]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/scrub.c
Btrfs: fix tree mod logging
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c
AJ
65
66struct scrub_page {
b5d67f64
SB
67 struct scrub_block *sblock;
68 struct page *page;
442a4f63 69 struct btrfs_device *dev;
a2de733c
AJ
70 u64 flags; /* extent flags */
71 u64 generation;
b5d67f64
SB
72 u64 logical;
73 u64 physical;
ff023aac 74 u64 physical_for_dev_replace;
7a9e9987 75 atomic_t ref_count;
b5d67f64
SB
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
a2de733c
AJ
81 u8 csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85 int index;
d9d181c1 86 struct scrub_ctx *sctx;
a36cf8b8 87 struct btrfs_device *dev;
a2de733c
AJ
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
ff023aac
SB
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
b5d67f64 97 int page_count;
a2de733c
AJ
98 int next_free;
99 struct btrfs_work work;
100};
101
b5d67f64 102struct scrub_block {
7a9e9987 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 107 struct scrub_ctx *sctx;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
b5d67f64
SB
113 };
114};
115
ff023aac
SB
116struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122};
123
d9d181c1 124struct scrub_ctx {
ff023aac 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 126 struct btrfs_root *dev_root;
a2de733c
AJ
127 int first_free;
128 int curr;
b6bfebc1
SB
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
a2de733c
AJ
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
8628764e 136 int readonly;
ff023aac 137 int pages_per_rd_bio;
b5d67f64
SB
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
63a212ab
SB
141
142 int is_dev_replace;
ff023aac 143 struct scrub_wr_ctx wr_ctx;
63a212ab 144
a2de733c
AJ
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150};
151
0ef8e451 152struct scrub_fixup_nodatasum {
d9d181c1 153 struct scrub_ctx *sctx;
a36cf8b8 154 struct btrfs_device *dev;
0ef8e451
JS
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159};
160
652f25a2
JB
161struct scrub_nocow_inode {
162 u64 inum;
163 u64 offset;
164 u64 root;
165 struct list_head list;
166};
167
ff023aac
SB
168struct scrub_copy_nocow_ctx {
169 struct scrub_ctx *sctx;
170 u64 logical;
171 u64 len;
172 int mirror_num;
173 u64 physical_for_dev_replace;
652f25a2 174 struct list_head inodes;
ff023aac
SB
175 struct btrfs_work work;
176};
177
558540c1
JS
178struct scrub_warning {
179 struct btrfs_path *path;
180 u64 extent_item_size;
181 char *scratch_buf;
182 char *msg_buf;
183 const char *errstr;
184 sector_t sector;
185 u64 logical;
186 struct btrfs_device *dev;
187 int msg_bufsize;
188 int scratch_bufsize;
189};
190
b5d67f64 191
b6bfebc1
SB
192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 198 struct btrfs_fs_info *fs_info,
ff023aac 199 struct scrub_block *original_sblock,
b5d67f64 200 u64 length, u64 logical,
ff023aac 201 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 struct scrub_block *sblock, int is_metadata,
204 int have_csum, u8 *csum, u64 generation,
205 u16 csum_size);
b5d67f64
SB
206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 struct scrub_block *sblock,
208 int is_metadata, int have_csum,
209 const u8 *csum, u64 generation,
210 u16 csum_size);
b5d67f64
SB
211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 struct scrub_block *sblock_good,
213 int force_write);
214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 struct scrub_block *sblock_good,
216 int page_num, int force_write);
ff023aac
SB
217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 int page_num);
b5d67f64
SB
220static int scrub_checksum_data(struct scrub_block *sblock);
221static int scrub_checksum_tree_block(struct scrub_block *sblock);
222static int scrub_checksum_super(struct scrub_block *sblock);
223static void scrub_block_get(struct scrub_block *sblock);
224static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
225static void scrub_page_get(struct scrub_page *spage);
226static void scrub_page_put(struct scrub_page *spage);
ff023aac
SB
227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 struct scrub_page *spage);
d9d181c1 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 230 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
231 u64 gen, int mirror_num, u8 *csum, int force,
232 u64 physical_for_dev_replace);
1623edeb 233static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
234static void scrub_bio_end_io_worker(struct btrfs_work *work);
235static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 u64 extent_logical, u64 extent_len,
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 struct scrub_wr_ctx *wr_ctx,
243 struct btrfs_fs_info *fs_info,
244 struct btrfs_device *dev,
245 int is_dev_replace);
246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249static void scrub_wr_submit(struct scrub_ctx *sctx);
250static void scrub_wr_bio_end_io(struct bio *bio, int err);
251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252static int write_page_nocow(struct scrub_ctx *sctx,
253 u64 physical_for_dev_replace, struct page *page);
254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 255 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 int mirror_num, u64 physical_for_dev_replace);
258static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
1623edeb
SB
261
262
b6bfebc1
SB
263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264{
265 atomic_inc(&sctx->bios_in_flight);
266}
267
268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269{
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
272}
273
cb7ab021 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
275{
276 while (atomic_read(&fs_info->scrub_pause_req)) {
277 mutex_unlock(&fs_info->scrub_lock);
278 wait_event(fs_info->scrub_pause_wait,
279 atomic_read(&fs_info->scrub_pause_req) == 0);
280 mutex_lock(&fs_info->scrub_lock);
281 }
282}
283
cb7ab021
WS
284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285{
286 atomic_inc(&fs_info->scrubs_paused);
287 wake_up(&fs_info->scrub_pause_wait);
288
289 mutex_lock(&fs_info->scrub_lock);
290 __scrub_blocked_if_needed(fs_info);
291 atomic_dec(&fs_info->scrubs_paused);
292 mutex_unlock(&fs_info->scrub_lock);
293
294 wake_up(&fs_info->scrub_pause_wait);
295}
296
b6bfebc1
SB
297/*
298 * used for workers that require transaction commits (i.e., for the
299 * NOCOW case)
300 */
301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302{
303 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305 /*
306 * increment scrubs_running to prevent cancel requests from
307 * completing as long as a worker is running. we must also
308 * increment scrubs_paused to prevent deadlocking on pause
309 * requests used for transactions commits (as the worker uses a
310 * transaction context). it is safe to regard the worker
311 * as paused for all matters practical. effectively, we only
312 * avoid cancellation requests from completing.
313 */
314 mutex_lock(&fs_info->scrub_lock);
315 atomic_inc(&fs_info->scrubs_running);
316 atomic_inc(&fs_info->scrubs_paused);
317 mutex_unlock(&fs_info->scrub_lock);
318 atomic_inc(&sctx->workers_pending);
319}
320
321/* used for workers that require transaction commits */
322static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
323{
324 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
325
326 /*
327 * see scrub_pending_trans_workers_inc() why we're pretending
328 * to be paused in the scrub counters
329 */
330 mutex_lock(&fs_info->scrub_lock);
331 atomic_dec(&fs_info->scrubs_running);
332 atomic_dec(&fs_info->scrubs_paused);
333 mutex_unlock(&fs_info->scrub_lock);
334 atomic_dec(&sctx->workers_pending);
335 wake_up(&fs_info->scrub_pause_wait);
336 wake_up(&sctx->list_wait);
337}
338
d9d181c1 339static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 340{
d9d181c1 341 while (!list_empty(&sctx->csum_list)) {
a2de733c 342 struct btrfs_ordered_sum *sum;
d9d181c1 343 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
344 struct btrfs_ordered_sum, list);
345 list_del(&sum->list);
346 kfree(sum);
347 }
348}
349
d9d181c1 350static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
351{
352 int i;
a2de733c 353
d9d181c1 354 if (!sctx)
a2de733c
AJ
355 return;
356
ff023aac
SB
357 scrub_free_wr_ctx(&sctx->wr_ctx);
358
b5d67f64 359 /* this can happen when scrub is cancelled */
d9d181c1
SB
360 if (sctx->curr != -1) {
361 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
362
363 for (i = 0; i < sbio->page_count; i++) {
ff023aac 364 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
365 scrub_block_put(sbio->pagev[i]->sblock);
366 }
367 bio_put(sbio->bio);
368 }
369
ff023aac 370 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 371 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
372
373 if (!sbio)
374 break;
a2de733c
AJ
375 kfree(sbio);
376 }
377
d9d181c1
SB
378 scrub_free_csums(sctx);
379 kfree(sctx);
a2de733c
AJ
380}
381
382static noinline_for_stack
63a212ab 383struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 384{
d9d181c1 385 struct scrub_ctx *sctx;
a2de733c 386 int i;
a2de733c 387 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
388 int pages_per_rd_bio;
389 int ret;
a2de733c 390
ff023aac
SB
391 /*
392 * the setting of pages_per_rd_bio is correct for scrub but might
393 * be wrong for the dev_replace code where we might read from
394 * different devices in the initial huge bios. However, that
395 * code is able to correctly handle the case when adding a page
396 * to a bio fails.
397 */
398 if (dev->bdev)
399 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
400 bio_get_nr_vecs(dev->bdev));
401 else
402 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
403 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
404 if (!sctx)
a2de733c 405 goto nomem;
63a212ab 406 sctx->is_dev_replace = is_dev_replace;
ff023aac 407 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 408 sctx->curr = -1;
a36cf8b8 409 sctx->dev_root = dev->dev_root;
ff023aac 410 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
411 struct scrub_bio *sbio;
412
413 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
414 if (!sbio)
415 goto nomem;
d9d181c1 416 sctx->bios[i] = sbio;
a2de733c 417
a2de733c 418 sbio->index = i;
d9d181c1 419 sbio->sctx = sctx;
b5d67f64
SB
420 sbio->page_count = 0;
421 sbio->work.func = scrub_bio_end_io_worker;
a2de733c 422
ff023aac 423 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 424 sctx->bios[i]->next_free = i + 1;
0ef8e451 425 else
d9d181c1
SB
426 sctx->bios[i]->next_free = -1;
427 }
428 sctx->first_free = 0;
429 sctx->nodesize = dev->dev_root->nodesize;
430 sctx->leafsize = dev->dev_root->leafsize;
431 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
432 atomic_set(&sctx->bios_in_flight, 0);
433 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
434 atomic_set(&sctx->cancel_req, 0);
435 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
436 INIT_LIST_HEAD(&sctx->csum_list);
437
438 spin_lock_init(&sctx->list_lock);
439 spin_lock_init(&sctx->stat_lock);
440 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
441
442 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
443 fs_info->dev_replace.tgtdev, is_dev_replace);
444 if (ret) {
445 scrub_free_ctx(sctx);
446 return ERR_PTR(ret);
447 }
d9d181c1 448 return sctx;
a2de733c
AJ
449
450nomem:
d9d181c1 451 scrub_free_ctx(sctx);
a2de733c
AJ
452 return ERR_PTR(-ENOMEM);
453}
454
ff023aac
SB
455static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
456 void *warn_ctx)
558540c1
JS
457{
458 u64 isize;
459 u32 nlink;
460 int ret;
461 int i;
462 struct extent_buffer *eb;
463 struct btrfs_inode_item *inode_item;
ff023aac 464 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
465 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
466 struct inode_fs_paths *ipath = NULL;
467 struct btrfs_root *local_root;
468 struct btrfs_key root_key;
469
470 root_key.objectid = root;
471 root_key.type = BTRFS_ROOT_ITEM_KEY;
472 root_key.offset = (u64)-1;
473 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
474 if (IS_ERR(local_root)) {
475 ret = PTR_ERR(local_root);
476 goto err;
477 }
478
479 ret = inode_item_info(inum, 0, local_root, swarn->path);
480 if (ret) {
481 btrfs_release_path(swarn->path);
482 goto err;
483 }
484
485 eb = swarn->path->nodes[0];
486 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
487 struct btrfs_inode_item);
488 isize = btrfs_inode_size(eb, inode_item);
489 nlink = btrfs_inode_nlink(eb, inode_item);
490 btrfs_release_path(swarn->path);
491
492 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
493 if (IS_ERR(ipath)) {
494 ret = PTR_ERR(ipath);
495 ipath = NULL;
496 goto err;
497 }
558540c1
JS
498 ret = paths_from_inode(inum, ipath);
499
500 if (ret < 0)
501 goto err;
502
503 /*
504 * we deliberately ignore the bit ipath might have been too small to
505 * hold all of the paths here
506 */
507 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
606686ee 508 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
558540c1
JS
509 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
510 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 511 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
512 (unsigned long long)swarn->sector, root, inum, offset,
513 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 514 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
515
516 free_ipath(ipath);
517 return 0;
518
519err:
606686ee 520 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
558540c1
JS
521 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
522 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 523 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
524 (unsigned long long)swarn->sector, root, inum, offset, ret);
525
526 free_ipath(ipath);
527 return 0;
528}
529
b5d67f64 530static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 531{
a36cf8b8
SB
532 struct btrfs_device *dev;
533 struct btrfs_fs_info *fs_info;
558540c1
JS
534 struct btrfs_path *path;
535 struct btrfs_key found_key;
536 struct extent_buffer *eb;
537 struct btrfs_extent_item *ei;
538 struct scrub_warning swarn;
69917e43
LB
539 unsigned long ptr = 0;
540 u64 extent_item_pos;
541 u64 flags = 0;
558540c1 542 u64 ref_root;
69917e43 543 u32 item_size;
558540c1 544 u8 ref_level;
558540c1 545 const int bufsize = 4096;
69917e43 546 int ret;
558540c1 547
a36cf8b8 548 WARN_ON(sblock->page_count < 1);
7a9e9987 549 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
550 fs_info = sblock->sctx->dev_root->fs_info;
551
558540c1
JS
552 path = btrfs_alloc_path();
553
554 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
555 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
7a9e9987
SB
556 swarn.sector = (sblock->pagev[0]->physical) >> 9;
557 swarn.logical = sblock->pagev[0]->logical;
558540c1 558 swarn.errstr = errstr;
a36cf8b8 559 swarn.dev = NULL;
558540c1
JS
560 swarn.msg_bufsize = bufsize;
561 swarn.scratch_bufsize = bufsize;
562
563 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
564 goto out;
565
69917e43
LB
566 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
567 &flags);
558540c1
JS
568 if (ret < 0)
569 goto out;
570
4692cf58 571 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
572 swarn.extent_item_size = found_key.offset;
573
574 eb = path->nodes[0];
575 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
576 item_size = btrfs_item_size_nr(eb, path->slots[0]);
577
69917e43 578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1
JS
579 do {
580 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
581 &ref_root, &ref_level);
606686ee 582 printk_in_rcu(KERN_WARNING
1623edeb 583 "btrfs: %s at logical %llu on dev %s, "
558540c1 584 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
585 "%llu\n", errstr, swarn.logical,
586 rcu_str_deref(dev->name),
558540c1
JS
587 (unsigned long long)swarn.sector,
588 ref_level ? "node" : "leaf",
589 ret < 0 ? -1 : ref_level,
590 ret < 0 ? -1 : ref_root);
591 } while (ret != 1);
d8fe29e9 592 btrfs_release_path(path);
558540c1 593 } else {
d8fe29e9 594 btrfs_release_path(path);
558540c1 595 swarn.path = path;
a36cf8b8 596 swarn.dev = dev;
7a3ae2f8
JS
597 iterate_extent_inodes(fs_info, found_key.objectid,
598 extent_item_pos, 1,
558540c1
JS
599 scrub_print_warning_inode, &swarn);
600 }
601
602out:
603 btrfs_free_path(path);
604 kfree(swarn.scratch_buf);
605 kfree(swarn.msg_buf);
606}
607
ff023aac 608static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 609{
5da6fcbc 610 struct page *page = NULL;
0ef8e451 611 unsigned long index;
ff023aac 612 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 613 int ret;
5da6fcbc 614 int corrected = 0;
0ef8e451 615 struct btrfs_key key;
5da6fcbc 616 struct inode *inode = NULL;
6f1c3605 617 struct btrfs_fs_info *fs_info;
0ef8e451
JS
618 u64 end = offset + PAGE_SIZE - 1;
619 struct btrfs_root *local_root;
6f1c3605 620 int srcu_index;
0ef8e451
JS
621
622 key.objectid = root;
623 key.type = BTRFS_ROOT_ITEM_KEY;
624 key.offset = (u64)-1;
6f1c3605
LB
625
626 fs_info = fixup->root->fs_info;
627 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
628
629 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
630 if (IS_ERR(local_root)) {
631 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 632 return PTR_ERR(local_root);
6f1c3605 633 }
0ef8e451
JS
634
635 key.type = BTRFS_INODE_ITEM_KEY;
636 key.objectid = inum;
637 key.offset = 0;
6f1c3605
LB
638 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
639 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
640 if (IS_ERR(inode))
641 return PTR_ERR(inode);
642
0ef8e451
JS
643 index = offset >> PAGE_CACHE_SHIFT;
644
645 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
646 if (!page) {
647 ret = -ENOMEM;
648 goto out;
649 }
650
651 if (PageUptodate(page)) {
5da6fcbc
JS
652 if (PageDirty(page)) {
653 /*
654 * we need to write the data to the defect sector. the
655 * data that was in that sector is not in memory,
656 * because the page was modified. we must not write the
657 * modified page to that sector.
658 *
659 * TODO: what could be done here: wait for the delalloc
660 * runner to write out that page (might involve
661 * COW) and see whether the sector is still
662 * referenced afterwards.
663 *
664 * For the meantime, we'll treat this error
665 * incorrectable, although there is a chance that a
666 * later scrub will find the bad sector again and that
667 * there's no dirty page in memory, then.
668 */
669 ret = -EIO;
670 goto out;
671 }
3ec706c8
SB
672 fs_info = BTRFS_I(inode)->root->fs_info;
673 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
5da6fcbc
JS
674 fixup->logical, page,
675 fixup->mirror_num);
676 unlock_page(page);
677 corrected = !ret;
678 } else {
679 /*
680 * we need to get good data first. the general readpage path
681 * will call repair_io_failure for us, we just have to make
682 * sure we read the bad mirror.
683 */
684 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
685 EXTENT_DAMAGED, GFP_NOFS);
686 if (ret) {
687 /* set_extent_bits should give proper error */
688 WARN_ON(ret > 0);
689 if (ret > 0)
690 ret = -EFAULT;
691 goto out;
692 }
693
694 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
695 btrfs_get_extent,
696 fixup->mirror_num);
697 wait_on_page_locked(page);
698
699 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
700 end, EXTENT_DAMAGED, 0, NULL);
701 if (!corrected)
702 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
703 EXTENT_DAMAGED, GFP_NOFS);
704 }
705
706out:
707 if (page)
708 put_page(page);
709 if (inode)
710 iput(inode);
0ef8e451
JS
711
712 if (ret < 0)
713 return ret;
714
715 if (ret == 0 && corrected) {
716 /*
717 * we only need to call readpage for one of the inodes belonging
718 * to this extent. so make iterate_extent_inodes stop
719 */
720 return 1;
721 }
722
723 return -EIO;
724}
725
726static void scrub_fixup_nodatasum(struct btrfs_work *work)
727{
728 int ret;
729 struct scrub_fixup_nodatasum *fixup;
d9d181c1 730 struct scrub_ctx *sctx;
0ef8e451 731 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
732 struct btrfs_path *path;
733 int uncorrectable = 0;
734
735 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 736 sctx = fixup->sctx;
0ef8e451
JS
737
738 path = btrfs_alloc_path();
739 if (!path) {
d9d181c1
SB
740 spin_lock(&sctx->stat_lock);
741 ++sctx->stat.malloc_errors;
742 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
743 uncorrectable = 1;
744 goto out;
745 }
746
747 trans = btrfs_join_transaction(fixup->root);
748 if (IS_ERR(trans)) {
749 uncorrectable = 1;
750 goto out;
751 }
752
753 /*
754 * the idea is to trigger a regular read through the standard path. we
755 * read a page from the (failed) logical address by specifying the
756 * corresponding copynum of the failed sector. thus, that readpage is
757 * expected to fail.
758 * that is the point where on-the-fly error correction will kick in
759 * (once it's finished) and rewrite the failed sector if a good copy
760 * can be found.
761 */
762 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
763 path, scrub_fixup_readpage,
764 fixup);
765 if (ret < 0) {
766 uncorrectable = 1;
767 goto out;
768 }
769 WARN_ON(ret != 1);
770
d9d181c1
SB
771 spin_lock(&sctx->stat_lock);
772 ++sctx->stat.corrected_errors;
773 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
774
775out:
776 if (trans && !IS_ERR(trans))
777 btrfs_end_transaction(trans, fixup->root);
778 if (uncorrectable) {
d9d181c1
SB
779 spin_lock(&sctx->stat_lock);
780 ++sctx->stat.uncorrectable_errors;
781 spin_unlock(&sctx->stat_lock);
ff023aac
SB
782 btrfs_dev_replace_stats_inc(
783 &sctx->dev_root->fs_info->dev_replace.
784 num_uncorrectable_read_errors);
606686ee 785 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 786 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 787 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
788 }
789
790 btrfs_free_path(path);
791 kfree(fixup);
792
b6bfebc1 793 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
794}
795
a2de733c 796/*
b5d67f64
SB
797 * scrub_handle_errored_block gets called when either verification of the
798 * pages failed or the bio failed to read, e.g. with EIO. In the latter
799 * case, this function handles all pages in the bio, even though only one
800 * may be bad.
801 * The goal of this function is to repair the errored block by using the
802 * contents of one of the mirrors.
a2de733c 803 */
b5d67f64 804static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 805{
d9d181c1 806 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 807 struct btrfs_device *dev;
b5d67f64
SB
808 struct btrfs_fs_info *fs_info;
809 u64 length;
810 u64 logical;
811 u64 generation;
812 unsigned int failed_mirror_index;
813 unsigned int is_metadata;
814 unsigned int have_csum;
815 u8 *csum;
816 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
817 struct scrub_block *sblock_bad;
818 int ret;
819 int mirror_index;
820 int page_num;
821 int success;
558540c1 822 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
823 DEFAULT_RATELIMIT_BURST);
824
825 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 826 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
827 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
828 /*
829 * if we find an error in a super block, we just report it.
830 * They will get written with the next transaction commit
831 * anyway
832 */
833 spin_lock(&sctx->stat_lock);
834 ++sctx->stat.super_errors;
835 spin_unlock(&sctx->stat_lock);
836 return 0;
837 }
b5d67f64 838 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
839 logical = sblock_to_check->pagev[0]->logical;
840 generation = sblock_to_check->pagev[0]->generation;
841 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
842 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
843 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 844 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
845 have_csum = sblock_to_check->pagev[0]->have_csum;
846 csum = sblock_to_check->pagev[0]->csum;
847 dev = sblock_to_check->pagev[0]->dev;
13db62b7 848
ff023aac
SB
849 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
850 sblocks_for_recheck = NULL;
851 goto nodatasum_case;
852 }
853
b5d67f64
SB
854 /*
855 * read all mirrors one after the other. This includes to
856 * re-read the extent or metadata block that failed (that was
857 * the cause that this fixup code is called) another time,
858 * page by page this time in order to know which pages
859 * caused I/O errors and which ones are good (for all mirrors).
860 * It is the goal to handle the situation when more than one
861 * mirror contains I/O errors, but the errors do not
862 * overlap, i.e. the data can be repaired by selecting the
863 * pages from those mirrors without I/O error on the
864 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
865 * would be that mirror #1 has an I/O error on the first page,
866 * the second page is good, and mirror #2 has an I/O error on
867 * the second page, but the first page is good.
868 * Then the first page of the first mirror can be repaired by
869 * taking the first page of the second mirror, and the
870 * second page of the second mirror can be repaired by
871 * copying the contents of the 2nd page of the 1st mirror.
872 * One more note: if the pages of one mirror contain I/O
873 * errors, the checksum cannot be verified. In order to get
874 * the best data for repairing, the first attempt is to find
875 * a mirror without I/O errors and with a validated checksum.
876 * Only if this is not possible, the pages are picked from
877 * mirrors with I/O errors without considering the checksum.
878 * If the latter is the case, at the end, the checksum of the
879 * repaired area is verified in order to correctly maintain
880 * the statistics.
881 */
882
883 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
884 sizeof(*sblocks_for_recheck),
885 GFP_NOFS);
886 if (!sblocks_for_recheck) {
d9d181c1
SB
887 spin_lock(&sctx->stat_lock);
888 sctx->stat.malloc_errors++;
889 sctx->stat.read_errors++;
890 sctx->stat.uncorrectable_errors++;
891 spin_unlock(&sctx->stat_lock);
a36cf8b8 892 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 893 goto out;
a2de733c
AJ
894 }
895
b5d67f64 896 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 897 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
898 logical, sblocks_for_recheck);
899 if (ret) {
d9d181c1
SB
900 spin_lock(&sctx->stat_lock);
901 sctx->stat.read_errors++;
902 sctx->stat.uncorrectable_errors++;
903 spin_unlock(&sctx->stat_lock);
a36cf8b8 904 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
905 goto out;
906 }
907 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
908 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 909
b5d67f64 910 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9
SB
911 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
912 csum, generation, sctx->csum_size);
a2de733c 913
b5d67f64
SB
914 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
915 sblock_bad->no_io_error_seen) {
916 /*
917 * the error disappeared after reading page by page, or
918 * the area was part of a huge bio and other parts of the
919 * bio caused I/O errors, or the block layer merged several
920 * read requests into one and the error is caused by a
921 * different bio (usually one of the two latter cases is
922 * the cause)
923 */
d9d181c1
SB
924 spin_lock(&sctx->stat_lock);
925 sctx->stat.unverified_errors++;
926 spin_unlock(&sctx->stat_lock);
a2de733c 927
ff023aac
SB
928 if (sctx->is_dev_replace)
929 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 930 goto out;
a2de733c 931 }
a2de733c 932
b5d67f64 933 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.read_errors++;
936 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
937 if (__ratelimit(&_rs))
938 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 939 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 940 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
941 spin_lock(&sctx->stat_lock);
942 sctx->stat.csum_errors++;
943 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
944 if (__ratelimit(&_rs))
945 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 946 btrfs_dev_stat_inc_and_print(dev,
442a4f63 947 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 948 } else if (sblock_bad->header_error) {
d9d181c1
SB
949 spin_lock(&sctx->stat_lock);
950 sctx->stat.verify_errors++;
951 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
952 if (__ratelimit(&_rs))
953 scrub_print_warning("checksum/header error",
954 sblock_to_check);
442a4f63 955 if (sblock_bad->generation_error)
a36cf8b8 956 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
957 BTRFS_DEV_STAT_GENERATION_ERRS);
958 else
a36cf8b8 959 btrfs_dev_stat_inc_and_print(dev,
442a4f63 960 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 961 }
a2de733c 962
33ef30ad
ID
963 if (sctx->readonly) {
964 ASSERT(!sctx->is_dev_replace);
965 goto out;
966 }
a2de733c 967
b5d67f64
SB
968 if (!is_metadata && !have_csum) {
969 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 970
ff023aac
SB
971nodatasum_case:
972 WARN_ON(sctx->is_dev_replace);
973
b5d67f64
SB
974 /*
975 * !is_metadata and !have_csum, this means that the data
976 * might not be COW'ed, that it might be modified
977 * concurrently. The general strategy to work on the
978 * commit root does not help in the case when COW is not
979 * used.
980 */
981 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
982 if (!fixup_nodatasum)
983 goto did_not_correct_error;
d9d181c1 984 fixup_nodatasum->sctx = sctx;
a36cf8b8 985 fixup_nodatasum->dev = dev;
b5d67f64
SB
986 fixup_nodatasum->logical = logical;
987 fixup_nodatasum->root = fs_info->extent_root;
988 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 989 scrub_pending_trans_workers_inc(sctx);
b5d67f64
SB
990 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
991 btrfs_queue_worker(&fs_info->scrub_workers,
992 &fixup_nodatasum->work);
993 goto out;
a2de733c
AJ
994 }
995
b5d67f64
SB
996 /*
997 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
998 * checksums.
999 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1000 * errors and also does not have a checksum error.
1001 * If one is found, and if a checksum is present, the full block
1002 * that is known to contain an error is rewritten. Afterwards
1003 * the block is known to be corrected.
1004 * If a mirror is found which is completely correct, and no
1005 * checksum is present, only those pages are rewritten that had
1006 * an I/O error in the block to be repaired, since it cannot be
1007 * determined, which copy of the other pages is better (and it
1008 * could happen otherwise that a correct page would be
1009 * overwritten by a bad one).
1010 */
1011 for (mirror_index = 0;
1012 mirror_index < BTRFS_MAX_MIRRORS &&
1013 sblocks_for_recheck[mirror_index].page_count > 0;
1014 mirror_index++) {
cb2ced73 1015 struct scrub_block *sblock_other;
b5d67f64 1016
cb2ced73
SB
1017 if (mirror_index == failed_mirror_index)
1018 continue;
1019 sblock_other = sblocks_for_recheck + mirror_index;
1020
1021 /* build and submit the bios, check checksums */
34f5c8e9
SB
1022 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1023 have_csum, csum, generation,
1024 sctx->csum_size);
1025
1026 if (!sblock_other->header_error &&
b5d67f64
SB
1027 !sblock_other->checksum_error &&
1028 sblock_other->no_io_error_seen) {
ff023aac
SB
1029 if (sctx->is_dev_replace) {
1030 scrub_write_block_to_dev_replace(sblock_other);
1031 } else {
1032 int force_write = is_metadata || have_csum;
1033
1034 ret = scrub_repair_block_from_good_copy(
1035 sblock_bad, sblock_other,
1036 force_write);
1037 }
b5d67f64
SB
1038 if (0 == ret)
1039 goto corrected_error;
1040 }
1041 }
a2de733c
AJ
1042
1043 /*
ff023aac
SB
1044 * for dev_replace, pick good pages and write to the target device.
1045 */
1046 if (sctx->is_dev_replace) {
1047 success = 1;
1048 for (page_num = 0; page_num < sblock_bad->page_count;
1049 page_num++) {
1050 int sub_success;
1051
1052 sub_success = 0;
1053 for (mirror_index = 0;
1054 mirror_index < BTRFS_MAX_MIRRORS &&
1055 sblocks_for_recheck[mirror_index].page_count > 0;
1056 mirror_index++) {
1057 struct scrub_block *sblock_other =
1058 sblocks_for_recheck + mirror_index;
1059 struct scrub_page *page_other =
1060 sblock_other->pagev[page_num];
1061
1062 if (!page_other->io_error) {
1063 ret = scrub_write_page_to_dev_replace(
1064 sblock_other, page_num);
1065 if (ret == 0) {
1066 /* succeeded for this page */
1067 sub_success = 1;
1068 break;
1069 } else {
1070 btrfs_dev_replace_stats_inc(
1071 &sctx->dev_root->
1072 fs_info->dev_replace.
1073 num_write_errors);
1074 }
1075 }
1076 }
1077
1078 if (!sub_success) {
1079 /*
1080 * did not find a mirror to fetch the page
1081 * from. scrub_write_page_to_dev_replace()
1082 * handles this case (page->io_error), by
1083 * filling the block with zeros before
1084 * submitting the write request
1085 */
1086 success = 0;
1087 ret = scrub_write_page_to_dev_replace(
1088 sblock_bad, page_num);
1089 if (ret)
1090 btrfs_dev_replace_stats_inc(
1091 &sctx->dev_root->fs_info->
1092 dev_replace.num_write_errors);
1093 }
1094 }
1095
1096 goto out;
1097 }
1098
1099 /*
1100 * for regular scrub, repair those pages that are errored.
1101 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1102 * repaired, continue by picking good copies of those pages.
1103 * Select the good pages from mirrors to rewrite bad pages from
1104 * the area to fix. Afterwards verify the checksum of the block
1105 * that is supposed to be repaired. This verification step is
1106 * only done for the purpose of statistic counting and for the
1107 * final scrub report, whether errors remain.
1108 * A perfect algorithm could make use of the checksum and try
1109 * all possible combinations of pages from the different mirrors
1110 * until the checksum verification succeeds. For example, when
1111 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1112 * of mirror #2 is readable but the final checksum test fails,
1113 * then the 2nd page of mirror #3 could be tried, whether now
1114 * the final checksum succeedes. But this would be a rare
1115 * exception and is therefore not implemented. At least it is
1116 * avoided that the good copy is overwritten.
1117 * A more useful improvement would be to pick the sectors
1118 * without I/O error based on sector sizes (512 bytes on legacy
1119 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1120 * mirror could be repaired by taking 512 byte of a different
1121 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1122 * area are unreadable.
a2de733c 1123 */
a2de733c 1124
b5d67f64
SB
1125 /* can only fix I/O errors from here on */
1126 if (sblock_bad->no_io_error_seen)
1127 goto did_not_correct_error;
1128
1129 success = 1;
1130 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1131 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1132
1133 if (!page_bad->io_error)
a2de733c 1134 continue;
b5d67f64
SB
1135
1136 for (mirror_index = 0;
1137 mirror_index < BTRFS_MAX_MIRRORS &&
1138 sblocks_for_recheck[mirror_index].page_count > 0;
1139 mirror_index++) {
1140 struct scrub_block *sblock_other = sblocks_for_recheck +
1141 mirror_index;
7a9e9987
SB
1142 struct scrub_page *page_other = sblock_other->pagev[
1143 page_num];
b5d67f64
SB
1144
1145 if (!page_other->io_error) {
1146 ret = scrub_repair_page_from_good_copy(
1147 sblock_bad, sblock_other, page_num, 0);
1148 if (0 == ret) {
1149 page_bad->io_error = 0;
1150 break; /* succeeded for this page */
1151 }
1152 }
96e36920 1153 }
a2de733c 1154
b5d67f64
SB
1155 if (page_bad->io_error) {
1156 /* did not find a mirror to copy the page from */
1157 success = 0;
1158 }
a2de733c 1159 }
a2de733c 1160
b5d67f64
SB
1161 if (success) {
1162 if (is_metadata || have_csum) {
1163 /*
1164 * need to verify the checksum now that all
1165 * sectors on disk are repaired (the write
1166 * request for data to be repaired is on its way).
1167 * Just be lazy and use scrub_recheck_block()
1168 * which re-reads the data before the checksum
1169 * is verified, but most likely the data comes out
1170 * of the page cache.
1171 */
34f5c8e9
SB
1172 scrub_recheck_block(fs_info, sblock_bad,
1173 is_metadata, have_csum, csum,
1174 generation, sctx->csum_size);
1175 if (!sblock_bad->header_error &&
b5d67f64
SB
1176 !sblock_bad->checksum_error &&
1177 sblock_bad->no_io_error_seen)
1178 goto corrected_error;
1179 else
1180 goto did_not_correct_error;
1181 } else {
1182corrected_error:
d9d181c1
SB
1183 spin_lock(&sctx->stat_lock);
1184 sctx->stat.corrected_errors++;
1185 spin_unlock(&sctx->stat_lock);
606686ee 1186 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 1187 "btrfs: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1188 logical, rcu_str_deref(dev->name));
8628764e 1189 }
b5d67f64
SB
1190 } else {
1191did_not_correct_error:
d9d181c1
SB
1192 spin_lock(&sctx->stat_lock);
1193 sctx->stat.uncorrectable_errors++;
1194 spin_unlock(&sctx->stat_lock);
606686ee 1195 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 1196 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1197 logical, rcu_str_deref(dev->name));
96e36920 1198 }
a2de733c 1199
b5d67f64
SB
1200out:
1201 if (sblocks_for_recheck) {
1202 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1203 mirror_index++) {
1204 struct scrub_block *sblock = sblocks_for_recheck +
1205 mirror_index;
1206 int page_index;
1207
7a9e9987
SB
1208 for (page_index = 0; page_index < sblock->page_count;
1209 page_index++) {
1210 sblock->pagev[page_index]->sblock = NULL;
1211 scrub_page_put(sblock->pagev[page_index]);
1212 }
b5d67f64
SB
1213 }
1214 kfree(sblocks_for_recheck);
1215 }
a2de733c 1216
b5d67f64
SB
1217 return 0;
1218}
a2de733c 1219
d9d181c1 1220static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1221 struct btrfs_fs_info *fs_info,
ff023aac 1222 struct scrub_block *original_sblock,
b5d67f64
SB
1223 u64 length, u64 logical,
1224 struct scrub_block *sblocks_for_recheck)
1225{
1226 int page_index;
1227 int mirror_index;
1228 int ret;
1229
1230 /*
7a9e9987 1231 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1232 * are not used (and not set) in the blocks that are used for
1233 * the recheck procedure
1234 */
1235
1236 page_index = 0;
1237 while (length > 0) {
1238 u64 sublen = min_t(u64, length, PAGE_SIZE);
1239 u64 mapped_length = sublen;
1240 struct btrfs_bio *bbio = NULL;
a2de733c 1241
b5d67f64
SB
1242 /*
1243 * with a length of PAGE_SIZE, each returned stripe
1244 * represents one mirror
1245 */
29a8d9a0
SB
1246 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1247 &mapped_length, &bbio, 0);
b5d67f64
SB
1248 if (ret || !bbio || mapped_length < sublen) {
1249 kfree(bbio);
1250 return -EIO;
1251 }
a2de733c 1252
ff023aac 1253 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
1254 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1255 mirror_index++) {
1256 struct scrub_block *sblock;
1257 struct scrub_page *page;
1258
1259 if (mirror_index >= BTRFS_MAX_MIRRORS)
1260 continue;
1261
1262 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1263 sblock->sctx = sctx;
1264 page = kzalloc(sizeof(*page), GFP_NOFS);
1265 if (!page) {
1266leave_nomem:
d9d181c1
SB
1267 spin_lock(&sctx->stat_lock);
1268 sctx->stat.malloc_errors++;
1269 spin_unlock(&sctx->stat_lock);
cf93dcce 1270 kfree(bbio);
b5d67f64
SB
1271 return -ENOMEM;
1272 }
7a9e9987
SB
1273 scrub_page_get(page);
1274 sblock->pagev[page_index] = page;
1275 page->logical = logical;
1276 page->physical = bbio->stripes[mirror_index].physical;
ff023aac
SB
1277 BUG_ON(page_index >= original_sblock->page_count);
1278 page->physical_for_dev_replace =
1279 original_sblock->pagev[page_index]->
1280 physical_for_dev_replace;
7a9e9987
SB
1281 /* for missing devices, dev->bdev is NULL */
1282 page->dev = bbio->stripes[mirror_index].dev;
1283 page->mirror_num = mirror_index + 1;
b5d67f64 1284 sblock->page_count++;
7a9e9987
SB
1285 page->page = alloc_page(GFP_NOFS);
1286 if (!page->page)
1287 goto leave_nomem;
b5d67f64
SB
1288 }
1289 kfree(bbio);
1290 length -= sublen;
1291 logical += sublen;
1292 page_index++;
1293 }
1294
1295 return 0;
96e36920
ID
1296}
1297
b5d67f64
SB
1298/*
1299 * this function will check the on disk data for checksum errors, header
1300 * errors and read I/O errors. If any I/O errors happen, the exact pages
1301 * which are errored are marked as being bad. The goal is to enable scrub
1302 * to take those pages that are not errored from all the mirrors so that
1303 * the pages that are errored in the just handled mirror can be repaired.
1304 */
34f5c8e9
SB
1305static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1306 struct scrub_block *sblock, int is_metadata,
1307 int have_csum, u8 *csum, u64 generation,
1308 u16 csum_size)
96e36920 1309{
b5d67f64 1310 int page_num;
96e36920 1311
b5d67f64
SB
1312 sblock->no_io_error_seen = 1;
1313 sblock->header_error = 0;
1314 sblock->checksum_error = 0;
96e36920 1315
b5d67f64
SB
1316 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1317 struct bio *bio;
7a9e9987 1318 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1319
442a4f63 1320 if (page->dev->bdev == NULL) {
ea9947b4
SB
1321 page->io_error = 1;
1322 sblock->no_io_error_seen = 0;
1323 continue;
1324 }
1325
7a9e9987 1326 WARN_ON(!page->page);
9be3395b 1327 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1328 if (!bio) {
1329 page->io_error = 1;
1330 sblock->no_io_error_seen = 0;
1331 continue;
1332 }
442a4f63 1333 bio->bi_bdev = page->dev->bdev;
b5d67f64 1334 bio->bi_sector = page->physical >> 9;
b5d67f64 1335
34f5c8e9 1336 bio_add_page(bio, page->page, PAGE_SIZE, 0);
c170bbb4 1337 if (btrfsic_submit_bio_wait(READ, bio))
b5d67f64 1338 sblock->no_io_error_seen = 0;
c170bbb4 1339
b5d67f64
SB
1340 bio_put(bio);
1341 }
96e36920 1342
b5d67f64
SB
1343 if (sblock->no_io_error_seen)
1344 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1345 have_csum, csum, generation,
1346 csum_size);
1347
34f5c8e9 1348 return;
a2de733c
AJ
1349}
1350
b5d67f64
SB
1351static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1352 struct scrub_block *sblock,
1353 int is_metadata, int have_csum,
1354 const u8 *csum, u64 generation,
1355 u16 csum_size)
a2de733c 1356{
b5d67f64
SB
1357 int page_num;
1358 u8 calculated_csum[BTRFS_CSUM_SIZE];
1359 u32 crc = ~(u32)0;
b5d67f64
SB
1360 void *mapped_buffer;
1361
7a9e9987 1362 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1363 if (is_metadata) {
1364 struct btrfs_header *h;
1365
7a9e9987 1366 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1367 h = (struct btrfs_header *)mapped_buffer;
1368
3cae210f 1369 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
b5d67f64
SB
1370 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1371 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1372 BTRFS_UUID_SIZE)) {
b5d67f64 1373 sblock->header_error = 1;
3cae210f 1374 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1375 sblock->header_error = 1;
1376 sblock->generation_error = 1;
1377 }
b5d67f64
SB
1378 csum = h->csum;
1379 } else {
1380 if (!have_csum)
1381 return;
a2de733c 1382
7a9e9987 1383 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1384 }
a2de733c 1385
b5d67f64
SB
1386 for (page_num = 0;;) {
1387 if (page_num == 0 && is_metadata)
b0496686 1388 crc = btrfs_csum_data(
b5d67f64
SB
1389 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1390 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1391 else
b0496686 1392 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1393
9613bebb 1394 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1395 page_num++;
1396 if (page_num >= sblock->page_count)
1397 break;
7a9e9987 1398 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1399
7a9e9987 1400 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1401 }
1402
1403 btrfs_csum_final(crc, calculated_csum);
1404 if (memcmp(calculated_csum, csum, csum_size))
1405 sblock->checksum_error = 1;
a2de733c
AJ
1406}
1407
b5d67f64
SB
1408static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1409 struct scrub_block *sblock_good,
1410 int force_write)
1411{
1412 int page_num;
1413 int ret = 0;
96e36920 1414
b5d67f64
SB
1415 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1416 int ret_sub;
96e36920 1417
b5d67f64
SB
1418 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1419 sblock_good,
1420 page_num,
1421 force_write);
1422 if (ret_sub)
1423 ret = ret_sub;
a2de733c 1424 }
b5d67f64
SB
1425
1426 return ret;
1427}
1428
1429static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1430 struct scrub_block *sblock_good,
1431 int page_num, int force_write)
1432{
7a9e9987
SB
1433 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1434 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1435
7a9e9987
SB
1436 BUG_ON(page_bad->page == NULL);
1437 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1438 if (force_write || sblock_bad->header_error ||
1439 sblock_bad->checksum_error || page_bad->io_error) {
1440 struct bio *bio;
1441 int ret;
b5d67f64 1442
ff023aac
SB
1443 if (!page_bad->dev->bdev) {
1444 printk_ratelimited(KERN_WARNING
1445 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1446 return -EIO;
1447 }
1448
9be3395b 1449 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1450 if (!bio)
1451 return -EIO;
442a4f63 1452 bio->bi_bdev = page_bad->dev->bdev;
b5d67f64 1453 bio->bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1454
1455 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1456 if (PAGE_SIZE != ret) {
1457 bio_put(bio);
1458 return -EIO;
13db62b7 1459 }
b5d67f64 1460
c170bbb4 1461 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1462 btrfs_dev_stat_inc_and_print(page_bad->dev,
1463 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1464 btrfs_dev_replace_stats_inc(
1465 &sblock_bad->sctx->dev_root->fs_info->
1466 dev_replace.num_write_errors);
442a4f63
SB
1467 bio_put(bio);
1468 return -EIO;
1469 }
b5d67f64 1470 bio_put(bio);
a2de733c
AJ
1471 }
1472
b5d67f64
SB
1473 return 0;
1474}
1475
ff023aac
SB
1476static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1477{
1478 int page_num;
1479
1480 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1481 int ret;
1482
1483 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1484 if (ret)
1485 btrfs_dev_replace_stats_inc(
1486 &sblock->sctx->dev_root->fs_info->dev_replace.
1487 num_write_errors);
1488 }
1489}
1490
1491static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1492 int page_num)
1493{
1494 struct scrub_page *spage = sblock->pagev[page_num];
1495
1496 BUG_ON(spage->page == NULL);
1497 if (spage->io_error) {
1498 void *mapped_buffer = kmap_atomic(spage->page);
1499
1500 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1501 flush_dcache_page(spage->page);
1502 kunmap_atomic(mapped_buffer);
1503 }
1504 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1505}
1506
1507static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1508 struct scrub_page *spage)
1509{
1510 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1511 struct scrub_bio *sbio;
1512 int ret;
1513
1514 mutex_lock(&wr_ctx->wr_lock);
1515again:
1516 if (!wr_ctx->wr_curr_bio) {
1517 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1518 GFP_NOFS);
1519 if (!wr_ctx->wr_curr_bio) {
1520 mutex_unlock(&wr_ctx->wr_lock);
1521 return -ENOMEM;
1522 }
1523 wr_ctx->wr_curr_bio->sctx = sctx;
1524 wr_ctx->wr_curr_bio->page_count = 0;
1525 }
1526 sbio = wr_ctx->wr_curr_bio;
1527 if (sbio->page_count == 0) {
1528 struct bio *bio;
1529
1530 sbio->physical = spage->physical_for_dev_replace;
1531 sbio->logical = spage->logical;
1532 sbio->dev = wr_ctx->tgtdev;
1533 bio = sbio->bio;
1534 if (!bio) {
9be3395b 1535 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1536 if (!bio) {
1537 mutex_unlock(&wr_ctx->wr_lock);
1538 return -ENOMEM;
1539 }
1540 sbio->bio = bio;
1541 }
1542
1543 bio->bi_private = sbio;
1544 bio->bi_end_io = scrub_wr_bio_end_io;
1545 bio->bi_bdev = sbio->dev->bdev;
1546 bio->bi_sector = sbio->physical >> 9;
1547 sbio->err = 0;
1548 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1549 spage->physical_for_dev_replace ||
1550 sbio->logical + sbio->page_count * PAGE_SIZE !=
1551 spage->logical) {
1552 scrub_wr_submit(sctx);
1553 goto again;
1554 }
1555
1556 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1557 if (ret != PAGE_SIZE) {
1558 if (sbio->page_count < 1) {
1559 bio_put(sbio->bio);
1560 sbio->bio = NULL;
1561 mutex_unlock(&wr_ctx->wr_lock);
1562 return -EIO;
1563 }
1564 scrub_wr_submit(sctx);
1565 goto again;
1566 }
1567
1568 sbio->pagev[sbio->page_count] = spage;
1569 scrub_page_get(spage);
1570 sbio->page_count++;
1571 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1572 scrub_wr_submit(sctx);
1573 mutex_unlock(&wr_ctx->wr_lock);
1574
1575 return 0;
1576}
1577
1578static void scrub_wr_submit(struct scrub_ctx *sctx)
1579{
1580 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1581 struct scrub_bio *sbio;
1582
1583 if (!wr_ctx->wr_curr_bio)
1584 return;
1585
1586 sbio = wr_ctx->wr_curr_bio;
1587 wr_ctx->wr_curr_bio = NULL;
1588 WARN_ON(!sbio->bio->bi_bdev);
1589 scrub_pending_bio_inc(sctx);
1590 /* process all writes in a single worker thread. Then the block layer
1591 * orders the requests before sending them to the driver which
1592 * doubled the write performance on spinning disks when measured
1593 * with Linux 3.5 */
1594 btrfsic_submit_bio(WRITE, sbio->bio);
1595}
1596
1597static void scrub_wr_bio_end_io(struct bio *bio, int err)
1598{
1599 struct scrub_bio *sbio = bio->bi_private;
1600 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1601
1602 sbio->err = err;
1603 sbio->bio = bio;
1604
1605 sbio->work.func = scrub_wr_bio_end_io_worker;
1606 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1607}
1608
1609static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1610{
1611 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1612 struct scrub_ctx *sctx = sbio->sctx;
1613 int i;
1614
1615 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1616 if (sbio->err) {
1617 struct btrfs_dev_replace *dev_replace =
1618 &sbio->sctx->dev_root->fs_info->dev_replace;
1619
1620 for (i = 0; i < sbio->page_count; i++) {
1621 struct scrub_page *spage = sbio->pagev[i];
1622
1623 spage->io_error = 1;
1624 btrfs_dev_replace_stats_inc(&dev_replace->
1625 num_write_errors);
1626 }
1627 }
1628
1629 for (i = 0; i < sbio->page_count; i++)
1630 scrub_page_put(sbio->pagev[i]);
1631
1632 bio_put(sbio->bio);
1633 kfree(sbio);
1634 scrub_pending_bio_dec(sctx);
1635}
1636
1637static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1638{
1639 u64 flags;
1640 int ret;
1641
7a9e9987
SB
1642 WARN_ON(sblock->page_count < 1);
1643 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1644 ret = 0;
1645 if (flags & BTRFS_EXTENT_FLAG_DATA)
1646 ret = scrub_checksum_data(sblock);
1647 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1648 ret = scrub_checksum_tree_block(sblock);
1649 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1650 (void)scrub_checksum_super(sblock);
1651 else
1652 WARN_ON(1);
1653 if (ret)
1654 scrub_handle_errored_block(sblock);
ff023aac
SB
1655
1656 return ret;
a2de733c
AJ
1657}
1658
b5d67f64 1659static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1660{
d9d181c1 1661 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1662 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1663 u8 *on_disk_csum;
1664 struct page *page;
1665 void *buffer;
a2de733c
AJ
1666 u32 crc = ~(u32)0;
1667 int fail = 0;
b5d67f64
SB
1668 u64 len;
1669 int index;
a2de733c 1670
b5d67f64 1671 BUG_ON(sblock->page_count < 1);
7a9e9987 1672 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1673 return 0;
1674
7a9e9987
SB
1675 on_disk_csum = sblock->pagev[0]->csum;
1676 page = sblock->pagev[0]->page;
9613bebb 1677 buffer = kmap_atomic(page);
b5d67f64 1678
d9d181c1 1679 len = sctx->sectorsize;
b5d67f64
SB
1680 index = 0;
1681 for (;;) {
1682 u64 l = min_t(u64, len, PAGE_SIZE);
1683
b0496686 1684 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1685 kunmap_atomic(buffer);
b5d67f64
SB
1686 len -= l;
1687 if (len == 0)
1688 break;
1689 index++;
1690 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1691 BUG_ON(!sblock->pagev[index]->page);
1692 page = sblock->pagev[index]->page;
9613bebb 1693 buffer = kmap_atomic(page);
b5d67f64
SB
1694 }
1695
a2de733c 1696 btrfs_csum_final(crc, csum);
d9d181c1 1697 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1698 fail = 1;
1699
a2de733c
AJ
1700 return fail;
1701}
1702
b5d67f64 1703static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1704{
d9d181c1 1705 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1706 struct btrfs_header *h;
a36cf8b8 1707 struct btrfs_root *root = sctx->dev_root;
a2de733c 1708 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1709 u8 calculated_csum[BTRFS_CSUM_SIZE];
1710 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1711 struct page *page;
1712 void *mapped_buffer;
1713 u64 mapped_size;
1714 void *p;
a2de733c
AJ
1715 u32 crc = ~(u32)0;
1716 int fail = 0;
1717 int crc_fail = 0;
b5d67f64
SB
1718 u64 len;
1719 int index;
1720
1721 BUG_ON(sblock->page_count < 1);
7a9e9987 1722 page = sblock->pagev[0]->page;
9613bebb 1723 mapped_buffer = kmap_atomic(page);
b5d67f64 1724 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1725 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1726
1727 /*
1728 * we don't use the getter functions here, as we
1729 * a) don't have an extent buffer and
1730 * b) the page is already kmapped
1731 */
a2de733c 1732
3cae210f 1733 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1734 ++fail;
1735
3cae210f 1736 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1737 ++fail;
1738
1739 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1740 ++fail;
1741
1742 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1743 BTRFS_UUID_SIZE))
1744 ++fail;
1745
ff023aac 1746 WARN_ON(sctx->nodesize != sctx->leafsize);
d9d181c1 1747 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1748 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1749 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1750 index = 0;
1751 for (;;) {
1752 u64 l = min_t(u64, len, mapped_size);
1753
b0496686 1754 crc = btrfs_csum_data(p, crc, l);
9613bebb 1755 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1756 len -= l;
1757 if (len == 0)
1758 break;
1759 index++;
1760 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1761 BUG_ON(!sblock->pagev[index]->page);
1762 page = sblock->pagev[index]->page;
9613bebb 1763 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1764 mapped_size = PAGE_SIZE;
1765 p = mapped_buffer;
1766 }
1767
1768 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1769 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1770 ++crc_fail;
1771
a2de733c
AJ
1772 return fail || crc_fail;
1773}
1774
b5d67f64 1775static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1776{
1777 struct btrfs_super_block *s;
d9d181c1 1778 struct scrub_ctx *sctx = sblock->sctx;
a36cf8b8 1779 struct btrfs_root *root = sctx->dev_root;
a2de733c 1780 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1781 u8 calculated_csum[BTRFS_CSUM_SIZE];
1782 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1783 struct page *page;
1784 void *mapped_buffer;
1785 u64 mapped_size;
1786 void *p;
a2de733c 1787 u32 crc = ~(u32)0;
442a4f63
SB
1788 int fail_gen = 0;
1789 int fail_cor = 0;
b5d67f64
SB
1790 u64 len;
1791 int index;
a2de733c 1792
b5d67f64 1793 BUG_ON(sblock->page_count < 1);
7a9e9987 1794 page = sblock->pagev[0]->page;
9613bebb 1795 mapped_buffer = kmap_atomic(page);
b5d67f64 1796 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1797 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1798
3cae210f 1799 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1800 ++fail_cor;
a2de733c 1801
3cae210f 1802 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1803 ++fail_gen;
a2de733c
AJ
1804
1805 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
442a4f63 1806 ++fail_cor;
a2de733c 1807
b5d67f64
SB
1808 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1809 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1810 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1811 index = 0;
1812 for (;;) {
1813 u64 l = min_t(u64, len, mapped_size);
1814
b0496686 1815 crc = btrfs_csum_data(p, crc, l);
9613bebb 1816 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1817 len -= l;
1818 if (len == 0)
1819 break;
1820 index++;
1821 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1822 BUG_ON(!sblock->pagev[index]->page);
1823 page = sblock->pagev[index]->page;
9613bebb 1824 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1825 mapped_size = PAGE_SIZE;
1826 p = mapped_buffer;
1827 }
1828
1829 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1830 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1831 ++fail_cor;
a2de733c 1832
442a4f63 1833 if (fail_cor + fail_gen) {
a2de733c
AJ
1834 /*
1835 * if we find an error in a super block, we just report it.
1836 * They will get written with the next transaction commit
1837 * anyway
1838 */
d9d181c1
SB
1839 spin_lock(&sctx->stat_lock);
1840 ++sctx->stat.super_errors;
1841 spin_unlock(&sctx->stat_lock);
442a4f63 1842 if (fail_cor)
7a9e9987 1843 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1844 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1845 else
7a9e9987 1846 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1847 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1848 }
1849
442a4f63 1850 return fail_cor + fail_gen;
a2de733c
AJ
1851}
1852
b5d67f64
SB
1853static void scrub_block_get(struct scrub_block *sblock)
1854{
1855 atomic_inc(&sblock->ref_count);
1856}
1857
1858static void scrub_block_put(struct scrub_block *sblock)
1859{
1860 if (atomic_dec_and_test(&sblock->ref_count)) {
1861 int i;
1862
1863 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1864 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1865 kfree(sblock);
1866 }
1867}
1868
7a9e9987
SB
1869static void scrub_page_get(struct scrub_page *spage)
1870{
1871 atomic_inc(&spage->ref_count);
1872}
1873
1874static void scrub_page_put(struct scrub_page *spage)
1875{
1876 if (atomic_dec_and_test(&spage->ref_count)) {
1877 if (spage->page)
1878 __free_page(spage->page);
1879 kfree(spage);
1880 }
1881}
1882
d9d181c1 1883static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1884{
1885 struct scrub_bio *sbio;
1886
d9d181c1 1887 if (sctx->curr == -1)
1623edeb 1888 return;
a2de733c 1889
d9d181c1
SB
1890 sbio = sctx->bios[sctx->curr];
1891 sctx->curr = -1;
b6bfebc1 1892 scrub_pending_bio_inc(sctx);
a2de733c 1893
ff023aac
SB
1894 if (!sbio->bio->bi_bdev) {
1895 /*
1896 * this case should not happen. If btrfs_map_block() is
1897 * wrong, it could happen for dev-replace operations on
1898 * missing devices when no mirrors are available, but in
1899 * this case it should already fail the mount.
1900 * This case is handled correctly (but _very_ slowly).
1901 */
1902 printk_ratelimited(KERN_WARNING
1903 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1904 bio_endio(sbio->bio, -EIO);
1905 } else {
1906 btrfsic_submit_bio(READ, sbio->bio);
1907 }
a2de733c
AJ
1908}
1909
ff023aac
SB
1910static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1911 struct scrub_page *spage)
a2de733c 1912{
b5d67f64 1913 struct scrub_block *sblock = spage->sblock;
a2de733c 1914 struct scrub_bio *sbio;
69f4cb52 1915 int ret;
a2de733c
AJ
1916
1917again:
1918 /*
1919 * grab a fresh bio or wait for one to become available
1920 */
d9d181c1
SB
1921 while (sctx->curr == -1) {
1922 spin_lock(&sctx->list_lock);
1923 sctx->curr = sctx->first_free;
1924 if (sctx->curr != -1) {
1925 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1926 sctx->bios[sctx->curr]->next_free = -1;
1927 sctx->bios[sctx->curr]->page_count = 0;
1928 spin_unlock(&sctx->list_lock);
a2de733c 1929 } else {
d9d181c1
SB
1930 spin_unlock(&sctx->list_lock);
1931 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1932 }
1933 }
d9d181c1 1934 sbio = sctx->bios[sctx->curr];
b5d67f64 1935 if (sbio->page_count == 0) {
69f4cb52
AJ
1936 struct bio *bio;
1937
b5d67f64
SB
1938 sbio->physical = spage->physical;
1939 sbio->logical = spage->logical;
a36cf8b8 1940 sbio->dev = spage->dev;
b5d67f64
SB
1941 bio = sbio->bio;
1942 if (!bio) {
9be3395b 1943 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
1944 if (!bio)
1945 return -ENOMEM;
1946 sbio->bio = bio;
1947 }
69f4cb52
AJ
1948
1949 bio->bi_private = sbio;
1950 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8
SB
1951 bio->bi_bdev = sbio->dev->bdev;
1952 bio->bi_sector = sbio->physical >> 9;
69f4cb52 1953 sbio->err = 0;
b5d67f64
SB
1954 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1955 spage->physical ||
1956 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
1957 spage->logical ||
1958 sbio->dev != spage->dev) {
d9d181c1 1959 scrub_submit(sctx);
a2de733c
AJ
1960 goto again;
1961 }
69f4cb52 1962
b5d67f64
SB
1963 sbio->pagev[sbio->page_count] = spage;
1964 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1965 if (ret != PAGE_SIZE) {
1966 if (sbio->page_count < 1) {
1967 bio_put(sbio->bio);
1968 sbio->bio = NULL;
1969 return -EIO;
1970 }
d9d181c1 1971 scrub_submit(sctx);
69f4cb52
AJ
1972 goto again;
1973 }
1974
ff023aac 1975 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
1976 atomic_inc(&sblock->outstanding_pages);
1977 sbio->page_count++;
ff023aac 1978 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 1979 scrub_submit(sctx);
b5d67f64
SB
1980
1981 return 0;
1982}
1983
d9d181c1 1984static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 1985 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
1986 u64 gen, int mirror_num, u8 *csum, int force,
1987 u64 physical_for_dev_replace)
b5d67f64
SB
1988{
1989 struct scrub_block *sblock;
1990 int index;
1991
1992 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1993 if (!sblock) {
d9d181c1
SB
1994 spin_lock(&sctx->stat_lock);
1995 sctx->stat.malloc_errors++;
1996 spin_unlock(&sctx->stat_lock);
b5d67f64 1997 return -ENOMEM;
a2de733c 1998 }
b5d67f64 1999
7a9e9987
SB
2000 /* one ref inside this function, plus one for each page added to
2001 * a bio later on */
b5d67f64 2002 atomic_set(&sblock->ref_count, 1);
d9d181c1 2003 sblock->sctx = sctx;
b5d67f64
SB
2004 sblock->no_io_error_seen = 1;
2005
2006 for (index = 0; len > 0; index++) {
7a9e9987 2007 struct scrub_page *spage;
b5d67f64
SB
2008 u64 l = min_t(u64, len, PAGE_SIZE);
2009
7a9e9987
SB
2010 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2011 if (!spage) {
2012leave_nomem:
d9d181c1
SB
2013 spin_lock(&sctx->stat_lock);
2014 sctx->stat.malloc_errors++;
2015 spin_unlock(&sctx->stat_lock);
7a9e9987 2016 scrub_block_put(sblock);
b5d67f64
SB
2017 return -ENOMEM;
2018 }
7a9e9987
SB
2019 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2020 scrub_page_get(spage);
2021 sblock->pagev[index] = spage;
b5d67f64 2022 spage->sblock = sblock;
a36cf8b8 2023 spage->dev = dev;
b5d67f64
SB
2024 spage->flags = flags;
2025 spage->generation = gen;
2026 spage->logical = logical;
2027 spage->physical = physical;
ff023aac 2028 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2029 spage->mirror_num = mirror_num;
2030 if (csum) {
2031 spage->have_csum = 1;
d9d181c1 2032 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2033 } else {
2034 spage->have_csum = 0;
2035 }
2036 sblock->page_count++;
7a9e9987
SB
2037 spage->page = alloc_page(GFP_NOFS);
2038 if (!spage->page)
2039 goto leave_nomem;
b5d67f64
SB
2040 len -= l;
2041 logical += l;
2042 physical += l;
ff023aac 2043 physical_for_dev_replace += l;
b5d67f64
SB
2044 }
2045
7a9e9987 2046 WARN_ON(sblock->page_count == 0);
b5d67f64 2047 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2048 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2049 int ret;
2050
ff023aac 2051 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2052 if (ret) {
2053 scrub_block_put(sblock);
1bc87793 2054 return ret;
b5d67f64 2055 }
1bc87793 2056 }
a2de733c 2057
b5d67f64 2058 if (force)
d9d181c1 2059 scrub_submit(sctx);
a2de733c 2060
b5d67f64
SB
2061 /* last one frees, either here or in bio completion for last page */
2062 scrub_block_put(sblock);
a2de733c
AJ
2063 return 0;
2064}
2065
b5d67f64
SB
2066static void scrub_bio_end_io(struct bio *bio, int err)
2067{
2068 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2069 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2070
2071 sbio->err = err;
2072 sbio->bio = bio;
2073
2074 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2075}
2076
2077static void scrub_bio_end_io_worker(struct btrfs_work *work)
2078{
2079 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2080 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2081 int i;
2082
ff023aac 2083 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2084 if (sbio->err) {
2085 for (i = 0; i < sbio->page_count; i++) {
2086 struct scrub_page *spage = sbio->pagev[i];
2087
2088 spage->io_error = 1;
2089 spage->sblock->no_io_error_seen = 0;
2090 }
2091 }
2092
2093 /* now complete the scrub_block items that have all pages completed */
2094 for (i = 0; i < sbio->page_count; i++) {
2095 struct scrub_page *spage = sbio->pagev[i];
2096 struct scrub_block *sblock = spage->sblock;
2097
2098 if (atomic_dec_and_test(&sblock->outstanding_pages))
2099 scrub_block_complete(sblock);
2100 scrub_block_put(sblock);
2101 }
2102
b5d67f64
SB
2103 bio_put(sbio->bio);
2104 sbio->bio = NULL;
d9d181c1
SB
2105 spin_lock(&sctx->list_lock);
2106 sbio->next_free = sctx->first_free;
2107 sctx->first_free = sbio->index;
2108 spin_unlock(&sctx->list_lock);
ff023aac
SB
2109
2110 if (sctx->is_dev_replace &&
2111 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2112 mutex_lock(&sctx->wr_ctx.wr_lock);
2113 scrub_wr_submit(sctx);
2114 mutex_unlock(&sctx->wr_ctx.wr_lock);
2115 }
2116
b6bfebc1 2117 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2118}
2119
2120static void scrub_block_complete(struct scrub_block *sblock)
2121{
ff023aac 2122 if (!sblock->no_io_error_seen) {
b5d67f64 2123 scrub_handle_errored_block(sblock);
ff023aac
SB
2124 } else {
2125 /*
2126 * if has checksum error, write via repair mechanism in
2127 * dev replace case, otherwise write here in dev replace
2128 * case.
2129 */
2130 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2131 scrub_write_block_to_dev_replace(sblock);
2132 }
b5d67f64
SB
2133}
2134
d9d181c1 2135static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2136 u8 *csum)
2137{
2138 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2139 unsigned long index;
a2de733c 2140 unsigned long num_sectors;
a2de733c 2141
d9d181c1
SB
2142 while (!list_empty(&sctx->csum_list)) {
2143 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2144 struct btrfs_ordered_sum, list);
2145 if (sum->bytenr > logical)
2146 return 0;
2147 if (sum->bytenr + sum->len > logical)
2148 break;
2149
d9d181c1 2150 ++sctx->stat.csum_discards;
a2de733c
AJ
2151 list_del(&sum->list);
2152 kfree(sum);
2153 sum = NULL;
2154 }
2155 if (!sum)
2156 return 0;
2157
f51a4a18 2158 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2159 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2160 memcpy(csum, sum->sums + index, sctx->csum_size);
2161 if (index == num_sectors - 1) {
a2de733c
AJ
2162 list_del(&sum->list);
2163 kfree(sum);
2164 }
f51a4a18 2165 return 1;
a2de733c
AJ
2166}
2167
2168/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2169static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2170 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2171 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2172{
2173 int ret;
2174 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2175 u32 blocksize;
2176
2177 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2178 blocksize = sctx->sectorsize;
2179 spin_lock(&sctx->stat_lock);
2180 sctx->stat.data_extents_scrubbed++;
2181 sctx->stat.data_bytes_scrubbed += len;
2182 spin_unlock(&sctx->stat_lock);
b5d67f64 2183 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
ff023aac 2184 WARN_ON(sctx->nodesize != sctx->leafsize);
d9d181c1
SB
2185 blocksize = sctx->nodesize;
2186 spin_lock(&sctx->stat_lock);
2187 sctx->stat.tree_extents_scrubbed++;
2188 sctx->stat.tree_bytes_scrubbed += len;
2189 spin_unlock(&sctx->stat_lock);
b5d67f64 2190 } else {
d9d181c1 2191 blocksize = sctx->sectorsize;
ff023aac 2192 WARN_ON(1);
b5d67f64 2193 }
a2de733c
AJ
2194
2195 while (len) {
b5d67f64 2196 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2197 int have_csum = 0;
2198
2199 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2200 /* push csums to sbio */
d9d181c1 2201 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2202 if (have_csum == 0)
d9d181c1 2203 ++sctx->stat.no_csum;
ff023aac
SB
2204 if (sctx->is_dev_replace && !have_csum) {
2205 ret = copy_nocow_pages(sctx, logical, l,
2206 mirror_num,
2207 physical_for_dev_replace);
2208 goto behind_scrub_pages;
2209 }
a2de733c 2210 }
a36cf8b8 2211 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2212 mirror_num, have_csum ? csum : NULL, 0,
2213 physical_for_dev_replace);
2214behind_scrub_pages:
a2de733c
AJ
2215 if (ret)
2216 return ret;
2217 len -= l;
2218 logical += l;
2219 physical += l;
ff023aac 2220 physical_for_dev_replace += l;
a2de733c
AJ
2221 }
2222 return 0;
2223}
2224
d9d181c1 2225static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2226 struct map_lookup *map,
2227 struct btrfs_device *scrub_dev,
ff023aac
SB
2228 int num, u64 base, u64 length,
2229 int is_dev_replace)
a2de733c
AJ
2230{
2231 struct btrfs_path *path;
a36cf8b8 2232 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
2233 struct btrfs_root *root = fs_info->extent_root;
2234 struct btrfs_root *csum_root = fs_info->csum_root;
2235 struct btrfs_extent_item *extent;
e7786c3a 2236 struct blk_plug plug;
a2de733c
AJ
2237 u64 flags;
2238 int ret;
2239 int slot;
a2de733c 2240 u64 nstripes;
a2de733c
AJ
2241 struct extent_buffer *l;
2242 struct btrfs_key key;
2243 u64 physical;
2244 u64 logical;
625f1c8d 2245 u64 logic_end;
a2de733c 2246 u64 generation;
e12fa9cd 2247 int mirror_num;
7a26285e
AJ
2248 struct reada_control *reada1;
2249 struct reada_control *reada2;
2250 struct btrfs_key key_start;
2251 struct btrfs_key key_end;
a2de733c
AJ
2252 u64 increment = map->stripe_len;
2253 u64 offset;
ff023aac
SB
2254 u64 extent_logical;
2255 u64 extent_physical;
2256 u64 extent_len;
2257 struct btrfs_device *extent_dev;
2258 int extent_mirror_num;
625f1c8d 2259 int stop_loop;
a2de733c 2260
53b381b3
DW
2261 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2262 BTRFS_BLOCK_GROUP_RAID6)) {
2263 if (num >= nr_data_stripes(map)) {
2264 return 0;
2265 }
2266 }
2267
a2de733c
AJ
2268 nstripes = length;
2269 offset = 0;
2270 do_div(nstripes, map->stripe_len);
2271 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2272 offset = map->stripe_len * num;
2273 increment = map->stripe_len * map->num_stripes;
193ea74b 2274 mirror_num = 1;
a2de733c
AJ
2275 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2276 int factor = map->num_stripes / map->sub_stripes;
2277 offset = map->stripe_len * (num / map->sub_stripes);
2278 increment = map->stripe_len * factor;
193ea74b 2279 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
2280 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2281 increment = map->stripe_len;
193ea74b 2282 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2283 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2284 increment = map->stripe_len;
193ea74b 2285 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2286 } else {
2287 increment = map->stripe_len;
193ea74b 2288 mirror_num = 1;
a2de733c
AJ
2289 }
2290
2291 path = btrfs_alloc_path();
2292 if (!path)
2293 return -ENOMEM;
2294
b5d67f64
SB
2295 /*
2296 * work on commit root. The related disk blocks are static as
2297 * long as COW is applied. This means, it is save to rewrite
2298 * them to repair disk errors without any race conditions
2299 */
a2de733c
AJ
2300 path->search_commit_root = 1;
2301 path->skip_locking = 1;
2302
2303 /*
7a26285e
AJ
2304 * trigger the readahead for extent tree csum tree and wait for
2305 * completion. During readahead, the scrub is officially paused
2306 * to not hold off transaction commits
a2de733c
AJ
2307 */
2308 logical = base + offset;
a2de733c 2309
d9d181c1 2310 wait_event(sctx->list_wait,
b6bfebc1 2311 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 2312 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
2313
2314 /* FIXME it might be better to start readahead at commit root */
2315 key_start.objectid = logical;
2316 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2317 key_start.offset = (u64)0;
2318 key_end.objectid = base + offset + nstripes * increment;
3173a18f
JB
2319 key_end.type = BTRFS_METADATA_ITEM_KEY;
2320 key_end.offset = (u64)-1;
7a26285e
AJ
2321 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2322
2323 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2324 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2325 key_start.offset = logical;
2326 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2327 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2328 key_end.offset = base + offset + nstripes * increment;
2329 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2330
2331 if (!IS_ERR(reada1))
2332 btrfs_reada_wait(reada1);
2333 if (!IS_ERR(reada2))
2334 btrfs_reada_wait(reada2);
2335
a2de733c
AJ
2336
2337 /*
2338 * collect all data csums for the stripe to avoid seeking during
2339 * the scrub. This might currently (crc32) end up to be about 1MB
2340 */
e7786c3a 2341 blk_start_plug(&plug);
a2de733c 2342
a2de733c
AJ
2343 /*
2344 * now find all extents for each stripe and scrub them
2345 */
7a26285e
AJ
2346 logical = base + offset;
2347 physical = map->stripes[num].physical;
625f1c8d 2348 logic_end = logical + increment * nstripes;
a2de733c 2349 ret = 0;
625f1c8d 2350 while (logical < logic_end) {
a2de733c
AJ
2351 /*
2352 * canceled?
2353 */
2354 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 2355 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
2356 ret = -ECANCELED;
2357 goto out;
2358 }
2359 /*
2360 * check to see if we have to pause
2361 */
2362 if (atomic_read(&fs_info->scrub_pause_req)) {
2363 /* push queued extents */
ff023aac 2364 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 2365 scrub_submit(sctx);
ff023aac
SB
2366 mutex_lock(&sctx->wr_ctx.wr_lock);
2367 scrub_wr_submit(sctx);
2368 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 2369 wait_event(sctx->list_wait,
b6bfebc1 2370 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 2371 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 2372 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
2373 }
2374
2375 key.objectid = logical;
2376 key.type = BTRFS_EXTENT_ITEM_KEY;
625f1c8d 2377 key.offset = (u64)-1;
a2de733c
AJ
2378
2379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2380 if (ret < 0)
2381 goto out;
3173a18f 2382
8c51032f 2383 if (ret > 0) {
a2de733c
AJ
2384 ret = btrfs_previous_item(root, path, 0,
2385 BTRFS_EXTENT_ITEM_KEY);
2386 if (ret < 0)
2387 goto out;
8c51032f
AJ
2388 if (ret > 0) {
2389 /* there's no smaller item, so stick with the
2390 * larger one */
2391 btrfs_release_path(path);
2392 ret = btrfs_search_slot(NULL, root, &key,
2393 path, 0, 0);
2394 if (ret < 0)
2395 goto out;
2396 }
a2de733c
AJ
2397 }
2398
625f1c8d 2399 stop_loop = 0;
a2de733c 2400 while (1) {
3173a18f
JB
2401 u64 bytes;
2402
a2de733c
AJ
2403 l = path->nodes[0];
2404 slot = path->slots[0];
2405 if (slot >= btrfs_header_nritems(l)) {
2406 ret = btrfs_next_leaf(root, path);
2407 if (ret == 0)
2408 continue;
2409 if (ret < 0)
2410 goto out;
2411
625f1c8d 2412 stop_loop = 1;
a2de733c
AJ
2413 break;
2414 }
2415 btrfs_item_key_to_cpu(l, &key, slot);
2416
3173a18f
JB
2417 if (key.type == BTRFS_METADATA_ITEM_KEY)
2418 bytes = root->leafsize;
2419 else
2420 bytes = key.offset;
2421
2422 if (key.objectid + bytes <= logical)
a2de733c
AJ
2423 goto next;
2424
625f1c8d
LB
2425 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2426 key.type != BTRFS_METADATA_ITEM_KEY)
2427 goto next;
a2de733c 2428
625f1c8d
LB
2429 if (key.objectid >= logical + map->stripe_len) {
2430 /* out of this device extent */
2431 if (key.objectid >= logic_end)
2432 stop_loop = 1;
2433 break;
2434 }
a2de733c
AJ
2435
2436 extent = btrfs_item_ptr(l, slot,
2437 struct btrfs_extent_item);
2438 flags = btrfs_extent_flags(l, extent);
2439 generation = btrfs_extent_generation(l, extent);
2440
2441 if (key.objectid < logical &&
2442 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2443 printk(KERN_ERR
2444 "btrfs scrub: tree block %llu spanning "
2445 "stripes, ignored. logical=%llu\n",
c1c9ff7c 2446 key.objectid, logical);
a2de733c
AJ
2447 goto next;
2448 }
2449
625f1c8d
LB
2450again:
2451 extent_logical = key.objectid;
2452 extent_len = bytes;
2453
a2de733c
AJ
2454 /*
2455 * trim extent to this stripe
2456 */
625f1c8d
LB
2457 if (extent_logical < logical) {
2458 extent_len -= logical - extent_logical;
2459 extent_logical = logical;
a2de733c 2460 }
625f1c8d 2461 if (extent_logical + extent_len >
a2de733c 2462 logical + map->stripe_len) {
625f1c8d
LB
2463 extent_len = logical + map->stripe_len -
2464 extent_logical;
a2de733c
AJ
2465 }
2466
625f1c8d 2467 extent_physical = extent_logical - logical + physical;
ff023aac
SB
2468 extent_dev = scrub_dev;
2469 extent_mirror_num = mirror_num;
2470 if (is_dev_replace)
2471 scrub_remap_extent(fs_info, extent_logical,
2472 extent_len, &extent_physical,
2473 &extent_dev,
2474 &extent_mirror_num);
625f1c8d
LB
2475
2476 ret = btrfs_lookup_csums_range(csum_root, logical,
2477 logical + map->stripe_len - 1,
2478 &sctx->csum_list, 1);
2479 if (ret)
2480 goto out;
2481
ff023aac
SB
2482 ret = scrub_extent(sctx, extent_logical, extent_len,
2483 extent_physical, extent_dev, flags,
2484 generation, extent_mirror_num,
115930cb 2485 extent_logical - logical + physical);
a2de733c
AJ
2486 if (ret)
2487 goto out;
2488
d88d46c6 2489 scrub_free_csums(sctx);
625f1c8d
LB
2490 if (extent_logical + extent_len <
2491 key.objectid + bytes) {
2492 logical += increment;
2493 physical += map->stripe_len;
2494
2495 if (logical < key.objectid + bytes) {
2496 cond_resched();
2497 goto again;
2498 }
2499
2500 if (logical >= logic_end) {
2501 stop_loop = 1;
2502 break;
2503 }
2504 }
a2de733c
AJ
2505next:
2506 path->slots[0]++;
2507 }
71267333 2508 btrfs_release_path(path);
a2de733c
AJ
2509 logical += increment;
2510 physical += map->stripe_len;
d9d181c1 2511 spin_lock(&sctx->stat_lock);
625f1c8d
LB
2512 if (stop_loop)
2513 sctx->stat.last_physical = map->stripes[num].physical +
2514 length;
2515 else
2516 sctx->stat.last_physical = physical;
d9d181c1 2517 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
2518 if (stop_loop)
2519 break;
a2de733c 2520 }
ff023aac 2521out:
a2de733c 2522 /* push queued extents */
d9d181c1 2523 scrub_submit(sctx);
ff023aac
SB
2524 mutex_lock(&sctx->wr_ctx.wr_lock);
2525 scrub_wr_submit(sctx);
2526 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 2527
e7786c3a 2528 blk_finish_plug(&plug);
a2de733c
AJ
2529 btrfs_free_path(path);
2530 return ret < 0 ? ret : 0;
2531}
2532
d9d181c1 2533static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
2534 struct btrfs_device *scrub_dev,
2535 u64 chunk_tree, u64 chunk_objectid,
2536 u64 chunk_offset, u64 length,
ff023aac 2537 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
2538{
2539 struct btrfs_mapping_tree *map_tree =
a36cf8b8 2540 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
2541 struct map_lookup *map;
2542 struct extent_map *em;
2543 int i;
ff023aac 2544 int ret = 0;
a2de733c
AJ
2545
2546 read_lock(&map_tree->map_tree.lock);
2547 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2548 read_unlock(&map_tree->map_tree.lock);
2549
2550 if (!em)
2551 return -EINVAL;
2552
2553 map = (struct map_lookup *)em->bdev;
2554 if (em->start != chunk_offset)
2555 goto out;
2556
2557 if (em->len < length)
2558 goto out;
2559
2560 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 2561 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 2562 map->stripes[i].physical == dev_offset) {
a36cf8b8 2563 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
2564 chunk_offset, length,
2565 is_dev_replace);
a2de733c
AJ
2566 if (ret)
2567 goto out;
2568 }
2569 }
2570out:
2571 free_extent_map(em);
2572
2573 return ret;
2574}
2575
2576static noinline_for_stack
a36cf8b8 2577int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
2578 struct btrfs_device *scrub_dev, u64 start, u64 end,
2579 int is_dev_replace)
a2de733c
AJ
2580{
2581 struct btrfs_dev_extent *dev_extent = NULL;
2582 struct btrfs_path *path;
a36cf8b8 2583 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
2584 struct btrfs_fs_info *fs_info = root->fs_info;
2585 u64 length;
2586 u64 chunk_tree;
2587 u64 chunk_objectid;
2588 u64 chunk_offset;
2589 int ret;
2590 int slot;
2591 struct extent_buffer *l;
2592 struct btrfs_key key;
2593 struct btrfs_key found_key;
2594 struct btrfs_block_group_cache *cache;
ff023aac 2595 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
2596
2597 path = btrfs_alloc_path();
2598 if (!path)
2599 return -ENOMEM;
2600
2601 path->reada = 2;
2602 path->search_commit_root = 1;
2603 path->skip_locking = 1;
2604
a36cf8b8 2605 key.objectid = scrub_dev->devid;
a2de733c
AJ
2606 key.offset = 0ull;
2607 key.type = BTRFS_DEV_EXTENT_KEY;
2608
a2de733c
AJ
2609 while (1) {
2610 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2611 if (ret < 0)
8c51032f
AJ
2612 break;
2613 if (ret > 0) {
2614 if (path->slots[0] >=
2615 btrfs_header_nritems(path->nodes[0])) {
2616 ret = btrfs_next_leaf(root, path);
2617 if (ret)
2618 break;
2619 }
2620 }
a2de733c
AJ
2621
2622 l = path->nodes[0];
2623 slot = path->slots[0];
2624
2625 btrfs_item_key_to_cpu(l, &found_key, slot);
2626
a36cf8b8 2627 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
2628 break;
2629
8c51032f 2630 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2631 break;
2632
2633 if (found_key.offset >= end)
2634 break;
2635
2636 if (found_key.offset < key.offset)
2637 break;
2638
2639 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2640 length = btrfs_dev_extent_length(l, dev_extent);
2641
2642 if (found_key.offset + length <= start) {
2643 key.offset = found_key.offset + length;
71267333 2644 btrfs_release_path(path);
a2de733c
AJ
2645 continue;
2646 }
2647
2648 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2649 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2650 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2651
2652 /*
2653 * get a reference on the corresponding block group to prevent
2654 * the chunk from going away while we scrub it
2655 */
2656 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2657 if (!cache) {
2658 ret = -ENOENT;
8c51032f 2659 break;
a2de733c 2660 }
ff023aac
SB
2661 dev_replace->cursor_right = found_key.offset + length;
2662 dev_replace->cursor_left = found_key.offset;
2663 dev_replace->item_needs_writeback = 1;
a36cf8b8 2664 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
2665 chunk_offset, length, found_key.offset,
2666 is_dev_replace);
2667
2668 /*
2669 * flush, submit all pending read and write bios, afterwards
2670 * wait for them.
2671 * Note that in the dev replace case, a read request causes
2672 * write requests that are submitted in the read completion
2673 * worker. Therefore in the current situation, it is required
2674 * that all write requests are flushed, so that all read and
2675 * write requests are really completed when bios_in_flight
2676 * changes to 0.
2677 */
2678 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2679 scrub_submit(sctx);
2680 mutex_lock(&sctx->wr_ctx.wr_lock);
2681 scrub_wr_submit(sctx);
2682 mutex_unlock(&sctx->wr_ctx.wr_lock);
2683
2684 wait_event(sctx->list_wait,
2685 atomic_read(&sctx->bios_in_flight) == 0);
2686 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
ff023aac
SB
2687 wait_event(sctx->list_wait,
2688 atomic_read(&sctx->workers_pending) == 0);
3cb0929a 2689 scrub_blocked_if_needed(fs_info);
ff023aac 2690
a2de733c
AJ
2691 btrfs_put_block_group(cache);
2692 if (ret)
2693 break;
af1be4f8
SB
2694 if (is_dev_replace &&
2695 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
2696 ret = -EIO;
2697 break;
2698 }
2699 if (sctx->stat.malloc_errors > 0) {
2700 ret = -ENOMEM;
2701 break;
2702 }
a2de733c 2703
539f358a
ID
2704 dev_replace->cursor_left = dev_replace->cursor_right;
2705 dev_replace->item_needs_writeback = 1;
2706
a2de733c 2707 key.offset = found_key.offset + length;
71267333 2708 btrfs_release_path(path);
a2de733c
AJ
2709 }
2710
a2de733c 2711 btrfs_free_path(path);
8c51032f
AJ
2712
2713 /*
2714 * ret can still be 1 from search_slot or next_leaf,
2715 * that's not an error
2716 */
2717 return ret < 0 ? ret : 0;
a2de733c
AJ
2718}
2719
a36cf8b8
SB
2720static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2721 struct btrfs_device *scrub_dev)
a2de733c
AJ
2722{
2723 int i;
2724 u64 bytenr;
2725 u64 gen;
2726 int ret;
a36cf8b8 2727 struct btrfs_root *root = sctx->dev_root;
a2de733c 2728
87533c47 2729 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
2730 return -EIO;
2731
a2de733c
AJ
2732 gen = root->fs_info->last_trans_committed;
2733
2734 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2735 bytenr = btrfs_sb_offset(i);
a36cf8b8 2736 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
a2de733c
AJ
2737 break;
2738
d9d181c1 2739 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 2740 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 2741 NULL, 1, bytenr);
a2de733c
AJ
2742 if (ret)
2743 return ret;
2744 }
b6bfebc1 2745 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2746
2747 return 0;
2748}
2749
2750/*
2751 * get a reference count on fs_info->scrub_workers. start worker if necessary
2752 */
ff023aac
SB
2753static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2754 int is_dev_replace)
a2de733c 2755{
0dc3b84a 2756 int ret = 0;
a2de733c 2757
632dd772 2758 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac
SB
2759 if (is_dev_replace)
2760 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2761 &fs_info->generic_worker);
2762 else
2763 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2764 fs_info->thread_pool_size,
2765 &fs_info->generic_worker);
632dd772 2766 fs_info->scrub_workers.idle_thresh = 4;
0dc3b84a
JB
2767 ret = btrfs_start_workers(&fs_info->scrub_workers);
2768 if (ret)
2769 goto out;
ff023aac
SB
2770 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2771 "scrubwrc",
2772 fs_info->thread_pool_size,
2773 &fs_info->generic_worker);
2774 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2775 ret = btrfs_start_workers(
2776 &fs_info->scrub_wr_completion_workers);
2777 if (ret)
2778 goto out;
2779 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2780 &fs_info->generic_worker);
2781 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2782 if (ret)
2783 goto out;
632dd772 2784 }
a2de733c 2785 ++fs_info->scrub_workers_refcnt;
0dc3b84a 2786out:
0dc3b84a 2787 return ret;
a2de733c
AJ
2788}
2789
aa1b8cd4 2790static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 2791{
ff023aac 2792 if (--fs_info->scrub_workers_refcnt == 0) {
a2de733c 2793 btrfs_stop_workers(&fs_info->scrub_workers);
ff023aac
SB
2794 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2795 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2796 }
a2de733c 2797 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
2798}
2799
aa1b8cd4
SB
2800int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2801 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 2802 int readonly, int is_dev_replace)
a2de733c 2803{
d9d181c1 2804 struct scrub_ctx *sctx;
a2de733c
AJ
2805 int ret;
2806 struct btrfs_device *dev;
2807
aa1b8cd4 2808 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
2809 return -EINVAL;
2810
2811 /*
2812 * check some assumptions
2813 */
aa1b8cd4 2814 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
b5d67f64
SB
2815 printk(KERN_ERR
2816 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
aa1b8cd4
SB
2817 fs_info->chunk_root->nodesize,
2818 fs_info->chunk_root->leafsize);
b5d67f64
SB
2819 return -EINVAL;
2820 }
2821
aa1b8cd4 2822 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
2823 /*
2824 * in this case scrub is unable to calculate the checksum
2825 * the way scrub is implemented. Do not handle this
2826 * situation at all because it won't ever happen.
2827 */
2828 printk(KERN_ERR
2829 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
aa1b8cd4 2830 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
2831 return -EINVAL;
2832 }
2833
aa1b8cd4 2834 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64
SB
2835 /* not supported for data w/o checksums */
2836 printk(KERN_ERR
27f9f023
GU
2837 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2838 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
2839 return -EINVAL;
2840 }
2841
7a9e9987
SB
2842 if (fs_info->chunk_root->nodesize >
2843 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2844 fs_info->chunk_root->sectorsize >
2845 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2846 /*
2847 * would exhaust the array bounds of pagev member in
2848 * struct scrub_block
2849 */
2850 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2851 fs_info->chunk_root->nodesize,
2852 SCRUB_MAX_PAGES_PER_BLOCK,
2853 fs_info->chunk_root->sectorsize,
2854 SCRUB_MAX_PAGES_PER_BLOCK);
2855 return -EINVAL;
2856 }
2857
a2de733c 2858
aa1b8cd4
SB
2859 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2860 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 2861 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 2862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2863 return -ENODEV;
2864 }
a2de733c 2865
3b7a016f 2866 mutex_lock(&fs_info->scrub_lock);
63a212ab 2867 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 2868 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2869 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 2870 return -EIO;
a2de733c
AJ
2871 }
2872
8dabb742
SB
2873 btrfs_dev_replace_lock(&fs_info->dev_replace);
2874 if (dev->scrub_device ||
2875 (!is_dev_replace &&
2876 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2877 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 2878 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2879 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2880 return -EINPROGRESS;
2881 }
8dabb742 2882 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3b7a016f
WS
2883
2884 ret = scrub_workers_get(fs_info, is_dev_replace);
2885 if (ret) {
2886 mutex_unlock(&fs_info->scrub_lock);
2887 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2888 return ret;
2889 }
2890
63a212ab 2891 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 2892 if (IS_ERR(sctx)) {
a2de733c 2893 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
2894 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2895 scrub_workers_put(fs_info);
d9d181c1 2896 return PTR_ERR(sctx);
a2de733c 2897 }
d9d181c1
SB
2898 sctx->readonly = readonly;
2899 dev->scrub_device = sctx;
3cb0929a 2900 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 2901
3cb0929a
WS
2902 /*
2903 * checking @scrub_pause_req here, we can avoid
2904 * race between committing transaction and scrubbing.
2905 */
cb7ab021 2906 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
2907 atomic_inc(&fs_info->scrubs_running);
2908 mutex_unlock(&fs_info->scrub_lock);
a2de733c 2909
ff023aac 2910 if (!is_dev_replace) {
9b011adf
WS
2911 /*
2912 * by holding device list mutex, we can
2913 * kick off writing super in log tree sync.
2914 */
3cb0929a 2915 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 2916 ret = scrub_supers(sctx, dev);
3cb0929a 2917 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 2918 }
a2de733c
AJ
2919
2920 if (!ret)
ff023aac
SB
2921 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2922 is_dev_replace);
a2de733c 2923
b6bfebc1 2924 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2925 atomic_dec(&fs_info->scrubs_running);
2926 wake_up(&fs_info->scrub_pause_wait);
2927
b6bfebc1 2928 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 2929
a2de733c 2930 if (progress)
d9d181c1 2931 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
2932
2933 mutex_lock(&fs_info->scrub_lock);
2934 dev->scrub_device = NULL;
3b7a016f 2935 scrub_workers_put(fs_info);
a2de733c
AJ
2936 mutex_unlock(&fs_info->scrub_lock);
2937
d9d181c1 2938 scrub_free_ctx(sctx);
a2de733c
AJ
2939
2940 return ret;
2941}
2942
143bede5 2943void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
2944{
2945 struct btrfs_fs_info *fs_info = root->fs_info;
2946
2947 mutex_lock(&fs_info->scrub_lock);
2948 atomic_inc(&fs_info->scrub_pause_req);
2949 while (atomic_read(&fs_info->scrubs_paused) !=
2950 atomic_read(&fs_info->scrubs_running)) {
2951 mutex_unlock(&fs_info->scrub_lock);
2952 wait_event(fs_info->scrub_pause_wait,
2953 atomic_read(&fs_info->scrubs_paused) ==
2954 atomic_read(&fs_info->scrubs_running));
2955 mutex_lock(&fs_info->scrub_lock);
2956 }
2957 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
2958}
2959
143bede5 2960void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
2961{
2962 struct btrfs_fs_info *fs_info = root->fs_info;
2963
2964 atomic_dec(&fs_info->scrub_pause_req);
2965 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
2966}
2967
aa1b8cd4 2968int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 2969{
a2de733c
AJ
2970 mutex_lock(&fs_info->scrub_lock);
2971 if (!atomic_read(&fs_info->scrubs_running)) {
2972 mutex_unlock(&fs_info->scrub_lock);
2973 return -ENOTCONN;
2974 }
2975
2976 atomic_inc(&fs_info->scrub_cancel_req);
2977 while (atomic_read(&fs_info->scrubs_running)) {
2978 mutex_unlock(&fs_info->scrub_lock);
2979 wait_event(fs_info->scrub_pause_wait,
2980 atomic_read(&fs_info->scrubs_running) == 0);
2981 mutex_lock(&fs_info->scrub_lock);
2982 }
2983 atomic_dec(&fs_info->scrub_cancel_req);
2984 mutex_unlock(&fs_info->scrub_lock);
2985
2986 return 0;
2987}
2988
aa1b8cd4
SB
2989int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2990 struct btrfs_device *dev)
49b25e05 2991{
d9d181c1 2992 struct scrub_ctx *sctx;
a2de733c
AJ
2993
2994 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
2995 sctx = dev->scrub_device;
2996 if (!sctx) {
a2de733c
AJ
2997 mutex_unlock(&fs_info->scrub_lock);
2998 return -ENOTCONN;
2999 }
d9d181c1 3000 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3001 while (dev->scrub_device) {
3002 mutex_unlock(&fs_info->scrub_lock);
3003 wait_event(fs_info->scrub_pause_wait,
3004 dev->scrub_device == NULL);
3005 mutex_lock(&fs_info->scrub_lock);
3006 }
3007 mutex_unlock(&fs_info->scrub_lock);
3008
3009 return 0;
3010}
1623edeb 3011
a2de733c
AJ
3012int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3013 struct btrfs_scrub_progress *progress)
3014{
3015 struct btrfs_device *dev;
d9d181c1 3016 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3017
3018 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3019 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3020 if (dev)
d9d181c1
SB
3021 sctx = dev->scrub_device;
3022 if (sctx)
3023 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3024 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3025
d9d181c1 3026 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3027}
ff023aac
SB
3028
3029static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3030 u64 extent_logical, u64 extent_len,
3031 u64 *extent_physical,
3032 struct btrfs_device **extent_dev,
3033 int *extent_mirror_num)
3034{
3035 u64 mapped_length;
3036 struct btrfs_bio *bbio = NULL;
3037 int ret;
3038
3039 mapped_length = extent_len;
3040 ret = btrfs_map_block(fs_info, READ, extent_logical,
3041 &mapped_length, &bbio, 0);
3042 if (ret || !bbio || mapped_length < extent_len ||
3043 !bbio->stripes[0].dev->bdev) {
3044 kfree(bbio);
3045 return;
3046 }
3047
3048 *extent_physical = bbio->stripes[0].physical;
3049 *extent_mirror_num = bbio->mirror_num;
3050 *extent_dev = bbio->stripes[0].dev;
3051 kfree(bbio);
3052}
3053
3054static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3055 struct scrub_wr_ctx *wr_ctx,
3056 struct btrfs_fs_info *fs_info,
3057 struct btrfs_device *dev,
3058 int is_dev_replace)
3059{
3060 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3061
3062 mutex_init(&wr_ctx->wr_lock);
3063 wr_ctx->wr_curr_bio = NULL;
3064 if (!is_dev_replace)
3065 return 0;
3066
3067 WARN_ON(!dev->bdev);
3068 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3069 bio_get_nr_vecs(dev->bdev));
3070 wr_ctx->tgtdev = dev;
3071 atomic_set(&wr_ctx->flush_all_writes, 0);
3072 return 0;
3073}
3074
3075static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3076{
3077 mutex_lock(&wr_ctx->wr_lock);
3078 kfree(wr_ctx->wr_curr_bio);
3079 wr_ctx->wr_curr_bio = NULL;
3080 mutex_unlock(&wr_ctx->wr_lock);
3081}
3082
3083static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3084 int mirror_num, u64 physical_for_dev_replace)
3085{
3086 struct scrub_copy_nocow_ctx *nocow_ctx;
3087 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3088
3089 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3090 if (!nocow_ctx) {
3091 spin_lock(&sctx->stat_lock);
3092 sctx->stat.malloc_errors++;
3093 spin_unlock(&sctx->stat_lock);
3094 return -ENOMEM;
3095 }
3096
3097 scrub_pending_trans_workers_inc(sctx);
3098
3099 nocow_ctx->sctx = sctx;
3100 nocow_ctx->logical = logical;
3101 nocow_ctx->len = len;
3102 nocow_ctx->mirror_num = mirror_num;
3103 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3104 nocow_ctx->work.func = copy_nocow_pages_worker;
652f25a2 3105 INIT_LIST_HEAD(&nocow_ctx->inodes);
ff023aac
SB
3106 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3107 &nocow_ctx->work);
3108
3109 return 0;
3110}
3111
652f25a2
JB
3112static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3113{
3114 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3115 struct scrub_nocow_inode *nocow_inode;
3116
3117 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3118 if (!nocow_inode)
3119 return -ENOMEM;
3120 nocow_inode->inum = inum;
3121 nocow_inode->offset = offset;
3122 nocow_inode->root = root;
3123 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3124 return 0;
3125}
3126
3127#define COPY_COMPLETE 1
3128
ff023aac
SB
3129static void copy_nocow_pages_worker(struct btrfs_work *work)
3130{
3131 struct scrub_copy_nocow_ctx *nocow_ctx =
3132 container_of(work, struct scrub_copy_nocow_ctx, work);
3133 struct scrub_ctx *sctx = nocow_ctx->sctx;
3134 u64 logical = nocow_ctx->logical;
3135 u64 len = nocow_ctx->len;
3136 int mirror_num = nocow_ctx->mirror_num;
3137 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3138 int ret;
3139 struct btrfs_trans_handle *trans = NULL;
3140 struct btrfs_fs_info *fs_info;
3141 struct btrfs_path *path;
3142 struct btrfs_root *root;
3143 int not_written = 0;
3144
3145 fs_info = sctx->dev_root->fs_info;
3146 root = fs_info->extent_root;
3147
3148 path = btrfs_alloc_path();
3149 if (!path) {
3150 spin_lock(&sctx->stat_lock);
3151 sctx->stat.malloc_errors++;
3152 spin_unlock(&sctx->stat_lock);
3153 not_written = 1;
3154 goto out;
3155 }
3156
3157 trans = btrfs_join_transaction(root);
3158 if (IS_ERR(trans)) {
3159 not_written = 1;
3160 goto out;
3161 }
3162
3163 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 3164 record_inode_for_nocow, nocow_ctx);
ff023aac 3165 if (ret != 0 && ret != -ENOENT) {
118a0a25
GU
3166 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3167 logical, physical_for_dev_replace, len, mirror_num,
3168 ret);
ff023aac
SB
3169 not_written = 1;
3170 goto out;
3171 }
3172
652f25a2
JB
3173 btrfs_end_transaction(trans, root);
3174 trans = NULL;
3175 while (!list_empty(&nocow_ctx->inodes)) {
3176 struct scrub_nocow_inode *entry;
3177 entry = list_first_entry(&nocow_ctx->inodes,
3178 struct scrub_nocow_inode,
3179 list);
3180 list_del_init(&entry->list);
3181 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3182 entry->root, nocow_ctx);
3183 kfree(entry);
3184 if (ret == COPY_COMPLETE) {
3185 ret = 0;
3186 break;
3187 } else if (ret) {
3188 break;
3189 }
3190 }
ff023aac 3191out:
652f25a2
JB
3192 while (!list_empty(&nocow_ctx->inodes)) {
3193 struct scrub_nocow_inode *entry;
3194 entry = list_first_entry(&nocow_ctx->inodes,
3195 struct scrub_nocow_inode,
3196 list);
3197 list_del_init(&entry->list);
3198 kfree(entry);
3199 }
ff023aac
SB
3200 if (trans && !IS_ERR(trans))
3201 btrfs_end_transaction(trans, root);
3202 if (not_written)
3203 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3204 num_uncorrectable_read_errors);
3205
3206 btrfs_free_path(path);
3207 kfree(nocow_ctx);
3208
3209 scrub_pending_trans_workers_dec(sctx);
3210}
3211
652f25a2
JB
3212static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3213 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 3214{
826aa0a8 3215 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 3216 struct btrfs_key key;
826aa0a8
MX
3217 struct inode *inode;
3218 struct page *page;
ff023aac 3219 struct btrfs_root *local_root;
652f25a2
JB
3220 struct btrfs_ordered_extent *ordered;
3221 struct extent_map *em;
3222 struct extent_state *cached_state = NULL;
3223 struct extent_io_tree *io_tree;
ff023aac 3224 u64 physical_for_dev_replace;
652f25a2
JB
3225 u64 len = nocow_ctx->len;
3226 u64 lockstart = offset, lockend = offset + len - 1;
826aa0a8 3227 unsigned long index;
6f1c3605 3228 int srcu_index;
652f25a2
JB
3229 int ret = 0;
3230 int err = 0;
ff023aac
SB
3231
3232 key.objectid = root;
3233 key.type = BTRFS_ROOT_ITEM_KEY;
3234 key.offset = (u64)-1;
6f1c3605
LB
3235
3236 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3237
ff023aac 3238 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
3239 if (IS_ERR(local_root)) {
3240 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 3241 return PTR_ERR(local_root);
6f1c3605 3242 }
ff023aac
SB
3243
3244 key.type = BTRFS_INODE_ITEM_KEY;
3245 key.objectid = inum;
3246 key.offset = 0;
3247 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 3248 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
3249 if (IS_ERR(inode))
3250 return PTR_ERR(inode);
3251
edd1400b
MX
3252 /* Avoid truncate/dio/punch hole.. */
3253 mutex_lock(&inode->i_mutex);
3254 inode_dio_wait(inode);
3255
ff023aac 3256 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2
JB
3257 io_tree = &BTRFS_I(inode)->io_tree;
3258
3259 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3260 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3261 if (ordered) {
3262 btrfs_put_ordered_extent(ordered);
3263 goto out_unlock;
3264 }
3265
3266 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3267 if (IS_ERR(em)) {
3268 ret = PTR_ERR(em);
3269 goto out_unlock;
3270 }
3271
3272 /*
3273 * This extent does not actually cover the logical extent anymore,
3274 * move on to the next inode.
3275 */
3276 if (em->block_start > nocow_ctx->logical ||
3277 em->block_start + em->block_len < nocow_ctx->logical + len) {
3278 free_extent_map(em);
3279 goto out_unlock;
3280 }
3281 free_extent_map(em);
3282
ff023aac 3283 while (len >= PAGE_CACHE_SIZE) {
ff023aac 3284 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 3285again:
ff023aac
SB
3286 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3287 if (!page) {
3288 pr_err("find_or_create_page() failed\n");
3289 ret = -ENOMEM;
826aa0a8 3290 goto out;
ff023aac
SB
3291 }
3292
3293 if (PageUptodate(page)) {
3294 if (PageDirty(page))
3295 goto next_page;
3296 } else {
3297 ClearPageError(page);
652f25a2
JB
3298 err = extent_read_full_page_nolock(io_tree, page,
3299 btrfs_get_extent,
3300 nocow_ctx->mirror_num);
826aa0a8
MX
3301 if (err) {
3302 ret = err;
ff023aac
SB
3303 goto next_page;
3304 }
edd1400b 3305
26b25891 3306 lock_page(page);
edd1400b
MX
3307 /*
3308 * If the page has been remove from the page cache,
3309 * the data on it is meaningless, because it may be
3310 * old one, the new data may be written into the new
3311 * page in the page cache.
3312 */
3313 if (page->mapping != inode->i_mapping) {
652f25a2 3314 unlock_page(page);
edd1400b
MX
3315 page_cache_release(page);
3316 goto again;
3317 }
ff023aac
SB
3318 if (!PageUptodate(page)) {
3319 ret = -EIO;
3320 goto next_page;
3321 }
3322 }
826aa0a8
MX
3323 err = write_page_nocow(nocow_ctx->sctx,
3324 physical_for_dev_replace, page);
3325 if (err)
3326 ret = err;
ff023aac 3327next_page:
826aa0a8
MX
3328 unlock_page(page);
3329 page_cache_release(page);
3330
3331 if (ret)
3332 break;
3333
ff023aac
SB
3334 offset += PAGE_CACHE_SIZE;
3335 physical_for_dev_replace += PAGE_CACHE_SIZE;
3336 len -= PAGE_CACHE_SIZE;
3337 }
652f25a2
JB
3338 ret = COPY_COMPLETE;
3339out_unlock:
3340 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3341 GFP_NOFS);
826aa0a8 3342out:
edd1400b 3343 mutex_unlock(&inode->i_mutex);
826aa0a8 3344 iput(inode);
ff023aac
SB
3345 return ret;
3346}
3347
3348static int write_page_nocow(struct scrub_ctx *sctx,
3349 u64 physical_for_dev_replace, struct page *page)
3350{
3351 struct bio *bio;
3352 struct btrfs_device *dev;
3353 int ret;
ff023aac
SB
3354
3355 dev = sctx->wr_ctx.tgtdev;
3356 if (!dev)
3357 return -EIO;
3358 if (!dev->bdev) {
3359 printk_ratelimited(KERN_WARNING
3360 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3361 return -EIO;
3362 }
9be3395b 3363 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
3364 if (!bio) {
3365 spin_lock(&sctx->stat_lock);
3366 sctx->stat.malloc_errors++;
3367 spin_unlock(&sctx->stat_lock);
3368 return -ENOMEM;
3369 }
ff023aac
SB
3370 bio->bi_size = 0;
3371 bio->bi_sector = physical_for_dev_replace >> 9;
3372 bio->bi_bdev = dev->bdev;
3373 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3374 if (ret != PAGE_CACHE_SIZE) {
3375leave_with_eio:
3376 bio_put(bio);
3377 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3378 return -EIO;
3379 }
ff023aac 3380
c170bbb4 3381 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
3382 goto leave_with_eio;
3383
3384 bio_put(bio);
3385 return 0;
3386}