]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/raid56.c
Merge branches 'x86/amd', 'x86/vt-d', 'arm/rockchip', 'arm/omap', 'arm/mediatek'...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
818e010b 34#include <linux/mm.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
dec95574 152 refcount_t refs;
53b381b3 153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
818e010b
DS
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
53b381b3 224
4ae10b3a
CM
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
227
53b381b3
DW
228 h = table->table;
229
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
53b381b3
DW
234 }
235
236 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
237 if (x)
238 kvfree(x);
53b381b3
DW
239 return 0;
240}
241
4ae10b3a
CM
242/*
243 * caching an rbio means to copy anything from the
244 * bio_pages array into the stripe_pages array. We
245 * use the page uptodate bit in the stripe cache array
246 * to indicate if it has valid data
247 *
248 * once the caching is done, we set the cache ready
249 * bit.
250 */
251static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
252{
253 int i;
254 char *s;
255 char *d;
256 int ret;
257
258 ret = alloc_rbio_pages(rbio);
259 if (ret)
260 return;
261
262 for (i = 0; i < rbio->nr_pages; i++) {
263 if (!rbio->bio_pages[i])
264 continue;
265
266 s = kmap(rbio->bio_pages[i]);
267 d = kmap(rbio->stripe_pages[i]);
268
09cbfeaf 269 memcpy(d, s, PAGE_SIZE);
4ae10b3a
CM
270
271 kunmap(rbio->bio_pages[i]);
272 kunmap(rbio->stripe_pages[i]);
273 SetPageUptodate(rbio->stripe_pages[i]);
274 }
275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
276}
277
53b381b3
DW
278/*
279 * we hash on the first logical address of the stripe
280 */
281static int rbio_bucket(struct btrfs_raid_bio *rbio)
282{
8e5cfb55 283 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
284
285 /*
286 * we shift down quite a bit. We're using byte
287 * addressing, and most of the lower bits are zeros.
288 * This tends to upset hash_64, and it consistently
289 * returns just one or two different values.
290 *
291 * shifting off the lower bits fixes things.
292 */
293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
294}
295
4ae10b3a
CM
296/*
297 * stealing an rbio means taking all the uptodate pages from the stripe
298 * array in the source rbio and putting them into the destination rbio
299 */
300static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
301{
302 int i;
303 struct page *s;
304 struct page *d;
305
306 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
307 return;
308
309 for (i = 0; i < dest->nr_pages; i++) {
310 s = src->stripe_pages[i];
311 if (!s || !PageUptodate(s)) {
312 continue;
313 }
314
315 d = dest->stripe_pages[i];
316 if (d)
317 __free_page(d);
318
319 dest->stripe_pages[i] = s;
320 src->stripe_pages[i] = NULL;
321 }
322}
323
53b381b3
DW
324/*
325 * merging means we take the bio_list from the victim and
326 * splice it into the destination. The victim should
327 * be discarded afterwards.
328 *
329 * must be called with dest->rbio_list_lock held
330 */
331static void merge_rbio(struct btrfs_raid_bio *dest,
332 struct btrfs_raid_bio *victim)
333{
334 bio_list_merge(&dest->bio_list, &victim->bio_list);
335 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 336 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
337 bio_list_init(&victim->bio_list);
338}
339
340/*
4ae10b3a
CM
341 * used to prune items that are in the cache. The caller
342 * must hold the hash table lock.
343 */
344static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
345{
346 int bucket = rbio_bucket(rbio);
347 struct btrfs_stripe_hash_table *table;
348 struct btrfs_stripe_hash *h;
349 int freeit = 0;
350
351 /*
352 * check the bit again under the hash table lock.
353 */
354 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
355 return;
356
357 table = rbio->fs_info->stripe_hash_table;
358 h = table->table + bucket;
359
360 /* hold the lock for the bucket because we may be
361 * removing it from the hash table
362 */
363 spin_lock(&h->lock);
364
365 /*
366 * hold the lock for the bio list because we need
367 * to make sure the bio list is empty
368 */
369 spin_lock(&rbio->bio_list_lock);
370
371 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
372 list_del_init(&rbio->stripe_cache);
373 table->cache_size -= 1;
374 freeit = 1;
375
376 /* if the bio list isn't empty, this rbio is
377 * still involved in an IO. We take it out
378 * of the cache list, and drop the ref that
379 * was held for the list.
380 *
381 * If the bio_list was empty, we also remove
382 * the rbio from the hash_table, and drop
383 * the corresponding ref
384 */
385 if (bio_list_empty(&rbio->bio_list)) {
386 if (!list_empty(&rbio->hash_list)) {
387 list_del_init(&rbio->hash_list);
dec95574 388 refcount_dec(&rbio->refs);
4ae10b3a
CM
389 BUG_ON(!list_empty(&rbio->plug_list));
390 }
391 }
392 }
393
394 spin_unlock(&rbio->bio_list_lock);
395 spin_unlock(&h->lock);
396
397 if (freeit)
398 __free_raid_bio(rbio);
399}
400
401/*
402 * prune a given rbio from the cache
403 */
404static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
405{
406 struct btrfs_stripe_hash_table *table;
407 unsigned long flags;
408
409 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
410 return;
411
412 table = rbio->fs_info->stripe_hash_table;
413
414 spin_lock_irqsave(&table->cache_lock, flags);
415 __remove_rbio_from_cache(rbio);
416 spin_unlock_irqrestore(&table->cache_lock, flags);
417}
418
419/*
420 * remove everything in the cache
421 */
48a3b636 422static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
423{
424 struct btrfs_stripe_hash_table *table;
425 unsigned long flags;
426 struct btrfs_raid_bio *rbio;
427
428 table = info->stripe_hash_table;
429
430 spin_lock_irqsave(&table->cache_lock, flags);
431 while (!list_empty(&table->stripe_cache)) {
432 rbio = list_entry(table->stripe_cache.next,
433 struct btrfs_raid_bio,
434 stripe_cache);
435 __remove_rbio_from_cache(rbio);
436 }
437 spin_unlock_irqrestore(&table->cache_lock, flags);
438}
439
440/*
441 * remove all cached entries and free the hash table
442 * used by unmount
53b381b3
DW
443 */
444void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
445{
446 if (!info->stripe_hash_table)
447 return;
4ae10b3a 448 btrfs_clear_rbio_cache(info);
f749303b 449 kvfree(info->stripe_hash_table);
53b381b3
DW
450 info->stripe_hash_table = NULL;
451}
452
4ae10b3a
CM
453/*
454 * insert an rbio into the stripe cache. It
455 * must have already been prepared by calling
456 * cache_rbio_pages
457 *
458 * If this rbio was already cached, it gets
459 * moved to the front of the lru.
460 *
461 * If the size of the rbio cache is too big, we
462 * prune an item.
463 */
464static void cache_rbio(struct btrfs_raid_bio *rbio)
465{
466 struct btrfs_stripe_hash_table *table;
467 unsigned long flags;
468
469 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 return;
471
472 table = rbio->fs_info->stripe_hash_table;
473
474 spin_lock_irqsave(&table->cache_lock, flags);
475 spin_lock(&rbio->bio_list_lock);
476
477 /* bump our ref if we were not in the list before */
478 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 479 refcount_inc(&rbio->refs);
4ae10b3a
CM
480
481 if (!list_empty(&rbio->stripe_cache)){
482 list_move(&rbio->stripe_cache, &table->stripe_cache);
483 } else {
484 list_add(&rbio->stripe_cache, &table->stripe_cache);
485 table->cache_size += 1;
486 }
487
488 spin_unlock(&rbio->bio_list_lock);
489
490 if (table->cache_size > RBIO_CACHE_SIZE) {
491 struct btrfs_raid_bio *found;
492
493 found = list_entry(table->stripe_cache.prev,
494 struct btrfs_raid_bio,
495 stripe_cache);
496
497 if (found != rbio)
498 __remove_rbio_from_cache(found);
499 }
500
501 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
502}
503
53b381b3
DW
504/*
505 * helper function to run the xor_blocks api. It is only
506 * able to do MAX_XOR_BLOCKS at a time, so we need to
507 * loop through.
508 */
509static void run_xor(void **pages, int src_cnt, ssize_t len)
510{
511 int src_off = 0;
512 int xor_src_cnt = 0;
513 void *dest = pages[src_cnt];
514
515 while(src_cnt > 0) {
516 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518
519 src_cnt -= xor_src_cnt;
520 src_off += xor_src_cnt;
521 }
522}
523
524/*
525 * returns true if the bio list inside this rbio
526 * covers an entire stripe (no rmw required).
527 * Must be called with the bio list lock held, or
528 * at a time when you know it is impossible to add
529 * new bios into the list
530 */
531static int __rbio_is_full(struct btrfs_raid_bio *rbio)
532{
533 unsigned long size = rbio->bio_list_bytes;
534 int ret = 1;
535
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
538
539 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
540 return ret;
541}
542
543static int rbio_is_full(struct btrfs_raid_bio *rbio)
544{
545 unsigned long flags;
546 int ret;
547
548 spin_lock_irqsave(&rbio->bio_list_lock, flags);
549 ret = __rbio_is_full(rbio);
550 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
551 return ret;
552}
553
554/*
555 * returns 1 if it is safe to merge two rbios together.
556 * The merging is safe if the two rbios correspond to
557 * the same stripe and if they are both going in the same
558 * direction (read vs write), and if neither one is
559 * locked for final IO
560 *
561 * The caller is responsible for locking such that
562 * rmw_locked is safe to test
563 */
564static int rbio_can_merge(struct btrfs_raid_bio *last,
565 struct btrfs_raid_bio *cur)
566{
567 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
568 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
569 return 0;
570
4ae10b3a
CM
571 /*
572 * we can't merge with cached rbios, since the
573 * idea is that when we merge the destination
574 * rbio is going to run our IO for us. We can
01327610 575 * steal from cached rbios though, other functions
4ae10b3a
CM
576 * handle that.
577 */
578 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
579 test_bit(RBIO_CACHE_BIT, &cur->flags))
580 return 0;
581
8e5cfb55
ZL
582 if (last->bbio->raid_map[0] !=
583 cur->bbio->raid_map[0])
53b381b3
DW
584 return 0;
585
5a6ac9ea
MX
586 /* we can't merge with different operations */
587 if (last->operation != cur->operation)
588 return 0;
589 /*
590 * We've need read the full stripe from the drive.
591 * check and repair the parity and write the new results.
592 *
593 * We're not allowed to add any new bios to the
594 * bio list here, anyone else that wants to
595 * change this stripe needs to do their own rmw.
596 */
db34be19 597 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 598 return 0;
53b381b3 599
db34be19 600 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
b4ee1782
OS
601 return 0;
602
cc54ff62
LB
603 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
604 int fa = last->faila;
605 int fb = last->failb;
606 int cur_fa = cur->faila;
607 int cur_fb = cur->failb;
608
609 if (last->faila >= last->failb) {
610 fa = last->failb;
611 fb = last->faila;
612 }
613
614 if (cur->faila >= cur->failb) {
615 cur_fa = cur->failb;
616 cur_fb = cur->faila;
617 }
618
619 if (fa != cur_fa || fb != cur_fb)
620 return 0;
621 }
53b381b3
DW
622 return 1;
623}
624
b7178a5f
ZL
625static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
626 int index)
627{
628 return stripe * rbio->stripe_npages + index;
629}
630
631/*
632 * these are just the pages from the rbio array, not from anything
633 * the FS sent down to us
634 */
635static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
636 int index)
637{
638 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
639}
640
53b381b3
DW
641/*
642 * helper to index into the pstripe
643 */
644static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
645{
b7178a5f 646 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
647}
648
649/*
650 * helper to index into the qstripe, returns null
651 * if there is no qstripe
652 */
653static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
654{
2c8cdd6e 655 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 656 return NULL;
b7178a5f 657 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
658}
659
660/*
661 * The first stripe in the table for a logical address
662 * has the lock. rbios are added in one of three ways:
663 *
664 * 1) Nobody has the stripe locked yet. The rbio is given
665 * the lock and 0 is returned. The caller must start the IO
666 * themselves.
667 *
668 * 2) Someone has the stripe locked, but we're able to merge
669 * with the lock owner. The rbio is freed and the IO will
670 * start automatically along with the existing rbio. 1 is returned.
671 *
672 * 3) Someone has the stripe locked, but we're not able to merge.
673 * The rbio is added to the lock owner's plug list, or merged into
674 * an rbio already on the plug list. When the lock owner unlocks,
675 * the next rbio on the list is run and the IO is started automatically.
676 * 1 is returned
677 *
678 * If we return 0, the caller still owns the rbio and must continue with
679 * IO submission. If we return 1, the caller must assume the rbio has
680 * already been freed.
681 */
682static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
683{
684 int bucket = rbio_bucket(rbio);
685 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
686 struct btrfs_raid_bio *cur;
687 struct btrfs_raid_bio *pending;
688 unsigned long flags;
53b381b3 689 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 690 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 691 int ret = 0;
53b381b3
DW
692
693 spin_lock_irqsave(&h->lock, flags);
694 list_for_each_entry(cur, &h->hash_list, hash_list) {
8e5cfb55 695 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
696 spin_lock(&cur->bio_list_lock);
697
4ae10b3a
CM
698 /* can we steal this cached rbio's pages? */
699 if (bio_list_empty(&cur->bio_list) &&
700 list_empty(&cur->plug_list) &&
701 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
702 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
703 list_del_init(&cur->hash_list);
dec95574 704 refcount_dec(&cur->refs);
4ae10b3a
CM
705
706 steal_rbio(cur, rbio);
707 cache_drop = cur;
708 spin_unlock(&cur->bio_list_lock);
709
710 goto lockit;
711 }
712
53b381b3
DW
713 /* can we merge into the lock owner? */
714 if (rbio_can_merge(cur, rbio)) {
715 merge_rbio(cur, rbio);
716 spin_unlock(&cur->bio_list_lock);
717 freeit = rbio;
718 ret = 1;
719 goto out;
720 }
721
4ae10b3a 722
53b381b3
DW
723 /*
724 * we couldn't merge with the running
725 * rbio, see if we can merge with the
726 * pending ones. We don't have to
727 * check for rmw_locked because there
728 * is no way they are inside finish_rmw
729 * right now
730 */
731 list_for_each_entry(pending, &cur->plug_list,
732 plug_list) {
733 if (rbio_can_merge(pending, rbio)) {
734 merge_rbio(pending, rbio);
735 spin_unlock(&cur->bio_list_lock);
736 freeit = rbio;
737 ret = 1;
738 goto out;
739 }
740 }
741
742 /* no merging, put us on the tail of the plug list,
743 * our rbio will be started with the currently
744 * running rbio unlocks
745 */
746 list_add_tail(&rbio->plug_list, &cur->plug_list);
747 spin_unlock(&cur->bio_list_lock);
748 ret = 1;
749 goto out;
750 }
751 }
4ae10b3a 752lockit:
dec95574 753 refcount_inc(&rbio->refs);
53b381b3
DW
754 list_add(&rbio->hash_list, &h->hash_list);
755out:
756 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
757 if (cache_drop)
758 remove_rbio_from_cache(cache_drop);
53b381b3
DW
759 if (freeit)
760 __free_raid_bio(freeit);
761 return ret;
762}
763
764/*
765 * called as rmw or parity rebuild is completed. If the plug list has more
766 * rbios waiting for this stripe, the next one on the list will be started
767 */
768static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
769{
770 int bucket;
771 struct btrfs_stripe_hash *h;
772 unsigned long flags;
4ae10b3a 773 int keep_cache = 0;
53b381b3
DW
774
775 bucket = rbio_bucket(rbio);
776 h = rbio->fs_info->stripe_hash_table->table + bucket;
777
4ae10b3a
CM
778 if (list_empty(&rbio->plug_list))
779 cache_rbio(rbio);
780
53b381b3
DW
781 spin_lock_irqsave(&h->lock, flags);
782 spin_lock(&rbio->bio_list_lock);
783
784 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
785 /*
786 * if we're still cached and there is no other IO
787 * to perform, just leave this rbio here for others
788 * to steal from later
789 */
790 if (list_empty(&rbio->plug_list) &&
791 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
792 keep_cache = 1;
793 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
794 BUG_ON(!bio_list_empty(&rbio->bio_list));
795 goto done;
796 }
53b381b3
DW
797
798 list_del_init(&rbio->hash_list);
dec95574 799 refcount_dec(&rbio->refs);
53b381b3
DW
800
801 /*
802 * we use the plug list to hold all the rbios
803 * waiting for the chance to lock this stripe.
804 * hand the lock over to one of them.
805 */
806 if (!list_empty(&rbio->plug_list)) {
807 struct btrfs_raid_bio *next;
808 struct list_head *head = rbio->plug_list.next;
809
810 next = list_entry(head, struct btrfs_raid_bio,
811 plug_list);
812
813 list_del_init(&rbio->plug_list);
814
815 list_add(&next->hash_list, &h->hash_list);
dec95574 816 refcount_inc(&next->refs);
53b381b3
DW
817 spin_unlock(&rbio->bio_list_lock);
818 spin_unlock_irqrestore(&h->lock, flags);
819
1b94b556 820 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 821 async_read_rebuild(next);
b4ee1782
OS
822 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
823 steal_rbio(rbio, next);
824 async_read_rebuild(next);
825 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 826 steal_rbio(rbio, next);
53b381b3 827 async_rmw_stripe(next);
5a6ac9ea
MX
828 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
829 steal_rbio(rbio, next);
830 async_scrub_parity(next);
4ae10b3a 831 }
53b381b3
DW
832
833 goto done_nolock;
53b381b3
DW
834 }
835 }
4ae10b3a 836done:
53b381b3
DW
837 spin_unlock(&rbio->bio_list_lock);
838 spin_unlock_irqrestore(&h->lock, flags);
839
840done_nolock:
4ae10b3a
CM
841 if (!keep_cache)
842 remove_rbio_from_cache(rbio);
53b381b3
DW
843}
844
845static void __free_raid_bio(struct btrfs_raid_bio *rbio)
846{
847 int i;
848
dec95574 849 if (!refcount_dec_and_test(&rbio->refs))
53b381b3
DW
850 return;
851
4ae10b3a 852 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
853 WARN_ON(!list_empty(&rbio->hash_list));
854 WARN_ON(!bio_list_empty(&rbio->bio_list));
855
856 for (i = 0; i < rbio->nr_pages; i++) {
857 if (rbio->stripe_pages[i]) {
858 __free_page(rbio->stripe_pages[i]);
859 rbio->stripe_pages[i] = NULL;
860 }
861 }
af8e2d1d 862
6e9606d2 863 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
864 kfree(rbio);
865}
866
7583d8d0 867static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
53b381b3 868{
7583d8d0
LB
869 struct bio *next;
870
871 while (cur) {
872 next = cur->bi_next;
873 cur->bi_next = NULL;
874 cur->bi_status = err;
875 bio_endio(cur);
876 cur = next;
877 }
53b381b3
DW
878}
879
880/*
881 * this frees the rbio and runs through all the bios in the
882 * bio_list and calls end_io on them
883 */
4e4cbee9 884static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
885{
886 struct bio *cur = bio_list_get(&rbio->bio_list);
7583d8d0 887 struct bio *extra;
4245215d
MX
888
889 if (rbio->generic_bio_cnt)
890 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
891
7583d8d0
LB
892 /*
893 * At this moment, rbio->bio_list is empty, however since rbio does not
894 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
895 * hash list, rbio may be merged with others so that rbio->bio_list
896 * becomes non-empty.
897 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
898 * more and we can call bio_endio() on all queued bios.
899 */
900 unlock_stripe(rbio);
901 extra = bio_list_get(&rbio->bio_list);
902 __free_raid_bio(rbio);
53b381b3 903
7583d8d0
LB
904 rbio_endio_bio_list(cur, err);
905 if (extra)
906 rbio_endio_bio_list(extra, err);
53b381b3
DW
907}
908
909/*
910 * end io function used by finish_rmw. When we finally
911 * get here, we've written a full stripe
912 */
4246a0b6 913static void raid_write_end_io(struct bio *bio)
53b381b3
DW
914{
915 struct btrfs_raid_bio *rbio = bio->bi_private;
4e4cbee9 916 blk_status_t err = bio->bi_status;
a6111d11 917 int max_errors;
53b381b3
DW
918
919 if (err)
920 fail_bio_stripe(rbio, bio);
921
922 bio_put(bio);
923
b89e1b01 924 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
925 return;
926
58efbc9f 927 err = BLK_STS_OK;
53b381b3
DW
928
929 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
930 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
931 0 : rbio->bbio->max_errors;
932 if (atomic_read(&rbio->error) > max_errors)
4e4cbee9 933 err = BLK_STS_IOERR;
53b381b3 934
4246a0b6 935 rbio_orig_end_io(rbio, err);
53b381b3
DW
936}
937
938/*
939 * the read/modify/write code wants to use the original bio for
940 * any pages it included, and then use the rbio for everything
941 * else. This function decides if a given index (stripe number)
942 * and page number in that stripe fall inside the original bio
943 * or the rbio.
944 *
945 * if you set bio_list_only, you'll get a NULL back for any ranges
946 * that are outside the bio_list
947 *
948 * This doesn't take any refs on anything, you get a bare page pointer
949 * and the caller must bump refs as required.
950 *
951 * You must call index_rbio_pages once before you can trust
952 * the answers from this function.
953 */
954static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
955 int index, int pagenr, int bio_list_only)
956{
957 int chunk_page;
958 struct page *p = NULL;
959
960 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
961
962 spin_lock_irq(&rbio->bio_list_lock);
963 p = rbio->bio_pages[chunk_page];
964 spin_unlock_irq(&rbio->bio_list_lock);
965
966 if (p || bio_list_only)
967 return p;
968
969 return rbio->stripe_pages[chunk_page];
970}
971
972/*
973 * number of pages we need for the entire stripe across all the
974 * drives
975 */
976static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
977{
09cbfeaf 978 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
979}
980
981/*
982 * allocation and initial setup for the btrfs_raid_bio. Not
983 * this does not allocate any pages for rbio->pages.
984 */
2ff7e61e
JM
985static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
986 struct btrfs_bio *bbio,
987 u64 stripe_len)
53b381b3
DW
988{
989 struct btrfs_raid_bio *rbio;
990 int nr_data = 0;
2c8cdd6e
MX
991 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
992 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 993 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
994 void *p;
995
5a6ac9ea 996 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
997 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
998 sizeof(long), GFP_NOFS);
af8e2d1d 999 if (!rbio)
53b381b3 1000 return ERR_PTR(-ENOMEM);
53b381b3
DW
1001
1002 bio_list_init(&rbio->bio_list);
1003 INIT_LIST_HEAD(&rbio->plug_list);
1004 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 1005 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
1006 INIT_LIST_HEAD(&rbio->hash_list);
1007 rbio->bbio = bbio;
2ff7e61e 1008 rbio->fs_info = fs_info;
53b381b3
DW
1009 rbio->stripe_len = stripe_len;
1010 rbio->nr_pages = num_pages;
2c8cdd6e 1011 rbio->real_stripes = real_stripes;
5a6ac9ea 1012 rbio->stripe_npages = stripe_npages;
53b381b3
DW
1013 rbio->faila = -1;
1014 rbio->failb = -1;
dec95574 1015 refcount_set(&rbio->refs, 1);
b89e1b01
MX
1016 atomic_set(&rbio->error, 0);
1017 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
1018
1019 /*
1020 * the stripe_pages and bio_pages array point to the extra
1021 * memory we allocated past the end of the rbio
1022 */
1023 p = rbio + 1;
1024 rbio->stripe_pages = p;
1025 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1026 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1027
10f11900
ZL
1028 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1029 nr_data = real_stripes - 1;
1030 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1031 nr_data = real_stripes - 2;
53b381b3 1032 else
10f11900 1033 BUG();
53b381b3
DW
1034
1035 rbio->nr_data = nr_data;
1036 return rbio;
1037}
1038
1039/* allocate pages for all the stripes in the bio, including parity */
1040static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1041{
1042 int i;
1043 struct page *page;
1044
1045 for (i = 0; i < rbio->nr_pages; i++) {
1046 if (rbio->stripe_pages[i])
1047 continue;
1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 if (!page)
1050 return -ENOMEM;
1051 rbio->stripe_pages[i] = page;
53b381b3
DW
1052 }
1053 return 0;
1054}
1055
b7178a5f 1056/* only allocate pages for p/q stripes */
53b381b3
DW
1057static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1058{
1059 int i;
1060 struct page *page;
1061
b7178a5f 1062 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1063
1064 for (; i < rbio->nr_pages; i++) {
1065 if (rbio->stripe_pages[i])
1066 continue;
1067 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1068 if (!page)
1069 return -ENOMEM;
1070 rbio->stripe_pages[i] = page;
1071 }
1072 return 0;
1073}
1074
1075/*
1076 * add a single page from a specific stripe into our list of bios for IO
1077 * this will try to merge into existing bios if possible, and returns
1078 * zero if all went well.
1079 */
48a3b636
ES
1080static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1081 struct bio_list *bio_list,
1082 struct page *page,
1083 int stripe_nr,
1084 unsigned long page_index,
1085 unsigned long bio_max_len)
53b381b3
DW
1086{
1087 struct bio *last = bio_list->tail;
1088 u64 last_end = 0;
1089 int ret;
1090 struct bio *bio;
1091 struct btrfs_bio_stripe *stripe;
1092 u64 disk_start;
1093
1094 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1095 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1096
1097 /* if the device is missing, just fail this stripe */
1098 if (!stripe->dev->bdev)
1099 return fail_rbio_index(rbio, stripe_nr);
1100
1101 /* see if we can add this page onto our existing bio */
1102 if (last) {
4f024f37
KO
1103 last_end = (u64)last->bi_iter.bi_sector << 9;
1104 last_end += last->bi_iter.bi_size;
53b381b3
DW
1105
1106 /*
1107 * we can't merge these if they are from different
1108 * devices or if they are not contiguous
1109 */
1110 if (last_end == disk_start && stripe->dev->bdev &&
4e4cbee9 1111 !last->bi_status &&
74d46992
CH
1112 last->bi_disk == stripe->dev->bdev->bd_disk &&
1113 last->bi_partno == stripe->dev->bdev->bd_partno) {
09cbfeaf
KS
1114 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1115 if (ret == PAGE_SIZE)
53b381b3
DW
1116 return 0;
1117 }
1118 }
1119
1120 /* put a new bio on the list */
c5e4c3d7 1121 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
4f024f37 1122 bio->bi_iter.bi_size = 0;
74d46992 1123 bio_set_dev(bio, stripe->dev->bdev);
4f024f37 1124 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1125
09cbfeaf 1126 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1127 bio_list_add(bio_list, bio);
1128 return 0;
1129}
1130
1131/*
1132 * while we're doing the read/modify/write cycle, we could
1133 * have errors in reading pages off the disk. This checks
1134 * for errors and if we're not able to read the page it'll
1135 * trigger parity reconstruction. The rmw will be finished
1136 * after we've reconstructed the failed stripes
1137 */
1138static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1139{
1140 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1141 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1142 __raid56_parity_recover(rbio);
1143 } else {
1144 finish_rmw(rbio);
1145 }
1146}
1147
53b381b3
DW
1148/*
1149 * helper function to walk our bio list and populate the bio_pages array with
1150 * the result. This seems expensive, but it is faster than constantly
1151 * searching through the bio list as we setup the IO in finish_rmw or stripe
1152 * reconstruction.
1153 *
1154 * This must be called before you trust the answers from page_in_rbio
1155 */
1156static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1157{
1158 struct bio *bio;
1159 u64 start;
1160 unsigned long stripe_offset;
1161 unsigned long page_index;
53b381b3
DW
1162
1163 spin_lock_irq(&rbio->bio_list_lock);
1164 bio_list_for_each(bio, &rbio->bio_list) {
6592e58c
FM
1165 struct bio_vec bvec;
1166 struct bvec_iter iter;
1167 int i = 0;
1168
4f024f37 1169 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1170 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1171 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1172
6592e58c
FM
1173 if (bio_flagged(bio, BIO_CLONED))
1174 bio->bi_iter = btrfs_io_bio(bio)->iter;
1175
1176 bio_for_each_segment(bvec, bio, iter) {
1177 rbio->bio_pages[page_index + i] = bvec.bv_page;
1178 i++;
1179 }
53b381b3
DW
1180 }
1181 spin_unlock_irq(&rbio->bio_list_lock);
1182}
1183
1184/*
1185 * this is called from one of two situations. We either
1186 * have a full stripe from the higher layers, or we've read all
1187 * the missing bits off disk.
1188 *
1189 * This will calculate the parity and then send down any
1190 * changed blocks.
1191 */
1192static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1193{
1194 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1195 void *pointers[rbio->real_stripes];
53b381b3
DW
1196 int nr_data = rbio->nr_data;
1197 int stripe;
1198 int pagenr;
1199 int p_stripe = -1;
1200 int q_stripe = -1;
1201 struct bio_list bio_list;
1202 struct bio *bio;
53b381b3
DW
1203 int ret;
1204
1205 bio_list_init(&bio_list);
1206
2c8cdd6e
MX
1207 if (rbio->real_stripes - rbio->nr_data == 1) {
1208 p_stripe = rbio->real_stripes - 1;
1209 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1210 p_stripe = rbio->real_stripes - 2;
1211 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1212 } else {
1213 BUG();
1214 }
1215
1216 /* at this point we either have a full stripe,
1217 * or we've read the full stripe from the drive.
1218 * recalculate the parity and write the new results.
1219 *
1220 * We're not allowed to add any new bios to the
1221 * bio list here, anyone else that wants to
1222 * change this stripe needs to do their own rmw.
1223 */
1224 spin_lock_irq(&rbio->bio_list_lock);
1225 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1226 spin_unlock_irq(&rbio->bio_list_lock);
1227
b89e1b01 1228 atomic_set(&rbio->error, 0);
53b381b3
DW
1229
1230 /*
1231 * now that we've set rmw_locked, run through the
1232 * bio list one last time and map the page pointers
4ae10b3a
CM
1233 *
1234 * We don't cache full rbios because we're assuming
1235 * the higher layers are unlikely to use this area of
1236 * the disk again soon. If they do use it again,
1237 * hopefully they will send another full bio.
53b381b3
DW
1238 */
1239 index_rbio_pages(rbio);
4ae10b3a
CM
1240 if (!rbio_is_full(rbio))
1241 cache_rbio_pages(rbio);
1242 else
1243 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1244
915e2290 1245 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1246 struct page *p;
1247 /* first collect one page from each data stripe */
1248 for (stripe = 0; stripe < nr_data; stripe++) {
1249 p = page_in_rbio(rbio, stripe, pagenr, 0);
1250 pointers[stripe] = kmap(p);
1251 }
1252
1253 /* then add the parity stripe */
1254 p = rbio_pstripe_page(rbio, pagenr);
1255 SetPageUptodate(p);
1256 pointers[stripe++] = kmap(p);
1257
1258 if (q_stripe != -1) {
1259
1260 /*
1261 * raid6, add the qstripe and call the
1262 * library function to fill in our p/q
1263 */
1264 p = rbio_qstripe_page(rbio, pagenr);
1265 SetPageUptodate(p);
1266 pointers[stripe++] = kmap(p);
1267
2c8cdd6e 1268 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1269 pointers);
1270 } else {
1271 /* raid5 */
1272 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 1273 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1274 }
1275
1276
2c8cdd6e 1277 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1278 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1279 }
1280
1281 /*
1282 * time to start writing. Make bios for everything from the
1283 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1284 * everything else.
1285 */
2c8cdd6e 1286 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1287 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1288 struct page *page;
1289 if (stripe < rbio->nr_data) {
1290 page = page_in_rbio(rbio, stripe, pagenr, 1);
1291 if (!page)
1292 continue;
1293 } else {
1294 page = rbio_stripe_page(rbio, stripe, pagenr);
1295 }
1296
1297 ret = rbio_add_io_page(rbio, &bio_list,
1298 page, stripe, pagenr, rbio->stripe_len);
1299 if (ret)
1300 goto cleanup;
1301 }
1302 }
1303
2c8cdd6e
MX
1304 if (likely(!bbio->num_tgtdevs))
1305 goto write_data;
1306
1307 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1308 if (!bbio->tgtdev_map[stripe])
1309 continue;
1310
915e2290 1311 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1312 struct page *page;
1313 if (stripe < rbio->nr_data) {
1314 page = page_in_rbio(rbio, stripe, pagenr, 1);
1315 if (!page)
1316 continue;
1317 } else {
1318 page = rbio_stripe_page(rbio, stripe, pagenr);
1319 }
1320
1321 ret = rbio_add_io_page(rbio, &bio_list, page,
1322 rbio->bbio->tgtdev_map[stripe],
1323 pagenr, rbio->stripe_len);
1324 if (ret)
1325 goto cleanup;
1326 }
1327 }
1328
1329write_data:
b89e1b01
MX
1330 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1331 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1332
1333 while (1) {
1334 bio = bio_list_pop(&bio_list);
1335 if (!bio)
1336 break;
1337
1338 bio->bi_private = rbio;
1339 bio->bi_end_io = raid_write_end_io;
37226b21 1340 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
1341
1342 submit_bio(bio);
53b381b3
DW
1343 }
1344 return;
1345
1346cleanup:
58efbc9f 1347 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1348
1349 while ((bio = bio_list_pop(&bio_list)))
1350 bio_put(bio);
53b381b3
DW
1351}
1352
1353/*
1354 * helper to find the stripe number for a given bio. Used to figure out which
1355 * stripe has failed. This expects the bio to correspond to a physical disk,
1356 * so it looks up based on physical sector numbers.
1357 */
1358static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1359 struct bio *bio)
1360{
4f024f37 1361 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1362 u64 stripe_start;
1363 int i;
1364 struct btrfs_bio_stripe *stripe;
1365
1366 physical <<= 9;
1367
1368 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1369 stripe = &rbio->bbio->stripes[i];
1370 stripe_start = stripe->physical;
1371 if (physical >= stripe_start &&
2c8cdd6e 1372 physical < stripe_start + rbio->stripe_len &&
047fdea6 1373 stripe->dev->bdev &&
74d46992
CH
1374 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1375 bio->bi_partno == stripe->dev->bdev->bd_partno) {
53b381b3
DW
1376 return i;
1377 }
1378 }
1379 return -1;
1380}
1381
1382/*
1383 * helper to find the stripe number for a given
1384 * bio (before mapping). Used to figure out which stripe has
1385 * failed. This looks up based on logical block numbers.
1386 */
1387static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1388 struct bio *bio)
1389{
4f024f37 1390 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1391 u64 stripe_start;
1392 int i;
1393
1394 logical <<= 9;
1395
1396 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1397 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1398 if (logical >= stripe_start &&
1399 logical < stripe_start + rbio->stripe_len) {
1400 return i;
1401 }
1402 }
1403 return -1;
1404}
1405
1406/*
1407 * returns -EIO if we had too many failures
1408 */
1409static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1410{
1411 unsigned long flags;
1412 int ret = 0;
1413
1414 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1415
1416 /* we already know this stripe is bad, move on */
1417 if (rbio->faila == failed || rbio->failb == failed)
1418 goto out;
1419
1420 if (rbio->faila == -1) {
1421 /* first failure on this rbio */
1422 rbio->faila = failed;
b89e1b01 1423 atomic_inc(&rbio->error);
53b381b3
DW
1424 } else if (rbio->failb == -1) {
1425 /* second failure on this rbio */
1426 rbio->failb = failed;
b89e1b01 1427 atomic_inc(&rbio->error);
53b381b3
DW
1428 } else {
1429 ret = -EIO;
1430 }
1431out:
1432 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1433
1434 return ret;
1435}
1436
1437/*
1438 * helper to fail a stripe based on a physical disk
1439 * bio.
1440 */
1441static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1442 struct bio *bio)
1443{
1444 int failed = find_bio_stripe(rbio, bio);
1445
1446 if (failed < 0)
1447 return -EIO;
1448
1449 return fail_rbio_index(rbio, failed);
1450}
1451
1452/*
1453 * this sets each page in the bio uptodate. It should only be used on private
1454 * rbio pages, nothing that comes in from the higher layers
1455 */
1456static void set_bio_pages_uptodate(struct bio *bio)
1457{
0198e5b7
LB
1458 struct bio_vec *bvec;
1459 int i;
6592e58c 1460
0198e5b7 1461 ASSERT(!bio_flagged(bio, BIO_CLONED));
53b381b3 1462
0198e5b7
LB
1463 bio_for_each_segment_all(bvec, bio, i)
1464 SetPageUptodate(bvec->bv_page);
53b381b3
DW
1465}
1466
1467/*
1468 * end io for the read phase of the rmw cycle. All the bios here are physical
1469 * stripe bios we've read from the disk so we can recalculate the parity of the
1470 * stripe.
1471 *
1472 * This will usually kick off finish_rmw once all the bios are read in, but it
1473 * may trigger parity reconstruction if we had any errors along the way
1474 */
4246a0b6 1475static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1476{
1477 struct btrfs_raid_bio *rbio = bio->bi_private;
1478
4e4cbee9 1479 if (bio->bi_status)
53b381b3
DW
1480 fail_bio_stripe(rbio, bio);
1481 else
1482 set_bio_pages_uptodate(bio);
1483
1484 bio_put(bio);
1485
b89e1b01 1486 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1487 return;
1488
b89e1b01 1489 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1490 goto cleanup;
1491
1492 /*
1493 * this will normally call finish_rmw to start our write
1494 * but if there are any failed stripes we'll reconstruct
1495 * from parity first
1496 */
1497 validate_rbio_for_rmw(rbio);
1498 return;
1499
1500cleanup:
1501
58efbc9f 1502 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1503}
1504
1505static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1506{
0b246afa
JM
1507 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1508 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1509}
1510
1511static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1512{
9e0af237
LB
1513 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1514 read_rebuild_work, NULL, NULL);
53b381b3 1515
0b246afa 1516 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1517}
1518
1519/*
1520 * the stripe must be locked by the caller. It will
1521 * unlock after all the writes are done
1522 */
1523static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1524{
1525 int bios_to_read = 0;
53b381b3
DW
1526 struct bio_list bio_list;
1527 int ret;
53b381b3
DW
1528 int pagenr;
1529 int stripe;
1530 struct bio *bio;
1531
1532 bio_list_init(&bio_list);
1533
1534 ret = alloc_rbio_pages(rbio);
1535 if (ret)
1536 goto cleanup;
1537
1538 index_rbio_pages(rbio);
1539
b89e1b01 1540 atomic_set(&rbio->error, 0);
53b381b3
DW
1541 /*
1542 * build a list of bios to read all the missing parts of this
1543 * stripe
1544 */
1545 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1546 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1547 struct page *page;
1548 /*
1549 * we want to find all the pages missing from
1550 * the rbio and read them from the disk. If
1551 * page_in_rbio finds a page in the bio list
1552 * we don't need to read it off the stripe.
1553 */
1554 page = page_in_rbio(rbio, stripe, pagenr, 1);
1555 if (page)
1556 continue;
1557
1558 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1559 /*
1560 * the bio cache may have handed us an uptodate
1561 * page. If so, be happy and use it
1562 */
1563 if (PageUptodate(page))
1564 continue;
1565
53b381b3
DW
1566 ret = rbio_add_io_page(rbio, &bio_list, page,
1567 stripe, pagenr, rbio->stripe_len);
1568 if (ret)
1569 goto cleanup;
1570 }
1571 }
1572
1573 bios_to_read = bio_list_size(&bio_list);
1574 if (!bios_to_read) {
1575 /*
1576 * this can happen if others have merged with
1577 * us, it means there is nothing left to read.
1578 * But if there are missing devices it may not be
1579 * safe to do the full stripe write yet.
1580 */
1581 goto finish;
1582 }
1583
1584 /*
1585 * the bbio may be freed once we submit the last bio. Make sure
1586 * not to touch it after that
1587 */
b89e1b01 1588 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1589 while (1) {
1590 bio = bio_list_pop(&bio_list);
1591 if (!bio)
1592 break;
1593
1594 bio->bi_private = rbio;
1595 bio->bi_end_io = raid_rmw_end_io;
37226b21 1596 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 1597
0b246afa 1598 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1599
4e49ea4a 1600 submit_bio(bio);
53b381b3
DW
1601 }
1602 /* the actual write will happen once the reads are done */
1603 return 0;
1604
1605cleanup:
58efbc9f 1606 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1607
1608 while ((bio = bio_list_pop(&bio_list)))
1609 bio_put(bio);
1610
53b381b3
DW
1611 return -EIO;
1612
1613finish:
1614 validate_rbio_for_rmw(rbio);
1615 return 0;
1616}
1617
1618/*
1619 * if the upper layers pass in a full stripe, we thank them by only allocating
1620 * enough pages to hold the parity, and sending it all down quickly.
1621 */
1622static int full_stripe_write(struct btrfs_raid_bio *rbio)
1623{
1624 int ret;
1625
1626 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1627 if (ret) {
1628 __free_raid_bio(rbio);
53b381b3 1629 return ret;
3cd846d1 1630 }
53b381b3
DW
1631
1632 ret = lock_stripe_add(rbio);
1633 if (ret == 0)
1634 finish_rmw(rbio);
1635 return 0;
1636}
1637
1638/*
1639 * partial stripe writes get handed over to async helpers.
1640 * We're really hoping to merge a few more writes into this
1641 * rbio before calculating new parity
1642 */
1643static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1644{
1645 int ret;
1646
1647 ret = lock_stripe_add(rbio);
1648 if (ret == 0)
1649 async_rmw_stripe(rbio);
1650 return 0;
1651}
1652
1653/*
1654 * sometimes while we were reading from the drive to
1655 * recalculate parity, enough new bios come into create
1656 * a full stripe. So we do a check here to see if we can
1657 * go directly to finish_rmw
1658 */
1659static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1660{
1661 /* head off into rmw land if we don't have a full stripe */
1662 if (!rbio_is_full(rbio))
1663 return partial_stripe_write(rbio);
1664 return full_stripe_write(rbio);
1665}
1666
6ac0f488
CM
1667/*
1668 * We use plugging call backs to collect full stripes.
1669 * Any time we get a partial stripe write while plugged
1670 * we collect it into a list. When the unplug comes down,
1671 * we sort the list by logical block number and merge
1672 * everything we can into the same rbios
1673 */
1674struct btrfs_plug_cb {
1675 struct blk_plug_cb cb;
1676 struct btrfs_fs_info *info;
1677 struct list_head rbio_list;
1678 struct btrfs_work work;
1679};
1680
1681/*
1682 * rbios on the plug list are sorted for easier merging.
1683 */
1684static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1685{
1686 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1687 plug_list);
1688 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1689 plug_list);
4f024f37
KO
1690 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1691 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1692
1693 if (a_sector < b_sector)
1694 return -1;
1695 if (a_sector > b_sector)
1696 return 1;
1697 return 0;
1698}
1699
1700static void run_plug(struct btrfs_plug_cb *plug)
1701{
1702 struct btrfs_raid_bio *cur;
1703 struct btrfs_raid_bio *last = NULL;
1704
1705 /*
1706 * sort our plug list then try to merge
1707 * everything we can in hopes of creating full
1708 * stripes.
1709 */
1710 list_sort(NULL, &plug->rbio_list, plug_cmp);
1711 while (!list_empty(&plug->rbio_list)) {
1712 cur = list_entry(plug->rbio_list.next,
1713 struct btrfs_raid_bio, plug_list);
1714 list_del_init(&cur->plug_list);
1715
1716 if (rbio_is_full(cur)) {
1717 /* we have a full stripe, send it down */
1718 full_stripe_write(cur);
1719 continue;
1720 }
1721 if (last) {
1722 if (rbio_can_merge(last, cur)) {
1723 merge_rbio(last, cur);
1724 __free_raid_bio(cur);
1725 continue;
1726
1727 }
1728 __raid56_parity_write(last);
1729 }
1730 last = cur;
1731 }
1732 if (last) {
1733 __raid56_parity_write(last);
1734 }
1735 kfree(plug);
1736}
1737
1738/*
1739 * if the unplug comes from schedule, we have to push the
1740 * work off to a helper thread
1741 */
1742static void unplug_work(struct btrfs_work *work)
1743{
1744 struct btrfs_plug_cb *plug;
1745 plug = container_of(work, struct btrfs_plug_cb, work);
1746 run_plug(plug);
1747}
1748
1749static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1750{
1751 struct btrfs_plug_cb *plug;
1752 plug = container_of(cb, struct btrfs_plug_cb, cb);
1753
1754 if (from_schedule) {
9e0af237
LB
1755 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1756 unplug_work, NULL, NULL);
d05a33ac
QW
1757 btrfs_queue_work(plug->info->rmw_workers,
1758 &plug->work);
6ac0f488
CM
1759 return;
1760 }
1761 run_plug(plug);
1762}
1763
53b381b3
DW
1764/*
1765 * our main entry point for writes from the rest of the FS.
1766 */
2ff7e61e 1767int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1768 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1769{
1770 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1771 struct btrfs_plug_cb *plug = NULL;
1772 struct blk_plug_cb *cb;
4245215d 1773 int ret;
53b381b3 1774
2ff7e61e 1775 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1776 if (IS_ERR(rbio)) {
6e9606d2 1777 btrfs_put_bbio(bbio);
53b381b3 1778 return PTR_ERR(rbio);
af8e2d1d 1779 }
53b381b3 1780 bio_list_add(&rbio->bio_list, bio);
4f024f37 1781 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1782 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1783
0b246afa 1784 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1785 rbio->generic_bio_cnt = 1;
1786
6ac0f488
CM
1787 /*
1788 * don't plug on full rbios, just get them out the door
1789 * as quickly as we can
1790 */
4245215d
MX
1791 if (rbio_is_full(rbio)) {
1792 ret = full_stripe_write(rbio);
1793 if (ret)
0b246afa 1794 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1795 return ret;
1796 }
6ac0f488 1797
0b246afa 1798 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1799 if (cb) {
1800 plug = container_of(cb, struct btrfs_plug_cb, cb);
1801 if (!plug->info) {
0b246afa 1802 plug->info = fs_info;
6ac0f488
CM
1803 INIT_LIST_HEAD(&plug->rbio_list);
1804 }
1805 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1806 ret = 0;
6ac0f488 1807 } else {
4245215d
MX
1808 ret = __raid56_parity_write(rbio);
1809 if (ret)
0b246afa 1810 btrfs_bio_counter_dec(fs_info);
6ac0f488 1811 }
4245215d 1812 return ret;
53b381b3
DW
1813}
1814
1815/*
1816 * all parity reconstruction happens here. We've read in everything
1817 * we can find from the drives and this does the heavy lifting of
1818 * sorting the good from the bad.
1819 */
1820static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1821{
1822 int pagenr, stripe;
1823 void **pointers;
1824 int faila = -1, failb = -1;
53b381b3 1825 struct page *page;
58efbc9f 1826 blk_status_t err;
53b381b3
DW
1827 int i;
1828
31e818fe 1829 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3 1830 if (!pointers) {
58efbc9f 1831 err = BLK_STS_RESOURCE;
53b381b3
DW
1832 goto cleanup_io;
1833 }
1834
1835 faila = rbio->faila;
1836 failb = rbio->failb;
1837
b4ee1782
OS
1838 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1839 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1840 spin_lock_irq(&rbio->bio_list_lock);
1841 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1842 spin_unlock_irq(&rbio->bio_list_lock);
1843 }
1844
1845 index_rbio_pages(rbio);
1846
915e2290 1847 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1848 /*
1849 * Now we just use bitmap to mark the horizontal stripes in
1850 * which we have data when doing parity scrub.
1851 */
1852 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1853 !test_bit(pagenr, rbio->dbitmap))
1854 continue;
1855
53b381b3
DW
1856 /* setup our array of pointers with pages
1857 * from each stripe
1858 */
2c8cdd6e 1859 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1860 /*
1861 * if we're rebuilding a read, we have to use
1862 * pages from the bio list
1863 */
b4ee1782
OS
1864 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1865 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1866 (stripe == faila || stripe == failb)) {
1867 page = page_in_rbio(rbio, stripe, pagenr, 0);
1868 } else {
1869 page = rbio_stripe_page(rbio, stripe, pagenr);
1870 }
1871 pointers[stripe] = kmap(page);
1872 }
1873
1874 /* all raid6 handling here */
10f11900 1875 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1876 /*
1877 * single failure, rebuild from parity raid5
1878 * style
1879 */
1880 if (failb < 0) {
1881 if (faila == rbio->nr_data) {
1882 /*
1883 * Just the P stripe has failed, without
1884 * a bad data or Q stripe.
1885 * TODO, we should redo the xor here.
1886 */
58efbc9f 1887 err = BLK_STS_IOERR;
53b381b3
DW
1888 goto cleanup;
1889 }
1890 /*
1891 * a single failure in raid6 is rebuilt
1892 * in the pstripe code below
1893 */
1894 goto pstripe;
1895 }
1896
1897 /* make sure our ps and qs are in order */
1898 if (faila > failb) {
1899 int tmp = failb;
1900 failb = faila;
1901 faila = tmp;
1902 }
1903
1904 /* if the q stripe is failed, do a pstripe reconstruction
1905 * from the xors.
1906 * If both the q stripe and the P stripe are failed, we're
1907 * here due to a crc mismatch and we can't give them the
1908 * data they want
1909 */
8e5cfb55
ZL
1910 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1911 if (rbio->bbio->raid_map[faila] ==
1912 RAID5_P_STRIPE) {
58efbc9f 1913 err = BLK_STS_IOERR;
53b381b3
DW
1914 goto cleanup;
1915 }
1916 /*
1917 * otherwise we have one bad data stripe and
1918 * a good P stripe. raid5!
1919 */
1920 goto pstripe;
1921 }
1922
8e5cfb55 1923 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1924 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1925 PAGE_SIZE, faila, pointers);
1926 } else {
2c8cdd6e 1927 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1928 PAGE_SIZE, faila, failb,
1929 pointers);
1930 }
1931 } else {
1932 void *p;
1933
1934 /* rebuild from P stripe here (raid5 or raid6) */
1935 BUG_ON(failb != -1);
1936pstripe:
1937 /* Copy parity block into failed block to start with */
1938 memcpy(pointers[faila],
1939 pointers[rbio->nr_data],
09cbfeaf 1940 PAGE_SIZE);
53b381b3
DW
1941
1942 /* rearrange the pointer array */
1943 p = pointers[faila];
1944 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1945 pointers[stripe] = pointers[stripe + 1];
1946 pointers[rbio->nr_data - 1] = p;
1947
1948 /* xor in the rest */
09cbfeaf 1949 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1950 }
1951 /* if we're doing this rebuild as part of an rmw, go through
1952 * and set all of our private rbio pages in the
1953 * failed stripes as uptodate. This way finish_rmw will
1954 * know they can be trusted. If this was a read reconstruction,
1955 * other endio functions will fiddle the uptodate bits
1956 */
1b94b556 1957 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1958 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1959 if (faila != -1) {
1960 page = rbio_stripe_page(rbio, faila, i);
1961 SetPageUptodate(page);
1962 }
1963 if (failb != -1) {
1964 page = rbio_stripe_page(rbio, failb, i);
1965 SetPageUptodate(page);
1966 }
1967 }
1968 }
2c8cdd6e 1969 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1970 /*
1971 * if we're rebuilding a read, we have to use
1972 * pages from the bio list
1973 */
b4ee1782
OS
1974 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1975 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1976 (stripe == faila || stripe == failb)) {
1977 page = page_in_rbio(rbio, stripe, pagenr, 0);
1978 } else {
1979 page = rbio_stripe_page(rbio, stripe, pagenr);
1980 }
1981 kunmap(page);
1982 }
1983 }
1984
58efbc9f 1985 err = BLK_STS_OK;
53b381b3
DW
1986cleanup:
1987 kfree(pointers);
1988
1989cleanup_io:
1b94b556 1990 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
44ac474d
LB
1991 /*
1992 * - In case of two failures, where rbio->failb != -1:
1993 *
1994 * Do not cache this rbio since the above read reconstruction
1995 * (raid6_datap_recov() or raid6_2data_recov()) may have
1996 * changed some content of stripes which are not identical to
1997 * on-disk content any more, otherwise, a later write/recover
1998 * may steal stripe_pages from this rbio and end up with
1999 * corruptions or rebuild failures.
2000 *
2001 * - In case of single failure, where rbio->failb == -1:
2002 *
2003 * Cache this rbio iff the above read reconstruction is
2004 * excuted without problems.
2005 */
2006 if (err == BLK_STS_OK && rbio->failb < 0)
4ae10b3a
CM
2007 cache_rbio_pages(rbio);
2008 else
2009 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2010
22365979 2011 rbio_orig_end_io(rbio, err);
b4ee1782 2012 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 2013 rbio_orig_end_io(rbio, err);
58efbc9f 2014 } else if (err == BLK_STS_OK) {
53b381b3
DW
2015 rbio->faila = -1;
2016 rbio->failb = -1;
5a6ac9ea
MX
2017
2018 if (rbio->operation == BTRFS_RBIO_WRITE)
2019 finish_rmw(rbio);
2020 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2021 finish_parity_scrub(rbio, 0);
2022 else
2023 BUG();
53b381b3 2024 } else {
4246a0b6 2025 rbio_orig_end_io(rbio, err);
53b381b3
DW
2026 }
2027}
2028
2029/*
2030 * This is called only for stripes we've read from disk to
2031 * reconstruct the parity.
2032 */
4246a0b6 2033static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
2034{
2035 struct btrfs_raid_bio *rbio = bio->bi_private;
2036
2037 /*
2038 * we only read stripe pages off the disk, set them
2039 * up to date if there were no errors
2040 */
4e4cbee9 2041 if (bio->bi_status)
53b381b3
DW
2042 fail_bio_stripe(rbio, bio);
2043 else
2044 set_bio_pages_uptodate(bio);
2045 bio_put(bio);
2046
b89e1b01 2047 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2048 return;
2049
b89e1b01 2050 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
58efbc9f 2051 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
2052 else
2053 __raid_recover_end_io(rbio);
2054}
2055
2056/*
2057 * reads everything we need off the disk to reconstruct
2058 * the parity. endio handlers trigger final reconstruction
2059 * when the IO is done.
2060 *
2061 * This is used both for reads from the higher layers and for
2062 * parity construction required to finish a rmw cycle.
2063 */
2064static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2065{
2066 int bios_to_read = 0;
53b381b3
DW
2067 struct bio_list bio_list;
2068 int ret;
53b381b3
DW
2069 int pagenr;
2070 int stripe;
2071 struct bio *bio;
2072
2073 bio_list_init(&bio_list);
2074
2075 ret = alloc_rbio_pages(rbio);
2076 if (ret)
2077 goto cleanup;
2078
b89e1b01 2079 atomic_set(&rbio->error, 0);
53b381b3
DW
2080
2081 /*
4ae10b3a
CM
2082 * read everything that hasn't failed. Thanks to the
2083 * stripe cache, it is possible that some or all of these
2084 * pages are going to be uptodate.
53b381b3 2085 */
2c8cdd6e 2086 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2087 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2088 atomic_inc(&rbio->error);
53b381b3 2089 continue;
5588383e 2090 }
53b381b3 2091
915e2290 2092 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2093 struct page *p;
2094
2095 /*
2096 * the rmw code may have already read this
2097 * page in
2098 */
2099 p = rbio_stripe_page(rbio, stripe, pagenr);
2100 if (PageUptodate(p))
2101 continue;
2102
2103 ret = rbio_add_io_page(rbio, &bio_list,
2104 rbio_stripe_page(rbio, stripe, pagenr),
2105 stripe, pagenr, rbio->stripe_len);
2106 if (ret < 0)
2107 goto cleanup;
2108 }
2109 }
2110
2111 bios_to_read = bio_list_size(&bio_list);
2112 if (!bios_to_read) {
2113 /*
2114 * we might have no bios to read just because the pages
2115 * were up to date, or we might have no bios to read because
2116 * the devices were gone.
2117 */
b89e1b01 2118 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2119 __raid_recover_end_io(rbio);
2120 goto out;
2121 } else {
2122 goto cleanup;
2123 }
2124 }
2125
2126 /*
2127 * the bbio may be freed once we submit the last bio. Make sure
2128 * not to touch it after that
2129 */
b89e1b01 2130 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2131 while (1) {
2132 bio = bio_list_pop(&bio_list);
2133 if (!bio)
2134 break;
2135
2136 bio->bi_private = rbio;
2137 bio->bi_end_io = raid_recover_end_io;
37226b21 2138 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 2139
0b246afa 2140 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2141
4e49ea4a 2142 submit_bio(bio);
53b381b3
DW
2143 }
2144out:
2145 return 0;
2146
2147cleanup:
b4ee1782
OS
2148 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2149 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
58efbc9f 2150 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2151
2152 while ((bio = bio_list_pop(&bio_list)))
2153 bio_put(bio);
2154
53b381b3
DW
2155 return -EIO;
2156}
2157
2158/*
2159 * the main entry point for reads from the higher layers. This
2160 * is really only called when the normal read path had a failure,
2161 * so we assume the bio they send down corresponds to a failed part
2162 * of the drive.
2163 */
2ff7e61e 2164int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2165 struct btrfs_bio *bbio, u64 stripe_len,
2166 int mirror_num, int generic_io)
53b381b3
DW
2167{
2168 struct btrfs_raid_bio *rbio;
2169 int ret;
2170
abad60c6
LB
2171 if (generic_io) {
2172 ASSERT(bbio->mirror_num == mirror_num);
2173 btrfs_io_bio(bio)->mirror_num = mirror_num;
2174 }
2175
2ff7e61e 2176 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2177 if (IS_ERR(rbio)) {
6e9606d2
ZL
2178 if (generic_io)
2179 btrfs_put_bbio(bbio);
53b381b3 2180 return PTR_ERR(rbio);
af8e2d1d 2181 }
53b381b3 2182
1b94b556 2183 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2184 bio_list_add(&rbio->bio_list, bio);
4f024f37 2185 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2186
2187 rbio->faila = find_logical_bio_stripe(rbio, bio);
2188 if (rbio->faila == -1) {
0b246afa 2189 btrfs_warn(fs_info,
e46a28ca
LB
2190 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2191 __func__, (u64)bio->bi_iter.bi_sector << 9,
2192 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2193 if (generic_io)
2194 btrfs_put_bbio(bbio);
53b381b3
DW
2195 kfree(rbio);
2196 return -EIO;
2197 }
2198
4245215d 2199 if (generic_io) {
0b246afa 2200 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2201 rbio->generic_bio_cnt = 1;
2202 } else {
6e9606d2 2203 btrfs_get_bbio(bbio);
4245215d
MX
2204 }
2205
53b381b3 2206 /*
8810f751
LB
2207 * Loop retry:
2208 * for 'mirror == 2', reconstruct from all other stripes.
2209 * for 'mirror_num > 2', select a stripe to fail on every retry.
53b381b3 2210 */
8810f751
LB
2211 if (mirror_num > 2) {
2212 /*
2213 * 'mirror == 3' is to fail the p stripe and
2214 * reconstruct from the q stripe. 'mirror > 3' is to
2215 * fail a data stripe and reconstruct from p+q stripe.
2216 */
2217 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2218 ASSERT(rbio->failb > 0);
2219 if (rbio->failb <= rbio->faila)
2220 rbio->failb--;
2221 }
53b381b3
DW
2222
2223 ret = lock_stripe_add(rbio);
2224
2225 /*
2226 * __raid56_parity_recover will end the bio with
2227 * any errors it hits. We don't want to return
2228 * its error value up the stack because our caller
2229 * will end up calling bio_endio with any nonzero
2230 * return
2231 */
2232 if (ret == 0)
2233 __raid56_parity_recover(rbio);
2234 /*
2235 * our rbio has been added to the list of
2236 * rbios that will be handled after the
2237 * currently lock owner is done
2238 */
2239 return 0;
2240
2241}
2242
2243static void rmw_work(struct btrfs_work *work)
2244{
2245 struct btrfs_raid_bio *rbio;
2246
2247 rbio = container_of(work, struct btrfs_raid_bio, work);
2248 raid56_rmw_stripe(rbio);
2249}
2250
2251static void read_rebuild_work(struct btrfs_work *work)
2252{
2253 struct btrfs_raid_bio *rbio;
2254
2255 rbio = container_of(work, struct btrfs_raid_bio, work);
2256 __raid56_parity_recover(rbio);
2257}
5a6ac9ea
MX
2258
2259/*
2260 * The following code is used to scrub/replace the parity stripe
2261 *
ae6529c3
QW
2262 * Caller must have already increased bio_counter for getting @bbio.
2263 *
5a6ac9ea
MX
2264 * Note: We need make sure all the pages that add into the scrub/replace
2265 * raid bio are correct and not be changed during the scrub/replace. That
2266 * is those pages just hold metadata or file data with checksum.
2267 */
2268
2269struct btrfs_raid_bio *
2ff7e61e 2270raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2271 struct btrfs_bio *bbio, u64 stripe_len,
2272 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2273 unsigned long *dbitmap, int stripe_nsectors)
2274{
2275 struct btrfs_raid_bio *rbio;
2276 int i;
2277
2ff7e61e 2278 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2279 if (IS_ERR(rbio))
2280 return NULL;
2281 bio_list_add(&rbio->bio_list, bio);
2282 /*
2283 * This is a special bio which is used to hold the completion handler
2284 * and make the scrub rbio is similar to the other types
2285 */
2286 ASSERT(!bio->bi_iter.bi_size);
2287 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2288
9cd3a7eb
LB
2289 /*
2290 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2291 * to the end position, so this search can start from the first parity
2292 * stripe.
2293 */
2294 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2295 if (bbio->stripes[i].dev == scrub_dev) {
2296 rbio->scrubp = i;
2297 break;
2298 }
2299 }
9cd3a7eb 2300 ASSERT(i < rbio->real_stripes);
5a6ac9ea
MX
2301
2302 /* Now we just support the sectorsize equals to page size */
0b246afa 2303 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2304 ASSERT(rbio->stripe_npages == stripe_nsectors);
2305 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2306
ae6529c3
QW
2307 /*
2308 * We have already increased bio_counter when getting bbio, record it
2309 * so we can free it at rbio_orig_end_io().
2310 */
2311 rbio->generic_bio_cnt = 1;
2312
5a6ac9ea
MX
2313 return rbio;
2314}
2315
b4ee1782
OS
2316/* Used for both parity scrub and missing. */
2317void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2318 u64 logical)
5a6ac9ea
MX
2319{
2320 int stripe_offset;
2321 int index;
2322
8e5cfb55
ZL
2323 ASSERT(logical >= rbio->bbio->raid_map[0]);
2324 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2325 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2326 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2327 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2328 rbio->bio_pages[index] = page;
2329}
2330
2331/*
2332 * We just scrub the parity that we have correct data on the same horizontal,
2333 * so we needn't allocate all pages for all the stripes.
2334 */
2335static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2336{
2337 int i;
2338 int bit;
2339 int index;
2340 struct page *page;
2341
2342 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2343 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2344 index = i * rbio->stripe_npages + bit;
2345 if (rbio->stripe_pages[index])
2346 continue;
2347
2348 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2349 if (!page)
2350 return -ENOMEM;
2351 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2352 }
2353 }
2354 return 0;
2355}
2356
5a6ac9ea
MX
2357static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2358 int need_check)
2359{
76035976 2360 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2361 void *pointers[rbio->real_stripes];
76035976 2362 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2363 int nr_data = rbio->nr_data;
2364 int stripe;
2365 int pagenr;
2366 int p_stripe = -1;
2367 int q_stripe = -1;
2368 struct page *p_page = NULL;
2369 struct page *q_page = NULL;
2370 struct bio_list bio_list;
2371 struct bio *bio;
76035976 2372 int is_replace = 0;
5a6ac9ea
MX
2373 int ret;
2374
2375 bio_list_init(&bio_list);
2376
2c8cdd6e
MX
2377 if (rbio->real_stripes - rbio->nr_data == 1) {
2378 p_stripe = rbio->real_stripes - 1;
2379 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2380 p_stripe = rbio->real_stripes - 2;
2381 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2382 } else {
2383 BUG();
2384 }
2385
76035976
MX
2386 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2387 is_replace = 1;
2388 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2389 }
2390
5a6ac9ea
MX
2391 /*
2392 * Because the higher layers(scrubber) are unlikely to
2393 * use this area of the disk again soon, so don't cache
2394 * it.
2395 */
2396 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2397
2398 if (!need_check)
2399 goto writeback;
2400
2401 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2402 if (!p_page)
2403 goto cleanup;
2404 SetPageUptodate(p_page);
2405
2406 if (q_stripe != -1) {
2407 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2408 if (!q_page) {
2409 __free_page(p_page);
2410 goto cleanup;
2411 }
2412 SetPageUptodate(q_page);
2413 }
2414
2415 atomic_set(&rbio->error, 0);
2416
2417 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2418 struct page *p;
2419 void *parity;
2420 /* first collect one page from each data stripe */
2421 for (stripe = 0; stripe < nr_data; stripe++) {
2422 p = page_in_rbio(rbio, stripe, pagenr, 0);
2423 pointers[stripe] = kmap(p);
2424 }
2425
2426 /* then add the parity stripe */
2427 pointers[stripe++] = kmap(p_page);
2428
2429 if (q_stripe != -1) {
2430
2431 /*
2432 * raid6, add the qstripe and call the
2433 * library function to fill in our p/q
2434 */
2435 pointers[stripe++] = kmap(q_page);
2436
2c8cdd6e 2437 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2438 pointers);
2439 } else {
2440 /* raid5 */
2441 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 2442 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2443 }
2444
01327610 2445 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2446 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2447 parity = kmap(p);
09cbfeaf
KS
2448 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2449 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
5a6ac9ea
MX
2450 else
2451 /* Parity is right, needn't writeback */
2452 bitmap_clear(rbio->dbitmap, pagenr, 1);
2453 kunmap(p);
2454
2c8cdd6e 2455 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2456 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2457 }
2458
2459 __free_page(p_page);
2460 if (q_page)
2461 __free_page(q_page);
2462
2463writeback:
2464 /*
2465 * time to start writing. Make bios for everything from the
2466 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2467 * everything else.
2468 */
2469 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2470 struct page *page;
2471
2472 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2473 ret = rbio_add_io_page(rbio, &bio_list,
2474 page, rbio->scrubp, pagenr, rbio->stripe_len);
2475 if (ret)
2476 goto cleanup;
2477 }
2478
76035976
MX
2479 if (!is_replace)
2480 goto submit_write;
2481
2482 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2483 struct page *page;
2484
2485 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2486 ret = rbio_add_io_page(rbio, &bio_list, page,
2487 bbio->tgtdev_map[rbio->scrubp],
2488 pagenr, rbio->stripe_len);
2489 if (ret)
2490 goto cleanup;
2491 }
2492
2493submit_write:
5a6ac9ea
MX
2494 nr_data = bio_list_size(&bio_list);
2495 if (!nr_data) {
2496 /* Every parity is right */
58efbc9f 2497 rbio_orig_end_io(rbio, BLK_STS_OK);
5a6ac9ea
MX
2498 return;
2499 }
2500
2501 atomic_set(&rbio->stripes_pending, nr_data);
2502
2503 while (1) {
2504 bio = bio_list_pop(&bio_list);
2505 if (!bio)
2506 break;
2507
2508 bio->bi_private = rbio;
a6111d11 2509 bio->bi_end_io = raid_write_end_io;
37226b21 2510 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2511
2512 submit_bio(bio);
5a6ac9ea
MX
2513 }
2514 return;
2515
2516cleanup:
58efbc9f 2517 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2518
2519 while ((bio = bio_list_pop(&bio_list)))
2520 bio_put(bio);
5a6ac9ea
MX
2521}
2522
2523static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2524{
2525 if (stripe >= 0 && stripe < rbio->nr_data)
2526 return 1;
2527 return 0;
2528}
2529
2530/*
2531 * While we're doing the parity check and repair, we could have errors
2532 * in reading pages off the disk. This checks for errors and if we're
2533 * not able to read the page it'll trigger parity reconstruction. The
2534 * parity scrub will be finished after we've reconstructed the failed
2535 * stripes
2536 */
2537static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2538{
2539 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2540 goto cleanup;
2541
2542 if (rbio->faila >= 0 || rbio->failb >= 0) {
2543 int dfail = 0, failp = -1;
2544
2545 if (is_data_stripe(rbio, rbio->faila))
2546 dfail++;
2547 else if (is_parity_stripe(rbio->faila))
2548 failp = rbio->faila;
2549
2550 if (is_data_stripe(rbio, rbio->failb))
2551 dfail++;
2552 else if (is_parity_stripe(rbio->failb))
2553 failp = rbio->failb;
2554
2555 /*
2556 * Because we can not use a scrubbing parity to repair
2557 * the data, so the capability of the repair is declined.
2558 * (In the case of RAID5, we can not repair anything)
2559 */
2560 if (dfail > rbio->bbio->max_errors - 1)
2561 goto cleanup;
2562
2563 /*
2564 * If all data is good, only parity is correctly, just
2565 * repair the parity.
2566 */
2567 if (dfail == 0) {
2568 finish_parity_scrub(rbio, 0);
2569 return;
2570 }
2571
2572 /*
2573 * Here means we got one corrupted data stripe and one
2574 * corrupted parity on RAID6, if the corrupted parity
01327610 2575 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2576 * the data, or we can not repair the data stripe.
2577 */
2578 if (failp != rbio->scrubp)
2579 goto cleanup;
2580
2581 __raid_recover_end_io(rbio);
2582 } else {
2583 finish_parity_scrub(rbio, 1);
2584 }
2585 return;
2586
2587cleanup:
58efbc9f 2588 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2589}
2590
2591/*
2592 * end io for the read phase of the rmw cycle. All the bios here are physical
2593 * stripe bios we've read from the disk so we can recalculate the parity of the
2594 * stripe.
2595 *
2596 * This will usually kick off finish_rmw once all the bios are read in, but it
2597 * may trigger parity reconstruction if we had any errors along the way
2598 */
4246a0b6 2599static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2600{
2601 struct btrfs_raid_bio *rbio = bio->bi_private;
2602
4e4cbee9 2603 if (bio->bi_status)
5a6ac9ea
MX
2604 fail_bio_stripe(rbio, bio);
2605 else
2606 set_bio_pages_uptodate(bio);
2607
2608 bio_put(bio);
2609
2610 if (!atomic_dec_and_test(&rbio->stripes_pending))
2611 return;
2612
2613 /*
2614 * this will normally call finish_rmw to start our write
2615 * but if there are any failed stripes we'll reconstruct
2616 * from parity first
2617 */
2618 validate_rbio_for_parity_scrub(rbio);
2619}
2620
2621static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2622{
2623 int bios_to_read = 0;
5a6ac9ea
MX
2624 struct bio_list bio_list;
2625 int ret;
2626 int pagenr;
2627 int stripe;
2628 struct bio *bio;
2629
785884fc
LB
2630 bio_list_init(&bio_list);
2631
5a6ac9ea
MX
2632 ret = alloc_rbio_essential_pages(rbio);
2633 if (ret)
2634 goto cleanup;
2635
5a6ac9ea
MX
2636 atomic_set(&rbio->error, 0);
2637 /*
2638 * build a list of bios to read all the missing parts of this
2639 * stripe
2640 */
2c8cdd6e 2641 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2642 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2643 struct page *page;
2644 /*
2645 * we want to find all the pages missing from
2646 * the rbio and read them from the disk. If
2647 * page_in_rbio finds a page in the bio list
2648 * we don't need to read it off the stripe.
2649 */
2650 page = page_in_rbio(rbio, stripe, pagenr, 1);
2651 if (page)
2652 continue;
2653
2654 page = rbio_stripe_page(rbio, stripe, pagenr);
2655 /*
2656 * the bio cache may have handed us an uptodate
2657 * page. If so, be happy and use it
2658 */
2659 if (PageUptodate(page))
2660 continue;
2661
2662 ret = rbio_add_io_page(rbio, &bio_list, page,
2663 stripe, pagenr, rbio->stripe_len);
2664 if (ret)
2665 goto cleanup;
2666 }
2667 }
2668
2669 bios_to_read = bio_list_size(&bio_list);
2670 if (!bios_to_read) {
2671 /*
2672 * this can happen if others have merged with
2673 * us, it means there is nothing left to read.
2674 * But if there are missing devices it may not be
2675 * safe to do the full stripe write yet.
2676 */
2677 goto finish;
2678 }
2679
2680 /*
2681 * the bbio may be freed once we submit the last bio. Make sure
2682 * not to touch it after that
2683 */
2684 atomic_set(&rbio->stripes_pending, bios_to_read);
2685 while (1) {
2686 bio = bio_list_pop(&bio_list);
2687 if (!bio)
2688 break;
2689
2690 bio->bi_private = rbio;
2691 bio->bi_end_io = raid56_parity_scrub_end_io;
37226b21 2692 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5a6ac9ea 2693
0b246afa 2694 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2695
4e49ea4a 2696 submit_bio(bio);
5a6ac9ea
MX
2697 }
2698 /* the actual write will happen once the reads are done */
2699 return;
2700
2701cleanup:
58efbc9f 2702 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2703
2704 while ((bio = bio_list_pop(&bio_list)))
2705 bio_put(bio);
2706
5a6ac9ea
MX
2707 return;
2708
2709finish:
2710 validate_rbio_for_parity_scrub(rbio);
2711}
2712
2713static void scrub_parity_work(struct btrfs_work *work)
2714{
2715 struct btrfs_raid_bio *rbio;
2716
2717 rbio = container_of(work, struct btrfs_raid_bio, work);
2718 raid56_parity_scrub_stripe(rbio);
2719}
2720
2721static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2722{
2723 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2724 scrub_parity_work, NULL, NULL);
2725
0b246afa 2726 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
5a6ac9ea
MX
2727}
2728
2729void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2730{
2731 if (!lock_stripe_add(rbio))
2732 async_scrub_parity(rbio);
2733}
b4ee1782
OS
2734
2735/* The following code is used for dev replace of a missing RAID 5/6 device. */
2736
2737struct btrfs_raid_bio *
2ff7e61e 2738raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2739 struct btrfs_bio *bbio, u64 length)
2740{
2741 struct btrfs_raid_bio *rbio;
2742
2ff7e61e 2743 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2744 if (IS_ERR(rbio))
2745 return NULL;
2746
2747 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2748 bio_list_add(&rbio->bio_list, bio);
2749 /*
2750 * This is a special bio which is used to hold the completion handler
2751 * and make the scrub rbio is similar to the other types
2752 */
2753 ASSERT(!bio->bi_iter.bi_size);
2754
2755 rbio->faila = find_logical_bio_stripe(rbio, bio);
2756 if (rbio->faila == -1) {
2757 BUG();
2758 kfree(rbio);
2759 return NULL;
2760 }
2761
ae6529c3
QW
2762 /*
2763 * When we get bbio, we have already increased bio_counter, record it
2764 * so we can free it at rbio_orig_end_io()
2765 */
2766 rbio->generic_bio_cnt = 1;
2767
b4ee1782
OS
2768 return rbio;
2769}
2770
2771static void missing_raid56_work(struct btrfs_work *work)
2772{
2773 struct btrfs_raid_bio *rbio;
2774
2775 rbio = container_of(work, struct btrfs_raid_bio, work);
2776 __raid56_parity_recover(rbio);
2777}
2778
2779static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2780{
2781 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2782 missing_raid56_work, NULL, NULL);
2783
2784 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2785}
2786
2787void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2788{
2789 if (!lock_stripe_add(rbio))
2790 async_missing_raid56(rbio);
2791}