]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/reada.c
btrfs: reada: Use fs_info instead of root in __readahead_hook's argument
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / reada.c
CommitLineData
7414a03f
AJ
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include <linux/workqueue.h>
26#include "ctree.h"
27#include "volumes.h"
28#include "disk-io.h"
29#include "transaction.h"
8dabb742 30#include "dev-replace.h"
7414a03f
AJ
31
32#undef DEBUG
33
34/*
35 * This is the implementation for the generic read ahead framework.
36 *
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41 *
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
56 */
57
7414a03f
AJ
58#define MAX_IN_FLIGHT 6
59
60struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
64};
65
66struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
7414a03f
AJ
69 int err;
70 struct list_head extctl;
99621b44 71 int refcnt;
7414a03f 72 spinlock_t lock;
94598ba8 73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
7414a03f
AJ
74 int nzones;
75 struct btrfs_device *scheduled_for;
76};
77
78struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
94598ba8
SB
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
7414a03f
AJ
88 int ndevs;
89 struct kref refcnt;
90};
91
92struct reada_machine_work {
d458b054 93 struct btrfs_work work;
7414a03f
AJ
94 struct btrfs_fs_info *fs_info;
95};
96
97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98static void reada_control_release(struct kref *kref);
99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
1e7970c0 104 struct btrfs_key *top, u64 generation);
7414a03f
AJ
105
106/* recurses */
107/* in case of err, eb might be NULL */
02873e43
ZL
108static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
110 u64 start, int err)
7414a03f
AJ
111{
112 int level = 0;
113 int nritems;
114 int i;
115 u64 bytenr;
116 u64 generation;
7414a03f 117 struct list_head list;
7414a03f
AJ
118 struct btrfs_device *for_dev;
119
120 if (eb)
121 level = btrfs_header_level(eb);
122
7414a03f
AJ
123 spin_lock(&re->lock);
124 /*
125 * just take the full list from the extent. afterwards we
126 * don't need the lock anymore
127 */
128 list_replace_init(&re->extctl, &list);
129 for_dev = re->scheduled_for;
130 re->scheduled_for = NULL;
131 spin_unlock(&re->lock);
132
133 if (err == 0) {
134 nritems = level ? btrfs_header_nritems(eb) : 0;
135 generation = btrfs_header_generation(eb);
136 /*
137 * FIXME: currently we just set nritems to 0 if this is a leaf,
138 * effectively ignoring the content. In a next step we could
139 * trigger more readahead depending from the content, e.g.
140 * fetch the checksums for the extents in the leaf.
141 */
142 } else {
143 /*
144 * this is the error case, the extent buffer has not been
145 * read correctly. We won't access anything from it and
146 * just cleanup our data structures. Effectively this will
147 * cut the branch below this node from read ahead.
148 */
149 nritems = 0;
150 generation = 0;
151 }
152
153 for (i = 0; i < nritems; i++) {
154 struct reada_extctl *rec;
155 u64 n_gen;
156 struct btrfs_key key;
157 struct btrfs_key next_key;
158
159 btrfs_node_key_to_cpu(eb, &key, i);
160 if (i + 1 < nritems)
161 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
162 else
163 next_key = re->top;
164 bytenr = btrfs_node_blockptr(eb, i);
165 n_gen = btrfs_node_ptr_generation(eb, i);
166
167 list_for_each_entry(rec, &list, list) {
168 struct reada_control *rc = rec->rc;
169
170 /*
171 * if the generation doesn't match, just ignore this
172 * extctl. This will probably cut off a branch from
173 * prefetch. Alternatively one could start a new (sub-)
174 * prefetch for this branch, starting again from root.
175 * FIXME: move the generation check out of this loop
176 */
177#ifdef DEBUG
178 if (rec->generation != generation) {
02873e43
ZL
179 btrfs_debug(fs_info,
180 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
181 key.objectid, key.type, key.offset,
182 rec->generation, generation);
7414a03f
AJ
183 }
184#endif
185 if (rec->generation == generation &&
186 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
187 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
1e7970c0 188 reada_add_block(rc, bytenr, &next_key, n_gen);
7414a03f
AJ
189 }
190 }
191 /*
192 * free extctl records
193 */
194 while (!list_empty(&list)) {
195 struct reada_control *rc;
196 struct reada_extctl *rec;
197
198 rec = list_first_entry(&list, struct reada_extctl, list);
199 list_del(&rec->list);
200 rc = rec->rc;
201 kfree(rec);
202
203 kref_get(&rc->refcnt);
204 if (atomic_dec_and_test(&rc->elems)) {
205 kref_put(&rc->refcnt, reada_control_release);
206 wake_up(&rc->wait);
207 }
208 kref_put(&rc->refcnt, reada_control_release);
209
210 reada_extent_put(fs_info, re); /* one ref for each entry */
211 }
6e39dbe8 212
7414a03f
AJ
213 if (for_dev)
214 atomic_dec(&for_dev->reada_in_flight);
215
6e39dbe8 216 return;
7414a03f
AJ
217}
218
219/*
220 * start is passed separately in case eb in NULL, which may be the case with
221 * failed I/O
222 */
02873e43
ZL
223int btree_readahead_hook(struct btrfs_fs_info *fs_info,
224 struct extent_buffer *eb, u64 start, int err)
7414a03f 225{
6e39dbe8
ZL
226 int ret = 0;
227 struct reada_extent *re;
7414a03f 228
6e39dbe8
ZL
229 /* find extent */
230 spin_lock(&fs_info->reada_lock);
231 re = radix_tree_lookup(&fs_info->reada_tree,
232 start >> PAGE_CACHE_SHIFT);
233 if (re)
234 re->refcnt++;
235 spin_unlock(&fs_info->reada_lock);
236 if (!re) {
237 ret = -1;
238 goto start_machine;
239 }
7414a03f 240
6e39dbe8
ZL
241 __readahead_hook(fs_info, re, eb, start, err);
242 reada_extent_put(fs_info, re); /* our ref */
7414a03f 243
6e39dbe8
ZL
244start_machine:
245 reada_start_machine(fs_info);
7414a03f
AJ
246 return ret;
247}
248
249static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
250 struct btrfs_device *dev, u64 logical,
21ca543e 251 struct btrfs_bio *bbio)
7414a03f
AJ
252{
253 int ret;
7414a03f
AJ
254 struct reada_zone *zone;
255 struct btrfs_block_group_cache *cache = NULL;
256 u64 start;
257 u64 end;
258 int i;
259
7414a03f
AJ
260 zone = NULL;
261 spin_lock(&fs_info->reada_lock);
262 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
263 logical >> PAGE_CACHE_SHIFT, 1);
c37f49c7 264 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
7414a03f 265 kref_get(&zone->refcnt);
7414a03f 266 spin_unlock(&fs_info->reada_lock);
c37f49c7 267 return zone;
7414a03f
AJ
268 }
269
c37f49c7
ZL
270 spin_unlock(&fs_info->reada_lock);
271
7414a03f
AJ
272 cache = btrfs_lookup_block_group(fs_info, logical);
273 if (!cache)
274 return NULL;
275
276 start = cache->key.objectid;
277 end = start + cache->key.offset - 1;
278 btrfs_put_block_group(cache);
279
280 zone = kzalloc(sizeof(*zone), GFP_NOFS);
281 if (!zone)
282 return NULL;
283
284 zone->start = start;
285 zone->end = end;
286 INIT_LIST_HEAD(&zone->list);
287 spin_lock_init(&zone->lock);
288 zone->locked = 0;
289 kref_init(&zone->refcnt);
290 zone->elems = 0;
291 zone->device = dev; /* our device always sits at index 0 */
21ca543e 292 for (i = 0; i < bbio->num_stripes; ++i) {
7414a03f 293 /* bounds have already been checked */
21ca543e 294 zone->devs[i] = bbio->stripes[i].dev;
7414a03f 295 }
21ca543e 296 zone->ndevs = bbio->num_stripes;
7414a03f
AJ
297
298 spin_lock(&fs_info->reada_lock);
299 ret = radix_tree_insert(&dev->reada_zones,
a175423c 300 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
7414a03f 301 zone);
7414a03f 302
8c9c2bf7 303 if (ret == -EEXIST) {
7414a03f 304 kfree(zone);
8c9c2bf7
AJ
305 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
306 logical >> PAGE_CACHE_SHIFT, 1);
8e9aa51f 307 if (ret == 1 && logical >= zone->start && logical <= zone->end)
8c9c2bf7 308 kref_get(&zone->refcnt);
8e9aa51f
ZL
309 else
310 zone = NULL;
7414a03f 311 }
8c9c2bf7 312 spin_unlock(&fs_info->reada_lock);
7414a03f
AJ
313
314 return zone;
315}
316
317static struct reada_extent *reada_find_extent(struct btrfs_root *root,
318 u64 logical,
1e7970c0 319 struct btrfs_key *top)
7414a03f
AJ
320{
321 int ret;
7414a03f 322 struct reada_extent *re = NULL;
8c9c2bf7 323 struct reada_extent *re_exist = NULL;
7414a03f 324 struct btrfs_fs_info *fs_info = root->fs_info;
21ca543e 325 struct btrfs_bio *bbio = NULL;
7414a03f 326 struct btrfs_device *dev;
207a232c 327 struct btrfs_device *prev_dev;
7414a03f
AJ
328 u32 blocksize;
329 u64 length;
7cb2c420 330 int real_stripes;
7414a03f 331 int nzones = 0;
7414a03f 332 unsigned long index = logical >> PAGE_CACHE_SHIFT;
8dabb742 333 int dev_replace_is_ongoing;
31945021 334 int have_zone = 0;
7414a03f 335
7414a03f
AJ
336 spin_lock(&fs_info->reada_lock);
337 re = radix_tree_lookup(&fs_info->reada_tree, index);
338 if (re)
99621b44 339 re->refcnt++;
7414a03f
AJ
340 spin_unlock(&fs_info->reada_lock);
341
8c9c2bf7 342 if (re)
7414a03f
AJ
343 return re;
344
345 re = kzalloc(sizeof(*re), GFP_NOFS);
346 if (!re)
347 return NULL;
348
707e8a07 349 blocksize = root->nodesize;
7414a03f 350 re->logical = logical;
7414a03f
AJ
351 re->top = *top;
352 INIT_LIST_HEAD(&re->extctl);
353 spin_lock_init(&re->lock);
99621b44 354 re->refcnt = 1;
7414a03f
AJ
355
356 /*
357 * map block
358 */
359 length = blocksize;
29a8d9a0
SB
360 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
361 &bbio, 0);
21ca543e 362 if (ret || !bbio || length < blocksize)
7414a03f
AJ
363 goto error;
364
94598ba8 365 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
efe120a0
FH
366 btrfs_err(root->fs_info,
367 "readahead: more than %d copies not supported",
368 BTRFS_MAX_MIRRORS);
7414a03f
AJ
369 goto error;
370 }
371
7cb2c420
OS
372 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
373 for (nzones = 0; nzones < real_stripes; ++nzones) {
7414a03f
AJ
374 struct reada_zone *zone;
375
21ca543e
ID
376 dev = bbio->stripes[nzones].dev;
377 zone = reada_find_zone(fs_info, dev, logical, bbio);
7414a03f 378 if (!zone)
6a159d2a 379 continue;
7414a03f 380
6a159d2a 381 re->zones[re->nzones++] = zone;
7414a03f
AJ
382 spin_lock(&zone->lock);
383 if (!zone->elems)
384 kref_get(&zone->refcnt);
385 ++zone->elems;
386 spin_unlock(&zone->lock);
387 spin_lock(&fs_info->reada_lock);
388 kref_put(&zone->refcnt, reada_zone_release);
389 spin_unlock(&fs_info->reada_lock);
390 }
6a159d2a 391 if (re->nzones == 0) {
7414a03f
AJ
392 /* not a single zone found, error and out */
393 goto error;
394 }
395
396 /* insert extent in reada_tree + all per-device trees, all or nothing */
8dabb742 397 btrfs_dev_replace_lock(&fs_info->dev_replace);
7414a03f
AJ
398 spin_lock(&fs_info->reada_lock);
399 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
8c9c2bf7
AJ
400 if (ret == -EEXIST) {
401 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
402 BUG_ON(!re_exist);
99621b44 403 re_exist->refcnt++;
8c9c2bf7 404 spin_unlock(&fs_info->reada_lock);
8dabb742 405 btrfs_dev_replace_unlock(&fs_info->dev_replace);
8c9c2bf7
AJ
406 goto error;
407 }
7414a03f
AJ
408 if (ret) {
409 spin_unlock(&fs_info->reada_lock);
8dabb742 410 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f
AJ
411 goto error;
412 }
207a232c 413 prev_dev = NULL;
8dabb742
SB
414 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415 &fs_info->dev_replace);
6a159d2a
ZL
416 for (nzones = 0; nzones < re->nzones; ++nzones) {
417 dev = re->zones[nzones]->device;
418
207a232c
AJ
419 if (dev == prev_dev) {
420 /*
421 * in case of DUP, just add the first zone. As both
422 * are on the same device, there's nothing to gain
423 * from adding both.
424 * Also, it wouldn't work, as the tree is per device
425 * and adding would fail with EEXIST
426 */
427 continue;
428 }
ff023aac 429 if (!dev->bdev) {
5fbc7c59
WS
430 /*
431 * cannot read ahead on missing device, but for RAID5/6,
432 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
433 * device for such case.
434 */
435 if (nzones > 1)
436 continue;
ff023aac 437 }
8dabb742
SB
438 if (dev_replace_is_ongoing &&
439 dev == fs_info->dev_replace.tgtdev) {
440 /*
441 * as this device is selected for reading only as
442 * a last resort, skip it for read ahead.
443 */
444 continue;
445 }
207a232c 446 prev_dev = dev;
7414a03f
AJ
447 ret = radix_tree_insert(&dev->reada_extents, index, re);
448 if (ret) {
6a159d2a
ZL
449 while (--nzones >= 0) {
450 dev = re->zones[nzones]->device;
7414a03f 451 BUG_ON(dev == NULL);
ff023aac 452 /* ignore whether the entry was inserted */
7414a03f
AJ
453 radix_tree_delete(&dev->reada_extents, index);
454 }
455 BUG_ON(fs_info == NULL);
456 radix_tree_delete(&fs_info->reada_tree, index);
457 spin_unlock(&fs_info->reada_lock);
8dabb742 458 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f
AJ
459 goto error;
460 }
31945021 461 have_zone = 1;
7414a03f
AJ
462 }
463 spin_unlock(&fs_info->reada_lock);
8dabb742 464 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f 465
31945021
ZL
466 if (!have_zone)
467 goto error;
468
6e9606d2 469 btrfs_put_bbio(bbio);
7414a03f
AJ
470 return re;
471
472error:
6a159d2a 473 for (nzones = 0; nzones < re->nzones; ++nzones) {
7414a03f
AJ
474 struct reada_zone *zone;
475
7414a03f
AJ
476 zone = re->zones[nzones];
477 kref_get(&zone->refcnt);
478 spin_lock(&zone->lock);
479 --zone->elems;
480 if (zone->elems == 0) {
481 /*
482 * no fs_info->reada_lock needed, as this can't be
483 * the last ref
484 */
485 kref_put(&zone->refcnt, reada_zone_release);
486 }
487 spin_unlock(&zone->lock);
488
489 spin_lock(&fs_info->reada_lock);
490 kref_put(&zone->refcnt, reada_zone_release);
491 spin_unlock(&fs_info->reada_lock);
492 }
6e9606d2 493 btrfs_put_bbio(bbio);
7414a03f 494 kfree(re);
8c9c2bf7 495 return re_exist;
7414a03f
AJ
496}
497
7414a03f
AJ
498static void reada_extent_put(struct btrfs_fs_info *fs_info,
499 struct reada_extent *re)
500{
501 int i;
502 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
503
504 spin_lock(&fs_info->reada_lock);
99621b44 505 if (--re->refcnt) {
7414a03f
AJ
506 spin_unlock(&fs_info->reada_lock);
507 return;
508 }
509
510 radix_tree_delete(&fs_info->reada_tree, index);
511 for (i = 0; i < re->nzones; ++i) {
512 struct reada_zone *zone = re->zones[i];
513
514 radix_tree_delete(&zone->device->reada_extents, index);
515 }
516
517 spin_unlock(&fs_info->reada_lock);
518
519 for (i = 0; i < re->nzones; ++i) {
520 struct reada_zone *zone = re->zones[i];
521
522 kref_get(&zone->refcnt);
523 spin_lock(&zone->lock);
524 --zone->elems;
525 if (zone->elems == 0) {
526 /* no fs_info->reada_lock needed, as this can't be
527 * the last ref */
528 kref_put(&zone->refcnt, reada_zone_release);
529 }
530 spin_unlock(&zone->lock);
531
532 spin_lock(&fs_info->reada_lock);
533 kref_put(&zone->refcnt, reada_zone_release);
534 spin_unlock(&fs_info->reada_lock);
535 }
536 if (re->scheduled_for)
537 atomic_dec(&re->scheduled_for->reada_in_flight);
538
539 kfree(re);
540}
541
542static void reada_zone_release(struct kref *kref)
543{
544 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
545
546 radix_tree_delete(&zone->device->reada_zones,
547 zone->end >> PAGE_CACHE_SHIFT);
548
549 kfree(zone);
550}
551
552static void reada_control_release(struct kref *kref)
553{
554 struct reada_control *rc = container_of(kref, struct reada_control,
555 refcnt);
556
557 kfree(rc);
558}
559
560static int reada_add_block(struct reada_control *rc, u64 logical,
1e7970c0 561 struct btrfs_key *top, u64 generation)
7414a03f
AJ
562{
563 struct btrfs_root *root = rc->root;
564 struct reada_extent *re;
565 struct reada_extctl *rec;
566
1e7970c0 567 re = reada_find_extent(root, logical, top); /* takes one ref */
7414a03f
AJ
568 if (!re)
569 return -1;
570
571 rec = kzalloc(sizeof(*rec), GFP_NOFS);
572 if (!rec) {
573 reada_extent_put(root->fs_info, re);
ddd664f4 574 return -ENOMEM;
7414a03f
AJ
575 }
576
577 rec->rc = rc;
578 rec->generation = generation;
579 atomic_inc(&rc->elems);
580
581 spin_lock(&re->lock);
582 list_add_tail(&rec->list, &re->extctl);
583 spin_unlock(&re->lock);
584
585 /* leave the ref on the extent */
586
587 return 0;
588}
589
590/*
591 * called with fs_info->reada_lock held
592 */
593static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
594{
595 int i;
596 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
597
598 for (i = 0; i < zone->ndevs; ++i) {
599 struct reada_zone *peer;
600 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
601 if (peer && peer->device != zone->device)
602 peer->locked = lock;
603 }
604}
605
606/*
607 * called with fs_info->reada_lock held
608 */
609static int reada_pick_zone(struct btrfs_device *dev)
610{
611 struct reada_zone *top_zone = NULL;
612 struct reada_zone *top_locked_zone = NULL;
613 u64 top_elems = 0;
614 u64 top_locked_elems = 0;
615 unsigned long index = 0;
616 int ret;
617
618 if (dev->reada_curr_zone) {
619 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
620 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
621 dev->reada_curr_zone = NULL;
622 }
623 /* pick the zone with the most elements */
624 while (1) {
625 struct reada_zone *zone;
626
627 ret = radix_tree_gang_lookup(&dev->reada_zones,
628 (void **)&zone, index, 1);
629 if (ret == 0)
630 break;
631 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
632 if (zone->locked) {
633 if (zone->elems > top_locked_elems) {
634 top_locked_elems = zone->elems;
635 top_locked_zone = zone;
636 }
637 } else {
638 if (zone->elems > top_elems) {
639 top_elems = zone->elems;
640 top_zone = zone;
641 }
642 }
643 }
644 if (top_zone)
645 dev->reada_curr_zone = top_zone;
646 else if (top_locked_zone)
647 dev->reada_curr_zone = top_locked_zone;
648 else
649 return 0;
650
651 dev->reada_next = dev->reada_curr_zone->start;
652 kref_get(&dev->reada_curr_zone->refcnt);
653 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
654
655 return 1;
656}
657
658static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
659 struct btrfs_device *dev)
660{
661 struct reada_extent *re = NULL;
662 int mirror_num = 0;
663 struct extent_buffer *eb = NULL;
664 u64 logical;
7414a03f
AJ
665 int ret;
666 int i;
7414a03f
AJ
667
668 spin_lock(&fs_info->reada_lock);
669 if (dev->reada_curr_zone == NULL) {
670 ret = reada_pick_zone(dev);
671 if (!ret) {
672 spin_unlock(&fs_info->reada_lock);
673 return 0;
674 }
675 }
676 /*
677 * FIXME currently we issue the reads one extent at a time. If we have
678 * a contiguous block of extents, we could also coagulate them or use
679 * plugging to speed things up
680 */
681 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
682 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
50378530 683 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
7414a03f
AJ
684 ret = reada_pick_zone(dev);
685 if (!ret) {
686 spin_unlock(&fs_info->reada_lock);
687 return 0;
688 }
689 re = NULL;
690 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
691 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
692 }
693 if (ret == 0) {
694 spin_unlock(&fs_info->reada_lock);
695 return 0;
696 }
b6ae40ec 697 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
99621b44 698 re->refcnt++;
7414a03f
AJ
699
700 spin_unlock(&fs_info->reada_lock);
701
a3f7fde2
ZL
702 spin_lock(&re->lock);
703 if (re->scheduled_for || list_empty(&re->extctl)) {
704 spin_unlock(&re->lock);
705 reada_extent_put(fs_info, re);
706 return 0;
707 }
708 re->scheduled_for = dev;
709 spin_unlock(&re->lock);
710
7414a03f
AJ
711 /*
712 * find mirror num
713 */
714 for (i = 0; i < re->nzones; ++i) {
715 if (re->zones[i]->device == dev) {
716 mirror_num = i + 1;
717 break;
718 }
719 }
720 logical = re->logical;
7414a03f 721
7414a03f 722 atomic_inc(&dev->reada_in_flight);
b6ae40ec 723 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
c0dcaa4d 724 mirror_num, &eb);
7414a03f 725 if (ret)
02873e43 726 __readahead_hook(fs_info, re, NULL, logical, ret);
7414a03f 727 else if (eb)
02873e43 728 __readahead_hook(fs_info, re, eb, eb->start, ret);
7414a03f
AJ
729
730 if (eb)
731 free_extent_buffer(eb);
732
b257cf50
ZL
733 reada_extent_put(fs_info, re);
734
7414a03f
AJ
735 return 1;
736
737}
738
d458b054 739static void reada_start_machine_worker(struct btrfs_work *work)
7414a03f
AJ
740{
741 struct reada_machine_work *rmw;
742 struct btrfs_fs_info *fs_info;
3d136a11 743 int old_ioprio;
7414a03f
AJ
744
745 rmw = container_of(work, struct reada_machine_work, work);
746 fs_info = rmw->fs_info;
747
748 kfree(rmw);
749
3d136a11
SB
750 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
751 task_nice_ioprio(current));
752 set_task_ioprio(current, BTRFS_IOPRIO_READA);
7414a03f 753 __reada_start_machine(fs_info);
3d136a11 754 set_task_ioprio(current, old_ioprio);
7414a03f
AJ
755}
756
757static void __reada_start_machine(struct btrfs_fs_info *fs_info)
758{
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
761 u64 enqueued;
762 u64 total = 0;
763 int i;
764
765 do {
766 enqueued = 0;
767 list_for_each_entry(device, &fs_devices->devices, dev_list) {
768 if (atomic_read(&device->reada_in_flight) <
769 MAX_IN_FLIGHT)
770 enqueued += reada_start_machine_dev(fs_info,
771 device);
772 }
773 total += enqueued;
774 } while (enqueued && total < 10000);
775
776 if (enqueued == 0)
777 return;
778
779 /*
780 * If everything is already in the cache, this is effectively single
781 * threaded. To a) not hold the caller for too long and b) to utilize
782 * more cores, we broke the loop above after 10000 iterations and now
783 * enqueue to workers to finish it. This will distribute the load to
784 * the cores.
785 */
786 for (i = 0; i < 2; ++i)
787 reada_start_machine(fs_info);
788}
789
790static void reada_start_machine(struct btrfs_fs_info *fs_info)
791{
792 struct reada_machine_work *rmw;
793
794 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
795 if (!rmw) {
796 /* FIXME we cannot handle this properly right now */
797 BUG();
798 }
9e0af237
LB
799 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
800 reada_start_machine_worker, NULL, NULL);
7414a03f
AJ
801 rmw->fs_info = fs_info;
802
736cfa15 803 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
7414a03f
AJ
804}
805
806#ifdef DEBUG
807static void dump_devs(struct btrfs_fs_info *fs_info, int all)
808{
809 struct btrfs_device *device;
810 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
811 unsigned long index;
812 int ret;
813 int i;
814 int j;
815 int cnt;
816
817 spin_lock(&fs_info->reada_lock);
818 list_for_each_entry(device, &fs_devices->devices, dev_list) {
819 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
820 atomic_read(&device->reada_in_flight));
821 index = 0;
822 while (1) {
823 struct reada_zone *zone;
824 ret = radix_tree_gang_lookup(&device->reada_zones,
825 (void **)&zone, index, 1);
826 if (ret == 0)
827 break;
828 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
829 "%d devs", zone->start, zone->end, zone->elems,
830 zone->locked);
831 for (j = 0; j < zone->ndevs; ++j) {
832 printk(KERN_CONT " %lld",
833 zone->devs[j]->devid);
834 }
835 if (device->reada_curr_zone == zone)
836 printk(KERN_CONT " curr off %llu",
837 device->reada_next - zone->start);
838 printk(KERN_CONT "\n");
839 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
840 }
841 cnt = 0;
842 index = 0;
843 while (all) {
844 struct reada_extent *re = NULL;
845
846 ret = radix_tree_gang_lookup(&device->reada_extents,
847 (void **)&re, index, 1);
848 if (ret == 0)
849 break;
850 printk(KERN_DEBUG
851 " re: logical %llu size %u empty %d for %lld",
b6ae40ec 852 re->logical, fs_info->tree_root->nodesize,
7414a03f
AJ
853 list_empty(&re->extctl), re->scheduled_for ?
854 re->scheduled_for->devid : -1);
855
856 for (i = 0; i < re->nzones; ++i) {
857 printk(KERN_CONT " zone %llu-%llu devs",
858 re->zones[i]->start,
859 re->zones[i]->end);
860 for (j = 0; j < re->zones[i]->ndevs; ++j) {
861 printk(KERN_CONT " %lld",
862 re->zones[i]->devs[j]->devid);
863 }
864 }
865 printk(KERN_CONT "\n");
866 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
867 if (++cnt > 15)
868 break;
869 }
870 }
871
872 index = 0;
873 cnt = 0;
874 while (all) {
875 struct reada_extent *re = NULL;
876
877 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
878 index, 1);
879 if (ret == 0)
880 break;
881 if (!re->scheduled_for) {
882 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
883 continue;
884 }
885 printk(KERN_DEBUG
886 "re: logical %llu size %u list empty %d for %lld",
b6ae40ec
DS
887 re->logical, fs_info->tree_root->nodesize,
888 list_empty(&re->extctl),
7414a03f
AJ
889 re->scheduled_for ? re->scheduled_for->devid : -1);
890 for (i = 0; i < re->nzones; ++i) {
891 printk(KERN_CONT " zone %llu-%llu devs",
892 re->zones[i]->start,
893 re->zones[i]->end);
894 for (i = 0; i < re->nzones; ++i) {
895 printk(KERN_CONT " zone %llu-%llu devs",
896 re->zones[i]->start,
897 re->zones[i]->end);
898 for (j = 0; j < re->zones[i]->ndevs; ++j) {
899 printk(KERN_CONT " %lld",
900 re->zones[i]->devs[j]->devid);
901 }
902 }
903 }
904 printk(KERN_CONT "\n");
905 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
906 }
907 spin_unlock(&fs_info->reada_lock);
908}
909#endif
910
911/*
912 * interface
913 */
914struct reada_control *btrfs_reada_add(struct btrfs_root *root,
915 struct btrfs_key *key_start, struct btrfs_key *key_end)
916{
917 struct reada_control *rc;
918 u64 start;
919 u64 generation;
ddd664f4 920 int ret;
7414a03f
AJ
921 struct extent_buffer *node;
922 static struct btrfs_key max_key = {
923 .objectid = (u64)-1,
924 .type = (u8)-1,
925 .offset = (u64)-1
926 };
927
928 rc = kzalloc(sizeof(*rc), GFP_NOFS);
929 if (!rc)
930 return ERR_PTR(-ENOMEM);
931
932 rc->root = root;
933 rc->key_start = *key_start;
934 rc->key_end = *key_end;
935 atomic_set(&rc->elems, 0);
936 init_waitqueue_head(&rc->wait);
937 kref_init(&rc->refcnt);
938 kref_get(&rc->refcnt); /* one ref for having elements */
939
940 node = btrfs_root_node(root);
941 start = node->start;
7414a03f
AJ
942 generation = btrfs_header_generation(node);
943 free_extent_buffer(node);
944
1e7970c0 945 ret = reada_add_block(rc, start, &max_key, generation);
ddd664f4 946 if (ret) {
ff023aac 947 kfree(rc);
ddd664f4 948 return ERR_PTR(ret);
ff023aac 949 }
7414a03f
AJ
950
951 reada_start_machine(root->fs_info);
952
953 return rc;
954}
955
956#ifdef DEBUG
957int btrfs_reada_wait(void *handle)
958{
959 struct reada_control *rc = handle;
960
961 while (atomic_read(&rc->elems)) {
962 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
963 5 * HZ);
3c59ccd3
V
964 dump_devs(rc->root->fs_info,
965 atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
966 }
967
3c59ccd3 968 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
969
970 kref_put(&rc->refcnt, reada_control_release);
971
972 return 0;
973}
974#else
975int btrfs_reada_wait(void *handle)
976{
977 struct reada_control *rc = handle;
978
979 while (atomic_read(&rc->elems)) {
980 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
981 }
982
983 kref_put(&rc->refcnt, reada_control_release);
984
985 return 0;
986}
987#endif
988
989void btrfs_reada_detach(void *handle)
990{
991 struct reada_control *rc = handle;
992
993 kref_put(&rc->refcnt, reada_control_release);
994}