]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/raid56.c
btrfs: copy fsid to super_block s_uuid
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / raid56.c
CommitLineData
53b381b3
DW
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
818e010b 34#include <linux/mm.h>
53b381b3 35#include <asm/div64.h>
53b381b3
DW
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
4ae10b3a
CM
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
4ae10b3a
CM
61#define RBIO_CACHE_SIZE 1024
62
1b94b556 63enum btrfs_rbio_ops {
b4ee1782
OS
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
68};
69
53b381b3
DW
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
53b381b3
DW
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
4ae10b3a
CM
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
53b381b3
DW
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
6ac0f488
CM
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
53b381b3
DW
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
2c8cdd6e
MX
119 int real_stripes;
120
5a6ac9ea 121 int stripe_npages;
53b381b3
DW
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
1b94b556 128 enum btrfs_rbio_ops operation;
53b381b3
DW
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
5a6ac9ea 136 int scrubp;
53b381b3
DW
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
4245215d
MX
150 int generic_bio_cnt;
151
dec95574 152 refcount_t refs;
53b381b3 153
b89e1b01
MX
154 atomic_t stripes_pending;
155
156 atomic_t error;
53b381b3
DW
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
5a6ac9ea
MX
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
53b381b3
DW
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
5a6ac9ea
MX
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
53b381b3
DW
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
83c8266a 208 int table_size;
53b381b3
DW
209
210 if (info->stripe_hash_table)
211 return 0;
212
83c8266a
DS
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
818e010b
DS
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
53b381b3 224
4ae10b3a
CM
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
227
53b381b3
DW
228 h = table->table;
229
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
234 init_waitqueue_head(&cur->wait);
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
238 if (x)
239 kvfree(x);
53b381b3
DW
240 return 0;
241}
242
4ae10b3a
CM
243/*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253{
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
09cbfeaf 270 memcpy(d, s, PAGE_SIZE);
4ae10b3a
CM
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277}
278
53b381b3
DW
279/*
280 * we hash on the first logical address of the stripe
281 */
282static int rbio_bucket(struct btrfs_raid_bio *rbio)
283{
8e5cfb55 284 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295}
296
4ae10b3a
CM
297/*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302{
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 337 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
338 bio_list_init(&victim->bio_list);
339}
340
341/*
4ae10b3a
CM
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346{
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
dec95574 389 refcount_dec(&rbio->refs);
4ae10b3a
CM
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400}
401
402/*
403 * prune a given rbio from the cache
404 */
405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406{
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418}
419
420/*
421 * remove everything in the cache
422 */
48a3b636 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
424{
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
53b381b3
DW
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
4ae10b3a 449 btrfs_clear_rbio_cache(info);
f749303b 450 kvfree(info->stripe_hash_table);
53b381b3
DW
451 info->stripe_hash_table = NULL;
452}
453
4ae10b3a
CM
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 480 refcount_inc(&rbio->refs);
4ae10b3a
CM
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
503}
504
53b381b3
DW
505/*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
510static void run_xor(void **pages, int src_cnt, ssize_t len)
511{
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523}
524
525/*
526 * returns true if the bio list inside this rbio
527 * covers an entire stripe (no rmw required).
528 * Must be called with the bio list lock held, or
529 * at a time when you know it is impossible to add
530 * new bios into the list
531 */
532static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533{
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
536
537 if (size != rbio->nr_data * rbio->stripe_len)
538 ret = 0;
539
540 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 return ret;
542}
543
544static int rbio_is_full(struct btrfs_raid_bio *rbio)
545{
546 unsigned long flags;
547 int ret;
548
549 spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 ret = __rbio_is_full(rbio);
551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 return ret;
553}
554
555/*
556 * returns 1 if it is safe to merge two rbios together.
557 * The merging is safe if the two rbios correspond to
558 * the same stripe and if they are both going in the same
559 * direction (read vs write), and if neither one is
560 * locked for final IO
561 *
562 * The caller is responsible for locking such that
563 * rmw_locked is safe to test
564 */
565static int rbio_can_merge(struct btrfs_raid_bio *last,
566 struct btrfs_raid_bio *cur)
567{
568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 return 0;
571
4ae10b3a
CM
572 /*
573 * we can't merge with cached rbios, since the
574 * idea is that when we merge the destination
575 * rbio is going to run our IO for us. We can
01327610 576 * steal from cached rbios though, other functions
4ae10b3a
CM
577 * handle that.
578 */
579 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 test_bit(RBIO_CACHE_BIT, &cur->flags))
581 return 0;
582
8e5cfb55
ZL
583 if (last->bbio->raid_map[0] !=
584 cur->bbio->raid_map[0])
53b381b3
DW
585 return 0;
586
5a6ac9ea
MX
587 /* we can't merge with different operations */
588 if (last->operation != cur->operation)
589 return 0;
590 /*
591 * We've need read the full stripe from the drive.
592 * check and repair the parity and write the new results.
593 *
594 * We're not allowed to add any new bios to the
595 * bio list here, anyone else that wants to
596 * change this stripe needs to do their own rmw.
597 */
598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 600 return 0;
53b381b3 601
b4ee1782
OS
602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 return 0;
605
53b381b3
DW
606 return 1;
607}
608
b7178a5f
ZL
609static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 int index)
611{
612 return stripe * rbio->stripe_npages + index;
613}
614
615/*
616 * these are just the pages from the rbio array, not from anything
617 * the FS sent down to us
618 */
619static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 int index)
621{
622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623}
624
53b381b3
DW
625/*
626 * helper to index into the pstripe
627 */
628static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629{
b7178a5f 630 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
631}
632
633/*
634 * helper to index into the qstripe, returns null
635 * if there is no qstripe
636 */
637static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638{
2c8cdd6e 639 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 640 return NULL;
b7178a5f 641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
642}
643
644/*
645 * The first stripe in the table for a logical address
646 * has the lock. rbios are added in one of three ways:
647 *
648 * 1) Nobody has the stripe locked yet. The rbio is given
649 * the lock and 0 is returned. The caller must start the IO
650 * themselves.
651 *
652 * 2) Someone has the stripe locked, but we're able to merge
653 * with the lock owner. The rbio is freed and the IO will
654 * start automatically along with the existing rbio. 1 is returned.
655 *
656 * 3) Someone has the stripe locked, but we're not able to merge.
657 * The rbio is added to the lock owner's plug list, or merged into
658 * an rbio already on the plug list. When the lock owner unlocks,
659 * the next rbio on the list is run and the IO is started automatically.
660 * 1 is returned
661 *
662 * If we return 0, the caller still owns the rbio and must continue with
663 * IO submission. If we return 1, the caller must assume the rbio has
664 * already been freed.
665 */
666static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667{
668 int bucket = rbio_bucket(rbio);
669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 struct btrfs_raid_bio *cur;
671 struct btrfs_raid_bio *pending;
672 unsigned long flags;
673 DEFINE_WAIT(wait);
674 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 675 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 676 int ret = 0;
53b381b3
DW
677
678 spin_lock_irqsave(&h->lock, flags);
679 list_for_each_entry(cur, &h->hash_list, hash_list) {
8e5cfb55 680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
53b381b3
DW
681 spin_lock(&cur->bio_list_lock);
682
4ae10b3a
CM
683 /* can we steal this cached rbio's pages? */
684 if (bio_list_empty(&cur->bio_list) &&
685 list_empty(&cur->plug_list) &&
686 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 list_del_init(&cur->hash_list);
dec95574 689 refcount_dec(&cur->refs);
4ae10b3a
CM
690
691 steal_rbio(cur, rbio);
692 cache_drop = cur;
693 spin_unlock(&cur->bio_list_lock);
694
695 goto lockit;
696 }
697
53b381b3
DW
698 /* can we merge into the lock owner? */
699 if (rbio_can_merge(cur, rbio)) {
700 merge_rbio(cur, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
705 }
706
4ae10b3a 707
53b381b3
DW
708 /*
709 * we couldn't merge with the running
710 * rbio, see if we can merge with the
711 * pending ones. We don't have to
712 * check for rmw_locked because there
713 * is no way they are inside finish_rmw
714 * right now
715 */
716 list_for_each_entry(pending, &cur->plug_list,
717 plug_list) {
718 if (rbio_can_merge(pending, rbio)) {
719 merge_rbio(pending, rbio);
720 spin_unlock(&cur->bio_list_lock);
721 freeit = rbio;
722 ret = 1;
723 goto out;
724 }
725 }
726
727 /* no merging, put us on the tail of the plug list,
728 * our rbio will be started with the currently
729 * running rbio unlocks
730 */
731 list_add_tail(&rbio->plug_list, &cur->plug_list);
732 spin_unlock(&cur->bio_list_lock);
733 ret = 1;
734 goto out;
735 }
736 }
4ae10b3a 737lockit:
dec95574 738 refcount_inc(&rbio->refs);
53b381b3
DW
739 list_add(&rbio->hash_list, &h->hash_list);
740out:
741 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
742 if (cache_drop)
743 remove_rbio_from_cache(cache_drop);
53b381b3
DW
744 if (freeit)
745 __free_raid_bio(freeit);
746 return ret;
747}
748
749/*
750 * called as rmw or parity rebuild is completed. If the plug list has more
751 * rbios waiting for this stripe, the next one on the list will be started
752 */
753static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754{
755 int bucket;
756 struct btrfs_stripe_hash *h;
757 unsigned long flags;
4ae10b3a 758 int keep_cache = 0;
53b381b3
DW
759
760 bucket = rbio_bucket(rbio);
761 h = rbio->fs_info->stripe_hash_table->table + bucket;
762
4ae10b3a
CM
763 if (list_empty(&rbio->plug_list))
764 cache_rbio(rbio);
765
53b381b3
DW
766 spin_lock_irqsave(&h->lock, flags);
767 spin_lock(&rbio->bio_list_lock);
768
769 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
770 /*
771 * if we're still cached and there is no other IO
772 * to perform, just leave this rbio here for others
773 * to steal from later
774 */
775 if (list_empty(&rbio->plug_list) &&
776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 keep_cache = 1;
778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 BUG_ON(!bio_list_empty(&rbio->bio_list));
780 goto done;
781 }
53b381b3
DW
782
783 list_del_init(&rbio->hash_list);
dec95574 784 refcount_dec(&rbio->refs);
53b381b3
DW
785
786 /*
787 * we use the plug list to hold all the rbios
788 * waiting for the chance to lock this stripe.
789 * hand the lock over to one of them.
790 */
791 if (!list_empty(&rbio->plug_list)) {
792 struct btrfs_raid_bio *next;
793 struct list_head *head = rbio->plug_list.next;
794
795 next = list_entry(head, struct btrfs_raid_bio,
796 plug_list);
797
798 list_del_init(&rbio->plug_list);
799
800 list_add(&next->hash_list, &h->hash_list);
dec95574 801 refcount_inc(&next->refs);
53b381b3
DW
802 spin_unlock(&rbio->bio_list_lock);
803 spin_unlock_irqrestore(&h->lock, flags);
804
1b94b556 805 if (next->operation == BTRFS_RBIO_READ_REBUILD)
53b381b3 806 async_read_rebuild(next);
b4ee1782
OS
807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 steal_rbio(rbio, next);
809 async_read_rebuild(next);
810 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 811 steal_rbio(rbio, next);
53b381b3 812 async_rmw_stripe(next);
5a6ac9ea
MX
813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 steal_rbio(rbio, next);
815 async_scrub_parity(next);
4ae10b3a 816 }
53b381b3
DW
817
818 goto done_nolock;
33a9eca7
DS
819 /*
820 * The barrier for this waitqueue_active is not needed,
821 * we're protected by h->lock and can't miss a wakeup.
822 */
823 } else if (waitqueue_active(&h->wait)) {
53b381b3
DW
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826 wake_up(&h->wait);
827 goto done_nolock;
828 }
829 }
4ae10b3a 830done:
53b381b3
DW
831 spin_unlock(&rbio->bio_list_lock);
832 spin_unlock_irqrestore(&h->lock, flags);
833
834done_nolock:
4ae10b3a
CM
835 if (!keep_cache)
836 remove_rbio_from_cache(rbio);
53b381b3
DW
837}
838
839static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840{
841 int i;
842
dec95574 843 if (!refcount_dec_and_test(&rbio->refs))
53b381b3
DW
844 return;
845
4ae10b3a 846 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
847 WARN_ON(!list_empty(&rbio->hash_list));
848 WARN_ON(!bio_list_empty(&rbio->bio_list));
849
850 for (i = 0; i < rbio->nr_pages; i++) {
851 if (rbio->stripe_pages[i]) {
852 __free_page(rbio->stripe_pages[i]);
853 rbio->stripe_pages[i] = NULL;
854 }
855 }
af8e2d1d 856
6e9606d2 857 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
858 kfree(rbio);
859}
860
861static void free_raid_bio(struct btrfs_raid_bio *rbio)
862{
863 unlock_stripe(rbio);
864 __free_raid_bio(rbio);
865}
866
867/*
868 * this frees the rbio and runs through all the bios in the
869 * bio_list and calls end_io on them
870 */
4e4cbee9 871static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
872{
873 struct bio *cur = bio_list_get(&rbio->bio_list);
874 struct bio *next;
4245215d
MX
875
876 if (rbio->generic_bio_cnt)
877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
878
53b381b3
DW
879 free_raid_bio(rbio);
880
881 while (cur) {
882 next = cur->bi_next;
883 cur->bi_next = NULL;
4e4cbee9 884 cur->bi_status = err;
4246a0b6 885 bio_endio(cur);
53b381b3
DW
886 cur = next;
887 }
888}
889
890/*
891 * end io function used by finish_rmw. When we finally
892 * get here, we've written a full stripe
893 */
4246a0b6 894static void raid_write_end_io(struct bio *bio)
53b381b3
DW
895{
896 struct btrfs_raid_bio *rbio = bio->bi_private;
4e4cbee9 897 blk_status_t err = bio->bi_status;
a6111d11 898 int max_errors;
53b381b3
DW
899
900 if (err)
901 fail_bio_stripe(rbio, bio);
902
903 bio_put(bio);
904
b89e1b01 905 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
906 return;
907
58efbc9f 908 err = BLK_STS_OK;
53b381b3
DW
909
910 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
911 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
912 0 : rbio->bbio->max_errors;
913 if (atomic_read(&rbio->error) > max_errors)
4e4cbee9 914 err = BLK_STS_IOERR;
53b381b3 915
4246a0b6 916 rbio_orig_end_io(rbio, err);
53b381b3
DW
917}
918
919/*
920 * the read/modify/write code wants to use the original bio for
921 * any pages it included, and then use the rbio for everything
922 * else. This function decides if a given index (stripe number)
923 * and page number in that stripe fall inside the original bio
924 * or the rbio.
925 *
926 * if you set bio_list_only, you'll get a NULL back for any ranges
927 * that are outside the bio_list
928 *
929 * This doesn't take any refs on anything, you get a bare page pointer
930 * and the caller must bump refs as required.
931 *
932 * You must call index_rbio_pages once before you can trust
933 * the answers from this function.
934 */
935static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
936 int index, int pagenr, int bio_list_only)
937{
938 int chunk_page;
939 struct page *p = NULL;
940
941 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
942
943 spin_lock_irq(&rbio->bio_list_lock);
944 p = rbio->bio_pages[chunk_page];
945 spin_unlock_irq(&rbio->bio_list_lock);
946
947 if (p || bio_list_only)
948 return p;
949
950 return rbio->stripe_pages[chunk_page];
951}
952
953/*
954 * number of pages we need for the entire stripe across all the
955 * drives
956 */
957static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
958{
09cbfeaf 959 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
960}
961
962/*
963 * allocation and initial setup for the btrfs_raid_bio. Not
964 * this does not allocate any pages for rbio->pages.
965 */
2ff7e61e
JM
966static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
967 struct btrfs_bio *bbio,
968 u64 stripe_len)
53b381b3
DW
969{
970 struct btrfs_raid_bio *rbio;
971 int nr_data = 0;
2c8cdd6e
MX
972 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
973 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 974 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
975 void *p;
976
5a6ac9ea 977 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
bfca9a6d
ZL
978 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
979 sizeof(long), GFP_NOFS);
af8e2d1d 980 if (!rbio)
53b381b3 981 return ERR_PTR(-ENOMEM);
53b381b3
DW
982
983 bio_list_init(&rbio->bio_list);
984 INIT_LIST_HEAD(&rbio->plug_list);
985 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 986 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
987 INIT_LIST_HEAD(&rbio->hash_list);
988 rbio->bbio = bbio;
2ff7e61e 989 rbio->fs_info = fs_info;
53b381b3
DW
990 rbio->stripe_len = stripe_len;
991 rbio->nr_pages = num_pages;
2c8cdd6e 992 rbio->real_stripes = real_stripes;
5a6ac9ea 993 rbio->stripe_npages = stripe_npages;
53b381b3
DW
994 rbio->faila = -1;
995 rbio->failb = -1;
dec95574 996 refcount_set(&rbio->refs, 1);
b89e1b01
MX
997 atomic_set(&rbio->error, 0);
998 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
999
1000 /*
1001 * the stripe_pages and bio_pages array point to the extra
1002 * memory we allocated past the end of the rbio
1003 */
1004 p = rbio + 1;
1005 rbio->stripe_pages = p;
1006 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
5a6ac9ea 1007 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
53b381b3 1008
10f11900
ZL
1009 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010 nr_data = real_stripes - 1;
1011 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1012 nr_data = real_stripes - 2;
53b381b3 1013 else
10f11900 1014 BUG();
53b381b3
DW
1015
1016 rbio->nr_data = nr_data;
1017 return rbio;
1018}
1019
1020/* allocate pages for all the stripes in the bio, including parity */
1021static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1022{
1023 int i;
1024 struct page *page;
1025
1026 for (i = 0; i < rbio->nr_pages; i++) {
1027 if (rbio->stripe_pages[i])
1028 continue;
1029 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030 if (!page)
1031 return -ENOMEM;
1032 rbio->stripe_pages[i] = page;
53b381b3
DW
1033 }
1034 return 0;
1035}
1036
b7178a5f 1037/* only allocate pages for p/q stripes */
53b381b3
DW
1038static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1039{
1040 int i;
1041 struct page *page;
1042
b7178a5f 1043 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1044
1045 for (; i < rbio->nr_pages; i++) {
1046 if (rbio->stripe_pages[i])
1047 continue;
1048 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049 if (!page)
1050 return -ENOMEM;
1051 rbio->stripe_pages[i] = page;
1052 }
1053 return 0;
1054}
1055
1056/*
1057 * add a single page from a specific stripe into our list of bios for IO
1058 * this will try to merge into existing bios if possible, and returns
1059 * zero if all went well.
1060 */
48a3b636
ES
1061static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062 struct bio_list *bio_list,
1063 struct page *page,
1064 int stripe_nr,
1065 unsigned long page_index,
1066 unsigned long bio_max_len)
53b381b3
DW
1067{
1068 struct bio *last = bio_list->tail;
1069 u64 last_end = 0;
1070 int ret;
1071 struct bio *bio;
1072 struct btrfs_bio_stripe *stripe;
1073 u64 disk_start;
1074
1075 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1076 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1077
1078 /* if the device is missing, just fail this stripe */
1079 if (!stripe->dev->bdev)
1080 return fail_rbio_index(rbio, stripe_nr);
1081
1082 /* see if we can add this page onto our existing bio */
1083 if (last) {
4f024f37
KO
1084 last_end = (u64)last->bi_iter.bi_sector << 9;
1085 last_end += last->bi_iter.bi_size;
53b381b3
DW
1086
1087 /*
1088 * we can't merge these if they are from different
1089 * devices or if they are not contiguous
1090 */
1091 if (last_end == disk_start && stripe->dev->bdev &&
4e4cbee9 1092 !last->bi_status &&
74d46992
CH
1093 last->bi_disk == stripe->dev->bdev->bd_disk &&
1094 last->bi_partno == stripe->dev->bdev->bd_partno) {
09cbfeaf
KS
1095 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1096 if (ret == PAGE_SIZE)
53b381b3
DW
1097 return 0;
1098 }
1099 }
1100
1101 /* put a new bio on the list */
c5e4c3d7 1102 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
4f024f37 1103 bio->bi_iter.bi_size = 0;
74d46992 1104 bio_set_dev(bio, stripe->dev->bdev);
4f024f37 1105 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1106
09cbfeaf 1107 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1108 bio_list_add(bio_list, bio);
1109 return 0;
1110}
1111
1112/*
1113 * while we're doing the read/modify/write cycle, we could
1114 * have errors in reading pages off the disk. This checks
1115 * for errors and if we're not able to read the page it'll
1116 * trigger parity reconstruction. The rmw will be finished
1117 * after we've reconstructed the failed stripes
1118 */
1119static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1120{
1121 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1122 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1123 __raid56_parity_recover(rbio);
1124 } else {
1125 finish_rmw(rbio);
1126 }
1127}
1128
53b381b3
DW
1129/*
1130 * helper function to walk our bio list and populate the bio_pages array with
1131 * the result. This seems expensive, but it is faster than constantly
1132 * searching through the bio list as we setup the IO in finish_rmw or stripe
1133 * reconstruction.
1134 *
1135 * This must be called before you trust the answers from page_in_rbio
1136 */
1137static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138{
1139 struct bio *bio;
1140 u64 start;
1141 unsigned long stripe_offset;
1142 unsigned long page_index;
53b381b3
DW
1143
1144 spin_lock_irq(&rbio->bio_list_lock);
1145 bio_list_for_each(bio, &rbio->bio_list) {
6592e58c
FM
1146 struct bio_vec bvec;
1147 struct bvec_iter iter;
1148 int i = 0;
1149
4f024f37 1150 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1151 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1152 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1153
6592e58c
FM
1154 if (bio_flagged(bio, BIO_CLONED))
1155 bio->bi_iter = btrfs_io_bio(bio)->iter;
1156
1157 bio_for_each_segment(bvec, bio, iter) {
1158 rbio->bio_pages[page_index + i] = bvec.bv_page;
1159 i++;
1160 }
53b381b3
DW
1161 }
1162 spin_unlock_irq(&rbio->bio_list_lock);
1163}
1164
1165/*
1166 * this is called from one of two situations. We either
1167 * have a full stripe from the higher layers, or we've read all
1168 * the missing bits off disk.
1169 *
1170 * This will calculate the parity and then send down any
1171 * changed blocks.
1172 */
1173static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174{
1175 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 1176 void *pointers[rbio->real_stripes];
53b381b3
DW
1177 int nr_data = rbio->nr_data;
1178 int stripe;
1179 int pagenr;
1180 int p_stripe = -1;
1181 int q_stripe = -1;
1182 struct bio_list bio_list;
1183 struct bio *bio;
53b381b3
DW
1184 int ret;
1185
1186 bio_list_init(&bio_list);
1187
2c8cdd6e
MX
1188 if (rbio->real_stripes - rbio->nr_data == 1) {
1189 p_stripe = rbio->real_stripes - 1;
1190 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1191 p_stripe = rbio->real_stripes - 2;
1192 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1193 } else {
1194 BUG();
1195 }
1196
1197 /* at this point we either have a full stripe,
1198 * or we've read the full stripe from the drive.
1199 * recalculate the parity and write the new results.
1200 *
1201 * We're not allowed to add any new bios to the
1202 * bio list here, anyone else that wants to
1203 * change this stripe needs to do their own rmw.
1204 */
1205 spin_lock_irq(&rbio->bio_list_lock);
1206 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1207 spin_unlock_irq(&rbio->bio_list_lock);
1208
b89e1b01 1209 atomic_set(&rbio->error, 0);
53b381b3
DW
1210
1211 /*
1212 * now that we've set rmw_locked, run through the
1213 * bio list one last time and map the page pointers
4ae10b3a
CM
1214 *
1215 * We don't cache full rbios because we're assuming
1216 * the higher layers are unlikely to use this area of
1217 * the disk again soon. If they do use it again,
1218 * hopefully they will send another full bio.
53b381b3
DW
1219 */
1220 index_rbio_pages(rbio);
4ae10b3a
CM
1221 if (!rbio_is_full(rbio))
1222 cache_rbio_pages(rbio);
1223 else
1224 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1225
915e2290 1226 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1227 struct page *p;
1228 /* first collect one page from each data stripe */
1229 for (stripe = 0; stripe < nr_data; stripe++) {
1230 p = page_in_rbio(rbio, stripe, pagenr, 0);
1231 pointers[stripe] = kmap(p);
1232 }
1233
1234 /* then add the parity stripe */
1235 p = rbio_pstripe_page(rbio, pagenr);
1236 SetPageUptodate(p);
1237 pointers[stripe++] = kmap(p);
1238
1239 if (q_stripe != -1) {
1240
1241 /*
1242 * raid6, add the qstripe and call the
1243 * library function to fill in our p/q
1244 */
1245 p = rbio_qstripe_page(rbio, pagenr);
1246 SetPageUptodate(p);
1247 pointers[stripe++] = kmap(p);
1248
2c8cdd6e 1249 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1250 pointers);
1251 } else {
1252 /* raid5 */
1253 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 1254 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1255 }
1256
1257
2c8cdd6e 1258 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1259 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1260 }
1261
1262 /*
1263 * time to start writing. Make bios for everything from the
1264 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1265 * everything else.
1266 */
2c8cdd6e 1267 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1268 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1269 struct page *page;
1270 if (stripe < rbio->nr_data) {
1271 page = page_in_rbio(rbio, stripe, pagenr, 1);
1272 if (!page)
1273 continue;
1274 } else {
1275 page = rbio_stripe_page(rbio, stripe, pagenr);
1276 }
1277
1278 ret = rbio_add_io_page(rbio, &bio_list,
1279 page, stripe, pagenr, rbio->stripe_len);
1280 if (ret)
1281 goto cleanup;
1282 }
1283 }
1284
2c8cdd6e
MX
1285 if (likely(!bbio->num_tgtdevs))
1286 goto write_data;
1287
1288 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289 if (!bbio->tgtdev_map[stripe])
1290 continue;
1291
915e2290 1292 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1293 struct page *page;
1294 if (stripe < rbio->nr_data) {
1295 page = page_in_rbio(rbio, stripe, pagenr, 1);
1296 if (!page)
1297 continue;
1298 } else {
1299 page = rbio_stripe_page(rbio, stripe, pagenr);
1300 }
1301
1302 ret = rbio_add_io_page(rbio, &bio_list, page,
1303 rbio->bbio->tgtdev_map[stripe],
1304 pagenr, rbio->stripe_len);
1305 if (ret)
1306 goto cleanup;
1307 }
1308 }
1309
1310write_data:
b89e1b01
MX
1311 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1312 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1313
1314 while (1) {
1315 bio = bio_list_pop(&bio_list);
1316 if (!bio)
1317 break;
1318
1319 bio->bi_private = rbio;
1320 bio->bi_end_io = raid_write_end_io;
37226b21 1321 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
1322
1323 submit_bio(bio);
53b381b3
DW
1324 }
1325 return;
1326
1327cleanup:
58efbc9f 1328 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1329}
1330
1331/*
1332 * helper to find the stripe number for a given bio. Used to figure out which
1333 * stripe has failed. This expects the bio to correspond to a physical disk,
1334 * so it looks up based on physical sector numbers.
1335 */
1336static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337 struct bio *bio)
1338{
4f024f37 1339 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1340 u64 stripe_start;
1341 int i;
1342 struct btrfs_bio_stripe *stripe;
1343
1344 physical <<= 9;
1345
1346 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347 stripe = &rbio->bbio->stripes[i];
1348 stripe_start = stripe->physical;
1349 if (physical >= stripe_start &&
2c8cdd6e 1350 physical < stripe_start + rbio->stripe_len &&
74d46992
CH
1351 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1352 bio->bi_partno == stripe->dev->bdev->bd_partno) {
53b381b3
DW
1353 return i;
1354 }
1355 }
1356 return -1;
1357}
1358
1359/*
1360 * helper to find the stripe number for a given
1361 * bio (before mapping). Used to figure out which stripe has
1362 * failed. This looks up based on logical block numbers.
1363 */
1364static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 struct bio *bio)
1366{
4f024f37 1367 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1368 u64 stripe_start;
1369 int i;
1370
1371 logical <<= 9;
1372
1373 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1374 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1375 if (logical >= stripe_start &&
1376 logical < stripe_start + rbio->stripe_len) {
1377 return i;
1378 }
1379 }
1380 return -1;
1381}
1382
1383/*
1384 * returns -EIO if we had too many failures
1385 */
1386static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1387{
1388 unsigned long flags;
1389 int ret = 0;
1390
1391 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1392
1393 /* we already know this stripe is bad, move on */
1394 if (rbio->faila == failed || rbio->failb == failed)
1395 goto out;
1396
1397 if (rbio->faila == -1) {
1398 /* first failure on this rbio */
1399 rbio->faila = failed;
b89e1b01 1400 atomic_inc(&rbio->error);
53b381b3
DW
1401 } else if (rbio->failb == -1) {
1402 /* second failure on this rbio */
1403 rbio->failb = failed;
b89e1b01 1404 atomic_inc(&rbio->error);
53b381b3
DW
1405 } else {
1406 ret = -EIO;
1407 }
1408out:
1409 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1410
1411 return ret;
1412}
1413
1414/*
1415 * helper to fail a stripe based on a physical disk
1416 * bio.
1417 */
1418static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 struct bio *bio)
1420{
1421 int failed = find_bio_stripe(rbio, bio);
1422
1423 if (failed < 0)
1424 return -EIO;
1425
1426 return fail_rbio_index(rbio, failed);
1427}
1428
1429/*
1430 * this sets each page in the bio uptodate. It should only be used on private
1431 * rbio pages, nothing that comes in from the higher layers
1432 */
1433static void set_bio_pages_uptodate(struct bio *bio)
1434{
6592e58c
FM
1435 struct bio_vec bvec;
1436 struct bvec_iter iter;
1437
1438 if (bio_flagged(bio, BIO_CLONED))
1439 bio->bi_iter = btrfs_io_bio(bio)->iter;
53b381b3 1440
6592e58c
FM
1441 bio_for_each_segment(bvec, bio, iter)
1442 SetPageUptodate(bvec.bv_page);
53b381b3
DW
1443}
1444
1445/*
1446 * end io for the read phase of the rmw cycle. All the bios here are physical
1447 * stripe bios we've read from the disk so we can recalculate the parity of the
1448 * stripe.
1449 *
1450 * This will usually kick off finish_rmw once all the bios are read in, but it
1451 * may trigger parity reconstruction if we had any errors along the way
1452 */
4246a0b6 1453static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1454{
1455 struct btrfs_raid_bio *rbio = bio->bi_private;
1456
4e4cbee9 1457 if (bio->bi_status)
53b381b3
DW
1458 fail_bio_stripe(rbio, bio);
1459 else
1460 set_bio_pages_uptodate(bio);
1461
1462 bio_put(bio);
1463
b89e1b01 1464 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1465 return;
1466
b89e1b01 1467 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1468 goto cleanup;
1469
1470 /*
1471 * this will normally call finish_rmw to start our write
1472 * but if there are any failed stripes we'll reconstruct
1473 * from parity first
1474 */
1475 validate_rbio_for_rmw(rbio);
1476 return;
1477
1478cleanup:
1479
58efbc9f 1480 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1481}
1482
1483static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1484{
0b246afa
JM
1485 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1486 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1487}
1488
1489static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1490{
9e0af237
LB
1491 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1492 read_rebuild_work, NULL, NULL);
53b381b3 1493
0b246afa 1494 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
53b381b3
DW
1495}
1496
1497/*
1498 * the stripe must be locked by the caller. It will
1499 * unlock after all the writes are done
1500 */
1501static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1502{
1503 int bios_to_read = 0;
53b381b3
DW
1504 struct bio_list bio_list;
1505 int ret;
53b381b3
DW
1506 int pagenr;
1507 int stripe;
1508 struct bio *bio;
1509
1510 bio_list_init(&bio_list);
1511
1512 ret = alloc_rbio_pages(rbio);
1513 if (ret)
1514 goto cleanup;
1515
1516 index_rbio_pages(rbio);
1517
b89e1b01 1518 atomic_set(&rbio->error, 0);
53b381b3
DW
1519 /*
1520 * build a list of bios to read all the missing parts of this
1521 * stripe
1522 */
1523 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1524 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1525 struct page *page;
1526 /*
1527 * we want to find all the pages missing from
1528 * the rbio and read them from the disk. If
1529 * page_in_rbio finds a page in the bio list
1530 * we don't need to read it off the stripe.
1531 */
1532 page = page_in_rbio(rbio, stripe, pagenr, 1);
1533 if (page)
1534 continue;
1535
1536 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1537 /*
1538 * the bio cache may have handed us an uptodate
1539 * page. If so, be happy and use it
1540 */
1541 if (PageUptodate(page))
1542 continue;
1543
53b381b3
DW
1544 ret = rbio_add_io_page(rbio, &bio_list, page,
1545 stripe, pagenr, rbio->stripe_len);
1546 if (ret)
1547 goto cleanup;
1548 }
1549 }
1550
1551 bios_to_read = bio_list_size(&bio_list);
1552 if (!bios_to_read) {
1553 /*
1554 * this can happen if others have merged with
1555 * us, it means there is nothing left to read.
1556 * But if there are missing devices it may not be
1557 * safe to do the full stripe write yet.
1558 */
1559 goto finish;
1560 }
1561
1562 /*
1563 * the bbio may be freed once we submit the last bio. Make sure
1564 * not to touch it after that
1565 */
b89e1b01 1566 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1567 while (1) {
1568 bio = bio_list_pop(&bio_list);
1569 if (!bio)
1570 break;
1571
1572 bio->bi_private = rbio;
1573 bio->bi_end_io = raid_rmw_end_io;
37226b21 1574 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 1575
0b246afa 1576 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1577
4e49ea4a 1578 submit_bio(bio);
53b381b3
DW
1579 }
1580 /* the actual write will happen once the reads are done */
1581 return 0;
1582
1583cleanup:
58efbc9f 1584 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1585 return -EIO;
1586
1587finish:
1588 validate_rbio_for_rmw(rbio);
1589 return 0;
1590}
1591
1592/*
1593 * if the upper layers pass in a full stripe, we thank them by only allocating
1594 * enough pages to hold the parity, and sending it all down quickly.
1595 */
1596static int full_stripe_write(struct btrfs_raid_bio *rbio)
1597{
1598 int ret;
1599
1600 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1601 if (ret) {
1602 __free_raid_bio(rbio);
53b381b3 1603 return ret;
3cd846d1 1604 }
53b381b3
DW
1605
1606 ret = lock_stripe_add(rbio);
1607 if (ret == 0)
1608 finish_rmw(rbio);
1609 return 0;
1610}
1611
1612/*
1613 * partial stripe writes get handed over to async helpers.
1614 * We're really hoping to merge a few more writes into this
1615 * rbio before calculating new parity
1616 */
1617static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1618{
1619 int ret;
1620
1621 ret = lock_stripe_add(rbio);
1622 if (ret == 0)
1623 async_rmw_stripe(rbio);
1624 return 0;
1625}
1626
1627/*
1628 * sometimes while we were reading from the drive to
1629 * recalculate parity, enough new bios come into create
1630 * a full stripe. So we do a check here to see if we can
1631 * go directly to finish_rmw
1632 */
1633static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1634{
1635 /* head off into rmw land if we don't have a full stripe */
1636 if (!rbio_is_full(rbio))
1637 return partial_stripe_write(rbio);
1638 return full_stripe_write(rbio);
1639}
1640
6ac0f488
CM
1641/*
1642 * We use plugging call backs to collect full stripes.
1643 * Any time we get a partial stripe write while plugged
1644 * we collect it into a list. When the unplug comes down,
1645 * we sort the list by logical block number and merge
1646 * everything we can into the same rbios
1647 */
1648struct btrfs_plug_cb {
1649 struct blk_plug_cb cb;
1650 struct btrfs_fs_info *info;
1651 struct list_head rbio_list;
1652 struct btrfs_work work;
1653};
1654
1655/*
1656 * rbios on the plug list are sorted for easier merging.
1657 */
1658static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1659{
1660 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1661 plug_list);
1662 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1663 plug_list);
4f024f37
KO
1664 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1665 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1666
1667 if (a_sector < b_sector)
1668 return -1;
1669 if (a_sector > b_sector)
1670 return 1;
1671 return 0;
1672}
1673
1674static void run_plug(struct btrfs_plug_cb *plug)
1675{
1676 struct btrfs_raid_bio *cur;
1677 struct btrfs_raid_bio *last = NULL;
1678
1679 /*
1680 * sort our plug list then try to merge
1681 * everything we can in hopes of creating full
1682 * stripes.
1683 */
1684 list_sort(NULL, &plug->rbio_list, plug_cmp);
1685 while (!list_empty(&plug->rbio_list)) {
1686 cur = list_entry(plug->rbio_list.next,
1687 struct btrfs_raid_bio, plug_list);
1688 list_del_init(&cur->plug_list);
1689
1690 if (rbio_is_full(cur)) {
1691 /* we have a full stripe, send it down */
1692 full_stripe_write(cur);
1693 continue;
1694 }
1695 if (last) {
1696 if (rbio_can_merge(last, cur)) {
1697 merge_rbio(last, cur);
1698 __free_raid_bio(cur);
1699 continue;
1700
1701 }
1702 __raid56_parity_write(last);
1703 }
1704 last = cur;
1705 }
1706 if (last) {
1707 __raid56_parity_write(last);
1708 }
1709 kfree(plug);
1710}
1711
1712/*
1713 * if the unplug comes from schedule, we have to push the
1714 * work off to a helper thread
1715 */
1716static void unplug_work(struct btrfs_work *work)
1717{
1718 struct btrfs_plug_cb *plug;
1719 plug = container_of(work, struct btrfs_plug_cb, work);
1720 run_plug(plug);
1721}
1722
1723static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1724{
1725 struct btrfs_plug_cb *plug;
1726 plug = container_of(cb, struct btrfs_plug_cb, cb);
1727
1728 if (from_schedule) {
9e0af237
LB
1729 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1730 unplug_work, NULL, NULL);
d05a33ac
QW
1731 btrfs_queue_work(plug->info->rmw_workers,
1732 &plug->work);
6ac0f488
CM
1733 return;
1734 }
1735 run_plug(plug);
1736}
1737
53b381b3
DW
1738/*
1739 * our main entry point for writes from the rest of the FS.
1740 */
2ff7e61e 1741int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1742 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1743{
1744 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1745 struct btrfs_plug_cb *plug = NULL;
1746 struct blk_plug_cb *cb;
4245215d 1747 int ret;
53b381b3 1748
2ff7e61e 1749 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1750 if (IS_ERR(rbio)) {
6e9606d2 1751 btrfs_put_bbio(bbio);
53b381b3 1752 return PTR_ERR(rbio);
af8e2d1d 1753 }
53b381b3 1754 bio_list_add(&rbio->bio_list, bio);
4f024f37 1755 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1756 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1757
0b246afa 1758 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1759 rbio->generic_bio_cnt = 1;
1760
6ac0f488
CM
1761 /*
1762 * don't plug on full rbios, just get them out the door
1763 * as quickly as we can
1764 */
4245215d
MX
1765 if (rbio_is_full(rbio)) {
1766 ret = full_stripe_write(rbio);
1767 if (ret)
0b246afa 1768 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1769 return ret;
1770 }
6ac0f488 1771
0b246afa 1772 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1773 if (cb) {
1774 plug = container_of(cb, struct btrfs_plug_cb, cb);
1775 if (!plug->info) {
0b246afa 1776 plug->info = fs_info;
6ac0f488
CM
1777 INIT_LIST_HEAD(&plug->rbio_list);
1778 }
1779 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1780 ret = 0;
6ac0f488 1781 } else {
4245215d
MX
1782 ret = __raid56_parity_write(rbio);
1783 if (ret)
0b246afa 1784 btrfs_bio_counter_dec(fs_info);
6ac0f488 1785 }
4245215d 1786 return ret;
53b381b3
DW
1787}
1788
1789/*
1790 * all parity reconstruction happens here. We've read in everything
1791 * we can find from the drives and this does the heavy lifting of
1792 * sorting the good from the bad.
1793 */
1794static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1795{
1796 int pagenr, stripe;
1797 void **pointers;
1798 int faila = -1, failb = -1;
53b381b3 1799 struct page *page;
58efbc9f 1800 blk_status_t err;
53b381b3
DW
1801 int i;
1802
31e818fe 1803 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3 1804 if (!pointers) {
58efbc9f 1805 err = BLK_STS_RESOURCE;
53b381b3
DW
1806 goto cleanup_io;
1807 }
1808
1809 faila = rbio->faila;
1810 failb = rbio->failb;
1811
b4ee1782
OS
1812 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1813 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1814 spin_lock_irq(&rbio->bio_list_lock);
1815 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1816 spin_unlock_irq(&rbio->bio_list_lock);
1817 }
1818
1819 index_rbio_pages(rbio);
1820
915e2290 1821 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1822 /*
1823 * Now we just use bitmap to mark the horizontal stripes in
1824 * which we have data when doing parity scrub.
1825 */
1826 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1827 !test_bit(pagenr, rbio->dbitmap))
1828 continue;
1829
53b381b3
DW
1830 /* setup our array of pointers with pages
1831 * from each stripe
1832 */
2c8cdd6e 1833 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1834 /*
1835 * if we're rebuilding a read, we have to use
1836 * pages from the bio list
1837 */
b4ee1782
OS
1838 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1839 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1840 (stripe == faila || stripe == failb)) {
1841 page = page_in_rbio(rbio, stripe, pagenr, 0);
1842 } else {
1843 page = rbio_stripe_page(rbio, stripe, pagenr);
1844 }
1845 pointers[stripe] = kmap(page);
1846 }
1847
1848 /* all raid6 handling here */
10f11900 1849 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1850 /*
1851 * single failure, rebuild from parity raid5
1852 * style
1853 */
1854 if (failb < 0) {
1855 if (faila == rbio->nr_data) {
1856 /*
1857 * Just the P stripe has failed, without
1858 * a bad data or Q stripe.
1859 * TODO, we should redo the xor here.
1860 */
58efbc9f 1861 err = BLK_STS_IOERR;
53b381b3
DW
1862 goto cleanup;
1863 }
1864 /*
1865 * a single failure in raid6 is rebuilt
1866 * in the pstripe code below
1867 */
1868 goto pstripe;
1869 }
1870
1871 /* make sure our ps and qs are in order */
1872 if (faila > failb) {
1873 int tmp = failb;
1874 failb = faila;
1875 faila = tmp;
1876 }
1877
1878 /* if the q stripe is failed, do a pstripe reconstruction
1879 * from the xors.
1880 * If both the q stripe and the P stripe are failed, we're
1881 * here due to a crc mismatch and we can't give them the
1882 * data they want
1883 */
8e5cfb55
ZL
1884 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1885 if (rbio->bbio->raid_map[faila] ==
1886 RAID5_P_STRIPE) {
58efbc9f 1887 err = BLK_STS_IOERR;
53b381b3
DW
1888 goto cleanup;
1889 }
1890 /*
1891 * otherwise we have one bad data stripe and
1892 * a good P stripe. raid5!
1893 */
1894 goto pstripe;
1895 }
1896
8e5cfb55 1897 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1898 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1899 PAGE_SIZE, faila, pointers);
1900 } else {
2c8cdd6e 1901 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1902 PAGE_SIZE, faila, failb,
1903 pointers);
1904 }
1905 } else {
1906 void *p;
1907
1908 /* rebuild from P stripe here (raid5 or raid6) */
1909 BUG_ON(failb != -1);
1910pstripe:
1911 /* Copy parity block into failed block to start with */
1912 memcpy(pointers[faila],
1913 pointers[rbio->nr_data],
09cbfeaf 1914 PAGE_SIZE);
53b381b3
DW
1915
1916 /* rearrange the pointer array */
1917 p = pointers[faila];
1918 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1919 pointers[stripe] = pointers[stripe + 1];
1920 pointers[rbio->nr_data - 1] = p;
1921
1922 /* xor in the rest */
09cbfeaf 1923 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1924 }
1925 /* if we're doing this rebuild as part of an rmw, go through
1926 * and set all of our private rbio pages in the
1927 * failed stripes as uptodate. This way finish_rmw will
1928 * know they can be trusted. If this was a read reconstruction,
1929 * other endio functions will fiddle the uptodate bits
1930 */
1b94b556 1931 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1932 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1933 if (faila != -1) {
1934 page = rbio_stripe_page(rbio, faila, i);
1935 SetPageUptodate(page);
1936 }
1937 if (failb != -1) {
1938 page = rbio_stripe_page(rbio, failb, i);
1939 SetPageUptodate(page);
1940 }
1941 }
1942 }
2c8cdd6e 1943 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1944 /*
1945 * if we're rebuilding a read, we have to use
1946 * pages from the bio list
1947 */
b4ee1782
OS
1948 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1949 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1950 (stripe == faila || stripe == failb)) {
1951 page = page_in_rbio(rbio, stripe, pagenr, 0);
1952 } else {
1953 page = rbio_stripe_page(rbio, stripe, pagenr);
1954 }
1955 kunmap(page);
1956 }
1957 }
1958
58efbc9f 1959 err = BLK_STS_OK;
53b381b3
DW
1960cleanup:
1961 kfree(pointers);
1962
1963cleanup_io:
1b94b556 1964 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
58efbc9f 1965 if (err == BLK_STS_OK)
4ae10b3a
CM
1966 cache_rbio_pages(rbio);
1967 else
1968 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1969
22365979 1970 rbio_orig_end_io(rbio, err);
b4ee1782 1971 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
4246a0b6 1972 rbio_orig_end_io(rbio, err);
58efbc9f 1973 } else if (err == BLK_STS_OK) {
53b381b3
DW
1974 rbio->faila = -1;
1975 rbio->failb = -1;
5a6ac9ea
MX
1976
1977 if (rbio->operation == BTRFS_RBIO_WRITE)
1978 finish_rmw(rbio);
1979 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1980 finish_parity_scrub(rbio, 0);
1981 else
1982 BUG();
53b381b3 1983 } else {
4246a0b6 1984 rbio_orig_end_io(rbio, err);
53b381b3
DW
1985 }
1986}
1987
1988/*
1989 * This is called only for stripes we've read from disk to
1990 * reconstruct the parity.
1991 */
4246a0b6 1992static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
1993{
1994 struct btrfs_raid_bio *rbio = bio->bi_private;
1995
1996 /*
1997 * we only read stripe pages off the disk, set them
1998 * up to date if there were no errors
1999 */
4e4cbee9 2000 if (bio->bi_status)
53b381b3
DW
2001 fail_bio_stripe(rbio, bio);
2002 else
2003 set_bio_pages_uptodate(bio);
2004 bio_put(bio);
2005
b89e1b01 2006 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2007 return;
2008
b89e1b01 2009 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
58efbc9f 2010 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
2011 else
2012 __raid_recover_end_io(rbio);
2013}
2014
2015/*
2016 * reads everything we need off the disk to reconstruct
2017 * the parity. endio handlers trigger final reconstruction
2018 * when the IO is done.
2019 *
2020 * This is used both for reads from the higher layers and for
2021 * parity construction required to finish a rmw cycle.
2022 */
2023static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2024{
2025 int bios_to_read = 0;
53b381b3
DW
2026 struct bio_list bio_list;
2027 int ret;
53b381b3
DW
2028 int pagenr;
2029 int stripe;
2030 struct bio *bio;
2031
2032 bio_list_init(&bio_list);
2033
2034 ret = alloc_rbio_pages(rbio);
2035 if (ret)
2036 goto cleanup;
2037
b89e1b01 2038 atomic_set(&rbio->error, 0);
53b381b3
DW
2039
2040 /*
4ae10b3a
CM
2041 * read everything that hasn't failed. Thanks to the
2042 * stripe cache, it is possible that some or all of these
2043 * pages are going to be uptodate.
53b381b3 2044 */
2c8cdd6e 2045 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2046 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2047 atomic_inc(&rbio->error);
53b381b3 2048 continue;
5588383e 2049 }
53b381b3 2050
915e2290 2051 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2052 struct page *p;
2053
2054 /*
2055 * the rmw code may have already read this
2056 * page in
2057 */
2058 p = rbio_stripe_page(rbio, stripe, pagenr);
2059 if (PageUptodate(p))
2060 continue;
2061
2062 ret = rbio_add_io_page(rbio, &bio_list,
2063 rbio_stripe_page(rbio, stripe, pagenr),
2064 stripe, pagenr, rbio->stripe_len);
2065 if (ret < 0)
2066 goto cleanup;
2067 }
2068 }
2069
2070 bios_to_read = bio_list_size(&bio_list);
2071 if (!bios_to_read) {
2072 /*
2073 * we might have no bios to read just because the pages
2074 * were up to date, or we might have no bios to read because
2075 * the devices were gone.
2076 */
b89e1b01 2077 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2078 __raid_recover_end_io(rbio);
2079 goto out;
2080 } else {
2081 goto cleanup;
2082 }
2083 }
2084
2085 /*
2086 * the bbio may be freed once we submit the last bio. Make sure
2087 * not to touch it after that
2088 */
b89e1b01 2089 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2090 while (1) {
2091 bio = bio_list_pop(&bio_list);
2092 if (!bio)
2093 break;
2094
2095 bio->bi_private = rbio;
2096 bio->bi_end_io = raid_recover_end_io;
37226b21 2097 bio_set_op_attrs(bio, REQ_OP_READ, 0);
53b381b3 2098
0b246afa 2099 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2100
4e49ea4a 2101 submit_bio(bio);
53b381b3
DW
2102 }
2103out:
2104 return 0;
2105
2106cleanup:
b4ee1782
OS
2107 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2108 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
58efbc9f 2109 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
2110 return -EIO;
2111}
2112
2113/*
2114 * the main entry point for reads from the higher layers. This
2115 * is really only called when the normal read path had a failure,
2116 * so we assume the bio they send down corresponds to a failed part
2117 * of the drive.
2118 */
2ff7e61e 2119int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2120 struct btrfs_bio *bbio, u64 stripe_len,
2121 int mirror_num, int generic_io)
53b381b3
DW
2122{
2123 struct btrfs_raid_bio *rbio;
2124 int ret;
2125
abad60c6
LB
2126 if (generic_io) {
2127 ASSERT(bbio->mirror_num == mirror_num);
2128 btrfs_io_bio(bio)->mirror_num = mirror_num;
2129 }
2130
2ff7e61e 2131 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2132 if (IS_ERR(rbio)) {
6e9606d2
ZL
2133 if (generic_io)
2134 btrfs_put_bbio(bbio);
53b381b3 2135 return PTR_ERR(rbio);
af8e2d1d 2136 }
53b381b3 2137
1b94b556 2138 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2139 bio_list_add(&rbio->bio_list, bio);
4f024f37 2140 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2141
2142 rbio->faila = find_logical_bio_stripe(rbio, bio);
2143 if (rbio->faila == -1) {
0b246afa 2144 btrfs_warn(fs_info,
e46a28ca
LB
2145 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2146 __func__, (u64)bio->bi_iter.bi_sector << 9,
2147 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2148 if (generic_io)
2149 btrfs_put_bbio(bbio);
53b381b3
DW
2150 kfree(rbio);
2151 return -EIO;
2152 }
2153
4245215d 2154 if (generic_io) {
0b246afa 2155 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2156 rbio->generic_bio_cnt = 1;
2157 } else {
6e9606d2 2158 btrfs_get_bbio(bbio);
4245215d
MX
2159 }
2160
53b381b3
DW
2161 /*
2162 * reconstruct from the q stripe if they are
2163 * asking for mirror 3
2164 */
2165 if (mirror_num == 3)
2c8cdd6e 2166 rbio->failb = rbio->real_stripes - 2;
53b381b3
DW
2167
2168 ret = lock_stripe_add(rbio);
2169
2170 /*
2171 * __raid56_parity_recover will end the bio with
2172 * any errors it hits. We don't want to return
2173 * its error value up the stack because our caller
2174 * will end up calling bio_endio with any nonzero
2175 * return
2176 */
2177 if (ret == 0)
2178 __raid56_parity_recover(rbio);
2179 /*
2180 * our rbio has been added to the list of
2181 * rbios that will be handled after the
2182 * currently lock owner is done
2183 */
2184 return 0;
2185
2186}
2187
2188static void rmw_work(struct btrfs_work *work)
2189{
2190 struct btrfs_raid_bio *rbio;
2191
2192 rbio = container_of(work, struct btrfs_raid_bio, work);
2193 raid56_rmw_stripe(rbio);
2194}
2195
2196static void read_rebuild_work(struct btrfs_work *work)
2197{
2198 struct btrfs_raid_bio *rbio;
2199
2200 rbio = container_of(work, struct btrfs_raid_bio, work);
2201 __raid56_parity_recover(rbio);
2202}
5a6ac9ea
MX
2203
2204/*
2205 * The following code is used to scrub/replace the parity stripe
2206 *
ae6529c3
QW
2207 * Caller must have already increased bio_counter for getting @bbio.
2208 *
5a6ac9ea
MX
2209 * Note: We need make sure all the pages that add into the scrub/replace
2210 * raid bio are correct and not be changed during the scrub/replace. That
2211 * is those pages just hold metadata or file data with checksum.
2212 */
2213
2214struct btrfs_raid_bio *
2ff7e61e 2215raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2216 struct btrfs_bio *bbio, u64 stripe_len,
2217 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2218 unsigned long *dbitmap, int stripe_nsectors)
2219{
2220 struct btrfs_raid_bio *rbio;
2221 int i;
2222
2ff7e61e 2223 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2224 if (IS_ERR(rbio))
2225 return NULL;
2226 bio_list_add(&rbio->bio_list, bio);
2227 /*
2228 * This is a special bio which is used to hold the completion handler
2229 * and make the scrub rbio is similar to the other types
2230 */
2231 ASSERT(!bio->bi_iter.bi_size);
2232 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2233
2c8cdd6e 2234 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2235 if (bbio->stripes[i].dev == scrub_dev) {
2236 rbio->scrubp = i;
2237 break;
2238 }
2239 }
2240
2241 /* Now we just support the sectorsize equals to page size */
0b246afa 2242 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2243 ASSERT(rbio->stripe_npages == stripe_nsectors);
2244 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2245
ae6529c3
QW
2246 /*
2247 * We have already increased bio_counter when getting bbio, record it
2248 * so we can free it at rbio_orig_end_io().
2249 */
2250 rbio->generic_bio_cnt = 1;
2251
5a6ac9ea
MX
2252 return rbio;
2253}
2254
b4ee1782
OS
2255/* Used for both parity scrub and missing. */
2256void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2257 u64 logical)
5a6ac9ea
MX
2258{
2259 int stripe_offset;
2260 int index;
2261
8e5cfb55
ZL
2262 ASSERT(logical >= rbio->bbio->raid_map[0]);
2263 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2264 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2265 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2266 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2267 rbio->bio_pages[index] = page;
2268}
2269
2270/*
2271 * We just scrub the parity that we have correct data on the same horizontal,
2272 * so we needn't allocate all pages for all the stripes.
2273 */
2274static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2275{
2276 int i;
2277 int bit;
2278 int index;
2279 struct page *page;
2280
2281 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2282 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2283 index = i * rbio->stripe_npages + bit;
2284 if (rbio->stripe_pages[index])
2285 continue;
2286
2287 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2288 if (!page)
2289 return -ENOMEM;
2290 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2291 }
2292 }
2293 return 0;
2294}
2295
5a6ac9ea
MX
2296static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2297 int need_check)
2298{
76035976 2299 struct btrfs_bio *bbio = rbio->bbio;
2c8cdd6e 2300 void *pointers[rbio->real_stripes];
76035976 2301 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
5a6ac9ea
MX
2302 int nr_data = rbio->nr_data;
2303 int stripe;
2304 int pagenr;
2305 int p_stripe = -1;
2306 int q_stripe = -1;
2307 struct page *p_page = NULL;
2308 struct page *q_page = NULL;
2309 struct bio_list bio_list;
2310 struct bio *bio;
76035976 2311 int is_replace = 0;
5a6ac9ea
MX
2312 int ret;
2313
2314 bio_list_init(&bio_list);
2315
2c8cdd6e
MX
2316 if (rbio->real_stripes - rbio->nr_data == 1) {
2317 p_stripe = rbio->real_stripes - 1;
2318 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2319 p_stripe = rbio->real_stripes - 2;
2320 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2321 } else {
2322 BUG();
2323 }
2324
76035976
MX
2325 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2326 is_replace = 1;
2327 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2328 }
2329
5a6ac9ea
MX
2330 /*
2331 * Because the higher layers(scrubber) are unlikely to
2332 * use this area of the disk again soon, so don't cache
2333 * it.
2334 */
2335 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2336
2337 if (!need_check)
2338 goto writeback;
2339
2340 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 if (!p_page)
2342 goto cleanup;
2343 SetPageUptodate(p_page);
2344
2345 if (q_stripe != -1) {
2346 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2347 if (!q_page) {
2348 __free_page(p_page);
2349 goto cleanup;
2350 }
2351 SetPageUptodate(q_page);
2352 }
2353
2354 atomic_set(&rbio->error, 0);
2355
2356 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2357 struct page *p;
2358 void *parity;
2359 /* first collect one page from each data stripe */
2360 for (stripe = 0; stripe < nr_data; stripe++) {
2361 p = page_in_rbio(rbio, stripe, pagenr, 0);
2362 pointers[stripe] = kmap(p);
2363 }
2364
2365 /* then add the parity stripe */
2366 pointers[stripe++] = kmap(p_page);
2367
2368 if (q_stripe != -1) {
2369
2370 /*
2371 * raid6, add the qstripe and call the
2372 * library function to fill in our p/q
2373 */
2374 pointers[stripe++] = kmap(q_page);
2375
2c8cdd6e 2376 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2377 pointers);
2378 } else {
2379 /* raid5 */
2380 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
09cbfeaf 2381 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2382 }
2383
01327610 2384 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2385 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2386 parity = kmap(p);
09cbfeaf
KS
2387 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2388 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
5a6ac9ea
MX
2389 else
2390 /* Parity is right, needn't writeback */
2391 bitmap_clear(rbio->dbitmap, pagenr, 1);
2392 kunmap(p);
2393
2c8cdd6e 2394 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
5a6ac9ea
MX
2395 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2396 }
2397
2398 __free_page(p_page);
2399 if (q_page)
2400 __free_page(q_page);
2401
2402writeback:
2403 /*
2404 * time to start writing. Make bios for everything from the
2405 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2406 * everything else.
2407 */
2408 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2409 struct page *page;
2410
2411 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412 ret = rbio_add_io_page(rbio, &bio_list,
2413 page, rbio->scrubp, pagenr, rbio->stripe_len);
2414 if (ret)
2415 goto cleanup;
2416 }
2417
76035976
MX
2418 if (!is_replace)
2419 goto submit_write;
2420
2421 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2422 struct page *page;
2423
2424 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2425 ret = rbio_add_io_page(rbio, &bio_list, page,
2426 bbio->tgtdev_map[rbio->scrubp],
2427 pagenr, rbio->stripe_len);
2428 if (ret)
2429 goto cleanup;
2430 }
2431
2432submit_write:
5a6ac9ea
MX
2433 nr_data = bio_list_size(&bio_list);
2434 if (!nr_data) {
2435 /* Every parity is right */
58efbc9f 2436 rbio_orig_end_io(rbio, BLK_STS_OK);
5a6ac9ea
MX
2437 return;
2438 }
2439
2440 atomic_set(&rbio->stripes_pending, nr_data);
2441
2442 while (1) {
2443 bio = bio_list_pop(&bio_list);
2444 if (!bio)
2445 break;
2446
2447 bio->bi_private = rbio;
a6111d11 2448 bio->bi_end_io = raid_write_end_io;
37226b21 2449 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
4e49ea4a
MC
2450
2451 submit_bio(bio);
5a6ac9ea
MX
2452 }
2453 return;
2454
2455cleanup:
58efbc9f 2456 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2457}
2458
2459static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2460{
2461 if (stripe >= 0 && stripe < rbio->nr_data)
2462 return 1;
2463 return 0;
2464}
2465
2466/*
2467 * While we're doing the parity check and repair, we could have errors
2468 * in reading pages off the disk. This checks for errors and if we're
2469 * not able to read the page it'll trigger parity reconstruction. The
2470 * parity scrub will be finished after we've reconstructed the failed
2471 * stripes
2472 */
2473static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2474{
2475 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2476 goto cleanup;
2477
2478 if (rbio->faila >= 0 || rbio->failb >= 0) {
2479 int dfail = 0, failp = -1;
2480
2481 if (is_data_stripe(rbio, rbio->faila))
2482 dfail++;
2483 else if (is_parity_stripe(rbio->faila))
2484 failp = rbio->faila;
2485
2486 if (is_data_stripe(rbio, rbio->failb))
2487 dfail++;
2488 else if (is_parity_stripe(rbio->failb))
2489 failp = rbio->failb;
2490
2491 /*
2492 * Because we can not use a scrubbing parity to repair
2493 * the data, so the capability of the repair is declined.
2494 * (In the case of RAID5, we can not repair anything)
2495 */
2496 if (dfail > rbio->bbio->max_errors - 1)
2497 goto cleanup;
2498
2499 /*
2500 * If all data is good, only parity is correctly, just
2501 * repair the parity.
2502 */
2503 if (dfail == 0) {
2504 finish_parity_scrub(rbio, 0);
2505 return;
2506 }
2507
2508 /*
2509 * Here means we got one corrupted data stripe and one
2510 * corrupted parity on RAID6, if the corrupted parity
01327610 2511 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2512 * the data, or we can not repair the data stripe.
2513 */
2514 if (failp != rbio->scrubp)
2515 goto cleanup;
2516
2517 __raid_recover_end_io(rbio);
2518 } else {
2519 finish_parity_scrub(rbio, 1);
2520 }
2521 return;
2522
2523cleanup:
58efbc9f 2524 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2525}
2526
2527/*
2528 * end io for the read phase of the rmw cycle. All the bios here are physical
2529 * stripe bios we've read from the disk so we can recalculate the parity of the
2530 * stripe.
2531 *
2532 * This will usually kick off finish_rmw once all the bios are read in, but it
2533 * may trigger parity reconstruction if we had any errors along the way
2534 */
4246a0b6 2535static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2536{
2537 struct btrfs_raid_bio *rbio = bio->bi_private;
2538
4e4cbee9 2539 if (bio->bi_status)
5a6ac9ea
MX
2540 fail_bio_stripe(rbio, bio);
2541 else
2542 set_bio_pages_uptodate(bio);
2543
2544 bio_put(bio);
2545
2546 if (!atomic_dec_and_test(&rbio->stripes_pending))
2547 return;
2548
2549 /*
2550 * this will normally call finish_rmw to start our write
2551 * but if there are any failed stripes we'll reconstruct
2552 * from parity first
2553 */
2554 validate_rbio_for_parity_scrub(rbio);
2555}
2556
2557static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2558{
2559 int bios_to_read = 0;
5a6ac9ea
MX
2560 struct bio_list bio_list;
2561 int ret;
2562 int pagenr;
2563 int stripe;
2564 struct bio *bio;
2565
2566 ret = alloc_rbio_essential_pages(rbio);
2567 if (ret)
2568 goto cleanup;
2569
2570 bio_list_init(&bio_list);
2571
2572 atomic_set(&rbio->error, 0);
2573 /*
2574 * build a list of bios to read all the missing parts of this
2575 * stripe
2576 */
2c8cdd6e 2577 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2578 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2579 struct page *page;
2580 /*
2581 * we want to find all the pages missing from
2582 * the rbio and read them from the disk. If
2583 * page_in_rbio finds a page in the bio list
2584 * we don't need to read it off the stripe.
2585 */
2586 page = page_in_rbio(rbio, stripe, pagenr, 1);
2587 if (page)
2588 continue;
2589
2590 page = rbio_stripe_page(rbio, stripe, pagenr);
2591 /*
2592 * the bio cache may have handed us an uptodate
2593 * page. If so, be happy and use it
2594 */
2595 if (PageUptodate(page))
2596 continue;
2597
2598 ret = rbio_add_io_page(rbio, &bio_list, page,
2599 stripe, pagenr, rbio->stripe_len);
2600 if (ret)
2601 goto cleanup;
2602 }
2603 }
2604
2605 bios_to_read = bio_list_size(&bio_list);
2606 if (!bios_to_read) {
2607 /*
2608 * this can happen if others have merged with
2609 * us, it means there is nothing left to read.
2610 * But if there are missing devices it may not be
2611 * safe to do the full stripe write yet.
2612 */
2613 goto finish;
2614 }
2615
2616 /*
2617 * the bbio may be freed once we submit the last bio. Make sure
2618 * not to touch it after that
2619 */
2620 atomic_set(&rbio->stripes_pending, bios_to_read);
2621 while (1) {
2622 bio = bio_list_pop(&bio_list);
2623 if (!bio)
2624 break;
2625
2626 bio->bi_private = rbio;
2627 bio->bi_end_io = raid56_parity_scrub_end_io;
37226b21 2628 bio_set_op_attrs(bio, REQ_OP_READ, 0);
5a6ac9ea 2629
0b246afa 2630 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2631
4e49ea4a 2632 submit_bio(bio);
5a6ac9ea
MX
2633 }
2634 /* the actual write will happen once the reads are done */
2635 return;
2636
2637cleanup:
58efbc9f 2638 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2639 return;
2640
2641finish:
2642 validate_rbio_for_parity_scrub(rbio);
2643}
2644
2645static void scrub_parity_work(struct btrfs_work *work)
2646{
2647 struct btrfs_raid_bio *rbio;
2648
2649 rbio = container_of(work, struct btrfs_raid_bio, work);
2650 raid56_parity_scrub_stripe(rbio);
2651}
2652
2653static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2654{
2655 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2656 scrub_parity_work, NULL, NULL);
2657
0b246afa 2658 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
5a6ac9ea
MX
2659}
2660
2661void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2662{
2663 if (!lock_stripe_add(rbio))
2664 async_scrub_parity(rbio);
2665}
b4ee1782
OS
2666
2667/* The following code is used for dev replace of a missing RAID 5/6 device. */
2668
2669struct btrfs_raid_bio *
2ff7e61e 2670raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2671 struct btrfs_bio *bbio, u64 length)
2672{
2673 struct btrfs_raid_bio *rbio;
2674
2ff7e61e 2675 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2676 if (IS_ERR(rbio))
2677 return NULL;
2678
2679 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2680 bio_list_add(&rbio->bio_list, bio);
2681 /*
2682 * This is a special bio which is used to hold the completion handler
2683 * and make the scrub rbio is similar to the other types
2684 */
2685 ASSERT(!bio->bi_iter.bi_size);
2686
2687 rbio->faila = find_logical_bio_stripe(rbio, bio);
2688 if (rbio->faila == -1) {
2689 BUG();
2690 kfree(rbio);
2691 return NULL;
2692 }
2693
ae6529c3
QW
2694 /*
2695 * When we get bbio, we have already increased bio_counter, record it
2696 * so we can free it at rbio_orig_end_io()
2697 */
2698 rbio->generic_bio_cnt = 1;
2699
b4ee1782
OS
2700 return rbio;
2701}
2702
2703static void missing_raid56_work(struct btrfs_work *work)
2704{
2705 struct btrfs_raid_bio *rbio;
2706
2707 rbio = container_of(work, struct btrfs_raid_bio, work);
2708 __raid56_parity_recover(rbio);
2709}
2710
2711static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2712{
2713 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2714 missing_raid56_work, NULL, NULL);
2715
2716 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2717}
2718
2719void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2720{
2721 if (!lock_stripe_add(rbio))
2722 async_missing_raid56(rbio);
2723}