rbio->faila = failed;
b89e1b01 1400 atomic_inc(&rbio->error);
53b381b3
DW
1401 } else if (rbio->failb == -1) {
1402 /* second failure on this rbio */
1403 rbio->failb = failed;
b89e1b01 1404 atomic_inc(&rbio->error);
53b381b3
DW
1405 } else {
1406 ret = -EIO;
1407 }
1408out:
1409 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1410
1411 return ret;
1412}
1413
1414/*
1415 * helper to fail a stripe based on a physical disk
1416 * bio.
1417 */
1418static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 struct bio *bio)
1420{
1421 int failed = find_bio_stripe(rbio, bio);
1422
1423 if (failed < 0)
1424 return -EIO;
1425
1426 return fail_rbio_index(rbio, failed);
1427}
1428
1429/*
1430 * this sets each page in the bio uptodate. It should only be used on private
1431 * rbio pages, nothing that comes in from the higher layers
1432 */
1433static void set_bio_pages_uptodate(struct bio *bio)
1434{
1435 int i;
1436 struct page *p;
1437
1438 for (i = 0; i < bio->bi_vcnt; i++) {
1439 p = bio->bi_io_vec[i].bv_page;
1440 SetPageUptodate(p);
1441 }
1442}
1443
1444/*
1445 * end io for the read phase of the rmw cycle. All the bios here are physical
1446 * stripe bios we've read from the disk so we can recalculate the parity of the
1447 * stripe.
1448 *
1449 * This will usually kick off finish_rmw once all the bios are read in, but it
1450 * may trigger parity reconstruction if we had any errors along the way
1451 */
1452static void raid_rmw_end_io(struct bio *bio, int err)
1453{
1454 struct btrfs_raid_bio *rbio = bio->bi_private;
1455
1456 if (err)
1457 fail_bio_stripe(rbio, bio);
1458 else
1459 set_bio_pages_uptodate(bio);
1460
1461 bio_put(bio);
1462
b89e1b01 1463 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1464 return;
1465
1466 err = 0;
b89e1b01 1467 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1468 goto cleanup;
1469
1470 /*
1471 * this will normally call finish_rmw to start our write
1472 * but if there are any failed stripes we'll reconstruct
1473 * from parity first
1474 */
1475 validate_rbio_for_rmw(rbio);
1476 return;
1477
1478cleanup:
1479
1480 rbio_orig_end_io(rbio, -EIO, 0);
1481}
1482
1483static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1484{
9e0af237
LB
1485 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1486 rmw_work, NULL, NULL);
53b381b3 1487
d05a33ac
QW
1488 btrfs_queue_work(rbio->fs_info->rmw_workers,
1489 &rbio->work);
53b381b3
DW
1490}
1491
1492static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1493{
9e0af237
LB
1494 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1495 read_rebuild_work, NULL, NULL);
53b381b3 1496
d05a33ac
QW
1497 btrfs_queue_work(rbio->fs_info->rmw_workers,
1498 &rbio->work);
53b381b3
DW
1499}
1500
1501/*
1502 * the stripe must be locked by the caller. It will
1503 * unlock after all the writes are done
1504 */
1505static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1506{
1507 int bios_to_read = 0;
53b381b3
DW
1508 struct bio_list bio_list;
1509 int ret;
ed6078f7 1510 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
1511 int pagenr;
1512 int stripe;
1513 struct bio *bio;
1514
1515 bio_list_init(&bio_list);
1516
1517 ret = alloc_rbio_pages(rbio);
1518 if (ret)
1519 goto cleanup;
1520
1521 index_rbio_pages(rbio);
1522
b89e1b01 1523 atomic_set(&rbio->error, 0);
53b381b3
DW
1524 /*
1525 * build a list of bios to read all the missing parts of this
1526 * stripe
1527 */
1528 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1529 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1530 struct page *page;
1531 /*
1532 * we want to find all the pages missing from
1533 * the rbio and read them from the disk. If
1534 * page_in_rbio finds a page in the bio list
1535 * we don't need to read it off the stripe.
1536 */
1537 page = page_in_rbio(rbio, stripe, pagenr, 1);
1538 if (page)
1539 continue;
1540
1541 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1542 /*
1543 * the bio cache may have handed us an uptodate
1544 * page. If so, be happy and use it
1545 */
1546 if (PageUptodate(page))
1547 continue;
1548
53b381b3
DW
1549 ret = rbio_add_io_page(rbio, &bio_list, page,
1550 stripe, pagenr, rbio->stripe_len);
1551 if (ret)
1552 goto cleanup;
1553 }
1554 }
1555
1556 bios_to_read = bio_list_size(&bio_list);
1557 if (!bios_to_read) {
1558 /*
1559 * this can happen if others have merged with
1560 * us, it means there is nothing left to read.
1561 * But if there are missing devices it may not be
1562 * safe to do the full stripe write yet.
1563 */
1564 goto finish;
1565 }
1566
1567 /*
1568 * the bbio may be freed once we submit the last bio. Make sure
1569 * not to touch it after that
1570 */
b89e1b01 1571 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1572 while (1) {
1573 bio = bio_list_pop(&bio_list);
1574 if (!bio)
1575 break;
1576
1577 bio->bi_private = rbio;
1578 bio->bi_end_io = raid_rmw_end_io;
1579
1580 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1581 BTRFS_WQ_ENDIO_RAID56);
1582
1583 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1584 submit_bio(READ, bio);
1585 }
1586 /* the actual write will happen once the reads are done */
1587 return 0;
1588
1589cleanup:
1590 rbio_orig_end_io(rbio, -EIO, 0);
1591 return -EIO;
1592
1593finish:
1594 validate_rbio_for_rmw(rbio);
1595 return 0;
1596}
1597
1598/*
1599 * if the upper layers pass in a full stripe, we thank them by only allocating
1600 * enough pages to hold the parity, and sending it all down quickly.
1601 */
1602static int full_stripe_write(struct btrfs_raid_bio *rbio)
1603{
1604 int ret;
1605
1606 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1607 if (ret) {
1608 __free_raid_bio(rbio);
53b381b3 1609 return ret;
3cd846d1 1610 }
53b381b3
DW
1611
1612 ret = lock_stripe_add(rbio);
1613 if (ret == 0)
1614 finish_rmw(rbio);
1615 return 0;
1616}
1617
1618/*
1619 * partial stripe writes get handed over to async helpers.
1620 * We're really hoping to merge a few more writes into this
1621 * rbio before calculating new parity
1622 */
1623static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1624{
1625 int ret;
1626
1627 ret = lock_stripe_add(rbio);
1628 if (ret == 0)
1629 async_rmw_stripe(rbio);
1630 return 0;
1631}
1632
1633/*
1634 * sometimes while we were reading from the drive to
1635 * recalculate parity, enough new bios come into create
1636 * a full stripe. So we do a check here to see if we can
1637 * go directly to finish_rmw
1638 */
1639static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1640{
1641 /* head off into rmw land if we don't have a full stripe */
1642 if (!rbio_is_full(rbio))
1643 return partial_stripe_write(rbio);
1644 return full_stripe_write(rbio);
1645}
1646
6ac0f488
CM
1647/*
1648 * We use plugging call backs to collect full stripes.
1649 * Any time we get a partial stripe write while plugged
1650 * we collect it into a list. When the unplug comes down,
1651 * we sort the list by logical block number and merge
1652 * everything we can into the same rbios
1653 */
1654struct btrfs_plug_cb {
1655 struct blk_plug_cb cb;
1656 struct btrfs_fs_info *info;
1657 struct list_head rbio_list;
1658 struct btrfs_work work;
1659};
1660
1661/*
1662 * rbios on the plug list are sorted for easier merging.
1663 */
1664static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1665{
1666 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1667 plug_list);
1668 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1669 plug_list);
4f024f37
KO
1670 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1671 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1672
1673 if (a_sector < b_sector)
1674 return -1;
1675 if (a_sector > b_sector)
1676 return 1;
1677 return 0;
1678}
1679
1680static void run_plug(struct btrfs_plug_cb *plug)
1681{
1682 struct btrfs_raid_bio *cur;
1683 struct btrfs_raid_bio *last = NULL;
1684
1685 /*
1686 * sort our plug list then try to merge
1687 * everything we can in hopes of creating full
1688 * stripes.
1689 */
1690 list_sort(NULL, &plug->rbio_list, plug_cmp);
1691 while (!list_empty(&plug->rbio_list)) {
1692 cur = list_entry(plug->rbio_list.next,
1693 struct btrfs_raid_bio, plug_list);
1694 list_del_init(&cur->plug_list);
1695
1696 if (rbio_is_full(cur)) {
1697 /* we have a full stripe, send it down */
1698 full_stripe_write(cur);
1699 continue;
1700 }
1701 if (last) {
1702 if (rbio_can_merge(last, cur)) {
1703 merge_rbio(last, cur);
1704 __free_raid_bio(cur);
1705 continue;
1706
1707 }
1708 __raid56_parity_write(last);
1709 }
1710 last = cur;
1711 }
1712 if (last) {
1713 __raid56_parity_write(last);
1714 }
1715 kfree(plug);
1716}
1717
1718/*
1719 * if the unplug comes from schedule, we have to push the
1720 * work off to a helper thread
1721 */
1722static void unplug_work(struct btrfs_work *work)
1723{
1724 struct btrfs_plug_cb *plug;
1725 plug = container_of(work, struct btrfs_plug_cb, work);
1726 run_plug(plug);
1727}
1728
1729static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1730{
1731 struct btrfs_plug_cb *plug;
1732 plug = container_of(cb, struct btrfs_plug_cb, cb);
1733
1734 if (from_schedule) {
9e0af237
LB
1735 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1736 unplug_work, NULL, NULL);
d05a33ac
QW
1737 btrfs_queue_work(plug->info->rmw_workers,
1738 &plug->work);
6ac0f488
CM
1739 return;
1740 }
1741 run_plug(plug);
1742}
1743
53b381b3
DW
1744/*
1745 * our main entry point for writes from the rest of the FS.
1746 */
1747int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
8e5cfb55 1748 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1749{
1750 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1751 struct btrfs_plug_cb *plug = NULL;
1752 struct blk_plug_cb *cb;
4245215d 1753 int ret;
53b381b3 1754
8e5cfb55 1755 rbio = alloc_rbio(root, bbio, stripe_len);
af8e2d1d 1756 if (IS_ERR(rbio)) {
6e9606d2 1757 btrfs_put_bbio(bbio);
53b381b3 1758 return PTR_ERR(rbio);
af8e2d1d 1759 }
53b381b3 1760 bio_list_add(&rbio->bio_list, bio);
4f024f37 1761 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1762 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1763
4245215d
MX
1764 btrfs_bio_counter_inc_noblocked(root->fs_info);
1765 rbio->generic_bio_cnt = 1;
1766
6ac0f488
CM
1767 /*
1768 * don't plug on full rbios, just get them out the door
1769 * as quickly as we can
1770 */
4245215d
MX
1771 if (rbio_is_full(rbio)) {
1772 ret = full_stripe_write(rbio);
1773 if (ret)
1774 btrfs_bio_counter_dec(root->fs_info);
1775 return ret;
1776 }
6ac0f488
CM
1777
1778 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1779 sizeof(*plug));
1780 if (cb) {
1781 plug = container_of(cb, struct btrfs_plug_cb, cb);
1782 if (!plug->info) {
1783 plug->info = root->fs_info;
1784 INIT_LIST_HEAD(&plug->rbio_list);
1785 }
1786 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1787 ret = 0;
6ac0f488 1788 } else {
4245215d
MX
1789 ret = __raid56_parity_write(rbio);
1790 if (ret)
1791 btrfs_bio_counter_dec(root->fs_info);
6ac0f488 1792 }
4245215d 1793 return ret;
53b381b3
DW
1794}
1795
1796/*
1797 * all parity reconstruction happens here. We've read in everything
1798 * we can find from the drives and this does the heavy lifting of
1799 * sorting the good from the bad.
1800 */
1801static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1802{
1803 int pagenr, stripe;
1804 void **pointers;
1805 int faila = -1, failb = -1;
ed6078f7 1806 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
1807 struct page *page;
1808 int err;
1809 int i;
1810
31e818fe 1811 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3
DW
1812 if (!pointers) {
1813 err = -ENOMEM;
1814 goto cleanup_io;
1815 }
1816
1817 faila = rbio->faila;
1818 failb = rbio->failb;
1819
b4ee1782
OS
1820 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1821 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1822 spin_lock_irq(&rbio->bio_list_lock);
1823 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1824 spin_unlock_irq(&rbio->bio_list_lock);
1825 }
1826
1827 index_rbio_pages(rbio);
1828
1829 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
5a6ac9ea
MX
1830 /*
1831 * Now we just use bitmap to mark the horizontal stripes in
1832 * which we have data when doing parity scrub.
1833 */
1834 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1835 !test_bit(pagenr, rbio->dbitmap))
1836 continue;
1837
53b381b3
DW
1838 /* setup our array of pointers with pages
1839 * from each stripe
1840 */
2c8cdd6e 1841 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1842 /*
1843 * if we're rebuilding a read, we have to use
1844 * pages from the bio list
1845 */
b4ee1782
OS
1846 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1847 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1848 (stripe == faila || stripe == failb)) {
1849 page = page_in_rbio(rbio, stripe, pagenr, 0);
1850 } else {
1851 page = rbio_stripe_page(rbio, stripe, pagenr);
1852 }
1853 pointers[stripe] = kmap(page);
1854 }
1855
1856 /* all raid6 handling here */
10f11900 1857 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1858 /*
1859 * single failure, rebuild from parity raid5
1860 * style
1861 */
1862 if (failb < 0) {
1863 if (faila == rbio->nr_data) {
1864 /*
1865 * Just the P stripe has failed, without
1866 * a bad data or Q stripe.
1867 * TODO, we should redo the xor here.
1868 */
1869 err = -EIO;
1870 goto cleanup;
1871 }
1872 /*
1873 * a single failure in raid6 is rebuilt
1874 * in the pstripe code below
1875 */
1876 goto pstripe;
1877 }
1878
1879 /* make sure our ps and qs are in order */
1880 if (faila > failb) {
1881 int tmp = failb;
1882 failb = faila;
1883 faila = tmp;
1884 }
1885
1886 /* if the q stripe is failed, do a pstripe reconstruction
1887 * from the xors.
1888 * If both the q stripe and the P stripe are failed, we're
1889 * here due to a crc mismatch and we can't give them the
1890 * data they want
1891 */
8e5cfb55
ZL
1892 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1893 if (rbio->bbio->raid_map[faila] ==
1894 RAID5_P_STRIPE) {
53b381b3
DW
1895 err = -EIO;
1896 goto cleanup;
1897 }
1898 /*
1899 * otherwise we have one bad data stripe and
1900 * a good P stripe. raid5!
1901 */
1902 goto pstripe;
1903 }
1904
8e5cfb55 1905 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1906 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1907 PAGE_SIZE, faila, pointers);
1908 } else {
2c8cdd6e 1909 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1910 PAGE_SIZE, faila, failb,
1911 pointers);
1912 }
1913 } else {
1914 void *p;
1915
1916 /* rebuild from P stripe here (raid5 or raid6) */
1917 BUG_ON(failb != -1);
1918pstripe:
1919 /* Copy parity block into failed block to start with */
1920 memcpy(pointers[faila],
1921 pointers[rbio->nr_data],
1922 PAGE_CACHE_SIZE);
1923
1924 /* rearrange the pointer array */
1925 p = pointers[faila];
1926 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1927 pointers[stripe] = pointers[stripe + 1];
1928 pointers[rbio->nr_data - 1] = p;
1929
1930 /* xor in the rest */
1931 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1932 }
1933 /* if we're doing this rebuild as part of an rmw, go through
1934 * and set all of our private rbio pages in the
1935 * failed stripes as uptodate. This way finish_rmw will
1936 * know they can be trusted. If this was a read reconstruction,
1937 * other endio functions will fiddle the uptodate bits
1938 */
1b94b556 1939 if (rbio->operation == BTRFS_RBIO_WRITE) {
53b381b3
DW
1940 for (i = 0; i < nr_pages; i++) {
1941 if (faila != -1) {
1942 page = rbio_stripe_page(rbio, faila, i);
1943 SetPageUptodate(page);
1944 }
1945 if (failb != -1) {
1946 page = rbio_stripe_page(rbio, failb, i);
1947 SetPageUptodate(page);
1948 }
1949 }
1950 }
2c8cdd6e 1951 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1952 /*
1953 * if we're rebuilding a read, we have to use
1954 * pages from the bio list
1955 */
b4ee1782
OS
1956 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1957 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1958 (stripe == faila || stripe == failb)) {
1959 page = page_in_rbio(rbio, stripe, pagenr, 0);
1960 } else {
1961 page = rbio_stripe_page(rbio, stripe, pagenr);
1962 }
1963 kunmap(page);
1964 }
1965 }
1966
1967 err = 0;
1968cleanup:
1969 kfree(pointers);
1970
1971cleanup_io:
1b94b556 1972 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
6e9606d2 1973 if (err == 0)
4ae10b3a
CM
1974 cache_rbio_pages(rbio);
1975 else
1976 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1977
b4ee1782
OS
1978 rbio_orig_end_io(rbio, err, err == 0);
1979 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1980 rbio_orig_end_io(rbio, err, err == 0);
1981 } else if (err == 0) {
1982 rbio->faila = -1;
1983 rbio->failb = -1;
5a6ac9ea
MX
1984
1985 if (rbio->operation == BTRFS_RBIO_WRITE)
1986 finish_rmw(rbio);
1987 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1988 finish_parity_scrub(rbio, 0);
1989 else
1990 BUG();
53b381b3
DW
1991 } else {
1992 rbio_orig_end_io(rbio, err, 0);
1993 }
1994}
1995
1996/*
1997 * This is called only for stripes we've read from disk to
1998 * reconstruct the parity.
1999 */
2000static void raid_recover_end_io(struct bio *bio, int err)
2001{
2002 struct btrfs_raid_bio *rbio = bio->bi_private;
2003
2004 /*
2005 * we only read stripe pages off the disk, set them
2006 * up to date if there were no errors
2007 */
2008 if (err)
2009 fail_bio_stripe(rbio, bio);
2010 else
2011 set_bio_pages_uptodate(bio);
2012 bio_put(bio);
2013
b89e1b01 2014 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2015 return;
2016
b89e1b01 2017 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
2018 rbio_orig_end_io(rbio, -EIO, 0);
2019 else
2020 __raid_recover_end_io(rbio);
2021}
2022
2023/*
2024 * reads everything we need off the disk to reconstruct
2025 * the parity. endio handlers trigger final reconstruction
2026 * when the IO is done.
2027 *
2028 * This is used both for reads from the higher layers and for
2029 * parity construction required to finish a rmw cycle.
2030 */
2031static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2032{
2033 int bios_to_read = 0;
53b381b3
DW
2034 struct bio_list bio_list;
2035 int ret;
ed6078f7 2036 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
53b381b3
DW
2037 int pagenr;
2038 int stripe;
2039 struct bio *bio;
2040
2041 bio_list_init(&bio_list);
2042
2043 ret = alloc_rbio_pages(rbio);
2044 if (ret)
2045 goto cleanup;
2046
b89e1b01 2047 atomic_set(&rbio->error, 0);
53b381b3
DW
2048
2049 /*
4ae10b3a
CM
2050 * read everything that hasn't failed. Thanks to the
2051 * stripe cache, it is possible that some or all of these
2052 * pages are going to be uptodate.
53b381b3 2053 */
2c8cdd6e 2054 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2055 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2056 atomic_inc(&rbio->error);
53b381b3 2057 continue;
5588383e 2058 }
53b381b3
DW
2059
2060 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2061 struct page *p;
2062
2063 /*
2064 * the rmw code may have already read this
2065 * page in
2066 */
2067 p = rbio_stripe_page(rbio, stripe, pagenr);
2068 if (PageUptodate(p))
2069 continue;
2070
2071 ret = rbio_add_io_page(rbio, &bio_list,
2072 rbio_stripe_page(rbio, stripe, pagenr),
2073 stripe, pagenr, rbio->stripe_len);
2074 if (ret < 0)
2075 goto cleanup;
2076 }
2077 }
2078
2079 bios_to_read = bio_list_size(&bio_list);
2080 if (!bios_to_read) {
2081 /*
2082 * we might have no bios to read just because the pages
2083 * were up to date, or we might have no bios to read because
2084 * the devices were gone.
2085 */
b89e1b01 2086 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2087 __raid_recover_end_io(rbio);
2088 goto out;
2089 } else {
2090 goto cleanup;
2091 }
2092 }
2093
2094 /*
2095 * the bbio may be freed once we submit the last bio. Make sure
2096 * not to touch it after that
2097 */
b89e1b01 2098 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2099 while (1) {
2100 bio = bio_list_pop(&bio_list);
2101 if (!bio)
2102 break;
2103
2104 bio->bi_private = rbio;
2105 bio->bi_end_io = raid_recover_end_io;
2106
2107 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2108 BTRFS_WQ_ENDIO_RAID56);
2109
2110 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2111 submit_bio(READ, bio);
2112 }
2113out:
2114 return 0;
2115
2116cleanup:
b4ee1782
OS
2117 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2118 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
53b381b3
DW
2119 rbio_orig_end_io(rbio, -EIO, 0);
2120 return -EIO;
2121}
2122
2123/*
2124 * the main entry point for reads from the higher layers. This
2125 * is really only called when the normal read path had a failure,
2126 * so we assume the bio they send down corresponds to a failed part
2127 * of the drive.
2128 */
2129int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
8e5cfb55
ZL
2130 struct btrfs_bio *bbio, u64 stripe_len,
2131 int mirror_num, int generic_io)
53b381b3
DW
2132{
2133 struct btrfs_raid_bio *rbio;
2134 int ret;
2135
8e5cfb55 2136 rbio = alloc_rbio(root, bbio, stripe_len);
af8e2d1d 2137 if (IS_ERR(rbio)) {
6e9606d2
ZL
2138 if (generic_io)
2139 btrfs_put_bbio(bbio);
53b381b3 2140 return PTR_ERR(rbio);
af8e2d1d 2141 }
53b381b3 2142
1b94b556 2143 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2144 bio_list_add(&rbio->bio_list, bio);
4f024f37 2145 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2146
2147 rbio->faila = find_logical_bio_stripe(rbio, bio);
2148 if (rbio->faila == -1) {
2149 BUG();
6e9606d2
ZL
2150 if (generic_io)
2151 btrfs_put_bbio(bbio);
53b381b3
DW
2152 kfree(rbio);
2153 return -EIO;
2154 }
2155
4245215d
MX
2156 if (generic_io) {
2157 btrfs_bio_counter_inc_noblocked(root->fs_info);
2158 rbio->generic_bio_cnt = 1;
2159 } else {
6e9606d2 2160 btrfs_get_bbio(bbio);
4245215d
MX
2161 }
2162
53b381b3
DW
2163 /*
2164 * reconstruct from the q stripe if they are
2165 * asking for mirror 3
2166 */
2167 if (mirror_num == 3)
2c8cdd6e 2168 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2169
2170 ret = lock_stripe_add(rbio);
2171
2172 /*
2173 * __raid56_parity_recover will end the bio with
2174 * any errors it hits. We don't want to return
2175 * its error value up the stack because our caller
2176 * will end up calling bio_endio with any nonzero
2177 * return
2178 */
2179 if (ret == 0)
2180 __raid56_parity_recover(rbio);
2181 /*
2182 * our rbio has been added to the list of
2183 * rbios that will be handled after the
2184 * currently lock owner is done
2185 */
2186 return 0;
2187
2188}
2189
2190static void rmw_work(struct btrfs_work *work)
2191{
2192 struct btrfs_raid_bio *rbio;
2193
2194 rbio = container_of(work, struct btrfs_raid_bio, work);
2195 raid56_rmw_stripe(rbio);
2196}
2197
2198static void read_rebuild_work(struct btrfs_work *work)
2199{
2200 struct btrfs_raid_bio *rbio;
2201
2202 rbio = container_of(work, struct btrfs_raid_bio, work);
2203 __raid56_parity_recover(rbio);
2204}
5a6ac9ea
MX
2205
2206/*
2207 * The following code is used to scrub/replace the parity stripe
2208 *
2209 * Note: We need make sure all the pages that add into the scrub/replace
2210 * raid bio are correct and not be changed during the scrub/replace. That
2211 * is those pages just hold metadata or file data with checksum.
2212 */
2213
2214struct btrfs_raid_bio *
2215raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
8e5cfb55
ZL
2216 struct btrfs_bio *bbio, u64 stripe_len,
2217 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2218 unsigned long *dbitmap, int stripe_nsectors)
2219{
2220 struct btrfs_raid_bio *rbio;
2221 int i;
2222
8e5cfb55 2223 rbio = alloc_rbio(root, bbio, stripe_len);
5a6ac9ea
MX
2224 if (IS_ERR(rbio))
2225 return NULL;
2226 bio_list_add(&rbio->bio_list, bio);
2227 /*
2228 * This is a special bio which is used to hold the completion handler
2229 * and make the scrub rbio is similar to the other types
2230 */
2231 ASSERT(!bio->bi_iter.bi_size);
2232 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2233
2c8cdd6e 2234 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2235 if (bbio->stripes[i].dev == scrub_dev) {
2236 rbio->scrubp = i;
2237 break;
2238 }
2239 }
2240
2241 /* Now we just support the sectorsize equals to page size */
2242 ASSERT(root->sectorsize == PAGE_SIZE);
2243 ASSERT(rbio->stripe_npages == stripe_nsectors);
2244 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2245
2246 return rbio;
2247}
2248
b4ee1782
OS
2249/* Used for both parity scrub and missing. */
2250void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2251 u64 logical)
5a6ac9ea
MX
2252{
2253 int stripe_offset;
2254 int index;
2255
8e5cfb55
ZL
2256 ASSERT(logical >= rbio->bbio->raid_map[0]);
2257 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2258 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2259 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
5a6ac9ea
MX
2260 index = stripe_offset >> PAGE_CACHE_SHIFT;
2261 rbio->bio_pages[index] = page;
2262}
2263
2264/*
2265 * We just scrub the parity that we have correct data on the same horizontal,
2266 * so we needn't allocate all pages for all the stripes.
2267 */
2268static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2269{
2270 int i;
2271 int bit;
2272 int index;
2273 struct page *page;
2274
2275 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2276 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2277 index = i * rbio->stripe_npages + bit;
2278 if (rbio->stripe_pages[index])
2279 continue;
2280
2281 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2282 if (!page)
2283 return -ENOMEM;
2284 rbio->stripe_pages[index] = page;
2285 ClearPageUptodate(page);
2286 }
2287 }
2288 return 0;
2289}
2290
2291/*
2292 * end io function used by finish_rmw. When we finally
2293 * get here, we've written a full stripe
2294 */
2295static void raid_write_parity_end_io(struct bio *bio, int err)
2296{
2297 struct btrfs_raid_bio *rbio = bio->bi_private;
2298
2299 if (err)
2300 fail_bio_stripe(rbio, bio);
2301
2302 bio_put(bio);
2303
2304 if (!atomic_dec_and_test(&rbio->stripes_pending))
2305 return;
2306
2307 err = 0;
2308
2309 if (atomic_read(&rbio->error))
2310 err = -EIO;
2311
2312 rbio_orig_end_io(rbio, err, 0);
2313}
2314
2315static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2316 int need_check)
2317{
76035976 2318 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2319 void *pointers[rbio->real_stripes];
76035976 2320 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2321 int nr_data = rbio->nr_data;
2322 int stripe;
2323 int pagenr;
2324 int p_stripe = -1;
2325 int q_stripe = -1;
2326 struct page *p_page = NULL;
2327 struct page *q_page = NULL;
2328 struct bio_list bio_list;
2329 struct bio *bio;
76035976 2330 int is_replace = 0;
5a6ac9ea
MX
2331 int ret;
2332
2333 bio_list_init(&bio_list);
2334
2c8cdd6e
MX
2335 if (rbio->real_stripes - rbio->nr_data == 1) {
2336 p_stripe = rbio->real_stripes - 1;
2337 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2338 p_stripe = rbio->real_stripes - 2;
2339 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2340 } else {
2341 BUG();
2342 }
2343
76035976
MX
2344 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2345 is_replace = 1;
2346 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2347 }
2348
5a6ac9ea
MX
2349 /*
2350 * Because the higher layers(scrubber) are unlikely to
2351 * use this area of the disk again soon, so don't cache
2352 * it.
2353 */
2354 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2355
2356 if (!need_check)
2357 goto writeback;
2358
2359 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2360 if (!p_page)
2361 goto cleanup;
2362 SetPageUptodate(p_page);
2363
2364 if (q_stripe != -1) {
2365 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2366 if (!q_page) {
2367 __free_page(p_page);
2368 goto cleanup;
2369 }
2370 SetPageUptodate(q_page);
2371 }
2372
2373 atomic_set(&rbio->error, 0);
2374
2375 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2376 struct page *p;
2377 void *parity;
2378 /* first collect one page from each data stripe */
2379 for (stripe = 0; stripe < nr_data; stripe++) {
2380 p = page_in_rbio(rbio, stripe, pagenr, 0);
2381 pointers[stripe] = kmap(p);
2382 }
2383
2384 /* then add the parity stripe */
2385 pointers[stripe++] = kmap(p_page);
2386
2387 if (q_stripe != -1) {
2388
2389 /*
2390 * raid6, add the qstripe and call the
2391 * library function to fill in our p/q
2392 */
2393 pointers[stripe++] = kmap(q_page);
2394
2c8cdd6e 2395 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2396 pointers);
2397 } else {
2398 /* raid5 */
2399 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2400 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2401 }
2402
2403 /* Check scrubbing pairty and repair it */
2404 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2405 parity = kmap(p);
2406 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2407 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2408 else
2409 /* Parity is right, needn't writeback */
2410 bitmap_clear(rbio->dbitmap, pagenr, 1);
2411 kunmap(p);
2412
2c8cdd6e 2413 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2414 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2415 }
2416
2417 __free_page(p_page);
2418 if (q_page)
2419 __free_page(q_page);
2420
2421writeback:
2422 /*
2423 * time to start writing. Make bios for everything from the
2424 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2425 * everything else.
2426 */
2427 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2428 struct page *page;
2429
2430 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2431 ret = rbio_add_io_page(rbio, &bio_list,
2432 page, rbio->scrubp, pagenr, rbio->stripe_len);
2433 if (ret)
2434 goto cleanup;
2435 }
2436
76035976
MX
2437 if (!is_replace)
2438 goto submit_write;
2439
2440 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2441 struct page *page;
2442
2443 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2444 ret = rbio_add_io_page(rbio, &bio_list, page,
2445 bbio->tgtdev_map[rbio->scrubp],
2446 pagenr, rbio->stripe_len);
2447 if (ret)
2448 goto cleanup;
2449 }
2450
2451submit_write:
5a6ac9ea
MX
2452 nr_data = bio_list_size(&bio_list);
2453 if (!nr_data) {
2454 /* Every parity is right */
2455 rbio_orig_end_io(rbio, 0, 0);
2456 return;
2457 }
2458
2459 atomic_set(&rbio->stripes_pending, nr_data);
2460
2461 while (1) {
2462 bio = bio_list_pop(&bio_list);
2463 if (!bio)
2464 break;
2465
2466 bio->bi_private = rbio;
2467 bio->bi_end_io = raid_write_parity_end_io;
2468 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2469 submit_bio(WRITE, bio);
2470 }
2471 return;
2472
2473cleanup:
2474 rbio_orig_end_io(rbio, -EIO, 0);
2475}
2476
2477static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2478{
2479 if (stripe >= 0 && stripe < rbio->nr_data)
2480 return 1;
2481 return 0;
2482}
2483
2484/*
2485 * While we're doing the parity check and repair, we could have errors
2486 * in reading pages off the disk. This checks for errors and if we're
2487 * not able to read the page it'll trigger parity reconstruction. The
2488 * parity scrub will be finished after we've reconstructed the failed
2489 * stripes
2490 */
2491static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2492{
2493 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2494 goto cleanup;
2495
2496 if (rbio->faila >= 0 || rbio->failb >= 0) {
2497 int dfail = 0, failp = -1;
2498
2499 if (is_data_stripe(rbio, rbio->faila))
2500 dfail++;
2501 else if (is_parity_stripe(rbio->faila))
2502 failp = rbio->faila;
2503
2504 if (is_data_stripe(rbio, rbio->failb))
2505 dfail++;
2506 else if (is_parity_stripe(rbio->failb))
2507 failp = rbio->failb;
2508
2509 /*
2510 * Because we can not use a scrubbing parity to repair
2511 * the data, so the capability of the repair is declined.
2512 * (In the case of RAID5, we can not repair anything)
2513 */
2514 if (dfail > rbio->bbio->max_errors - 1)
2515 goto cleanup;
2516
2517 /*
2518 * If all data is good, only parity is correctly, just
2519 * repair the parity.
2520 */
2521 if (dfail == 0) {
2522 finish_parity_scrub(rbio, 0);
2523 return;
2524 }
2525
2526 /*
2527 * Here means we got one corrupted data stripe and one
2528 * corrupted parity on RAID6, if the corrupted parity
2529 * is scrubbing parity, luckly, use the other one to repair
2530 * the data, or we can not repair the data stripe.
2531 */
2532 if (failp != rbio->scrubp)
2533 goto cleanup;
2534
2535 __raid_recover_end_io(rbio);
2536 } else {
2537 finish_parity_scrub(rbio, 1);
2538 }
2539 return;
2540
2541cleanup:
2542 rbio_orig_end_io(rbio, -EIO, 0);
2543}
2544
2545/*
2546 * end io for the read phase of the rmw cycle. All the bios here are physical
2547 * stripe bios we've read from the disk so we can recalculate the parity of the
2548 * stripe.
2549 *
2550 * This will usually kick off finish_rmw once all the bios are read in, but it
2551 * may trigger parity reconstruction if we had any errors along the way
2552 */
2553static void raid56_parity_scrub_end_io(struct bio *bio, int err)
2554{
2555 struct btrfs_raid_bio *rbio = bio->bi_private;
2556
2557 if (err)
2558 fail_bio_stripe(rbio, bio);
2559 else
2560 set_bio_pages_uptodate(bio);
2561
2562 bio_put(bio);
2563
2564 if (!atomic_dec_and_test(&rbio->stripes_pending))
2565 return;
2566
2567 /*
2568 * this will normally call finish_rmw to start our write
2569 * but if there are any failed stripes we'll reconstruct
2570 * from parity first
2571 */
2572 validate_rbio_for_parity_scrub(rbio);
2573}
2574
2575static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2576{
2577 int bios_to_read = 0;
5a6ac9ea
MX
2578 struct bio_list bio_list;
2579 int ret;
2580 int pagenr;
2581 int stripe;
2582 struct bio *bio;
2583
2584 ret = alloc_rbio_essential_pages(rbio);
2585 if (ret)
2586 goto cleanup;
2587
2588 bio_list_init(&bio_list);
2589
2590 atomic_set(&rbio->error, 0);
2591 /*
2592 * build a list of bios to read all the missing parts of this
2593 * stripe
2594 */
2c8cdd6e 2595 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2596 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2597 struct page *page;
2598 /*
2599 * we want to find all the pages missing from
2600 * the rbio and read them from the disk. If
2601 * page_in_rbio finds a page in the bio list
2602 * we don't need to read it off the stripe.
2603 */
2604 page = page_in_rbio(rbio, stripe, pagenr, 1);
2605 if (page)
2606 continue;
2607
2608 page = rbio_stripe_page(rbio, stripe, pagenr);
2609 /*
2610 * the bio cache may have handed us an uptodate
2611 * page. If so, be happy and use it
2612 */
2613 if (PageUptodate(page))
2614 continue;
2615
2616 ret = rbio_add_io_page(rbio, &bio_list, page,
2617 stripe, pagenr, rbio->stripe_len);
2618 if (ret)
2619 goto cleanup;
2620 }
2621 }
2622
2623 bios_to_read = bio_list_size(&bio_list);
2624 if (!bios_to_read) {
2625 /*
2626 * this can happen if others have merged with
2627 * us, it means there is nothing left to read.
2628 * But if there are missing devices it may not be
2629 * safe to do the full stripe write yet.
2630 */
2631 goto finish;
2632 }
2633
2634 /*
2635 * the bbio may be freed once we submit the last bio. Make sure
2636 * not to touch it after that
2637 */
2638 atomic_set(&rbio->stripes_pending, bios_to_read);
2639 while (1) {
2640 bio = bio_list_pop(&bio_list);
2641 if (!bio)
2642 break;
2643
2644 bio->bi_private = rbio;
2645 bio->bi_end_io = raid56_parity_scrub_end_io;
2646
2647 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2648 BTRFS_WQ_ENDIO_RAID56);
2649
2650 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2651 submit_bio(READ, bio);
2652 }
2653 /* the actual write will happen once the reads are done */
2654 return;
2655
2656cleanup:
2657 rbio_orig_end_io(rbio, -EIO, 0);
2658 return;
2659
2660finish:
2661 validate_rbio_for_parity_scrub(rbio);
2662}
2663
2664static void scrub_parity_work(struct btrfs_work *work)
2665{
2666 struct btrfs_raid_bio *rbio;
2667
2668 rbio = container_of(work, struct btrfs_raid_bio, work);
2669 raid56_parity_scrub_stripe(rbio);
2670}
2671
2672static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2673{
2674 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2675 scrub_parity_work, NULL, NULL);
2676
2677 btrfs_queue_work(rbio->fs_info->rmw_workers,
2678 &rbio->work);
2679}
2680
2681void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2682{
2683 if (!lock_stripe_add(rbio))
2684 async_scrub_parity(rbio);
2685}
b4ee1782
OS
2686
2687/* The following code is used for dev replace of a missing RAID 5/6 device. */
2688
2689struct btrfs_raid_bio *
2690raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2691 struct btrfs_bio *bbio, u64 length)
2692{
2693 struct btrfs_raid_bio *rbio;
2694
2695 rbio = alloc_rbio(root, bbio, length);
2696 if (IS_ERR(rbio))
2697 return NULL;
2698
2699 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2700 bio_list_add(&rbio->bio_list, bio);
2701 /*
2702 * This is a special bio which is used to hold the completion handler
2703 * and make the scrub rbio is similar to the other types
2704 */
2705 ASSERT(!bio->bi_iter.bi_size);
2706
2707 rbio->faila = find_logical_bio_stripe(rbio, bio);
2708 if (rbio->faila == -1) {
2709 BUG();
2710 kfree(rbio);
2711 return NULL;
2712 }
2713
2714 return rbio;
2715}
2716
2717static void missing_raid56_work(struct btrfs_work *work)
2718{
2719 struct btrfs_raid_bio *rbio;
2720
2721 rbio = container_of(work, struct btrfs_raid_bio, work);
2722 __raid56_parity_recover(rbio);
2723}
2724
2725static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2726{
2727 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2728 missing_raid56_work, NULL, NULL);
2729
2730 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2731}
2732
2733void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2734{
2735 if (!lock_stripe_add(rbio))
2736 async_missing_raid56(rbio);
2737}