]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/scrub.c
Btrfs: Make BTRFS_DEV_REPLACE_DEVID an unsigned long long constant
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c
AJ
65
66struct scrub_page {
b5d67f64
SB
67 struct scrub_block *sblock;
68 struct page *page;
442a4f63 69 struct btrfs_device *dev;
a2de733c
AJ
70 u64 flags; /* extent flags */
71 u64 generation;
b5d67f64
SB
72 u64 logical;
73 u64 physical;
ff023aac 74 u64 physical_for_dev_replace;
7a9e9987 75 atomic_t ref_count;
b5d67f64
SB
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
a2de733c
AJ
81 u8 csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85 int index;
d9d181c1 86 struct scrub_ctx *sctx;
a36cf8b8 87 struct btrfs_device *dev;
a2de733c
AJ
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
ff023aac
SB
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
b5d67f64 97 int page_count;
a2de733c
AJ
98 int next_free;
99 struct btrfs_work work;
100};
101
b5d67f64 102struct scrub_block {
7a9e9987 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 107 struct scrub_ctx *sctx;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
b5d67f64
SB
113 };
114};
115
ff023aac
SB
116struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122};
123
d9d181c1 124struct scrub_ctx {
ff023aac 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 126 struct btrfs_root *dev_root;
a2de733c
AJ
127 int first_free;
128 int curr;
b6bfebc1
SB
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
a2de733c
AJ
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
8628764e 136 int readonly;
ff023aac 137 int pages_per_rd_bio;
b5d67f64
SB
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
63a212ab
SB
141
142 int is_dev_replace;
ff023aac 143 struct scrub_wr_ctx wr_ctx;
63a212ab 144
a2de733c
AJ
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150};
151
0ef8e451 152struct scrub_fixup_nodatasum {
d9d181c1 153 struct scrub_ctx *sctx;
a36cf8b8 154 struct btrfs_device *dev;
0ef8e451
JS
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159};
160
ff023aac
SB
161struct scrub_copy_nocow_ctx {
162 struct scrub_ctx *sctx;
163 u64 logical;
164 u64 len;
165 int mirror_num;
166 u64 physical_for_dev_replace;
167 struct btrfs_work work;
168};
169
558540c1
JS
170struct scrub_warning {
171 struct btrfs_path *path;
172 u64 extent_item_size;
173 char *scratch_buf;
174 char *msg_buf;
175 const char *errstr;
176 sector_t sector;
177 u64 logical;
178 struct btrfs_device *dev;
179 int msg_bufsize;
180 int scratch_bufsize;
181};
182
b5d67f64 183
b6bfebc1
SB
184static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 188static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 189static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 190 struct btrfs_fs_info *fs_info,
ff023aac 191 struct scrub_block *original_sblock,
b5d67f64 192 u64 length, u64 logical,
ff023aac 193 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
194static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195 struct scrub_block *sblock, int is_metadata,
196 int have_csum, u8 *csum, u64 generation,
197 u16 csum_size);
b5d67f64
SB
198static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199 struct scrub_block *sblock,
200 int is_metadata, int have_csum,
201 const u8 *csum, u64 generation,
202 u16 csum_size);
203static void scrub_complete_bio_end_io(struct bio *bio, int err);
204static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205 struct scrub_block *sblock_good,
206 int force_write);
207static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208 struct scrub_block *sblock_good,
209 int page_num, int force_write);
ff023aac
SB
210static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212 int page_num);
b5d67f64
SB
213static int scrub_checksum_data(struct scrub_block *sblock);
214static int scrub_checksum_tree_block(struct scrub_block *sblock);
215static int scrub_checksum_super(struct scrub_block *sblock);
216static void scrub_block_get(struct scrub_block *sblock);
217static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
218static void scrub_page_get(struct scrub_page *spage);
219static void scrub_page_put(struct scrub_page *spage);
ff023aac
SB
220static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221 struct scrub_page *spage);
d9d181c1 222static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 223 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
224 u64 gen, int mirror_num, u8 *csum, int force,
225 u64 physical_for_dev_replace);
1623edeb 226static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
227static void scrub_bio_end_io_worker(struct btrfs_work *work);
228static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
229static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230 u64 extent_logical, u64 extent_len,
231 u64 *extent_physical,
232 struct btrfs_device **extent_dev,
233 int *extent_mirror_num);
234static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235 struct scrub_wr_ctx *wr_ctx,
236 struct btrfs_fs_info *fs_info,
237 struct btrfs_device *dev,
238 int is_dev_replace);
239static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241 struct scrub_page *spage);
242static void scrub_wr_submit(struct scrub_ctx *sctx);
243static void scrub_wr_bio_end_io(struct bio *bio, int err);
244static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245static int write_page_nocow(struct scrub_ctx *sctx,
246 u64 physical_for_dev_replace, struct page *page);
247static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248 void *ctx);
249static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250 int mirror_num, u64 physical_for_dev_replace);
251static void copy_nocow_pages_worker(struct btrfs_work *work);
1623edeb
SB
252
253
b6bfebc1
SB
254static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255{
256 atomic_inc(&sctx->bios_in_flight);
257}
258
259static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260{
261 atomic_dec(&sctx->bios_in_flight);
262 wake_up(&sctx->list_wait);
263}
264
265/*
266 * used for workers that require transaction commits (i.e., for the
267 * NOCOW case)
268 */
269static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270{
271 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272
273 /*
274 * increment scrubs_running to prevent cancel requests from
275 * completing as long as a worker is running. we must also
276 * increment scrubs_paused to prevent deadlocking on pause
277 * requests used for transactions commits (as the worker uses a
278 * transaction context). it is safe to regard the worker
279 * as paused for all matters practical. effectively, we only
280 * avoid cancellation requests from completing.
281 */
282 mutex_lock(&fs_info->scrub_lock);
283 atomic_inc(&fs_info->scrubs_running);
284 atomic_inc(&fs_info->scrubs_paused);
285 mutex_unlock(&fs_info->scrub_lock);
286 atomic_inc(&sctx->workers_pending);
287}
288
289/* used for workers that require transaction commits */
290static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291{
292 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293
294 /*
295 * see scrub_pending_trans_workers_inc() why we're pretending
296 * to be paused in the scrub counters
297 */
298 mutex_lock(&fs_info->scrub_lock);
299 atomic_dec(&fs_info->scrubs_running);
300 atomic_dec(&fs_info->scrubs_paused);
301 mutex_unlock(&fs_info->scrub_lock);
302 atomic_dec(&sctx->workers_pending);
303 wake_up(&fs_info->scrub_pause_wait);
304 wake_up(&sctx->list_wait);
305}
306
d9d181c1 307static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 308{
d9d181c1 309 while (!list_empty(&sctx->csum_list)) {
a2de733c 310 struct btrfs_ordered_sum *sum;
d9d181c1 311 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
312 struct btrfs_ordered_sum, list);
313 list_del(&sum->list);
314 kfree(sum);
315 }
316}
317
d9d181c1 318static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
319{
320 int i;
a2de733c 321
d9d181c1 322 if (!sctx)
a2de733c
AJ
323 return;
324
ff023aac
SB
325 scrub_free_wr_ctx(&sctx->wr_ctx);
326
b5d67f64 327 /* this can happen when scrub is cancelled */
d9d181c1
SB
328 if (sctx->curr != -1) {
329 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
330
331 for (i = 0; i < sbio->page_count; i++) {
ff023aac 332 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
333 scrub_block_put(sbio->pagev[i]->sblock);
334 }
335 bio_put(sbio->bio);
336 }
337
ff023aac 338 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 339 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
340
341 if (!sbio)
342 break;
a2de733c
AJ
343 kfree(sbio);
344 }
345
d9d181c1
SB
346 scrub_free_csums(sctx);
347 kfree(sctx);
a2de733c
AJ
348}
349
350static noinline_for_stack
63a212ab 351struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 352{
d9d181c1 353 struct scrub_ctx *sctx;
a2de733c 354 int i;
a2de733c 355 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
356 int pages_per_rd_bio;
357 int ret;
a2de733c 358
ff023aac
SB
359 /*
360 * the setting of pages_per_rd_bio is correct for scrub but might
361 * be wrong for the dev_replace code where we might read from
362 * different devices in the initial huge bios. However, that
363 * code is able to correctly handle the case when adding a page
364 * to a bio fails.
365 */
366 if (dev->bdev)
367 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368 bio_get_nr_vecs(dev->bdev));
369 else
370 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
371 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372 if (!sctx)
a2de733c 373 goto nomem;
63a212ab 374 sctx->is_dev_replace = is_dev_replace;
ff023aac 375 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 376 sctx->curr = -1;
a36cf8b8 377 sctx->dev_root = dev->dev_root;
ff023aac 378 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
379 struct scrub_bio *sbio;
380
381 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382 if (!sbio)
383 goto nomem;
d9d181c1 384 sctx->bios[i] = sbio;
a2de733c 385
a2de733c 386 sbio->index = i;
d9d181c1 387 sbio->sctx = sctx;
b5d67f64
SB
388 sbio->page_count = 0;
389 sbio->work.func = scrub_bio_end_io_worker;
a2de733c 390
ff023aac 391 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 392 sctx->bios[i]->next_free = i + 1;
0ef8e451 393 else
d9d181c1
SB
394 sctx->bios[i]->next_free = -1;
395 }
396 sctx->first_free = 0;
397 sctx->nodesize = dev->dev_root->nodesize;
398 sctx->leafsize = dev->dev_root->leafsize;
399 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
400 atomic_set(&sctx->bios_in_flight, 0);
401 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
402 atomic_set(&sctx->cancel_req, 0);
403 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404 INIT_LIST_HEAD(&sctx->csum_list);
405
406 spin_lock_init(&sctx->list_lock);
407 spin_lock_init(&sctx->stat_lock);
408 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
409
410 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411 fs_info->dev_replace.tgtdev, is_dev_replace);
412 if (ret) {
413 scrub_free_ctx(sctx);
414 return ERR_PTR(ret);
415 }
d9d181c1 416 return sctx;
a2de733c
AJ
417
418nomem:
d9d181c1 419 scrub_free_ctx(sctx);
a2de733c
AJ
420 return ERR_PTR(-ENOMEM);
421}
422
ff023aac
SB
423static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424 void *warn_ctx)
558540c1
JS
425{
426 u64 isize;
427 u32 nlink;
428 int ret;
429 int i;
430 struct extent_buffer *eb;
431 struct btrfs_inode_item *inode_item;
ff023aac 432 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
433 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434 struct inode_fs_paths *ipath = NULL;
435 struct btrfs_root *local_root;
436 struct btrfs_key root_key;
437
438 root_key.objectid = root;
439 root_key.type = BTRFS_ROOT_ITEM_KEY;
440 root_key.offset = (u64)-1;
441 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442 if (IS_ERR(local_root)) {
443 ret = PTR_ERR(local_root);
444 goto err;
445 }
446
447 ret = inode_item_info(inum, 0, local_root, swarn->path);
448 if (ret) {
449 btrfs_release_path(swarn->path);
450 goto err;
451 }
452
453 eb = swarn->path->nodes[0];
454 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455 struct btrfs_inode_item);
456 isize = btrfs_inode_size(eb, inode_item);
457 nlink = btrfs_inode_nlink(eb, inode_item);
458 btrfs_release_path(swarn->path);
459
460 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
461 if (IS_ERR(ipath)) {
462 ret = PTR_ERR(ipath);
463 ipath = NULL;
464 goto err;
465 }
558540c1
JS
466 ret = paths_from_inode(inum, ipath);
467
468 if (ret < 0)
469 goto err;
470
471 /*
472 * we deliberately ignore the bit ipath might have been too small to
473 * hold all of the paths here
474 */
475 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
606686ee 476 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
558540c1
JS
477 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 479 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
480 (unsigned long long)swarn->sector, root, inum, offset,
481 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 482 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
483
484 free_ipath(ipath);
485 return 0;
486
487err:
606686ee 488 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
558540c1
JS
489 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 491 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
492 (unsigned long long)swarn->sector, root, inum, offset, ret);
493
494 free_ipath(ipath);
495 return 0;
496}
497
b5d67f64 498static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 499{
a36cf8b8
SB
500 struct btrfs_device *dev;
501 struct btrfs_fs_info *fs_info;
558540c1
JS
502 struct btrfs_path *path;
503 struct btrfs_key found_key;
504 struct extent_buffer *eb;
505 struct btrfs_extent_item *ei;
506 struct scrub_warning swarn;
69917e43
LB
507 unsigned long ptr = 0;
508 u64 extent_item_pos;
509 u64 flags = 0;
558540c1 510 u64 ref_root;
69917e43 511 u32 item_size;
558540c1 512 u8 ref_level;
558540c1 513 const int bufsize = 4096;
69917e43 514 int ret;
558540c1 515
a36cf8b8 516 WARN_ON(sblock->page_count < 1);
7a9e9987 517 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
518 fs_info = sblock->sctx->dev_root->fs_info;
519
558540c1
JS
520 path = btrfs_alloc_path();
521
522 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
7a9e9987
SB
524 swarn.sector = (sblock->pagev[0]->physical) >> 9;
525 swarn.logical = sblock->pagev[0]->logical;
558540c1 526 swarn.errstr = errstr;
a36cf8b8 527 swarn.dev = NULL;
558540c1
JS
528 swarn.msg_bufsize = bufsize;
529 swarn.scratch_bufsize = bufsize;
530
531 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532 goto out;
533
69917e43
LB
534 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535 &flags);
558540c1
JS
536 if (ret < 0)
537 goto out;
538
4692cf58 539 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
540 swarn.extent_item_size = found_key.offset;
541
542 eb = path->nodes[0];
543 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544 item_size = btrfs_item_size_nr(eb, path->slots[0]);
545
69917e43 546 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1
JS
547 do {
548 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549 &ref_root, &ref_level);
606686ee 550 printk_in_rcu(KERN_WARNING
1623edeb 551 "btrfs: %s at logical %llu on dev %s, "
558540c1 552 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
553 "%llu\n", errstr, swarn.logical,
554 rcu_str_deref(dev->name),
558540c1
JS
555 (unsigned long long)swarn.sector,
556 ref_level ? "node" : "leaf",
557 ret < 0 ? -1 : ref_level,
558 ret < 0 ? -1 : ref_root);
559 } while (ret != 1);
d8fe29e9 560 btrfs_release_path(path);
558540c1 561 } else {
d8fe29e9 562 btrfs_release_path(path);
558540c1 563 swarn.path = path;
a36cf8b8 564 swarn.dev = dev;
7a3ae2f8
JS
565 iterate_extent_inodes(fs_info, found_key.objectid,
566 extent_item_pos, 1,
558540c1
JS
567 scrub_print_warning_inode, &swarn);
568 }
569
570out:
571 btrfs_free_path(path);
572 kfree(swarn.scratch_buf);
573 kfree(swarn.msg_buf);
574}
575
ff023aac 576static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 577{
5da6fcbc 578 struct page *page = NULL;
0ef8e451 579 unsigned long index;
ff023aac 580 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 581 int ret;
5da6fcbc 582 int corrected = 0;
0ef8e451 583 struct btrfs_key key;
5da6fcbc 584 struct inode *inode = NULL;
6f1c3605 585 struct btrfs_fs_info *fs_info;
0ef8e451
JS
586 u64 end = offset + PAGE_SIZE - 1;
587 struct btrfs_root *local_root;
6f1c3605 588 int srcu_index;
0ef8e451
JS
589
590 key.objectid = root;
591 key.type = BTRFS_ROOT_ITEM_KEY;
592 key.offset = (u64)-1;
6f1c3605
LB
593
594 fs_info = fixup->root->fs_info;
595 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596
597 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598 if (IS_ERR(local_root)) {
599 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 600 return PTR_ERR(local_root);
6f1c3605 601 }
0ef8e451
JS
602
603 key.type = BTRFS_INODE_ITEM_KEY;
604 key.objectid = inum;
605 key.offset = 0;
6f1c3605
LB
606 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
608 if (IS_ERR(inode))
609 return PTR_ERR(inode);
610
0ef8e451
JS
611 index = offset >> PAGE_CACHE_SHIFT;
612
613 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
614 if (!page) {
615 ret = -ENOMEM;
616 goto out;
617 }
618
619 if (PageUptodate(page)) {
5da6fcbc
JS
620 if (PageDirty(page)) {
621 /*
622 * we need to write the data to the defect sector. the
623 * data that was in that sector is not in memory,
624 * because the page was modified. we must not write the
625 * modified page to that sector.
626 *
627 * TODO: what could be done here: wait for the delalloc
628 * runner to write out that page (might involve
629 * COW) and see whether the sector is still
630 * referenced afterwards.
631 *
632 * For the meantime, we'll treat this error
633 * incorrectable, although there is a chance that a
634 * later scrub will find the bad sector again and that
635 * there's no dirty page in memory, then.
636 */
637 ret = -EIO;
638 goto out;
639 }
3ec706c8
SB
640 fs_info = BTRFS_I(inode)->root->fs_info;
641 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
5da6fcbc
JS
642 fixup->logical, page,
643 fixup->mirror_num);
644 unlock_page(page);
645 corrected = !ret;
646 } else {
647 /*
648 * we need to get good data first. the general readpage path
649 * will call repair_io_failure for us, we just have to make
650 * sure we read the bad mirror.
651 */
652 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653 EXTENT_DAMAGED, GFP_NOFS);
654 if (ret) {
655 /* set_extent_bits should give proper error */
656 WARN_ON(ret > 0);
657 if (ret > 0)
658 ret = -EFAULT;
659 goto out;
660 }
661
662 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663 btrfs_get_extent,
664 fixup->mirror_num);
665 wait_on_page_locked(page);
666
667 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668 end, EXTENT_DAMAGED, 0, NULL);
669 if (!corrected)
670 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671 EXTENT_DAMAGED, GFP_NOFS);
672 }
673
674out:
675 if (page)
676 put_page(page);
677 if (inode)
678 iput(inode);
0ef8e451
JS
679
680 if (ret < 0)
681 return ret;
682
683 if (ret == 0 && corrected) {
684 /*
685 * we only need to call readpage for one of the inodes belonging
686 * to this extent. so make iterate_extent_inodes stop
687 */
688 return 1;
689 }
690
691 return -EIO;
692}
693
694static void scrub_fixup_nodatasum(struct btrfs_work *work)
695{
696 int ret;
697 struct scrub_fixup_nodatasum *fixup;
d9d181c1 698 struct scrub_ctx *sctx;
0ef8e451
JS
699 struct btrfs_trans_handle *trans = NULL;
700 struct btrfs_fs_info *fs_info;
701 struct btrfs_path *path;
702 int uncorrectable = 0;
703
704 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 705 sctx = fixup->sctx;
0ef8e451
JS
706 fs_info = fixup->root->fs_info;
707
708 path = btrfs_alloc_path();
709 if (!path) {
d9d181c1
SB
710 spin_lock(&sctx->stat_lock);
711 ++sctx->stat.malloc_errors;
712 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
713 uncorrectable = 1;
714 goto out;
715 }
716
717 trans = btrfs_join_transaction(fixup->root);
718 if (IS_ERR(trans)) {
719 uncorrectable = 1;
720 goto out;
721 }
722
723 /*
724 * the idea is to trigger a regular read through the standard path. we
725 * read a page from the (failed) logical address by specifying the
726 * corresponding copynum of the failed sector. thus, that readpage is
727 * expected to fail.
728 * that is the point where on-the-fly error correction will kick in
729 * (once it's finished) and rewrite the failed sector if a good copy
730 * can be found.
731 */
732 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733 path, scrub_fixup_readpage,
734 fixup);
735 if (ret < 0) {
736 uncorrectable = 1;
737 goto out;
738 }
739 WARN_ON(ret != 1);
740
d9d181c1
SB
741 spin_lock(&sctx->stat_lock);
742 ++sctx->stat.corrected_errors;
743 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
744
745out:
746 if (trans && !IS_ERR(trans))
747 btrfs_end_transaction(trans, fixup->root);
748 if (uncorrectable) {
d9d181c1
SB
749 spin_lock(&sctx->stat_lock);
750 ++sctx->stat.uncorrectable_errors;
751 spin_unlock(&sctx->stat_lock);
ff023aac
SB
752 btrfs_dev_replace_stats_inc(
753 &sctx->dev_root->fs_info->dev_replace.
754 num_uncorrectable_read_errors);
606686ee 755 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 756 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 757 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
758 }
759
760 btrfs_free_path(path);
761 kfree(fixup);
762
b6bfebc1 763 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
764}
765
a2de733c 766/*
b5d67f64
SB
767 * scrub_handle_errored_block gets called when either verification of the
768 * pages failed or the bio failed to read, e.g. with EIO. In the latter
769 * case, this function handles all pages in the bio, even though only one
770 * may be bad.
771 * The goal of this function is to repair the errored block by using the
772 * contents of one of the mirrors.
a2de733c 773 */
b5d67f64 774static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 775{
d9d181c1 776 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 777 struct btrfs_device *dev;
b5d67f64
SB
778 struct btrfs_fs_info *fs_info;
779 u64 length;
780 u64 logical;
781 u64 generation;
782 unsigned int failed_mirror_index;
783 unsigned int is_metadata;
784 unsigned int have_csum;
785 u8 *csum;
786 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
787 struct scrub_block *sblock_bad;
788 int ret;
789 int mirror_index;
790 int page_num;
791 int success;
558540c1 792 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
793 DEFAULT_RATELIMIT_BURST);
794
795 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 796 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
797 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
798 /*
799 * if we find an error in a super block, we just report it.
800 * They will get written with the next transaction commit
801 * anyway
802 */
803 spin_lock(&sctx->stat_lock);
804 ++sctx->stat.super_errors;
805 spin_unlock(&sctx->stat_lock);
806 return 0;
807 }
b5d67f64 808 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
809 logical = sblock_to_check->pagev[0]->logical;
810 generation = sblock_to_check->pagev[0]->generation;
811 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
812 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
813 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 814 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
815 have_csum = sblock_to_check->pagev[0]->have_csum;
816 csum = sblock_to_check->pagev[0]->csum;
817 dev = sblock_to_check->pagev[0]->dev;
13db62b7 818
ff023aac
SB
819 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
820 sblocks_for_recheck = NULL;
821 goto nodatasum_case;
822 }
823
b5d67f64
SB
824 /*
825 * read all mirrors one after the other. This includes to
826 * re-read the extent or metadata block that failed (that was
827 * the cause that this fixup code is called) another time,
828 * page by page this time in order to know which pages
829 * caused I/O errors and which ones are good (for all mirrors).
830 * It is the goal to handle the situation when more than one
831 * mirror contains I/O errors, but the errors do not
832 * overlap, i.e. the data can be repaired by selecting the
833 * pages from those mirrors without I/O error on the
834 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
835 * would be that mirror #1 has an I/O error on the first page,
836 * the second page is good, and mirror #2 has an I/O error on
837 * the second page, but the first page is good.
838 * Then the first page of the first mirror can be repaired by
839 * taking the first page of the second mirror, and the
840 * second page of the second mirror can be repaired by
841 * copying the contents of the 2nd page of the 1st mirror.
842 * One more note: if the pages of one mirror contain I/O
843 * errors, the checksum cannot be verified. In order to get
844 * the best data for repairing, the first attempt is to find
845 * a mirror without I/O errors and with a validated checksum.
846 * Only if this is not possible, the pages are picked from
847 * mirrors with I/O errors without considering the checksum.
848 * If the latter is the case, at the end, the checksum of the
849 * repaired area is verified in order to correctly maintain
850 * the statistics.
851 */
852
853 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
854 sizeof(*sblocks_for_recheck),
855 GFP_NOFS);
856 if (!sblocks_for_recheck) {
d9d181c1
SB
857 spin_lock(&sctx->stat_lock);
858 sctx->stat.malloc_errors++;
859 sctx->stat.read_errors++;
860 sctx->stat.uncorrectable_errors++;
861 spin_unlock(&sctx->stat_lock);
a36cf8b8 862 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 863 goto out;
a2de733c
AJ
864 }
865
b5d67f64 866 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 867 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
868 logical, sblocks_for_recheck);
869 if (ret) {
d9d181c1
SB
870 spin_lock(&sctx->stat_lock);
871 sctx->stat.read_errors++;
872 sctx->stat.uncorrectable_errors++;
873 spin_unlock(&sctx->stat_lock);
a36cf8b8 874 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
875 goto out;
876 }
877 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
878 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 879
b5d67f64 880 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9
SB
881 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
882 csum, generation, sctx->csum_size);
a2de733c 883
b5d67f64
SB
884 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
885 sblock_bad->no_io_error_seen) {
886 /*
887 * the error disappeared after reading page by page, or
888 * the area was part of a huge bio and other parts of the
889 * bio caused I/O errors, or the block layer merged several
890 * read requests into one and the error is caused by a
891 * different bio (usually one of the two latter cases is
892 * the cause)
893 */
d9d181c1
SB
894 spin_lock(&sctx->stat_lock);
895 sctx->stat.unverified_errors++;
896 spin_unlock(&sctx->stat_lock);
a2de733c 897
ff023aac
SB
898 if (sctx->is_dev_replace)
899 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 900 goto out;
a2de733c 901 }
a2de733c 902
b5d67f64 903 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
904 spin_lock(&sctx->stat_lock);
905 sctx->stat.read_errors++;
906 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
907 if (__ratelimit(&_rs))
908 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 909 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 910 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
911 spin_lock(&sctx->stat_lock);
912 sctx->stat.csum_errors++;
913 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
914 if (__ratelimit(&_rs))
915 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 916 btrfs_dev_stat_inc_and_print(dev,
442a4f63 917 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 918 } else if (sblock_bad->header_error) {
d9d181c1
SB
919 spin_lock(&sctx->stat_lock);
920 sctx->stat.verify_errors++;
921 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
922 if (__ratelimit(&_rs))
923 scrub_print_warning("checksum/header error",
924 sblock_to_check);
442a4f63 925 if (sblock_bad->generation_error)
a36cf8b8 926 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
927 BTRFS_DEV_STAT_GENERATION_ERRS);
928 else
a36cf8b8 929 btrfs_dev_stat_inc_and_print(dev,
442a4f63 930 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 931 }
a2de733c 932
ff023aac 933 if (sctx->readonly && !sctx->is_dev_replace)
b5d67f64 934 goto did_not_correct_error;
a2de733c 935
b5d67f64
SB
936 if (!is_metadata && !have_csum) {
937 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 938
ff023aac
SB
939nodatasum_case:
940 WARN_ON(sctx->is_dev_replace);
941
b5d67f64
SB
942 /*
943 * !is_metadata and !have_csum, this means that the data
944 * might not be COW'ed, that it might be modified
945 * concurrently. The general strategy to work on the
946 * commit root does not help in the case when COW is not
947 * used.
948 */
949 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
950 if (!fixup_nodatasum)
951 goto did_not_correct_error;
d9d181c1 952 fixup_nodatasum->sctx = sctx;
a36cf8b8 953 fixup_nodatasum->dev = dev;
b5d67f64
SB
954 fixup_nodatasum->logical = logical;
955 fixup_nodatasum->root = fs_info->extent_root;
956 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 957 scrub_pending_trans_workers_inc(sctx);
b5d67f64
SB
958 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
959 btrfs_queue_worker(&fs_info->scrub_workers,
960 &fixup_nodatasum->work);
961 goto out;
a2de733c
AJ
962 }
963
b5d67f64
SB
964 /*
965 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
966 * checksums.
967 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
968 * errors and also does not have a checksum error.
969 * If one is found, and if a checksum is present, the full block
970 * that is known to contain an error is rewritten. Afterwards
971 * the block is known to be corrected.
972 * If a mirror is found which is completely correct, and no
973 * checksum is present, only those pages are rewritten that had
974 * an I/O error in the block to be repaired, since it cannot be
975 * determined, which copy of the other pages is better (and it
976 * could happen otherwise that a correct page would be
977 * overwritten by a bad one).
978 */
979 for (mirror_index = 0;
980 mirror_index < BTRFS_MAX_MIRRORS &&
981 sblocks_for_recheck[mirror_index].page_count > 0;
982 mirror_index++) {
cb2ced73 983 struct scrub_block *sblock_other;
b5d67f64 984
cb2ced73
SB
985 if (mirror_index == failed_mirror_index)
986 continue;
987 sblock_other = sblocks_for_recheck + mirror_index;
988
989 /* build and submit the bios, check checksums */
34f5c8e9
SB
990 scrub_recheck_block(fs_info, sblock_other, is_metadata,
991 have_csum, csum, generation,
992 sctx->csum_size);
993
994 if (!sblock_other->header_error &&
b5d67f64
SB
995 !sblock_other->checksum_error &&
996 sblock_other->no_io_error_seen) {
ff023aac
SB
997 if (sctx->is_dev_replace) {
998 scrub_write_block_to_dev_replace(sblock_other);
999 } else {
1000 int force_write = is_metadata || have_csum;
1001
1002 ret = scrub_repair_block_from_good_copy(
1003 sblock_bad, sblock_other,
1004 force_write);
1005 }
b5d67f64
SB
1006 if (0 == ret)
1007 goto corrected_error;
1008 }
1009 }
a2de733c
AJ
1010
1011 /*
ff023aac
SB
1012 * for dev_replace, pick good pages and write to the target device.
1013 */
1014 if (sctx->is_dev_replace) {
1015 success = 1;
1016 for (page_num = 0; page_num < sblock_bad->page_count;
1017 page_num++) {
1018 int sub_success;
1019
1020 sub_success = 0;
1021 for (mirror_index = 0;
1022 mirror_index < BTRFS_MAX_MIRRORS &&
1023 sblocks_for_recheck[mirror_index].page_count > 0;
1024 mirror_index++) {
1025 struct scrub_block *sblock_other =
1026 sblocks_for_recheck + mirror_index;
1027 struct scrub_page *page_other =
1028 sblock_other->pagev[page_num];
1029
1030 if (!page_other->io_error) {
1031 ret = scrub_write_page_to_dev_replace(
1032 sblock_other, page_num);
1033 if (ret == 0) {
1034 /* succeeded for this page */
1035 sub_success = 1;
1036 break;
1037 } else {
1038 btrfs_dev_replace_stats_inc(
1039 &sctx->dev_root->
1040 fs_info->dev_replace.
1041 num_write_errors);
1042 }
1043 }
1044 }
1045
1046 if (!sub_success) {
1047 /*
1048 * did not find a mirror to fetch the page
1049 * from. scrub_write_page_to_dev_replace()
1050 * handles this case (page->io_error), by
1051 * filling the block with zeros before
1052 * submitting the write request
1053 */
1054 success = 0;
1055 ret = scrub_write_page_to_dev_replace(
1056 sblock_bad, page_num);
1057 if (ret)
1058 btrfs_dev_replace_stats_inc(
1059 &sctx->dev_root->fs_info->
1060 dev_replace.num_write_errors);
1061 }
1062 }
1063
1064 goto out;
1065 }
1066
1067 /*
1068 * for regular scrub, repair those pages that are errored.
1069 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1070 * repaired, continue by picking good copies of those pages.
1071 * Select the good pages from mirrors to rewrite bad pages from
1072 * the area to fix. Afterwards verify the checksum of the block
1073 * that is supposed to be repaired. This verification step is
1074 * only done for the purpose of statistic counting and for the
1075 * final scrub report, whether errors remain.
1076 * A perfect algorithm could make use of the checksum and try
1077 * all possible combinations of pages from the different mirrors
1078 * until the checksum verification succeeds. For example, when
1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 * of mirror #2 is readable but the final checksum test fails,
1081 * then the 2nd page of mirror #3 could be tried, whether now
1082 * the final checksum succeedes. But this would be a rare
1083 * exception and is therefore not implemented. At least it is
1084 * avoided that the good copy is overwritten.
1085 * A more useful improvement would be to pick the sectors
1086 * without I/O error based on sector sizes (512 bytes on legacy
1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 * mirror could be repaired by taking 512 byte of a different
1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 * area are unreadable.
a2de733c 1091 */
a2de733c 1092
b5d67f64
SB
1093 /* can only fix I/O errors from here on */
1094 if (sblock_bad->no_io_error_seen)
1095 goto did_not_correct_error;
1096
1097 success = 1;
1098 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1099 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1100
1101 if (!page_bad->io_error)
a2de733c 1102 continue;
b5d67f64
SB
1103
1104 for (mirror_index = 0;
1105 mirror_index < BTRFS_MAX_MIRRORS &&
1106 sblocks_for_recheck[mirror_index].page_count > 0;
1107 mirror_index++) {
1108 struct scrub_block *sblock_other = sblocks_for_recheck +
1109 mirror_index;
7a9e9987
SB
1110 struct scrub_page *page_other = sblock_other->pagev[
1111 page_num];
b5d67f64
SB
1112
1113 if (!page_other->io_error) {
1114 ret = scrub_repair_page_from_good_copy(
1115 sblock_bad, sblock_other, page_num, 0);
1116 if (0 == ret) {
1117 page_bad->io_error = 0;
1118 break; /* succeeded for this page */
1119 }
1120 }
96e36920 1121 }
a2de733c 1122
b5d67f64
SB
1123 if (page_bad->io_error) {
1124 /* did not find a mirror to copy the page from */
1125 success = 0;
1126 }
a2de733c 1127 }
a2de733c 1128
b5d67f64
SB
1129 if (success) {
1130 if (is_metadata || have_csum) {
1131 /*
1132 * need to verify the checksum now that all
1133 * sectors on disk are repaired (the write
1134 * request for data to be repaired is on its way).
1135 * Just be lazy and use scrub_recheck_block()
1136 * which re-reads the data before the checksum
1137 * is verified, but most likely the data comes out
1138 * of the page cache.
1139 */
34f5c8e9
SB
1140 scrub_recheck_block(fs_info, sblock_bad,
1141 is_metadata, have_csum, csum,
1142 generation, sctx->csum_size);
1143 if (!sblock_bad->header_error &&
b5d67f64
SB
1144 !sblock_bad->checksum_error &&
1145 sblock_bad->no_io_error_seen)
1146 goto corrected_error;
1147 else
1148 goto did_not_correct_error;
1149 } else {
1150corrected_error:
d9d181c1
SB
1151 spin_lock(&sctx->stat_lock);
1152 sctx->stat.corrected_errors++;
1153 spin_unlock(&sctx->stat_lock);
606686ee 1154 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 1155 "btrfs: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1156 logical, rcu_str_deref(dev->name));
8628764e 1157 }
b5d67f64
SB
1158 } else {
1159did_not_correct_error:
d9d181c1
SB
1160 spin_lock(&sctx->stat_lock);
1161 sctx->stat.uncorrectable_errors++;
1162 spin_unlock(&sctx->stat_lock);
606686ee 1163 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 1164 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1165 logical, rcu_str_deref(dev->name));
96e36920 1166 }
a2de733c 1167
b5d67f64
SB
1168out:
1169 if (sblocks_for_recheck) {
1170 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1171 mirror_index++) {
1172 struct scrub_block *sblock = sblocks_for_recheck +
1173 mirror_index;
1174 int page_index;
1175
7a9e9987
SB
1176 for (page_index = 0; page_index < sblock->page_count;
1177 page_index++) {
1178 sblock->pagev[page_index]->sblock = NULL;
1179 scrub_page_put(sblock->pagev[page_index]);
1180 }
b5d67f64
SB
1181 }
1182 kfree(sblocks_for_recheck);
1183 }
a2de733c 1184
b5d67f64
SB
1185 return 0;
1186}
a2de733c 1187
d9d181c1 1188static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1189 struct btrfs_fs_info *fs_info,
ff023aac 1190 struct scrub_block *original_sblock,
b5d67f64
SB
1191 u64 length, u64 logical,
1192 struct scrub_block *sblocks_for_recheck)
1193{
1194 int page_index;
1195 int mirror_index;
1196 int ret;
1197
1198 /*
7a9e9987 1199 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1200 * are not used (and not set) in the blocks that are used for
1201 * the recheck procedure
1202 */
1203
1204 page_index = 0;
1205 while (length > 0) {
1206 u64 sublen = min_t(u64, length, PAGE_SIZE);
1207 u64 mapped_length = sublen;
1208 struct btrfs_bio *bbio = NULL;
a2de733c 1209
b5d67f64
SB
1210 /*
1211 * with a length of PAGE_SIZE, each returned stripe
1212 * represents one mirror
1213 */
29a8d9a0
SB
1214 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1215 &mapped_length, &bbio, 0);
b5d67f64
SB
1216 if (ret || !bbio || mapped_length < sublen) {
1217 kfree(bbio);
1218 return -EIO;
1219 }
a2de733c 1220
ff023aac 1221 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
1222 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1223 mirror_index++) {
1224 struct scrub_block *sblock;
1225 struct scrub_page *page;
1226
1227 if (mirror_index >= BTRFS_MAX_MIRRORS)
1228 continue;
1229
1230 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1231 sblock->sctx = sctx;
1232 page = kzalloc(sizeof(*page), GFP_NOFS);
1233 if (!page) {
1234leave_nomem:
d9d181c1
SB
1235 spin_lock(&sctx->stat_lock);
1236 sctx->stat.malloc_errors++;
1237 spin_unlock(&sctx->stat_lock);
cf93dcce 1238 kfree(bbio);
b5d67f64
SB
1239 return -ENOMEM;
1240 }
7a9e9987
SB
1241 scrub_page_get(page);
1242 sblock->pagev[page_index] = page;
1243 page->logical = logical;
1244 page->physical = bbio->stripes[mirror_index].physical;
ff023aac
SB
1245 BUG_ON(page_index >= original_sblock->page_count);
1246 page->physical_for_dev_replace =
1247 original_sblock->pagev[page_index]->
1248 physical_for_dev_replace;
7a9e9987
SB
1249 /* for missing devices, dev->bdev is NULL */
1250 page->dev = bbio->stripes[mirror_index].dev;
1251 page->mirror_num = mirror_index + 1;
b5d67f64 1252 sblock->page_count++;
7a9e9987
SB
1253 page->page = alloc_page(GFP_NOFS);
1254 if (!page->page)
1255 goto leave_nomem;
b5d67f64
SB
1256 }
1257 kfree(bbio);
1258 length -= sublen;
1259 logical += sublen;
1260 page_index++;
1261 }
1262
1263 return 0;
96e36920
ID
1264}
1265
b5d67f64
SB
1266/*
1267 * this function will check the on disk data for checksum errors, header
1268 * errors and read I/O errors. If any I/O errors happen, the exact pages
1269 * which are errored are marked as being bad. The goal is to enable scrub
1270 * to take those pages that are not errored from all the mirrors so that
1271 * the pages that are errored in the just handled mirror can be repaired.
1272 */
34f5c8e9
SB
1273static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1274 struct scrub_block *sblock, int is_metadata,
1275 int have_csum, u8 *csum, u64 generation,
1276 u16 csum_size)
96e36920 1277{
b5d67f64 1278 int page_num;
96e36920 1279
b5d67f64
SB
1280 sblock->no_io_error_seen = 1;
1281 sblock->header_error = 0;
1282 sblock->checksum_error = 0;
96e36920 1283
b5d67f64
SB
1284 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1285 struct bio *bio;
7a9e9987 1286 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64
SB
1287 DECLARE_COMPLETION_ONSTACK(complete);
1288
442a4f63 1289 if (page->dev->bdev == NULL) {
ea9947b4
SB
1290 page->io_error = 1;
1291 sblock->no_io_error_seen = 0;
1292 continue;
1293 }
1294
7a9e9987 1295 WARN_ON(!page->page);
9be3395b 1296 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1297 if (!bio) {
1298 page->io_error = 1;
1299 sblock->no_io_error_seen = 0;
1300 continue;
1301 }
442a4f63 1302 bio->bi_bdev = page->dev->bdev;
b5d67f64
SB
1303 bio->bi_sector = page->physical >> 9;
1304 bio->bi_end_io = scrub_complete_bio_end_io;
1305 bio->bi_private = &complete;
1306
34f5c8e9 1307 bio_add_page(bio, page->page, PAGE_SIZE, 0);
b5d67f64 1308 btrfsic_submit_bio(READ, bio);
96e36920 1309
b5d67f64
SB
1310 /* this will also unplug the queue */
1311 wait_for_completion(&complete);
96e36920 1312
b5d67f64
SB
1313 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1314 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1315 sblock->no_io_error_seen = 0;
1316 bio_put(bio);
1317 }
96e36920 1318
b5d67f64
SB
1319 if (sblock->no_io_error_seen)
1320 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1321 have_csum, csum, generation,
1322 csum_size);
1323
34f5c8e9 1324 return;
a2de733c
AJ
1325}
1326
b5d67f64
SB
1327static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1328 struct scrub_block *sblock,
1329 int is_metadata, int have_csum,
1330 const u8 *csum, u64 generation,
1331 u16 csum_size)
a2de733c 1332{
b5d67f64
SB
1333 int page_num;
1334 u8 calculated_csum[BTRFS_CSUM_SIZE];
1335 u32 crc = ~(u32)0;
b5d67f64
SB
1336 void *mapped_buffer;
1337
7a9e9987 1338 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1339 if (is_metadata) {
1340 struct btrfs_header *h;
1341
7a9e9987 1342 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1343 h = (struct btrfs_header *)mapped_buffer;
1344
3cae210f 1345 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
b5d67f64
SB
1346 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1347 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1348 BTRFS_UUID_SIZE)) {
b5d67f64 1349 sblock->header_error = 1;
3cae210f 1350 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1351 sblock->header_error = 1;
1352 sblock->generation_error = 1;
1353 }
b5d67f64
SB
1354 csum = h->csum;
1355 } else {
1356 if (!have_csum)
1357 return;
a2de733c 1358
7a9e9987 1359 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1360 }
a2de733c 1361
b5d67f64
SB
1362 for (page_num = 0;;) {
1363 if (page_num == 0 && is_metadata)
b0496686 1364 crc = btrfs_csum_data(
b5d67f64
SB
1365 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1366 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1367 else
b0496686 1368 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1369
9613bebb 1370 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1371 page_num++;
1372 if (page_num >= sblock->page_count)
1373 break;
7a9e9987 1374 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1375
7a9e9987 1376 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1377 }
1378
1379 btrfs_csum_final(crc, calculated_csum);
1380 if (memcmp(calculated_csum, csum, csum_size))
1381 sblock->checksum_error = 1;
a2de733c
AJ
1382}
1383
b5d67f64 1384static void scrub_complete_bio_end_io(struct bio *bio, int err)
a2de733c 1385{
b5d67f64
SB
1386 complete((struct completion *)bio->bi_private);
1387}
a2de733c 1388
b5d67f64
SB
1389static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1390 struct scrub_block *sblock_good,
1391 int force_write)
1392{
1393 int page_num;
1394 int ret = 0;
96e36920 1395
b5d67f64
SB
1396 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1397 int ret_sub;
96e36920 1398
b5d67f64
SB
1399 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1400 sblock_good,
1401 page_num,
1402 force_write);
1403 if (ret_sub)
1404 ret = ret_sub;
a2de733c 1405 }
b5d67f64
SB
1406
1407 return ret;
1408}
1409
1410static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1411 struct scrub_block *sblock_good,
1412 int page_num, int force_write)
1413{
7a9e9987
SB
1414 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1415 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1416
7a9e9987
SB
1417 BUG_ON(page_bad->page == NULL);
1418 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1419 if (force_write || sblock_bad->header_error ||
1420 sblock_bad->checksum_error || page_bad->io_error) {
1421 struct bio *bio;
1422 int ret;
1423 DECLARE_COMPLETION_ONSTACK(complete);
1424
ff023aac
SB
1425 if (!page_bad->dev->bdev) {
1426 printk_ratelimited(KERN_WARNING
1427 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1428 return -EIO;
1429 }
1430
9be3395b 1431 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1432 if (!bio)
1433 return -EIO;
442a4f63 1434 bio->bi_bdev = page_bad->dev->bdev;
b5d67f64
SB
1435 bio->bi_sector = page_bad->physical >> 9;
1436 bio->bi_end_io = scrub_complete_bio_end_io;
1437 bio->bi_private = &complete;
1438
1439 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1440 if (PAGE_SIZE != ret) {
1441 bio_put(bio);
1442 return -EIO;
13db62b7 1443 }
b5d67f64
SB
1444 btrfsic_submit_bio(WRITE, bio);
1445
1446 /* this will also unplug the queue */
1447 wait_for_completion(&complete);
442a4f63
SB
1448 if (!bio_flagged(bio, BIO_UPTODATE)) {
1449 btrfs_dev_stat_inc_and_print(page_bad->dev,
1450 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1451 btrfs_dev_replace_stats_inc(
1452 &sblock_bad->sctx->dev_root->fs_info->
1453 dev_replace.num_write_errors);
442a4f63
SB
1454 bio_put(bio);
1455 return -EIO;
1456 }
b5d67f64 1457 bio_put(bio);
a2de733c
AJ
1458 }
1459
b5d67f64
SB
1460 return 0;
1461}
1462
ff023aac
SB
1463static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1464{
1465 int page_num;
1466
1467 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1468 int ret;
1469
1470 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1471 if (ret)
1472 btrfs_dev_replace_stats_inc(
1473 &sblock->sctx->dev_root->fs_info->dev_replace.
1474 num_write_errors);
1475 }
1476}
1477
1478static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1479 int page_num)
1480{
1481 struct scrub_page *spage = sblock->pagev[page_num];
1482
1483 BUG_ON(spage->page == NULL);
1484 if (spage->io_error) {
1485 void *mapped_buffer = kmap_atomic(spage->page);
1486
1487 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1488 flush_dcache_page(spage->page);
1489 kunmap_atomic(mapped_buffer);
1490 }
1491 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1492}
1493
1494static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1495 struct scrub_page *spage)
1496{
1497 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1498 struct scrub_bio *sbio;
1499 int ret;
1500
1501 mutex_lock(&wr_ctx->wr_lock);
1502again:
1503 if (!wr_ctx->wr_curr_bio) {
1504 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1505 GFP_NOFS);
1506 if (!wr_ctx->wr_curr_bio) {
1507 mutex_unlock(&wr_ctx->wr_lock);
1508 return -ENOMEM;
1509 }
1510 wr_ctx->wr_curr_bio->sctx = sctx;
1511 wr_ctx->wr_curr_bio->page_count = 0;
1512 }
1513 sbio = wr_ctx->wr_curr_bio;
1514 if (sbio->page_count == 0) {
1515 struct bio *bio;
1516
1517 sbio->physical = spage->physical_for_dev_replace;
1518 sbio->logical = spage->logical;
1519 sbio->dev = wr_ctx->tgtdev;
1520 bio = sbio->bio;
1521 if (!bio) {
9be3395b 1522 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1523 if (!bio) {
1524 mutex_unlock(&wr_ctx->wr_lock);
1525 return -ENOMEM;
1526 }
1527 sbio->bio = bio;
1528 }
1529
1530 bio->bi_private = sbio;
1531 bio->bi_end_io = scrub_wr_bio_end_io;
1532 bio->bi_bdev = sbio->dev->bdev;
1533 bio->bi_sector = sbio->physical >> 9;
1534 sbio->err = 0;
1535 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1536 spage->physical_for_dev_replace ||
1537 sbio->logical + sbio->page_count * PAGE_SIZE !=
1538 spage->logical) {
1539 scrub_wr_submit(sctx);
1540 goto again;
1541 }
1542
1543 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1544 if (ret != PAGE_SIZE) {
1545 if (sbio->page_count < 1) {
1546 bio_put(sbio->bio);
1547 sbio->bio = NULL;
1548 mutex_unlock(&wr_ctx->wr_lock);
1549 return -EIO;
1550 }
1551 scrub_wr_submit(sctx);
1552 goto again;
1553 }
1554
1555 sbio->pagev[sbio->page_count] = spage;
1556 scrub_page_get(spage);
1557 sbio->page_count++;
1558 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1559 scrub_wr_submit(sctx);
1560 mutex_unlock(&wr_ctx->wr_lock);
1561
1562 return 0;
1563}
1564
1565static void scrub_wr_submit(struct scrub_ctx *sctx)
1566{
1567 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1568 struct scrub_bio *sbio;
1569
1570 if (!wr_ctx->wr_curr_bio)
1571 return;
1572
1573 sbio = wr_ctx->wr_curr_bio;
1574 wr_ctx->wr_curr_bio = NULL;
1575 WARN_ON(!sbio->bio->bi_bdev);
1576 scrub_pending_bio_inc(sctx);
1577 /* process all writes in a single worker thread. Then the block layer
1578 * orders the requests before sending them to the driver which
1579 * doubled the write performance on spinning disks when measured
1580 * with Linux 3.5 */
1581 btrfsic_submit_bio(WRITE, sbio->bio);
1582}
1583
1584static void scrub_wr_bio_end_io(struct bio *bio, int err)
1585{
1586 struct scrub_bio *sbio = bio->bi_private;
1587 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1588
1589 sbio->err = err;
1590 sbio->bio = bio;
1591
1592 sbio->work.func = scrub_wr_bio_end_io_worker;
1593 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1594}
1595
1596static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1597{
1598 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1599 struct scrub_ctx *sctx = sbio->sctx;
1600 int i;
1601
1602 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1603 if (sbio->err) {
1604 struct btrfs_dev_replace *dev_replace =
1605 &sbio->sctx->dev_root->fs_info->dev_replace;
1606
1607 for (i = 0; i < sbio->page_count; i++) {
1608 struct scrub_page *spage = sbio->pagev[i];
1609
1610 spage->io_error = 1;
1611 btrfs_dev_replace_stats_inc(&dev_replace->
1612 num_write_errors);
1613 }
1614 }
1615
1616 for (i = 0; i < sbio->page_count; i++)
1617 scrub_page_put(sbio->pagev[i]);
1618
1619 bio_put(sbio->bio);
1620 kfree(sbio);
1621 scrub_pending_bio_dec(sctx);
1622}
1623
1624static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1625{
1626 u64 flags;
1627 int ret;
1628
7a9e9987
SB
1629 WARN_ON(sblock->page_count < 1);
1630 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1631 ret = 0;
1632 if (flags & BTRFS_EXTENT_FLAG_DATA)
1633 ret = scrub_checksum_data(sblock);
1634 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1635 ret = scrub_checksum_tree_block(sblock);
1636 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1637 (void)scrub_checksum_super(sblock);
1638 else
1639 WARN_ON(1);
1640 if (ret)
1641 scrub_handle_errored_block(sblock);
ff023aac
SB
1642
1643 return ret;
a2de733c
AJ
1644}
1645
b5d67f64 1646static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1647{
d9d181c1 1648 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1649 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1650 u8 *on_disk_csum;
1651 struct page *page;
1652 void *buffer;
a2de733c
AJ
1653 u32 crc = ~(u32)0;
1654 int fail = 0;
b5d67f64
SB
1655 u64 len;
1656 int index;
a2de733c 1657
b5d67f64 1658 BUG_ON(sblock->page_count < 1);
7a9e9987 1659 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1660 return 0;
1661
7a9e9987
SB
1662 on_disk_csum = sblock->pagev[0]->csum;
1663 page = sblock->pagev[0]->page;
9613bebb 1664 buffer = kmap_atomic(page);
b5d67f64 1665
d9d181c1 1666 len = sctx->sectorsize;
b5d67f64
SB
1667 index = 0;
1668 for (;;) {
1669 u64 l = min_t(u64, len, PAGE_SIZE);
1670
b0496686 1671 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1672 kunmap_atomic(buffer);
b5d67f64
SB
1673 len -= l;
1674 if (len == 0)
1675 break;
1676 index++;
1677 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1678 BUG_ON(!sblock->pagev[index]->page);
1679 page = sblock->pagev[index]->page;
9613bebb 1680 buffer = kmap_atomic(page);
b5d67f64
SB
1681 }
1682
a2de733c 1683 btrfs_csum_final(crc, csum);
d9d181c1 1684 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1685 fail = 1;
1686
a2de733c
AJ
1687 return fail;
1688}
1689
b5d67f64 1690static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1691{
d9d181c1 1692 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1693 struct btrfs_header *h;
a36cf8b8 1694 struct btrfs_root *root = sctx->dev_root;
a2de733c 1695 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1696 u8 calculated_csum[BTRFS_CSUM_SIZE];
1697 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1698 struct page *page;
1699 void *mapped_buffer;
1700 u64 mapped_size;
1701 void *p;
a2de733c
AJ
1702 u32 crc = ~(u32)0;
1703 int fail = 0;
1704 int crc_fail = 0;
b5d67f64
SB
1705 u64 len;
1706 int index;
1707
1708 BUG_ON(sblock->page_count < 1);
7a9e9987 1709 page = sblock->pagev[0]->page;
9613bebb 1710 mapped_buffer = kmap_atomic(page);
b5d67f64 1711 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1712 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1713
1714 /*
1715 * we don't use the getter functions here, as we
1716 * a) don't have an extent buffer and
1717 * b) the page is already kmapped
1718 */
a2de733c 1719
3cae210f 1720 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1721 ++fail;
1722
3cae210f 1723 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1724 ++fail;
1725
1726 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1727 ++fail;
1728
1729 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1730 BTRFS_UUID_SIZE))
1731 ++fail;
1732
ff023aac 1733 WARN_ON(sctx->nodesize != sctx->leafsize);
d9d181c1 1734 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1735 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1736 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1737 index = 0;
1738 for (;;) {
1739 u64 l = min_t(u64, len, mapped_size);
1740
b0496686 1741 crc = btrfs_csum_data(p, crc, l);
9613bebb 1742 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1743 len -= l;
1744 if (len == 0)
1745 break;
1746 index++;
1747 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1748 BUG_ON(!sblock->pagev[index]->page);
1749 page = sblock->pagev[index]->page;
9613bebb 1750 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1751 mapped_size = PAGE_SIZE;
1752 p = mapped_buffer;
1753 }
1754
1755 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1756 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1757 ++crc_fail;
1758
a2de733c
AJ
1759 return fail || crc_fail;
1760}
1761
b5d67f64 1762static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1763{
1764 struct btrfs_super_block *s;
d9d181c1 1765 struct scrub_ctx *sctx = sblock->sctx;
a36cf8b8 1766 struct btrfs_root *root = sctx->dev_root;
a2de733c 1767 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1768 u8 calculated_csum[BTRFS_CSUM_SIZE];
1769 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1770 struct page *page;
1771 void *mapped_buffer;
1772 u64 mapped_size;
1773 void *p;
a2de733c 1774 u32 crc = ~(u32)0;
442a4f63
SB
1775 int fail_gen = 0;
1776 int fail_cor = 0;
b5d67f64
SB
1777 u64 len;
1778 int index;
a2de733c 1779
b5d67f64 1780 BUG_ON(sblock->page_count < 1);
7a9e9987 1781 page = sblock->pagev[0]->page;
9613bebb 1782 mapped_buffer = kmap_atomic(page);
b5d67f64 1783 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1784 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1785
3cae210f 1786 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1787 ++fail_cor;
a2de733c 1788
3cae210f 1789 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1790 ++fail_gen;
a2de733c
AJ
1791
1792 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
442a4f63 1793 ++fail_cor;
a2de733c 1794
b5d67f64
SB
1795 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1796 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1797 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1798 index = 0;
1799 for (;;) {
1800 u64 l = min_t(u64, len, mapped_size);
1801
b0496686 1802 crc = btrfs_csum_data(p, crc, l);
9613bebb 1803 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1804 len -= l;
1805 if (len == 0)
1806 break;
1807 index++;
1808 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1809 BUG_ON(!sblock->pagev[index]->page);
1810 page = sblock->pagev[index]->page;
9613bebb 1811 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1812 mapped_size = PAGE_SIZE;
1813 p = mapped_buffer;
1814 }
1815
1816 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1817 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1818 ++fail_cor;
a2de733c 1819
442a4f63 1820 if (fail_cor + fail_gen) {
a2de733c
AJ
1821 /*
1822 * if we find an error in a super block, we just report it.
1823 * They will get written with the next transaction commit
1824 * anyway
1825 */
d9d181c1
SB
1826 spin_lock(&sctx->stat_lock);
1827 ++sctx->stat.super_errors;
1828 spin_unlock(&sctx->stat_lock);
442a4f63 1829 if (fail_cor)
7a9e9987 1830 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1831 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1832 else
7a9e9987 1833 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1834 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1835 }
1836
442a4f63 1837 return fail_cor + fail_gen;
a2de733c
AJ
1838}
1839
b5d67f64
SB
1840static void scrub_block_get(struct scrub_block *sblock)
1841{
1842 atomic_inc(&sblock->ref_count);
1843}
1844
1845static void scrub_block_put(struct scrub_block *sblock)
1846{
1847 if (atomic_dec_and_test(&sblock->ref_count)) {
1848 int i;
1849
1850 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1851 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1852 kfree(sblock);
1853 }
1854}
1855
7a9e9987
SB
1856static void scrub_page_get(struct scrub_page *spage)
1857{
1858 atomic_inc(&spage->ref_count);
1859}
1860
1861static void scrub_page_put(struct scrub_page *spage)
1862{
1863 if (atomic_dec_and_test(&spage->ref_count)) {
1864 if (spage->page)
1865 __free_page(spage->page);
1866 kfree(spage);
1867 }
1868}
1869
d9d181c1 1870static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1871{
1872 struct scrub_bio *sbio;
1873
d9d181c1 1874 if (sctx->curr == -1)
1623edeb 1875 return;
a2de733c 1876
d9d181c1
SB
1877 sbio = sctx->bios[sctx->curr];
1878 sctx->curr = -1;
b6bfebc1 1879 scrub_pending_bio_inc(sctx);
a2de733c 1880
ff023aac
SB
1881 if (!sbio->bio->bi_bdev) {
1882 /*
1883 * this case should not happen. If btrfs_map_block() is
1884 * wrong, it could happen for dev-replace operations on
1885 * missing devices when no mirrors are available, but in
1886 * this case it should already fail the mount.
1887 * This case is handled correctly (but _very_ slowly).
1888 */
1889 printk_ratelimited(KERN_WARNING
1890 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1891 bio_endio(sbio->bio, -EIO);
1892 } else {
1893 btrfsic_submit_bio(READ, sbio->bio);
1894 }
a2de733c
AJ
1895}
1896
ff023aac
SB
1897static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1898 struct scrub_page *spage)
a2de733c 1899{
b5d67f64 1900 struct scrub_block *sblock = spage->sblock;
a2de733c 1901 struct scrub_bio *sbio;
69f4cb52 1902 int ret;
a2de733c
AJ
1903
1904again:
1905 /*
1906 * grab a fresh bio or wait for one to become available
1907 */
d9d181c1
SB
1908 while (sctx->curr == -1) {
1909 spin_lock(&sctx->list_lock);
1910 sctx->curr = sctx->first_free;
1911 if (sctx->curr != -1) {
1912 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1913 sctx->bios[sctx->curr]->next_free = -1;
1914 sctx->bios[sctx->curr]->page_count = 0;
1915 spin_unlock(&sctx->list_lock);
a2de733c 1916 } else {
d9d181c1
SB
1917 spin_unlock(&sctx->list_lock);
1918 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1919 }
1920 }
d9d181c1 1921 sbio = sctx->bios[sctx->curr];
b5d67f64 1922 if (sbio->page_count == 0) {
69f4cb52
AJ
1923 struct bio *bio;
1924
b5d67f64
SB
1925 sbio->physical = spage->physical;
1926 sbio->logical = spage->logical;
a36cf8b8 1927 sbio->dev = spage->dev;
b5d67f64
SB
1928 bio = sbio->bio;
1929 if (!bio) {
9be3395b 1930 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
1931 if (!bio)
1932 return -ENOMEM;
1933 sbio->bio = bio;
1934 }
69f4cb52
AJ
1935
1936 bio->bi_private = sbio;
1937 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8
SB
1938 bio->bi_bdev = sbio->dev->bdev;
1939 bio->bi_sector = sbio->physical >> 9;
69f4cb52 1940 sbio->err = 0;
b5d67f64
SB
1941 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1942 spage->physical ||
1943 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
1944 spage->logical ||
1945 sbio->dev != spage->dev) {
d9d181c1 1946 scrub_submit(sctx);
a2de733c
AJ
1947 goto again;
1948 }
69f4cb52 1949
b5d67f64
SB
1950 sbio->pagev[sbio->page_count] = spage;
1951 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1952 if (ret != PAGE_SIZE) {
1953 if (sbio->page_count < 1) {
1954 bio_put(sbio->bio);
1955 sbio->bio = NULL;
1956 return -EIO;
1957 }
d9d181c1 1958 scrub_submit(sctx);
69f4cb52
AJ
1959 goto again;
1960 }
1961
ff023aac 1962 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
1963 atomic_inc(&sblock->outstanding_pages);
1964 sbio->page_count++;
ff023aac 1965 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 1966 scrub_submit(sctx);
b5d67f64
SB
1967
1968 return 0;
1969}
1970
d9d181c1 1971static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 1972 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
1973 u64 gen, int mirror_num, u8 *csum, int force,
1974 u64 physical_for_dev_replace)
b5d67f64
SB
1975{
1976 struct scrub_block *sblock;
1977 int index;
1978
1979 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1980 if (!sblock) {
d9d181c1
SB
1981 spin_lock(&sctx->stat_lock);
1982 sctx->stat.malloc_errors++;
1983 spin_unlock(&sctx->stat_lock);
b5d67f64 1984 return -ENOMEM;
a2de733c 1985 }
b5d67f64 1986
7a9e9987
SB
1987 /* one ref inside this function, plus one for each page added to
1988 * a bio later on */
b5d67f64 1989 atomic_set(&sblock->ref_count, 1);
d9d181c1 1990 sblock->sctx = sctx;
b5d67f64
SB
1991 sblock->no_io_error_seen = 1;
1992
1993 for (index = 0; len > 0; index++) {
7a9e9987 1994 struct scrub_page *spage;
b5d67f64
SB
1995 u64 l = min_t(u64, len, PAGE_SIZE);
1996
7a9e9987
SB
1997 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1998 if (!spage) {
1999leave_nomem:
d9d181c1
SB
2000 spin_lock(&sctx->stat_lock);
2001 sctx->stat.malloc_errors++;
2002 spin_unlock(&sctx->stat_lock);
7a9e9987 2003 scrub_block_put(sblock);
b5d67f64
SB
2004 return -ENOMEM;
2005 }
7a9e9987
SB
2006 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2007 scrub_page_get(spage);
2008 sblock->pagev[index] = spage;
b5d67f64 2009 spage->sblock = sblock;
a36cf8b8 2010 spage->dev = dev;
b5d67f64
SB
2011 spage->flags = flags;
2012 spage->generation = gen;
2013 spage->logical = logical;
2014 spage->physical = physical;
ff023aac 2015 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2016 spage->mirror_num = mirror_num;
2017 if (csum) {
2018 spage->have_csum = 1;
d9d181c1 2019 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2020 } else {
2021 spage->have_csum = 0;
2022 }
2023 sblock->page_count++;
7a9e9987
SB
2024 spage->page = alloc_page(GFP_NOFS);
2025 if (!spage->page)
2026 goto leave_nomem;
b5d67f64
SB
2027 len -= l;
2028 logical += l;
2029 physical += l;
ff023aac 2030 physical_for_dev_replace += l;
b5d67f64
SB
2031 }
2032
7a9e9987 2033 WARN_ON(sblock->page_count == 0);
b5d67f64 2034 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2035 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2036 int ret;
2037
ff023aac 2038 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2039 if (ret) {
2040 scrub_block_put(sblock);
1bc87793 2041 return ret;
b5d67f64 2042 }
1bc87793 2043 }
a2de733c 2044
b5d67f64 2045 if (force)
d9d181c1 2046 scrub_submit(sctx);
a2de733c 2047
b5d67f64
SB
2048 /* last one frees, either here or in bio completion for last page */
2049 scrub_block_put(sblock);
a2de733c
AJ
2050 return 0;
2051}
2052
b5d67f64
SB
2053static void scrub_bio_end_io(struct bio *bio, int err)
2054{
2055 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2056 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2057
2058 sbio->err = err;
2059 sbio->bio = bio;
2060
2061 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2062}
2063
2064static void scrub_bio_end_io_worker(struct btrfs_work *work)
2065{
2066 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2067 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2068 int i;
2069
ff023aac 2070 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2071 if (sbio->err) {
2072 for (i = 0; i < sbio->page_count; i++) {
2073 struct scrub_page *spage = sbio->pagev[i];
2074
2075 spage->io_error = 1;
2076 spage->sblock->no_io_error_seen = 0;
2077 }
2078 }
2079
2080 /* now complete the scrub_block items that have all pages completed */
2081 for (i = 0; i < sbio->page_count; i++) {
2082 struct scrub_page *spage = sbio->pagev[i];
2083 struct scrub_block *sblock = spage->sblock;
2084
2085 if (atomic_dec_and_test(&sblock->outstanding_pages))
2086 scrub_block_complete(sblock);
2087 scrub_block_put(sblock);
2088 }
2089
b5d67f64
SB
2090 bio_put(sbio->bio);
2091 sbio->bio = NULL;
d9d181c1
SB
2092 spin_lock(&sctx->list_lock);
2093 sbio->next_free = sctx->first_free;
2094 sctx->first_free = sbio->index;
2095 spin_unlock(&sctx->list_lock);
ff023aac
SB
2096
2097 if (sctx->is_dev_replace &&
2098 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2099 mutex_lock(&sctx->wr_ctx.wr_lock);
2100 scrub_wr_submit(sctx);
2101 mutex_unlock(&sctx->wr_ctx.wr_lock);
2102 }
2103
b6bfebc1 2104 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2105}
2106
2107static void scrub_block_complete(struct scrub_block *sblock)
2108{
ff023aac 2109 if (!sblock->no_io_error_seen) {
b5d67f64 2110 scrub_handle_errored_block(sblock);
ff023aac
SB
2111 } else {
2112 /*
2113 * if has checksum error, write via repair mechanism in
2114 * dev replace case, otherwise write here in dev replace
2115 * case.
2116 */
2117 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2118 scrub_write_block_to_dev_replace(sblock);
2119 }
b5d67f64
SB
2120}
2121
d9d181c1 2122static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2123 u8 *csum)
2124{
2125 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2126 unsigned long index;
a2de733c 2127 unsigned long num_sectors;
a2de733c 2128
d9d181c1
SB
2129 while (!list_empty(&sctx->csum_list)) {
2130 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2131 struct btrfs_ordered_sum, list);
2132 if (sum->bytenr > logical)
2133 return 0;
2134 if (sum->bytenr + sum->len > logical)
2135 break;
2136
d9d181c1 2137 ++sctx->stat.csum_discards;
a2de733c
AJ
2138 list_del(&sum->list);
2139 kfree(sum);
2140 sum = NULL;
2141 }
2142 if (!sum)
2143 return 0;
2144
f51a4a18 2145 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2146 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2147 memcpy(csum, sum->sums + index, sctx->csum_size);
2148 if (index == num_sectors - 1) {
a2de733c
AJ
2149 list_del(&sum->list);
2150 kfree(sum);
2151 }
f51a4a18 2152 return 1;
a2de733c
AJ
2153}
2154
2155/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2156static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2157 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2158 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2159{
2160 int ret;
2161 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2162 u32 blocksize;
2163
2164 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2165 blocksize = sctx->sectorsize;
2166 spin_lock(&sctx->stat_lock);
2167 sctx->stat.data_extents_scrubbed++;
2168 sctx->stat.data_bytes_scrubbed += len;
2169 spin_unlock(&sctx->stat_lock);
b5d67f64 2170 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
ff023aac 2171 WARN_ON(sctx->nodesize != sctx->leafsize);
d9d181c1
SB
2172 blocksize = sctx->nodesize;
2173 spin_lock(&sctx->stat_lock);
2174 sctx->stat.tree_extents_scrubbed++;
2175 sctx->stat.tree_bytes_scrubbed += len;
2176 spin_unlock(&sctx->stat_lock);
b5d67f64 2177 } else {
d9d181c1 2178 blocksize = sctx->sectorsize;
ff023aac 2179 WARN_ON(1);
b5d67f64 2180 }
a2de733c
AJ
2181
2182 while (len) {
b5d67f64 2183 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2184 int have_csum = 0;
2185
2186 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2187 /* push csums to sbio */
d9d181c1 2188 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2189 if (have_csum == 0)
d9d181c1 2190 ++sctx->stat.no_csum;
ff023aac
SB
2191 if (sctx->is_dev_replace && !have_csum) {
2192 ret = copy_nocow_pages(sctx, logical, l,
2193 mirror_num,
2194 physical_for_dev_replace);
2195 goto behind_scrub_pages;
2196 }
a2de733c 2197 }
a36cf8b8 2198 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2199 mirror_num, have_csum ? csum : NULL, 0,
2200 physical_for_dev_replace);
2201behind_scrub_pages:
a2de733c
AJ
2202 if (ret)
2203 return ret;
2204 len -= l;
2205 logical += l;
2206 physical += l;
ff023aac 2207 physical_for_dev_replace += l;
a2de733c
AJ
2208 }
2209 return 0;
2210}
2211
d9d181c1 2212static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2213 struct map_lookup *map,
2214 struct btrfs_device *scrub_dev,
ff023aac
SB
2215 int num, u64 base, u64 length,
2216 int is_dev_replace)
a2de733c
AJ
2217{
2218 struct btrfs_path *path;
a36cf8b8 2219 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
2220 struct btrfs_root *root = fs_info->extent_root;
2221 struct btrfs_root *csum_root = fs_info->csum_root;
2222 struct btrfs_extent_item *extent;
e7786c3a 2223 struct blk_plug plug;
a2de733c
AJ
2224 u64 flags;
2225 int ret;
2226 int slot;
a2de733c 2227 u64 nstripes;
a2de733c
AJ
2228 struct extent_buffer *l;
2229 struct btrfs_key key;
2230 u64 physical;
2231 u64 logical;
625f1c8d 2232 u64 logic_end;
a2de733c 2233 u64 generation;
e12fa9cd 2234 int mirror_num;
7a26285e
AJ
2235 struct reada_control *reada1;
2236 struct reada_control *reada2;
2237 struct btrfs_key key_start;
2238 struct btrfs_key key_end;
a2de733c
AJ
2239 u64 increment = map->stripe_len;
2240 u64 offset;
ff023aac
SB
2241 u64 extent_logical;
2242 u64 extent_physical;
2243 u64 extent_len;
2244 struct btrfs_device *extent_dev;
2245 int extent_mirror_num;
625f1c8d 2246 int stop_loop;
a2de733c 2247
53b381b3
DW
2248 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2249 BTRFS_BLOCK_GROUP_RAID6)) {
2250 if (num >= nr_data_stripes(map)) {
2251 return 0;
2252 }
2253 }
2254
a2de733c
AJ
2255 nstripes = length;
2256 offset = 0;
2257 do_div(nstripes, map->stripe_len);
2258 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2259 offset = map->stripe_len * num;
2260 increment = map->stripe_len * map->num_stripes;
193ea74b 2261 mirror_num = 1;
a2de733c
AJ
2262 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2263 int factor = map->num_stripes / map->sub_stripes;
2264 offset = map->stripe_len * (num / map->sub_stripes);
2265 increment = map->stripe_len * factor;
193ea74b 2266 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
2267 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2268 increment = map->stripe_len;
193ea74b 2269 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2270 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2271 increment = map->stripe_len;
193ea74b 2272 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2273 } else {
2274 increment = map->stripe_len;
193ea74b 2275 mirror_num = 1;
a2de733c
AJ
2276 }
2277
2278 path = btrfs_alloc_path();
2279 if (!path)
2280 return -ENOMEM;
2281
b5d67f64
SB
2282 /*
2283 * work on commit root. The related disk blocks are static as
2284 * long as COW is applied. This means, it is save to rewrite
2285 * them to repair disk errors without any race conditions
2286 */
a2de733c
AJ
2287 path->search_commit_root = 1;
2288 path->skip_locking = 1;
2289
2290 /*
7a26285e
AJ
2291 * trigger the readahead for extent tree csum tree and wait for
2292 * completion. During readahead, the scrub is officially paused
2293 * to not hold off transaction commits
a2de733c
AJ
2294 */
2295 logical = base + offset;
a2de733c 2296
d9d181c1 2297 wait_event(sctx->list_wait,
b6bfebc1 2298 atomic_read(&sctx->bios_in_flight) == 0);
7a26285e
AJ
2299 atomic_inc(&fs_info->scrubs_paused);
2300 wake_up(&fs_info->scrub_pause_wait);
2301
2302 /* FIXME it might be better to start readahead at commit root */
2303 key_start.objectid = logical;
2304 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2305 key_start.offset = (u64)0;
2306 key_end.objectid = base + offset + nstripes * increment;
3173a18f
JB
2307 key_end.type = BTRFS_METADATA_ITEM_KEY;
2308 key_end.offset = (u64)-1;
7a26285e
AJ
2309 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2310
2311 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2312 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2313 key_start.offset = logical;
2314 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2315 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2316 key_end.offset = base + offset + nstripes * increment;
2317 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2318
2319 if (!IS_ERR(reada1))
2320 btrfs_reada_wait(reada1);
2321 if (!IS_ERR(reada2))
2322 btrfs_reada_wait(reada2);
2323
2324 mutex_lock(&fs_info->scrub_lock);
2325 while (atomic_read(&fs_info->scrub_pause_req)) {
2326 mutex_unlock(&fs_info->scrub_lock);
2327 wait_event(fs_info->scrub_pause_wait,
2328 atomic_read(&fs_info->scrub_pause_req) == 0);
2329 mutex_lock(&fs_info->scrub_lock);
a2de733c 2330 }
7a26285e
AJ
2331 atomic_dec(&fs_info->scrubs_paused);
2332 mutex_unlock(&fs_info->scrub_lock);
2333 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
2334
2335 /*
2336 * collect all data csums for the stripe to avoid seeking during
2337 * the scrub. This might currently (crc32) end up to be about 1MB
2338 */
e7786c3a 2339 blk_start_plug(&plug);
a2de733c 2340
a2de733c
AJ
2341 /*
2342 * now find all extents for each stripe and scrub them
2343 */
7a26285e
AJ
2344 logical = base + offset;
2345 physical = map->stripes[num].physical;
625f1c8d 2346 logic_end = logical + increment * nstripes;
a2de733c 2347 ret = 0;
625f1c8d 2348 while (logical < logic_end) {
a2de733c
AJ
2349 /*
2350 * canceled?
2351 */
2352 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 2353 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
2354 ret = -ECANCELED;
2355 goto out;
2356 }
2357 /*
2358 * check to see if we have to pause
2359 */
2360 if (atomic_read(&fs_info->scrub_pause_req)) {
2361 /* push queued extents */
ff023aac 2362 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 2363 scrub_submit(sctx);
ff023aac
SB
2364 mutex_lock(&sctx->wr_ctx.wr_lock);
2365 scrub_wr_submit(sctx);
2366 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 2367 wait_event(sctx->list_wait,
b6bfebc1 2368 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 2369 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
a2de733c
AJ
2370 atomic_inc(&fs_info->scrubs_paused);
2371 wake_up(&fs_info->scrub_pause_wait);
2372 mutex_lock(&fs_info->scrub_lock);
2373 while (atomic_read(&fs_info->scrub_pause_req)) {
2374 mutex_unlock(&fs_info->scrub_lock);
2375 wait_event(fs_info->scrub_pause_wait,
2376 atomic_read(&fs_info->scrub_pause_req) == 0);
2377 mutex_lock(&fs_info->scrub_lock);
2378 }
2379 atomic_dec(&fs_info->scrubs_paused);
2380 mutex_unlock(&fs_info->scrub_lock);
2381 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
2382 }
2383
2384 key.objectid = logical;
2385 key.type = BTRFS_EXTENT_ITEM_KEY;
625f1c8d 2386 key.offset = (u64)-1;
a2de733c
AJ
2387
2388 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2389 if (ret < 0)
2390 goto out;
3173a18f 2391
8c51032f 2392 if (ret > 0) {
a2de733c
AJ
2393 ret = btrfs_previous_item(root, path, 0,
2394 BTRFS_EXTENT_ITEM_KEY);
2395 if (ret < 0)
2396 goto out;
8c51032f
AJ
2397 if (ret > 0) {
2398 /* there's no smaller item, so stick with the
2399 * larger one */
2400 btrfs_release_path(path);
2401 ret = btrfs_search_slot(NULL, root, &key,
2402 path, 0, 0);
2403 if (ret < 0)
2404 goto out;
2405 }
a2de733c
AJ
2406 }
2407
625f1c8d 2408 stop_loop = 0;
a2de733c 2409 while (1) {
3173a18f
JB
2410 u64 bytes;
2411
a2de733c
AJ
2412 l = path->nodes[0];
2413 slot = path->slots[0];
2414 if (slot >= btrfs_header_nritems(l)) {
2415 ret = btrfs_next_leaf(root, path);
2416 if (ret == 0)
2417 continue;
2418 if (ret < 0)
2419 goto out;
2420
625f1c8d 2421 stop_loop = 1;
a2de733c
AJ
2422 break;
2423 }
2424 btrfs_item_key_to_cpu(l, &key, slot);
2425
3173a18f
JB
2426 if (key.type == BTRFS_METADATA_ITEM_KEY)
2427 bytes = root->leafsize;
2428 else
2429 bytes = key.offset;
2430
2431 if (key.objectid + bytes <= logical)
a2de733c
AJ
2432 goto next;
2433
625f1c8d
LB
2434 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2435 key.type != BTRFS_METADATA_ITEM_KEY)
2436 goto next;
a2de733c 2437
625f1c8d
LB
2438 if (key.objectid >= logical + map->stripe_len) {
2439 /* out of this device extent */
2440 if (key.objectid >= logic_end)
2441 stop_loop = 1;
2442 break;
2443 }
a2de733c
AJ
2444
2445 extent = btrfs_item_ptr(l, slot,
2446 struct btrfs_extent_item);
2447 flags = btrfs_extent_flags(l, extent);
2448 generation = btrfs_extent_generation(l, extent);
2449
2450 if (key.objectid < logical &&
2451 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2452 printk(KERN_ERR
2453 "btrfs scrub: tree block %llu spanning "
2454 "stripes, ignored. logical=%llu\n",
c1c9ff7c 2455 key.objectid, logical);
a2de733c
AJ
2456 goto next;
2457 }
2458
625f1c8d
LB
2459again:
2460 extent_logical = key.objectid;
2461 extent_len = bytes;
2462
a2de733c
AJ
2463 /*
2464 * trim extent to this stripe
2465 */
625f1c8d
LB
2466 if (extent_logical < logical) {
2467 extent_len -= logical - extent_logical;
2468 extent_logical = logical;
a2de733c 2469 }
625f1c8d 2470 if (extent_logical + extent_len >
a2de733c 2471 logical + map->stripe_len) {
625f1c8d
LB
2472 extent_len = logical + map->stripe_len -
2473 extent_logical;
a2de733c
AJ
2474 }
2475
625f1c8d 2476 extent_physical = extent_logical - logical + physical;
ff023aac
SB
2477 extent_dev = scrub_dev;
2478 extent_mirror_num = mirror_num;
2479 if (is_dev_replace)
2480 scrub_remap_extent(fs_info, extent_logical,
2481 extent_len, &extent_physical,
2482 &extent_dev,
2483 &extent_mirror_num);
625f1c8d
LB
2484
2485 ret = btrfs_lookup_csums_range(csum_root, logical,
2486 logical + map->stripe_len - 1,
2487 &sctx->csum_list, 1);
2488 if (ret)
2489 goto out;
2490
ff023aac
SB
2491 ret = scrub_extent(sctx, extent_logical, extent_len,
2492 extent_physical, extent_dev, flags,
2493 generation, extent_mirror_num,
115930cb 2494 extent_logical - logical + physical);
a2de733c
AJ
2495 if (ret)
2496 goto out;
2497
d88d46c6 2498 scrub_free_csums(sctx);
625f1c8d
LB
2499 if (extent_logical + extent_len <
2500 key.objectid + bytes) {
2501 logical += increment;
2502 physical += map->stripe_len;
2503
2504 if (logical < key.objectid + bytes) {
2505 cond_resched();
2506 goto again;
2507 }
2508
2509 if (logical >= logic_end) {
2510 stop_loop = 1;
2511 break;
2512 }
2513 }
a2de733c
AJ
2514next:
2515 path->slots[0]++;
2516 }
71267333 2517 btrfs_release_path(path);
a2de733c
AJ
2518 logical += increment;
2519 physical += map->stripe_len;
d9d181c1 2520 spin_lock(&sctx->stat_lock);
625f1c8d
LB
2521 if (stop_loop)
2522 sctx->stat.last_physical = map->stripes[num].physical +
2523 length;
2524 else
2525 sctx->stat.last_physical = physical;
d9d181c1 2526 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
2527 if (stop_loop)
2528 break;
a2de733c 2529 }
ff023aac 2530out:
a2de733c 2531 /* push queued extents */
d9d181c1 2532 scrub_submit(sctx);
ff023aac
SB
2533 mutex_lock(&sctx->wr_ctx.wr_lock);
2534 scrub_wr_submit(sctx);
2535 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 2536
e7786c3a 2537 blk_finish_plug(&plug);
a2de733c
AJ
2538 btrfs_free_path(path);
2539 return ret < 0 ? ret : 0;
2540}
2541
d9d181c1 2542static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
2543 struct btrfs_device *scrub_dev,
2544 u64 chunk_tree, u64 chunk_objectid,
2545 u64 chunk_offset, u64 length,
ff023aac 2546 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
2547{
2548 struct btrfs_mapping_tree *map_tree =
a36cf8b8 2549 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
2550 struct map_lookup *map;
2551 struct extent_map *em;
2552 int i;
ff023aac 2553 int ret = 0;
a2de733c
AJ
2554
2555 read_lock(&map_tree->map_tree.lock);
2556 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2557 read_unlock(&map_tree->map_tree.lock);
2558
2559 if (!em)
2560 return -EINVAL;
2561
2562 map = (struct map_lookup *)em->bdev;
2563 if (em->start != chunk_offset)
2564 goto out;
2565
2566 if (em->len < length)
2567 goto out;
2568
2569 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 2570 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 2571 map->stripes[i].physical == dev_offset) {
a36cf8b8 2572 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
2573 chunk_offset, length,
2574 is_dev_replace);
a2de733c
AJ
2575 if (ret)
2576 goto out;
2577 }
2578 }
2579out:
2580 free_extent_map(em);
2581
2582 return ret;
2583}
2584
2585static noinline_for_stack
a36cf8b8 2586int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
2587 struct btrfs_device *scrub_dev, u64 start, u64 end,
2588 int is_dev_replace)
a2de733c
AJ
2589{
2590 struct btrfs_dev_extent *dev_extent = NULL;
2591 struct btrfs_path *path;
a36cf8b8 2592 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
2593 struct btrfs_fs_info *fs_info = root->fs_info;
2594 u64 length;
2595 u64 chunk_tree;
2596 u64 chunk_objectid;
2597 u64 chunk_offset;
2598 int ret;
2599 int slot;
2600 struct extent_buffer *l;
2601 struct btrfs_key key;
2602 struct btrfs_key found_key;
2603 struct btrfs_block_group_cache *cache;
ff023aac 2604 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
2605
2606 path = btrfs_alloc_path();
2607 if (!path)
2608 return -ENOMEM;
2609
2610 path->reada = 2;
2611 path->search_commit_root = 1;
2612 path->skip_locking = 1;
2613
a36cf8b8 2614 key.objectid = scrub_dev->devid;
a2de733c
AJ
2615 key.offset = 0ull;
2616 key.type = BTRFS_DEV_EXTENT_KEY;
2617
a2de733c
AJ
2618 while (1) {
2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620 if (ret < 0)
8c51032f
AJ
2621 break;
2622 if (ret > 0) {
2623 if (path->slots[0] >=
2624 btrfs_header_nritems(path->nodes[0])) {
2625 ret = btrfs_next_leaf(root, path);
2626 if (ret)
2627 break;
2628 }
2629 }
a2de733c
AJ
2630
2631 l = path->nodes[0];
2632 slot = path->slots[0];
2633
2634 btrfs_item_key_to_cpu(l, &found_key, slot);
2635
a36cf8b8 2636 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
2637 break;
2638
8c51032f 2639 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2640 break;
2641
2642 if (found_key.offset >= end)
2643 break;
2644
2645 if (found_key.offset < key.offset)
2646 break;
2647
2648 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2649 length = btrfs_dev_extent_length(l, dev_extent);
2650
2651 if (found_key.offset + length <= start) {
2652 key.offset = found_key.offset + length;
71267333 2653 btrfs_release_path(path);
a2de733c
AJ
2654 continue;
2655 }
2656
2657 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2658 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2659 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2660
2661 /*
2662 * get a reference on the corresponding block group to prevent
2663 * the chunk from going away while we scrub it
2664 */
2665 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2666 if (!cache) {
2667 ret = -ENOENT;
8c51032f 2668 break;
a2de733c 2669 }
ff023aac
SB
2670 dev_replace->cursor_right = found_key.offset + length;
2671 dev_replace->cursor_left = found_key.offset;
2672 dev_replace->item_needs_writeback = 1;
a36cf8b8 2673 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
2674 chunk_offset, length, found_key.offset,
2675 is_dev_replace);
2676
2677 /*
2678 * flush, submit all pending read and write bios, afterwards
2679 * wait for them.
2680 * Note that in the dev replace case, a read request causes
2681 * write requests that are submitted in the read completion
2682 * worker. Therefore in the current situation, it is required
2683 * that all write requests are flushed, so that all read and
2684 * write requests are really completed when bios_in_flight
2685 * changes to 0.
2686 */
2687 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2688 scrub_submit(sctx);
2689 mutex_lock(&sctx->wr_ctx.wr_lock);
2690 scrub_wr_submit(sctx);
2691 mutex_unlock(&sctx->wr_ctx.wr_lock);
2692
2693 wait_event(sctx->list_wait,
2694 atomic_read(&sctx->bios_in_flight) == 0);
2695 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2696 atomic_inc(&fs_info->scrubs_paused);
2697 wake_up(&fs_info->scrub_pause_wait);
2698 wait_event(sctx->list_wait,
2699 atomic_read(&sctx->workers_pending) == 0);
2700
2701 mutex_lock(&fs_info->scrub_lock);
2702 while (atomic_read(&fs_info->scrub_pause_req)) {
2703 mutex_unlock(&fs_info->scrub_lock);
2704 wait_event(fs_info->scrub_pause_wait,
2705 atomic_read(&fs_info->scrub_pause_req) == 0);
2706 mutex_lock(&fs_info->scrub_lock);
2707 }
2708 atomic_dec(&fs_info->scrubs_paused);
2709 mutex_unlock(&fs_info->scrub_lock);
2710 wake_up(&fs_info->scrub_pause_wait);
2711
2712 dev_replace->cursor_left = dev_replace->cursor_right;
2713 dev_replace->item_needs_writeback = 1;
a2de733c
AJ
2714 btrfs_put_block_group(cache);
2715 if (ret)
2716 break;
af1be4f8
SB
2717 if (is_dev_replace &&
2718 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
2719 ret = -EIO;
2720 break;
2721 }
2722 if (sctx->stat.malloc_errors > 0) {
2723 ret = -ENOMEM;
2724 break;
2725 }
a2de733c
AJ
2726
2727 key.offset = found_key.offset + length;
71267333 2728 btrfs_release_path(path);
a2de733c
AJ
2729 }
2730
a2de733c 2731 btrfs_free_path(path);
8c51032f
AJ
2732
2733 /*
2734 * ret can still be 1 from search_slot or next_leaf,
2735 * that's not an error
2736 */
2737 return ret < 0 ? ret : 0;
a2de733c
AJ
2738}
2739
a36cf8b8
SB
2740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2741 struct btrfs_device *scrub_dev)
a2de733c
AJ
2742{
2743 int i;
2744 u64 bytenr;
2745 u64 gen;
2746 int ret;
a36cf8b8 2747 struct btrfs_root *root = sctx->dev_root;
a2de733c 2748
87533c47 2749 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
2750 return -EIO;
2751
a2de733c
AJ
2752 gen = root->fs_info->last_trans_committed;
2753
2754 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2755 bytenr = btrfs_sb_offset(i);
a36cf8b8 2756 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
a2de733c
AJ
2757 break;
2758
d9d181c1 2759 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 2760 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 2761 NULL, 1, bytenr);
a2de733c
AJ
2762 if (ret)
2763 return ret;
2764 }
b6bfebc1 2765 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2766
2767 return 0;
2768}
2769
2770/*
2771 * get a reference count on fs_info->scrub_workers. start worker if necessary
2772 */
ff023aac
SB
2773static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2774 int is_dev_replace)
a2de733c 2775{
0dc3b84a 2776 int ret = 0;
a2de733c
AJ
2777
2778 mutex_lock(&fs_info->scrub_lock);
632dd772 2779 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac
SB
2780 if (is_dev_replace)
2781 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2782 &fs_info->generic_worker);
2783 else
2784 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2785 fs_info->thread_pool_size,
2786 &fs_info->generic_worker);
632dd772 2787 fs_info->scrub_workers.idle_thresh = 4;
0dc3b84a
JB
2788 ret = btrfs_start_workers(&fs_info->scrub_workers);
2789 if (ret)
2790 goto out;
ff023aac
SB
2791 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2792 "scrubwrc",
2793 fs_info->thread_pool_size,
2794 &fs_info->generic_worker);
2795 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2796 ret = btrfs_start_workers(
2797 &fs_info->scrub_wr_completion_workers);
2798 if (ret)
2799 goto out;
2800 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2801 &fs_info->generic_worker);
2802 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2803 if (ret)
2804 goto out;
632dd772 2805 }
a2de733c 2806 ++fs_info->scrub_workers_refcnt;
0dc3b84a 2807out:
a2de733c
AJ
2808 mutex_unlock(&fs_info->scrub_lock);
2809
0dc3b84a 2810 return ret;
a2de733c
AJ
2811}
2812
aa1b8cd4 2813static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 2814{
a2de733c 2815 mutex_lock(&fs_info->scrub_lock);
ff023aac 2816 if (--fs_info->scrub_workers_refcnt == 0) {
a2de733c 2817 btrfs_stop_workers(&fs_info->scrub_workers);
ff023aac
SB
2818 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2819 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2820 }
a2de733c
AJ
2821 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2822 mutex_unlock(&fs_info->scrub_lock);
2823}
2824
aa1b8cd4
SB
2825int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2826 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 2827 int readonly, int is_dev_replace)
a2de733c 2828{
d9d181c1 2829 struct scrub_ctx *sctx;
a2de733c
AJ
2830 int ret;
2831 struct btrfs_device *dev;
2832
aa1b8cd4 2833 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
2834 return -EINVAL;
2835
2836 /*
2837 * check some assumptions
2838 */
aa1b8cd4 2839 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
b5d67f64
SB
2840 printk(KERN_ERR
2841 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
aa1b8cd4
SB
2842 fs_info->chunk_root->nodesize,
2843 fs_info->chunk_root->leafsize);
b5d67f64
SB
2844 return -EINVAL;
2845 }
2846
aa1b8cd4 2847 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
2848 /*
2849 * in this case scrub is unable to calculate the checksum
2850 * the way scrub is implemented. Do not handle this
2851 * situation at all because it won't ever happen.
2852 */
2853 printk(KERN_ERR
2854 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
aa1b8cd4 2855 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
2856 return -EINVAL;
2857 }
2858
aa1b8cd4 2859 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64
SB
2860 /* not supported for data w/o checksums */
2861 printk(KERN_ERR
2862 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
aa1b8cd4
SB
2863 fs_info->chunk_root->sectorsize,
2864 (unsigned long long)PAGE_SIZE);
a2de733c
AJ
2865 return -EINVAL;
2866 }
2867
7a9e9987
SB
2868 if (fs_info->chunk_root->nodesize >
2869 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2870 fs_info->chunk_root->sectorsize >
2871 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2872 /*
2873 * would exhaust the array bounds of pagev member in
2874 * struct scrub_block
2875 */
2876 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2877 fs_info->chunk_root->nodesize,
2878 SCRUB_MAX_PAGES_PER_BLOCK,
2879 fs_info->chunk_root->sectorsize,
2880 SCRUB_MAX_PAGES_PER_BLOCK);
2881 return -EINVAL;
2882 }
2883
ff023aac 2884 ret = scrub_workers_get(fs_info, is_dev_replace);
a2de733c
AJ
2885 if (ret)
2886 return ret;
2887
aa1b8cd4
SB
2888 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2889 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 2890 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4
SB
2891 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2892 scrub_workers_put(fs_info);
a2de733c
AJ
2893 return -ENODEV;
2894 }
2895 mutex_lock(&fs_info->scrub_lock);
2896
63a212ab 2897 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 2898 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
2899 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2900 scrub_workers_put(fs_info);
2901 return -EIO;
a2de733c
AJ
2902 }
2903
8dabb742
SB
2904 btrfs_dev_replace_lock(&fs_info->dev_replace);
2905 if (dev->scrub_device ||
2906 (!is_dev_replace &&
2907 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2908 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 2909 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
2910 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2911 scrub_workers_put(fs_info);
a2de733c
AJ
2912 return -EINPROGRESS;
2913 }
8dabb742 2914 btrfs_dev_replace_unlock(&fs_info->dev_replace);
63a212ab 2915 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 2916 if (IS_ERR(sctx)) {
a2de733c 2917 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
2918 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2919 scrub_workers_put(fs_info);
d9d181c1 2920 return PTR_ERR(sctx);
a2de733c 2921 }
d9d181c1
SB
2922 sctx->readonly = readonly;
2923 dev->scrub_device = sctx;
a2de733c
AJ
2924
2925 atomic_inc(&fs_info->scrubs_running);
2926 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2927 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 2928
ff023aac
SB
2929 if (!is_dev_replace) {
2930 down_read(&fs_info->scrub_super_lock);
2931 ret = scrub_supers(sctx, dev);
2932 up_read(&fs_info->scrub_super_lock);
2933 }
a2de733c
AJ
2934
2935 if (!ret)
ff023aac
SB
2936 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2937 is_dev_replace);
a2de733c 2938
b6bfebc1 2939 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2940 atomic_dec(&fs_info->scrubs_running);
2941 wake_up(&fs_info->scrub_pause_wait);
2942
b6bfebc1 2943 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 2944
a2de733c 2945 if (progress)
d9d181c1 2946 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
2947
2948 mutex_lock(&fs_info->scrub_lock);
2949 dev->scrub_device = NULL;
2950 mutex_unlock(&fs_info->scrub_lock);
2951
d9d181c1 2952 scrub_free_ctx(sctx);
aa1b8cd4 2953 scrub_workers_put(fs_info);
a2de733c
AJ
2954
2955 return ret;
2956}
2957
143bede5 2958void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
2959{
2960 struct btrfs_fs_info *fs_info = root->fs_info;
2961
2962 mutex_lock(&fs_info->scrub_lock);
2963 atomic_inc(&fs_info->scrub_pause_req);
2964 while (atomic_read(&fs_info->scrubs_paused) !=
2965 atomic_read(&fs_info->scrubs_running)) {
2966 mutex_unlock(&fs_info->scrub_lock);
2967 wait_event(fs_info->scrub_pause_wait,
2968 atomic_read(&fs_info->scrubs_paused) ==
2969 atomic_read(&fs_info->scrubs_running));
2970 mutex_lock(&fs_info->scrub_lock);
2971 }
2972 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
2973}
2974
143bede5 2975void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
2976{
2977 struct btrfs_fs_info *fs_info = root->fs_info;
2978
2979 atomic_dec(&fs_info->scrub_pause_req);
2980 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
2981}
2982
143bede5 2983void btrfs_scrub_pause_super(struct btrfs_root *root)
a2de733c
AJ
2984{
2985 down_write(&root->fs_info->scrub_super_lock);
a2de733c
AJ
2986}
2987
143bede5 2988void btrfs_scrub_continue_super(struct btrfs_root *root)
a2de733c
AJ
2989{
2990 up_write(&root->fs_info->scrub_super_lock);
a2de733c
AJ
2991}
2992
aa1b8cd4 2993int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 2994{
a2de733c
AJ
2995 mutex_lock(&fs_info->scrub_lock);
2996 if (!atomic_read(&fs_info->scrubs_running)) {
2997 mutex_unlock(&fs_info->scrub_lock);
2998 return -ENOTCONN;
2999 }
3000
3001 atomic_inc(&fs_info->scrub_cancel_req);
3002 while (atomic_read(&fs_info->scrubs_running)) {
3003 mutex_unlock(&fs_info->scrub_lock);
3004 wait_event(fs_info->scrub_pause_wait,
3005 atomic_read(&fs_info->scrubs_running) == 0);
3006 mutex_lock(&fs_info->scrub_lock);
3007 }
3008 atomic_dec(&fs_info->scrub_cancel_req);
3009 mutex_unlock(&fs_info->scrub_lock);
3010
3011 return 0;
3012}
3013
aa1b8cd4
SB
3014int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3015 struct btrfs_device *dev)
49b25e05 3016{
d9d181c1 3017 struct scrub_ctx *sctx;
a2de733c
AJ
3018
3019 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
3020 sctx = dev->scrub_device;
3021 if (!sctx) {
a2de733c
AJ
3022 mutex_unlock(&fs_info->scrub_lock);
3023 return -ENOTCONN;
3024 }
d9d181c1 3025 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3026 while (dev->scrub_device) {
3027 mutex_unlock(&fs_info->scrub_lock);
3028 wait_event(fs_info->scrub_pause_wait,
3029 dev->scrub_device == NULL);
3030 mutex_lock(&fs_info->scrub_lock);
3031 }
3032 mutex_unlock(&fs_info->scrub_lock);
3033
3034 return 0;
3035}
1623edeb 3036
a2de733c
AJ
3037int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3038 struct btrfs_scrub_progress *progress)
3039{
3040 struct btrfs_device *dev;
d9d181c1 3041 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3042
3043 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3044 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3045 if (dev)
d9d181c1
SB
3046 sctx = dev->scrub_device;
3047 if (sctx)
3048 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3049 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3050
d9d181c1 3051 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3052}
ff023aac
SB
3053
3054static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3055 u64 extent_logical, u64 extent_len,
3056 u64 *extent_physical,
3057 struct btrfs_device **extent_dev,
3058 int *extent_mirror_num)
3059{
3060 u64 mapped_length;
3061 struct btrfs_bio *bbio = NULL;
3062 int ret;
3063
3064 mapped_length = extent_len;
3065 ret = btrfs_map_block(fs_info, READ, extent_logical,
3066 &mapped_length, &bbio, 0);
3067 if (ret || !bbio || mapped_length < extent_len ||
3068 !bbio->stripes[0].dev->bdev) {
3069 kfree(bbio);
3070 return;
3071 }
3072
3073 *extent_physical = bbio->stripes[0].physical;
3074 *extent_mirror_num = bbio->mirror_num;
3075 *extent_dev = bbio->stripes[0].dev;
3076 kfree(bbio);
3077}
3078
3079static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3080 struct scrub_wr_ctx *wr_ctx,
3081 struct btrfs_fs_info *fs_info,
3082 struct btrfs_device *dev,
3083 int is_dev_replace)
3084{
3085 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3086
3087 mutex_init(&wr_ctx->wr_lock);
3088 wr_ctx->wr_curr_bio = NULL;
3089 if (!is_dev_replace)
3090 return 0;
3091
3092 WARN_ON(!dev->bdev);
3093 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3094 bio_get_nr_vecs(dev->bdev));
3095 wr_ctx->tgtdev = dev;
3096 atomic_set(&wr_ctx->flush_all_writes, 0);
3097 return 0;
3098}
3099
3100static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3101{
3102 mutex_lock(&wr_ctx->wr_lock);
3103 kfree(wr_ctx->wr_curr_bio);
3104 wr_ctx->wr_curr_bio = NULL;
3105 mutex_unlock(&wr_ctx->wr_lock);
3106}
3107
3108static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3109 int mirror_num, u64 physical_for_dev_replace)
3110{
3111 struct scrub_copy_nocow_ctx *nocow_ctx;
3112 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3113
3114 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3115 if (!nocow_ctx) {
3116 spin_lock(&sctx->stat_lock);
3117 sctx->stat.malloc_errors++;
3118 spin_unlock(&sctx->stat_lock);
3119 return -ENOMEM;
3120 }
3121
3122 scrub_pending_trans_workers_inc(sctx);
3123
3124 nocow_ctx->sctx = sctx;
3125 nocow_ctx->logical = logical;
3126 nocow_ctx->len = len;
3127 nocow_ctx->mirror_num = mirror_num;
3128 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3129 nocow_ctx->work.func = copy_nocow_pages_worker;
3130 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3131 &nocow_ctx->work);
3132
3133 return 0;
3134}
3135
3136static void copy_nocow_pages_worker(struct btrfs_work *work)
3137{
3138 struct scrub_copy_nocow_ctx *nocow_ctx =
3139 container_of(work, struct scrub_copy_nocow_ctx, work);
3140 struct scrub_ctx *sctx = nocow_ctx->sctx;
3141 u64 logical = nocow_ctx->logical;
3142 u64 len = nocow_ctx->len;
3143 int mirror_num = nocow_ctx->mirror_num;
3144 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3145 int ret;
3146 struct btrfs_trans_handle *trans = NULL;
3147 struct btrfs_fs_info *fs_info;
3148 struct btrfs_path *path;
3149 struct btrfs_root *root;
3150 int not_written = 0;
3151
3152 fs_info = sctx->dev_root->fs_info;
3153 root = fs_info->extent_root;
3154
3155 path = btrfs_alloc_path();
3156 if (!path) {
3157 spin_lock(&sctx->stat_lock);
3158 sctx->stat.malloc_errors++;
3159 spin_unlock(&sctx->stat_lock);
3160 not_written = 1;
3161 goto out;
3162 }
3163
3164 trans = btrfs_join_transaction(root);
3165 if (IS_ERR(trans)) {
3166 not_written = 1;
3167 goto out;
3168 }
3169
3170 ret = iterate_inodes_from_logical(logical, fs_info, path,
3171 copy_nocow_pages_for_inode,
3172 nocow_ctx);
3173 if (ret != 0 && ret != -ENOENT) {
3174 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
c1c9ff7c 3175 logical, physical_for_dev_replace, len,
ff023aac
SB
3176 (unsigned long long)mirror_num, ret);
3177 not_written = 1;
3178 goto out;
3179 }
3180
3181out:
3182 if (trans && !IS_ERR(trans))
3183 btrfs_end_transaction(trans, root);
3184 if (not_written)
3185 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3186 num_uncorrectable_read_errors);
3187
3188 btrfs_free_path(path);
3189 kfree(nocow_ctx);
3190
3191 scrub_pending_trans_workers_dec(sctx);
3192}
3193
3194static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3195{
ff023aac 3196 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
826aa0a8 3197 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 3198 struct btrfs_key key;
826aa0a8
MX
3199 struct inode *inode;
3200 struct page *page;
ff023aac
SB
3201 struct btrfs_root *local_root;
3202 u64 physical_for_dev_replace;
3203 u64 len;
826aa0a8 3204 unsigned long index;
6f1c3605 3205 int srcu_index;
826aa0a8
MX
3206 int ret;
3207 int err;
ff023aac
SB
3208
3209 key.objectid = root;
3210 key.type = BTRFS_ROOT_ITEM_KEY;
3211 key.offset = (u64)-1;
6f1c3605
LB
3212
3213 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3214
ff023aac 3215 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
3216 if (IS_ERR(local_root)) {
3217 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 3218 return PTR_ERR(local_root);
6f1c3605 3219 }
ff023aac 3220
edd1400b
MX
3221 if (btrfs_root_refs(&local_root->root_item) == 0) {
3222 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3223 return -ENOENT;
3224 }
3225
ff023aac
SB
3226 key.type = BTRFS_INODE_ITEM_KEY;
3227 key.objectid = inum;
3228 key.offset = 0;
3229 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 3230 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
3231 if (IS_ERR(inode))
3232 return PTR_ERR(inode);
3233
edd1400b
MX
3234 /* Avoid truncate/dio/punch hole.. */
3235 mutex_lock(&inode->i_mutex);
3236 inode_dio_wait(inode);
3237
826aa0a8 3238 ret = 0;
ff023aac
SB
3239 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240 len = nocow_ctx->len;
3241 while (len >= PAGE_CACHE_SIZE) {
ff023aac 3242 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 3243again:
ff023aac
SB
3244 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3245 if (!page) {
3246 pr_err("find_or_create_page() failed\n");
3247 ret = -ENOMEM;
826aa0a8 3248 goto out;
ff023aac
SB
3249 }
3250
3251 if (PageUptodate(page)) {
3252 if (PageDirty(page))
3253 goto next_page;
3254 } else {
3255 ClearPageError(page);
826aa0a8 3256 err = extent_read_full_page(&BTRFS_I(inode)->
ff023aac
SB
3257 io_tree,
3258 page, btrfs_get_extent,
3259 nocow_ctx->mirror_num);
826aa0a8
MX
3260 if (err) {
3261 ret = err;
ff023aac
SB
3262 goto next_page;
3263 }
edd1400b 3264
26b25891 3265 lock_page(page);
edd1400b
MX
3266 /*
3267 * If the page has been remove from the page cache,
3268 * the data on it is meaningless, because it may be
3269 * old one, the new data may be written into the new
3270 * page in the page cache.
3271 */
3272 if (page->mapping != inode->i_mapping) {
3273 page_cache_release(page);
3274 goto again;
3275 }
ff023aac
SB
3276 if (!PageUptodate(page)) {
3277 ret = -EIO;
3278 goto next_page;
3279 }
3280 }
826aa0a8
MX
3281 err = write_page_nocow(nocow_ctx->sctx,
3282 physical_for_dev_replace, page);
3283 if (err)
3284 ret = err;
ff023aac 3285next_page:
826aa0a8
MX
3286 unlock_page(page);
3287 page_cache_release(page);
3288
3289 if (ret)
3290 break;
3291
ff023aac
SB
3292 offset += PAGE_CACHE_SIZE;
3293 physical_for_dev_replace += PAGE_CACHE_SIZE;
3294 len -= PAGE_CACHE_SIZE;
3295 }
826aa0a8 3296out:
edd1400b 3297 mutex_unlock(&inode->i_mutex);
826aa0a8 3298 iput(inode);
ff023aac
SB
3299 return ret;
3300}
3301
3302static int write_page_nocow(struct scrub_ctx *sctx,
3303 u64 physical_for_dev_replace, struct page *page)
3304{
3305 struct bio *bio;
3306 struct btrfs_device *dev;
3307 int ret;
3308 DECLARE_COMPLETION_ONSTACK(compl);
3309
3310 dev = sctx->wr_ctx.tgtdev;
3311 if (!dev)
3312 return -EIO;
3313 if (!dev->bdev) {
3314 printk_ratelimited(KERN_WARNING
3315 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3316 return -EIO;
3317 }
9be3395b 3318 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
3319 if (!bio) {
3320 spin_lock(&sctx->stat_lock);
3321 sctx->stat.malloc_errors++;
3322 spin_unlock(&sctx->stat_lock);
3323 return -ENOMEM;
3324 }
3325 bio->bi_private = &compl;
3326 bio->bi_end_io = scrub_complete_bio_end_io;
3327 bio->bi_size = 0;
3328 bio->bi_sector = physical_for_dev_replace >> 9;
3329 bio->bi_bdev = dev->bdev;
3330 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3331 if (ret != PAGE_CACHE_SIZE) {
3332leave_with_eio:
3333 bio_put(bio);
3334 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3335 return -EIO;
3336 }
3337 btrfsic_submit_bio(WRITE_SYNC, bio);
3338 wait_for_completion(&compl);
3339
3340 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3341 goto leave_with_eio;
3342
3343 bio_put(bio);
3344 return 0;
3345}