]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/reada.c
Merge branch 'ucount-fixes-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / reada.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
7414a03f
AJ
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
7414a03f
AJ
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
7414a03f
AJ
10#include <linux/slab.h>
11#include <linux/workqueue.h>
12#include "ctree.h"
13#include "volumes.h"
14#include "disk-io.h"
15#include "transaction.h"
8dabb742 16#include "dev-replace.h"
aac0023c 17#include "block-group.h"
7414a03f
AJ
18
19#undef DEBUG
20
21/*
22 * This is the implementation for the generic read ahead framework.
23 *
24 * To trigger a readahead, btrfs_reada_add must be called. It will start
25 * a read ahead for the given range [start, end) on tree root. The returned
26 * handle can either be used to wait on the readahead to finish
27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28 *
29 * The read ahead works as follows:
30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31 * reada_start_machine will then search for extents to prefetch and trigger
32 * some reads. When a read finishes for a node, all contained node/leaf
33 * pointers that lie in the given range will also be enqueued. The reads will
34 * be triggered in sequential order, thus giving a big win over a naive
35 * enumeration. It will also make use of multi-device layouts. Each disk
36 * will have its on read pointer and all disks will by utilized in parallel.
37 * Also will no two disks read both sides of a mirror simultaneously, as this
38 * would waste seeking capacity. Instead both disks will read different parts
39 * of the filesystem.
40 * Any number of readaheads can be started in parallel. The read order will be
41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
42 * than the 2 started one after another.
43 */
44
7414a03f
AJ
45#define MAX_IN_FLIGHT 6
46
47struct reada_extctl {
48 struct list_head list;
49 struct reada_control *rc;
50 u64 generation;
51};
52
53struct reada_extent {
54 u64 logical;
5d81230b 55 u64 owner_root;
7414a03f 56 struct btrfs_key top;
7414a03f 57 struct list_head extctl;
99621b44 58 int refcnt;
7414a03f 59 spinlock_t lock;
94598ba8 60 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
7414a03f 61 int nzones;
895a11b8 62 int scheduled;
5d81230b 63 int level;
7414a03f
AJ
64};
65
66struct reada_zone {
67 u64 start;
68 u64 end;
69 u64 elems;
70 struct list_head list;
71 spinlock_t lock;
72 int locked;
73 struct btrfs_device *device;
94598ba8
SB
74 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
75 * self */
7414a03f
AJ
76 int ndevs;
77 struct kref refcnt;
78};
79
80struct reada_machine_work {
d458b054 81 struct btrfs_work work;
7414a03f
AJ
82 struct btrfs_fs_info *fs_info;
83};
84
85static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
86static void reada_control_release(struct kref *kref);
87static void reada_zone_release(struct kref *kref);
88static void reada_start_machine(struct btrfs_fs_info *fs_info);
89static void __reada_start_machine(struct btrfs_fs_info *fs_info);
90
91static int reada_add_block(struct reada_control *rc, u64 logical,
5d81230b
JB
92 struct btrfs_key *top, u64 owner_root,
93 u64 generation, int level);
7414a03f
AJ
94
95/* recurses */
96/* in case of err, eb might be NULL */
02873e43
ZL
97static void __readahead_hook(struct btrfs_fs_info *fs_info,
98 struct reada_extent *re, struct extent_buffer *eb,
bcdc51b2 99 int err)
7414a03f 100{
7414a03f
AJ
101 int nritems;
102 int i;
103 u64 bytenr;
104 u64 generation;
7414a03f 105 struct list_head list;
7414a03f 106
7414a03f
AJ
107 spin_lock(&re->lock);
108 /*
109 * just take the full list from the extent. afterwards we
110 * don't need the lock anymore
111 */
112 list_replace_init(&re->extctl, &list);
895a11b8 113 re->scheduled = 0;
7414a03f
AJ
114 spin_unlock(&re->lock);
115
57f16e08
ZL
116 /*
117 * this is the error case, the extent buffer has not been
118 * read correctly. We won't access anything from it and
119 * just cleanup our data structures. Effectively this will
120 * cut the branch below this node from read ahead.
121 */
122 if (err)
123 goto cleanup;
7414a03f 124
57f16e08
ZL
125 /*
126 * FIXME: currently we just set nritems to 0 if this is a leaf,
127 * effectively ignoring the content. In a next step we could
128 * trigger more readahead depending from the content, e.g.
129 * fetch the checksums for the extents in the leaf.
130 */
04998b33 131 if (!btrfs_header_level(eb))
57f16e08
ZL
132 goto cleanup;
133
134 nritems = btrfs_header_nritems(eb);
135 generation = btrfs_header_generation(eb);
7414a03f
AJ
136 for (i = 0; i < nritems; i++) {
137 struct reada_extctl *rec;
138 u64 n_gen;
139 struct btrfs_key key;
140 struct btrfs_key next_key;
141
142 btrfs_node_key_to_cpu(eb, &key, i);
143 if (i + 1 < nritems)
144 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
145 else
146 next_key = re->top;
147 bytenr = btrfs_node_blockptr(eb, i);
148 n_gen = btrfs_node_ptr_generation(eb, i);
149
150 list_for_each_entry(rec, &list, list) {
151 struct reada_control *rc = rec->rc;
152
153 /*
154 * if the generation doesn't match, just ignore this
155 * extctl. This will probably cut off a branch from
156 * prefetch. Alternatively one could start a new (sub-)
157 * prefetch for this branch, starting again from root.
158 * FIXME: move the generation check out of this loop
159 */
160#ifdef DEBUG
161 if (rec->generation != generation) {
02873e43
ZL
162 btrfs_debug(fs_info,
163 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
164 key.objectid, key.type, key.offset,
165 rec->generation, generation);
7414a03f
AJ
166 }
167#endif
168 if (rec->generation == generation &&
169 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
170 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
5d81230b
JB
171 reada_add_block(rc, bytenr, &next_key,
172 btrfs_header_owner(eb), n_gen,
173 btrfs_header_level(eb) - 1);
7414a03f
AJ
174 }
175 }
57f16e08
ZL
176
177cleanup:
7414a03f
AJ
178 /*
179 * free extctl records
180 */
181 while (!list_empty(&list)) {
182 struct reada_control *rc;
183 struct reada_extctl *rec;
184
185 rec = list_first_entry(&list, struct reada_extctl, list);
186 list_del(&rec->list);
187 rc = rec->rc;
188 kfree(rec);
189
190 kref_get(&rc->refcnt);
191 if (atomic_dec_and_test(&rc->elems)) {
192 kref_put(&rc->refcnt, reada_control_release);
193 wake_up(&rc->wait);
194 }
195 kref_put(&rc->refcnt, reada_control_release);
196
197 reada_extent_put(fs_info, re); /* one ref for each entry */
198 }
7414a03f 199
6e39dbe8 200 return;
7414a03f
AJ
201}
202
d48d71aa 203int btree_readahead_hook(struct extent_buffer *eb, int err)
7414a03f 204{
d48d71aa 205 struct btrfs_fs_info *fs_info = eb->fs_info;
6e39dbe8
ZL
206 int ret = 0;
207 struct reada_extent *re;
7414a03f 208
6e39dbe8
ZL
209 /* find extent */
210 spin_lock(&fs_info->reada_lock);
211 re = radix_tree_lookup(&fs_info->reada_tree,
60484cd9 212 eb->start >> fs_info->sectorsize_bits);
6e39dbe8
ZL
213 if (re)
214 re->refcnt++;
215 spin_unlock(&fs_info->reada_lock);
216 if (!re) {
217 ret = -1;
218 goto start_machine;
219 }
7414a03f 220
bcdc51b2 221 __readahead_hook(fs_info, re, eb, err);
6e39dbe8 222 reada_extent_put(fs_info, re); /* our ref */
7414a03f 223
6e39dbe8
ZL
224start_machine:
225 reada_start_machine(fs_info);
7414a03f
AJ
226 return ret;
227}
228
0ceaf282 229static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
21ca543e 230 struct btrfs_bio *bbio)
7414a03f 231{
0ceaf282 232 struct btrfs_fs_info *fs_info = dev->fs_info;
7414a03f 233 int ret;
7414a03f 234 struct reada_zone *zone;
32da5386 235 struct btrfs_block_group *cache = NULL;
7414a03f
AJ
236 u64 start;
237 u64 end;
238 int i;
239
7414a03f
AJ
240 zone = NULL;
241 spin_lock(&fs_info->reada_lock);
242 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
60484cd9 243 logical >> fs_info->sectorsize_bits, 1);
c37f49c7 244 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
7414a03f 245 kref_get(&zone->refcnt);
7414a03f 246 spin_unlock(&fs_info->reada_lock);
c37f49c7 247 return zone;
7414a03f
AJ
248 }
249
c37f49c7
ZL
250 spin_unlock(&fs_info->reada_lock);
251
7414a03f
AJ
252 cache = btrfs_lookup_block_group(fs_info, logical);
253 if (!cache)
254 return NULL;
255
b3470b5d
DS
256 start = cache->start;
257 end = start + cache->length - 1;
7414a03f
AJ
258 btrfs_put_block_group(cache);
259
ed0244fa 260 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
7414a03f
AJ
261 if (!zone)
262 return NULL;
263
cc8385b5
DS
264 ret = radix_tree_preload(GFP_KERNEL);
265 if (ret) {
266 kfree(zone);
267 return NULL;
268 }
269
7414a03f
AJ
270 zone->start = start;
271 zone->end = end;
272 INIT_LIST_HEAD(&zone->list);
273 spin_lock_init(&zone->lock);
274 zone->locked = 0;
275 kref_init(&zone->refcnt);
276 zone->elems = 0;
277 zone->device = dev; /* our device always sits at index 0 */
21ca543e 278 for (i = 0; i < bbio->num_stripes; ++i) {
7414a03f 279 /* bounds have already been checked */
21ca543e 280 zone->devs[i] = bbio->stripes[i].dev;
7414a03f 281 }
21ca543e 282 zone->ndevs = bbio->num_stripes;
7414a03f
AJ
283
284 spin_lock(&fs_info->reada_lock);
285 ret = radix_tree_insert(&dev->reada_zones,
60484cd9
QW
286 (unsigned long)(zone->end >> fs_info->sectorsize_bits),
287 zone);
7414a03f 288
8c9c2bf7 289 if (ret == -EEXIST) {
7414a03f 290 kfree(zone);
8c9c2bf7 291 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
60484cd9 292 logical >> fs_info->sectorsize_bits, 1);
8e9aa51f 293 if (ret == 1 && logical >= zone->start && logical <= zone->end)
8c9c2bf7 294 kref_get(&zone->refcnt);
8e9aa51f
ZL
295 else
296 zone = NULL;
7414a03f 297 }
8c9c2bf7 298 spin_unlock(&fs_info->reada_lock);
cc8385b5 299 radix_tree_preload_end();
7414a03f
AJ
300
301 return zone;
302}
303
2ff7e61e 304static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
7414a03f 305 u64 logical,
5d81230b
JB
306 struct btrfs_key *top,
307 u64 owner_root, int level)
7414a03f
AJ
308{
309 int ret;
7414a03f 310 struct reada_extent *re = NULL;
8c9c2bf7 311 struct reada_extent *re_exist = NULL;
21ca543e 312 struct btrfs_bio *bbio = NULL;
7414a03f 313 struct btrfs_device *dev;
207a232c 314 struct btrfs_device *prev_dev;
7414a03f 315 u64 length;
7cb2c420 316 int real_stripes;
7414a03f 317 int nzones = 0;
60484cd9 318 unsigned long index = logical >> fs_info->sectorsize_bits;
8dabb742 319 int dev_replace_is_ongoing;
31945021 320 int have_zone = 0;
7414a03f 321
7414a03f
AJ
322 spin_lock(&fs_info->reada_lock);
323 re = radix_tree_lookup(&fs_info->reada_tree, index);
324 if (re)
99621b44 325 re->refcnt++;
7414a03f
AJ
326 spin_unlock(&fs_info->reada_lock);
327
8c9c2bf7 328 if (re)
7414a03f
AJ
329 return re;
330
ed0244fa 331 re = kzalloc(sizeof(*re), GFP_KERNEL);
7414a03f
AJ
332 if (!re)
333 return NULL;
334
7414a03f 335 re->logical = logical;
7414a03f
AJ
336 re->top = *top;
337 INIT_LIST_HEAD(&re->extctl);
338 spin_lock_init(&re->lock);
99621b44 339 re->refcnt = 1;
5d81230b
JB
340 re->owner_root = owner_root;
341 re->level = level;
7414a03f
AJ
342
343 /*
344 * map block
345 */
994a5d2b 346 length = fs_info->nodesize;
cf8cddd3
CH
347 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
348 &length, &bbio, 0);
994a5d2b 349 if (ret || !bbio || length < fs_info->nodesize)
7414a03f
AJ
350 goto error;
351
94598ba8 352 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
0b246afa 353 btrfs_err(fs_info,
efe120a0
FH
354 "readahead: more than %d copies not supported",
355 BTRFS_MAX_MIRRORS);
7414a03f
AJ
356 goto error;
357 }
358
7cb2c420
OS
359 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
360 for (nzones = 0; nzones < real_stripes; ++nzones) {
7414a03f
AJ
361 struct reada_zone *zone;
362
21ca543e 363 dev = bbio->stripes[nzones].dev;
7aff8cf4
ZL
364
365 /* cannot read ahead on missing device. */
bece2e82 366 if (!dev->bdev)
7aff8cf4
ZL
367 continue;
368
0ceaf282 369 zone = reada_find_zone(dev, logical, bbio);
7414a03f 370 if (!zone)
6a159d2a 371 continue;
7414a03f 372
6a159d2a 373 re->zones[re->nzones++] = zone;
7414a03f
AJ
374 spin_lock(&zone->lock);
375 if (!zone->elems)
376 kref_get(&zone->refcnt);
377 ++zone->elems;
378 spin_unlock(&zone->lock);
379 spin_lock(&fs_info->reada_lock);
380 kref_put(&zone->refcnt, reada_zone_release);
381 spin_unlock(&fs_info->reada_lock);
382 }
6a159d2a 383 if (re->nzones == 0) {
7414a03f
AJ
384 /* not a single zone found, error and out */
385 goto error;
386 }
387
ceb21a8d 388 /* Insert extent in reada tree + all per-device trees, all or nothing */
cb5583dd 389 down_read(&fs_info->dev_replace.rwsem);
7ef70b4d 390 ret = radix_tree_preload(GFP_KERNEL);
ceb21a8d 391 if (ret) {
cb5583dd 392 up_read(&fs_info->dev_replace.rwsem);
7ef70b4d 393 goto error;
ceb21a8d 394 }
7ef70b4d 395
7414a03f
AJ
396 spin_lock(&fs_info->reada_lock);
397 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
8c9c2bf7
AJ
398 if (ret == -EEXIST) {
399 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
99621b44 400 re_exist->refcnt++;
8c9c2bf7 401 spin_unlock(&fs_info->reada_lock);
7ef70b4d 402 radix_tree_preload_end();
cb5583dd 403 up_read(&fs_info->dev_replace.rwsem);
8c9c2bf7
AJ
404 goto error;
405 }
7414a03f
AJ
406 if (ret) {
407 spin_unlock(&fs_info->reada_lock);
7ef70b4d 408 radix_tree_preload_end();
cb5583dd 409 up_read(&fs_info->dev_replace.rwsem);
7414a03f
AJ
410 goto error;
411 }
7ef70b4d 412 radix_tree_preload_end();
207a232c 413 prev_dev = NULL;
8dabb742
SB
414 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415 &fs_info->dev_replace);
6a159d2a
ZL
416 for (nzones = 0; nzones < re->nzones; ++nzones) {
417 dev = re->zones[nzones]->device;
418
207a232c
AJ
419 if (dev == prev_dev) {
420 /*
421 * in case of DUP, just add the first zone. As both
422 * are on the same device, there's nothing to gain
423 * from adding both.
424 * Also, it wouldn't work, as the tree is per device
425 * and adding would fail with EEXIST
426 */
427 continue;
428 }
7aff8cf4
ZL
429 if (!dev->bdev)
430 continue;
431
66d204a1
FM
432 if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
433 continue;
434
8dabb742
SB
435 if (dev_replace_is_ongoing &&
436 dev == fs_info->dev_replace.tgtdev) {
437 /*
438 * as this device is selected for reading only as
439 * a last resort, skip it for read ahead.
440 */
441 continue;
442 }
207a232c 443 prev_dev = dev;
7414a03f
AJ
444 ret = radix_tree_insert(&dev->reada_extents, index, re);
445 if (ret) {
6a159d2a
ZL
446 while (--nzones >= 0) {
447 dev = re->zones[nzones]->device;
7414a03f 448 BUG_ON(dev == NULL);
ff023aac 449 /* ignore whether the entry was inserted */
7414a03f
AJ
450 radix_tree_delete(&dev->reada_extents, index);
451 }
7414a03f
AJ
452 radix_tree_delete(&fs_info->reada_tree, index);
453 spin_unlock(&fs_info->reada_lock);
cb5583dd 454 up_read(&fs_info->dev_replace.rwsem);
7414a03f
AJ
455 goto error;
456 }
31945021 457 have_zone = 1;
7414a03f 458 }
83bc1560
FM
459 if (!have_zone)
460 radix_tree_delete(&fs_info->reada_tree, index);
7414a03f 461 spin_unlock(&fs_info->reada_lock);
cb5583dd 462 up_read(&fs_info->dev_replace.rwsem);
7414a03f 463
31945021
ZL
464 if (!have_zone)
465 goto error;
466
6e9606d2 467 btrfs_put_bbio(bbio);
7414a03f
AJ
468 return re;
469
470error:
6a159d2a 471 for (nzones = 0; nzones < re->nzones; ++nzones) {
7414a03f
AJ
472 struct reada_zone *zone;
473
7414a03f
AJ
474 zone = re->zones[nzones];
475 kref_get(&zone->refcnt);
476 spin_lock(&zone->lock);
477 --zone->elems;
478 if (zone->elems == 0) {
479 /*
480 * no fs_info->reada_lock needed, as this can't be
481 * the last ref
482 */
483 kref_put(&zone->refcnt, reada_zone_release);
484 }
485 spin_unlock(&zone->lock);
486
487 spin_lock(&fs_info->reada_lock);
488 kref_put(&zone->refcnt, reada_zone_release);
489 spin_unlock(&fs_info->reada_lock);
490 }
6e9606d2 491 btrfs_put_bbio(bbio);
7414a03f 492 kfree(re);
8c9c2bf7 493 return re_exist;
7414a03f
AJ
494}
495
7414a03f
AJ
496static void reada_extent_put(struct btrfs_fs_info *fs_info,
497 struct reada_extent *re)
498{
499 int i;
60484cd9 500 unsigned long index = re->logical >> fs_info->sectorsize_bits;
7414a03f
AJ
501
502 spin_lock(&fs_info->reada_lock);
99621b44 503 if (--re->refcnt) {
7414a03f
AJ
504 spin_unlock(&fs_info->reada_lock);
505 return;
506 }
507
508 radix_tree_delete(&fs_info->reada_tree, index);
509 for (i = 0; i < re->nzones; ++i) {
510 struct reada_zone *zone = re->zones[i];
511
512 radix_tree_delete(&zone->device->reada_extents, index);
513 }
514
515 spin_unlock(&fs_info->reada_lock);
516
517 for (i = 0; i < re->nzones; ++i) {
518 struct reada_zone *zone = re->zones[i];
519
520 kref_get(&zone->refcnt);
521 spin_lock(&zone->lock);
522 --zone->elems;
523 if (zone->elems == 0) {
524 /* no fs_info->reada_lock needed, as this can't be
525 * the last ref */
526 kref_put(&zone->refcnt, reada_zone_release);
527 }
528 spin_unlock(&zone->lock);
529
530 spin_lock(&fs_info->reada_lock);
531 kref_put(&zone->refcnt, reada_zone_release);
532 spin_unlock(&fs_info->reada_lock);
533 }
7414a03f
AJ
534
535 kfree(re);
536}
537
538static void reada_zone_release(struct kref *kref)
539{
540 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
60484cd9 541 struct btrfs_fs_info *fs_info = zone->device->fs_info;
7414a03f 542
60484cd9 543 lockdep_assert_held(&fs_info->reada_lock);
a57ad681 544
7414a03f 545 radix_tree_delete(&zone->device->reada_zones,
60484cd9 546 zone->end >> fs_info->sectorsize_bits);
7414a03f
AJ
547
548 kfree(zone);
549}
550
551static void reada_control_release(struct kref *kref)
552{
553 struct reada_control *rc = container_of(kref, struct reada_control,
554 refcnt);
555
556 kfree(rc);
557}
558
559static int reada_add_block(struct reada_control *rc, u64 logical,
5d81230b
JB
560 struct btrfs_key *top, u64 owner_root,
561 u64 generation, int level)
7414a03f 562{
c28f158e 563 struct btrfs_fs_info *fs_info = rc->fs_info;
7414a03f
AJ
564 struct reada_extent *re;
565 struct reada_extctl *rec;
566
c28f158e 567 /* takes one ref */
5d81230b 568 re = reada_find_extent(fs_info, logical, top, owner_root, level);
7414a03f
AJ
569 if (!re)
570 return -1;
571
ed0244fa 572 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
7414a03f 573 if (!rec) {
c28f158e 574 reada_extent_put(fs_info, re);
ddd664f4 575 return -ENOMEM;
7414a03f
AJ
576 }
577
578 rec->rc = rc;
579 rec->generation = generation;
580 atomic_inc(&rc->elems);
581
582 spin_lock(&re->lock);
583 list_add_tail(&rec->list, &re->extctl);
584 spin_unlock(&re->lock);
585
586 /* leave the ref on the extent */
587
588 return 0;
589}
590
591/*
592 * called with fs_info->reada_lock held
593 */
594static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
595{
596 int i;
60484cd9 597 unsigned long index = zone->end >> zone->device->fs_info->sectorsize_bits;
7414a03f
AJ
598
599 for (i = 0; i < zone->ndevs; ++i) {
600 struct reada_zone *peer;
601 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
602 if (peer && peer->device != zone->device)
603 peer->locked = lock;
604 }
605}
606
607/*
608 * called with fs_info->reada_lock held
609 */
610static int reada_pick_zone(struct btrfs_device *dev)
611{
612 struct reada_zone *top_zone = NULL;
613 struct reada_zone *top_locked_zone = NULL;
614 u64 top_elems = 0;
615 u64 top_locked_elems = 0;
616 unsigned long index = 0;
617 int ret;
618
619 if (dev->reada_curr_zone) {
620 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
621 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
622 dev->reada_curr_zone = NULL;
623 }
624 /* pick the zone with the most elements */
625 while (1) {
626 struct reada_zone *zone;
627
628 ret = radix_tree_gang_lookup(&dev->reada_zones,
629 (void **)&zone, index, 1);
630 if (ret == 0)
631 break;
60484cd9 632 index = (zone->end >> dev->fs_info->sectorsize_bits) + 1;
7414a03f
AJ
633 if (zone->locked) {
634 if (zone->elems > top_locked_elems) {
635 top_locked_elems = zone->elems;
636 top_locked_zone = zone;
637 }
638 } else {
639 if (zone->elems > top_elems) {
640 top_elems = zone->elems;
641 top_zone = zone;
642 }
643 }
644 }
645 if (top_zone)
646 dev->reada_curr_zone = top_zone;
647 else if (top_locked_zone)
648 dev->reada_curr_zone = top_locked_zone;
649 else
650 return 0;
651
652 dev->reada_next = dev->reada_curr_zone->start;
653 kref_get(&dev->reada_curr_zone->refcnt);
654 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
655
656 return 1;
657}
658
4f84bd7f 659static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
3fbaf258
JB
660 u64 owner_root, int level, int mirror_num,
661 struct extent_buffer **eb)
4f84bd7f
NB
662{
663 struct extent_buffer *buf = NULL;
664 int ret;
665
3fbaf258 666 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4f84bd7f
NB
667 if (IS_ERR(buf))
668 return 0;
669
670 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
671
672 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
673 if (ret) {
674 free_extent_buffer_stale(buf);
675 return ret;
676 }
677
678 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
679 free_extent_buffer_stale(buf);
680 return -EIO;
681 } else if (extent_buffer_uptodate(buf)) {
682 *eb = buf;
683 } else {
684 free_extent_buffer(buf);
685 }
686 return 0;
687}
688
5721b8ad 689static int reada_start_machine_dev(struct btrfs_device *dev)
7414a03f 690{
5721b8ad 691 struct btrfs_fs_info *fs_info = dev->fs_info;
7414a03f
AJ
692 struct reada_extent *re = NULL;
693 int mirror_num = 0;
694 struct extent_buffer *eb = NULL;
695 u64 logical;
7414a03f
AJ
696 int ret;
697 int i;
7414a03f
AJ
698
699 spin_lock(&fs_info->reada_lock);
700 if (dev->reada_curr_zone == NULL) {
701 ret = reada_pick_zone(dev);
702 if (!ret) {
703 spin_unlock(&fs_info->reada_lock);
704 return 0;
705 }
706 }
707 /*
708 * FIXME currently we issue the reads one extent at a time. If we have
709 * a contiguous block of extents, we could also coagulate them or use
710 * plugging to speed things up
711 */
712 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
60484cd9 713 dev->reada_next >> fs_info->sectorsize_bits, 1);
50378530 714 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
7414a03f
AJ
715 ret = reada_pick_zone(dev);
716 if (!ret) {
717 spin_unlock(&fs_info->reada_lock);
718 return 0;
719 }
720 re = NULL;
721 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
60484cd9 722 dev->reada_next >> fs_info->sectorsize_bits, 1);
7414a03f
AJ
723 }
724 if (ret == 0) {
725 spin_unlock(&fs_info->reada_lock);
726 return 0;
727 }
da17066c 728 dev->reada_next = re->logical + fs_info->nodesize;
99621b44 729 re->refcnt++;
7414a03f
AJ
730
731 spin_unlock(&fs_info->reada_lock);
732
a3f7fde2 733 spin_lock(&re->lock);
895a11b8 734 if (re->scheduled || list_empty(&re->extctl)) {
a3f7fde2
ZL
735 spin_unlock(&re->lock);
736 reada_extent_put(fs_info, re);
737 return 0;
738 }
895a11b8 739 re->scheduled = 1;
a3f7fde2
ZL
740 spin_unlock(&re->lock);
741
7414a03f
AJ
742 /*
743 * find mirror num
744 */
745 for (i = 0; i < re->nzones; ++i) {
746 if (re->zones[i]->device == dev) {
747 mirror_num = i + 1;
748 break;
749 }
750 }
751 logical = re->logical;
7414a03f 752
7414a03f 753 atomic_inc(&dev->reada_in_flight);
3fbaf258
JB
754 ret = reada_tree_block_flagged(fs_info, logical, re->owner_root,
755 re->level, mirror_num, &eb);
7414a03f 756 if (ret)
bcdc51b2 757 __readahead_hook(fs_info, re, NULL, ret);
7414a03f 758 else if (eb)
bcdc51b2 759 __readahead_hook(fs_info, re, eb, ret);
7414a03f
AJ
760
761 if (eb)
762 free_extent_buffer(eb);
763
895a11b8 764 atomic_dec(&dev->reada_in_flight);
b257cf50
ZL
765 reada_extent_put(fs_info, re);
766
7414a03f
AJ
767 return 1;
768
769}
770
d458b054 771static void reada_start_machine_worker(struct btrfs_work *work)
7414a03f
AJ
772{
773 struct reada_machine_work *rmw;
3d136a11 774 int old_ioprio;
7414a03f
AJ
775
776 rmw = container_of(work, struct reada_machine_work, work);
7414a03f 777
3d136a11
SB
778 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
779 task_nice_ioprio(current));
780 set_task_ioprio(current, BTRFS_IOPRIO_READA);
e732fe95 781 __reada_start_machine(rmw->fs_info);
3d136a11 782 set_task_ioprio(current, old_ioprio);
2fefd558 783
e732fe95
OS
784 atomic_dec(&rmw->fs_info->reada_works_cnt);
785
786 kfree(rmw);
7414a03f
AJ
787}
788
dc0ab488
NB
789/* Try to start up to 10k READA requests for a group of devices */
790static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
7414a03f 791{
7414a03f
AJ
792 u64 enqueued;
793 u64 total = 0;
dc0ab488 794 struct btrfs_device *device;
7414a03f
AJ
795
796 do {
797 enqueued = 0;
798 list_for_each_entry(device, &fs_devices->devices, dev_list) {
799 if (atomic_read(&device->reada_in_flight) <
800 MAX_IN_FLIGHT)
5721b8ad 801 enqueued += reada_start_machine_dev(device);
7414a03f
AJ
802 }
803 total += enqueued;
804 } while (enqueued && total < 10000);
dc0ab488
NB
805
806 return total;
807}
808
809static void __reada_start_machine(struct btrfs_fs_info *fs_info)
810{
944d3f9f 811 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
dc0ab488
NB
812 int i;
813 u64 enqueued = 0;
814
2fca0db0
AJ
815 mutex_lock(&fs_devices->device_list_mutex);
816
dc0ab488 817 enqueued += reada_start_for_fsdevs(fs_devices);
944d3f9f
NB
818 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
819 enqueued += reada_start_for_fsdevs(seed_devs);
7414a03f 820
2fca0db0 821 mutex_unlock(&fs_devices->device_list_mutex);
7414a03f
AJ
822 if (enqueued == 0)
823 return;
824
825 /*
826 * If everything is already in the cache, this is effectively single
827 * threaded. To a) not hold the caller for too long and b) to utilize
828 * more cores, we broke the loop above after 10000 iterations and now
829 * enqueue to workers to finish it. This will distribute the load to
830 * the cores.
831 */
2fefd558 832 for (i = 0; i < 2; ++i) {
7414a03f 833 reada_start_machine(fs_info);
2fefd558
ZL
834 if (atomic_read(&fs_info->reada_works_cnt) >
835 BTRFS_MAX_MIRRORS * 2)
836 break;
837 }
7414a03f
AJ
838}
839
840static void reada_start_machine(struct btrfs_fs_info *fs_info)
841{
842 struct reada_machine_work *rmw;
843
ed0244fa 844 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
7414a03f
AJ
845 if (!rmw) {
846 /* FIXME we cannot handle this properly right now */
847 BUG();
848 }
a0cac0ec 849 btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
7414a03f
AJ
850 rmw->fs_info = fs_info;
851
736cfa15 852 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
2fefd558 853 atomic_inc(&fs_info->reada_works_cnt);
7414a03f
AJ
854}
855
856#ifdef DEBUG
857static void dump_devs(struct btrfs_fs_info *fs_info, int all)
858{
859 struct btrfs_device *device;
860 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
861 unsigned long index;
862 int ret;
863 int i;
864 int j;
865 int cnt;
866
867 spin_lock(&fs_info->reada_lock);
868 list_for_each_entry(device, &fs_devices->devices, dev_list) {
ab8d0fc4 869 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
7414a03f
AJ
870 atomic_read(&device->reada_in_flight));
871 index = 0;
872 while (1) {
873 struct reada_zone *zone;
874 ret = radix_tree_gang_lookup(&device->reada_zones,
875 (void **)&zone, index, 1);
876 if (ret == 0)
877 break;
62e85577 878 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
ab8d0fc4
JM
879 zone->start, zone->end, zone->elems,
880 zone->locked);
7414a03f 881 for (j = 0; j < zone->ndevs; ++j) {
62e85577 882 pr_cont(" %lld",
7414a03f
AJ
883 zone->devs[j]->devid);
884 }
885 if (device->reada_curr_zone == zone)
62e85577 886 pr_cont(" curr off %llu",
7414a03f 887 device->reada_next - zone->start);
62e85577 888 pr_cont("\n");
60484cd9 889 index = (zone->end >> fs_info->sectorsize_bits) + 1;
7414a03f
AJ
890 }
891 cnt = 0;
892 index = 0;
893 while (all) {
894 struct reada_extent *re = NULL;
895
896 ret = radix_tree_gang_lookup(&device->reada_extents,
897 (void **)&re, index, 1);
898 if (ret == 0)
899 break;
62e85577 900 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
da17066c 901 re->logical, fs_info->nodesize,
895a11b8 902 list_empty(&re->extctl), re->scheduled);
7414a03f
AJ
903
904 for (i = 0; i < re->nzones; ++i) {
62e85577 905 pr_cont(" zone %llu-%llu devs",
7414a03f
AJ
906 re->zones[i]->start,
907 re->zones[i]->end);
908 for (j = 0; j < re->zones[i]->ndevs; ++j) {
62e85577 909 pr_cont(" %lld",
7414a03f
AJ
910 re->zones[i]->devs[j]->devid);
911 }
912 }
62e85577 913 pr_cont("\n");
60484cd9 914 index = (re->logical >> fs_info->sectorsize_bits) + 1;
7414a03f
AJ
915 if (++cnt > 15)
916 break;
917 }
918 }
919
920 index = 0;
921 cnt = 0;
922 while (all) {
923 struct reada_extent *re = NULL;
924
925 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
926 index, 1);
927 if (ret == 0)
928 break;
895a11b8 929 if (!re->scheduled) {
60484cd9 930 index = (re->logical >> fs_info->sectorsize_bits) + 1;
7414a03f
AJ
931 continue;
932 }
62e85577 933 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
da17066c 934 re->logical, fs_info->nodesize,
895a11b8 935 list_empty(&re->extctl), re->scheduled);
7414a03f 936 for (i = 0; i < re->nzones; ++i) {
62e85577 937 pr_cont(" zone %llu-%llu devs",
7414a03f
AJ
938 re->zones[i]->start,
939 re->zones[i]->end);
8afd6841 940 for (j = 0; j < re->zones[i]->ndevs; ++j) {
62e85577 941 pr_cont(" %lld",
8afd6841 942 re->zones[i]->devs[j]->devid);
7414a03f
AJ
943 }
944 }
62e85577 945 pr_cont("\n");
60484cd9 946 index = (re->logical >> fs_info->sectorsize_bits) + 1;
7414a03f
AJ
947 }
948 spin_unlock(&fs_info->reada_lock);
949}
950#endif
951
952/*
953 * interface
954 */
955struct reada_control *btrfs_reada_add(struct btrfs_root *root,
956 struct btrfs_key *key_start, struct btrfs_key *key_end)
957{
958 struct reada_control *rc;
959 u64 start;
960 u64 generation;
ddd664f4 961 int ret;
5d81230b 962 int level;
7414a03f
AJ
963 struct extent_buffer *node;
964 static struct btrfs_key max_key = {
965 .objectid = (u64)-1,
966 .type = (u8)-1,
967 .offset = (u64)-1
968 };
969
ed0244fa 970 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
7414a03f
AJ
971 if (!rc)
972 return ERR_PTR(-ENOMEM);
973
c28f158e 974 rc->fs_info = root->fs_info;
7414a03f
AJ
975 rc->key_start = *key_start;
976 rc->key_end = *key_end;
977 atomic_set(&rc->elems, 0);
978 init_waitqueue_head(&rc->wait);
979 kref_init(&rc->refcnt);
980 kref_get(&rc->refcnt); /* one ref for having elements */
981
982 node = btrfs_root_node(root);
983 start = node->start;
7414a03f 984 generation = btrfs_header_generation(node);
5d81230b 985 level = btrfs_header_level(node);
7414a03f
AJ
986 free_extent_buffer(node);
987
5d81230b
JB
988 ret = reada_add_block(rc, start, &max_key, root->root_key.objectid,
989 generation, level);
ddd664f4 990 if (ret) {
ff023aac 991 kfree(rc);
ddd664f4 992 return ERR_PTR(ret);
ff023aac 993 }
7414a03f
AJ
994
995 reada_start_machine(root->fs_info);
996
997 return rc;
998}
999
1000#ifdef DEBUG
1001int btrfs_reada_wait(void *handle)
1002{
1003 struct reada_control *rc = handle;
c28f158e 1004 struct btrfs_fs_info *fs_info = rc->fs_info;
7414a03f
AJ
1005
1006 while (atomic_read(&rc->elems)) {
4fe7a0e1
ZL
1007 if (!atomic_read(&fs_info->reada_works_cnt))
1008 reada_start_machine(fs_info);
7414a03f
AJ
1009 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1010 5 * HZ);
0b246afa 1011 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
1012 }
1013
0b246afa 1014 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
1015
1016 kref_put(&rc->refcnt, reada_control_release);
1017
1018 return 0;
1019}
1020#else
1021int btrfs_reada_wait(void *handle)
1022{
1023 struct reada_control *rc = handle;
c28f158e 1024 struct btrfs_fs_info *fs_info = rc->fs_info;
7414a03f
AJ
1025
1026 while (atomic_read(&rc->elems)) {
4fe7a0e1
ZL
1027 if (!atomic_read(&fs_info->reada_works_cnt))
1028 reada_start_machine(fs_info);
1029 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1030 (HZ + 9) / 10);
7414a03f
AJ
1031 }
1032
1033 kref_put(&rc->refcnt, reada_control_release);
1034
1035 return 0;
1036}
1037#endif
1038
1039void btrfs_reada_detach(void *handle)
1040{
1041 struct reada_control *rc = handle;
1042
1043 kref_put(&rc->refcnt, reada_control_release);
1044}
66d204a1
FM
1045
1046/*
1047 * Before removing a device (device replace or device remove ioctls), call this
1048 * function to wait for all existing readahead requests on the device and to
1049 * make sure no one queues more readahead requests for the device.
1050 *
1051 * Must be called without holding neither the device list mutex nor the device
1052 * replace semaphore, otherwise it will deadlock.
1053 */
1054void btrfs_reada_remove_dev(struct btrfs_device *dev)
1055{
1056 struct btrfs_fs_info *fs_info = dev->fs_info;
1057
1058 /* Serialize with readahead extent creation at reada_find_extent(). */
1059 spin_lock(&fs_info->reada_lock);
1060 set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1061 spin_unlock(&fs_info->reada_lock);
1062
1063 /*
1064 * There might be readahead requests added to the radix trees which
1065 * were not yet added to the readahead work queue. We need to start
1066 * them and wait for their completion, otherwise we can end up with
1067 * use-after-free problems when dropping the last reference on the
1068 * readahead extents and their zones, as they need to access the
1069 * device structure.
1070 */
1071 reada_start_machine(fs_info);
1072 btrfs_flush_workqueue(fs_info->readahead_workers);
1073}
1074
1075/*
1076 * If when removing a device (device replace or device remove ioctls) an error
1077 * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1078 * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1079 * called before.
1080 */
1081void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1082{
1083 spin_lock(&dev->fs_info->reada_lock);
1084 clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1085 spin_unlock(&dev->fs_info->reada_lock);
1086}