]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/scrub.c
btrfs: wake up transaction thread from SYNC_FS ioctl
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c
AJ
65
66struct scrub_page {
b5d67f64
SB
67 struct scrub_block *sblock;
68 struct page *page;
442a4f63 69 struct btrfs_device *dev;
a2de733c
AJ
70 u64 flags; /* extent flags */
71 u64 generation;
b5d67f64
SB
72 u64 logical;
73 u64 physical;
ff023aac 74 u64 physical_for_dev_replace;
7a9e9987 75 atomic_t ref_count;
b5d67f64
SB
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
a2de733c
AJ
81 u8 csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85 int index;
d9d181c1 86 struct scrub_ctx *sctx;
a36cf8b8 87 struct btrfs_device *dev;
a2de733c
AJ
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
ff023aac
SB
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
b5d67f64 97 int page_count;
a2de733c
AJ
98 int next_free;
99 struct btrfs_work work;
100};
101
b5d67f64 102struct scrub_block {
7a9e9987 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 107 struct scrub_ctx *sctx;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
b5d67f64
SB
113 };
114};
115
ff023aac
SB
116struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122};
123
d9d181c1 124struct scrub_ctx {
ff023aac 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 126 struct btrfs_root *dev_root;
a2de733c
AJ
127 int first_free;
128 int curr;
b6bfebc1
SB
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
a2de733c
AJ
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
8628764e 136 int readonly;
ff023aac 137 int pages_per_rd_bio;
b5d67f64
SB
138 u32 sectorsize;
139 u32 nodesize;
63a212ab
SB
140
141 int is_dev_replace;
ff023aac 142 struct scrub_wr_ctx wr_ctx;
63a212ab 143
a2de733c
AJ
144 /*
145 * statistics
146 */
147 struct btrfs_scrub_progress stat;
148 spinlock_t stat_lock;
149};
150
0ef8e451 151struct scrub_fixup_nodatasum {
d9d181c1 152 struct scrub_ctx *sctx;
a36cf8b8 153 struct btrfs_device *dev;
0ef8e451
JS
154 u64 logical;
155 struct btrfs_root *root;
156 struct btrfs_work work;
157 int mirror_num;
158};
159
652f25a2
JB
160struct scrub_nocow_inode {
161 u64 inum;
162 u64 offset;
163 u64 root;
164 struct list_head list;
165};
166
ff023aac
SB
167struct scrub_copy_nocow_ctx {
168 struct scrub_ctx *sctx;
169 u64 logical;
170 u64 len;
171 int mirror_num;
172 u64 physical_for_dev_replace;
652f25a2 173 struct list_head inodes;
ff023aac
SB
174 struct btrfs_work work;
175};
176
558540c1
JS
177struct scrub_warning {
178 struct btrfs_path *path;
179 u64 extent_item_size;
180 char *scratch_buf;
181 char *msg_buf;
182 const char *errstr;
183 sector_t sector;
184 u64 logical;
185 struct btrfs_device *dev;
186 int msg_bufsize;
187 int scratch_bufsize;
188};
189
b5d67f64 190
b6bfebc1
SB
191static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
192static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
193static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
194static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 195static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 196static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 197 struct btrfs_fs_info *fs_info,
ff023aac 198 struct scrub_block *original_sblock,
b5d67f64 199 u64 length, u64 logical,
ff023aac 200 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
201static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
202 struct scrub_block *sblock, int is_metadata,
203 int have_csum, u8 *csum, u64 generation,
204 u16 csum_size);
b5d67f64
SB
205static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
206 struct scrub_block *sblock,
207 int is_metadata, int have_csum,
208 const u8 *csum, u64 generation,
209 u16 csum_size);
b5d67f64
SB
210static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
211 struct scrub_block *sblock_good,
212 int force_write);
213static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
214 struct scrub_block *sblock_good,
215 int page_num, int force_write);
ff023aac
SB
216static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
217static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
218 int page_num);
b5d67f64
SB
219static int scrub_checksum_data(struct scrub_block *sblock);
220static int scrub_checksum_tree_block(struct scrub_block *sblock);
221static int scrub_checksum_super(struct scrub_block *sblock);
222static void scrub_block_get(struct scrub_block *sblock);
223static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
224static void scrub_page_get(struct scrub_page *spage);
225static void scrub_page_put(struct scrub_page *spage);
ff023aac
SB
226static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
227 struct scrub_page *spage);
d9d181c1 228static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 229 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
230 u64 gen, int mirror_num, u8 *csum, int force,
231 u64 physical_for_dev_replace);
1623edeb 232static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
233static void scrub_bio_end_io_worker(struct btrfs_work *work);
234static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
235static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
236 u64 extent_logical, u64 extent_len,
237 u64 *extent_physical,
238 struct btrfs_device **extent_dev,
239 int *extent_mirror_num);
240static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
241 struct scrub_wr_ctx *wr_ctx,
242 struct btrfs_fs_info *fs_info,
243 struct btrfs_device *dev,
244 int is_dev_replace);
245static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
246static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
247 struct scrub_page *spage);
248static void scrub_wr_submit(struct scrub_ctx *sctx);
249static void scrub_wr_bio_end_io(struct bio *bio, int err);
250static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
251static int write_page_nocow(struct scrub_ctx *sctx,
252 u64 physical_for_dev_replace, struct page *page);
253static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 254 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
255static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
256 int mirror_num, u64 physical_for_dev_replace);
257static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 258static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 259static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
1623edeb
SB
260
261
b6bfebc1
SB
262static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263{
264 atomic_inc(&sctx->bios_in_flight);
265}
266
267static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
268{
269 atomic_dec(&sctx->bios_in_flight);
270 wake_up(&sctx->list_wait);
271}
272
cb7ab021 273static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
274{
275 while (atomic_read(&fs_info->scrub_pause_req)) {
276 mutex_unlock(&fs_info->scrub_lock);
277 wait_event(fs_info->scrub_pause_wait,
278 atomic_read(&fs_info->scrub_pause_req) == 0);
279 mutex_lock(&fs_info->scrub_lock);
280 }
281}
282
cb7ab021
WS
283static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
284{
285 atomic_inc(&fs_info->scrubs_paused);
286 wake_up(&fs_info->scrub_pause_wait);
287
288 mutex_lock(&fs_info->scrub_lock);
289 __scrub_blocked_if_needed(fs_info);
290 atomic_dec(&fs_info->scrubs_paused);
291 mutex_unlock(&fs_info->scrub_lock);
292
293 wake_up(&fs_info->scrub_pause_wait);
294}
295
b6bfebc1
SB
296/*
297 * used for workers that require transaction commits (i.e., for the
298 * NOCOW case)
299 */
300static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
301{
302 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
303
304 /*
305 * increment scrubs_running to prevent cancel requests from
306 * completing as long as a worker is running. we must also
307 * increment scrubs_paused to prevent deadlocking on pause
308 * requests used for transactions commits (as the worker uses a
309 * transaction context). it is safe to regard the worker
310 * as paused for all matters practical. effectively, we only
311 * avoid cancellation requests from completing.
312 */
313 mutex_lock(&fs_info->scrub_lock);
314 atomic_inc(&fs_info->scrubs_running);
315 atomic_inc(&fs_info->scrubs_paused);
316 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
317
318 /*
319 * check if @scrubs_running=@scrubs_paused condition
320 * inside wait_event() is not an atomic operation.
321 * which means we may inc/dec @scrub_running/paused
322 * at any time. Let's wake up @scrub_pause_wait as
323 * much as we can to let commit transaction blocked less.
324 */
325 wake_up(&fs_info->scrub_pause_wait);
326
b6bfebc1
SB
327 atomic_inc(&sctx->workers_pending);
328}
329
330/* used for workers that require transaction commits */
331static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
332{
333 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
334
335 /*
336 * see scrub_pending_trans_workers_inc() why we're pretending
337 * to be paused in the scrub counters
338 */
339 mutex_lock(&fs_info->scrub_lock);
340 atomic_dec(&fs_info->scrubs_running);
341 atomic_dec(&fs_info->scrubs_paused);
342 mutex_unlock(&fs_info->scrub_lock);
343 atomic_dec(&sctx->workers_pending);
344 wake_up(&fs_info->scrub_pause_wait);
345 wake_up(&sctx->list_wait);
346}
347
d9d181c1 348static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 349{
d9d181c1 350 while (!list_empty(&sctx->csum_list)) {
a2de733c 351 struct btrfs_ordered_sum *sum;
d9d181c1 352 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
353 struct btrfs_ordered_sum, list);
354 list_del(&sum->list);
355 kfree(sum);
356 }
357}
358
d9d181c1 359static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
360{
361 int i;
a2de733c 362
d9d181c1 363 if (!sctx)
a2de733c
AJ
364 return;
365
ff023aac
SB
366 scrub_free_wr_ctx(&sctx->wr_ctx);
367
b5d67f64 368 /* this can happen when scrub is cancelled */
d9d181c1
SB
369 if (sctx->curr != -1) {
370 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
371
372 for (i = 0; i < sbio->page_count; i++) {
ff023aac 373 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
374 scrub_block_put(sbio->pagev[i]->sblock);
375 }
376 bio_put(sbio->bio);
377 }
378
ff023aac 379 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 380 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
381
382 if (!sbio)
383 break;
a2de733c
AJ
384 kfree(sbio);
385 }
386
d9d181c1
SB
387 scrub_free_csums(sctx);
388 kfree(sctx);
a2de733c
AJ
389}
390
391static noinline_for_stack
63a212ab 392struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 393{
d9d181c1 394 struct scrub_ctx *sctx;
a2de733c 395 int i;
a2de733c 396 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
397 int pages_per_rd_bio;
398 int ret;
a2de733c 399
ff023aac
SB
400 /*
401 * the setting of pages_per_rd_bio is correct for scrub but might
402 * be wrong for the dev_replace code where we might read from
403 * different devices in the initial huge bios. However, that
404 * code is able to correctly handle the case when adding a page
405 * to a bio fails.
406 */
407 if (dev->bdev)
408 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
409 bio_get_nr_vecs(dev->bdev));
410 else
411 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
412 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
413 if (!sctx)
a2de733c 414 goto nomem;
63a212ab 415 sctx->is_dev_replace = is_dev_replace;
ff023aac 416 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 417 sctx->curr = -1;
a36cf8b8 418 sctx->dev_root = dev->dev_root;
ff023aac 419 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
420 struct scrub_bio *sbio;
421
422 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
423 if (!sbio)
424 goto nomem;
d9d181c1 425 sctx->bios[i] = sbio;
a2de733c 426
a2de733c 427 sbio->index = i;
d9d181c1 428 sbio->sctx = sctx;
b5d67f64 429 sbio->page_count = 0;
9e0af237
LB
430 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
431 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 432
ff023aac 433 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 434 sctx->bios[i]->next_free = i + 1;
0ef8e451 435 else
d9d181c1
SB
436 sctx->bios[i]->next_free = -1;
437 }
438 sctx->first_free = 0;
439 sctx->nodesize = dev->dev_root->nodesize;
d9d181c1 440 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
441 atomic_set(&sctx->bios_in_flight, 0);
442 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
443 atomic_set(&sctx->cancel_req, 0);
444 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
445 INIT_LIST_HEAD(&sctx->csum_list);
446
447 spin_lock_init(&sctx->list_lock);
448 spin_lock_init(&sctx->stat_lock);
449 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
450
451 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
452 fs_info->dev_replace.tgtdev, is_dev_replace);
453 if (ret) {
454 scrub_free_ctx(sctx);
455 return ERR_PTR(ret);
456 }
d9d181c1 457 return sctx;
a2de733c
AJ
458
459nomem:
d9d181c1 460 scrub_free_ctx(sctx);
a2de733c
AJ
461 return ERR_PTR(-ENOMEM);
462}
463
ff023aac
SB
464static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
465 void *warn_ctx)
558540c1
JS
466{
467 u64 isize;
468 u32 nlink;
469 int ret;
470 int i;
471 struct extent_buffer *eb;
472 struct btrfs_inode_item *inode_item;
ff023aac 473 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
474 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
475 struct inode_fs_paths *ipath = NULL;
476 struct btrfs_root *local_root;
477 struct btrfs_key root_key;
478
479 root_key.objectid = root;
480 root_key.type = BTRFS_ROOT_ITEM_KEY;
481 root_key.offset = (u64)-1;
482 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
483 if (IS_ERR(local_root)) {
484 ret = PTR_ERR(local_root);
485 goto err;
486 }
487
488 ret = inode_item_info(inum, 0, local_root, swarn->path);
489 if (ret) {
490 btrfs_release_path(swarn->path);
491 goto err;
492 }
493
494 eb = swarn->path->nodes[0];
495 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
496 struct btrfs_inode_item);
497 isize = btrfs_inode_size(eb, inode_item);
498 nlink = btrfs_inode_nlink(eb, inode_item);
499 btrfs_release_path(swarn->path);
500
501 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
502 if (IS_ERR(ipath)) {
503 ret = PTR_ERR(ipath);
504 ipath = NULL;
505 goto err;
506 }
558540c1
JS
507 ret = paths_from_inode(inum, ipath);
508
509 if (ret < 0)
510 goto err;
511
512 /*
513 * we deliberately ignore the bit ipath might have been too small to
514 * hold all of the paths here
515 */
516 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
efe120a0 517 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
518 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
519 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 520 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
521 (unsigned long long)swarn->sector, root, inum, offset,
522 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 523 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
524
525 free_ipath(ipath);
526 return 0;
527
528err:
efe120a0 529 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
530 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
531 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 532 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
533 (unsigned long long)swarn->sector, root, inum, offset, ret);
534
535 free_ipath(ipath);
536 return 0;
537}
538
b5d67f64 539static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 540{
a36cf8b8
SB
541 struct btrfs_device *dev;
542 struct btrfs_fs_info *fs_info;
558540c1
JS
543 struct btrfs_path *path;
544 struct btrfs_key found_key;
545 struct extent_buffer *eb;
546 struct btrfs_extent_item *ei;
547 struct scrub_warning swarn;
69917e43
LB
548 unsigned long ptr = 0;
549 u64 extent_item_pos;
550 u64 flags = 0;
558540c1 551 u64 ref_root;
69917e43 552 u32 item_size;
558540c1 553 u8 ref_level;
558540c1 554 const int bufsize = 4096;
69917e43 555 int ret;
558540c1 556
a36cf8b8 557 WARN_ON(sblock->page_count < 1);
7a9e9987 558 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
559 fs_info = sblock->sctx->dev_root->fs_info;
560
558540c1
JS
561 path = btrfs_alloc_path();
562
563 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
564 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
7a9e9987
SB
565 swarn.sector = (sblock->pagev[0]->physical) >> 9;
566 swarn.logical = sblock->pagev[0]->logical;
558540c1 567 swarn.errstr = errstr;
a36cf8b8 568 swarn.dev = NULL;
558540c1
JS
569 swarn.msg_bufsize = bufsize;
570 swarn.scratch_bufsize = bufsize;
571
572 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
573 goto out;
574
69917e43
LB
575 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
576 &flags);
558540c1
JS
577 if (ret < 0)
578 goto out;
579
4692cf58 580 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
581 swarn.extent_item_size = found_key.offset;
582
583 eb = path->nodes[0];
584 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
585 item_size = btrfs_item_size_nr(eb, path->slots[0]);
586
69917e43 587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 588 do {
6eda71d0
LB
589 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
590 item_size, &ref_root,
591 &ref_level);
606686ee 592 printk_in_rcu(KERN_WARNING
efe120a0 593 "BTRFS: %s at logical %llu on dev %s, "
558540c1 594 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
595 "%llu\n", errstr, swarn.logical,
596 rcu_str_deref(dev->name),
558540c1
JS
597 (unsigned long long)swarn.sector,
598 ref_level ? "node" : "leaf",
599 ret < 0 ? -1 : ref_level,
600 ret < 0 ? -1 : ref_root);
601 } while (ret != 1);
d8fe29e9 602 btrfs_release_path(path);
558540c1 603 } else {
d8fe29e9 604 btrfs_release_path(path);
558540c1 605 swarn.path = path;
a36cf8b8 606 swarn.dev = dev;
7a3ae2f8
JS
607 iterate_extent_inodes(fs_info, found_key.objectid,
608 extent_item_pos, 1,
558540c1
JS
609 scrub_print_warning_inode, &swarn);
610 }
611
612out:
613 btrfs_free_path(path);
614 kfree(swarn.scratch_buf);
615 kfree(swarn.msg_buf);
616}
617
ff023aac 618static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 619{
5da6fcbc 620 struct page *page = NULL;
0ef8e451 621 unsigned long index;
ff023aac 622 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 623 int ret;
5da6fcbc 624 int corrected = 0;
0ef8e451 625 struct btrfs_key key;
5da6fcbc 626 struct inode *inode = NULL;
6f1c3605 627 struct btrfs_fs_info *fs_info;
0ef8e451
JS
628 u64 end = offset + PAGE_SIZE - 1;
629 struct btrfs_root *local_root;
6f1c3605 630 int srcu_index;
0ef8e451
JS
631
632 key.objectid = root;
633 key.type = BTRFS_ROOT_ITEM_KEY;
634 key.offset = (u64)-1;
6f1c3605
LB
635
636 fs_info = fixup->root->fs_info;
637 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
638
639 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
640 if (IS_ERR(local_root)) {
641 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 642 return PTR_ERR(local_root);
6f1c3605 643 }
0ef8e451
JS
644
645 key.type = BTRFS_INODE_ITEM_KEY;
646 key.objectid = inum;
647 key.offset = 0;
6f1c3605
LB
648 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
649 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
650 if (IS_ERR(inode))
651 return PTR_ERR(inode);
652
0ef8e451
JS
653 index = offset >> PAGE_CACHE_SHIFT;
654
655 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
656 if (!page) {
657 ret = -ENOMEM;
658 goto out;
659 }
660
661 if (PageUptodate(page)) {
5da6fcbc
JS
662 if (PageDirty(page)) {
663 /*
664 * we need to write the data to the defect sector. the
665 * data that was in that sector is not in memory,
666 * because the page was modified. we must not write the
667 * modified page to that sector.
668 *
669 * TODO: what could be done here: wait for the delalloc
670 * runner to write out that page (might involve
671 * COW) and see whether the sector is still
672 * referenced afterwards.
673 *
674 * For the meantime, we'll treat this error
675 * incorrectable, although there is a chance that a
676 * later scrub will find the bad sector again and that
677 * there's no dirty page in memory, then.
678 */
679 ret = -EIO;
680 goto out;
681 }
3ec706c8
SB
682 fs_info = BTRFS_I(inode)->root->fs_info;
683 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
5da6fcbc
JS
684 fixup->logical, page,
685 fixup->mirror_num);
686 unlock_page(page);
687 corrected = !ret;
688 } else {
689 /*
690 * we need to get good data first. the general readpage path
691 * will call repair_io_failure for us, we just have to make
692 * sure we read the bad mirror.
693 */
694 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
695 EXTENT_DAMAGED, GFP_NOFS);
696 if (ret) {
697 /* set_extent_bits should give proper error */
698 WARN_ON(ret > 0);
699 if (ret > 0)
700 ret = -EFAULT;
701 goto out;
702 }
703
704 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
705 btrfs_get_extent,
706 fixup->mirror_num);
707 wait_on_page_locked(page);
708
709 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
710 end, EXTENT_DAMAGED, 0, NULL);
711 if (!corrected)
712 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
713 EXTENT_DAMAGED, GFP_NOFS);
714 }
715
716out:
717 if (page)
718 put_page(page);
7fb18a06
TK
719
720 iput(inode);
0ef8e451
JS
721
722 if (ret < 0)
723 return ret;
724
725 if (ret == 0 && corrected) {
726 /*
727 * we only need to call readpage for one of the inodes belonging
728 * to this extent. so make iterate_extent_inodes stop
729 */
730 return 1;
731 }
732
733 return -EIO;
734}
735
736static void scrub_fixup_nodatasum(struct btrfs_work *work)
737{
738 int ret;
739 struct scrub_fixup_nodatasum *fixup;
d9d181c1 740 struct scrub_ctx *sctx;
0ef8e451 741 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
742 struct btrfs_path *path;
743 int uncorrectable = 0;
744
745 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 746 sctx = fixup->sctx;
0ef8e451
JS
747
748 path = btrfs_alloc_path();
749 if (!path) {
d9d181c1
SB
750 spin_lock(&sctx->stat_lock);
751 ++sctx->stat.malloc_errors;
752 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
753 uncorrectable = 1;
754 goto out;
755 }
756
757 trans = btrfs_join_transaction(fixup->root);
758 if (IS_ERR(trans)) {
759 uncorrectable = 1;
760 goto out;
761 }
762
763 /*
764 * the idea is to trigger a regular read through the standard path. we
765 * read a page from the (failed) logical address by specifying the
766 * corresponding copynum of the failed sector. thus, that readpage is
767 * expected to fail.
768 * that is the point where on-the-fly error correction will kick in
769 * (once it's finished) and rewrite the failed sector if a good copy
770 * can be found.
771 */
772 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
773 path, scrub_fixup_readpage,
774 fixup);
775 if (ret < 0) {
776 uncorrectable = 1;
777 goto out;
778 }
779 WARN_ON(ret != 1);
780
d9d181c1
SB
781 spin_lock(&sctx->stat_lock);
782 ++sctx->stat.corrected_errors;
783 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
784
785out:
786 if (trans && !IS_ERR(trans))
787 btrfs_end_transaction(trans, fixup->root);
788 if (uncorrectable) {
d9d181c1
SB
789 spin_lock(&sctx->stat_lock);
790 ++sctx->stat.uncorrectable_errors;
791 spin_unlock(&sctx->stat_lock);
ff023aac
SB
792 btrfs_dev_replace_stats_inc(
793 &sctx->dev_root->fs_info->dev_replace.
794 num_uncorrectable_read_errors);
efe120a0
FH
795 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
796 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 797 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
798 }
799
800 btrfs_free_path(path);
801 kfree(fixup);
802
b6bfebc1 803 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
804}
805
a2de733c 806/*
b5d67f64
SB
807 * scrub_handle_errored_block gets called when either verification of the
808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
809 * case, this function handles all pages in the bio, even though only one
810 * may be bad.
811 * The goal of this function is to repair the errored block by using the
812 * contents of one of the mirrors.
a2de733c 813 */
b5d67f64 814static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 815{
d9d181c1 816 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 817 struct btrfs_device *dev;
b5d67f64
SB
818 struct btrfs_fs_info *fs_info;
819 u64 length;
820 u64 logical;
821 u64 generation;
822 unsigned int failed_mirror_index;
823 unsigned int is_metadata;
824 unsigned int have_csum;
825 u8 *csum;
826 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
827 struct scrub_block *sblock_bad;
828 int ret;
829 int mirror_index;
830 int page_num;
831 int success;
558540c1 832 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
833 DEFAULT_RATELIMIT_BURST);
834
835 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 836 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
837 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
838 /*
839 * if we find an error in a super block, we just report it.
840 * They will get written with the next transaction commit
841 * anyway
842 */
843 spin_lock(&sctx->stat_lock);
844 ++sctx->stat.super_errors;
845 spin_unlock(&sctx->stat_lock);
846 return 0;
847 }
b5d67f64 848 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
849 logical = sblock_to_check->pagev[0]->logical;
850 generation = sblock_to_check->pagev[0]->generation;
851 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
852 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
853 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 854 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
855 have_csum = sblock_to_check->pagev[0]->have_csum;
856 csum = sblock_to_check->pagev[0]->csum;
857 dev = sblock_to_check->pagev[0]->dev;
13db62b7 858
ff023aac
SB
859 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
860 sblocks_for_recheck = NULL;
861 goto nodatasum_case;
862 }
863
b5d67f64
SB
864 /*
865 * read all mirrors one after the other. This includes to
866 * re-read the extent or metadata block that failed (that was
867 * the cause that this fixup code is called) another time,
868 * page by page this time in order to know which pages
869 * caused I/O errors and which ones are good (for all mirrors).
870 * It is the goal to handle the situation when more than one
871 * mirror contains I/O errors, but the errors do not
872 * overlap, i.e. the data can be repaired by selecting the
873 * pages from those mirrors without I/O error on the
874 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
875 * would be that mirror #1 has an I/O error on the first page,
876 * the second page is good, and mirror #2 has an I/O error on
877 * the second page, but the first page is good.
878 * Then the first page of the first mirror can be repaired by
879 * taking the first page of the second mirror, and the
880 * second page of the second mirror can be repaired by
881 * copying the contents of the 2nd page of the 1st mirror.
882 * One more note: if the pages of one mirror contain I/O
883 * errors, the checksum cannot be verified. In order to get
884 * the best data for repairing, the first attempt is to find
885 * a mirror without I/O errors and with a validated checksum.
886 * Only if this is not possible, the pages are picked from
887 * mirrors with I/O errors without considering the checksum.
888 * If the latter is the case, at the end, the checksum of the
889 * repaired area is verified in order to correctly maintain
890 * the statistics.
891 */
892
893 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
894 sizeof(*sblocks_for_recheck),
895 GFP_NOFS);
896 if (!sblocks_for_recheck) {
d9d181c1
SB
897 spin_lock(&sctx->stat_lock);
898 sctx->stat.malloc_errors++;
899 sctx->stat.read_errors++;
900 sctx->stat.uncorrectable_errors++;
901 spin_unlock(&sctx->stat_lock);
a36cf8b8 902 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 903 goto out;
a2de733c
AJ
904 }
905
b5d67f64 906 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 907 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
908 logical, sblocks_for_recheck);
909 if (ret) {
d9d181c1
SB
910 spin_lock(&sctx->stat_lock);
911 sctx->stat.read_errors++;
912 sctx->stat.uncorrectable_errors++;
913 spin_unlock(&sctx->stat_lock);
a36cf8b8 914 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
915 goto out;
916 }
917 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
918 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 919
b5d67f64 920 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9
SB
921 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
922 csum, generation, sctx->csum_size);
a2de733c 923
b5d67f64
SB
924 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
925 sblock_bad->no_io_error_seen) {
926 /*
927 * the error disappeared after reading page by page, or
928 * the area was part of a huge bio and other parts of the
929 * bio caused I/O errors, or the block layer merged several
930 * read requests into one and the error is caused by a
931 * different bio (usually one of the two latter cases is
932 * the cause)
933 */
d9d181c1
SB
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.unverified_errors++;
936 spin_unlock(&sctx->stat_lock);
a2de733c 937
ff023aac
SB
938 if (sctx->is_dev_replace)
939 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 940 goto out;
a2de733c 941 }
a2de733c 942
b5d67f64 943 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
944 spin_lock(&sctx->stat_lock);
945 sctx->stat.read_errors++;
946 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
947 if (__ratelimit(&_rs))
948 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 949 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 950 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
951 spin_lock(&sctx->stat_lock);
952 sctx->stat.csum_errors++;
953 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
954 if (__ratelimit(&_rs))
955 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 956 btrfs_dev_stat_inc_and_print(dev,
442a4f63 957 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 958 } else if (sblock_bad->header_error) {
d9d181c1
SB
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.verify_errors++;
961 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
962 if (__ratelimit(&_rs))
963 scrub_print_warning("checksum/header error",
964 sblock_to_check);
442a4f63 965 if (sblock_bad->generation_error)
a36cf8b8 966 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
967 BTRFS_DEV_STAT_GENERATION_ERRS);
968 else
a36cf8b8 969 btrfs_dev_stat_inc_and_print(dev,
442a4f63 970 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 971 }
a2de733c 972
33ef30ad
ID
973 if (sctx->readonly) {
974 ASSERT(!sctx->is_dev_replace);
975 goto out;
976 }
a2de733c 977
b5d67f64
SB
978 if (!is_metadata && !have_csum) {
979 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 980
ff023aac
SB
981nodatasum_case:
982 WARN_ON(sctx->is_dev_replace);
983
b5d67f64
SB
984 /*
985 * !is_metadata and !have_csum, this means that the data
986 * might not be COW'ed, that it might be modified
987 * concurrently. The general strategy to work on the
988 * commit root does not help in the case when COW is not
989 * used.
990 */
991 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
992 if (!fixup_nodatasum)
993 goto did_not_correct_error;
d9d181c1 994 fixup_nodatasum->sctx = sctx;
a36cf8b8 995 fixup_nodatasum->dev = dev;
b5d67f64
SB
996 fixup_nodatasum->logical = logical;
997 fixup_nodatasum->root = fs_info->extent_root;
998 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 999 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1000 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1001 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1002 btrfs_queue_work(fs_info->scrub_workers,
1003 &fixup_nodatasum->work);
b5d67f64 1004 goto out;
a2de733c
AJ
1005 }
1006
b5d67f64
SB
1007 /*
1008 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1009 * checksums.
1010 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1011 * errors and also does not have a checksum error.
1012 * If one is found, and if a checksum is present, the full block
1013 * that is known to contain an error is rewritten. Afterwards
1014 * the block is known to be corrected.
1015 * If a mirror is found which is completely correct, and no
1016 * checksum is present, only those pages are rewritten that had
1017 * an I/O error in the block to be repaired, since it cannot be
1018 * determined, which copy of the other pages is better (and it
1019 * could happen otherwise that a correct page would be
1020 * overwritten by a bad one).
1021 */
1022 for (mirror_index = 0;
1023 mirror_index < BTRFS_MAX_MIRRORS &&
1024 sblocks_for_recheck[mirror_index].page_count > 0;
1025 mirror_index++) {
cb2ced73 1026 struct scrub_block *sblock_other;
b5d67f64 1027
cb2ced73
SB
1028 if (mirror_index == failed_mirror_index)
1029 continue;
1030 sblock_other = sblocks_for_recheck + mirror_index;
1031
1032 /* build and submit the bios, check checksums */
34f5c8e9
SB
1033 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1034 have_csum, csum, generation,
1035 sctx->csum_size);
1036
1037 if (!sblock_other->header_error &&
b5d67f64
SB
1038 !sblock_other->checksum_error &&
1039 sblock_other->no_io_error_seen) {
ff023aac
SB
1040 if (sctx->is_dev_replace) {
1041 scrub_write_block_to_dev_replace(sblock_other);
1042 } else {
1043 int force_write = is_metadata || have_csum;
1044
1045 ret = scrub_repair_block_from_good_copy(
1046 sblock_bad, sblock_other,
1047 force_write);
1048 }
b5d67f64
SB
1049 if (0 == ret)
1050 goto corrected_error;
1051 }
1052 }
a2de733c
AJ
1053
1054 /*
ff023aac
SB
1055 * for dev_replace, pick good pages and write to the target device.
1056 */
1057 if (sctx->is_dev_replace) {
1058 success = 1;
1059 for (page_num = 0; page_num < sblock_bad->page_count;
1060 page_num++) {
1061 int sub_success;
1062
1063 sub_success = 0;
1064 for (mirror_index = 0;
1065 mirror_index < BTRFS_MAX_MIRRORS &&
1066 sblocks_for_recheck[mirror_index].page_count > 0;
1067 mirror_index++) {
1068 struct scrub_block *sblock_other =
1069 sblocks_for_recheck + mirror_index;
1070 struct scrub_page *page_other =
1071 sblock_other->pagev[page_num];
1072
1073 if (!page_other->io_error) {
1074 ret = scrub_write_page_to_dev_replace(
1075 sblock_other, page_num);
1076 if (ret == 0) {
1077 /* succeeded for this page */
1078 sub_success = 1;
1079 break;
1080 } else {
1081 btrfs_dev_replace_stats_inc(
1082 &sctx->dev_root->
1083 fs_info->dev_replace.
1084 num_write_errors);
1085 }
1086 }
1087 }
1088
1089 if (!sub_success) {
1090 /*
1091 * did not find a mirror to fetch the page
1092 * from. scrub_write_page_to_dev_replace()
1093 * handles this case (page->io_error), by
1094 * filling the block with zeros before
1095 * submitting the write request
1096 */
1097 success = 0;
1098 ret = scrub_write_page_to_dev_replace(
1099 sblock_bad, page_num);
1100 if (ret)
1101 btrfs_dev_replace_stats_inc(
1102 &sctx->dev_root->fs_info->
1103 dev_replace.num_write_errors);
1104 }
1105 }
1106
1107 goto out;
1108 }
1109
1110 /*
1111 * for regular scrub, repair those pages that are errored.
1112 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1113 * repaired, continue by picking good copies of those pages.
1114 * Select the good pages from mirrors to rewrite bad pages from
1115 * the area to fix. Afterwards verify the checksum of the block
1116 * that is supposed to be repaired. This verification step is
1117 * only done for the purpose of statistic counting and for the
1118 * final scrub report, whether errors remain.
1119 * A perfect algorithm could make use of the checksum and try
1120 * all possible combinations of pages from the different mirrors
1121 * until the checksum verification succeeds. For example, when
1122 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1123 * of mirror #2 is readable but the final checksum test fails,
1124 * then the 2nd page of mirror #3 could be tried, whether now
1125 * the final checksum succeedes. But this would be a rare
1126 * exception and is therefore not implemented. At least it is
1127 * avoided that the good copy is overwritten.
1128 * A more useful improvement would be to pick the sectors
1129 * without I/O error based on sector sizes (512 bytes on legacy
1130 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1131 * mirror could be repaired by taking 512 byte of a different
1132 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1133 * area are unreadable.
a2de733c 1134 */
a2de733c 1135
b5d67f64
SB
1136 /* can only fix I/O errors from here on */
1137 if (sblock_bad->no_io_error_seen)
1138 goto did_not_correct_error;
1139
1140 success = 1;
1141 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1142 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1143
1144 if (!page_bad->io_error)
a2de733c 1145 continue;
b5d67f64
SB
1146
1147 for (mirror_index = 0;
1148 mirror_index < BTRFS_MAX_MIRRORS &&
1149 sblocks_for_recheck[mirror_index].page_count > 0;
1150 mirror_index++) {
1151 struct scrub_block *sblock_other = sblocks_for_recheck +
1152 mirror_index;
7a9e9987
SB
1153 struct scrub_page *page_other = sblock_other->pagev[
1154 page_num];
b5d67f64
SB
1155
1156 if (!page_other->io_error) {
1157 ret = scrub_repair_page_from_good_copy(
1158 sblock_bad, sblock_other, page_num, 0);
1159 if (0 == ret) {
1160 page_bad->io_error = 0;
1161 break; /* succeeded for this page */
1162 }
1163 }
96e36920 1164 }
a2de733c 1165
b5d67f64
SB
1166 if (page_bad->io_error) {
1167 /* did not find a mirror to copy the page from */
1168 success = 0;
1169 }
a2de733c 1170 }
a2de733c 1171
b5d67f64
SB
1172 if (success) {
1173 if (is_metadata || have_csum) {
1174 /*
1175 * need to verify the checksum now that all
1176 * sectors on disk are repaired (the write
1177 * request for data to be repaired is on its way).
1178 * Just be lazy and use scrub_recheck_block()
1179 * which re-reads the data before the checksum
1180 * is verified, but most likely the data comes out
1181 * of the page cache.
1182 */
34f5c8e9
SB
1183 scrub_recheck_block(fs_info, sblock_bad,
1184 is_metadata, have_csum, csum,
1185 generation, sctx->csum_size);
1186 if (!sblock_bad->header_error &&
b5d67f64
SB
1187 !sblock_bad->checksum_error &&
1188 sblock_bad->no_io_error_seen)
1189 goto corrected_error;
1190 else
1191 goto did_not_correct_error;
1192 } else {
1193corrected_error:
d9d181c1
SB
1194 spin_lock(&sctx->stat_lock);
1195 sctx->stat.corrected_errors++;
1196 spin_unlock(&sctx->stat_lock);
606686ee 1197 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1198 "BTRFS: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1199 logical, rcu_str_deref(dev->name));
8628764e 1200 }
b5d67f64
SB
1201 } else {
1202did_not_correct_error:
d9d181c1
SB
1203 spin_lock(&sctx->stat_lock);
1204 sctx->stat.uncorrectable_errors++;
1205 spin_unlock(&sctx->stat_lock);
606686ee 1206 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1207 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1208 logical, rcu_str_deref(dev->name));
96e36920 1209 }
a2de733c 1210
b5d67f64
SB
1211out:
1212 if (sblocks_for_recheck) {
1213 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1214 mirror_index++) {
1215 struct scrub_block *sblock = sblocks_for_recheck +
1216 mirror_index;
1217 int page_index;
1218
7a9e9987
SB
1219 for (page_index = 0; page_index < sblock->page_count;
1220 page_index++) {
1221 sblock->pagev[page_index]->sblock = NULL;
1222 scrub_page_put(sblock->pagev[page_index]);
1223 }
b5d67f64
SB
1224 }
1225 kfree(sblocks_for_recheck);
1226 }
a2de733c 1227
b5d67f64
SB
1228 return 0;
1229}
a2de733c 1230
d9d181c1 1231static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1232 struct btrfs_fs_info *fs_info,
ff023aac 1233 struct scrub_block *original_sblock,
b5d67f64
SB
1234 u64 length, u64 logical,
1235 struct scrub_block *sblocks_for_recheck)
1236{
1237 int page_index;
1238 int mirror_index;
1239 int ret;
1240
1241 /*
7a9e9987 1242 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1243 * are not used (and not set) in the blocks that are used for
1244 * the recheck procedure
1245 */
1246
1247 page_index = 0;
1248 while (length > 0) {
1249 u64 sublen = min_t(u64, length, PAGE_SIZE);
1250 u64 mapped_length = sublen;
1251 struct btrfs_bio *bbio = NULL;
a2de733c 1252
b5d67f64
SB
1253 /*
1254 * with a length of PAGE_SIZE, each returned stripe
1255 * represents one mirror
1256 */
29a8d9a0
SB
1257 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1258 &mapped_length, &bbio, 0);
b5d67f64
SB
1259 if (ret || !bbio || mapped_length < sublen) {
1260 kfree(bbio);
1261 return -EIO;
1262 }
a2de733c 1263
ff023aac 1264 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
1265 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1266 mirror_index++) {
1267 struct scrub_block *sblock;
1268 struct scrub_page *page;
1269
1270 if (mirror_index >= BTRFS_MAX_MIRRORS)
1271 continue;
1272
1273 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1274 sblock->sctx = sctx;
1275 page = kzalloc(sizeof(*page), GFP_NOFS);
1276 if (!page) {
1277leave_nomem:
d9d181c1
SB
1278 spin_lock(&sctx->stat_lock);
1279 sctx->stat.malloc_errors++;
1280 spin_unlock(&sctx->stat_lock);
cf93dcce 1281 kfree(bbio);
b5d67f64
SB
1282 return -ENOMEM;
1283 }
7a9e9987
SB
1284 scrub_page_get(page);
1285 sblock->pagev[page_index] = page;
1286 page->logical = logical;
1287 page->physical = bbio->stripes[mirror_index].physical;
ff023aac
SB
1288 BUG_ON(page_index >= original_sblock->page_count);
1289 page->physical_for_dev_replace =
1290 original_sblock->pagev[page_index]->
1291 physical_for_dev_replace;
7a9e9987
SB
1292 /* for missing devices, dev->bdev is NULL */
1293 page->dev = bbio->stripes[mirror_index].dev;
1294 page->mirror_num = mirror_index + 1;
b5d67f64 1295 sblock->page_count++;
7a9e9987
SB
1296 page->page = alloc_page(GFP_NOFS);
1297 if (!page->page)
1298 goto leave_nomem;
b5d67f64
SB
1299 }
1300 kfree(bbio);
1301 length -= sublen;
1302 logical += sublen;
1303 page_index++;
1304 }
1305
1306 return 0;
96e36920
ID
1307}
1308
b5d67f64
SB
1309/*
1310 * this function will check the on disk data for checksum errors, header
1311 * errors and read I/O errors. If any I/O errors happen, the exact pages
1312 * which are errored are marked as being bad. The goal is to enable scrub
1313 * to take those pages that are not errored from all the mirrors so that
1314 * the pages that are errored in the just handled mirror can be repaired.
1315 */
34f5c8e9
SB
1316static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1317 struct scrub_block *sblock, int is_metadata,
1318 int have_csum, u8 *csum, u64 generation,
1319 u16 csum_size)
96e36920 1320{
b5d67f64 1321 int page_num;
96e36920 1322
b5d67f64
SB
1323 sblock->no_io_error_seen = 1;
1324 sblock->header_error = 0;
1325 sblock->checksum_error = 0;
96e36920 1326
b5d67f64
SB
1327 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1328 struct bio *bio;
7a9e9987 1329 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1330
442a4f63 1331 if (page->dev->bdev == NULL) {
ea9947b4
SB
1332 page->io_error = 1;
1333 sblock->no_io_error_seen = 0;
1334 continue;
1335 }
1336
7a9e9987 1337 WARN_ON(!page->page);
9be3395b 1338 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1339 if (!bio) {
1340 page->io_error = 1;
1341 sblock->no_io_error_seen = 0;
1342 continue;
1343 }
442a4f63 1344 bio->bi_bdev = page->dev->bdev;
4f024f37 1345 bio->bi_iter.bi_sector = page->physical >> 9;
b5d67f64 1346
34f5c8e9 1347 bio_add_page(bio, page->page, PAGE_SIZE, 0);
33879d45 1348 if (btrfsic_submit_bio_wait(READ, bio))
b5d67f64 1349 sblock->no_io_error_seen = 0;
33879d45 1350
b5d67f64
SB
1351 bio_put(bio);
1352 }
96e36920 1353
b5d67f64
SB
1354 if (sblock->no_io_error_seen)
1355 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1356 have_csum, csum, generation,
1357 csum_size);
1358
34f5c8e9 1359 return;
a2de733c
AJ
1360}
1361
b5d67f64
SB
1362static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1363 struct scrub_block *sblock,
1364 int is_metadata, int have_csum,
1365 const u8 *csum, u64 generation,
1366 u16 csum_size)
a2de733c 1367{
b5d67f64
SB
1368 int page_num;
1369 u8 calculated_csum[BTRFS_CSUM_SIZE];
1370 u32 crc = ~(u32)0;
b5d67f64
SB
1371 void *mapped_buffer;
1372
7a9e9987 1373 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1374 if (is_metadata) {
1375 struct btrfs_header *h;
1376
7a9e9987 1377 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1378 h = (struct btrfs_header *)mapped_buffer;
1379
3cae210f 1380 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
b5d67f64
SB
1381 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1382 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1383 BTRFS_UUID_SIZE)) {
b5d67f64 1384 sblock->header_error = 1;
3cae210f 1385 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1386 sblock->header_error = 1;
1387 sblock->generation_error = 1;
1388 }
b5d67f64
SB
1389 csum = h->csum;
1390 } else {
1391 if (!have_csum)
1392 return;
a2de733c 1393
7a9e9987 1394 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1395 }
a2de733c 1396
b5d67f64
SB
1397 for (page_num = 0;;) {
1398 if (page_num == 0 && is_metadata)
b0496686 1399 crc = btrfs_csum_data(
b5d67f64
SB
1400 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1401 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1402 else
b0496686 1403 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1404
9613bebb 1405 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1406 page_num++;
1407 if (page_num >= sblock->page_count)
1408 break;
7a9e9987 1409 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1410
7a9e9987 1411 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1412 }
1413
1414 btrfs_csum_final(crc, calculated_csum);
1415 if (memcmp(calculated_csum, csum, csum_size))
1416 sblock->checksum_error = 1;
a2de733c
AJ
1417}
1418
b5d67f64
SB
1419static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1420 struct scrub_block *sblock_good,
1421 int force_write)
1422{
1423 int page_num;
1424 int ret = 0;
96e36920 1425
b5d67f64
SB
1426 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1427 int ret_sub;
96e36920 1428
b5d67f64
SB
1429 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1430 sblock_good,
1431 page_num,
1432 force_write);
1433 if (ret_sub)
1434 ret = ret_sub;
a2de733c 1435 }
b5d67f64
SB
1436
1437 return ret;
1438}
1439
1440static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1441 struct scrub_block *sblock_good,
1442 int page_num, int force_write)
1443{
7a9e9987
SB
1444 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1445 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1446
7a9e9987
SB
1447 BUG_ON(page_bad->page == NULL);
1448 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1449 if (force_write || sblock_bad->header_error ||
1450 sblock_bad->checksum_error || page_bad->io_error) {
1451 struct bio *bio;
1452 int ret;
b5d67f64 1453
ff023aac 1454 if (!page_bad->dev->bdev) {
efe120a0
FH
1455 printk_ratelimited(KERN_WARNING "BTRFS: "
1456 "scrub_repair_page_from_good_copy(bdev == NULL) "
1457 "is unexpected!\n");
ff023aac
SB
1458 return -EIO;
1459 }
1460
9be3395b 1461 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1462 if (!bio)
1463 return -EIO;
442a4f63 1464 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1465 bio->bi_iter.bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1466
1467 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1468 if (PAGE_SIZE != ret) {
1469 bio_put(bio);
1470 return -EIO;
13db62b7 1471 }
b5d67f64 1472
33879d45 1473 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1474 btrfs_dev_stat_inc_and_print(page_bad->dev,
1475 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1476 btrfs_dev_replace_stats_inc(
1477 &sblock_bad->sctx->dev_root->fs_info->
1478 dev_replace.num_write_errors);
442a4f63
SB
1479 bio_put(bio);
1480 return -EIO;
1481 }
b5d67f64 1482 bio_put(bio);
a2de733c
AJ
1483 }
1484
b5d67f64
SB
1485 return 0;
1486}
1487
ff023aac
SB
1488static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1489{
1490 int page_num;
1491
1492 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1493 int ret;
1494
1495 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1496 if (ret)
1497 btrfs_dev_replace_stats_inc(
1498 &sblock->sctx->dev_root->fs_info->dev_replace.
1499 num_write_errors);
1500 }
1501}
1502
1503static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1504 int page_num)
1505{
1506 struct scrub_page *spage = sblock->pagev[page_num];
1507
1508 BUG_ON(spage->page == NULL);
1509 if (spage->io_error) {
1510 void *mapped_buffer = kmap_atomic(spage->page);
1511
1512 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1513 flush_dcache_page(spage->page);
1514 kunmap_atomic(mapped_buffer);
1515 }
1516 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1517}
1518
1519static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1520 struct scrub_page *spage)
1521{
1522 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1523 struct scrub_bio *sbio;
1524 int ret;
1525
1526 mutex_lock(&wr_ctx->wr_lock);
1527again:
1528 if (!wr_ctx->wr_curr_bio) {
1529 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1530 GFP_NOFS);
1531 if (!wr_ctx->wr_curr_bio) {
1532 mutex_unlock(&wr_ctx->wr_lock);
1533 return -ENOMEM;
1534 }
1535 wr_ctx->wr_curr_bio->sctx = sctx;
1536 wr_ctx->wr_curr_bio->page_count = 0;
1537 }
1538 sbio = wr_ctx->wr_curr_bio;
1539 if (sbio->page_count == 0) {
1540 struct bio *bio;
1541
1542 sbio->physical = spage->physical_for_dev_replace;
1543 sbio->logical = spage->logical;
1544 sbio->dev = wr_ctx->tgtdev;
1545 bio = sbio->bio;
1546 if (!bio) {
9be3395b 1547 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1548 if (!bio) {
1549 mutex_unlock(&wr_ctx->wr_lock);
1550 return -ENOMEM;
1551 }
1552 sbio->bio = bio;
1553 }
1554
1555 bio->bi_private = sbio;
1556 bio->bi_end_io = scrub_wr_bio_end_io;
1557 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1558 bio->bi_iter.bi_sector = sbio->physical >> 9;
ff023aac
SB
1559 sbio->err = 0;
1560 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1561 spage->physical_for_dev_replace ||
1562 sbio->logical + sbio->page_count * PAGE_SIZE !=
1563 spage->logical) {
1564 scrub_wr_submit(sctx);
1565 goto again;
1566 }
1567
1568 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1569 if (ret != PAGE_SIZE) {
1570 if (sbio->page_count < 1) {
1571 bio_put(sbio->bio);
1572 sbio->bio = NULL;
1573 mutex_unlock(&wr_ctx->wr_lock);
1574 return -EIO;
1575 }
1576 scrub_wr_submit(sctx);
1577 goto again;
1578 }
1579
1580 sbio->pagev[sbio->page_count] = spage;
1581 scrub_page_get(spage);
1582 sbio->page_count++;
1583 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1584 scrub_wr_submit(sctx);
1585 mutex_unlock(&wr_ctx->wr_lock);
1586
1587 return 0;
1588}
1589
1590static void scrub_wr_submit(struct scrub_ctx *sctx)
1591{
1592 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1593 struct scrub_bio *sbio;
1594
1595 if (!wr_ctx->wr_curr_bio)
1596 return;
1597
1598 sbio = wr_ctx->wr_curr_bio;
1599 wr_ctx->wr_curr_bio = NULL;
1600 WARN_ON(!sbio->bio->bi_bdev);
1601 scrub_pending_bio_inc(sctx);
1602 /* process all writes in a single worker thread. Then the block layer
1603 * orders the requests before sending them to the driver which
1604 * doubled the write performance on spinning disks when measured
1605 * with Linux 3.5 */
1606 btrfsic_submit_bio(WRITE, sbio->bio);
1607}
1608
1609static void scrub_wr_bio_end_io(struct bio *bio, int err)
1610{
1611 struct scrub_bio *sbio = bio->bi_private;
1612 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1613
1614 sbio->err = err;
1615 sbio->bio = bio;
1616
9e0af237
LB
1617 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1618 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1619 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625 struct scrub_ctx *sctx = sbio->sctx;
1626 int i;
1627
1628 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629 if (sbio->err) {
1630 struct btrfs_dev_replace *dev_replace =
1631 &sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633 for (i = 0; i < sbio->page_count; i++) {
1634 struct scrub_page *spage = sbio->pagev[i];
1635
1636 spage->io_error = 1;
1637 btrfs_dev_replace_stats_inc(&dev_replace->
1638 num_write_errors);
1639 }
1640 }
1641
1642 for (i = 0; i < sbio->page_count; i++)
1643 scrub_page_put(sbio->pagev[i]);
1644
1645 bio_put(sbio->bio);
1646 kfree(sbio);
1647 scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1651{
1652 u64 flags;
1653 int ret;
1654
7a9e9987
SB
1655 WARN_ON(sblock->page_count < 1);
1656 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1657 ret = 0;
1658 if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 ret = scrub_checksum_data(sblock);
1660 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661 ret = scrub_checksum_tree_block(sblock);
1662 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663 (void)scrub_checksum_super(sblock);
1664 else
1665 WARN_ON(1);
1666 if (ret)
1667 scrub_handle_errored_block(sblock);
ff023aac
SB
1668
1669 return ret;
a2de733c
AJ
1670}
1671
b5d67f64 1672static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1673{
d9d181c1 1674 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1675 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1676 u8 *on_disk_csum;
1677 struct page *page;
1678 void *buffer;
a2de733c
AJ
1679 u32 crc = ~(u32)0;
1680 int fail = 0;
b5d67f64
SB
1681 u64 len;
1682 int index;
a2de733c 1683
b5d67f64 1684 BUG_ON(sblock->page_count < 1);
7a9e9987 1685 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1686 return 0;
1687
7a9e9987
SB
1688 on_disk_csum = sblock->pagev[0]->csum;
1689 page = sblock->pagev[0]->page;
9613bebb 1690 buffer = kmap_atomic(page);
b5d67f64 1691
d9d181c1 1692 len = sctx->sectorsize;
b5d67f64
SB
1693 index = 0;
1694 for (;;) {
1695 u64 l = min_t(u64, len, PAGE_SIZE);
1696
b0496686 1697 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1698 kunmap_atomic(buffer);
b5d67f64
SB
1699 len -= l;
1700 if (len == 0)
1701 break;
1702 index++;
1703 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1704 BUG_ON(!sblock->pagev[index]->page);
1705 page = sblock->pagev[index]->page;
9613bebb 1706 buffer = kmap_atomic(page);
b5d67f64
SB
1707 }
1708
a2de733c 1709 btrfs_csum_final(crc, csum);
d9d181c1 1710 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1711 fail = 1;
1712
a2de733c
AJ
1713 return fail;
1714}
1715
b5d67f64 1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1717{
d9d181c1 1718 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1719 struct btrfs_header *h;
a36cf8b8 1720 struct btrfs_root *root = sctx->dev_root;
a2de733c 1721 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1722 u8 calculated_csum[BTRFS_CSUM_SIZE];
1723 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724 struct page *page;
1725 void *mapped_buffer;
1726 u64 mapped_size;
1727 void *p;
a2de733c
AJ
1728 u32 crc = ~(u32)0;
1729 int fail = 0;
1730 int crc_fail = 0;
b5d67f64
SB
1731 u64 len;
1732 int index;
1733
1734 BUG_ON(sblock->page_count < 1);
7a9e9987 1735 page = sblock->pagev[0]->page;
9613bebb 1736 mapped_buffer = kmap_atomic(page);
b5d67f64 1737 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1738 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1739
1740 /*
1741 * we don't use the getter functions here, as we
1742 * a) don't have an extent buffer and
1743 * b) the page is already kmapped
1744 */
a2de733c 1745
3cae210f 1746 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1747 ++fail;
1748
3cae210f 1749 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1750 ++fail;
1751
1752 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753 ++fail;
1754
1755 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756 BTRFS_UUID_SIZE))
1757 ++fail;
1758
d9d181c1 1759 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1760 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1761 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1762 index = 0;
1763 for (;;) {
1764 u64 l = min_t(u64, len, mapped_size);
1765
b0496686 1766 crc = btrfs_csum_data(p, crc, l);
9613bebb 1767 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1768 len -= l;
1769 if (len == 0)
1770 break;
1771 index++;
1772 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1773 BUG_ON(!sblock->pagev[index]->page);
1774 page = sblock->pagev[index]->page;
9613bebb 1775 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1776 mapped_size = PAGE_SIZE;
1777 p = mapped_buffer;
1778 }
1779
1780 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1781 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1782 ++crc_fail;
1783
a2de733c
AJ
1784 return fail || crc_fail;
1785}
1786
b5d67f64 1787static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1788{
1789 struct btrfs_super_block *s;
d9d181c1 1790 struct scrub_ctx *sctx = sblock->sctx;
a36cf8b8 1791 struct btrfs_root *root = sctx->dev_root;
a2de733c 1792 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1793 u8 calculated_csum[BTRFS_CSUM_SIZE];
1794 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1795 struct page *page;
1796 void *mapped_buffer;
1797 u64 mapped_size;
1798 void *p;
a2de733c 1799 u32 crc = ~(u32)0;
442a4f63
SB
1800 int fail_gen = 0;
1801 int fail_cor = 0;
b5d67f64
SB
1802 u64 len;
1803 int index;
a2de733c 1804
b5d67f64 1805 BUG_ON(sblock->page_count < 1);
7a9e9987 1806 page = sblock->pagev[0]->page;
9613bebb 1807 mapped_buffer = kmap_atomic(page);
b5d67f64 1808 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1809 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1810
3cae210f 1811 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1812 ++fail_cor;
a2de733c 1813
3cae210f 1814 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1815 ++fail_gen;
a2de733c
AJ
1816
1817 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
442a4f63 1818 ++fail_cor;
a2de733c 1819
b5d67f64
SB
1820 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1821 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1822 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1823 index = 0;
1824 for (;;) {
1825 u64 l = min_t(u64, len, mapped_size);
1826
b0496686 1827 crc = btrfs_csum_data(p, crc, l);
9613bebb 1828 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1829 len -= l;
1830 if (len == 0)
1831 break;
1832 index++;
1833 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1834 BUG_ON(!sblock->pagev[index]->page);
1835 page = sblock->pagev[index]->page;
9613bebb 1836 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1837 mapped_size = PAGE_SIZE;
1838 p = mapped_buffer;
1839 }
1840
1841 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1842 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1843 ++fail_cor;
a2de733c 1844
442a4f63 1845 if (fail_cor + fail_gen) {
a2de733c
AJ
1846 /*
1847 * if we find an error in a super block, we just report it.
1848 * They will get written with the next transaction commit
1849 * anyway
1850 */
d9d181c1
SB
1851 spin_lock(&sctx->stat_lock);
1852 ++sctx->stat.super_errors;
1853 spin_unlock(&sctx->stat_lock);
442a4f63 1854 if (fail_cor)
7a9e9987 1855 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1856 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1857 else
7a9e9987 1858 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1859 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1860 }
1861
442a4f63 1862 return fail_cor + fail_gen;
a2de733c
AJ
1863}
1864
b5d67f64
SB
1865static void scrub_block_get(struct scrub_block *sblock)
1866{
1867 atomic_inc(&sblock->ref_count);
1868}
1869
1870static void scrub_block_put(struct scrub_block *sblock)
1871{
1872 if (atomic_dec_and_test(&sblock->ref_count)) {
1873 int i;
1874
1875 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1876 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1877 kfree(sblock);
1878 }
1879}
1880
7a9e9987
SB
1881static void scrub_page_get(struct scrub_page *spage)
1882{
1883 atomic_inc(&spage->ref_count);
1884}
1885
1886static void scrub_page_put(struct scrub_page *spage)
1887{
1888 if (atomic_dec_and_test(&spage->ref_count)) {
1889 if (spage->page)
1890 __free_page(spage->page);
1891 kfree(spage);
1892 }
1893}
1894
d9d181c1 1895static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1896{
1897 struct scrub_bio *sbio;
1898
d9d181c1 1899 if (sctx->curr == -1)
1623edeb 1900 return;
a2de733c 1901
d9d181c1
SB
1902 sbio = sctx->bios[sctx->curr];
1903 sctx->curr = -1;
b6bfebc1 1904 scrub_pending_bio_inc(sctx);
a2de733c 1905
ff023aac
SB
1906 if (!sbio->bio->bi_bdev) {
1907 /*
1908 * this case should not happen. If btrfs_map_block() is
1909 * wrong, it could happen for dev-replace operations on
1910 * missing devices when no mirrors are available, but in
1911 * this case it should already fail the mount.
1912 * This case is handled correctly (but _very_ slowly).
1913 */
1914 printk_ratelimited(KERN_WARNING
efe120a0 1915 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
ff023aac
SB
1916 bio_endio(sbio->bio, -EIO);
1917 } else {
1918 btrfsic_submit_bio(READ, sbio->bio);
1919 }
a2de733c
AJ
1920}
1921
ff023aac
SB
1922static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1923 struct scrub_page *spage)
a2de733c 1924{
b5d67f64 1925 struct scrub_block *sblock = spage->sblock;
a2de733c 1926 struct scrub_bio *sbio;
69f4cb52 1927 int ret;
a2de733c
AJ
1928
1929again:
1930 /*
1931 * grab a fresh bio or wait for one to become available
1932 */
d9d181c1
SB
1933 while (sctx->curr == -1) {
1934 spin_lock(&sctx->list_lock);
1935 sctx->curr = sctx->first_free;
1936 if (sctx->curr != -1) {
1937 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1938 sctx->bios[sctx->curr]->next_free = -1;
1939 sctx->bios[sctx->curr]->page_count = 0;
1940 spin_unlock(&sctx->list_lock);
a2de733c 1941 } else {
d9d181c1
SB
1942 spin_unlock(&sctx->list_lock);
1943 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1944 }
1945 }
d9d181c1 1946 sbio = sctx->bios[sctx->curr];
b5d67f64 1947 if (sbio->page_count == 0) {
69f4cb52
AJ
1948 struct bio *bio;
1949
b5d67f64
SB
1950 sbio->physical = spage->physical;
1951 sbio->logical = spage->logical;
a36cf8b8 1952 sbio->dev = spage->dev;
b5d67f64
SB
1953 bio = sbio->bio;
1954 if (!bio) {
9be3395b 1955 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
1956 if (!bio)
1957 return -ENOMEM;
1958 sbio->bio = bio;
1959 }
69f4cb52
AJ
1960
1961 bio->bi_private = sbio;
1962 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 1963 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1964 bio->bi_iter.bi_sector = sbio->physical >> 9;
69f4cb52 1965 sbio->err = 0;
b5d67f64
SB
1966 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1967 spage->physical ||
1968 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
1969 spage->logical ||
1970 sbio->dev != spage->dev) {
d9d181c1 1971 scrub_submit(sctx);
a2de733c
AJ
1972 goto again;
1973 }
69f4cb52 1974
b5d67f64
SB
1975 sbio->pagev[sbio->page_count] = spage;
1976 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1977 if (ret != PAGE_SIZE) {
1978 if (sbio->page_count < 1) {
1979 bio_put(sbio->bio);
1980 sbio->bio = NULL;
1981 return -EIO;
1982 }
d9d181c1 1983 scrub_submit(sctx);
69f4cb52
AJ
1984 goto again;
1985 }
1986
ff023aac 1987 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
1988 atomic_inc(&sblock->outstanding_pages);
1989 sbio->page_count++;
ff023aac 1990 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 1991 scrub_submit(sctx);
b5d67f64
SB
1992
1993 return 0;
1994}
1995
d9d181c1 1996static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 1997 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
1998 u64 gen, int mirror_num, u8 *csum, int force,
1999 u64 physical_for_dev_replace)
b5d67f64
SB
2000{
2001 struct scrub_block *sblock;
2002 int index;
2003
2004 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2005 if (!sblock) {
d9d181c1
SB
2006 spin_lock(&sctx->stat_lock);
2007 sctx->stat.malloc_errors++;
2008 spin_unlock(&sctx->stat_lock);
b5d67f64 2009 return -ENOMEM;
a2de733c 2010 }
b5d67f64 2011
7a9e9987
SB
2012 /* one ref inside this function, plus one for each page added to
2013 * a bio later on */
b5d67f64 2014 atomic_set(&sblock->ref_count, 1);
d9d181c1 2015 sblock->sctx = sctx;
b5d67f64
SB
2016 sblock->no_io_error_seen = 1;
2017
2018 for (index = 0; len > 0; index++) {
7a9e9987 2019 struct scrub_page *spage;
b5d67f64
SB
2020 u64 l = min_t(u64, len, PAGE_SIZE);
2021
7a9e9987
SB
2022 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2023 if (!spage) {
2024leave_nomem:
d9d181c1
SB
2025 spin_lock(&sctx->stat_lock);
2026 sctx->stat.malloc_errors++;
2027 spin_unlock(&sctx->stat_lock);
7a9e9987 2028 scrub_block_put(sblock);
b5d67f64
SB
2029 return -ENOMEM;
2030 }
7a9e9987
SB
2031 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2032 scrub_page_get(spage);
2033 sblock->pagev[index] = spage;
b5d67f64 2034 spage->sblock = sblock;
a36cf8b8 2035 spage->dev = dev;
b5d67f64
SB
2036 spage->flags = flags;
2037 spage->generation = gen;
2038 spage->logical = logical;
2039 spage->physical = physical;
ff023aac 2040 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2041 spage->mirror_num = mirror_num;
2042 if (csum) {
2043 spage->have_csum = 1;
d9d181c1 2044 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2045 } else {
2046 spage->have_csum = 0;
2047 }
2048 sblock->page_count++;
7a9e9987
SB
2049 spage->page = alloc_page(GFP_NOFS);
2050 if (!spage->page)
2051 goto leave_nomem;
b5d67f64
SB
2052 len -= l;
2053 logical += l;
2054 physical += l;
ff023aac 2055 physical_for_dev_replace += l;
b5d67f64
SB
2056 }
2057
7a9e9987 2058 WARN_ON(sblock->page_count == 0);
b5d67f64 2059 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2060 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2061 int ret;
2062
ff023aac 2063 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2064 if (ret) {
2065 scrub_block_put(sblock);
1bc87793 2066 return ret;
b5d67f64 2067 }
1bc87793 2068 }
a2de733c 2069
b5d67f64 2070 if (force)
d9d181c1 2071 scrub_submit(sctx);
a2de733c 2072
b5d67f64
SB
2073 /* last one frees, either here or in bio completion for last page */
2074 scrub_block_put(sblock);
a2de733c
AJ
2075 return 0;
2076}
2077
b5d67f64
SB
2078static void scrub_bio_end_io(struct bio *bio, int err)
2079{
2080 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2081 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2082
2083 sbio->err = err;
2084 sbio->bio = bio;
2085
0339ef2f 2086 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2087}
2088
2089static void scrub_bio_end_io_worker(struct btrfs_work *work)
2090{
2091 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2092 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2093 int i;
2094
ff023aac 2095 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2096 if (sbio->err) {
2097 for (i = 0; i < sbio->page_count; i++) {
2098 struct scrub_page *spage = sbio->pagev[i];
2099
2100 spage->io_error = 1;
2101 spage->sblock->no_io_error_seen = 0;
2102 }
2103 }
2104
2105 /* now complete the scrub_block items that have all pages completed */
2106 for (i = 0; i < sbio->page_count; i++) {
2107 struct scrub_page *spage = sbio->pagev[i];
2108 struct scrub_block *sblock = spage->sblock;
2109
2110 if (atomic_dec_and_test(&sblock->outstanding_pages))
2111 scrub_block_complete(sblock);
2112 scrub_block_put(sblock);
2113 }
2114
b5d67f64
SB
2115 bio_put(sbio->bio);
2116 sbio->bio = NULL;
d9d181c1
SB
2117 spin_lock(&sctx->list_lock);
2118 sbio->next_free = sctx->first_free;
2119 sctx->first_free = sbio->index;
2120 spin_unlock(&sctx->list_lock);
ff023aac
SB
2121
2122 if (sctx->is_dev_replace &&
2123 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2124 mutex_lock(&sctx->wr_ctx.wr_lock);
2125 scrub_wr_submit(sctx);
2126 mutex_unlock(&sctx->wr_ctx.wr_lock);
2127 }
2128
b6bfebc1 2129 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2130}
2131
2132static void scrub_block_complete(struct scrub_block *sblock)
2133{
ff023aac 2134 if (!sblock->no_io_error_seen) {
b5d67f64 2135 scrub_handle_errored_block(sblock);
ff023aac
SB
2136 } else {
2137 /*
2138 * if has checksum error, write via repair mechanism in
2139 * dev replace case, otherwise write here in dev replace
2140 * case.
2141 */
2142 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2143 scrub_write_block_to_dev_replace(sblock);
2144 }
b5d67f64
SB
2145}
2146
d9d181c1 2147static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2148 u8 *csum)
2149{
2150 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2151 unsigned long index;
a2de733c 2152 unsigned long num_sectors;
a2de733c 2153
d9d181c1
SB
2154 while (!list_empty(&sctx->csum_list)) {
2155 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2156 struct btrfs_ordered_sum, list);
2157 if (sum->bytenr > logical)
2158 return 0;
2159 if (sum->bytenr + sum->len > logical)
2160 break;
2161
d9d181c1 2162 ++sctx->stat.csum_discards;
a2de733c
AJ
2163 list_del(&sum->list);
2164 kfree(sum);
2165 sum = NULL;
2166 }
2167 if (!sum)
2168 return 0;
2169
f51a4a18 2170 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2171 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2172 memcpy(csum, sum->sums + index, sctx->csum_size);
2173 if (index == num_sectors - 1) {
a2de733c
AJ
2174 list_del(&sum->list);
2175 kfree(sum);
2176 }
f51a4a18 2177 return 1;
a2de733c
AJ
2178}
2179
2180/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2181static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2182 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2183 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2184{
2185 int ret;
2186 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2187 u32 blocksize;
2188
2189 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2190 blocksize = sctx->sectorsize;
2191 spin_lock(&sctx->stat_lock);
2192 sctx->stat.data_extents_scrubbed++;
2193 sctx->stat.data_bytes_scrubbed += len;
2194 spin_unlock(&sctx->stat_lock);
b5d67f64 2195 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2196 blocksize = sctx->nodesize;
2197 spin_lock(&sctx->stat_lock);
2198 sctx->stat.tree_extents_scrubbed++;
2199 sctx->stat.tree_bytes_scrubbed += len;
2200 spin_unlock(&sctx->stat_lock);
b5d67f64 2201 } else {
d9d181c1 2202 blocksize = sctx->sectorsize;
ff023aac 2203 WARN_ON(1);
b5d67f64 2204 }
a2de733c
AJ
2205
2206 while (len) {
b5d67f64 2207 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2208 int have_csum = 0;
2209
2210 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2211 /* push csums to sbio */
d9d181c1 2212 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2213 if (have_csum == 0)
d9d181c1 2214 ++sctx->stat.no_csum;
ff023aac
SB
2215 if (sctx->is_dev_replace && !have_csum) {
2216 ret = copy_nocow_pages(sctx, logical, l,
2217 mirror_num,
2218 physical_for_dev_replace);
2219 goto behind_scrub_pages;
2220 }
a2de733c 2221 }
a36cf8b8 2222 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2223 mirror_num, have_csum ? csum : NULL, 0,
2224 physical_for_dev_replace);
2225behind_scrub_pages:
a2de733c
AJ
2226 if (ret)
2227 return ret;
2228 len -= l;
2229 logical += l;
2230 physical += l;
ff023aac 2231 physical_for_dev_replace += l;
a2de733c
AJ
2232 }
2233 return 0;
2234}
2235
3b080b25
WS
2236/*
2237 * Given a physical address, this will calculate it's
2238 * logical offset. if this is a parity stripe, it will return
2239 * the most left data stripe's logical offset.
2240 *
2241 * return 0 if it is a data stripe, 1 means parity stripe.
2242 */
2243static int get_raid56_logic_offset(u64 physical, int num,
2244 struct map_lookup *map, u64 *offset)
2245{
2246 int i;
2247 int j = 0;
2248 u64 stripe_nr;
2249 u64 last_offset;
2250 int stripe_index;
2251 int rot;
2252
2253 last_offset = (physical - map->stripes[num].physical) *
2254 nr_data_stripes(map);
2255 *offset = last_offset;
2256 for (i = 0; i < nr_data_stripes(map); i++) {
2257 *offset = last_offset + i * map->stripe_len;
2258
2259 stripe_nr = *offset;
2260 do_div(stripe_nr, map->stripe_len);
2261 do_div(stripe_nr, nr_data_stripes(map));
2262
2263 /* Work out the disk rotation on this stripe-set */
2264 rot = do_div(stripe_nr, map->num_stripes);
2265 /* calculate which stripe this data locates */
2266 rot += i;
e4fbaee2 2267 stripe_index = rot % map->num_stripes;
3b080b25
WS
2268 if (stripe_index == num)
2269 return 0;
2270 if (stripe_index < num)
2271 j++;
2272 }
2273 *offset = last_offset + j * map->stripe_len;
2274 return 1;
2275}
2276
d9d181c1 2277static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2278 struct map_lookup *map,
2279 struct btrfs_device *scrub_dev,
ff023aac
SB
2280 int num, u64 base, u64 length,
2281 int is_dev_replace)
a2de733c
AJ
2282{
2283 struct btrfs_path *path;
a36cf8b8 2284 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
2285 struct btrfs_root *root = fs_info->extent_root;
2286 struct btrfs_root *csum_root = fs_info->csum_root;
2287 struct btrfs_extent_item *extent;
e7786c3a 2288 struct blk_plug plug;
a2de733c
AJ
2289 u64 flags;
2290 int ret;
2291 int slot;
a2de733c 2292 u64 nstripes;
a2de733c
AJ
2293 struct extent_buffer *l;
2294 struct btrfs_key key;
2295 u64 physical;
2296 u64 logical;
625f1c8d 2297 u64 logic_end;
3b080b25 2298 u64 physical_end;
a2de733c 2299 u64 generation;
e12fa9cd 2300 int mirror_num;
7a26285e
AJ
2301 struct reada_control *reada1;
2302 struct reada_control *reada2;
2303 struct btrfs_key key_start;
2304 struct btrfs_key key_end;
a2de733c
AJ
2305 u64 increment = map->stripe_len;
2306 u64 offset;
ff023aac
SB
2307 u64 extent_logical;
2308 u64 extent_physical;
2309 u64 extent_len;
2310 struct btrfs_device *extent_dev;
2311 int extent_mirror_num;
3b080b25 2312 int stop_loop = 0;
53b381b3 2313
a2de733c 2314 nstripes = length;
3b080b25 2315 physical = map->stripes[num].physical;
a2de733c
AJ
2316 offset = 0;
2317 do_div(nstripes, map->stripe_len);
2318 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2319 offset = map->stripe_len * num;
2320 increment = map->stripe_len * map->num_stripes;
193ea74b 2321 mirror_num = 1;
a2de733c
AJ
2322 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2323 int factor = map->num_stripes / map->sub_stripes;
2324 offset = map->stripe_len * (num / map->sub_stripes);
2325 increment = map->stripe_len * factor;
193ea74b 2326 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
2327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2328 increment = map->stripe_len;
193ea74b 2329 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2330 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2331 increment = map->stripe_len;
193ea74b 2332 mirror_num = num % map->num_stripes + 1;
3b080b25
WS
2333 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2334 BTRFS_BLOCK_GROUP_RAID6)) {
2335 get_raid56_logic_offset(physical, num, map, &offset);
2336 increment = map->stripe_len * nr_data_stripes(map);
2337 mirror_num = 1;
a2de733c
AJ
2338 } else {
2339 increment = map->stripe_len;
193ea74b 2340 mirror_num = 1;
a2de733c
AJ
2341 }
2342
2343 path = btrfs_alloc_path();
2344 if (!path)
2345 return -ENOMEM;
2346
b5d67f64
SB
2347 /*
2348 * work on commit root. The related disk blocks are static as
2349 * long as COW is applied. This means, it is save to rewrite
2350 * them to repair disk errors without any race conditions
2351 */
a2de733c
AJ
2352 path->search_commit_root = 1;
2353 path->skip_locking = 1;
2354
2355 /*
7a26285e
AJ
2356 * trigger the readahead for extent tree csum tree and wait for
2357 * completion. During readahead, the scrub is officially paused
2358 * to not hold off transaction commits
a2de733c
AJ
2359 */
2360 logical = base + offset;
3b080b25
WS
2361 physical_end = physical + nstripes * map->stripe_len;
2362 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2363 BTRFS_BLOCK_GROUP_RAID6)) {
2364 get_raid56_logic_offset(physical_end, num,
2365 map, &logic_end);
2366 logic_end += base;
2367 } else {
2368 logic_end = logical + increment * nstripes;
2369 }
d9d181c1 2370 wait_event(sctx->list_wait,
b6bfebc1 2371 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 2372 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
2373
2374 /* FIXME it might be better to start readahead at commit root */
2375 key_start.objectid = logical;
2376 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2377 key_start.offset = (u64)0;
3b080b25 2378 key_end.objectid = logic_end;
3173a18f
JB
2379 key_end.type = BTRFS_METADATA_ITEM_KEY;
2380 key_end.offset = (u64)-1;
7a26285e
AJ
2381 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2382
2383 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2384 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2385 key_start.offset = logical;
2386 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2387 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 2388 key_end.offset = logic_end;
7a26285e
AJ
2389 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2390
2391 if (!IS_ERR(reada1))
2392 btrfs_reada_wait(reada1);
2393 if (!IS_ERR(reada2))
2394 btrfs_reada_wait(reada2);
2395
a2de733c
AJ
2396
2397 /*
2398 * collect all data csums for the stripe to avoid seeking during
2399 * the scrub. This might currently (crc32) end up to be about 1MB
2400 */
e7786c3a 2401 blk_start_plug(&plug);
a2de733c 2402
a2de733c
AJ
2403 /*
2404 * now find all extents for each stripe and scrub them
2405 */
a2de733c 2406 ret = 0;
3b080b25
WS
2407 while (physical < physical_end) {
2408 /* for raid56, we skip parity stripe */
2409 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2410 BTRFS_BLOCK_GROUP_RAID6)) {
2411 ret = get_raid56_logic_offset(physical, num,
2412 map, &logical);
2413 logical += base;
2414 if (ret)
2415 goto skip;
2416 }
a2de733c
AJ
2417 /*
2418 * canceled?
2419 */
2420 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 2421 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
2422 ret = -ECANCELED;
2423 goto out;
2424 }
2425 /*
2426 * check to see if we have to pause
2427 */
2428 if (atomic_read(&fs_info->scrub_pause_req)) {
2429 /* push queued extents */
ff023aac 2430 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 2431 scrub_submit(sctx);
ff023aac
SB
2432 mutex_lock(&sctx->wr_ctx.wr_lock);
2433 scrub_wr_submit(sctx);
2434 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 2435 wait_event(sctx->list_wait,
b6bfebc1 2436 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 2437 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 2438 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
2439 }
2440
7c76edb7
WS
2441 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2442 key.type = BTRFS_METADATA_ITEM_KEY;
2443 else
2444 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 2445 key.objectid = logical;
625f1c8d 2446 key.offset = (u64)-1;
a2de733c
AJ
2447
2448 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2449 if (ret < 0)
2450 goto out;
3173a18f 2451
8c51032f 2452 if (ret > 0) {
ade2e0b3 2453 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
2454 if (ret < 0)
2455 goto out;
8c51032f
AJ
2456 if (ret > 0) {
2457 /* there's no smaller item, so stick with the
2458 * larger one */
2459 btrfs_release_path(path);
2460 ret = btrfs_search_slot(NULL, root, &key,
2461 path, 0, 0);
2462 if (ret < 0)
2463 goto out;
2464 }
a2de733c
AJ
2465 }
2466
625f1c8d 2467 stop_loop = 0;
a2de733c 2468 while (1) {
3173a18f
JB
2469 u64 bytes;
2470
a2de733c
AJ
2471 l = path->nodes[0];
2472 slot = path->slots[0];
2473 if (slot >= btrfs_header_nritems(l)) {
2474 ret = btrfs_next_leaf(root, path);
2475 if (ret == 0)
2476 continue;
2477 if (ret < 0)
2478 goto out;
2479
625f1c8d 2480 stop_loop = 1;
a2de733c
AJ
2481 break;
2482 }
2483 btrfs_item_key_to_cpu(l, &key, slot);
2484
3173a18f 2485 if (key.type == BTRFS_METADATA_ITEM_KEY)
707e8a07 2486 bytes = root->nodesize;
3173a18f
JB
2487 else
2488 bytes = key.offset;
2489
2490 if (key.objectid + bytes <= logical)
a2de733c
AJ
2491 goto next;
2492
625f1c8d
LB
2493 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2494 key.type != BTRFS_METADATA_ITEM_KEY)
2495 goto next;
a2de733c 2496
625f1c8d
LB
2497 if (key.objectid >= logical + map->stripe_len) {
2498 /* out of this device extent */
2499 if (key.objectid >= logic_end)
2500 stop_loop = 1;
2501 break;
2502 }
a2de733c
AJ
2503
2504 extent = btrfs_item_ptr(l, slot,
2505 struct btrfs_extent_item);
2506 flags = btrfs_extent_flags(l, extent);
2507 generation = btrfs_extent_generation(l, extent);
2508
2509 if (key.objectid < logical &&
2510 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
efe120a0
FH
2511 btrfs_err(fs_info,
2512 "scrub: tree block %llu spanning "
2513 "stripes, ignored. logical=%llu",
c1c9ff7c 2514 key.objectid, logical);
a2de733c
AJ
2515 goto next;
2516 }
2517
625f1c8d
LB
2518again:
2519 extent_logical = key.objectid;
2520 extent_len = bytes;
2521
a2de733c
AJ
2522 /*
2523 * trim extent to this stripe
2524 */
625f1c8d
LB
2525 if (extent_logical < logical) {
2526 extent_len -= logical - extent_logical;
2527 extent_logical = logical;
a2de733c 2528 }
625f1c8d 2529 if (extent_logical + extent_len >
a2de733c 2530 logical + map->stripe_len) {
625f1c8d
LB
2531 extent_len = logical + map->stripe_len -
2532 extent_logical;
a2de733c
AJ
2533 }
2534
625f1c8d 2535 extent_physical = extent_logical - logical + physical;
ff023aac
SB
2536 extent_dev = scrub_dev;
2537 extent_mirror_num = mirror_num;
2538 if (is_dev_replace)
2539 scrub_remap_extent(fs_info, extent_logical,
2540 extent_len, &extent_physical,
2541 &extent_dev,
2542 &extent_mirror_num);
625f1c8d
LB
2543
2544 ret = btrfs_lookup_csums_range(csum_root, logical,
2545 logical + map->stripe_len - 1,
2546 &sctx->csum_list, 1);
2547 if (ret)
2548 goto out;
2549
ff023aac
SB
2550 ret = scrub_extent(sctx, extent_logical, extent_len,
2551 extent_physical, extent_dev, flags,
2552 generation, extent_mirror_num,
115930cb 2553 extent_logical - logical + physical);
a2de733c
AJ
2554 if (ret)
2555 goto out;
2556
d88d46c6 2557 scrub_free_csums(sctx);
625f1c8d
LB
2558 if (extent_logical + extent_len <
2559 key.objectid + bytes) {
3b080b25
WS
2560 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2561 BTRFS_BLOCK_GROUP_RAID6)) {
2562 /*
2563 * loop until we find next data stripe
2564 * or we have finished all stripes.
2565 */
2566 do {
2567 physical += map->stripe_len;
2568 ret = get_raid56_logic_offset(
2569 physical, num,
2570 map, &logical);
2571 logical += base;
2572 } while (physical < physical_end && ret);
2573 } else {
2574 physical += map->stripe_len;
2575 logical += increment;
2576 }
625f1c8d
LB
2577 if (logical < key.objectid + bytes) {
2578 cond_resched();
2579 goto again;
2580 }
2581
3b080b25 2582 if (physical >= physical_end) {
625f1c8d
LB
2583 stop_loop = 1;
2584 break;
2585 }
2586 }
a2de733c
AJ
2587next:
2588 path->slots[0]++;
2589 }
71267333 2590 btrfs_release_path(path);
3b080b25 2591skip:
a2de733c
AJ
2592 logical += increment;
2593 physical += map->stripe_len;
d9d181c1 2594 spin_lock(&sctx->stat_lock);
625f1c8d
LB
2595 if (stop_loop)
2596 sctx->stat.last_physical = map->stripes[num].physical +
2597 length;
2598 else
2599 sctx->stat.last_physical = physical;
d9d181c1 2600 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
2601 if (stop_loop)
2602 break;
a2de733c 2603 }
ff023aac 2604out:
a2de733c 2605 /* push queued extents */
d9d181c1 2606 scrub_submit(sctx);
ff023aac
SB
2607 mutex_lock(&sctx->wr_ctx.wr_lock);
2608 scrub_wr_submit(sctx);
2609 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 2610
e7786c3a 2611 blk_finish_plug(&plug);
a2de733c
AJ
2612 btrfs_free_path(path);
2613 return ret < 0 ? ret : 0;
2614}
2615
d9d181c1 2616static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
2617 struct btrfs_device *scrub_dev,
2618 u64 chunk_tree, u64 chunk_objectid,
2619 u64 chunk_offset, u64 length,
ff023aac 2620 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
2621{
2622 struct btrfs_mapping_tree *map_tree =
a36cf8b8 2623 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
2624 struct map_lookup *map;
2625 struct extent_map *em;
2626 int i;
ff023aac 2627 int ret = 0;
a2de733c
AJ
2628
2629 read_lock(&map_tree->map_tree.lock);
2630 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2631 read_unlock(&map_tree->map_tree.lock);
2632
2633 if (!em)
2634 return -EINVAL;
2635
2636 map = (struct map_lookup *)em->bdev;
2637 if (em->start != chunk_offset)
2638 goto out;
2639
2640 if (em->len < length)
2641 goto out;
2642
2643 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 2644 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 2645 map->stripes[i].physical == dev_offset) {
a36cf8b8 2646 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
2647 chunk_offset, length,
2648 is_dev_replace);
a2de733c
AJ
2649 if (ret)
2650 goto out;
2651 }
2652 }
2653out:
2654 free_extent_map(em);
2655
2656 return ret;
2657}
2658
2659static noinline_for_stack
a36cf8b8 2660int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
2661 struct btrfs_device *scrub_dev, u64 start, u64 end,
2662 int is_dev_replace)
a2de733c
AJ
2663{
2664 struct btrfs_dev_extent *dev_extent = NULL;
2665 struct btrfs_path *path;
a36cf8b8 2666 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
2667 struct btrfs_fs_info *fs_info = root->fs_info;
2668 u64 length;
2669 u64 chunk_tree;
2670 u64 chunk_objectid;
2671 u64 chunk_offset;
2672 int ret;
2673 int slot;
2674 struct extent_buffer *l;
2675 struct btrfs_key key;
2676 struct btrfs_key found_key;
2677 struct btrfs_block_group_cache *cache;
ff023aac 2678 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
2679
2680 path = btrfs_alloc_path();
2681 if (!path)
2682 return -ENOMEM;
2683
2684 path->reada = 2;
2685 path->search_commit_root = 1;
2686 path->skip_locking = 1;
2687
a36cf8b8 2688 key.objectid = scrub_dev->devid;
a2de733c
AJ
2689 key.offset = 0ull;
2690 key.type = BTRFS_DEV_EXTENT_KEY;
2691
a2de733c
AJ
2692 while (1) {
2693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2694 if (ret < 0)
8c51032f
AJ
2695 break;
2696 if (ret > 0) {
2697 if (path->slots[0] >=
2698 btrfs_header_nritems(path->nodes[0])) {
2699 ret = btrfs_next_leaf(root, path);
2700 if (ret)
2701 break;
2702 }
2703 }
a2de733c
AJ
2704
2705 l = path->nodes[0];
2706 slot = path->slots[0];
2707
2708 btrfs_item_key_to_cpu(l, &found_key, slot);
2709
a36cf8b8 2710 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
2711 break;
2712
962a298f 2713 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2714 break;
2715
2716 if (found_key.offset >= end)
2717 break;
2718
2719 if (found_key.offset < key.offset)
2720 break;
2721
2722 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2723 length = btrfs_dev_extent_length(l, dev_extent);
2724
ced96edc
QW
2725 if (found_key.offset + length <= start)
2726 goto skip;
a2de733c
AJ
2727
2728 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2729 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2730 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2731
2732 /*
2733 * get a reference on the corresponding block group to prevent
2734 * the chunk from going away while we scrub it
2735 */
2736 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
2737
2738 /* some chunks are removed but not committed to disk yet,
2739 * continue scrubbing */
2740 if (!cache)
2741 goto skip;
2742
ff023aac
SB
2743 dev_replace->cursor_right = found_key.offset + length;
2744 dev_replace->cursor_left = found_key.offset;
2745 dev_replace->item_needs_writeback = 1;
a36cf8b8 2746 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
2747 chunk_offset, length, found_key.offset,
2748 is_dev_replace);
2749
2750 /*
2751 * flush, submit all pending read and write bios, afterwards
2752 * wait for them.
2753 * Note that in the dev replace case, a read request causes
2754 * write requests that are submitted in the read completion
2755 * worker. Therefore in the current situation, it is required
2756 * that all write requests are flushed, so that all read and
2757 * write requests are really completed when bios_in_flight
2758 * changes to 0.
2759 */
2760 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2761 scrub_submit(sctx);
2762 mutex_lock(&sctx->wr_ctx.wr_lock);
2763 scrub_wr_submit(sctx);
2764 mutex_unlock(&sctx->wr_ctx.wr_lock);
2765
2766 wait_event(sctx->list_wait,
2767 atomic_read(&sctx->bios_in_flight) == 0);
12cf9372
WS
2768 atomic_inc(&fs_info->scrubs_paused);
2769 wake_up(&fs_info->scrub_pause_wait);
2770
2771 /*
2772 * must be called before we decrease @scrub_paused.
2773 * make sure we don't block transaction commit while
2774 * we are waiting pending workers finished.
2775 */
ff023aac
SB
2776 wait_event(sctx->list_wait,
2777 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
2778 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2779
2780 mutex_lock(&fs_info->scrub_lock);
2781 __scrub_blocked_if_needed(fs_info);
2782 atomic_dec(&fs_info->scrubs_paused);
2783 mutex_unlock(&fs_info->scrub_lock);
2784 wake_up(&fs_info->scrub_pause_wait);
ff023aac 2785
a2de733c
AJ
2786 btrfs_put_block_group(cache);
2787 if (ret)
2788 break;
af1be4f8
SB
2789 if (is_dev_replace &&
2790 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
2791 ret = -EIO;
2792 break;
2793 }
2794 if (sctx->stat.malloc_errors > 0) {
2795 ret = -ENOMEM;
2796 break;
2797 }
a2de733c 2798
539f358a
ID
2799 dev_replace->cursor_left = dev_replace->cursor_right;
2800 dev_replace->item_needs_writeback = 1;
ced96edc 2801skip:
a2de733c 2802 key.offset = found_key.offset + length;
71267333 2803 btrfs_release_path(path);
a2de733c
AJ
2804 }
2805
a2de733c 2806 btrfs_free_path(path);
8c51032f
AJ
2807
2808 /*
2809 * ret can still be 1 from search_slot or next_leaf,
2810 * that's not an error
2811 */
2812 return ret < 0 ? ret : 0;
a2de733c
AJ
2813}
2814
a36cf8b8
SB
2815static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2816 struct btrfs_device *scrub_dev)
a2de733c
AJ
2817{
2818 int i;
2819 u64 bytenr;
2820 u64 gen;
2821 int ret;
a36cf8b8 2822 struct btrfs_root *root = sctx->dev_root;
a2de733c 2823
87533c47 2824 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
2825 return -EIO;
2826
a2de733c
AJ
2827 gen = root->fs_info->last_trans_committed;
2828
2829 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2830 bytenr = btrfs_sb_offset(i);
a36cf8b8 2831 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
a2de733c
AJ
2832 break;
2833
d9d181c1 2834 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 2835 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 2836 NULL, 1, bytenr);
a2de733c
AJ
2837 if (ret)
2838 return ret;
2839 }
b6bfebc1 2840 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2841
2842 return 0;
2843}
2844
2845/*
2846 * get a reference count on fs_info->scrub_workers. start worker if necessary
2847 */
ff023aac
SB
2848static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2849 int is_dev_replace)
a2de733c 2850{
0dc3b84a 2851 int ret = 0;
0339ef2f
QW
2852 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2853 int max_active = fs_info->thread_pool_size;
a2de733c 2854
632dd772 2855 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 2856 if (is_dev_replace)
0339ef2f
QW
2857 fs_info->scrub_workers =
2858 btrfs_alloc_workqueue("btrfs-scrub", flags,
2859 1, 4);
ff023aac 2860 else
0339ef2f
QW
2861 fs_info->scrub_workers =
2862 btrfs_alloc_workqueue("btrfs-scrub", flags,
2863 max_active, 4);
2864 if (!fs_info->scrub_workers) {
2865 ret = -ENOMEM;
0dc3b84a 2866 goto out;
0339ef2f
QW
2867 }
2868 fs_info->scrub_wr_completion_workers =
2869 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2870 max_active, 2);
2871 if (!fs_info->scrub_wr_completion_workers) {
2872 ret = -ENOMEM;
ff023aac 2873 goto out;
0339ef2f
QW
2874 }
2875 fs_info->scrub_nocow_workers =
2876 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2877 if (!fs_info->scrub_nocow_workers) {
2878 ret = -ENOMEM;
ff023aac 2879 goto out;
0339ef2f 2880 }
632dd772 2881 }
a2de733c 2882 ++fs_info->scrub_workers_refcnt;
0dc3b84a 2883out:
0dc3b84a 2884 return ret;
a2de733c
AJ
2885}
2886
aa1b8cd4 2887static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 2888{
ff023aac 2889 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
2890 btrfs_destroy_workqueue(fs_info->scrub_workers);
2891 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2892 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
ff023aac 2893 }
a2de733c 2894 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
2895}
2896
aa1b8cd4
SB
2897int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2898 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 2899 int readonly, int is_dev_replace)
a2de733c 2900{
d9d181c1 2901 struct scrub_ctx *sctx;
a2de733c
AJ
2902 int ret;
2903 struct btrfs_device *dev;
5d68da3b 2904 struct rcu_string *name;
a2de733c 2905
aa1b8cd4 2906 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
2907 return -EINVAL;
2908
aa1b8cd4 2909 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
2910 /*
2911 * in this case scrub is unable to calculate the checksum
2912 * the way scrub is implemented. Do not handle this
2913 * situation at all because it won't ever happen.
2914 */
efe120a0
FH
2915 btrfs_err(fs_info,
2916 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
aa1b8cd4 2917 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
2918 return -EINVAL;
2919 }
2920
aa1b8cd4 2921 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64 2922 /* not supported for data w/o checksums */
efe120a0
FH
2923 btrfs_err(fs_info,
2924 "scrub: size assumption sectorsize != PAGE_SIZE "
2925 "(%d != %lu) fails",
27f9f023 2926 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
2927 return -EINVAL;
2928 }
2929
7a9e9987
SB
2930 if (fs_info->chunk_root->nodesize >
2931 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2932 fs_info->chunk_root->sectorsize >
2933 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2934 /*
2935 * would exhaust the array bounds of pagev member in
2936 * struct scrub_block
2937 */
efe120a0
FH
2938 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2939 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
7a9e9987
SB
2940 fs_info->chunk_root->nodesize,
2941 SCRUB_MAX_PAGES_PER_BLOCK,
2942 fs_info->chunk_root->sectorsize,
2943 SCRUB_MAX_PAGES_PER_BLOCK);
2944 return -EINVAL;
2945 }
2946
a2de733c 2947
aa1b8cd4
SB
2948 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2949 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 2950 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 2951 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2952 return -ENODEV;
2953 }
a2de733c 2954
5d68da3b
MX
2955 if (!is_dev_replace && !readonly && !dev->writeable) {
2956 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2957 rcu_read_lock();
2958 name = rcu_dereference(dev->name);
2959 btrfs_err(fs_info, "scrub: device %s is not writable",
2960 name->str);
2961 rcu_read_unlock();
2962 return -EROFS;
2963 }
2964
3b7a016f 2965 mutex_lock(&fs_info->scrub_lock);
63a212ab 2966 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 2967 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 2969 return -EIO;
a2de733c
AJ
2970 }
2971
8dabb742
SB
2972 btrfs_dev_replace_lock(&fs_info->dev_replace);
2973 if (dev->scrub_device ||
2974 (!is_dev_replace &&
2975 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2976 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 2977 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2979 return -EINPROGRESS;
2980 }
8dabb742 2981 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3b7a016f
WS
2982
2983 ret = scrub_workers_get(fs_info, is_dev_replace);
2984 if (ret) {
2985 mutex_unlock(&fs_info->scrub_lock);
2986 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2987 return ret;
2988 }
2989
63a212ab 2990 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 2991 if (IS_ERR(sctx)) {
a2de733c 2992 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
2993 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2994 scrub_workers_put(fs_info);
d9d181c1 2995 return PTR_ERR(sctx);
a2de733c 2996 }
d9d181c1
SB
2997 sctx->readonly = readonly;
2998 dev->scrub_device = sctx;
3cb0929a 2999 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3000
3cb0929a
WS
3001 /*
3002 * checking @scrub_pause_req here, we can avoid
3003 * race between committing transaction and scrubbing.
3004 */
cb7ab021 3005 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3006 atomic_inc(&fs_info->scrubs_running);
3007 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3008
ff023aac 3009 if (!is_dev_replace) {
9b011adf
WS
3010 /*
3011 * by holding device list mutex, we can
3012 * kick off writing super in log tree sync.
3013 */
3cb0929a 3014 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3015 ret = scrub_supers(sctx, dev);
3cb0929a 3016 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3017 }
a2de733c
AJ
3018
3019 if (!ret)
ff023aac
SB
3020 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3021 is_dev_replace);
a2de733c 3022
b6bfebc1 3023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3024 atomic_dec(&fs_info->scrubs_running);
3025 wake_up(&fs_info->scrub_pause_wait);
3026
b6bfebc1 3027 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3028
a2de733c 3029 if (progress)
d9d181c1 3030 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3031
3032 mutex_lock(&fs_info->scrub_lock);
3033 dev->scrub_device = NULL;
3b7a016f 3034 scrub_workers_put(fs_info);
a2de733c
AJ
3035 mutex_unlock(&fs_info->scrub_lock);
3036
d9d181c1 3037 scrub_free_ctx(sctx);
a2de733c
AJ
3038
3039 return ret;
3040}
3041
143bede5 3042void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
3043{
3044 struct btrfs_fs_info *fs_info = root->fs_info;
3045
3046 mutex_lock(&fs_info->scrub_lock);
3047 atomic_inc(&fs_info->scrub_pause_req);
3048 while (atomic_read(&fs_info->scrubs_paused) !=
3049 atomic_read(&fs_info->scrubs_running)) {
3050 mutex_unlock(&fs_info->scrub_lock);
3051 wait_event(fs_info->scrub_pause_wait,
3052 atomic_read(&fs_info->scrubs_paused) ==
3053 atomic_read(&fs_info->scrubs_running));
3054 mutex_lock(&fs_info->scrub_lock);
3055 }
3056 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3057}
3058
143bede5 3059void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
3060{
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062
3063 atomic_dec(&fs_info->scrub_pause_req);
3064 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3065}
3066
aa1b8cd4 3067int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3068{
a2de733c
AJ
3069 mutex_lock(&fs_info->scrub_lock);
3070 if (!atomic_read(&fs_info->scrubs_running)) {
3071 mutex_unlock(&fs_info->scrub_lock);
3072 return -ENOTCONN;
3073 }
3074
3075 atomic_inc(&fs_info->scrub_cancel_req);
3076 while (atomic_read(&fs_info->scrubs_running)) {
3077 mutex_unlock(&fs_info->scrub_lock);
3078 wait_event(fs_info->scrub_pause_wait,
3079 atomic_read(&fs_info->scrubs_running) == 0);
3080 mutex_lock(&fs_info->scrub_lock);
3081 }
3082 atomic_dec(&fs_info->scrub_cancel_req);
3083 mutex_unlock(&fs_info->scrub_lock);
3084
3085 return 0;
3086}
3087
aa1b8cd4
SB
3088int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3089 struct btrfs_device *dev)
49b25e05 3090{
d9d181c1 3091 struct scrub_ctx *sctx;
a2de733c
AJ
3092
3093 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
3094 sctx = dev->scrub_device;
3095 if (!sctx) {
a2de733c
AJ
3096 mutex_unlock(&fs_info->scrub_lock);
3097 return -ENOTCONN;
3098 }
d9d181c1 3099 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3100 while (dev->scrub_device) {
3101 mutex_unlock(&fs_info->scrub_lock);
3102 wait_event(fs_info->scrub_pause_wait,
3103 dev->scrub_device == NULL);
3104 mutex_lock(&fs_info->scrub_lock);
3105 }
3106 mutex_unlock(&fs_info->scrub_lock);
3107
3108 return 0;
3109}
1623edeb 3110
a2de733c
AJ
3111int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3112 struct btrfs_scrub_progress *progress)
3113{
3114 struct btrfs_device *dev;
d9d181c1 3115 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3116
3117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3118 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3119 if (dev)
d9d181c1
SB
3120 sctx = dev->scrub_device;
3121 if (sctx)
3122 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3123 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3124
d9d181c1 3125 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3126}
ff023aac
SB
3127
3128static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3129 u64 extent_logical, u64 extent_len,
3130 u64 *extent_physical,
3131 struct btrfs_device **extent_dev,
3132 int *extent_mirror_num)
3133{
3134 u64 mapped_length;
3135 struct btrfs_bio *bbio = NULL;
3136 int ret;
3137
3138 mapped_length = extent_len;
3139 ret = btrfs_map_block(fs_info, READ, extent_logical,
3140 &mapped_length, &bbio, 0);
3141 if (ret || !bbio || mapped_length < extent_len ||
3142 !bbio->stripes[0].dev->bdev) {
3143 kfree(bbio);
3144 return;
3145 }
3146
3147 *extent_physical = bbio->stripes[0].physical;
3148 *extent_mirror_num = bbio->mirror_num;
3149 *extent_dev = bbio->stripes[0].dev;
3150 kfree(bbio);
3151}
3152
3153static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3154 struct scrub_wr_ctx *wr_ctx,
3155 struct btrfs_fs_info *fs_info,
3156 struct btrfs_device *dev,
3157 int is_dev_replace)
3158{
3159 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3160
3161 mutex_init(&wr_ctx->wr_lock);
3162 wr_ctx->wr_curr_bio = NULL;
3163 if (!is_dev_replace)
3164 return 0;
3165
3166 WARN_ON(!dev->bdev);
3167 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3168 bio_get_nr_vecs(dev->bdev));
3169 wr_ctx->tgtdev = dev;
3170 atomic_set(&wr_ctx->flush_all_writes, 0);
3171 return 0;
3172}
3173
3174static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3175{
3176 mutex_lock(&wr_ctx->wr_lock);
3177 kfree(wr_ctx->wr_curr_bio);
3178 wr_ctx->wr_curr_bio = NULL;
3179 mutex_unlock(&wr_ctx->wr_lock);
3180}
3181
3182static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3183 int mirror_num, u64 physical_for_dev_replace)
3184{
3185 struct scrub_copy_nocow_ctx *nocow_ctx;
3186 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3187
3188 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3189 if (!nocow_ctx) {
3190 spin_lock(&sctx->stat_lock);
3191 sctx->stat.malloc_errors++;
3192 spin_unlock(&sctx->stat_lock);
3193 return -ENOMEM;
3194 }
3195
3196 scrub_pending_trans_workers_inc(sctx);
3197
3198 nocow_ctx->sctx = sctx;
3199 nocow_ctx->logical = logical;
3200 nocow_ctx->len = len;
3201 nocow_ctx->mirror_num = mirror_num;
3202 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
3203 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3204 copy_nocow_pages_worker, NULL, NULL);
652f25a2 3205 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
3206 btrfs_queue_work(fs_info->scrub_nocow_workers,
3207 &nocow_ctx->work);
ff023aac
SB
3208
3209 return 0;
3210}
3211
652f25a2
JB
3212static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3213{
3214 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3215 struct scrub_nocow_inode *nocow_inode;
3216
3217 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3218 if (!nocow_inode)
3219 return -ENOMEM;
3220 nocow_inode->inum = inum;
3221 nocow_inode->offset = offset;
3222 nocow_inode->root = root;
3223 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3224 return 0;
3225}
3226
3227#define COPY_COMPLETE 1
3228
ff023aac
SB
3229static void copy_nocow_pages_worker(struct btrfs_work *work)
3230{
3231 struct scrub_copy_nocow_ctx *nocow_ctx =
3232 container_of(work, struct scrub_copy_nocow_ctx, work);
3233 struct scrub_ctx *sctx = nocow_ctx->sctx;
3234 u64 logical = nocow_ctx->logical;
3235 u64 len = nocow_ctx->len;
3236 int mirror_num = nocow_ctx->mirror_num;
3237 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3238 int ret;
3239 struct btrfs_trans_handle *trans = NULL;
3240 struct btrfs_fs_info *fs_info;
3241 struct btrfs_path *path;
3242 struct btrfs_root *root;
3243 int not_written = 0;
3244
3245 fs_info = sctx->dev_root->fs_info;
3246 root = fs_info->extent_root;
3247
3248 path = btrfs_alloc_path();
3249 if (!path) {
3250 spin_lock(&sctx->stat_lock);
3251 sctx->stat.malloc_errors++;
3252 spin_unlock(&sctx->stat_lock);
3253 not_written = 1;
3254 goto out;
3255 }
3256
3257 trans = btrfs_join_transaction(root);
3258 if (IS_ERR(trans)) {
3259 not_written = 1;
3260 goto out;
3261 }
3262
3263 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 3264 record_inode_for_nocow, nocow_ctx);
ff023aac 3265 if (ret != 0 && ret != -ENOENT) {
efe120a0
FH
3266 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3267 "phys %llu, len %llu, mir %u, ret %d",
118a0a25
GU
3268 logical, physical_for_dev_replace, len, mirror_num,
3269 ret);
ff023aac
SB
3270 not_written = 1;
3271 goto out;
3272 }
3273
652f25a2
JB
3274 btrfs_end_transaction(trans, root);
3275 trans = NULL;
3276 while (!list_empty(&nocow_ctx->inodes)) {
3277 struct scrub_nocow_inode *entry;
3278 entry = list_first_entry(&nocow_ctx->inodes,
3279 struct scrub_nocow_inode,
3280 list);
3281 list_del_init(&entry->list);
3282 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3283 entry->root, nocow_ctx);
3284 kfree(entry);
3285 if (ret == COPY_COMPLETE) {
3286 ret = 0;
3287 break;
3288 } else if (ret) {
3289 break;
3290 }
3291 }
ff023aac 3292out:
652f25a2
JB
3293 while (!list_empty(&nocow_ctx->inodes)) {
3294 struct scrub_nocow_inode *entry;
3295 entry = list_first_entry(&nocow_ctx->inodes,
3296 struct scrub_nocow_inode,
3297 list);
3298 list_del_init(&entry->list);
3299 kfree(entry);
3300 }
ff023aac
SB
3301 if (trans && !IS_ERR(trans))
3302 btrfs_end_transaction(trans, root);
3303 if (not_written)
3304 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3305 num_uncorrectable_read_errors);
3306
3307 btrfs_free_path(path);
3308 kfree(nocow_ctx);
3309
3310 scrub_pending_trans_workers_dec(sctx);
3311}
3312
652f25a2
JB
3313static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3314 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 3315{
826aa0a8 3316 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 3317 struct btrfs_key key;
826aa0a8
MX
3318 struct inode *inode;
3319 struct page *page;
ff023aac 3320 struct btrfs_root *local_root;
652f25a2
JB
3321 struct btrfs_ordered_extent *ordered;
3322 struct extent_map *em;
3323 struct extent_state *cached_state = NULL;
3324 struct extent_io_tree *io_tree;
ff023aac 3325 u64 physical_for_dev_replace;
652f25a2
JB
3326 u64 len = nocow_ctx->len;
3327 u64 lockstart = offset, lockend = offset + len - 1;
826aa0a8 3328 unsigned long index;
6f1c3605 3329 int srcu_index;
652f25a2
JB
3330 int ret = 0;
3331 int err = 0;
ff023aac
SB
3332
3333 key.objectid = root;
3334 key.type = BTRFS_ROOT_ITEM_KEY;
3335 key.offset = (u64)-1;
6f1c3605
LB
3336
3337 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3338
ff023aac 3339 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
3340 if (IS_ERR(local_root)) {
3341 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 3342 return PTR_ERR(local_root);
6f1c3605 3343 }
ff023aac
SB
3344
3345 key.type = BTRFS_INODE_ITEM_KEY;
3346 key.objectid = inum;
3347 key.offset = 0;
3348 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 3349 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
3350 if (IS_ERR(inode))
3351 return PTR_ERR(inode);
3352
edd1400b
MX
3353 /* Avoid truncate/dio/punch hole.. */
3354 mutex_lock(&inode->i_mutex);
3355 inode_dio_wait(inode);
3356
ff023aac 3357 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2
JB
3358 io_tree = &BTRFS_I(inode)->io_tree;
3359
3360 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3361 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3362 if (ordered) {
3363 btrfs_put_ordered_extent(ordered);
3364 goto out_unlock;
3365 }
3366
3367 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3368 if (IS_ERR(em)) {
3369 ret = PTR_ERR(em);
3370 goto out_unlock;
3371 }
3372
3373 /*
3374 * This extent does not actually cover the logical extent anymore,
3375 * move on to the next inode.
3376 */
3377 if (em->block_start > nocow_ctx->logical ||
3378 em->block_start + em->block_len < nocow_ctx->logical + len) {
3379 free_extent_map(em);
3380 goto out_unlock;
3381 }
3382 free_extent_map(em);
3383
ff023aac 3384 while (len >= PAGE_CACHE_SIZE) {
ff023aac 3385 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 3386again:
ff023aac
SB
3387 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3388 if (!page) {
efe120a0 3389 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 3390 ret = -ENOMEM;
826aa0a8 3391 goto out;
ff023aac
SB
3392 }
3393
3394 if (PageUptodate(page)) {
3395 if (PageDirty(page))
3396 goto next_page;
3397 } else {
3398 ClearPageError(page);
652f25a2
JB
3399 err = extent_read_full_page_nolock(io_tree, page,
3400 btrfs_get_extent,
3401 nocow_ctx->mirror_num);
826aa0a8
MX
3402 if (err) {
3403 ret = err;
ff023aac
SB
3404 goto next_page;
3405 }
edd1400b 3406
26b25891 3407 lock_page(page);
edd1400b
MX
3408 /*
3409 * If the page has been remove from the page cache,
3410 * the data on it is meaningless, because it may be
3411 * old one, the new data may be written into the new
3412 * page in the page cache.
3413 */
3414 if (page->mapping != inode->i_mapping) {
652f25a2 3415 unlock_page(page);
edd1400b
MX
3416 page_cache_release(page);
3417 goto again;
3418 }
ff023aac
SB
3419 if (!PageUptodate(page)) {
3420 ret = -EIO;
3421 goto next_page;
3422 }
3423 }
826aa0a8
MX
3424 err = write_page_nocow(nocow_ctx->sctx,
3425 physical_for_dev_replace, page);
3426 if (err)
3427 ret = err;
ff023aac 3428next_page:
826aa0a8
MX
3429 unlock_page(page);
3430 page_cache_release(page);
3431
3432 if (ret)
3433 break;
3434
ff023aac
SB
3435 offset += PAGE_CACHE_SIZE;
3436 physical_for_dev_replace += PAGE_CACHE_SIZE;
3437 len -= PAGE_CACHE_SIZE;
3438 }
652f25a2
JB
3439 ret = COPY_COMPLETE;
3440out_unlock:
3441 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3442 GFP_NOFS);
826aa0a8 3443out:
edd1400b 3444 mutex_unlock(&inode->i_mutex);
826aa0a8 3445 iput(inode);
ff023aac
SB
3446 return ret;
3447}
3448
3449static int write_page_nocow(struct scrub_ctx *sctx,
3450 u64 physical_for_dev_replace, struct page *page)
3451{
3452 struct bio *bio;
3453 struct btrfs_device *dev;
3454 int ret;
ff023aac
SB
3455
3456 dev = sctx->wr_ctx.tgtdev;
3457 if (!dev)
3458 return -EIO;
3459 if (!dev->bdev) {
3460 printk_ratelimited(KERN_WARNING
efe120a0 3461 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
ff023aac
SB
3462 return -EIO;
3463 }
9be3395b 3464 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
3465 if (!bio) {
3466 spin_lock(&sctx->stat_lock);
3467 sctx->stat.malloc_errors++;
3468 spin_unlock(&sctx->stat_lock);
3469 return -ENOMEM;
3470 }
4f024f37
KO
3471 bio->bi_iter.bi_size = 0;
3472 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac
SB
3473 bio->bi_bdev = dev->bdev;
3474 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3475 if (ret != PAGE_CACHE_SIZE) {
3476leave_with_eio:
3477 bio_put(bio);
3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3479 return -EIO;
3480 }
ff023aac 3481
33879d45 3482 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
3483 goto leave_with_eio;
3484
3485 bio_put(bio);
3486 return 0;
3487}