]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/raid56.c
btrfs: use rbio->nr_pages to reduce calculation
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
d7011f5b 34#include <linux/vmalloc.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
53b381b3
DW
152 atomic_t refs;
153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
53b381b3 227
4ae10b3a
CM
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
53b381b3
DW
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
241 if (x)
242 kvfree(x);
53b381b3
DW
243 return 0;
244}
245
4ae10b3a
CM
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
273 memcpy(d, s, PAGE_CACHE_SIZE);
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
53b381b3
DW
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
8e5cfb55 287 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
4ae10b3a
CM
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
53b381b3
DW
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 340 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
341 bio_list_init(&victim->bio_list);
342}
343
344/*
4ae10b3a
CM
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
48a3b636 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
53b381b3
DW
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
4ae10b3a 452 btrfs_clear_rbio_cache(info);
f749303b 453 kvfree(info->stripe_hash_table);
53b381b3
DW
454 info->stripe_hash_table = NULL;
455}
456
4ae10b3a
CM
457/*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
506}
507
53b381b3
DW
508/*
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513static void run_xor(void **pages, int src_cnt, ssize_t len)
514{
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526}
527
528/*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536{
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545}
546
547static int rbio_is_full(struct btrfs_raid_bio *rbio)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556}
557
558/*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570{
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
4ae10b3a
CM
575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbio's though, other functions
580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
8e5cfb55
ZL
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
53b381b3
DW
588 return 0;
589
5a6ac9ea
MX
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
592 return 0;
593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 603 return 0;
53b381b3 604
b4ee1782
OS
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
53b381b3
DW
609 return 1;
610}
611
b7178a5f
ZL
612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 int index)
614{
615 return stripe * rbio->stripe_npages + index;
616}
617
618/*
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
621 */
622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 int index)
624{
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626}
627
53b381b3
DW
628/*
629 * helper to index into the pstripe
630 */
631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632{
b7178a5f 633 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
634}
635
636/*
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
639 */
640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641{
2c8cdd6e 642 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 643 return NULL;
b7178a5f 644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
645}
646
647/*
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
650 *
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
653 * themselves.
654 *
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
658 *
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
663 * 1 is returned
664 *
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
668 */
669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670{
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 DEFINE_WAIT(wait);
677 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 678 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3
DW
679 int ret = 0;
680 int walk = 0;
681
682 spin_lock_irqsave(&h->lock, flags);
683 list_for_each_entry(cur, &h->hash_list, hash_list) {
684 walk++;
8e5cfb55 685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
686 spin_lock(&cur->bio_list_lock);
687
4ae10b3a
CM
688 /* can we steal this cached rbio's pages? */
689 if (bio_list_empty(&cur->bio_list) &&
690 list_empty(&cur->plug_list) &&
691 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 list_del_init(&cur->hash_list);
694 atomic_dec(&cur->refs);
695
696 steal_rbio(cur, rbio);
697 cache_drop = cur;
698 spin_unlock(&cur->bio_list_lock);
699
700 goto lockit;
701 }
702
53b381b3
DW
703 /* can we merge into the lock owner? */
704 if (rbio_can_merge(cur, rbio)) {
705 merge_rbio(cur, rbio);
706 spin_unlock(&cur->bio_list_lock);
707 freeit = rbio;
708 ret = 1;
709 goto out;
710 }
711
4ae10b3a 712
53b381b3
DW
713 /*
714 * we couldn't merge with the running
715 * rbio, see if we can merge with the
716 * pending ones. We don't have to
717 * check for rmw_locked because there
718 * is no way they are inside finish_rmw
719 * right now
720 */
721 list_for_each_entry(pending, &cur->plug_list,
722 plug_list) {
723 if (rbio_can_merge(pending, rbio)) {
724 merge_rbio(pending, rbio);
725 spin_unlock(&cur->bio_list_lock);
726 freeit = rbio;
727 ret = 1;
728 goto out;
729 }
730 }
731
732 /* no merging, put us on the tail of the plug list,
733 * our rbio will be started with the currently
734 * running rbio unlocks
735 */
736 list_add_tail(&rbio->plug_list, &cur->plug_list);
737 spin_unlock(&cur->bio_list_lock);
738 ret = 1;
739 goto out;
740 }
741 }
4ae10b3a 742lockit:
53b381b3
DW
743 atomic_inc(&rbio->refs);
744 list_add(&rbio->hash_list, &h->hash_list);
745out:
746 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
747 if (cache_drop)
748 remove_rbio_from_cache(cache_drop);
53b381b3
DW
749 if (freeit)
750 __free_raid_bio(freeit);
751 return ret;
752}
753
754/*
755 * called as rmw or parity rebuild is completed. If the plug list has more
756 * rbios waiting for this stripe, the next one on the list will be started
757 */
758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759{
760 int bucket;
761 struct btrfs_stripe_hash *h;
762 unsigned long flags;
4ae10b3a 763 int keep_cache = 0;
53b381b3
DW
764
765 bucket = rbio_bucket(rbio);
766 h = rbio->fs_info->stripe_hash_table->table + bucket;
767
4ae10b3a
CM
768 if (list_empty(&rbio->plug_list))
769 cache_rbio(rbio);
770
53b381b3
DW
771 spin_lock_irqsave(&h->lock, flags);
772 spin_lock(&rbio->bio_list_lock);
773
774 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
775 /*
776 * if we're still cached and there is no other IO
777 * to perform, just leave this rbio here for others
778 * to steal from later
779 */
780 if (list_empty(&rbio->plug_list) &&
781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 keep_cache = 1;
783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 BUG_ON(!bio_list_empty(&rbio->bio_list));
785 goto done;
786 }
53b381b3
DW
787
788 list_del_init(&rbio->hash_list);
789 atomic_dec(&rbio->refs);
790
791 /*
792 * we use the plug list to hold all the rbios
793 * waiting for the chance to lock this stripe.
794 * hand the lock over to one of them.
795 */
796 if (!list_empty(&rbio->plug_list)) {
797 struct btrfs_raid_bio *next;
798 struct list_head *head = rbio->plug_list.next;
799
800 next = list_entry(head, struct btrfs_raid_bio,
801 plug_list);
802
803 list_del_init(&rbio->plug_list);
804
805 list_add(&next->hash_list, &h->hash_list);
806 atomic_inc(&next->refs);
807 spin_unlock(&rbio->bio_list_lock);
808 spin_unlock_irqrestore(&h->lock, flags);
809
1b94b556 810 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 811 async_read_rebuild(next);
b4ee1782
OS
812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 steal_rbio(rbio, next);
814 async_read_rebuild(next);
815 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 816 steal_rbio(rbio, next);
53b381b3 817 async_rmw_stripe(next);
5a6ac9ea
MX
818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 steal_rbio(rbio, next);
820 async_scrub_parity(next);
4ae10b3a 821 }
53b381b3
DW
822
823 goto done_nolock;
33a9eca7
DS
824 /*
825 * The barrier for this waitqueue_active is not needed,
826 * we're protected by h->lock and can't miss a wakeup.
827 */
828 } else if (waitqueue_active(&h->wait)) {
53b381b3
DW
829 spin_unlock(&rbio->bio_list_lock);
830 spin_unlock_irqrestore(&h->lock, flags);
831 wake_up(&h->wait);
832 goto done_nolock;
833 }
834 }
4ae10b3a 835done:
53b381b3
DW
836 spin_unlock(&rbio->bio_list_lock);
837 spin_unlock_irqrestore(&h->lock, flags);
838
839done_nolock:
4ae10b3a
CM
840 if (!keep_cache)
841 remove_rbio_from_cache(rbio);
53b381b3
DW
842}
843
844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
845{
846 int i;
847
848 WARN_ON(atomic_read(&rbio->refs) < 0);
849 if (!atomic_dec_and_test(&rbio->refs))
850 return;
851
4ae10b3a 852 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
853 WARN_ON(!list_empty(&rbio->hash_list));
854 WARN_ON(!bio_list_empty(&rbio->bio_list));
855
856 for (i = 0; i < rbio->nr_pages; i++) {
857 if (rbio->stripe_pages[i]) {
858 __free_page(rbio->stripe_pages[i]);
859 rbio->stripe_pages[i] = NULL;
860 }
861 }
af8e2d1d 862
6e9606d2 863 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
864 kfree(rbio);
865}
866
867static void free_raid_bio(struct btrfs_raid_bio *rbio)
868{
869 unlock_stripe(rbio);
870 __free_raid_bio(rbio);
871}
872
873/*
874 * this frees the rbio and runs through all the bios in the
875 * bio_list and calls end_io on them
876 */
4246a0b6 877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
53b381b3
DW
878{
879 struct bio *cur = bio_list_get(&rbio->bio_list);
880 struct bio *next;
4245215d
MX
881
882 if (rbio->generic_bio_cnt)
883 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884
53b381b3
DW
885 free_raid_bio(rbio);
886
887 while (cur) {
888 next = cur->bi_next;
889 cur->bi_next = NULL;
4246a0b6
CH
890 cur->bi_error = err;
891 bio_endio(cur);
53b381b3
DW
892 cur = next;
893 }
894}
895
896/*
897 * end io function used by finish_rmw. When we finally
898 * get here, we've written a full stripe
899 */
4246a0b6 900static void raid_write_end_io(struct bio *bio)
53b381b3
DW
901{
902 struct btrfs_raid_bio *rbio = bio->bi_private;
4246a0b6 903 int err = bio->bi_error;
53b381b3
DW
904
905 if (err)
906 fail_bio_stripe(rbio, bio);
907
908 bio_put(bio);
909
b89e1b01 910 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
911 return;
912
913 err = 0;
914
915 /* OK, we have read all the stripes we need to. */
b89e1b01 916 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
917 err = -EIO;
918
4246a0b6 919 rbio_orig_end_io(rbio, err);
53b381b3
DW
920}
921
922/*
923 * the read/modify/write code wants to use the original bio for
924 * any pages it included, and then use the rbio for everything
925 * else. This function decides if a given index (stripe number)
926 * and page number in that stripe fall inside the original bio
927 * or the rbio.
928 *
929 * if you set bio_list_only, you'll get a NULL back for any ranges
930 * that are outside the bio_list
931 *
932 * This doesn't take any refs on anything, you get a bare page pointer
933 * and the caller must bump refs as required.
934 *
935 * You must call index_rbio_pages once before you can trust
936 * the answers from this function.
937 */
938static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
939 int index, int pagenr, int bio_list_only)
940{
941 int chunk_page;
942 struct page *p = NULL;
943
944 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
945
946 spin_lock_irq(&rbio->bio_list_lock);
947 p = rbio->bio_pages[chunk_page];
948 spin_unlock_irq(&rbio->bio_list_lock);
949
950 if (p || bio_list_only)
951 return p;
952
953 return rbio->stripe_pages[chunk_page];
954}
955
956/*
957 * number of pages we need for the entire stripe across all the
958 * drives
959 */
960static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
961{
b7178a5f 962 return DIV_ROUND_UP(stripe_len, PAGE_CACHE_SIZE) * nr_stripes;
53b381b3
DW
963}
964
965/*
966 * allocation and initial setup for the btrfs_raid_bio. Not
967 * this does not allocate any pages for rbio->pages.
968 */
969static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
8e5cfb55 970 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
971{
972 struct btrfs_raid_bio *rbio;
973 int nr_data = 0;
2c8cdd6e
MX
974 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
975 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 976 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
977 void *p;
978
5a6ac9ea 979 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
980 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
981 sizeof(long), GFP_NOFS);
af8e2d1d 982 if (!rbio)
53b381b3 983 return ERR_PTR(-ENOMEM);
53b381b3
DW
984
985 bio_list_init(&rbio->bio_list);
986 INIT_LIST_HEAD(&rbio->plug_list);
987 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 988 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
989 INIT_LIST_HEAD(&rbio->hash_list);
990 rbio->bbio = bbio;
53b381b3
DW
991 rbio->fs_info = root->fs_info;
992 rbio->stripe_len = stripe_len;
993 rbio->nr_pages = num_pages;
2c8cdd6e 994 rbio->real_stripes = real_stripes;
5a6ac9ea 995 rbio->stripe_npages = stripe_npages;
53b381b3
DW
996 rbio->faila = -1;
997 rbio->failb = -1;
998 atomic_set(&rbio->refs, 1);
b89e1b01
MX
999 atomic_set(&rbio->error, 0);
1000 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
1001
1002 /*
1003 * the stripe_pages and bio_pages array point to the extra
1004 * memory we allocated past the end of the rbio
1005 */
1006 p = rbio + 1;
1007 rbio->stripe_pages = p;
1008 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1009 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1010
10f11900
ZL
1011 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1012 nr_data = real_stripes - 1;
1013 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1014 nr_data = real_stripes - 2;
53b381b3 1015 else
10f11900 1016 BUG();
53b381b3
DW
1017
1018 rbio->nr_data = nr_data;
1019 return rbio;
1020}
1021
1022/* allocate pages for all the stripes in the bio, including parity */
1023static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1024{
1025 int i;
1026 struct page *page;
1027
1028 for (i = 0; i < rbio->nr_pages; i++) {
1029 if (rbio->stripe_pages[i])
1030 continue;
1031 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1032 if (!page)
1033 return -ENOMEM;
1034 rbio->stripe_pages[i] = page;
1035 ClearPageUptodate(page);
1036 }
1037 return 0;
1038}
1039
b7178a5f 1040/* only allocate pages for p/q stripes */
53b381b3
DW
1041static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1042{
1043 int i;
1044 struct page *page;
1045
b7178a5f 1046 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1047
1048 for (; i < rbio->nr_pages; i++) {
1049 if (rbio->stripe_pages[i])
1050 continue;
1051 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1052 if (!page)
1053 return -ENOMEM;
1054 rbio->stripe_pages[i] = page;
1055 }
1056 return 0;
1057}
1058
1059/*
1060 * add a single page from a specific stripe into our list of bios for IO
1061 * this will try to merge into existing bios if possible, and returns
1062 * zero if all went well.
1063 */
48a3b636
ES
1064static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1065 struct bio_list *bio_list,
1066 struct page *page,
1067 int stripe_nr,
1068 unsigned long page_index,
1069 unsigned long bio_max_len)
53b381b3
DW
1070{
1071 struct bio *last = bio_list->tail;
1072 u64 last_end = 0;
1073 int ret;
1074 struct bio *bio;
1075 struct btrfs_bio_stripe *stripe;
1076 u64 disk_start;
1077
1078 stripe = &rbio->bbio->stripes[stripe_nr];
1079 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1080
1081 /* if the device is missing, just fail this stripe */
1082 if (!stripe->dev->bdev)
1083 return fail_rbio_index(rbio, stripe_nr);
1084
1085 /* see if we can add this page onto our existing bio */
1086 if (last) {
4f024f37
KO
1087 last_end = (u64)last->bi_iter.bi_sector << 9;
1088 last_end += last->bi_iter.bi_size;
53b381b3
DW
1089
1090 /*
1091 * we can't merge these if they are from different
1092 * devices or if they are not contiguous
1093 */
1094 if (last_end == disk_start && stripe->dev->bdev &&
4246a0b6 1095 !last->bi_error &&
53b381b3
DW
1096 last->bi_bdev == stripe->dev->bdev) {
1097 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1098 if (ret == PAGE_CACHE_SIZE)
1099 return 0;
1100 }
1101 }
1102
1103 /* put a new bio on the list */
9be3395b 1104 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
53b381b3
DW
1105 if (!bio)
1106 return -ENOMEM;
1107
4f024f37 1108 bio->bi_iter.bi_size = 0;
53b381b3 1109 bio->bi_bdev = stripe->dev->bdev;
4f024f37 1110 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3
DW
1111
1112 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1113 bio_list_add(bio_list, bio);
1114 return 0;
1115}
1116
1117/*
1118 * while we're doing the read/modify/write cycle, we could
1119 * have errors in reading pages off the disk. This checks
1120 * for errors and if we're not able to read the page it'll
1121 * trigger parity reconstruction. The rmw will be finished
1122 * after we've reconstructed the failed stripes
1123 */
1124static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1125{
1126 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1127 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1128 __raid56_parity_recover(rbio);
1129 } else {
1130 finish_rmw(rbio);
1131 }
1132}
1133
53b381b3
DW
1134/*
1135 * helper function to walk our bio list and populate the bio_pages array with
1136 * the result. This seems expensive, but it is faster than constantly
1137 * searching through the bio list as we setup the IO in finish_rmw or stripe
1138 * reconstruction.
1139 *
1140 * This must be called before you trust the answers from page_in_rbio
1141 */
1142static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143{
1144 struct bio *bio;
1145 u64 start;
1146 unsigned long stripe_offset;
1147 unsigned long page_index;
1148 struct page *p;
1149 int i;
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
1152 bio_list_for_each(bio, &rbio->bio_list) {
4f024f37 1153 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1154 stripe_offset = start - rbio->bbio->raid_map[0];
53b381b3
DW
1155 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1156
1157 for (i = 0; i < bio->bi_vcnt; i++) {
1158 p = bio->bi_io_vec[i].bv_page;
1159 rbio->bio_pages[page_index + i] = p;
1160 }
1161 }
1162 spin_unlock_irq(&rbio->bio_list_lock);
1163}
1164
1165/*
1166 * this is called from one of two situations. We either
1167 * have a full stripe from the higher layers, or we've read all
1168 * the missing bits off disk.
1169 *
1170 * This will calculate the parity and then send down any
1171 * changed blocks.
1172 */
1173static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174{
1175 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1176 void *pointers[rbio->real_stripes];
53b381b3
DW
1177 int nr_data = rbio->nr_data;
1178 int stripe;
1179 int pagenr;
1180 int p_stripe = -1;
1181 int q_stripe = -1;
1182 struct bio_list bio_list;
1183 struct bio *bio;
53b381b3
DW
1184 int ret;
1185
1186 bio_list_init(&bio_list);
1187
2c8cdd6e
MX
1188 if (rbio->real_stripes - rbio->nr_data == 1) {
1189 p_stripe = rbio->real_stripes - 1;
1190 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1191 p_stripe = rbio->real_stripes - 2;
1192 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1193 } else {
1194 BUG();
1195 }
1196
1197 /* at this point we either have a full stripe,
1198 * or we've read the full stripe from the drive.
1199 * recalculate the parity and write the new results.
1200 *
1201 * We're not allowed to add any new bios to the
1202 * bio list here, anyone else that wants to
1203 * change this stripe needs to do their own rmw.
1204 */
1205 spin_lock_irq(&rbio->bio_list_lock);
1206 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1207 spin_unlock_irq(&rbio->bio_list_lock);
1208
b89e1b01 1209 atomic_set(&rbio->error, 0);
53b381b3
DW
1210
1211 /*
1212 * now that we've set rmw_locked, run through the
1213 * bio list one last time and map the page pointers
4ae10b3a
CM
1214 *
1215 * We don't cache full rbios because we're assuming
1216 * the higher layers are unlikely to use this area of
1217 * the disk again soon. If they do use it again,
1218 * hopefully they will send another full bio.
53b381b3
DW
1219 */
1220 index_rbio_pages(rbio);
4ae10b3a
CM
1221 if (!rbio_is_full(rbio))
1222 cache_rbio_pages(rbio);
1223 else
1224 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1225
915e2290 1226 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1227 struct page *p;
1228 /* first collect one page from each data stripe */
1229 for (stripe = 0; stripe < nr_data; stripe++) {
1230 p = page_in_rbio(rbio, stripe, pagenr, 0);
1231 pointers[stripe] = kmap(p);
1232 }
1233
1234 /* then add the parity stripe */
1235 p = rbio_pstripe_page(rbio, pagenr);
1236 SetPageUptodate(p);
1237 pointers[stripe++] = kmap(p);
1238
1239 if (q_stripe != -1) {
1240
1241 /*
1242 * raid6, add the qstripe and call the
1243 * library function to fill in our p/q
1244 */
1245 p = rbio_qstripe_page(rbio, pagenr);
1246 SetPageUptodate(p);
1247 pointers[stripe++] = kmap(p);
1248
2c8cdd6e 1249 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1250 pointers);
1251 } else {
1252 /* raid5 */
1253 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1254 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1255 }
1256
1257
2c8cdd6e 1258 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1259 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1260 }
1261
1262 /*
1263 * time to start writing. Make bios for everything from the
1264 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1265 * everything else.
1266 */
2c8cdd6e 1267 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1268 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1269 struct page *page;
1270 if (stripe < rbio->nr_data) {
1271 page = page_in_rbio(rbio, stripe, pagenr, 1);
1272 if (!page)
1273 continue;
1274 } else {
1275 page = rbio_stripe_page(rbio, stripe, pagenr);
1276 }
1277
1278 ret = rbio_add_io_page(rbio, &bio_list,
1279 page, stripe, pagenr, rbio->stripe_len);
1280 if (ret)
1281 goto cleanup;
1282 }
1283 }
1284
2c8cdd6e
MX
1285 if (likely(!bbio->num_tgtdevs))
1286 goto write_data;
1287
1288 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289 if (!bbio->tgtdev_map[stripe])
1290 continue;
1291
915e2290 1292 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1293 struct page *page;
1294 if (stripe < rbio->nr_data) {
1295 page = page_in_rbio(rbio, stripe, pagenr, 1);
1296 if (!page)
1297 continue;
1298 } else {
1299 page = rbio_stripe_page(rbio, stripe, pagenr);
1300 }
1301
1302 ret = rbio_add_io_page(rbio, &bio_list, page,
1303 rbio->bbio->tgtdev_map[stripe],
1304 pagenr, rbio->stripe_len);
1305 if (ret)
1306 goto cleanup;
1307 }
1308 }
1309
1310write_data:
b89e1b01
MX
1311 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1312 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1313
1314 while (1) {
1315 bio = bio_list_pop(&bio_list);
1316 if (!bio)
1317 break;
1318
1319 bio->bi_private = rbio;
1320 bio->bi_end_io = raid_write_end_io;
53b381b3
DW
1321 submit_bio(WRITE, bio);
1322 }
1323 return;
1324
1325cleanup:
4246a0b6 1326 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1327}
1328
1329/*
1330 * helper to find the stripe number for a given bio. Used to figure out which
1331 * stripe has failed. This expects the bio to correspond to a physical disk,
1332 * so it looks up based on physical sector numbers.
1333 */
1334static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1335 struct bio *bio)
1336{
4f024f37 1337 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1338 u64 stripe_start;
1339 int i;
1340 struct btrfs_bio_stripe *stripe;
1341
1342 physical <<= 9;
1343
1344 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1345 stripe = &rbio->bbio->stripes[i];
1346 stripe_start = stripe->physical;
1347 if (physical >= stripe_start &&
2c8cdd6e
MX
1348 physical < stripe_start + rbio->stripe_len &&
1349 bio->bi_bdev == stripe->dev->bdev) {
53b381b3
DW
1350 return i;
1351 }
1352 }
1353 return -1;
1354}
1355
1356/*
1357 * helper to find the stripe number for a given
1358 * bio (before mapping). Used to figure out which stripe has
1359 * failed. This looks up based on logical block numbers.
1360 */
1361static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362 struct bio *bio)
1363{
4f024f37 1364 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1365 u64 stripe_start;
1366 int i;
1367
1368 logical <<= 9;
1369
1370 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1371 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1372 if (logical >= stripe_start &&
1373 logical < stripe_start + rbio->stripe_len) {
1374 return i;
1375 }
1376 }
1377 return -1;
1378}
1379
1380/*
1381 * returns -EIO if we had too many failures
1382 */
1383static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1384{
1385 unsigned long flags;
1386 int ret = 0;
1387
1388 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1389
1390 /* we already know this stripe is bad, move on */
1391 if (rbio->faila == failed || rbio->failb == failed)
1392 goto out;
1393
1394 if (rbio->faila == -1) {
1395 /* first failure on this rbio */
1396 rbio->faila = failed;
b89e1b01 1397 atomic_inc(&rbio->error);
53b381b3
DW
1398 } else if (rbio->failb == -1) {
1399 /* second failure on this rbio */
1400 rbio->failb = failed;
b89e1b01 1401 atomic_inc(&rbio->error);
53b381b3
DW
1402 } else {
1403 ret = -EIO;
1404 }
1405out:
1406 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1407
1408 return ret;
1409}
1410
1411/*
1412 * helper to fail a stripe based on a physical disk
1413 * bio.
1414 */
1415static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1416 struct bio *bio)
1417{
1418 int failed = find_bio_stripe(rbio, bio);
1419
1420 if (failed < 0)
1421 return -EIO;
1422
1423 return fail_rbio_index(rbio, failed);
1424}
1425
1426/*
1427 * this sets each page in the bio uptodate. It should only be used on private
1428 * rbio pages, nothing that comes in from the higher layers
1429 */
1430static void set_bio_pages_uptodate(struct bio *bio)
1431{
1432 int i;
1433 struct page *p;
1434
1435 for (i = 0; i < bio->bi_vcnt; i++) {
1436 p = bio->bi_io_vec[i].bv_page;
1437 SetPageUptodate(p);
1438 }
1439}
1440
1441/*
1442 * end io for the read phase of the rmw cycle. All the bios here are physical
1443 * stripe bios we've read from the disk so we can recalculate the parity of the
1444 * stripe.
1445 *
1446 * This will usually kick off finish_rmw once all the bios are read in, but it
1447 * may trigger parity reconstruction if we had any errors along the way
1448 */
4246a0b6 1449static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1450{
1451 struct btrfs_raid_bio *rbio = bio->bi_private;
1452
4246a0b6 1453 if (bio->bi_error)
53b381b3
DW
1454 fail_bio_stripe(rbio, bio);
1455 else
1456 set_bio_pages_uptodate(bio);
1457
1458 bio_put(bio);
1459
b89e1b01 1460 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1461 return;
1462
b89e1b01 1463 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1464 goto cleanup;
1465
1466 /*
1467 * this will normally call finish_rmw to start our write
1468 * but if there are any failed stripes we'll reconstruct
1469 * from parity first
1470 */
1471 validate_rbio_for_rmw(rbio);
1472 return;
1473
1474cleanup:
1475
4246a0b6 1476 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1477}
1478
1479static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1480{
9e0af237
LB
1481 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1482 rmw_work, NULL, NULL);
53b381b3 1483
d05a33ac
QW
1484 btrfs_queue_work(rbio->fs_info->rmw_workers,
1485 &rbio->work);
53b381b3
DW
1486}
1487
1488static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1489{
9e0af237
LB
1490 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1491 read_rebuild_work, NULL, NULL);
53b381b3 1492
d05a33ac
QW
1493 btrfs_queue_work(rbio->fs_info->rmw_workers,
1494 &rbio->work);
53b381b3
DW
1495}
1496
1497/*
1498 * the stripe must be locked by the caller. It will
1499 * unlock after all the writes are done
1500 */
1501static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1502{
1503 int bios_to_read = 0;
53b381b3
DW
1504 struct bio_list bio_list;
1505 int ret;
53b381b3
DW
1506 int pagenr;
1507 int stripe;
1508 struct bio *bio;
1509
1510 bio_list_init(&bio_list);
1511
1512 ret = alloc_rbio_pages(rbio);
1513 if (ret)
1514 goto cleanup;
1515
1516 index_rbio_pages(rbio);
1517
b89e1b01 1518 atomic_set(&rbio->error, 0);
53b381b3
DW
1519 /*
1520 * build a list of bios to read all the missing parts of this
1521 * stripe
1522 */
1523 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1524 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1525 struct page *page;
1526 /*
1527 * we want to find all the pages missing from
1528 * the rbio and read them from the disk. If
1529 * page_in_rbio finds a page in the bio list
1530 * we don't need to read it off the stripe.
1531 */
1532 page = page_in_rbio(rbio, stripe, pagenr, 1);
1533 if (page)
1534 continue;
1535
1536 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1537 /*
1538 * the bio cache may have handed us an uptodate
1539 * page. If so, be happy and use it
1540 */
1541 if (PageUptodate(page))
1542 continue;
1543
53b381b3
DW
1544 ret = rbio_add_io_page(rbio, &bio_list, page,
1545 stripe, pagenr, rbio->stripe_len);
1546 if (ret)
1547 goto cleanup;
1548 }
1549 }
1550
1551 bios_to_read = bio_list_size(&bio_list);
1552 if (!bios_to_read) {
1553 /*
1554 * this can happen if others have merged with
1555 * us, it means there is nothing left to read.
1556 * But if there are missing devices it may not be
1557 * safe to do the full stripe write yet.
1558 */
1559 goto finish;
1560 }
1561
1562 /*
1563 * the bbio may be freed once we submit the last bio. Make sure
1564 * not to touch it after that
1565 */
b89e1b01 1566 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1567 while (1) {
1568 bio = bio_list_pop(&bio_list);
1569 if (!bio)
1570 break;
1571
1572 bio->bi_private = rbio;
1573 bio->bi_end_io = raid_rmw_end_io;
1574
1575 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1576 BTRFS_WQ_ENDIO_RAID56);
1577
53b381b3
DW
1578 submit_bio(READ, bio);
1579 }
1580 /* the actual write will happen once the reads are done */
1581 return 0;
1582
1583cleanup:
4246a0b6 1584 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1585 return -EIO;
1586
1587finish:
1588 validate_rbio_for_rmw(rbio);
1589 return 0;
1590}
1591
1592/*
1593 * if the upper layers pass in a full stripe, we thank them by only allocating
1594 * enough pages to hold the parity, and sending it all down quickly.
1595 */
1596static int full_stripe_write(struct btrfs_raid_bio *rbio)
1597{
1598 int ret;
1599
1600 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1601 if (ret) {
1602 __free_raid_bio(rbio);
53b381b3 1603 return ret;
3cd846d1 1604 }
53b381b3
DW
1605
1606 ret = lock_stripe_add(rbio);
1607 if (ret == 0)
1608 finish_rmw(rbio);
1609 return 0;
1610}
1611
1612/*
1613 * partial stripe writes get handed over to async helpers.
1614 * We're really hoping to merge a few more writes into this
1615 * rbio before calculating new parity
1616 */
1617static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1618{
1619 int ret;
1620
1621 ret = lock_stripe_add(rbio);
1622 if (ret == 0)
1623 async_rmw_stripe(rbio);
1624 return 0;
1625}
1626
1627/*
1628 * sometimes while we were reading from the drive to
1629 * recalculate parity, enough new bios come into create
1630 * a full stripe. So we do a check here to see if we can
1631 * go directly to finish_rmw
1632 */
1633static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1634{
1635 /* head off into rmw land if we don't have a full stripe */
1636 if (!rbio_is_full(rbio))
1637 return partial_stripe_write(rbio);
1638 return full_stripe_write(rbio);
1639}
1640
6ac0f488
CM
1641/*
1642 * We use plugging call backs to collect full stripes.
1643 * Any time we get a partial stripe write while plugged
1644 * we collect it into a list. When the unplug comes down,
1645 * we sort the list by logical block number and merge
1646 * everything we can into the same rbios
1647 */
1648struct btrfs_plug_cb {
1649 struct blk_plug_cb cb;
1650 struct btrfs_fs_info *info;
1651 struct list_head rbio_list;
1652 struct btrfs_work work;
1653};
1654
1655/*
1656 * rbios on the plug list are sorted for easier merging.
1657 */
1658static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1659{
1660 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1661 plug_list);
1662 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1663 plug_list);
4f024f37
KO
1664 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1665 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1666
1667 if (a_sector < b_sector)
1668 return -1;
1669 if (a_sector > b_sector)
1670 return 1;
1671 return 0;
1672}
1673
1674static void run_plug(struct btrfs_plug_cb *plug)
1675{
1676 struct btrfs_raid_bio *cur;
1677 struct btrfs_raid_bio *last = NULL;
1678
1679 /*
1680 * sort our plug list then try to merge
1681 * everything we can in hopes of creating full
1682 * stripes.
1683 */
1684 list_sort(NULL, &plug->rbio_list, plug_cmp);
1685 while (!list_empty(&plug->rbio_list)) {
1686 cur = list_entry(plug->rbio_list.next,
1687 struct btrfs_raid_bio, plug_list);
1688 list_del_init(&cur->plug_list);
1689
1690 if (rbio_is_full(cur)) {
1691 /* we have a full stripe, send it down */
1692 full_stripe_write(cur);
1693 continue;
1694 }
1695 if (last) {
1696 if (rbio_can_merge(last, cur)) {
1697 merge_rbio(last, cur);
1698 __free_raid_bio(cur);
1699 continue;
1700
1701 }
1702 __raid56_parity_write(last);
1703 }
1704 last = cur;
1705 }
1706 if (last) {
1707 __raid56_parity_write(last);
1708 }
1709 kfree(plug);
1710}
1711
1712/*
1713 * if the unplug comes from schedule, we have to push the
1714 * work off to a helper thread
1715 */
1716static void unplug_work(struct btrfs_work *work)
1717{
1718 struct btrfs_plug_cb *plug;
1719 plug = container_of(work, struct btrfs_plug_cb, work);
1720 run_plug(plug);
1721}
1722
1723static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1724{
1725 struct btrfs_plug_cb *plug;
1726 plug = container_of(cb, struct btrfs_plug_cb, cb);
1727
1728 if (from_schedule) {
9e0af237
LB
1729 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1730 unplug_work, NULL, NULL);
d05a33ac
QW
1731 btrfs_queue_work(plug->info->rmw_workers,
1732 &plug->work);
6ac0f488
CM
1733 return;
1734 }
1735 run_plug(plug);
1736}
1737
53b381b3
DW
1738/*
1739 * our main entry point for writes from the rest of the FS.
1740 */
1741int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
8e5cfb55 1742 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1743{
1744 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1745 struct btrfs_plug_cb *plug = NULL;
1746 struct blk_plug_cb *cb;
4245215d 1747 int ret;
53b381b3 1748
8e5cfb55 1749 rbio = alloc_rbio(root, bbio, stripe_len);
af8e2d1d 1750 if (IS_ERR(rbio)) {
6e9606d2 1751 btrfs_put_bbio(bbio);
53b381b3 1752 return PTR_ERR(rbio);
af8e2d1d 1753 }
53b381b3 1754 bio_list_add(&rbio->bio_list, bio);
4f024f37 1755 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1756 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1757
4245215d
MX
1758 btrfs_bio_counter_inc_noblocked(root->fs_info);
1759 rbio->generic_bio_cnt = 1;
1760
6ac0f488
CM
1761 /*
1762 * don't plug on full rbios, just get them out the door
1763 * as quickly as we can
1764 */
4245215d
MX
1765 if (rbio_is_full(rbio)) {
1766 ret = full_stripe_write(rbio);
1767 if (ret)
1768 btrfs_bio_counter_dec(root->fs_info);
1769 return ret;
1770 }
6ac0f488
CM
1771
1772 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1773 sizeof(*plug));
1774 if (cb) {
1775 plug = container_of(cb, struct btrfs_plug_cb, cb);
1776 if (!plug->info) {
1777 plug->info = root->fs_info;
1778 INIT_LIST_HEAD(&plug->rbio_list);
1779 }
1780 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1781 ret = 0;
6ac0f488 1782 } else {
4245215d
MX
1783 ret = __raid56_parity_write(rbio);
1784 if (ret)
1785 btrfs_bio_counter_dec(root->fs_info);
6ac0f488 1786 }
4245215d 1787 return ret;
53b381b3
DW
1788}
1789
1790/*
1791 * all parity reconstruction happens here. We've read in everything
1792 * we can find from the drives and this does the heavy lifting of
1793 * sorting the good from the bad.
1794 */
1795static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1796{
1797 int pagenr, stripe;
1798 void **pointers;
1799 int faila = -1, failb = -1;
53b381b3
DW
1800 struct page *page;
1801 int err;
1802 int i;
1803
31e818fe 1804 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3
DW
1805 if (!pointers) {
1806 err = -ENOMEM;
1807 goto cleanup_io;
1808 }
1809
1810 faila = rbio->faila;
1811 failb = rbio->failb;
1812
b4ee1782
OS
1813 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1814 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1815 spin_lock_irq(&rbio->bio_list_lock);
1816 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1817 spin_unlock_irq(&rbio->bio_list_lock);
1818 }
1819
1820 index_rbio_pages(rbio);
1821
915e2290 1822 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1823 /*
1824 * Now we just use bitmap to mark the horizontal stripes in
1825 * which we have data when doing parity scrub.
1826 */
1827 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1828 !test_bit(pagenr, rbio->dbitmap))
1829 continue;
1830
53b381b3
DW
1831 /* setup our array of pointers with pages
1832 * from each stripe
1833 */
2c8cdd6e 1834 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1835 /*
1836 * if we're rebuilding a read, we have to use
1837 * pages from the bio list
1838 */
b4ee1782
OS
1839 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1840 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1841 (stripe == faila || stripe == failb)) {
1842 page = page_in_rbio(rbio, stripe, pagenr, 0);
1843 } else {
1844 page = rbio_stripe_page(rbio, stripe, pagenr);
1845 }
1846 pointers[stripe] = kmap(page);
1847 }
1848
1849 /* all raid6 handling here */
10f11900 1850 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1851 /*
1852 * single failure, rebuild from parity raid5
1853 * style
1854 */
1855 if (failb < 0) {
1856 if (faila == rbio->nr_data) {
1857 /*
1858 * Just the P stripe has failed, without
1859 * a bad data or Q stripe.
1860 * TODO, we should redo the xor here.
1861 */
1862 err = -EIO;
1863 goto cleanup;
1864 }
1865 /*
1866 * a single failure in raid6 is rebuilt
1867 * in the pstripe code below
1868 */
1869 goto pstripe;
1870 }
1871
1872 /* make sure our ps and qs are in order */
1873 if (faila > failb) {
1874 int tmp = failb;
1875 failb = faila;
1876 faila = tmp;
1877 }
1878
1879 /* if the q stripe is failed, do a pstripe reconstruction
1880 * from the xors.
1881 * If both the q stripe and the P stripe are failed, we're
1882 * here due to a crc mismatch and we can't give them the
1883 * data they want
1884 */
8e5cfb55
ZL
1885 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1886 if (rbio->bbio->raid_map[faila] ==
1887 RAID5_P_STRIPE) {
53b381b3
DW
1888 err = -EIO;
1889 goto cleanup;
1890 }
1891 /*
1892 * otherwise we have one bad data stripe and
1893 * a good P stripe. raid5!
1894 */
1895 goto pstripe;
1896 }
1897
8e5cfb55 1898 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1899 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1900 PAGE_SIZE, faila, pointers);
1901 } else {
2c8cdd6e 1902 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1903 PAGE_SIZE, faila, failb,
1904 pointers);
1905 }
1906 } else {
1907 void *p;
1908
1909 /* rebuild from P stripe here (raid5 or raid6) */
1910 BUG_ON(failb != -1);
1911pstripe:
1912 /* Copy parity block into failed block to start with */
1913 memcpy(pointers[faila],
1914 pointers[rbio->nr_data],
1915 PAGE_CACHE_SIZE);
1916
1917 /* rearrange the pointer array */
1918 p = pointers[faila];
1919 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1920 pointers[stripe] = pointers[stripe + 1];
1921 pointers[rbio->nr_data - 1] = p;
1922
1923 /* xor in the rest */
1924 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1925 }
1926 /* if we're doing this rebuild as part of an rmw, go through
1927 * and set all of our private rbio pages in the
1928 * failed stripes as uptodate. This way finish_rmw will
1929 * know they can be trusted. If this was a read reconstruction,
1930 * other endio functions will fiddle the uptodate bits
1931 */
1b94b556 1932 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1933 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1934 if (faila != -1) {
1935 page = rbio_stripe_page(rbio, faila, i);
1936 SetPageUptodate(page);
1937 }
1938 if (failb != -1) {
1939 page = rbio_stripe_page(rbio, failb, i);
1940 SetPageUptodate(page);
1941 }
1942 }
1943 }
2c8cdd6e 1944 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1945 /*
1946 * if we're rebuilding a read, we have to use
1947 * pages from the bio list
1948 */
b4ee1782
OS
1949 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1950 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1951 (stripe == faila || stripe == failb)) {
1952 page = page_in_rbio(rbio, stripe, pagenr, 0);
1953 } else {
1954 page = rbio_stripe_page(rbio, stripe, pagenr);
1955 }
1956 kunmap(page);
1957 }
1958 }
1959
1960 err = 0;
1961cleanup:
1962 kfree(pointers);
1963
1964cleanup_io:
1b94b556 1965 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
6e9606d2 1966 if (err == 0)
4ae10b3a
CM
1967 cache_rbio_pages(rbio);
1968 else
1969 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1970
22365979 1971 rbio_orig_end_io(rbio, err);
b4ee1782 1972 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1973 rbio_orig_end_io(rbio, err);
53b381b3
DW
1974 } else if (err == 0) {
1975 rbio->faila = -1;
1976 rbio->failb = -1;
5a6ac9ea
MX
1977
1978 if (rbio->operation == BTRFS_RBIO_WRITE)
1979 finish_rmw(rbio);
1980 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1981 finish_parity_scrub(rbio, 0);
1982 else
1983 BUG();
53b381b3 1984 } else {
4246a0b6 1985 rbio_orig_end_io(rbio, err);
53b381b3
DW
1986 }
1987}
1988
1989/*
1990 * This is called only for stripes we've read from disk to
1991 * reconstruct the parity.
1992 */
4246a0b6 1993static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
1994{
1995 struct btrfs_raid_bio *rbio = bio->bi_private;
1996
1997 /*
1998 * we only read stripe pages off the disk, set them
1999 * up to date if there were no errors
2000 */
4246a0b6 2001 if (bio->bi_error)
53b381b3
DW
2002 fail_bio_stripe(rbio, bio);
2003 else
2004 set_bio_pages_uptodate(bio);
2005 bio_put(bio);
2006
b89e1b01 2007 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2008 return;
2009
b89e1b01 2010 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
4246a0b6 2011 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2012 else
2013 __raid_recover_end_io(rbio);
2014}
2015
2016/*
2017 * reads everything we need off the disk to reconstruct
2018 * the parity. endio handlers trigger final reconstruction
2019 * when the IO is done.
2020 *
2021 * This is used both for reads from the higher layers and for
2022 * parity construction required to finish a rmw cycle.
2023 */
2024static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2025{
2026 int bios_to_read = 0;
53b381b3
DW
2027 struct bio_list bio_list;
2028 int ret;
53b381b3
DW
2029 int pagenr;
2030 int stripe;
2031 struct bio *bio;
2032
2033 bio_list_init(&bio_list);
2034
2035 ret = alloc_rbio_pages(rbio);
2036 if (ret)
2037 goto cleanup;
2038
b89e1b01 2039 atomic_set(&rbio->error, 0);
53b381b3
DW
2040
2041 /*
4ae10b3a
CM
2042 * read everything that hasn't failed. Thanks to the
2043 * stripe cache, it is possible that some or all of these
2044 * pages are going to be uptodate.
53b381b3 2045 */
2c8cdd6e 2046 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2047 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2048 atomic_inc(&rbio->error);
53b381b3 2049 continue;
5588383e 2050 }
53b381b3 2051
915e2290 2052 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2053 struct page *p;
2054
2055 /*
2056 * the rmw code may have already read this
2057 * page in
2058 */
2059 p = rbio_stripe_page(rbio, stripe, pagenr);
2060 if (PageUptodate(p))
2061 continue;
2062
2063 ret = rbio_add_io_page(rbio, &bio_list,
2064 rbio_stripe_page(rbio, stripe, pagenr),
2065 stripe, pagenr, rbio->stripe_len);
2066 if (ret < 0)
2067 goto cleanup;
2068 }
2069 }
2070
2071 bios_to_read = bio_list_size(&bio_list);
2072 if (!bios_to_read) {
2073 /*
2074 * we might have no bios to read just because the pages
2075 * were up to date, or we might have no bios to read because
2076 * the devices were gone.
2077 */
b89e1b01 2078 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2079 __raid_recover_end_io(rbio);
2080 goto out;
2081 } else {
2082 goto cleanup;
2083 }
2084 }
2085
2086 /*
2087 * the bbio may be freed once we submit the last bio. Make sure
2088 * not to touch it after that
2089 */
b89e1b01 2090 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2091 while (1) {
2092 bio = bio_list_pop(&bio_list);
2093 if (!bio)
2094 break;
2095
2096 bio->bi_private = rbio;
2097 bio->bi_end_io = raid_recover_end_io;
2098
2099 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2100 BTRFS_WQ_ENDIO_RAID56);
2101
53b381b3
DW
2102 submit_bio(READ, bio);
2103 }
2104out:
2105 return 0;
2106
2107cleanup:
b4ee1782
OS
2108 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2109 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
4246a0b6 2110 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2111 return -EIO;
2112}
2113
2114/*
2115 * the main entry point for reads from the higher layers. This
2116 * is really only called when the normal read path had a failure,
2117 * so we assume the bio they send down corresponds to a failed part
2118 * of the drive.
2119 */
2120int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
8e5cfb55
ZL
2121 struct btrfs_bio *bbio, u64 stripe_len,
2122 int mirror_num, int generic_io)
53b381b3
DW
2123{
2124 struct btrfs_raid_bio *rbio;
2125 int ret;
2126
8e5cfb55 2127 rbio = alloc_rbio(root, bbio, stripe_len);
af8e2d1d 2128 if (IS_ERR(rbio)) {
6e9606d2
ZL
2129 if (generic_io)
2130 btrfs_put_bbio(bbio);
53b381b3 2131 return PTR_ERR(rbio);
af8e2d1d 2132 }
53b381b3 2133
1b94b556 2134 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2135 bio_list_add(&rbio->bio_list, bio);
4f024f37 2136 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2137
2138 rbio->faila = find_logical_bio_stripe(rbio, bio);
2139 if (rbio->faila == -1) {
2140 BUG();
6e9606d2
ZL
2141 if (generic_io)
2142 btrfs_put_bbio(bbio);
53b381b3
DW
2143 kfree(rbio);
2144 return -EIO;
2145 }
2146
4245215d
MX
2147 if (generic_io) {
2148 btrfs_bio_counter_inc_noblocked(root->fs_info);
2149 rbio->generic_bio_cnt = 1;
2150 } else {
6e9606d2 2151 btrfs_get_bbio(bbio);
4245215d
MX
2152 }
2153
53b381b3
DW
2154 /*
2155 * reconstruct from the q stripe if they are
2156 * asking for mirror 3
2157 */
2158 if (mirror_num == 3)
2c8cdd6e 2159 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2160
2161 ret = lock_stripe_add(rbio);
2162
2163 /*
2164 * __raid56_parity_recover will end the bio with
2165 * any errors it hits. We don't want to return
2166 * its error value up the stack because our caller
2167 * will end up calling bio_endio with any nonzero
2168 * return
2169 */
2170 if (ret == 0)
2171 __raid56_parity_recover(rbio);
2172 /*
2173 * our rbio has been added to the list of
2174 * rbios that will be handled after the
2175 * currently lock owner is done
2176 */
2177 return 0;
2178
2179}
2180
2181static void rmw_work(struct btrfs_work *work)
2182{
2183 struct btrfs_raid_bio *rbio;
2184
2185 rbio = container_of(work, struct btrfs_raid_bio, work);
2186 raid56_rmw_stripe(rbio);
2187}
2188
2189static void read_rebuild_work(struct btrfs_work *work)
2190{
2191 struct btrfs_raid_bio *rbio;
2192
2193 rbio = container_of(work, struct btrfs_raid_bio, work);
2194 __raid56_parity_recover(rbio);
2195}
5a6ac9ea
MX
2196
2197/*
2198 * The following code is used to scrub/replace the parity stripe
2199 *
2200 * Note: We need make sure all the pages that add into the scrub/replace
2201 * raid bio are correct and not be changed during the scrub/replace. That
2202 * is those pages just hold metadata or file data with checksum.
2203 */
2204
2205struct btrfs_raid_bio *
2206raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
8e5cfb55
ZL
2207 struct btrfs_bio *bbio, u64 stripe_len,
2208 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2209 unsigned long *dbitmap, int stripe_nsectors)
2210{
2211 struct btrfs_raid_bio *rbio;
2212 int i;
2213
8e5cfb55 2214 rbio = alloc_rbio(root, bbio, stripe_len);
5a6ac9ea
MX
2215 if (IS_ERR(rbio))
2216 return NULL;
2217 bio_list_add(&rbio->bio_list, bio);
2218 /*
2219 * This is a special bio which is used to hold the completion handler
2220 * and make the scrub rbio is similar to the other types
2221 */
2222 ASSERT(!bio->bi_iter.bi_size);
2223 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2224
2c8cdd6e 2225 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2226 if (bbio->stripes[i].dev == scrub_dev) {
2227 rbio->scrubp = i;
2228 break;
2229 }
2230 }
2231
2232 /* Now we just support the sectorsize equals to page size */
2233 ASSERT(root->sectorsize == PAGE_SIZE);
2234 ASSERT(rbio->stripe_npages == stripe_nsectors);
2235 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2236
2237 return rbio;
2238}
2239
b4ee1782
OS
2240/* Used for both parity scrub and missing. */
2241void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2242 u64 logical)
5a6ac9ea
MX
2243{
2244 int stripe_offset;
2245 int index;
2246
8e5cfb55
ZL
2247 ASSERT(logical >= rbio->bbio->raid_map[0]);
2248 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2249 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2250 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
5a6ac9ea
MX
2251 index = stripe_offset >> PAGE_CACHE_SHIFT;
2252 rbio->bio_pages[index] = page;
2253}
2254
2255/*
2256 * We just scrub the parity that we have correct data on the same horizontal,
2257 * so we needn't allocate all pages for all the stripes.
2258 */
2259static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2260{
2261 int i;
2262 int bit;
2263 int index;
2264 struct page *page;
2265
2266 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2267 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2268 index = i * rbio->stripe_npages + bit;
2269 if (rbio->stripe_pages[index])
2270 continue;
2271
2272 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2273 if (!page)
2274 return -ENOMEM;
2275 rbio->stripe_pages[index] = page;
2276 ClearPageUptodate(page);
2277 }
2278 }
2279 return 0;
2280}
2281
2282/*
2283 * end io function used by finish_rmw. When we finally
2284 * get here, we've written a full stripe
2285 */
4246a0b6 2286static void raid_write_parity_end_io(struct bio *bio)
5a6ac9ea
MX
2287{
2288 struct btrfs_raid_bio *rbio = bio->bi_private;
4246a0b6 2289 int err = bio->bi_error;
5a6ac9ea 2290
4246a0b6 2291 if (bio->bi_error)
5a6ac9ea
MX
2292 fail_bio_stripe(rbio, bio);
2293
2294 bio_put(bio);
2295
2296 if (!atomic_dec_and_test(&rbio->stripes_pending))
2297 return;
2298
2299 err = 0;
2300
2301 if (atomic_read(&rbio->error))
2302 err = -EIO;
2303
4246a0b6 2304 rbio_orig_end_io(rbio, err);
5a6ac9ea
MX
2305}
2306
2307static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2308 int need_check)
2309{
76035976 2310 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2311 void *pointers[rbio->real_stripes];
76035976 2312 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2313 int nr_data = rbio->nr_data;
2314 int stripe;
2315 int pagenr;
2316 int p_stripe = -1;
2317 int q_stripe = -1;
2318 struct page *p_page = NULL;
2319 struct page *q_page = NULL;
2320 struct bio_list bio_list;
2321 struct bio *bio;
76035976 2322 int is_replace = 0;
5a6ac9ea
MX
2323 int ret;
2324
2325 bio_list_init(&bio_list);
2326
2c8cdd6e
MX
2327 if (rbio->real_stripes - rbio->nr_data == 1) {
2328 p_stripe = rbio->real_stripes - 1;
2329 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2330 p_stripe = rbio->real_stripes - 2;
2331 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2332 } else {
2333 BUG();
2334 }
2335
76035976
MX
2336 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2337 is_replace = 1;
2338 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2339 }
2340
5a6ac9ea
MX
2341 /*
2342 * Because the higher layers(scrubber) are unlikely to
2343 * use this area of the disk again soon, so don't cache
2344 * it.
2345 */
2346 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2347
2348 if (!need_check)
2349 goto writeback;
2350
2351 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2352 if (!p_page)
2353 goto cleanup;
2354 SetPageUptodate(p_page);
2355
2356 if (q_stripe != -1) {
2357 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2358 if (!q_page) {
2359 __free_page(p_page);
2360 goto cleanup;
2361 }
2362 SetPageUptodate(q_page);
2363 }
2364
2365 atomic_set(&rbio->error, 0);
2366
2367 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2368 struct page *p;
2369 void *parity;
2370 /* first collect one page from each data stripe */
2371 for (stripe = 0; stripe < nr_data; stripe++) {
2372 p = page_in_rbio(rbio, stripe, pagenr, 0);
2373 pointers[stripe] = kmap(p);
2374 }
2375
2376 /* then add the parity stripe */
2377 pointers[stripe++] = kmap(p_page);
2378
2379 if (q_stripe != -1) {
2380
2381 /*
2382 * raid6, add the qstripe and call the
2383 * library function to fill in our p/q
2384 */
2385 pointers[stripe++] = kmap(q_page);
2386
2c8cdd6e 2387 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2388 pointers);
2389 } else {
2390 /* raid5 */
2391 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2392 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2393 }
2394
2395 /* Check scrubbing pairty and repair it */
2396 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2397 parity = kmap(p);
2398 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2399 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2400 else
2401 /* Parity is right, needn't writeback */
2402 bitmap_clear(rbio->dbitmap, pagenr, 1);
2403 kunmap(p);
2404
2c8cdd6e 2405 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2406 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2407 }
2408
2409 __free_page(p_page);
2410 if (q_page)
2411 __free_page(q_page);
2412
2413writeback:
2414 /*
2415 * time to start writing. Make bios for everything from the
2416 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2417 * everything else.
2418 */
2419 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2420 struct page *page;
2421
2422 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2423 ret = rbio_add_io_page(rbio, &bio_list,
2424 page, rbio->scrubp, pagenr, rbio->stripe_len);
2425 if (ret)
2426 goto cleanup;
2427 }
2428
76035976
MX
2429 if (!is_replace)
2430 goto submit_write;
2431
2432 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2433 struct page *page;
2434
2435 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2436 ret = rbio_add_io_page(rbio, &bio_list, page,
2437 bbio->tgtdev_map[rbio->scrubp],
2438 pagenr, rbio->stripe_len);
2439 if (ret)
2440 goto cleanup;
2441 }
2442
2443submit_write:
5a6ac9ea
MX
2444 nr_data = bio_list_size(&bio_list);
2445 if (!nr_data) {
2446 /* Every parity is right */
4246a0b6 2447 rbio_orig_end_io(rbio, 0);
5a6ac9ea
MX
2448 return;
2449 }
2450
2451 atomic_set(&rbio->stripes_pending, nr_data);
2452
2453 while (1) {
2454 bio = bio_list_pop(&bio_list);
2455 if (!bio)
2456 break;
2457
2458 bio->bi_private = rbio;
2459 bio->bi_end_io = raid_write_parity_end_io;
5a6ac9ea
MX
2460 submit_bio(WRITE, bio);
2461 }
2462 return;
2463
2464cleanup:
4246a0b6 2465 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2466}
2467
2468static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2469{
2470 if (stripe >= 0 && stripe < rbio->nr_data)
2471 return 1;
2472 return 0;
2473}
2474
2475/*
2476 * While we're doing the parity check and repair, we could have errors
2477 * in reading pages off the disk. This checks for errors and if we're
2478 * not able to read the page it'll trigger parity reconstruction. The
2479 * parity scrub will be finished after we've reconstructed the failed
2480 * stripes
2481 */
2482static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2483{
2484 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2485 goto cleanup;
2486
2487 if (rbio->faila >= 0 || rbio->failb >= 0) {
2488 int dfail = 0, failp = -1;
2489
2490 if (is_data_stripe(rbio, rbio->faila))
2491 dfail++;
2492 else if (is_parity_stripe(rbio->faila))
2493 failp = rbio->faila;
2494
2495 if (is_data_stripe(rbio, rbio->failb))
2496 dfail++;
2497 else if (is_parity_stripe(rbio->failb))
2498 failp = rbio->failb;
2499
2500 /*
2501 * Because we can not use a scrubbing parity to repair
2502 * the data, so the capability of the repair is declined.
2503 * (In the case of RAID5, we can not repair anything)
2504 */
2505 if (dfail > rbio->bbio->max_errors - 1)
2506 goto cleanup;
2507
2508 /*
2509 * If all data is good, only parity is correctly, just
2510 * repair the parity.
2511 */
2512 if (dfail == 0) {
2513 finish_parity_scrub(rbio, 0);
2514 return;
2515 }
2516
2517 /*
2518 * Here means we got one corrupted data stripe and one
2519 * corrupted parity on RAID6, if the corrupted parity
2520 * is scrubbing parity, luckly, use the other one to repair
2521 * the data, or we can not repair the data stripe.
2522 */
2523 if (failp != rbio->scrubp)
2524 goto cleanup;
2525
2526 __raid_recover_end_io(rbio);
2527 } else {
2528 finish_parity_scrub(rbio, 1);
2529 }
2530 return;
2531
2532cleanup:
4246a0b6 2533 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2534}
2535
2536/*
2537 * end io for the read phase of the rmw cycle. All the bios here are physical
2538 * stripe bios we've read from the disk so we can recalculate the parity of the
2539 * stripe.
2540 *
2541 * This will usually kick off finish_rmw once all the bios are read in, but it
2542 * may trigger parity reconstruction if we had any errors along the way
2543 */
4246a0b6 2544static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2545{
2546 struct btrfs_raid_bio *rbio = bio->bi_private;
2547
4246a0b6 2548 if (bio->bi_error)
5a6ac9ea
MX
2549 fail_bio_stripe(rbio, bio);
2550 else
2551 set_bio_pages_uptodate(bio);
2552
2553 bio_put(bio);
2554
2555 if (!atomic_dec_and_test(&rbio->stripes_pending))
2556 return;
2557
2558 /*
2559 * this will normally call finish_rmw to start our write
2560 * but if there are any failed stripes we'll reconstruct
2561 * from parity first
2562 */
2563 validate_rbio_for_parity_scrub(rbio);
2564}
2565
2566static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2567{
2568 int bios_to_read = 0;
5a6ac9ea
MX
2569 struct bio_list bio_list;
2570 int ret;
2571 int pagenr;
2572 int stripe;
2573 struct bio *bio;
2574
2575 ret = alloc_rbio_essential_pages(rbio);
2576 if (ret)
2577 goto cleanup;
2578
2579 bio_list_init(&bio_list);
2580
2581 atomic_set(&rbio->error, 0);
2582 /*
2583 * build a list of bios to read all the missing parts of this
2584 * stripe
2585 */
2c8cdd6e 2586 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2587 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2588 struct page *page;
2589 /*
2590 * we want to find all the pages missing from
2591 * the rbio and read them from the disk. If
2592 * page_in_rbio finds a page in the bio list
2593 * we don't need to read it off the stripe.
2594 */
2595 page = page_in_rbio(rbio, stripe, pagenr, 1);
2596 if (page)
2597 continue;
2598
2599 page = rbio_stripe_page(rbio, stripe, pagenr);
2600 /*
2601 * the bio cache may have handed us an uptodate
2602 * page. If so, be happy and use it
2603 */
2604 if (PageUptodate(page))
2605 continue;
2606
2607 ret = rbio_add_io_page(rbio, &bio_list, page,
2608 stripe, pagenr, rbio->stripe_len);
2609 if (ret)
2610 goto cleanup;
2611 }
2612 }
2613
2614 bios_to_read = bio_list_size(&bio_list);
2615 if (!bios_to_read) {
2616 /*
2617 * this can happen if others have merged with
2618 * us, it means there is nothing left to read.
2619 * But if there are missing devices it may not be
2620 * safe to do the full stripe write yet.
2621 */
2622 goto finish;
2623 }
2624
2625 /*
2626 * the bbio may be freed once we submit the last bio. Make sure
2627 * not to touch it after that
2628 */
2629 atomic_set(&rbio->stripes_pending, bios_to_read);
2630 while (1) {
2631 bio = bio_list_pop(&bio_list);
2632 if (!bio)
2633 break;
2634
2635 bio->bi_private = rbio;
2636 bio->bi_end_io = raid56_parity_scrub_end_io;
2637
2638 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2639 BTRFS_WQ_ENDIO_RAID56);
2640
5a6ac9ea
MX
2641 submit_bio(READ, bio);
2642 }
2643 /* the actual write will happen once the reads are done */
2644 return;
2645
2646cleanup:
4246a0b6 2647 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2648 return;
2649
2650finish:
2651 validate_rbio_for_parity_scrub(rbio);
2652}
2653
2654static void scrub_parity_work(struct btrfs_work *work)
2655{
2656 struct btrfs_raid_bio *rbio;
2657
2658 rbio = container_of(work, struct btrfs_raid_bio, work);
2659 raid56_parity_scrub_stripe(rbio);
2660}
2661
2662static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2663{
2664 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2665 scrub_parity_work, NULL, NULL);
2666
2667 btrfs_queue_work(rbio->fs_info->rmw_workers,
2668 &rbio->work);
2669}
2670
2671void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2672{
2673 if (!lock_stripe_add(rbio))
2674 async_scrub_parity(rbio);
2675}
b4ee1782
OS
2676
2677/* The following code is used for dev replace of a missing RAID 5/6 device. */
2678
2679struct btrfs_raid_bio *
2680raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2681 struct btrfs_bio *bbio, u64 length)
2682{
2683 struct btrfs_raid_bio *rbio;
2684
2685 rbio = alloc_rbio(root, bbio, length);
2686 if (IS_ERR(rbio))
2687 return NULL;
2688
2689 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2690 bio_list_add(&rbio->bio_list, bio);
2691 /*
2692 * This is a special bio which is used to hold the completion handler
2693 * and make the scrub rbio is similar to the other types
2694 */
2695 ASSERT(!bio->bi_iter.bi_size);
2696
2697 rbio->faila = find_logical_bio_stripe(rbio, bio);
2698 if (rbio->faila == -1) {
2699 BUG();
2700 kfree(rbio);
2701 return NULL;
2702 }
2703
2704 return rbio;
2705}
2706
2707static void missing_raid56_work(struct btrfs_work *work)
2708{
2709 struct btrfs_raid_bio *rbio;
2710
2711 rbio = container_of(work, struct btrfs_raid_bio, work);
2712 __raid56_parity_recover(rbio);
2713}
2714
2715static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2716{
2717 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2718 missing_raid56_work, NULL, NULL);
2719
2720 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2721}
2722
2723void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2724{
2725 if (!lock_stripe_add(rbio))
2726 async_missing_raid56(rbio);
2727}