]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/reada.c
btrfs: reada: simplify dev->reada_in_flight processing
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / reada.c
CommitLineData
7414a03f
AJ
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include <linux/workqueue.h>
26#include "ctree.h"
27#include "volumes.h"
28#include "disk-io.h"
29#include "transaction.h"
8dabb742 30#include "dev-replace.h"
7414a03f
AJ
31
32#undef DEBUG
33
34/*
35 * This is the implementation for the generic read ahead framework.
36 *
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41 *
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
56 */
57
7414a03f
AJ
58#define MAX_IN_FLIGHT 6
59
60struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
64};
65
66struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
7414a03f
AJ
69 int err;
70 struct list_head extctl;
99621b44 71 int refcnt;
7414a03f 72 spinlock_t lock;
94598ba8 73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
7414a03f 74 int nzones;
895a11b8 75 int scheduled;
7414a03f
AJ
76};
77
78struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
94598ba8
SB
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
7414a03f
AJ
88 int ndevs;
89 struct kref refcnt;
90};
91
92struct reada_machine_work {
d458b054 93 struct btrfs_work work;
7414a03f
AJ
94 struct btrfs_fs_info *fs_info;
95};
96
97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98static void reada_control_release(struct kref *kref);
99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
1e7970c0 104 struct btrfs_key *top, u64 generation);
7414a03f
AJ
105
106/* recurses */
107/* in case of err, eb might be NULL */
02873e43
ZL
108static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
110 u64 start, int err)
7414a03f
AJ
111{
112 int level = 0;
113 int nritems;
114 int i;
115 u64 bytenr;
116 u64 generation;
7414a03f 117 struct list_head list;
7414a03f
AJ
118
119 if (eb)
120 level = btrfs_header_level(eb);
121
7414a03f
AJ
122 spin_lock(&re->lock);
123 /*
124 * just take the full list from the extent. afterwards we
125 * don't need the lock anymore
126 */
127 list_replace_init(&re->extctl, &list);
895a11b8 128 re->scheduled = 0;
7414a03f
AJ
129 spin_unlock(&re->lock);
130
57f16e08
ZL
131 /*
132 * this is the error case, the extent buffer has not been
133 * read correctly. We won't access anything from it and
134 * just cleanup our data structures. Effectively this will
135 * cut the branch below this node from read ahead.
136 */
137 if (err)
138 goto cleanup;
7414a03f 139
57f16e08
ZL
140 /*
141 * FIXME: currently we just set nritems to 0 if this is a leaf,
142 * effectively ignoring the content. In a next step we could
143 * trigger more readahead depending from the content, e.g.
144 * fetch the checksums for the extents in the leaf.
145 */
146 if (!level)
147 goto cleanup;
148
149 nritems = btrfs_header_nritems(eb);
150 generation = btrfs_header_generation(eb);
7414a03f
AJ
151 for (i = 0; i < nritems; i++) {
152 struct reada_extctl *rec;
153 u64 n_gen;
154 struct btrfs_key key;
155 struct btrfs_key next_key;
156
157 btrfs_node_key_to_cpu(eb, &key, i);
158 if (i + 1 < nritems)
159 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
160 else
161 next_key = re->top;
162 bytenr = btrfs_node_blockptr(eb, i);
163 n_gen = btrfs_node_ptr_generation(eb, i);
164
165 list_for_each_entry(rec, &list, list) {
166 struct reada_control *rc = rec->rc;
167
168 /*
169 * if the generation doesn't match, just ignore this
170 * extctl. This will probably cut off a branch from
171 * prefetch. Alternatively one could start a new (sub-)
172 * prefetch for this branch, starting again from root.
173 * FIXME: move the generation check out of this loop
174 */
175#ifdef DEBUG
176 if (rec->generation != generation) {
02873e43
ZL
177 btrfs_debug(fs_info,
178 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
179 key.objectid, key.type, key.offset,
180 rec->generation, generation);
7414a03f
AJ
181 }
182#endif
183 if (rec->generation == generation &&
184 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
185 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
1e7970c0 186 reada_add_block(rc, bytenr, &next_key, n_gen);
7414a03f
AJ
187 }
188 }
57f16e08
ZL
189
190cleanup:
7414a03f
AJ
191 /*
192 * free extctl records
193 */
194 while (!list_empty(&list)) {
195 struct reada_control *rc;
196 struct reada_extctl *rec;
197
198 rec = list_first_entry(&list, struct reada_extctl, list);
199 list_del(&rec->list);
200 rc = rec->rc;
201 kfree(rec);
202
203 kref_get(&rc->refcnt);
204 if (atomic_dec_and_test(&rc->elems)) {
205 kref_put(&rc->refcnt, reada_control_release);
206 wake_up(&rc->wait);
207 }
208 kref_put(&rc->refcnt, reada_control_release);
209
210 reada_extent_put(fs_info, re); /* one ref for each entry */
211 }
6e39dbe8 212
6e39dbe8 213 return;
7414a03f
AJ
214}
215
216/*
217 * start is passed separately in case eb in NULL, which may be the case with
218 * failed I/O
219 */
02873e43
ZL
220int btree_readahead_hook(struct btrfs_fs_info *fs_info,
221 struct extent_buffer *eb, u64 start, int err)
7414a03f 222{
6e39dbe8
ZL
223 int ret = 0;
224 struct reada_extent *re;
7414a03f 225
6e39dbe8
ZL
226 /* find extent */
227 spin_lock(&fs_info->reada_lock);
228 re = radix_tree_lookup(&fs_info->reada_tree,
229 start >> PAGE_CACHE_SHIFT);
230 if (re)
231 re->refcnt++;
232 spin_unlock(&fs_info->reada_lock);
233 if (!re) {
234 ret = -1;
235 goto start_machine;
236 }
7414a03f 237
6e39dbe8
ZL
238 __readahead_hook(fs_info, re, eb, start, err);
239 reada_extent_put(fs_info, re); /* our ref */
7414a03f 240
6e39dbe8
ZL
241start_machine:
242 reada_start_machine(fs_info);
7414a03f
AJ
243 return ret;
244}
245
246static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
247 struct btrfs_device *dev, u64 logical,
21ca543e 248 struct btrfs_bio *bbio)
7414a03f
AJ
249{
250 int ret;
7414a03f
AJ
251 struct reada_zone *zone;
252 struct btrfs_block_group_cache *cache = NULL;
253 u64 start;
254 u64 end;
255 int i;
256
7414a03f
AJ
257 zone = NULL;
258 spin_lock(&fs_info->reada_lock);
259 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
260 logical >> PAGE_CACHE_SHIFT, 1);
c37f49c7 261 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
7414a03f 262 kref_get(&zone->refcnt);
7414a03f 263 spin_unlock(&fs_info->reada_lock);
c37f49c7 264 return zone;
7414a03f
AJ
265 }
266
c37f49c7
ZL
267 spin_unlock(&fs_info->reada_lock);
268
7414a03f
AJ
269 cache = btrfs_lookup_block_group(fs_info, logical);
270 if (!cache)
271 return NULL;
272
273 start = cache->key.objectid;
274 end = start + cache->key.offset - 1;
275 btrfs_put_block_group(cache);
276
277 zone = kzalloc(sizeof(*zone), GFP_NOFS);
278 if (!zone)
279 return NULL;
280
281 zone->start = start;
282 zone->end = end;
283 INIT_LIST_HEAD(&zone->list);
284 spin_lock_init(&zone->lock);
285 zone->locked = 0;
286 kref_init(&zone->refcnt);
287 zone->elems = 0;
288 zone->device = dev; /* our device always sits at index 0 */
21ca543e 289 for (i = 0; i < bbio->num_stripes; ++i) {
7414a03f 290 /* bounds have already been checked */
21ca543e 291 zone->devs[i] = bbio->stripes[i].dev;
7414a03f 292 }
21ca543e 293 zone->ndevs = bbio->num_stripes;
7414a03f
AJ
294
295 spin_lock(&fs_info->reada_lock);
296 ret = radix_tree_insert(&dev->reada_zones,
a175423c 297 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
7414a03f 298 zone);
7414a03f 299
8c9c2bf7 300 if (ret == -EEXIST) {
7414a03f 301 kfree(zone);
8c9c2bf7
AJ
302 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
303 logical >> PAGE_CACHE_SHIFT, 1);
8e9aa51f 304 if (ret == 1 && logical >= zone->start && logical <= zone->end)
8c9c2bf7 305 kref_get(&zone->refcnt);
8e9aa51f
ZL
306 else
307 zone = NULL;
7414a03f 308 }
8c9c2bf7 309 spin_unlock(&fs_info->reada_lock);
7414a03f
AJ
310
311 return zone;
312}
313
314static struct reada_extent *reada_find_extent(struct btrfs_root *root,
315 u64 logical,
1e7970c0 316 struct btrfs_key *top)
7414a03f
AJ
317{
318 int ret;
7414a03f 319 struct reada_extent *re = NULL;
8c9c2bf7 320 struct reada_extent *re_exist = NULL;
7414a03f 321 struct btrfs_fs_info *fs_info = root->fs_info;
21ca543e 322 struct btrfs_bio *bbio = NULL;
7414a03f 323 struct btrfs_device *dev;
207a232c 324 struct btrfs_device *prev_dev;
7414a03f
AJ
325 u32 blocksize;
326 u64 length;
7cb2c420 327 int real_stripes;
7414a03f 328 int nzones = 0;
7414a03f 329 unsigned long index = logical >> PAGE_CACHE_SHIFT;
8dabb742 330 int dev_replace_is_ongoing;
31945021 331 int have_zone = 0;
7414a03f 332
7414a03f
AJ
333 spin_lock(&fs_info->reada_lock);
334 re = radix_tree_lookup(&fs_info->reada_tree, index);
335 if (re)
99621b44 336 re->refcnt++;
7414a03f
AJ
337 spin_unlock(&fs_info->reada_lock);
338
8c9c2bf7 339 if (re)
7414a03f
AJ
340 return re;
341
342 re = kzalloc(sizeof(*re), GFP_NOFS);
343 if (!re)
344 return NULL;
345
707e8a07 346 blocksize = root->nodesize;
7414a03f 347 re->logical = logical;
7414a03f
AJ
348 re->top = *top;
349 INIT_LIST_HEAD(&re->extctl);
350 spin_lock_init(&re->lock);
99621b44 351 re->refcnt = 1;
7414a03f
AJ
352
353 /*
354 * map block
355 */
356 length = blocksize;
29a8d9a0
SB
357 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
358 &bbio, 0);
21ca543e 359 if (ret || !bbio || length < blocksize)
7414a03f
AJ
360 goto error;
361
94598ba8 362 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
efe120a0
FH
363 btrfs_err(root->fs_info,
364 "readahead: more than %d copies not supported",
365 BTRFS_MAX_MIRRORS);
7414a03f
AJ
366 goto error;
367 }
368
7cb2c420
OS
369 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
370 for (nzones = 0; nzones < real_stripes; ++nzones) {
7414a03f
AJ
371 struct reada_zone *zone;
372
21ca543e
ID
373 dev = bbio->stripes[nzones].dev;
374 zone = reada_find_zone(fs_info, dev, logical, bbio);
7414a03f 375 if (!zone)
6a159d2a 376 continue;
7414a03f 377
6a159d2a 378 re->zones[re->nzones++] = zone;
7414a03f
AJ
379 spin_lock(&zone->lock);
380 if (!zone->elems)
381 kref_get(&zone->refcnt);
382 ++zone->elems;
383 spin_unlock(&zone->lock);
384 spin_lock(&fs_info->reada_lock);
385 kref_put(&zone->refcnt, reada_zone_release);
386 spin_unlock(&fs_info->reada_lock);
387 }
6a159d2a 388 if (re->nzones == 0) {
7414a03f
AJ
389 /* not a single zone found, error and out */
390 goto error;
391 }
392
393 /* insert extent in reada_tree + all per-device trees, all or nothing */
8dabb742 394 btrfs_dev_replace_lock(&fs_info->dev_replace);
7414a03f
AJ
395 spin_lock(&fs_info->reada_lock);
396 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
8c9c2bf7
AJ
397 if (ret == -EEXIST) {
398 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
399 BUG_ON(!re_exist);
99621b44 400 re_exist->refcnt++;
8c9c2bf7 401 spin_unlock(&fs_info->reada_lock);
8dabb742 402 btrfs_dev_replace_unlock(&fs_info->dev_replace);
8c9c2bf7
AJ
403 goto error;
404 }
7414a03f
AJ
405 if (ret) {
406 spin_unlock(&fs_info->reada_lock);
8dabb742 407 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f
AJ
408 goto error;
409 }
207a232c 410 prev_dev = NULL;
8dabb742
SB
411 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
412 &fs_info->dev_replace);
6a159d2a
ZL
413 for (nzones = 0; nzones < re->nzones; ++nzones) {
414 dev = re->zones[nzones]->device;
415
207a232c
AJ
416 if (dev == prev_dev) {
417 /*
418 * in case of DUP, just add the first zone. As both
419 * are on the same device, there's nothing to gain
420 * from adding both.
421 * Also, it wouldn't work, as the tree is per device
422 * and adding would fail with EEXIST
423 */
424 continue;
425 }
ff023aac 426 if (!dev->bdev) {
5fbc7c59
WS
427 /*
428 * cannot read ahead on missing device, but for RAID5/6,
429 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
430 * device for such case.
431 */
432 if (nzones > 1)
433 continue;
ff023aac 434 }
8dabb742
SB
435 if (dev_replace_is_ongoing &&
436 dev == fs_info->dev_replace.tgtdev) {
437 /*
438 * as this device is selected for reading only as
439 * a last resort, skip it for read ahead.
440 */
441 continue;
442 }
207a232c 443 prev_dev = dev;
7414a03f
AJ
444 ret = radix_tree_insert(&dev->reada_extents, index, re);
445 if (ret) {
6a159d2a
ZL
446 while (--nzones >= 0) {
447 dev = re->zones[nzones]->device;
7414a03f 448 BUG_ON(dev == NULL);
ff023aac 449 /* ignore whether the entry was inserted */
7414a03f
AJ
450 radix_tree_delete(&dev->reada_extents, index);
451 }
452 BUG_ON(fs_info == NULL);
453 radix_tree_delete(&fs_info->reada_tree, index);
454 spin_unlock(&fs_info->reada_lock);
8dabb742 455 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f
AJ
456 goto error;
457 }
31945021 458 have_zone = 1;
7414a03f
AJ
459 }
460 spin_unlock(&fs_info->reada_lock);
8dabb742 461 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f 462
31945021
ZL
463 if (!have_zone)
464 goto error;
465
6e9606d2 466 btrfs_put_bbio(bbio);
7414a03f
AJ
467 return re;
468
469error:
6a159d2a 470 for (nzones = 0; nzones < re->nzones; ++nzones) {
7414a03f
AJ
471 struct reada_zone *zone;
472
7414a03f
AJ
473 zone = re->zones[nzones];
474 kref_get(&zone->refcnt);
475 spin_lock(&zone->lock);
476 --zone->elems;
477 if (zone->elems == 0) {
478 /*
479 * no fs_info->reada_lock needed, as this can't be
480 * the last ref
481 */
482 kref_put(&zone->refcnt, reada_zone_release);
483 }
484 spin_unlock(&zone->lock);
485
486 spin_lock(&fs_info->reada_lock);
487 kref_put(&zone->refcnt, reada_zone_release);
488 spin_unlock(&fs_info->reada_lock);
489 }
6e9606d2 490 btrfs_put_bbio(bbio);
7414a03f 491 kfree(re);
8c9c2bf7 492 return re_exist;
7414a03f
AJ
493}
494
7414a03f
AJ
495static void reada_extent_put(struct btrfs_fs_info *fs_info,
496 struct reada_extent *re)
497{
498 int i;
499 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
500
501 spin_lock(&fs_info->reada_lock);
99621b44 502 if (--re->refcnt) {
7414a03f
AJ
503 spin_unlock(&fs_info->reada_lock);
504 return;
505 }
506
507 radix_tree_delete(&fs_info->reada_tree, index);
508 for (i = 0; i < re->nzones; ++i) {
509 struct reada_zone *zone = re->zones[i];
510
511 radix_tree_delete(&zone->device->reada_extents, index);
512 }
513
514 spin_unlock(&fs_info->reada_lock);
515
516 for (i = 0; i < re->nzones; ++i) {
517 struct reada_zone *zone = re->zones[i];
518
519 kref_get(&zone->refcnt);
520 spin_lock(&zone->lock);
521 --zone->elems;
522 if (zone->elems == 0) {
523 /* no fs_info->reada_lock needed, as this can't be
524 * the last ref */
525 kref_put(&zone->refcnt, reada_zone_release);
526 }
527 spin_unlock(&zone->lock);
528
529 spin_lock(&fs_info->reada_lock);
530 kref_put(&zone->refcnt, reada_zone_release);
531 spin_unlock(&fs_info->reada_lock);
532 }
7414a03f
AJ
533
534 kfree(re);
535}
536
537static void reada_zone_release(struct kref *kref)
538{
539 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
540
541 radix_tree_delete(&zone->device->reada_zones,
542 zone->end >> PAGE_CACHE_SHIFT);
543
544 kfree(zone);
545}
546
547static void reada_control_release(struct kref *kref)
548{
549 struct reada_control *rc = container_of(kref, struct reada_control,
550 refcnt);
551
552 kfree(rc);
553}
554
555static int reada_add_block(struct reada_control *rc, u64 logical,
1e7970c0 556 struct btrfs_key *top, u64 generation)
7414a03f
AJ
557{
558 struct btrfs_root *root = rc->root;
559 struct reada_extent *re;
560 struct reada_extctl *rec;
561
1e7970c0 562 re = reada_find_extent(root, logical, top); /* takes one ref */
7414a03f
AJ
563 if (!re)
564 return -1;
565
566 rec = kzalloc(sizeof(*rec), GFP_NOFS);
567 if (!rec) {
568 reada_extent_put(root->fs_info, re);
ddd664f4 569 return -ENOMEM;
7414a03f
AJ
570 }
571
572 rec->rc = rc;
573 rec->generation = generation;
574 atomic_inc(&rc->elems);
575
576 spin_lock(&re->lock);
577 list_add_tail(&rec->list, &re->extctl);
578 spin_unlock(&re->lock);
579
580 /* leave the ref on the extent */
581
582 return 0;
583}
584
585/*
586 * called with fs_info->reada_lock held
587 */
588static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
589{
590 int i;
591 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
592
593 for (i = 0; i < zone->ndevs; ++i) {
594 struct reada_zone *peer;
595 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
596 if (peer && peer->device != zone->device)
597 peer->locked = lock;
598 }
599}
600
601/*
602 * called with fs_info->reada_lock held
603 */
604static int reada_pick_zone(struct btrfs_device *dev)
605{
606 struct reada_zone *top_zone = NULL;
607 struct reada_zone *top_locked_zone = NULL;
608 u64 top_elems = 0;
609 u64 top_locked_elems = 0;
610 unsigned long index = 0;
611 int ret;
612
613 if (dev->reada_curr_zone) {
614 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
615 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
616 dev->reada_curr_zone = NULL;
617 }
618 /* pick the zone with the most elements */
619 while (1) {
620 struct reada_zone *zone;
621
622 ret = radix_tree_gang_lookup(&dev->reada_zones,
623 (void **)&zone, index, 1);
624 if (ret == 0)
625 break;
626 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
627 if (zone->locked) {
628 if (zone->elems > top_locked_elems) {
629 top_locked_elems = zone->elems;
630 top_locked_zone = zone;
631 }
632 } else {
633 if (zone->elems > top_elems) {
634 top_elems = zone->elems;
635 top_zone = zone;
636 }
637 }
638 }
639 if (top_zone)
640 dev->reada_curr_zone = top_zone;
641 else if (top_locked_zone)
642 dev->reada_curr_zone = top_locked_zone;
643 else
644 return 0;
645
646 dev->reada_next = dev->reada_curr_zone->start;
647 kref_get(&dev->reada_curr_zone->refcnt);
648 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
649
650 return 1;
651}
652
653static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
654 struct btrfs_device *dev)
655{
656 struct reada_extent *re = NULL;
657 int mirror_num = 0;
658 struct extent_buffer *eb = NULL;
659 u64 logical;
7414a03f
AJ
660 int ret;
661 int i;
7414a03f
AJ
662
663 spin_lock(&fs_info->reada_lock);
664 if (dev->reada_curr_zone == NULL) {
665 ret = reada_pick_zone(dev);
666 if (!ret) {
667 spin_unlock(&fs_info->reada_lock);
668 return 0;
669 }
670 }
671 /*
672 * FIXME currently we issue the reads one extent at a time. If we have
673 * a contiguous block of extents, we could also coagulate them or use
674 * plugging to speed things up
675 */
676 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
677 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
50378530 678 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
7414a03f
AJ
679 ret = reada_pick_zone(dev);
680 if (!ret) {
681 spin_unlock(&fs_info->reada_lock);
682 return 0;
683 }
684 re = NULL;
685 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
686 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
687 }
688 if (ret == 0) {
689 spin_unlock(&fs_info->reada_lock);
690 return 0;
691 }
b6ae40ec 692 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
99621b44 693 re->refcnt++;
7414a03f
AJ
694
695 spin_unlock(&fs_info->reada_lock);
696
a3f7fde2 697 spin_lock(&re->lock);
895a11b8 698 if (re->scheduled || list_empty(&re->extctl)) {
a3f7fde2
ZL
699 spin_unlock(&re->lock);
700 reada_extent_put(fs_info, re);
701 return 0;
702 }
895a11b8 703 re->scheduled = 1;
a3f7fde2
ZL
704 spin_unlock(&re->lock);
705
7414a03f
AJ
706 /*
707 * find mirror num
708 */
709 for (i = 0; i < re->nzones; ++i) {
710 if (re->zones[i]->device == dev) {
711 mirror_num = i + 1;
712 break;
713 }
714 }
715 logical = re->logical;
7414a03f 716
7414a03f 717 atomic_inc(&dev->reada_in_flight);
b6ae40ec 718 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
c0dcaa4d 719 mirror_num, &eb);
7414a03f 720 if (ret)
02873e43 721 __readahead_hook(fs_info, re, NULL, logical, ret);
7414a03f 722 else if (eb)
02873e43 723 __readahead_hook(fs_info, re, eb, eb->start, ret);
7414a03f
AJ
724
725 if (eb)
726 free_extent_buffer(eb);
727
895a11b8 728 atomic_dec(&dev->reada_in_flight);
b257cf50
ZL
729 reada_extent_put(fs_info, re);
730
7414a03f
AJ
731 return 1;
732
733}
734
d458b054 735static void reada_start_machine_worker(struct btrfs_work *work)
7414a03f
AJ
736{
737 struct reada_machine_work *rmw;
738 struct btrfs_fs_info *fs_info;
3d136a11 739 int old_ioprio;
7414a03f
AJ
740
741 rmw = container_of(work, struct reada_machine_work, work);
742 fs_info = rmw->fs_info;
743
744 kfree(rmw);
745
3d136a11
SB
746 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
747 task_nice_ioprio(current));
748 set_task_ioprio(current, BTRFS_IOPRIO_READA);
7414a03f 749 __reada_start_machine(fs_info);
3d136a11 750 set_task_ioprio(current, old_ioprio);
7414a03f
AJ
751}
752
753static void __reada_start_machine(struct btrfs_fs_info *fs_info)
754{
755 struct btrfs_device *device;
756 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
757 u64 enqueued;
758 u64 total = 0;
759 int i;
760
761 do {
762 enqueued = 0;
763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
764 if (atomic_read(&device->reada_in_flight) <
765 MAX_IN_FLIGHT)
766 enqueued += reada_start_machine_dev(fs_info,
767 device);
768 }
769 total += enqueued;
770 } while (enqueued && total < 10000);
771
772 if (enqueued == 0)
773 return;
774
775 /*
776 * If everything is already in the cache, this is effectively single
777 * threaded. To a) not hold the caller for too long and b) to utilize
778 * more cores, we broke the loop above after 10000 iterations and now
779 * enqueue to workers to finish it. This will distribute the load to
780 * the cores.
781 */
782 for (i = 0; i < 2; ++i)
783 reada_start_machine(fs_info);
784}
785
786static void reada_start_machine(struct btrfs_fs_info *fs_info)
787{
788 struct reada_machine_work *rmw;
789
790 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
791 if (!rmw) {
792 /* FIXME we cannot handle this properly right now */
793 BUG();
794 }
9e0af237
LB
795 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
796 reada_start_machine_worker, NULL, NULL);
7414a03f
AJ
797 rmw->fs_info = fs_info;
798
736cfa15 799 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
7414a03f
AJ
800}
801
802#ifdef DEBUG
803static void dump_devs(struct btrfs_fs_info *fs_info, int all)
804{
805 struct btrfs_device *device;
806 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
807 unsigned long index;
808 int ret;
809 int i;
810 int j;
811 int cnt;
812
813 spin_lock(&fs_info->reada_lock);
814 list_for_each_entry(device, &fs_devices->devices, dev_list) {
815 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
816 atomic_read(&device->reada_in_flight));
817 index = 0;
818 while (1) {
819 struct reada_zone *zone;
820 ret = radix_tree_gang_lookup(&device->reada_zones,
821 (void **)&zone, index, 1);
822 if (ret == 0)
823 break;
824 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
825 "%d devs", zone->start, zone->end, zone->elems,
826 zone->locked);
827 for (j = 0; j < zone->ndevs; ++j) {
828 printk(KERN_CONT " %lld",
829 zone->devs[j]->devid);
830 }
831 if (device->reada_curr_zone == zone)
832 printk(KERN_CONT " curr off %llu",
833 device->reada_next - zone->start);
834 printk(KERN_CONT "\n");
835 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
836 }
837 cnt = 0;
838 index = 0;
839 while (all) {
840 struct reada_extent *re = NULL;
841
842 ret = radix_tree_gang_lookup(&device->reada_extents,
843 (void **)&re, index, 1);
844 if (ret == 0)
845 break;
846 printk(KERN_DEBUG
895a11b8 847 " re: logical %llu size %u empty %d scheduled %d",
b6ae40ec 848 re->logical, fs_info->tree_root->nodesize,
895a11b8 849 list_empty(&re->extctl), re->scheduled);
7414a03f
AJ
850
851 for (i = 0; i < re->nzones; ++i) {
852 printk(KERN_CONT " zone %llu-%llu devs",
853 re->zones[i]->start,
854 re->zones[i]->end);
855 for (j = 0; j < re->zones[i]->ndevs; ++j) {
856 printk(KERN_CONT " %lld",
857 re->zones[i]->devs[j]->devid);
858 }
859 }
860 printk(KERN_CONT "\n");
861 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
862 if (++cnt > 15)
863 break;
864 }
865 }
866
867 index = 0;
868 cnt = 0;
869 while (all) {
870 struct reada_extent *re = NULL;
871
872 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
873 index, 1);
874 if (ret == 0)
875 break;
895a11b8 876 if (!re->scheduled) {
7414a03f
AJ
877 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
878 continue;
879 }
880 printk(KERN_DEBUG
895a11b8 881 "re: logical %llu size %u list empty %d scheduled %d",
b6ae40ec 882 re->logical, fs_info->tree_root->nodesize,
895a11b8 883 list_empty(&re->extctl), re->scheduled);
7414a03f
AJ
884 for (i = 0; i < re->nzones; ++i) {
885 printk(KERN_CONT " zone %llu-%llu devs",
886 re->zones[i]->start,
887 re->zones[i]->end);
8afd6841
ZL
888 for (j = 0; j < re->zones[i]->ndevs; ++j) {
889 printk(KERN_CONT " %lld",
890 re->zones[i]->devs[j]->devid);
7414a03f
AJ
891 }
892 }
893 printk(KERN_CONT "\n");
894 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
895 }
896 spin_unlock(&fs_info->reada_lock);
897}
898#endif
899
900/*
901 * interface
902 */
903struct reada_control *btrfs_reada_add(struct btrfs_root *root,
904 struct btrfs_key *key_start, struct btrfs_key *key_end)
905{
906 struct reada_control *rc;
907 u64 start;
908 u64 generation;
ddd664f4 909 int ret;
7414a03f
AJ
910 struct extent_buffer *node;
911 static struct btrfs_key max_key = {
912 .objectid = (u64)-1,
913 .type = (u8)-1,
914 .offset = (u64)-1
915 };
916
917 rc = kzalloc(sizeof(*rc), GFP_NOFS);
918 if (!rc)
919 return ERR_PTR(-ENOMEM);
920
921 rc->root = root;
922 rc->key_start = *key_start;
923 rc->key_end = *key_end;
924 atomic_set(&rc->elems, 0);
925 init_waitqueue_head(&rc->wait);
926 kref_init(&rc->refcnt);
927 kref_get(&rc->refcnt); /* one ref for having elements */
928
929 node = btrfs_root_node(root);
930 start = node->start;
7414a03f
AJ
931 generation = btrfs_header_generation(node);
932 free_extent_buffer(node);
933
1e7970c0 934 ret = reada_add_block(rc, start, &max_key, generation);
ddd664f4 935 if (ret) {
ff023aac 936 kfree(rc);
ddd664f4 937 return ERR_PTR(ret);
ff023aac 938 }
7414a03f
AJ
939
940 reada_start_machine(root->fs_info);
941
942 return rc;
943}
944
945#ifdef DEBUG
946int btrfs_reada_wait(void *handle)
947{
948 struct reada_control *rc = handle;
949
950 while (atomic_read(&rc->elems)) {
951 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
952 5 * HZ);
3c59ccd3
V
953 dump_devs(rc->root->fs_info,
954 atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
955 }
956
3c59ccd3 957 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
958
959 kref_put(&rc->refcnt, reada_control_release);
960
961 return 0;
962}
963#else
964int btrfs_reada_wait(void *handle)
965{
966 struct reada_control *rc = handle;
967
968 while (atomic_read(&rc->elems)) {
969 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
970 }
971
972 kref_put(&rc->refcnt, reada_control_release);
973
974 return 0;
975}
976#endif
977
978void btrfs_reada_detach(void *handle)
979{
980 struct reada_control *rc = handle;
981
982 kref_put(&rc->refcnt, reada_control_release);
983}