]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/scrub.c
jbd2: fast commit recovery path
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c 10#include "ctree.h"
6e80d4f8 11#include "discard.h"
a2de733c
AJ
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
0ef8e451 15#include "transaction.h"
558540c1 16#include "backref.h"
5da6fcbc 17#include "extent_io.h"
ff023aac 18#include "dev-replace.h"
21adbd5c 19#include "check-integrity.h"
606686ee 20#include "rcu-string.h"
53b381b3 21#include "raid56.h"
aac0023c 22#include "block-group.h"
a2de733c
AJ
23
24/*
25 * This is only the first step towards a full-features scrub. It reads all
26 * extent and super block and verifies the checksums. In case a bad checksum
27 * is found or the extent cannot be read, good data will be written back if
28 * any can be found.
29 *
30 * Future enhancements:
a2de733c
AJ
31 * - In case an unrepairable extent is encountered, track which files are
32 * affected and report them
a2de733c 33 * - track and record media errors, throw out bad devices
a2de733c 34 * - add a mode to also read unallocated space
a2de733c
AJ
35 */
36
b5d67f64 37struct scrub_block;
d9d181c1 38struct scrub_ctx;
a2de733c 39
ff023aac
SB
40/*
41 * the following three values only influence the performance.
42 * The last one configures the number of parallel and outstanding I/O
43 * operations. The first two values configure an upper limit for the number
44 * of (dynamically allocated) pages that are added to a bio.
45 */
46#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
47#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
48#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
49
50/*
51 * the following value times PAGE_SIZE needs to be large enough to match the
52 * largest node/leaf/sector size that shall be supported.
53 * Values larger than BTRFS_STRIPE_LEN are not supported.
54 */
b5d67f64 55#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 56
af8e2d1d 57struct scrub_recover {
6f615018 58 refcount_t refs;
af8e2d1d 59 struct btrfs_bio *bbio;
af8e2d1d
MX
60 u64 map_length;
61};
62
a2de733c 63struct scrub_page {
b5d67f64
SB
64 struct scrub_block *sblock;
65 struct page *page;
442a4f63 66 struct btrfs_device *dev;
5a6ac9ea 67 struct list_head list;
a2de733c
AJ
68 u64 flags; /* extent flags */
69 u64 generation;
b5d67f64
SB
70 u64 logical;
71 u64 physical;
ff023aac 72 u64 physical_for_dev_replace;
57019345 73 atomic_t refs;
b5d67f64
SB
74 struct {
75 unsigned int mirror_num:8;
76 unsigned int have_csum:1;
77 unsigned int io_error:1;
78 };
a2de733c 79 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
80
81 struct scrub_recover *recover;
a2de733c
AJ
82};
83
84struct scrub_bio {
85 int index;
d9d181c1 86 struct scrub_ctx *sctx;
a36cf8b8 87 struct btrfs_device *dev;
a2de733c 88 struct bio *bio;
4e4cbee9 89 blk_status_t status;
a2de733c
AJ
90 u64 logical;
91 u64 physical;
ff023aac
SB
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
b5d67f64 97 int page_count;
a2de733c
AJ
98 int next_free;
99 struct btrfs_work work;
100};
101
b5d67f64 102struct scrub_block {
7a9e9987 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
104 int page_count;
105 atomic_t outstanding_pages;
186debd6 106 refcount_t refs; /* free mem on transition to zero */
d9d181c1 107 struct scrub_ctx *sctx;
5a6ac9ea 108 struct scrub_parity *sparity;
b5d67f64
SB
109 struct {
110 unsigned int header_error:1;
111 unsigned int checksum_error:1;
112 unsigned int no_io_error_seen:1;
442a4f63 113 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
114
115 /* The following is for the data used to check parity */
116 /* It is for the data with checksum */
117 unsigned int data_corrected:1;
b5d67f64 118 };
73ff61db 119 struct btrfs_work work;
b5d67f64
SB
120};
121
5a6ac9ea
MX
122/* Used for the chunks with parity stripe such RAID5/6 */
123struct scrub_parity {
124 struct scrub_ctx *sctx;
125
126 struct btrfs_device *scrub_dev;
127
128 u64 logic_start;
129
130 u64 logic_end;
131
132 int nsectors;
133
972d7219 134 u64 stripe_len;
5a6ac9ea 135
78a76450 136 refcount_t refs;
5a6ac9ea
MX
137
138 struct list_head spages;
139
140 /* Work of parity check and repair */
141 struct btrfs_work work;
142
143 /* Mark the parity blocks which have data */
144 unsigned long *dbitmap;
145
146 /*
147 * Mark the parity blocks which have data, but errors happen when
148 * read data or check data
149 */
150 unsigned long *ebitmap;
151
a8753ee3 152 unsigned long bitmap[];
5a6ac9ea
MX
153};
154
d9d181c1 155struct scrub_ctx {
ff023aac 156 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 157 struct btrfs_fs_info *fs_info;
a2de733c
AJ
158 int first_free;
159 int curr;
b6bfebc1
SB
160 atomic_t bios_in_flight;
161 atomic_t workers_pending;
a2de733c
AJ
162 spinlock_t list_lock;
163 wait_queue_head_t list_wait;
164 u16 csum_size;
165 struct list_head csum_list;
166 atomic_t cancel_req;
8628764e 167 int readonly;
ff023aac 168 int pages_per_rd_bio;
63a212ab
SB
169
170 int is_dev_replace;
3fb99303
DS
171
172 struct scrub_bio *wr_curr_bio;
173 struct mutex wr_lock;
174 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
3fb99303 175 struct btrfs_device *wr_tgtdev;
2073c4c2 176 bool flush_all_writes;
63a212ab 177
a2de733c
AJ
178 /*
179 * statistics
180 */
181 struct btrfs_scrub_progress stat;
182 spinlock_t stat_lock;
f55985f4
FM
183
184 /*
185 * Use a ref counter to avoid use-after-free issues. Scrub workers
186 * decrement bios_in_flight and workers_pending and then do a wakeup
187 * on the list_wait wait queue. We must ensure the main scrub task
188 * doesn't free the scrub context before or while the workers are
189 * doing the wakeup() call.
190 */
99f4cdb1 191 refcount_t refs;
a2de733c
AJ
192};
193
558540c1
JS
194struct scrub_warning {
195 struct btrfs_path *path;
196 u64 extent_item_size;
558540c1 197 const char *errstr;
6aa21263 198 u64 physical;
558540c1
JS
199 u64 logical;
200 struct btrfs_device *dev;
558540c1
JS
201};
202
0966a7b1
QW
203struct full_stripe_lock {
204 struct rb_node node;
205 u64 logical;
206 u64 refs;
207 struct mutex mutex;
208};
209
b6bfebc1
SB
210static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
211static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
b5d67f64 212static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 213static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 214 struct scrub_block *sblocks_for_recheck);
34f5c8e9 215static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
216 struct scrub_block *sblock,
217 int retry_failed_mirror);
ba7cf988 218static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 219static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 220 struct scrub_block *sblock_good);
b5d67f64
SB
221static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 struct scrub_block *sblock_good,
223 int page_num, int force_write);
ff023aac
SB
224static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 int page_num);
b5d67f64
SB
227static int scrub_checksum_data(struct scrub_block *sblock);
228static int scrub_checksum_tree_block(struct scrub_block *sblock);
229static int scrub_checksum_super(struct scrub_block *sblock);
230static void scrub_block_get(struct scrub_block *sblock);
231static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
232static void scrub_page_get(struct scrub_page *spage);
233static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
234static void scrub_parity_get(struct scrub_parity *sparity);
235static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
236static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
237 struct scrub_page *spage);
d9d181c1 238static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 239 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
240 u64 gen, int mirror_num, u8 *csum, int force,
241 u64 physical_for_dev_replace);
4246a0b6 242static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
243static void scrub_bio_end_io_worker(struct btrfs_work *work);
244static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
245static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
246 u64 extent_logical, u64 extent_len,
247 u64 *extent_physical,
248 struct btrfs_device **extent_dev,
249 int *extent_mirror_num);
ff023aac
SB
250static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
251 struct scrub_page *spage);
252static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 253static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac 254static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
cb7ab021 255static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 256static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 257static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 258
762221f0
LB
259static inline int scrub_is_page_on_raid56(struct scrub_page *page)
260{
261 return page->recover &&
262 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
263}
1623edeb 264
b6bfebc1
SB
265static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
266{
99f4cdb1 267 refcount_inc(&sctx->refs);
b6bfebc1
SB
268 atomic_inc(&sctx->bios_in_flight);
269}
270
271static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
272{
273 atomic_dec(&sctx->bios_in_flight);
274 wake_up(&sctx->list_wait);
f55985f4 275 scrub_put_ctx(sctx);
b6bfebc1
SB
276}
277
cb7ab021 278static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
279{
280 while (atomic_read(&fs_info->scrub_pause_req)) {
281 mutex_unlock(&fs_info->scrub_lock);
282 wait_event(fs_info->scrub_pause_wait,
283 atomic_read(&fs_info->scrub_pause_req) == 0);
284 mutex_lock(&fs_info->scrub_lock);
285 }
286}
287
0e22be89 288static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
289{
290 atomic_inc(&fs_info->scrubs_paused);
291 wake_up(&fs_info->scrub_pause_wait);
0e22be89 292}
cb7ab021 293
0e22be89
Z
294static void scrub_pause_off(struct btrfs_fs_info *fs_info)
295{
cb7ab021
WS
296 mutex_lock(&fs_info->scrub_lock);
297 __scrub_blocked_if_needed(fs_info);
298 atomic_dec(&fs_info->scrubs_paused);
299 mutex_unlock(&fs_info->scrub_lock);
300
301 wake_up(&fs_info->scrub_pause_wait);
302}
303
0e22be89
Z
304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
305{
306 scrub_pause_on(fs_info);
307 scrub_pause_off(fs_info);
308}
309
0966a7b1
QW
310/*
311 * Insert new full stripe lock into full stripe locks tree
312 *
313 * Return pointer to existing or newly inserted full_stripe_lock structure if
314 * everything works well.
315 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
316 *
317 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
318 * function
319 */
320static struct full_stripe_lock *insert_full_stripe_lock(
321 struct btrfs_full_stripe_locks_tree *locks_root,
322 u64 fstripe_logical)
323{
324 struct rb_node **p;
325 struct rb_node *parent = NULL;
326 struct full_stripe_lock *entry;
327 struct full_stripe_lock *ret;
328
a32bf9a3 329 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
330
331 p = &locks_root->root.rb_node;
332 while (*p) {
333 parent = *p;
334 entry = rb_entry(parent, struct full_stripe_lock, node);
335 if (fstripe_logical < entry->logical) {
336 p = &(*p)->rb_left;
337 } else if (fstripe_logical > entry->logical) {
338 p = &(*p)->rb_right;
339 } else {
340 entry->refs++;
341 return entry;
342 }
343 }
344
a5fb1142
FM
345 /*
346 * Insert new lock.
a5fb1142 347 */
0966a7b1
QW
348 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
349 if (!ret)
350 return ERR_PTR(-ENOMEM);
351 ret->logical = fstripe_logical;
352 ret->refs = 1;
353 mutex_init(&ret->mutex);
354
355 rb_link_node(&ret->node, parent, p);
356 rb_insert_color(&ret->node, &locks_root->root);
357 return ret;
358}
359
360/*
361 * Search for a full stripe lock of a block group
362 *
363 * Return pointer to existing full stripe lock if found
364 * Return NULL if not found
365 */
366static struct full_stripe_lock *search_full_stripe_lock(
367 struct btrfs_full_stripe_locks_tree *locks_root,
368 u64 fstripe_logical)
369{
370 struct rb_node *node;
371 struct full_stripe_lock *entry;
372
a32bf9a3 373 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
374
375 node = locks_root->root.rb_node;
376 while (node) {
377 entry = rb_entry(node, struct full_stripe_lock, node);
378 if (fstripe_logical < entry->logical)
379 node = node->rb_left;
380 else if (fstripe_logical > entry->logical)
381 node = node->rb_right;
382 else
383 return entry;
384 }
385 return NULL;
386}
387
388/*
389 * Helper to get full stripe logical from a normal bytenr.
390 *
391 * Caller must ensure @cache is a RAID56 block group.
392 */
32da5386 393static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
0966a7b1
QW
394{
395 u64 ret;
396
397 /*
398 * Due to chunk item size limit, full stripe length should not be
399 * larger than U32_MAX. Just a sanity check here.
400 */
401 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402
403 /*
404 * round_down() can only handle power of 2, while RAID56 full
405 * stripe length can be 64KiB * n, so we need to manually round down.
406 */
b3470b5d
DS
407 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
408 cache->full_stripe_len + cache->start;
0966a7b1
QW
409 return ret;
410}
411
412/*
413 * Lock a full stripe to avoid concurrency of recovery and read
414 *
415 * It's only used for profiles with parities (RAID5/6), for other profiles it
416 * does nothing.
417 *
418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419 * So caller must call unlock_full_stripe() at the same context.
420 *
421 * Return <0 if encounters error.
422 */
423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 bool *locked_ret)
425{
32da5386 426 struct btrfs_block_group *bg_cache;
0966a7b1
QW
427 struct btrfs_full_stripe_locks_tree *locks_root;
428 struct full_stripe_lock *existing;
429 u64 fstripe_start;
430 int ret = 0;
431
432 *locked_ret = false;
433 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
434 if (!bg_cache) {
435 ASSERT(0);
436 return -ENOENT;
437 }
438
439 /* Profiles not based on parity don't need full stripe lock */
440 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
441 goto out;
442 locks_root = &bg_cache->full_stripe_locks_root;
443
444 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
445
446 /* Now insert the full stripe lock */
447 mutex_lock(&locks_root->lock);
448 existing = insert_full_stripe_lock(locks_root, fstripe_start);
449 mutex_unlock(&locks_root->lock);
450 if (IS_ERR(existing)) {
451 ret = PTR_ERR(existing);
452 goto out;
453 }
454 mutex_lock(&existing->mutex);
455 *locked_ret = true;
456out:
457 btrfs_put_block_group(bg_cache);
458 return ret;
459}
460
461/*
462 * Unlock a full stripe.
463 *
464 * NOTE: Caller must ensure it's the same context calling corresponding
465 * lock_full_stripe().
466 *
467 * Return 0 if we unlock full stripe without problem.
468 * Return <0 for error
469 */
470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 bool locked)
472{
32da5386 473 struct btrfs_block_group *bg_cache;
0966a7b1
QW
474 struct btrfs_full_stripe_locks_tree *locks_root;
475 struct full_stripe_lock *fstripe_lock;
476 u64 fstripe_start;
477 bool freeit = false;
478 int ret = 0;
479
480 /* If we didn't acquire full stripe lock, no need to continue */
481 if (!locked)
482 return 0;
483
484 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
485 if (!bg_cache) {
486 ASSERT(0);
487 return -ENOENT;
488 }
489 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 goto out;
491
492 locks_root = &bg_cache->full_stripe_locks_root;
493 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
494
495 mutex_lock(&locks_root->lock);
496 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
497 /* Unpaired unlock_full_stripe() detected */
498 if (!fstripe_lock) {
499 WARN_ON(1);
500 ret = -ENOENT;
501 mutex_unlock(&locks_root->lock);
502 goto out;
503 }
504
505 if (fstripe_lock->refs == 0) {
506 WARN_ON(1);
507 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
508 fstripe_lock->logical);
509 } else {
510 fstripe_lock->refs--;
511 }
512
513 if (fstripe_lock->refs == 0) {
514 rb_erase(&fstripe_lock->node, &locks_root->root);
515 freeit = true;
516 }
517 mutex_unlock(&locks_root->lock);
518
519 mutex_unlock(&fstripe_lock->mutex);
520 if (freeit)
521 kfree(fstripe_lock);
522out:
523 btrfs_put_block_group(bg_cache);
524 return ret;
525}
526
d9d181c1 527static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 528{
d9d181c1 529 while (!list_empty(&sctx->csum_list)) {
a2de733c 530 struct btrfs_ordered_sum *sum;
d9d181c1 531 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
532 struct btrfs_ordered_sum, list);
533 list_del(&sum->list);
534 kfree(sum);
535 }
536}
537
d9d181c1 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
539{
540 int i;
a2de733c 541
d9d181c1 542 if (!sctx)
a2de733c
AJ
543 return;
544
b5d67f64 545 /* this can happen when scrub is cancelled */
d9d181c1
SB
546 if (sctx->curr != -1) {
547 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
548
549 for (i = 0; i < sbio->page_count; i++) {
ff023aac 550 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
551 scrub_block_put(sbio->pagev[i]->sblock);
552 }
553 bio_put(sbio->bio);
554 }
555
ff023aac 556 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 557 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
558
559 if (!sbio)
560 break;
a2de733c
AJ
561 kfree(sbio);
562 }
563
3fb99303 564 kfree(sctx->wr_curr_bio);
d9d181c1
SB
565 scrub_free_csums(sctx);
566 kfree(sctx);
a2de733c
AJ
567}
568
f55985f4
FM
569static void scrub_put_ctx(struct scrub_ctx *sctx)
570{
99f4cdb1 571 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
572 scrub_free_ctx(sctx);
573}
574
92f7ba43
DS
575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
576 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 577{
d9d181c1 578 struct scrub_ctx *sctx;
a2de733c 579 int i;
a2de733c 580
58c4e173 581 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 582 if (!sctx)
a2de733c 583 goto nomem;
99f4cdb1 584 refcount_set(&sctx->refs, 1);
63a212ab 585 sctx->is_dev_replace = is_dev_replace;
b54ffb73 586 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 587 sctx->curr = -1;
92f7ba43 588 sctx->fs_info = fs_info;
e49be14b 589 INIT_LIST_HEAD(&sctx->csum_list);
ff023aac 590 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
591 struct scrub_bio *sbio;
592
58c4e173 593 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
594 if (!sbio)
595 goto nomem;
d9d181c1 596 sctx->bios[i] = sbio;
a2de733c 597
a2de733c 598 sbio->index = i;
d9d181c1 599 sbio->sctx = sctx;
b5d67f64 600 sbio->page_count = 0;
a0cac0ec
OS
601 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
602 NULL);
a2de733c 603
ff023aac 604 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 605 sctx->bios[i]->next_free = i + 1;
0ef8e451 606 else
d9d181c1
SB
607 sctx->bios[i]->next_free = -1;
608 }
609 sctx->first_free = 0;
b6bfebc1
SB
610 atomic_set(&sctx->bios_in_flight, 0);
611 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
612 atomic_set(&sctx->cancel_req, 0);
613 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
d9d181c1
SB
614
615 spin_lock_init(&sctx->list_lock);
616 spin_lock_init(&sctx->stat_lock);
617 init_waitqueue_head(&sctx->list_wait);
ff023aac 618
3fb99303
DS
619 WARN_ON(sctx->wr_curr_bio != NULL);
620 mutex_init(&sctx->wr_lock);
621 sctx->wr_curr_bio = NULL;
8fcdac3f 622 if (is_dev_replace) {
ded56184 623 WARN_ON(!fs_info->dev_replace.tgtdev);
3fb99303 624 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ded56184 625 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
2073c4c2 626 sctx->flush_all_writes = false;
ff023aac 627 }
8fcdac3f 628
d9d181c1 629 return sctx;
a2de733c
AJ
630
631nomem:
d9d181c1 632 scrub_free_ctx(sctx);
a2de733c
AJ
633 return ERR_PTR(-ENOMEM);
634}
635
ff023aac
SB
636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
637 void *warn_ctx)
558540c1
JS
638{
639 u64 isize;
640 u32 nlink;
641 int ret;
642 int i;
de2491fd 643 unsigned nofs_flag;
558540c1
JS
644 struct extent_buffer *eb;
645 struct btrfs_inode_item *inode_item;
ff023aac 646 struct scrub_warning *swarn = warn_ctx;
fb456252 647 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
648 struct inode_fs_paths *ipath = NULL;
649 struct btrfs_root *local_root;
1d4c08e0 650 struct btrfs_key key;
558540c1 651
56e9357a 652 local_root = btrfs_get_fs_root(fs_info, root, true);
558540c1
JS
653 if (IS_ERR(local_root)) {
654 ret = PTR_ERR(local_root);
655 goto err;
656 }
657
14692cc1
DS
658 /*
659 * this makes the path point to (inum INODE_ITEM ioff)
660 */
1d4c08e0
DS
661 key.objectid = inum;
662 key.type = BTRFS_INODE_ITEM_KEY;
663 key.offset = 0;
664
665 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1 666 if (ret) {
00246528 667 btrfs_put_root(local_root);
558540c1
JS
668 btrfs_release_path(swarn->path);
669 goto err;
670 }
671
672 eb = swarn->path->nodes[0];
673 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
674 struct btrfs_inode_item);
675 isize = btrfs_inode_size(eb, inode_item);
676 nlink = btrfs_inode_nlink(eb, inode_item);
677 btrfs_release_path(swarn->path);
678
de2491fd
DS
679 /*
680 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
681 * uses GFP_NOFS in this context, so we keep it consistent but it does
682 * not seem to be strictly necessary.
683 */
684 nofs_flag = memalloc_nofs_save();
558540c1 685 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 686 memalloc_nofs_restore(nofs_flag);
26bdef54 687 if (IS_ERR(ipath)) {
00246528 688 btrfs_put_root(local_root);
26bdef54
DC
689 ret = PTR_ERR(ipath);
690 ipath = NULL;
691 goto err;
692 }
558540c1
JS
693 ret = paths_from_inode(inum, ipath);
694
695 if (ret < 0)
696 goto err;
697
698 /*
699 * we deliberately ignore the bit ipath might have been too small to
700 * hold all of the paths here
701 */
702 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 703 btrfs_warn_in_rcu(fs_info,
6aa21263 704"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
5d163e0e
JM
705 swarn->errstr, swarn->logical,
706 rcu_str_deref(swarn->dev->name),
6aa21263 707 swarn->physical,
5d163e0e
JM
708 root, inum, offset,
709 min(isize - offset, (u64)PAGE_SIZE), nlink,
710 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1 711
00246528 712 btrfs_put_root(local_root);
558540c1
JS
713 free_ipath(ipath);
714 return 0;
715
716err:
5d163e0e 717 btrfs_warn_in_rcu(fs_info,
6aa21263 718 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e
JM
719 swarn->errstr, swarn->logical,
720 rcu_str_deref(swarn->dev->name),
6aa21263 721 swarn->physical,
5d163e0e 722 root, inum, offset, ret);
558540c1
JS
723
724 free_ipath(ipath);
725 return 0;
726}
727
b5d67f64 728static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 729{
a36cf8b8
SB
730 struct btrfs_device *dev;
731 struct btrfs_fs_info *fs_info;
558540c1
JS
732 struct btrfs_path *path;
733 struct btrfs_key found_key;
734 struct extent_buffer *eb;
735 struct btrfs_extent_item *ei;
736 struct scrub_warning swarn;
69917e43
LB
737 unsigned long ptr = 0;
738 u64 extent_item_pos;
739 u64 flags = 0;
558540c1 740 u64 ref_root;
69917e43 741 u32 item_size;
07c9a8e0 742 u8 ref_level = 0;
69917e43 743 int ret;
558540c1 744
a36cf8b8 745 WARN_ON(sblock->page_count < 1);
7a9e9987 746 dev = sblock->pagev[0]->dev;
fb456252 747 fs_info = sblock->sctx->fs_info;
a36cf8b8 748
558540c1 749 path = btrfs_alloc_path();
8b9456da
DS
750 if (!path)
751 return;
558540c1 752
6aa21263 753 swarn.physical = sblock->pagev[0]->physical;
7a9e9987 754 swarn.logical = sblock->pagev[0]->logical;
558540c1 755 swarn.errstr = errstr;
a36cf8b8 756 swarn.dev = NULL;
558540c1 757
69917e43
LB
758 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
759 &flags);
558540c1
JS
760 if (ret < 0)
761 goto out;
762
4692cf58 763 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
764 swarn.extent_item_size = found_key.offset;
765
766 eb = path->nodes[0];
767 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
768 item_size = btrfs_item_size_nr(eb, path->slots[0]);
769
69917e43 770 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 771 do {
6eda71d0
LB
772 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
773 item_size, &ref_root,
774 &ref_level);
ecaeb14b 775 btrfs_warn_in_rcu(fs_info,
6aa21263 776"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
5d163e0e 777 errstr, swarn.logical,
606686ee 778 rcu_str_deref(dev->name),
6aa21263 779 swarn.physical,
558540c1
JS
780 ref_level ? "node" : "leaf",
781 ret < 0 ? -1 : ref_level,
782 ret < 0 ? -1 : ref_root);
783 } while (ret != 1);
d8fe29e9 784 btrfs_release_path(path);
558540c1 785 } else {
d8fe29e9 786 btrfs_release_path(path);
558540c1 787 swarn.path = path;
a36cf8b8 788 swarn.dev = dev;
7a3ae2f8
JS
789 iterate_extent_inodes(fs_info, found_key.objectid,
790 extent_item_pos, 1,
c995ab3c 791 scrub_print_warning_inode, &swarn, false);
558540c1
JS
792 }
793
794out:
795 btrfs_free_path(path);
558540c1
JS
796}
797
af8e2d1d
MX
798static inline void scrub_get_recover(struct scrub_recover *recover)
799{
6f615018 800 refcount_inc(&recover->refs);
af8e2d1d
MX
801}
802
e501bfe3
QW
803static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
804 struct scrub_recover *recover)
af8e2d1d 805{
6f615018 806 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 807 btrfs_bio_counter_dec(fs_info);
6e9606d2 808 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
809 kfree(recover);
810 }
811}
812
a2de733c 813/*
b5d67f64
SB
814 * scrub_handle_errored_block gets called when either verification of the
815 * pages failed or the bio failed to read, e.g. with EIO. In the latter
816 * case, this function handles all pages in the bio, even though only one
817 * may be bad.
818 * The goal of this function is to repair the errored block by using the
819 * contents of one of the mirrors.
a2de733c 820 */
b5d67f64 821static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 822{
d9d181c1 823 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 824 struct btrfs_device *dev;
b5d67f64 825 struct btrfs_fs_info *fs_info;
b5d67f64 826 u64 logical;
b5d67f64
SB
827 unsigned int failed_mirror_index;
828 unsigned int is_metadata;
829 unsigned int have_csum;
b5d67f64
SB
830 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
831 struct scrub_block *sblock_bad;
832 int ret;
833 int mirror_index;
834 int page_num;
835 int success;
28d70e23 836 bool full_stripe_locked;
7c3c7cb9 837 unsigned int nofs_flag;
558540c1 838 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
839 DEFAULT_RATELIMIT_BURST);
840
841 BUG_ON(sblock_to_check->page_count < 1);
fb456252 842 fs_info = sctx->fs_info;
4ded4f63
SB
843 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
844 /*
845 * if we find an error in a super block, we just report it.
846 * They will get written with the next transaction commit
847 * anyway
848 */
849 spin_lock(&sctx->stat_lock);
850 ++sctx->stat.super_errors;
851 spin_unlock(&sctx->stat_lock);
852 return 0;
853 }
7a9e9987 854 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
855 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
856 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
857 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 858 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 859 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 860 dev = sblock_to_check->pagev[0]->dev;
13db62b7 861
7c3c7cb9
FM
862 /*
863 * We must use GFP_NOFS because the scrub task might be waiting for a
864 * worker task executing this function and in turn a transaction commit
865 * might be waiting the scrub task to pause (which needs to wait for all
866 * the worker tasks to complete before pausing).
867 * We do allocations in the workers through insert_full_stripe_lock()
868 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
869 * this function.
870 */
871 nofs_flag = memalloc_nofs_save();
28d70e23
QW
872 /*
873 * For RAID5/6, race can happen for a different device scrub thread.
874 * For data corruption, Parity and Data threads will both try
875 * to recovery the data.
876 * Race can lead to doubly added csum error, or even unrecoverable
877 * error.
878 */
879 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
880 if (ret < 0) {
7c3c7cb9 881 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
882 spin_lock(&sctx->stat_lock);
883 if (ret == -ENOMEM)
884 sctx->stat.malloc_errors++;
885 sctx->stat.read_errors++;
886 sctx->stat.uncorrectable_errors++;
887 spin_unlock(&sctx->stat_lock);
888 return ret;
889 }
890
b5d67f64
SB
891 /*
892 * read all mirrors one after the other. This includes to
893 * re-read the extent or metadata block that failed (that was
894 * the cause that this fixup code is called) another time,
895 * page by page this time in order to know which pages
896 * caused I/O errors and which ones are good (for all mirrors).
897 * It is the goal to handle the situation when more than one
898 * mirror contains I/O errors, but the errors do not
899 * overlap, i.e. the data can be repaired by selecting the
900 * pages from those mirrors without I/O error on the
901 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
902 * would be that mirror #1 has an I/O error on the first page,
903 * the second page is good, and mirror #2 has an I/O error on
904 * the second page, but the first page is good.
905 * Then the first page of the first mirror can be repaired by
906 * taking the first page of the second mirror, and the
907 * second page of the second mirror can be repaired by
908 * copying the contents of the 2nd page of the 1st mirror.
909 * One more note: if the pages of one mirror contain I/O
910 * errors, the checksum cannot be verified. In order to get
911 * the best data for repairing, the first attempt is to find
912 * a mirror without I/O errors and with a validated checksum.
913 * Only if this is not possible, the pages are picked from
914 * mirrors with I/O errors without considering the checksum.
915 * If the latter is the case, at the end, the checksum of the
916 * repaired area is verified in order to correctly maintain
917 * the statistics.
918 */
919
31e818fe 920 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
7c3c7cb9 921 sizeof(*sblocks_for_recheck), GFP_KERNEL);
b5d67f64 922 if (!sblocks_for_recheck) {
d9d181c1
SB
923 spin_lock(&sctx->stat_lock);
924 sctx->stat.malloc_errors++;
925 sctx->stat.read_errors++;
926 sctx->stat.uncorrectable_errors++;
927 spin_unlock(&sctx->stat_lock);
a36cf8b8 928 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 929 goto out;
a2de733c
AJ
930 }
931
b5d67f64 932 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 933 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 934 if (ret) {
d9d181c1
SB
935 spin_lock(&sctx->stat_lock);
936 sctx->stat.read_errors++;
937 sctx->stat.uncorrectable_errors++;
938 spin_unlock(&sctx->stat_lock);
a36cf8b8 939 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
940 goto out;
941 }
942 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
943 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 944
b5d67f64 945 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 946 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 947
b5d67f64
SB
948 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
949 sblock_bad->no_io_error_seen) {
950 /*
951 * the error disappeared after reading page by page, or
952 * the area was part of a huge bio and other parts of the
953 * bio caused I/O errors, or the block layer merged several
954 * read requests into one and the error is caused by a
955 * different bio (usually one of the two latter cases is
956 * the cause)
957 */
d9d181c1
SB
958 spin_lock(&sctx->stat_lock);
959 sctx->stat.unverified_errors++;
5a6ac9ea 960 sblock_to_check->data_corrected = 1;
d9d181c1 961 spin_unlock(&sctx->stat_lock);
a2de733c 962
ff023aac
SB
963 if (sctx->is_dev_replace)
964 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 965 goto out;
a2de733c 966 }
a2de733c 967
b5d67f64 968 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
969 spin_lock(&sctx->stat_lock);
970 sctx->stat.read_errors++;
971 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
972 if (__ratelimit(&_rs))
973 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 975 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
976 spin_lock(&sctx->stat_lock);
977 sctx->stat.csum_errors++;
978 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
979 if (__ratelimit(&_rs))
980 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 981 btrfs_dev_stat_inc_and_print(dev,
442a4f63 982 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 983 } else if (sblock_bad->header_error) {
d9d181c1
SB
984 spin_lock(&sctx->stat_lock);
985 sctx->stat.verify_errors++;
986 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
987 if (__ratelimit(&_rs))
988 scrub_print_warning("checksum/header error",
989 sblock_to_check);
442a4f63 990 if (sblock_bad->generation_error)
a36cf8b8 991 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
992 BTRFS_DEV_STAT_GENERATION_ERRS);
993 else
a36cf8b8 994 btrfs_dev_stat_inc_and_print(dev,
442a4f63 995 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 996 }
a2de733c 997
33ef30ad
ID
998 if (sctx->readonly) {
999 ASSERT(!sctx->is_dev_replace);
1000 goto out;
1001 }
a2de733c 1002
b5d67f64
SB
1003 /*
1004 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1005 * checksums.
1006 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1007 * errors and also does not have a checksum error.
1008 * If one is found, and if a checksum is present, the full block
1009 * that is known to contain an error is rewritten. Afterwards
1010 * the block is known to be corrected.
1011 * If a mirror is found which is completely correct, and no
1012 * checksum is present, only those pages are rewritten that had
1013 * an I/O error in the block to be repaired, since it cannot be
1014 * determined, which copy of the other pages is better (and it
1015 * could happen otherwise that a correct page would be
1016 * overwritten by a bad one).
1017 */
762221f0 1018 for (mirror_index = 0; ;mirror_index++) {
cb2ced73 1019 struct scrub_block *sblock_other;
b5d67f64 1020
cb2ced73
SB
1021 if (mirror_index == failed_mirror_index)
1022 continue;
762221f0
LB
1023
1024 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026 if (mirror_index >= BTRFS_MAX_MIRRORS)
1027 break;
1028 if (!sblocks_for_recheck[mirror_index].page_count)
1029 break;
1030
1031 sblock_other = sblocks_for_recheck + mirror_index;
1032 } else {
1033 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034 int max_allowed = r->bbio->num_stripes -
1035 r->bbio->num_tgtdevs;
1036
1037 if (mirror_index >= max_allowed)
1038 break;
1039 if (!sblocks_for_recheck[1].page_count)
1040 break;
1041
1042 ASSERT(failed_mirror_index == 0);
1043 sblock_other = sblocks_for_recheck + 1;
1044 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045 }
cb2ced73
SB
1046
1047 /* build and submit the bios, check checksums */
affe4a5a 1048 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1049
1050 if (!sblock_other->header_error &&
b5d67f64
SB
1051 !sblock_other->checksum_error &&
1052 sblock_other->no_io_error_seen) {
ff023aac
SB
1053 if (sctx->is_dev_replace) {
1054 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1055 goto corrected_error;
ff023aac 1056 } else {
ff023aac 1057 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1058 sblock_bad, sblock_other);
1059 if (!ret)
1060 goto corrected_error;
ff023aac 1061 }
b5d67f64
SB
1062 }
1063 }
a2de733c 1064
b968fed1
ZL
1065 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066 goto did_not_correct_error;
ff023aac
SB
1067
1068 /*
ff023aac 1069 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1070 * repaired, continue by picking good copies of those pages.
1071 * Select the good pages from mirrors to rewrite bad pages from
1072 * the area to fix. Afterwards verify the checksum of the block
1073 * that is supposed to be repaired. This verification step is
1074 * only done for the purpose of statistic counting and for the
1075 * final scrub report, whether errors remain.
1076 * A perfect algorithm could make use of the checksum and try
1077 * all possible combinations of pages from the different mirrors
1078 * until the checksum verification succeeds. For example, when
1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 * of mirror #2 is readable but the final checksum test fails,
1081 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1082 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1083 * exception and is therefore not implemented. At least it is
1084 * avoided that the good copy is overwritten.
1085 * A more useful improvement would be to pick the sectors
1086 * without I/O error based on sector sizes (512 bytes on legacy
1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 * mirror could be repaired by taking 512 byte of a different
1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 * area are unreadable.
a2de733c 1091 */
b5d67f64 1092 success = 1;
b968fed1
ZL
1093 for (page_num = 0; page_num < sblock_bad->page_count;
1094 page_num++) {
7a9e9987 1095 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1096 struct scrub_block *sblock_other = NULL;
b5d67f64 1097
b968fed1
ZL
1098 /* skip no-io-error page in scrub */
1099 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1100 continue;
b5d67f64 1101
4759700a
LB
1102 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103 /*
1104 * In case of dev replace, if raid56 rebuild process
1105 * didn't work out correct data, then copy the content
1106 * in sblock_bad to make sure target device is identical
1107 * to source device, instead of writing garbage data in
1108 * sblock_for_recheck array to target device.
1109 */
1110 sblock_other = NULL;
1111 } else if (page_bad->io_error) {
1112 /* try to find no-io-error page in mirrors */
b968fed1
ZL
1113 for (mirror_index = 0;
1114 mirror_index < BTRFS_MAX_MIRRORS &&
1115 sblocks_for_recheck[mirror_index].page_count > 0;
1116 mirror_index++) {
1117 if (!sblocks_for_recheck[mirror_index].
1118 pagev[page_num]->io_error) {
1119 sblock_other = sblocks_for_recheck +
1120 mirror_index;
1121 break;
b5d67f64
SB
1122 }
1123 }
b968fed1
ZL
1124 if (!sblock_other)
1125 success = 0;
96e36920 1126 }
a2de733c 1127
b968fed1
ZL
1128 if (sctx->is_dev_replace) {
1129 /*
1130 * did not find a mirror to fetch the page
1131 * from. scrub_write_page_to_dev_replace()
1132 * handles this case (page->io_error), by
1133 * filling the block with zeros before
1134 * submitting the write request
1135 */
1136 if (!sblock_other)
1137 sblock_other = sblock_bad;
1138
1139 if (scrub_write_page_to_dev_replace(sblock_other,
1140 page_num) != 0) {
e37abe97 1141 atomic64_inc(
0b246afa 1142 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1143 success = 0;
1144 }
1145 } else if (sblock_other) {
1146 ret = scrub_repair_page_from_good_copy(sblock_bad,
1147 sblock_other,
1148 page_num, 0);
1149 if (0 == ret)
1150 page_bad->io_error = 0;
1151 else
1152 success = 0;
b5d67f64 1153 }
a2de733c 1154 }
a2de733c 1155
b968fed1 1156 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1157 if (is_metadata || have_csum) {
1158 /*
1159 * need to verify the checksum now that all
1160 * sectors on disk are repaired (the write
1161 * request for data to be repaired is on its way).
1162 * Just be lazy and use scrub_recheck_block()
1163 * which re-reads the data before the checksum
1164 * is verified, but most likely the data comes out
1165 * of the page cache.
1166 */
affe4a5a 1167 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1168 if (!sblock_bad->header_error &&
b5d67f64
SB
1169 !sblock_bad->checksum_error &&
1170 sblock_bad->no_io_error_seen)
1171 goto corrected_error;
1172 else
1173 goto did_not_correct_error;
1174 } else {
1175corrected_error:
d9d181c1
SB
1176 spin_lock(&sctx->stat_lock);
1177 sctx->stat.corrected_errors++;
5a6ac9ea 1178 sblock_to_check->data_corrected = 1;
d9d181c1 1179 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1180 btrfs_err_rl_in_rcu(fs_info,
1181 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1182 logical, rcu_str_deref(dev->name));
8628764e 1183 }
b5d67f64
SB
1184 } else {
1185did_not_correct_error:
d9d181c1
SB
1186 spin_lock(&sctx->stat_lock);
1187 sctx->stat.uncorrectable_errors++;
1188 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1189 btrfs_err_rl_in_rcu(fs_info,
1190 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1191 logical, rcu_str_deref(dev->name));
96e36920 1192 }
a2de733c 1193
b5d67f64
SB
1194out:
1195 if (sblocks_for_recheck) {
1196 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197 mirror_index++) {
1198 struct scrub_block *sblock = sblocks_for_recheck +
1199 mirror_index;
af8e2d1d 1200 struct scrub_recover *recover;
b5d67f64
SB
1201 int page_index;
1202
7a9e9987
SB
1203 for (page_index = 0; page_index < sblock->page_count;
1204 page_index++) {
1205 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1206 recover = sblock->pagev[page_index]->recover;
1207 if (recover) {
e501bfe3 1208 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1209 sblock->pagev[page_index]->recover =
1210 NULL;
1211 }
7a9e9987
SB
1212 scrub_page_put(sblock->pagev[page_index]);
1213 }
b5d67f64
SB
1214 }
1215 kfree(sblocks_for_recheck);
1216 }
a2de733c 1217
28d70e23 1218 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
7c3c7cb9 1219 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
1220 if (ret < 0)
1221 return ret;
b5d67f64
SB
1222 return 0;
1223}
a2de733c 1224
8e5cfb55 1225static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1226{
10f11900
ZL
1227 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228 return 2;
1229 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230 return 3;
1231 else
af8e2d1d 1232 return (int)bbio->num_stripes;
af8e2d1d
MX
1233}
1234
10f11900
ZL
1235static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236 u64 *raid_map,
af8e2d1d
MX
1237 u64 mapped_length,
1238 int nstripes, int mirror,
1239 int *stripe_index,
1240 u64 *stripe_offset)
1241{
1242 int i;
1243
ffe2d203 1244 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1245 /* RAID5/6 */
1246 for (i = 0; i < nstripes; i++) {
1247 if (raid_map[i] == RAID6_Q_STRIPE ||
1248 raid_map[i] == RAID5_P_STRIPE)
1249 continue;
1250
1251 if (logical >= raid_map[i] &&
1252 logical < raid_map[i] + mapped_length)
1253 break;
1254 }
1255
1256 *stripe_index = i;
1257 *stripe_offset = logical - raid_map[i];
1258 } else {
1259 /* The other RAID type */
1260 *stripe_index = mirror;
1261 *stripe_offset = 0;
1262 }
1263}
1264
be50a8dd 1265static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1266 struct scrub_block *sblocks_for_recheck)
1267{
be50a8dd 1268 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1269 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1270 u64 length = original_sblock->page_count * PAGE_SIZE;
1271 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1272 u64 generation = original_sblock->pagev[0]->generation;
1273 u64 flags = original_sblock->pagev[0]->flags;
1274 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1275 struct scrub_recover *recover;
1276 struct btrfs_bio *bbio;
af8e2d1d
MX
1277 u64 sublen;
1278 u64 mapped_length;
1279 u64 stripe_offset;
1280 int stripe_index;
be50a8dd 1281 int page_index = 0;
b5d67f64 1282 int mirror_index;
af8e2d1d 1283 int nmirrors;
b5d67f64
SB
1284 int ret;
1285
1286 /*
57019345 1287 * note: the two members refs and outstanding_pages
b5d67f64
SB
1288 * are not used (and not set) in the blocks that are used for
1289 * the recheck procedure
1290 */
1291
b5d67f64 1292 while (length > 0) {
af8e2d1d
MX
1293 sublen = min_t(u64, length, PAGE_SIZE);
1294 mapped_length = sublen;
1295 bbio = NULL;
a2de733c 1296
b5d67f64
SB
1297 /*
1298 * with a length of PAGE_SIZE, each returned stripe
1299 * represents one mirror
1300 */
e501bfe3 1301 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1302 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1303 logical, &mapped_length, &bbio);
b5d67f64 1304 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1305 btrfs_put_bbio(bbio);
e501bfe3 1306 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1307 return -EIO;
1308 }
a2de733c 1309
af8e2d1d
MX
1310 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311 if (!recover) {
6e9606d2 1312 btrfs_put_bbio(bbio);
e501bfe3 1313 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1314 return -ENOMEM;
1315 }
1316
6f615018 1317 refcount_set(&recover->refs, 1);
af8e2d1d 1318 recover->bbio = bbio;
af8e2d1d
MX
1319 recover->map_length = mapped_length;
1320
24731149 1321 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1322
be50a8dd 1323 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1324
af8e2d1d 1325 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1326 mirror_index++) {
1327 struct scrub_block *sblock;
1328 struct scrub_page *page;
1329
b5d67f64 1330 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1331 sblock->sctx = sctx;
4734b7ed 1332
7a9e9987
SB
1333 page = kzalloc(sizeof(*page), GFP_NOFS);
1334 if (!page) {
1335leave_nomem:
d9d181c1
SB
1336 spin_lock(&sctx->stat_lock);
1337 sctx->stat.malloc_errors++;
1338 spin_unlock(&sctx->stat_lock);
e501bfe3 1339 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1340 return -ENOMEM;
1341 }
7a9e9987
SB
1342 scrub_page_get(page);
1343 sblock->pagev[page_index] = page;
4734b7ed
ZL
1344 page->sblock = sblock;
1345 page->flags = flags;
1346 page->generation = generation;
7a9e9987 1347 page->logical = logical;
4734b7ed
ZL
1348 page->have_csum = have_csum;
1349 if (have_csum)
1350 memcpy(page->csum,
1351 original_sblock->pagev[0]->csum,
1352 sctx->csum_size);
af8e2d1d 1353
10f11900
ZL
1354 scrub_stripe_index_and_offset(logical,
1355 bbio->map_type,
1356 bbio->raid_map,
af8e2d1d 1357 mapped_length,
e34c330d
ZL
1358 bbio->num_stripes -
1359 bbio->num_tgtdevs,
af8e2d1d
MX
1360 mirror_index,
1361 &stripe_index,
1362 &stripe_offset);
1363 page->physical = bbio->stripes[stripe_index].physical +
1364 stripe_offset;
1365 page->dev = bbio->stripes[stripe_index].dev;
1366
ff023aac
SB
1367 BUG_ON(page_index >= original_sblock->page_count);
1368 page->physical_for_dev_replace =
1369 original_sblock->pagev[page_index]->
1370 physical_for_dev_replace;
7a9e9987 1371 /* for missing devices, dev->bdev is NULL */
7a9e9987 1372 page->mirror_num = mirror_index + 1;
b5d67f64 1373 sblock->page_count++;
7a9e9987
SB
1374 page->page = alloc_page(GFP_NOFS);
1375 if (!page->page)
1376 goto leave_nomem;
af8e2d1d
MX
1377
1378 scrub_get_recover(recover);
1379 page->recover = recover;
b5d67f64 1380 }
e501bfe3 1381 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1382 length -= sublen;
1383 logical += sublen;
1384 page_index++;
1385 }
1386
1387 return 0;
96e36920
ID
1388}
1389
4246a0b6 1390static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d 1391{
b4ff5ad7 1392 complete(bio->bi_private);
af8e2d1d
MX
1393}
1394
af8e2d1d
MX
1395static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396 struct bio *bio,
1397 struct scrub_page *page)
1398{
b4ff5ad7 1399 DECLARE_COMPLETION_ONSTACK(done);
af8e2d1d 1400 int ret;
762221f0 1401 int mirror_num;
af8e2d1d 1402
af8e2d1d
MX
1403 bio->bi_iter.bi_sector = page->logical >> 9;
1404 bio->bi_private = &done;
1405 bio->bi_end_io = scrub_bio_wait_endio;
1406
762221f0 1407 mirror_num = page->sblock->pagev[0]->mirror_num;
2ff7e61e 1408 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1409 page->recover->map_length,
762221f0 1410 mirror_num, 0);
af8e2d1d
MX
1411 if (ret)
1412 return ret;
1413
b4ff5ad7
LB
1414 wait_for_completion_io(&done);
1415 return blk_status_to_errno(bio->bi_status);
af8e2d1d
MX
1416}
1417
6ca1765b
LB
1418static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419 struct scrub_block *sblock)
1420{
1421 struct scrub_page *first_page = sblock->pagev[0];
1422 struct bio *bio;
1423 int page_num;
1424
1425 /* All pages in sblock belong to the same stripe on the same device. */
1426 ASSERT(first_page->dev);
1427 if (!first_page->dev->bdev)
1428 goto out;
1429
1430 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431 bio_set_dev(bio, first_page->dev->bdev);
1432
1433 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434 struct scrub_page *page = sblock->pagev[page_num];
1435
1436 WARN_ON(!page->page);
1437 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438 }
1439
1440 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441 bio_put(bio);
1442 goto out;
1443 }
1444
1445 bio_put(bio);
1446
1447 scrub_recheck_block_checksum(sblock);
1448
1449 return;
1450out:
1451 for (page_num = 0; page_num < sblock->page_count; page_num++)
1452 sblock->pagev[page_num]->io_error = 1;
1453
1454 sblock->no_io_error_seen = 0;
1455}
1456
b5d67f64
SB
1457/*
1458 * this function will check the on disk data for checksum errors, header
1459 * errors and read I/O errors. If any I/O errors happen, the exact pages
1460 * which are errored are marked as being bad. The goal is to enable scrub
1461 * to take those pages that are not errored from all the mirrors so that
1462 * the pages that are errored in the just handled mirror can be repaired.
1463 */
34f5c8e9 1464static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1465 struct scrub_block *sblock,
1466 int retry_failed_mirror)
96e36920 1467{
b5d67f64 1468 int page_num;
96e36920 1469
b5d67f64 1470 sblock->no_io_error_seen = 1;
96e36920 1471
6ca1765b
LB
1472 /* short cut for raid56 */
1473 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474 return scrub_recheck_block_on_raid56(fs_info, sblock);
1475
b5d67f64
SB
1476 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477 struct bio *bio;
7a9e9987 1478 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1479
442a4f63 1480 if (page->dev->bdev == NULL) {
ea9947b4
SB
1481 page->io_error = 1;
1482 sblock->no_io_error_seen = 0;
1483 continue;
1484 }
1485
7a9e9987 1486 WARN_ON(!page->page);
c5e4c3d7 1487 bio = btrfs_io_bio_alloc(1);
74d46992 1488 bio_set_dev(bio, page->dev->bdev);
b5d67f64 1489
34f5c8e9 1490 bio_add_page(bio, page->page, PAGE_SIZE, 0);
6ca1765b
LB
1491 bio->bi_iter.bi_sector = page->physical >> 9;
1492 bio->bi_opf = REQ_OP_READ;
af8e2d1d 1493
6ca1765b
LB
1494 if (btrfsic_submit_bio_wait(bio)) {
1495 page->io_error = 1;
1496 sblock->no_io_error_seen = 0;
af8e2d1d 1497 }
33879d45 1498
b5d67f64
SB
1499 bio_put(bio);
1500 }
96e36920 1501
b5d67f64 1502 if (sblock->no_io_error_seen)
ba7cf988 1503 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1504}
1505
17a9be2f
MX
1506static inline int scrub_check_fsid(u8 fsid[],
1507 struct scrub_page *spage)
1508{
1509 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510 int ret;
1511
44880fdc 1512 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
17a9be2f
MX
1513 return !ret;
1514}
1515
ba7cf988 1516static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1517{
ba7cf988
ZL
1518 sblock->header_error = 0;
1519 sblock->checksum_error = 0;
1520 sblock->generation_error = 0;
b5d67f64 1521
ba7cf988
ZL
1522 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523 scrub_checksum_data(sblock);
1524 else
1525 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1526}
1527
b5d67f64 1528static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1529 struct scrub_block *sblock_good)
b5d67f64
SB
1530{
1531 int page_num;
1532 int ret = 0;
96e36920 1533
b5d67f64
SB
1534 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535 int ret_sub;
96e36920 1536
b5d67f64
SB
1537 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538 sblock_good,
114ab50d 1539 page_num, 1);
b5d67f64
SB
1540 if (ret_sub)
1541 ret = ret_sub;
a2de733c 1542 }
b5d67f64
SB
1543
1544 return ret;
1545}
1546
1547static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548 struct scrub_block *sblock_good,
1549 int page_num, int force_write)
1550{
7a9e9987
SB
1551 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1553 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1554
7a9e9987
SB
1555 BUG_ON(page_bad->page == NULL);
1556 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1557 if (force_write || sblock_bad->header_error ||
1558 sblock_bad->checksum_error || page_bad->io_error) {
1559 struct bio *bio;
1560 int ret;
b5d67f64 1561
ff023aac 1562 if (!page_bad->dev->bdev) {
0b246afa 1563 btrfs_warn_rl(fs_info,
5d163e0e 1564 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1565 return -EIO;
1566 }
1567
c5e4c3d7 1568 bio = btrfs_io_bio_alloc(1);
74d46992 1569 bio_set_dev(bio, page_bad->dev->bdev);
4f024f37 1570 bio->bi_iter.bi_sector = page_bad->physical >> 9;
ebcc3263 1571 bio->bi_opf = REQ_OP_WRITE;
b5d67f64
SB
1572
1573 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574 if (PAGE_SIZE != ret) {
1575 bio_put(bio);
1576 return -EIO;
13db62b7 1577 }
b5d67f64 1578
4e49ea4a 1579 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1580 btrfs_dev_stat_inc_and_print(page_bad->dev,
1581 BTRFS_DEV_STAT_WRITE_ERRS);
e37abe97 1582 atomic64_inc(&fs_info->dev_replace.num_write_errors);
442a4f63
SB
1583 bio_put(bio);
1584 return -EIO;
1585 }
b5d67f64 1586 bio_put(bio);
a2de733c
AJ
1587 }
1588
b5d67f64
SB
1589 return 0;
1590}
1591
ff023aac
SB
1592static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593{
0b246afa 1594 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1595 int page_num;
1596
5a6ac9ea
MX
1597 /*
1598 * This block is used for the check of the parity on the source device,
1599 * so the data needn't be written into the destination device.
1600 */
1601 if (sblock->sparity)
1602 return;
1603
ff023aac
SB
1604 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605 int ret;
1606
1607 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608 if (ret)
e37abe97 1609 atomic64_inc(&fs_info->dev_replace.num_write_errors);
ff023aac
SB
1610 }
1611}
1612
1613static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614 int page_num)
1615{
1616 struct scrub_page *spage = sblock->pagev[page_num];
1617
1618 BUG_ON(spage->page == NULL);
a8b3a890
DS
1619 if (spage->io_error)
1620 clear_page(page_address(spage->page));
ff023aac 1621
ff023aac
SB
1622 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1623}
1624
1625static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1626 struct scrub_page *spage)
1627{
ff023aac
SB
1628 struct scrub_bio *sbio;
1629 int ret;
1630
3fb99303 1631 mutex_lock(&sctx->wr_lock);
ff023aac 1632again:
3fb99303
DS
1633 if (!sctx->wr_curr_bio) {
1634 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
58c4e173 1635 GFP_KERNEL);
3fb99303
DS
1636 if (!sctx->wr_curr_bio) {
1637 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1638 return -ENOMEM;
1639 }
3fb99303
DS
1640 sctx->wr_curr_bio->sctx = sctx;
1641 sctx->wr_curr_bio->page_count = 0;
ff023aac 1642 }
3fb99303 1643 sbio = sctx->wr_curr_bio;
ff023aac
SB
1644 if (sbio->page_count == 0) {
1645 struct bio *bio;
1646
1647 sbio->physical = spage->physical_for_dev_replace;
1648 sbio->logical = spage->logical;
3fb99303 1649 sbio->dev = sctx->wr_tgtdev;
ff023aac
SB
1650 bio = sbio->bio;
1651 if (!bio) {
c5e4c3d7 1652 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
ff023aac
SB
1653 sbio->bio = bio;
1654 }
1655
1656 bio->bi_private = sbio;
1657 bio->bi_end_io = scrub_wr_bio_end_io;
74d46992 1658 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 1659 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 1660 bio->bi_opf = REQ_OP_WRITE;
4e4cbee9 1661 sbio->status = 0;
ff023aac
SB
1662 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1663 spage->physical_for_dev_replace ||
1664 sbio->logical + sbio->page_count * PAGE_SIZE !=
1665 spage->logical) {
1666 scrub_wr_submit(sctx);
1667 goto again;
1668 }
1669
1670 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1671 if (ret != PAGE_SIZE) {
1672 if (sbio->page_count < 1) {
1673 bio_put(sbio->bio);
1674 sbio->bio = NULL;
3fb99303 1675 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1676 return -EIO;
1677 }
1678 scrub_wr_submit(sctx);
1679 goto again;
1680 }
1681
1682 sbio->pagev[sbio->page_count] = spage;
1683 scrub_page_get(spage);
1684 sbio->page_count++;
3fb99303 1685 if (sbio->page_count == sctx->pages_per_wr_bio)
ff023aac 1686 scrub_wr_submit(sctx);
3fb99303 1687 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1688
1689 return 0;
1690}
1691
1692static void scrub_wr_submit(struct scrub_ctx *sctx)
1693{
ff023aac
SB
1694 struct scrub_bio *sbio;
1695
3fb99303 1696 if (!sctx->wr_curr_bio)
ff023aac
SB
1697 return;
1698
3fb99303
DS
1699 sbio = sctx->wr_curr_bio;
1700 sctx->wr_curr_bio = NULL;
74d46992 1701 WARN_ON(!sbio->bio->bi_disk);
ff023aac
SB
1702 scrub_pending_bio_inc(sctx);
1703 /* process all writes in a single worker thread. Then the block layer
1704 * orders the requests before sending them to the driver which
1705 * doubled the write performance on spinning disks when measured
1706 * with Linux 3.5 */
4e49ea4a 1707 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1708}
1709
4246a0b6 1710static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1711{
1712 struct scrub_bio *sbio = bio->bi_private;
fb456252 1713 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1714
4e4cbee9 1715 sbio->status = bio->bi_status;
ff023aac
SB
1716 sbio->bio = bio;
1717
a0cac0ec 1718 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1719 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1720}
1721
1722static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1723{
1724 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1725 struct scrub_ctx *sctx = sbio->sctx;
1726 int i;
1727
1728 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
4e4cbee9 1729 if (sbio->status) {
ff023aac 1730 struct btrfs_dev_replace *dev_replace =
fb456252 1731 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1732
1733 for (i = 0; i < sbio->page_count; i++) {
1734 struct scrub_page *spage = sbio->pagev[i];
1735
1736 spage->io_error = 1;
e37abe97 1737 atomic64_inc(&dev_replace->num_write_errors);
ff023aac
SB
1738 }
1739 }
1740
1741 for (i = 0; i < sbio->page_count; i++)
1742 scrub_page_put(sbio->pagev[i]);
1743
1744 bio_put(sbio->bio);
1745 kfree(sbio);
1746 scrub_pending_bio_dec(sctx);
1747}
1748
1749static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1750{
1751 u64 flags;
1752 int ret;
1753
ba7cf988
ZL
1754 /*
1755 * No need to initialize these stats currently,
1756 * because this function only use return value
1757 * instead of these stats value.
1758 *
1759 * Todo:
1760 * always use stats
1761 */
1762 sblock->header_error = 0;
1763 sblock->generation_error = 0;
1764 sblock->checksum_error = 0;
1765
7a9e9987
SB
1766 WARN_ON(sblock->page_count < 1);
1767 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1768 ret = 0;
1769 if (flags & BTRFS_EXTENT_FLAG_DATA)
1770 ret = scrub_checksum_data(sblock);
1771 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1772 ret = scrub_checksum_tree_block(sblock);
1773 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1774 (void)scrub_checksum_super(sblock);
1775 else
1776 WARN_ON(1);
1777 if (ret)
1778 scrub_handle_errored_block(sblock);
ff023aac
SB
1779
1780 return ret;
a2de733c
AJ
1781}
1782
b5d67f64 1783static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1784{
d9d181c1 1785 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1786 struct btrfs_fs_info *fs_info = sctx->fs_info;
1787 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a2de733c 1788 u8 csum[BTRFS_CSUM_SIZE];
d41ebef2 1789 struct scrub_page *spage;
b0485252 1790 char *kaddr;
a2de733c 1791
b5d67f64 1792 BUG_ON(sblock->page_count < 1);
d41ebef2
DS
1793 spage = sblock->pagev[0];
1794 if (!spage->have_csum)
a2de733c
AJ
1795 return 0;
1796
d41ebef2 1797 kaddr = page_address(spage->page);
b5d67f64 1798
771aba0d
DS
1799 shash->tfm = fs_info->csum_shash;
1800 crypto_shash_init(shash);
1801 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
b5d67f64 1802
d41ebef2 1803 if (memcmp(csum, spage->csum, sctx->csum_size))
ba7cf988 1804 sblock->checksum_error = 1;
a2de733c 1805
ba7cf988 1806 return sblock->checksum_error;
a2de733c
AJ
1807}
1808
b5d67f64 1809static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1810{
d9d181c1 1811 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1812 struct btrfs_header *h;
0b246afa 1813 struct btrfs_fs_info *fs_info = sctx->fs_info;
d5178578 1814 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1815 u8 calculated_csum[BTRFS_CSUM_SIZE];
1816 u8 on_disk_csum[BTRFS_CSUM_SIZE];
521e1022
DS
1817 const int num_pages = sctx->fs_info->nodesize >> PAGE_SHIFT;
1818 int i;
100aa5d9 1819 struct scrub_page *spage;
b0485252 1820 char *kaddr;
d5178578 1821
b5d67f64 1822 BUG_ON(sblock->page_count < 1);
100aa5d9
DS
1823 spage = sblock->pagev[0];
1824 kaddr = page_address(spage->page);
b0485252 1825 h = (struct btrfs_header *)kaddr;
d9d181c1 1826 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1827
1828 /*
1829 * we don't use the getter functions here, as we
1830 * a) don't have an extent buffer and
1831 * b) the page is already kmapped
1832 */
100aa5d9 1833 if (spage->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1834 sblock->header_error = 1;
a2de733c 1835
100aa5d9 1836 if (spage->generation != btrfs_stack_header_generation(h)) {
ba7cf988
ZL
1837 sblock->header_error = 1;
1838 sblock->generation_error = 1;
1839 }
a2de733c 1840
100aa5d9 1841 if (!scrub_check_fsid(h->fsid, spage))
ba7cf988 1842 sblock->header_error = 1;
a2de733c
AJ
1843
1844 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1845 BTRFS_UUID_SIZE))
ba7cf988 1846 sblock->header_error = 1;
a2de733c 1847
521e1022
DS
1848 shash->tfm = fs_info->csum_shash;
1849 crypto_shash_init(shash);
1850 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1851 PAGE_SIZE - BTRFS_CSUM_SIZE);
b5d67f64 1852
521e1022
DS
1853 for (i = 1; i < num_pages; i++) {
1854 kaddr = page_address(sblock->pagev[i]->page);
1855 crypto_shash_update(shash, kaddr, PAGE_SIZE);
b5d67f64
SB
1856 }
1857
d5178578 1858 crypto_shash_final(shash, calculated_csum);
d9d181c1 1859 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1860 sblock->checksum_error = 1;
a2de733c 1861
ba7cf988 1862 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1863}
1864
b5d67f64 1865static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1866{
1867 struct btrfs_super_block *s;
d9d181c1 1868 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1869 struct btrfs_fs_info *fs_info = sctx->fs_info;
1870 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64 1871 u8 calculated_csum[BTRFS_CSUM_SIZE];
c7460541 1872 struct scrub_page *spage;
b0485252 1873 char *kaddr;
442a4f63
SB
1874 int fail_gen = 0;
1875 int fail_cor = 0;
d5178578 1876
b5d67f64 1877 BUG_ON(sblock->page_count < 1);
c7460541
DS
1878 spage = sblock->pagev[0];
1879 kaddr = page_address(spage->page);
b0485252 1880 s = (struct btrfs_super_block *)kaddr;
a2de733c 1881
c7460541 1882 if (spage->logical != btrfs_super_bytenr(s))
442a4f63 1883 ++fail_cor;
a2de733c 1884
c7460541 1885 if (spage->generation != btrfs_super_generation(s))
442a4f63 1886 ++fail_gen;
a2de733c 1887
c7460541 1888 if (!scrub_check_fsid(s->fsid, spage))
442a4f63 1889 ++fail_cor;
a2de733c 1890
83cf6d5e
DS
1891 shash->tfm = fs_info->csum_shash;
1892 crypto_shash_init(shash);
1893 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1894 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
b5d67f64 1895
74710cf1 1896 if (memcmp(calculated_csum, s->csum, sctx->csum_size))
442a4f63 1897 ++fail_cor;
a2de733c 1898
442a4f63 1899 if (fail_cor + fail_gen) {
a2de733c
AJ
1900 /*
1901 * if we find an error in a super block, we just report it.
1902 * They will get written with the next transaction commit
1903 * anyway
1904 */
d9d181c1
SB
1905 spin_lock(&sctx->stat_lock);
1906 ++sctx->stat.super_errors;
1907 spin_unlock(&sctx->stat_lock);
442a4f63 1908 if (fail_cor)
c7460541 1909 btrfs_dev_stat_inc_and_print(spage->dev,
442a4f63
SB
1910 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1911 else
c7460541 1912 btrfs_dev_stat_inc_and_print(spage->dev,
442a4f63 1913 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1914 }
1915
442a4f63 1916 return fail_cor + fail_gen;
a2de733c
AJ
1917}
1918
b5d67f64
SB
1919static void scrub_block_get(struct scrub_block *sblock)
1920{
186debd6 1921 refcount_inc(&sblock->refs);
b5d67f64
SB
1922}
1923
1924static void scrub_block_put(struct scrub_block *sblock)
1925{
186debd6 1926 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
1927 int i;
1928
5a6ac9ea
MX
1929 if (sblock->sparity)
1930 scrub_parity_put(sblock->sparity);
1931
b5d67f64 1932 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1933 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1934 kfree(sblock);
1935 }
1936}
1937
7a9e9987
SB
1938static void scrub_page_get(struct scrub_page *spage)
1939{
57019345 1940 atomic_inc(&spage->refs);
7a9e9987
SB
1941}
1942
1943static void scrub_page_put(struct scrub_page *spage)
1944{
57019345 1945 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
1946 if (spage->page)
1947 __free_page(spage->page);
1948 kfree(spage);
1949 }
1950}
1951
d9d181c1 1952static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1953{
1954 struct scrub_bio *sbio;
1955
d9d181c1 1956 if (sctx->curr == -1)
1623edeb 1957 return;
a2de733c 1958
d9d181c1
SB
1959 sbio = sctx->bios[sctx->curr];
1960 sctx->curr = -1;
b6bfebc1 1961 scrub_pending_bio_inc(sctx);
4e49ea4a 1962 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
1963}
1964
ff023aac
SB
1965static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1966 struct scrub_page *spage)
a2de733c 1967{
b5d67f64 1968 struct scrub_block *sblock = spage->sblock;
a2de733c 1969 struct scrub_bio *sbio;
69f4cb52 1970 int ret;
a2de733c
AJ
1971
1972again:
1973 /*
1974 * grab a fresh bio or wait for one to become available
1975 */
d9d181c1
SB
1976 while (sctx->curr == -1) {
1977 spin_lock(&sctx->list_lock);
1978 sctx->curr = sctx->first_free;
1979 if (sctx->curr != -1) {
1980 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1981 sctx->bios[sctx->curr]->next_free = -1;
1982 sctx->bios[sctx->curr]->page_count = 0;
1983 spin_unlock(&sctx->list_lock);
a2de733c 1984 } else {
d9d181c1
SB
1985 spin_unlock(&sctx->list_lock);
1986 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1987 }
1988 }
d9d181c1 1989 sbio = sctx->bios[sctx->curr];
b5d67f64 1990 if (sbio->page_count == 0) {
69f4cb52
AJ
1991 struct bio *bio;
1992
b5d67f64
SB
1993 sbio->physical = spage->physical;
1994 sbio->logical = spage->logical;
a36cf8b8 1995 sbio->dev = spage->dev;
b5d67f64
SB
1996 bio = sbio->bio;
1997 if (!bio) {
c5e4c3d7 1998 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
b5d67f64
SB
1999 sbio->bio = bio;
2000 }
69f4cb52
AJ
2001
2002 bio->bi_private = sbio;
2003 bio->bi_end_io = scrub_bio_end_io;
74d46992 2004 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 2005 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 2006 bio->bi_opf = REQ_OP_READ;
4e4cbee9 2007 sbio->status = 0;
b5d67f64
SB
2008 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2009 spage->physical ||
2010 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2011 spage->logical ||
2012 sbio->dev != spage->dev) {
d9d181c1 2013 scrub_submit(sctx);
a2de733c
AJ
2014 goto again;
2015 }
69f4cb52 2016
b5d67f64
SB
2017 sbio->pagev[sbio->page_count] = spage;
2018 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2019 if (ret != PAGE_SIZE) {
2020 if (sbio->page_count < 1) {
2021 bio_put(sbio->bio);
2022 sbio->bio = NULL;
2023 return -EIO;
2024 }
d9d181c1 2025 scrub_submit(sctx);
69f4cb52
AJ
2026 goto again;
2027 }
2028
ff023aac 2029 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2030 atomic_inc(&sblock->outstanding_pages);
2031 sbio->page_count++;
ff023aac 2032 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2033 scrub_submit(sctx);
b5d67f64
SB
2034
2035 return 0;
2036}
2037
22365979 2038static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2039{
2040 struct scrub_block *sblock = bio->bi_private;
fb456252 2041 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2042
4e4cbee9 2043 if (bio->bi_status)
73ff61db
OS
2044 sblock->no_io_error_seen = 0;
2045
4673272f
ST
2046 bio_put(bio);
2047
73ff61db
OS
2048 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2049}
2050
2051static void scrub_missing_raid56_worker(struct btrfs_work *work)
2052{
2053 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2054 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2055 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2056 u64 logical;
2057 struct btrfs_device *dev;
2058
73ff61db
OS
2059 logical = sblock->pagev[0]->logical;
2060 dev = sblock->pagev[0]->dev;
2061
affe4a5a 2062 if (sblock->no_io_error_seen)
ba7cf988 2063 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2064
2065 if (!sblock->no_io_error_seen) {
2066 spin_lock(&sctx->stat_lock);
2067 sctx->stat.read_errors++;
2068 spin_unlock(&sctx->stat_lock);
0b246afa 2069 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2070 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2071 logical, rcu_str_deref(dev->name));
2072 } else if (sblock->header_error || sblock->checksum_error) {
2073 spin_lock(&sctx->stat_lock);
2074 sctx->stat.uncorrectable_errors++;
2075 spin_unlock(&sctx->stat_lock);
0b246afa 2076 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2077 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2078 logical, rcu_str_deref(dev->name));
2079 } else {
2080 scrub_write_block_to_dev_replace(sblock);
2081 }
2082
2073c4c2 2083 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2084 mutex_lock(&sctx->wr_lock);
73ff61db 2085 scrub_wr_submit(sctx);
3fb99303 2086 mutex_unlock(&sctx->wr_lock);
73ff61db
OS
2087 }
2088
57d4f0b8 2089 scrub_block_put(sblock);
73ff61db
OS
2090 scrub_pending_bio_dec(sctx);
2091}
2092
2093static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2094{
2095 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2096 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2097 u64 length = sblock->page_count * PAGE_SIZE;
2098 u64 logical = sblock->pagev[0]->logical;
f1fee653 2099 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2100 struct bio *bio;
2101 struct btrfs_raid_bio *rbio;
2102 int ret;
2103 int i;
2104
ae6529c3 2105 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2106 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2107 &length, &bbio);
73ff61db
OS
2108 if (ret || !bbio || !bbio->raid_map)
2109 goto bbio_out;
2110
2111 if (WARN_ON(!sctx->is_dev_replace ||
2112 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2113 /*
2114 * We shouldn't be scrubbing a missing device. Even for dev
2115 * replace, we should only get here for RAID 5/6. We either
2116 * managed to mount something with no mirrors remaining or
2117 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2118 */
2119 goto bbio_out;
2120 }
2121
c5e4c3d7 2122 bio = btrfs_io_bio_alloc(0);
73ff61db
OS
2123 bio->bi_iter.bi_sector = logical >> 9;
2124 bio->bi_private = sblock;
2125 bio->bi_end_io = scrub_missing_raid56_end_io;
2126
2ff7e61e 2127 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2128 if (!rbio)
2129 goto rbio_out;
2130
2131 for (i = 0; i < sblock->page_count; i++) {
2132 struct scrub_page *spage = sblock->pagev[i];
2133
2134 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2135 }
2136
a0cac0ec 2137 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
73ff61db
OS
2138 scrub_block_get(sblock);
2139 scrub_pending_bio_inc(sctx);
2140 raid56_submit_missing_rbio(rbio);
2141 return;
2142
2143rbio_out:
2144 bio_put(bio);
2145bbio_out:
ae6529c3 2146 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2147 btrfs_put_bbio(bbio);
2148 spin_lock(&sctx->stat_lock);
2149 sctx->stat.malloc_errors++;
2150 spin_unlock(&sctx->stat_lock);
2151}
2152
d9d181c1 2153static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2154 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2155 u64 gen, int mirror_num, u8 *csum, int force,
2156 u64 physical_for_dev_replace)
b5d67f64
SB
2157{
2158 struct scrub_block *sblock;
2159 int index;
2160
58c4e173 2161 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2162 if (!sblock) {
d9d181c1
SB
2163 spin_lock(&sctx->stat_lock);
2164 sctx->stat.malloc_errors++;
2165 spin_unlock(&sctx->stat_lock);
b5d67f64 2166 return -ENOMEM;
a2de733c 2167 }
b5d67f64 2168
7a9e9987
SB
2169 /* one ref inside this function, plus one for each page added to
2170 * a bio later on */
186debd6 2171 refcount_set(&sblock->refs, 1);
d9d181c1 2172 sblock->sctx = sctx;
b5d67f64
SB
2173 sblock->no_io_error_seen = 1;
2174
2175 for (index = 0; len > 0; index++) {
7a9e9987 2176 struct scrub_page *spage;
b5d67f64
SB
2177 u64 l = min_t(u64, len, PAGE_SIZE);
2178
58c4e173 2179 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2180 if (!spage) {
2181leave_nomem:
d9d181c1
SB
2182 spin_lock(&sctx->stat_lock);
2183 sctx->stat.malloc_errors++;
2184 spin_unlock(&sctx->stat_lock);
7a9e9987 2185 scrub_block_put(sblock);
b5d67f64
SB
2186 return -ENOMEM;
2187 }
7a9e9987
SB
2188 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2189 scrub_page_get(spage);
2190 sblock->pagev[index] = spage;
b5d67f64 2191 spage->sblock = sblock;
a36cf8b8 2192 spage->dev = dev;
b5d67f64
SB
2193 spage->flags = flags;
2194 spage->generation = gen;
2195 spage->logical = logical;
2196 spage->physical = physical;
ff023aac 2197 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2198 spage->mirror_num = mirror_num;
2199 if (csum) {
2200 spage->have_csum = 1;
d9d181c1 2201 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2202 } else {
2203 spage->have_csum = 0;
2204 }
2205 sblock->page_count++;
58c4e173 2206 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2207 if (!spage->page)
2208 goto leave_nomem;
b5d67f64
SB
2209 len -= l;
2210 logical += l;
2211 physical += l;
ff023aac 2212 physical_for_dev_replace += l;
b5d67f64
SB
2213 }
2214
7a9e9987 2215 WARN_ON(sblock->page_count == 0);
e6e674bd 2216 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
73ff61db
OS
2217 /*
2218 * This case should only be hit for RAID 5/6 device replace. See
2219 * the comment in scrub_missing_raid56_pages() for details.
2220 */
2221 scrub_missing_raid56_pages(sblock);
2222 } else {
2223 for (index = 0; index < sblock->page_count; index++) {
2224 struct scrub_page *spage = sblock->pagev[index];
2225 int ret;
1bc87793 2226
73ff61db
OS
2227 ret = scrub_add_page_to_rd_bio(sctx, spage);
2228 if (ret) {
2229 scrub_block_put(sblock);
2230 return ret;
2231 }
b5d67f64 2232 }
a2de733c 2233
73ff61db
OS
2234 if (force)
2235 scrub_submit(sctx);
2236 }
a2de733c 2237
b5d67f64
SB
2238 /* last one frees, either here or in bio completion for last page */
2239 scrub_block_put(sblock);
a2de733c
AJ
2240 return 0;
2241}
2242
4246a0b6 2243static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2244{
2245 struct scrub_bio *sbio = bio->bi_private;
fb456252 2246 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2247
4e4cbee9 2248 sbio->status = bio->bi_status;
b5d67f64
SB
2249 sbio->bio = bio;
2250
0339ef2f 2251 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2252}
2253
2254static void scrub_bio_end_io_worker(struct btrfs_work *work)
2255{
2256 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2257 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2258 int i;
2259
ff023aac 2260 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
4e4cbee9 2261 if (sbio->status) {
b5d67f64
SB
2262 for (i = 0; i < sbio->page_count; i++) {
2263 struct scrub_page *spage = sbio->pagev[i];
2264
2265 spage->io_error = 1;
2266 spage->sblock->no_io_error_seen = 0;
2267 }
2268 }
2269
2270 /* now complete the scrub_block items that have all pages completed */
2271 for (i = 0; i < sbio->page_count; i++) {
2272 struct scrub_page *spage = sbio->pagev[i];
2273 struct scrub_block *sblock = spage->sblock;
2274
2275 if (atomic_dec_and_test(&sblock->outstanding_pages))
2276 scrub_block_complete(sblock);
2277 scrub_block_put(sblock);
2278 }
2279
b5d67f64
SB
2280 bio_put(sbio->bio);
2281 sbio->bio = NULL;
d9d181c1
SB
2282 spin_lock(&sctx->list_lock);
2283 sbio->next_free = sctx->first_free;
2284 sctx->first_free = sbio->index;
2285 spin_unlock(&sctx->list_lock);
ff023aac 2286
2073c4c2 2287 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2288 mutex_lock(&sctx->wr_lock);
ff023aac 2289 scrub_wr_submit(sctx);
3fb99303 2290 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
2291 }
2292
b6bfebc1 2293 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2294}
2295
5a6ac9ea
MX
2296static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2297 unsigned long *bitmap,
2298 u64 start, u64 len)
2299{
972d7219 2300 u64 offset;
7736b0a4
DS
2301 u64 nsectors64;
2302 u32 nsectors;
da17066c 2303 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2304
2305 if (len >= sparity->stripe_len) {
2306 bitmap_set(bitmap, 0, sparity->nsectors);
2307 return;
2308 }
2309
2310 start -= sparity->logic_start;
972d7219
LB
2311 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2312 offset = div_u64(offset, sectorsize);
7736b0a4
DS
2313 nsectors64 = div_u64(len, sectorsize);
2314
2315 ASSERT(nsectors64 < UINT_MAX);
2316 nsectors = (u32)nsectors64;
5a6ac9ea
MX
2317
2318 if (offset + nsectors <= sparity->nsectors) {
2319 bitmap_set(bitmap, offset, nsectors);
2320 return;
2321 }
2322
2323 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2324 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2325}
2326
2327static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2328 u64 start, u64 len)
2329{
2330 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2331}
2332
2333static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2334 u64 start, u64 len)
2335{
2336 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2337}
2338
b5d67f64
SB
2339static void scrub_block_complete(struct scrub_block *sblock)
2340{
5a6ac9ea
MX
2341 int corrupted = 0;
2342
ff023aac 2343 if (!sblock->no_io_error_seen) {
5a6ac9ea 2344 corrupted = 1;
b5d67f64 2345 scrub_handle_errored_block(sblock);
ff023aac
SB
2346 } else {
2347 /*
2348 * if has checksum error, write via repair mechanism in
2349 * dev replace case, otherwise write here in dev replace
2350 * case.
2351 */
5a6ac9ea
MX
2352 corrupted = scrub_checksum(sblock);
2353 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2354 scrub_write_block_to_dev_replace(sblock);
2355 }
5a6ac9ea
MX
2356
2357 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2358 u64 start = sblock->pagev[0]->logical;
2359 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2360 PAGE_SIZE;
2361
2362 scrub_parity_mark_sectors_error(sblock->sparity,
2363 start, end - start);
2364 }
b5d67f64
SB
2365}
2366
3b5753ec 2367static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2368{
2369 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2370 unsigned long index;
a2de733c 2371 unsigned long num_sectors;
a2de733c 2372
d9d181c1
SB
2373 while (!list_empty(&sctx->csum_list)) {
2374 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2375 struct btrfs_ordered_sum, list);
2376 if (sum->bytenr > logical)
2377 return 0;
2378 if (sum->bytenr + sum->len > logical)
2379 break;
2380
d9d181c1 2381 ++sctx->stat.csum_discards;
a2de733c
AJ
2382 list_del(&sum->list);
2383 kfree(sum);
2384 sum = NULL;
2385 }
2386 if (!sum)
2387 return 0;
2388
1d1bf92d
DS
2389 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2390 ASSERT(index < UINT_MAX);
2391
25cc1226 2392 num_sectors = sum->len / sctx->fs_info->sectorsize;
1e25a2e3 2393 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
f51a4a18 2394 if (index == num_sectors - 1) {
a2de733c
AJ
2395 list_del(&sum->list);
2396 kfree(sum);
2397 }
f51a4a18 2398 return 1;
a2de733c
AJ
2399}
2400
2401/* scrub extent tries to collect up to 64 kB for each bio */
6ca1765b
LB
2402static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2403 u64 logical, u64 len,
a36cf8b8 2404 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2405 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2406{
2407 int ret;
2408 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2409 u32 blocksize;
2410
2411 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b
LB
2412 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2413 blocksize = map->stripe_len;
2414 else
2415 blocksize = sctx->fs_info->sectorsize;
d9d181c1
SB
2416 spin_lock(&sctx->stat_lock);
2417 sctx->stat.data_extents_scrubbed++;
2418 sctx->stat.data_bytes_scrubbed += len;
2419 spin_unlock(&sctx->stat_lock);
b5d67f64 2420 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b
LB
2421 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2422 blocksize = map->stripe_len;
2423 else
2424 blocksize = sctx->fs_info->nodesize;
d9d181c1
SB
2425 spin_lock(&sctx->stat_lock);
2426 sctx->stat.tree_extents_scrubbed++;
2427 sctx->stat.tree_bytes_scrubbed += len;
2428 spin_unlock(&sctx->stat_lock);
b5d67f64 2429 } else {
25cc1226 2430 blocksize = sctx->fs_info->sectorsize;
ff023aac 2431 WARN_ON(1);
b5d67f64 2432 }
a2de733c
AJ
2433
2434 while (len) {
b5d67f64 2435 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2436 int have_csum = 0;
2437
2438 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2439 /* push csums to sbio */
3b5753ec 2440 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2441 if (have_csum == 0)
d9d181c1 2442 ++sctx->stat.no_csum;
a2de733c 2443 }
a36cf8b8 2444 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2445 mirror_num, have_csum ? csum : NULL, 0,
2446 physical_for_dev_replace);
a2de733c
AJ
2447 if (ret)
2448 return ret;
2449 len -= l;
2450 logical += l;
2451 physical += l;
ff023aac 2452 physical_for_dev_replace += l;
a2de733c
AJ
2453 }
2454 return 0;
2455}
2456
5a6ac9ea
MX
2457static int scrub_pages_for_parity(struct scrub_parity *sparity,
2458 u64 logical, u64 len,
2459 u64 physical, struct btrfs_device *dev,
2460 u64 flags, u64 gen, int mirror_num, u8 *csum)
2461{
2462 struct scrub_ctx *sctx = sparity->sctx;
2463 struct scrub_block *sblock;
2464 int index;
2465
58c4e173 2466 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2467 if (!sblock) {
2468 spin_lock(&sctx->stat_lock);
2469 sctx->stat.malloc_errors++;
2470 spin_unlock(&sctx->stat_lock);
2471 return -ENOMEM;
2472 }
2473
2474 /* one ref inside this function, plus one for each page added to
2475 * a bio later on */
186debd6 2476 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2477 sblock->sctx = sctx;
2478 sblock->no_io_error_seen = 1;
2479 sblock->sparity = sparity;
2480 scrub_parity_get(sparity);
2481
2482 for (index = 0; len > 0; index++) {
2483 struct scrub_page *spage;
2484 u64 l = min_t(u64, len, PAGE_SIZE);
2485
58c4e173 2486 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2487 if (!spage) {
2488leave_nomem:
2489 spin_lock(&sctx->stat_lock);
2490 sctx->stat.malloc_errors++;
2491 spin_unlock(&sctx->stat_lock);
2492 scrub_block_put(sblock);
2493 return -ENOMEM;
2494 }
2495 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2496 /* For scrub block */
2497 scrub_page_get(spage);
2498 sblock->pagev[index] = spage;
2499 /* For scrub parity */
2500 scrub_page_get(spage);
2501 list_add_tail(&spage->list, &sparity->spages);
2502 spage->sblock = sblock;
2503 spage->dev = dev;
2504 spage->flags = flags;
2505 spage->generation = gen;
2506 spage->logical = logical;
2507 spage->physical = physical;
2508 spage->mirror_num = mirror_num;
2509 if (csum) {
2510 spage->have_csum = 1;
2511 memcpy(spage->csum, csum, sctx->csum_size);
2512 } else {
2513 spage->have_csum = 0;
2514 }
2515 sblock->page_count++;
58c4e173 2516 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2517 if (!spage->page)
2518 goto leave_nomem;
2519 len -= l;
2520 logical += l;
2521 physical += l;
2522 }
2523
2524 WARN_ON(sblock->page_count == 0);
2525 for (index = 0; index < sblock->page_count; index++) {
2526 struct scrub_page *spage = sblock->pagev[index];
2527 int ret;
2528
2529 ret = scrub_add_page_to_rd_bio(sctx, spage);
2530 if (ret) {
2531 scrub_block_put(sblock);
2532 return ret;
2533 }
2534 }
2535
2536 /* last one frees, either here or in bio completion for last page */
2537 scrub_block_put(sblock);
2538 return 0;
2539}
2540
2541static int scrub_extent_for_parity(struct scrub_parity *sparity,
2542 u64 logical, u64 len,
2543 u64 physical, struct btrfs_device *dev,
2544 u64 flags, u64 gen, int mirror_num)
2545{
2546 struct scrub_ctx *sctx = sparity->sctx;
2547 int ret;
2548 u8 csum[BTRFS_CSUM_SIZE];
2549 u32 blocksize;
2550
e6e674bd 2551 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
4a770891
OS
2552 scrub_parity_mark_sectors_error(sparity, logical, len);
2553 return 0;
2554 }
2555
5a6ac9ea 2556 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b 2557 blocksize = sparity->stripe_len;
5a6ac9ea 2558 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b 2559 blocksize = sparity->stripe_len;
5a6ac9ea 2560 } else {
25cc1226 2561 blocksize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2562 WARN_ON(1);
2563 }
2564
2565 while (len) {
2566 u64 l = min_t(u64, len, blocksize);
2567 int have_csum = 0;
2568
2569 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2570 /* push csums to sbio */
3b5753ec 2571 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2572 if (have_csum == 0)
2573 goto skip;
2574 }
2575 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2576 flags, gen, mirror_num,
2577 have_csum ? csum : NULL);
5a6ac9ea
MX
2578 if (ret)
2579 return ret;
6b6d24b3 2580skip:
5a6ac9ea
MX
2581 len -= l;
2582 logical += l;
2583 physical += l;
2584 }
2585 return 0;
2586}
2587
3b080b25
WS
2588/*
2589 * Given a physical address, this will calculate it's
2590 * logical offset. if this is a parity stripe, it will return
2591 * the most left data stripe's logical offset.
2592 *
2593 * return 0 if it is a data stripe, 1 means parity stripe.
2594 */
2595static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2596 struct map_lookup *map, u64 *offset,
2597 u64 *stripe_start)
3b080b25
WS
2598{
2599 int i;
2600 int j = 0;
2601 u64 stripe_nr;
2602 u64 last_offset;
9d644a62
DS
2603 u32 stripe_index;
2604 u32 rot;
cff82672 2605 const int data_stripes = nr_data_stripes(map);
3b080b25 2606
cff82672 2607 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
2608 if (stripe_start)
2609 *stripe_start = last_offset;
2610
3b080b25 2611 *offset = last_offset;
cff82672 2612 for (i = 0; i < data_stripes; i++) {
3b080b25
WS
2613 *offset = last_offset + i * map->stripe_len;
2614
42c61ab6 2615 stripe_nr = div64_u64(*offset, map->stripe_len);
cff82672 2616 stripe_nr = div_u64(stripe_nr, data_stripes);
3b080b25
WS
2617
2618 /* Work out the disk rotation on this stripe-set */
47c5713f 2619 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2620 /* calculate which stripe this data locates */
2621 rot += i;
e4fbaee2 2622 stripe_index = rot % map->num_stripes;
3b080b25
WS
2623 if (stripe_index == num)
2624 return 0;
2625 if (stripe_index < num)
2626 j++;
2627 }
2628 *offset = last_offset + j * map->stripe_len;
2629 return 1;
2630}
2631
5a6ac9ea
MX
2632static void scrub_free_parity(struct scrub_parity *sparity)
2633{
2634 struct scrub_ctx *sctx = sparity->sctx;
2635 struct scrub_page *curr, *next;
2636 int nbits;
2637
2638 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2639 if (nbits) {
2640 spin_lock(&sctx->stat_lock);
2641 sctx->stat.read_errors += nbits;
2642 sctx->stat.uncorrectable_errors += nbits;
2643 spin_unlock(&sctx->stat_lock);
2644 }
2645
2646 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2647 list_del_init(&curr->list);
2648 scrub_page_put(curr);
2649 }
2650
2651 kfree(sparity);
2652}
2653
20b2e302
ZL
2654static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2655{
2656 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2657 work);
2658 struct scrub_ctx *sctx = sparity->sctx;
2659
2660 scrub_free_parity(sparity);
2661 scrub_pending_bio_dec(sctx);
2662}
2663
4246a0b6 2664static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2665{
2666 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2667 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2668
4e4cbee9 2669 if (bio->bi_status)
5a6ac9ea
MX
2670 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2671 sparity->nsectors);
2672
5a6ac9ea 2673 bio_put(bio);
20b2e302 2674
a0cac0ec
OS
2675 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2676 NULL);
0b246afa 2677 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2678}
2679
2680static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2681{
2682 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2683 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2684 struct bio *bio;
2685 struct btrfs_raid_bio *rbio;
5a6ac9ea 2686 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2687 u64 length;
2688 int ret;
2689
2690 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2691 sparity->nsectors))
2692 goto out;
2693
a0dd59de 2694 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2695
2696 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2697 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2698 &length, &bbio);
8e5cfb55 2699 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2700 goto bbio_out;
2701
c5e4c3d7 2702 bio = btrfs_io_bio_alloc(0);
5a6ac9ea
MX
2703 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2704 bio->bi_private = sparity;
2705 bio->bi_end_io = scrub_parity_bio_endio;
2706
2ff7e61e 2707 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2708 length, sparity->scrub_dev,
5a6ac9ea
MX
2709 sparity->dbitmap,
2710 sparity->nsectors);
2711 if (!rbio)
2712 goto rbio_out;
2713
5a6ac9ea
MX
2714 scrub_pending_bio_inc(sctx);
2715 raid56_parity_submit_scrub_rbio(rbio);
2716 return;
2717
2718rbio_out:
2719 bio_put(bio);
2720bbio_out:
ae6529c3 2721 btrfs_bio_counter_dec(fs_info);
6e9606d2 2722 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2723 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2724 sparity->nsectors);
2725 spin_lock(&sctx->stat_lock);
2726 sctx->stat.malloc_errors++;
2727 spin_unlock(&sctx->stat_lock);
2728out:
2729 scrub_free_parity(sparity);
2730}
2731
2732static inline int scrub_calc_parity_bitmap_len(int nsectors)
2733{
bfca9a6d 2734 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2735}
2736
2737static void scrub_parity_get(struct scrub_parity *sparity)
2738{
78a76450 2739 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2740}
2741
2742static void scrub_parity_put(struct scrub_parity *sparity)
2743{
78a76450 2744 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2745 return;
2746
2747 scrub_parity_check_and_repair(sparity);
2748}
2749
2750static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2751 struct map_lookup *map,
2752 struct btrfs_device *sdev,
2753 struct btrfs_path *path,
2754 u64 logic_start,
2755 u64 logic_end)
2756{
fb456252 2757 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2758 struct btrfs_root *root = fs_info->extent_root;
2759 struct btrfs_root *csum_root = fs_info->csum_root;
2760 struct btrfs_extent_item *extent;
4a770891 2761 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2762 u64 flags;
2763 int ret;
2764 int slot;
2765 struct extent_buffer *l;
2766 struct btrfs_key key;
2767 u64 generation;
2768 u64 extent_logical;
2769 u64 extent_physical;
2770 u64 extent_len;
4a770891 2771 u64 mapped_length;
5a6ac9ea
MX
2772 struct btrfs_device *extent_dev;
2773 struct scrub_parity *sparity;
2774 int nsectors;
2775 int bitmap_len;
2776 int extent_mirror_num;
2777 int stop_loop = 0;
2778
0b246afa 2779 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
2780 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2781 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2782 GFP_NOFS);
2783 if (!sparity) {
2784 spin_lock(&sctx->stat_lock);
2785 sctx->stat.malloc_errors++;
2786 spin_unlock(&sctx->stat_lock);
2787 return -ENOMEM;
2788 }
2789
2790 sparity->stripe_len = map->stripe_len;
2791 sparity->nsectors = nsectors;
2792 sparity->sctx = sctx;
2793 sparity->scrub_dev = sdev;
2794 sparity->logic_start = logic_start;
2795 sparity->logic_end = logic_end;
78a76450 2796 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2797 INIT_LIST_HEAD(&sparity->spages);
2798 sparity->dbitmap = sparity->bitmap;
2799 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2800
2801 ret = 0;
2802 while (logic_start < logic_end) {
2803 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2804 key.type = BTRFS_METADATA_ITEM_KEY;
2805 else
2806 key.type = BTRFS_EXTENT_ITEM_KEY;
2807 key.objectid = logic_start;
2808 key.offset = (u64)-1;
2809
2810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811 if (ret < 0)
2812 goto out;
2813
2814 if (ret > 0) {
2815 ret = btrfs_previous_extent_item(root, path, 0);
2816 if (ret < 0)
2817 goto out;
2818 if (ret > 0) {
2819 btrfs_release_path(path);
2820 ret = btrfs_search_slot(NULL, root, &key,
2821 path, 0, 0);
2822 if (ret < 0)
2823 goto out;
2824 }
2825 }
2826
2827 stop_loop = 0;
2828 while (1) {
2829 u64 bytes;
2830
2831 l = path->nodes[0];
2832 slot = path->slots[0];
2833 if (slot >= btrfs_header_nritems(l)) {
2834 ret = btrfs_next_leaf(root, path);
2835 if (ret == 0)
2836 continue;
2837 if (ret < 0)
2838 goto out;
2839
2840 stop_loop = 1;
2841 break;
2842 }
2843 btrfs_item_key_to_cpu(l, &key, slot);
2844
d7cad238
ZL
2845 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2846 key.type != BTRFS_METADATA_ITEM_KEY)
2847 goto next;
2848
5a6ac9ea 2849 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2850 bytes = fs_info->nodesize;
5a6ac9ea
MX
2851 else
2852 bytes = key.offset;
2853
2854 if (key.objectid + bytes <= logic_start)
2855 goto next;
2856
a0dd59de 2857 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2858 stop_loop = 1;
2859 break;
2860 }
2861
2862 while (key.objectid >= logic_start + map->stripe_len)
2863 logic_start += map->stripe_len;
2864
2865 extent = btrfs_item_ptr(l, slot,
2866 struct btrfs_extent_item);
2867 flags = btrfs_extent_flags(l, extent);
2868 generation = btrfs_extent_generation(l, extent);
2869
a323e813
ZL
2870 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2871 (key.objectid < logic_start ||
2872 key.objectid + bytes >
2873 logic_start + map->stripe_len)) {
5d163e0e
JM
2874 btrfs_err(fs_info,
2875 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2876 key.objectid, logic_start);
9799d2c3
ZL
2877 spin_lock(&sctx->stat_lock);
2878 sctx->stat.uncorrectable_errors++;
2879 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2880 goto next;
2881 }
2882again:
2883 extent_logical = key.objectid;
2884 extent_len = bytes;
2885
2886 if (extent_logical < logic_start) {
2887 extent_len -= logic_start - extent_logical;
2888 extent_logical = logic_start;
2889 }
2890
2891 if (extent_logical + extent_len >
2892 logic_start + map->stripe_len)
2893 extent_len = logic_start + map->stripe_len -
2894 extent_logical;
2895
2896 scrub_parity_mark_sectors_data(sparity, extent_logical,
2897 extent_len);
2898
4a770891 2899 mapped_length = extent_len;
f1fee653 2900 bbio = NULL;
cf8cddd3
CH
2901 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2902 extent_logical, &mapped_length, &bbio,
2903 0);
4a770891
OS
2904 if (!ret) {
2905 if (!bbio || mapped_length < extent_len)
2906 ret = -EIO;
2907 }
2908 if (ret) {
2909 btrfs_put_bbio(bbio);
2910 goto out;
2911 }
2912 extent_physical = bbio->stripes[0].physical;
2913 extent_mirror_num = bbio->mirror_num;
2914 extent_dev = bbio->stripes[0].dev;
2915 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2916
2917 ret = btrfs_lookup_csums_range(csum_root,
2918 extent_logical,
2919 extent_logical + extent_len - 1,
2920 &sctx->csum_list, 1);
2921 if (ret)
2922 goto out;
2923
2924 ret = scrub_extent_for_parity(sparity, extent_logical,
2925 extent_len,
2926 extent_physical,
2927 extent_dev, flags,
2928 generation,
2929 extent_mirror_num);
6fa96d72
ZL
2930
2931 scrub_free_csums(sctx);
2932
5a6ac9ea
MX
2933 if (ret)
2934 goto out;
2935
5a6ac9ea
MX
2936 if (extent_logical + extent_len <
2937 key.objectid + bytes) {
2938 logic_start += map->stripe_len;
2939
2940 if (logic_start >= logic_end) {
2941 stop_loop = 1;
2942 break;
2943 }
2944
2945 if (logic_start < key.objectid + bytes) {
2946 cond_resched();
2947 goto again;
2948 }
2949 }
2950next:
2951 path->slots[0]++;
2952 }
2953
2954 btrfs_release_path(path);
2955
2956 if (stop_loop)
2957 break;
2958
2959 logic_start += map->stripe_len;
2960 }
2961out:
2962 if (ret < 0)
2963 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 2964 logic_end - logic_start);
5a6ac9ea
MX
2965 scrub_parity_put(sparity);
2966 scrub_submit(sctx);
3fb99303 2967 mutex_lock(&sctx->wr_lock);
5a6ac9ea 2968 scrub_wr_submit(sctx);
3fb99303 2969 mutex_unlock(&sctx->wr_lock);
5a6ac9ea
MX
2970
2971 btrfs_release_path(path);
2972 return ret < 0 ? ret : 0;
2973}
2974
d9d181c1 2975static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2976 struct map_lookup *map,
2977 struct btrfs_device *scrub_dev,
2473d24f
FM
2978 int num, u64 base, u64 length,
2979 struct btrfs_block_group *cache)
a2de733c 2980{
5a6ac9ea 2981 struct btrfs_path *path, *ppath;
fb456252 2982 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
2983 struct btrfs_root *root = fs_info->extent_root;
2984 struct btrfs_root *csum_root = fs_info->csum_root;
2985 struct btrfs_extent_item *extent;
e7786c3a 2986 struct blk_plug plug;
a2de733c
AJ
2987 u64 flags;
2988 int ret;
2989 int slot;
a2de733c 2990 u64 nstripes;
a2de733c 2991 struct extent_buffer *l;
a2de733c
AJ
2992 u64 physical;
2993 u64 logical;
625f1c8d 2994 u64 logic_end;
3b080b25 2995 u64 physical_end;
a2de733c 2996 u64 generation;
e12fa9cd 2997 int mirror_num;
7a26285e
AJ
2998 struct reada_control *reada1;
2999 struct reada_control *reada2;
e6c11f9a 3000 struct btrfs_key key;
7a26285e 3001 struct btrfs_key key_end;
a2de733c
AJ
3002 u64 increment = map->stripe_len;
3003 u64 offset;
ff023aac
SB
3004 u64 extent_logical;
3005 u64 extent_physical;
3006 u64 extent_len;
5a6ac9ea
MX
3007 u64 stripe_logical;
3008 u64 stripe_end;
ff023aac
SB
3009 struct btrfs_device *extent_dev;
3010 int extent_mirror_num;
3b080b25 3011 int stop_loop = 0;
53b381b3 3012
3b080b25 3013 physical = map->stripes[num].physical;
a2de733c 3014 offset = 0;
42c61ab6 3015 nstripes = div64_u64(length, map->stripe_len);
a2de733c
AJ
3016 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3017 offset = map->stripe_len * num;
3018 increment = map->stripe_len * map->num_stripes;
193ea74b 3019 mirror_num = 1;
a2de733c
AJ
3020 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3021 int factor = map->num_stripes / map->sub_stripes;
3022 offset = map->stripe_len * (num / map->sub_stripes);
3023 increment = map->stripe_len * factor;
193ea74b 3024 mirror_num = num % map->sub_stripes + 1;
c7369b3f 3025 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
a2de733c 3026 increment = map->stripe_len;
193ea74b 3027 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3028 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3029 increment = map->stripe_len;
193ea74b 3030 mirror_num = num % map->num_stripes + 1;
ffe2d203 3031 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3032 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3033 increment = map->stripe_len * nr_data_stripes(map);
3034 mirror_num = 1;
a2de733c
AJ
3035 } else {
3036 increment = map->stripe_len;
193ea74b 3037 mirror_num = 1;
a2de733c
AJ
3038 }
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
5a6ac9ea
MX
3044 ppath = btrfs_alloc_path();
3045 if (!ppath) {
379d6854 3046 btrfs_free_path(path);
5a6ac9ea
MX
3047 return -ENOMEM;
3048 }
3049
b5d67f64
SB
3050 /*
3051 * work on commit root. The related disk blocks are static as
3052 * long as COW is applied. This means, it is save to rewrite
3053 * them to repair disk errors without any race conditions
3054 */
a2de733c
AJ
3055 path->search_commit_root = 1;
3056 path->skip_locking = 1;
3057
063c54dc
GH
3058 ppath->search_commit_root = 1;
3059 ppath->skip_locking = 1;
a2de733c 3060 /*
7a26285e
AJ
3061 * trigger the readahead for extent tree csum tree and wait for
3062 * completion. During readahead, the scrub is officially paused
3063 * to not hold off transaction commits
a2de733c
AJ
3064 */
3065 logical = base + offset;
3b080b25 3066 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3067 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3068 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3069 map, &logic_end, NULL);
3b080b25
WS
3070 logic_end += base;
3071 } else {
3072 logic_end = logical + increment * nstripes;
3073 }
d9d181c1 3074 wait_event(sctx->list_wait,
b6bfebc1 3075 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3076 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3077
3078 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3079 key.objectid = logical;
3080 key.type = BTRFS_EXTENT_ITEM_KEY;
3081 key.offset = (u64)0;
3b080b25 3082 key_end.objectid = logic_end;
3173a18f
JB
3083 key_end.type = BTRFS_METADATA_ITEM_KEY;
3084 key_end.offset = (u64)-1;
e6c11f9a 3085 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3086
e6c11f9a
DS
3087 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3088 key.type = BTRFS_EXTENT_CSUM_KEY;
3089 key.offset = logical;
7a26285e
AJ
3090 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3091 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3092 key_end.offset = logic_end;
e6c11f9a 3093 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3094
3095 if (!IS_ERR(reada1))
3096 btrfs_reada_wait(reada1);
3097 if (!IS_ERR(reada2))
3098 btrfs_reada_wait(reada2);
3099
a2de733c
AJ
3100
3101 /*
3102 * collect all data csums for the stripe to avoid seeking during
3103 * the scrub. This might currently (crc32) end up to be about 1MB
3104 */
e7786c3a 3105 blk_start_plug(&plug);
a2de733c 3106
a2de733c
AJ
3107 /*
3108 * now find all extents for each stripe and scrub them
3109 */
a2de733c 3110 ret = 0;
3b080b25 3111 while (physical < physical_end) {
a2de733c
AJ
3112 /*
3113 * canceled?
3114 */
3115 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3116 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3117 ret = -ECANCELED;
3118 goto out;
3119 }
3120 /*
3121 * check to see if we have to pause
3122 */
3123 if (atomic_read(&fs_info->scrub_pause_req)) {
3124 /* push queued extents */
2073c4c2 3125 sctx->flush_all_writes = true;
d9d181c1 3126 scrub_submit(sctx);
3fb99303 3127 mutex_lock(&sctx->wr_lock);
ff023aac 3128 scrub_wr_submit(sctx);
3fb99303 3129 mutex_unlock(&sctx->wr_lock);
d9d181c1 3130 wait_event(sctx->list_wait,
b6bfebc1 3131 atomic_read(&sctx->bios_in_flight) == 0);
2073c4c2 3132 sctx->flush_all_writes = false;
3cb0929a 3133 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3134 }
3135
f2f66a2f
ZL
3136 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3137 ret = get_raid56_logic_offset(physical, num, map,
3138 &logical,
3139 &stripe_logical);
3140 logical += base;
3141 if (ret) {
7955323b 3142 /* it is parity strip */
f2f66a2f 3143 stripe_logical += base;
a0dd59de 3144 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3145 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3146 ppath, stripe_logical,
3147 stripe_end);
3148 if (ret)
3149 goto out;
3150 goto skip;
3151 }
3152 }
3153
7c76edb7
WS
3154 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3155 key.type = BTRFS_METADATA_ITEM_KEY;
3156 else
3157 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3158 key.objectid = logical;
625f1c8d 3159 key.offset = (u64)-1;
a2de733c
AJ
3160
3161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3162 if (ret < 0)
3163 goto out;
3173a18f 3164
8c51032f 3165 if (ret > 0) {
ade2e0b3 3166 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3167 if (ret < 0)
3168 goto out;
8c51032f
AJ
3169 if (ret > 0) {
3170 /* there's no smaller item, so stick with the
3171 * larger one */
3172 btrfs_release_path(path);
3173 ret = btrfs_search_slot(NULL, root, &key,
3174 path, 0, 0);
3175 if (ret < 0)
3176 goto out;
3177 }
a2de733c
AJ
3178 }
3179
625f1c8d 3180 stop_loop = 0;
a2de733c 3181 while (1) {
3173a18f
JB
3182 u64 bytes;
3183
a2de733c
AJ
3184 l = path->nodes[0];
3185 slot = path->slots[0];
3186 if (slot >= btrfs_header_nritems(l)) {
3187 ret = btrfs_next_leaf(root, path);
3188 if (ret == 0)
3189 continue;
3190 if (ret < 0)
3191 goto out;
3192
625f1c8d 3193 stop_loop = 1;
a2de733c
AJ
3194 break;
3195 }
3196 btrfs_item_key_to_cpu(l, &key, slot);
3197
d7cad238
ZL
3198 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3199 key.type != BTRFS_METADATA_ITEM_KEY)
3200 goto next;
3201
3173a18f 3202 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3203 bytes = fs_info->nodesize;
3173a18f
JB
3204 else
3205 bytes = key.offset;
3206
3207 if (key.objectid + bytes <= logical)
a2de733c
AJ
3208 goto next;
3209
625f1c8d
LB
3210 if (key.objectid >= logical + map->stripe_len) {
3211 /* out of this device extent */
3212 if (key.objectid >= logic_end)
3213 stop_loop = 1;
3214 break;
3215 }
a2de733c 3216
2473d24f
FM
3217 /*
3218 * If our block group was removed in the meanwhile, just
3219 * stop scrubbing since there is no point in continuing.
3220 * Continuing would prevent reusing its device extents
3221 * for new block groups for a long time.
3222 */
3223 spin_lock(&cache->lock);
3224 if (cache->removed) {
3225 spin_unlock(&cache->lock);
3226 ret = 0;
3227 goto out;
3228 }
3229 spin_unlock(&cache->lock);
3230
a2de733c
AJ
3231 extent = btrfs_item_ptr(l, slot,
3232 struct btrfs_extent_item);
3233 flags = btrfs_extent_flags(l, extent);
3234 generation = btrfs_extent_generation(l, extent);
3235
a323e813
ZL
3236 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237 (key.objectid < logical ||
3238 key.objectid + bytes >
3239 logical + map->stripe_len)) {
efe120a0 3240 btrfs_err(fs_info,
5d163e0e 3241 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3242 key.objectid, logical);
9799d2c3
ZL
3243 spin_lock(&sctx->stat_lock);
3244 sctx->stat.uncorrectable_errors++;
3245 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3246 goto next;
3247 }
3248
625f1c8d
LB
3249again:
3250 extent_logical = key.objectid;
3251 extent_len = bytes;
3252
a2de733c
AJ
3253 /*
3254 * trim extent to this stripe
3255 */
625f1c8d
LB
3256 if (extent_logical < logical) {
3257 extent_len -= logical - extent_logical;
3258 extent_logical = logical;
a2de733c 3259 }
625f1c8d 3260 if (extent_logical + extent_len >
a2de733c 3261 logical + map->stripe_len) {
625f1c8d
LB
3262 extent_len = logical + map->stripe_len -
3263 extent_logical;
a2de733c
AJ
3264 }
3265
625f1c8d 3266 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3267 extent_dev = scrub_dev;
3268 extent_mirror_num = mirror_num;
32934280 3269 if (sctx->is_dev_replace)
ff023aac
SB
3270 scrub_remap_extent(fs_info, extent_logical,
3271 extent_len, &extent_physical,
3272 &extent_dev,
3273 &extent_mirror_num);
625f1c8d 3274
89490303
FM
3275 if (flags & BTRFS_EXTENT_FLAG_DATA) {
3276 ret = btrfs_lookup_csums_range(csum_root,
3277 extent_logical,
3278 extent_logical + extent_len - 1,
3279 &sctx->csum_list, 1);
3280 if (ret)
3281 goto out;
3282 }
625f1c8d 3283
6ca1765b 3284 ret = scrub_extent(sctx, map, extent_logical, extent_len,
ff023aac
SB
3285 extent_physical, extent_dev, flags,
3286 generation, extent_mirror_num,
115930cb 3287 extent_logical - logical + physical);
6fa96d72
ZL
3288
3289 scrub_free_csums(sctx);
3290
a2de733c
AJ
3291 if (ret)
3292 goto out;
3293
625f1c8d
LB
3294 if (extent_logical + extent_len <
3295 key.objectid + bytes) {
ffe2d203 3296 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3297 /*
3298 * loop until we find next data stripe
3299 * or we have finished all stripes.
3300 */
5a6ac9ea
MX
3301loop:
3302 physical += map->stripe_len;
3303 ret = get_raid56_logic_offset(physical,
3304 num, map, &logical,
3305 &stripe_logical);
3306 logical += base;
3307
3308 if (ret && physical < physical_end) {
3309 stripe_logical += base;
3310 stripe_end = stripe_logical +
a0dd59de 3311 increment;
5a6ac9ea
MX
3312 ret = scrub_raid56_parity(sctx,
3313 map, scrub_dev, ppath,
3314 stripe_logical,
3315 stripe_end);
3316 if (ret)
3317 goto out;
3318 goto loop;
3319 }
3b080b25
WS
3320 } else {
3321 physical += map->stripe_len;
3322 logical += increment;
3323 }
625f1c8d
LB
3324 if (logical < key.objectid + bytes) {
3325 cond_resched();
3326 goto again;
3327 }
3328
3b080b25 3329 if (physical >= physical_end) {
625f1c8d
LB
3330 stop_loop = 1;
3331 break;
3332 }
3333 }
a2de733c
AJ
3334next:
3335 path->slots[0]++;
3336 }
71267333 3337 btrfs_release_path(path);
3b080b25 3338skip:
a2de733c
AJ
3339 logical += increment;
3340 physical += map->stripe_len;
d9d181c1 3341 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3342 if (stop_loop)
3343 sctx->stat.last_physical = map->stripes[num].physical +
3344 length;
3345 else
3346 sctx->stat.last_physical = physical;
d9d181c1 3347 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3348 if (stop_loop)
3349 break;
a2de733c 3350 }
ff023aac 3351out:
a2de733c 3352 /* push queued extents */
d9d181c1 3353 scrub_submit(sctx);
3fb99303 3354 mutex_lock(&sctx->wr_lock);
ff023aac 3355 scrub_wr_submit(sctx);
3fb99303 3356 mutex_unlock(&sctx->wr_lock);
a2de733c 3357
e7786c3a 3358 blk_finish_plug(&plug);
a2de733c 3359 btrfs_free_path(path);
5a6ac9ea 3360 btrfs_free_path(ppath);
a2de733c
AJ
3361 return ret < 0 ? ret : 0;
3362}
3363
d9d181c1 3364static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3365 struct btrfs_device *scrub_dev,
a36cf8b8 3366 u64 chunk_offset, u64 length,
020d5b73 3367 u64 dev_offset,
32da5386 3368 struct btrfs_block_group *cache)
a2de733c 3369{
fb456252 3370 struct btrfs_fs_info *fs_info = sctx->fs_info;
c8bf1b67 3371 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3372 struct map_lookup *map;
3373 struct extent_map *em;
3374 int i;
ff023aac 3375 int ret = 0;
a2de733c 3376
c8bf1b67
DS
3377 read_lock(&map_tree->lock);
3378 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3379 read_unlock(&map_tree->lock);
a2de733c 3380
020d5b73
FM
3381 if (!em) {
3382 /*
3383 * Might have been an unused block group deleted by the cleaner
3384 * kthread or relocation.
3385 */
3386 spin_lock(&cache->lock);
3387 if (!cache->removed)
3388 ret = -EINVAL;
3389 spin_unlock(&cache->lock);
3390
3391 return ret;
3392 }
a2de733c 3393
95617d69 3394 map = em->map_lookup;
a2de733c
AJ
3395 if (em->start != chunk_offset)
3396 goto out;
3397
3398 if (em->len < length)
3399 goto out;
3400
3401 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3402 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3403 map->stripes[i].physical == dev_offset) {
a36cf8b8 3404 ret = scrub_stripe(sctx, map, scrub_dev, i,
2473d24f 3405 chunk_offset, length, cache);
a2de733c
AJ
3406 if (ret)
3407 goto out;
3408 }
3409 }
3410out:
3411 free_extent_map(em);
3412
3413 return ret;
3414}
3415
3416static noinline_for_stack
a36cf8b8 3417int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 3418 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
3419{
3420 struct btrfs_dev_extent *dev_extent = NULL;
3421 struct btrfs_path *path;
0b246afa
JM
3422 struct btrfs_fs_info *fs_info = sctx->fs_info;
3423 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3424 u64 length;
a2de733c 3425 u64 chunk_offset;
55e3a601 3426 int ret = 0;
76a8efa1 3427 int ro_set;
a2de733c
AJ
3428 int slot;
3429 struct extent_buffer *l;
3430 struct btrfs_key key;
3431 struct btrfs_key found_key;
32da5386 3432 struct btrfs_block_group *cache;
ff023aac 3433 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3434
3435 path = btrfs_alloc_path();
3436 if (!path)
3437 return -ENOMEM;
3438
e4058b54 3439 path->reada = READA_FORWARD;
a2de733c
AJ
3440 path->search_commit_root = 1;
3441 path->skip_locking = 1;
3442
a36cf8b8 3443 key.objectid = scrub_dev->devid;
a2de733c
AJ
3444 key.offset = 0ull;
3445 key.type = BTRFS_DEV_EXTENT_KEY;
3446
a2de733c
AJ
3447 while (1) {
3448 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3449 if (ret < 0)
8c51032f
AJ
3450 break;
3451 if (ret > 0) {
3452 if (path->slots[0] >=
3453 btrfs_header_nritems(path->nodes[0])) {
3454 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3455 if (ret < 0)
3456 break;
3457 if (ret > 0) {
3458 ret = 0;
8c51032f 3459 break;
55e3a601
Z
3460 }
3461 } else {
3462 ret = 0;
8c51032f
AJ
3463 }
3464 }
a2de733c
AJ
3465
3466 l = path->nodes[0];
3467 slot = path->slots[0];
3468
3469 btrfs_item_key_to_cpu(l, &found_key, slot);
3470
a36cf8b8 3471 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3472 break;
3473
962a298f 3474 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3475 break;
3476
3477 if (found_key.offset >= end)
3478 break;
3479
3480 if (found_key.offset < key.offset)
3481 break;
3482
3483 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3484 length = btrfs_dev_extent_length(l, dev_extent);
3485
ced96edc
QW
3486 if (found_key.offset + length <= start)
3487 goto skip;
a2de733c 3488
a2de733c
AJ
3489 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3490
3491 /*
3492 * get a reference on the corresponding block group to prevent
3493 * the chunk from going away while we scrub it
3494 */
3495 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3496
3497 /* some chunks are removed but not committed to disk yet,
3498 * continue scrubbing */
3499 if (!cache)
3500 goto skip;
3501
2473d24f
FM
3502 /*
3503 * Make sure that while we are scrubbing the corresponding block
3504 * group doesn't get its logical address and its device extents
3505 * reused for another block group, which can possibly be of a
3506 * different type and different profile. We do this to prevent
3507 * false error detections and crashes due to bogus attempts to
3508 * repair extents.
3509 */
3510 spin_lock(&cache->lock);
3511 if (cache->removed) {
3512 spin_unlock(&cache->lock);
3513 btrfs_put_block_group(cache);
3514 goto skip;
3515 }
6b7304af 3516 btrfs_freeze_block_group(cache);
2473d24f
FM
3517 spin_unlock(&cache->lock);
3518
55e3a601
Z
3519 /*
3520 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3521 * to avoid deadlock caused by:
3522 * btrfs_inc_block_group_ro()
3523 * -> btrfs_wait_for_commit()
3524 * -> btrfs_commit_transaction()
3525 * -> btrfs_scrub_pause()
3526 */
3527 scrub_pause_on(fs_info);
b12de528
QW
3528
3529 /*
3530 * Don't do chunk preallocation for scrub.
3531 *
3532 * This is especially important for SYSTEM bgs, or we can hit
3533 * -EFBIG from btrfs_finish_chunk_alloc() like:
3534 * 1. The only SYSTEM bg is marked RO.
3535 * Since SYSTEM bg is small, that's pretty common.
3536 * 2. New SYSTEM bg will be allocated
3537 * Due to regular version will allocate new chunk.
3538 * 3. New SYSTEM bg is empty and will get cleaned up
3539 * Before cleanup really happens, it's marked RO again.
3540 * 4. Empty SYSTEM bg get scrubbed
3541 * We go back to 2.
3542 *
3543 * This can easily boost the amount of SYSTEM chunks if cleaner
3544 * thread can't be triggered fast enough, and use up all space
3545 * of btrfs_super_block::sys_chunk_array
1bbb97b8
QW
3546 *
3547 * While for dev replace, we need to try our best to mark block
3548 * group RO, to prevent race between:
3549 * - Write duplication
3550 * Contains latest data
3551 * - Scrub copy
3552 * Contains data from commit tree
3553 *
3554 * If target block group is not marked RO, nocow writes can
3555 * be overwritten by scrub copy, causing data corruption.
3556 * So for dev-replace, it's not allowed to continue if a block
3557 * group is not RO.
b12de528 3558 */
1bbb97b8 3559 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
76a8efa1
Z
3560 if (ret == 0) {
3561 ro_set = 1;
1bbb97b8 3562 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
76a8efa1
Z
3563 /*
3564 * btrfs_inc_block_group_ro return -ENOSPC when it
3565 * failed in creating new chunk for metadata.
1bbb97b8 3566 * It is not a problem for scrub, because
76a8efa1
Z
3567 * metadata are always cowed, and our scrub paused
3568 * commit_transactions.
3569 */
3570 ro_set = 0;
3571 } else {
5d163e0e 3572 btrfs_warn(fs_info,
913e1535 3573 "failed setting block group ro: %d", ret);
6b7304af 3574 btrfs_unfreeze_block_group(cache);
55e3a601 3575 btrfs_put_block_group(cache);
1bbb97b8 3576 scrub_pause_off(fs_info);
55e3a601
Z
3577 break;
3578 }
3579
1bbb97b8
QW
3580 /*
3581 * Now the target block is marked RO, wait for nocow writes to
3582 * finish before dev-replace.
3583 * COW is fine, as COW never overwrites extents in commit tree.
3584 */
3585 if (sctx->is_dev_replace) {
3586 btrfs_wait_nocow_writers(cache);
3587 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3588 cache->length);
3589 }
3590
3591 scrub_pause_off(fs_info);
3ec17a67 3592 down_write(&dev_replace->rwsem);
ff023aac
SB
3593 dev_replace->cursor_right = found_key.offset + length;
3594 dev_replace->cursor_left = found_key.offset;
3595 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
3596 up_write(&dev_replace->rwsem);
3597
8c204c96 3598 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
32934280 3599 found_key.offset, cache);
ff023aac
SB
3600
3601 /*
3602 * flush, submit all pending read and write bios, afterwards
3603 * wait for them.
3604 * Note that in the dev replace case, a read request causes
3605 * write requests that are submitted in the read completion
3606 * worker. Therefore in the current situation, it is required
3607 * that all write requests are flushed, so that all read and
3608 * write requests are really completed when bios_in_flight
3609 * changes to 0.
3610 */
2073c4c2 3611 sctx->flush_all_writes = true;
ff023aac 3612 scrub_submit(sctx);
3fb99303 3613 mutex_lock(&sctx->wr_lock);
ff023aac 3614 scrub_wr_submit(sctx);
3fb99303 3615 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
3616
3617 wait_event(sctx->list_wait,
3618 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3619
3620 scrub_pause_on(fs_info);
12cf9372
WS
3621
3622 /*
3623 * must be called before we decrease @scrub_paused.
3624 * make sure we don't block transaction commit while
3625 * we are waiting pending workers finished.
3626 */
ff023aac
SB
3627 wait_event(sctx->list_wait,
3628 atomic_read(&sctx->workers_pending) == 0);
2073c4c2 3629 sctx->flush_all_writes = false;
12cf9372 3630
b708ce96 3631 scrub_pause_off(fs_info);
ff023aac 3632
3ec17a67 3633 down_write(&dev_replace->rwsem);
1a1a8b73
FM
3634 dev_replace->cursor_left = dev_replace->cursor_right;
3635 dev_replace->item_needs_writeback = 1;
3ec17a67 3636 up_write(&dev_replace->rwsem);
1a1a8b73 3637
76a8efa1 3638 if (ro_set)
2ff7e61e 3639 btrfs_dec_block_group_ro(cache);
ff023aac 3640
758f2dfc
FM
3641 /*
3642 * We might have prevented the cleaner kthread from deleting
3643 * this block group if it was already unused because we raced
3644 * and set it to RO mode first. So add it back to the unused
3645 * list, otherwise it might not ever be deleted unless a manual
3646 * balance is triggered or it becomes used and unused again.
3647 */
3648 spin_lock(&cache->lock);
3649 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
bf38be65 3650 cache->used == 0) {
758f2dfc 3651 spin_unlock(&cache->lock);
6e80d4f8
DZ
3652 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3653 btrfs_discard_queue_work(&fs_info->discard_ctl,
3654 cache);
3655 else
3656 btrfs_mark_bg_unused(cache);
758f2dfc
FM
3657 } else {
3658 spin_unlock(&cache->lock);
3659 }
3660
6b7304af 3661 btrfs_unfreeze_block_group(cache);
a2de733c
AJ
3662 btrfs_put_block_group(cache);
3663 if (ret)
3664 break;
32934280 3665 if (sctx->is_dev_replace &&
af1be4f8 3666 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3667 ret = -EIO;
3668 break;
3669 }
3670 if (sctx->stat.malloc_errors > 0) {
3671 ret = -ENOMEM;
3672 break;
3673 }
ced96edc 3674skip:
a2de733c 3675 key.offset = found_key.offset + length;
71267333 3676 btrfs_release_path(path);
a2de733c
AJ
3677 }
3678
a2de733c 3679 btrfs_free_path(path);
8c51032f 3680
55e3a601 3681 return ret;
a2de733c
AJ
3682}
3683
a36cf8b8
SB
3684static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3685 struct btrfs_device *scrub_dev)
a2de733c
AJ
3686{
3687 int i;
3688 u64 bytenr;
3689 u64 gen;
3690 int ret;
0b246afa 3691 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3692
0b246afa 3693 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
fbabd4a3 3694 return -EROFS;
79787eaa 3695
5f546063 3696 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3697 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3698 gen = scrub_dev->generation;
3699 else
0b246afa 3700 gen = fs_info->last_trans_committed;
a2de733c
AJ
3701
3702 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3703 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3704 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3705 scrub_dev->commit_total_bytes)
a2de733c
AJ
3706 break;
3707
d9d181c1 3708 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3709 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3710 NULL, 1, bytenr);
a2de733c
AJ
3711 if (ret)
3712 return ret;
3713 }
b6bfebc1 3714 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3715
3716 return 0;
3717}
3718
e89c4a9c
JB
3719static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3720{
3721 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3722 &fs_info->scrub_lock)) {
3723 struct btrfs_workqueue *scrub_workers = NULL;
3724 struct btrfs_workqueue *scrub_wr_comp = NULL;
3725 struct btrfs_workqueue *scrub_parity = NULL;
3726
3727 scrub_workers = fs_info->scrub_workers;
3728 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3729 scrub_parity = fs_info->scrub_parity_workers;
3730
3731 fs_info->scrub_workers = NULL;
3732 fs_info->scrub_wr_completion_workers = NULL;
3733 fs_info->scrub_parity_workers = NULL;
3734 mutex_unlock(&fs_info->scrub_lock);
3735
3736 btrfs_destroy_workqueue(scrub_workers);
3737 btrfs_destroy_workqueue(scrub_wr_comp);
3738 btrfs_destroy_workqueue(scrub_parity);
3739 }
3740}
3741
a2de733c
AJ
3742/*
3743 * get a reference count on fs_info->scrub_workers. start worker if necessary
3744 */
ff023aac
SB
3745static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3746 int is_dev_replace)
a2de733c 3747{
e89c4a9c
JB
3748 struct btrfs_workqueue *scrub_workers = NULL;
3749 struct btrfs_workqueue *scrub_wr_comp = NULL;
3750 struct btrfs_workqueue *scrub_parity = NULL;
6f011058 3751 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3752 int max_active = fs_info->thread_pool_size;
e89c4a9c 3753 int ret = -ENOMEM;
a2de733c 3754
e89c4a9c
JB
3755 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3756 return 0;
eb4318e5 3757
e89c4a9c
JB
3758 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3759 is_dev_replace ? 1 : max_active, 4);
3760 if (!scrub_workers)
3761 goto fail_scrub_workers;
e82afc52 3762
e89c4a9c 3763 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
20b2e302 3764 max_active, 2);
e89c4a9c
JB
3765 if (!scrub_wr_comp)
3766 goto fail_scrub_wr_completion_workers;
ff09c4ca 3767
e89c4a9c
JB
3768 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3769 max_active, 2);
3770 if (!scrub_parity)
3771 goto fail_scrub_parity_workers;
3772
3773 mutex_lock(&fs_info->scrub_lock);
3774 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3775 ASSERT(fs_info->scrub_workers == NULL &&
3776 fs_info->scrub_wr_completion_workers == NULL &&
3777 fs_info->scrub_parity_workers == NULL);
3778 fs_info->scrub_workers = scrub_workers;
3779 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
3780 fs_info->scrub_parity_workers = scrub_parity;
ff09c4ca 3781 refcount_set(&fs_info->scrub_workers_refcnt, 1);
e89c4a9c
JB
3782 mutex_unlock(&fs_info->scrub_lock);
3783 return 0;
632dd772 3784 }
e89c4a9c
JB
3785 /* Other thread raced in and created the workers for us */
3786 refcount_inc(&fs_info->scrub_workers_refcnt);
3787 mutex_unlock(&fs_info->scrub_lock);
e82afc52 3788
e89c4a9c
JB
3789 ret = 0;
3790 btrfs_destroy_workqueue(scrub_parity);
e82afc52 3791fail_scrub_parity_workers:
e89c4a9c 3792 btrfs_destroy_workqueue(scrub_wr_comp);
e82afc52 3793fail_scrub_wr_completion_workers:
e89c4a9c 3794 btrfs_destroy_workqueue(scrub_workers);
e82afc52 3795fail_scrub_workers:
e89c4a9c 3796 return ret;
a2de733c
AJ
3797}
3798
aa1b8cd4
SB
3799int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3800 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3801 int readonly, int is_dev_replace)
a2de733c 3802{
d9d181c1 3803 struct scrub_ctx *sctx;
a2de733c
AJ
3804 int ret;
3805 struct btrfs_device *dev;
a5fb1142 3806 unsigned int nofs_flag;
a2de733c 3807
aa1b8cd4 3808 if (btrfs_fs_closing(fs_info))
6c3abeda 3809 return -EAGAIN;
a2de733c 3810
da17066c 3811 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3812 /*
3813 * in this case scrub is unable to calculate the checksum
3814 * the way scrub is implemented. Do not handle this
3815 * situation at all because it won't ever happen.
3816 */
efe120a0
FH
3817 btrfs_err(fs_info,
3818 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3819 fs_info->nodesize,
3820 BTRFS_STRIPE_LEN);
b5d67f64
SB
3821 return -EINVAL;
3822 }
3823
da17066c 3824 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3825 /* not supported for data w/o checksums */
751bebbe 3826 btrfs_err_rl(fs_info,
5d163e0e 3827 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3828 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3829 return -EINVAL;
3830 }
3831
da17066c 3832 if (fs_info->nodesize >
7a9e9987 3833 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3834 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3835 /*
3836 * would exhaust the array bounds of pagev member in
3837 * struct scrub_block
3838 */
5d163e0e
JM
3839 btrfs_err(fs_info,
3840 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3841 fs_info->nodesize,
7a9e9987 3842 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3843 fs_info->sectorsize,
7a9e9987
SB
3844 SCRUB_MAX_PAGES_PER_BLOCK);
3845 return -EINVAL;
3846 }
3847
0e94c4f4
DS
3848 /* Allocate outside of device_list_mutex */
3849 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3850 if (IS_ERR(sctx))
3851 return PTR_ERR(sctx);
a2de733c 3852
e89c4a9c
JB
3853 ret = scrub_workers_get(fs_info, is_dev_replace);
3854 if (ret)
3855 goto out_free_ctx;
3856
aa1b8cd4 3857 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 3858 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
e6e674bd
AJ
3859 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3860 !is_dev_replace)) {
aa1b8cd4 3861 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3862 ret = -ENODEV;
e89c4a9c 3863 goto out;
a2de733c 3864 }
a2de733c 3865
ebbede42
AJ
3866 if (!is_dev_replace && !readonly &&
3867 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 3868 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
672d5990
MT
3869 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3870 rcu_str_deref(dev->name));
0e94c4f4 3871 ret = -EROFS;
e89c4a9c 3872 goto out;
5d68da3b
MX
3873 }
3874
3b7a016f 3875 mutex_lock(&fs_info->scrub_lock);
e12c9621 3876 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 3877 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 3878 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3879 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3880 ret = -EIO;
e89c4a9c 3881 goto out;
a2de733c
AJ
3882 }
3883
cb5583dd 3884 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 3885 if (dev->scrub_ctx ||
8dabb742
SB
3886 (!is_dev_replace &&
3887 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 3888 up_read(&fs_info->dev_replace.rwsem);
a2de733c 3889 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3890 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3891 ret = -EINPROGRESS;
e89c4a9c 3892 goto out;
a2de733c 3893 }
cb5583dd 3894 up_read(&fs_info->dev_replace.rwsem);
3b7a016f 3895
d9d181c1 3896 sctx->readonly = readonly;
cadbc0a0 3897 dev->scrub_ctx = sctx;
3cb0929a 3898 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3899
3cb0929a
WS
3900 /*
3901 * checking @scrub_pause_req here, we can avoid
3902 * race between committing transaction and scrubbing.
3903 */
cb7ab021 3904 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3905 atomic_inc(&fs_info->scrubs_running);
3906 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3907
a5fb1142
FM
3908 /*
3909 * In order to avoid deadlock with reclaim when there is a transaction
3910 * trying to pause scrub, make sure we use GFP_NOFS for all the
3911 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3912 * invoked by our callees. The pausing request is done when the
3913 * transaction commit starts, and it blocks the transaction until scrub
3914 * is paused (done at specific points at scrub_stripe() or right above
3915 * before incrementing fs_info->scrubs_running).
3916 */
3917 nofs_flag = memalloc_nofs_save();
ff023aac 3918 if (!is_dev_replace) {
d1e14420 3919 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
3920 /*
3921 * by holding device list mutex, we can
3922 * kick off writing super in log tree sync.
3923 */
3cb0929a 3924 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3925 ret = scrub_supers(sctx, dev);
3cb0929a 3926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3927 }
a2de733c
AJ
3928
3929 if (!ret)
32934280 3930 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 3931 memalloc_nofs_restore(nofs_flag);
a2de733c 3932
b6bfebc1 3933 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3934 atomic_dec(&fs_info->scrubs_running);
3935 wake_up(&fs_info->scrub_pause_wait);
3936
b6bfebc1 3937 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3938
a2de733c 3939 if (progress)
d9d181c1 3940 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 3941
d1e14420
AJ
3942 if (!is_dev_replace)
3943 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3944 ret ? "not finished" : "finished", devid, ret);
3945
a2de733c 3946 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3947 dev->scrub_ctx = NULL;
a2de733c
AJ
3948 mutex_unlock(&fs_info->scrub_lock);
3949
e89c4a9c 3950 scrub_workers_put(fs_info);
f55985f4 3951 scrub_put_ctx(sctx);
a2de733c 3952
0e94c4f4 3953 return ret;
e89c4a9c
JB
3954out:
3955 scrub_workers_put(fs_info);
0e94c4f4
DS
3956out_free_ctx:
3957 scrub_free_ctx(sctx);
3958
a2de733c
AJ
3959 return ret;
3960}
3961
2ff7e61e 3962void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3963{
a2de733c
AJ
3964 mutex_lock(&fs_info->scrub_lock);
3965 atomic_inc(&fs_info->scrub_pause_req);
3966 while (atomic_read(&fs_info->scrubs_paused) !=
3967 atomic_read(&fs_info->scrubs_running)) {
3968 mutex_unlock(&fs_info->scrub_lock);
3969 wait_event(fs_info->scrub_pause_wait,
3970 atomic_read(&fs_info->scrubs_paused) ==
3971 atomic_read(&fs_info->scrubs_running));
3972 mutex_lock(&fs_info->scrub_lock);
3973 }
3974 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3975}
3976
2ff7e61e 3977void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 3978{
a2de733c
AJ
3979 atomic_dec(&fs_info->scrub_pause_req);
3980 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3981}
3982
aa1b8cd4 3983int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3984{
a2de733c
AJ
3985 mutex_lock(&fs_info->scrub_lock);
3986 if (!atomic_read(&fs_info->scrubs_running)) {
3987 mutex_unlock(&fs_info->scrub_lock);
3988 return -ENOTCONN;
3989 }
3990
3991 atomic_inc(&fs_info->scrub_cancel_req);
3992 while (atomic_read(&fs_info->scrubs_running)) {
3993 mutex_unlock(&fs_info->scrub_lock);
3994 wait_event(fs_info->scrub_pause_wait,
3995 atomic_read(&fs_info->scrubs_running) == 0);
3996 mutex_lock(&fs_info->scrub_lock);
3997 }
3998 atomic_dec(&fs_info->scrub_cancel_req);
3999 mutex_unlock(&fs_info->scrub_lock);
4000
4001 return 0;
4002}
4003
163e97ee 4004int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 4005{
163e97ee 4006 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 4007 struct scrub_ctx *sctx;
a2de733c
AJ
4008
4009 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 4010 sctx = dev->scrub_ctx;
d9d181c1 4011 if (!sctx) {
a2de733c
AJ
4012 mutex_unlock(&fs_info->scrub_lock);
4013 return -ENOTCONN;
4014 }
d9d181c1 4015 atomic_inc(&sctx->cancel_req);
cadbc0a0 4016 while (dev->scrub_ctx) {
a2de733c
AJ
4017 mutex_unlock(&fs_info->scrub_lock);
4018 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 4019 dev->scrub_ctx == NULL);
a2de733c
AJ
4020 mutex_lock(&fs_info->scrub_lock);
4021 }
4022 mutex_unlock(&fs_info->scrub_lock);
4023
4024 return 0;
4025}
1623edeb 4026
2ff7e61e 4027int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4028 struct btrfs_scrub_progress *progress)
4029{
4030 struct btrfs_device *dev;
d9d181c1 4031 struct scrub_ctx *sctx = NULL;
a2de733c 4032
0b246afa 4033 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 4034 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
a2de733c 4035 if (dev)
cadbc0a0 4036 sctx = dev->scrub_ctx;
d9d181c1
SB
4037 if (sctx)
4038 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4039 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4040
d9d181c1 4041 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4042}
ff023aac
SB
4043
4044static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4045 u64 extent_logical, u64 extent_len,
4046 u64 *extent_physical,
4047 struct btrfs_device **extent_dev,
4048 int *extent_mirror_num)
4049{
4050 u64 mapped_length;
4051 struct btrfs_bio *bbio = NULL;
4052 int ret;
4053
4054 mapped_length = extent_len;
cf8cddd3 4055 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4056 &mapped_length, &bbio, 0);
4057 if (ret || !bbio || mapped_length < extent_len ||
4058 !bbio->stripes[0].dev->bdev) {
6e9606d2 4059 btrfs_put_bbio(bbio);
ff023aac
SB
4060 return;
4061 }
4062
4063 *extent_physical = bbio->stripes[0].physical;
4064 *extent_mirror_num = bbio->mirror_num;
4065 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4066 btrfs_put_bbio(bbio);
ff023aac 4067}