]>
Commit | Line | Data |
---|---|---|
53b381b3 DW |
1 | /* |
2 | * Copyright (C) 2012 Fusion-io All rights reserved. | |
3 | * Copyright (C) 2012 Intel Corp. All rights reserved. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or | |
6 | * modify it under the terms of the GNU General Public | |
7 | * License v2 as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
12 | * General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public | |
15 | * License along with this program; if not, write to the | |
16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
17 | * Boston, MA 021110-1307, USA. | |
18 | */ | |
19 | #include <linux/sched.h> | |
20 | #include <linux/wait.h> | |
21 | #include <linux/bio.h> | |
22 | #include <linux/slab.h> | |
23 | #include <linux/buffer_head.h> | |
24 | #include <linux/blkdev.h> | |
25 | #include <linux/random.h> | |
26 | #include <linux/iocontext.h> | |
27 | #include <linux/capability.h> | |
28 | #include <linux/ratelimit.h> | |
29 | #include <linux/kthread.h> | |
30 | #include <linux/raid/pq.h> | |
31 | #include <linux/hash.h> | |
32 | #include <linux/list_sort.h> | |
33 | #include <linux/raid/xor.h> | |
d7011f5b | 34 | #include <linux/vmalloc.h> |
53b381b3 | 35 | #include <asm/div64.h> |
53b381b3 DW |
36 | #include "ctree.h" |
37 | #include "extent_map.h" | |
38 | #include "disk-io.h" | |
39 | #include "transaction.h" | |
40 | #include "print-tree.h" | |
41 | #include "volumes.h" | |
42 | #include "raid56.h" | |
43 | #include "async-thread.h" | |
44 | #include "check-integrity.h" | |
45 | #include "rcu-string.h" | |
46 | ||
47 | /* set when additional merges to this rbio are not allowed */ | |
48 | #define RBIO_RMW_LOCKED_BIT 1 | |
49 | ||
4ae10b3a CM |
50 | /* |
51 | * set when this rbio is sitting in the hash, but it is just a cache | |
52 | * of past RMW | |
53 | */ | |
54 | #define RBIO_CACHE_BIT 2 | |
55 | ||
56 | /* | |
57 | * set when it is safe to trust the stripe_pages for caching | |
58 | */ | |
59 | #define RBIO_CACHE_READY_BIT 3 | |
60 | ||
4ae10b3a CM |
61 | #define RBIO_CACHE_SIZE 1024 |
62 | ||
1b94b556 | 63 | enum btrfs_rbio_ops { |
b4ee1782 OS |
64 | BTRFS_RBIO_WRITE, |
65 | BTRFS_RBIO_READ_REBUILD, | |
66 | BTRFS_RBIO_PARITY_SCRUB, | |
67 | BTRFS_RBIO_REBUILD_MISSING, | |
1b94b556 MX |
68 | }; |
69 | ||
53b381b3 DW |
70 | struct btrfs_raid_bio { |
71 | struct btrfs_fs_info *fs_info; | |
72 | struct btrfs_bio *bbio; | |
73 | ||
53b381b3 DW |
74 | /* while we're doing rmw on a stripe |
75 | * we put it into a hash table so we can | |
76 | * lock the stripe and merge more rbios | |
77 | * into it. | |
78 | */ | |
79 | struct list_head hash_list; | |
80 | ||
4ae10b3a CM |
81 | /* |
82 | * LRU list for the stripe cache | |
83 | */ | |
84 | struct list_head stripe_cache; | |
85 | ||
53b381b3 DW |
86 | /* |
87 | * for scheduling work in the helper threads | |
88 | */ | |
89 | struct btrfs_work work; | |
90 | ||
91 | /* | |
92 | * bio list and bio_list_lock are used | |
93 | * to add more bios into the stripe | |
94 | * in hopes of avoiding the full rmw | |
95 | */ | |
96 | struct bio_list bio_list; | |
97 | spinlock_t bio_list_lock; | |
98 | ||
6ac0f488 CM |
99 | /* also protected by the bio_list_lock, the |
100 | * plug list is used by the plugging code | |
101 | * to collect partial bios while plugged. The | |
102 | * stripe locking code also uses it to hand off | |
53b381b3 DW |
103 | * the stripe lock to the next pending IO |
104 | */ | |
105 | struct list_head plug_list; | |
106 | ||
107 | /* | |
108 | * flags that tell us if it is safe to | |
109 | * merge with this bio | |
110 | */ | |
111 | unsigned long flags; | |
112 | ||
113 | /* size of each individual stripe on disk */ | |
114 | int stripe_len; | |
115 | ||
116 | /* number of data stripes (no p/q) */ | |
117 | int nr_data; | |
118 | ||
2c8cdd6e MX |
119 | int real_stripes; |
120 | ||
5a6ac9ea | 121 | int stripe_npages; |
53b381b3 DW |
122 | /* |
123 | * set if we're doing a parity rebuild | |
124 | * for a read from higher up, which is handled | |
125 | * differently from a parity rebuild as part of | |
126 | * rmw | |
127 | */ | |
1b94b556 | 128 | enum btrfs_rbio_ops operation; |
53b381b3 DW |
129 | |
130 | /* first bad stripe */ | |
131 | int faila; | |
132 | ||
133 | /* second bad stripe (for raid6 use) */ | |
134 | int failb; | |
135 | ||
5a6ac9ea | 136 | int scrubp; |
53b381b3 DW |
137 | /* |
138 | * number of pages needed to represent the full | |
139 | * stripe | |
140 | */ | |
141 | int nr_pages; | |
142 | ||
143 | /* | |
144 | * size of all the bios in the bio_list. This | |
145 | * helps us decide if the rbio maps to a full | |
146 | * stripe or not | |
147 | */ | |
148 | int bio_list_bytes; | |
149 | ||
4245215d MX |
150 | int generic_bio_cnt; |
151 | ||
53b381b3 DW |
152 | atomic_t refs; |
153 | ||
b89e1b01 MX |
154 | atomic_t stripes_pending; |
155 | ||
156 | atomic_t error; | |
53b381b3 DW |
157 | /* |
158 | * these are two arrays of pointers. We allocate the | |
159 | * rbio big enough to hold them both and setup their | |
160 | * locations when the rbio is allocated | |
161 | */ | |
162 | ||
163 | /* pointers to pages that we allocated for | |
164 | * reading/writing stripes directly from the disk (including P/Q) | |
165 | */ | |
166 | struct page **stripe_pages; | |
167 | ||
168 | /* | |
169 | * pointers to the pages in the bio_list. Stored | |
170 | * here for faster lookup | |
171 | */ | |
172 | struct page **bio_pages; | |
5a6ac9ea MX |
173 | |
174 | /* | |
175 | * bitmap to record which horizontal stripe has data | |
176 | */ | |
177 | unsigned long *dbitmap; | |
53b381b3 DW |
178 | }; |
179 | ||
180 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | |
181 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | |
182 | static void rmw_work(struct btrfs_work *work); | |
183 | static void read_rebuild_work(struct btrfs_work *work); | |
184 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); | |
185 | static void async_read_rebuild(struct btrfs_raid_bio *rbio); | |
186 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); | |
187 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | |
188 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | |
189 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | |
190 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | |
191 | ||
5a6ac9ea MX |
192 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
193 | int need_check); | |
194 | static void async_scrub_parity(struct btrfs_raid_bio *rbio); | |
195 | ||
53b381b3 DW |
196 | /* |
197 | * the stripe hash table is used for locking, and to collect | |
198 | * bios in hopes of making a full stripe | |
199 | */ | |
200 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | |
201 | { | |
202 | struct btrfs_stripe_hash_table *table; | |
203 | struct btrfs_stripe_hash_table *x; | |
204 | struct btrfs_stripe_hash *cur; | |
205 | struct btrfs_stripe_hash *h; | |
206 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | |
207 | int i; | |
83c8266a | 208 | int table_size; |
53b381b3 DW |
209 | |
210 | if (info->stripe_hash_table) | |
211 | return 0; | |
212 | ||
83c8266a DS |
213 | /* |
214 | * The table is large, starting with order 4 and can go as high as | |
215 | * order 7 in case lock debugging is turned on. | |
216 | * | |
217 | * Try harder to allocate and fallback to vmalloc to lower the chance | |
218 | * of a failing mount. | |
219 | */ | |
220 | table_size = sizeof(*table) + sizeof(*h) * num_entries; | |
221 | table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); | |
222 | if (!table) { | |
223 | table = vzalloc(table_size); | |
224 | if (!table) | |
225 | return -ENOMEM; | |
226 | } | |
53b381b3 | 227 | |
4ae10b3a CM |
228 | spin_lock_init(&table->cache_lock); |
229 | INIT_LIST_HEAD(&table->stripe_cache); | |
230 | ||
53b381b3 DW |
231 | h = table->table; |
232 | ||
233 | for (i = 0; i < num_entries; i++) { | |
234 | cur = h + i; | |
235 | INIT_LIST_HEAD(&cur->hash_list); | |
236 | spin_lock_init(&cur->lock); | |
237 | init_waitqueue_head(&cur->wait); | |
238 | } | |
239 | ||
240 | x = cmpxchg(&info->stripe_hash_table, NULL, table); | |
f749303b WS |
241 | if (x) |
242 | kvfree(x); | |
53b381b3 DW |
243 | return 0; |
244 | } | |
245 | ||
4ae10b3a CM |
246 | /* |
247 | * caching an rbio means to copy anything from the | |
248 | * bio_pages array into the stripe_pages array. We | |
249 | * use the page uptodate bit in the stripe cache array | |
250 | * to indicate if it has valid data | |
251 | * | |
252 | * once the caching is done, we set the cache ready | |
253 | * bit. | |
254 | */ | |
255 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | |
256 | { | |
257 | int i; | |
258 | char *s; | |
259 | char *d; | |
260 | int ret; | |
261 | ||
262 | ret = alloc_rbio_pages(rbio); | |
263 | if (ret) | |
264 | return; | |
265 | ||
266 | for (i = 0; i < rbio->nr_pages; i++) { | |
267 | if (!rbio->bio_pages[i]) | |
268 | continue; | |
269 | ||
270 | s = kmap(rbio->bio_pages[i]); | |
271 | d = kmap(rbio->stripe_pages[i]); | |
272 | ||
273 | memcpy(d, s, PAGE_CACHE_SIZE); | |
274 | ||
275 | kunmap(rbio->bio_pages[i]); | |
276 | kunmap(rbio->stripe_pages[i]); | |
277 | SetPageUptodate(rbio->stripe_pages[i]); | |
278 | } | |
279 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
280 | } | |
281 | ||
53b381b3 DW |
282 | /* |
283 | * we hash on the first logical address of the stripe | |
284 | */ | |
285 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | |
286 | { | |
8e5cfb55 | 287 | u64 num = rbio->bbio->raid_map[0]; |
53b381b3 DW |
288 | |
289 | /* | |
290 | * we shift down quite a bit. We're using byte | |
291 | * addressing, and most of the lower bits are zeros. | |
292 | * This tends to upset hash_64, and it consistently | |
293 | * returns just one or two different values. | |
294 | * | |
295 | * shifting off the lower bits fixes things. | |
296 | */ | |
297 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | |
298 | } | |
299 | ||
4ae10b3a CM |
300 | /* |
301 | * stealing an rbio means taking all the uptodate pages from the stripe | |
302 | * array in the source rbio and putting them into the destination rbio | |
303 | */ | |
304 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | |
305 | { | |
306 | int i; | |
307 | struct page *s; | |
308 | struct page *d; | |
309 | ||
310 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | |
311 | return; | |
312 | ||
313 | for (i = 0; i < dest->nr_pages; i++) { | |
314 | s = src->stripe_pages[i]; | |
315 | if (!s || !PageUptodate(s)) { | |
316 | continue; | |
317 | } | |
318 | ||
319 | d = dest->stripe_pages[i]; | |
320 | if (d) | |
321 | __free_page(d); | |
322 | ||
323 | dest->stripe_pages[i] = s; | |
324 | src->stripe_pages[i] = NULL; | |
325 | } | |
326 | } | |
327 | ||
53b381b3 DW |
328 | /* |
329 | * merging means we take the bio_list from the victim and | |
330 | * splice it into the destination. The victim should | |
331 | * be discarded afterwards. | |
332 | * | |
333 | * must be called with dest->rbio_list_lock held | |
334 | */ | |
335 | static void merge_rbio(struct btrfs_raid_bio *dest, | |
336 | struct btrfs_raid_bio *victim) | |
337 | { | |
338 | bio_list_merge(&dest->bio_list, &victim->bio_list); | |
339 | dest->bio_list_bytes += victim->bio_list_bytes; | |
4245215d | 340 | dest->generic_bio_cnt += victim->generic_bio_cnt; |
53b381b3 DW |
341 | bio_list_init(&victim->bio_list); |
342 | } | |
343 | ||
344 | /* | |
4ae10b3a CM |
345 | * used to prune items that are in the cache. The caller |
346 | * must hold the hash table lock. | |
347 | */ | |
348 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
349 | { | |
350 | int bucket = rbio_bucket(rbio); | |
351 | struct btrfs_stripe_hash_table *table; | |
352 | struct btrfs_stripe_hash *h; | |
353 | int freeit = 0; | |
354 | ||
355 | /* | |
356 | * check the bit again under the hash table lock. | |
357 | */ | |
358 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
359 | return; | |
360 | ||
361 | table = rbio->fs_info->stripe_hash_table; | |
362 | h = table->table + bucket; | |
363 | ||
364 | /* hold the lock for the bucket because we may be | |
365 | * removing it from the hash table | |
366 | */ | |
367 | spin_lock(&h->lock); | |
368 | ||
369 | /* | |
370 | * hold the lock for the bio list because we need | |
371 | * to make sure the bio list is empty | |
372 | */ | |
373 | spin_lock(&rbio->bio_list_lock); | |
374 | ||
375 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
376 | list_del_init(&rbio->stripe_cache); | |
377 | table->cache_size -= 1; | |
378 | freeit = 1; | |
379 | ||
380 | /* if the bio list isn't empty, this rbio is | |
381 | * still involved in an IO. We take it out | |
382 | * of the cache list, and drop the ref that | |
383 | * was held for the list. | |
384 | * | |
385 | * If the bio_list was empty, we also remove | |
386 | * the rbio from the hash_table, and drop | |
387 | * the corresponding ref | |
388 | */ | |
389 | if (bio_list_empty(&rbio->bio_list)) { | |
390 | if (!list_empty(&rbio->hash_list)) { | |
391 | list_del_init(&rbio->hash_list); | |
392 | atomic_dec(&rbio->refs); | |
393 | BUG_ON(!list_empty(&rbio->plug_list)); | |
394 | } | |
395 | } | |
396 | } | |
397 | ||
398 | spin_unlock(&rbio->bio_list_lock); | |
399 | spin_unlock(&h->lock); | |
400 | ||
401 | if (freeit) | |
402 | __free_raid_bio(rbio); | |
403 | } | |
404 | ||
405 | /* | |
406 | * prune a given rbio from the cache | |
407 | */ | |
408 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
409 | { | |
410 | struct btrfs_stripe_hash_table *table; | |
411 | unsigned long flags; | |
412 | ||
413 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
414 | return; | |
415 | ||
416 | table = rbio->fs_info->stripe_hash_table; | |
417 | ||
418 | spin_lock_irqsave(&table->cache_lock, flags); | |
419 | __remove_rbio_from_cache(rbio); | |
420 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
421 | } | |
422 | ||
423 | /* | |
424 | * remove everything in the cache | |
425 | */ | |
48a3b636 | 426 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
4ae10b3a CM |
427 | { |
428 | struct btrfs_stripe_hash_table *table; | |
429 | unsigned long flags; | |
430 | struct btrfs_raid_bio *rbio; | |
431 | ||
432 | table = info->stripe_hash_table; | |
433 | ||
434 | spin_lock_irqsave(&table->cache_lock, flags); | |
435 | while (!list_empty(&table->stripe_cache)) { | |
436 | rbio = list_entry(table->stripe_cache.next, | |
437 | struct btrfs_raid_bio, | |
438 | stripe_cache); | |
439 | __remove_rbio_from_cache(rbio); | |
440 | } | |
441 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
442 | } | |
443 | ||
444 | /* | |
445 | * remove all cached entries and free the hash table | |
446 | * used by unmount | |
53b381b3 DW |
447 | */ |
448 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | |
449 | { | |
450 | if (!info->stripe_hash_table) | |
451 | return; | |
4ae10b3a | 452 | btrfs_clear_rbio_cache(info); |
f749303b | 453 | kvfree(info->stripe_hash_table); |
53b381b3 DW |
454 | info->stripe_hash_table = NULL; |
455 | } | |
456 | ||
4ae10b3a CM |
457 | /* |
458 | * insert an rbio into the stripe cache. It | |
459 | * must have already been prepared by calling | |
460 | * cache_rbio_pages | |
461 | * | |
462 | * If this rbio was already cached, it gets | |
463 | * moved to the front of the lru. | |
464 | * | |
465 | * If the size of the rbio cache is too big, we | |
466 | * prune an item. | |
467 | */ | |
468 | static void cache_rbio(struct btrfs_raid_bio *rbio) | |
469 | { | |
470 | struct btrfs_stripe_hash_table *table; | |
471 | unsigned long flags; | |
472 | ||
473 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | |
474 | return; | |
475 | ||
476 | table = rbio->fs_info->stripe_hash_table; | |
477 | ||
478 | spin_lock_irqsave(&table->cache_lock, flags); | |
479 | spin_lock(&rbio->bio_list_lock); | |
480 | ||
481 | /* bump our ref if we were not in the list before */ | |
482 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
483 | atomic_inc(&rbio->refs); | |
484 | ||
485 | if (!list_empty(&rbio->stripe_cache)){ | |
486 | list_move(&rbio->stripe_cache, &table->stripe_cache); | |
487 | } else { | |
488 | list_add(&rbio->stripe_cache, &table->stripe_cache); | |
489 | table->cache_size += 1; | |
490 | } | |
491 | ||
492 | spin_unlock(&rbio->bio_list_lock); | |
493 | ||
494 | if (table->cache_size > RBIO_CACHE_SIZE) { | |
495 | struct btrfs_raid_bio *found; | |
496 | ||
497 | found = list_entry(table->stripe_cache.prev, | |
498 | struct btrfs_raid_bio, | |
499 | stripe_cache); | |
500 | ||
501 | if (found != rbio) | |
502 | __remove_rbio_from_cache(found); | |
503 | } | |
504 | ||
505 | spin_unlock_irqrestore(&table->cache_lock, flags); | |
506 | return; | |
507 | } | |
508 | ||
53b381b3 DW |
509 | /* |
510 | * helper function to run the xor_blocks api. It is only | |
511 | * able to do MAX_XOR_BLOCKS at a time, so we need to | |
512 | * loop through. | |
513 | */ | |
514 | static void run_xor(void **pages, int src_cnt, ssize_t len) | |
515 | { | |
516 | int src_off = 0; | |
517 | int xor_src_cnt = 0; | |
518 | void *dest = pages[src_cnt]; | |
519 | ||
520 | while(src_cnt > 0) { | |
521 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | |
522 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | |
523 | ||
524 | src_cnt -= xor_src_cnt; | |
525 | src_off += xor_src_cnt; | |
526 | } | |
527 | } | |
528 | ||
529 | /* | |
530 | * returns true if the bio list inside this rbio | |
531 | * covers an entire stripe (no rmw required). | |
532 | * Must be called with the bio list lock held, or | |
533 | * at a time when you know it is impossible to add | |
534 | * new bios into the list | |
535 | */ | |
536 | static int __rbio_is_full(struct btrfs_raid_bio *rbio) | |
537 | { | |
538 | unsigned long size = rbio->bio_list_bytes; | |
539 | int ret = 1; | |
540 | ||
541 | if (size != rbio->nr_data * rbio->stripe_len) | |
542 | ret = 0; | |
543 | ||
544 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); | |
545 | return ret; | |
546 | } | |
547 | ||
548 | static int rbio_is_full(struct btrfs_raid_bio *rbio) | |
549 | { | |
550 | unsigned long flags; | |
551 | int ret; | |
552 | ||
553 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | |
554 | ret = __rbio_is_full(rbio); | |
555 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | |
556 | return ret; | |
557 | } | |
558 | ||
559 | /* | |
560 | * returns 1 if it is safe to merge two rbios together. | |
561 | * The merging is safe if the two rbios correspond to | |
562 | * the same stripe and if they are both going in the same | |
563 | * direction (read vs write), and if neither one is | |
564 | * locked for final IO | |
565 | * | |
566 | * The caller is responsible for locking such that | |
567 | * rmw_locked is safe to test | |
568 | */ | |
569 | static int rbio_can_merge(struct btrfs_raid_bio *last, | |
570 | struct btrfs_raid_bio *cur) | |
571 | { | |
572 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | |
573 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | |
574 | return 0; | |
575 | ||
4ae10b3a CM |
576 | /* |
577 | * we can't merge with cached rbios, since the | |
578 | * idea is that when we merge the destination | |
579 | * rbio is going to run our IO for us. We can | |
580 | * steal from cached rbio's though, other functions | |
581 | * handle that. | |
582 | */ | |
583 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | |
584 | test_bit(RBIO_CACHE_BIT, &cur->flags)) | |
585 | return 0; | |
586 | ||
8e5cfb55 ZL |
587 | if (last->bbio->raid_map[0] != |
588 | cur->bbio->raid_map[0]) | |
53b381b3 DW |
589 | return 0; |
590 | ||
5a6ac9ea MX |
591 | /* we can't merge with different operations */ |
592 | if (last->operation != cur->operation) | |
593 | return 0; | |
594 | /* | |
595 | * We've need read the full stripe from the drive. | |
596 | * check and repair the parity and write the new results. | |
597 | * | |
598 | * We're not allowed to add any new bios to the | |
599 | * bio list here, anyone else that wants to | |
600 | * change this stripe needs to do their own rmw. | |
601 | */ | |
602 | if (last->operation == BTRFS_RBIO_PARITY_SCRUB || | |
603 | cur->operation == BTRFS_RBIO_PARITY_SCRUB) | |
53b381b3 | 604 | return 0; |
53b381b3 | 605 | |
b4ee1782 OS |
606 | if (last->operation == BTRFS_RBIO_REBUILD_MISSING || |
607 | cur->operation == BTRFS_RBIO_REBUILD_MISSING) | |
608 | return 0; | |
609 | ||
53b381b3 DW |
610 | return 1; |
611 | } | |
612 | ||
613 | /* | |
614 | * helper to index into the pstripe | |
615 | */ | |
616 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | |
617 | { | |
618 | index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; | |
619 | return rbio->stripe_pages[index]; | |
620 | } | |
621 | ||
622 | /* | |
623 | * helper to index into the qstripe, returns null | |
624 | * if there is no qstripe | |
625 | */ | |
626 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | |
627 | { | |
2c8cdd6e | 628 | if (rbio->nr_data + 1 == rbio->real_stripes) |
53b381b3 DW |
629 | return NULL; |
630 | ||
631 | index += ((rbio->nr_data + 1) * rbio->stripe_len) >> | |
632 | PAGE_CACHE_SHIFT; | |
633 | return rbio->stripe_pages[index]; | |
634 | } | |
635 | ||
636 | /* | |
637 | * The first stripe in the table for a logical address | |
638 | * has the lock. rbios are added in one of three ways: | |
639 | * | |
640 | * 1) Nobody has the stripe locked yet. The rbio is given | |
641 | * the lock and 0 is returned. The caller must start the IO | |
642 | * themselves. | |
643 | * | |
644 | * 2) Someone has the stripe locked, but we're able to merge | |
645 | * with the lock owner. The rbio is freed and the IO will | |
646 | * start automatically along with the existing rbio. 1 is returned. | |
647 | * | |
648 | * 3) Someone has the stripe locked, but we're not able to merge. | |
649 | * The rbio is added to the lock owner's plug list, or merged into | |
650 | * an rbio already on the plug list. When the lock owner unlocks, | |
651 | * the next rbio on the list is run and the IO is started automatically. | |
652 | * 1 is returned | |
653 | * | |
654 | * If we return 0, the caller still owns the rbio and must continue with | |
655 | * IO submission. If we return 1, the caller must assume the rbio has | |
656 | * already been freed. | |
657 | */ | |
658 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | |
659 | { | |
660 | int bucket = rbio_bucket(rbio); | |
661 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; | |
662 | struct btrfs_raid_bio *cur; | |
663 | struct btrfs_raid_bio *pending; | |
664 | unsigned long flags; | |
665 | DEFINE_WAIT(wait); | |
666 | struct btrfs_raid_bio *freeit = NULL; | |
4ae10b3a | 667 | struct btrfs_raid_bio *cache_drop = NULL; |
53b381b3 DW |
668 | int ret = 0; |
669 | int walk = 0; | |
670 | ||
671 | spin_lock_irqsave(&h->lock, flags); | |
672 | list_for_each_entry(cur, &h->hash_list, hash_list) { | |
673 | walk++; | |
8e5cfb55 | 674 | if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { |
53b381b3 DW |
675 | spin_lock(&cur->bio_list_lock); |
676 | ||
4ae10b3a CM |
677 | /* can we steal this cached rbio's pages? */ |
678 | if (bio_list_empty(&cur->bio_list) && | |
679 | list_empty(&cur->plug_list) && | |
680 | test_bit(RBIO_CACHE_BIT, &cur->flags) && | |
681 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | |
682 | list_del_init(&cur->hash_list); | |
683 | atomic_dec(&cur->refs); | |
684 | ||
685 | steal_rbio(cur, rbio); | |
686 | cache_drop = cur; | |
687 | spin_unlock(&cur->bio_list_lock); | |
688 | ||
689 | goto lockit; | |
690 | } | |
691 | ||
53b381b3 DW |
692 | /* can we merge into the lock owner? */ |
693 | if (rbio_can_merge(cur, rbio)) { | |
694 | merge_rbio(cur, rbio); | |
695 | spin_unlock(&cur->bio_list_lock); | |
696 | freeit = rbio; | |
697 | ret = 1; | |
698 | goto out; | |
699 | } | |
700 | ||
4ae10b3a | 701 | |
53b381b3 DW |
702 | /* |
703 | * we couldn't merge with the running | |
704 | * rbio, see if we can merge with the | |
705 | * pending ones. We don't have to | |
706 | * check for rmw_locked because there | |
707 | * is no way they are inside finish_rmw | |
708 | * right now | |
709 | */ | |
710 | list_for_each_entry(pending, &cur->plug_list, | |
711 | plug_list) { | |
712 | if (rbio_can_merge(pending, rbio)) { | |
713 | merge_rbio(pending, rbio); | |
714 | spin_unlock(&cur->bio_list_lock); | |
715 | freeit = rbio; | |
716 | ret = 1; | |
717 | goto out; | |
718 | } | |
719 | } | |
720 | ||
721 | /* no merging, put us on the tail of the plug list, | |
722 | * our rbio will be started with the currently | |
723 | * running rbio unlocks | |
724 | */ | |
725 | list_add_tail(&rbio->plug_list, &cur->plug_list); | |
726 | spin_unlock(&cur->bio_list_lock); | |
727 | ret = 1; | |
728 | goto out; | |
729 | } | |
730 | } | |
4ae10b3a | 731 | lockit: |
53b381b3 DW |
732 | atomic_inc(&rbio->refs); |
733 | list_add(&rbio->hash_list, &h->hash_list); | |
734 | out: | |
735 | spin_unlock_irqrestore(&h->lock, flags); | |
4ae10b3a CM |
736 | if (cache_drop) |
737 | remove_rbio_from_cache(cache_drop); | |
53b381b3 DW |
738 | if (freeit) |
739 | __free_raid_bio(freeit); | |
740 | return ret; | |
741 | } | |
742 | ||
743 | /* | |
744 | * called as rmw or parity rebuild is completed. If the plug list has more | |
745 | * rbios waiting for this stripe, the next one on the list will be started | |
746 | */ | |
747 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | |
748 | { | |
749 | int bucket; | |
750 | struct btrfs_stripe_hash *h; | |
751 | unsigned long flags; | |
4ae10b3a | 752 | int keep_cache = 0; |
53b381b3 DW |
753 | |
754 | bucket = rbio_bucket(rbio); | |
755 | h = rbio->fs_info->stripe_hash_table->table + bucket; | |
756 | ||
4ae10b3a CM |
757 | if (list_empty(&rbio->plug_list)) |
758 | cache_rbio(rbio); | |
759 | ||
53b381b3 DW |
760 | spin_lock_irqsave(&h->lock, flags); |
761 | spin_lock(&rbio->bio_list_lock); | |
762 | ||
763 | if (!list_empty(&rbio->hash_list)) { | |
4ae10b3a CM |
764 | /* |
765 | * if we're still cached and there is no other IO | |
766 | * to perform, just leave this rbio here for others | |
767 | * to steal from later | |
768 | */ | |
769 | if (list_empty(&rbio->plug_list) && | |
770 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
771 | keep_cache = 1; | |
772 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
773 | BUG_ON(!bio_list_empty(&rbio->bio_list)); | |
774 | goto done; | |
775 | } | |
53b381b3 DW |
776 | |
777 | list_del_init(&rbio->hash_list); | |
778 | atomic_dec(&rbio->refs); | |
779 | ||
780 | /* | |
781 | * we use the plug list to hold all the rbios | |
782 | * waiting for the chance to lock this stripe. | |
783 | * hand the lock over to one of them. | |
784 | */ | |
785 | if (!list_empty(&rbio->plug_list)) { | |
786 | struct btrfs_raid_bio *next; | |
787 | struct list_head *head = rbio->plug_list.next; | |
788 | ||
789 | next = list_entry(head, struct btrfs_raid_bio, | |
790 | plug_list); | |
791 | ||
792 | list_del_init(&rbio->plug_list); | |
793 | ||
794 | list_add(&next->hash_list, &h->hash_list); | |
795 | atomic_inc(&next->refs); | |
796 | spin_unlock(&rbio->bio_list_lock); | |
797 | spin_unlock_irqrestore(&h->lock, flags); | |
798 | ||
1b94b556 | 799 | if (next->operation == BTRFS_RBIO_READ_REBUILD) |
53b381b3 | 800 | async_read_rebuild(next); |
b4ee1782 OS |
801 | else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { |
802 | steal_rbio(rbio, next); | |
803 | async_read_rebuild(next); | |
804 | } else if (next->operation == BTRFS_RBIO_WRITE) { | |
4ae10b3a | 805 | steal_rbio(rbio, next); |
53b381b3 | 806 | async_rmw_stripe(next); |
5a6ac9ea MX |
807 | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
808 | steal_rbio(rbio, next); | |
809 | async_scrub_parity(next); | |
4ae10b3a | 810 | } |
53b381b3 DW |
811 | |
812 | goto done_nolock; | |
53b381b3 DW |
813 | } else if (waitqueue_active(&h->wait)) { |
814 | spin_unlock(&rbio->bio_list_lock); | |
815 | spin_unlock_irqrestore(&h->lock, flags); | |
816 | wake_up(&h->wait); | |
817 | goto done_nolock; | |
818 | } | |
819 | } | |
4ae10b3a | 820 | done: |
53b381b3 DW |
821 | spin_unlock(&rbio->bio_list_lock); |
822 | spin_unlock_irqrestore(&h->lock, flags); | |
823 | ||
824 | done_nolock: | |
4ae10b3a CM |
825 | if (!keep_cache) |
826 | remove_rbio_from_cache(rbio); | |
53b381b3 DW |
827 | } |
828 | ||
829 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | |
830 | { | |
831 | int i; | |
832 | ||
833 | WARN_ON(atomic_read(&rbio->refs) < 0); | |
834 | if (!atomic_dec_and_test(&rbio->refs)) | |
835 | return; | |
836 | ||
4ae10b3a | 837 | WARN_ON(!list_empty(&rbio->stripe_cache)); |
53b381b3 DW |
838 | WARN_ON(!list_empty(&rbio->hash_list)); |
839 | WARN_ON(!bio_list_empty(&rbio->bio_list)); | |
840 | ||
841 | for (i = 0; i < rbio->nr_pages; i++) { | |
842 | if (rbio->stripe_pages[i]) { | |
843 | __free_page(rbio->stripe_pages[i]); | |
844 | rbio->stripe_pages[i] = NULL; | |
845 | } | |
846 | } | |
af8e2d1d | 847 | |
6e9606d2 | 848 | btrfs_put_bbio(rbio->bbio); |
53b381b3 DW |
849 | kfree(rbio); |
850 | } | |
851 | ||
852 | static void free_raid_bio(struct btrfs_raid_bio *rbio) | |
853 | { | |
854 | unlock_stripe(rbio); | |
855 | __free_raid_bio(rbio); | |
856 | } | |
857 | ||
858 | /* | |
859 | * this frees the rbio and runs through all the bios in the | |
860 | * bio_list and calls end_io on them | |
861 | */ | |
862 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) | |
863 | { | |
864 | struct bio *cur = bio_list_get(&rbio->bio_list); | |
865 | struct bio *next; | |
4245215d MX |
866 | |
867 | if (rbio->generic_bio_cnt) | |
868 | btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); | |
869 | ||
53b381b3 DW |
870 | free_raid_bio(rbio); |
871 | ||
872 | while (cur) { | |
873 | next = cur->bi_next; | |
874 | cur->bi_next = NULL; | |
875 | if (uptodate) | |
876 | set_bit(BIO_UPTODATE, &cur->bi_flags); | |
877 | bio_endio(cur, err); | |
878 | cur = next; | |
879 | } | |
880 | } | |
881 | ||
882 | /* | |
883 | * end io function used by finish_rmw. When we finally | |
884 | * get here, we've written a full stripe | |
885 | */ | |
886 | static void raid_write_end_io(struct bio *bio, int err) | |
887 | { | |
888 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
889 | ||
890 | if (err) | |
891 | fail_bio_stripe(rbio, bio); | |
892 | ||
893 | bio_put(bio); | |
894 | ||
b89e1b01 | 895 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
896 | return; |
897 | ||
898 | err = 0; | |
899 | ||
900 | /* OK, we have read all the stripes we need to. */ | |
b89e1b01 | 901 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
53b381b3 DW |
902 | err = -EIO; |
903 | ||
904 | rbio_orig_end_io(rbio, err, 0); | |
905 | return; | |
906 | } | |
907 | ||
908 | /* | |
909 | * the read/modify/write code wants to use the original bio for | |
910 | * any pages it included, and then use the rbio for everything | |
911 | * else. This function decides if a given index (stripe number) | |
912 | * and page number in that stripe fall inside the original bio | |
913 | * or the rbio. | |
914 | * | |
915 | * if you set bio_list_only, you'll get a NULL back for any ranges | |
916 | * that are outside the bio_list | |
917 | * | |
918 | * This doesn't take any refs on anything, you get a bare page pointer | |
919 | * and the caller must bump refs as required. | |
920 | * | |
921 | * You must call index_rbio_pages once before you can trust | |
922 | * the answers from this function. | |
923 | */ | |
924 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | |
925 | int index, int pagenr, int bio_list_only) | |
926 | { | |
927 | int chunk_page; | |
928 | struct page *p = NULL; | |
929 | ||
930 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | |
931 | ||
932 | spin_lock_irq(&rbio->bio_list_lock); | |
933 | p = rbio->bio_pages[chunk_page]; | |
934 | spin_unlock_irq(&rbio->bio_list_lock); | |
935 | ||
936 | if (p || bio_list_only) | |
937 | return p; | |
938 | ||
939 | return rbio->stripe_pages[chunk_page]; | |
940 | } | |
941 | ||
942 | /* | |
943 | * number of pages we need for the entire stripe across all the | |
944 | * drives | |
945 | */ | |
946 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | |
947 | { | |
948 | unsigned long nr = stripe_len * nr_stripes; | |
ed6078f7 | 949 | return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE); |
53b381b3 DW |
950 | } |
951 | ||
952 | /* | |
953 | * allocation and initial setup for the btrfs_raid_bio. Not | |
954 | * this does not allocate any pages for rbio->pages. | |
955 | */ | |
956 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, | |
8e5cfb55 | 957 | struct btrfs_bio *bbio, u64 stripe_len) |
53b381b3 DW |
958 | { |
959 | struct btrfs_raid_bio *rbio; | |
960 | int nr_data = 0; | |
2c8cdd6e MX |
961 | int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; |
962 | int num_pages = rbio_nr_pages(stripe_len, real_stripes); | |
5a6ac9ea | 963 | int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); |
53b381b3 DW |
964 | void *p; |
965 | ||
5a6ac9ea MX |
966 | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + |
967 | DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8), | |
53b381b3 | 968 | GFP_NOFS); |
af8e2d1d | 969 | if (!rbio) |
53b381b3 | 970 | return ERR_PTR(-ENOMEM); |
53b381b3 DW |
971 | |
972 | bio_list_init(&rbio->bio_list); | |
973 | INIT_LIST_HEAD(&rbio->plug_list); | |
974 | spin_lock_init(&rbio->bio_list_lock); | |
4ae10b3a | 975 | INIT_LIST_HEAD(&rbio->stripe_cache); |
53b381b3 DW |
976 | INIT_LIST_HEAD(&rbio->hash_list); |
977 | rbio->bbio = bbio; | |
53b381b3 DW |
978 | rbio->fs_info = root->fs_info; |
979 | rbio->stripe_len = stripe_len; | |
980 | rbio->nr_pages = num_pages; | |
2c8cdd6e | 981 | rbio->real_stripes = real_stripes; |
5a6ac9ea | 982 | rbio->stripe_npages = stripe_npages; |
53b381b3 DW |
983 | rbio->faila = -1; |
984 | rbio->failb = -1; | |
985 | atomic_set(&rbio->refs, 1); | |
b89e1b01 MX |
986 | atomic_set(&rbio->error, 0); |
987 | atomic_set(&rbio->stripes_pending, 0); | |
53b381b3 DW |
988 | |
989 | /* | |
990 | * the stripe_pages and bio_pages array point to the extra | |
991 | * memory we allocated past the end of the rbio | |
992 | */ | |
993 | p = rbio + 1; | |
994 | rbio->stripe_pages = p; | |
995 | rbio->bio_pages = p + sizeof(struct page *) * num_pages; | |
5a6ac9ea | 996 | rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; |
53b381b3 | 997 | |
10f11900 ZL |
998 | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
999 | nr_data = real_stripes - 1; | |
1000 | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) | |
2c8cdd6e | 1001 | nr_data = real_stripes - 2; |
53b381b3 | 1002 | else |
10f11900 | 1003 | BUG(); |
53b381b3 DW |
1004 | |
1005 | rbio->nr_data = nr_data; | |
1006 | return rbio; | |
1007 | } | |
1008 | ||
1009 | /* allocate pages for all the stripes in the bio, including parity */ | |
1010 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | |
1011 | { | |
1012 | int i; | |
1013 | struct page *page; | |
1014 | ||
1015 | for (i = 0; i < rbio->nr_pages; i++) { | |
1016 | if (rbio->stripe_pages[i]) | |
1017 | continue; | |
1018 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
1019 | if (!page) | |
1020 | return -ENOMEM; | |
1021 | rbio->stripe_pages[i] = page; | |
1022 | ClearPageUptodate(page); | |
1023 | } | |
1024 | return 0; | |
1025 | } | |
1026 | ||
1027 | /* allocate pages for just the p/q stripes */ | |
1028 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | |
1029 | { | |
1030 | int i; | |
1031 | struct page *page; | |
1032 | ||
1033 | i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; | |
1034 | ||
1035 | for (; i < rbio->nr_pages; i++) { | |
1036 | if (rbio->stripe_pages[i]) | |
1037 | continue; | |
1038 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
1039 | if (!page) | |
1040 | return -ENOMEM; | |
1041 | rbio->stripe_pages[i] = page; | |
1042 | } | |
1043 | return 0; | |
1044 | } | |
1045 | ||
1046 | /* | |
1047 | * add a single page from a specific stripe into our list of bios for IO | |
1048 | * this will try to merge into existing bios if possible, and returns | |
1049 | * zero if all went well. | |
1050 | */ | |
48a3b636 ES |
1051 | static int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
1052 | struct bio_list *bio_list, | |
1053 | struct page *page, | |
1054 | int stripe_nr, | |
1055 | unsigned long page_index, | |
1056 | unsigned long bio_max_len) | |
53b381b3 DW |
1057 | { |
1058 | struct bio *last = bio_list->tail; | |
1059 | u64 last_end = 0; | |
1060 | int ret; | |
1061 | struct bio *bio; | |
1062 | struct btrfs_bio_stripe *stripe; | |
1063 | u64 disk_start; | |
1064 | ||
1065 | stripe = &rbio->bbio->stripes[stripe_nr]; | |
1066 | disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); | |
1067 | ||
1068 | /* if the device is missing, just fail this stripe */ | |
1069 | if (!stripe->dev->bdev) | |
1070 | return fail_rbio_index(rbio, stripe_nr); | |
1071 | ||
1072 | /* see if we can add this page onto our existing bio */ | |
1073 | if (last) { | |
4f024f37 KO |
1074 | last_end = (u64)last->bi_iter.bi_sector << 9; |
1075 | last_end += last->bi_iter.bi_size; | |
53b381b3 DW |
1076 | |
1077 | /* | |
1078 | * we can't merge these if they are from different | |
1079 | * devices or if they are not contiguous | |
1080 | */ | |
1081 | if (last_end == disk_start && stripe->dev->bdev && | |
1082 | test_bit(BIO_UPTODATE, &last->bi_flags) && | |
1083 | last->bi_bdev == stripe->dev->bdev) { | |
1084 | ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); | |
1085 | if (ret == PAGE_CACHE_SIZE) | |
1086 | return 0; | |
1087 | } | |
1088 | } | |
1089 | ||
1090 | /* put a new bio on the list */ | |
9be3395b | 1091 | bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); |
53b381b3 DW |
1092 | if (!bio) |
1093 | return -ENOMEM; | |
1094 | ||
4f024f37 | 1095 | bio->bi_iter.bi_size = 0; |
53b381b3 | 1096 | bio->bi_bdev = stripe->dev->bdev; |
4f024f37 | 1097 | bio->bi_iter.bi_sector = disk_start >> 9; |
53b381b3 DW |
1098 | set_bit(BIO_UPTODATE, &bio->bi_flags); |
1099 | ||
1100 | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | |
1101 | bio_list_add(bio_list, bio); | |
1102 | return 0; | |
1103 | } | |
1104 | ||
1105 | /* | |
1106 | * while we're doing the read/modify/write cycle, we could | |
1107 | * have errors in reading pages off the disk. This checks | |
1108 | * for errors and if we're not able to read the page it'll | |
1109 | * trigger parity reconstruction. The rmw will be finished | |
1110 | * after we've reconstructed the failed stripes | |
1111 | */ | |
1112 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | |
1113 | { | |
1114 | if (rbio->faila >= 0 || rbio->failb >= 0) { | |
2c8cdd6e | 1115 | BUG_ON(rbio->faila == rbio->real_stripes - 1); |
53b381b3 DW |
1116 | __raid56_parity_recover(rbio); |
1117 | } else { | |
1118 | finish_rmw(rbio); | |
1119 | } | |
1120 | } | |
1121 | ||
1122 | /* | |
1123 | * these are just the pages from the rbio array, not from anything | |
1124 | * the FS sent down to us | |
1125 | */ | |
1126 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) | |
1127 | { | |
1128 | int index; | |
1129 | index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); | |
1130 | index += page; | |
1131 | return rbio->stripe_pages[index]; | |
1132 | } | |
1133 | ||
1134 | /* | |
1135 | * helper function to walk our bio list and populate the bio_pages array with | |
1136 | * the result. This seems expensive, but it is faster than constantly | |
1137 | * searching through the bio list as we setup the IO in finish_rmw or stripe | |
1138 | * reconstruction. | |
1139 | * | |
1140 | * This must be called before you trust the answers from page_in_rbio | |
1141 | */ | |
1142 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | |
1143 | { | |
1144 | struct bio *bio; | |
1145 | u64 start; | |
1146 | unsigned long stripe_offset; | |
1147 | unsigned long page_index; | |
1148 | struct page *p; | |
1149 | int i; | |
1150 | ||
1151 | spin_lock_irq(&rbio->bio_list_lock); | |
1152 | bio_list_for_each(bio, &rbio->bio_list) { | |
4f024f37 | 1153 | start = (u64)bio->bi_iter.bi_sector << 9; |
8e5cfb55 | 1154 | stripe_offset = start - rbio->bbio->raid_map[0]; |
53b381b3 DW |
1155 | page_index = stripe_offset >> PAGE_CACHE_SHIFT; |
1156 | ||
1157 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1158 | p = bio->bi_io_vec[i].bv_page; | |
1159 | rbio->bio_pages[page_index + i] = p; | |
1160 | } | |
1161 | } | |
1162 | spin_unlock_irq(&rbio->bio_list_lock); | |
1163 | } | |
1164 | ||
1165 | /* | |
1166 | * this is called from one of two situations. We either | |
1167 | * have a full stripe from the higher layers, or we've read all | |
1168 | * the missing bits off disk. | |
1169 | * | |
1170 | * This will calculate the parity and then send down any | |
1171 | * changed blocks. | |
1172 | */ | |
1173 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | |
1174 | { | |
1175 | struct btrfs_bio *bbio = rbio->bbio; | |
2c8cdd6e | 1176 | void *pointers[rbio->real_stripes]; |
53b381b3 DW |
1177 | int stripe_len = rbio->stripe_len; |
1178 | int nr_data = rbio->nr_data; | |
1179 | int stripe; | |
1180 | int pagenr; | |
1181 | int p_stripe = -1; | |
1182 | int q_stripe = -1; | |
1183 | struct bio_list bio_list; | |
1184 | struct bio *bio; | |
1185 | int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; | |
1186 | int ret; | |
1187 | ||
1188 | bio_list_init(&bio_list); | |
1189 | ||
2c8cdd6e MX |
1190 | if (rbio->real_stripes - rbio->nr_data == 1) { |
1191 | p_stripe = rbio->real_stripes - 1; | |
1192 | } else if (rbio->real_stripes - rbio->nr_data == 2) { | |
1193 | p_stripe = rbio->real_stripes - 2; | |
1194 | q_stripe = rbio->real_stripes - 1; | |
53b381b3 DW |
1195 | } else { |
1196 | BUG(); | |
1197 | } | |
1198 | ||
1199 | /* at this point we either have a full stripe, | |
1200 | * or we've read the full stripe from the drive. | |
1201 | * recalculate the parity and write the new results. | |
1202 | * | |
1203 | * We're not allowed to add any new bios to the | |
1204 | * bio list here, anyone else that wants to | |
1205 | * change this stripe needs to do their own rmw. | |
1206 | */ | |
1207 | spin_lock_irq(&rbio->bio_list_lock); | |
1208 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
1209 | spin_unlock_irq(&rbio->bio_list_lock); | |
1210 | ||
b89e1b01 | 1211 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
1212 | |
1213 | /* | |
1214 | * now that we've set rmw_locked, run through the | |
1215 | * bio list one last time and map the page pointers | |
4ae10b3a CM |
1216 | * |
1217 | * We don't cache full rbios because we're assuming | |
1218 | * the higher layers are unlikely to use this area of | |
1219 | * the disk again soon. If they do use it again, | |
1220 | * hopefully they will send another full bio. | |
53b381b3 DW |
1221 | */ |
1222 | index_rbio_pages(rbio); | |
4ae10b3a CM |
1223 | if (!rbio_is_full(rbio)) |
1224 | cache_rbio_pages(rbio); | |
1225 | else | |
1226 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
53b381b3 DW |
1227 | |
1228 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { | |
1229 | struct page *p; | |
1230 | /* first collect one page from each data stripe */ | |
1231 | for (stripe = 0; stripe < nr_data; stripe++) { | |
1232 | p = page_in_rbio(rbio, stripe, pagenr, 0); | |
1233 | pointers[stripe] = kmap(p); | |
1234 | } | |
1235 | ||
1236 | /* then add the parity stripe */ | |
1237 | p = rbio_pstripe_page(rbio, pagenr); | |
1238 | SetPageUptodate(p); | |
1239 | pointers[stripe++] = kmap(p); | |
1240 | ||
1241 | if (q_stripe != -1) { | |
1242 | ||
1243 | /* | |
1244 | * raid6, add the qstripe and call the | |
1245 | * library function to fill in our p/q | |
1246 | */ | |
1247 | p = rbio_qstripe_page(rbio, pagenr); | |
1248 | SetPageUptodate(p); | |
1249 | pointers[stripe++] = kmap(p); | |
1250 | ||
2c8cdd6e | 1251 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
53b381b3 DW |
1252 | pointers); |
1253 | } else { | |
1254 | /* raid5 */ | |
1255 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); | |
1256 | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); | |
1257 | } | |
1258 | ||
1259 | ||
2c8cdd6e | 1260 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
53b381b3 DW |
1261 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
1262 | } | |
1263 | ||
1264 | /* | |
1265 | * time to start writing. Make bios for everything from the | |
1266 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
1267 | * everything else. | |
1268 | */ | |
2c8cdd6e | 1269 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1270 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { |
1271 | struct page *page; | |
1272 | if (stripe < rbio->nr_data) { | |
1273 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1274 | if (!page) | |
1275 | continue; | |
1276 | } else { | |
1277 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1278 | } | |
1279 | ||
1280 | ret = rbio_add_io_page(rbio, &bio_list, | |
1281 | page, stripe, pagenr, rbio->stripe_len); | |
1282 | if (ret) | |
1283 | goto cleanup; | |
1284 | } | |
1285 | } | |
1286 | ||
2c8cdd6e MX |
1287 | if (likely(!bbio->num_tgtdevs)) |
1288 | goto write_data; | |
1289 | ||
1290 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | |
1291 | if (!bbio->tgtdev_map[stripe]) | |
1292 | continue; | |
1293 | ||
1294 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { | |
1295 | struct page *page; | |
1296 | if (stripe < rbio->nr_data) { | |
1297 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1298 | if (!page) | |
1299 | continue; | |
1300 | } else { | |
1301 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1302 | } | |
1303 | ||
1304 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
1305 | rbio->bbio->tgtdev_map[stripe], | |
1306 | pagenr, rbio->stripe_len); | |
1307 | if (ret) | |
1308 | goto cleanup; | |
1309 | } | |
1310 | } | |
1311 | ||
1312 | write_data: | |
b89e1b01 MX |
1313 | atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); |
1314 | BUG_ON(atomic_read(&rbio->stripes_pending) == 0); | |
53b381b3 DW |
1315 | |
1316 | while (1) { | |
1317 | bio = bio_list_pop(&bio_list); | |
1318 | if (!bio) | |
1319 | break; | |
1320 | ||
1321 | bio->bi_private = rbio; | |
1322 | bio->bi_end_io = raid_write_end_io; | |
1323 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
1324 | submit_bio(WRITE, bio); | |
1325 | } | |
1326 | return; | |
1327 | ||
1328 | cleanup: | |
1329 | rbio_orig_end_io(rbio, -EIO, 0); | |
1330 | } | |
1331 | ||
1332 | /* | |
1333 | * helper to find the stripe number for a given bio. Used to figure out which | |
1334 | * stripe has failed. This expects the bio to correspond to a physical disk, | |
1335 | * so it looks up based on physical sector numbers. | |
1336 | */ | |
1337 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | |
1338 | struct bio *bio) | |
1339 | { | |
4f024f37 | 1340 | u64 physical = bio->bi_iter.bi_sector; |
53b381b3 DW |
1341 | u64 stripe_start; |
1342 | int i; | |
1343 | struct btrfs_bio_stripe *stripe; | |
1344 | ||
1345 | physical <<= 9; | |
1346 | ||
1347 | for (i = 0; i < rbio->bbio->num_stripes; i++) { | |
1348 | stripe = &rbio->bbio->stripes[i]; | |
1349 | stripe_start = stripe->physical; | |
1350 | if (physical >= stripe_start && | |
2c8cdd6e MX |
1351 | physical < stripe_start + rbio->stripe_len && |
1352 | bio->bi_bdev == stripe->dev->bdev) { | |
53b381b3 DW |
1353 | return i; |
1354 | } | |
1355 | } | |
1356 | return -1; | |
1357 | } | |
1358 | ||
1359 | /* | |
1360 | * helper to find the stripe number for a given | |
1361 | * bio (before mapping). Used to figure out which stripe has | |
1362 | * failed. This looks up based on logical block numbers. | |
1363 | */ | |
1364 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | |
1365 | struct bio *bio) | |
1366 | { | |
4f024f37 | 1367 | u64 logical = bio->bi_iter.bi_sector; |
53b381b3 DW |
1368 | u64 stripe_start; |
1369 | int i; | |
1370 | ||
1371 | logical <<= 9; | |
1372 | ||
1373 | for (i = 0; i < rbio->nr_data; i++) { | |
8e5cfb55 | 1374 | stripe_start = rbio->bbio->raid_map[i]; |
53b381b3 DW |
1375 | if (logical >= stripe_start && |
1376 | logical < stripe_start + rbio->stripe_len) { | |
1377 | return i; | |
1378 | } | |
1379 | } | |
1380 | return -1; | |
1381 | } | |
1382 | ||
1383 | /* | |
1384 | * returns -EIO if we had too many failures | |
1385 | */ | |
1386 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | |
1387 | { | |
1388 | unsigned long flags; | |
1389 | int ret = 0; | |
1390 | ||
1391 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | |
1392 | ||
1393 | /* we already know this stripe is bad, move on */ | |
1394 | if (rbio->faila == failed || rbio->failb == failed) | |
1395 | goto out; | |
1396 | ||
1397 | if (rbio->faila == -1) { | |
1398 | /* first failure on this rbio */ | |
1399 | rbio->faila = failed; | |
b89e1b01 | 1400 | atomic_inc(&rbio->error); |
53b381b3 DW |
1401 | } else if (rbio->failb == -1) { |
1402 | /* second failure on this rbio */ | |
1403 | rbio->failb = failed; | |
b89e1b01 | 1404 | atomic_inc(&rbio->error); |
53b381b3 DW |
1405 | } else { |
1406 | ret = -EIO; | |
1407 | } | |
1408 | out: | |
1409 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | |
1410 | ||
1411 | return ret; | |
1412 | } | |
1413 | ||
1414 | /* | |
1415 | * helper to fail a stripe based on a physical disk | |
1416 | * bio. | |
1417 | */ | |
1418 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | |
1419 | struct bio *bio) | |
1420 | { | |
1421 | int failed = find_bio_stripe(rbio, bio); | |
1422 | ||
1423 | if (failed < 0) | |
1424 | return -EIO; | |
1425 | ||
1426 | return fail_rbio_index(rbio, failed); | |
1427 | } | |
1428 | ||
1429 | /* | |
1430 | * this sets each page in the bio uptodate. It should only be used on private | |
1431 | * rbio pages, nothing that comes in from the higher layers | |
1432 | */ | |
1433 | static void set_bio_pages_uptodate(struct bio *bio) | |
1434 | { | |
1435 | int i; | |
1436 | struct page *p; | |
1437 | ||
1438 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1439 | p = bio->bi_io_vec[i].bv_page; | |
1440 | SetPageUptodate(p); | |
1441 | } | |
1442 | } | |
1443 | ||
1444 | /* | |
1445 | * end io for the read phase of the rmw cycle. All the bios here are physical | |
1446 | * stripe bios we've read from the disk so we can recalculate the parity of the | |
1447 | * stripe. | |
1448 | * | |
1449 | * This will usually kick off finish_rmw once all the bios are read in, but it | |
1450 | * may trigger parity reconstruction if we had any errors along the way | |
1451 | */ | |
1452 | static void raid_rmw_end_io(struct bio *bio, int err) | |
1453 | { | |
1454 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
1455 | ||
1456 | if (err) | |
1457 | fail_bio_stripe(rbio, bio); | |
1458 | else | |
1459 | set_bio_pages_uptodate(bio); | |
1460 | ||
1461 | bio_put(bio); | |
1462 | ||
b89e1b01 | 1463 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
1464 | return; |
1465 | ||
1466 | err = 0; | |
b89e1b01 | 1467 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
53b381b3 DW |
1468 | goto cleanup; |
1469 | ||
1470 | /* | |
1471 | * this will normally call finish_rmw to start our write | |
1472 | * but if there are any failed stripes we'll reconstruct | |
1473 | * from parity first | |
1474 | */ | |
1475 | validate_rbio_for_rmw(rbio); | |
1476 | return; | |
1477 | ||
1478 | cleanup: | |
1479 | ||
1480 | rbio_orig_end_io(rbio, -EIO, 0); | |
1481 | } | |
1482 | ||
1483 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) | |
1484 | { | |
9e0af237 LB |
1485 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, |
1486 | rmw_work, NULL, NULL); | |
53b381b3 | 1487 | |
d05a33ac QW |
1488 | btrfs_queue_work(rbio->fs_info->rmw_workers, |
1489 | &rbio->work); | |
53b381b3 DW |
1490 | } |
1491 | ||
1492 | static void async_read_rebuild(struct btrfs_raid_bio *rbio) | |
1493 | { | |
9e0af237 LB |
1494 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, |
1495 | read_rebuild_work, NULL, NULL); | |
53b381b3 | 1496 | |
d05a33ac QW |
1497 | btrfs_queue_work(rbio->fs_info->rmw_workers, |
1498 | &rbio->work); | |
53b381b3 DW |
1499 | } |
1500 | ||
1501 | /* | |
1502 | * the stripe must be locked by the caller. It will | |
1503 | * unlock after all the writes are done | |
1504 | */ | |
1505 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | |
1506 | { | |
1507 | int bios_to_read = 0; | |
53b381b3 DW |
1508 | struct bio_list bio_list; |
1509 | int ret; | |
ed6078f7 | 1510 | int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); |
53b381b3 DW |
1511 | int pagenr; |
1512 | int stripe; | |
1513 | struct bio *bio; | |
1514 | ||
1515 | bio_list_init(&bio_list); | |
1516 | ||
1517 | ret = alloc_rbio_pages(rbio); | |
1518 | if (ret) | |
1519 | goto cleanup; | |
1520 | ||
1521 | index_rbio_pages(rbio); | |
1522 | ||
b89e1b01 | 1523 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
1524 | /* |
1525 | * build a list of bios to read all the missing parts of this | |
1526 | * stripe | |
1527 | */ | |
1528 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | |
1529 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | |
1530 | struct page *page; | |
1531 | /* | |
1532 | * we want to find all the pages missing from | |
1533 | * the rbio and read them from the disk. If | |
1534 | * page_in_rbio finds a page in the bio list | |
1535 | * we don't need to read it off the stripe. | |
1536 | */ | |
1537 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
1538 | if (page) | |
1539 | continue; | |
1540 | ||
1541 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
4ae10b3a CM |
1542 | /* |
1543 | * the bio cache may have handed us an uptodate | |
1544 | * page. If so, be happy and use it | |
1545 | */ | |
1546 | if (PageUptodate(page)) | |
1547 | continue; | |
1548 | ||
53b381b3 DW |
1549 | ret = rbio_add_io_page(rbio, &bio_list, page, |
1550 | stripe, pagenr, rbio->stripe_len); | |
1551 | if (ret) | |
1552 | goto cleanup; | |
1553 | } | |
1554 | } | |
1555 | ||
1556 | bios_to_read = bio_list_size(&bio_list); | |
1557 | if (!bios_to_read) { | |
1558 | /* | |
1559 | * this can happen if others have merged with | |
1560 | * us, it means there is nothing left to read. | |
1561 | * But if there are missing devices it may not be | |
1562 | * safe to do the full stripe write yet. | |
1563 | */ | |
1564 | goto finish; | |
1565 | } | |
1566 | ||
1567 | /* | |
1568 | * the bbio may be freed once we submit the last bio. Make sure | |
1569 | * not to touch it after that | |
1570 | */ | |
b89e1b01 | 1571 | atomic_set(&rbio->stripes_pending, bios_to_read); |
53b381b3 DW |
1572 | while (1) { |
1573 | bio = bio_list_pop(&bio_list); | |
1574 | if (!bio) | |
1575 | break; | |
1576 | ||
1577 | bio->bi_private = rbio; | |
1578 | bio->bi_end_io = raid_rmw_end_io; | |
1579 | ||
1580 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | |
1581 | BTRFS_WQ_ENDIO_RAID56); | |
1582 | ||
1583 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
1584 | submit_bio(READ, bio); | |
1585 | } | |
1586 | /* the actual write will happen once the reads are done */ | |
1587 | return 0; | |
1588 | ||
1589 | cleanup: | |
1590 | rbio_orig_end_io(rbio, -EIO, 0); | |
1591 | return -EIO; | |
1592 | ||
1593 | finish: | |
1594 | validate_rbio_for_rmw(rbio); | |
1595 | return 0; | |
1596 | } | |
1597 | ||
1598 | /* | |
1599 | * if the upper layers pass in a full stripe, we thank them by only allocating | |
1600 | * enough pages to hold the parity, and sending it all down quickly. | |
1601 | */ | |
1602 | static int full_stripe_write(struct btrfs_raid_bio *rbio) | |
1603 | { | |
1604 | int ret; | |
1605 | ||
1606 | ret = alloc_rbio_parity_pages(rbio); | |
3cd846d1 MX |
1607 | if (ret) { |
1608 | __free_raid_bio(rbio); | |
53b381b3 | 1609 | return ret; |
3cd846d1 | 1610 | } |
53b381b3 DW |
1611 | |
1612 | ret = lock_stripe_add(rbio); | |
1613 | if (ret == 0) | |
1614 | finish_rmw(rbio); | |
1615 | return 0; | |
1616 | } | |
1617 | ||
1618 | /* | |
1619 | * partial stripe writes get handed over to async helpers. | |
1620 | * We're really hoping to merge a few more writes into this | |
1621 | * rbio before calculating new parity | |
1622 | */ | |
1623 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | |
1624 | { | |
1625 | int ret; | |
1626 | ||
1627 | ret = lock_stripe_add(rbio); | |
1628 | if (ret == 0) | |
1629 | async_rmw_stripe(rbio); | |
1630 | return 0; | |
1631 | } | |
1632 | ||
1633 | /* | |
1634 | * sometimes while we were reading from the drive to | |
1635 | * recalculate parity, enough new bios come into create | |
1636 | * a full stripe. So we do a check here to see if we can | |
1637 | * go directly to finish_rmw | |
1638 | */ | |
1639 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | |
1640 | { | |
1641 | /* head off into rmw land if we don't have a full stripe */ | |
1642 | if (!rbio_is_full(rbio)) | |
1643 | return partial_stripe_write(rbio); | |
1644 | return full_stripe_write(rbio); | |
1645 | } | |
1646 | ||
6ac0f488 CM |
1647 | /* |
1648 | * We use plugging call backs to collect full stripes. | |
1649 | * Any time we get a partial stripe write while plugged | |
1650 | * we collect it into a list. When the unplug comes down, | |
1651 | * we sort the list by logical block number and merge | |
1652 | * everything we can into the same rbios | |
1653 | */ | |
1654 | struct btrfs_plug_cb { | |
1655 | struct blk_plug_cb cb; | |
1656 | struct btrfs_fs_info *info; | |
1657 | struct list_head rbio_list; | |
1658 | struct btrfs_work work; | |
1659 | }; | |
1660 | ||
1661 | /* | |
1662 | * rbios on the plug list are sorted for easier merging. | |
1663 | */ | |
1664 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | |
1665 | { | |
1666 | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | |
1667 | plug_list); | |
1668 | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | |
1669 | plug_list); | |
4f024f37 KO |
1670 | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
1671 | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | |
6ac0f488 CM |
1672 | |
1673 | if (a_sector < b_sector) | |
1674 | return -1; | |
1675 | if (a_sector > b_sector) | |
1676 | return 1; | |
1677 | return 0; | |
1678 | } | |
1679 | ||
1680 | static void run_plug(struct btrfs_plug_cb *plug) | |
1681 | { | |
1682 | struct btrfs_raid_bio *cur; | |
1683 | struct btrfs_raid_bio *last = NULL; | |
1684 | ||
1685 | /* | |
1686 | * sort our plug list then try to merge | |
1687 | * everything we can in hopes of creating full | |
1688 | * stripes. | |
1689 | */ | |
1690 | list_sort(NULL, &plug->rbio_list, plug_cmp); | |
1691 | while (!list_empty(&plug->rbio_list)) { | |
1692 | cur = list_entry(plug->rbio_list.next, | |
1693 | struct btrfs_raid_bio, plug_list); | |
1694 | list_del_init(&cur->plug_list); | |
1695 | ||
1696 | if (rbio_is_full(cur)) { | |
1697 | /* we have a full stripe, send it down */ | |
1698 | full_stripe_write(cur); | |
1699 | continue; | |
1700 | } | |
1701 | if (last) { | |
1702 | if (rbio_can_merge(last, cur)) { | |
1703 | merge_rbio(last, cur); | |
1704 | __free_raid_bio(cur); | |
1705 | continue; | |
1706 | ||
1707 | } | |
1708 | __raid56_parity_write(last); | |
1709 | } | |
1710 | last = cur; | |
1711 | } | |
1712 | if (last) { | |
1713 | __raid56_parity_write(last); | |
1714 | } | |
1715 | kfree(plug); | |
1716 | } | |
1717 | ||
1718 | /* | |
1719 | * if the unplug comes from schedule, we have to push the | |
1720 | * work off to a helper thread | |
1721 | */ | |
1722 | static void unplug_work(struct btrfs_work *work) | |
1723 | { | |
1724 | struct btrfs_plug_cb *plug; | |
1725 | plug = container_of(work, struct btrfs_plug_cb, work); | |
1726 | run_plug(plug); | |
1727 | } | |
1728 | ||
1729 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | |
1730 | { | |
1731 | struct btrfs_plug_cb *plug; | |
1732 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1733 | ||
1734 | if (from_schedule) { | |
9e0af237 LB |
1735 | btrfs_init_work(&plug->work, btrfs_rmw_helper, |
1736 | unplug_work, NULL, NULL); | |
d05a33ac QW |
1737 | btrfs_queue_work(plug->info->rmw_workers, |
1738 | &plug->work); | |
6ac0f488 CM |
1739 | return; |
1740 | } | |
1741 | run_plug(plug); | |
1742 | } | |
1743 | ||
53b381b3 DW |
1744 | /* |
1745 | * our main entry point for writes from the rest of the FS. | |
1746 | */ | |
1747 | int raid56_parity_write(struct btrfs_root *root, struct bio *bio, | |
8e5cfb55 | 1748 | struct btrfs_bio *bbio, u64 stripe_len) |
53b381b3 DW |
1749 | { |
1750 | struct btrfs_raid_bio *rbio; | |
6ac0f488 CM |
1751 | struct btrfs_plug_cb *plug = NULL; |
1752 | struct blk_plug_cb *cb; | |
4245215d | 1753 | int ret; |
53b381b3 | 1754 | |
8e5cfb55 | 1755 | rbio = alloc_rbio(root, bbio, stripe_len); |
af8e2d1d | 1756 | if (IS_ERR(rbio)) { |
6e9606d2 | 1757 | btrfs_put_bbio(bbio); |
53b381b3 | 1758 | return PTR_ERR(rbio); |
af8e2d1d | 1759 | } |
53b381b3 | 1760 | bio_list_add(&rbio->bio_list, bio); |
4f024f37 | 1761 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
1b94b556 | 1762 | rbio->operation = BTRFS_RBIO_WRITE; |
6ac0f488 | 1763 | |
4245215d MX |
1764 | btrfs_bio_counter_inc_noblocked(root->fs_info); |
1765 | rbio->generic_bio_cnt = 1; | |
1766 | ||
6ac0f488 CM |
1767 | /* |
1768 | * don't plug on full rbios, just get them out the door | |
1769 | * as quickly as we can | |
1770 | */ | |
4245215d MX |
1771 | if (rbio_is_full(rbio)) { |
1772 | ret = full_stripe_write(rbio); | |
1773 | if (ret) | |
1774 | btrfs_bio_counter_dec(root->fs_info); | |
1775 | return ret; | |
1776 | } | |
6ac0f488 CM |
1777 | |
1778 | cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, | |
1779 | sizeof(*plug)); | |
1780 | if (cb) { | |
1781 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1782 | if (!plug->info) { | |
1783 | plug->info = root->fs_info; | |
1784 | INIT_LIST_HEAD(&plug->rbio_list); | |
1785 | } | |
1786 | list_add_tail(&rbio->plug_list, &plug->rbio_list); | |
4245215d | 1787 | ret = 0; |
6ac0f488 | 1788 | } else { |
4245215d MX |
1789 | ret = __raid56_parity_write(rbio); |
1790 | if (ret) | |
1791 | btrfs_bio_counter_dec(root->fs_info); | |
6ac0f488 | 1792 | } |
4245215d | 1793 | return ret; |
53b381b3 DW |
1794 | } |
1795 | ||
1796 | /* | |
1797 | * all parity reconstruction happens here. We've read in everything | |
1798 | * we can find from the drives and this does the heavy lifting of | |
1799 | * sorting the good from the bad. | |
1800 | */ | |
1801 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | |
1802 | { | |
1803 | int pagenr, stripe; | |
1804 | void **pointers; | |
1805 | int faila = -1, failb = -1; | |
ed6078f7 | 1806 | int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); |
53b381b3 DW |
1807 | struct page *page; |
1808 | int err; | |
1809 | int i; | |
1810 | ||
31e818fe | 1811 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
53b381b3 DW |
1812 | if (!pointers) { |
1813 | err = -ENOMEM; | |
1814 | goto cleanup_io; | |
1815 | } | |
1816 | ||
1817 | faila = rbio->faila; | |
1818 | failb = rbio->failb; | |
1819 | ||
b4ee1782 OS |
1820 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1821 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | |
53b381b3 DW |
1822 | spin_lock_irq(&rbio->bio_list_lock); |
1823 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
1824 | spin_unlock_irq(&rbio->bio_list_lock); | |
1825 | } | |
1826 | ||
1827 | index_rbio_pages(rbio); | |
1828 | ||
1829 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | |
5a6ac9ea MX |
1830 | /* |
1831 | * Now we just use bitmap to mark the horizontal stripes in | |
1832 | * which we have data when doing parity scrub. | |
1833 | */ | |
1834 | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | |
1835 | !test_bit(pagenr, rbio->dbitmap)) | |
1836 | continue; | |
1837 | ||
53b381b3 DW |
1838 | /* setup our array of pointers with pages |
1839 | * from each stripe | |
1840 | */ | |
2c8cdd6e | 1841 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1842 | /* |
1843 | * if we're rebuilding a read, we have to use | |
1844 | * pages from the bio list | |
1845 | */ | |
b4ee1782 OS |
1846 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1847 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | |
53b381b3 DW |
1848 | (stripe == faila || stripe == failb)) { |
1849 | page = page_in_rbio(rbio, stripe, pagenr, 0); | |
1850 | } else { | |
1851 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1852 | } | |
1853 | pointers[stripe] = kmap(page); | |
1854 | } | |
1855 | ||
1856 | /* all raid6 handling here */ | |
10f11900 | 1857 | if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { |
53b381b3 DW |
1858 | /* |
1859 | * single failure, rebuild from parity raid5 | |
1860 | * style | |
1861 | */ | |
1862 | if (failb < 0) { | |
1863 | if (faila == rbio->nr_data) { | |
1864 | /* | |
1865 | * Just the P stripe has failed, without | |
1866 | * a bad data or Q stripe. | |
1867 | * TODO, we should redo the xor here. | |
1868 | */ | |
1869 | err = -EIO; | |
1870 | goto cleanup; | |
1871 | } | |
1872 | /* | |
1873 | * a single failure in raid6 is rebuilt | |
1874 | * in the pstripe code below | |
1875 | */ | |
1876 | goto pstripe; | |
1877 | } | |
1878 | ||
1879 | /* make sure our ps and qs are in order */ | |
1880 | if (faila > failb) { | |
1881 | int tmp = failb; | |
1882 | failb = faila; | |
1883 | faila = tmp; | |
1884 | } | |
1885 | ||
1886 | /* if the q stripe is failed, do a pstripe reconstruction | |
1887 | * from the xors. | |
1888 | * If both the q stripe and the P stripe are failed, we're | |
1889 | * here due to a crc mismatch and we can't give them the | |
1890 | * data they want | |
1891 | */ | |
8e5cfb55 ZL |
1892 | if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { |
1893 | if (rbio->bbio->raid_map[faila] == | |
1894 | RAID5_P_STRIPE) { | |
53b381b3 DW |
1895 | err = -EIO; |
1896 | goto cleanup; | |
1897 | } | |
1898 | /* | |
1899 | * otherwise we have one bad data stripe and | |
1900 | * a good P stripe. raid5! | |
1901 | */ | |
1902 | goto pstripe; | |
1903 | } | |
1904 | ||
8e5cfb55 | 1905 | if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { |
2c8cdd6e | 1906 | raid6_datap_recov(rbio->real_stripes, |
53b381b3 DW |
1907 | PAGE_SIZE, faila, pointers); |
1908 | } else { | |
2c8cdd6e | 1909 | raid6_2data_recov(rbio->real_stripes, |
53b381b3 DW |
1910 | PAGE_SIZE, faila, failb, |
1911 | pointers); | |
1912 | } | |
1913 | } else { | |
1914 | void *p; | |
1915 | ||
1916 | /* rebuild from P stripe here (raid5 or raid6) */ | |
1917 | BUG_ON(failb != -1); | |
1918 | pstripe: | |
1919 | /* Copy parity block into failed block to start with */ | |
1920 | memcpy(pointers[faila], | |
1921 | pointers[rbio->nr_data], | |
1922 | PAGE_CACHE_SIZE); | |
1923 | ||
1924 | /* rearrange the pointer array */ | |
1925 | p = pointers[faila]; | |
1926 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | |
1927 | pointers[stripe] = pointers[stripe + 1]; | |
1928 | pointers[rbio->nr_data - 1] = p; | |
1929 | ||
1930 | /* xor in the rest */ | |
1931 | run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); | |
1932 | } | |
1933 | /* if we're doing this rebuild as part of an rmw, go through | |
1934 | * and set all of our private rbio pages in the | |
1935 | * failed stripes as uptodate. This way finish_rmw will | |
1936 | * know they can be trusted. If this was a read reconstruction, | |
1937 | * other endio functions will fiddle the uptodate bits | |
1938 | */ | |
1b94b556 | 1939 | if (rbio->operation == BTRFS_RBIO_WRITE) { |
53b381b3 DW |
1940 | for (i = 0; i < nr_pages; i++) { |
1941 | if (faila != -1) { | |
1942 | page = rbio_stripe_page(rbio, faila, i); | |
1943 | SetPageUptodate(page); | |
1944 | } | |
1945 | if (failb != -1) { | |
1946 | page = rbio_stripe_page(rbio, failb, i); | |
1947 | SetPageUptodate(page); | |
1948 | } | |
1949 | } | |
1950 | } | |
2c8cdd6e | 1951 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
53b381b3 DW |
1952 | /* |
1953 | * if we're rebuilding a read, we have to use | |
1954 | * pages from the bio list | |
1955 | */ | |
b4ee1782 OS |
1956 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
1957 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | |
53b381b3 DW |
1958 | (stripe == faila || stripe == failb)) { |
1959 | page = page_in_rbio(rbio, stripe, pagenr, 0); | |
1960 | } else { | |
1961 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
1962 | } | |
1963 | kunmap(page); | |
1964 | } | |
1965 | } | |
1966 | ||
1967 | err = 0; | |
1968 | cleanup: | |
1969 | kfree(pointers); | |
1970 | ||
1971 | cleanup_io: | |
1b94b556 | 1972 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
6e9606d2 | 1973 | if (err == 0) |
4ae10b3a CM |
1974 | cache_rbio_pages(rbio); |
1975 | else | |
1976 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
1977 | ||
b4ee1782 OS |
1978 | rbio_orig_end_io(rbio, err, err == 0); |
1979 | } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | |
53b381b3 DW |
1980 | rbio_orig_end_io(rbio, err, err == 0); |
1981 | } else if (err == 0) { | |
1982 | rbio->faila = -1; | |
1983 | rbio->failb = -1; | |
5a6ac9ea MX |
1984 | |
1985 | if (rbio->operation == BTRFS_RBIO_WRITE) | |
1986 | finish_rmw(rbio); | |
1987 | else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) | |
1988 | finish_parity_scrub(rbio, 0); | |
1989 | else | |
1990 | BUG(); | |
53b381b3 DW |
1991 | } else { |
1992 | rbio_orig_end_io(rbio, err, 0); | |
1993 | } | |
1994 | } | |
1995 | ||
1996 | /* | |
1997 | * This is called only for stripes we've read from disk to | |
1998 | * reconstruct the parity. | |
1999 | */ | |
2000 | static void raid_recover_end_io(struct bio *bio, int err) | |
2001 | { | |
2002 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2003 | ||
2004 | /* | |
2005 | * we only read stripe pages off the disk, set them | |
2006 | * up to date if there were no errors | |
2007 | */ | |
2008 | if (err) | |
2009 | fail_bio_stripe(rbio, bio); | |
2010 | else | |
2011 | set_bio_pages_uptodate(bio); | |
2012 | bio_put(bio); | |
2013 | ||
b89e1b01 | 2014 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
53b381b3 DW |
2015 | return; |
2016 | ||
b89e1b01 | 2017 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
53b381b3 DW |
2018 | rbio_orig_end_io(rbio, -EIO, 0); |
2019 | else | |
2020 | __raid_recover_end_io(rbio); | |
2021 | } | |
2022 | ||
2023 | /* | |
2024 | * reads everything we need off the disk to reconstruct | |
2025 | * the parity. endio handlers trigger final reconstruction | |
2026 | * when the IO is done. | |
2027 | * | |
2028 | * This is used both for reads from the higher layers and for | |
2029 | * parity construction required to finish a rmw cycle. | |
2030 | */ | |
2031 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | |
2032 | { | |
2033 | int bios_to_read = 0; | |
53b381b3 DW |
2034 | struct bio_list bio_list; |
2035 | int ret; | |
ed6078f7 | 2036 | int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE); |
53b381b3 DW |
2037 | int pagenr; |
2038 | int stripe; | |
2039 | struct bio *bio; | |
2040 | ||
2041 | bio_list_init(&bio_list); | |
2042 | ||
2043 | ret = alloc_rbio_pages(rbio); | |
2044 | if (ret) | |
2045 | goto cleanup; | |
2046 | ||
b89e1b01 | 2047 | atomic_set(&rbio->error, 0); |
53b381b3 DW |
2048 | |
2049 | /* | |
4ae10b3a CM |
2050 | * read everything that hasn't failed. Thanks to the |
2051 | * stripe cache, it is possible that some or all of these | |
2052 | * pages are going to be uptodate. | |
53b381b3 | 2053 | */ |
2c8cdd6e | 2054 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
5588383e | 2055 | if (rbio->faila == stripe || rbio->failb == stripe) { |
b89e1b01 | 2056 | atomic_inc(&rbio->error); |
53b381b3 | 2057 | continue; |
5588383e | 2058 | } |
53b381b3 DW |
2059 | |
2060 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | |
2061 | struct page *p; | |
2062 | ||
2063 | /* | |
2064 | * the rmw code may have already read this | |
2065 | * page in | |
2066 | */ | |
2067 | p = rbio_stripe_page(rbio, stripe, pagenr); | |
2068 | if (PageUptodate(p)) | |
2069 | continue; | |
2070 | ||
2071 | ret = rbio_add_io_page(rbio, &bio_list, | |
2072 | rbio_stripe_page(rbio, stripe, pagenr), | |
2073 | stripe, pagenr, rbio->stripe_len); | |
2074 | if (ret < 0) | |
2075 | goto cleanup; | |
2076 | } | |
2077 | } | |
2078 | ||
2079 | bios_to_read = bio_list_size(&bio_list); | |
2080 | if (!bios_to_read) { | |
2081 | /* | |
2082 | * we might have no bios to read just because the pages | |
2083 | * were up to date, or we might have no bios to read because | |
2084 | * the devices were gone. | |
2085 | */ | |
b89e1b01 | 2086 | if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { |
53b381b3 DW |
2087 | __raid_recover_end_io(rbio); |
2088 | goto out; | |
2089 | } else { | |
2090 | goto cleanup; | |
2091 | } | |
2092 | } | |
2093 | ||
2094 | /* | |
2095 | * the bbio may be freed once we submit the last bio. Make sure | |
2096 | * not to touch it after that | |
2097 | */ | |
b89e1b01 | 2098 | atomic_set(&rbio->stripes_pending, bios_to_read); |
53b381b3 DW |
2099 | while (1) { |
2100 | bio = bio_list_pop(&bio_list); | |
2101 | if (!bio) | |
2102 | break; | |
2103 | ||
2104 | bio->bi_private = rbio; | |
2105 | bio->bi_end_io = raid_recover_end_io; | |
2106 | ||
2107 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | |
2108 | BTRFS_WQ_ENDIO_RAID56); | |
2109 | ||
2110 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
2111 | submit_bio(READ, bio); | |
2112 | } | |
2113 | out: | |
2114 | return 0; | |
2115 | ||
2116 | cleanup: | |
b4ee1782 OS |
2117 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
2118 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) | |
53b381b3 DW |
2119 | rbio_orig_end_io(rbio, -EIO, 0); |
2120 | return -EIO; | |
2121 | } | |
2122 | ||
2123 | /* | |
2124 | * the main entry point for reads from the higher layers. This | |
2125 | * is really only called when the normal read path had a failure, | |
2126 | * so we assume the bio they send down corresponds to a failed part | |
2127 | * of the drive. | |
2128 | */ | |
2129 | int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, | |
8e5cfb55 ZL |
2130 | struct btrfs_bio *bbio, u64 stripe_len, |
2131 | int mirror_num, int generic_io) | |
53b381b3 DW |
2132 | { |
2133 | struct btrfs_raid_bio *rbio; | |
2134 | int ret; | |
2135 | ||
8e5cfb55 | 2136 | rbio = alloc_rbio(root, bbio, stripe_len); |
af8e2d1d | 2137 | if (IS_ERR(rbio)) { |
6e9606d2 ZL |
2138 | if (generic_io) |
2139 | btrfs_put_bbio(bbio); | |
53b381b3 | 2140 | return PTR_ERR(rbio); |
af8e2d1d | 2141 | } |
53b381b3 | 2142 | |
1b94b556 | 2143 | rbio->operation = BTRFS_RBIO_READ_REBUILD; |
53b381b3 | 2144 | bio_list_add(&rbio->bio_list, bio); |
4f024f37 | 2145 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
53b381b3 DW |
2146 | |
2147 | rbio->faila = find_logical_bio_stripe(rbio, bio); | |
2148 | if (rbio->faila == -1) { | |
2149 | BUG(); | |
6e9606d2 ZL |
2150 | if (generic_io) |
2151 | btrfs_put_bbio(bbio); | |
53b381b3 DW |
2152 | kfree(rbio); |
2153 | return -EIO; | |
2154 | } | |
2155 | ||
4245215d MX |
2156 | if (generic_io) { |
2157 | btrfs_bio_counter_inc_noblocked(root->fs_info); | |
2158 | rbio->generic_bio_cnt = 1; | |
2159 | } else { | |
6e9606d2 | 2160 | btrfs_get_bbio(bbio); |
4245215d MX |
2161 | } |
2162 | ||
53b381b3 DW |
2163 | /* |
2164 | * reconstruct from the q stripe if they are | |
2165 | * asking for mirror 3 | |
2166 | */ | |
2167 | if (mirror_num == 3) | |
2c8cdd6e | 2168 | rbio->failb = rbio->real_stripes - 2; |
53b381b3 DW |
2169 | |
2170 | ret = lock_stripe_add(rbio); | |
2171 | ||
2172 | /* | |
2173 | * __raid56_parity_recover will end the bio with | |
2174 | * any errors it hits. We don't want to return | |
2175 | * its error value up the stack because our caller | |
2176 | * will end up calling bio_endio with any nonzero | |
2177 | * return | |
2178 | */ | |
2179 | if (ret == 0) | |
2180 | __raid56_parity_recover(rbio); | |
2181 | /* | |
2182 | * our rbio has been added to the list of | |
2183 | * rbios that will be handled after the | |
2184 | * currently lock owner is done | |
2185 | */ | |
2186 | return 0; | |
2187 | ||
2188 | } | |
2189 | ||
2190 | static void rmw_work(struct btrfs_work *work) | |
2191 | { | |
2192 | struct btrfs_raid_bio *rbio; | |
2193 | ||
2194 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2195 | raid56_rmw_stripe(rbio); | |
2196 | } | |
2197 | ||
2198 | static void read_rebuild_work(struct btrfs_work *work) | |
2199 | { | |
2200 | struct btrfs_raid_bio *rbio; | |
2201 | ||
2202 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2203 | __raid56_parity_recover(rbio); | |
2204 | } | |
5a6ac9ea MX |
2205 | |
2206 | /* | |
2207 | * The following code is used to scrub/replace the parity stripe | |
2208 | * | |
2209 | * Note: We need make sure all the pages that add into the scrub/replace | |
2210 | * raid bio are correct and not be changed during the scrub/replace. That | |
2211 | * is those pages just hold metadata or file data with checksum. | |
2212 | */ | |
2213 | ||
2214 | struct btrfs_raid_bio * | |
2215 | raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, | |
8e5cfb55 ZL |
2216 | struct btrfs_bio *bbio, u64 stripe_len, |
2217 | struct btrfs_device *scrub_dev, | |
5a6ac9ea MX |
2218 | unsigned long *dbitmap, int stripe_nsectors) |
2219 | { | |
2220 | struct btrfs_raid_bio *rbio; | |
2221 | int i; | |
2222 | ||
8e5cfb55 | 2223 | rbio = alloc_rbio(root, bbio, stripe_len); |
5a6ac9ea MX |
2224 | if (IS_ERR(rbio)) |
2225 | return NULL; | |
2226 | bio_list_add(&rbio->bio_list, bio); | |
2227 | /* | |
2228 | * This is a special bio which is used to hold the completion handler | |
2229 | * and make the scrub rbio is similar to the other types | |
2230 | */ | |
2231 | ASSERT(!bio->bi_iter.bi_size); | |
2232 | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | |
2233 | ||
2c8cdd6e | 2234 | for (i = 0; i < rbio->real_stripes; i++) { |
5a6ac9ea MX |
2235 | if (bbio->stripes[i].dev == scrub_dev) { |
2236 | rbio->scrubp = i; | |
2237 | break; | |
2238 | } | |
2239 | } | |
2240 | ||
2241 | /* Now we just support the sectorsize equals to page size */ | |
2242 | ASSERT(root->sectorsize == PAGE_SIZE); | |
2243 | ASSERT(rbio->stripe_npages == stripe_nsectors); | |
2244 | bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); | |
2245 | ||
2246 | return rbio; | |
2247 | } | |
2248 | ||
b4ee1782 OS |
2249 | /* Used for both parity scrub and missing. */ |
2250 | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, | |
2251 | u64 logical) | |
5a6ac9ea MX |
2252 | { |
2253 | int stripe_offset; | |
2254 | int index; | |
2255 | ||
8e5cfb55 ZL |
2256 | ASSERT(logical >= rbio->bbio->raid_map[0]); |
2257 | ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + | |
5a6ac9ea | 2258 | rbio->stripe_len * rbio->nr_data); |
8e5cfb55 | 2259 | stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); |
5a6ac9ea MX |
2260 | index = stripe_offset >> PAGE_CACHE_SHIFT; |
2261 | rbio->bio_pages[index] = page; | |
2262 | } | |
2263 | ||
2264 | /* | |
2265 | * We just scrub the parity that we have correct data on the same horizontal, | |
2266 | * so we needn't allocate all pages for all the stripes. | |
2267 | */ | |
2268 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | |
2269 | { | |
2270 | int i; | |
2271 | int bit; | |
2272 | int index; | |
2273 | struct page *page; | |
2274 | ||
2275 | for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { | |
2c8cdd6e | 2276 | for (i = 0; i < rbio->real_stripes; i++) { |
5a6ac9ea MX |
2277 | index = i * rbio->stripe_npages + bit; |
2278 | if (rbio->stripe_pages[index]) | |
2279 | continue; | |
2280 | ||
2281 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2282 | if (!page) | |
2283 | return -ENOMEM; | |
2284 | rbio->stripe_pages[index] = page; | |
2285 | ClearPageUptodate(page); | |
2286 | } | |
2287 | } | |
2288 | return 0; | |
2289 | } | |
2290 | ||
2291 | /* | |
2292 | * end io function used by finish_rmw. When we finally | |
2293 | * get here, we've written a full stripe | |
2294 | */ | |
2295 | static void raid_write_parity_end_io(struct bio *bio, int err) | |
2296 | { | |
2297 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2298 | ||
2299 | if (err) | |
2300 | fail_bio_stripe(rbio, bio); | |
2301 | ||
2302 | bio_put(bio); | |
2303 | ||
2304 | if (!atomic_dec_and_test(&rbio->stripes_pending)) | |
2305 | return; | |
2306 | ||
2307 | err = 0; | |
2308 | ||
2309 | if (atomic_read(&rbio->error)) | |
2310 | err = -EIO; | |
2311 | ||
2312 | rbio_orig_end_io(rbio, err, 0); | |
2313 | } | |
2314 | ||
2315 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | |
2316 | int need_check) | |
2317 | { | |
76035976 | 2318 | struct btrfs_bio *bbio = rbio->bbio; |
2c8cdd6e | 2319 | void *pointers[rbio->real_stripes]; |
76035976 | 2320 | DECLARE_BITMAP(pbitmap, rbio->stripe_npages); |
5a6ac9ea MX |
2321 | int nr_data = rbio->nr_data; |
2322 | int stripe; | |
2323 | int pagenr; | |
2324 | int p_stripe = -1; | |
2325 | int q_stripe = -1; | |
2326 | struct page *p_page = NULL; | |
2327 | struct page *q_page = NULL; | |
2328 | struct bio_list bio_list; | |
2329 | struct bio *bio; | |
76035976 | 2330 | int is_replace = 0; |
5a6ac9ea MX |
2331 | int ret; |
2332 | ||
2333 | bio_list_init(&bio_list); | |
2334 | ||
2c8cdd6e MX |
2335 | if (rbio->real_stripes - rbio->nr_data == 1) { |
2336 | p_stripe = rbio->real_stripes - 1; | |
2337 | } else if (rbio->real_stripes - rbio->nr_data == 2) { | |
2338 | p_stripe = rbio->real_stripes - 2; | |
2339 | q_stripe = rbio->real_stripes - 1; | |
5a6ac9ea MX |
2340 | } else { |
2341 | BUG(); | |
2342 | } | |
2343 | ||
76035976 MX |
2344 | if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { |
2345 | is_replace = 1; | |
2346 | bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); | |
2347 | } | |
2348 | ||
5a6ac9ea MX |
2349 | /* |
2350 | * Because the higher layers(scrubber) are unlikely to | |
2351 | * use this area of the disk again soon, so don't cache | |
2352 | * it. | |
2353 | */ | |
2354 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
2355 | ||
2356 | if (!need_check) | |
2357 | goto writeback; | |
2358 | ||
2359 | p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2360 | if (!p_page) | |
2361 | goto cleanup; | |
2362 | SetPageUptodate(p_page); | |
2363 | ||
2364 | if (q_stripe != -1) { | |
2365 | q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | |
2366 | if (!q_page) { | |
2367 | __free_page(p_page); | |
2368 | goto cleanup; | |
2369 | } | |
2370 | SetPageUptodate(q_page); | |
2371 | } | |
2372 | ||
2373 | atomic_set(&rbio->error, 0); | |
2374 | ||
2375 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | |
2376 | struct page *p; | |
2377 | void *parity; | |
2378 | /* first collect one page from each data stripe */ | |
2379 | for (stripe = 0; stripe < nr_data; stripe++) { | |
2380 | p = page_in_rbio(rbio, stripe, pagenr, 0); | |
2381 | pointers[stripe] = kmap(p); | |
2382 | } | |
2383 | ||
2384 | /* then add the parity stripe */ | |
2385 | pointers[stripe++] = kmap(p_page); | |
2386 | ||
2387 | if (q_stripe != -1) { | |
2388 | ||
2389 | /* | |
2390 | * raid6, add the qstripe and call the | |
2391 | * library function to fill in our p/q | |
2392 | */ | |
2393 | pointers[stripe++] = kmap(q_page); | |
2394 | ||
2c8cdd6e | 2395 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
5a6ac9ea MX |
2396 | pointers); |
2397 | } else { | |
2398 | /* raid5 */ | |
2399 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); | |
2400 | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); | |
2401 | } | |
2402 | ||
2403 | /* Check scrubbing pairty and repair it */ | |
2404 | p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2405 | parity = kmap(p); | |
2406 | if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE)) | |
2407 | memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE); | |
2408 | else | |
2409 | /* Parity is right, needn't writeback */ | |
2410 | bitmap_clear(rbio->dbitmap, pagenr, 1); | |
2411 | kunmap(p); | |
2412 | ||
2c8cdd6e | 2413 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
5a6ac9ea MX |
2414 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
2415 | } | |
2416 | ||
2417 | __free_page(p_page); | |
2418 | if (q_page) | |
2419 | __free_page(q_page); | |
2420 | ||
2421 | writeback: | |
2422 | /* | |
2423 | * time to start writing. Make bios for everything from the | |
2424 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
2425 | * everything else. | |
2426 | */ | |
2427 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | |
2428 | struct page *page; | |
2429 | ||
2430 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2431 | ret = rbio_add_io_page(rbio, &bio_list, | |
2432 | page, rbio->scrubp, pagenr, rbio->stripe_len); | |
2433 | if (ret) | |
2434 | goto cleanup; | |
2435 | } | |
2436 | ||
76035976 MX |
2437 | if (!is_replace) |
2438 | goto submit_write; | |
2439 | ||
2440 | for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { | |
2441 | struct page *page; | |
2442 | ||
2443 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | |
2444 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
2445 | bbio->tgtdev_map[rbio->scrubp], | |
2446 | pagenr, rbio->stripe_len); | |
2447 | if (ret) | |
2448 | goto cleanup; | |
2449 | } | |
2450 | ||
2451 | submit_write: | |
5a6ac9ea MX |
2452 | nr_data = bio_list_size(&bio_list); |
2453 | if (!nr_data) { | |
2454 | /* Every parity is right */ | |
2455 | rbio_orig_end_io(rbio, 0, 0); | |
2456 | return; | |
2457 | } | |
2458 | ||
2459 | atomic_set(&rbio->stripes_pending, nr_data); | |
2460 | ||
2461 | while (1) { | |
2462 | bio = bio_list_pop(&bio_list); | |
2463 | if (!bio) | |
2464 | break; | |
2465 | ||
2466 | bio->bi_private = rbio; | |
2467 | bio->bi_end_io = raid_write_parity_end_io; | |
2468 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
2469 | submit_bio(WRITE, bio); | |
2470 | } | |
2471 | return; | |
2472 | ||
2473 | cleanup: | |
2474 | rbio_orig_end_io(rbio, -EIO, 0); | |
2475 | } | |
2476 | ||
2477 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | |
2478 | { | |
2479 | if (stripe >= 0 && stripe < rbio->nr_data) | |
2480 | return 1; | |
2481 | return 0; | |
2482 | } | |
2483 | ||
2484 | /* | |
2485 | * While we're doing the parity check and repair, we could have errors | |
2486 | * in reading pages off the disk. This checks for errors and if we're | |
2487 | * not able to read the page it'll trigger parity reconstruction. The | |
2488 | * parity scrub will be finished after we've reconstructed the failed | |
2489 | * stripes | |
2490 | */ | |
2491 | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) | |
2492 | { | |
2493 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | |
2494 | goto cleanup; | |
2495 | ||
2496 | if (rbio->faila >= 0 || rbio->failb >= 0) { | |
2497 | int dfail = 0, failp = -1; | |
2498 | ||
2499 | if (is_data_stripe(rbio, rbio->faila)) | |
2500 | dfail++; | |
2501 | else if (is_parity_stripe(rbio->faila)) | |
2502 | failp = rbio->faila; | |
2503 | ||
2504 | if (is_data_stripe(rbio, rbio->failb)) | |
2505 | dfail++; | |
2506 | else if (is_parity_stripe(rbio->failb)) | |
2507 | failp = rbio->failb; | |
2508 | ||
2509 | /* | |
2510 | * Because we can not use a scrubbing parity to repair | |
2511 | * the data, so the capability of the repair is declined. | |
2512 | * (In the case of RAID5, we can not repair anything) | |
2513 | */ | |
2514 | if (dfail > rbio->bbio->max_errors - 1) | |
2515 | goto cleanup; | |
2516 | ||
2517 | /* | |
2518 | * If all data is good, only parity is correctly, just | |
2519 | * repair the parity. | |
2520 | */ | |
2521 | if (dfail == 0) { | |
2522 | finish_parity_scrub(rbio, 0); | |
2523 | return; | |
2524 | } | |
2525 | ||
2526 | /* | |
2527 | * Here means we got one corrupted data stripe and one | |
2528 | * corrupted parity on RAID6, if the corrupted parity | |
2529 | * is scrubbing parity, luckly, use the other one to repair | |
2530 | * the data, or we can not repair the data stripe. | |
2531 | */ | |
2532 | if (failp != rbio->scrubp) | |
2533 | goto cleanup; | |
2534 | ||
2535 | __raid_recover_end_io(rbio); | |
2536 | } else { | |
2537 | finish_parity_scrub(rbio, 1); | |
2538 | } | |
2539 | return; | |
2540 | ||
2541 | cleanup: | |
2542 | rbio_orig_end_io(rbio, -EIO, 0); | |
2543 | } | |
2544 | ||
2545 | /* | |
2546 | * end io for the read phase of the rmw cycle. All the bios here are physical | |
2547 | * stripe bios we've read from the disk so we can recalculate the parity of the | |
2548 | * stripe. | |
2549 | * | |
2550 | * This will usually kick off finish_rmw once all the bios are read in, but it | |
2551 | * may trigger parity reconstruction if we had any errors along the way | |
2552 | */ | |
2553 | static void raid56_parity_scrub_end_io(struct bio *bio, int err) | |
2554 | { | |
2555 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2556 | ||
2557 | if (err) | |
2558 | fail_bio_stripe(rbio, bio); | |
2559 | else | |
2560 | set_bio_pages_uptodate(bio); | |
2561 | ||
2562 | bio_put(bio); | |
2563 | ||
2564 | if (!atomic_dec_and_test(&rbio->stripes_pending)) | |
2565 | return; | |
2566 | ||
2567 | /* | |
2568 | * this will normally call finish_rmw to start our write | |
2569 | * but if there are any failed stripes we'll reconstruct | |
2570 | * from parity first | |
2571 | */ | |
2572 | validate_rbio_for_parity_scrub(rbio); | |
2573 | } | |
2574 | ||
2575 | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) | |
2576 | { | |
2577 | int bios_to_read = 0; | |
5a6ac9ea MX |
2578 | struct bio_list bio_list; |
2579 | int ret; | |
2580 | int pagenr; | |
2581 | int stripe; | |
2582 | struct bio *bio; | |
2583 | ||
2584 | ret = alloc_rbio_essential_pages(rbio); | |
2585 | if (ret) | |
2586 | goto cleanup; | |
2587 | ||
2588 | bio_list_init(&bio_list); | |
2589 | ||
2590 | atomic_set(&rbio->error, 0); | |
2591 | /* | |
2592 | * build a list of bios to read all the missing parts of this | |
2593 | * stripe | |
2594 | */ | |
2c8cdd6e | 2595 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
5a6ac9ea MX |
2596 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
2597 | struct page *page; | |
2598 | /* | |
2599 | * we want to find all the pages missing from | |
2600 | * the rbio and read them from the disk. If | |
2601 | * page_in_rbio finds a page in the bio list | |
2602 | * we don't need to read it off the stripe. | |
2603 | */ | |
2604 | page = page_in_rbio(rbio, stripe, pagenr, 1); | |
2605 | if (page) | |
2606 | continue; | |
2607 | ||
2608 | page = rbio_stripe_page(rbio, stripe, pagenr); | |
2609 | /* | |
2610 | * the bio cache may have handed us an uptodate | |
2611 | * page. If so, be happy and use it | |
2612 | */ | |
2613 | if (PageUptodate(page)) | |
2614 | continue; | |
2615 | ||
2616 | ret = rbio_add_io_page(rbio, &bio_list, page, | |
2617 | stripe, pagenr, rbio->stripe_len); | |
2618 | if (ret) | |
2619 | goto cleanup; | |
2620 | } | |
2621 | } | |
2622 | ||
2623 | bios_to_read = bio_list_size(&bio_list); | |
2624 | if (!bios_to_read) { | |
2625 | /* | |
2626 | * this can happen if others have merged with | |
2627 | * us, it means there is nothing left to read. | |
2628 | * But if there are missing devices it may not be | |
2629 | * safe to do the full stripe write yet. | |
2630 | */ | |
2631 | goto finish; | |
2632 | } | |
2633 | ||
2634 | /* | |
2635 | * the bbio may be freed once we submit the last bio. Make sure | |
2636 | * not to touch it after that | |
2637 | */ | |
2638 | atomic_set(&rbio->stripes_pending, bios_to_read); | |
2639 | while (1) { | |
2640 | bio = bio_list_pop(&bio_list); | |
2641 | if (!bio) | |
2642 | break; | |
2643 | ||
2644 | bio->bi_private = rbio; | |
2645 | bio->bi_end_io = raid56_parity_scrub_end_io; | |
2646 | ||
2647 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | |
2648 | BTRFS_WQ_ENDIO_RAID56); | |
2649 | ||
2650 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
2651 | submit_bio(READ, bio); | |
2652 | } | |
2653 | /* the actual write will happen once the reads are done */ | |
2654 | return; | |
2655 | ||
2656 | cleanup: | |
2657 | rbio_orig_end_io(rbio, -EIO, 0); | |
2658 | return; | |
2659 | ||
2660 | finish: | |
2661 | validate_rbio_for_parity_scrub(rbio); | |
2662 | } | |
2663 | ||
2664 | static void scrub_parity_work(struct btrfs_work *work) | |
2665 | { | |
2666 | struct btrfs_raid_bio *rbio; | |
2667 | ||
2668 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2669 | raid56_parity_scrub_stripe(rbio); | |
2670 | } | |
2671 | ||
2672 | static void async_scrub_parity(struct btrfs_raid_bio *rbio) | |
2673 | { | |
2674 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, | |
2675 | scrub_parity_work, NULL, NULL); | |
2676 | ||
2677 | btrfs_queue_work(rbio->fs_info->rmw_workers, | |
2678 | &rbio->work); | |
2679 | } | |
2680 | ||
2681 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) | |
2682 | { | |
2683 | if (!lock_stripe_add(rbio)) | |
2684 | async_scrub_parity(rbio); | |
2685 | } | |
b4ee1782 OS |
2686 | |
2687 | /* The following code is used for dev replace of a missing RAID 5/6 device. */ | |
2688 | ||
2689 | struct btrfs_raid_bio * | |
2690 | raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio, | |
2691 | struct btrfs_bio *bbio, u64 length) | |
2692 | { | |
2693 | struct btrfs_raid_bio *rbio; | |
2694 | ||
2695 | rbio = alloc_rbio(root, bbio, length); | |
2696 | if (IS_ERR(rbio)) | |
2697 | return NULL; | |
2698 | ||
2699 | rbio->operation = BTRFS_RBIO_REBUILD_MISSING; | |
2700 | bio_list_add(&rbio->bio_list, bio); | |
2701 | /* | |
2702 | * This is a special bio which is used to hold the completion handler | |
2703 | * and make the scrub rbio is similar to the other types | |
2704 | */ | |
2705 | ASSERT(!bio->bi_iter.bi_size); | |
2706 | ||
2707 | rbio->faila = find_logical_bio_stripe(rbio, bio); | |
2708 | if (rbio->faila == -1) { | |
2709 | BUG(); | |
2710 | kfree(rbio); | |
2711 | return NULL; | |
2712 | } | |
2713 | ||
2714 | return rbio; | |
2715 | } | |
2716 | ||
2717 | static void missing_raid56_work(struct btrfs_work *work) | |
2718 | { | |
2719 | struct btrfs_raid_bio *rbio; | |
2720 | ||
2721 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
2722 | __raid56_parity_recover(rbio); | |
2723 | } | |
2724 | ||
2725 | static void async_missing_raid56(struct btrfs_raid_bio *rbio) | |
2726 | { | |
2727 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, | |
2728 | missing_raid56_work, NULL, NULL); | |
2729 | ||
2730 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); | |
2731 | } | |
2732 | ||
2733 | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) | |
2734 | { | |
2735 | if (!lock_stripe_add(rbio)) | |
2736 | async_missing_raid56(rbio); | |
2737 | } |