]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/reada.c
btrfs: reada: move reada_extent_put to place after __readahead_hook()
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / reada.c
CommitLineData
7414a03f
AJ
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include <linux/workqueue.h>
26#include "ctree.h"
27#include "volumes.h"
28#include "disk-io.h"
29#include "transaction.h"
8dabb742 30#include "dev-replace.h"
7414a03f
AJ
31
32#undef DEBUG
33
34/*
35 * This is the implementation for the generic read ahead framework.
36 *
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41 *
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
56 */
57
7414a03f
AJ
58#define MAX_IN_FLIGHT 6
59
60struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
64};
65
66struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
7414a03f
AJ
69 int err;
70 struct list_head extctl;
99621b44 71 int refcnt;
7414a03f 72 spinlock_t lock;
94598ba8 73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
7414a03f
AJ
74 int nzones;
75 struct btrfs_device *scheduled_for;
76};
77
78struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
94598ba8
SB
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
7414a03f
AJ
88 int ndevs;
89 struct kref refcnt;
90};
91
92struct reada_machine_work {
d458b054 93 struct btrfs_work work;
7414a03f
AJ
94 struct btrfs_fs_info *fs_info;
95};
96
97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98static void reada_control_release(struct kref *kref);
99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
1e7970c0 104 struct btrfs_key *top, u64 generation);
7414a03f
AJ
105
106/* recurses */
107/* in case of err, eb might be NULL */
108static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 u64 start, int err)
110{
111 int level = 0;
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct reada_extent *re;
117 struct btrfs_fs_info *fs_info = root->fs_info;
118 struct list_head list;
119 unsigned long index = start >> PAGE_CACHE_SHIFT;
120 struct btrfs_device *for_dev;
121
122 if (eb)
123 level = btrfs_header_level(eb);
124
125 /* find extent */
126 spin_lock(&fs_info->reada_lock);
127 re = radix_tree_lookup(&fs_info->reada_tree, index);
128 if (re)
99621b44 129 re->refcnt++;
7414a03f
AJ
130 spin_unlock(&fs_info->reada_lock);
131
132 if (!re)
133 return -1;
134
135 spin_lock(&re->lock);
136 /*
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
139 */
140 list_replace_init(&re->extctl, &list);
141 for_dev = re->scheduled_for;
142 re->scheduled_for = NULL;
143 spin_unlock(&re->lock);
144
145 if (err == 0) {
146 nritems = level ? btrfs_header_nritems(eb) : 0;
147 generation = btrfs_header_generation(eb);
148 /*
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
153 */
154 } else {
155 /*
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
160 */
161 nritems = 0;
162 generation = 0;
163 }
164
165 for (i = 0; i < nritems; i++) {
166 struct reada_extctl *rec;
167 u64 n_gen;
168 struct btrfs_key key;
169 struct btrfs_key next_key;
170
171 btrfs_node_key_to_cpu(eb, &key, i);
172 if (i + 1 < nritems)
173 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 else
175 next_key = re->top;
176 bytenr = btrfs_node_blockptr(eb, i);
177 n_gen = btrfs_node_ptr_generation(eb, i);
178
179 list_for_each_entry(rec, &list, list) {
180 struct reada_control *rc = rec->rc;
181
182 /*
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
188 */
189#ifdef DEBUG
190 if (rec->generation != generation) {
efe120a0
FH
191 btrfs_debug(root->fs_info,
192 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
7414a03f
AJ
193 key.objectid, key.type, key.offset,
194 rec->generation, generation);
195 }
196#endif
197 if (rec->generation == generation &&
198 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
1e7970c0 200 reada_add_block(rc, bytenr, &next_key, n_gen);
7414a03f
AJ
201 }
202 }
203 /*
204 * free extctl records
205 */
206 while (!list_empty(&list)) {
207 struct reada_control *rc;
208 struct reada_extctl *rec;
209
210 rec = list_first_entry(&list, struct reada_extctl, list);
211 list_del(&rec->list);
212 rc = rec->rc;
213 kfree(rec);
214
215 kref_get(&rc->refcnt);
216 if (atomic_dec_and_test(&rc->elems)) {
217 kref_put(&rc->refcnt, reada_control_release);
218 wake_up(&rc->wait);
219 }
220 kref_put(&rc->refcnt, reada_control_release);
221
222 reada_extent_put(fs_info, re); /* one ref for each entry */
223 }
224 reada_extent_put(fs_info, re); /* our ref */
225 if (for_dev)
226 atomic_dec(&for_dev->reada_in_flight);
227
228 return 0;
229}
230
231/*
232 * start is passed separately in case eb in NULL, which may be the case with
233 * failed I/O
234 */
235int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
236 u64 start, int err)
237{
238 int ret;
239
240 ret = __readahead_hook(root, eb, start, err);
241
242 reada_start_machine(root->fs_info);
243
244 return ret;
245}
246
247static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
248 struct btrfs_device *dev, u64 logical,
21ca543e 249 struct btrfs_bio *bbio)
7414a03f
AJ
250{
251 int ret;
7414a03f
AJ
252 struct reada_zone *zone;
253 struct btrfs_block_group_cache *cache = NULL;
254 u64 start;
255 u64 end;
256 int i;
257
7414a03f
AJ
258 zone = NULL;
259 spin_lock(&fs_info->reada_lock);
260 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
261 logical >> PAGE_CACHE_SHIFT, 1);
c37f49c7 262 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
7414a03f 263 kref_get(&zone->refcnt);
7414a03f 264 spin_unlock(&fs_info->reada_lock);
c37f49c7 265 return zone;
7414a03f
AJ
266 }
267
c37f49c7
ZL
268 spin_unlock(&fs_info->reada_lock);
269
7414a03f
AJ
270 cache = btrfs_lookup_block_group(fs_info, logical);
271 if (!cache)
272 return NULL;
273
274 start = cache->key.objectid;
275 end = start + cache->key.offset - 1;
276 btrfs_put_block_group(cache);
277
278 zone = kzalloc(sizeof(*zone), GFP_NOFS);
279 if (!zone)
280 return NULL;
281
282 zone->start = start;
283 zone->end = end;
284 INIT_LIST_HEAD(&zone->list);
285 spin_lock_init(&zone->lock);
286 zone->locked = 0;
287 kref_init(&zone->refcnt);
288 zone->elems = 0;
289 zone->device = dev; /* our device always sits at index 0 */
21ca543e 290 for (i = 0; i < bbio->num_stripes; ++i) {
7414a03f 291 /* bounds have already been checked */
21ca543e 292 zone->devs[i] = bbio->stripes[i].dev;
7414a03f 293 }
21ca543e 294 zone->ndevs = bbio->num_stripes;
7414a03f
AJ
295
296 spin_lock(&fs_info->reada_lock);
297 ret = radix_tree_insert(&dev->reada_zones,
a175423c 298 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
7414a03f 299 zone);
7414a03f 300
8c9c2bf7 301 if (ret == -EEXIST) {
7414a03f 302 kfree(zone);
8c9c2bf7
AJ
303 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
304 logical >> PAGE_CACHE_SHIFT, 1);
8e9aa51f 305 if (ret == 1 && logical >= zone->start && logical <= zone->end)
8c9c2bf7 306 kref_get(&zone->refcnt);
8e9aa51f
ZL
307 else
308 zone = NULL;
7414a03f 309 }
8c9c2bf7 310 spin_unlock(&fs_info->reada_lock);
7414a03f
AJ
311
312 return zone;
313}
314
315static struct reada_extent *reada_find_extent(struct btrfs_root *root,
316 u64 logical,
1e7970c0 317 struct btrfs_key *top)
7414a03f
AJ
318{
319 int ret;
7414a03f 320 struct reada_extent *re = NULL;
8c9c2bf7 321 struct reada_extent *re_exist = NULL;
7414a03f 322 struct btrfs_fs_info *fs_info = root->fs_info;
21ca543e 323 struct btrfs_bio *bbio = NULL;
7414a03f 324 struct btrfs_device *dev;
207a232c 325 struct btrfs_device *prev_dev;
7414a03f
AJ
326 u32 blocksize;
327 u64 length;
7cb2c420 328 int real_stripes;
7414a03f 329 int nzones = 0;
7414a03f 330 unsigned long index = logical >> PAGE_CACHE_SHIFT;
8dabb742 331 int dev_replace_is_ongoing;
31945021 332 int have_zone = 0;
7414a03f 333
7414a03f
AJ
334 spin_lock(&fs_info->reada_lock);
335 re = radix_tree_lookup(&fs_info->reada_tree, index);
336 if (re)
99621b44 337 re->refcnt++;
7414a03f
AJ
338 spin_unlock(&fs_info->reada_lock);
339
8c9c2bf7 340 if (re)
7414a03f
AJ
341 return re;
342
343 re = kzalloc(sizeof(*re), GFP_NOFS);
344 if (!re)
345 return NULL;
346
707e8a07 347 blocksize = root->nodesize;
7414a03f 348 re->logical = logical;
7414a03f
AJ
349 re->top = *top;
350 INIT_LIST_HEAD(&re->extctl);
351 spin_lock_init(&re->lock);
99621b44 352 re->refcnt = 1;
7414a03f
AJ
353
354 /*
355 * map block
356 */
357 length = blocksize;
29a8d9a0
SB
358 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
359 &bbio, 0);
21ca543e 360 if (ret || !bbio || length < blocksize)
7414a03f
AJ
361 goto error;
362
94598ba8 363 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
efe120a0
FH
364 btrfs_err(root->fs_info,
365 "readahead: more than %d copies not supported",
366 BTRFS_MAX_MIRRORS);
7414a03f
AJ
367 goto error;
368 }
369
7cb2c420
OS
370 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
371 for (nzones = 0; nzones < real_stripes; ++nzones) {
7414a03f
AJ
372 struct reada_zone *zone;
373
21ca543e
ID
374 dev = bbio->stripes[nzones].dev;
375 zone = reada_find_zone(fs_info, dev, logical, bbio);
7414a03f 376 if (!zone)
6a159d2a 377 continue;
7414a03f 378
6a159d2a 379 re->zones[re->nzones++] = zone;
7414a03f
AJ
380 spin_lock(&zone->lock);
381 if (!zone->elems)
382 kref_get(&zone->refcnt);
383 ++zone->elems;
384 spin_unlock(&zone->lock);
385 spin_lock(&fs_info->reada_lock);
386 kref_put(&zone->refcnt, reada_zone_release);
387 spin_unlock(&fs_info->reada_lock);
388 }
6a159d2a 389 if (re->nzones == 0) {
7414a03f
AJ
390 /* not a single zone found, error and out */
391 goto error;
392 }
393
394 /* insert extent in reada_tree + all per-device trees, all or nothing */
8dabb742 395 btrfs_dev_replace_lock(&fs_info->dev_replace);
7414a03f
AJ
396 spin_lock(&fs_info->reada_lock);
397 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
8c9c2bf7
AJ
398 if (ret == -EEXIST) {
399 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400 BUG_ON(!re_exist);
99621b44 401 re_exist->refcnt++;
8c9c2bf7 402 spin_unlock(&fs_info->reada_lock);
8dabb742 403 btrfs_dev_replace_unlock(&fs_info->dev_replace);
8c9c2bf7
AJ
404 goto error;
405 }
7414a03f
AJ
406 if (ret) {
407 spin_unlock(&fs_info->reada_lock);
8dabb742 408 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f
AJ
409 goto error;
410 }
207a232c 411 prev_dev = NULL;
8dabb742
SB
412 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
413 &fs_info->dev_replace);
6a159d2a
ZL
414 for (nzones = 0; nzones < re->nzones; ++nzones) {
415 dev = re->zones[nzones]->device;
416
207a232c
AJ
417 if (dev == prev_dev) {
418 /*
419 * in case of DUP, just add the first zone. As both
420 * are on the same device, there's nothing to gain
421 * from adding both.
422 * Also, it wouldn't work, as the tree is per device
423 * and adding would fail with EEXIST
424 */
425 continue;
426 }
ff023aac 427 if (!dev->bdev) {
5fbc7c59
WS
428 /*
429 * cannot read ahead on missing device, but for RAID5/6,
430 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
431 * device for such case.
432 */
433 if (nzones > 1)
434 continue;
ff023aac 435 }
8dabb742
SB
436 if (dev_replace_is_ongoing &&
437 dev == fs_info->dev_replace.tgtdev) {
438 /*
439 * as this device is selected for reading only as
440 * a last resort, skip it for read ahead.
441 */
442 continue;
443 }
207a232c 444 prev_dev = dev;
7414a03f
AJ
445 ret = radix_tree_insert(&dev->reada_extents, index, re);
446 if (ret) {
6a159d2a
ZL
447 while (--nzones >= 0) {
448 dev = re->zones[nzones]->device;
7414a03f 449 BUG_ON(dev == NULL);
ff023aac 450 /* ignore whether the entry was inserted */
7414a03f
AJ
451 radix_tree_delete(&dev->reada_extents, index);
452 }
453 BUG_ON(fs_info == NULL);
454 radix_tree_delete(&fs_info->reada_tree, index);
455 spin_unlock(&fs_info->reada_lock);
8dabb742 456 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f
AJ
457 goto error;
458 }
31945021 459 have_zone = 1;
7414a03f
AJ
460 }
461 spin_unlock(&fs_info->reada_lock);
8dabb742 462 btrfs_dev_replace_unlock(&fs_info->dev_replace);
7414a03f 463
31945021
ZL
464 if (!have_zone)
465 goto error;
466
6e9606d2 467 btrfs_put_bbio(bbio);
7414a03f
AJ
468 return re;
469
470error:
6a159d2a 471 for (nzones = 0; nzones < re->nzones; ++nzones) {
7414a03f
AJ
472 struct reada_zone *zone;
473
7414a03f
AJ
474 zone = re->zones[nzones];
475 kref_get(&zone->refcnt);
476 spin_lock(&zone->lock);
477 --zone->elems;
478 if (zone->elems == 0) {
479 /*
480 * no fs_info->reada_lock needed, as this can't be
481 * the last ref
482 */
483 kref_put(&zone->refcnt, reada_zone_release);
484 }
485 spin_unlock(&zone->lock);
486
487 spin_lock(&fs_info->reada_lock);
488 kref_put(&zone->refcnt, reada_zone_release);
489 spin_unlock(&fs_info->reada_lock);
490 }
6e9606d2 491 btrfs_put_bbio(bbio);
7414a03f 492 kfree(re);
8c9c2bf7 493 return re_exist;
7414a03f
AJ
494}
495
7414a03f
AJ
496static void reada_extent_put(struct btrfs_fs_info *fs_info,
497 struct reada_extent *re)
498{
499 int i;
500 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
501
502 spin_lock(&fs_info->reada_lock);
99621b44 503 if (--re->refcnt) {
7414a03f
AJ
504 spin_unlock(&fs_info->reada_lock);
505 return;
506 }
507
508 radix_tree_delete(&fs_info->reada_tree, index);
509 for (i = 0; i < re->nzones; ++i) {
510 struct reada_zone *zone = re->zones[i];
511
512 radix_tree_delete(&zone->device->reada_extents, index);
513 }
514
515 spin_unlock(&fs_info->reada_lock);
516
517 for (i = 0; i < re->nzones; ++i) {
518 struct reada_zone *zone = re->zones[i];
519
520 kref_get(&zone->refcnt);
521 spin_lock(&zone->lock);
522 --zone->elems;
523 if (zone->elems == 0) {
524 /* no fs_info->reada_lock needed, as this can't be
525 * the last ref */
526 kref_put(&zone->refcnt, reada_zone_release);
527 }
528 spin_unlock(&zone->lock);
529
530 spin_lock(&fs_info->reada_lock);
531 kref_put(&zone->refcnt, reada_zone_release);
532 spin_unlock(&fs_info->reada_lock);
533 }
534 if (re->scheduled_for)
535 atomic_dec(&re->scheduled_for->reada_in_flight);
536
537 kfree(re);
538}
539
540static void reada_zone_release(struct kref *kref)
541{
542 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
543
544 radix_tree_delete(&zone->device->reada_zones,
545 zone->end >> PAGE_CACHE_SHIFT);
546
547 kfree(zone);
548}
549
550static void reada_control_release(struct kref *kref)
551{
552 struct reada_control *rc = container_of(kref, struct reada_control,
553 refcnt);
554
555 kfree(rc);
556}
557
558static int reada_add_block(struct reada_control *rc, u64 logical,
1e7970c0 559 struct btrfs_key *top, u64 generation)
7414a03f
AJ
560{
561 struct btrfs_root *root = rc->root;
562 struct reada_extent *re;
563 struct reada_extctl *rec;
564
1e7970c0 565 re = reada_find_extent(root, logical, top); /* takes one ref */
7414a03f
AJ
566 if (!re)
567 return -1;
568
569 rec = kzalloc(sizeof(*rec), GFP_NOFS);
570 if (!rec) {
571 reada_extent_put(root->fs_info, re);
ddd664f4 572 return -ENOMEM;
7414a03f
AJ
573 }
574
575 rec->rc = rc;
576 rec->generation = generation;
577 atomic_inc(&rc->elems);
578
579 spin_lock(&re->lock);
580 list_add_tail(&rec->list, &re->extctl);
581 spin_unlock(&re->lock);
582
583 /* leave the ref on the extent */
584
585 return 0;
586}
587
588/*
589 * called with fs_info->reada_lock held
590 */
591static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
592{
593 int i;
594 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
595
596 for (i = 0; i < zone->ndevs; ++i) {
597 struct reada_zone *peer;
598 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
599 if (peer && peer->device != zone->device)
600 peer->locked = lock;
601 }
602}
603
604/*
605 * called with fs_info->reada_lock held
606 */
607static int reada_pick_zone(struct btrfs_device *dev)
608{
609 struct reada_zone *top_zone = NULL;
610 struct reada_zone *top_locked_zone = NULL;
611 u64 top_elems = 0;
612 u64 top_locked_elems = 0;
613 unsigned long index = 0;
614 int ret;
615
616 if (dev->reada_curr_zone) {
617 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
618 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
619 dev->reada_curr_zone = NULL;
620 }
621 /* pick the zone with the most elements */
622 while (1) {
623 struct reada_zone *zone;
624
625 ret = radix_tree_gang_lookup(&dev->reada_zones,
626 (void **)&zone, index, 1);
627 if (ret == 0)
628 break;
629 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
630 if (zone->locked) {
631 if (zone->elems > top_locked_elems) {
632 top_locked_elems = zone->elems;
633 top_locked_zone = zone;
634 }
635 } else {
636 if (zone->elems > top_elems) {
637 top_elems = zone->elems;
638 top_zone = zone;
639 }
640 }
641 }
642 if (top_zone)
643 dev->reada_curr_zone = top_zone;
644 else if (top_locked_zone)
645 dev->reada_curr_zone = top_locked_zone;
646 else
647 return 0;
648
649 dev->reada_next = dev->reada_curr_zone->start;
650 kref_get(&dev->reada_curr_zone->refcnt);
651 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
652
653 return 1;
654}
655
656static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
657 struct btrfs_device *dev)
658{
659 struct reada_extent *re = NULL;
660 int mirror_num = 0;
661 struct extent_buffer *eb = NULL;
662 u64 logical;
7414a03f
AJ
663 int ret;
664 int i;
7414a03f
AJ
665
666 spin_lock(&fs_info->reada_lock);
667 if (dev->reada_curr_zone == NULL) {
668 ret = reada_pick_zone(dev);
669 if (!ret) {
670 spin_unlock(&fs_info->reada_lock);
671 return 0;
672 }
673 }
674 /*
675 * FIXME currently we issue the reads one extent at a time. If we have
676 * a contiguous block of extents, we could also coagulate them or use
677 * plugging to speed things up
678 */
679 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
680 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
50378530 681 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
7414a03f
AJ
682 ret = reada_pick_zone(dev);
683 if (!ret) {
684 spin_unlock(&fs_info->reada_lock);
685 return 0;
686 }
687 re = NULL;
688 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
689 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
690 }
691 if (ret == 0) {
692 spin_unlock(&fs_info->reada_lock);
693 return 0;
694 }
b6ae40ec 695 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
99621b44 696 re->refcnt++;
7414a03f
AJ
697
698 spin_unlock(&fs_info->reada_lock);
699
a3f7fde2
ZL
700 spin_lock(&re->lock);
701 if (re->scheduled_for || list_empty(&re->extctl)) {
702 spin_unlock(&re->lock);
703 reada_extent_put(fs_info, re);
704 return 0;
705 }
706 re->scheduled_for = dev;
707 spin_unlock(&re->lock);
708
7414a03f
AJ
709 /*
710 * find mirror num
711 */
712 for (i = 0; i < re->nzones; ++i) {
713 if (re->zones[i]->device == dev) {
714 mirror_num = i + 1;
715 break;
716 }
717 }
718 logical = re->logical;
7414a03f 719
7414a03f 720 atomic_inc(&dev->reada_in_flight);
b6ae40ec 721 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
c0dcaa4d 722 mirror_num, &eb);
7414a03f
AJ
723 if (ret)
724 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
725 else if (eb)
726 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
727
728 if (eb)
729 free_extent_buffer(eb);
730
b257cf50
ZL
731 reada_extent_put(fs_info, re);
732
7414a03f
AJ
733 return 1;
734
735}
736
d458b054 737static void reada_start_machine_worker(struct btrfs_work *work)
7414a03f
AJ
738{
739 struct reada_machine_work *rmw;
740 struct btrfs_fs_info *fs_info;
3d136a11 741 int old_ioprio;
7414a03f
AJ
742
743 rmw = container_of(work, struct reada_machine_work, work);
744 fs_info = rmw->fs_info;
745
746 kfree(rmw);
747
3d136a11
SB
748 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
749 task_nice_ioprio(current));
750 set_task_ioprio(current, BTRFS_IOPRIO_READA);
7414a03f 751 __reada_start_machine(fs_info);
3d136a11 752 set_task_ioprio(current, old_ioprio);
7414a03f
AJ
753}
754
755static void __reada_start_machine(struct btrfs_fs_info *fs_info)
756{
757 struct btrfs_device *device;
758 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
759 u64 enqueued;
760 u64 total = 0;
761 int i;
762
763 do {
764 enqueued = 0;
765 list_for_each_entry(device, &fs_devices->devices, dev_list) {
766 if (atomic_read(&device->reada_in_flight) <
767 MAX_IN_FLIGHT)
768 enqueued += reada_start_machine_dev(fs_info,
769 device);
770 }
771 total += enqueued;
772 } while (enqueued && total < 10000);
773
774 if (enqueued == 0)
775 return;
776
777 /*
778 * If everything is already in the cache, this is effectively single
779 * threaded. To a) not hold the caller for too long and b) to utilize
780 * more cores, we broke the loop above after 10000 iterations and now
781 * enqueue to workers to finish it. This will distribute the load to
782 * the cores.
783 */
784 for (i = 0; i < 2; ++i)
785 reada_start_machine(fs_info);
786}
787
788static void reada_start_machine(struct btrfs_fs_info *fs_info)
789{
790 struct reada_machine_work *rmw;
791
792 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
793 if (!rmw) {
794 /* FIXME we cannot handle this properly right now */
795 BUG();
796 }
9e0af237
LB
797 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
798 reada_start_machine_worker, NULL, NULL);
7414a03f
AJ
799 rmw->fs_info = fs_info;
800
736cfa15 801 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
7414a03f
AJ
802}
803
804#ifdef DEBUG
805static void dump_devs(struct btrfs_fs_info *fs_info, int all)
806{
807 struct btrfs_device *device;
808 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
809 unsigned long index;
810 int ret;
811 int i;
812 int j;
813 int cnt;
814
815 spin_lock(&fs_info->reada_lock);
816 list_for_each_entry(device, &fs_devices->devices, dev_list) {
817 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
818 atomic_read(&device->reada_in_flight));
819 index = 0;
820 while (1) {
821 struct reada_zone *zone;
822 ret = radix_tree_gang_lookup(&device->reada_zones,
823 (void **)&zone, index, 1);
824 if (ret == 0)
825 break;
826 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
827 "%d devs", zone->start, zone->end, zone->elems,
828 zone->locked);
829 for (j = 0; j < zone->ndevs; ++j) {
830 printk(KERN_CONT " %lld",
831 zone->devs[j]->devid);
832 }
833 if (device->reada_curr_zone == zone)
834 printk(KERN_CONT " curr off %llu",
835 device->reada_next - zone->start);
836 printk(KERN_CONT "\n");
837 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
838 }
839 cnt = 0;
840 index = 0;
841 while (all) {
842 struct reada_extent *re = NULL;
843
844 ret = radix_tree_gang_lookup(&device->reada_extents,
845 (void **)&re, index, 1);
846 if (ret == 0)
847 break;
848 printk(KERN_DEBUG
849 " re: logical %llu size %u empty %d for %lld",
b6ae40ec 850 re->logical, fs_info->tree_root->nodesize,
7414a03f
AJ
851 list_empty(&re->extctl), re->scheduled_for ?
852 re->scheduled_for->devid : -1);
853
854 for (i = 0; i < re->nzones; ++i) {
855 printk(KERN_CONT " zone %llu-%llu devs",
856 re->zones[i]->start,
857 re->zones[i]->end);
858 for (j = 0; j < re->zones[i]->ndevs; ++j) {
859 printk(KERN_CONT " %lld",
860 re->zones[i]->devs[j]->devid);
861 }
862 }
863 printk(KERN_CONT "\n");
864 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
865 if (++cnt > 15)
866 break;
867 }
868 }
869
870 index = 0;
871 cnt = 0;
872 while (all) {
873 struct reada_extent *re = NULL;
874
875 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
876 index, 1);
877 if (ret == 0)
878 break;
879 if (!re->scheduled_for) {
880 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
881 continue;
882 }
883 printk(KERN_DEBUG
884 "re: logical %llu size %u list empty %d for %lld",
b6ae40ec
DS
885 re->logical, fs_info->tree_root->nodesize,
886 list_empty(&re->extctl),
7414a03f
AJ
887 re->scheduled_for ? re->scheduled_for->devid : -1);
888 for (i = 0; i < re->nzones; ++i) {
889 printk(KERN_CONT " zone %llu-%llu devs",
890 re->zones[i]->start,
891 re->zones[i]->end);
892 for (i = 0; i < re->nzones; ++i) {
893 printk(KERN_CONT " zone %llu-%llu devs",
894 re->zones[i]->start,
895 re->zones[i]->end);
896 for (j = 0; j < re->zones[i]->ndevs; ++j) {
897 printk(KERN_CONT " %lld",
898 re->zones[i]->devs[j]->devid);
899 }
900 }
901 }
902 printk(KERN_CONT "\n");
903 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
904 }
905 spin_unlock(&fs_info->reada_lock);
906}
907#endif
908
909/*
910 * interface
911 */
912struct reada_control *btrfs_reada_add(struct btrfs_root *root,
913 struct btrfs_key *key_start, struct btrfs_key *key_end)
914{
915 struct reada_control *rc;
916 u64 start;
917 u64 generation;
ddd664f4 918 int ret;
7414a03f
AJ
919 struct extent_buffer *node;
920 static struct btrfs_key max_key = {
921 .objectid = (u64)-1,
922 .type = (u8)-1,
923 .offset = (u64)-1
924 };
925
926 rc = kzalloc(sizeof(*rc), GFP_NOFS);
927 if (!rc)
928 return ERR_PTR(-ENOMEM);
929
930 rc->root = root;
931 rc->key_start = *key_start;
932 rc->key_end = *key_end;
933 atomic_set(&rc->elems, 0);
934 init_waitqueue_head(&rc->wait);
935 kref_init(&rc->refcnt);
936 kref_get(&rc->refcnt); /* one ref for having elements */
937
938 node = btrfs_root_node(root);
939 start = node->start;
7414a03f
AJ
940 generation = btrfs_header_generation(node);
941 free_extent_buffer(node);
942
1e7970c0 943 ret = reada_add_block(rc, start, &max_key, generation);
ddd664f4 944 if (ret) {
ff023aac 945 kfree(rc);
ddd664f4 946 return ERR_PTR(ret);
ff023aac 947 }
7414a03f
AJ
948
949 reada_start_machine(root->fs_info);
950
951 return rc;
952}
953
954#ifdef DEBUG
955int btrfs_reada_wait(void *handle)
956{
957 struct reada_control *rc = handle;
958
959 while (atomic_read(&rc->elems)) {
960 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
961 5 * HZ);
3c59ccd3
V
962 dump_devs(rc->root->fs_info,
963 atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
964 }
965
3c59ccd3 966 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
7414a03f
AJ
967
968 kref_put(&rc->refcnt, reada_control_release);
969
970 return 0;
971}
972#else
973int btrfs_reada_wait(void *handle)
974{
975 struct reada_control *rc = handle;
976
977 while (atomic_read(&rc->elems)) {
978 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
979 }
980
981 kref_put(&rc->refcnt, reada_control_release);
982
983 return 0;
984}
985#endif
986
987void btrfs_reada_detach(void *handle)
988{
989 struct reada_control *rc = handle;
990
991 kref_put(&rc->refcnt, reada_control_release);
992}