]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/scrub.c
btrfs: move btrfs_add_free_space out of a header file
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c
AJ
10#include "ctree.h"
11#include "volumes.h"
12#include "disk-io.h"
13#include "ordered-data.h"
0ef8e451 14#include "transaction.h"
558540c1 15#include "backref.h"
5da6fcbc 16#include "extent_io.h"
ff023aac 17#include "dev-replace.h"
21adbd5c 18#include "check-integrity.h"
606686ee 19#include "rcu-string.h"
53b381b3 20#include "raid56.h"
a2de733c
AJ
21
22/*
23 * This is only the first step towards a full-features scrub. It reads all
24 * extent and super block and verifies the checksums. In case a bad checksum
25 * is found or the extent cannot be read, good data will be written back if
26 * any can be found.
27 *
28 * Future enhancements:
a2de733c
AJ
29 * - In case an unrepairable extent is encountered, track which files are
30 * affected and report them
a2de733c 31 * - track and record media errors, throw out bad devices
a2de733c 32 * - add a mode to also read unallocated space
a2de733c
AJ
33 */
34
b5d67f64 35struct scrub_block;
d9d181c1 36struct scrub_ctx;
a2de733c 37
ff023aac
SB
38/*
39 * the following three values only influence the performance.
40 * The last one configures the number of parallel and outstanding I/O
41 * operations. The first two values configure an upper limit for the number
42 * of (dynamically allocated) pages that are added to a bio.
43 */
44#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
45#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
46#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
47
48/*
49 * the following value times PAGE_SIZE needs to be large enough to match the
50 * largest node/leaf/sector size that shall be supported.
51 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 */
b5d67f64 53#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 54
af8e2d1d 55struct scrub_recover {
6f615018 56 refcount_t refs;
af8e2d1d 57 struct btrfs_bio *bbio;
af8e2d1d
MX
58 u64 map_length;
59};
60
a2de733c 61struct scrub_page {
b5d67f64
SB
62 struct scrub_block *sblock;
63 struct page *page;
442a4f63 64 struct btrfs_device *dev;
5a6ac9ea 65 struct list_head list;
a2de733c
AJ
66 u64 flags; /* extent flags */
67 u64 generation;
b5d67f64
SB
68 u64 logical;
69 u64 physical;
ff023aac 70 u64 physical_for_dev_replace;
57019345 71 atomic_t refs;
b5d67f64
SB
72 struct {
73 unsigned int mirror_num:8;
74 unsigned int have_csum:1;
75 unsigned int io_error:1;
76 };
a2de733c 77 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
78
79 struct scrub_recover *recover;
a2de733c
AJ
80};
81
82struct scrub_bio {
83 int index;
d9d181c1 84 struct scrub_ctx *sctx;
a36cf8b8 85 struct btrfs_device *dev;
a2de733c 86 struct bio *bio;
4e4cbee9 87 blk_status_t status;
a2de733c
AJ
88 u64 logical;
89 u64 physical;
ff023aac
SB
90#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
91 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
92#else
93 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
94#endif
b5d67f64 95 int page_count;
a2de733c
AJ
96 int next_free;
97 struct btrfs_work work;
98};
99
b5d67f64 100struct scrub_block {
7a9e9987 101 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
102 int page_count;
103 atomic_t outstanding_pages;
186debd6 104 refcount_t refs; /* free mem on transition to zero */
d9d181c1 105 struct scrub_ctx *sctx;
5a6ac9ea 106 struct scrub_parity *sparity;
b5d67f64
SB
107 struct {
108 unsigned int header_error:1;
109 unsigned int checksum_error:1;
110 unsigned int no_io_error_seen:1;
442a4f63 111 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
112
113 /* The following is for the data used to check parity */
114 /* It is for the data with checksum */
115 unsigned int data_corrected:1;
b5d67f64 116 };
73ff61db 117 struct btrfs_work work;
b5d67f64
SB
118};
119
5a6ac9ea
MX
120/* Used for the chunks with parity stripe such RAID5/6 */
121struct scrub_parity {
122 struct scrub_ctx *sctx;
123
124 struct btrfs_device *scrub_dev;
125
126 u64 logic_start;
127
128 u64 logic_end;
129
130 int nsectors;
131
972d7219 132 u64 stripe_len;
5a6ac9ea 133
78a76450 134 refcount_t refs;
5a6ac9ea
MX
135
136 struct list_head spages;
137
138 /* Work of parity check and repair */
139 struct btrfs_work work;
140
141 /* Mark the parity blocks which have data */
142 unsigned long *dbitmap;
143
144 /*
145 * Mark the parity blocks which have data, but errors happen when
146 * read data or check data
147 */
148 unsigned long *ebitmap;
149
150 unsigned long bitmap[0];
151};
152
d9d181c1 153struct scrub_ctx {
ff023aac 154 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 155 struct btrfs_fs_info *fs_info;
a2de733c
AJ
156 int first_free;
157 int curr;
b6bfebc1
SB
158 atomic_t bios_in_flight;
159 atomic_t workers_pending;
a2de733c
AJ
160 spinlock_t list_lock;
161 wait_queue_head_t list_wait;
162 u16 csum_size;
163 struct list_head csum_list;
164 atomic_t cancel_req;
8628764e 165 int readonly;
ff023aac 166 int pages_per_rd_bio;
63a212ab
SB
167
168 int is_dev_replace;
3fb99303
DS
169
170 struct scrub_bio *wr_curr_bio;
171 struct mutex wr_lock;
172 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
3fb99303 173 struct btrfs_device *wr_tgtdev;
2073c4c2 174 bool flush_all_writes;
63a212ab 175
a2de733c
AJ
176 /*
177 * statistics
178 */
179 struct btrfs_scrub_progress stat;
180 spinlock_t stat_lock;
f55985f4
FM
181
182 /*
183 * Use a ref counter to avoid use-after-free issues. Scrub workers
184 * decrement bios_in_flight and workers_pending and then do a wakeup
185 * on the list_wait wait queue. We must ensure the main scrub task
186 * doesn't free the scrub context before or while the workers are
187 * doing the wakeup() call.
188 */
99f4cdb1 189 refcount_t refs;
a2de733c
AJ
190};
191
558540c1
JS
192struct scrub_warning {
193 struct btrfs_path *path;
194 u64 extent_item_size;
558540c1 195 const char *errstr;
6aa21263 196 u64 physical;
558540c1
JS
197 u64 logical;
198 struct btrfs_device *dev;
558540c1
JS
199};
200
0966a7b1
QW
201struct full_stripe_lock {
202 struct rb_node node;
203 u64 logical;
204 u64 refs;
205 struct mutex mutex;
206};
207
b6bfebc1
SB
208static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
209static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
b5d67f64 210static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 211static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 212 struct scrub_block *sblocks_for_recheck);
34f5c8e9 213static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
214 struct scrub_block *sblock,
215 int retry_failed_mirror);
ba7cf988 216static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 217static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 218 struct scrub_block *sblock_good);
b5d67f64
SB
219static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
220 struct scrub_block *sblock_good,
221 int page_num, int force_write);
ff023aac
SB
222static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
223static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
224 int page_num);
b5d67f64
SB
225static int scrub_checksum_data(struct scrub_block *sblock);
226static int scrub_checksum_tree_block(struct scrub_block *sblock);
227static int scrub_checksum_super(struct scrub_block *sblock);
228static void scrub_block_get(struct scrub_block *sblock);
229static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
230static void scrub_page_get(struct scrub_page *spage);
231static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
232static void scrub_parity_get(struct scrub_parity *sparity);
233static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
234static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
235 struct scrub_page *spage);
d9d181c1 236static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 237 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
238 u64 gen, int mirror_num, u8 *csum, int force,
239 u64 physical_for_dev_replace);
4246a0b6 240static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
241static void scrub_bio_end_io_worker(struct btrfs_work *work);
242static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
243static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
244 u64 extent_logical, u64 extent_len,
245 u64 *extent_physical,
246 struct btrfs_device **extent_dev,
247 int *extent_mirror_num);
ff023aac
SB
248static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
249 struct scrub_page *spage);
250static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 251static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac 252static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
cb7ab021 253static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 254static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 255static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 256
762221f0
LB
257static inline int scrub_is_page_on_raid56(struct scrub_page *page)
258{
259 return page->recover &&
260 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
261}
1623edeb 262
b6bfebc1
SB
263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264{
99f4cdb1 265 refcount_inc(&sctx->refs);
b6bfebc1
SB
266 atomic_inc(&sctx->bios_in_flight);
267}
268
269static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270{
271 atomic_dec(&sctx->bios_in_flight);
272 wake_up(&sctx->list_wait);
f55985f4 273 scrub_put_ctx(sctx);
b6bfebc1
SB
274}
275
cb7ab021 276static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
277{
278 while (atomic_read(&fs_info->scrub_pause_req)) {
279 mutex_unlock(&fs_info->scrub_lock);
280 wait_event(fs_info->scrub_pause_wait,
281 atomic_read(&fs_info->scrub_pause_req) == 0);
282 mutex_lock(&fs_info->scrub_lock);
283 }
284}
285
0e22be89 286static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
287{
288 atomic_inc(&fs_info->scrubs_paused);
289 wake_up(&fs_info->scrub_pause_wait);
0e22be89 290}
cb7ab021 291
0e22be89
Z
292static void scrub_pause_off(struct btrfs_fs_info *fs_info)
293{
cb7ab021
WS
294 mutex_lock(&fs_info->scrub_lock);
295 __scrub_blocked_if_needed(fs_info);
296 atomic_dec(&fs_info->scrubs_paused);
297 mutex_unlock(&fs_info->scrub_lock);
298
299 wake_up(&fs_info->scrub_pause_wait);
300}
301
0e22be89
Z
302static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
303{
304 scrub_pause_on(fs_info);
305 scrub_pause_off(fs_info);
306}
307
0966a7b1
QW
308/*
309 * Insert new full stripe lock into full stripe locks tree
310 *
311 * Return pointer to existing or newly inserted full_stripe_lock structure if
312 * everything works well.
313 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
314 *
315 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
316 * function
317 */
318static struct full_stripe_lock *insert_full_stripe_lock(
319 struct btrfs_full_stripe_locks_tree *locks_root,
320 u64 fstripe_logical)
321{
322 struct rb_node **p;
323 struct rb_node *parent = NULL;
324 struct full_stripe_lock *entry;
325 struct full_stripe_lock *ret;
326
a32bf9a3 327 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
328
329 p = &locks_root->root.rb_node;
330 while (*p) {
331 parent = *p;
332 entry = rb_entry(parent, struct full_stripe_lock, node);
333 if (fstripe_logical < entry->logical) {
334 p = &(*p)->rb_left;
335 } else if (fstripe_logical > entry->logical) {
336 p = &(*p)->rb_right;
337 } else {
338 entry->refs++;
339 return entry;
340 }
341 }
342
a5fb1142
FM
343 /*
344 * Insert new lock.
a5fb1142 345 */
0966a7b1
QW
346 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
347 if (!ret)
348 return ERR_PTR(-ENOMEM);
349 ret->logical = fstripe_logical;
350 ret->refs = 1;
351 mutex_init(&ret->mutex);
352
353 rb_link_node(&ret->node, parent, p);
354 rb_insert_color(&ret->node, &locks_root->root);
355 return ret;
356}
357
358/*
359 * Search for a full stripe lock of a block group
360 *
361 * Return pointer to existing full stripe lock if found
362 * Return NULL if not found
363 */
364static struct full_stripe_lock *search_full_stripe_lock(
365 struct btrfs_full_stripe_locks_tree *locks_root,
366 u64 fstripe_logical)
367{
368 struct rb_node *node;
369 struct full_stripe_lock *entry;
370
a32bf9a3 371 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
372
373 node = locks_root->root.rb_node;
374 while (node) {
375 entry = rb_entry(node, struct full_stripe_lock, node);
376 if (fstripe_logical < entry->logical)
377 node = node->rb_left;
378 else if (fstripe_logical > entry->logical)
379 node = node->rb_right;
380 else
381 return entry;
382 }
383 return NULL;
384}
385
386/*
387 * Helper to get full stripe logical from a normal bytenr.
388 *
389 * Caller must ensure @cache is a RAID56 block group.
390 */
391static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
392 u64 bytenr)
393{
394 u64 ret;
395
396 /*
397 * Due to chunk item size limit, full stripe length should not be
398 * larger than U32_MAX. Just a sanity check here.
399 */
400 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
401
402 /*
403 * round_down() can only handle power of 2, while RAID56 full
404 * stripe length can be 64KiB * n, so we need to manually round down.
405 */
406 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
407 cache->full_stripe_len + cache->key.objectid;
408 return ret;
409}
410
411/*
412 * Lock a full stripe to avoid concurrency of recovery and read
413 *
414 * It's only used for profiles with parities (RAID5/6), for other profiles it
415 * does nothing.
416 *
417 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
418 * So caller must call unlock_full_stripe() at the same context.
419 *
420 * Return <0 if encounters error.
421 */
422static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
423 bool *locked_ret)
424{
425 struct btrfs_block_group_cache *bg_cache;
426 struct btrfs_full_stripe_locks_tree *locks_root;
427 struct full_stripe_lock *existing;
428 u64 fstripe_start;
429 int ret = 0;
430
431 *locked_ret = false;
432 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
433 if (!bg_cache) {
434 ASSERT(0);
435 return -ENOENT;
436 }
437
438 /* Profiles not based on parity don't need full stripe lock */
439 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
440 goto out;
441 locks_root = &bg_cache->full_stripe_locks_root;
442
443 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
444
445 /* Now insert the full stripe lock */
446 mutex_lock(&locks_root->lock);
447 existing = insert_full_stripe_lock(locks_root, fstripe_start);
448 mutex_unlock(&locks_root->lock);
449 if (IS_ERR(existing)) {
450 ret = PTR_ERR(existing);
451 goto out;
452 }
453 mutex_lock(&existing->mutex);
454 *locked_ret = true;
455out:
456 btrfs_put_block_group(bg_cache);
457 return ret;
458}
459
460/*
461 * Unlock a full stripe.
462 *
463 * NOTE: Caller must ensure it's the same context calling corresponding
464 * lock_full_stripe().
465 *
466 * Return 0 if we unlock full stripe without problem.
467 * Return <0 for error
468 */
469static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
470 bool locked)
471{
472 struct btrfs_block_group_cache *bg_cache;
473 struct btrfs_full_stripe_locks_tree *locks_root;
474 struct full_stripe_lock *fstripe_lock;
475 u64 fstripe_start;
476 bool freeit = false;
477 int ret = 0;
478
479 /* If we didn't acquire full stripe lock, no need to continue */
480 if (!locked)
481 return 0;
482
483 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
484 if (!bg_cache) {
485 ASSERT(0);
486 return -ENOENT;
487 }
488 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
489 goto out;
490
491 locks_root = &bg_cache->full_stripe_locks_root;
492 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
493
494 mutex_lock(&locks_root->lock);
495 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
496 /* Unpaired unlock_full_stripe() detected */
497 if (!fstripe_lock) {
498 WARN_ON(1);
499 ret = -ENOENT;
500 mutex_unlock(&locks_root->lock);
501 goto out;
502 }
503
504 if (fstripe_lock->refs == 0) {
505 WARN_ON(1);
506 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
507 fstripe_lock->logical);
508 } else {
509 fstripe_lock->refs--;
510 }
511
512 if (fstripe_lock->refs == 0) {
513 rb_erase(&fstripe_lock->node, &locks_root->root);
514 freeit = true;
515 }
516 mutex_unlock(&locks_root->lock);
517
518 mutex_unlock(&fstripe_lock->mutex);
519 if (freeit)
520 kfree(fstripe_lock);
521out:
522 btrfs_put_block_group(bg_cache);
523 return ret;
524}
525
d9d181c1 526static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 527{
d9d181c1 528 while (!list_empty(&sctx->csum_list)) {
a2de733c 529 struct btrfs_ordered_sum *sum;
d9d181c1 530 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
531 struct btrfs_ordered_sum, list);
532 list_del(&sum->list);
533 kfree(sum);
534 }
535}
536
d9d181c1 537static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
538{
539 int i;
a2de733c 540
d9d181c1 541 if (!sctx)
a2de733c
AJ
542 return;
543
b5d67f64 544 /* this can happen when scrub is cancelled */
d9d181c1
SB
545 if (sctx->curr != -1) {
546 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
547
548 for (i = 0; i < sbio->page_count; i++) {
ff023aac 549 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
550 scrub_block_put(sbio->pagev[i]->sblock);
551 }
552 bio_put(sbio->bio);
553 }
554
ff023aac 555 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 556 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
557
558 if (!sbio)
559 break;
a2de733c
AJ
560 kfree(sbio);
561 }
562
3fb99303 563 kfree(sctx->wr_curr_bio);
d9d181c1
SB
564 scrub_free_csums(sctx);
565 kfree(sctx);
a2de733c
AJ
566}
567
f55985f4
FM
568static void scrub_put_ctx(struct scrub_ctx *sctx)
569{
99f4cdb1 570 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
571 scrub_free_ctx(sctx);
572}
573
92f7ba43
DS
574static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
575 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 576{
d9d181c1 577 struct scrub_ctx *sctx;
a2de733c 578 int i;
a2de733c 579
58c4e173 580 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 581 if (!sctx)
a2de733c 582 goto nomem;
99f4cdb1 583 refcount_set(&sctx->refs, 1);
63a212ab 584 sctx->is_dev_replace = is_dev_replace;
b54ffb73 585 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 586 sctx->curr = -1;
92f7ba43 587 sctx->fs_info = fs_info;
e49be14b 588 INIT_LIST_HEAD(&sctx->csum_list);
ff023aac 589 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
590 struct scrub_bio *sbio;
591
58c4e173 592 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
593 if (!sbio)
594 goto nomem;
d9d181c1 595 sctx->bios[i] = sbio;
a2de733c 596
a2de733c 597 sbio->index = i;
d9d181c1 598 sbio->sctx = sctx;
b5d67f64 599 sbio->page_count = 0;
9e0af237
LB
600 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
601 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 602
ff023aac 603 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 604 sctx->bios[i]->next_free = i + 1;
0ef8e451 605 else
d9d181c1
SB
606 sctx->bios[i]->next_free = -1;
607 }
608 sctx->first_free = 0;
b6bfebc1
SB
609 atomic_set(&sctx->bios_in_flight, 0);
610 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
611 atomic_set(&sctx->cancel_req, 0);
612 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
d9d181c1
SB
613
614 spin_lock_init(&sctx->list_lock);
615 spin_lock_init(&sctx->stat_lock);
616 init_waitqueue_head(&sctx->list_wait);
ff023aac 617
3fb99303
DS
618 WARN_ON(sctx->wr_curr_bio != NULL);
619 mutex_init(&sctx->wr_lock);
620 sctx->wr_curr_bio = NULL;
8fcdac3f 621 if (is_dev_replace) {
ded56184 622 WARN_ON(!fs_info->dev_replace.tgtdev);
3fb99303 623 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ded56184 624 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
2073c4c2 625 sctx->flush_all_writes = false;
ff023aac 626 }
8fcdac3f 627
d9d181c1 628 return sctx;
a2de733c
AJ
629
630nomem:
d9d181c1 631 scrub_free_ctx(sctx);
a2de733c
AJ
632 return ERR_PTR(-ENOMEM);
633}
634
ff023aac
SB
635static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
636 void *warn_ctx)
558540c1
JS
637{
638 u64 isize;
639 u32 nlink;
640 int ret;
641 int i;
de2491fd 642 unsigned nofs_flag;
558540c1
JS
643 struct extent_buffer *eb;
644 struct btrfs_inode_item *inode_item;
ff023aac 645 struct scrub_warning *swarn = warn_ctx;
fb456252 646 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
647 struct inode_fs_paths *ipath = NULL;
648 struct btrfs_root *local_root;
649 struct btrfs_key root_key;
1d4c08e0 650 struct btrfs_key key;
558540c1
JS
651
652 root_key.objectid = root;
653 root_key.type = BTRFS_ROOT_ITEM_KEY;
654 root_key.offset = (u64)-1;
655 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
656 if (IS_ERR(local_root)) {
657 ret = PTR_ERR(local_root);
658 goto err;
659 }
660
14692cc1
DS
661 /*
662 * this makes the path point to (inum INODE_ITEM ioff)
663 */
1d4c08e0
DS
664 key.objectid = inum;
665 key.type = BTRFS_INODE_ITEM_KEY;
666 key.offset = 0;
667
668 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
669 if (ret) {
670 btrfs_release_path(swarn->path);
671 goto err;
672 }
673
674 eb = swarn->path->nodes[0];
675 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
676 struct btrfs_inode_item);
677 isize = btrfs_inode_size(eb, inode_item);
678 nlink = btrfs_inode_nlink(eb, inode_item);
679 btrfs_release_path(swarn->path);
680
de2491fd
DS
681 /*
682 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
683 * uses GFP_NOFS in this context, so we keep it consistent but it does
684 * not seem to be strictly necessary.
685 */
686 nofs_flag = memalloc_nofs_save();
558540c1 687 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 688 memalloc_nofs_restore(nofs_flag);
26bdef54
DC
689 if (IS_ERR(ipath)) {
690 ret = PTR_ERR(ipath);
691 ipath = NULL;
692 goto err;
693 }
558540c1
JS
694 ret = paths_from_inode(inum, ipath);
695
696 if (ret < 0)
697 goto err;
698
699 /*
700 * we deliberately ignore the bit ipath might have been too small to
701 * hold all of the paths here
702 */
703 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 704 btrfs_warn_in_rcu(fs_info,
6aa21263 705"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
5d163e0e
JM
706 swarn->errstr, swarn->logical,
707 rcu_str_deref(swarn->dev->name),
6aa21263 708 swarn->physical,
5d163e0e
JM
709 root, inum, offset,
710 min(isize - offset, (u64)PAGE_SIZE), nlink,
711 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
712
713 free_ipath(ipath);
714 return 0;
715
716err:
5d163e0e 717 btrfs_warn_in_rcu(fs_info,
6aa21263 718 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e
JM
719 swarn->errstr, swarn->logical,
720 rcu_str_deref(swarn->dev->name),
6aa21263 721 swarn->physical,
5d163e0e 722 root, inum, offset, ret);
558540c1
JS
723
724 free_ipath(ipath);
725 return 0;
726}
727
b5d67f64 728static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 729{
a36cf8b8
SB
730 struct btrfs_device *dev;
731 struct btrfs_fs_info *fs_info;
558540c1
JS
732 struct btrfs_path *path;
733 struct btrfs_key found_key;
734 struct extent_buffer *eb;
735 struct btrfs_extent_item *ei;
736 struct scrub_warning swarn;
69917e43
LB
737 unsigned long ptr = 0;
738 u64 extent_item_pos;
739 u64 flags = 0;
558540c1 740 u64 ref_root;
69917e43 741 u32 item_size;
07c9a8e0 742 u8 ref_level = 0;
69917e43 743 int ret;
558540c1 744
a36cf8b8 745 WARN_ON(sblock->page_count < 1);
7a9e9987 746 dev = sblock->pagev[0]->dev;
fb456252 747 fs_info = sblock->sctx->fs_info;
a36cf8b8 748
558540c1 749 path = btrfs_alloc_path();
8b9456da
DS
750 if (!path)
751 return;
558540c1 752
6aa21263 753 swarn.physical = sblock->pagev[0]->physical;
7a9e9987 754 swarn.logical = sblock->pagev[0]->logical;
558540c1 755 swarn.errstr = errstr;
a36cf8b8 756 swarn.dev = NULL;
558540c1 757
69917e43
LB
758 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
759 &flags);
558540c1
JS
760 if (ret < 0)
761 goto out;
762
4692cf58 763 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
764 swarn.extent_item_size = found_key.offset;
765
766 eb = path->nodes[0];
767 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
768 item_size = btrfs_item_size_nr(eb, path->slots[0]);
769
69917e43 770 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 771 do {
6eda71d0
LB
772 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
773 item_size, &ref_root,
774 &ref_level);
ecaeb14b 775 btrfs_warn_in_rcu(fs_info,
6aa21263 776"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
5d163e0e 777 errstr, swarn.logical,
606686ee 778 rcu_str_deref(dev->name),
6aa21263 779 swarn.physical,
558540c1
JS
780 ref_level ? "node" : "leaf",
781 ret < 0 ? -1 : ref_level,
782 ret < 0 ? -1 : ref_root);
783 } while (ret != 1);
d8fe29e9 784 btrfs_release_path(path);
558540c1 785 } else {
d8fe29e9 786 btrfs_release_path(path);
558540c1 787 swarn.path = path;
a36cf8b8 788 swarn.dev = dev;
7a3ae2f8
JS
789 iterate_extent_inodes(fs_info, found_key.objectid,
790 extent_item_pos, 1,
c995ab3c 791 scrub_print_warning_inode, &swarn, false);
558540c1
JS
792 }
793
794out:
795 btrfs_free_path(path);
558540c1
JS
796}
797
af8e2d1d
MX
798static inline void scrub_get_recover(struct scrub_recover *recover)
799{
6f615018 800 refcount_inc(&recover->refs);
af8e2d1d
MX
801}
802
e501bfe3
QW
803static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
804 struct scrub_recover *recover)
af8e2d1d 805{
6f615018 806 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 807 btrfs_bio_counter_dec(fs_info);
6e9606d2 808 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
809 kfree(recover);
810 }
811}
812
a2de733c 813/*
b5d67f64
SB
814 * scrub_handle_errored_block gets called when either verification of the
815 * pages failed or the bio failed to read, e.g. with EIO. In the latter
816 * case, this function handles all pages in the bio, even though only one
817 * may be bad.
818 * The goal of this function is to repair the errored block by using the
819 * contents of one of the mirrors.
a2de733c 820 */
b5d67f64 821static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 822{
d9d181c1 823 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 824 struct btrfs_device *dev;
b5d67f64 825 struct btrfs_fs_info *fs_info;
b5d67f64 826 u64 logical;
b5d67f64
SB
827 unsigned int failed_mirror_index;
828 unsigned int is_metadata;
829 unsigned int have_csum;
b5d67f64
SB
830 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
831 struct scrub_block *sblock_bad;
832 int ret;
833 int mirror_index;
834 int page_num;
835 int success;
28d70e23 836 bool full_stripe_locked;
7c3c7cb9 837 unsigned int nofs_flag;
558540c1 838 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
839 DEFAULT_RATELIMIT_BURST);
840
841 BUG_ON(sblock_to_check->page_count < 1);
fb456252 842 fs_info = sctx->fs_info;
4ded4f63
SB
843 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
844 /*
845 * if we find an error in a super block, we just report it.
846 * They will get written with the next transaction commit
847 * anyway
848 */
849 spin_lock(&sctx->stat_lock);
850 ++sctx->stat.super_errors;
851 spin_unlock(&sctx->stat_lock);
852 return 0;
853 }
7a9e9987 854 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
855 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
856 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
857 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 858 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 859 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 860 dev = sblock_to_check->pagev[0]->dev;
13db62b7 861
7c3c7cb9
FM
862 /*
863 * We must use GFP_NOFS because the scrub task might be waiting for a
864 * worker task executing this function and in turn a transaction commit
865 * might be waiting the scrub task to pause (which needs to wait for all
866 * the worker tasks to complete before pausing).
867 * We do allocations in the workers through insert_full_stripe_lock()
868 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
869 * this function.
870 */
871 nofs_flag = memalloc_nofs_save();
28d70e23
QW
872 /*
873 * For RAID5/6, race can happen for a different device scrub thread.
874 * For data corruption, Parity and Data threads will both try
875 * to recovery the data.
876 * Race can lead to doubly added csum error, or even unrecoverable
877 * error.
878 */
879 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
880 if (ret < 0) {
7c3c7cb9 881 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
882 spin_lock(&sctx->stat_lock);
883 if (ret == -ENOMEM)
884 sctx->stat.malloc_errors++;
885 sctx->stat.read_errors++;
886 sctx->stat.uncorrectable_errors++;
887 spin_unlock(&sctx->stat_lock);
888 return ret;
889 }
890
b5d67f64
SB
891 /*
892 * read all mirrors one after the other. This includes to
893 * re-read the extent or metadata block that failed (that was
894 * the cause that this fixup code is called) another time,
895 * page by page this time in order to know which pages
896 * caused I/O errors and which ones are good (for all mirrors).
897 * It is the goal to handle the situation when more than one
898 * mirror contains I/O errors, but the errors do not
899 * overlap, i.e. the data can be repaired by selecting the
900 * pages from those mirrors without I/O error on the
901 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
902 * would be that mirror #1 has an I/O error on the first page,
903 * the second page is good, and mirror #2 has an I/O error on
904 * the second page, but the first page is good.
905 * Then the first page of the first mirror can be repaired by
906 * taking the first page of the second mirror, and the
907 * second page of the second mirror can be repaired by
908 * copying the contents of the 2nd page of the 1st mirror.
909 * One more note: if the pages of one mirror contain I/O
910 * errors, the checksum cannot be verified. In order to get
911 * the best data for repairing, the first attempt is to find
912 * a mirror without I/O errors and with a validated checksum.
913 * Only if this is not possible, the pages are picked from
914 * mirrors with I/O errors without considering the checksum.
915 * If the latter is the case, at the end, the checksum of the
916 * repaired area is verified in order to correctly maintain
917 * the statistics.
918 */
919
31e818fe 920 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
7c3c7cb9 921 sizeof(*sblocks_for_recheck), GFP_KERNEL);
b5d67f64 922 if (!sblocks_for_recheck) {
d9d181c1
SB
923 spin_lock(&sctx->stat_lock);
924 sctx->stat.malloc_errors++;
925 sctx->stat.read_errors++;
926 sctx->stat.uncorrectable_errors++;
927 spin_unlock(&sctx->stat_lock);
a36cf8b8 928 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 929 goto out;
a2de733c
AJ
930 }
931
b5d67f64 932 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 933 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 934 if (ret) {
d9d181c1
SB
935 spin_lock(&sctx->stat_lock);
936 sctx->stat.read_errors++;
937 sctx->stat.uncorrectable_errors++;
938 spin_unlock(&sctx->stat_lock);
a36cf8b8 939 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
940 goto out;
941 }
942 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
943 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 944
b5d67f64 945 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 946 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 947
b5d67f64
SB
948 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
949 sblock_bad->no_io_error_seen) {
950 /*
951 * the error disappeared after reading page by page, or
952 * the area was part of a huge bio and other parts of the
953 * bio caused I/O errors, or the block layer merged several
954 * read requests into one and the error is caused by a
955 * different bio (usually one of the two latter cases is
956 * the cause)
957 */
d9d181c1
SB
958 spin_lock(&sctx->stat_lock);
959 sctx->stat.unverified_errors++;
5a6ac9ea 960 sblock_to_check->data_corrected = 1;
d9d181c1 961 spin_unlock(&sctx->stat_lock);
a2de733c 962
ff023aac
SB
963 if (sctx->is_dev_replace)
964 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 965 goto out;
a2de733c 966 }
a2de733c 967
b5d67f64 968 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
969 spin_lock(&sctx->stat_lock);
970 sctx->stat.read_errors++;
971 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
972 if (__ratelimit(&_rs))
973 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 975 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
976 spin_lock(&sctx->stat_lock);
977 sctx->stat.csum_errors++;
978 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
979 if (__ratelimit(&_rs))
980 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 981 btrfs_dev_stat_inc_and_print(dev,
442a4f63 982 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 983 } else if (sblock_bad->header_error) {
d9d181c1
SB
984 spin_lock(&sctx->stat_lock);
985 sctx->stat.verify_errors++;
986 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
987 if (__ratelimit(&_rs))
988 scrub_print_warning("checksum/header error",
989 sblock_to_check);
442a4f63 990 if (sblock_bad->generation_error)
a36cf8b8 991 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
992 BTRFS_DEV_STAT_GENERATION_ERRS);
993 else
a36cf8b8 994 btrfs_dev_stat_inc_and_print(dev,
442a4f63 995 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 996 }
a2de733c 997
33ef30ad
ID
998 if (sctx->readonly) {
999 ASSERT(!sctx->is_dev_replace);
1000 goto out;
1001 }
a2de733c 1002
b5d67f64
SB
1003 /*
1004 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1005 * checksums.
1006 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1007 * errors and also does not have a checksum error.
1008 * If one is found, and if a checksum is present, the full block
1009 * that is known to contain an error is rewritten. Afterwards
1010 * the block is known to be corrected.
1011 * If a mirror is found which is completely correct, and no
1012 * checksum is present, only those pages are rewritten that had
1013 * an I/O error in the block to be repaired, since it cannot be
1014 * determined, which copy of the other pages is better (and it
1015 * could happen otherwise that a correct page would be
1016 * overwritten by a bad one).
1017 */
762221f0 1018 for (mirror_index = 0; ;mirror_index++) {
cb2ced73 1019 struct scrub_block *sblock_other;
b5d67f64 1020
cb2ced73
SB
1021 if (mirror_index == failed_mirror_index)
1022 continue;
762221f0
LB
1023
1024 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026 if (mirror_index >= BTRFS_MAX_MIRRORS)
1027 break;
1028 if (!sblocks_for_recheck[mirror_index].page_count)
1029 break;
1030
1031 sblock_other = sblocks_for_recheck + mirror_index;
1032 } else {
1033 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034 int max_allowed = r->bbio->num_stripes -
1035 r->bbio->num_tgtdevs;
1036
1037 if (mirror_index >= max_allowed)
1038 break;
1039 if (!sblocks_for_recheck[1].page_count)
1040 break;
1041
1042 ASSERT(failed_mirror_index == 0);
1043 sblock_other = sblocks_for_recheck + 1;
1044 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045 }
cb2ced73
SB
1046
1047 /* build and submit the bios, check checksums */
affe4a5a 1048 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1049
1050 if (!sblock_other->header_error &&
b5d67f64
SB
1051 !sblock_other->checksum_error &&
1052 sblock_other->no_io_error_seen) {
ff023aac
SB
1053 if (sctx->is_dev_replace) {
1054 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1055 goto corrected_error;
ff023aac 1056 } else {
ff023aac 1057 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1058 sblock_bad, sblock_other);
1059 if (!ret)
1060 goto corrected_error;
ff023aac 1061 }
b5d67f64
SB
1062 }
1063 }
a2de733c 1064
b968fed1
ZL
1065 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066 goto did_not_correct_error;
ff023aac
SB
1067
1068 /*
ff023aac 1069 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1070 * repaired, continue by picking good copies of those pages.
1071 * Select the good pages from mirrors to rewrite bad pages from
1072 * the area to fix. Afterwards verify the checksum of the block
1073 * that is supposed to be repaired. This verification step is
1074 * only done for the purpose of statistic counting and for the
1075 * final scrub report, whether errors remain.
1076 * A perfect algorithm could make use of the checksum and try
1077 * all possible combinations of pages from the different mirrors
1078 * until the checksum verification succeeds. For example, when
1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 * of mirror #2 is readable but the final checksum test fails,
1081 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1082 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1083 * exception and is therefore not implemented. At least it is
1084 * avoided that the good copy is overwritten.
1085 * A more useful improvement would be to pick the sectors
1086 * without I/O error based on sector sizes (512 bytes on legacy
1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 * mirror could be repaired by taking 512 byte of a different
1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 * area are unreadable.
a2de733c 1091 */
b5d67f64 1092 success = 1;
b968fed1
ZL
1093 for (page_num = 0; page_num < sblock_bad->page_count;
1094 page_num++) {
7a9e9987 1095 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1096 struct scrub_block *sblock_other = NULL;
b5d67f64 1097
b968fed1
ZL
1098 /* skip no-io-error page in scrub */
1099 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1100 continue;
b5d67f64 1101
4759700a
LB
1102 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103 /*
1104 * In case of dev replace, if raid56 rebuild process
1105 * didn't work out correct data, then copy the content
1106 * in sblock_bad to make sure target device is identical
1107 * to source device, instead of writing garbage data in
1108 * sblock_for_recheck array to target device.
1109 */
1110 sblock_other = NULL;
1111 } else if (page_bad->io_error) {
1112 /* try to find no-io-error page in mirrors */
b968fed1
ZL
1113 for (mirror_index = 0;
1114 mirror_index < BTRFS_MAX_MIRRORS &&
1115 sblocks_for_recheck[mirror_index].page_count > 0;
1116 mirror_index++) {
1117 if (!sblocks_for_recheck[mirror_index].
1118 pagev[page_num]->io_error) {
1119 sblock_other = sblocks_for_recheck +
1120 mirror_index;
1121 break;
b5d67f64
SB
1122 }
1123 }
b968fed1
ZL
1124 if (!sblock_other)
1125 success = 0;
96e36920 1126 }
a2de733c 1127
b968fed1
ZL
1128 if (sctx->is_dev_replace) {
1129 /*
1130 * did not find a mirror to fetch the page
1131 * from. scrub_write_page_to_dev_replace()
1132 * handles this case (page->io_error), by
1133 * filling the block with zeros before
1134 * submitting the write request
1135 */
1136 if (!sblock_other)
1137 sblock_other = sblock_bad;
1138
1139 if (scrub_write_page_to_dev_replace(sblock_other,
1140 page_num) != 0) {
e37abe97 1141 atomic64_inc(
0b246afa 1142 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1143 success = 0;
1144 }
1145 } else if (sblock_other) {
1146 ret = scrub_repair_page_from_good_copy(sblock_bad,
1147 sblock_other,
1148 page_num, 0);
1149 if (0 == ret)
1150 page_bad->io_error = 0;
1151 else
1152 success = 0;
b5d67f64 1153 }
a2de733c 1154 }
a2de733c 1155
b968fed1 1156 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1157 if (is_metadata || have_csum) {
1158 /*
1159 * need to verify the checksum now that all
1160 * sectors on disk are repaired (the write
1161 * request for data to be repaired is on its way).
1162 * Just be lazy and use scrub_recheck_block()
1163 * which re-reads the data before the checksum
1164 * is verified, but most likely the data comes out
1165 * of the page cache.
1166 */
affe4a5a 1167 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1168 if (!sblock_bad->header_error &&
b5d67f64
SB
1169 !sblock_bad->checksum_error &&
1170 sblock_bad->no_io_error_seen)
1171 goto corrected_error;
1172 else
1173 goto did_not_correct_error;
1174 } else {
1175corrected_error:
d9d181c1
SB
1176 spin_lock(&sctx->stat_lock);
1177 sctx->stat.corrected_errors++;
5a6ac9ea 1178 sblock_to_check->data_corrected = 1;
d9d181c1 1179 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1180 btrfs_err_rl_in_rcu(fs_info,
1181 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1182 logical, rcu_str_deref(dev->name));
8628764e 1183 }
b5d67f64
SB
1184 } else {
1185did_not_correct_error:
d9d181c1
SB
1186 spin_lock(&sctx->stat_lock);
1187 sctx->stat.uncorrectable_errors++;
1188 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1189 btrfs_err_rl_in_rcu(fs_info,
1190 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1191 logical, rcu_str_deref(dev->name));
96e36920 1192 }
a2de733c 1193
b5d67f64
SB
1194out:
1195 if (sblocks_for_recheck) {
1196 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197 mirror_index++) {
1198 struct scrub_block *sblock = sblocks_for_recheck +
1199 mirror_index;
af8e2d1d 1200 struct scrub_recover *recover;
b5d67f64
SB
1201 int page_index;
1202
7a9e9987
SB
1203 for (page_index = 0; page_index < sblock->page_count;
1204 page_index++) {
1205 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1206 recover = sblock->pagev[page_index]->recover;
1207 if (recover) {
e501bfe3 1208 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1209 sblock->pagev[page_index]->recover =
1210 NULL;
1211 }
7a9e9987
SB
1212 scrub_page_put(sblock->pagev[page_index]);
1213 }
b5d67f64
SB
1214 }
1215 kfree(sblocks_for_recheck);
1216 }
a2de733c 1217
28d70e23 1218 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
7c3c7cb9 1219 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
1220 if (ret < 0)
1221 return ret;
b5d67f64
SB
1222 return 0;
1223}
a2de733c 1224
8e5cfb55 1225static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1226{
10f11900
ZL
1227 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228 return 2;
1229 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230 return 3;
1231 else
af8e2d1d 1232 return (int)bbio->num_stripes;
af8e2d1d
MX
1233}
1234
10f11900
ZL
1235static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236 u64 *raid_map,
af8e2d1d
MX
1237 u64 mapped_length,
1238 int nstripes, int mirror,
1239 int *stripe_index,
1240 u64 *stripe_offset)
1241{
1242 int i;
1243
ffe2d203 1244 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1245 /* RAID5/6 */
1246 for (i = 0; i < nstripes; i++) {
1247 if (raid_map[i] == RAID6_Q_STRIPE ||
1248 raid_map[i] == RAID5_P_STRIPE)
1249 continue;
1250
1251 if (logical >= raid_map[i] &&
1252 logical < raid_map[i] + mapped_length)
1253 break;
1254 }
1255
1256 *stripe_index = i;
1257 *stripe_offset = logical - raid_map[i];
1258 } else {
1259 /* The other RAID type */
1260 *stripe_index = mirror;
1261 *stripe_offset = 0;
1262 }
1263}
1264
be50a8dd 1265static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1266 struct scrub_block *sblocks_for_recheck)
1267{
be50a8dd 1268 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1269 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1270 u64 length = original_sblock->page_count * PAGE_SIZE;
1271 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1272 u64 generation = original_sblock->pagev[0]->generation;
1273 u64 flags = original_sblock->pagev[0]->flags;
1274 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1275 struct scrub_recover *recover;
1276 struct btrfs_bio *bbio;
af8e2d1d
MX
1277 u64 sublen;
1278 u64 mapped_length;
1279 u64 stripe_offset;
1280 int stripe_index;
be50a8dd 1281 int page_index = 0;
b5d67f64 1282 int mirror_index;
af8e2d1d 1283 int nmirrors;
b5d67f64
SB
1284 int ret;
1285
1286 /*
57019345 1287 * note: the two members refs and outstanding_pages
b5d67f64
SB
1288 * are not used (and not set) in the blocks that are used for
1289 * the recheck procedure
1290 */
1291
b5d67f64 1292 while (length > 0) {
af8e2d1d
MX
1293 sublen = min_t(u64, length, PAGE_SIZE);
1294 mapped_length = sublen;
1295 bbio = NULL;
a2de733c 1296
b5d67f64
SB
1297 /*
1298 * with a length of PAGE_SIZE, each returned stripe
1299 * represents one mirror
1300 */
e501bfe3 1301 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1302 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1303 logical, &mapped_length, &bbio);
b5d67f64 1304 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1305 btrfs_put_bbio(bbio);
e501bfe3 1306 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1307 return -EIO;
1308 }
a2de733c 1309
af8e2d1d
MX
1310 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311 if (!recover) {
6e9606d2 1312 btrfs_put_bbio(bbio);
e501bfe3 1313 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1314 return -ENOMEM;
1315 }
1316
6f615018 1317 refcount_set(&recover->refs, 1);
af8e2d1d 1318 recover->bbio = bbio;
af8e2d1d
MX
1319 recover->map_length = mapped_length;
1320
24731149 1321 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1322
be50a8dd 1323 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1324
af8e2d1d 1325 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1326 mirror_index++) {
1327 struct scrub_block *sblock;
1328 struct scrub_page *page;
1329
b5d67f64 1330 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1331 sblock->sctx = sctx;
4734b7ed 1332
7a9e9987
SB
1333 page = kzalloc(sizeof(*page), GFP_NOFS);
1334 if (!page) {
1335leave_nomem:
d9d181c1
SB
1336 spin_lock(&sctx->stat_lock);
1337 sctx->stat.malloc_errors++;
1338 spin_unlock(&sctx->stat_lock);
e501bfe3 1339 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1340 return -ENOMEM;
1341 }
7a9e9987
SB
1342 scrub_page_get(page);
1343 sblock->pagev[page_index] = page;
4734b7ed
ZL
1344 page->sblock = sblock;
1345 page->flags = flags;
1346 page->generation = generation;
7a9e9987 1347 page->logical = logical;
4734b7ed
ZL
1348 page->have_csum = have_csum;
1349 if (have_csum)
1350 memcpy(page->csum,
1351 original_sblock->pagev[0]->csum,
1352 sctx->csum_size);
af8e2d1d 1353
10f11900
ZL
1354 scrub_stripe_index_and_offset(logical,
1355 bbio->map_type,
1356 bbio->raid_map,
af8e2d1d 1357 mapped_length,
e34c330d
ZL
1358 bbio->num_stripes -
1359 bbio->num_tgtdevs,
af8e2d1d
MX
1360 mirror_index,
1361 &stripe_index,
1362 &stripe_offset);
1363 page->physical = bbio->stripes[stripe_index].physical +
1364 stripe_offset;
1365 page->dev = bbio->stripes[stripe_index].dev;
1366
ff023aac
SB
1367 BUG_ON(page_index >= original_sblock->page_count);
1368 page->physical_for_dev_replace =
1369 original_sblock->pagev[page_index]->
1370 physical_for_dev_replace;
7a9e9987 1371 /* for missing devices, dev->bdev is NULL */
7a9e9987 1372 page->mirror_num = mirror_index + 1;
b5d67f64 1373 sblock->page_count++;
7a9e9987
SB
1374 page->page = alloc_page(GFP_NOFS);
1375 if (!page->page)
1376 goto leave_nomem;
af8e2d1d
MX
1377
1378 scrub_get_recover(recover);
1379 page->recover = recover;
b5d67f64 1380 }
e501bfe3 1381 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1382 length -= sublen;
1383 logical += sublen;
1384 page_index++;
1385 }
1386
1387 return 0;
96e36920
ID
1388}
1389
4246a0b6 1390static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d 1391{
b4ff5ad7 1392 complete(bio->bi_private);
af8e2d1d
MX
1393}
1394
af8e2d1d
MX
1395static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396 struct bio *bio,
1397 struct scrub_page *page)
1398{
b4ff5ad7 1399 DECLARE_COMPLETION_ONSTACK(done);
af8e2d1d 1400 int ret;
762221f0 1401 int mirror_num;
af8e2d1d 1402
af8e2d1d
MX
1403 bio->bi_iter.bi_sector = page->logical >> 9;
1404 bio->bi_private = &done;
1405 bio->bi_end_io = scrub_bio_wait_endio;
1406
762221f0 1407 mirror_num = page->sblock->pagev[0]->mirror_num;
2ff7e61e 1408 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1409 page->recover->map_length,
762221f0 1410 mirror_num, 0);
af8e2d1d
MX
1411 if (ret)
1412 return ret;
1413
b4ff5ad7
LB
1414 wait_for_completion_io(&done);
1415 return blk_status_to_errno(bio->bi_status);
af8e2d1d
MX
1416}
1417
6ca1765b
LB
1418static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419 struct scrub_block *sblock)
1420{
1421 struct scrub_page *first_page = sblock->pagev[0];
1422 struct bio *bio;
1423 int page_num;
1424
1425 /* All pages in sblock belong to the same stripe on the same device. */
1426 ASSERT(first_page->dev);
1427 if (!first_page->dev->bdev)
1428 goto out;
1429
1430 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431 bio_set_dev(bio, first_page->dev->bdev);
1432
1433 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434 struct scrub_page *page = sblock->pagev[page_num];
1435
1436 WARN_ON(!page->page);
1437 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438 }
1439
1440 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441 bio_put(bio);
1442 goto out;
1443 }
1444
1445 bio_put(bio);
1446
1447 scrub_recheck_block_checksum(sblock);
1448
1449 return;
1450out:
1451 for (page_num = 0; page_num < sblock->page_count; page_num++)
1452 sblock->pagev[page_num]->io_error = 1;
1453
1454 sblock->no_io_error_seen = 0;
1455}
1456
b5d67f64
SB
1457/*
1458 * this function will check the on disk data for checksum errors, header
1459 * errors and read I/O errors. If any I/O errors happen, the exact pages
1460 * which are errored are marked as being bad. The goal is to enable scrub
1461 * to take those pages that are not errored from all the mirrors so that
1462 * the pages that are errored in the just handled mirror can be repaired.
1463 */
34f5c8e9 1464static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1465 struct scrub_block *sblock,
1466 int retry_failed_mirror)
96e36920 1467{
b5d67f64 1468 int page_num;
96e36920 1469
b5d67f64 1470 sblock->no_io_error_seen = 1;
96e36920 1471
6ca1765b
LB
1472 /* short cut for raid56 */
1473 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474 return scrub_recheck_block_on_raid56(fs_info, sblock);
1475
b5d67f64
SB
1476 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477 struct bio *bio;
7a9e9987 1478 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1479
442a4f63 1480 if (page->dev->bdev == NULL) {
ea9947b4
SB
1481 page->io_error = 1;
1482 sblock->no_io_error_seen = 0;
1483 continue;
1484 }
1485
7a9e9987 1486 WARN_ON(!page->page);
c5e4c3d7 1487 bio = btrfs_io_bio_alloc(1);
74d46992 1488 bio_set_dev(bio, page->dev->bdev);
b5d67f64 1489
34f5c8e9 1490 bio_add_page(bio, page->page, PAGE_SIZE, 0);
6ca1765b
LB
1491 bio->bi_iter.bi_sector = page->physical >> 9;
1492 bio->bi_opf = REQ_OP_READ;
af8e2d1d 1493
6ca1765b
LB
1494 if (btrfsic_submit_bio_wait(bio)) {
1495 page->io_error = 1;
1496 sblock->no_io_error_seen = 0;
af8e2d1d 1497 }
33879d45 1498
b5d67f64
SB
1499 bio_put(bio);
1500 }
96e36920 1501
b5d67f64 1502 if (sblock->no_io_error_seen)
ba7cf988 1503 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1504}
1505
17a9be2f
MX
1506static inline int scrub_check_fsid(u8 fsid[],
1507 struct scrub_page *spage)
1508{
1509 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510 int ret;
1511
44880fdc 1512 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
17a9be2f
MX
1513 return !ret;
1514}
1515
ba7cf988 1516static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1517{
ba7cf988
ZL
1518 sblock->header_error = 0;
1519 sblock->checksum_error = 0;
1520 sblock->generation_error = 0;
b5d67f64 1521
ba7cf988
ZL
1522 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523 scrub_checksum_data(sblock);
1524 else
1525 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1526}
1527
b5d67f64 1528static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1529 struct scrub_block *sblock_good)
b5d67f64
SB
1530{
1531 int page_num;
1532 int ret = 0;
96e36920 1533
b5d67f64
SB
1534 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535 int ret_sub;
96e36920 1536
b5d67f64
SB
1537 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538 sblock_good,
114ab50d 1539 page_num, 1);
b5d67f64
SB
1540 if (ret_sub)
1541 ret = ret_sub;
a2de733c 1542 }
b5d67f64
SB
1543
1544 return ret;
1545}
1546
1547static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548 struct scrub_block *sblock_good,
1549 int page_num, int force_write)
1550{
7a9e9987
SB
1551 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1553 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1554
7a9e9987
SB
1555 BUG_ON(page_bad->page == NULL);
1556 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1557 if (force_write || sblock_bad->header_error ||
1558 sblock_bad->checksum_error || page_bad->io_error) {
1559 struct bio *bio;
1560 int ret;
b5d67f64 1561
ff023aac 1562 if (!page_bad->dev->bdev) {
0b246afa 1563 btrfs_warn_rl(fs_info,
5d163e0e 1564 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1565 return -EIO;
1566 }
1567
c5e4c3d7 1568 bio = btrfs_io_bio_alloc(1);
74d46992 1569 bio_set_dev(bio, page_bad->dev->bdev);
4f024f37 1570 bio->bi_iter.bi_sector = page_bad->physical >> 9;
ebcc3263 1571 bio->bi_opf = REQ_OP_WRITE;
b5d67f64
SB
1572
1573 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574 if (PAGE_SIZE != ret) {
1575 bio_put(bio);
1576 return -EIO;
13db62b7 1577 }
b5d67f64 1578
4e49ea4a 1579 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1580 btrfs_dev_stat_inc_and_print(page_bad->dev,
1581 BTRFS_DEV_STAT_WRITE_ERRS);
e37abe97 1582 atomic64_inc(&fs_info->dev_replace.num_write_errors);
442a4f63
SB
1583 bio_put(bio);
1584 return -EIO;
1585 }
b5d67f64 1586 bio_put(bio);
a2de733c
AJ
1587 }
1588
b5d67f64
SB
1589 return 0;
1590}
1591
ff023aac
SB
1592static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593{
0b246afa 1594 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1595 int page_num;
1596
5a6ac9ea
MX
1597 /*
1598 * This block is used for the check of the parity on the source device,
1599 * so the data needn't be written into the destination device.
1600 */
1601 if (sblock->sparity)
1602 return;
1603
ff023aac
SB
1604 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605 int ret;
1606
1607 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608 if (ret)
e37abe97 1609 atomic64_inc(&fs_info->dev_replace.num_write_errors);
ff023aac
SB
1610 }
1611}
1612
1613static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614 int page_num)
1615{
1616 struct scrub_page *spage = sblock->pagev[page_num];
1617
1618 BUG_ON(spage->page == NULL);
1619 if (spage->io_error) {
1620 void *mapped_buffer = kmap_atomic(spage->page);
1621
619a9742 1622 clear_page(mapped_buffer);
ff023aac
SB
1623 flush_dcache_page(spage->page);
1624 kunmap_atomic(mapped_buffer);
1625 }
1626 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1627}
1628
1629static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1630 struct scrub_page *spage)
1631{
ff023aac
SB
1632 struct scrub_bio *sbio;
1633 int ret;
1634
3fb99303 1635 mutex_lock(&sctx->wr_lock);
ff023aac 1636again:
3fb99303
DS
1637 if (!sctx->wr_curr_bio) {
1638 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
58c4e173 1639 GFP_KERNEL);
3fb99303
DS
1640 if (!sctx->wr_curr_bio) {
1641 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1642 return -ENOMEM;
1643 }
3fb99303
DS
1644 sctx->wr_curr_bio->sctx = sctx;
1645 sctx->wr_curr_bio->page_count = 0;
ff023aac 1646 }
3fb99303 1647 sbio = sctx->wr_curr_bio;
ff023aac
SB
1648 if (sbio->page_count == 0) {
1649 struct bio *bio;
1650
1651 sbio->physical = spage->physical_for_dev_replace;
1652 sbio->logical = spage->logical;
3fb99303 1653 sbio->dev = sctx->wr_tgtdev;
ff023aac
SB
1654 bio = sbio->bio;
1655 if (!bio) {
c5e4c3d7 1656 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
ff023aac
SB
1657 sbio->bio = bio;
1658 }
1659
1660 bio->bi_private = sbio;
1661 bio->bi_end_io = scrub_wr_bio_end_io;
74d46992 1662 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 1663 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 1664 bio->bi_opf = REQ_OP_WRITE;
4e4cbee9 1665 sbio->status = 0;
ff023aac
SB
1666 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1667 spage->physical_for_dev_replace ||
1668 sbio->logical + sbio->page_count * PAGE_SIZE !=
1669 spage->logical) {
1670 scrub_wr_submit(sctx);
1671 goto again;
1672 }
1673
1674 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1675 if (ret != PAGE_SIZE) {
1676 if (sbio->page_count < 1) {
1677 bio_put(sbio->bio);
1678 sbio->bio = NULL;
3fb99303 1679 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1680 return -EIO;
1681 }
1682 scrub_wr_submit(sctx);
1683 goto again;
1684 }
1685
1686 sbio->pagev[sbio->page_count] = spage;
1687 scrub_page_get(spage);
1688 sbio->page_count++;
3fb99303 1689 if (sbio->page_count == sctx->pages_per_wr_bio)
ff023aac 1690 scrub_wr_submit(sctx);
3fb99303 1691 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1692
1693 return 0;
1694}
1695
1696static void scrub_wr_submit(struct scrub_ctx *sctx)
1697{
ff023aac
SB
1698 struct scrub_bio *sbio;
1699
3fb99303 1700 if (!sctx->wr_curr_bio)
ff023aac
SB
1701 return;
1702
3fb99303
DS
1703 sbio = sctx->wr_curr_bio;
1704 sctx->wr_curr_bio = NULL;
74d46992 1705 WARN_ON(!sbio->bio->bi_disk);
ff023aac
SB
1706 scrub_pending_bio_inc(sctx);
1707 /* process all writes in a single worker thread. Then the block layer
1708 * orders the requests before sending them to the driver which
1709 * doubled the write performance on spinning disks when measured
1710 * with Linux 3.5 */
4e49ea4a 1711 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1712}
1713
4246a0b6 1714static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1715{
1716 struct scrub_bio *sbio = bio->bi_private;
fb456252 1717 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1718
4e4cbee9 1719 sbio->status = bio->bi_status;
ff023aac
SB
1720 sbio->bio = bio;
1721
9e0af237
LB
1722 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1723 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1724 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1725}
1726
1727static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1728{
1729 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1730 struct scrub_ctx *sctx = sbio->sctx;
1731 int i;
1732
1733 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
4e4cbee9 1734 if (sbio->status) {
ff023aac 1735 struct btrfs_dev_replace *dev_replace =
fb456252 1736 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1737
1738 for (i = 0; i < sbio->page_count; i++) {
1739 struct scrub_page *spage = sbio->pagev[i];
1740
1741 spage->io_error = 1;
e37abe97 1742 atomic64_inc(&dev_replace->num_write_errors);
ff023aac
SB
1743 }
1744 }
1745
1746 for (i = 0; i < sbio->page_count; i++)
1747 scrub_page_put(sbio->pagev[i]);
1748
1749 bio_put(sbio->bio);
1750 kfree(sbio);
1751 scrub_pending_bio_dec(sctx);
1752}
1753
1754static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1755{
1756 u64 flags;
1757 int ret;
1758
ba7cf988
ZL
1759 /*
1760 * No need to initialize these stats currently,
1761 * because this function only use return value
1762 * instead of these stats value.
1763 *
1764 * Todo:
1765 * always use stats
1766 */
1767 sblock->header_error = 0;
1768 sblock->generation_error = 0;
1769 sblock->checksum_error = 0;
1770
7a9e9987
SB
1771 WARN_ON(sblock->page_count < 1);
1772 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1773 ret = 0;
1774 if (flags & BTRFS_EXTENT_FLAG_DATA)
1775 ret = scrub_checksum_data(sblock);
1776 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1777 ret = scrub_checksum_tree_block(sblock);
1778 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1779 (void)scrub_checksum_super(sblock);
1780 else
1781 WARN_ON(1);
1782 if (ret)
1783 scrub_handle_errored_block(sblock);
ff023aac
SB
1784
1785 return ret;
a2de733c
AJ
1786}
1787
b5d67f64 1788static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1789{
d9d181c1 1790 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1791 struct btrfs_fs_info *fs_info = sctx->fs_info;
1792 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a2de733c 1793 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1794 u8 *on_disk_csum;
1795 struct page *page;
1796 void *buffer;
b5d67f64
SB
1797 u64 len;
1798 int index;
a2de733c 1799
b5d67f64 1800 BUG_ON(sblock->page_count < 1);
7a9e9987 1801 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1802 return 0;
1803
d5178578
JT
1804 shash->tfm = fs_info->csum_shash;
1805 crypto_shash_init(shash);
1806
7a9e9987
SB
1807 on_disk_csum = sblock->pagev[0]->csum;
1808 page = sblock->pagev[0]->page;
9613bebb 1809 buffer = kmap_atomic(page);
b5d67f64 1810
25cc1226 1811 len = sctx->fs_info->sectorsize;
b5d67f64
SB
1812 index = 0;
1813 for (;;) {
1814 u64 l = min_t(u64, len, PAGE_SIZE);
1815
d5178578 1816 crypto_shash_update(shash, buffer, l);
9613bebb 1817 kunmap_atomic(buffer);
b5d67f64
SB
1818 len -= l;
1819 if (len == 0)
1820 break;
1821 index++;
1822 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1823 BUG_ON(!sblock->pagev[index]->page);
1824 page = sblock->pagev[index]->page;
9613bebb 1825 buffer = kmap_atomic(page);
b5d67f64
SB
1826 }
1827
d5178578 1828 crypto_shash_final(shash, csum);
d9d181c1 1829 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 1830 sblock->checksum_error = 1;
a2de733c 1831
ba7cf988 1832 return sblock->checksum_error;
a2de733c
AJ
1833}
1834
b5d67f64 1835static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1836{
d9d181c1 1837 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1838 struct btrfs_header *h;
0b246afa 1839 struct btrfs_fs_info *fs_info = sctx->fs_info;
d5178578 1840 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1841 u8 calculated_csum[BTRFS_CSUM_SIZE];
1842 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1843 struct page *page;
1844 void *mapped_buffer;
1845 u64 mapped_size;
1846 void *p;
b5d67f64
SB
1847 u64 len;
1848 int index;
1849
d5178578
JT
1850 shash->tfm = fs_info->csum_shash;
1851 crypto_shash_init(shash);
1852
b5d67f64 1853 BUG_ON(sblock->page_count < 1);
7a9e9987 1854 page = sblock->pagev[0]->page;
9613bebb 1855 mapped_buffer = kmap_atomic(page);
b5d67f64 1856 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1857 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1858
1859 /*
1860 * we don't use the getter functions here, as we
1861 * a) don't have an extent buffer and
1862 * b) the page is already kmapped
1863 */
3cae210f 1864 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1865 sblock->header_error = 1;
a2de733c 1866
ba7cf988
ZL
1867 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1868 sblock->header_error = 1;
1869 sblock->generation_error = 1;
1870 }
a2de733c 1871
17a9be2f 1872 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 1873 sblock->header_error = 1;
a2de733c
AJ
1874
1875 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1876 BTRFS_UUID_SIZE))
ba7cf988 1877 sblock->header_error = 1;
a2de733c 1878
25cc1226 1879 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1880 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1881 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1882 index = 0;
1883 for (;;) {
1884 u64 l = min_t(u64, len, mapped_size);
1885
d5178578 1886 crypto_shash_update(shash, p, l);
9613bebb 1887 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1888 len -= l;
1889 if (len == 0)
1890 break;
1891 index++;
1892 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1893 BUG_ON(!sblock->pagev[index]->page);
1894 page = sblock->pagev[index]->page;
9613bebb 1895 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1896 mapped_size = PAGE_SIZE;
1897 p = mapped_buffer;
1898 }
1899
d5178578 1900 crypto_shash_final(shash, calculated_csum);
d9d181c1 1901 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1902 sblock->checksum_error = 1;
a2de733c 1903
ba7cf988 1904 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1905}
1906
b5d67f64 1907static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1908{
1909 struct btrfs_super_block *s;
d9d181c1 1910 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1911 struct btrfs_fs_info *fs_info = sctx->fs_info;
1912 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1913 u8 calculated_csum[BTRFS_CSUM_SIZE];
1914 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1915 struct page *page;
1916 void *mapped_buffer;
1917 u64 mapped_size;
1918 void *p;
442a4f63
SB
1919 int fail_gen = 0;
1920 int fail_cor = 0;
b5d67f64
SB
1921 u64 len;
1922 int index;
a2de733c 1923
d5178578
JT
1924 shash->tfm = fs_info->csum_shash;
1925 crypto_shash_init(shash);
1926
b5d67f64 1927 BUG_ON(sblock->page_count < 1);
7a9e9987 1928 page = sblock->pagev[0]->page;
9613bebb 1929 mapped_buffer = kmap_atomic(page);
b5d67f64 1930 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1931 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1932
3cae210f 1933 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1934 ++fail_cor;
a2de733c 1935
3cae210f 1936 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1937 ++fail_gen;
a2de733c 1938
17a9be2f 1939 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1940 ++fail_cor;
a2de733c 1941
b5d67f64
SB
1942 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1943 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1944 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1945 index = 0;
1946 for (;;) {
1947 u64 l = min_t(u64, len, mapped_size);
1948
d5178578 1949 crypto_shash_update(shash, p, l);
9613bebb 1950 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1951 len -= l;
1952 if (len == 0)
1953 break;
1954 index++;
1955 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1956 BUG_ON(!sblock->pagev[index]->page);
1957 page = sblock->pagev[index]->page;
9613bebb 1958 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1959 mapped_size = PAGE_SIZE;
1960 p = mapped_buffer;
1961 }
1962
d5178578 1963 crypto_shash_final(shash, calculated_csum);
d9d181c1 1964 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1965 ++fail_cor;
a2de733c 1966
442a4f63 1967 if (fail_cor + fail_gen) {
a2de733c
AJ
1968 /*
1969 * if we find an error in a super block, we just report it.
1970 * They will get written with the next transaction commit
1971 * anyway
1972 */
d9d181c1
SB
1973 spin_lock(&sctx->stat_lock);
1974 ++sctx->stat.super_errors;
1975 spin_unlock(&sctx->stat_lock);
442a4f63 1976 if (fail_cor)
7a9e9987 1977 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1978 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1979 else
7a9e9987 1980 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1981 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1982 }
1983
442a4f63 1984 return fail_cor + fail_gen;
a2de733c
AJ
1985}
1986
b5d67f64
SB
1987static void scrub_block_get(struct scrub_block *sblock)
1988{
186debd6 1989 refcount_inc(&sblock->refs);
b5d67f64
SB
1990}
1991
1992static void scrub_block_put(struct scrub_block *sblock)
1993{
186debd6 1994 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
1995 int i;
1996
5a6ac9ea
MX
1997 if (sblock->sparity)
1998 scrub_parity_put(sblock->sparity);
1999
b5d67f64 2000 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2001 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2002 kfree(sblock);
2003 }
2004}
2005
7a9e9987
SB
2006static void scrub_page_get(struct scrub_page *spage)
2007{
57019345 2008 atomic_inc(&spage->refs);
7a9e9987
SB
2009}
2010
2011static void scrub_page_put(struct scrub_page *spage)
2012{
57019345 2013 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2014 if (spage->page)
2015 __free_page(spage->page);
2016 kfree(spage);
2017 }
2018}
2019
d9d181c1 2020static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2021{
2022 struct scrub_bio *sbio;
2023
d9d181c1 2024 if (sctx->curr == -1)
1623edeb 2025 return;
a2de733c 2026
d9d181c1
SB
2027 sbio = sctx->bios[sctx->curr];
2028 sctx->curr = -1;
b6bfebc1 2029 scrub_pending_bio_inc(sctx);
4e49ea4a 2030 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2031}
2032
ff023aac
SB
2033static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2034 struct scrub_page *spage)
a2de733c 2035{
b5d67f64 2036 struct scrub_block *sblock = spage->sblock;
a2de733c 2037 struct scrub_bio *sbio;
69f4cb52 2038 int ret;
a2de733c
AJ
2039
2040again:
2041 /*
2042 * grab a fresh bio or wait for one to become available
2043 */
d9d181c1
SB
2044 while (sctx->curr == -1) {
2045 spin_lock(&sctx->list_lock);
2046 sctx->curr = sctx->first_free;
2047 if (sctx->curr != -1) {
2048 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2049 sctx->bios[sctx->curr]->next_free = -1;
2050 sctx->bios[sctx->curr]->page_count = 0;
2051 spin_unlock(&sctx->list_lock);
a2de733c 2052 } else {
d9d181c1
SB
2053 spin_unlock(&sctx->list_lock);
2054 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2055 }
2056 }
d9d181c1 2057 sbio = sctx->bios[sctx->curr];
b5d67f64 2058 if (sbio->page_count == 0) {
69f4cb52
AJ
2059 struct bio *bio;
2060
b5d67f64
SB
2061 sbio->physical = spage->physical;
2062 sbio->logical = spage->logical;
a36cf8b8 2063 sbio->dev = spage->dev;
b5d67f64
SB
2064 bio = sbio->bio;
2065 if (!bio) {
c5e4c3d7 2066 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
b5d67f64
SB
2067 sbio->bio = bio;
2068 }
69f4cb52
AJ
2069
2070 bio->bi_private = sbio;
2071 bio->bi_end_io = scrub_bio_end_io;
74d46992 2072 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 2073 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 2074 bio->bi_opf = REQ_OP_READ;
4e4cbee9 2075 sbio->status = 0;
b5d67f64
SB
2076 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2077 spage->physical ||
2078 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2079 spage->logical ||
2080 sbio->dev != spage->dev) {
d9d181c1 2081 scrub_submit(sctx);
a2de733c
AJ
2082 goto again;
2083 }
69f4cb52 2084
b5d67f64
SB
2085 sbio->pagev[sbio->page_count] = spage;
2086 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2087 if (ret != PAGE_SIZE) {
2088 if (sbio->page_count < 1) {
2089 bio_put(sbio->bio);
2090 sbio->bio = NULL;
2091 return -EIO;
2092 }
d9d181c1 2093 scrub_submit(sctx);
69f4cb52
AJ
2094 goto again;
2095 }
2096
ff023aac 2097 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2098 atomic_inc(&sblock->outstanding_pages);
2099 sbio->page_count++;
ff023aac 2100 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2101 scrub_submit(sctx);
b5d67f64
SB
2102
2103 return 0;
2104}
2105
22365979 2106static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2107{
2108 struct scrub_block *sblock = bio->bi_private;
fb456252 2109 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2110
4e4cbee9 2111 if (bio->bi_status)
73ff61db
OS
2112 sblock->no_io_error_seen = 0;
2113
4673272f
ST
2114 bio_put(bio);
2115
73ff61db
OS
2116 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2117}
2118
2119static void scrub_missing_raid56_worker(struct btrfs_work *work)
2120{
2121 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2122 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2123 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2124 u64 logical;
2125 struct btrfs_device *dev;
2126
73ff61db
OS
2127 logical = sblock->pagev[0]->logical;
2128 dev = sblock->pagev[0]->dev;
2129
affe4a5a 2130 if (sblock->no_io_error_seen)
ba7cf988 2131 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2132
2133 if (!sblock->no_io_error_seen) {
2134 spin_lock(&sctx->stat_lock);
2135 sctx->stat.read_errors++;
2136 spin_unlock(&sctx->stat_lock);
0b246afa 2137 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2138 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2139 logical, rcu_str_deref(dev->name));
2140 } else if (sblock->header_error || sblock->checksum_error) {
2141 spin_lock(&sctx->stat_lock);
2142 sctx->stat.uncorrectable_errors++;
2143 spin_unlock(&sctx->stat_lock);
0b246afa 2144 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2145 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2146 logical, rcu_str_deref(dev->name));
2147 } else {
2148 scrub_write_block_to_dev_replace(sblock);
2149 }
2150
2151 scrub_block_put(sblock);
2152
2073c4c2 2153 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2154 mutex_lock(&sctx->wr_lock);
73ff61db 2155 scrub_wr_submit(sctx);
3fb99303 2156 mutex_unlock(&sctx->wr_lock);
73ff61db
OS
2157 }
2158
2159 scrub_pending_bio_dec(sctx);
2160}
2161
2162static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2163{
2164 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2165 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2166 u64 length = sblock->page_count * PAGE_SIZE;
2167 u64 logical = sblock->pagev[0]->logical;
f1fee653 2168 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2169 struct bio *bio;
2170 struct btrfs_raid_bio *rbio;
2171 int ret;
2172 int i;
2173
ae6529c3 2174 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2175 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2176 &length, &bbio);
73ff61db
OS
2177 if (ret || !bbio || !bbio->raid_map)
2178 goto bbio_out;
2179
2180 if (WARN_ON(!sctx->is_dev_replace ||
2181 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2182 /*
2183 * We shouldn't be scrubbing a missing device. Even for dev
2184 * replace, we should only get here for RAID 5/6. We either
2185 * managed to mount something with no mirrors remaining or
2186 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2187 */
2188 goto bbio_out;
2189 }
2190
c5e4c3d7 2191 bio = btrfs_io_bio_alloc(0);
73ff61db
OS
2192 bio->bi_iter.bi_sector = logical >> 9;
2193 bio->bi_private = sblock;
2194 bio->bi_end_io = scrub_missing_raid56_end_io;
2195
2ff7e61e 2196 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2197 if (!rbio)
2198 goto rbio_out;
2199
2200 for (i = 0; i < sblock->page_count; i++) {
2201 struct scrub_page *spage = sblock->pagev[i];
2202
2203 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2204 }
2205
2206 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2207 scrub_missing_raid56_worker, NULL, NULL);
2208 scrub_block_get(sblock);
2209 scrub_pending_bio_inc(sctx);
2210 raid56_submit_missing_rbio(rbio);
2211 return;
2212
2213rbio_out:
2214 bio_put(bio);
2215bbio_out:
ae6529c3 2216 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2217 btrfs_put_bbio(bbio);
2218 spin_lock(&sctx->stat_lock);
2219 sctx->stat.malloc_errors++;
2220 spin_unlock(&sctx->stat_lock);
2221}
2222
d9d181c1 2223static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2224 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2225 u64 gen, int mirror_num, u8 *csum, int force,
2226 u64 physical_for_dev_replace)
b5d67f64
SB
2227{
2228 struct scrub_block *sblock;
2229 int index;
2230
58c4e173 2231 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2232 if (!sblock) {
d9d181c1
SB
2233 spin_lock(&sctx->stat_lock);
2234 sctx->stat.malloc_errors++;
2235 spin_unlock(&sctx->stat_lock);
b5d67f64 2236 return -ENOMEM;
a2de733c 2237 }
b5d67f64 2238
7a9e9987
SB
2239 /* one ref inside this function, plus one for each page added to
2240 * a bio later on */
186debd6 2241 refcount_set(&sblock->refs, 1);
d9d181c1 2242 sblock->sctx = sctx;
b5d67f64
SB
2243 sblock->no_io_error_seen = 1;
2244
2245 for (index = 0; len > 0; index++) {
7a9e9987 2246 struct scrub_page *spage;
b5d67f64
SB
2247 u64 l = min_t(u64, len, PAGE_SIZE);
2248
58c4e173 2249 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2250 if (!spage) {
2251leave_nomem:
d9d181c1
SB
2252 spin_lock(&sctx->stat_lock);
2253 sctx->stat.malloc_errors++;
2254 spin_unlock(&sctx->stat_lock);
7a9e9987 2255 scrub_block_put(sblock);
b5d67f64
SB
2256 return -ENOMEM;
2257 }
7a9e9987
SB
2258 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2259 scrub_page_get(spage);
2260 sblock->pagev[index] = spage;
b5d67f64 2261 spage->sblock = sblock;
a36cf8b8 2262 spage->dev = dev;
b5d67f64
SB
2263 spage->flags = flags;
2264 spage->generation = gen;
2265 spage->logical = logical;
2266 spage->physical = physical;
ff023aac 2267 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2268 spage->mirror_num = mirror_num;
2269 if (csum) {
2270 spage->have_csum = 1;
d9d181c1 2271 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2272 } else {
2273 spage->have_csum = 0;
2274 }
2275 sblock->page_count++;
58c4e173 2276 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2277 if (!spage->page)
2278 goto leave_nomem;
b5d67f64
SB
2279 len -= l;
2280 logical += l;
2281 physical += l;
ff023aac 2282 physical_for_dev_replace += l;
b5d67f64
SB
2283 }
2284
7a9e9987 2285 WARN_ON(sblock->page_count == 0);
e6e674bd 2286 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
73ff61db
OS
2287 /*
2288 * This case should only be hit for RAID 5/6 device replace. See
2289 * the comment in scrub_missing_raid56_pages() for details.
2290 */
2291 scrub_missing_raid56_pages(sblock);
2292 } else {
2293 for (index = 0; index < sblock->page_count; index++) {
2294 struct scrub_page *spage = sblock->pagev[index];
2295 int ret;
1bc87793 2296
73ff61db
OS
2297 ret = scrub_add_page_to_rd_bio(sctx, spage);
2298 if (ret) {
2299 scrub_block_put(sblock);
2300 return ret;
2301 }
b5d67f64 2302 }
a2de733c 2303
73ff61db
OS
2304 if (force)
2305 scrub_submit(sctx);
2306 }
a2de733c 2307
b5d67f64
SB
2308 /* last one frees, either here or in bio completion for last page */
2309 scrub_block_put(sblock);
a2de733c
AJ
2310 return 0;
2311}
2312
4246a0b6 2313static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2314{
2315 struct scrub_bio *sbio = bio->bi_private;
fb456252 2316 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2317
4e4cbee9 2318 sbio->status = bio->bi_status;
b5d67f64
SB
2319 sbio->bio = bio;
2320
0339ef2f 2321 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2322}
2323
2324static void scrub_bio_end_io_worker(struct btrfs_work *work)
2325{
2326 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2327 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2328 int i;
2329
ff023aac 2330 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
4e4cbee9 2331 if (sbio->status) {
b5d67f64
SB
2332 for (i = 0; i < sbio->page_count; i++) {
2333 struct scrub_page *spage = sbio->pagev[i];
2334
2335 spage->io_error = 1;
2336 spage->sblock->no_io_error_seen = 0;
2337 }
2338 }
2339
2340 /* now complete the scrub_block items that have all pages completed */
2341 for (i = 0; i < sbio->page_count; i++) {
2342 struct scrub_page *spage = sbio->pagev[i];
2343 struct scrub_block *sblock = spage->sblock;
2344
2345 if (atomic_dec_and_test(&sblock->outstanding_pages))
2346 scrub_block_complete(sblock);
2347 scrub_block_put(sblock);
2348 }
2349
b5d67f64
SB
2350 bio_put(sbio->bio);
2351 sbio->bio = NULL;
d9d181c1
SB
2352 spin_lock(&sctx->list_lock);
2353 sbio->next_free = sctx->first_free;
2354 sctx->first_free = sbio->index;
2355 spin_unlock(&sctx->list_lock);
ff023aac 2356
2073c4c2 2357 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2358 mutex_lock(&sctx->wr_lock);
ff023aac 2359 scrub_wr_submit(sctx);
3fb99303 2360 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
2361 }
2362
b6bfebc1 2363 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2364}
2365
5a6ac9ea
MX
2366static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2367 unsigned long *bitmap,
2368 u64 start, u64 len)
2369{
972d7219 2370 u64 offset;
7736b0a4
DS
2371 u64 nsectors64;
2372 u32 nsectors;
da17066c 2373 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2374
2375 if (len >= sparity->stripe_len) {
2376 bitmap_set(bitmap, 0, sparity->nsectors);
2377 return;
2378 }
2379
2380 start -= sparity->logic_start;
972d7219
LB
2381 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2382 offset = div_u64(offset, sectorsize);
7736b0a4
DS
2383 nsectors64 = div_u64(len, sectorsize);
2384
2385 ASSERT(nsectors64 < UINT_MAX);
2386 nsectors = (u32)nsectors64;
5a6ac9ea
MX
2387
2388 if (offset + nsectors <= sparity->nsectors) {
2389 bitmap_set(bitmap, offset, nsectors);
2390 return;
2391 }
2392
2393 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2394 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2395}
2396
2397static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2398 u64 start, u64 len)
2399{
2400 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2401}
2402
2403static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2404 u64 start, u64 len)
2405{
2406 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2407}
2408
b5d67f64
SB
2409static void scrub_block_complete(struct scrub_block *sblock)
2410{
5a6ac9ea
MX
2411 int corrupted = 0;
2412
ff023aac 2413 if (!sblock->no_io_error_seen) {
5a6ac9ea 2414 corrupted = 1;
b5d67f64 2415 scrub_handle_errored_block(sblock);
ff023aac
SB
2416 } else {
2417 /*
2418 * if has checksum error, write via repair mechanism in
2419 * dev replace case, otherwise write here in dev replace
2420 * case.
2421 */
5a6ac9ea
MX
2422 corrupted = scrub_checksum(sblock);
2423 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2424 scrub_write_block_to_dev_replace(sblock);
2425 }
5a6ac9ea
MX
2426
2427 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2428 u64 start = sblock->pagev[0]->logical;
2429 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2430 PAGE_SIZE;
2431
2432 scrub_parity_mark_sectors_error(sblock->sparity,
2433 start, end - start);
2434 }
b5d67f64
SB
2435}
2436
3b5753ec 2437static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2438{
2439 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2440 unsigned long index;
a2de733c 2441 unsigned long num_sectors;
a2de733c 2442
d9d181c1
SB
2443 while (!list_empty(&sctx->csum_list)) {
2444 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2445 struct btrfs_ordered_sum, list);
2446 if (sum->bytenr > logical)
2447 return 0;
2448 if (sum->bytenr + sum->len > logical)
2449 break;
2450
d9d181c1 2451 ++sctx->stat.csum_discards;
a2de733c
AJ
2452 list_del(&sum->list);
2453 kfree(sum);
2454 sum = NULL;
2455 }
2456 if (!sum)
2457 return 0;
2458
1d1bf92d
DS
2459 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2460 ASSERT(index < UINT_MAX);
2461
25cc1226 2462 num_sectors = sum->len / sctx->fs_info->sectorsize;
1e25a2e3 2463 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
f51a4a18 2464 if (index == num_sectors - 1) {
a2de733c
AJ
2465 list_del(&sum->list);
2466 kfree(sum);
2467 }
f51a4a18 2468 return 1;
a2de733c
AJ
2469}
2470
2471/* scrub extent tries to collect up to 64 kB for each bio */
6ca1765b
LB
2472static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2473 u64 logical, u64 len,
a36cf8b8 2474 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2475 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2476{
2477 int ret;
2478 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2479 u32 blocksize;
2480
2481 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b
LB
2482 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2483 blocksize = map->stripe_len;
2484 else
2485 blocksize = sctx->fs_info->sectorsize;
d9d181c1
SB
2486 spin_lock(&sctx->stat_lock);
2487 sctx->stat.data_extents_scrubbed++;
2488 sctx->stat.data_bytes_scrubbed += len;
2489 spin_unlock(&sctx->stat_lock);
b5d67f64 2490 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b
LB
2491 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2492 blocksize = map->stripe_len;
2493 else
2494 blocksize = sctx->fs_info->nodesize;
d9d181c1
SB
2495 spin_lock(&sctx->stat_lock);
2496 sctx->stat.tree_extents_scrubbed++;
2497 sctx->stat.tree_bytes_scrubbed += len;
2498 spin_unlock(&sctx->stat_lock);
b5d67f64 2499 } else {
25cc1226 2500 blocksize = sctx->fs_info->sectorsize;
ff023aac 2501 WARN_ON(1);
b5d67f64 2502 }
a2de733c
AJ
2503
2504 while (len) {
b5d67f64 2505 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2506 int have_csum = 0;
2507
2508 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2509 /* push csums to sbio */
3b5753ec 2510 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2511 if (have_csum == 0)
d9d181c1 2512 ++sctx->stat.no_csum;
a2de733c 2513 }
a36cf8b8 2514 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2515 mirror_num, have_csum ? csum : NULL, 0,
2516 physical_for_dev_replace);
a2de733c
AJ
2517 if (ret)
2518 return ret;
2519 len -= l;
2520 logical += l;
2521 physical += l;
ff023aac 2522 physical_for_dev_replace += l;
a2de733c
AJ
2523 }
2524 return 0;
2525}
2526
5a6ac9ea
MX
2527static int scrub_pages_for_parity(struct scrub_parity *sparity,
2528 u64 logical, u64 len,
2529 u64 physical, struct btrfs_device *dev,
2530 u64 flags, u64 gen, int mirror_num, u8 *csum)
2531{
2532 struct scrub_ctx *sctx = sparity->sctx;
2533 struct scrub_block *sblock;
2534 int index;
2535
58c4e173 2536 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2537 if (!sblock) {
2538 spin_lock(&sctx->stat_lock);
2539 sctx->stat.malloc_errors++;
2540 spin_unlock(&sctx->stat_lock);
2541 return -ENOMEM;
2542 }
2543
2544 /* one ref inside this function, plus one for each page added to
2545 * a bio later on */
186debd6 2546 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2547 sblock->sctx = sctx;
2548 sblock->no_io_error_seen = 1;
2549 sblock->sparity = sparity;
2550 scrub_parity_get(sparity);
2551
2552 for (index = 0; len > 0; index++) {
2553 struct scrub_page *spage;
2554 u64 l = min_t(u64, len, PAGE_SIZE);
2555
58c4e173 2556 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2557 if (!spage) {
2558leave_nomem:
2559 spin_lock(&sctx->stat_lock);
2560 sctx->stat.malloc_errors++;
2561 spin_unlock(&sctx->stat_lock);
2562 scrub_block_put(sblock);
2563 return -ENOMEM;
2564 }
2565 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2566 /* For scrub block */
2567 scrub_page_get(spage);
2568 sblock->pagev[index] = spage;
2569 /* For scrub parity */
2570 scrub_page_get(spage);
2571 list_add_tail(&spage->list, &sparity->spages);
2572 spage->sblock = sblock;
2573 spage->dev = dev;
2574 spage->flags = flags;
2575 spage->generation = gen;
2576 spage->logical = logical;
2577 spage->physical = physical;
2578 spage->mirror_num = mirror_num;
2579 if (csum) {
2580 spage->have_csum = 1;
2581 memcpy(spage->csum, csum, sctx->csum_size);
2582 } else {
2583 spage->have_csum = 0;
2584 }
2585 sblock->page_count++;
58c4e173 2586 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2587 if (!spage->page)
2588 goto leave_nomem;
2589 len -= l;
2590 logical += l;
2591 physical += l;
2592 }
2593
2594 WARN_ON(sblock->page_count == 0);
2595 for (index = 0; index < sblock->page_count; index++) {
2596 struct scrub_page *spage = sblock->pagev[index];
2597 int ret;
2598
2599 ret = scrub_add_page_to_rd_bio(sctx, spage);
2600 if (ret) {
2601 scrub_block_put(sblock);
2602 return ret;
2603 }
2604 }
2605
2606 /* last one frees, either here or in bio completion for last page */
2607 scrub_block_put(sblock);
2608 return 0;
2609}
2610
2611static int scrub_extent_for_parity(struct scrub_parity *sparity,
2612 u64 logical, u64 len,
2613 u64 physical, struct btrfs_device *dev,
2614 u64 flags, u64 gen, int mirror_num)
2615{
2616 struct scrub_ctx *sctx = sparity->sctx;
2617 int ret;
2618 u8 csum[BTRFS_CSUM_SIZE];
2619 u32 blocksize;
2620
e6e674bd 2621 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
4a770891
OS
2622 scrub_parity_mark_sectors_error(sparity, logical, len);
2623 return 0;
2624 }
2625
5a6ac9ea 2626 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b 2627 blocksize = sparity->stripe_len;
5a6ac9ea 2628 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b 2629 blocksize = sparity->stripe_len;
5a6ac9ea 2630 } else {
25cc1226 2631 blocksize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2632 WARN_ON(1);
2633 }
2634
2635 while (len) {
2636 u64 l = min_t(u64, len, blocksize);
2637 int have_csum = 0;
2638
2639 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2640 /* push csums to sbio */
3b5753ec 2641 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2642 if (have_csum == 0)
2643 goto skip;
2644 }
2645 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2646 flags, gen, mirror_num,
2647 have_csum ? csum : NULL);
5a6ac9ea
MX
2648 if (ret)
2649 return ret;
6b6d24b3 2650skip:
5a6ac9ea
MX
2651 len -= l;
2652 logical += l;
2653 physical += l;
2654 }
2655 return 0;
2656}
2657
3b080b25
WS
2658/*
2659 * Given a physical address, this will calculate it's
2660 * logical offset. if this is a parity stripe, it will return
2661 * the most left data stripe's logical offset.
2662 *
2663 * return 0 if it is a data stripe, 1 means parity stripe.
2664 */
2665static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2666 struct map_lookup *map, u64 *offset,
2667 u64 *stripe_start)
3b080b25
WS
2668{
2669 int i;
2670 int j = 0;
2671 u64 stripe_nr;
2672 u64 last_offset;
9d644a62
DS
2673 u32 stripe_index;
2674 u32 rot;
cff82672 2675 const int data_stripes = nr_data_stripes(map);
3b080b25 2676
cff82672 2677 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
2678 if (stripe_start)
2679 *stripe_start = last_offset;
2680
3b080b25 2681 *offset = last_offset;
cff82672 2682 for (i = 0; i < data_stripes; i++) {
3b080b25
WS
2683 *offset = last_offset + i * map->stripe_len;
2684
42c61ab6 2685 stripe_nr = div64_u64(*offset, map->stripe_len);
cff82672 2686 stripe_nr = div_u64(stripe_nr, data_stripes);
3b080b25
WS
2687
2688 /* Work out the disk rotation on this stripe-set */
47c5713f 2689 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2690 /* calculate which stripe this data locates */
2691 rot += i;
e4fbaee2 2692 stripe_index = rot % map->num_stripes;
3b080b25
WS
2693 if (stripe_index == num)
2694 return 0;
2695 if (stripe_index < num)
2696 j++;
2697 }
2698 *offset = last_offset + j * map->stripe_len;
2699 return 1;
2700}
2701
5a6ac9ea
MX
2702static void scrub_free_parity(struct scrub_parity *sparity)
2703{
2704 struct scrub_ctx *sctx = sparity->sctx;
2705 struct scrub_page *curr, *next;
2706 int nbits;
2707
2708 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2709 if (nbits) {
2710 spin_lock(&sctx->stat_lock);
2711 sctx->stat.read_errors += nbits;
2712 sctx->stat.uncorrectable_errors += nbits;
2713 spin_unlock(&sctx->stat_lock);
2714 }
2715
2716 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2717 list_del_init(&curr->list);
2718 scrub_page_put(curr);
2719 }
2720
2721 kfree(sparity);
2722}
2723
20b2e302
ZL
2724static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2725{
2726 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2727 work);
2728 struct scrub_ctx *sctx = sparity->sctx;
2729
2730 scrub_free_parity(sparity);
2731 scrub_pending_bio_dec(sctx);
2732}
2733
4246a0b6 2734static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2735{
2736 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2737 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2738
4e4cbee9 2739 if (bio->bi_status)
5a6ac9ea
MX
2740 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2741 sparity->nsectors);
2742
5a6ac9ea 2743 bio_put(bio);
20b2e302
ZL
2744
2745 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2746 scrub_parity_bio_endio_worker, NULL, NULL);
0b246afa 2747 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2748}
2749
2750static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2751{
2752 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2753 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2754 struct bio *bio;
2755 struct btrfs_raid_bio *rbio;
5a6ac9ea 2756 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2757 u64 length;
2758 int ret;
2759
2760 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2761 sparity->nsectors))
2762 goto out;
2763
a0dd59de 2764 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2765
2766 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2767 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2768 &length, &bbio);
8e5cfb55 2769 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2770 goto bbio_out;
2771
c5e4c3d7 2772 bio = btrfs_io_bio_alloc(0);
5a6ac9ea
MX
2773 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2774 bio->bi_private = sparity;
2775 bio->bi_end_io = scrub_parity_bio_endio;
2776
2ff7e61e 2777 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2778 length, sparity->scrub_dev,
5a6ac9ea
MX
2779 sparity->dbitmap,
2780 sparity->nsectors);
2781 if (!rbio)
2782 goto rbio_out;
2783
5a6ac9ea
MX
2784 scrub_pending_bio_inc(sctx);
2785 raid56_parity_submit_scrub_rbio(rbio);
2786 return;
2787
2788rbio_out:
2789 bio_put(bio);
2790bbio_out:
ae6529c3 2791 btrfs_bio_counter_dec(fs_info);
6e9606d2 2792 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2793 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2794 sparity->nsectors);
2795 spin_lock(&sctx->stat_lock);
2796 sctx->stat.malloc_errors++;
2797 spin_unlock(&sctx->stat_lock);
2798out:
2799 scrub_free_parity(sparity);
2800}
2801
2802static inline int scrub_calc_parity_bitmap_len(int nsectors)
2803{
bfca9a6d 2804 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2805}
2806
2807static void scrub_parity_get(struct scrub_parity *sparity)
2808{
78a76450 2809 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2810}
2811
2812static void scrub_parity_put(struct scrub_parity *sparity)
2813{
78a76450 2814 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2815 return;
2816
2817 scrub_parity_check_and_repair(sparity);
2818}
2819
2820static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2821 struct map_lookup *map,
2822 struct btrfs_device *sdev,
2823 struct btrfs_path *path,
2824 u64 logic_start,
2825 u64 logic_end)
2826{
fb456252 2827 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2828 struct btrfs_root *root = fs_info->extent_root;
2829 struct btrfs_root *csum_root = fs_info->csum_root;
2830 struct btrfs_extent_item *extent;
4a770891 2831 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2832 u64 flags;
2833 int ret;
2834 int slot;
2835 struct extent_buffer *l;
2836 struct btrfs_key key;
2837 u64 generation;
2838 u64 extent_logical;
2839 u64 extent_physical;
2840 u64 extent_len;
4a770891 2841 u64 mapped_length;
5a6ac9ea
MX
2842 struct btrfs_device *extent_dev;
2843 struct scrub_parity *sparity;
2844 int nsectors;
2845 int bitmap_len;
2846 int extent_mirror_num;
2847 int stop_loop = 0;
2848
0b246afa 2849 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
2850 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2851 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2852 GFP_NOFS);
2853 if (!sparity) {
2854 spin_lock(&sctx->stat_lock);
2855 sctx->stat.malloc_errors++;
2856 spin_unlock(&sctx->stat_lock);
2857 return -ENOMEM;
2858 }
2859
2860 sparity->stripe_len = map->stripe_len;
2861 sparity->nsectors = nsectors;
2862 sparity->sctx = sctx;
2863 sparity->scrub_dev = sdev;
2864 sparity->logic_start = logic_start;
2865 sparity->logic_end = logic_end;
78a76450 2866 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2867 INIT_LIST_HEAD(&sparity->spages);
2868 sparity->dbitmap = sparity->bitmap;
2869 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2870
2871 ret = 0;
2872 while (logic_start < logic_end) {
2873 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2874 key.type = BTRFS_METADATA_ITEM_KEY;
2875 else
2876 key.type = BTRFS_EXTENT_ITEM_KEY;
2877 key.objectid = logic_start;
2878 key.offset = (u64)-1;
2879
2880 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2881 if (ret < 0)
2882 goto out;
2883
2884 if (ret > 0) {
2885 ret = btrfs_previous_extent_item(root, path, 0);
2886 if (ret < 0)
2887 goto out;
2888 if (ret > 0) {
2889 btrfs_release_path(path);
2890 ret = btrfs_search_slot(NULL, root, &key,
2891 path, 0, 0);
2892 if (ret < 0)
2893 goto out;
2894 }
2895 }
2896
2897 stop_loop = 0;
2898 while (1) {
2899 u64 bytes;
2900
2901 l = path->nodes[0];
2902 slot = path->slots[0];
2903 if (slot >= btrfs_header_nritems(l)) {
2904 ret = btrfs_next_leaf(root, path);
2905 if (ret == 0)
2906 continue;
2907 if (ret < 0)
2908 goto out;
2909
2910 stop_loop = 1;
2911 break;
2912 }
2913 btrfs_item_key_to_cpu(l, &key, slot);
2914
d7cad238
ZL
2915 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2916 key.type != BTRFS_METADATA_ITEM_KEY)
2917 goto next;
2918
5a6ac9ea 2919 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2920 bytes = fs_info->nodesize;
5a6ac9ea
MX
2921 else
2922 bytes = key.offset;
2923
2924 if (key.objectid + bytes <= logic_start)
2925 goto next;
2926
a0dd59de 2927 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2928 stop_loop = 1;
2929 break;
2930 }
2931
2932 while (key.objectid >= logic_start + map->stripe_len)
2933 logic_start += map->stripe_len;
2934
2935 extent = btrfs_item_ptr(l, slot,
2936 struct btrfs_extent_item);
2937 flags = btrfs_extent_flags(l, extent);
2938 generation = btrfs_extent_generation(l, extent);
2939
a323e813
ZL
2940 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2941 (key.objectid < logic_start ||
2942 key.objectid + bytes >
2943 logic_start + map->stripe_len)) {
5d163e0e
JM
2944 btrfs_err(fs_info,
2945 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2946 key.objectid, logic_start);
9799d2c3
ZL
2947 spin_lock(&sctx->stat_lock);
2948 sctx->stat.uncorrectable_errors++;
2949 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2950 goto next;
2951 }
2952again:
2953 extent_logical = key.objectid;
2954 extent_len = bytes;
2955
2956 if (extent_logical < logic_start) {
2957 extent_len -= logic_start - extent_logical;
2958 extent_logical = logic_start;
2959 }
2960
2961 if (extent_logical + extent_len >
2962 logic_start + map->stripe_len)
2963 extent_len = logic_start + map->stripe_len -
2964 extent_logical;
2965
2966 scrub_parity_mark_sectors_data(sparity, extent_logical,
2967 extent_len);
2968
4a770891 2969 mapped_length = extent_len;
f1fee653 2970 bbio = NULL;
cf8cddd3
CH
2971 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2972 extent_logical, &mapped_length, &bbio,
2973 0);
4a770891
OS
2974 if (!ret) {
2975 if (!bbio || mapped_length < extent_len)
2976 ret = -EIO;
2977 }
2978 if (ret) {
2979 btrfs_put_bbio(bbio);
2980 goto out;
2981 }
2982 extent_physical = bbio->stripes[0].physical;
2983 extent_mirror_num = bbio->mirror_num;
2984 extent_dev = bbio->stripes[0].dev;
2985 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2986
2987 ret = btrfs_lookup_csums_range(csum_root,
2988 extent_logical,
2989 extent_logical + extent_len - 1,
2990 &sctx->csum_list, 1);
2991 if (ret)
2992 goto out;
2993
2994 ret = scrub_extent_for_parity(sparity, extent_logical,
2995 extent_len,
2996 extent_physical,
2997 extent_dev, flags,
2998 generation,
2999 extent_mirror_num);
6fa96d72
ZL
3000
3001 scrub_free_csums(sctx);
3002
5a6ac9ea
MX
3003 if (ret)
3004 goto out;
3005
5a6ac9ea
MX
3006 if (extent_logical + extent_len <
3007 key.objectid + bytes) {
3008 logic_start += map->stripe_len;
3009
3010 if (logic_start >= logic_end) {
3011 stop_loop = 1;
3012 break;
3013 }
3014
3015 if (logic_start < key.objectid + bytes) {
3016 cond_resched();
3017 goto again;
3018 }
3019 }
3020next:
3021 path->slots[0]++;
3022 }
3023
3024 btrfs_release_path(path);
3025
3026 if (stop_loop)
3027 break;
3028
3029 logic_start += map->stripe_len;
3030 }
3031out:
3032 if (ret < 0)
3033 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3034 logic_end - logic_start);
5a6ac9ea
MX
3035 scrub_parity_put(sparity);
3036 scrub_submit(sctx);
3fb99303 3037 mutex_lock(&sctx->wr_lock);
5a6ac9ea 3038 scrub_wr_submit(sctx);
3fb99303 3039 mutex_unlock(&sctx->wr_lock);
5a6ac9ea
MX
3040
3041 btrfs_release_path(path);
3042 return ret < 0 ? ret : 0;
3043}
3044
d9d181c1 3045static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3046 struct map_lookup *map,
3047 struct btrfs_device *scrub_dev,
32934280 3048 int num, u64 base, u64 length)
a2de733c 3049{
5a6ac9ea 3050 struct btrfs_path *path, *ppath;
fb456252 3051 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3052 struct btrfs_root *root = fs_info->extent_root;
3053 struct btrfs_root *csum_root = fs_info->csum_root;
3054 struct btrfs_extent_item *extent;
e7786c3a 3055 struct blk_plug plug;
a2de733c
AJ
3056 u64 flags;
3057 int ret;
3058 int slot;
a2de733c 3059 u64 nstripes;
a2de733c 3060 struct extent_buffer *l;
a2de733c
AJ
3061 u64 physical;
3062 u64 logical;
625f1c8d 3063 u64 logic_end;
3b080b25 3064 u64 physical_end;
a2de733c 3065 u64 generation;
e12fa9cd 3066 int mirror_num;
7a26285e
AJ
3067 struct reada_control *reada1;
3068 struct reada_control *reada2;
e6c11f9a 3069 struct btrfs_key key;
7a26285e 3070 struct btrfs_key key_end;
a2de733c
AJ
3071 u64 increment = map->stripe_len;
3072 u64 offset;
ff023aac
SB
3073 u64 extent_logical;
3074 u64 extent_physical;
3075 u64 extent_len;
5a6ac9ea
MX
3076 u64 stripe_logical;
3077 u64 stripe_end;
ff023aac
SB
3078 struct btrfs_device *extent_dev;
3079 int extent_mirror_num;
3b080b25 3080 int stop_loop = 0;
53b381b3 3081
3b080b25 3082 physical = map->stripes[num].physical;
a2de733c 3083 offset = 0;
42c61ab6 3084 nstripes = div64_u64(length, map->stripe_len);
a2de733c
AJ
3085 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3086 offset = map->stripe_len * num;
3087 increment = map->stripe_len * map->num_stripes;
193ea74b 3088 mirror_num = 1;
a2de733c
AJ
3089 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3090 int factor = map->num_stripes / map->sub_stripes;
3091 offset = map->stripe_len * (num / map->sub_stripes);
3092 increment = map->stripe_len * factor;
193ea74b 3093 mirror_num = num % map->sub_stripes + 1;
c7369b3f 3094 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
a2de733c 3095 increment = map->stripe_len;
193ea74b 3096 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3097 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3098 increment = map->stripe_len;
193ea74b 3099 mirror_num = num % map->num_stripes + 1;
ffe2d203 3100 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3101 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3102 increment = map->stripe_len * nr_data_stripes(map);
3103 mirror_num = 1;
a2de733c
AJ
3104 } else {
3105 increment = map->stripe_len;
193ea74b 3106 mirror_num = 1;
a2de733c
AJ
3107 }
3108
3109 path = btrfs_alloc_path();
3110 if (!path)
3111 return -ENOMEM;
3112
5a6ac9ea
MX
3113 ppath = btrfs_alloc_path();
3114 if (!ppath) {
379d6854 3115 btrfs_free_path(path);
5a6ac9ea
MX
3116 return -ENOMEM;
3117 }
3118
b5d67f64
SB
3119 /*
3120 * work on commit root. The related disk blocks are static as
3121 * long as COW is applied. This means, it is save to rewrite
3122 * them to repair disk errors without any race conditions
3123 */
a2de733c
AJ
3124 path->search_commit_root = 1;
3125 path->skip_locking = 1;
3126
063c54dc
GH
3127 ppath->search_commit_root = 1;
3128 ppath->skip_locking = 1;
a2de733c 3129 /*
7a26285e
AJ
3130 * trigger the readahead for extent tree csum tree and wait for
3131 * completion. During readahead, the scrub is officially paused
3132 * to not hold off transaction commits
a2de733c
AJ
3133 */
3134 logical = base + offset;
3b080b25 3135 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3136 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3137 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3138 map, &logic_end, NULL);
3b080b25
WS
3139 logic_end += base;
3140 } else {
3141 logic_end = logical + increment * nstripes;
3142 }
d9d181c1 3143 wait_event(sctx->list_wait,
b6bfebc1 3144 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3145 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3146
3147 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3148 key.objectid = logical;
3149 key.type = BTRFS_EXTENT_ITEM_KEY;
3150 key.offset = (u64)0;
3b080b25 3151 key_end.objectid = logic_end;
3173a18f
JB
3152 key_end.type = BTRFS_METADATA_ITEM_KEY;
3153 key_end.offset = (u64)-1;
e6c11f9a 3154 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3155
e6c11f9a
DS
3156 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3157 key.type = BTRFS_EXTENT_CSUM_KEY;
3158 key.offset = logical;
7a26285e
AJ
3159 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3160 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3161 key_end.offset = logic_end;
e6c11f9a 3162 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3163
3164 if (!IS_ERR(reada1))
3165 btrfs_reada_wait(reada1);
3166 if (!IS_ERR(reada2))
3167 btrfs_reada_wait(reada2);
3168
a2de733c
AJ
3169
3170 /*
3171 * collect all data csums for the stripe to avoid seeking during
3172 * the scrub. This might currently (crc32) end up to be about 1MB
3173 */
e7786c3a 3174 blk_start_plug(&plug);
a2de733c 3175
a2de733c
AJ
3176 /*
3177 * now find all extents for each stripe and scrub them
3178 */
a2de733c 3179 ret = 0;
3b080b25 3180 while (physical < physical_end) {
a2de733c
AJ
3181 /*
3182 * canceled?
3183 */
3184 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3185 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3186 ret = -ECANCELED;
3187 goto out;
3188 }
3189 /*
3190 * check to see if we have to pause
3191 */
3192 if (atomic_read(&fs_info->scrub_pause_req)) {
3193 /* push queued extents */
2073c4c2 3194 sctx->flush_all_writes = true;
d9d181c1 3195 scrub_submit(sctx);
3fb99303 3196 mutex_lock(&sctx->wr_lock);
ff023aac 3197 scrub_wr_submit(sctx);
3fb99303 3198 mutex_unlock(&sctx->wr_lock);
d9d181c1 3199 wait_event(sctx->list_wait,
b6bfebc1 3200 atomic_read(&sctx->bios_in_flight) == 0);
2073c4c2 3201 sctx->flush_all_writes = false;
3cb0929a 3202 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3203 }
3204
f2f66a2f
ZL
3205 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3206 ret = get_raid56_logic_offset(physical, num, map,
3207 &logical,
3208 &stripe_logical);
3209 logical += base;
3210 if (ret) {
7955323b 3211 /* it is parity strip */
f2f66a2f 3212 stripe_logical += base;
a0dd59de 3213 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3214 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3215 ppath, stripe_logical,
3216 stripe_end);
3217 if (ret)
3218 goto out;
3219 goto skip;
3220 }
3221 }
3222
7c76edb7
WS
3223 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3224 key.type = BTRFS_METADATA_ITEM_KEY;
3225 else
3226 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3227 key.objectid = logical;
625f1c8d 3228 key.offset = (u64)-1;
a2de733c
AJ
3229
3230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3231 if (ret < 0)
3232 goto out;
3173a18f 3233
8c51032f 3234 if (ret > 0) {
ade2e0b3 3235 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3236 if (ret < 0)
3237 goto out;
8c51032f
AJ
3238 if (ret > 0) {
3239 /* there's no smaller item, so stick with the
3240 * larger one */
3241 btrfs_release_path(path);
3242 ret = btrfs_search_slot(NULL, root, &key,
3243 path, 0, 0);
3244 if (ret < 0)
3245 goto out;
3246 }
a2de733c
AJ
3247 }
3248
625f1c8d 3249 stop_loop = 0;
a2de733c 3250 while (1) {
3173a18f
JB
3251 u64 bytes;
3252
a2de733c
AJ
3253 l = path->nodes[0];
3254 slot = path->slots[0];
3255 if (slot >= btrfs_header_nritems(l)) {
3256 ret = btrfs_next_leaf(root, path);
3257 if (ret == 0)
3258 continue;
3259 if (ret < 0)
3260 goto out;
3261
625f1c8d 3262 stop_loop = 1;
a2de733c
AJ
3263 break;
3264 }
3265 btrfs_item_key_to_cpu(l, &key, slot);
3266
d7cad238
ZL
3267 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3268 key.type != BTRFS_METADATA_ITEM_KEY)
3269 goto next;
3270
3173a18f 3271 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3272 bytes = fs_info->nodesize;
3173a18f
JB
3273 else
3274 bytes = key.offset;
3275
3276 if (key.objectid + bytes <= logical)
a2de733c
AJ
3277 goto next;
3278
625f1c8d
LB
3279 if (key.objectid >= logical + map->stripe_len) {
3280 /* out of this device extent */
3281 if (key.objectid >= logic_end)
3282 stop_loop = 1;
3283 break;
3284 }
a2de733c
AJ
3285
3286 extent = btrfs_item_ptr(l, slot,
3287 struct btrfs_extent_item);
3288 flags = btrfs_extent_flags(l, extent);
3289 generation = btrfs_extent_generation(l, extent);
3290
a323e813
ZL
3291 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3292 (key.objectid < logical ||
3293 key.objectid + bytes >
3294 logical + map->stripe_len)) {
efe120a0 3295 btrfs_err(fs_info,
5d163e0e 3296 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3297 key.objectid, logical);
9799d2c3
ZL
3298 spin_lock(&sctx->stat_lock);
3299 sctx->stat.uncorrectable_errors++;
3300 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3301 goto next;
3302 }
3303
625f1c8d
LB
3304again:
3305 extent_logical = key.objectid;
3306 extent_len = bytes;
3307
a2de733c
AJ
3308 /*
3309 * trim extent to this stripe
3310 */
625f1c8d
LB
3311 if (extent_logical < logical) {
3312 extent_len -= logical - extent_logical;
3313 extent_logical = logical;
a2de733c 3314 }
625f1c8d 3315 if (extent_logical + extent_len >
a2de733c 3316 logical + map->stripe_len) {
625f1c8d
LB
3317 extent_len = logical + map->stripe_len -
3318 extent_logical;
a2de733c
AJ
3319 }
3320
625f1c8d 3321 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3322 extent_dev = scrub_dev;
3323 extent_mirror_num = mirror_num;
32934280 3324 if (sctx->is_dev_replace)
ff023aac
SB
3325 scrub_remap_extent(fs_info, extent_logical,
3326 extent_len, &extent_physical,
3327 &extent_dev,
3328 &extent_mirror_num);
625f1c8d 3329
fe8cf654
ZL
3330 ret = btrfs_lookup_csums_range(csum_root,
3331 extent_logical,
3332 extent_logical +
3333 extent_len - 1,
3334 &sctx->csum_list, 1);
625f1c8d
LB
3335 if (ret)
3336 goto out;
3337
6ca1765b 3338 ret = scrub_extent(sctx, map, extent_logical, extent_len,
ff023aac
SB
3339 extent_physical, extent_dev, flags,
3340 generation, extent_mirror_num,
115930cb 3341 extent_logical - logical + physical);
6fa96d72
ZL
3342
3343 scrub_free_csums(sctx);
3344
a2de733c
AJ
3345 if (ret)
3346 goto out;
3347
625f1c8d
LB
3348 if (extent_logical + extent_len <
3349 key.objectid + bytes) {
ffe2d203 3350 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3351 /*
3352 * loop until we find next data stripe
3353 * or we have finished all stripes.
3354 */
5a6ac9ea
MX
3355loop:
3356 physical += map->stripe_len;
3357 ret = get_raid56_logic_offset(physical,
3358 num, map, &logical,
3359 &stripe_logical);
3360 logical += base;
3361
3362 if (ret && physical < physical_end) {
3363 stripe_logical += base;
3364 stripe_end = stripe_logical +
a0dd59de 3365 increment;
5a6ac9ea
MX
3366 ret = scrub_raid56_parity(sctx,
3367 map, scrub_dev, ppath,
3368 stripe_logical,
3369 stripe_end);
3370 if (ret)
3371 goto out;
3372 goto loop;
3373 }
3b080b25
WS
3374 } else {
3375 physical += map->stripe_len;
3376 logical += increment;
3377 }
625f1c8d
LB
3378 if (logical < key.objectid + bytes) {
3379 cond_resched();
3380 goto again;
3381 }
3382
3b080b25 3383 if (physical >= physical_end) {
625f1c8d
LB
3384 stop_loop = 1;
3385 break;
3386 }
3387 }
a2de733c
AJ
3388next:
3389 path->slots[0]++;
3390 }
71267333 3391 btrfs_release_path(path);
3b080b25 3392skip:
a2de733c
AJ
3393 logical += increment;
3394 physical += map->stripe_len;
d9d181c1 3395 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3396 if (stop_loop)
3397 sctx->stat.last_physical = map->stripes[num].physical +
3398 length;
3399 else
3400 sctx->stat.last_physical = physical;
d9d181c1 3401 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3402 if (stop_loop)
3403 break;
a2de733c 3404 }
ff023aac 3405out:
a2de733c 3406 /* push queued extents */
d9d181c1 3407 scrub_submit(sctx);
3fb99303 3408 mutex_lock(&sctx->wr_lock);
ff023aac 3409 scrub_wr_submit(sctx);
3fb99303 3410 mutex_unlock(&sctx->wr_lock);
a2de733c 3411
e7786c3a 3412 blk_finish_plug(&plug);
a2de733c 3413 btrfs_free_path(path);
5a6ac9ea 3414 btrfs_free_path(ppath);
a2de733c
AJ
3415 return ret < 0 ? ret : 0;
3416}
3417
d9d181c1 3418static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3419 struct btrfs_device *scrub_dev,
a36cf8b8 3420 u64 chunk_offset, u64 length,
020d5b73 3421 u64 dev_offset,
32934280 3422 struct btrfs_block_group_cache *cache)
a2de733c 3423{
fb456252 3424 struct btrfs_fs_info *fs_info = sctx->fs_info;
c8bf1b67 3425 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3426 struct map_lookup *map;
3427 struct extent_map *em;
3428 int i;
ff023aac 3429 int ret = 0;
a2de733c 3430
c8bf1b67
DS
3431 read_lock(&map_tree->lock);
3432 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3433 read_unlock(&map_tree->lock);
a2de733c 3434
020d5b73
FM
3435 if (!em) {
3436 /*
3437 * Might have been an unused block group deleted by the cleaner
3438 * kthread or relocation.
3439 */
3440 spin_lock(&cache->lock);
3441 if (!cache->removed)
3442 ret = -EINVAL;
3443 spin_unlock(&cache->lock);
3444
3445 return ret;
3446 }
a2de733c 3447
95617d69 3448 map = em->map_lookup;
a2de733c
AJ
3449 if (em->start != chunk_offset)
3450 goto out;
3451
3452 if (em->len < length)
3453 goto out;
3454
3455 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3456 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3457 map->stripes[i].physical == dev_offset) {
a36cf8b8 3458 ret = scrub_stripe(sctx, map, scrub_dev, i,
32934280 3459 chunk_offset, length);
a2de733c
AJ
3460 if (ret)
3461 goto out;
3462 }
3463 }
3464out:
3465 free_extent_map(em);
3466
3467 return ret;
3468}
3469
3470static noinline_for_stack
a36cf8b8 3471int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 3472 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
3473{
3474 struct btrfs_dev_extent *dev_extent = NULL;
3475 struct btrfs_path *path;
0b246afa
JM
3476 struct btrfs_fs_info *fs_info = sctx->fs_info;
3477 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3478 u64 length;
a2de733c 3479 u64 chunk_offset;
55e3a601 3480 int ret = 0;
76a8efa1 3481 int ro_set;
a2de733c
AJ
3482 int slot;
3483 struct extent_buffer *l;
3484 struct btrfs_key key;
3485 struct btrfs_key found_key;
3486 struct btrfs_block_group_cache *cache;
ff023aac 3487 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3488
3489 path = btrfs_alloc_path();
3490 if (!path)
3491 return -ENOMEM;
3492
e4058b54 3493 path->reada = READA_FORWARD;
a2de733c
AJ
3494 path->search_commit_root = 1;
3495 path->skip_locking = 1;
3496
a36cf8b8 3497 key.objectid = scrub_dev->devid;
a2de733c
AJ
3498 key.offset = 0ull;
3499 key.type = BTRFS_DEV_EXTENT_KEY;
3500
a2de733c
AJ
3501 while (1) {
3502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3503 if (ret < 0)
8c51032f
AJ
3504 break;
3505 if (ret > 0) {
3506 if (path->slots[0] >=
3507 btrfs_header_nritems(path->nodes[0])) {
3508 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3509 if (ret < 0)
3510 break;
3511 if (ret > 0) {
3512 ret = 0;
8c51032f 3513 break;
55e3a601
Z
3514 }
3515 } else {
3516 ret = 0;
8c51032f
AJ
3517 }
3518 }
a2de733c
AJ
3519
3520 l = path->nodes[0];
3521 slot = path->slots[0];
3522
3523 btrfs_item_key_to_cpu(l, &found_key, slot);
3524
a36cf8b8 3525 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3526 break;
3527
962a298f 3528 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3529 break;
3530
3531 if (found_key.offset >= end)
3532 break;
3533
3534 if (found_key.offset < key.offset)
3535 break;
3536
3537 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3538 length = btrfs_dev_extent_length(l, dev_extent);
3539
ced96edc
QW
3540 if (found_key.offset + length <= start)
3541 goto skip;
a2de733c 3542
a2de733c
AJ
3543 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3544
3545 /*
3546 * get a reference on the corresponding block group to prevent
3547 * the chunk from going away while we scrub it
3548 */
3549 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3550
3551 /* some chunks are removed but not committed to disk yet,
3552 * continue scrubbing */
3553 if (!cache)
3554 goto skip;
3555
55e3a601
Z
3556 /*
3557 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3558 * to avoid deadlock caused by:
3559 * btrfs_inc_block_group_ro()
3560 * -> btrfs_wait_for_commit()
3561 * -> btrfs_commit_transaction()
3562 * -> btrfs_scrub_pause()
3563 */
3564 scrub_pause_on(fs_info);
c83488af 3565 ret = btrfs_inc_block_group_ro(cache);
32934280 3566 if (!ret && sctx->is_dev_replace) {
f0e9b7d6
FM
3567 /*
3568 * If we are doing a device replace wait for any tasks
52042d8e 3569 * that started delalloc right before we set the block
f0e9b7d6
FM
3570 * group to RO mode, as they might have just allocated
3571 * an extent from it or decided they could do a nocow
3572 * write. And if any such tasks did that, wait for their
3573 * ordered extents to complete and then commit the
3574 * current transaction, so that we can later see the new
3575 * extent items in the extent tree - the ordered extents
3576 * create delayed data references (for cow writes) when
3577 * they complete, which will be run and insert the
3578 * corresponding extent items into the extent tree when
3579 * we commit the transaction they used when running
3580 * inode.c:btrfs_finish_ordered_io(). We later use
3581 * the commit root of the extent tree to find extents
3582 * to copy from the srcdev into the tgtdev, and we don't
3583 * want to miss any new extents.
3584 */
3585 btrfs_wait_block_group_reservations(cache);
3586 btrfs_wait_nocow_writers(cache);
6374e57a 3587 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
f0e9b7d6
FM
3588 cache->key.objectid,
3589 cache->key.offset);
3590 if (ret > 0) {
3591 struct btrfs_trans_handle *trans;
3592
3593 trans = btrfs_join_transaction(root);
3594 if (IS_ERR(trans))
3595 ret = PTR_ERR(trans);
3596 else
3a45bb20 3597 ret = btrfs_commit_transaction(trans);
f0e9b7d6
FM
3598 if (ret) {
3599 scrub_pause_off(fs_info);
3600 btrfs_put_block_group(cache);
3601 break;
3602 }
3603 }
3604 }
55e3a601 3605 scrub_pause_off(fs_info);
76a8efa1
Z
3606
3607 if (ret == 0) {
3608 ro_set = 1;
3609 } else if (ret == -ENOSPC) {
3610 /*
3611 * btrfs_inc_block_group_ro return -ENOSPC when it
3612 * failed in creating new chunk for metadata.
3613 * It is not a problem for scrub/replace, because
3614 * metadata are always cowed, and our scrub paused
3615 * commit_transactions.
3616 */
3617 ro_set = 0;
3618 } else {
5d163e0e 3619 btrfs_warn(fs_info,
913e1535 3620 "failed setting block group ro: %d", ret);
55e3a601
Z
3621 btrfs_put_block_group(cache);
3622 break;
3623 }
3624
cb5583dd 3625 down_write(&fs_info->dev_replace.rwsem);
ff023aac
SB
3626 dev_replace->cursor_right = found_key.offset + length;
3627 dev_replace->cursor_left = found_key.offset;
3628 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
3629 up_write(&dev_replace->rwsem);
3630
8c204c96 3631 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
32934280 3632 found_key.offset, cache);
ff023aac
SB
3633
3634 /*
3635 * flush, submit all pending read and write bios, afterwards
3636 * wait for them.
3637 * Note that in the dev replace case, a read request causes
3638 * write requests that are submitted in the read completion
3639 * worker. Therefore in the current situation, it is required
3640 * that all write requests are flushed, so that all read and
3641 * write requests are really completed when bios_in_flight
3642 * changes to 0.
3643 */
2073c4c2 3644 sctx->flush_all_writes = true;
ff023aac 3645 scrub_submit(sctx);
3fb99303 3646 mutex_lock(&sctx->wr_lock);
ff023aac 3647 scrub_wr_submit(sctx);
3fb99303 3648 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
3649
3650 wait_event(sctx->list_wait,
3651 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3652
3653 scrub_pause_on(fs_info);
12cf9372
WS
3654
3655 /*
3656 * must be called before we decrease @scrub_paused.
3657 * make sure we don't block transaction commit while
3658 * we are waiting pending workers finished.
3659 */
ff023aac
SB
3660 wait_event(sctx->list_wait,
3661 atomic_read(&sctx->workers_pending) == 0);
2073c4c2 3662 sctx->flush_all_writes = false;
12cf9372 3663
b708ce96 3664 scrub_pause_off(fs_info);
ff023aac 3665
cb5583dd 3666 down_write(&fs_info->dev_replace.rwsem);
1a1a8b73
FM
3667 dev_replace->cursor_left = dev_replace->cursor_right;
3668 dev_replace->item_needs_writeback = 1;
cb5583dd 3669 up_write(&fs_info->dev_replace.rwsem);
1a1a8b73 3670
76a8efa1 3671 if (ro_set)
2ff7e61e 3672 btrfs_dec_block_group_ro(cache);
ff023aac 3673
758f2dfc
FM
3674 /*
3675 * We might have prevented the cleaner kthread from deleting
3676 * this block group if it was already unused because we raced
3677 * and set it to RO mode first. So add it back to the unused
3678 * list, otherwise it might not ever be deleted unless a manual
3679 * balance is triggered or it becomes used and unused again.
3680 */
3681 spin_lock(&cache->lock);
3682 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3683 btrfs_block_group_used(&cache->item) == 0) {
3684 spin_unlock(&cache->lock);
031f24da 3685 btrfs_mark_bg_unused(cache);
758f2dfc
FM
3686 } else {
3687 spin_unlock(&cache->lock);
3688 }
3689
a2de733c
AJ
3690 btrfs_put_block_group(cache);
3691 if (ret)
3692 break;
32934280 3693 if (sctx->is_dev_replace &&
af1be4f8 3694 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3695 ret = -EIO;
3696 break;
3697 }
3698 if (sctx->stat.malloc_errors > 0) {
3699 ret = -ENOMEM;
3700 break;
3701 }
ced96edc 3702skip:
a2de733c 3703 key.offset = found_key.offset + length;
71267333 3704 btrfs_release_path(path);
a2de733c
AJ
3705 }
3706
a2de733c 3707 btrfs_free_path(path);
8c51032f 3708
55e3a601 3709 return ret;
a2de733c
AJ
3710}
3711
a36cf8b8
SB
3712static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3713 struct btrfs_device *scrub_dev)
a2de733c
AJ
3714{
3715 int i;
3716 u64 bytenr;
3717 u64 gen;
3718 int ret;
0b246afa 3719 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3720
0b246afa 3721 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
79787eaa
JM
3722 return -EIO;
3723
5f546063 3724 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3725 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3726 gen = scrub_dev->generation;
3727 else
0b246afa 3728 gen = fs_info->last_trans_committed;
a2de733c
AJ
3729
3730 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3731 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3732 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3733 scrub_dev->commit_total_bytes)
a2de733c
AJ
3734 break;
3735
d9d181c1 3736 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3737 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3738 NULL, 1, bytenr);
a2de733c
AJ
3739 if (ret)
3740 return ret;
3741 }
b6bfebc1 3742 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3743
3744 return 0;
3745}
3746
3747/*
3748 * get a reference count on fs_info->scrub_workers. start worker if necessary
3749 */
ff023aac
SB
3750static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3751 int is_dev_replace)
a2de733c 3752{
6f011058 3753 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3754 int max_active = fs_info->thread_pool_size;
a2de733c 3755
eb4318e5
AJ
3756 lockdep_assert_held(&fs_info->scrub_lock);
3757
ff09c4ca 3758 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
c8352942 3759 ASSERT(fs_info->scrub_workers == NULL);
af1cbe0a
DS
3760 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3761 flags, is_dev_replace ? 1 : max_active, 4);
e82afc52
ZL
3762 if (!fs_info->scrub_workers)
3763 goto fail_scrub_workers;
3764
c8352942 3765 ASSERT(fs_info->scrub_wr_completion_workers == NULL);
0339ef2f 3766 fs_info->scrub_wr_completion_workers =
cb001095 3767 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
0339ef2f 3768 max_active, 2);
e82afc52
ZL
3769 if (!fs_info->scrub_wr_completion_workers)
3770 goto fail_scrub_wr_completion_workers;
3771
c8352942 3772 ASSERT(fs_info->scrub_parity_workers == NULL);
20b2e302 3773 fs_info->scrub_parity_workers =
cb001095 3774 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
20b2e302 3775 max_active, 2);
e82afc52
ZL
3776 if (!fs_info->scrub_parity_workers)
3777 goto fail_scrub_parity_workers;
ff09c4ca
AJ
3778
3779 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3780 } else {
3781 refcount_inc(&fs_info->scrub_workers_refcnt);
632dd772 3782 }
e82afc52
ZL
3783 return 0;
3784
3785fail_scrub_parity_workers:
e82afc52
ZL
3786 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3787fail_scrub_wr_completion_workers:
3788 btrfs_destroy_workqueue(fs_info->scrub_workers);
3789fail_scrub_workers:
3790 return -ENOMEM;
a2de733c
AJ
3791}
3792
aa1b8cd4
SB
3793int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3794 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3795 int readonly, int is_dev_replace)
a2de733c 3796{
d9d181c1 3797 struct scrub_ctx *sctx;
a2de733c
AJ
3798 int ret;
3799 struct btrfs_device *dev;
a5fb1142 3800 unsigned int nofs_flag;
1cec3f27
AJ
3801 struct btrfs_workqueue *scrub_workers = NULL;
3802 struct btrfs_workqueue *scrub_wr_comp = NULL;
3803 struct btrfs_workqueue *scrub_parity = NULL;
a2de733c 3804
aa1b8cd4 3805 if (btrfs_fs_closing(fs_info))
6c3abeda 3806 return -EAGAIN;
a2de733c 3807
da17066c 3808 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3809 /*
3810 * in this case scrub is unable to calculate the checksum
3811 * the way scrub is implemented. Do not handle this
3812 * situation at all because it won't ever happen.
3813 */
efe120a0
FH
3814 btrfs_err(fs_info,
3815 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3816 fs_info->nodesize,
3817 BTRFS_STRIPE_LEN);
b5d67f64
SB
3818 return -EINVAL;
3819 }
3820
da17066c 3821 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3822 /* not supported for data w/o checksums */
751bebbe 3823 btrfs_err_rl(fs_info,
5d163e0e 3824 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3825 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3826 return -EINVAL;
3827 }
3828
da17066c 3829 if (fs_info->nodesize >
7a9e9987 3830 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3831 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3832 /*
3833 * would exhaust the array bounds of pagev member in
3834 * struct scrub_block
3835 */
5d163e0e
JM
3836 btrfs_err(fs_info,
3837 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3838 fs_info->nodesize,
7a9e9987 3839 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3840 fs_info->sectorsize,
7a9e9987
SB
3841 SCRUB_MAX_PAGES_PER_BLOCK);
3842 return -EINVAL;
3843 }
3844
0e94c4f4
DS
3845 /* Allocate outside of device_list_mutex */
3846 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3847 if (IS_ERR(sctx))
3848 return PTR_ERR(sctx);
a2de733c 3849
aa1b8cd4 3850 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 3851 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
e6e674bd
AJ
3852 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3853 !is_dev_replace)) {
aa1b8cd4 3854 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3855 ret = -ENODEV;
3856 goto out_free_ctx;
a2de733c 3857 }
a2de733c 3858
ebbede42
AJ
3859 if (!is_dev_replace && !readonly &&
3860 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 3861 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
672d5990
MT
3862 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3863 rcu_str_deref(dev->name));
0e94c4f4
DS
3864 ret = -EROFS;
3865 goto out_free_ctx;
5d68da3b
MX
3866 }
3867
3b7a016f 3868 mutex_lock(&fs_info->scrub_lock);
e12c9621 3869 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 3870 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 3871 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3872 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3873 ret = -EIO;
3874 goto out_free_ctx;
a2de733c
AJ
3875 }
3876
cb5583dd 3877 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 3878 if (dev->scrub_ctx ||
8dabb742
SB
3879 (!is_dev_replace &&
3880 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 3881 up_read(&fs_info->dev_replace.rwsem);
a2de733c 3882 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3883 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3884 ret = -EINPROGRESS;
3885 goto out_free_ctx;
a2de733c 3886 }
cb5583dd 3887 up_read(&fs_info->dev_replace.rwsem);
3b7a016f
WS
3888
3889 ret = scrub_workers_get(fs_info, is_dev_replace);
3890 if (ret) {
3891 mutex_unlock(&fs_info->scrub_lock);
3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3893 goto out_free_ctx;
3b7a016f
WS
3894 }
3895
d9d181c1 3896 sctx->readonly = readonly;
cadbc0a0 3897 dev->scrub_ctx = sctx;
3cb0929a 3898 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3899
3cb0929a
WS
3900 /*
3901 * checking @scrub_pause_req here, we can avoid
3902 * race between committing transaction and scrubbing.
3903 */
cb7ab021 3904 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3905 atomic_inc(&fs_info->scrubs_running);
3906 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3907
a5fb1142
FM
3908 /*
3909 * In order to avoid deadlock with reclaim when there is a transaction
3910 * trying to pause scrub, make sure we use GFP_NOFS for all the
3911 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3912 * invoked by our callees. The pausing request is done when the
3913 * transaction commit starts, and it blocks the transaction until scrub
3914 * is paused (done at specific points at scrub_stripe() or right above
3915 * before incrementing fs_info->scrubs_running).
3916 */
3917 nofs_flag = memalloc_nofs_save();
ff023aac 3918 if (!is_dev_replace) {
d1e14420 3919 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
3920 /*
3921 * by holding device list mutex, we can
3922 * kick off writing super in log tree sync.
3923 */
3cb0929a 3924 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3925 ret = scrub_supers(sctx, dev);
3cb0929a 3926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3927 }
a2de733c
AJ
3928
3929 if (!ret)
32934280 3930 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 3931 memalloc_nofs_restore(nofs_flag);
a2de733c 3932
b6bfebc1 3933 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3934 atomic_dec(&fs_info->scrubs_running);
3935 wake_up(&fs_info->scrub_pause_wait);
3936
b6bfebc1 3937 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3938
a2de733c 3939 if (progress)
d9d181c1 3940 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 3941
d1e14420
AJ
3942 if (!is_dev_replace)
3943 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3944 ret ? "not finished" : "finished", devid, ret);
3945
a2de733c 3946 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3947 dev->scrub_ctx = NULL;
ff09c4ca 3948 if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
1cec3f27
AJ
3949 scrub_workers = fs_info->scrub_workers;
3950 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3951 scrub_parity = fs_info->scrub_parity_workers;
c8352942
DS
3952
3953 fs_info->scrub_workers = NULL;
3954 fs_info->scrub_wr_completion_workers = NULL;
3955 fs_info->scrub_parity_workers = NULL;
1cec3f27 3956 }
a2de733c
AJ
3957 mutex_unlock(&fs_info->scrub_lock);
3958
1cec3f27
AJ
3959 btrfs_destroy_workqueue(scrub_workers);
3960 btrfs_destroy_workqueue(scrub_wr_comp);
3961 btrfs_destroy_workqueue(scrub_parity);
f55985f4 3962 scrub_put_ctx(sctx);
a2de733c 3963
0e94c4f4
DS
3964 return ret;
3965
3966out_free_ctx:
3967 scrub_free_ctx(sctx);
3968
a2de733c
AJ
3969 return ret;
3970}
3971
2ff7e61e 3972void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3973{
a2de733c
AJ
3974 mutex_lock(&fs_info->scrub_lock);
3975 atomic_inc(&fs_info->scrub_pause_req);
3976 while (atomic_read(&fs_info->scrubs_paused) !=
3977 atomic_read(&fs_info->scrubs_running)) {
3978 mutex_unlock(&fs_info->scrub_lock);
3979 wait_event(fs_info->scrub_pause_wait,
3980 atomic_read(&fs_info->scrubs_paused) ==
3981 atomic_read(&fs_info->scrubs_running));
3982 mutex_lock(&fs_info->scrub_lock);
3983 }
3984 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3985}
3986
2ff7e61e 3987void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 3988{
a2de733c
AJ
3989 atomic_dec(&fs_info->scrub_pause_req);
3990 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3991}
3992
aa1b8cd4 3993int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3994{
a2de733c
AJ
3995 mutex_lock(&fs_info->scrub_lock);
3996 if (!atomic_read(&fs_info->scrubs_running)) {
3997 mutex_unlock(&fs_info->scrub_lock);
3998 return -ENOTCONN;
3999 }
4000
4001 atomic_inc(&fs_info->scrub_cancel_req);
4002 while (atomic_read(&fs_info->scrubs_running)) {
4003 mutex_unlock(&fs_info->scrub_lock);
4004 wait_event(fs_info->scrub_pause_wait,
4005 atomic_read(&fs_info->scrubs_running) == 0);
4006 mutex_lock(&fs_info->scrub_lock);
4007 }
4008 atomic_dec(&fs_info->scrub_cancel_req);
4009 mutex_unlock(&fs_info->scrub_lock);
4010
4011 return 0;
4012}
4013
163e97ee 4014int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 4015{
163e97ee 4016 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 4017 struct scrub_ctx *sctx;
a2de733c
AJ
4018
4019 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 4020 sctx = dev->scrub_ctx;
d9d181c1 4021 if (!sctx) {
a2de733c
AJ
4022 mutex_unlock(&fs_info->scrub_lock);
4023 return -ENOTCONN;
4024 }
d9d181c1 4025 atomic_inc(&sctx->cancel_req);
cadbc0a0 4026 while (dev->scrub_ctx) {
a2de733c
AJ
4027 mutex_unlock(&fs_info->scrub_lock);
4028 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 4029 dev->scrub_ctx == NULL);
a2de733c
AJ
4030 mutex_lock(&fs_info->scrub_lock);
4031 }
4032 mutex_unlock(&fs_info->scrub_lock);
4033
4034 return 0;
4035}
1623edeb 4036
2ff7e61e 4037int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4038 struct btrfs_scrub_progress *progress)
4039{
4040 struct btrfs_device *dev;
d9d181c1 4041 struct scrub_ctx *sctx = NULL;
a2de733c 4042
0b246afa 4043 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 4044 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
a2de733c 4045 if (dev)
cadbc0a0 4046 sctx = dev->scrub_ctx;
d9d181c1
SB
4047 if (sctx)
4048 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4049 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4050
d9d181c1 4051 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4052}
ff023aac
SB
4053
4054static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4055 u64 extent_logical, u64 extent_len,
4056 u64 *extent_physical,
4057 struct btrfs_device **extent_dev,
4058 int *extent_mirror_num)
4059{
4060 u64 mapped_length;
4061 struct btrfs_bio *bbio = NULL;
4062 int ret;
4063
4064 mapped_length = extent_len;
cf8cddd3 4065 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4066 &mapped_length, &bbio, 0);
4067 if (ret || !bbio || mapped_length < extent_len ||
4068 !bbio->stripes[0].dev->bdev) {
6e9606d2 4069 btrfs_put_bbio(bbio);
ff023aac
SB
4070 return;
4071 }
4072
4073 *extent_physical = bbio->stripes[0].physical;
4074 *extent_mirror_num = bbio->mirror_num;
4075 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4076 btrfs_put_bbio(bbio);
ff023aac 4077}