]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/scrub.c
btrfs: Wait for in-flight bios before freeing target device for raid56
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 65
af8e2d1d 66struct scrub_recover {
6f615018 67 refcount_t refs;
af8e2d1d 68 struct btrfs_bio *bbio;
af8e2d1d
MX
69 u64 map_length;
70};
71
a2de733c 72struct scrub_page {
b5d67f64
SB
73 struct scrub_block *sblock;
74 struct page *page;
442a4f63 75 struct btrfs_device *dev;
5a6ac9ea 76 struct list_head list;
a2de733c
AJ
77 u64 flags; /* extent flags */
78 u64 generation;
b5d67f64
SB
79 u64 logical;
80 u64 physical;
ff023aac 81 u64 physical_for_dev_replace;
57019345 82 atomic_t refs;
b5d67f64
SB
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
a2de733c 88 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
89
90 struct scrub_recover *recover;
a2de733c
AJ
91};
92
93struct scrub_bio {
94 int index;
d9d181c1 95 struct scrub_ctx *sctx;
a36cf8b8 96 struct btrfs_device *dev;
a2de733c
AJ
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
ff023aac
SB
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
b5d67f64 106 int page_count;
a2de733c
AJ
107 int next_free;
108 struct btrfs_work work;
109};
110
b5d67f64 111struct scrub_block {
7a9e9987 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
113 int page_count;
114 atomic_t outstanding_pages;
186debd6 115 refcount_t refs; /* free mem on transition to zero */
d9d181c1 116 struct scrub_ctx *sctx;
5a6ac9ea 117 struct scrub_parity *sparity;
b5d67f64
SB
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
442a4f63 122 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
b5d67f64 127 };
73ff61db 128 struct btrfs_work work;
b5d67f64
SB
129};
130
5a6ac9ea
MX
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
143 int stripe_len;
144
78a76450 145 refcount_t refs;
5a6ac9ea
MX
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
ff023aac
SB
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
d9d181c1 172struct scrub_ctx {
ff023aac 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 174 struct btrfs_fs_info *fs_info;
a2de733c
AJ
175 int first_free;
176 int curr;
b6bfebc1
SB
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
a2de733c
AJ
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
8628764e 184 int readonly;
ff023aac 185 int pages_per_rd_bio;
b5d67f64
SB
186 u32 sectorsize;
187 u32 nodesize;
63a212ab
SB
188
189 int is_dev_replace;
ff023aac 190 struct scrub_wr_ctx wr_ctx;
63a212ab 191
a2de733c
AJ
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
f55985f4
FM
197
198 /*
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
204 */
99f4cdb1 205 refcount_t refs;
a2de733c
AJ
206};
207
0ef8e451 208struct scrub_fixup_nodatasum {
d9d181c1 209 struct scrub_ctx *sctx;
a36cf8b8 210 struct btrfs_device *dev;
0ef8e451
JS
211 u64 logical;
212 struct btrfs_root *root;
213 struct btrfs_work work;
214 int mirror_num;
215};
216
652f25a2
JB
217struct scrub_nocow_inode {
218 u64 inum;
219 u64 offset;
220 u64 root;
221 struct list_head list;
222};
223
ff023aac
SB
224struct scrub_copy_nocow_ctx {
225 struct scrub_ctx *sctx;
226 u64 logical;
227 u64 len;
228 int mirror_num;
229 u64 physical_for_dev_replace;
652f25a2 230 struct list_head inodes;
ff023aac
SB
231 struct btrfs_work work;
232};
233
558540c1
JS
234struct scrub_warning {
235 struct btrfs_path *path;
236 u64 extent_item_size;
558540c1
JS
237 const char *errstr;
238 sector_t sector;
239 u64 logical;
240 struct btrfs_device *dev;
558540c1
JS
241};
242
b6bfebc1
SB
243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 249 struct scrub_block *sblocks_for_recheck);
34f5c8e9 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
251 struct scrub_block *sblock,
252 int retry_failed_mirror);
ba7cf988 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 255 struct scrub_block *sblock_good);
b5d67f64
SB
256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 struct scrub_block *sblock_good,
258 int page_num, int force_write);
ff023aac
SB
259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 int page_num);
b5d67f64
SB
262static int scrub_checksum_data(struct scrub_block *sblock);
263static int scrub_checksum_tree_block(struct scrub_block *sblock);
264static int scrub_checksum_super(struct scrub_block *sblock);
265static void scrub_block_get(struct scrub_block *sblock);
266static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
267static void scrub_page_get(struct scrub_page *spage);
268static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
269static void scrub_parity_get(struct scrub_parity *sparity);
270static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 struct scrub_page *spage);
d9d181c1 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 274 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
275 u64 gen, int mirror_num, u8 *csum, int force,
276 u64 physical_for_dev_replace);
4246a0b6 277static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
278static void scrub_bio_end_io_worker(struct btrfs_work *work);
279static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 u64 extent_logical, u64 extent_len,
282 u64 *extent_physical,
283 struct btrfs_device **extent_dev,
284 int *extent_mirror_num);
e5987e13 285static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
ff023aac
SB
286 struct btrfs_device *dev,
287 int is_dev_replace);
288static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
289static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
290 struct scrub_page *spage);
291static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 292static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac
SB
293static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
294static int write_page_nocow(struct scrub_ctx *sctx,
295 u64 physical_for_dev_replace, struct page *page);
296static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 297 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
298static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
299 int mirror_num, u64 physical_for_dev_replace);
300static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 301static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 302static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 303static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb
SB
304
305
b6bfebc1
SB
306static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
307{
99f4cdb1 308 refcount_inc(&sctx->refs);
b6bfebc1
SB
309 atomic_inc(&sctx->bios_in_flight);
310}
311
312static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
313{
314 atomic_dec(&sctx->bios_in_flight);
315 wake_up(&sctx->list_wait);
f55985f4 316 scrub_put_ctx(sctx);
b6bfebc1
SB
317}
318
cb7ab021 319static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
320{
321 while (atomic_read(&fs_info->scrub_pause_req)) {
322 mutex_unlock(&fs_info->scrub_lock);
323 wait_event(fs_info->scrub_pause_wait,
324 atomic_read(&fs_info->scrub_pause_req) == 0);
325 mutex_lock(&fs_info->scrub_lock);
326 }
327}
328
0e22be89 329static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
330{
331 atomic_inc(&fs_info->scrubs_paused);
332 wake_up(&fs_info->scrub_pause_wait);
0e22be89 333}
cb7ab021 334
0e22be89
Z
335static void scrub_pause_off(struct btrfs_fs_info *fs_info)
336{
cb7ab021
WS
337 mutex_lock(&fs_info->scrub_lock);
338 __scrub_blocked_if_needed(fs_info);
339 atomic_dec(&fs_info->scrubs_paused);
340 mutex_unlock(&fs_info->scrub_lock);
341
342 wake_up(&fs_info->scrub_pause_wait);
343}
344
0e22be89
Z
345static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
346{
347 scrub_pause_on(fs_info);
348 scrub_pause_off(fs_info);
349}
350
b6bfebc1
SB
351/*
352 * used for workers that require transaction commits (i.e., for the
353 * NOCOW case)
354 */
355static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
356{
fb456252 357 struct btrfs_fs_info *fs_info = sctx->fs_info;
b6bfebc1 358
99f4cdb1 359 refcount_inc(&sctx->refs);
b6bfebc1
SB
360 /*
361 * increment scrubs_running to prevent cancel requests from
362 * completing as long as a worker is running. we must also
363 * increment scrubs_paused to prevent deadlocking on pause
364 * requests used for transactions commits (as the worker uses a
365 * transaction context). it is safe to regard the worker
366 * as paused for all matters practical. effectively, we only
367 * avoid cancellation requests from completing.
368 */
369 mutex_lock(&fs_info->scrub_lock);
370 atomic_inc(&fs_info->scrubs_running);
371 atomic_inc(&fs_info->scrubs_paused);
372 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
373
374 /*
375 * check if @scrubs_running=@scrubs_paused condition
376 * inside wait_event() is not an atomic operation.
377 * which means we may inc/dec @scrub_running/paused
378 * at any time. Let's wake up @scrub_pause_wait as
379 * much as we can to let commit transaction blocked less.
380 */
381 wake_up(&fs_info->scrub_pause_wait);
382
b6bfebc1
SB
383 atomic_inc(&sctx->workers_pending);
384}
385
386/* used for workers that require transaction commits */
387static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
388{
fb456252 389 struct btrfs_fs_info *fs_info = sctx->fs_info;
b6bfebc1
SB
390
391 /*
392 * see scrub_pending_trans_workers_inc() why we're pretending
393 * to be paused in the scrub counters
394 */
395 mutex_lock(&fs_info->scrub_lock);
396 atomic_dec(&fs_info->scrubs_running);
397 atomic_dec(&fs_info->scrubs_paused);
398 mutex_unlock(&fs_info->scrub_lock);
399 atomic_dec(&sctx->workers_pending);
400 wake_up(&fs_info->scrub_pause_wait);
401 wake_up(&sctx->list_wait);
f55985f4 402 scrub_put_ctx(sctx);
b6bfebc1
SB
403}
404
d9d181c1 405static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 406{
d9d181c1 407 while (!list_empty(&sctx->csum_list)) {
a2de733c 408 struct btrfs_ordered_sum *sum;
d9d181c1 409 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
410 struct btrfs_ordered_sum, list);
411 list_del(&sum->list);
412 kfree(sum);
413 }
414}
415
d9d181c1 416static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
417{
418 int i;
a2de733c 419
d9d181c1 420 if (!sctx)
a2de733c
AJ
421 return;
422
ff023aac
SB
423 scrub_free_wr_ctx(&sctx->wr_ctx);
424
b5d67f64 425 /* this can happen when scrub is cancelled */
d9d181c1
SB
426 if (sctx->curr != -1) {
427 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
428
429 for (i = 0; i < sbio->page_count; i++) {
ff023aac 430 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
431 scrub_block_put(sbio->pagev[i]->sblock);
432 }
433 bio_put(sbio->bio);
434 }
435
ff023aac 436 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 437 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
438
439 if (!sbio)
440 break;
a2de733c
AJ
441 kfree(sbio);
442 }
443
d9d181c1
SB
444 scrub_free_csums(sctx);
445 kfree(sctx);
a2de733c
AJ
446}
447
f55985f4
FM
448static void scrub_put_ctx(struct scrub_ctx *sctx)
449{
99f4cdb1 450 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
451 scrub_free_ctx(sctx);
452}
453
a2de733c 454static noinline_for_stack
63a212ab 455struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 456{
d9d181c1 457 struct scrub_ctx *sctx;
a2de733c 458 int i;
fb456252 459 struct btrfs_fs_info *fs_info = dev->fs_info;
ff023aac 460 int ret;
a2de733c 461
58c4e173 462 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 463 if (!sctx)
a2de733c 464 goto nomem;
99f4cdb1 465 refcount_set(&sctx->refs, 1);
63a212ab 466 sctx->is_dev_replace = is_dev_replace;
b54ffb73 467 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 468 sctx->curr = -1;
fb456252 469 sctx->fs_info = dev->fs_info;
ff023aac 470 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
471 struct scrub_bio *sbio;
472
58c4e173 473 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
474 if (!sbio)
475 goto nomem;
d9d181c1 476 sctx->bios[i] = sbio;
a2de733c 477
a2de733c 478 sbio->index = i;
d9d181c1 479 sbio->sctx = sctx;
b5d67f64 480 sbio->page_count = 0;
9e0af237
LB
481 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
482 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 483
ff023aac 484 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 485 sctx->bios[i]->next_free = i + 1;
0ef8e451 486 else
d9d181c1
SB
487 sctx->bios[i]->next_free = -1;
488 }
489 sctx->first_free = 0;
0b246afa
JM
490 sctx->nodesize = fs_info->nodesize;
491 sctx->sectorsize = fs_info->sectorsize;
b6bfebc1
SB
492 atomic_set(&sctx->bios_in_flight, 0);
493 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
494 atomic_set(&sctx->cancel_req, 0);
495 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
496 INIT_LIST_HEAD(&sctx->csum_list);
497
498 spin_lock_init(&sctx->list_lock);
499 spin_lock_init(&sctx->stat_lock);
500 init_waitqueue_head(&sctx->list_wait);
ff023aac 501
e5987e13 502 ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
ff023aac
SB
503 fs_info->dev_replace.tgtdev, is_dev_replace);
504 if (ret) {
505 scrub_free_ctx(sctx);
506 return ERR_PTR(ret);
507 }
d9d181c1 508 return sctx;
a2de733c
AJ
509
510nomem:
d9d181c1 511 scrub_free_ctx(sctx);
a2de733c
AJ
512 return ERR_PTR(-ENOMEM);
513}
514
ff023aac
SB
515static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
516 void *warn_ctx)
558540c1
JS
517{
518 u64 isize;
519 u32 nlink;
520 int ret;
521 int i;
522 struct extent_buffer *eb;
523 struct btrfs_inode_item *inode_item;
ff023aac 524 struct scrub_warning *swarn = warn_ctx;
fb456252 525 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
526 struct inode_fs_paths *ipath = NULL;
527 struct btrfs_root *local_root;
528 struct btrfs_key root_key;
1d4c08e0 529 struct btrfs_key key;
558540c1
JS
530
531 root_key.objectid = root;
532 root_key.type = BTRFS_ROOT_ITEM_KEY;
533 root_key.offset = (u64)-1;
534 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
535 if (IS_ERR(local_root)) {
536 ret = PTR_ERR(local_root);
537 goto err;
538 }
539
14692cc1
DS
540 /*
541 * this makes the path point to (inum INODE_ITEM ioff)
542 */
1d4c08e0
DS
543 key.objectid = inum;
544 key.type = BTRFS_INODE_ITEM_KEY;
545 key.offset = 0;
546
547 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
548 if (ret) {
549 btrfs_release_path(swarn->path);
550 goto err;
551 }
552
553 eb = swarn->path->nodes[0];
554 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
555 struct btrfs_inode_item);
556 isize = btrfs_inode_size(eb, inode_item);
557 nlink = btrfs_inode_nlink(eb, inode_item);
558 btrfs_release_path(swarn->path);
559
560 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
561 if (IS_ERR(ipath)) {
562 ret = PTR_ERR(ipath);
563 ipath = NULL;
564 goto err;
565 }
558540c1
JS
566 ret = paths_from_inode(inum, ipath);
567
568 if (ret < 0)
569 goto err;
570
571 /*
572 * we deliberately ignore the bit ipath might have been too small to
573 * hold all of the paths here
574 */
575 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e
JM
576 btrfs_warn_in_rcu(fs_info,
577 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
578 swarn->errstr, swarn->logical,
579 rcu_str_deref(swarn->dev->name),
580 (unsigned long long)swarn->sector,
581 root, inum, offset,
582 min(isize - offset, (u64)PAGE_SIZE), nlink,
583 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
584
585 free_ipath(ipath);
586 return 0;
587
588err:
5d163e0e
JM
589 btrfs_warn_in_rcu(fs_info,
590 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
591 swarn->errstr, swarn->logical,
592 rcu_str_deref(swarn->dev->name),
593 (unsigned long long)swarn->sector,
594 root, inum, offset, ret);
558540c1
JS
595
596 free_ipath(ipath);
597 return 0;
598}
599
b5d67f64 600static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 601{
a36cf8b8
SB
602 struct btrfs_device *dev;
603 struct btrfs_fs_info *fs_info;
558540c1
JS
604 struct btrfs_path *path;
605 struct btrfs_key found_key;
606 struct extent_buffer *eb;
607 struct btrfs_extent_item *ei;
608 struct scrub_warning swarn;
69917e43
LB
609 unsigned long ptr = 0;
610 u64 extent_item_pos;
611 u64 flags = 0;
558540c1 612 u64 ref_root;
69917e43 613 u32 item_size;
07c9a8e0 614 u8 ref_level = 0;
69917e43 615 int ret;
558540c1 616
a36cf8b8 617 WARN_ON(sblock->page_count < 1);
7a9e9987 618 dev = sblock->pagev[0]->dev;
fb456252 619 fs_info = sblock->sctx->fs_info;
a36cf8b8 620
558540c1 621 path = btrfs_alloc_path();
8b9456da
DS
622 if (!path)
623 return;
558540c1 624
7a9e9987
SB
625 swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 swarn.logical = sblock->pagev[0]->logical;
558540c1 627 swarn.errstr = errstr;
a36cf8b8 628 swarn.dev = NULL;
558540c1 629
69917e43
LB
630 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 &flags);
558540c1
JS
632 if (ret < 0)
633 goto out;
634
4692cf58 635 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
636 swarn.extent_item_size = found_key.offset;
637
638 eb = path->nodes[0];
639 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 item_size = btrfs_item_size_nr(eb, path->slots[0]);
641
69917e43 642 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 643 do {
6eda71d0
LB
644 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 item_size, &ref_root,
646 &ref_level);
ecaeb14b 647 btrfs_warn_in_rcu(fs_info,
5d163e0e
JM
648 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
649 errstr, swarn.logical,
606686ee 650 rcu_str_deref(dev->name),
558540c1
JS
651 (unsigned long long)swarn.sector,
652 ref_level ? "node" : "leaf",
653 ret < 0 ? -1 : ref_level,
654 ret < 0 ? -1 : ref_root);
655 } while (ret != 1);
d8fe29e9 656 btrfs_release_path(path);
558540c1 657 } else {
d8fe29e9 658 btrfs_release_path(path);
558540c1 659 swarn.path = path;
a36cf8b8 660 swarn.dev = dev;
7a3ae2f8
JS
661 iterate_extent_inodes(fs_info, found_key.objectid,
662 extent_item_pos, 1,
558540c1
JS
663 scrub_print_warning_inode, &swarn);
664 }
665
666out:
667 btrfs_free_path(path);
558540c1
JS
668}
669
ff023aac 670static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 671{
5da6fcbc 672 struct page *page = NULL;
0ef8e451 673 unsigned long index;
ff023aac 674 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 675 int ret;
5da6fcbc 676 int corrected = 0;
0ef8e451 677 struct btrfs_key key;
5da6fcbc 678 struct inode *inode = NULL;
6f1c3605 679 struct btrfs_fs_info *fs_info;
0ef8e451
JS
680 u64 end = offset + PAGE_SIZE - 1;
681 struct btrfs_root *local_root;
6f1c3605 682 int srcu_index;
0ef8e451
JS
683
684 key.objectid = root;
685 key.type = BTRFS_ROOT_ITEM_KEY;
686 key.offset = (u64)-1;
6f1c3605
LB
687
688 fs_info = fixup->root->fs_info;
689 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
690
691 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
692 if (IS_ERR(local_root)) {
693 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 694 return PTR_ERR(local_root);
6f1c3605 695 }
0ef8e451
JS
696
697 key.type = BTRFS_INODE_ITEM_KEY;
698 key.objectid = inum;
699 key.offset = 0;
6f1c3605
LB
700 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
701 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
702 if (IS_ERR(inode))
703 return PTR_ERR(inode);
704
09cbfeaf 705 index = offset >> PAGE_SHIFT;
0ef8e451
JS
706
707 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
708 if (!page) {
709 ret = -ENOMEM;
710 goto out;
711 }
712
713 if (PageUptodate(page)) {
5da6fcbc
JS
714 if (PageDirty(page)) {
715 /*
716 * we need to write the data to the defect sector. the
717 * data that was in that sector is not in memory,
718 * because the page was modified. we must not write the
719 * modified page to that sector.
720 *
721 * TODO: what could be done here: wait for the delalloc
722 * runner to write out that page (might involve
723 * COW) and see whether the sector is still
724 * referenced afterwards.
725 *
726 * For the meantime, we'll treat this error
727 * incorrectable, although there is a chance that a
728 * later scrub will find the bad sector again and that
729 * there's no dirty page in memory, then.
730 */
731 ret = -EIO;
732 goto out;
733 }
9d4f7f8a 734 ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
5da6fcbc 735 fixup->logical, page,
ffdd2018 736 offset - page_offset(page),
5da6fcbc
JS
737 fixup->mirror_num);
738 unlock_page(page);
739 corrected = !ret;
740 } else {
741 /*
742 * we need to get good data first. the general readpage path
743 * will call repair_io_failure for us, we just have to make
744 * sure we read the bad mirror.
745 */
746 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
ceeb0ae7 747 EXTENT_DAMAGED);
5da6fcbc
JS
748 if (ret) {
749 /* set_extent_bits should give proper error */
750 WARN_ON(ret > 0);
751 if (ret > 0)
752 ret = -EFAULT;
753 goto out;
754 }
755
756 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
757 btrfs_get_extent,
758 fixup->mirror_num);
759 wait_on_page_locked(page);
760
761 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
762 end, EXTENT_DAMAGED, 0, NULL);
763 if (!corrected)
764 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
91166212 765 EXTENT_DAMAGED);
5da6fcbc
JS
766 }
767
768out:
769 if (page)
770 put_page(page);
7fb18a06
TK
771
772 iput(inode);
0ef8e451
JS
773
774 if (ret < 0)
775 return ret;
776
777 if (ret == 0 && corrected) {
778 /*
779 * we only need to call readpage for one of the inodes belonging
780 * to this extent. so make iterate_extent_inodes stop
781 */
782 return 1;
783 }
784
785 return -EIO;
786}
787
788static void scrub_fixup_nodatasum(struct btrfs_work *work)
789{
0b246afa 790 struct btrfs_fs_info *fs_info;
0ef8e451
JS
791 int ret;
792 struct scrub_fixup_nodatasum *fixup;
d9d181c1 793 struct scrub_ctx *sctx;
0ef8e451 794 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
795 struct btrfs_path *path;
796 int uncorrectable = 0;
797
798 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 799 sctx = fixup->sctx;
0b246afa 800 fs_info = fixup->root->fs_info;
0ef8e451
JS
801
802 path = btrfs_alloc_path();
803 if (!path) {
d9d181c1
SB
804 spin_lock(&sctx->stat_lock);
805 ++sctx->stat.malloc_errors;
806 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
807 uncorrectable = 1;
808 goto out;
809 }
810
811 trans = btrfs_join_transaction(fixup->root);
812 if (IS_ERR(trans)) {
813 uncorrectable = 1;
814 goto out;
815 }
816
817 /*
818 * the idea is to trigger a regular read through the standard path. we
819 * read a page from the (failed) logical address by specifying the
820 * corresponding copynum of the failed sector. thus, that readpage is
821 * expected to fail.
822 * that is the point where on-the-fly error correction will kick in
823 * (once it's finished) and rewrite the failed sector if a good copy
824 * can be found.
825 */
0b246afa
JM
826 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
827 scrub_fixup_readpage, fixup);
0ef8e451
JS
828 if (ret < 0) {
829 uncorrectable = 1;
830 goto out;
831 }
832 WARN_ON(ret != 1);
833
d9d181c1
SB
834 spin_lock(&sctx->stat_lock);
835 ++sctx->stat.corrected_errors;
836 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
837
838out:
839 if (trans && !IS_ERR(trans))
3a45bb20 840 btrfs_end_transaction(trans);
0ef8e451 841 if (uncorrectable) {
d9d181c1
SB
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.uncorrectable_errors;
844 spin_unlock(&sctx->stat_lock);
ff023aac 845 btrfs_dev_replace_stats_inc(
0b246afa
JM
846 &fs_info->dev_replace.num_uncorrectable_read_errors);
847 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 848 "unable to fixup (nodatasum) error at logical %llu on dev %s",
c1c9ff7c 849 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
850 }
851
852 btrfs_free_path(path);
853 kfree(fixup);
854
b6bfebc1 855 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
856}
857
af8e2d1d
MX
858static inline void scrub_get_recover(struct scrub_recover *recover)
859{
6f615018 860 refcount_inc(&recover->refs);
af8e2d1d
MX
861}
862
863static inline void scrub_put_recover(struct scrub_recover *recover)
864{
6f615018 865 if (refcount_dec_and_test(&recover->refs)) {
6e9606d2 866 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
867 kfree(recover);
868 }
869}
870
a2de733c 871/*
b5d67f64
SB
872 * scrub_handle_errored_block gets called when either verification of the
873 * pages failed or the bio failed to read, e.g. with EIO. In the latter
874 * case, this function handles all pages in the bio, even though only one
875 * may be bad.
876 * The goal of this function is to repair the errored block by using the
877 * contents of one of the mirrors.
a2de733c 878 */
b5d67f64 879static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 880{
d9d181c1 881 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 882 struct btrfs_device *dev;
b5d67f64
SB
883 struct btrfs_fs_info *fs_info;
884 u64 length;
885 u64 logical;
b5d67f64
SB
886 unsigned int failed_mirror_index;
887 unsigned int is_metadata;
888 unsigned int have_csum;
b5d67f64
SB
889 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
890 struct scrub_block *sblock_bad;
891 int ret;
892 int mirror_index;
893 int page_num;
894 int success;
558540c1 895 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
896 DEFAULT_RATELIMIT_BURST);
897
898 BUG_ON(sblock_to_check->page_count < 1);
fb456252 899 fs_info = sctx->fs_info;
4ded4f63
SB
900 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
901 /*
902 * if we find an error in a super block, we just report it.
903 * They will get written with the next transaction commit
904 * anyway
905 */
906 spin_lock(&sctx->stat_lock);
907 ++sctx->stat.super_errors;
908 spin_unlock(&sctx->stat_lock);
909 return 0;
910 }
b5d67f64 911 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987 912 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
913 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
914 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
915 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 916 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 917 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 918 dev = sblock_to_check->pagev[0]->dev;
13db62b7 919
ff023aac
SB
920 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
921 sblocks_for_recheck = NULL;
922 goto nodatasum_case;
923 }
924
b5d67f64
SB
925 /*
926 * read all mirrors one after the other. This includes to
927 * re-read the extent or metadata block that failed (that was
928 * the cause that this fixup code is called) another time,
929 * page by page this time in order to know which pages
930 * caused I/O errors and which ones are good (for all mirrors).
931 * It is the goal to handle the situation when more than one
932 * mirror contains I/O errors, but the errors do not
933 * overlap, i.e. the data can be repaired by selecting the
934 * pages from those mirrors without I/O error on the
935 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
936 * would be that mirror #1 has an I/O error on the first page,
937 * the second page is good, and mirror #2 has an I/O error on
938 * the second page, but the first page is good.
939 * Then the first page of the first mirror can be repaired by
940 * taking the first page of the second mirror, and the
941 * second page of the second mirror can be repaired by
942 * copying the contents of the 2nd page of the 1st mirror.
943 * One more note: if the pages of one mirror contain I/O
944 * errors, the checksum cannot be verified. In order to get
945 * the best data for repairing, the first attempt is to find
946 * a mirror without I/O errors and with a validated checksum.
947 * Only if this is not possible, the pages are picked from
948 * mirrors with I/O errors without considering the checksum.
949 * If the latter is the case, at the end, the checksum of the
950 * repaired area is verified in order to correctly maintain
951 * the statistics.
952 */
953
31e818fe
DS
954 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
955 sizeof(*sblocks_for_recheck), GFP_NOFS);
b5d67f64 956 if (!sblocks_for_recheck) {
d9d181c1
SB
957 spin_lock(&sctx->stat_lock);
958 sctx->stat.malloc_errors++;
959 sctx->stat.read_errors++;
960 sctx->stat.uncorrectable_errors++;
961 spin_unlock(&sctx->stat_lock);
a36cf8b8 962 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 963 goto out;
a2de733c
AJ
964 }
965
b5d67f64 966 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 967 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 968 if (ret) {
d9d181c1
SB
969 spin_lock(&sctx->stat_lock);
970 sctx->stat.read_errors++;
971 sctx->stat.uncorrectable_errors++;
972 spin_unlock(&sctx->stat_lock);
a36cf8b8 973 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
974 goto out;
975 }
976 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
977 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 978
b5d67f64 979 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 980 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 981
b5d67f64
SB
982 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
983 sblock_bad->no_io_error_seen) {
984 /*
985 * the error disappeared after reading page by page, or
986 * the area was part of a huge bio and other parts of the
987 * bio caused I/O errors, or the block layer merged several
988 * read requests into one and the error is caused by a
989 * different bio (usually one of the two latter cases is
990 * the cause)
991 */
d9d181c1
SB
992 spin_lock(&sctx->stat_lock);
993 sctx->stat.unverified_errors++;
5a6ac9ea 994 sblock_to_check->data_corrected = 1;
d9d181c1 995 spin_unlock(&sctx->stat_lock);
a2de733c 996
ff023aac
SB
997 if (sctx->is_dev_replace)
998 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 999 goto out;
a2de733c 1000 }
a2de733c 1001
b5d67f64 1002 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
1003 spin_lock(&sctx->stat_lock);
1004 sctx->stat.read_errors++;
1005 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1006 if (__ratelimit(&_rs))
1007 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 1008 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1009 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
1010 spin_lock(&sctx->stat_lock);
1011 sctx->stat.csum_errors++;
1012 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1013 if (__ratelimit(&_rs))
1014 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 1015 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1016 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1017 } else if (sblock_bad->header_error) {
d9d181c1
SB
1018 spin_lock(&sctx->stat_lock);
1019 sctx->stat.verify_errors++;
1020 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1021 if (__ratelimit(&_rs))
1022 scrub_print_warning("checksum/header error",
1023 sblock_to_check);
442a4f63 1024 if (sblock_bad->generation_error)
a36cf8b8 1025 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
1026 BTRFS_DEV_STAT_GENERATION_ERRS);
1027 else
a36cf8b8 1028 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1029 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1030 }
a2de733c 1031
33ef30ad
ID
1032 if (sctx->readonly) {
1033 ASSERT(!sctx->is_dev_replace);
1034 goto out;
1035 }
a2de733c 1036
b5d67f64
SB
1037 if (!is_metadata && !have_csum) {
1038 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 1039
ff023aac
SB
1040 WARN_ON(sctx->is_dev_replace);
1041
b25c94c5
ZL
1042nodatasum_case:
1043
b5d67f64
SB
1044 /*
1045 * !is_metadata and !have_csum, this means that the data
01327610 1046 * might not be COWed, that it might be modified
b5d67f64
SB
1047 * concurrently. The general strategy to work on the
1048 * commit root does not help in the case when COW is not
1049 * used.
1050 */
1051 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1052 if (!fixup_nodatasum)
1053 goto did_not_correct_error;
d9d181c1 1054 fixup_nodatasum->sctx = sctx;
a36cf8b8 1055 fixup_nodatasum->dev = dev;
b5d67f64
SB
1056 fixup_nodatasum->logical = logical;
1057 fixup_nodatasum->root = fs_info->extent_root;
1058 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 1059 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1060 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1061 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1062 btrfs_queue_work(fs_info->scrub_workers,
1063 &fixup_nodatasum->work);
b5d67f64 1064 goto out;
a2de733c
AJ
1065 }
1066
b5d67f64
SB
1067 /*
1068 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1069 * checksums.
1070 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1071 * errors and also does not have a checksum error.
1072 * If one is found, and if a checksum is present, the full block
1073 * that is known to contain an error is rewritten. Afterwards
1074 * the block is known to be corrected.
1075 * If a mirror is found which is completely correct, and no
1076 * checksum is present, only those pages are rewritten that had
1077 * an I/O error in the block to be repaired, since it cannot be
1078 * determined, which copy of the other pages is better (and it
1079 * could happen otherwise that a correct page would be
1080 * overwritten by a bad one).
1081 */
1082 for (mirror_index = 0;
1083 mirror_index < BTRFS_MAX_MIRRORS &&
1084 sblocks_for_recheck[mirror_index].page_count > 0;
1085 mirror_index++) {
cb2ced73 1086 struct scrub_block *sblock_other;
b5d67f64 1087
cb2ced73
SB
1088 if (mirror_index == failed_mirror_index)
1089 continue;
1090 sblock_other = sblocks_for_recheck + mirror_index;
1091
1092 /* build and submit the bios, check checksums */
affe4a5a 1093 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1094
1095 if (!sblock_other->header_error &&
b5d67f64
SB
1096 !sblock_other->checksum_error &&
1097 sblock_other->no_io_error_seen) {
ff023aac
SB
1098 if (sctx->is_dev_replace) {
1099 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1100 goto corrected_error;
ff023aac 1101 } else {
ff023aac 1102 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1103 sblock_bad, sblock_other);
1104 if (!ret)
1105 goto corrected_error;
ff023aac 1106 }
b5d67f64
SB
1107 }
1108 }
a2de733c 1109
b968fed1
ZL
1110 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1111 goto did_not_correct_error;
ff023aac
SB
1112
1113 /*
ff023aac 1114 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1115 * repaired, continue by picking good copies of those pages.
1116 * Select the good pages from mirrors to rewrite bad pages from
1117 * the area to fix. Afterwards verify the checksum of the block
1118 * that is supposed to be repaired. This verification step is
1119 * only done for the purpose of statistic counting and for the
1120 * final scrub report, whether errors remain.
1121 * A perfect algorithm could make use of the checksum and try
1122 * all possible combinations of pages from the different mirrors
1123 * until the checksum verification succeeds. For example, when
1124 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1125 * of mirror #2 is readable but the final checksum test fails,
1126 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1127 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1128 * exception and is therefore not implemented. At least it is
1129 * avoided that the good copy is overwritten.
1130 * A more useful improvement would be to pick the sectors
1131 * without I/O error based on sector sizes (512 bytes on legacy
1132 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1133 * mirror could be repaired by taking 512 byte of a different
1134 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1135 * area are unreadable.
a2de733c 1136 */
b5d67f64 1137 success = 1;
b968fed1
ZL
1138 for (page_num = 0; page_num < sblock_bad->page_count;
1139 page_num++) {
7a9e9987 1140 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1141 struct scrub_block *sblock_other = NULL;
b5d67f64 1142
b968fed1
ZL
1143 /* skip no-io-error page in scrub */
1144 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1145 continue;
b5d67f64 1146
b968fed1
ZL
1147 /* try to find no-io-error page in mirrors */
1148 if (page_bad->io_error) {
1149 for (mirror_index = 0;
1150 mirror_index < BTRFS_MAX_MIRRORS &&
1151 sblocks_for_recheck[mirror_index].page_count > 0;
1152 mirror_index++) {
1153 if (!sblocks_for_recheck[mirror_index].
1154 pagev[page_num]->io_error) {
1155 sblock_other = sblocks_for_recheck +
1156 mirror_index;
1157 break;
b5d67f64
SB
1158 }
1159 }
b968fed1
ZL
1160 if (!sblock_other)
1161 success = 0;
96e36920 1162 }
a2de733c 1163
b968fed1
ZL
1164 if (sctx->is_dev_replace) {
1165 /*
1166 * did not find a mirror to fetch the page
1167 * from. scrub_write_page_to_dev_replace()
1168 * handles this case (page->io_error), by
1169 * filling the block with zeros before
1170 * submitting the write request
1171 */
1172 if (!sblock_other)
1173 sblock_other = sblock_bad;
1174
1175 if (scrub_write_page_to_dev_replace(sblock_other,
1176 page_num) != 0) {
1177 btrfs_dev_replace_stats_inc(
0b246afa 1178 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1179 success = 0;
1180 }
1181 } else if (sblock_other) {
1182 ret = scrub_repair_page_from_good_copy(sblock_bad,
1183 sblock_other,
1184 page_num, 0);
1185 if (0 == ret)
1186 page_bad->io_error = 0;
1187 else
1188 success = 0;
b5d67f64 1189 }
a2de733c 1190 }
a2de733c 1191
b968fed1 1192 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1193 if (is_metadata || have_csum) {
1194 /*
1195 * need to verify the checksum now that all
1196 * sectors on disk are repaired (the write
1197 * request for data to be repaired is on its way).
1198 * Just be lazy and use scrub_recheck_block()
1199 * which re-reads the data before the checksum
1200 * is verified, but most likely the data comes out
1201 * of the page cache.
1202 */
affe4a5a 1203 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1204 if (!sblock_bad->header_error &&
b5d67f64
SB
1205 !sblock_bad->checksum_error &&
1206 sblock_bad->no_io_error_seen)
1207 goto corrected_error;
1208 else
1209 goto did_not_correct_error;
1210 } else {
1211corrected_error:
d9d181c1
SB
1212 spin_lock(&sctx->stat_lock);
1213 sctx->stat.corrected_errors++;
5a6ac9ea 1214 sblock_to_check->data_corrected = 1;
d9d181c1 1215 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1216 btrfs_err_rl_in_rcu(fs_info,
1217 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1218 logical, rcu_str_deref(dev->name));
8628764e 1219 }
b5d67f64
SB
1220 } else {
1221did_not_correct_error:
d9d181c1
SB
1222 spin_lock(&sctx->stat_lock);
1223 sctx->stat.uncorrectable_errors++;
1224 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1225 btrfs_err_rl_in_rcu(fs_info,
1226 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1227 logical, rcu_str_deref(dev->name));
96e36920 1228 }
a2de733c 1229
b5d67f64
SB
1230out:
1231 if (sblocks_for_recheck) {
1232 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1233 mirror_index++) {
1234 struct scrub_block *sblock = sblocks_for_recheck +
1235 mirror_index;
af8e2d1d 1236 struct scrub_recover *recover;
b5d67f64
SB
1237 int page_index;
1238
7a9e9987
SB
1239 for (page_index = 0; page_index < sblock->page_count;
1240 page_index++) {
1241 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1242 recover = sblock->pagev[page_index]->recover;
1243 if (recover) {
1244 scrub_put_recover(recover);
1245 sblock->pagev[page_index]->recover =
1246 NULL;
1247 }
7a9e9987
SB
1248 scrub_page_put(sblock->pagev[page_index]);
1249 }
b5d67f64
SB
1250 }
1251 kfree(sblocks_for_recheck);
1252 }
a2de733c 1253
b5d67f64
SB
1254 return 0;
1255}
a2de733c 1256
8e5cfb55 1257static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1258{
10f11900
ZL
1259 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1260 return 2;
1261 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1262 return 3;
1263 else
af8e2d1d 1264 return (int)bbio->num_stripes;
af8e2d1d
MX
1265}
1266
10f11900
ZL
1267static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1268 u64 *raid_map,
af8e2d1d
MX
1269 u64 mapped_length,
1270 int nstripes, int mirror,
1271 int *stripe_index,
1272 u64 *stripe_offset)
1273{
1274 int i;
1275
ffe2d203 1276 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1277 /* RAID5/6 */
1278 for (i = 0; i < nstripes; i++) {
1279 if (raid_map[i] == RAID6_Q_STRIPE ||
1280 raid_map[i] == RAID5_P_STRIPE)
1281 continue;
1282
1283 if (logical >= raid_map[i] &&
1284 logical < raid_map[i] + mapped_length)
1285 break;
1286 }
1287
1288 *stripe_index = i;
1289 *stripe_offset = logical - raid_map[i];
1290 } else {
1291 /* The other RAID type */
1292 *stripe_index = mirror;
1293 *stripe_offset = 0;
1294 }
1295}
1296
be50a8dd 1297static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1298 struct scrub_block *sblocks_for_recheck)
1299{
be50a8dd 1300 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1301 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1302 u64 length = original_sblock->page_count * PAGE_SIZE;
1303 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1304 u64 generation = original_sblock->pagev[0]->generation;
1305 u64 flags = original_sblock->pagev[0]->flags;
1306 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1307 struct scrub_recover *recover;
1308 struct btrfs_bio *bbio;
af8e2d1d
MX
1309 u64 sublen;
1310 u64 mapped_length;
1311 u64 stripe_offset;
1312 int stripe_index;
be50a8dd 1313 int page_index = 0;
b5d67f64 1314 int mirror_index;
af8e2d1d 1315 int nmirrors;
b5d67f64
SB
1316 int ret;
1317
1318 /*
57019345 1319 * note: the two members refs and outstanding_pages
b5d67f64
SB
1320 * are not used (and not set) in the blocks that are used for
1321 * the recheck procedure
1322 */
1323
b5d67f64 1324 while (length > 0) {
af8e2d1d
MX
1325 sublen = min_t(u64, length, PAGE_SIZE);
1326 mapped_length = sublen;
1327 bbio = NULL;
a2de733c 1328
b5d67f64
SB
1329 /*
1330 * with a length of PAGE_SIZE, each returned stripe
1331 * represents one mirror
1332 */
cf8cddd3 1333 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1334 logical, &mapped_length, &bbio);
b5d67f64 1335 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1336 btrfs_put_bbio(bbio);
b5d67f64
SB
1337 return -EIO;
1338 }
a2de733c 1339
af8e2d1d
MX
1340 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1341 if (!recover) {
6e9606d2 1342 btrfs_put_bbio(bbio);
af8e2d1d
MX
1343 return -ENOMEM;
1344 }
1345
6f615018 1346 refcount_set(&recover->refs, 1);
af8e2d1d 1347 recover->bbio = bbio;
af8e2d1d
MX
1348 recover->map_length = mapped_length;
1349
24731149 1350 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1351
be50a8dd 1352 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1353
af8e2d1d 1354 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1355 mirror_index++) {
1356 struct scrub_block *sblock;
1357 struct scrub_page *page;
1358
b5d67f64 1359 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1360 sblock->sctx = sctx;
4734b7ed 1361
7a9e9987
SB
1362 page = kzalloc(sizeof(*page), GFP_NOFS);
1363 if (!page) {
1364leave_nomem:
d9d181c1
SB
1365 spin_lock(&sctx->stat_lock);
1366 sctx->stat.malloc_errors++;
1367 spin_unlock(&sctx->stat_lock);
af8e2d1d 1368 scrub_put_recover(recover);
b5d67f64
SB
1369 return -ENOMEM;
1370 }
7a9e9987
SB
1371 scrub_page_get(page);
1372 sblock->pagev[page_index] = page;
4734b7ed
ZL
1373 page->sblock = sblock;
1374 page->flags = flags;
1375 page->generation = generation;
7a9e9987 1376 page->logical = logical;
4734b7ed
ZL
1377 page->have_csum = have_csum;
1378 if (have_csum)
1379 memcpy(page->csum,
1380 original_sblock->pagev[0]->csum,
1381 sctx->csum_size);
af8e2d1d 1382
10f11900
ZL
1383 scrub_stripe_index_and_offset(logical,
1384 bbio->map_type,
1385 bbio->raid_map,
af8e2d1d 1386 mapped_length,
e34c330d
ZL
1387 bbio->num_stripes -
1388 bbio->num_tgtdevs,
af8e2d1d
MX
1389 mirror_index,
1390 &stripe_index,
1391 &stripe_offset);
1392 page->physical = bbio->stripes[stripe_index].physical +
1393 stripe_offset;
1394 page->dev = bbio->stripes[stripe_index].dev;
1395
ff023aac
SB
1396 BUG_ON(page_index >= original_sblock->page_count);
1397 page->physical_for_dev_replace =
1398 original_sblock->pagev[page_index]->
1399 physical_for_dev_replace;
7a9e9987 1400 /* for missing devices, dev->bdev is NULL */
7a9e9987 1401 page->mirror_num = mirror_index + 1;
b5d67f64 1402 sblock->page_count++;
7a9e9987
SB
1403 page->page = alloc_page(GFP_NOFS);
1404 if (!page->page)
1405 goto leave_nomem;
af8e2d1d
MX
1406
1407 scrub_get_recover(recover);
1408 page->recover = recover;
b5d67f64 1409 }
af8e2d1d 1410 scrub_put_recover(recover);
b5d67f64
SB
1411 length -= sublen;
1412 logical += sublen;
1413 page_index++;
1414 }
1415
1416 return 0;
96e36920
ID
1417}
1418
af8e2d1d
MX
1419struct scrub_bio_ret {
1420 struct completion event;
1421 int error;
1422};
1423
4246a0b6 1424static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d
MX
1425{
1426 struct scrub_bio_ret *ret = bio->bi_private;
1427
4246a0b6 1428 ret->error = bio->bi_error;
af8e2d1d
MX
1429 complete(&ret->event);
1430}
1431
1432static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1433{
10f11900 1434 return page->recover &&
ffe2d203 1435 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
af8e2d1d
MX
1436}
1437
1438static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1439 struct bio *bio,
1440 struct scrub_page *page)
1441{
1442 struct scrub_bio_ret done;
1443 int ret;
1444
1445 init_completion(&done.event);
1446 done.error = 0;
1447 bio->bi_iter.bi_sector = page->logical >> 9;
1448 bio->bi_private = &done;
1449 bio->bi_end_io = scrub_bio_wait_endio;
1450
2ff7e61e 1451 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1452 page->recover->map_length,
4245215d 1453 page->mirror_num, 0);
af8e2d1d
MX
1454 if (ret)
1455 return ret;
1456
1457 wait_for_completion(&done.event);
1458 if (done.error)
1459 return -EIO;
1460
1461 return 0;
1462}
1463
b5d67f64
SB
1464/*
1465 * this function will check the on disk data for checksum errors, header
1466 * errors and read I/O errors. If any I/O errors happen, the exact pages
1467 * which are errored are marked as being bad. The goal is to enable scrub
1468 * to take those pages that are not errored from all the mirrors so that
1469 * the pages that are errored in the just handled mirror can be repaired.
1470 */
34f5c8e9 1471static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1472 struct scrub_block *sblock,
1473 int retry_failed_mirror)
96e36920 1474{
b5d67f64 1475 int page_num;
96e36920 1476
b5d67f64 1477 sblock->no_io_error_seen = 1;
96e36920 1478
b5d67f64
SB
1479 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1480 struct bio *bio;
7a9e9987 1481 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1482
442a4f63 1483 if (page->dev->bdev == NULL) {
ea9947b4
SB
1484 page->io_error = 1;
1485 sblock->no_io_error_seen = 0;
1486 continue;
1487 }
1488
7a9e9987 1489 WARN_ON(!page->page);
9be3395b 1490 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1491 if (!bio) {
1492 page->io_error = 1;
1493 sblock->no_io_error_seen = 0;
1494 continue;
1495 }
442a4f63 1496 bio->bi_bdev = page->dev->bdev;
b5d67f64 1497
34f5c8e9 1498 bio_add_page(bio, page->page, PAGE_SIZE, 0);
af8e2d1d 1499 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1bcd7aa1
LB
1500 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1501 page->io_error = 1;
af8e2d1d 1502 sblock->no_io_error_seen = 0;
1bcd7aa1 1503 }
af8e2d1d
MX
1504 } else {
1505 bio->bi_iter.bi_sector = page->physical >> 9;
37226b21 1506 bio_set_op_attrs(bio, REQ_OP_READ, 0);
af8e2d1d 1507
1bcd7aa1
LB
1508 if (btrfsic_submit_bio_wait(bio)) {
1509 page->io_error = 1;
af8e2d1d 1510 sblock->no_io_error_seen = 0;
1bcd7aa1 1511 }
af8e2d1d 1512 }
33879d45 1513
b5d67f64
SB
1514 bio_put(bio);
1515 }
96e36920 1516
b5d67f64 1517 if (sblock->no_io_error_seen)
ba7cf988 1518 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1519}
1520
17a9be2f
MX
1521static inline int scrub_check_fsid(u8 fsid[],
1522 struct scrub_page *spage)
1523{
1524 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1525 int ret;
1526
1527 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1528 return !ret;
1529}
1530
ba7cf988 1531static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1532{
ba7cf988
ZL
1533 sblock->header_error = 0;
1534 sblock->checksum_error = 0;
1535 sblock->generation_error = 0;
b5d67f64 1536
ba7cf988
ZL
1537 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1538 scrub_checksum_data(sblock);
1539 else
1540 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1541}
1542
b5d67f64 1543static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1544 struct scrub_block *sblock_good)
b5d67f64
SB
1545{
1546 int page_num;
1547 int ret = 0;
96e36920 1548
b5d67f64
SB
1549 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1550 int ret_sub;
96e36920 1551
b5d67f64
SB
1552 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1553 sblock_good,
114ab50d 1554 page_num, 1);
b5d67f64
SB
1555 if (ret_sub)
1556 ret = ret_sub;
a2de733c 1557 }
b5d67f64
SB
1558
1559 return ret;
1560}
1561
1562static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1563 struct scrub_block *sblock_good,
1564 int page_num, int force_write)
1565{
7a9e9987
SB
1566 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1567 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1568 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1569
7a9e9987
SB
1570 BUG_ON(page_bad->page == NULL);
1571 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1572 if (force_write || sblock_bad->header_error ||
1573 sblock_bad->checksum_error || page_bad->io_error) {
1574 struct bio *bio;
1575 int ret;
b5d67f64 1576
ff023aac 1577 if (!page_bad->dev->bdev) {
0b246afa 1578 btrfs_warn_rl(fs_info,
5d163e0e 1579 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1580 return -EIO;
1581 }
1582
9be3395b 1583 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1584 if (!bio)
1585 return -EIO;
442a4f63 1586 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1587 bio->bi_iter.bi_sector = page_bad->physical >> 9;
37226b21 1588 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b5d67f64
SB
1589
1590 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1591 if (PAGE_SIZE != ret) {
1592 bio_put(bio);
1593 return -EIO;
13db62b7 1594 }
b5d67f64 1595
4e49ea4a 1596 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1597 btrfs_dev_stat_inc_and_print(page_bad->dev,
1598 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac 1599 btrfs_dev_replace_stats_inc(
0b246afa 1600 &fs_info->dev_replace.num_write_errors);
442a4f63
SB
1601 bio_put(bio);
1602 return -EIO;
1603 }
b5d67f64 1604 bio_put(bio);
a2de733c
AJ
1605 }
1606
b5d67f64
SB
1607 return 0;
1608}
1609
ff023aac
SB
1610static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1611{
0b246afa 1612 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1613 int page_num;
1614
5a6ac9ea
MX
1615 /*
1616 * This block is used for the check of the parity on the source device,
1617 * so the data needn't be written into the destination device.
1618 */
1619 if (sblock->sparity)
1620 return;
1621
ff023aac
SB
1622 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1623 int ret;
1624
1625 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1626 if (ret)
1627 btrfs_dev_replace_stats_inc(
0b246afa 1628 &fs_info->dev_replace.num_write_errors);
ff023aac
SB
1629 }
1630}
1631
1632static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1633 int page_num)
1634{
1635 struct scrub_page *spage = sblock->pagev[page_num];
1636
1637 BUG_ON(spage->page == NULL);
1638 if (spage->io_error) {
1639 void *mapped_buffer = kmap_atomic(spage->page);
1640
09cbfeaf 1641 memset(mapped_buffer, 0, PAGE_SIZE);
ff023aac
SB
1642 flush_dcache_page(spage->page);
1643 kunmap_atomic(mapped_buffer);
1644 }
1645 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1646}
1647
1648static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1649 struct scrub_page *spage)
1650{
1651 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1652 struct scrub_bio *sbio;
1653 int ret;
1654
1655 mutex_lock(&wr_ctx->wr_lock);
1656again:
1657 if (!wr_ctx->wr_curr_bio) {
1658 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
58c4e173 1659 GFP_KERNEL);
ff023aac
SB
1660 if (!wr_ctx->wr_curr_bio) {
1661 mutex_unlock(&wr_ctx->wr_lock);
1662 return -ENOMEM;
1663 }
1664 wr_ctx->wr_curr_bio->sctx = sctx;
1665 wr_ctx->wr_curr_bio->page_count = 0;
1666 }
1667 sbio = wr_ctx->wr_curr_bio;
1668 if (sbio->page_count == 0) {
1669 struct bio *bio;
1670
1671 sbio->physical = spage->physical_for_dev_replace;
1672 sbio->logical = spage->logical;
1673 sbio->dev = wr_ctx->tgtdev;
1674 bio = sbio->bio;
1675 if (!bio) {
58c4e173
DS
1676 bio = btrfs_io_bio_alloc(GFP_KERNEL,
1677 wr_ctx->pages_per_wr_bio);
ff023aac
SB
1678 if (!bio) {
1679 mutex_unlock(&wr_ctx->wr_lock);
1680 return -ENOMEM;
1681 }
1682 sbio->bio = bio;
1683 }
1684
1685 bio->bi_private = sbio;
1686 bio->bi_end_io = scrub_wr_bio_end_io;
1687 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1688 bio->bi_iter.bi_sector = sbio->physical >> 9;
37226b21 1689 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
ff023aac
SB
1690 sbio->err = 0;
1691 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1692 spage->physical_for_dev_replace ||
1693 sbio->logical + sbio->page_count * PAGE_SIZE !=
1694 spage->logical) {
1695 scrub_wr_submit(sctx);
1696 goto again;
1697 }
1698
1699 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1700 if (ret != PAGE_SIZE) {
1701 if (sbio->page_count < 1) {
1702 bio_put(sbio->bio);
1703 sbio->bio = NULL;
1704 mutex_unlock(&wr_ctx->wr_lock);
1705 return -EIO;
1706 }
1707 scrub_wr_submit(sctx);
1708 goto again;
1709 }
1710
1711 sbio->pagev[sbio->page_count] = spage;
1712 scrub_page_get(spage);
1713 sbio->page_count++;
1714 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1715 scrub_wr_submit(sctx);
1716 mutex_unlock(&wr_ctx->wr_lock);
1717
1718 return 0;
1719}
1720
1721static void scrub_wr_submit(struct scrub_ctx *sctx)
1722{
1723 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1724 struct scrub_bio *sbio;
1725
1726 if (!wr_ctx->wr_curr_bio)
1727 return;
1728
1729 sbio = wr_ctx->wr_curr_bio;
1730 wr_ctx->wr_curr_bio = NULL;
1731 WARN_ON(!sbio->bio->bi_bdev);
1732 scrub_pending_bio_inc(sctx);
1733 /* process all writes in a single worker thread. Then the block layer
1734 * orders the requests before sending them to the driver which
1735 * doubled the write performance on spinning disks when measured
1736 * with Linux 3.5 */
4e49ea4a 1737 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1738}
1739
4246a0b6 1740static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1741{
1742 struct scrub_bio *sbio = bio->bi_private;
fb456252 1743 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1744
4246a0b6 1745 sbio->err = bio->bi_error;
ff023aac
SB
1746 sbio->bio = bio;
1747
9e0af237
LB
1748 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1749 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1750 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1751}
1752
1753static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1754{
1755 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1756 struct scrub_ctx *sctx = sbio->sctx;
1757 int i;
1758
1759 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1760 if (sbio->err) {
1761 struct btrfs_dev_replace *dev_replace =
fb456252 1762 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1763
1764 for (i = 0; i < sbio->page_count; i++) {
1765 struct scrub_page *spage = sbio->pagev[i];
1766
1767 spage->io_error = 1;
1768 btrfs_dev_replace_stats_inc(&dev_replace->
1769 num_write_errors);
1770 }
1771 }
1772
1773 for (i = 0; i < sbio->page_count; i++)
1774 scrub_page_put(sbio->pagev[i]);
1775
1776 bio_put(sbio->bio);
1777 kfree(sbio);
1778 scrub_pending_bio_dec(sctx);
1779}
1780
1781static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1782{
1783 u64 flags;
1784 int ret;
1785
ba7cf988
ZL
1786 /*
1787 * No need to initialize these stats currently,
1788 * because this function only use return value
1789 * instead of these stats value.
1790 *
1791 * Todo:
1792 * always use stats
1793 */
1794 sblock->header_error = 0;
1795 sblock->generation_error = 0;
1796 sblock->checksum_error = 0;
1797
7a9e9987
SB
1798 WARN_ON(sblock->page_count < 1);
1799 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1800 ret = 0;
1801 if (flags & BTRFS_EXTENT_FLAG_DATA)
1802 ret = scrub_checksum_data(sblock);
1803 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1804 ret = scrub_checksum_tree_block(sblock);
1805 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1806 (void)scrub_checksum_super(sblock);
1807 else
1808 WARN_ON(1);
1809 if (ret)
1810 scrub_handle_errored_block(sblock);
ff023aac
SB
1811
1812 return ret;
a2de733c
AJ
1813}
1814
b5d67f64 1815static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1816{
d9d181c1 1817 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1818 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1819 u8 *on_disk_csum;
1820 struct page *page;
1821 void *buffer;
a2de733c 1822 u32 crc = ~(u32)0;
b5d67f64
SB
1823 u64 len;
1824 int index;
a2de733c 1825
b5d67f64 1826 BUG_ON(sblock->page_count < 1);
7a9e9987 1827 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1828 return 0;
1829
7a9e9987
SB
1830 on_disk_csum = sblock->pagev[0]->csum;
1831 page = sblock->pagev[0]->page;
9613bebb 1832 buffer = kmap_atomic(page);
b5d67f64 1833
d9d181c1 1834 len = sctx->sectorsize;
b5d67f64
SB
1835 index = 0;
1836 for (;;) {
1837 u64 l = min_t(u64, len, PAGE_SIZE);
1838
b0496686 1839 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1840 kunmap_atomic(buffer);
b5d67f64
SB
1841 len -= l;
1842 if (len == 0)
1843 break;
1844 index++;
1845 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1846 BUG_ON(!sblock->pagev[index]->page);
1847 page = sblock->pagev[index]->page;
9613bebb 1848 buffer = kmap_atomic(page);
b5d67f64
SB
1849 }
1850
a2de733c 1851 btrfs_csum_final(crc, csum);
d9d181c1 1852 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 1853 sblock->checksum_error = 1;
a2de733c 1854
ba7cf988 1855 return sblock->checksum_error;
a2de733c
AJ
1856}
1857
b5d67f64 1858static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1859{
d9d181c1 1860 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1861 struct btrfs_header *h;
0b246afa 1862 struct btrfs_fs_info *fs_info = sctx->fs_info;
b5d67f64
SB
1863 u8 calculated_csum[BTRFS_CSUM_SIZE];
1864 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1865 struct page *page;
1866 void *mapped_buffer;
1867 u64 mapped_size;
1868 void *p;
a2de733c 1869 u32 crc = ~(u32)0;
b5d67f64
SB
1870 u64 len;
1871 int index;
1872
1873 BUG_ON(sblock->page_count < 1);
7a9e9987 1874 page = sblock->pagev[0]->page;
9613bebb 1875 mapped_buffer = kmap_atomic(page);
b5d67f64 1876 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1877 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1878
1879 /*
1880 * we don't use the getter functions here, as we
1881 * a) don't have an extent buffer and
1882 * b) the page is already kmapped
1883 */
3cae210f 1884 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1885 sblock->header_error = 1;
a2de733c 1886
ba7cf988
ZL
1887 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1888 sblock->header_error = 1;
1889 sblock->generation_error = 1;
1890 }
a2de733c 1891
17a9be2f 1892 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 1893 sblock->header_error = 1;
a2de733c
AJ
1894
1895 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1896 BTRFS_UUID_SIZE))
ba7cf988 1897 sblock->header_error = 1;
a2de733c 1898
d9d181c1 1899 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1900 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1901 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1902 index = 0;
1903 for (;;) {
1904 u64 l = min_t(u64, len, mapped_size);
1905
b0496686 1906 crc = btrfs_csum_data(p, crc, l);
9613bebb 1907 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1908 len -= l;
1909 if (len == 0)
1910 break;
1911 index++;
1912 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1913 BUG_ON(!sblock->pagev[index]->page);
1914 page = sblock->pagev[index]->page;
9613bebb 1915 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1916 mapped_size = PAGE_SIZE;
1917 p = mapped_buffer;
1918 }
1919
1920 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1921 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1922 sblock->checksum_error = 1;
a2de733c 1923
ba7cf988 1924 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1925}
1926
b5d67f64 1927static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1928{
1929 struct btrfs_super_block *s;
d9d181c1 1930 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
1931 u8 calculated_csum[BTRFS_CSUM_SIZE];
1932 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1933 struct page *page;
1934 void *mapped_buffer;
1935 u64 mapped_size;
1936 void *p;
a2de733c 1937 u32 crc = ~(u32)0;
442a4f63
SB
1938 int fail_gen = 0;
1939 int fail_cor = 0;
b5d67f64
SB
1940 u64 len;
1941 int index;
a2de733c 1942
b5d67f64 1943 BUG_ON(sblock->page_count < 1);
7a9e9987 1944 page = sblock->pagev[0]->page;
9613bebb 1945 mapped_buffer = kmap_atomic(page);
b5d67f64 1946 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1947 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1948
3cae210f 1949 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1950 ++fail_cor;
a2de733c 1951
3cae210f 1952 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1953 ++fail_gen;
a2de733c 1954
17a9be2f 1955 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1956 ++fail_cor;
a2de733c 1957
b5d67f64
SB
1958 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1959 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1960 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1961 index = 0;
1962 for (;;) {
1963 u64 l = min_t(u64, len, mapped_size);
1964
b0496686 1965 crc = btrfs_csum_data(p, crc, l);
9613bebb 1966 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1967 len -= l;
1968 if (len == 0)
1969 break;
1970 index++;
1971 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1972 BUG_ON(!sblock->pagev[index]->page);
1973 page = sblock->pagev[index]->page;
9613bebb 1974 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1975 mapped_size = PAGE_SIZE;
1976 p = mapped_buffer;
1977 }
1978
1979 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1980 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1981 ++fail_cor;
a2de733c 1982
442a4f63 1983 if (fail_cor + fail_gen) {
a2de733c
AJ
1984 /*
1985 * if we find an error in a super block, we just report it.
1986 * They will get written with the next transaction commit
1987 * anyway
1988 */
d9d181c1
SB
1989 spin_lock(&sctx->stat_lock);
1990 ++sctx->stat.super_errors;
1991 spin_unlock(&sctx->stat_lock);
442a4f63 1992 if (fail_cor)
7a9e9987 1993 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1994 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1995 else
7a9e9987 1996 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1997 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1998 }
1999
442a4f63 2000 return fail_cor + fail_gen;
a2de733c
AJ
2001}
2002
b5d67f64
SB
2003static void scrub_block_get(struct scrub_block *sblock)
2004{
186debd6 2005 refcount_inc(&sblock->refs);
b5d67f64
SB
2006}
2007
2008static void scrub_block_put(struct scrub_block *sblock)
2009{
186debd6 2010 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
2011 int i;
2012
5a6ac9ea
MX
2013 if (sblock->sparity)
2014 scrub_parity_put(sblock->sparity);
2015
b5d67f64 2016 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2017 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2018 kfree(sblock);
2019 }
2020}
2021
7a9e9987
SB
2022static void scrub_page_get(struct scrub_page *spage)
2023{
57019345 2024 atomic_inc(&spage->refs);
7a9e9987
SB
2025}
2026
2027static void scrub_page_put(struct scrub_page *spage)
2028{
57019345 2029 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2030 if (spage->page)
2031 __free_page(spage->page);
2032 kfree(spage);
2033 }
2034}
2035
d9d181c1 2036static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2037{
2038 struct scrub_bio *sbio;
2039
d9d181c1 2040 if (sctx->curr == -1)
1623edeb 2041 return;
a2de733c 2042
d9d181c1
SB
2043 sbio = sctx->bios[sctx->curr];
2044 sctx->curr = -1;
b6bfebc1 2045 scrub_pending_bio_inc(sctx);
4e49ea4a 2046 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2047}
2048
ff023aac
SB
2049static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2050 struct scrub_page *spage)
a2de733c 2051{
b5d67f64 2052 struct scrub_block *sblock = spage->sblock;
a2de733c 2053 struct scrub_bio *sbio;
69f4cb52 2054 int ret;
a2de733c
AJ
2055
2056again:
2057 /*
2058 * grab a fresh bio or wait for one to become available
2059 */
d9d181c1
SB
2060 while (sctx->curr == -1) {
2061 spin_lock(&sctx->list_lock);
2062 sctx->curr = sctx->first_free;
2063 if (sctx->curr != -1) {
2064 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2065 sctx->bios[sctx->curr]->next_free = -1;
2066 sctx->bios[sctx->curr]->page_count = 0;
2067 spin_unlock(&sctx->list_lock);
a2de733c 2068 } else {
d9d181c1
SB
2069 spin_unlock(&sctx->list_lock);
2070 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2071 }
2072 }
d9d181c1 2073 sbio = sctx->bios[sctx->curr];
b5d67f64 2074 if (sbio->page_count == 0) {
69f4cb52
AJ
2075 struct bio *bio;
2076
b5d67f64
SB
2077 sbio->physical = spage->physical;
2078 sbio->logical = spage->logical;
a36cf8b8 2079 sbio->dev = spage->dev;
b5d67f64
SB
2080 bio = sbio->bio;
2081 if (!bio) {
58c4e173
DS
2082 bio = btrfs_io_bio_alloc(GFP_KERNEL,
2083 sctx->pages_per_rd_bio);
b5d67f64
SB
2084 if (!bio)
2085 return -ENOMEM;
2086 sbio->bio = bio;
2087 }
69f4cb52
AJ
2088
2089 bio->bi_private = sbio;
2090 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 2091 bio->bi_bdev = sbio->dev->bdev;
4f024f37 2092 bio->bi_iter.bi_sector = sbio->physical >> 9;
37226b21 2093 bio_set_op_attrs(bio, REQ_OP_READ, 0);
69f4cb52 2094 sbio->err = 0;
b5d67f64
SB
2095 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2096 spage->physical ||
2097 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2098 spage->logical ||
2099 sbio->dev != spage->dev) {
d9d181c1 2100 scrub_submit(sctx);
a2de733c
AJ
2101 goto again;
2102 }
69f4cb52 2103
b5d67f64
SB
2104 sbio->pagev[sbio->page_count] = spage;
2105 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2106 if (ret != PAGE_SIZE) {
2107 if (sbio->page_count < 1) {
2108 bio_put(sbio->bio);
2109 sbio->bio = NULL;
2110 return -EIO;
2111 }
d9d181c1 2112 scrub_submit(sctx);
69f4cb52
AJ
2113 goto again;
2114 }
2115
ff023aac 2116 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2117 atomic_inc(&sblock->outstanding_pages);
2118 sbio->page_count++;
ff023aac 2119 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2120 scrub_submit(sctx);
b5d67f64
SB
2121
2122 return 0;
2123}
2124
22365979 2125static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2126{
2127 struct scrub_block *sblock = bio->bi_private;
fb456252 2128 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2129
22365979 2130 if (bio->bi_error)
73ff61db
OS
2131 sblock->no_io_error_seen = 0;
2132
4673272f
ST
2133 bio_put(bio);
2134
73ff61db
OS
2135 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2136}
2137
2138static void scrub_missing_raid56_worker(struct btrfs_work *work)
2139{
2140 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2141 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2142 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2143 u64 logical;
2144 struct btrfs_device *dev;
2145
73ff61db
OS
2146 logical = sblock->pagev[0]->logical;
2147 dev = sblock->pagev[0]->dev;
2148
affe4a5a 2149 if (sblock->no_io_error_seen)
ba7cf988 2150 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2151
2152 if (!sblock->no_io_error_seen) {
2153 spin_lock(&sctx->stat_lock);
2154 sctx->stat.read_errors++;
2155 spin_unlock(&sctx->stat_lock);
0b246afa 2156 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2157 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2158 logical, rcu_str_deref(dev->name));
2159 } else if (sblock->header_error || sblock->checksum_error) {
2160 spin_lock(&sctx->stat_lock);
2161 sctx->stat.uncorrectable_errors++;
2162 spin_unlock(&sctx->stat_lock);
0b246afa 2163 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2164 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2165 logical, rcu_str_deref(dev->name));
2166 } else {
2167 scrub_write_block_to_dev_replace(sblock);
2168 }
2169
2170 scrub_block_put(sblock);
2171
2172 if (sctx->is_dev_replace &&
2173 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2174 mutex_lock(&sctx->wr_ctx.wr_lock);
2175 scrub_wr_submit(sctx);
2176 mutex_unlock(&sctx->wr_ctx.wr_lock);
2177 }
2178
2179 scrub_pending_bio_dec(sctx);
2180}
2181
2182static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2183{
2184 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2185 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2186 u64 length = sblock->page_count * PAGE_SIZE;
2187 u64 logical = sblock->pagev[0]->logical;
f1fee653 2188 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2189 struct bio *bio;
2190 struct btrfs_raid_bio *rbio;
2191 int ret;
2192 int i;
2193
ae6529c3 2194 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2195 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2196 &length, &bbio);
73ff61db
OS
2197 if (ret || !bbio || !bbio->raid_map)
2198 goto bbio_out;
2199
2200 if (WARN_ON(!sctx->is_dev_replace ||
2201 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2202 /*
2203 * We shouldn't be scrubbing a missing device. Even for dev
2204 * replace, we should only get here for RAID 5/6. We either
2205 * managed to mount something with no mirrors remaining or
2206 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2207 */
2208 goto bbio_out;
2209 }
2210
2211 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2212 if (!bio)
2213 goto bbio_out;
2214
2215 bio->bi_iter.bi_sector = logical >> 9;
2216 bio->bi_private = sblock;
2217 bio->bi_end_io = scrub_missing_raid56_end_io;
2218
2ff7e61e 2219 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2220 if (!rbio)
2221 goto rbio_out;
2222
2223 for (i = 0; i < sblock->page_count; i++) {
2224 struct scrub_page *spage = sblock->pagev[i];
2225
2226 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2227 }
2228
2229 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2230 scrub_missing_raid56_worker, NULL, NULL);
2231 scrub_block_get(sblock);
2232 scrub_pending_bio_inc(sctx);
2233 raid56_submit_missing_rbio(rbio);
2234 return;
2235
2236rbio_out:
2237 bio_put(bio);
2238bbio_out:
ae6529c3 2239 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2240 btrfs_put_bbio(bbio);
2241 spin_lock(&sctx->stat_lock);
2242 sctx->stat.malloc_errors++;
2243 spin_unlock(&sctx->stat_lock);
2244}
2245
d9d181c1 2246static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2247 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2248 u64 gen, int mirror_num, u8 *csum, int force,
2249 u64 physical_for_dev_replace)
b5d67f64
SB
2250{
2251 struct scrub_block *sblock;
2252 int index;
2253
58c4e173 2254 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2255 if (!sblock) {
d9d181c1
SB
2256 spin_lock(&sctx->stat_lock);
2257 sctx->stat.malloc_errors++;
2258 spin_unlock(&sctx->stat_lock);
b5d67f64 2259 return -ENOMEM;
a2de733c 2260 }
b5d67f64 2261
7a9e9987
SB
2262 /* one ref inside this function, plus one for each page added to
2263 * a bio later on */
186debd6 2264 refcount_set(&sblock->refs, 1);
d9d181c1 2265 sblock->sctx = sctx;
b5d67f64
SB
2266 sblock->no_io_error_seen = 1;
2267
2268 for (index = 0; len > 0; index++) {
7a9e9987 2269 struct scrub_page *spage;
b5d67f64
SB
2270 u64 l = min_t(u64, len, PAGE_SIZE);
2271
58c4e173 2272 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2273 if (!spage) {
2274leave_nomem:
d9d181c1
SB
2275 spin_lock(&sctx->stat_lock);
2276 sctx->stat.malloc_errors++;
2277 spin_unlock(&sctx->stat_lock);
7a9e9987 2278 scrub_block_put(sblock);
b5d67f64
SB
2279 return -ENOMEM;
2280 }
7a9e9987
SB
2281 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2282 scrub_page_get(spage);
2283 sblock->pagev[index] = spage;
b5d67f64 2284 spage->sblock = sblock;
a36cf8b8 2285 spage->dev = dev;
b5d67f64
SB
2286 spage->flags = flags;
2287 spage->generation = gen;
2288 spage->logical = logical;
2289 spage->physical = physical;
ff023aac 2290 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2291 spage->mirror_num = mirror_num;
2292 if (csum) {
2293 spage->have_csum = 1;
d9d181c1 2294 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2295 } else {
2296 spage->have_csum = 0;
2297 }
2298 sblock->page_count++;
58c4e173 2299 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2300 if (!spage->page)
2301 goto leave_nomem;
b5d67f64
SB
2302 len -= l;
2303 logical += l;
2304 physical += l;
ff023aac 2305 physical_for_dev_replace += l;
b5d67f64
SB
2306 }
2307
7a9e9987 2308 WARN_ON(sblock->page_count == 0);
73ff61db
OS
2309 if (dev->missing) {
2310 /*
2311 * This case should only be hit for RAID 5/6 device replace. See
2312 * the comment in scrub_missing_raid56_pages() for details.
2313 */
2314 scrub_missing_raid56_pages(sblock);
2315 } else {
2316 for (index = 0; index < sblock->page_count; index++) {
2317 struct scrub_page *spage = sblock->pagev[index];
2318 int ret;
1bc87793 2319
73ff61db
OS
2320 ret = scrub_add_page_to_rd_bio(sctx, spage);
2321 if (ret) {
2322 scrub_block_put(sblock);
2323 return ret;
2324 }
b5d67f64 2325 }
a2de733c 2326
73ff61db
OS
2327 if (force)
2328 scrub_submit(sctx);
2329 }
a2de733c 2330
b5d67f64
SB
2331 /* last one frees, either here or in bio completion for last page */
2332 scrub_block_put(sblock);
a2de733c
AJ
2333 return 0;
2334}
2335
4246a0b6 2336static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2337{
2338 struct scrub_bio *sbio = bio->bi_private;
fb456252 2339 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2340
4246a0b6 2341 sbio->err = bio->bi_error;
b5d67f64
SB
2342 sbio->bio = bio;
2343
0339ef2f 2344 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2345}
2346
2347static void scrub_bio_end_io_worker(struct btrfs_work *work)
2348{
2349 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2350 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2351 int i;
2352
ff023aac 2353 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2354 if (sbio->err) {
2355 for (i = 0; i < sbio->page_count; i++) {
2356 struct scrub_page *spage = sbio->pagev[i];
2357
2358 spage->io_error = 1;
2359 spage->sblock->no_io_error_seen = 0;
2360 }
2361 }
2362
2363 /* now complete the scrub_block items that have all pages completed */
2364 for (i = 0; i < sbio->page_count; i++) {
2365 struct scrub_page *spage = sbio->pagev[i];
2366 struct scrub_block *sblock = spage->sblock;
2367
2368 if (atomic_dec_and_test(&sblock->outstanding_pages))
2369 scrub_block_complete(sblock);
2370 scrub_block_put(sblock);
2371 }
2372
b5d67f64
SB
2373 bio_put(sbio->bio);
2374 sbio->bio = NULL;
d9d181c1
SB
2375 spin_lock(&sctx->list_lock);
2376 sbio->next_free = sctx->first_free;
2377 sctx->first_free = sbio->index;
2378 spin_unlock(&sctx->list_lock);
ff023aac
SB
2379
2380 if (sctx->is_dev_replace &&
2381 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2382 mutex_lock(&sctx->wr_ctx.wr_lock);
2383 scrub_wr_submit(sctx);
2384 mutex_unlock(&sctx->wr_ctx.wr_lock);
2385 }
2386
b6bfebc1 2387 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2388}
2389
5a6ac9ea
MX
2390static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2391 unsigned long *bitmap,
2392 u64 start, u64 len)
2393{
9d644a62 2394 u32 offset;
5a6ac9ea 2395 int nsectors;
da17066c 2396 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2397
2398 if (len >= sparity->stripe_len) {
2399 bitmap_set(bitmap, 0, sparity->nsectors);
2400 return;
2401 }
2402
2403 start -= sparity->logic_start;
47c5713f 2404 start = div_u64_rem(start, sparity->stripe_len, &offset);
5a6ac9ea
MX
2405 offset /= sectorsize;
2406 nsectors = (int)len / sectorsize;
2407
2408 if (offset + nsectors <= sparity->nsectors) {
2409 bitmap_set(bitmap, offset, nsectors);
2410 return;
2411 }
2412
2413 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2414 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2415}
2416
2417static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2418 u64 start, u64 len)
2419{
2420 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2421}
2422
2423static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2424 u64 start, u64 len)
2425{
2426 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2427}
2428
b5d67f64
SB
2429static void scrub_block_complete(struct scrub_block *sblock)
2430{
5a6ac9ea
MX
2431 int corrupted = 0;
2432
ff023aac 2433 if (!sblock->no_io_error_seen) {
5a6ac9ea 2434 corrupted = 1;
b5d67f64 2435 scrub_handle_errored_block(sblock);
ff023aac
SB
2436 } else {
2437 /*
2438 * if has checksum error, write via repair mechanism in
2439 * dev replace case, otherwise write here in dev replace
2440 * case.
2441 */
5a6ac9ea
MX
2442 corrupted = scrub_checksum(sblock);
2443 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2444 scrub_write_block_to_dev_replace(sblock);
2445 }
5a6ac9ea
MX
2446
2447 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2448 u64 start = sblock->pagev[0]->logical;
2449 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2450 PAGE_SIZE;
2451
2452 scrub_parity_mark_sectors_error(sblock->sparity,
2453 start, end - start);
2454 }
b5d67f64
SB
2455}
2456
3b5753ec 2457static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2458{
2459 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2460 unsigned long index;
a2de733c 2461 unsigned long num_sectors;
a2de733c 2462
d9d181c1
SB
2463 while (!list_empty(&sctx->csum_list)) {
2464 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2465 struct btrfs_ordered_sum, list);
2466 if (sum->bytenr > logical)
2467 return 0;
2468 if (sum->bytenr + sum->len > logical)
2469 break;
2470
d9d181c1 2471 ++sctx->stat.csum_discards;
a2de733c
AJ
2472 list_del(&sum->list);
2473 kfree(sum);
2474 sum = NULL;
2475 }
2476 if (!sum)
2477 return 0;
2478
f51a4a18 2479 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2480 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2481 memcpy(csum, sum->sums + index, sctx->csum_size);
2482 if (index == num_sectors - 1) {
a2de733c
AJ
2483 list_del(&sum->list);
2484 kfree(sum);
2485 }
f51a4a18 2486 return 1;
a2de733c
AJ
2487}
2488
2489/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2490static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2491 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2492 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2493{
2494 int ret;
2495 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2496 u32 blocksize;
2497
2498 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2499 blocksize = sctx->sectorsize;
2500 spin_lock(&sctx->stat_lock);
2501 sctx->stat.data_extents_scrubbed++;
2502 sctx->stat.data_bytes_scrubbed += len;
2503 spin_unlock(&sctx->stat_lock);
b5d67f64 2504 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2505 blocksize = sctx->nodesize;
2506 spin_lock(&sctx->stat_lock);
2507 sctx->stat.tree_extents_scrubbed++;
2508 sctx->stat.tree_bytes_scrubbed += len;
2509 spin_unlock(&sctx->stat_lock);
b5d67f64 2510 } else {
d9d181c1 2511 blocksize = sctx->sectorsize;
ff023aac 2512 WARN_ON(1);
b5d67f64 2513 }
a2de733c
AJ
2514
2515 while (len) {
b5d67f64 2516 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2517 int have_csum = 0;
2518
2519 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2520 /* push csums to sbio */
3b5753ec 2521 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2522 if (have_csum == 0)
d9d181c1 2523 ++sctx->stat.no_csum;
ff023aac
SB
2524 if (sctx->is_dev_replace && !have_csum) {
2525 ret = copy_nocow_pages(sctx, logical, l,
2526 mirror_num,
2527 physical_for_dev_replace);
2528 goto behind_scrub_pages;
2529 }
a2de733c 2530 }
a36cf8b8 2531 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2532 mirror_num, have_csum ? csum : NULL, 0,
2533 physical_for_dev_replace);
2534behind_scrub_pages:
a2de733c
AJ
2535 if (ret)
2536 return ret;
2537 len -= l;
2538 logical += l;
2539 physical += l;
ff023aac 2540 physical_for_dev_replace += l;
a2de733c
AJ
2541 }
2542 return 0;
2543}
2544
5a6ac9ea
MX
2545static int scrub_pages_for_parity(struct scrub_parity *sparity,
2546 u64 logical, u64 len,
2547 u64 physical, struct btrfs_device *dev,
2548 u64 flags, u64 gen, int mirror_num, u8 *csum)
2549{
2550 struct scrub_ctx *sctx = sparity->sctx;
2551 struct scrub_block *sblock;
2552 int index;
2553
58c4e173 2554 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2555 if (!sblock) {
2556 spin_lock(&sctx->stat_lock);
2557 sctx->stat.malloc_errors++;
2558 spin_unlock(&sctx->stat_lock);
2559 return -ENOMEM;
2560 }
2561
2562 /* one ref inside this function, plus one for each page added to
2563 * a bio later on */
186debd6 2564 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2565 sblock->sctx = sctx;
2566 sblock->no_io_error_seen = 1;
2567 sblock->sparity = sparity;
2568 scrub_parity_get(sparity);
2569
2570 for (index = 0; len > 0; index++) {
2571 struct scrub_page *spage;
2572 u64 l = min_t(u64, len, PAGE_SIZE);
2573
58c4e173 2574 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2575 if (!spage) {
2576leave_nomem:
2577 spin_lock(&sctx->stat_lock);
2578 sctx->stat.malloc_errors++;
2579 spin_unlock(&sctx->stat_lock);
2580 scrub_block_put(sblock);
2581 return -ENOMEM;
2582 }
2583 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2584 /* For scrub block */
2585 scrub_page_get(spage);
2586 sblock->pagev[index] = spage;
2587 /* For scrub parity */
2588 scrub_page_get(spage);
2589 list_add_tail(&spage->list, &sparity->spages);
2590 spage->sblock = sblock;
2591 spage->dev = dev;
2592 spage->flags = flags;
2593 spage->generation = gen;
2594 spage->logical = logical;
2595 spage->physical = physical;
2596 spage->mirror_num = mirror_num;
2597 if (csum) {
2598 spage->have_csum = 1;
2599 memcpy(spage->csum, csum, sctx->csum_size);
2600 } else {
2601 spage->have_csum = 0;
2602 }
2603 sblock->page_count++;
58c4e173 2604 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2605 if (!spage->page)
2606 goto leave_nomem;
2607 len -= l;
2608 logical += l;
2609 physical += l;
2610 }
2611
2612 WARN_ON(sblock->page_count == 0);
2613 for (index = 0; index < sblock->page_count; index++) {
2614 struct scrub_page *spage = sblock->pagev[index];
2615 int ret;
2616
2617 ret = scrub_add_page_to_rd_bio(sctx, spage);
2618 if (ret) {
2619 scrub_block_put(sblock);
2620 return ret;
2621 }
2622 }
2623
2624 /* last one frees, either here or in bio completion for last page */
2625 scrub_block_put(sblock);
2626 return 0;
2627}
2628
2629static int scrub_extent_for_parity(struct scrub_parity *sparity,
2630 u64 logical, u64 len,
2631 u64 physical, struct btrfs_device *dev,
2632 u64 flags, u64 gen, int mirror_num)
2633{
2634 struct scrub_ctx *sctx = sparity->sctx;
2635 int ret;
2636 u8 csum[BTRFS_CSUM_SIZE];
2637 u32 blocksize;
2638
4a770891
OS
2639 if (dev->missing) {
2640 scrub_parity_mark_sectors_error(sparity, logical, len);
2641 return 0;
2642 }
2643
5a6ac9ea
MX
2644 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2645 blocksize = sctx->sectorsize;
2646 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2647 blocksize = sctx->nodesize;
2648 } else {
2649 blocksize = sctx->sectorsize;
2650 WARN_ON(1);
2651 }
2652
2653 while (len) {
2654 u64 l = min_t(u64, len, blocksize);
2655 int have_csum = 0;
2656
2657 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2658 /* push csums to sbio */
3b5753ec 2659 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2660 if (have_csum == 0)
2661 goto skip;
2662 }
2663 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2664 flags, gen, mirror_num,
2665 have_csum ? csum : NULL);
5a6ac9ea
MX
2666 if (ret)
2667 return ret;
6b6d24b3 2668skip:
5a6ac9ea
MX
2669 len -= l;
2670 logical += l;
2671 physical += l;
2672 }
2673 return 0;
2674}
2675
3b080b25
WS
2676/*
2677 * Given a physical address, this will calculate it's
2678 * logical offset. if this is a parity stripe, it will return
2679 * the most left data stripe's logical offset.
2680 *
2681 * return 0 if it is a data stripe, 1 means parity stripe.
2682 */
2683static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2684 struct map_lookup *map, u64 *offset,
2685 u64 *stripe_start)
3b080b25
WS
2686{
2687 int i;
2688 int j = 0;
2689 u64 stripe_nr;
2690 u64 last_offset;
9d644a62
DS
2691 u32 stripe_index;
2692 u32 rot;
3b080b25
WS
2693
2694 last_offset = (physical - map->stripes[num].physical) *
2695 nr_data_stripes(map);
5a6ac9ea
MX
2696 if (stripe_start)
2697 *stripe_start = last_offset;
2698
3b080b25
WS
2699 *offset = last_offset;
2700 for (i = 0; i < nr_data_stripes(map); i++) {
2701 *offset = last_offset + i * map->stripe_len;
2702
b8b93add
DS
2703 stripe_nr = div_u64(*offset, map->stripe_len);
2704 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
3b080b25
WS
2705
2706 /* Work out the disk rotation on this stripe-set */
47c5713f 2707 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2708 /* calculate which stripe this data locates */
2709 rot += i;
e4fbaee2 2710 stripe_index = rot % map->num_stripes;
3b080b25
WS
2711 if (stripe_index == num)
2712 return 0;
2713 if (stripe_index < num)
2714 j++;
2715 }
2716 *offset = last_offset + j * map->stripe_len;
2717 return 1;
2718}
2719
5a6ac9ea
MX
2720static void scrub_free_parity(struct scrub_parity *sparity)
2721{
2722 struct scrub_ctx *sctx = sparity->sctx;
2723 struct scrub_page *curr, *next;
2724 int nbits;
2725
2726 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2727 if (nbits) {
2728 spin_lock(&sctx->stat_lock);
2729 sctx->stat.read_errors += nbits;
2730 sctx->stat.uncorrectable_errors += nbits;
2731 spin_unlock(&sctx->stat_lock);
2732 }
2733
2734 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2735 list_del_init(&curr->list);
2736 scrub_page_put(curr);
2737 }
2738
2739 kfree(sparity);
2740}
2741
20b2e302
ZL
2742static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2743{
2744 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2745 work);
2746 struct scrub_ctx *sctx = sparity->sctx;
2747
2748 scrub_free_parity(sparity);
2749 scrub_pending_bio_dec(sctx);
2750}
2751
4246a0b6 2752static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2753{
2754 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2755 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2756
4246a0b6 2757 if (bio->bi_error)
5a6ac9ea
MX
2758 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2759 sparity->nsectors);
2760
5a6ac9ea 2761 bio_put(bio);
20b2e302
ZL
2762
2763 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2764 scrub_parity_bio_endio_worker, NULL, NULL);
0b246afa 2765 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2766}
2767
2768static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2769{
2770 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2771 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2772 struct bio *bio;
2773 struct btrfs_raid_bio *rbio;
5a6ac9ea 2774 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2775 u64 length;
2776 int ret;
2777
2778 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2779 sparity->nsectors))
2780 goto out;
2781
a0dd59de 2782 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2783
2784 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2785 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2786 &length, &bbio);
8e5cfb55 2787 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2788 goto bbio_out;
2789
2790 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2791 if (!bio)
2792 goto bbio_out;
2793
2794 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2795 bio->bi_private = sparity;
2796 bio->bi_end_io = scrub_parity_bio_endio;
2797
2ff7e61e 2798 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2799 length, sparity->scrub_dev,
5a6ac9ea
MX
2800 sparity->dbitmap,
2801 sparity->nsectors);
2802 if (!rbio)
2803 goto rbio_out;
2804
5a6ac9ea
MX
2805 scrub_pending_bio_inc(sctx);
2806 raid56_parity_submit_scrub_rbio(rbio);
2807 return;
2808
2809rbio_out:
2810 bio_put(bio);
2811bbio_out:
ae6529c3 2812 btrfs_bio_counter_dec(fs_info);
6e9606d2 2813 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2814 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2815 sparity->nsectors);
2816 spin_lock(&sctx->stat_lock);
2817 sctx->stat.malloc_errors++;
2818 spin_unlock(&sctx->stat_lock);
2819out:
2820 scrub_free_parity(sparity);
2821}
2822
2823static inline int scrub_calc_parity_bitmap_len(int nsectors)
2824{
bfca9a6d 2825 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2826}
2827
2828static void scrub_parity_get(struct scrub_parity *sparity)
2829{
78a76450 2830 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2831}
2832
2833static void scrub_parity_put(struct scrub_parity *sparity)
2834{
78a76450 2835 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2836 return;
2837
2838 scrub_parity_check_and_repair(sparity);
2839}
2840
2841static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2842 struct map_lookup *map,
2843 struct btrfs_device *sdev,
2844 struct btrfs_path *path,
2845 u64 logic_start,
2846 u64 logic_end)
2847{
fb456252 2848 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2849 struct btrfs_root *root = fs_info->extent_root;
2850 struct btrfs_root *csum_root = fs_info->csum_root;
2851 struct btrfs_extent_item *extent;
4a770891 2852 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2853 u64 flags;
2854 int ret;
2855 int slot;
2856 struct extent_buffer *l;
2857 struct btrfs_key key;
2858 u64 generation;
2859 u64 extent_logical;
2860 u64 extent_physical;
2861 u64 extent_len;
4a770891 2862 u64 mapped_length;
5a6ac9ea
MX
2863 struct btrfs_device *extent_dev;
2864 struct scrub_parity *sparity;
2865 int nsectors;
2866 int bitmap_len;
2867 int extent_mirror_num;
2868 int stop_loop = 0;
2869
0b246afa 2870 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
2871 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2872 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2873 GFP_NOFS);
2874 if (!sparity) {
2875 spin_lock(&sctx->stat_lock);
2876 sctx->stat.malloc_errors++;
2877 spin_unlock(&sctx->stat_lock);
2878 return -ENOMEM;
2879 }
2880
2881 sparity->stripe_len = map->stripe_len;
2882 sparity->nsectors = nsectors;
2883 sparity->sctx = sctx;
2884 sparity->scrub_dev = sdev;
2885 sparity->logic_start = logic_start;
2886 sparity->logic_end = logic_end;
78a76450 2887 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2888 INIT_LIST_HEAD(&sparity->spages);
2889 sparity->dbitmap = sparity->bitmap;
2890 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2891
2892 ret = 0;
2893 while (logic_start < logic_end) {
2894 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2895 key.type = BTRFS_METADATA_ITEM_KEY;
2896 else
2897 key.type = BTRFS_EXTENT_ITEM_KEY;
2898 key.objectid = logic_start;
2899 key.offset = (u64)-1;
2900
2901 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2902 if (ret < 0)
2903 goto out;
2904
2905 if (ret > 0) {
2906 ret = btrfs_previous_extent_item(root, path, 0);
2907 if (ret < 0)
2908 goto out;
2909 if (ret > 0) {
2910 btrfs_release_path(path);
2911 ret = btrfs_search_slot(NULL, root, &key,
2912 path, 0, 0);
2913 if (ret < 0)
2914 goto out;
2915 }
2916 }
2917
2918 stop_loop = 0;
2919 while (1) {
2920 u64 bytes;
2921
2922 l = path->nodes[0];
2923 slot = path->slots[0];
2924 if (slot >= btrfs_header_nritems(l)) {
2925 ret = btrfs_next_leaf(root, path);
2926 if (ret == 0)
2927 continue;
2928 if (ret < 0)
2929 goto out;
2930
2931 stop_loop = 1;
2932 break;
2933 }
2934 btrfs_item_key_to_cpu(l, &key, slot);
2935
d7cad238
ZL
2936 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2937 key.type != BTRFS_METADATA_ITEM_KEY)
2938 goto next;
2939
5a6ac9ea 2940 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2941 bytes = fs_info->nodesize;
5a6ac9ea
MX
2942 else
2943 bytes = key.offset;
2944
2945 if (key.objectid + bytes <= logic_start)
2946 goto next;
2947
a0dd59de 2948 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2949 stop_loop = 1;
2950 break;
2951 }
2952
2953 while (key.objectid >= logic_start + map->stripe_len)
2954 logic_start += map->stripe_len;
2955
2956 extent = btrfs_item_ptr(l, slot,
2957 struct btrfs_extent_item);
2958 flags = btrfs_extent_flags(l, extent);
2959 generation = btrfs_extent_generation(l, extent);
2960
a323e813
ZL
2961 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2962 (key.objectid < logic_start ||
2963 key.objectid + bytes >
2964 logic_start + map->stripe_len)) {
5d163e0e
JM
2965 btrfs_err(fs_info,
2966 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2967 key.objectid, logic_start);
9799d2c3
ZL
2968 spin_lock(&sctx->stat_lock);
2969 sctx->stat.uncorrectable_errors++;
2970 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2971 goto next;
2972 }
2973again:
2974 extent_logical = key.objectid;
2975 extent_len = bytes;
2976
2977 if (extent_logical < logic_start) {
2978 extent_len -= logic_start - extent_logical;
2979 extent_logical = logic_start;
2980 }
2981
2982 if (extent_logical + extent_len >
2983 logic_start + map->stripe_len)
2984 extent_len = logic_start + map->stripe_len -
2985 extent_logical;
2986
2987 scrub_parity_mark_sectors_data(sparity, extent_logical,
2988 extent_len);
2989
4a770891 2990 mapped_length = extent_len;
f1fee653 2991 bbio = NULL;
cf8cddd3
CH
2992 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2993 extent_logical, &mapped_length, &bbio,
2994 0);
4a770891
OS
2995 if (!ret) {
2996 if (!bbio || mapped_length < extent_len)
2997 ret = -EIO;
2998 }
2999 if (ret) {
3000 btrfs_put_bbio(bbio);
3001 goto out;
3002 }
3003 extent_physical = bbio->stripes[0].physical;
3004 extent_mirror_num = bbio->mirror_num;
3005 extent_dev = bbio->stripes[0].dev;
3006 btrfs_put_bbio(bbio);
5a6ac9ea
MX
3007
3008 ret = btrfs_lookup_csums_range(csum_root,
3009 extent_logical,
3010 extent_logical + extent_len - 1,
3011 &sctx->csum_list, 1);
3012 if (ret)
3013 goto out;
3014
3015 ret = scrub_extent_for_parity(sparity, extent_logical,
3016 extent_len,
3017 extent_physical,
3018 extent_dev, flags,
3019 generation,
3020 extent_mirror_num);
6fa96d72
ZL
3021
3022 scrub_free_csums(sctx);
3023
5a6ac9ea
MX
3024 if (ret)
3025 goto out;
3026
5a6ac9ea
MX
3027 if (extent_logical + extent_len <
3028 key.objectid + bytes) {
3029 logic_start += map->stripe_len;
3030
3031 if (logic_start >= logic_end) {
3032 stop_loop = 1;
3033 break;
3034 }
3035
3036 if (logic_start < key.objectid + bytes) {
3037 cond_resched();
3038 goto again;
3039 }
3040 }
3041next:
3042 path->slots[0]++;
3043 }
3044
3045 btrfs_release_path(path);
3046
3047 if (stop_loop)
3048 break;
3049
3050 logic_start += map->stripe_len;
3051 }
3052out:
3053 if (ret < 0)
3054 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3055 logic_end - logic_start);
5a6ac9ea
MX
3056 scrub_parity_put(sparity);
3057 scrub_submit(sctx);
3058 mutex_lock(&sctx->wr_ctx.wr_lock);
3059 scrub_wr_submit(sctx);
3060 mutex_unlock(&sctx->wr_ctx.wr_lock);
3061
3062 btrfs_release_path(path);
3063 return ret < 0 ? ret : 0;
3064}
3065
d9d181c1 3066static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3067 struct map_lookup *map,
3068 struct btrfs_device *scrub_dev,
ff023aac
SB
3069 int num, u64 base, u64 length,
3070 int is_dev_replace)
a2de733c 3071{
5a6ac9ea 3072 struct btrfs_path *path, *ppath;
fb456252 3073 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3074 struct btrfs_root *root = fs_info->extent_root;
3075 struct btrfs_root *csum_root = fs_info->csum_root;
3076 struct btrfs_extent_item *extent;
e7786c3a 3077 struct blk_plug plug;
a2de733c
AJ
3078 u64 flags;
3079 int ret;
3080 int slot;
a2de733c 3081 u64 nstripes;
a2de733c 3082 struct extent_buffer *l;
a2de733c
AJ
3083 u64 physical;
3084 u64 logical;
625f1c8d 3085 u64 logic_end;
3b080b25 3086 u64 physical_end;
a2de733c 3087 u64 generation;
e12fa9cd 3088 int mirror_num;
7a26285e
AJ
3089 struct reada_control *reada1;
3090 struct reada_control *reada2;
e6c11f9a 3091 struct btrfs_key key;
7a26285e 3092 struct btrfs_key key_end;
a2de733c
AJ
3093 u64 increment = map->stripe_len;
3094 u64 offset;
ff023aac
SB
3095 u64 extent_logical;
3096 u64 extent_physical;
3097 u64 extent_len;
5a6ac9ea
MX
3098 u64 stripe_logical;
3099 u64 stripe_end;
ff023aac
SB
3100 struct btrfs_device *extent_dev;
3101 int extent_mirror_num;
3b080b25 3102 int stop_loop = 0;
53b381b3 3103
3b080b25 3104 physical = map->stripes[num].physical;
a2de733c 3105 offset = 0;
b8b93add 3106 nstripes = div_u64(length, map->stripe_len);
a2de733c
AJ
3107 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3108 offset = map->stripe_len * num;
3109 increment = map->stripe_len * map->num_stripes;
193ea74b 3110 mirror_num = 1;
a2de733c
AJ
3111 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3112 int factor = map->num_stripes / map->sub_stripes;
3113 offset = map->stripe_len * (num / map->sub_stripes);
3114 increment = map->stripe_len * factor;
193ea74b 3115 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
3116 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3117 increment = map->stripe_len;
193ea74b 3118 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3119 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3120 increment = map->stripe_len;
193ea74b 3121 mirror_num = num % map->num_stripes + 1;
ffe2d203 3122 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3123 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3124 increment = map->stripe_len * nr_data_stripes(map);
3125 mirror_num = 1;
a2de733c
AJ
3126 } else {
3127 increment = map->stripe_len;
193ea74b 3128 mirror_num = 1;
a2de733c
AJ
3129 }
3130
3131 path = btrfs_alloc_path();
3132 if (!path)
3133 return -ENOMEM;
3134
5a6ac9ea
MX
3135 ppath = btrfs_alloc_path();
3136 if (!ppath) {
379d6854 3137 btrfs_free_path(path);
5a6ac9ea
MX
3138 return -ENOMEM;
3139 }
3140
b5d67f64
SB
3141 /*
3142 * work on commit root. The related disk blocks are static as
3143 * long as COW is applied. This means, it is save to rewrite
3144 * them to repair disk errors without any race conditions
3145 */
a2de733c
AJ
3146 path->search_commit_root = 1;
3147 path->skip_locking = 1;
3148
063c54dc
GH
3149 ppath->search_commit_root = 1;
3150 ppath->skip_locking = 1;
a2de733c 3151 /*
7a26285e
AJ
3152 * trigger the readahead for extent tree csum tree and wait for
3153 * completion. During readahead, the scrub is officially paused
3154 * to not hold off transaction commits
a2de733c
AJ
3155 */
3156 logical = base + offset;
3b080b25 3157 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3158 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3159 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3160 map, &logic_end, NULL);
3b080b25
WS
3161 logic_end += base;
3162 } else {
3163 logic_end = logical + increment * nstripes;
3164 }
d9d181c1 3165 wait_event(sctx->list_wait,
b6bfebc1 3166 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3167 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3168
3169 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3170 key.objectid = logical;
3171 key.type = BTRFS_EXTENT_ITEM_KEY;
3172 key.offset = (u64)0;
3b080b25 3173 key_end.objectid = logic_end;
3173a18f
JB
3174 key_end.type = BTRFS_METADATA_ITEM_KEY;
3175 key_end.offset = (u64)-1;
e6c11f9a 3176 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3177
e6c11f9a
DS
3178 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179 key.type = BTRFS_EXTENT_CSUM_KEY;
3180 key.offset = logical;
7a26285e
AJ
3181 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3182 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3183 key_end.offset = logic_end;
e6c11f9a 3184 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3185
3186 if (!IS_ERR(reada1))
3187 btrfs_reada_wait(reada1);
3188 if (!IS_ERR(reada2))
3189 btrfs_reada_wait(reada2);
3190
a2de733c
AJ
3191
3192 /*
3193 * collect all data csums for the stripe to avoid seeking during
3194 * the scrub. This might currently (crc32) end up to be about 1MB
3195 */
e7786c3a 3196 blk_start_plug(&plug);
a2de733c 3197
a2de733c
AJ
3198 /*
3199 * now find all extents for each stripe and scrub them
3200 */
a2de733c 3201 ret = 0;
3b080b25 3202 while (physical < physical_end) {
a2de733c
AJ
3203 /*
3204 * canceled?
3205 */
3206 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3207 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3208 ret = -ECANCELED;
3209 goto out;
3210 }
3211 /*
3212 * check to see if we have to pause
3213 */
3214 if (atomic_read(&fs_info->scrub_pause_req)) {
3215 /* push queued extents */
ff023aac 3216 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 3217 scrub_submit(sctx);
ff023aac
SB
3218 mutex_lock(&sctx->wr_ctx.wr_lock);
3219 scrub_wr_submit(sctx);
3220 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 3221 wait_event(sctx->list_wait,
b6bfebc1 3222 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 3223 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 3224 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3225 }
3226
f2f66a2f
ZL
3227 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3228 ret = get_raid56_logic_offset(physical, num, map,
3229 &logical,
3230 &stripe_logical);
3231 logical += base;
3232 if (ret) {
7955323b 3233 /* it is parity strip */
f2f66a2f 3234 stripe_logical += base;
a0dd59de 3235 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3236 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3237 ppath, stripe_logical,
3238 stripe_end);
3239 if (ret)
3240 goto out;
3241 goto skip;
3242 }
3243 }
3244
7c76edb7
WS
3245 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3246 key.type = BTRFS_METADATA_ITEM_KEY;
3247 else
3248 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3249 key.objectid = logical;
625f1c8d 3250 key.offset = (u64)-1;
a2de733c
AJ
3251
3252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3253 if (ret < 0)
3254 goto out;
3173a18f 3255
8c51032f 3256 if (ret > 0) {
ade2e0b3 3257 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3258 if (ret < 0)
3259 goto out;
8c51032f
AJ
3260 if (ret > 0) {
3261 /* there's no smaller item, so stick with the
3262 * larger one */
3263 btrfs_release_path(path);
3264 ret = btrfs_search_slot(NULL, root, &key,
3265 path, 0, 0);
3266 if (ret < 0)
3267 goto out;
3268 }
a2de733c
AJ
3269 }
3270
625f1c8d 3271 stop_loop = 0;
a2de733c 3272 while (1) {
3173a18f
JB
3273 u64 bytes;
3274
a2de733c
AJ
3275 l = path->nodes[0];
3276 slot = path->slots[0];
3277 if (slot >= btrfs_header_nritems(l)) {
3278 ret = btrfs_next_leaf(root, path);
3279 if (ret == 0)
3280 continue;
3281 if (ret < 0)
3282 goto out;
3283
625f1c8d 3284 stop_loop = 1;
a2de733c
AJ
3285 break;
3286 }
3287 btrfs_item_key_to_cpu(l, &key, slot);
3288
d7cad238
ZL
3289 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3290 key.type != BTRFS_METADATA_ITEM_KEY)
3291 goto next;
3292
3173a18f 3293 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3294 bytes = fs_info->nodesize;
3173a18f
JB
3295 else
3296 bytes = key.offset;
3297
3298 if (key.objectid + bytes <= logical)
a2de733c
AJ
3299 goto next;
3300
625f1c8d
LB
3301 if (key.objectid >= logical + map->stripe_len) {
3302 /* out of this device extent */
3303 if (key.objectid >= logic_end)
3304 stop_loop = 1;
3305 break;
3306 }
a2de733c
AJ
3307
3308 extent = btrfs_item_ptr(l, slot,
3309 struct btrfs_extent_item);
3310 flags = btrfs_extent_flags(l, extent);
3311 generation = btrfs_extent_generation(l, extent);
3312
a323e813
ZL
3313 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3314 (key.objectid < logical ||
3315 key.objectid + bytes >
3316 logical + map->stripe_len)) {
efe120a0 3317 btrfs_err(fs_info,
5d163e0e 3318 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3319 key.objectid, logical);
9799d2c3
ZL
3320 spin_lock(&sctx->stat_lock);
3321 sctx->stat.uncorrectable_errors++;
3322 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3323 goto next;
3324 }
3325
625f1c8d
LB
3326again:
3327 extent_logical = key.objectid;
3328 extent_len = bytes;
3329
a2de733c
AJ
3330 /*
3331 * trim extent to this stripe
3332 */
625f1c8d
LB
3333 if (extent_logical < logical) {
3334 extent_len -= logical - extent_logical;
3335 extent_logical = logical;
a2de733c 3336 }
625f1c8d 3337 if (extent_logical + extent_len >
a2de733c 3338 logical + map->stripe_len) {
625f1c8d
LB
3339 extent_len = logical + map->stripe_len -
3340 extent_logical;
a2de733c
AJ
3341 }
3342
625f1c8d 3343 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3344 extent_dev = scrub_dev;
3345 extent_mirror_num = mirror_num;
3346 if (is_dev_replace)
3347 scrub_remap_extent(fs_info, extent_logical,
3348 extent_len, &extent_physical,
3349 &extent_dev,
3350 &extent_mirror_num);
625f1c8d 3351
fe8cf654
ZL
3352 ret = btrfs_lookup_csums_range(csum_root,
3353 extent_logical,
3354 extent_logical +
3355 extent_len - 1,
3356 &sctx->csum_list, 1);
625f1c8d
LB
3357 if (ret)
3358 goto out;
3359
ff023aac
SB
3360 ret = scrub_extent(sctx, extent_logical, extent_len,
3361 extent_physical, extent_dev, flags,
3362 generation, extent_mirror_num,
115930cb 3363 extent_logical - logical + physical);
6fa96d72
ZL
3364
3365 scrub_free_csums(sctx);
3366
a2de733c
AJ
3367 if (ret)
3368 goto out;
3369
625f1c8d
LB
3370 if (extent_logical + extent_len <
3371 key.objectid + bytes) {
ffe2d203 3372 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3373 /*
3374 * loop until we find next data stripe
3375 * or we have finished all stripes.
3376 */
5a6ac9ea
MX
3377loop:
3378 physical += map->stripe_len;
3379 ret = get_raid56_logic_offset(physical,
3380 num, map, &logical,
3381 &stripe_logical);
3382 logical += base;
3383
3384 if (ret && physical < physical_end) {
3385 stripe_logical += base;
3386 stripe_end = stripe_logical +
a0dd59de 3387 increment;
5a6ac9ea
MX
3388 ret = scrub_raid56_parity(sctx,
3389 map, scrub_dev, ppath,
3390 stripe_logical,
3391 stripe_end);
3392 if (ret)
3393 goto out;
3394 goto loop;
3395 }
3b080b25
WS
3396 } else {
3397 physical += map->stripe_len;
3398 logical += increment;
3399 }
625f1c8d
LB
3400 if (logical < key.objectid + bytes) {
3401 cond_resched();
3402 goto again;
3403 }
3404
3b080b25 3405 if (physical >= physical_end) {
625f1c8d
LB
3406 stop_loop = 1;
3407 break;
3408 }
3409 }
a2de733c
AJ
3410next:
3411 path->slots[0]++;
3412 }
71267333 3413 btrfs_release_path(path);
3b080b25 3414skip:
a2de733c
AJ
3415 logical += increment;
3416 physical += map->stripe_len;
d9d181c1 3417 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3418 if (stop_loop)
3419 sctx->stat.last_physical = map->stripes[num].physical +
3420 length;
3421 else
3422 sctx->stat.last_physical = physical;
d9d181c1 3423 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3424 if (stop_loop)
3425 break;
a2de733c 3426 }
ff023aac 3427out:
a2de733c 3428 /* push queued extents */
d9d181c1 3429 scrub_submit(sctx);
ff023aac
SB
3430 mutex_lock(&sctx->wr_ctx.wr_lock);
3431 scrub_wr_submit(sctx);
3432 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 3433
e7786c3a 3434 blk_finish_plug(&plug);
a2de733c 3435 btrfs_free_path(path);
5a6ac9ea 3436 btrfs_free_path(ppath);
a2de733c
AJ
3437 return ret < 0 ? ret : 0;
3438}
3439
d9d181c1 3440static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3441 struct btrfs_device *scrub_dev,
a36cf8b8 3442 u64 chunk_offset, u64 length,
020d5b73
FM
3443 u64 dev_offset,
3444 struct btrfs_block_group_cache *cache,
3445 int is_dev_replace)
a2de733c 3446{
fb456252
JM
3447 struct btrfs_fs_info *fs_info = sctx->fs_info;
3448 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3449 struct map_lookup *map;
3450 struct extent_map *em;
3451 int i;
ff023aac 3452 int ret = 0;
a2de733c
AJ
3453
3454 read_lock(&map_tree->map_tree.lock);
3455 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3456 read_unlock(&map_tree->map_tree.lock);
3457
020d5b73
FM
3458 if (!em) {
3459 /*
3460 * Might have been an unused block group deleted by the cleaner
3461 * kthread or relocation.
3462 */
3463 spin_lock(&cache->lock);
3464 if (!cache->removed)
3465 ret = -EINVAL;
3466 spin_unlock(&cache->lock);
3467
3468 return ret;
3469 }
a2de733c 3470
95617d69 3471 map = em->map_lookup;
a2de733c
AJ
3472 if (em->start != chunk_offset)
3473 goto out;
3474
3475 if (em->len < length)
3476 goto out;
3477
3478 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3479 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3480 map->stripes[i].physical == dev_offset) {
a36cf8b8 3481 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
3482 chunk_offset, length,
3483 is_dev_replace);
a2de733c
AJ
3484 if (ret)
3485 goto out;
3486 }
3487 }
3488out:
3489 free_extent_map(em);
3490
3491 return ret;
3492}
3493
3494static noinline_for_stack
a36cf8b8 3495int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
3496 struct btrfs_device *scrub_dev, u64 start, u64 end,
3497 int is_dev_replace)
a2de733c
AJ
3498{
3499 struct btrfs_dev_extent *dev_extent = NULL;
3500 struct btrfs_path *path;
0b246afa
JM
3501 struct btrfs_fs_info *fs_info = sctx->fs_info;
3502 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3503 u64 length;
a2de733c 3504 u64 chunk_offset;
55e3a601 3505 int ret = 0;
76a8efa1 3506 int ro_set;
a2de733c
AJ
3507 int slot;
3508 struct extent_buffer *l;
3509 struct btrfs_key key;
3510 struct btrfs_key found_key;
3511 struct btrfs_block_group_cache *cache;
ff023aac 3512 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3513
3514 path = btrfs_alloc_path();
3515 if (!path)
3516 return -ENOMEM;
3517
e4058b54 3518 path->reada = READA_FORWARD;
a2de733c
AJ
3519 path->search_commit_root = 1;
3520 path->skip_locking = 1;
3521
a36cf8b8 3522 key.objectid = scrub_dev->devid;
a2de733c
AJ
3523 key.offset = 0ull;
3524 key.type = BTRFS_DEV_EXTENT_KEY;
3525
a2de733c
AJ
3526 while (1) {
3527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3528 if (ret < 0)
8c51032f
AJ
3529 break;
3530 if (ret > 0) {
3531 if (path->slots[0] >=
3532 btrfs_header_nritems(path->nodes[0])) {
3533 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3534 if (ret < 0)
3535 break;
3536 if (ret > 0) {
3537 ret = 0;
8c51032f 3538 break;
55e3a601
Z
3539 }
3540 } else {
3541 ret = 0;
8c51032f
AJ
3542 }
3543 }
a2de733c
AJ
3544
3545 l = path->nodes[0];
3546 slot = path->slots[0];
3547
3548 btrfs_item_key_to_cpu(l, &found_key, slot);
3549
a36cf8b8 3550 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3551 break;
3552
962a298f 3553 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3554 break;
3555
3556 if (found_key.offset >= end)
3557 break;
3558
3559 if (found_key.offset < key.offset)
3560 break;
3561
3562 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3563 length = btrfs_dev_extent_length(l, dev_extent);
3564
ced96edc
QW
3565 if (found_key.offset + length <= start)
3566 goto skip;
a2de733c 3567
a2de733c
AJ
3568 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3569
3570 /*
3571 * get a reference on the corresponding block group to prevent
3572 * the chunk from going away while we scrub it
3573 */
3574 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3575
3576 /* some chunks are removed but not committed to disk yet,
3577 * continue scrubbing */
3578 if (!cache)
3579 goto skip;
3580
55e3a601
Z
3581 /*
3582 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3583 * to avoid deadlock caused by:
3584 * btrfs_inc_block_group_ro()
3585 * -> btrfs_wait_for_commit()
3586 * -> btrfs_commit_transaction()
3587 * -> btrfs_scrub_pause()
3588 */
3589 scrub_pause_on(fs_info);
5e00f193 3590 ret = btrfs_inc_block_group_ro(fs_info, cache);
f0e9b7d6
FM
3591 if (!ret && is_dev_replace) {
3592 /*
3593 * If we are doing a device replace wait for any tasks
3594 * that started dellaloc right before we set the block
3595 * group to RO mode, as they might have just allocated
3596 * an extent from it or decided they could do a nocow
3597 * write. And if any such tasks did that, wait for their
3598 * ordered extents to complete and then commit the
3599 * current transaction, so that we can later see the new
3600 * extent items in the extent tree - the ordered extents
3601 * create delayed data references (for cow writes) when
3602 * they complete, which will be run and insert the
3603 * corresponding extent items into the extent tree when
3604 * we commit the transaction they used when running
3605 * inode.c:btrfs_finish_ordered_io(). We later use
3606 * the commit root of the extent tree to find extents
3607 * to copy from the srcdev into the tgtdev, and we don't
3608 * want to miss any new extents.
3609 */
3610 btrfs_wait_block_group_reservations(cache);
3611 btrfs_wait_nocow_writers(cache);
3612 ret = btrfs_wait_ordered_roots(fs_info, -1,
3613 cache->key.objectid,
3614 cache->key.offset);
3615 if (ret > 0) {
3616 struct btrfs_trans_handle *trans;
3617
3618 trans = btrfs_join_transaction(root);
3619 if (IS_ERR(trans))
3620 ret = PTR_ERR(trans);
3621 else
3a45bb20 3622 ret = btrfs_commit_transaction(trans);
f0e9b7d6
FM
3623 if (ret) {
3624 scrub_pause_off(fs_info);
3625 btrfs_put_block_group(cache);
3626 break;
3627 }
3628 }
3629 }
55e3a601 3630 scrub_pause_off(fs_info);
76a8efa1
Z
3631
3632 if (ret == 0) {
3633 ro_set = 1;
3634 } else if (ret == -ENOSPC) {
3635 /*
3636 * btrfs_inc_block_group_ro return -ENOSPC when it
3637 * failed in creating new chunk for metadata.
3638 * It is not a problem for scrub/replace, because
3639 * metadata are always cowed, and our scrub paused
3640 * commit_transactions.
3641 */
3642 ro_set = 0;
3643 } else {
5d163e0e
JM
3644 btrfs_warn(fs_info,
3645 "failed setting block group ro, ret=%d\n",
76a8efa1 3646 ret);
55e3a601
Z
3647 btrfs_put_block_group(cache);
3648 break;
3649 }
3650
81e87a73 3651 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
ff023aac
SB
3652 dev_replace->cursor_right = found_key.offset + length;
3653 dev_replace->cursor_left = found_key.offset;
3654 dev_replace->item_needs_writeback = 1;
81e87a73 3655 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
8c204c96 3656 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
020d5b73 3657 found_key.offset, cache, is_dev_replace);
ff023aac
SB
3658
3659 /*
3660 * flush, submit all pending read and write bios, afterwards
3661 * wait for them.
3662 * Note that in the dev replace case, a read request causes
3663 * write requests that are submitted in the read completion
3664 * worker. Therefore in the current situation, it is required
3665 * that all write requests are flushed, so that all read and
3666 * write requests are really completed when bios_in_flight
3667 * changes to 0.
3668 */
3669 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3670 scrub_submit(sctx);
3671 mutex_lock(&sctx->wr_ctx.wr_lock);
3672 scrub_wr_submit(sctx);
3673 mutex_unlock(&sctx->wr_ctx.wr_lock);
3674
3675 wait_event(sctx->list_wait,
3676 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3677
3678 scrub_pause_on(fs_info);
12cf9372
WS
3679
3680 /*
3681 * must be called before we decrease @scrub_paused.
3682 * make sure we don't block transaction commit while
3683 * we are waiting pending workers finished.
3684 */
ff023aac
SB
3685 wait_event(sctx->list_wait,
3686 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
3687 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3688
b708ce96 3689 scrub_pause_off(fs_info);
ff023aac 3690
1a1a8b73
FM
3691 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3692 dev_replace->cursor_left = dev_replace->cursor_right;
3693 dev_replace->item_needs_writeback = 1;
3694 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3695
76a8efa1 3696 if (ro_set)
2ff7e61e 3697 btrfs_dec_block_group_ro(cache);
ff023aac 3698
758f2dfc
FM
3699 /*
3700 * We might have prevented the cleaner kthread from deleting
3701 * this block group if it was already unused because we raced
3702 * and set it to RO mode first. So add it back to the unused
3703 * list, otherwise it might not ever be deleted unless a manual
3704 * balance is triggered or it becomes used and unused again.
3705 */
3706 spin_lock(&cache->lock);
3707 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3708 btrfs_block_group_used(&cache->item) == 0) {
3709 spin_unlock(&cache->lock);
3710 spin_lock(&fs_info->unused_bgs_lock);
3711 if (list_empty(&cache->bg_list)) {
3712 btrfs_get_block_group(cache);
3713 list_add_tail(&cache->bg_list,
3714 &fs_info->unused_bgs);
3715 }
3716 spin_unlock(&fs_info->unused_bgs_lock);
3717 } else {
3718 spin_unlock(&cache->lock);
3719 }
3720
a2de733c
AJ
3721 btrfs_put_block_group(cache);
3722 if (ret)
3723 break;
af1be4f8
SB
3724 if (is_dev_replace &&
3725 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3726 ret = -EIO;
3727 break;
3728 }
3729 if (sctx->stat.malloc_errors > 0) {
3730 ret = -ENOMEM;
3731 break;
3732 }
ced96edc 3733skip:
a2de733c 3734 key.offset = found_key.offset + length;
71267333 3735 btrfs_release_path(path);
a2de733c
AJ
3736 }
3737
a2de733c 3738 btrfs_free_path(path);
8c51032f 3739
55e3a601 3740 return ret;
a2de733c
AJ
3741}
3742
a36cf8b8
SB
3743static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3744 struct btrfs_device *scrub_dev)
a2de733c
AJ
3745{
3746 int i;
3747 u64 bytenr;
3748 u64 gen;
3749 int ret;
0b246afa 3750 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3751
0b246afa 3752 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
79787eaa
JM
3753 return -EIO;
3754
5f546063 3755 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3756 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3757 gen = scrub_dev->generation;
3758 else
0b246afa 3759 gen = fs_info->last_trans_committed;
a2de733c
AJ
3760
3761 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3762 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3763 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3764 scrub_dev->commit_total_bytes)
a2de733c
AJ
3765 break;
3766
d9d181c1 3767 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3768 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3769 NULL, 1, bytenr);
a2de733c
AJ
3770 if (ret)
3771 return ret;
3772 }
b6bfebc1 3773 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3774
3775 return 0;
3776}
3777
3778/*
3779 * get a reference count on fs_info->scrub_workers. start worker if necessary
3780 */
ff023aac
SB
3781static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3782 int is_dev_replace)
a2de733c 3783{
6f011058 3784 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3785 int max_active = fs_info->thread_pool_size;
a2de733c 3786
632dd772 3787 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 3788 if (is_dev_replace)
0339ef2f 3789 fs_info->scrub_workers =
cb001095 3790 btrfs_alloc_workqueue(fs_info, "scrub", flags,
0339ef2f 3791 1, 4);
ff023aac 3792 else
0339ef2f 3793 fs_info->scrub_workers =
cb001095 3794 btrfs_alloc_workqueue(fs_info, "scrub", flags,
0339ef2f 3795 max_active, 4);
e82afc52
ZL
3796 if (!fs_info->scrub_workers)
3797 goto fail_scrub_workers;
3798
0339ef2f 3799 fs_info->scrub_wr_completion_workers =
cb001095 3800 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
0339ef2f 3801 max_active, 2);
e82afc52
ZL
3802 if (!fs_info->scrub_wr_completion_workers)
3803 goto fail_scrub_wr_completion_workers;
3804
0339ef2f 3805 fs_info->scrub_nocow_workers =
cb001095 3806 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
e82afc52
ZL
3807 if (!fs_info->scrub_nocow_workers)
3808 goto fail_scrub_nocow_workers;
20b2e302 3809 fs_info->scrub_parity_workers =
cb001095 3810 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
20b2e302 3811 max_active, 2);
e82afc52
ZL
3812 if (!fs_info->scrub_parity_workers)
3813 goto fail_scrub_parity_workers;
632dd772 3814 }
a2de733c 3815 ++fs_info->scrub_workers_refcnt;
e82afc52
ZL
3816 return 0;
3817
3818fail_scrub_parity_workers:
3819 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3820fail_scrub_nocow_workers:
3821 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3822fail_scrub_wr_completion_workers:
3823 btrfs_destroy_workqueue(fs_info->scrub_workers);
3824fail_scrub_workers:
3825 return -ENOMEM;
a2de733c
AJ
3826}
3827
aa1b8cd4 3828static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 3829{
ff023aac 3830 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
3831 btrfs_destroy_workqueue(fs_info->scrub_workers);
3832 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3833 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
20b2e302 3834 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
ff023aac 3835 }
a2de733c 3836 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
3837}
3838
aa1b8cd4
SB
3839int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3840 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3841 int readonly, int is_dev_replace)
a2de733c 3842{
d9d181c1 3843 struct scrub_ctx *sctx;
a2de733c
AJ
3844 int ret;
3845 struct btrfs_device *dev;
5d68da3b 3846 struct rcu_string *name;
a2de733c 3847
aa1b8cd4 3848 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
3849 return -EINVAL;
3850
da17066c 3851 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3852 /*
3853 * in this case scrub is unable to calculate the checksum
3854 * the way scrub is implemented. Do not handle this
3855 * situation at all because it won't ever happen.
3856 */
efe120a0
FH
3857 btrfs_err(fs_info,
3858 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3859 fs_info->nodesize,
3860 BTRFS_STRIPE_LEN);
b5d67f64
SB
3861 return -EINVAL;
3862 }
3863
da17066c 3864 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3865 /* not supported for data w/o checksums */
751bebbe 3866 btrfs_err_rl(fs_info,
5d163e0e 3867 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3868 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3869 return -EINVAL;
3870 }
3871
da17066c 3872 if (fs_info->nodesize >
7a9e9987 3873 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3874 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3875 /*
3876 * would exhaust the array bounds of pagev member in
3877 * struct scrub_block
3878 */
5d163e0e
JM
3879 btrfs_err(fs_info,
3880 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3881 fs_info->nodesize,
7a9e9987 3882 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3883 fs_info->sectorsize,
7a9e9987
SB
3884 SCRUB_MAX_PAGES_PER_BLOCK);
3885 return -EINVAL;
3886 }
3887
a2de733c 3888
aa1b8cd4
SB
3889 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3890 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 3891 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3893 return -ENODEV;
3894 }
a2de733c 3895
5d68da3b
MX
3896 if (!is_dev_replace && !readonly && !dev->writeable) {
3897 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3898 rcu_read_lock();
3899 name = rcu_dereference(dev->name);
3900 btrfs_err(fs_info, "scrub: device %s is not writable",
3901 name->str);
3902 rcu_read_unlock();
3903 return -EROFS;
3904 }
3905
3b7a016f 3906 mutex_lock(&fs_info->scrub_lock);
63a212ab 3907 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 3908 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3910 return -EIO;
a2de733c
AJ
3911 }
3912
73beece9 3913 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3914 if (dev->scrub_device ||
3915 (!is_dev_replace &&
3916 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
73beece9 3917 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
a2de733c 3918 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3919 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3920 return -EINPROGRESS;
3921 }
73beece9 3922 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3b7a016f
WS
3923
3924 ret = scrub_workers_get(fs_info, is_dev_replace);
3925 if (ret) {
3926 mutex_unlock(&fs_info->scrub_lock);
3927 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3928 return ret;
3929 }
3930
63a212ab 3931 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 3932 if (IS_ERR(sctx)) {
a2de733c 3933 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
3934 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3935 scrub_workers_put(fs_info);
d9d181c1 3936 return PTR_ERR(sctx);
a2de733c 3937 }
d9d181c1
SB
3938 sctx->readonly = readonly;
3939 dev->scrub_device = sctx;
3cb0929a 3940 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3941
3cb0929a
WS
3942 /*
3943 * checking @scrub_pause_req here, we can avoid
3944 * race between committing transaction and scrubbing.
3945 */
cb7ab021 3946 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3947 atomic_inc(&fs_info->scrubs_running);
3948 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3949
ff023aac 3950 if (!is_dev_replace) {
9b011adf
WS
3951 /*
3952 * by holding device list mutex, we can
3953 * kick off writing super in log tree sync.
3954 */
3cb0929a 3955 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3956 ret = scrub_supers(sctx, dev);
3cb0929a 3957 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3958 }
a2de733c
AJ
3959
3960 if (!ret)
ff023aac
SB
3961 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3962 is_dev_replace);
a2de733c 3963
b6bfebc1 3964 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3965 atomic_dec(&fs_info->scrubs_running);
3966 wake_up(&fs_info->scrub_pause_wait);
3967
b6bfebc1 3968 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3969
a2de733c 3970 if (progress)
d9d181c1 3971 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3972
3973 mutex_lock(&fs_info->scrub_lock);
3974 dev->scrub_device = NULL;
3b7a016f 3975 scrub_workers_put(fs_info);
a2de733c
AJ
3976 mutex_unlock(&fs_info->scrub_lock);
3977
f55985f4 3978 scrub_put_ctx(sctx);
a2de733c
AJ
3979
3980 return ret;
3981}
3982
2ff7e61e 3983void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3984{
a2de733c
AJ
3985 mutex_lock(&fs_info->scrub_lock);
3986 atomic_inc(&fs_info->scrub_pause_req);
3987 while (atomic_read(&fs_info->scrubs_paused) !=
3988 atomic_read(&fs_info->scrubs_running)) {
3989 mutex_unlock(&fs_info->scrub_lock);
3990 wait_event(fs_info->scrub_pause_wait,
3991 atomic_read(&fs_info->scrubs_paused) ==
3992 atomic_read(&fs_info->scrubs_running));
3993 mutex_lock(&fs_info->scrub_lock);
3994 }
3995 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3996}
3997
2ff7e61e 3998void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 3999{
a2de733c
AJ
4000 atomic_dec(&fs_info->scrub_pause_req);
4001 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
4002}
4003
aa1b8cd4 4004int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 4005{
a2de733c
AJ
4006 mutex_lock(&fs_info->scrub_lock);
4007 if (!atomic_read(&fs_info->scrubs_running)) {
4008 mutex_unlock(&fs_info->scrub_lock);
4009 return -ENOTCONN;
4010 }
4011
4012 atomic_inc(&fs_info->scrub_cancel_req);
4013 while (atomic_read(&fs_info->scrubs_running)) {
4014 mutex_unlock(&fs_info->scrub_lock);
4015 wait_event(fs_info->scrub_pause_wait,
4016 atomic_read(&fs_info->scrubs_running) == 0);
4017 mutex_lock(&fs_info->scrub_lock);
4018 }
4019 atomic_dec(&fs_info->scrub_cancel_req);
4020 mutex_unlock(&fs_info->scrub_lock);
4021
4022 return 0;
4023}
4024
aa1b8cd4
SB
4025int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4026 struct btrfs_device *dev)
49b25e05 4027{
d9d181c1 4028 struct scrub_ctx *sctx;
a2de733c
AJ
4029
4030 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
4031 sctx = dev->scrub_device;
4032 if (!sctx) {
a2de733c
AJ
4033 mutex_unlock(&fs_info->scrub_lock);
4034 return -ENOTCONN;
4035 }
d9d181c1 4036 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
4037 while (dev->scrub_device) {
4038 mutex_unlock(&fs_info->scrub_lock);
4039 wait_event(fs_info->scrub_pause_wait,
4040 dev->scrub_device == NULL);
4041 mutex_lock(&fs_info->scrub_lock);
4042 }
4043 mutex_unlock(&fs_info->scrub_lock);
4044
4045 return 0;
4046}
1623edeb 4047
2ff7e61e 4048int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4049 struct btrfs_scrub_progress *progress)
4050{
4051 struct btrfs_device *dev;
d9d181c1 4052 struct scrub_ctx *sctx = NULL;
a2de733c 4053
0b246afa
JM
4054 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4055 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
a2de733c 4056 if (dev)
d9d181c1
SB
4057 sctx = dev->scrub_device;
4058 if (sctx)
4059 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4060 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4061
d9d181c1 4062 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4063}
ff023aac
SB
4064
4065static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4066 u64 extent_logical, u64 extent_len,
4067 u64 *extent_physical,
4068 struct btrfs_device **extent_dev,
4069 int *extent_mirror_num)
4070{
4071 u64 mapped_length;
4072 struct btrfs_bio *bbio = NULL;
4073 int ret;
4074
4075 mapped_length = extent_len;
cf8cddd3 4076 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4077 &mapped_length, &bbio, 0);
4078 if (ret || !bbio || mapped_length < extent_len ||
4079 !bbio->stripes[0].dev->bdev) {
6e9606d2 4080 btrfs_put_bbio(bbio);
ff023aac
SB
4081 return;
4082 }
4083
4084 *extent_physical = bbio->stripes[0].physical;
4085 *extent_mirror_num = bbio->mirror_num;
4086 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4087 btrfs_put_bbio(bbio);
ff023aac
SB
4088}
4089
e5987e13 4090static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
ff023aac
SB
4091 struct btrfs_device *dev,
4092 int is_dev_replace)
4093{
4094 WARN_ON(wr_ctx->wr_curr_bio != NULL);
4095
4096 mutex_init(&wr_ctx->wr_lock);
4097 wr_ctx->wr_curr_bio = NULL;
4098 if (!is_dev_replace)
4099 return 0;
4100
4101 WARN_ON(!dev->bdev);
b54ffb73 4102 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ff023aac
SB
4103 wr_ctx->tgtdev = dev;
4104 atomic_set(&wr_ctx->flush_all_writes, 0);
4105 return 0;
4106}
4107
4108static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4109{
4110 mutex_lock(&wr_ctx->wr_lock);
4111 kfree(wr_ctx->wr_curr_bio);
4112 wr_ctx->wr_curr_bio = NULL;
4113 mutex_unlock(&wr_ctx->wr_lock);
4114}
4115
4116static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4117 int mirror_num, u64 physical_for_dev_replace)
4118{
4119 struct scrub_copy_nocow_ctx *nocow_ctx;
fb456252 4120 struct btrfs_fs_info *fs_info = sctx->fs_info;
ff023aac
SB
4121
4122 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4123 if (!nocow_ctx) {
4124 spin_lock(&sctx->stat_lock);
4125 sctx->stat.malloc_errors++;
4126 spin_unlock(&sctx->stat_lock);
4127 return -ENOMEM;
4128 }
4129
4130 scrub_pending_trans_workers_inc(sctx);
4131
4132 nocow_ctx->sctx = sctx;
4133 nocow_ctx->logical = logical;
4134 nocow_ctx->len = len;
4135 nocow_ctx->mirror_num = mirror_num;
4136 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
4137 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4138 copy_nocow_pages_worker, NULL, NULL);
652f25a2 4139 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
4140 btrfs_queue_work(fs_info->scrub_nocow_workers,
4141 &nocow_ctx->work);
ff023aac
SB
4142
4143 return 0;
4144}
4145
652f25a2
JB
4146static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4147{
4148 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4149 struct scrub_nocow_inode *nocow_inode;
4150
4151 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4152 if (!nocow_inode)
4153 return -ENOMEM;
4154 nocow_inode->inum = inum;
4155 nocow_inode->offset = offset;
4156 nocow_inode->root = root;
4157 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4158 return 0;
4159}
4160
4161#define COPY_COMPLETE 1
4162
ff023aac
SB
4163static void copy_nocow_pages_worker(struct btrfs_work *work)
4164{
4165 struct scrub_copy_nocow_ctx *nocow_ctx =
4166 container_of(work, struct scrub_copy_nocow_ctx, work);
4167 struct scrub_ctx *sctx = nocow_ctx->sctx;
0b246afa
JM
4168 struct btrfs_fs_info *fs_info = sctx->fs_info;
4169 struct btrfs_root *root = fs_info->extent_root;
ff023aac
SB
4170 u64 logical = nocow_ctx->logical;
4171 u64 len = nocow_ctx->len;
4172 int mirror_num = nocow_ctx->mirror_num;
4173 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4174 int ret;
4175 struct btrfs_trans_handle *trans = NULL;
ff023aac 4176 struct btrfs_path *path;
ff023aac
SB
4177 int not_written = 0;
4178
ff023aac
SB
4179 path = btrfs_alloc_path();
4180 if (!path) {
4181 spin_lock(&sctx->stat_lock);
4182 sctx->stat.malloc_errors++;
4183 spin_unlock(&sctx->stat_lock);
4184 not_written = 1;
4185 goto out;
4186 }
4187
4188 trans = btrfs_join_transaction(root);
4189 if (IS_ERR(trans)) {
4190 not_written = 1;
4191 goto out;
4192 }
4193
4194 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 4195 record_inode_for_nocow, nocow_ctx);
ff023aac 4196 if (ret != 0 && ret != -ENOENT) {
5d163e0e
JM
4197 btrfs_warn(fs_info,
4198 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4199 logical, physical_for_dev_replace, len, mirror_num,
4200 ret);
ff023aac
SB
4201 not_written = 1;
4202 goto out;
4203 }
4204
3a45bb20 4205 btrfs_end_transaction(trans);
652f25a2
JB
4206 trans = NULL;
4207 while (!list_empty(&nocow_ctx->inodes)) {
4208 struct scrub_nocow_inode *entry;
4209 entry = list_first_entry(&nocow_ctx->inodes,
4210 struct scrub_nocow_inode,
4211 list);
4212 list_del_init(&entry->list);
4213 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4214 entry->root, nocow_ctx);
4215 kfree(entry);
4216 if (ret == COPY_COMPLETE) {
4217 ret = 0;
4218 break;
4219 } else if (ret) {
4220 break;
4221 }
4222 }
ff023aac 4223out:
652f25a2
JB
4224 while (!list_empty(&nocow_ctx->inodes)) {
4225 struct scrub_nocow_inode *entry;
4226 entry = list_first_entry(&nocow_ctx->inodes,
4227 struct scrub_nocow_inode,
4228 list);
4229 list_del_init(&entry->list);
4230 kfree(entry);
4231 }
ff023aac 4232 if (trans && !IS_ERR(trans))
3a45bb20 4233 btrfs_end_transaction(trans);
ff023aac
SB
4234 if (not_written)
4235 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4236 num_uncorrectable_read_errors);
4237
4238 btrfs_free_path(path);
4239 kfree(nocow_ctx);
4240
4241 scrub_pending_trans_workers_dec(sctx);
4242}
4243
1c8c9c52 4244static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
32159242
GH
4245 u64 logical)
4246{
4247 struct extent_state *cached_state = NULL;
4248 struct btrfs_ordered_extent *ordered;
4249 struct extent_io_tree *io_tree;
4250 struct extent_map *em;
4251 u64 lockstart = start, lockend = start + len - 1;
4252 int ret = 0;
4253
1c8c9c52 4254 io_tree = &inode->io_tree;
32159242 4255
ff13db41 4256 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
1c8c9c52 4257 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
32159242
GH
4258 if (ordered) {
4259 btrfs_put_ordered_extent(ordered);
4260 ret = 1;
4261 goto out_unlock;
4262 }
4263
4264 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4265 if (IS_ERR(em)) {
4266 ret = PTR_ERR(em);
4267 goto out_unlock;
4268 }
4269
4270 /*
4271 * This extent does not actually cover the logical extent anymore,
4272 * move on to the next inode.
4273 */
4274 if (em->block_start > logical ||
4275 em->block_start + em->block_len < logical + len) {
4276 free_extent_map(em);
4277 ret = 1;
4278 goto out_unlock;
4279 }
4280 free_extent_map(em);
4281
4282out_unlock:
4283 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4284 GFP_NOFS);
4285 return ret;
4286}
4287
652f25a2
JB
4288static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4289 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 4290{
fb456252 4291 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
ff023aac 4292 struct btrfs_key key;
826aa0a8
MX
4293 struct inode *inode;
4294 struct page *page;
ff023aac 4295 struct btrfs_root *local_root;
652f25a2 4296 struct extent_io_tree *io_tree;
ff023aac 4297 u64 physical_for_dev_replace;
32159242 4298 u64 nocow_ctx_logical;
652f25a2 4299 u64 len = nocow_ctx->len;
826aa0a8 4300 unsigned long index;
6f1c3605 4301 int srcu_index;
652f25a2
JB
4302 int ret = 0;
4303 int err = 0;
ff023aac
SB
4304
4305 key.objectid = root;
4306 key.type = BTRFS_ROOT_ITEM_KEY;
4307 key.offset = (u64)-1;
6f1c3605
LB
4308
4309 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4310
ff023aac 4311 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
4312 if (IS_ERR(local_root)) {
4313 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 4314 return PTR_ERR(local_root);
6f1c3605 4315 }
ff023aac
SB
4316
4317 key.type = BTRFS_INODE_ITEM_KEY;
4318 key.objectid = inum;
4319 key.offset = 0;
4320 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 4321 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
4322 if (IS_ERR(inode))
4323 return PTR_ERR(inode);
4324
edd1400b 4325 /* Avoid truncate/dio/punch hole.. */
5955102c 4326 inode_lock(inode);
edd1400b
MX
4327 inode_dio_wait(inode);
4328
ff023aac 4329 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2 4330 io_tree = &BTRFS_I(inode)->io_tree;
32159242 4331 nocow_ctx_logical = nocow_ctx->logical;
652f25a2 4332
1c8c9c52
NB
4333 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4334 nocow_ctx_logical);
32159242
GH
4335 if (ret) {
4336 ret = ret > 0 ? 0 : ret;
4337 goto out;
652f25a2 4338 }
652f25a2 4339
09cbfeaf
KS
4340 while (len >= PAGE_SIZE) {
4341 index = offset >> PAGE_SHIFT;
edd1400b 4342again:
ff023aac
SB
4343 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4344 if (!page) {
efe120a0 4345 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 4346 ret = -ENOMEM;
826aa0a8 4347 goto out;
ff023aac
SB
4348 }
4349
4350 if (PageUptodate(page)) {
4351 if (PageDirty(page))
4352 goto next_page;
4353 } else {
4354 ClearPageError(page);
32159242 4355 err = extent_read_full_page(io_tree, page,
652f25a2
JB
4356 btrfs_get_extent,
4357 nocow_ctx->mirror_num);
826aa0a8
MX
4358 if (err) {
4359 ret = err;
ff023aac
SB
4360 goto next_page;
4361 }
edd1400b 4362
26b25891 4363 lock_page(page);
edd1400b
MX
4364 /*
4365 * If the page has been remove from the page cache,
4366 * the data on it is meaningless, because it may be
4367 * old one, the new data may be written into the new
4368 * page in the page cache.
4369 */
4370 if (page->mapping != inode->i_mapping) {
652f25a2 4371 unlock_page(page);
09cbfeaf 4372 put_page(page);
edd1400b
MX
4373 goto again;
4374 }
ff023aac
SB
4375 if (!PageUptodate(page)) {
4376 ret = -EIO;
4377 goto next_page;
4378 }
4379 }
32159242 4380
1c8c9c52 4381 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
32159242
GH
4382 nocow_ctx_logical);
4383 if (ret) {
4384 ret = ret > 0 ? 0 : ret;
4385 goto next_page;
4386 }
4387
826aa0a8
MX
4388 err = write_page_nocow(nocow_ctx->sctx,
4389 physical_for_dev_replace, page);
4390 if (err)
4391 ret = err;
ff023aac 4392next_page:
826aa0a8 4393 unlock_page(page);
09cbfeaf 4394 put_page(page);
826aa0a8
MX
4395
4396 if (ret)
4397 break;
4398
09cbfeaf
KS
4399 offset += PAGE_SIZE;
4400 physical_for_dev_replace += PAGE_SIZE;
4401 nocow_ctx_logical += PAGE_SIZE;
4402 len -= PAGE_SIZE;
ff023aac 4403 }
652f25a2 4404 ret = COPY_COMPLETE;
826aa0a8 4405out:
5955102c 4406 inode_unlock(inode);
826aa0a8 4407 iput(inode);
ff023aac
SB
4408 return ret;
4409}
4410
4411static int write_page_nocow(struct scrub_ctx *sctx,
4412 u64 physical_for_dev_replace, struct page *page)
4413{
4414 struct bio *bio;
4415 struct btrfs_device *dev;
4416 int ret;
ff023aac
SB
4417
4418 dev = sctx->wr_ctx.tgtdev;
4419 if (!dev)
4420 return -EIO;
4421 if (!dev->bdev) {
fb456252 4422 btrfs_warn_rl(dev->fs_info,
94647322 4423 "scrub write_page_nocow(bdev == NULL) is unexpected");
ff023aac
SB
4424 return -EIO;
4425 }
9be3395b 4426 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
4427 if (!bio) {
4428 spin_lock(&sctx->stat_lock);
4429 sctx->stat.malloc_errors++;
4430 spin_unlock(&sctx->stat_lock);
4431 return -ENOMEM;
4432 }
4f024f37
KO
4433 bio->bi_iter.bi_size = 0;
4434 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac 4435 bio->bi_bdev = dev->bdev;
70fd7614 4436 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
09cbfeaf
KS
4437 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4438 if (ret != PAGE_SIZE) {
ff023aac
SB
4439leave_with_eio:
4440 bio_put(bio);
4441 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4442 return -EIO;
4443 }
ff023aac 4444
4e49ea4a 4445 if (btrfsic_submit_bio_wait(bio))
ff023aac
SB
4446 goto leave_with_eio;
4447
4448 bio_put(bio);
4449 return 0;
4450}