]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/raid56.c
btrfs: convert scrub_ctx.refs from atomic_t to refcount_t
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
d7011f5b 34#include <linux/vmalloc.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
53b381b3
DW
152 atomic_t refs;
153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
53b381b3 227
4ae10b3a
CM
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
53b381b3
DW
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
241 if (x)
242 kvfree(x);
53b381b3
DW
243 return 0;
244}
245
4ae10b3a
CM
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
09cbfeaf 273 memcpy(d, s, PAGE_SIZE);
4ae10b3a
CM
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
53b381b3
DW
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
8e5cfb55 287 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
4ae10b3a
CM
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
53b381b3
DW
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 340 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
341 bio_list_init(&victim->bio_list);
342}
343
344/*
4ae10b3a
CM
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
48a3b636 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
53b381b3
DW
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
4ae10b3a 452 btrfs_clear_rbio_cache(info);
f749303b 453 kvfree(info->stripe_hash_table);
53b381b3
DW
454 info->stripe_hash_table = NULL;
455}
456
4ae10b3a
CM
457/*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
506}
507
53b381b3
DW
508/*
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513static void run_xor(void **pages, int src_cnt, ssize_t len)
514{
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526}
527
528/*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536{
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545}
546
547static int rbio_is_full(struct btrfs_raid_bio *rbio)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556}
557
558/*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570{
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
4ae10b3a
CM
575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
01327610 579 * steal from cached rbios though, other functions
4ae10b3a
CM
580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
8e5cfb55
ZL
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
53b381b3
DW
588 return 0;
589
5a6ac9ea
MX
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
592 return 0;
593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 603 return 0;
53b381b3 604
b4ee1782
OS
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
53b381b3
DW
609 return 1;
610}
611
b7178a5f
ZL
612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 int index)
614{
615 return stripe * rbio->stripe_npages + index;
616}
617
618/*
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
621 */
622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 int index)
624{
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626}
627
53b381b3
DW
628/*
629 * helper to index into the pstripe
630 */
631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632{
b7178a5f 633 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
634}
635
636/*
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
639 */
640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641{
2c8cdd6e 642 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 643 return NULL;
b7178a5f 644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
645}
646
647/*
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
650 *
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
653 * themselves.
654 *
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
658 *
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
663 * 1 is returned
664 *
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
668 */
669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670{
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 DEFINE_WAIT(wait);
677 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 678 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 679 int ret = 0;
53b381b3
DW
680
681 spin_lock_irqsave(&h->lock, flags);
682 list_for_each_entry(cur, &h->hash_list, hash_list) {
8e5cfb55 683 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
684 spin_lock(&cur->bio_list_lock);
685
4ae10b3a
CM
686 /* can we steal this cached rbio's pages? */
687 if (bio_list_empty(&cur->bio_list) &&
688 list_empty(&cur->plug_list) &&
689 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 list_del_init(&cur->hash_list);
692 atomic_dec(&cur->refs);
693
694 steal_rbio(cur, rbio);
695 cache_drop = cur;
696 spin_unlock(&cur->bio_list_lock);
697
698 goto lockit;
699 }
700
53b381b3
DW
701 /* can we merge into the lock owner? */
702 if (rbio_can_merge(cur, rbio)) {
703 merge_rbio(cur, rbio);
704 spin_unlock(&cur->bio_list_lock);
705 freeit = rbio;
706 ret = 1;
707 goto out;
708 }
709
4ae10b3a 710
53b381b3
DW
711 /*
712 * we couldn't merge with the running
713 * rbio, see if we can merge with the
714 * pending ones. We don't have to
715 * check for rmw_locked because there
716 * is no way they are inside finish_rmw
717 * right now
718 */
719 list_for_each_entry(pending, &cur->plug_list,
720 plug_list) {
721 if (rbio_can_merge(pending, rbio)) {
722 merge_rbio(pending, rbio);
723 spin_unlock(&cur->bio_list_lock);
724 freeit = rbio;
725 ret = 1;
726 goto out;
727 }
728 }
729
730 /* no merging, put us on the tail of the plug list,
731 * our rbio will be started with the currently
732 * running rbio unlocks
733 */
734 list_add_tail(&rbio->plug_list, &cur->plug_list);
735 spin_unlock(&cur->bio_list_lock);
736 ret = 1;
737 goto out;
738 }
739 }
4ae10b3a 740lockit:
53b381b3
DW
741 atomic_inc(&rbio->refs);
742 list_add(&rbio->hash_list, &h->hash_list);
743out:
744 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
745 if (cache_drop)
746 remove_rbio_from_cache(cache_drop);
53b381b3
DW
747 if (freeit)
748 __free_raid_bio(freeit);
749 return ret;
750}
751
752/*
753 * called as rmw or parity rebuild is completed. If the plug list has more
754 * rbios waiting for this stripe, the next one on the list will be started
755 */
756static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757{
758 int bucket;
759 struct btrfs_stripe_hash *h;
760 unsigned long flags;
4ae10b3a 761 int keep_cache = 0;
53b381b3
DW
762
763 bucket = rbio_bucket(rbio);
764 h = rbio->fs_info->stripe_hash_table->table + bucket;
765
4ae10b3a
CM
766 if (list_empty(&rbio->plug_list))
767 cache_rbio(rbio);
768
53b381b3
DW
769 spin_lock_irqsave(&h->lock, flags);
770 spin_lock(&rbio->bio_list_lock);
771
772 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
773 /*
774 * if we're still cached and there is no other IO
775 * to perform, just leave this rbio here for others
776 * to steal from later
777 */
778 if (list_empty(&rbio->plug_list) &&
779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 keep_cache = 1;
781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 BUG_ON(!bio_list_empty(&rbio->bio_list));
783 goto done;
784 }
53b381b3
DW
785
786 list_del_init(&rbio->hash_list);
787 atomic_dec(&rbio->refs);
788
789 /*
790 * we use the plug list to hold all the rbios
791 * waiting for the chance to lock this stripe.
792 * hand the lock over to one of them.
793 */
794 if (!list_empty(&rbio->plug_list)) {
795 struct btrfs_raid_bio *next;
796 struct list_head *head = rbio->plug_list.next;
797
798 next = list_entry(head, struct btrfs_raid_bio,
799 plug_list);
800
801 list_del_init(&rbio->plug_list);
802
803 list_add(&next->hash_list, &h->hash_list);
804 atomic_inc(&next->refs);
805 spin_unlock(&rbio->bio_list_lock);
806 spin_unlock_irqrestore(&h->lock, flags);
807
1b94b556 808 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 809 async_read_rebuild(next);
b4ee1782
OS
810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 steal_rbio(rbio, next);
812 async_read_rebuild(next);
813 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 814 steal_rbio(rbio, next);
53b381b3 815 async_rmw_stripe(next);
5a6ac9ea
MX
816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 steal_rbio(rbio, next);
818 async_scrub_parity(next);
4ae10b3a 819 }
53b381b3
DW
820
821 goto done_nolock;
33a9eca7
DS
822 /*
823 * The barrier for this waitqueue_active is not needed,
824 * we're protected by h->lock and can't miss a wakeup.
825 */
826 } else if (waitqueue_active(&h->wait)) {
53b381b3
DW
827 spin_unlock(&rbio->bio_list_lock);
828 spin_unlock_irqrestore(&h->lock, flags);
829 wake_up(&h->wait);
830 goto done_nolock;
831 }
832 }
4ae10b3a 833done:
53b381b3
DW
834 spin_unlock(&rbio->bio_list_lock);
835 spin_unlock_irqrestore(&h->lock, flags);
836
837done_nolock:
4ae10b3a
CM
838 if (!keep_cache)
839 remove_rbio_from_cache(rbio);
53b381b3
DW
840}
841
842static void __free_raid_bio(struct btrfs_raid_bio *rbio)
843{
844 int i;
845
846 WARN_ON(atomic_read(&rbio->refs) < 0);
847 if (!atomic_dec_and_test(&rbio->refs))
848 return;
849
4ae10b3a 850 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
851 WARN_ON(!list_empty(&rbio->hash_list));
852 WARN_ON(!bio_list_empty(&rbio->bio_list));
853
854 for (i = 0; i < rbio->nr_pages; i++) {
855 if (rbio->stripe_pages[i]) {
856 __free_page(rbio->stripe_pages[i]);
857 rbio->stripe_pages[i] = NULL;
858 }
859 }
af8e2d1d 860
6e9606d2 861 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
862 kfree(rbio);
863}
864
865static void free_raid_bio(struct btrfs_raid_bio *rbio)
866{
867 unlock_stripe(rbio);
868 __free_raid_bio(rbio);
869}
870
871/*
872 * this frees the rbio and runs through all the bios in the
873 * bio_list and calls end_io on them
874 */
4246a0b6 875static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
53b381b3
DW
876{
877 struct bio *cur = bio_list_get(&rbio->bio_list);
878 struct bio *next;
4245215d
MX
879
880 if (rbio->generic_bio_cnt)
881 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
882
53b381b3
DW
883 free_raid_bio(rbio);
884
885 while (cur) {
886 next = cur->bi_next;
887 cur->bi_next = NULL;
4246a0b6
CH
888 cur->bi_error = err;
889 bio_endio(cur);
53b381b3
DW
890 cur = next;
891 }
892}
893
894/*
895 * end io function used by finish_rmw. When we finally
896 * get here, we've written a full stripe
897 */
4246a0b6 898static void raid_write_end_io(struct bio *bio)
53b381b3
DW
899{
900 struct btrfs_raid_bio *rbio = bio->bi_private;
4246a0b6 901 int err = bio->bi_error;
a6111d11 902 int max_errors;
53b381b3
DW
903
904 if (err)
905 fail_bio_stripe(rbio, bio);
906
907 bio_put(bio);
908
b89e1b01 909 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
910 return;
911
912 err = 0;
913
914 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
915 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
916 0 : rbio->bbio->max_errors;
917 if (atomic_read(&rbio->error) > max_errors)
53b381b3
DW
918 err = -EIO;
919
4246a0b6 920 rbio_orig_end_io(rbio, err);
53b381b3
DW
921}
922
923/*
924 * the read/modify/write code wants to use the original bio for
925 * any pages it included, and then use the rbio for everything
926 * else. This function decides if a given index (stripe number)
927 * and page number in that stripe fall inside the original bio
928 * or the rbio.
929 *
930 * if you set bio_list_only, you'll get a NULL back for any ranges
931 * that are outside the bio_list
932 *
933 * This doesn't take any refs on anything, you get a bare page pointer
934 * and the caller must bump refs as required.
935 *
936 * You must call index_rbio_pages once before you can trust
937 * the answers from this function.
938 */
939static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
940 int index, int pagenr, int bio_list_only)
941{
942 int chunk_page;
943 struct page *p = NULL;
944
945 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
946
947 spin_lock_irq(&rbio->bio_list_lock);
948 p = rbio->bio_pages[chunk_page];
949 spin_unlock_irq(&rbio->bio_list_lock);
950
951 if (p || bio_list_only)
952 return p;
953
954 return rbio->stripe_pages[chunk_page];
955}
956
957/*
958 * number of pages we need for the entire stripe across all the
959 * drives
960 */
961static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
962{
09cbfeaf 963 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
964}
965
966/*
967 * allocation and initial setup for the btrfs_raid_bio. Not
968 * this does not allocate any pages for rbio->pages.
969 */
2ff7e61e
JM
970static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
971 struct btrfs_bio *bbio,
972 u64 stripe_len)
53b381b3
DW
973{
974 struct btrfs_raid_bio *rbio;
975 int nr_data = 0;
2c8cdd6e
MX
976 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
977 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 978 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
979 void *p;
980
5a6ac9ea 981 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
982 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
983 sizeof(long), GFP_NOFS);
af8e2d1d 984 if (!rbio)
53b381b3 985 return ERR_PTR(-ENOMEM);
53b381b3
DW
986
987 bio_list_init(&rbio->bio_list);
988 INIT_LIST_HEAD(&rbio->plug_list);
989 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 990 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
991 INIT_LIST_HEAD(&rbio->hash_list);
992 rbio->bbio = bbio;
2ff7e61e 993 rbio->fs_info = fs_info;
53b381b3
DW
994 rbio->stripe_len = stripe_len;
995 rbio->nr_pages = num_pages;
2c8cdd6e 996 rbio->real_stripes = real_stripes;
5a6ac9ea 997 rbio->stripe_npages = stripe_npages;
53b381b3
DW
998 rbio->faila = -1;
999 rbio->failb = -1;
1000 atomic_set(&rbio->refs, 1);
b89e1b01
MX
1001 atomic_set(&rbio->error, 0);
1002 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
1003
1004 /*
1005 * the stripe_pages and bio_pages array point to the extra
1006 * memory we allocated past the end of the rbio
1007 */
1008 p = rbio + 1;
1009 rbio->stripe_pages = p;
1010 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1011 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1012
10f11900
ZL
1013 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1014 nr_data = real_stripes - 1;
1015 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1016 nr_data = real_stripes - 2;
53b381b3 1017 else
10f11900 1018 BUG();
53b381b3
DW
1019
1020 rbio->nr_data = nr_data;
1021 return rbio;
1022}
1023
1024/* allocate pages for all the stripes in the bio, including parity */
1025static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1026{
1027 int i;
1028 struct page *page;
1029
1030 for (i = 0; i < rbio->nr_pages; i++) {
1031 if (rbio->stripe_pages[i])
1032 continue;
1033 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1034 if (!page)
1035 return -ENOMEM;
1036 rbio->stripe_pages[i] = page;
53b381b3
DW
1037 }
1038 return 0;
1039}
1040
b7178a5f 1041/* only allocate pages for p/q stripes */
53b381b3
DW
1042static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1043{
1044 int i;
1045 struct page *page;
1046
b7178a5f 1047 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1048
1049 for (; i < rbio->nr_pages; i++) {
1050 if (rbio->stripe_pages[i])
1051 continue;
1052 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1053 if (!page)
1054 return -ENOMEM;
1055 rbio->stripe_pages[i] = page;
1056 }
1057 return 0;
1058}
1059
1060/*
1061 * add a single page from a specific stripe into our list of bios for IO
1062 * this will try to merge into existing bios if possible, and returns
1063 * zero if all went well.
1064 */
48a3b636
ES
1065static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1066 struct bio_list *bio_list,
1067 struct page *page,
1068 int stripe_nr,
1069 unsigned long page_index,
1070 unsigned long bio_max_len)
53b381b3
DW
1071{
1072 struct bio *last = bio_list->tail;
1073 u64 last_end = 0;
1074 int ret;
1075 struct bio *bio;
1076 struct btrfs_bio_stripe *stripe;
1077 u64 disk_start;
1078
1079 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1080 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1081
1082 /* if the device is missing, just fail this stripe */
1083 if (!stripe->dev->bdev)
1084 return fail_rbio_index(rbio, stripe_nr);
1085
1086 /* see if we can add this page onto our existing bio */
1087 if (last) {
4f024f37
KO
1088 last_end = (u64)last->bi_iter.bi_sector << 9;
1089 last_end += last->bi_iter.bi_size;
53b381b3
DW
1090
1091 /*
1092 * we can't merge these if they are from different
1093 * devices or if they are not contiguous
1094 */
1095 if (last_end == disk_start && stripe->dev->bdev &&
4246a0b6 1096 !last->bi_error &&
53b381b3 1097 last->bi_bdev == stripe->dev->bdev) {
09cbfeaf
KS
1098 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1099 if (ret == PAGE_SIZE)
53b381b3
DW
1100 return 0;
1101 }
1102 }
1103
1104 /* put a new bio on the list */
9be3395b 1105 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
53b381b3
DW
1106 if (!bio)
1107 return -ENOMEM;
1108
4f024f37 1109 bio->bi_iter.bi_size = 0;
53b381b3 1110 bio->bi_bdev = stripe->dev->bdev;
4f024f37 1111 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1112
09cbfeaf 1113 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1114 bio_list_add(bio_list, bio);
1115 return 0;
1116}
1117
1118/*
1119 * while we're doing the read/modify/write cycle, we could
1120 * have errors in reading pages off the disk. This checks
1121 * for errors and if we're not able to read the page it'll
1122 * trigger parity reconstruction. The rmw will be finished
1123 * after we've reconstructed the failed stripes
1124 */
1125static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1126{
1127 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1128 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1129 __raid56_parity_recover(rbio);
1130 } else {
1131 finish_rmw(rbio);
1132 }
1133}
1134
53b381b3
DW
1135/*
1136 * helper function to walk our bio list and populate the bio_pages array with
1137 * the result. This seems expensive, but it is faster than constantly
1138 * searching through the bio list as we setup the IO in finish_rmw or stripe
1139 * reconstruction.
1140 *
1141 * This must be called before you trust the answers from page_in_rbio
1142 */
1143static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1144{
1145 struct bio *bio;
80ace3e4 1146 struct bio_vec *bvec;
53b381b3
DW
1147 u64 start;
1148 unsigned long stripe_offset;
1149 unsigned long page_index;
53b381b3
DW
1150 int i;
1151
1152 spin_lock_irq(&rbio->bio_list_lock);
1153 bio_list_for_each(bio, &rbio->bio_list) {
4f024f37 1154 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1155 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1156 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1157
80ace3e4
CH
1158 bio_for_each_segment_all(bvec, bio, i)
1159 rbio->bio_pages[page_index + i] = bvec->bv_page;
53b381b3
DW
1160 }
1161 spin_unlock_irq(&rbio->bio_list_lock);
1162}
1163
1164/*
1165 * this is called from one of two situations. We either
1166 * have a full stripe from the higher layers, or we've read all
1167 * the missing bits off disk.
1168 *
1169 * This will calculate the parity and then send down any
1170 * changed blocks.
1171 */
1172static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1173{
1174 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1175 void *pointers[rbio->real_stripes];
53b381b3
DW
1176 int nr_data = rbio->nr_data;
1177 int stripe;
1178 int pagenr;
1179 int p_stripe = -1;
1180 int q_stripe = -1;
1181 struct bio_list bio_list;
1182 struct bio *bio;
53b381b3
DW
1183 int ret;
1184
1185 bio_list_init(&bio_list);
1186
2c8cdd6e
MX
1187 if (rbio->real_stripes - rbio->nr_data == 1) {
1188 p_stripe = rbio->real_stripes - 1;
1189 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1190 p_stripe = rbio->real_stripes - 2;
1191 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1192 } else {
1193 BUG();
1194 }
1195
1196 /* at this point we either have a full stripe,
1197 * or we've read the full stripe from the drive.
1198 * recalculate the parity and write the new results.
1199 *
1200 * We're not allowed to add any new bios to the
1201 * bio list here, anyone else that wants to
1202 * change this stripe needs to do their own rmw.
1203 */
1204 spin_lock_irq(&rbio->bio_list_lock);
1205 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1206 spin_unlock_irq(&rbio->bio_list_lock);
1207
b89e1b01 1208 atomic_set(&rbio->error, 0);
53b381b3
DW
1209
1210 /*
1211 * now that we've set rmw_locked, run through the
1212 * bio list one last time and map the page pointers
4ae10b3a
CM
1213 *
1214 * We don't cache full rbios because we're assuming
1215 * the higher layers are unlikely to use this area of
1216 * the disk again soon. If they do use it again,
1217 * hopefully they will send another full bio.
53b381b3
DW
1218 */
1219 index_rbio_pages(rbio);
4ae10b3a
CM
1220 if (!rbio_is_full(rbio))
1221 cache_rbio_pages(rbio);
1222 else
1223 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1224
915e2290 1225 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1226 struct page *p;
1227 /* first collect one page from each data stripe */
1228 for (stripe = 0; stripe < nr_data; stripe++) {
1229 p = page_in_rbio(rbio, stripe, pagenr, 0);
1230 pointers[stripe] = kmap(p);
1231 }
1232
1233 /* then add the parity stripe */
1234 p = rbio_pstripe_page(rbio, pagenr);
1235 SetPageUptodate(p);
1236 pointers[stripe++] = kmap(p);
1237
1238 if (q_stripe != -1) {
1239
1240 /*
1241 * raid6, add the qstripe and call the
1242 * library function to fill in our p/q
1243 */
1244 p = rbio_qstripe_page(rbio, pagenr);
1245 SetPageUptodate(p);
1246 pointers[stripe++] = kmap(p);
1247
2c8cdd6e 1248 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1249 pointers);
1250 } else {
1251 /* raid5 */
1252 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 1253 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1254 }
1255
1256
2c8cdd6e 1257 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1258 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1259 }
1260
1261 /*
1262 * time to start writing. Make bios for everything from the
1263 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1264 * everything else.
1265 */
2c8cdd6e 1266 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1267 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1268 struct page *page;
1269 if (stripe < rbio->nr_data) {
1270 page = page_in_rbio(rbio, stripe, pagenr, 1);
1271 if (!page)
1272 continue;
1273 } else {
1274 page = rbio_stripe_page(rbio, stripe, pagenr);
1275 }
1276
1277 ret = rbio_add_io_page(rbio, &bio_list,
1278 page, stripe, pagenr, rbio->stripe_len);
1279 if (ret)
1280 goto cleanup;
1281 }
1282 }
1283
2c8cdd6e
MX
1284 if (likely(!bbio->num_tgtdevs))
1285 goto write_data;
1286
1287 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1288 if (!bbio->tgtdev_map[stripe])
1289 continue;
1290
915e2290 1291 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1292 struct page *page;
1293 if (stripe < rbio->nr_data) {
1294 page = page_in_rbio(rbio, stripe, pagenr, 1);
1295 if (!page)
1296 continue;
1297 } else {
1298 page = rbio_stripe_page(rbio, stripe, pagenr);
1299 }
1300
1301 ret = rbio_add_io_page(rbio, &bio_list, page,
1302 rbio->bbio->tgtdev_map[stripe],
1303 pagenr, rbio->stripe_len);
1304 if (ret)
1305 goto cleanup;
1306 }
1307 }
1308
1309write_data:
b89e1b01
MX
1310 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1311 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1312
1313 while (1) {
1314 bio = bio_list_pop(&bio_list);
1315 if (!bio)
1316 break;
1317
1318 bio->bi_private = rbio;
1319 bio->bi_end_io = raid_write_end_io;
37226b21 1320 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
1321
1322 submit_bio(bio);
53b381b3
DW
1323 }
1324 return;
1325
1326cleanup:
4246a0b6 1327 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1328}
1329
1330/*
1331 * helper to find the stripe number for a given bio. Used to figure out which
1332 * stripe has failed. This expects the bio to correspond to a physical disk,
1333 * so it looks up based on physical sector numbers.
1334 */
1335static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1336 struct bio *bio)
1337{
4f024f37 1338 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1339 u64 stripe_start;
1340 int i;
1341 struct btrfs_bio_stripe *stripe;
1342
1343 physical <<= 9;
1344
1345 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1346 stripe = &rbio->bbio->stripes[i];
1347 stripe_start = stripe->physical;
1348 if (physical >= stripe_start &&
2c8cdd6e
MX
1349 physical < stripe_start + rbio->stripe_len &&
1350 bio->bi_bdev == stripe->dev->bdev) {
53b381b3
DW
1351 return i;
1352 }
1353 }
1354 return -1;
1355}
1356
1357/*
1358 * helper to find the stripe number for a given
1359 * bio (before mapping). Used to figure out which stripe has
1360 * failed. This looks up based on logical block numbers.
1361 */
1362static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1363 struct bio *bio)
1364{
4f024f37 1365 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1366 u64 stripe_start;
1367 int i;
1368
1369 logical <<= 9;
1370
1371 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1372 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1373 if (logical >= stripe_start &&
1374 logical < stripe_start + rbio->stripe_len) {
1375 return i;
1376 }
1377 }
1378 return -1;
1379}
1380
1381/*
1382 * returns -EIO if we had too many failures
1383 */
1384static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1385{
1386 unsigned long flags;
1387 int ret = 0;
1388
1389 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1390
1391 /* we already know this stripe is bad, move on */
1392 if (rbio->faila == failed || rbio->failb == failed)
1393 goto out;
1394
1395 if (rbio->faila == -1) {
1396 /* first failure on this rbio */
1397 rbio->faila = failed;
b89e1b01 1398 atomic_inc(&rbio->error);
53b381b3
DW
1399 } else if (rbio->failb == -1) {
1400 /* second failure on this rbio */
1401 rbio->failb = failed;
b89e1b01 1402 atomic_inc(&rbio->error);
53b381b3
DW
1403 } else {
1404 ret = -EIO;
1405 }
1406out:
1407 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1408
1409 return ret;
1410}
1411
1412/*
1413 * helper to fail a stripe based on a physical disk
1414 * bio.
1415 */
1416static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1417 struct bio *bio)
1418{
1419 int failed = find_bio_stripe(rbio, bio);
1420
1421 if (failed < 0)
1422 return -EIO;
1423
1424 return fail_rbio_index(rbio, failed);
1425}
1426
1427/*
1428 * this sets each page in the bio uptodate. It should only be used on private
1429 * rbio pages, nothing that comes in from the higher layers
1430 */
1431static void set_bio_pages_uptodate(struct bio *bio)
1432{
80ace3e4 1433 struct bio_vec *bvec;
53b381b3 1434 int i;
53b381b3 1435
80ace3e4
CH
1436 bio_for_each_segment_all(bvec, bio, i)
1437 SetPageUptodate(bvec->bv_page);
53b381b3
DW
1438}
1439
1440/*
1441 * end io for the read phase of the rmw cycle. All the bios here are physical
1442 * stripe bios we've read from the disk so we can recalculate the parity of the
1443 * stripe.
1444 *
1445 * This will usually kick off finish_rmw once all the bios are read in, but it
1446 * may trigger parity reconstruction if we had any errors along the way
1447 */
4246a0b6 1448static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1449{
1450 struct btrfs_raid_bio *rbio = bio->bi_private;
1451
4246a0b6 1452 if (bio->bi_error)
53b381b3
DW
1453 fail_bio_stripe(rbio, bio);
1454 else
1455 set_bio_pages_uptodate(bio);
1456
1457 bio_put(bio);
1458
b89e1b01 1459 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1460 return;
1461
b89e1b01 1462 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1463 goto cleanup;
1464
1465 /*
1466 * this will normally call finish_rmw to start our write
1467 * but if there are any failed stripes we'll reconstruct
1468 * from parity first
1469 */
1470 validate_rbio_for_rmw(rbio);
1471 return;
1472
1473cleanup:
1474
4246a0b6 1475 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1476}
1477
1478static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1479{
0b246afa
JM
1480 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1481 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1482}
1483
1484static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1485{
9e0af237
LB
1486 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1487 read_rebuild_work, NULL, NULL);
53b381b3 1488
0b246afa 1489 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1490}
1491
1492/*
1493 * the stripe must be locked by the caller. It will
1494 * unlock after all the writes are done
1495 */
1496static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1497{
1498 int bios_to_read = 0;
53b381b3
DW
1499 struct bio_list bio_list;
1500 int ret;
53b381b3
DW
1501 int pagenr;
1502 int stripe;
1503 struct bio *bio;
1504
1505 bio_list_init(&bio_list);
1506
1507 ret = alloc_rbio_pages(rbio);
1508 if (ret)
1509 goto cleanup;
1510
1511 index_rbio_pages(rbio);
1512
b89e1b01 1513 atomic_set(&rbio->error, 0);
53b381b3
DW
1514 /*
1515 * build a list of bios to read all the missing parts of this
1516 * stripe
1517 */
1518 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1519 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1520 struct page *page;
1521 /*
1522 * we want to find all the pages missing from
1523 * the rbio and read them from the disk. If
1524 * page_in_rbio finds a page in the bio list
1525 * we don't need to read it off the stripe.
1526 */
1527 page = page_in_rbio(rbio, stripe, pagenr, 1);
1528 if (page)
1529 continue;
1530
1531 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1532 /*
1533 * the bio cache may have handed us an uptodate
1534 * page. If so, be happy and use it
1535 */
1536 if (PageUptodate(page))
1537 continue;
1538
53b381b3
DW
1539 ret = rbio_add_io_page(rbio, &bio_list, page,
1540 stripe, pagenr, rbio->stripe_len);
1541 if (ret)
1542 goto cleanup;
1543 }
1544 }
1545
1546 bios_to_read = bio_list_size(&bio_list);
1547 if (!bios_to_read) {
1548 /*
1549 * this can happen if others have merged with
1550 * us, it means there is nothing left to read.
1551 * But if there are missing devices it may not be
1552 * safe to do the full stripe write yet.
1553 */
1554 goto finish;
1555 }
1556
1557 /*
1558 * the bbio may be freed once we submit the last bio. Make sure
1559 * not to touch it after that
1560 */
b89e1b01 1561 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1562 while (1) {
1563 bio = bio_list_pop(&bio_list);
1564 if (!bio)
1565 break;
1566
1567 bio->bi_private = rbio;
1568 bio->bi_end_io = raid_rmw_end_io;
37226b21 1569 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 1570
0b246afa 1571 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1572
4e49ea4a 1573 submit_bio(bio);
53b381b3
DW
1574 }
1575 /* the actual write will happen once the reads are done */
1576 return 0;
1577
1578cleanup:
4246a0b6 1579 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
1580 return -EIO;
1581
1582finish:
1583 validate_rbio_for_rmw(rbio);
1584 return 0;
1585}
1586
1587/*
1588 * if the upper layers pass in a full stripe, we thank them by only allocating
1589 * enough pages to hold the parity, and sending it all down quickly.
1590 */
1591static int full_stripe_write(struct btrfs_raid_bio *rbio)
1592{
1593 int ret;
1594
1595 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1596 if (ret) {
1597 __free_raid_bio(rbio);
53b381b3 1598 return ret;
3cd846d1 1599 }
53b381b3
DW
1600
1601 ret = lock_stripe_add(rbio);
1602 if (ret == 0)
1603 finish_rmw(rbio);
1604 return 0;
1605}
1606
1607/*
1608 * partial stripe writes get handed over to async helpers.
1609 * We're really hoping to merge a few more writes into this
1610 * rbio before calculating new parity
1611 */
1612static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1613{
1614 int ret;
1615
1616 ret = lock_stripe_add(rbio);
1617 if (ret == 0)
1618 async_rmw_stripe(rbio);
1619 return 0;
1620}
1621
1622/*
1623 * sometimes while we were reading from the drive to
1624 * recalculate parity, enough new bios come into create
1625 * a full stripe. So we do a check here to see if we can
1626 * go directly to finish_rmw
1627 */
1628static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1629{
1630 /* head off into rmw land if we don't have a full stripe */
1631 if (!rbio_is_full(rbio))
1632 return partial_stripe_write(rbio);
1633 return full_stripe_write(rbio);
1634}
1635
6ac0f488
CM
1636/*
1637 * We use plugging call backs to collect full stripes.
1638 * Any time we get a partial stripe write while plugged
1639 * we collect it into a list. When the unplug comes down,
1640 * we sort the list by logical block number and merge
1641 * everything we can into the same rbios
1642 */
1643struct btrfs_plug_cb {
1644 struct blk_plug_cb cb;
1645 struct btrfs_fs_info *info;
1646 struct list_head rbio_list;
1647 struct btrfs_work work;
1648};
1649
1650/*
1651 * rbios on the plug list are sorted for easier merging.
1652 */
1653static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1654{
1655 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1656 plug_list);
1657 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1658 plug_list);
4f024f37
KO
1659 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1660 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1661
1662 if (a_sector < b_sector)
1663 return -1;
1664 if (a_sector > b_sector)
1665 return 1;
1666 return 0;
1667}
1668
1669static void run_plug(struct btrfs_plug_cb *plug)
1670{
1671 struct btrfs_raid_bio *cur;
1672 struct btrfs_raid_bio *last = NULL;
1673
1674 /*
1675 * sort our plug list then try to merge
1676 * everything we can in hopes of creating full
1677 * stripes.
1678 */
1679 list_sort(NULL, &plug->rbio_list, plug_cmp);
1680 while (!list_empty(&plug->rbio_list)) {
1681 cur = list_entry(plug->rbio_list.next,
1682 struct btrfs_raid_bio, plug_list);
1683 list_del_init(&cur->plug_list);
1684
1685 if (rbio_is_full(cur)) {
1686 /* we have a full stripe, send it down */
1687 full_stripe_write(cur);
1688 continue;
1689 }
1690 if (last) {
1691 if (rbio_can_merge(last, cur)) {
1692 merge_rbio(last, cur);
1693 __free_raid_bio(cur);
1694 continue;
1695
1696 }
1697 __raid56_parity_write(last);
1698 }
1699 last = cur;
1700 }
1701 if (last) {
1702 __raid56_parity_write(last);
1703 }
1704 kfree(plug);
1705}
1706
1707/*
1708 * if the unplug comes from schedule, we have to push the
1709 * work off to a helper thread
1710 */
1711static void unplug_work(struct btrfs_work *work)
1712{
1713 struct btrfs_plug_cb *plug;
1714 plug = container_of(work, struct btrfs_plug_cb, work);
1715 run_plug(plug);
1716}
1717
1718static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1719{
1720 struct btrfs_plug_cb *plug;
1721 plug = container_of(cb, struct btrfs_plug_cb, cb);
1722
1723 if (from_schedule) {
9e0af237
LB
1724 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1725 unplug_work, NULL, NULL);
d05a33ac
QW
1726 btrfs_queue_work(plug->info->rmw_workers,
1727 &plug->work);
6ac0f488
CM
1728 return;
1729 }
1730 run_plug(plug);
1731}
1732
53b381b3
DW
1733/*
1734 * our main entry point for writes from the rest of the FS.
1735 */
2ff7e61e 1736int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1737 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1738{
1739 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1740 struct btrfs_plug_cb *plug = NULL;
1741 struct blk_plug_cb *cb;
4245215d 1742 int ret;
53b381b3 1743
2ff7e61e 1744 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1745 if (IS_ERR(rbio)) {
6e9606d2 1746 btrfs_put_bbio(bbio);
53b381b3 1747 return PTR_ERR(rbio);
af8e2d1d 1748 }
53b381b3 1749 bio_list_add(&rbio->bio_list, bio);
4f024f37 1750 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1751 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1752
0b246afa 1753 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1754 rbio->generic_bio_cnt = 1;
1755
6ac0f488
CM
1756 /*
1757 * don't plug on full rbios, just get them out the door
1758 * as quickly as we can
1759 */
4245215d
MX
1760 if (rbio_is_full(rbio)) {
1761 ret = full_stripe_write(rbio);
1762 if (ret)
0b246afa 1763 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1764 return ret;
1765 }
6ac0f488 1766
0b246afa 1767 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1768 if (cb) {
1769 plug = container_of(cb, struct btrfs_plug_cb, cb);
1770 if (!plug->info) {
0b246afa 1771 plug->info = fs_info;
6ac0f488
CM
1772 INIT_LIST_HEAD(&plug->rbio_list);
1773 }
1774 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1775 ret = 0;
6ac0f488 1776 } else {
4245215d
MX
1777 ret = __raid56_parity_write(rbio);
1778 if (ret)
0b246afa 1779 btrfs_bio_counter_dec(fs_info);
6ac0f488 1780 }
4245215d 1781 return ret;
53b381b3
DW
1782}
1783
1784/*
1785 * all parity reconstruction happens here. We've read in everything
1786 * we can find from the drives and this does the heavy lifting of
1787 * sorting the good from the bad.
1788 */
1789static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1790{
1791 int pagenr, stripe;
1792 void **pointers;
1793 int faila = -1, failb = -1;
53b381b3
DW
1794 struct page *page;
1795 int err;
1796 int i;
1797
31e818fe 1798 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3
DW
1799 if (!pointers) {
1800 err = -ENOMEM;
1801 goto cleanup_io;
1802 }
1803
1804 faila = rbio->faila;
1805 failb = rbio->failb;
1806
b4ee1782
OS
1807 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1808 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1809 spin_lock_irq(&rbio->bio_list_lock);
1810 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1811 spin_unlock_irq(&rbio->bio_list_lock);
1812 }
1813
1814 index_rbio_pages(rbio);
1815
915e2290 1816 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1817 /*
1818 * Now we just use bitmap to mark the horizontal stripes in
1819 * which we have data when doing parity scrub.
1820 */
1821 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1822 !test_bit(pagenr, rbio->dbitmap))
1823 continue;
1824
53b381b3
DW
1825 /* setup our array of pointers with pages
1826 * from each stripe
1827 */
2c8cdd6e 1828 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1829 /*
1830 * if we're rebuilding a read, we have to use
1831 * pages from the bio list
1832 */
b4ee1782
OS
1833 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1834 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1835 (stripe == faila || stripe == failb)) {
1836 page = page_in_rbio(rbio, stripe, pagenr, 0);
1837 } else {
1838 page = rbio_stripe_page(rbio, stripe, pagenr);
1839 }
1840 pointers[stripe] = kmap(page);
1841 }
1842
1843 /* all raid6 handling here */
10f11900 1844 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1845 /*
1846 * single failure, rebuild from parity raid5
1847 * style
1848 */
1849 if (failb < 0) {
1850 if (faila == rbio->nr_data) {
1851 /*
1852 * Just the P stripe has failed, without
1853 * a bad data or Q stripe.
1854 * TODO, we should redo the xor here.
1855 */
1856 err = -EIO;
1857 goto cleanup;
1858 }
1859 /*
1860 * a single failure in raid6 is rebuilt
1861 * in the pstripe code below
1862 */
1863 goto pstripe;
1864 }
1865
1866 /* make sure our ps and qs are in order */
1867 if (faila > failb) {
1868 int tmp = failb;
1869 failb = faila;
1870 faila = tmp;
1871 }
1872
1873 /* if the q stripe is failed, do a pstripe reconstruction
1874 * from the xors.
1875 * If both the q stripe and the P stripe are failed, we're
1876 * here due to a crc mismatch and we can't give them the
1877 * data they want
1878 */
8e5cfb55
ZL
1879 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1880 if (rbio->bbio->raid_map[faila] ==
1881 RAID5_P_STRIPE) {
53b381b3
DW
1882 err = -EIO;
1883 goto cleanup;
1884 }
1885 /*
1886 * otherwise we have one bad data stripe and
1887 * a good P stripe. raid5!
1888 */
1889 goto pstripe;
1890 }
1891
8e5cfb55 1892 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1893 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1894 PAGE_SIZE, faila, pointers);
1895 } else {
2c8cdd6e 1896 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1897 PAGE_SIZE, faila, failb,
1898 pointers);
1899 }
1900 } else {
1901 void *p;
1902
1903 /* rebuild from P stripe here (raid5 or raid6) */
1904 BUG_ON(failb != -1);
1905pstripe:
1906 /* Copy parity block into failed block to start with */
1907 memcpy(pointers[faila],
1908 pointers[rbio->nr_data],
09cbfeaf 1909 PAGE_SIZE);
53b381b3
DW
1910
1911 /* rearrange the pointer array */
1912 p = pointers[faila];
1913 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1914 pointers[stripe] = pointers[stripe + 1];
1915 pointers[rbio->nr_data - 1] = p;
1916
1917 /* xor in the rest */
09cbfeaf 1918 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1919 }
1920 /* if we're doing this rebuild as part of an rmw, go through
1921 * and set all of our private rbio pages in the
1922 * failed stripes as uptodate. This way finish_rmw will
1923 * know they can be trusted. If this was a read reconstruction,
1924 * other endio functions will fiddle the uptodate bits
1925 */
1b94b556 1926 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1927 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1928 if (faila != -1) {
1929 page = rbio_stripe_page(rbio, faila, i);
1930 SetPageUptodate(page);
1931 }
1932 if (failb != -1) {
1933 page = rbio_stripe_page(rbio, failb, i);
1934 SetPageUptodate(page);
1935 }
1936 }
1937 }
2c8cdd6e 1938 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1939 /*
1940 * if we're rebuilding a read, we have to use
1941 * pages from the bio list
1942 */
b4ee1782
OS
1943 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1944 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1945 (stripe == faila || stripe == failb)) {
1946 page = page_in_rbio(rbio, stripe, pagenr, 0);
1947 } else {
1948 page = rbio_stripe_page(rbio, stripe, pagenr);
1949 }
1950 kunmap(page);
1951 }
1952 }
1953
1954 err = 0;
1955cleanup:
1956 kfree(pointers);
1957
1958cleanup_io:
1b94b556 1959 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
6e9606d2 1960 if (err == 0)
4ae10b3a
CM
1961 cache_rbio_pages(rbio);
1962 else
1963 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1964
22365979 1965 rbio_orig_end_io(rbio, err);
b4ee1782 1966 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1967 rbio_orig_end_io(rbio, err);
53b381b3
DW
1968 } else if (err == 0) {
1969 rbio->faila = -1;
1970 rbio->failb = -1;
5a6ac9ea
MX
1971
1972 if (rbio->operation == BTRFS_RBIO_WRITE)
1973 finish_rmw(rbio);
1974 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1975 finish_parity_scrub(rbio, 0);
1976 else
1977 BUG();
53b381b3 1978 } else {
4246a0b6 1979 rbio_orig_end_io(rbio, err);
53b381b3
DW
1980 }
1981}
1982
1983/*
1984 * This is called only for stripes we've read from disk to
1985 * reconstruct the parity.
1986 */
4246a0b6 1987static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
1988{
1989 struct btrfs_raid_bio *rbio = bio->bi_private;
1990
1991 /*
1992 * we only read stripe pages off the disk, set them
1993 * up to date if there were no errors
1994 */
4246a0b6 1995 if (bio->bi_error)
53b381b3
DW
1996 fail_bio_stripe(rbio, bio);
1997 else
1998 set_bio_pages_uptodate(bio);
1999 bio_put(bio);
2000
b89e1b01 2001 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2002 return;
2003
b89e1b01 2004 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
4246a0b6 2005 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2006 else
2007 __raid_recover_end_io(rbio);
2008}
2009
2010/*
2011 * reads everything we need off the disk to reconstruct
2012 * the parity. endio handlers trigger final reconstruction
2013 * when the IO is done.
2014 *
2015 * This is used both for reads from the higher layers and for
2016 * parity construction required to finish a rmw cycle.
2017 */
2018static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2019{
2020 int bios_to_read = 0;
53b381b3
DW
2021 struct bio_list bio_list;
2022 int ret;
53b381b3
DW
2023 int pagenr;
2024 int stripe;
2025 struct bio *bio;
2026
2027 bio_list_init(&bio_list);
2028
2029 ret = alloc_rbio_pages(rbio);
2030 if (ret)
2031 goto cleanup;
2032
b89e1b01 2033 atomic_set(&rbio->error, 0);
53b381b3
DW
2034
2035 /*
4ae10b3a
CM
2036 * read everything that hasn't failed. Thanks to the
2037 * stripe cache, it is possible that some or all of these
2038 * pages are going to be uptodate.
53b381b3 2039 */
2c8cdd6e 2040 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2041 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2042 atomic_inc(&rbio->error);
53b381b3 2043 continue;
5588383e 2044 }
53b381b3 2045
915e2290 2046 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2047 struct page *p;
2048
2049 /*
2050 * the rmw code may have already read this
2051 * page in
2052 */
2053 p = rbio_stripe_page(rbio, stripe, pagenr);
2054 if (PageUptodate(p))
2055 continue;
2056
2057 ret = rbio_add_io_page(rbio, &bio_list,
2058 rbio_stripe_page(rbio, stripe, pagenr),
2059 stripe, pagenr, rbio->stripe_len);
2060 if (ret < 0)
2061 goto cleanup;
2062 }
2063 }
2064
2065 bios_to_read = bio_list_size(&bio_list);
2066 if (!bios_to_read) {
2067 /*
2068 * we might have no bios to read just because the pages
2069 * were up to date, or we might have no bios to read because
2070 * the devices were gone.
2071 */
b89e1b01 2072 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2073 __raid_recover_end_io(rbio);
2074 goto out;
2075 } else {
2076 goto cleanup;
2077 }
2078 }
2079
2080 /*
2081 * the bbio may be freed once we submit the last bio. Make sure
2082 * not to touch it after that
2083 */
b89e1b01 2084 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2085 while (1) {
2086 bio = bio_list_pop(&bio_list);
2087 if (!bio)
2088 break;
2089
2090 bio->bi_private = rbio;
2091 bio->bi_end_io = raid_recover_end_io;
37226b21 2092 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 2093
0b246afa 2094 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2095
4e49ea4a 2096 submit_bio(bio);
53b381b3
DW
2097 }
2098out:
2099 return 0;
2100
2101cleanup:
b4ee1782
OS
2102 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2103 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
4246a0b6 2104 rbio_orig_end_io(rbio, -EIO);
53b381b3
DW
2105 return -EIO;
2106}
2107
2108/*
2109 * the main entry point for reads from the higher layers. This
2110 * is really only called when the normal read path had a failure,
2111 * so we assume the bio they send down corresponds to a failed part
2112 * of the drive.
2113 */
2ff7e61e 2114int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2115 struct btrfs_bio *bbio, u64 stripe_len,
2116 int mirror_num, int generic_io)
53b381b3
DW
2117{
2118 struct btrfs_raid_bio *rbio;
2119 int ret;
2120
2ff7e61e 2121 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2122 if (IS_ERR(rbio)) {
6e9606d2
ZL
2123 if (generic_io)
2124 btrfs_put_bbio(bbio);
53b381b3 2125 return PTR_ERR(rbio);
af8e2d1d 2126 }
53b381b3 2127
1b94b556 2128 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2129 bio_list_add(&rbio->bio_list, bio);
4f024f37 2130 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2131
2132 rbio->faila = find_logical_bio_stripe(rbio, bio);
2133 if (rbio->faila == -1) {
0b246afa 2134 btrfs_warn(fs_info,
e46a28ca
LB
2135 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2136 __func__, (u64)bio->bi_iter.bi_sector << 9,
2137 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2138 if (generic_io)
2139 btrfs_put_bbio(bbio);
53b381b3
DW
2140 kfree(rbio);
2141 return -EIO;
2142 }
2143
4245215d 2144 if (generic_io) {
0b246afa 2145 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2146 rbio->generic_bio_cnt = 1;
2147 } else {
6e9606d2 2148 btrfs_get_bbio(bbio);
4245215d
MX
2149 }
2150
53b381b3
DW
2151 /*
2152 * reconstruct from the q stripe if they are
2153 * asking for mirror 3
2154 */
2155 if (mirror_num == 3)
2c8cdd6e 2156 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2157
2158 ret = lock_stripe_add(rbio);
2159
2160 /*
2161 * __raid56_parity_recover will end the bio with
2162 * any errors it hits. We don't want to return
2163 * its error value up the stack because our caller
2164 * will end up calling bio_endio with any nonzero
2165 * return
2166 */
2167 if (ret == 0)
2168 __raid56_parity_recover(rbio);
2169 /*
2170 * our rbio has been added to the list of
2171 * rbios that will be handled after the
2172 * currently lock owner is done
2173 */
2174 return 0;
2175
2176}
2177
2178static void rmw_work(struct btrfs_work *work)
2179{
2180 struct btrfs_raid_bio *rbio;
2181
2182 rbio = container_of(work, struct btrfs_raid_bio, work);
2183 raid56_rmw_stripe(rbio);
2184}
2185
2186static void read_rebuild_work(struct btrfs_work *work)
2187{
2188 struct btrfs_raid_bio *rbio;
2189
2190 rbio = container_of(work, struct btrfs_raid_bio, work);
2191 __raid56_parity_recover(rbio);
2192}
5a6ac9ea
MX
2193
2194/*
2195 * The following code is used to scrub/replace the parity stripe
2196 *
2197 * Note: We need make sure all the pages that add into the scrub/replace
2198 * raid bio are correct and not be changed during the scrub/replace. That
2199 * is those pages just hold metadata or file data with checksum.
2200 */
2201
2202struct btrfs_raid_bio *
2ff7e61e 2203raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2204 struct btrfs_bio *bbio, u64 stripe_len,
2205 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2206 unsigned long *dbitmap, int stripe_nsectors)
2207{
2208 struct btrfs_raid_bio *rbio;
2209 int i;
2210
2ff7e61e 2211 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2212 if (IS_ERR(rbio))
2213 return NULL;
2214 bio_list_add(&rbio->bio_list, bio);
2215 /*
2216 * This is a special bio which is used to hold the completion handler
2217 * and make the scrub rbio is similar to the other types
2218 */
2219 ASSERT(!bio->bi_iter.bi_size);
2220 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2221
2c8cdd6e 2222 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2223 if (bbio->stripes[i].dev == scrub_dev) {
2224 rbio->scrubp = i;
2225 break;
2226 }
2227 }
2228
2229 /* Now we just support the sectorsize equals to page size */
0b246afa 2230 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2231 ASSERT(rbio->stripe_npages == stripe_nsectors);
2232 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2233
2234 return rbio;
2235}
2236
b4ee1782
OS
2237/* Used for both parity scrub and missing. */
2238void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2239 u64 logical)
5a6ac9ea
MX
2240{
2241 int stripe_offset;
2242 int index;
2243
8e5cfb55
ZL
2244 ASSERT(logical >= rbio->bbio->raid_map[0]);
2245 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2246 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2247 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2248 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2249 rbio->bio_pages[index] = page;
2250}
2251
2252/*
2253 * We just scrub the parity that we have correct data on the same horizontal,
2254 * so we needn't allocate all pages for all the stripes.
2255 */
2256static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2257{
2258 int i;
2259 int bit;
2260 int index;
2261 struct page *page;
2262
2263 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2264 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2265 index = i * rbio->stripe_npages + bit;
2266 if (rbio->stripe_pages[index])
2267 continue;
2268
2269 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2270 if (!page)
2271 return -ENOMEM;
2272 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2273 }
2274 }
2275 return 0;
2276}
2277
5a6ac9ea
MX
2278static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2279 int need_check)
2280{
76035976 2281 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2282 void *pointers[rbio->real_stripes];
76035976 2283 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2284 int nr_data = rbio->nr_data;
2285 int stripe;
2286 int pagenr;
2287 int p_stripe = -1;
2288 int q_stripe = -1;
2289 struct page *p_page = NULL;
2290 struct page *q_page = NULL;
2291 struct bio_list bio_list;
2292 struct bio *bio;
76035976 2293 int is_replace = 0;
5a6ac9ea
MX
2294 int ret;
2295
2296 bio_list_init(&bio_list);
2297
2c8cdd6e
MX
2298 if (rbio->real_stripes - rbio->nr_data == 1) {
2299 p_stripe = rbio->real_stripes - 1;
2300 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2301 p_stripe = rbio->real_stripes - 2;
2302 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2303 } else {
2304 BUG();
2305 }
2306
76035976
MX
2307 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2308 is_replace = 1;
2309 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2310 }
2311
5a6ac9ea
MX
2312 /*
2313 * Because the higher layers(scrubber) are unlikely to
2314 * use this area of the disk again soon, so don't cache
2315 * it.
2316 */
2317 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2318
2319 if (!need_check)
2320 goto writeback;
2321
2322 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2323 if (!p_page)
2324 goto cleanup;
2325 SetPageUptodate(p_page);
2326
2327 if (q_stripe != -1) {
2328 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2329 if (!q_page) {
2330 __free_page(p_page);
2331 goto cleanup;
2332 }
2333 SetPageUptodate(q_page);
2334 }
2335
2336 atomic_set(&rbio->error, 0);
2337
2338 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2339 struct page *p;
2340 void *parity;
2341 /* first collect one page from each data stripe */
2342 for (stripe = 0; stripe < nr_data; stripe++) {
2343 p = page_in_rbio(rbio, stripe, pagenr, 0);
2344 pointers[stripe] = kmap(p);
2345 }
2346
2347 /* then add the parity stripe */
2348 pointers[stripe++] = kmap(p_page);
2349
2350 if (q_stripe != -1) {
2351
2352 /*
2353 * raid6, add the qstripe and call the
2354 * library function to fill in our p/q
2355 */
2356 pointers[stripe++] = kmap(q_page);
2357
2c8cdd6e 2358 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2359 pointers);
2360 } else {
2361 /* raid5 */
2362 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 2363 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2364 }
2365
01327610 2366 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2367 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2368 parity = kmap(p);
09cbfeaf
KS
2369 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2370 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
5a6ac9ea
MX
2371 else
2372 /* Parity is right, needn't writeback */
2373 bitmap_clear(rbio->dbitmap, pagenr, 1);
2374 kunmap(p);
2375
2c8cdd6e 2376 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2377 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2378 }
2379
2380 __free_page(p_page);
2381 if (q_page)
2382 __free_page(q_page);
2383
2384writeback:
2385 /*
2386 * time to start writing. Make bios for everything from the
2387 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2388 * everything else.
2389 */
2390 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2391 struct page *page;
2392
2393 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2394 ret = rbio_add_io_page(rbio, &bio_list,
2395 page, rbio->scrubp, pagenr, rbio->stripe_len);
2396 if (ret)
2397 goto cleanup;
2398 }
2399
76035976
MX
2400 if (!is_replace)
2401 goto submit_write;
2402
2403 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2404 struct page *page;
2405
2406 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2407 ret = rbio_add_io_page(rbio, &bio_list, page,
2408 bbio->tgtdev_map[rbio->scrubp],
2409 pagenr, rbio->stripe_len);
2410 if (ret)
2411 goto cleanup;
2412 }
2413
2414submit_write:
5a6ac9ea
MX
2415 nr_data = bio_list_size(&bio_list);
2416 if (!nr_data) {
2417 /* Every parity is right */
4246a0b6 2418 rbio_orig_end_io(rbio, 0);
5a6ac9ea
MX
2419 return;
2420 }
2421
2422 atomic_set(&rbio->stripes_pending, nr_data);
2423
2424 while (1) {
2425 bio = bio_list_pop(&bio_list);
2426 if (!bio)
2427 break;
2428
2429 bio->bi_private = rbio;
a6111d11 2430 bio->bi_end_io = raid_write_end_io;
37226b21 2431 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2432
2433 submit_bio(bio);
5a6ac9ea
MX
2434 }
2435 return;
2436
2437cleanup:
4246a0b6 2438 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2439}
2440
2441static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2442{
2443 if (stripe >= 0 && stripe < rbio->nr_data)
2444 return 1;
2445 return 0;
2446}
2447
2448/*
2449 * While we're doing the parity check and repair, we could have errors
2450 * in reading pages off the disk. This checks for errors and if we're
2451 * not able to read the page it'll trigger parity reconstruction. The
2452 * parity scrub will be finished after we've reconstructed the failed
2453 * stripes
2454 */
2455static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2456{
2457 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2458 goto cleanup;
2459
2460 if (rbio->faila >= 0 || rbio->failb >= 0) {
2461 int dfail = 0, failp = -1;
2462
2463 if (is_data_stripe(rbio, rbio->faila))
2464 dfail++;
2465 else if (is_parity_stripe(rbio->faila))
2466 failp = rbio->faila;
2467
2468 if (is_data_stripe(rbio, rbio->failb))
2469 dfail++;
2470 else if (is_parity_stripe(rbio->failb))
2471 failp = rbio->failb;
2472
2473 /*
2474 * Because we can not use a scrubbing parity to repair
2475 * the data, so the capability of the repair is declined.
2476 * (In the case of RAID5, we can not repair anything)
2477 */
2478 if (dfail > rbio->bbio->max_errors - 1)
2479 goto cleanup;
2480
2481 /*
2482 * If all data is good, only parity is correctly, just
2483 * repair the parity.
2484 */
2485 if (dfail == 0) {
2486 finish_parity_scrub(rbio, 0);
2487 return;
2488 }
2489
2490 /*
2491 * Here means we got one corrupted data stripe and one
2492 * corrupted parity on RAID6, if the corrupted parity
01327610 2493 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2494 * the data, or we can not repair the data stripe.
2495 */
2496 if (failp != rbio->scrubp)
2497 goto cleanup;
2498
2499 __raid_recover_end_io(rbio);
2500 } else {
2501 finish_parity_scrub(rbio, 1);
2502 }
2503 return;
2504
2505cleanup:
4246a0b6 2506 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2507}
2508
2509/*
2510 * end io for the read phase of the rmw cycle. All the bios here are physical
2511 * stripe bios we've read from the disk so we can recalculate the parity of the
2512 * stripe.
2513 *
2514 * This will usually kick off finish_rmw once all the bios are read in, but it
2515 * may trigger parity reconstruction if we had any errors along the way
2516 */
4246a0b6 2517static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2518{
2519 struct btrfs_raid_bio *rbio = bio->bi_private;
2520
4246a0b6 2521 if (bio->bi_error)
5a6ac9ea
MX
2522 fail_bio_stripe(rbio, bio);
2523 else
2524 set_bio_pages_uptodate(bio);
2525
2526 bio_put(bio);
2527
2528 if (!atomic_dec_and_test(&rbio->stripes_pending))
2529 return;
2530
2531 /*
2532 * this will normally call finish_rmw to start our write
2533 * but if there are any failed stripes we'll reconstruct
2534 * from parity first
2535 */
2536 validate_rbio_for_parity_scrub(rbio);
2537}
2538
2539static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2540{
2541 int bios_to_read = 0;
5a6ac9ea
MX
2542 struct bio_list bio_list;
2543 int ret;
2544 int pagenr;
2545 int stripe;
2546 struct bio *bio;
2547
2548 ret = alloc_rbio_essential_pages(rbio);
2549 if (ret)
2550 goto cleanup;
2551
2552 bio_list_init(&bio_list);
2553
2554 atomic_set(&rbio->error, 0);
2555 /*
2556 * build a list of bios to read all the missing parts of this
2557 * stripe
2558 */
2c8cdd6e 2559 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2560 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2561 struct page *page;
2562 /*
2563 * we want to find all the pages missing from
2564 * the rbio and read them from the disk. If
2565 * page_in_rbio finds a page in the bio list
2566 * we don't need to read it off the stripe.
2567 */
2568 page = page_in_rbio(rbio, stripe, pagenr, 1);
2569 if (page)
2570 continue;
2571
2572 page = rbio_stripe_page(rbio, stripe, pagenr);
2573 /*
2574 * the bio cache may have handed us an uptodate
2575 * page. If so, be happy and use it
2576 */
2577 if (PageUptodate(page))
2578 continue;
2579
2580 ret = rbio_add_io_page(rbio, &bio_list, page,
2581 stripe, pagenr, rbio->stripe_len);
2582 if (ret)
2583 goto cleanup;
2584 }
2585 }
2586
2587 bios_to_read = bio_list_size(&bio_list);
2588 if (!bios_to_read) {
2589 /*
2590 * this can happen if others have merged with
2591 * us, it means there is nothing left to read.
2592 * But if there are missing devices it may not be
2593 * safe to do the full stripe write yet.
2594 */
2595 goto finish;
2596 }
2597
2598 /*
2599 * the bbio may be freed once we submit the last bio. Make sure
2600 * not to touch it after that
2601 */
2602 atomic_set(&rbio->stripes_pending, bios_to_read);
2603 while (1) {
2604 bio = bio_list_pop(&bio_list);
2605 if (!bio)
2606 break;
2607
2608 bio->bi_private = rbio;
2609 bio->bi_end_io = raid56_parity_scrub_end_io;
37226b21 2610 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5a6ac9ea 2611
0b246afa 2612 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2613
4e49ea4a 2614 submit_bio(bio);
5a6ac9ea
MX
2615 }
2616 /* the actual write will happen once the reads are done */
2617 return;
2618
2619cleanup:
4246a0b6 2620 rbio_orig_end_io(rbio, -EIO);
5a6ac9ea
MX
2621 return;
2622
2623finish:
2624 validate_rbio_for_parity_scrub(rbio);
2625}
2626
2627static void scrub_parity_work(struct btrfs_work *work)
2628{
2629 struct btrfs_raid_bio *rbio;
2630
2631 rbio = container_of(work, struct btrfs_raid_bio, work);
2632 raid56_parity_scrub_stripe(rbio);
2633}
2634
2635static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2636{
2637 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2638 scrub_parity_work, NULL, NULL);
2639
0b246afa 2640 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
5a6ac9ea
MX
2641}
2642
2643void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2644{
2645 if (!lock_stripe_add(rbio))
2646 async_scrub_parity(rbio);
2647}
b4ee1782
OS
2648
2649/* The following code is used for dev replace of a missing RAID 5/6 device. */
2650
2651struct btrfs_raid_bio *
2ff7e61e 2652raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2653 struct btrfs_bio *bbio, u64 length)
2654{
2655 struct btrfs_raid_bio *rbio;
2656
2ff7e61e 2657 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2658 if (IS_ERR(rbio))
2659 return NULL;
2660
2661 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2662 bio_list_add(&rbio->bio_list, bio);
2663 /*
2664 * This is a special bio which is used to hold the completion handler
2665 * and make the scrub rbio is similar to the other types
2666 */
2667 ASSERT(!bio->bi_iter.bi_size);
2668
2669 rbio->faila = find_logical_bio_stripe(rbio, bio);
2670 if (rbio->faila == -1) {
2671 BUG();
2672 kfree(rbio);
2673 return NULL;
2674 }
2675
2676 return rbio;
2677}
2678
2679static void missing_raid56_work(struct btrfs_work *work)
2680{
2681 struct btrfs_raid_bio *rbio;
2682
2683 rbio = container_of(work, struct btrfs_raid_bio, work);
2684 __raid56_parity_recover(rbio);
2685}
2686
2687static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2688{
2689 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2690 missing_raid56_work, NULL, NULL);
2691
2692 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2693}
2694
2695void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2696{
2697 if (!lock_stripe_add(rbio))
2698 async_missing_raid56(rbio);
2699}