]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/raid56.c
Btrfs: fix scrub to repair raid6 corruption
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
818e010b 34#include <linux/mm.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
dec95574 152 refcount_t refs;
53b381b3 153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
818e010b
DS
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
53b381b3 224
4ae10b3a
CM
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
227
53b381b3
DW
228 h = table->table;
229
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
53b381b3
DW
234 }
235
236 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
237 if (x)
238 kvfree(x);
53b381b3
DW
239 return 0;
240}
241
4ae10b3a
CM
242/*
243 * caching an rbio means to copy anything from the
244 * bio_pages array into the stripe_pages array. We
245 * use the page uptodate bit in the stripe cache array
246 * to indicate if it has valid data
247 *
248 * once the caching is done, we set the cache ready
249 * bit.
250 */
251static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
252{
253 int i;
254 char *s;
255 char *d;
256 int ret;
257
258 ret = alloc_rbio_pages(rbio);
259 if (ret)
260 return;
261
262 for (i = 0; i < rbio->nr_pages; i++) {
263 if (!rbio->bio_pages[i])
264 continue;
265
266 s = kmap(rbio->bio_pages[i]);
267 d = kmap(rbio->stripe_pages[i]);
268
09cbfeaf 269 memcpy(d, s, PAGE_SIZE);
4ae10b3a
CM
270
271 kunmap(rbio->bio_pages[i]);
272 kunmap(rbio->stripe_pages[i]);
273 SetPageUptodate(rbio->stripe_pages[i]);
274 }
275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
276}
277
53b381b3
DW
278/*
279 * we hash on the first logical address of the stripe
280 */
281static int rbio_bucket(struct btrfs_raid_bio *rbio)
282{
8e5cfb55 283 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
284
285 /*
286 * we shift down quite a bit. We're using byte
287 * addressing, and most of the lower bits are zeros.
288 * This tends to upset hash_64, and it consistently
289 * returns just one or two different values.
290 *
291 * shifting off the lower bits fixes things.
292 */
293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
294}
295
4ae10b3a
CM
296/*
297 * stealing an rbio means taking all the uptodate pages from the stripe
298 * array in the source rbio and putting them into the destination rbio
299 */
300static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
301{
302 int i;
303 struct page *s;
304 struct page *d;
305
306 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
307 return;
308
309 for (i = 0; i < dest->nr_pages; i++) {
310 s = src->stripe_pages[i];
311 if (!s || !PageUptodate(s)) {
312 continue;
313 }
314
315 d = dest->stripe_pages[i];
316 if (d)
317 __free_page(d);
318
319 dest->stripe_pages[i] = s;
320 src->stripe_pages[i] = NULL;
321 }
322}
323
53b381b3
DW
324/*
325 * merging means we take the bio_list from the victim and
326 * splice it into the destination. The victim should
327 * be discarded afterwards.
328 *
329 * must be called with dest->rbio_list_lock held
330 */
331static void merge_rbio(struct btrfs_raid_bio *dest,
332 struct btrfs_raid_bio *victim)
333{
334 bio_list_merge(&dest->bio_list, &victim->bio_list);
335 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 336 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
337 bio_list_init(&victim->bio_list);
338}
339
340/*
4ae10b3a
CM
341 * used to prune items that are in the cache. The caller
342 * must hold the hash table lock.
343 */
344static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
345{
346 int bucket = rbio_bucket(rbio);
347 struct btrfs_stripe_hash_table *table;
348 struct btrfs_stripe_hash *h;
349 int freeit = 0;
350
351 /*
352 * check the bit again under the hash table lock.
353 */
354 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
355 return;
356
357 table = rbio->fs_info->stripe_hash_table;
358 h = table->table + bucket;
359
360 /* hold the lock for the bucket because we may be
361 * removing it from the hash table
362 */
363 spin_lock(&h->lock);
364
365 /*
366 * hold the lock for the bio list because we need
367 * to make sure the bio list is empty
368 */
369 spin_lock(&rbio->bio_list_lock);
370
371 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
372 list_del_init(&rbio->stripe_cache);
373 table->cache_size -= 1;
374 freeit = 1;
375
376 /* if the bio list isn't empty, this rbio is
377 * still involved in an IO. We take it out
378 * of the cache list, and drop the ref that
379 * was held for the list.
380 *
381 * If the bio_list was empty, we also remove
382 * the rbio from the hash_table, and drop
383 * the corresponding ref
384 */
385 if (bio_list_empty(&rbio->bio_list)) {
386 if (!list_empty(&rbio->hash_list)) {
387 list_del_init(&rbio->hash_list);
dec95574 388 refcount_dec(&rbio->refs);
4ae10b3a
CM
389 BUG_ON(!list_empty(&rbio->plug_list));
390 }
391 }
392 }
393
394 spin_unlock(&rbio->bio_list_lock);
395 spin_unlock(&h->lock);
396
397 if (freeit)
398 __free_raid_bio(rbio);
399}
400
401/*
402 * prune a given rbio from the cache
403 */
404static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
405{
406 struct btrfs_stripe_hash_table *table;
407 unsigned long flags;
408
409 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
410 return;
411
412 table = rbio->fs_info->stripe_hash_table;
413
414 spin_lock_irqsave(&table->cache_lock, flags);
415 __remove_rbio_from_cache(rbio);
416 spin_unlock_irqrestore(&table->cache_lock, flags);
417}
418
419/*
420 * remove everything in the cache
421 */
48a3b636 422static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
423{
424 struct btrfs_stripe_hash_table *table;
425 unsigned long flags;
426 struct btrfs_raid_bio *rbio;
427
428 table = info->stripe_hash_table;
429
430 spin_lock_irqsave(&table->cache_lock, flags);
431 while (!list_empty(&table->stripe_cache)) {
432 rbio = list_entry(table->stripe_cache.next,
433 struct btrfs_raid_bio,
434 stripe_cache);
435 __remove_rbio_from_cache(rbio);
436 }
437 spin_unlock_irqrestore(&table->cache_lock, flags);
438}
439
440/*
441 * remove all cached entries and free the hash table
442 * used by unmount
53b381b3
DW
443 */
444void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
445{
446 if (!info->stripe_hash_table)
447 return;
4ae10b3a 448 btrfs_clear_rbio_cache(info);
f749303b 449 kvfree(info->stripe_hash_table);
53b381b3
DW
450 info->stripe_hash_table = NULL;
451}
452
4ae10b3a
CM
453/*
454 * insert an rbio into the stripe cache. It
455 * must have already been prepared by calling
456 * cache_rbio_pages
457 *
458 * If this rbio was already cached, it gets
459 * moved to the front of the lru.
460 *
461 * If the size of the rbio cache is too big, we
462 * prune an item.
463 */
464static void cache_rbio(struct btrfs_raid_bio *rbio)
465{
466 struct btrfs_stripe_hash_table *table;
467 unsigned long flags;
468
469 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 return;
471
472 table = rbio->fs_info->stripe_hash_table;
473
474 spin_lock_irqsave(&table->cache_lock, flags);
475 spin_lock(&rbio->bio_list_lock);
476
477 /* bump our ref if we were not in the list before */
478 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 479 refcount_inc(&rbio->refs);
4ae10b3a
CM
480
481 if (!list_empty(&rbio->stripe_cache)){
482 list_move(&rbio->stripe_cache, &table->stripe_cache);
483 } else {
484 list_add(&rbio->stripe_cache, &table->stripe_cache);
485 table->cache_size += 1;
486 }
487
488 spin_unlock(&rbio->bio_list_lock);
489
490 if (table->cache_size > RBIO_CACHE_SIZE) {
491 struct btrfs_raid_bio *found;
492
493 found = list_entry(table->stripe_cache.prev,
494 struct btrfs_raid_bio,
495 stripe_cache);
496
497 if (found != rbio)
498 __remove_rbio_from_cache(found);
499 }
500
501 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
502}
503
53b381b3
DW
504/*
505 * helper function to run the xor_blocks api. It is only
506 * able to do MAX_XOR_BLOCKS at a time, so we need to
507 * loop through.
508 */
509static void run_xor(void **pages, int src_cnt, ssize_t len)
510{
511 int src_off = 0;
512 int xor_src_cnt = 0;
513 void *dest = pages[src_cnt];
514
515 while(src_cnt > 0) {
516 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518
519 src_cnt -= xor_src_cnt;
520 src_off += xor_src_cnt;
521 }
522}
523
524/*
525 * returns true if the bio list inside this rbio
526 * covers an entire stripe (no rmw required).
527 * Must be called with the bio list lock held, or
528 * at a time when you know it is impossible to add
529 * new bios into the list
530 */
531static int __rbio_is_full(struct btrfs_raid_bio *rbio)
532{
533 unsigned long size = rbio->bio_list_bytes;
534 int ret = 1;
535
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
538
539 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
540 return ret;
541}
542
543static int rbio_is_full(struct btrfs_raid_bio *rbio)
544{
545 unsigned long flags;
546 int ret;
547
548 spin_lock_irqsave(&rbio->bio_list_lock, flags);
549 ret = __rbio_is_full(rbio);
550 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
551 return ret;
552}
553
554/*
555 * returns 1 if it is safe to merge two rbios together.
556 * The merging is safe if the two rbios correspond to
557 * the same stripe and if they are both going in the same
558 * direction (read vs write), and if neither one is
559 * locked for final IO
560 *
561 * The caller is responsible for locking such that
562 * rmw_locked is safe to test
563 */
564static int rbio_can_merge(struct btrfs_raid_bio *last,
565 struct btrfs_raid_bio *cur)
566{
567 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
568 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
569 return 0;
570
4ae10b3a
CM
571 /*
572 * we can't merge with cached rbios, since the
573 * idea is that when we merge the destination
574 * rbio is going to run our IO for us. We can
01327610 575 * steal from cached rbios though, other functions
4ae10b3a
CM
576 * handle that.
577 */
578 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
579 test_bit(RBIO_CACHE_BIT, &cur->flags))
580 return 0;
581
8e5cfb55
ZL
582 if (last->bbio->raid_map[0] !=
583 cur->bbio->raid_map[0])
53b381b3
DW
584 return 0;
585
5a6ac9ea
MX
586 /* we can't merge with different operations */
587 if (last->operation != cur->operation)
588 return 0;
589 /*
590 * We've need read the full stripe from the drive.
591 * check and repair the parity and write the new results.
592 *
593 * We're not allowed to add any new bios to the
594 * bio list here, anyone else that wants to
595 * change this stripe needs to do their own rmw.
596 */
597 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
598 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 599 return 0;
53b381b3 600
b4ee1782
OS
601 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
602 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
603 return 0;
604
53b381b3
DW
605 return 1;
606}
607
b7178a5f
ZL
608static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
609 int index)
610{
611 return stripe * rbio->stripe_npages + index;
612}
613
614/*
615 * these are just the pages from the rbio array, not from anything
616 * the FS sent down to us
617 */
618static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
619 int index)
620{
621 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
622}
623
53b381b3
DW
624/*
625 * helper to index into the pstripe
626 */
627static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
628{
b7178a5f 629 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
630}
631
632/*
633 * helper to index into the qstripe, returns null
634 * if there is no qstripe
635 */
636static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
637{
2c8cdd6e 638 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 639 return NULL;
b7178a5f 640 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
641}
642
643/*
644 * The first stripe in the table for a logical address
645 * has the lock. rbios are added in one of three ways:
646 *
647 * 1) Nobody has the stripe locked yet. The rbio is given
648 * the lock and 0 is returned. The caller must start the IO
649 * themselves.
650 *
651 * 2) Someone has the stripe locked, but we're able to merge
652 * with the lock owner. The rbio is freed and the IO will
653 * start automatically along with the existing rbio. 1 is returned.
654 *
655 * 3) Someone has the stripe locked, but we're not able to merge.
656 * The rbio is added to the lock owner's plug list, or merged into
657 * an rbio already on the plug list. When the lock owner unlocks,
658 * the next rbio on the list is run and the IO is started automatically.
659 * 1 is returned
660 *
661 * If we return 0, the caller still owns the rbio and must continue with
662 * IO submission. If we return 1, the caller must assume the rbio has
663 * already been freed.
664 */
665static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
666{
667 int bucket = rbio_bucket(rbio);
668 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
669 struct btrfs_raid_bio *cur;
670 struct btrfs_raid_bio *pending;
671 unsigned long flags;
53b381b3 672 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 673 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 674 int ret = 0;
53b381b3
DW
675
676 spin_lock_irqsave(&h->lock, flags);
677 list_for_each_entry(cur, &h->hash_list, hash_list) {
8e5cfb55 678 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
679 spin_lock(&cur->bio_list_lock);
680
4ae10b3a
CM
681 /* can we steal this cached rbio's pages? */
682 if (bio_list_empty(&cur->bio_list) &&
683 list_empty(&cur->plug_list) &&
684 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
685 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
686 list_del_init(&cur->hash_list);
dec95574 687 refcount_dec(&cur->refs);
4ae10b3a
CM
688
689 steal_rbio(cur, rbio);
690 cache_drop = cur;
691 spin_unlock(&cur->bio_list_lock);
692
693 goto lockit;
694 }
695
53b381b3
DW
696 /* can we merge into the lock owner? */
697 if (rbio_can_merge(cur, rbio)) {
698 merge_rbio(cur, rbio);
699 spin_unlock(&cur->bio_list_lock);
700 freeit = rbio;
701 ret = 1;
702 goto out;
703 }
704
4ae10b3a 705
53b381b3
DW
706 /*
707 * we couldn't merge with the running
708 * rbio, see if we can merge with the
709 * pending ones. We don't have to
710 * check for rmw_locked because there
711 * is no way they are inside finish_rmw
712 * right now
713 */
714 list_for_each_entry(pending, &cur->plug_list,
715 plug_list) {
716 if (rbio_can_merge(pending, rbio)) {
717 merge_rbio(pending, rbio);
718 spin_unlock(&cur->bio_list_lock);
719 freeit = rbio;
720 ret = 1;
721 goto out;
722 }
723 }
724
725 /* no merging, put us on the tail of the plug list,
726 * our rbio will be started with the currently
727 * running rbio unlocks
728 */
729 list_add_tail(&rbio->plug_list, &cur->plug_list);
730 spin_unlock(&cur->bio_list_lock);
731 ret = 1;
732 goto out;
733 }
734 }
4ae10b3a 735lockit:
dec95574 736 refcount_inc(&rbio->refs);
53b381b3
DW
737 list_add(&rbio->hash_list, &h->hash_list);
738out:
739 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
740 if (cache_drop)
741 remove_rbio_from_cache(cache_drop);
53b381b3
DW
742 if (freeit)
743 __free_raid_bio(freeit);
744 return ret;
745}
746
747/*
748 * called as rmw or parity rebuild is completed. If the plug list has more
749 * rbios waiting for this stripe, the next one on the list will be started
750 */
751static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
752{
753 int bucket;
754 struct btrfs_stripe_hash *h;
755 unsigned long flags;
4ae10b3a 756 int keep_cache = 0;
53b381b3
DW
757
758 bucket = rbio_bucket(rbio);
759 h = rbio->fs_info->stripe_hash_table->table + bucket;
760
4ae10b3a
CM
761 if (list_empty(&rbio->plug_list))
762 cache_rbio(rbio);
763
53b381b3
DW
764 spin_lock_irqsave(&h->lock, flags);
765 spin_lock(&rbio->bio_list_lock);
766
767 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
768 /*
769 * if we're still cached and there is no other IO
770 * to perform, just leave this rbio here for others
771 * to steal from later
772 */
773 if (list_empty(&rbio->plug_list) &&
774 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
775 keep_cache = 1;
776 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
777 BUG_ON(!bio_list_empty(&rbio->bio_list));
778 goto done;
779 }
53b381b3
DW
780
781 list_del_init(&rbio->hash_list);
dec95574 782 refcount_dec(&rbio->refs);
53b381b3
DW
783
784 /*
785 * we use the plug list to hold all the rbios
786 * waiting for the chance to lock this stripe.
787 * hand the lock over to one of them.
788 */
789 if (!list_empty(&rbio->plug_list)) {
790 struct btrfs_raid_bio *next;
791 struct list_head *head = rbio->plug_list.next;
792
793 next = list_entry(head, struct btrfs_raid_bio,
794 plug_list);
795
796 list_del_init(&rbio->plug_list);
797
798 list_add(&next->hash_list, &h->hash_list);
dec95574 799 refcount_inc(&next->refs);
53b381b3
DW
800 spin_unlock(&rbio->bio_list_lock);
801 spin_unlock_irqrestore(&h->lock, flags);
802
1b94b556 803 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 804 async_read_rebuild(next);
b4ee1782
OS
805 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
806 steal_rbio(rbio, next);
807 async_read_rebuild(next);
808 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 809 steal_rbio(rbio, next);
53b381b3 810 async_rmw_stripe(next);
5a6ac9ea
MX
811 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
812 steal_rbio(rbio, next);
813 async_scrub_parity(next);
4ae10b3a 814 }
53b381b3
DW
815
816 goto done_nolock;
53b381b3
DW
817 }
818 }
4ae10b3a 819done:
53b381b3
DW
820 spin_unlock(&rbio->bio_list_lock);
821 spin_unlock_irqrestore(&h->lock, flags);
822
823done_nolock:
4ae10b3a
CM
824 if (!keep_cache)
825 remove_rbio_from_cache(rbio);
53b381b3
DW
826}
827
828static void __free_raid_bio(struct btrfs_raid_bio *rbio)
829{
830 int i;
831
dec95574 832 if (!refcount_dec_and_test(&rbio->refs))
53b381b3
DW
833 return;
834
4ae10b3a 835 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
836 WARN_ON(!list_empty(&rbio->hash_list));
837 WARN_ON(!bio_list_empty(&rbio->bio_list));
838
839 for (i = 0; i < rbio->nr_pages; i++) {
840 if (rbio->stripe_pages[i]) {
841 __free_page(rbio->stripe_pages[i]);
842 rbio->stripe_pages[i] = NULL;
843 }
844 }
af8e2d1d 845
6e9606d2 846 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
847 kfree(rbio);
848}
849
850static void free_raid_bio(struct btrfs_raid_bio *rbio)
851{
852 unlock_stripe(rbio);
853 __free_raid_bio(rbio);
854}
855
856/*
857 * this frees the rbio and runs through all the bios in the
858 * bio_list and calls end_io on them
859 */
4e4cbee9 860static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
861{
862 struct bio *cur = bio_list_get(&rbio->bio_list);
863 struct bio *next;
4245215d
MX
864
865 if (rbio->generic_bio_cnt)
866 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
867
53b381b3
DW
868 free_raid_bio(rbio);
869
870 while (cur) {
871 next = cur->bi_next;
872 cur->bi_next = NULL;
4e4cbee9 873 cur->bi_status = err;
4246a0b6 874 bio_endio(cur);
53b381b3
DW
875 cur = next;
876 }
877}
878
879/*
880 * end io function used by finish_rmw. When we finally
881 * get here, we've written a full stripe
882 */
4246a0b6 883static void raid_write_end_io(struct bio *bio)
53b381b3
DW
884{
885 struct btrfs_raid_bio *rbio = bio->bi_private;
4e4cbee9 886 blk_status_t err = bio->bi_status;
a6111d11 887 int max_errors;
53b381b3
DW
888
889 if (err)
890 fail_bio_stripe(rbio, bio);
891
892 bio_put(bio);
893
b89e1b01 894 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
895 return;
896
58efbc9f 897 err = BLK_STS_OK;
53b381b3
DW
898
899 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
900 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
901 0 : rbio->bbio->max_errors;
902 if (atomic_read(&rbio->error) > max_errors)
4e4cbee9 903 err = BLK_STS_IOERR;
53b381b3 904
4246a0b6 905 rbio_orig_end_io(rbio, err);
53b381b3
DW
906}
907
908/*
909 * the read/modify/write code wants to use the original bio for
910 * any pages it included, and then use the rbio for everything
911 * else. This function decides if a given index (stripe number)
912 * and page number in that stripe fall inside the original bio
913 * or the rbio.
914 *
915 * if you set bio_list_only, you'll get a NULL back for any ranges
916 * that are outside the bio_list
917 *
918 * This doesn't take any refs on anything, you get a bare page pointer
919 * and the caller must bump refs as required.
920 *
921 * You must call index_rbio_pages once before you can trust
922 * the answers from this function.
923 */
924static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
925 int index, int pagenr, int bio_list_only)
926{
927 int chunk_page;
928 struct page *p = NULL;
929
930 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
931
932 spin_lock_irq(&rbio->bio_list_lock);
933 p = rbio->bio_pages[chunk_page];
934 spin_unlock_irq(&rbio->bio_list_lock);
935
936 if (p || bio_list_only)
937 return p;
938
939 return rbio->stripe_pages[chunk_page];
940}
941
942/*
943 * number of pages we need for the entire stripe across all the
944 * drives
945 */
946static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
947{
09cbfeaf 948 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
949}
950
951/*
952 * allocation and initial setup for the btrfs_raid_bio. Not
953 * this does not allocate any pages for rbio->pages.
954 */
2ff7e61e
JM
955static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
956 struct btrfs_bio *bbio,
957 u64 stripe_len)
53b381b3
DW
958{
959 struct btrfs_raid_bio *rbio;
960 int nr_data = 0;
2c8cdd6e
MX
961 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
962 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 963 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
964 void *p;
965
5a6ac9ea 966 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
967 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
968 sizeof(long), GFP_NOFS);
af8e2d1d 969 if (!rbio)
53b381b3 970 return ERR_PTR(-ENOMEM);
53b381b3
DW
971
972 bio_list_init(&rbio->bio_list);
973 INIT_LIST_HEAD(&rbio->plug_list);
974 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 975 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
976 INIT_LIST_HEAD(&rbio->hash_list);
977 rbio->bbio = bbio;
2ff7e61e 978 rbio->fs_info = fs_info;
53b381b3
DW
979 rbio->stripe_len = stripe_len;
980 rbio->nr_pages = num_pages;
2c8cdd6e 981 rbio->real_stripes = real_stripes;
5a6ac9ea 982 rbio->stripe_npages = stripe_npages;
53b381b3
DW
983 rbio->faila = -1;
984 rbio->failb = -1;
dec95574 985 refcount_set(&rbio->refs, 1);
b89e1b01
MX
986 atomic_set(&rbio->error, 0);
987 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
988
989 /*
990 * the stripe_pages and bio_pages array point to the extra
991 * memory we allocated past the end of the rbio
992 */
993 p = rbio + 1;
994 rbio->stripe_pages = p;
995 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 996 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 997
10f11900
ZL
998 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
999 nr_data = real_stripes - 1;
1000 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1001 nr_data = real_stripes - 2;
53b381b3 1002 else
10f11900 1003 BUG();
53b381b3
DW
1004
1005 rbio->nr_data = nr_data;
1006 return rbio;
1007}
1008
1009/* allocate pages for all the stripes in the bio, including parity */
1010static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1011{
1012 int i;
1013 struct page *page;
1014
1015 for (i = 0; i < rbio->nr_pages; i++) {
1016 if (rbio->stripe_pages[i])
1017 continue;
1018 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1019 if (!page)
1020 return -ENOMEM;
1021 rbio->stripe_pages[i] = page;
53b381b3
DW
1022 }
1023 return 0;
1024}
1025
b7178a5f 1026/* only allocate pages for p/q stripes */
53b381b3
DW
1027static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1028{
1029 int i;
1030 struct page *page;
1031
b7178a5f 1032 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1033
1034 for (; i < rbio->nr_pages; i++) {
1035 if (rbio->stripe_pages[i])
1036 continue;
1037 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1038 if (!page)
1039 return -ENOMEM;
1040 rbio->stripe_pages[i] = page;
1041 }
1042 return 0;
1043}
1044
1045/*
1046 * add a single page from a specific stripe into our list of bios for IO
1047 * this will try to merge into existing bios if possible, and returns
1048 * zero if all went well.
1049 */
48a3b636
ES
1050static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1051 struct bio_list *bio_list,
1052 struct page *page,
1053 int stripe_nr,
1054 unsigned long page_index,
1055 unsigned long bio_max_len)
53b381b3
DW
1056{
1057 struct bio *last = bio_list->tail;
1058 u64 last_end = 0;
1059 int ret;
1060 struct bio *bio;
1061 struct btrfs_bio_stripe *stripe;
1062 u64 disk_start;
1063
1064 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1065 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1066
1067 /* if the device is missing, just fail this stripe */
1068 if (!stripe->dev->bdev)
1069 return fail_rbio_index(rbio, stripe_nr);
1070
1071 /* see if we can add this page onto our existing bio */
1072 if (last) {
4f024f37
KO
1073 last_end = (u64)last->bi_iter.bi_sector << 9;
1074 last_end += last->bi_iter.bi_size;
53b381b3
DW
1075
1076 /*
1077 * we can't merge these if they are from different
1078 * devices or if they are not contiguous
1079 */
1080 if (last_end == disk_start && stripe->dev->bdev &&
4e4cbee9 1081 !last->bi_status &&
74d46992
CH
1082 last->bi_disk == stripe->dev->bdev->bd_disk &&
1083 last->bi_partno == stripe->dev->bdev->bd_partno) {
09cbfeaf
KS
1084 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1085 if (ret == PAGE_SIZE)
53b381b3
DW
1086 return 0;
1087 }
1088 }
1089
1090 /* put a new bio on the list */
c5e4c3d7 1091 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
4f024f37 1092 bio->bi_iter.bi_size = 0;
74d46992 1093 bio_set_dev(bio, stripe->dev->bdev);
4f024f37 1094 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1095
09cbfeaf 1096 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1097 bio_list_add(bio_list, bio);
1098 return 0;
1099}
1100
1101/*
1102 * while we're doing the read/modify/write cycle, we could
1103 * have errors in reading pages off the disk. This checks
1104 * for errors and if we're not able to read the page it'll
1105 * trigger parity reconstruction. The rmw will be finished
1106 * after we've reconstructed the failed stripes
1107 */
1108static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1109{
1110 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1111 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1112 __raid56_parity_recover(rbio);
1113 } else {
1114 finish_rmw(rbio);
1115 }
1116}
1117
53b381b3
DW
1118/*
1119 * helper function to walk our bio list and populate the bio_pages array with
1120 * the result. This seems expensive, but it is faster than constantly
1121 * searching through the bio list as we setup the IO in finish_rmw or stripe
1122 * reconstruction.
1123 *
1124 * This must be called before you trust the answers from page_in_rbio
1125 */
1126static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1127{
1128 struct bio *bio;
1129 u64 start;
1130 unsigned long stripe_offset;
1131 unsigned long page_index;
53b381b3
DW
1132
1133 spin_lock_irq(&rbio->bio_list_lock);
1134 bio_list_for_each(bio, &rbio->bio_list) {
6592e58c
FM
1135 struct bio_vec bvec;
1136 struct bvec_iter iter;
1137 int i = 0;
1138
4f024f37 1139 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1140 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1141 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1142
6592e58c
FM
1143 if (bio_flagged(bio, BIO_CLONED))
1144 bio->bi_iter = btrfs_io_bio(bio)->iter;
1145
1146 bio_for_each_segment(bvec, bio, iter) {
1147 rbio->bio_pages[page_index + i] = bvec.bv_page;
1148 i++;
1149 }
53b381b3
DW
1150 }
1151 spin_unlock_irq(&rbio->bio_list_lock);
1152}
1153
1154/*
1155 * this is called from one of two situations. We either
1156 * have a full stripe from the higher layers, or we've read all
1157 * the missing bits off disk.
1158 *
1159 * This will calculate the parity and then send down any
1160 * changed blocks.
1161 */
1162static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1163{
1164 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1165 void *pointers[rbio->real_stripes];
53b381b3
DW
1166 int nr_data = rbio->nr_data;
1167 int stripe;
1168 int pagenr;
1169 int p_stripe = -1;
1170 int q_stripe = -1;
1171 struct bio_list bio_list;
1172 struct bio *bio;
53b381b3
DW
1173 int ret;
1174
1175 bio_list_init(&bio_list);
1176
2c8cdd6e
MX
1177 if (rbio->real_stripes - rbio->nr_data == 1) {
1178 p_stripe = rbio->real_stripes - 1;
1179 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1180 p_stripe = rbio->real_stripes - 2;
1181 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1182 } else {
1183 BUG();
1184 }
1185
1186 /* at this point we either have a full stripe,
1187 * or we've read the full stripe from the drive.
1188 * recalculate the parity and write the new results.
1189 *
1190 * We're not allowed to add any new bios to the
1191 * bio list here, anyone else that wants to
1192 * change this stripe needs to do their own rmw.
1193 */
1194 spin_lock_irq(&rbio->bio_list_lock);
1195 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1196 spin_unlock_irq(&rbio->bio_list_lock);
1197
b89e1b01 1198 atomic_set(&rbio->error, 0);
53b381b3
DW
1199
1200 /*
1201 * now that we've set rmw_locked, run through the
1202 * bio list one last time and map the page pointers
4ae10b3a
CM
1203 *
1204 * We don't cache full rbios because we're assuming
1205 * the higher layers are unlikely to use this area of
1206 * the disk again soon. If they do use it again,
1207 * hopefully they will send another full bio.
53b381b3
DW
1208 */
1209 index_rbio_pages(rbio);
4ae10b3a
CM
1210 if (!rbio_is_full(rbio))
1211 cache_rbio_pages(rbio);
1212 else
1213 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1214
915e2290 1215 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1216 struct page *p;
1217 /* first collect one page from each data stripe */
1218 for (stripe = 0; stripe < nr_data; stripe++) {
1219 p = page_in_rbio(rbio, stripe, pagenr, 0);
1220 pointers[stripe] = kmap(p);
1221 }
1222
1223 /* then add the parity stripe */
1224 p = rbio_pstripe_page(rbio, pagenr);
1225 SetPageUptodate(p);
1226 pointers[stripe++] = kmap(p);
1227
1228 if (q_stripe != -1) {
1229
1230 /*
1231 * raid6, add the qstripe and call the
1232 * library function to fill in our p/q
1233 */
1234 p = rbio_qstripe_page(rbio, pagenr);
1235 SetPageUptodate(p);
1236 pointers[stripe++] = kmap(p);
1237
2c8cdd6e 1238 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1239 pointers);
1240 } else {
1241 /* raid5 */
1242 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 1243 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1244 }
1245
1246
2c8cdd6e 1247 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1248 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1249 }
1250
1251 /*
1252 * time to start writing. Make bios for everything from the
1253 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1254 * everything else.
1255 */
2c8cdd6e 1256 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1257 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1258 struct page *page;
1259 if (stripe < rbio->nr_data) {
1260 page = page_in_rbio(rbio, stripe, pagenr, 1);
1261 if (!page)
1262 continue;
1263 } else {
1264 page = rbio_stripe_page(rbio, stripe, pagenr);
1265 }
1266
1267 ret = rbio_add_io_page(rbio, &bio_list,
1268 page, stripe, pagenr, rbio->stripe_len);
1269 if (ret)
1270 goto cleanup;
1271 }
1272 }
1273
2c8cdd6e
MX
1274 if (likely(!bbio->num_tgtdevs))
1275 goto write_data;
1276
1277 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1278 if (!bbio->tgtdev_map[stripe])
1279 continue;
1280
915e2290 1281 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1282 struct page *page;
1283 if (stripe < rbio->nr_data) {
1284 page = page_in_rbio(rbio, stripe, pagenr, 1);
1285 if (!page)
1286 continue;
1287 } else {
1288 page = rbio_stripe_page(rbio, stripe, pagenr);
1289 }
1290
1291 ret = rbio_add_io_page(rbio, &bio_list, page,
1292 rbio->bbio->tgtdev_map[stripe],
1293 pagenr, rbio->stripe_len);
1294 if (ret)
1295 goto cleanup;
1296 }
1297 }
1298
1299write_data:
b89e1b01
MX
1300 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1301 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1302
1303 while (1) {
1304 bio = bio_list_pop(&bio_list);
1305 if (!bio)
1306 break;
1307
1308 bio->bi_private = rbio;
1309 bio->bi_end_io = raid_write_end_io;
37226b21 1310 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
1311
1312 submit_bio(bio);
53b381b3
DW
1313 }
1314 return;
1315
1316cleanup:
58efbc9f 1317 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1318
1319 while ((bio = bio_list_pop(&bio_list)))
1320 bio_put(bio);
53b381b3
DW
1321}
1322
1323/*
1324 * helper to find the stripe number for a given bio. Used to figure out which
1325 * stripe has failed. This expects the bio to correspond to a physical disk,
1326 * so it looks up based on physical sector numbers.
1327 */
1328static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1329 struct bio *bio)
1330{
4f024f37 1331 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1332 u64 stripe_start;
1333 int i;
1334 struct btrfs_bio_stripe *stripe;
1335
1336 physical <<= 9;
1337
1338 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1339 stripe = &rbio->bbio->stripes[i];
1340 stripe_start = stripe->physical;
1341 if (physical >= stripe_start &&
2c8cdd6e 1342 physical < stripe_start + rbio->stripe_len &&
74d46992
CH
1343 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1344 bio->bi_partno == stripe->dev->bdev->bd_partno) {
53b381b3
DW
1345 return i;
1346 }
1347 }
1348 return -1;
1349}
1350
1351/*
1352 * helper to find the stripe number for a given
1353 * bio (before mapping). Used to figure out which stripe has
1354 * failed. This looks up based on logical block numbers.
1355 */
1356static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1357 struct bio *bio)
1358{
4f024f37 1359 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1360 u64 stripe_start;
1361 int i;
1362
1363 logical <<= 9;
1364
1365 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1366 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1367 if (logical >= stripe_start &&
1368 logical < stripe_start + rbio->stripe_len) {
1369 return i;
1370 }
1371 }
1372 return -1;
1373}
1374
1375/*
1376 * returns -EIO if we had too many failures
1377 */
1378static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1379{
1380 unsigned long flags;
1381 int ret = 0;
1382
1383 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1384
1385 /* we already know this stripe is bad, move on */
1386 if (rbio->faila == failed || rbio->failb == failed)
1387 goto out;
1388
1389 if (rbio->faila == -1) {
1390 /* first failure on this rbio */
1391 rbio->faila = failed;
b89e1b01 1392 atomic_inc(&rbio->error);
53b381b3
DW
1393 } else if (rbio->failb == -1) {
1394 /* second failure on this rbio */
1395 rbio->failb = failed;
b89e1b01 1396 atomic_inc(&rbio->error);
53b381b3
DW
1397 } else {
1398 ret = -EIO;
1399 }
1400out:
1401 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1402
1403 return ret;
1404}
1405
1406/*
1407 * helper to fail a stripe based on a physical disk
1408 * bio.
1409 */
1410static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1411 struct bio *bio)
1412{
1413 int failed = find_bio_stripe(rbio, bio);
1414
1415 if (failed < 0)
1416 return -EIO;
1417
1418 return fail_rbio_index(rbio, failed);
1419}
1420
1421/*
1422 * this sets each page in the bio uptodate. It should only be used on private
1423 * rbio pages, nothing that comes in from the higher layers
1424 */
1425static void set_bio_pages_uptodate(struct bio *bio)
1426{
6592e58c
FM
1427 struct bio_vec bvec;
1428 struct bvec_iter iter;
1429
1430 if (bio_flagged(bio, BIO_CLONED))
1431 bio->bi_iter = btrfs_io_bio(bio)->iter;
53b381b3 1432
6592e58c
FM
1433 bio_for_each_segment(bvec, bio, iter)
1434 SetPageUptodate(bvec.bv_page);
53b381b3
DW
1435}
1436
1437/*
1438 * end io for the read phase of the rmw cycle. All the bios here are physical
1439 * stripe bios we've read from the disk so we can recalculate the parity of the
1440 * stripe.
1441 *
1442 * This will usually kick off finish_rmw once all the bios are read in, but it
1443 * may trigger parity reconstruction if we had any errors along the way
1444 */
4246a0b6 1445static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1446{
1447 struct btrfs_raid_bio *rbio = bio->bi_private;
1448
4e4cbee9 1449 if (bio->bi_status)
53b381b3
DW
1450 fail_bio_stripe(rbio, bio);
1451 else
1452 set_bio_pages_uptodate(bio);
1453
1454 bio_put(bio);
1455
b89e1b01 1456 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1457 return;
1458
b89e1b01 1459 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1460 goto cleanup;
1461
1462 /*
1463 * this will normally call finish_rmw to start our write
1464 * but if there are any failed stripes we'll reconstruct
1465 * from parity first
1466 */
1467 validate_rbio_for_rmw(rbio);
1468 return;
1469
1470cleanup:
1471
58efbc9f 1472 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1473}
1474
1475static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1476{
0b246afa
JM
1477 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1478 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1479}
1480
1481static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1482{
9e0af237
LB
1483 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484 read_rebuild_work, NULL, NULL);
53b381b3 1485
0b246afa 1486 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1487}
1488
1489/*
1490 * the stripe must be locked by the caller. It will
1491 * unlock after all the writes are done
1492 */
1493static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1494{
1495 int bios_to_read = 0;
53b381b3
DW
1496 struct bio_list bio_list;
1497 int ret;
53b381b3
DW
1498 int pagenr;
1499 int stripe;
1500 struct bio *bio;
1501
1502 bio_list_init(&bio_list);
1503
1504 ret = alloc_rbio_pages(rbio);
1505 if (ret)
1506 goto cleanup;
1507
1508 index_rbio_pages(rbio);
1509
b89e1b01 1510 atomic_set(&rbio->error, 0);
53b381b3
DW
1511 /*
1512 * build a list of bios to read all the missing parts of this
1513 * stripe
1514 */
1515 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1516 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1517 struct page *page;
1518 /*
1519 * we want to find all the pages missing from
1520 * the rbio and read them from the disk. If
1521 * page_in_rbio finds a page in the bio list
1522 * we don't need to read it off the stripe.
1523 */
1524 page = page_in_rbio(rbio, stripe, pagenr, 1);
1525 if (page)
1526 continue;
1527
1528 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1529 /*
1530 * the bio cache may have handed us an uptodate
1531 * page. If so, be happy and use it
1532 */
1533 if (PageUptodate(page))
1534 continue;
1535
53b381b3
DW
1536 ret = rbio_add_io_page(rbio, &bio_list, page,
1537 stripe, pagenr, rbio->stripe_len);
1538 if (ret)
1539 goto cleanup;
1540 }
1541 }
1542
1543 bios_to_read = bio_list_size(&bio_list);
1544 if (!bios_to_read) {
1545 /*
1546 * this can happen if others have merged with
1547 * us, it means there is nothing left to read.
1548 * But if there are missing devices it may not be
1549 * safe to do the full stripe write yet.
1550 */
1551 goto finish;
1552 }
1553
1554 /*
1555 * the bbio may be freed once we submit the last bio. Make sure
1556 * not to touch it after that
1557 */
b89e1b01 1558 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1559 while (1) {
1560 bio = bio_list_pop(&bio_list);
1561 if (!bio)
1562 break;
1563
1564 bio->bi_private = rbio;
1565 bio->bi_end_io = raid_rmw_end_io;
37226b21 1566 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 1567
0b246afa 1568 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1569
4e49ea4a 1570 submit_bio(bio);
53b381b3
DW
1571 }
1572 /* the actual write will happen once the reads are done */
1573 return 0;
1574
1575cleanup:
58efbc9f 1576 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1577
1578 while ((bio = bio_list_pop(&bio_list)))
1579 bio_put(bio);
1580
53b381b3
DW
1581 return -EIO;
1582
1583finish:
1584 validate_rbio_for_rmw(rbio);
1585 return 0;
1586}
1587
1588/*
1589 * if the upper layers pass in a full stripe, we thank them by only allocating
1590 * enough pages to hold the parity, and sending it all down quickly.
1591 */
1592static int full_stripe_write(struct btrfs_raid_bio *rbio)
1593{
1594 int ret;
1595
1596 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1597 if (ret) {
1598 __free_raid_bio(rbio);
53b381b3 1599 return ret;
3cd846d1 1600 }
53b381b3
DW
1601
1602 ret = lock_stripe_add(rbio);
1603 if (ret == 0)
1604 finish_rmw(rbio);
1605 return 0;
1606}
1607
1608/*
1609 * partial stripe writes get handed over to async helpers.
1610 * We're really hoping to merge a few more writes into this
1611 * rbio before calculating new parity
1612 */
1613static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1614{
1615 int ret;
1616
1617 ret = lock_stripe_add(rbio);
1618 if (ret == 0)
1619 async_rmw_stripe(rbio);
1620 return 0;
1621}
1622
1623/*
1624 * sometimes while we were reading from the drive to
1625 * recalculate parity, enough new bios come into create
1626 * a full stripe. So we do a check here to see if we can
1627 * go directly to finish_rmw
1628 */
1629static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1630{
1631 /* head off into rmw land if we don't have a full stripe */
1632 if (!rbio_is_full(rbio))
1633 return partial_stripe_write(rbio);
1634 return full_stripe_write(rbio);
1635}
1636
6ac0f488
CM
1637/*
1638 * We use plugging call backs to collect full stripes.
1639 * Any time we get a partial stripe write while plugged
1640 * we collect it into a list. When the unplug comes down,
1641 * we sort the list by logical block number and merge
1642 * everything we can into the same rbios
1643 */
1644struct btrfs_plug_cb {
1645 struct blk_plug_cb cb;
1646 struct btrfs_fs_info *info;
1647 struct list_head rbio_list;
1648 struct btrfs_work work;
1649};
1650
1651/*
1652 * rbios on the plug list are sorted for easier merging.
1653 */
1654static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1655{
1656 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1657 plug_list);
1658 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1659 plug_list);
4f024f37
KO
1660 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1661 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1662
1663 if (a_sector < b_sector)
1664 return -1;
1665 if (a_sector > b_sector)
1666 return 1;
1667 return 0;
1668}
1669
1670static void run_plug(struct btrfs_plug_cb *plug)
1671{
1672 struct btrfs_raid_bio *cur;
1673 struct btrfs_raid_bio *last = NULL;
1674
1675 /*
1676 * sort our plug list then try to merge
1677 * everything we can in hopes of creating full
1678 * stripes.
1679 */
1680 list_sort(NULL, &plug->rbio_list, plug_cmp);
1681 while (!list_empty(&plug->rbio_list)) {
1682 cur = list_entry(plug->rbio_list.next,
1683 struct btrfs_raid_bio, plug_list);
1684 list_del_init(&cur->plug_list);
1685
1686 if (rbio_is_full(cur)) {
1687 /* we have a full stripe, send it down */
1688 full_stripe_write(cur);
1689 continue;
1690 }
1691 if (last) {
1692 if (rbio_can_merge(last, cur)) {
1693 merge_rbio(last, cur);
1694 __free_raid_bio(cur);
1695 continue;
1696
1697 }
1698 __raid56_parity_write(last);
1699 }
1700 last = cur;
1701 }
1702 if (last) {
1703 __raid56_parity_write(last);
1704 }
1705 kfree(plug);
1706}
1707
1708/*
1709 * if the unplug comes from schedule, we have to push the
1710 * work off to a helper thread
1711 */
1712static void unplug_work(struct btrfs_work *work)
1713{
1714 struct btrfs_plug_cb *plug;
1715 plug = container_of(work, struct btrfs_plug_cb, work);
1716 run_plug(plug);
1717}
1718
1719static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1720{
1721 struct btrfs_plug_cb *plug;
1722 plug = container_of(cb, struct btrfs_plug_cb, cb);
1723
1724 if (from_schedule) {
9e0af237
LB
1725 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1726 unplug_work, NULL, NULL);
d05a33ac
QW
1727 btrfs_queue_work(plug->info->rmw_workers,
1728 &plug->work);
6ac0f488
CM
1729 return;
1730 }
1731 run_plug(plug);
1732}
1733
53b381b3
DW
1734/*
1735 * our main entry point for writes from the rest of the FS.
1736 */
2ff7e61e 1737int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1738 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1739{
1740 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1741 struct btrfs_plug_cb *plug = NULL;
1742 struct blk_plug_cb *cb;
4245215d 1743 int ret;
53b381b3 1744
2ff7e61e 1745 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1746 if (IS_ERR(rbio)) {
6e9606d2 1747 btrfs_put_bbio(bbio);
53b381b3 1748 return PTR_ERR(rbio);
af8e2d1d 1749 }
53b381b3 1750 bio_list_add(&rbio->bio_list, bio);
4f024f37 1751 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1752 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1753
0b246afa 1754 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1755 rbio->generic_bio_cnt = 1;
1756
6ac0f488
CM
1757 /*
1758 * don't plug on full rbios, just get them out the door
1759 * as quickly as we can
1760 */
4245215d
MX
1761 if (rbio_is_full(rbio)) {
1762 ret = full_stripe_write(rbio);
1763 if (ret)
0b246afa 1764 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1765 return ret;
1766 }
6ac0f488 1767
0b246afa 1768 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1769 if (cb) {
1770 plug = container_of(cb, struct btrfs_plug_cb, cb);
1771 if (!plug->info) {
0b246afa 1772 plug->info = fs_info;
6ac0f488
CM
1773 INIT_LIST_HEAD(&plug->rbio_list);
1774 }
1775 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1776 ret = 0;
6ac0f488 1777 } else {
4245215d
MX
1778 ret = __raid56_parity_write(rbio);
1779 if (ret)
0b246afa 1780 btrfs_bio_counter_dec(fs_info);
6ac0f488 1781 }
4245215d 1782 return ret;
53b381b3
DW
1783}
1784
1785/*
1786 * all parity reconstruction happens here. We've read in everything
1787 * we can find from the drives and this does the heavy lifting of
1788 * sorting the good from the bad.
1789 */
1790static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1791{
1792 int pagenr, stripe;
1793 void **pointers;
1794 int faila = -1, failb = -1;
53b381b3 1795 struct page *page;
58efbc9f 1796 blk_status_t err;
53b381b3
DW
1797 int i;
1798
31e818fe 1799 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3 1800 if (!pointers) {
58efbc9f 1801 err = BLK_STS_RESOURCE;
53b381b3
DW
1802 goto cleanup_io;
1803 }
1804
1805 faila = rbio->faila;
1806 failb = rbio->failb;
1807
b4ee1782
OS
1808 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1809 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1810 spin_lock_irq(&rbio->bio_list_lock);
1811 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1812 spin_unlock_irq(&rbio->bio_list_lock);
1813 }
1814
1815 index_rbio_pages(rbio);
1816
915e2290 1817 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1818 /*
1819 * Now we just use bitmap to mark the horizontal stripes in
1820 * which we have data when doing parity scrub.
1821 */
1822 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1823 !test_bit(pagenr, rbio->dbitmap))
1824 continue;
1825
53b381b3
DW
1826 /* setup our array of pointers with pages
1827 * from each stripe
1828 */
2c8cdd6e 1829 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1830 /*
1831 * if we're rebuilding a read, we have to use
1832 * pages from the bio list
1833 */
b4ee1782
OS
1834 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1835 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1836 (stripe == faila || stripe == failb)) {
1837 page = page_in_rbio(rbio, stripe, pagenr, 0);
1838 } else {
1839 page = rbio_stripe_page(rbio, stripe, pagenr);
1840 }
1841 pointers[stripe] = kmap(page);
1842 }
1843
1844 /* all raid6 handling here */
10f11900 1845 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1846 /*
1847 * single failure, rebuild from parity raid5
1848 * style
1849 */
1850 if (failb < 0) {
1851 if (faila == rbio->nr_data) {
1852 /*
1853 * Just the P stripe has failed, without
1854 * a bad data or Q stripe.
1855 * TODO, we should redo the xor here.
1856 */
58efbc9f 1857 err = BLK_STS_IOERR;
53b381b3
DW
1858 goto cleanup;
1859 }
1860 /*
1861 * a single failure in raid6 is rebuilt
1862 * in the pstripe code below
1863 */
1864 goto pstripe;
1865 }
1866
1867 /* make sure our ps and qs are in order */
1868 if (faila > failb) {
1869 int tmp = failb;
1870 failb = faila;
1871 faila = tmp;
1872 }
1873
1874 /* if the q stripe is failed, do a pstripe reconstruction
1875 * from the xors.
1876 * If both the q stripe and the P stripe are failed, we're
1877 * here due to a crc mismatch and we can't give them the
1878 * data they want
1879 */
8e5cfb55
ZL
1880 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1881 if (rbio->bbio->raid_map[faila] ==
1882 RAID5_P_STRIPE) {
58efbc9f 1883 err = BLK_STS_IOERR;
53b381b3
DW
1884 goto cleanup;
1885 }
1886 /*
1887 * otherwise we have one bad data stripe and
1888 * a good P stripe. raid5!
1889 */
1890 goto pstripe;
1891 }
1892
8e5cfb55 1893 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1894 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1895 PAGE_SIZE, faila, pointers);
1896 } else {
2c8cdd6e 1897 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1898 PAGE_SIZE, faila, failb,
1899 pointers);
1900 }
1901 } else {
1902 void *p;
1903
1904 /* rebuild from P stripe here (raid5 or raid6) */
1905 BUG_ON(failb != -1);
1906pstripe:
1907 /* Copy parity block into failed block to start with */
1908 memcpy(pointers[faila],
1909 pointers[rbio->nr_data],
09cbfeaf 1910 PAGE_SIZE);
53b381b3
DW
1911
1912 /* rearrange the pointer array */
1913 p = pointers[faila];
1914 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1915 pointers[stripe] = pointers[stripe + 1];
1916 pointers[rbio->nr_data - 1] = p;
1917
1918 /* xor in the rest */
09cbfeaf 1919 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1920 }
1921 /* if we're doing this rebuild as part of an rmw, go through
1922 * and set all of our private rbio pages in the
1923 * failed stripes as uptodate. This way finish_rmw will
1924 * know they can be trusted. If this was a read reconstruction,
1925 * other endio functions will fiddle the uptodate bits
1926 */
1b94b556 1927 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1928 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1929 if (faila != -1) {
1930 page = rbio_stripe_page(rbio, faila, i);
1931 SetPageUptodate(page);
1932 }
1933 if (failb != -1) {
1934 page = rbio_stripe_page(rbio, failb, i);
1935 SetPageUptodate(page);
1936 }
1937 }
1938 }
2c8cdd6e 1939 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1940 /*
1941 * if we're rebuilding a read, we have to use
1942 * pages from the bio list
1943 */
b4ee1782
OS
1944 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1945 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1946 (stripe == faila || stripe == failb)) {
1947 page = page_in_rbio(rbio, stripe, pagenr, 0);
1948 } else {
1949 page = rbio_stripe_page(rbio, stripe, pagenr);
1950 }
1951 kunmap(page);
1952 }
1953 }
1954
58efbc9f 1955 err = BLK_STS_OK;
53b381b3
DW
1956cleanup:
1957 kfree(pointers);
1958
1959cleanup_io:
1b94b556 1960 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
58efbc9f 1961 if (err == BLK_STS_OK)
4ae10b3a
CM
1962 cache_rbio_pages(rbio);
1963 else
1964 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1965
22365979 1966 rbio_orig_end_io(rbio, err);
b4ee1782 1967 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1968 rbio_orig_end_io(rbio, err);
58efbc9f 1969 } else if (err == BLK_STS_OK) {
53b381b3
DW
1970 rbio->faila = -1;
1971 rbio->failb = -1;
5a6ac9ea
MX
1972
1973 if (rbio->operation == BTRFS_RBIO_WRITE)
1974 finish_rmw(rbio);
1975 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1976 finish_parity_scrub(rbio, 0);
1977 else
1978 BUG();
53b381b3 1979 } else {
4246a0b6 1980 rbio_orig_end_io(rbio, err);
53b381b3
DW
1981 }
1982}
1983
1984/*
1985 * This is called only for stripes we've read from disk to
1986 * reconstruct the parity.
1987 */
4246a0b6 1988static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
1989{
1990 struct btrfs_raid_bio *rbio = bio->bi_private;
1991
1992 /*
1993 * we only read stripe pages off the disk, set them
1994 * up to date if there were no errors
1995 */
4e4cbee9 1996 if (bio->bi_status)
53b381b3
DW
1997 fail_bio_stripe(rbio, bio);
1998 else
1999 set_bio_pages_uptodate(bio);
2000 bio_put(bio);
2001
b89e1b01 2002 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2003 return;
2004
b89e1b01 2005 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
58efbc9f 2006 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
2007 else
2008 __raid_recover_end_io(rbio);
2009}
2010
2011/*
2012 * reads everything we need off the disk to reconstruct
2013 * the parity. endio handlers trigger final reconstruction
2014 * when the IO is done.
2015 *
2016 * This is used both for reads from the higher layers and for
2017 * parity construction required to finish a rmw cycle.
2018 */
2019static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2020{
2021 int bios_to_read = 0;
53b381b3
DW
2022 struct bio_list bio_list;
2023 int ret;
53b381b3
DW
2024 int pagenr;
2025 int stripe;
2026 struct bio *bio;
2027
2028 bio_list_init(&bio_list);
2029
2030 ret = alloc_rbio_pages(rbio);
2031 if (ret)
2032 goto cleanup;
2033
b89e1b01 2034 atomic_set(&rbio->error, 0);
53b381b3
DW
2035
2036 /*
4ae10b3a
CM
2037 * read everything that hasn't failed. Thanks to the
2038 * stripe cache, it is possible that some or all of these
2039 * pages are going to be uptodate.
53b381b3 2040 */
2c8cdd6e 2041 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2042 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2043 atomic_inc(&rbio->error);
53b381b3 2044 continue;
5588383e 2045 }
53b381b3 2046
915e2290 2047 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2048 struct page *p;
2049
2050 /*
2051 * the rmw code may have already read this
2052 * page in
2053 */
2054 p = rbio_stripe_page(rbio, stripe, pagenr);
2055 if (PageUptodate(p))
2056 continue;
2057
2058 ret = rbio_add_io_page(rbio, &bio_list,
2059 rbio_stripe_page(rbio, stripe, pagenr),
2060 stripe, pagenr, rbio->stripe_len);
2061 if (ret < 0)
2062 goto cleanup;
2063 }
2064 }
2065
2066 bios_to_read = bio_list_size(&bio_list);
2067 if (!bios_to_read) {
2068 /*
2069 * we might have no bios to read just because the pages
2070 * were up to date, or we might have no bios to read because
2071 * the devices were gone.
2072 */
b89e1b01 2073 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2074 __raid_recover_end_io(rbio);
2075 goto out;
2076 } else {
2077 goto cleanup;
2078 }
2079 }
2080
2081 /*
2082 * the bbio may be freed once we submit the last bio. Make sure
2083 * not to touch it after that
2084 */
b89e1b01 2085 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2086 while (1) {
2087 bio = bio_list_pop(&bio_list);
2088 if (!bio)
2089 break;
2090
2091 bio->bi_private = rbio;
2092 bio->bi_end_io = raid_recover_end_io;
37226b21 2093 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 2094
0b246afa 2095 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2096
4e49ea4a 2097 submit_bio(bio);
53b381b3
DW
2098 }
2099out:
2100 return 0;
2101
2102cleanup:
b4ee1782
OS
2103 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2104 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
58efbc9f 2105 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2106
2107 while ((bio = bio_list_pop(&bio_list)))
2108 bio_put(bio);
2109
53b381b3
DW
2110 return -EIO;
2111}
2112
2113/*
2114 * the main entry point for reads from the higher layers. This
2115 * is really only called when the normal read path had a failure,
2116 * so we assume the bio they send down corresponds to a failed part
2117 * of the drive.
2118 */
2ff7e61e 2119int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2120 struct btrfs_bio *bbio, u64 stripe_len,
2121 int mirror_num, int generic_io)
53b381b3
DW
2122{
2123 struct btrfs_raid_bio *rbio;
2124 int ret;
2125
abad60c6
LB
2126 if (generic_io) {
2127 ASSERT(bbio->mirror_num == mirror_num);
2128 btrfs_io_bio(bio)->mirror_num = mirror_num;
2129 }
2130
2ff7e61e 2131 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2132 if (IS_ERR(rbio)) {
6e9606d2
ZL
2133 if (generic_io)
2134 btrfs_put_bbio(bbio);
53b381b3 2135 return PTR_ERR(rbio);
af8e2d1d 2136 }
53b381b3 2137
1b94b556 2138 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2139 bio_list_add(&rbio->bio_list, bio);
4f024f37 2140 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2141
2142 rbio->faila = find_logical_bio_stripe(rbio, bio);
2143 if (rbio->faila == -1) {
0b246afa 2144 btrfs_warn(fs_info,
e46a28ca
LB
2145 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2146 __func__, (u64)bio->bi_iter.bi_sector << 9,
2147 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2148 if (generic_io)
2149 btrfs_put_bbio(bbio);
53b381b3
DW
2150 kfree(rbio);
2151 return -EIO;
2152 }
2153
4245215d 2154 if (generic_io) {
0b246afa 2155 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2156 rbio->generic_bio_cnt = 1;
2157 } else {
6e9606d2 2158 btrfs_get_bbio(bbio);
4245215d
MX
2159 }
2160
53b381b3
DW
2161 /*
2162 * reconstruct from the q stripe if they are
2163 * asking for mirror 3
2164 */
2165 if (mirror_num == 3)
2c8cdd6e 2166 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2167
2168 ret = lock_stripe_add(rbio);
2169
2170 /*
2171 * __raid56_parity_recover will end the bio with
2172 * any errors it hits. We don't want to return
2173 * its error value up the stack because our caller
2174 * will end up calling bio_endio with any nonzero
2175 * return
2176 */
2177 if (ret == 0)
2178 __raid56_parity_recover(rbio);
2179 /*
2180 * our rbio has been added to the list of
2181 * rbios that will be handled after the
2182 * currently lock owner is done
2183 */
2184 return 0;
2185
2186}
2187
2188static void rmw_work(struct btrfs_work *work)
2189{
2190 struct btrfs_raid_bio *rbio;
2191
2192 rbio = container_of(work, struct btrfs_raid_bio, work);
2193 raid56_rmw_stripe(rbio);
2194}
2195
2196static void read_rebuild_work(struct btrfs_work *work)
2197{
2198 struct btrfs_raid_bio *rbio;
2199
2200 rbio = container_of(work, struct btrfs_raid_bio, work);
2201 __raid56_parity_recover(rbio);
2202}
5a6ac9ea
MX
2203
2204/*
2205 * The following code is used to scrub/replace the parity stripe
2206 *
ae6529c3
QW
2207 * Caller must have already increased bio_counter for getting @bbio.
2208 *
5a6ac9ea
MX
2209 * Note: We need make sure all the pages that add into the scrub/replace
2210 * raid bio are correct and not be changed during the scrub/replace. That
2211 * is those pages just hold metadata or file data with checksum.
2212 */
2213
2214struct btrfs_raid_bio *
2ff7e61e 2215raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2216 struct btrfs_bio *bbio, u64 stripe_len,
2217 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2218 unsigned long *dbitmap, int stripe_nsectors)
2219{
2220 struct btrfs_raid_bio *rbio;
2221 int i;
2222
2ff7e61e 2223 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2224 if (IS_ERR(rbio))
2225 return NULL;
2226 bio_list_add(&rbio->bio_list, bio);
2227 /*
2228 * This is a special bio which is used to hold the completion handler
2229 * and make the scrub rbio is similar to the other types
2230 */
2231 ASSERT(!bio->bi_iter.bi_size);
2232 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2233
9cd3a7eb
LB
2234 /*
2235 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2236 * to the end position, so this search can start from the first parity
2237 * stripe.
2238 */
2239 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2240 if (bbio->stripes[i].dev == scrub_dev) {
2241 rbio->scrubp = i;
2242 break;
2243 }
2244 }
9cd3a7eb 2245 ASSERT(i < rbio->real_stripes);
5a6ac9ea
MX
2246
2247 /* Now we just support the sectorsize equals to page size */
0b246afa 2248 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2249 ASSERT(rbio->stripe_npages == stripe_nsectors);
2250 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2251
ae6529c3
QW
2252 /*
2253 * We have already increased bio_counter when getting bbio, record it
2254 * so we can free it at rbio_orig_end_io().
2255 */
2256 rbio->generic_bio_cnt = 1;
2257
5a6ac9ea
MX
2258 return rbio;
2259}
2260
b4ee1782
OS
2261/* Used for both parity scrub and missing. */
2262void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2263 u64 logical)
5a6ac9ea
MX
2264{
2265 int stripe_offset;
2266 int index;
2267
8e5cfb55
ZL
2268 ASSERT(logical >= rbio->bbio->raid_map[0]);
2269 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2270 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2271 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2272 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2273 rbio->bio_pages[index] = page;
2274}
2275
2276/*
2277 * We just scrub the parity that we have correct data on the same horizontal,
2278 * so we needn't allocate all pages for all the stripes.
2279 */
2280static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2281{
2282 int i;
2283 int bit;
2284 int index;
2285 struct page *page;
2286
2287 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2288 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2289 index = i * rbio->stripe_npages + bit;
2290 if (rbio->stripe_pages[index])
2291 continue;
2292
2293 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2294 if (!page)
2295 return -ENOMEM;
2296 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2297 }
2298 }
2299 return 0;
2300}
2301
5a6ac9ea
MX
2302static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2303 int need_check)
2304{
76035976 2305 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2306 void *pointers[rbio->real_stripes];
76035976 2307 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2308 int nr_data = rbio->nr_data;
2309 int stripe;
2310 int pagenr;
2311 int p_stripe = -1;
2312 int q_stripe = -1;
2313 struct page *p_page = NULL;
2314 struct page *q_page = NULL;
2315 struct bio_list bio_list;
2316 struct bio *bio;
76035976 2317 int is_replace = 0;
5a6ac9ea
MX
2318 int ret;
2319
2320 bio_list_init(&bio_list);
2321
2c8cdd6e
MX
2322 if (rbio->real_stripes - rbio->nr_data == 1) {
2323 p_stripe = rbio->real_stripes - 1;
2324 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2325 p_stripe = rbio->real_stripes - 2;
2326 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2327 } else {
2328 BUG();
2329 }
2330
76035976
MX
2331 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2332 is_replace = 1;
2333 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2334 }
2335
5a6ac9ea
MX
2336 /*
2337 * Because the higher layers(scrubber) are unlikely to
2338 * use this area of the disk again soon, so don't cache
2339 * it.
2340 */
2341 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2342
2343 if (!need_check)
2344 goto writeback;
2345
2346 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2347 if (!p_page)
2348 goto cleanup;
2349 SetPageUptodate(p_page);
2350
2351 if (q_stripe != -1) {
2352 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2353 if (!q_page) {
2354 __free_page(p_page);
2355 goto cleanup;
2356 }
2357 SetPageUptodate(q_page);
2358 }
2359
2360 atomic_set(&rbio->error, 0);
2361
2362 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2363 struct page *p;
2364 void *parity;
2365 /* first collect one page from each data stripe */
2366 for (stripe = 0; stripe < nr_data; stripe++) {
2367 p = page_in_rbio(rbio, stripe, pagenr, 0);
2368 pointers[stripe] = kmap(p);
2369 }
2370
2371 /* then add the parity stripe */
2372 pointers[stripe++] = kmap(p_page);
2373
2374 if (q_stripe != -1) {
2375
2376 /*
2377 * raid6, add the qstripe and call the
2378 * library function to fill in our p/q
2379 */
2380 pointers[stripe++] = kmap(q_page);
2381
2c8cdd6e 2382 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2383 pointers);
2384 } else {
2385 /* raid5 */
2386 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 2387 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2388 }
2389
01327610 2390 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2391 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2392 parity = kmap(p);
09cbfeaf
KS
2393 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2394 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
5a6ac9ea
MX
2395 else
2396 /* Parity is right, needn't writeback */
2397 bitmap_clear(rbio->dbitmap, pagenr, 1);
2398 kunmap(p);
2399
2c8cdd6e 2400 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2401 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2402 }
2403
2404 __free_page(p_page);
2405 if (q_page)
2406 __free_page(q_page);
2407
2408writeback:
2409 /*
2410 * time to start writing. Make bios for everything from the
2411 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2412 * everything else.
2413 */
2414 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2415 struct page *page;
2416
2417 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2418 ret = rbio_add_io_page(rbio, &bio_list,
2419 page, rbio->scrubp, pagenr, rbio->stripe_len);
2420 if (ret)
2421 goto cleanup;
2422 }
2423
76035976
MX
2424 if (!is_replace)
2425 goto submit_write;
2426
2427 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2428 struct page *page;
2429
2430 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2431 ret = rbio_add_io_page(rbio, &bio_list, page,
2432 bbio->tgtdev_map[rbio->scrubp],
2433 pagenr, rbio->stripe_len);
2434 if (ret)
2435 goto cleanup;
2436 }
2437
2438submit_write:
5a6ac9ea
MX
2439 nr_data = bio_list_size(&bio_list);
2440 if (!nr_data) {
2441 /* Every parity is right */
58efbc9f 2442 rbio_orig_end_io(rbio, BLK_STS_OK);
5a6ac9ea
MX
2443 return;
2444 }
2445
2446 atomic_set(&rbio->stripes_pending, nr_data);
2447
2448 while (1) {
2449 bio = bio_list_pop(&bio_list);
2450 if (!bio)
2451 break;
2452
2453 bio->bi_private = rbio;
a6111d11 2454 bio->bi_end_io = raid_write_end_io;
37226b21 2455 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2456
2457 submit_bio(bio);
5a6ac9ea
MX
2458 }
2459 return;
2460
2461cleanup:
58efbc9f 2462 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2463
2464 while ((bio = bio_list_pop(&bio_list)))
2465 bio_put(bio);
5a6ac9ea
MX
2466}
2467
2468static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2469{
2470 if (stripe >= 0 && stripe < rbio->nr_data)
2471 return 1;
2472 return 0;
2473}
2474
2475/*
2476 * While we're doing the parity check and repair, we could have errors
2477 * in reading pages off the disk. This checks for errors and if we're
2478 * not able to read the page it'll trigger parity reconstruction. The
2479 * parity scrub will be finished after we've reconstructed the failed
2480 * stripes
2481 */
2482static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2483{
2484 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2485 goto cleanup;
2486
2487 if (rbio->faila >= 0 || rbio->failb >= 0) {
2488 int dfail = 0, failp = -1;
2489
2490 if (is_data_stripe(rbio, rbio->faila))
2491 dfail++;
2492 else if (is_parity_stripe(rbio->faila))
2493 failp = rbio->faila;
2494
2495 if (is_data_stripe(rbio, rbio->failb))
2496 dfail++;
2497 else if (is_parity_stripe(rbio->failb))
2498 failp = rbio->failb;
2499
2500 /*
2501 * Because we can not use a scrubbing parity to repair
2502 * the data, so the capability of the repair is declined.
2503 * (In the case of RAID5, we can not repair anything)
2504 */
2505 if (dfail > rbio->bbio->max_errors - 1)
2506 goto cleanup;
2507
2508 /*
2509 * If all data is good, only parity is correctly, just
2510 * repair the parity.
2511 */
2512 if (dfail == 0) {
2513 finish_parity_scrub(rbio, 0);
2514 return;
2515 }
2516
2517 /*
2518 * Here means we got one corrupted data stripe and one
2519 * corrupted parity on RAID6, if the corrupted parity
01327610 2520 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2521 * the data, or we can not repair the data stripe.
2522 */
2523 if (failp != rbio->scrubp)
2524 goto cleanup;
2525
2526 __raid_recover_end_io(rbio);
2527 } else {
2528 finish_parity_scrub(rbio, 1);
2529 }
2530 return;
2531
2532cleanup:
58efbc9f 2533 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2534}
2535
2536/*
2537 * end io for the read phase of the rmw cycle. All the bios here are physical
2538 * stripe bios we've read from the disk so we can recalculate the parity of the
2539 * stripe.
2540 *
2541 * This will usually kick off finish_rmw once all the bios are read in, but it
2542 * may trigger parity reconstruction if we had any errors along the way
2543 */
4246a0b6 2544static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2545{
2546 struct btrfs_raid_bio *rbio = bio->bi_private;
2547
4e4cbee9 2548 if (bio->bi_status)
5a6ac9ea
MX
2549 fail_bio_stripe(rbio, bio);
2550 else
2551 set_bio_pages_uptodate(bio);
2552
2553 bio_put(bio);
2554
2555 if (!atomic_dec_and_test(&rbio->stripes_pending))
2556 return;
2557
2558 /*
2559 * this will normally call finish_rmw to start our write
2560 * but if there are any failed stripes we'll reconstruct
2561 * from parity first
2562 */
2563 validate_rbio_for_parity_scrub(rbio);
2564}
2565
2566static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2567{
2568 int bios_to_read = 0;
5a6ac9ea
MX
2569 struct bio_list bio_list;
2570 int ret;
2571 int pagenr;
2572 int stripe;
2573 struct bio *bio;
2574
785884fc
LB
2575 bio_list_init(&bio_list);
2576
5a6ac9ea
MX
2577 ret = alloc_rbio_essential_pages(rbio);
2578 if (ret)
2579 goto cleanup;
2580
5a6ac9ea
MX
2581 atomic_set(&rbio->error, 0);
2582 /*
2583 * build a list of bios to read all the missing parts of this
2584 * stripe
2585 */
2c8cdd6e 2586 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2587 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2588 struct page *page;
2589 /*
2590 * we want to find all the pages missing from
2591 * the rbio and read them from the disk. If
2592 * page_in_rbio finds a page in the bio list
2593 * we don't need to read it off the stripe.
2594 */
2595 page = page_in_rbio(rbio, stripe, pagenr, 1);
2596 if (page)
2597 continue;
2598
2599 page = rbio_stripe_page(rbio, stripe, pagenr);
2600 /*
2601 * the bio cache may have handed us an uptodate
2602 * page. If so, be happy and use it
2603 */
2604 if (PageUptodate(page))
2605 continue;
2606
2607 ret = rbio_add_io_page(rbio, &bio_list, page,
2608 stripe, pagenr, rbio->stripe_len);
2609 if (ret)
2610 goto cleanup;
2611 }
2612 }
2613
2614 bios_to_read = bio_list_size(&bio_list);
2615 if (!bios_to_read) {
2616 /*
2617 * this can happen if others have merged with
2618 * us, it means there is nothing left to read.
2619 * But if there are missing devices it may not be
2620 * safe to do the full stripe write yet.
2621 */
2622 goto finish;
2623 }
2624
2625 /*
2626 * the bbio may be freed once we submit the last bio. Make sure
2627 * not to touch it after that
2628 */
2629 atomic_set(&rbio->stripes_pending, bios_to_read);
2630 while (1) {
2631 bio = bio_list_pop(&bio_list);
2632 if (!bio)
2633 break;
2634
2635 bio->bi_private = rbio;
2636 bio->bi_end_io = raid56_parity_scrub_end_io;
37226b21 2637 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5a6ac9ea 2638
0b246afa 2639 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2640
4e49ea4a 2641 submit_bio(bio);
5a6ac9ea
MX
2642 }
2643 /* the actual write will happen once the reads are done */
2644 return;
2645
2646cleanup:
58efbc9f 2647 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2648
2649 while ((bio = bio_list_pop(&bio_list)))
2650 bio_put(bio);
2651
5a6ac9ea
MX
2652 return;
2653
2654finish:
2655 validate_rbio_for_parity_scrub(rbio);
2656}
2657
2658static void scrub_parity_work(struct btrfs_work *work)
2659{
2660 struct btrfs_raid_bio *rbio;
2661
2662 rbio = container_of(work, struct btrfs_raid_bio, work);
2663 raid56_parity_scrub_stripe(rbio);
2664}
2665
2666static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2667{
2668 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2669 scrub_parity_work, NULL, NULL);
2670
0b246afa 2671 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
5a6ac9ea
MX
2672}
2673
2674void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2675{
2676 if (!lock_stripe_add(rbio))
2677 async_scrub_parity(rbio);
2678}
b4ee1782
OS
2679
2680/* The following code is used for dev replace of a missing RAID 5/6 device. */
2681
2682struct btrfs_raid_bio *
2ff7e61e 2683raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2684 struct btrfs_bio *bbio, u64 length)
2685{
2686 struct btrfs_raid_bio *rbio;
2687
2ff7e61e 2688 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2689 if (IS_ERR(rbio))
2690 return NULL;
2691
2692 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2693 bio_list_add(&rbio->bio_list, bio);
2694 /*
2695 * This is a special bio which is used to hold the completion handler
2696 * and make the scrub rbio is similar to the other types
2697 */
2698 ASSERT(!bio->bi_iter.bi_size);
2699
2700 rbio->faila = find_logical_bio_stripe(rbio, bio);
2701 if (rbio->faila == -1) {
2702 BUG();
2703 kfree(rbio);
2704 return NULL;
2705 }
2706
ae6529c3
QW
2707 /*
2708 * When we get bbio, we have already increased bio_counter, record it
2709 * so we can free it at rbio_orig_end_io()
2710 */
2711 rbio->generic_bio_cnt = 1;
2712
b4ee1782
OS
2713 return rbio;
2714}
2715
2716static void missing_raid56_work(struct btrfs_work *work)
2717{
2718 struct btrfs_raid_bio *rbio;
2719
2720 rbio = container_of(work, struct btrfs_raid_bio, work);
2721 __raid56_parity_recover(rbio);
2722}
2723
2724static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2725{
2726 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2727 missing_raid56_work, NULL, NULL);
2728
2729 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2730}
2731
2732void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2733{
2734 if (!lock_stripe_add(rbio))
2735 async_missing_raid56(rbio);
2736}