]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/scrub.c
Btrfs: add ref_count and free function for btrfs_bio
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 65
af8e2d1d
MX
66struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
af8e2d1d
MX
69 u64 map_length;
70};
71
a2de733c 72struct scrub_page {
b5d67f64
SB
73 struct scrub_block *sblock;
74 struct page *page;
442a4f63 75 struct btrfs_device *dev;
5a6ac9ea 76 struct list_head list;
a2de733c
AJ
77 u64 flags; /* extent flags */
78 u64 generation;
b5d67f64
SB
79 u64 logical;
80 u64 physical;
ff023aac 81 u64 physical_for_dev_replace;
7a9e9987 82 atomic_t ref_count;
b5d67f64
SB
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
a2de733c 88 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
89
90 struct scrub_recover *recover;
a2de733c
AJ
91};
92
93struct scrub_bio {
94 int index;
d9d181c1 95 struct scrub_ctx *sctx;
a36cf8b8 96 struct btrfs_device *dev;
a2de733c
AJ
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
ff023aac
SB
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
b5d67f64 106 int page_count;
a2de733c
AJ
107 int next_free;
108 struct btrfs_work work;
109};
110
b5d67f64 111struct scrub_block {
7a9e9987 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
113 int page_count;
114 atomic_t outstanding_pages;
115 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 116 struct scrub_ctx *sctx;
5a6ac9ea 117 struct scrub_parity *sparity;
b5d67f64
SB
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
442a4f63 122 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
b5d67f64
SB
127 };
128};
129
5a6ac9ea
MX
130/* Used for the chunks with parity stripe such RAID5/6 */
131struct scrub_parity {
132 struct scrub_ctx *sctx;
133
134 struct btrfs_device *scrub_dev;
135
136 u64 logic_start;
137
138 u64 logic_end;
139
140 int nsectors;
141
142 int stripe_len;
143
144 atomic_t ref_count;
145
146 struct list_head spages;
147
148 /* Work of parity check and repair */
149 struct btrfs_work work;
150
151 /* Mark the parity blocks which have data */
152 unsigned long *dbitmap;
153
154 /*
155 * Mark the parity blocks which have data, but errors happen when
156 * read data or check data
157 */
158 unsigned long *ebitmap;
159
160 unsigned long bitmap[0];
161};
162
ff023aac
SB
163struct scrub_wr_ctx {
164 struct scrub_bio *wr_curr_bio;
165 struct btrfs_device *tgtdev;
166 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
167 atomic_t flush_all_writes;
168 struct mutex wr_lock;
169};
170
d9d181c1 171struct scrub_ctx {
ff023aac 172 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 173 struct btrfs_root *dev_root;
a2de733c
AJ
174 int first_free;
175 int curr;
b6bfebc1
SB
176 atomic_t bios_in_flight;
177 atomic_t workers_pending;
a2de733c
AJ
178 spinlock_t list_lock;
179 wait_queue_head_t list_wait;
180 u16 csum_size;
181 struct list_head csum_list;
182 atomic_t cancel_req;
8628764e 183 int readonly;
ff023aac 184 int pages_per_rd_bio;
b5d67f64
SB
185 u32 sectorsize;
186 u32 nodesize;
63a212ab
SB
187
188 int is_dev_replace;
ff023aac 189 struct scrub_wr_ctx wr_ctx;
63a212ab 190
a2de733c
AJ
191 /*
192 * statistics
193 */
194 struct btrfs_scrub_progress stat;
195 spinlock_t stat_lock;
196};
197
0ef8e451 198struct scrub_fixup_nodatasum {
d9d181c1 199 struct scrub_ctx *sctx;
a36cf8b8 200 struct btrfs_device *dev;
0ef8e451
JS
201 u64 logical;
202 struct btrfs_root *root;
203 struct btrfs_work work;
204 int mirror_num;
205};
206
652f25a2
JB
207struct scrub_nocow_inode {
208 u64 inum;
209 u64 offset;
210 u64 root;
211 struct list_head list;
212};
213
ff023aac
SB
214struct scrub_copy_nocow_ctx {
215 struct scrub_ctx *sctx;
216 u64 logical;
217 u64 len;
218 int mirror_num;
219 u64 physical_for_dev_replace;
652f25a2 220 struct list_head inodes;
ff023aac
SB
221 struct btrfs_work work;
222};
223
558540c1
JS
224struct scrub_warning {
225 struct btrfs_path *path;
226 u64 extent_item_size;
558540c1
JS
227 const char *errstr;
228 sector_t sector;
229 u64 logical;
230 struct btrfs_device *dev;
558540c1
JS
231};
232
b6bfebc1
SB
233static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
234static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
235static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
236static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 237static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 238static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 239 struct btrfs_fs_info *fs_info,
ff023aac 240 struct scrub_block *original_sblock,
b5d67f64 241 u64 length, u64 logical,
ff023aac 242 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
243static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
244 struct scrub_block *sblock, int is_metadata,
245 int have_csum, u8 *csum, u64 generation,
af8e2d1d 246 u16 csum_size, int retry_failed_mirror);
b5d67f64
SB
247static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
248 struct scrub_block *sblock,
249 int is_metadata, int have_csum,
250 const u8 *csum, u64 generation,
251 u16 csum_size);
b5d67f64
SB
252static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
253 struct scrub_block *sblock_good,
254 int force_write);
255static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
256 struct scrub_block *sblock_good,
257 int page_num, int force_write);
ff023aac
SB
258static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
259static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
260 int page_num);
b5d67f64
SB
261static int scrub_checksum_data(struct scrub_block *sblock);
262static int scrub_checksum_tree_block(struct scrub_block *sblock);
263static int scrub_checksum_super(struct scrub_block *sblock);
264static void scrub_block_get(struct scrub_block *sblock);
265static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
266static void scrub_page_get(struct scrub_page *spage);
267static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
268static void scrub_parity_get(struct scrub_parity *sparity);
269static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
270static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
271 struct scrub_page *spage);
d9d181c1 272static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 273 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
274 u64 gen, int mirror_num, u8 *csum, int force,
275 u64 physical_for_dev_replace);
1623edeb 276static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
277static void scrub_bio_end_io_worker(struct btrfs_work *work);
278static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
279static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
280 u64 extent_logical, u64 extent_len,
281 u64 *extent_physical,
282 struct btrfs_device **extent_dev,
283 int *extent_mirror_num);
284static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
285 struct scrub_wr_ctx *wr_ctx,
286 struct btrfs_fs_info *fs_info,
287 struct btrfs_device *dev,
288 int is_dev_replace);
289static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
290static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
291 struct scrub_page *spage);
292static void scrub_wr_submit(struct scrub_ctx *sctx);
293static void scrub_wr_bio_end_io(struct bio *bio, int err);
294static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
295static int write_page_nocow(struct scrub_ctx *sctx,
296 u64 physical_for_dev_replace, struct page *page);
297static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 298 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
299static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
300 int mirror_num, u64 physical_for_dev_replace);
301static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 302static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
1623edeb
SB
304
305
b6bfebc1
SB
306static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
307{
308 atomic_inc(&sctx->bios_in_flight);
309}
310
311static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
312{
313 atomic_dec(&sctx->bios_in_flight);
314 wake_up(&sctx->list_wait);
315}
316
cb7ab021 317static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
318{
319 while (atomic_read(&fs_info->scrub_pause_req)) {
320 mutex_unlock(&fs_info->scrub_lock);
321 wait_event(fs_info->scrub_pause_wait,
322 atomic_read(&fs_info->scrub_pause_req) == 0);
323 mutex_lock(&fs_info->scrub_lock);
324 }
325}
326
cb7ab021
WS
327static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
328{
329 atomic_inc(&fs_info->scrubs_paused);
330 wake_up(&fs_info->scrub_pause_wait);
331
332 mutex_lock(&fs_info->scrub_lock);
333 __scrub_blocked_if_needed(fs_info);
334 atomic_dec(&fs_info->scrubs_paused);
335 mutex_unlock(&fs_info->scrub_lock);
336
337 wake_up(&fs_info->scrub_pause_wait);
338}
339
b6bfebc1
SB
340/*
341 * used for workers that require transaction commits (i.e., for the
342 * NOCOW case)
343 */
344static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
345{
346 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
347
348 /*
349 * increment scrubs_running to prevent cancel requests from
350 * completing as long as a worker is running. we must also
351 * increment scrubs_paused to prevent deadlocking on pause
352 * requests used for transactions commits (as the worker uses a
353 * transaction context). it is safe to regard the worker
354 * as paused for all matters practical. effectively, we only
355 * avoid cancellation requests from completing.
356 */
357 mutex_lock(&fs_info->scrub_lock);
358 atomic_inc(&fs_info->scrubs_running);
359 atomic_inc(&fs_info->scrubs_paused);
360 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
361
362 /*
363 * check if @scrubs_running=@scrubs_paused condition
364 * inside wait_event() is not an atomic operation.
365 * which means we may inc/dec @scrub_running/paused
366 * at any time. Let's wake up @scrub_pause_wait as
367 * much as we can to let commit transaction blocked less.
368 */
369 wake_up(&fs_info->scrub_pause_wait);
370
b6bfebc1
SB
371 atomic_inc(&sctx->workers_pending);
372}
373
374/* used for workers that require transaction commits */
375static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
376{
377 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
378
379 /*
380 * see scrub_pending_trans_workers_inc() why we're pretending
381 * to be paused in the scrub counters
382 */
383 mutex_lock(&fs_info->scrub_lock);
384 atomic_dec(&fs_info->scrubs_running);
385 atomic_dec(&fs_info->scrubs_paused);
386 mutex_unlock(&fs_info->scrub_lock);
387 atomic_dec(&sctx->workers_pending);
388 wake_up(&fs_info->scrub_pause_wait);
389 wake_up(&sctx->list_wait);
390}
391
d9d181c1 392static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 393{
d9d181c1 394 while (!list_empty(&sctx->csum_list)) {
a2de733c 395 struct btrfs_ordered_sum *sum;
d9d181c1 396 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
397 struct btrfs_ordered_sum, list);
398 list_del(&sum->list);
399 kfree(sum);
400 }
401}
402
d9d181c1 403static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
404{
405 int i;
a2de733c 406
d9d181c1 407 if (!sctx)
a2de733c
AJ
408 return;
409
ff023aac
SB
410 scrub_free_wr_ctx(&sctx->wr_ctx);
411
b5d67f64 412 /* this can happen when scrub is cancelled */
d9d181c1
SB
413 if (sctx->curr != -1) {
414 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
415
416 for (i = 0; i < sbio->page_count; i++) {
ff023aac 417 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
418 scrub_block_put(sbio->pagev[i]->sblock);
419 }
420 bio_put(sbio->bio);
421 }
422
ff023aac 423 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 424 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
425
426 if (!sbio)
427 break;
a2de733c
AJ
428 kfree(sbio);
429 }
430
d9d181c1
SB
431 scrub_free_csums(sctx);
432 kfree(sctx);
a2de733c
AJ
433}
434
435static noinline_for_stack
63a212ab 436struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 437{
d9d181c1 438 struct scrub_ctx *sctx;
a2de733c 439 int i;
a2de733c 440 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
441 int pages_per_rd_bio;
442 int ret;
a2de733c 443
ff023aac
SB
444 /*
445 * the setting of pages_per_rd_bio is correct for scrub but might
446 * be wrong for the dev_replace code where we might read from
447 * different devices in the initial huge bios. However, that
448 * code is able to correctly handle the case when adding a page
449 * to a bio fails.
450 */
451 if (dev->bdev)
452 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
453 bio_get_nr_vecs(dev->bdev));
454 else
455 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
456 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
457 if (!sctx)
a2de733c 458 goto nomem;
63a212ab 459 sctx->is_dev_replace = is_dev_replace;
ff023aac 460 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 461 sctx->curr = -1;
a36cf8b8 462 sctx->dev_root = dev->dev_root;
ff023aac 463 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
464 struct scrub_bio *sbio;
465
466 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
467 if (!sbio)
468 goto nomem;
d9d181c1 469 sctx->bios[i] = sbio;
a2de733c 470
a2de733c 471 sbio->index = i;
d9d181c1 472 sbio->sctx = sctx;
b5d67f64 473 sbio->page_count = 0;
9e0af237
LB
474 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
475 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 476
ff023aac 477 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 478 sctx->bios[i]->next_free = i + 1;
0ef8e451 479 else
d9d181c1
SB
480 sctx->bios[i]->next_free = -1;
481 }
482 sctx->first_free = 0;
483 sctx->nodesize = dev->dev_root->nodesize;
d9d181c1 484 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
485 atomic_set(&sctx->bios_in_flight, 0);
486 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
487 atomic_set(&sctx->cancel_req, 0);
488 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
489 INIT_LIST_HEAD(&sctx->csum_list);
490
491 spin_lock_init(&sctx->list_lock);
492 spin_lock_init(&sctx->stat_lock);
493 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
494
495 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
496 fs_info->dev_replace.tgtdev, is_dev_replace);
497 if (ret) {
498 scrub_free_ctx(sctx);
499 return ERR_PTR(ret);
500 }
d9d181c1 501 return sctx;
a2de733c
AJ
502
503nomem:
d9d181c1 504 scrub_free_ctx(sctx);
a2de733c
AJ
505 return ERR_PTR(-ENOMEM);
506}
507
ff023aac
SB
508static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
509 void *warn_ctx)
558540c1
JS
510{
511 u64 isize;
512 u32 nlink;
513 int ret;
514 int i;
515 struct extent_buffer *eb;
516 struct btrfs_inode_item *inode_item;
ff023aac 517 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
518 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
519 struct inode_fs_paths *ipath = NULL;
520 struct btrfs_root *local_root;
521 struct btrfs_key root_key;
1d4c08e0 522 struct btrfs_key key;
558540c1
JS
523
524 root_key.objectid = root;
525 root_key.type = BTRFS_ROOT_ITEM_KEY;
526 root_key.offset = (u64)-1;
527 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
528 if (IS_ERR(local_root)) {
529 ret = PTR_ERR(local_root);
530 goto err;
531 }
532
14692cc1
DS
533 /*
534 * this makes the path point to (inum INODE_ITEM ioff)
535 */
1d4c08e0
DS
536 key.objectid = inum;
537 key.type = BTRFS_INODE_ITEM_KEY;
538 key.offset = 0;
539
540 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
541 if (ret) {
542 btrfs_release_path(swarn->path);
543 goto err;
544 }
545
546 eb = swarn->path->nodes[0];
547 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
548 struct btrfs_inode_item);
549 isize = btrfs_inode_size(eb, inode_item);
550 nlink = btrfs_inode_nlink(eb, inode_item);
551 btrfs_release_path(swarn->path);
552
553 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
554 if (IS_ERR(ipath)) {
555 ret = PTR_ERR(ipath);
556 ipath = NULL;
557 goto err;
558 }
558540c1
JS
559 ret = paths_from_inode(inum, ipath);
560
561 if (ret < 0)
562 goto err;
563
564 /*
565 * we deliberately ignore the bit ipath might have been too small to
566 * hold all of the paths here
567 */
568 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
efe120a0 569 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
570 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
571 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 572 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
573 (unsigned long long)swarn->sector, root, inum, offset,
574 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 575 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
576
577 free_ipath(ipath);
578 return 0;
579
580err:
efe120a0 581 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
582 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
583 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 584 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
585 (unsigned long long)swarn->sector, root, inum, offset, ret);
586
587 free_ipath(ipath);
588 return 0;
589}
590
b5d67f64 591static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 592{
a36cf8b8
SB
593 struct btrfs_device *dev;
594 struct btrfs_fs_info *fs_info;
558540c1
JS
595 struct btrfs_path *path;
596 struct btrfs_key found_key;
597 struct extent_buffer *eb;
598 struct btrfs_extent_item *ei;
599 struct scrub_warning swarn;
69917e43
LB
600 unsigned long ptr = 0;
601 u64 extent_item_pos;
602 u64 flags = 0;
558540c1 603 u64 ref_root;
69917e43 604 u32 item_size;
558540c1 605 u8 ref_level;
69917e43 606 int ret;
558540c1 607
a36cf8b8 608 WARN_ON(sblock->page_count < 1);
7a9e9987 609 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
610 fs_info = sblock->sctx->dev_root->fs_info;
611
558540c1 612 path = btrfs_alloc_path();
8b9456da
DS
613 if (!path)
614 return;
558540c1 615
7a9e9987
SB
616 swarn.sector = (sblock->pagev[0]->physical) >> 9;
617 swarn.logical = sblock->pagev[0]->logical;
558540c1 618 swarn.errstr = errstr;
a36cf8b8 619 swarn.dev = NULL;
558540c1 620
69917e43
LB
621 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
622 &flags);
558540c1
JS
623 if (ret < 0)
624 goto out;
625
4692cf58 626 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
627 swarn.extent_item_size = found_key.offset;
628
629 eb = path->nodes[0];
630 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
631 item_size = btrfs_item_size_nr(eb, path->slots[0]);
632
69917e43 633 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 634 do {
6eda71d0
LB
635 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
636 item_size, &ref_root,
637 &ref_level);
606686ee 638 printk_in_rcu(KERN_WARNING
efe120a0 639 "BTRFS: %s at logical %llu on dev %s, "
558540c1 640 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
641 "%llu\n", errstr, swarn.logical,
642 rcu_str_deref(dev->name),
558540c1
JS
643 (unsigned long long)swarn.sector,
644 ref_level ? "node" : "leaf",
645 ret < 0 ? -1 : ref_level,
646 ret < 0 ? -1 : ref_root);
647 } while (ret != 1);
d8fe29e9 648 btrfs_release_path(path);
558540c1 649 } else {
d8fe29e9 650 btrfs_release_path(path);
558540c1 651 swarn.path = path;
a36cf8b8 652 swarn.dev = dev;
7a3ae2f8
JS
653 iterate_extent_inodes(fs_info, found_key.objectid,
654 extent_item_pos, 1,
558540c1
JS
655 scrub_print_warning_inode, &swarn);
656 }
657
658out:
659 btrfs_free_path(path);
558540c1
JS
660}
661
ff023aac 662static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 663{
5da6fcbc 664 struct page *page = NULL;
0ef8e451 665 unsigned long index;
ff023aac 666 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 667 int ret;
5da6fcbc 668 int corrected = 0;
0ef8e451 669 struct btrfs_key key;
5da6fcbc 670 struct inode *inode = NULL;
6f1c3605 671 struct btrfs_fs_info *fs_info;
0ef8e451
JS
672 u64 end = offset + PAGE_SIZE - 1;
673 struct btrfs_root *local_root;
6f1c3605 674 int srcu_index;
0ef8e451
JS
675
676 key.objectid = root;
677 key.type = BTRFS_ROOT_ITEM_KEY;
678 key.offset = (u64)-1;
6f1c3605
LB
679
680 fs_info = fixup->root->fs_info;
681 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
682
683 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
684 if (IS_ERR(local_root)) {
685 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 686 return PTR_ERR(local_root);
6f1c3605 687 }
0ef8e451
JS
688
689 key.type = BTRFS_INODE_ITEM_KEY;
690 key.objectid = inum;
691 key.offset = 0;
6f1c3605
LB
692 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
693 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
694 if (IS_ERR(inode))
695 return PTR_ERR(inode);
696
0ef8e451
JS
697 index = offset >> PAGE_CACHE_SHIFT;
698
699 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
700 if (!page) {
701 ret = -ENOMEM;
702 goto out;
703 }
704
705 if (PageUptodate(page)) {
5da6fcbc
JS
706 if (PageDirty(page)) {
707 /*
708 * we need to write the data to the defect sector. the
709 * data that was in that sector is not in memory,
710 * because the page was modified. we must not write the
711 * modified page to that sector.
712 *
713 * TODO: what could be done here: wait for the delalloc
714 * runner to write out that page (might involve
715 * COW) and see whether the sector is still
716 * referenced afterwards.
717 *
718 * For the meantime, we'll treat this error
719 * incorrectable, although there is a chance that a
720 * later scrub will find the bad sector again and that
721 * there's no dirty page in memory, then.
722 */
723 ret = -EIO;
724 goto out;
725 }
1203b681 726 ret = repair_io_failure(inode, offset, PAGE_SIZE,
5da6fcbc 727 fixup->logical, page,
ffdd2018 728 offset - page_offset(page),
5da6fcbc
JS
729 fixup->mirror_num);
730 unlock_page(page);
731 corrected = !ret;
732 } else {
733 /*
734 * we need to get good data first. the general readpage path
735 * will call repair_io_failure for us, we just have to make
736 * sure we read the bad mirror.
737 */
738 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
739 EXTENT_DAMAGED, GFP_NOFS);
740 if (ret) {
741 /* set_extent_bits should give proper error */
742 WARN_ON(ret > 0);
743 if (ret > 0)
744 ret = -EFAULT;
745 goto out;
746 }
747
748 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
749 btrfs_get_extent,
750 fixup->mirror_num);
751 wait_on_page_locked(page);
752
753 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
754 end, EXTENT_DAMAGED, 0, NULL);
755 if (!corrected)
756 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
757 EXTENT_DAMAGED, GFP_NOFS);
758 }
759
760out:
761 if (page)
762 put_page(page);
7fb18a06
TK
763
764 iput(inode);
0ef8e451
JS
765
766 if (ret < 0)
767 return ret;
768
769 if (ret == 0 && corrected) {
770 /*
771 * we only need to call readpage for one of the inodes belonging
772 * to this extent. so make iterate_extent_inodes stop
773 */
774 return 1;
775 }
776
777 return -EIO;
778}
779
780static void scrub_fixup_nodatasum(struct btrfs_work *work)
781{
782 int ret;
783 struct scrub_fixup_nodatasum *fixup;
d9d181c1 784 struct scrub_ctx *sctx;
0ef8e451 785 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
786 struct btrfs_path *path;
787 int uncorrectable = 0;
788
789 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 790 sctx = fixup->sctx;
0ef8e451
JS
791
792 path = btrfs_alloc_path();
793 if (!path) {
d9d181c1
SB
794 spin_lock(&sctx->stat_lock);
795 ++sctx->stat.malloc_errors;
796 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
797 uncorrectable = 1;
798 goto out;
799 }
800
801 trans = btrfs_join_transaction(fixup->root);
802 if (IS_ERR(trans)) {
803 uncorrectable = 1;
804 goto out;
805 }
806
807 /*
808 * the idea is to trigger a regular read through the standard path. we
809 * read a page from the (failed) logical address by specifying the
810 * corresponding copynum of the failed sector. thus, that readpage is
811 * expected to fail.
812 * that is the point where on-the-fly error correction will kick in
813 * (once it's finished) and rewrite the failed sector if a good copy
814 * can be found.
815 */
816 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
817 path, scrub_fixup_readpage,
818 fixup);
819 if (ret < 0) {
820 uncorrectable = 1;
821 goto out;
822 }
823 WARN_ON(ret != 1);
824
d9d181c1
SB
825 spin_lock(&sctx->stat_lock);
826 ++sctx->stat.corrected_errors;
827 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
828
829out:
830 if (trans && !IS_ERR(trans))
831 btrfs_end_transaction(trans, fixup->root);
832 if (uncorrectable) {
d9d181c1
SB
833 spin_lock(&sctx->stat_lock);
834 ++sctx->stat.uncorrectable_errors;
835 spin_unlock(&sctx->stat_lock);
ff023aac
SB
836 btrfs_dev_replace_stats_inc(
837 &sctx->dev_root->fs_info->dev_replace.
838 num_uncorrectable_read_errors);
efe120a0
FH
839 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
840 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 841 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
842 }
843
844 btrfs_free_path(path);
845 kfree(fixup);
846
b6bfebc1 847 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
848}
849
af8e2d1d
MX
850static inline void scrub_get_recover(struct scrub_recover *recover)
851{
852 atomic_inc(&recover->refs);
853}
854
855static inline void scrub_put_recover(struct scrub_recover *recover)
856{
857 if (atomic_dec_and_test(&recover->refs)) {
6e9606d2 858 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
859 kfree(recover);
860 }
861}
862
a2de733c 863/*
b5d67f64
SB
864 * scrub_handle_errored_block gets called when either verification of the
865 * pages failed or the bio failed to read, e.g. with EIO. In the latter
866 * case, this function handles all pages in the bio, even though only one
867 * may be bad.
868 * The goal of this function is to repair the errored block by using the
869 * contents of one of the mirrors.
a2de733c 870 */
b5d67f64 871static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 872{
d9d181c1 873 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 874 struct btrfs_device *dev;
b5d67f64
SB
875 struct btrfs_fs_info *fs_info;
876 u64 length;
877 u64 logical;
878 u64 generation;
879 unsigned int failed_mirror_index;
880 unsigned int is_metadata;
881 unsigned int have_csum;
882 u8 *csum;
883 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
884 struct scrub_block *sblock_bad;
885 int ret;
886 int mirror_index;
887 int page_num;
888 int success;
558540c1 889 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
890 DEFAULT_RATELIMIT_BURST);
891
892 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 893 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
894 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
895 /*
896 * if we find an error in a super block, we just report it.
897 * They will get written with the next transaction commit
898 * anyway
899 */
900 spin_lock(&sctx->stat_lock);
901 ++sctx->stat.super_errors;
902 spin_unlock(&sctx->stat_lock);
903 return 0;
904 }
b5d67f64 905 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
906 logical = sblock_to_check->pagev[0]->logical;
907 generation = sblock_to_check->pagev[0]->generation;
908 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
909 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
910 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 911 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
912 have_csum = sblock_to_check->pagev[0]->have_csum;
913 csum = sblock_to_check->pagev[0]->csum;
914 dev = sblock_to_check->pagev[0]->dev;
13db62b7 915
ff023aac
SB
916 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
917 sblocks_for_recheck = NULL;
918 goto nodatasum_case;
919 }
920
b5d67f64
SB
921 /*
922 * read all mirrors one after the other. This includes to
923 * re-read the extent or metadata block that failed (that was
924 * the cause that this fixup code is called) another time,
925 * page by page this time in order to know which pages
926 * caused I/O errors and which ones are good (for all mirrors).
927 * It is the goal to handle the situation when more than one
928 * mirror contains I/O errors, but the errors do not
929 * overlap, i.e. the data can be repaired by selecting the
930 * pages from those mirrors without I/O error on the
931 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
932 * would be that mirror #1 has an I/O error on the first page,
933 * the second page is good, and mirror #2 has an I/O error on
934 * the second page, but the first page is good.
935 * Then the first page of the first mirror can be repaired by
936 * taking the first page of the second mirror, and the
937 * second page of the second mirror can be repaired by
938 * copying the contents of the 2nd page of the 1st mirror.
939 * One more note: if the pages of one mirror contain I/O
940 * errors, the checksum cannot be verified. In order to get
941 * the best data for repairing, the first attempt is to find
942 * a mirror without I/O errors and with a validated checksum.
943 * Only if this is not possible, the pages are picked from
944 * mirrors with I/O errors without considering the checksum.
945 * If the latter is the case, at the end, the checksum of the
946 * repaired area is verified in order to correctly maintain
947 * the statistics.
948 */
949
950 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
951 sizeof(*sblocks_for_recheck),
952 GFP_NOFS);
953 if (!sblocks_for_recheck) {
d9d181c1
SB
954 spin_lock(&sctx->stat_lock);
955 sctx->stat.malloc_errors++;
956 sctx->stat.read_errors++;
957 sctx->stat.uncorrectable_errors++;
958 spin_unlock(&sctx->stat_lock);
a36cf8b8 959 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 960 goto out;
a2de733c
AJ
961 }
962
b5d67f64 963 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 964 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
965 logical, sblocks_for_recheck);
966 if (ret) {
d9d181c1
SB
967 spin_lock(&sctx->stat_lock);
968 sctx->stat.read_errors++;
969 sctx->stat.uncorrectable_errors++;
970 spin_unlock(&sctx->stat_lock);
a36cf8b8 971 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
972 goto out;
973 }
974 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
975 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 976
b5d67f64 977 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9 978 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
af8e2d1d 979 csum, generation, sctx->csum_size, 1);
a2de733c 980
b5d67f64
SB
981 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
982 sblock_bad->no_io_error_seen) {
983 /*
984 * the error disappeared after reading page by page, or
985 * the area was part of a huge bio and other parts of the
986 * bio caused I/O errors, or the block layer merged several
987 * read requests into one and the error is caused by a
988 * different bio (usually one of the two latter cases is
989 * the cause)
990 */
d9d181c1
SB
991 spin_lock(&sctx->stat_lock);
992 sctx->stat.unverified_errors++;
5a6ac9ea 993 sblock_to_check->data_corrected = 1;
d9d181c1 994 spin_unlock(&sctx->stat_lock);
a2de733c 995
ff023aac
SB
996 if (sctx->is_dev_replace)
997 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 998 goto out;
a2de733c 999 }
a2de733c 1000
b5d67f64 1001 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
1002 spin_lock(&sctx->stat_lock);
1003 sctx->stat.read_errors++;
1004 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1005 if (__ratelimit(&_rs))
1006 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 1007 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1008 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
1009 spin_lock(&sctx->stat_lock);
1010 sctx->stat.csum_errors++;
1011 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1012 if (__ratelimit(&_rs))
1013 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 1014 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1015 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1016 } else if (sblock_bad->header_error) {
d9d181c1
SB
1017 spin_lock(&sctx->stat_lock);
1018 sctx->stat.verify_errors++;
1019 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1020 if (__ratelimit(&_rs))
1021 scrub_print_warning("checksum/header error",
1022 sblock_to_check);
442a4f63 1023 if (sblock_bad->generation_error)
a36cf8b8 1024 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
1025 BTRFS_DEV_STAT_GENERATION_ERRS);
1026 else
a36cf8b8 1027 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1028 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1029 }
a2de733c 1030
33ef30ad
ID
1031 if (sctx->readonly) {
1032 ASSERT(!sctx->is_dev_replace);
1033 goto out;
1034 }
a2de733c 1035
b5d67f64
SB
1036 if (!is_metadata && !have_csum) {
1037 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 1038
ff023aac
SB
1039nodatasum_case:
1040 WARN_ON(sctx->is_dev_replace);
1041
b5d67f64
SB
1042 /*
1043 * !is_metadata and !have_csum, this means that the data
1044 * might not be COW'ed, that it might be modified
1045 * concurrently. The general strategy to work on the
1046 * commit root does not help in the case when COW is not
1047 * used.
1048 */
1049 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1050 if (!fixup_nodatasum)
1051 goto did_not_correct_error;
d9d181c1 1052 fixup_nodatasum->sctx = sctx;
a36cf8b8 1053 fixup_nodatasum->dev = dev;
b5d67f64
SB
1054 fixup_nodatasum->logical = logical;
1055 fixup_nodatasum->root = fs_info->extent_root;
1056 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 1057 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1058 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1059 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1060 btrfs_queue_work(fs_info->scrub_workers,
1061 &fixup_nodatasum->work);
b5d67f64 1062 goto out;
a2de733c
AJ
1063 }
1064
b5d67f64
SB
1065 /*
1066 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1067 * checksums.
1068 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1069 * errors and also does not have a checksum error.
1070 * If one is found, and if a checksum is present, the full block
1071 * that is known to contain an error is rewritten. Afterwards
1072 * the block is known to be corrected.
1073 * If a mirror is found which is completely correct, and no
1074 * checksum is present, only those pages are rewritten that had
1075 * an I/O error in the block to be repaired, since it cannot be
1076 * determined, which copy of the other pages is better (and it
1077 * could happen otherwise that a correct page would be
1078 * overwritten by a bad one).
1079 */
1080 for (mirror_index = 0;
1081 mirror_index < BTRFS_MAX_MIRRORS &&
1082 sblocks_for_recheck[mirror_index].page_count > 0;
1083 mirror_index++) {
cb2ced73 1084 struct scrub_block *sblock_other;
b5d67f64 1085
cb2ced73
SB
1086 if (mirror_index == failed_mirror_index)
1087 continue;
1088 sblock_other = sblocks_for_recheck + mirror_index;
1089
1090 /* build and submit the bios, check checksums */
34f5c8e9
SB
1091 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1092 have_csum, csum, generation,
af8e2d1d 1093 sctx->csum_size, 0);
34f5c8e9
SB
1094
1095 if (!sblock_other->header_error &&
b5d67f64
SB
1096 !sblock_other->checksum_error &&
1097 sblock_other->no_io_error_seen) {
ff023aac
SB
1098 if (sctx->is_dev_replace) {
1099 scrub_write_block_to_dev_replace(sblock_other);
1100 } else {
1101 int force_write = is_metadata || have_csum;
1102
1103 ret = scrub_repair_block_from_good_copy(
1104 sblock_bad, sblock_other,
1105 force_write);
1106 }
b5d67f64
SB
1107 if (0 == ret)
1108 goto corrected_error;
1109 }
1110 }
a2de733c
AJ
1111
1112 /*
ff023aac
SB
1113 * for dev_replace, pick good pages and write to the target device.
1114 */
1115 if (sctx->is_dev_replace) {
1116 success = 1;
1117 for (page_num = 0; page_num < sblock_bad->page_count;
1118 page_num++) {
1119 int sub_success;
1120
1121 sub_success = 0;
1122 for (mirror_index = 0;
1123 mirror_index < BTRFS_MAX_MIRRORS &&
1124 sblocks_for_recheck[mirror_index].page_count > 0;
1125 mirror_index++) {
1126 struct scrub_block *sblock_other =
1127 sblocks_for_recheck + mirror_index;
1128 struct scrub_page *page_other =
1129 sblock_other->pagev[page_num];
1130
1131 if (!page_other->io_error) {
1132 ret = scrub_write_page_to_dev_replace(
1133 sblock_other, page_num);
1134 if (ret == 0) {
1135 /* succeeded for this page */
1136 sub_success = 1;
1137 break;
1138 } else {
1139 btrfs_dev_replace_stats_inc(
1140 &sctx->dev_root->
1141 fs_info->dev_replace.
1142 num_write_errors);
1143 }
1144 }
1145 }
1146
1147 if (!sub_success) {
1148 /*
1149 * did not find a mirror to fetch the page
1150 * from. scrub_write_page_to_dev_replace()
1151 * handles this case (page->io_error), by
1152 * filling the block with zeros before
1153 * submitting the write request
1154 */
1155 success = 0;
1156 ret = scrub_write_page_to_dev_replace(
1157 sblock_bad, page_num);
1158 if (ret)
1159 btrfs_dev_replace_stats_inc(
1160 &sctx->dev_root->fs_info->
1161 dev_replace.num_write_errors);
1162 }
1163 }
1164
1165 goto out;
1166 }
1167
1168 /*
1169 * for regular scrub, repair those pages that are errored.
1170 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1171 * repaired, continue by picking good copies of those pages.
1172 * Select the good pages from mirrors to rewrite bad pages from
1173 * the area to fix. Afterwards verify the checksum of the block
1174 * that is supposed to be repaired. This verification step is
1175 * only done for the purpose of statistic counting and for the
1176 * final scrub report, whether errors remain.
1177 * A perfect algorithm could make use of the checksum and try
1178 * all possible combinations of pages from the different mirrors
1179 * until the checksum verification succeeds. For example, when
1180 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1181 * of mirror #2 is readable but the final checksum test fails,
1182 * then the 2nd page of mirror #3 could be tried, whether now
1183 * the final checksum succeedes. But this would be a rare
1184 * exception and is therefore not implemented. At least it is
1185 * avoided that the good copy is overwritten.
1186 * A more useful improvement would be to pick the sectors
1187 * without I/O error based on sector sizes (512 bytes on legacy
1188 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1189 * mirror could be repaired by taking 512 byte of a different
1190 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1191 * area are unreadable.
a2de733c 1192 */
a2de733c 1193
b5d67f64
SB
1194 /* can only fix I/O errors from here on */
1195 if (sblock_bad->no_io_error_seen)
1196 goto did_not_correct_error;
1197
1198 success = 1;
1199 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1200 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1201
1202 if (!page_bad->io_error)
a2de733c 1203 continue;
b5d67f64
SB
1204
1205 for (mirror_index = 0;
1206 mirror_index < BTRFS_MAX_MIRRORS &&
1207 sblocks_for_recheck[mirror_index].page_count > 0;
1208 mirror_index++) {
1209 struct scrub_block *sblock_other = sblocks_for_recheck +
1210 mirror_index;
7a9e9987
SB
1211 struct scrub_page *page_other = sblock_other->pagev[
1212 page_num];
b5d67f64
SB
1213
1214 if (!page_other->io_error) {
1215 ret = scrub_repair_page_from_good_copy(
1216 sblock_bad, sblock_other, page_num, 0);
1217 if (0 == ret) {
1218 page_bad->io_error = 0;
1219 break; /* succeeded for this page */
1220 }
1221 }
96e36920 1222 }
a2de733c 1223
b5d67f64
SB
1224 if (page_bad->io_error) {
1225 /* did not find a mirror to copy the page from */
1226 success = 0;
1227 }
a2de733c 1228 }
a2de733c 1229
b5d67f64
SB
1230 if (success) {
1231 if (is_metadata || have_csum) {
1232 /*
1233 * need to verify the checksum now that all
1234 * sectors on disk are repaired (the write
1235 * request for data to be repaired is on its way).
1236 * Just be lazy and use scrub_recheck_block()
1237 * which re-reads the data before the checksum
1238 * is verified, but most likely the data comes out
1239 * of the page cache.
1240 */
34f5c8e9
SB
1241 scrub_recheck_block(fs_info, sblock_bad,
1242 is_metadata, have_csum, csum,
af8e2d1d 1243 generation, sctx->csum_size, 1);
34f5c8e9 1244 if (!sblock_bad->header_error &&
b5d67f64
SB
1245 !sblock_bad->checksum_error &&
1246 sblock_bad->no_io_error_seen)
1247 goto corrected_error;
1248 else
1249 goto did_not_correct_error;
1250 } else {
1251corrected_error:
d9d181c1
SB
1252 spin_lock(&sctx->stat_lock);
1253 sctx->stat.corrected_errors++;
5a6ac9ea 1254 sblock_to_check->data_corrected = 1;
d9d181c1 1255 spin_unlock(&sctx->stat_lock);
606686ee 1256 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1257 "BTRFS: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1258 logical, rcu_str_deref(dev->name));
8628764e 1259 }
b5d67f64
SB
1260 } else {
1261did_not_correct_error:
d9d181c1
SB
1262 spin_lock(&sctx->stat_lock);
1263 sctx->stat.uncorrectable_errors++;
1264 spin_unlock(&sctx->stat_lock);
606686ee 1265 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1266 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1267 logical, rcu_str_deref(dev->name));
96e36920 1268 }
a2de733c 1269
b5d67f64
SB
1270out:
1271 if (sblocks_for_recheck) {
1272 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1273 mirror_index++) {
1274 struct scrub_block *sblock = sblocks_for_recheck +
1275 mirror_index;
af8e2d1d 1276 struct scrub_recover *recover;
b5d67f64
SB
1277 int page_index;
1278
7a9e9987
SB
1279 for (page_index = 0; page_index < sblock->page_count;
1280 page_index++) {
1281 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1282 recover = sblock->pagev[page_index]->recover;
1283 if (recover) {
1284 scrub_put_recover(recover);
1285 sblock->pagev[page_index]->recover =
1286 NULL;
1287 }
7a9e9987
SB
1288 scrub_page_put(sblock->pagev[page_index]);
1289 }
b5d67f64
SB
1290 }
1291 kfree(sblocks_for_recheck);
1292 }
a2de733c 1293
b5d67f64
SB
1294 return 0;
1295}
a2de733c 1296
8e5cfb55 1297static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1298{
8e5cfb55 1299 if (bbio->raid_map) {
e34c330d
ZL
1300 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
1301
8e5cfb55 1302 if (bbio->raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
af8e2d1d
MX
1303 return 3;
1304 else
1305 return 2;
1306 } else {
1307 return (int)bbio->num_stripes;
1308 }
1309}
1310
1311static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
1312 u64 mapped_length,
1313 int nstripes, int mirror,
1314 int *stripe_index,
1315 u64 *stripe_offset)
1316{
1317 int i;
1318
1319 if (raid_map) {
1320 /* RAID5/6 */
1321 for (i = 0; i < nstripes; i++) {
1322 if (raid_map[i] == RAID6_Q_STRIPE ||
1323 raid_map[i] == RAID5_P_STRIPE)
1324 continue;
1325
1326 if (logical >= raid_map[i] &&
1327 logical < raid_map[i] + mapped_length)
1328 break;
1329 }
1330
1331 *stripe_index = i;
1332 *stripe_offset = logical - raid_map[i];
1333 } else {
1334 /* The other RAID type */
1335 *stripe_index = mirror;
1336 *stripe_offset = 0;
1337 }
1338}
1339
d9d181c1 1340static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1341 struct btrfs_fs_info *fs_info,
ff023aac 1342 struct scrub_block *original_sblock,
b5d67f64
SB
1343 u64 length, u64 logical,
1344 struct scrub_block *sblocks_for_recheck)
1345{
af8e2d1d
MX
1346 struct scrub_recover *recover;
1347 struct btrfs_bio *bbio;
af8e2d1d
MX
1348 u64 sublen;
1349 u64 mapped_length;
1350 u64 stripe_offset;
1351 int stripe_index;
b5d67f64
SB
1352 int page_index;
1353 int mirror_index;
af8e2d1d 1354 int nmirrors;
b5d67f64
SB
1355 int ret;
1356
1357 /*
7a9e9987 1358 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1359 * are not used (and not set) in the blocks that are used for
1360 * the recheck procedure
1361 */
1362
1363 page_index = 0;
1364 while (length > 0) {
af8e2d1d
MX
1365 sublen = min_t(u64, length, PAGE_SIZE);
1366 mapped_length = sublen;
1367 bbio = NULL;
a2de733c 1368
b5d67f64
SB
1369 /*
1370 * with a length of PAGE_SIZE, each returned stripe
1371 * represents one mirror
1372 */
af8e2d1d 1373 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
8e5cfb55 1374 &mapped_length, &bbio, 0, 1);
b5d67f64 1375 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1376 btrfs_put_bbio(bbio);
b5d67f64
SB
1377 return -EIO;
1378 }
a2de733c 1379
af8e2d1d
MX
1380 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1381 if (!recover) {
6e9606d2 1382 btrfs_put_bbio(bbio);
af8e2d1d
MX
1383 return -ENOMEM;
1384 }
1385
1386 atomic_set(&recover->refs, 1);
1387 recover->bbio = bbio;
af8e2d1d
MX
1388 recover->map_length = mapped_length;
1389
ff023aac 1390 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
af8e2d1d 1391
8e5cfb55 1392 nmirrors = scrub_nr_raid_mirrors(bbio);
af8e2d1d 1393 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1394 mirror_index++) {
1395 struct scrub_block *sblock;
1396 struct scrub_page *page;
1397
1398 if (mirror_index >= BTRFS_MAX_MIRRORS)
1399 continue;
1400
1401 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1402 sblock->sctx = sctx;
1403 page = kzalloc(sizeof(*page), GFP_NOFS);
1404 if (!page) {
1405leave_nomem:
d9d181c1
SB
1406 spin_lock(&sctx->stat_lock);
1407 sctx->stat.malloc_errors++;
1408 spin_unlock(&sctx->stat_lock);
af8e2d1d 1409 scrub_put_recover(recover);
b5d67f64
SB
1410 return -ENOMEM;
1411 }
7a9e9987
SB
1412 scrub_page_get(page);
1413 sblock->pagev[page_index] = page;
1414 page->logical = logical;
af8e2d1d 1415
8e5cfb55 1416 scrub_stripe_index_and_offset(logical, bbio->raid_map,
af8e2d1d 1417 mapped_length,
e34c330d
ZL
1418 bbio->num_stripes -
1419 bbio->num_tgtdevs,
af8e2d1d
MX
1420 mirror_index,
1421 &stripe_index,
1422 &stripe_offset);
1423 page->physical = bbio->stripes[stripe_index].physical +
1424 stripe_offset;
1425 page->dev = bbio->stripes[stripe_index].dev;
1426
ff023aac
SB
1427 BUG_ON(page_index >= original_sblock->page_count);
1428 page->physical_for_dev_replace =
1429 original_sblock->pagev[page_index]->
1430 physical_for_dev_replace;
7a9e9987 1431 /* for missing devices, dev->bdev is NULL */
7a9e9987 1432 page->mirror_num = mirror_index + 1;
b5d67f64 1433 sblock->page_count++;
7a9e9987
SB
1434 page->page = alloc_page(GFP_NOFS);
1435 if (!page->page)
1436 goto leave_nomem;
af8e2d1d
MX
1437
1438 scrub_get_recover(recover);
1439 page->recover = recover;
b5d67f64 1440 }
af8e2d1d 1441 scrub_put_recover(recover);
b5d67f64
SB
1442 length -= sublen;
1443 logical += sublen;
1444 page_index++;
1445 }
1446
1447 return 0;
96e36920
ID
1448}
1449
af8e2d1d
MX
1450struct scrub_bio_ret {
1451 struct completion event;
1452 int error;
1453};
1454
1455static void scrub_bio_wait_endio(struct bio *bio, int error)
1456{
1457 struct scrub_bio_ret *ret = bio->bi_private;
1458
1459 ret->error = error;
1460 complete(&ret->event);
1461}
1462
1463static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1464{
8e5cfb55 1465 return page->recover && page->recover->bbio->raid_map;
af8e2d1d
MX
1466}
1467
1468static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1469 struct bio *bio,
1470 struct scrub_page *page)
1471{
1472 struct scrub_bio_ret done;
1473 int ret;
1474
1475 init_completion(&done.event);
1476 done.error = 0;
1477 bio->bi_iter.bi_sector = page->logical >> 9;
1478 bio->bi_private = &done;
1479 bio->bi_end_io = scrub_bio_wait_endio;
1480
1481 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
af8e2d1d 1482 page->recover->map_length,
4245215d 1483 page->mirror_num, 0);
af8e2d1d
MX
1484 if (ret)
1485 return ret;
1486
1487 wait_for_completion(&done.event);
1488 if (done.error)
1489 return -EIO;
1490
1491 return 0;
1492}
1493
b5d67f64
SB
1494/*
1495 * this function will check the on disk data for checksum errors, header
1496 * errors and read I/O errors. If any I/O errors happen, the exact pages
1497 * which are errored are marked as being bad. The goal is to enable scrub
1498 * to take those pages that are not errored from all the mirrors so that
1499 * the pages that are errored in the just handled mirror can be repaired.
1500 */
34f5c8e9
SB
1501static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1502 struct scrub_block *sblock, int is_metadata,
1503 int have_csum, u8 *csum, u64 generation,
af8e2d1d 1504 u16 csum_size, int retry_failed_mirror)
96e36920 1505{
b5d67f64 1506 int page_num;
96e36920 1507
b5d67f64
SB
1508 sblock->no_io_error_seen = 1;
1509 sblock->header_error = 0;
1510 sblock->checksum_error = 0;
96e36920 1511
b5d67f64
SB
1512 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1513 struct bio *bio;
7a9e9987 1514 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1515
442a4f63 1516 if (page->dev->bdev == NULL) {
ea9947b4
SB
1517 page->io_error = 1;
1518 sblock->no_io_error_seen = 0;
1519 continue;
1520 }
1521
7a9e9987 1522 WARN_ON(!page->page);
9be3395b 1523 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1524 if (!bio) {
1525 page->io_error = 1;
1526 sblock->no_io_error_seen = 0;
1527 continue;
1528 }
442a4f63 1529 bio->bi_bdev = page->dev->bdev;
b5d67f64 1530
34f5c8e9 1531 bio_add_page(bio, page->page, PAGE_SIZE, 0);
af8e2d1d
MX
1532 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1533 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1534 sblock->no_io_error_seen = 0;
1535 } else {
1536 bio->bi_iter.bi_sector = page->physical >> 9;
1537
1538 if (btrfsic_submit_bio_wait(READ, bio))
1539 sblock->no_io_error_seen = 0;
1540 }
33879d45 1541
b5d67f64
SB
1542 bio_put(bio);
1543 }
96e36920 1544
b5d67f64
SB
1545 if (sblock->no_io_error_seen)
1546 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1547 have_csum, csum, generation,
1548 csum_size);
1549
34f5c8e9 1550 return;
a2de733c
AJ
1551}
1552
17a9be2f
MX
1553static inline int scrub_check_fsid(u8 fsid[],
1554 struct scrub_page *spage)
1555{
1556 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1557 int ret;
1558
1559 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1560 return !ret;
1561}
1562
b5d67f64
SB
1563static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1564 struct scrub_block *sblock,
1565 int is_metadata, int have_csum,
1566 const u8 *csum, u64 generation,
1567 u16 csum_size)
a2de733c 1568{
b5d67f64
SB
1569 int page_num;
1570 u8 calculated_csum[BTRFS_CSUM_SIZE];
1571 u32 crc = ~(u32)0;
b5d67f64
SB
1572 void *mapped_buffer;
1573
7a9e9987 1574 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1575 if (is_metadata) {
1576 struct btrfs_header *h;
1577
7a9e9987 1578 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1579 h = (struct btrfs_header *)mapped_buffer;
1580
3cae210f 1581 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
17a9be2f 1582 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
b5d67f64 1583 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1584 BTRFS_UUID_SIZE)) {
b5d67f64 1585 sblock->header_error = 1;
3cae210f 1586 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1587 sblock->header_error = 1;
1588 sblock->generation_error = 1;
1589 }
b5d67f64
SB
1590 csum = h->csum;
1591 } else {
1592 if (!have_csum)
1593 return;
a2de733c 1594
7a9e9987 1595 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1596 }
a2de733c 1597
b5d67f64
SB
1598 for (page_num = 0;;) {
1599 if (page_num == 0 && is_metadata)
b0496686 1600 crc = btrfs_csum_data(
b5d67f64
SB
1601 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1602 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1603 else
b0496686 1604 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1605
9613bebb 1606 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1607 page_num++;
1608 if (page_num >= sblock->page_count)
1609 break;
7a9e9987 1610 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1611
7a9e9987 1612 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1613 }
1614
1615 btrfs_csum_final(crc, calculated_csum);
1616 if (memcmp(calculated_csum, csum, csum_size))
1617 sblock->checksum_error = 1;
a2de733c
AJ
1618}
1619
b5d67f64
SB
1620static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1621 struct scrub_block *sblock_good,
1622 int force_write)
1623{
1624 int page_num;
1625 int ret = 0;
96e36920 1626
b5d67f64
SB
1627 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1628 int ret_sub;
96e36920 1629
b5d67f64
SB
1630 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1631 sblock_good,
1632 page_num,
1633 force_write);
1634 if (ret_sub)
1635 ret = ret_sub;
a2de733c 1636 }
b5d67f64
SB
1637
1638 return ret;
1639}
1640
1641static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1642 struct scrub_block *sblock_good,
1643 int page_num, int force_write)
1644{
7a9e9987
SB
1645 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1646 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1647
7a9e9987
SB
1648 BUG_ON(page_bad->page == NULL);
1649 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1650 if (force_write || sblock_bad->header_error ||
1651 sblock_bad->checksum_error || page_bad->io_error) {
1652 struct bio *bio;
1653 int ret;
b5d67f64 1654
ff023aac 1655 if (!page_bad->dev->bdev) {
efe120a0
FH
1656 printk_ratelimited(KERN_WARNING "BTRFS: "
1657 "scrub_repair_page_from_good_copy(bdev == NULL) "
1658 "is unexpected!\n");
ff023aac
SB
1659 return -EIO;
1660 }
1661
9be3395b 1662 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1663 if (!bio)
1664 return -EIO;
442a4f63 1665 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1666 bio->bi_iter.bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1667
1668 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1669 if (PAGE_SIZE != ret) {
1670 bio_put(bio);
1671 return -EIO;
13db62b7 1672 }
b5d67f64 1673
33879d45 1674 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1675 btrfs_dev_stat_inc_and_print(page_bad->dev,
1676 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1677 btrfs_dev_replace_stats_inc(
1678 &sblock_bad->sctx->dev_root->fs_info->
1679 dev_replace.num_write_errors);
442a4f63
SB
1680 bio_put(bio);
1681 return -EIO;
1682 }
b5d67f64 1683 bio_put(bio);
a2de733c
AJ
1684 }
1685
b5d67f64
SB
1686 return 0;
1687}
1688
ff023aac
SB
1689static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1690{
1691 int page_num;
1692
5a6ac9ea
MX
1693 /*
1694 * This block is used for the check of the parity on the source device,
1695 * so the data needn't be written into the destination device.
1696 */
1697 if (sblock->sparity)
1698 return;
1699
ff023aac
SB
1700 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1701 int ret;
1702
1703 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1704 if (ret)
1705 btrfs_dev_replace_stats_inc(
1706 &sblock->sctx->dev_root->fs_info->dev_replace.
1707 num_write_errors);
1708 }
1709}
1710
1711static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1712 int page_num)
1713{
1714 struct scrub_page *spage = sblock->pagev[page_num];
1715
1716 BUG_ON(spage->page == NULL);
1717 if (spage->io_error) {
1718 void *mapped_buffer = kmap_atomic(spage->page);
1719
1720 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1721 flush_dcache_page(spage->page);
1722 kunmap_atomic(mapped_buffer);
1723 }
1724 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1725}
1726
1727static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1728 struct scrub_page *spage)
1729{
1730 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1731 struct scrub_bio *sbio;
1732 int ret;
1733
1734 mutex_lock(&wr_ctx->wr_lock);
1735again:
1736 if (!wr_ctx->wr_curr_bio) {
1737 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1738 GFP_NOFS);
1739 if (!wr_ctx->wr_curr_bio) {
1740 mutex_unlock(&wr_ctx->wr_lock);
1741 return -ENOMEM;
1742 }
1743 wr_ctx->wr_curr_bio->sctx = sctx;
1744 wr_ctx->wr_curr_bio->page_count = 0;
1745 }
1746 sbio = wr_ctx->wr_curr_bio;
1747 if (sbio->page_count == 0) {
1748 struct bio *bio;
1749
1750 sbio->physical = spage->physical_for_dev_replace;
1751 sbio->logical = spage->logical;
1752 sbio->dev = wr_ctx->tgtdev;
1753 bio = sbio->bio;
1754 if (!bio) {
9be3395b 1755 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1756 if (!bio) {
1757 mutex_unlock(&wr_ctx->wr_lock);
1758 return -ENOMEM;
1759 }
1760 sbio->bio = bio;
1761 }
1762
1763 bio->bi_private = sbio;
1764 bio->bi_end_io = scrub_wr_bio_end_io;
1765 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1766 bio->bi_iter.bi_sector = sbio->physical >> 9;
ff023aac
SB
1767 sbio->err = 0;
1768 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1769 spage->physical_for_dev_replace ||
1770 sbio->logical + sbio->page_count * PAGE_SIZE !=
1771 spage->logical) {
1772 scrub_wr_submit(sctx);
1773 goto again;
1774 }
1775
1776 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1777 if (ret != PAGE_SIZE) {
1778 if (sbio->page_count < 1) {
1779 bio_put(sbio->bio);
1780 sbio->bio = NULL;
1781 mutex_unlock(&wr_ctx->wr_lock);
1782 return -EIO;
1783 }
1784 scrub_wr_submit(sctx);
1785 goto again;
1786 }
1787
1788 sbio->pagev[sbio->page_count] = spage;
1789 scrub_page_get(spage);
1790 sbio->page_count++;
1791 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1792 scrub_wr_submit(sctx);
1793 mutex_unlock(&wr_ctx->wr_lock);
1794
1795 return 0;
1796}
1797
1798static void scrub_wr_submit(struct scrub_ctx *sctx)
1799{
1800 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1801 struct scrub_bio *sbio;
1802
1803 if (!wr_ctx->wr_curr_bio)
1804 return;
1805
1806 sbio = wr_ctx->wr_curr_bio;
1807 wr_ctx->wr_curr_bio = NULL;
1808 WARN_ON(!sbio->bio->bi_bdev);
1809 scrub_pending_bio_inc(sctx);
1810 /* process all writes in a single worker thread. Then the block layer
1811 * orders the requests before sending them to the driver which
1812 * doubled the write performance on spinning disks when measured
1813 * with Linux 3.5 */
1814 btrfsic_submit_bio(WRITE, sbio->bio);
1815}
1816
1817static void scrub_wr_bio_end_io(struct bio *bio, int err)
1818{
1819 struct scrub_bio *sbio = bio->bi_private;
1820 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1821
1822 sbio->err = err;
1823 sbio->bio = bio;
1824
9e0af237
LB
1825 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1826 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1827 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1828}
1829
1830static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1831{
1832 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1833 struct scrub_ctx *sctx = sbio->sctx;
1834 int i;
1835
1836 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1837 if (sbio->err) {
1838 struct btrfs_dev_replace *dev_replace =
1839 &sbio->sctx->dev_root->fs_info->dev_replace;
1840
1841 for (i = 0; i < sbio->page_count; i++) {
1842 struct scrub_page *spage = sbio->pagev[i];
1843
1844 spage->io_error = 1;
1845 btrfs_dev_replace_stats_inc(&dev_replace->
1846 num_write_errors);
1847 }
1848 }
1849
1850 for (i = 0; i < sbio->page_count; i++)
1851 scrub_page_put(sbio->pagev[i]);
1852
1853 bio_put(sbio->bio);
1854 kfree(sbio);
1855 scrub_pending_bio_dec(sctx);
1856}
1857
1858static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1859{
1860 u64 flags;
1861 int ret;
1862
7a9e9987
SB
1863 WARN_ON(sblock->page_count < 1);
1864 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1865 ret = 0;
1866 if (flags & BTRFS_EXTENT_FLAG_DATA)
1867 ret = scrub_checksum_data(sblock);
1868 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1869 ret = scrub_checksum_tree_block(sblock);
1870 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1871 (void)scrub_checksum_super(sblock);
1872 else
1873 WARN_ON(1);
1874 if (ret)
1875 scrub_handle_errored_block(sblock);
ff023aac
SB
1876
1877 return ret;
a2de733c
AJ
1878}
1879
b5d67f64 1880static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1881{
d9d181c1 1882 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1883 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1884 u8 *on_disk_csum;
1885 struct page *page;
1886 void *buffer;
a2de733c
AJ
1887 u32 crc = ~(u32)0;
1888 int fail = 0;
b5d67f64
SB
1889 u64 len;
1890 int index;
a2de733c 1891
b5d67f64 1892 BUG_ON(sblock->page_count < 1);
7a9e9987 1893 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1894 return 0;
1895
7a9e9987
SB
1896 on_disk_csum = sblock->pagev[0]->csum;
1897 page = sblock->pagev[0]->page;
9613bebb 1898 buffer = kmap_atomic(page);
b5d67f64 1899
d9d181c1 1900 len = sctx->sectorsize;
b5d67f64
SB
1901 index = 0;
1902 for (;;) {
1903 u64 l = min_t(u64, len, PAGE_SIZE);
1904
b0496686 1905 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1906 kunmap_atomic(buffer);
b5d67f64
SB
1907 len -= l;
1908 if (len == 0)
1909 break;
1910 index++;
1911 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1912 BUG_ON(!sblock->pagev[index]->page);
1913 page = sblock->pagev[index]->page;
9613bebb 1914 buffer = kmap_atomic(page);
b5d67f64
SB
1915 }
1916
a2de733c 1917 btrfs_csum_final(crc, csum);
d9d181c1 1918 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1919 fail = 1;
1920
a2de733c
AJ
1921 return fail;
1922}
1923
b5d67f64 1924static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1925{
d9d181c1 1926 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1927 struct btrfs_header *h;
a36cf8b8 1928 struct btrfs_root *root = sctx->dev_root;
a2de733c 1929 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1930 u8 calculated_csum[BTRFS_CSUM_SIZE];
1931 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1932 struct page *page;
1933 void *mapped_buffer;
1934 u64 mapped_size;
1935 void *p;
a2de733c
AJ
1936 u32 crc = ~(u32)0;
1937 int fail = 0;
1938 int crc_fail = 0;
b5d67f64
SB
1939 u64 len;
1940 int index;
1941
1942 BUG_ON(sblock->page_count < 1);
7a9e9987 1943 page = sblock->pagev[0]->page;
9613bebb 1944 mapped_buffer = kmap_atomic(page);
b5d67f64 1945 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1946 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1947
1948 /*
1949 * we don't use the getter functions here, as we
1950 * a) don't have an extent buffer and
1951 * b) the page is already kmapped
1952 */
a2de733c 1953
3cae210f 1954 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1955 ++fail;
1956
3cae210f 1957 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1958 ++fail;
1959
17a9be2f 1960 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
a2de733c
AJ
1961 ++fail;
1962
1963 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1964 BTRFS_UUID_SIZE))
1965 ++fail;
1966
d9d181c1 1967 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1968 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1969 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1970 index = 0;
1971 for (;;) {
1972 u64 l = min_t(u64, len, mapped_size);
1973
b0496686 1974 crc = btrfs_csum_data(p, crc, l);
9613bebb 1975 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1976 len -= l;
1977 if (len == 0)
1978 break;
1979 index++;
1980 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1981 BUG_ON(!sblock->pagev[index]->page);
1982 page = sblock->pagev[index]->page;
9613bebb 1983 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1984 mapped_size = PAGE_SIZE;
1985 p = mapped_buffer;
1986 }
1987
1988 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1989 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1990 ++crc_fail;
1991
a2de733c
AJ
1992 return fail || crc_fail;
1993}
1994
b5d67f64 1995static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1996{
1997 struct btrfs_super_block *s;
d9d181c1 1998 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
1999 u8 calculated_csum[BTRFS_CSUM_SIZE];
2000 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2001 struct page *page;
2002 void *mapped_buffer;
2003 u64 mapped_size;
2004 void *p;
a2de733c 2005 u32 crc = ~(u32)0;
442a4f63
SB
2006 int fail_gen = 0;
2007 int fail_cor = 0;
b5d67f64
SB
2008 u64 len;
2009 int index;
a2de733c 2010
b5d67f64 2011 BUG_ON(sblock->page_count < 1);
7a9e9987 2012 page = sblock->pagev[0]->page;
9613bebb 2013 mapped_buffer = kmap_atomic(page);
b5d67f64 2014 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 2015 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 2016
3cae210f 2017 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 2018 ++fail_cor;
a2de733c 2019
3cae210f 2020 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 2021 ++fail_gen;
a2de733c 2022
17a9be2f 2023 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 2024 ++fail_cor;
a2de733c 2025
b5d67f64
SB
2026 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2027 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2028 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2029 index = 0;
2030 for (;;) {
2031 u64 l = min_t(u64, len, mapped_size);
2032
b0496686 2033 crc = btrfs_csum_data(p, crc, l);
9613bebb 2034 kunmap_atomic(mapped_buffer);
b5d67f64
SB
2035 len -= l;
2036 if (len == 0)
2037 break;
2038 index++;
2039 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
2040 BUG_ON(!sblock->pagev[index]->page);
2041 page = sblock->pagev[index]->page;
9613bebb 2042 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
2043 mapped_size = PAGE_SIZE;
2044 p = mapped_buffer;
2045 }
2046
2047 btrfs_csum_final(crc, calculated_csum);
d9d181c1 2048 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 2049 ++fail_cor;
a2de733c 2050
442a4f63 2051 if (fail_cor + fail_gen) {
a2de733c
AJ
2052 /*
2053 * if we find an error in a super block, we just report it.
2054 * They will get written with the next transaction commit
2055 * anyway
2056 */
d9d181c1
SB
2057 spin_lock(&sctx->stat_lock);
2058 ++sctx->stat.super_errors;
2059 spin_unlock(&sctx->stat_lock);
442a4f63 2060 if (fail_cor)
7a9e9987 2061 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
2062 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2063 else
7a9e9987 2064 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 2065 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
2066 }
2067
442a4f63 2068 return fail_cor + fail_gen;
a2de733c
AJ
2069}
2070
b5d67f64
SB
2071static void scrub_block_get(struct scrub_block *sblock)
2072{
2073 atomic_inc(&sblock->ref_count);
2074}
2075
2076static void scrub_block_put(struct scrub_block *sblock)
2077{
2078 if (atomic_dec_and_test(&sblock->ref_count)) {
2079 int i;
2080
5a6ac9ea
MX
2081 if (sblock->sparity)
2082 scrub_parity_put(sblock->sparity);
2083
b5d67f64 2084 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2085 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2086 kfree(sblock);
2087 }
2088}
2089
7a9e9987
SB
2090static void scrub_page_get(struct scrub_page *spage)
2091{
2092 atomic_inc(&spage->ref_count);
2093}
2094
2095static void scrub_page_put(struct scrub_page *spage)
2096{
2097 if (atomic_dec_and_test(&spage->ref_count)) {
2098 if (spage->page)
2099 __free_page(spage->page);
2100 kfree(spage);
2101 }
2102}
2103
d9d181c1 2104static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2105{
2106 struct scrub_bio *sbio;
2107
d9d181c1 2108 if (sctx->curr == -1)
1623edeb 2109 return;
a2de733c 2110
d9d181c1
SB
2111 sbio = sctx->bios[sctx->curr];
2112 sctx->curr = -1;
b6bfebc1 2113 scrub_pending_bio_inc(sctx);
a2de733c 2114
ff023aac
SB
2115 if (!sbio->bio->bi_bdev) {
2116 /*
2117 * this case should not happen. If btrfs_map_block() is
2118 * wrong, it could happen for dev-replace operations on
2119 * missing devices when no mirrors are available, but in
2120 * this case it should already fail the mount.
2121 * This case is handled correctly (but _very_ slowly).
2122 */
2123 printk_ratelimited(KERN_WARNING
efe120a0 2124 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
ff023aac
SB
2125 bio_endio(sbio->bio, -EIO);
2126 } else {
2127 btrfsic_submit_bio(READ, sbio->bio);
2128 }
a2de733c
AJ
2129}
2130
ff023aac
SB
2131static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2132 struct scrub_page *spage)
a2de733c 2133{
b5d67f64 2134 struct scrub_block *sblock = spage->sblock;
a2de733c 2135 struct scrub_bio *sbio;
69f4cb52 2136 int ret;
a2de733c
AJ
2137
2138again:
2139 /*
2140 * grab a fresh bio or wait for one to become available
2141 */
d9d181c1
SB
2142 while (sctx->curr == -1) {
2143 spin_lock(&sctx->list_lock);
2144 sctx->curr = sctx->first_free;
2145 if (sctx->curr != -1) {
2146 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2147 sctx->bios[sctx->curr]->next_free = -1;
2148 sctx->bios[sctx->curr]->page_count = 0;
2149 spin_unlock(&sctx->list_lock);
a2de733c 2150 } else {
d9d181c1
SB
2151 spin_unlock(&sctx->list_lock);
2152 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2153 }
2154 }
d9d181c1 2155 sbio = sctx->bios[sctx->curr];
b5d67f64 2156 if (sbio->page_count == 0) {
69f4cb52
AJ
2157 struct bio *bio;
2158
b5d67f64
SB
2159 sbio->physical = spage->physical;
2160 sbio->logical = spage->logical;
a36cf8b8 2161 sbio->dev = spage->dev;
b5d67f64
SB
2162 bio = sbio->bio;
2163 if (!bio) {
9be3395b 2164 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
2165 if (!bio)
2166 return -ENOMEM;
2167 sbio->bio = bio;
2168 }
69f4cb52
AJ
2169
2170 bio->bi_private = sbio;
2171 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 2172 bio->bi_bdev = sbio->dev->bdev;
4f024f37 2173 bio->bi_iter.bi_sector = sbio->physical >> 9;
69f4cb52 2174 sbio->err = 0;
b5d67f64
SB
2175 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2176 spage->physical ||
2177 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2178 spage->logical ||
2179 sbio->dev != spage->dev) {
d9d181c1 2180 scrub_submit(sctx);
a2de733c
AJ
2181 goto again;
2182 }
69f4cb52 2183
b5d67f64
SB
2184 sbio->pagev[sbio->page_count] = spage;
2185 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2186 if (ret != PAGE_SIZE) {
2187 if (sbio->page_count < 1) {
2188 bio_put(sbio->bio);
2189 sbio->bio = NULL;
2190 return -EIO;
2191 }
d9d181c1 2192 scrub_submit(sctx);
69f4cb52
AJ
2193 goto again;
2194 }
2195
ff023aac 2196 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2197 atomic_inc(&sblock->outstanding_pages);
2198 sbio->page_count++;
ff023aac 2199 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2200 scrub_submit(sctx);
b5d67f64
SB
2201
2202 return 0;
2203}
2204
d9d181c1 2205static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2206 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2207 u64 gen, int mirror_num, u8 *csum, int force,
2208 u64 physical_for_dev_replace)
b5d67f64
SB
2209{
2210 struct scrub_block *sblock;
2211 int index;
2212
2213 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2214 if (!sblock) {
d9d181c1
SB
2215 spin_lock(&sctx->stat_lock);
2216 sctx->stat.malloc_errors++;
2217 spin_unlock(&sctx->stat_lock);
b5d67f64 2218 return -ENOMEM;
a2de733c 2219 }
b5d67f64 2220
7a9e9987
SB
2221 /* one ref inside this function, plus one for each page added to
2222 * a bio later on */
b5d67f64 2223 atomic_set(&sblock->ref_count, 1);
d9d181c1 2224 sblock->sctx = sctx;
b5d67f64
SB
2225 sblock->no_io_error_seen = 1;
2226
2227 for (index = 0; len > 0; index++) {
7a9e9987 2228 struct scrub_page *spage;
b5d67f64
SB
2229 u64 l = min_t(u64, len, PAGE_SIZE);
2230
7a9e9987
SB
2231 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2232 if (!spage) {
2233leave_nomem:
d9d181c1
SB
2234 spin_lock(&sctx->stat_lock);
2235 sctx->stat.malloc_errors++;
2236 spin_unlock(&sctx->stat_lock);
7a9e9987 2237 scrub_block_put(sblock);
b5d67f64
SB
2238 return -ENOMEM;
2239 }
7a9e9987
SB
2240 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2241 scrub_page_get(spage);
2242 sblock->pagev[index] = spage;
b5d67f64 2243 spage->sblock = sblock;
a36cf8b8 2244 spage->dev = dev;
b5d67f64
SB
2245 spage->flags = flags;
2246 spage->generation = gen;
2247 spage->logical = logical;
2248 spage->physical = physical;
ff023aac 2249 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2250 spage->mirror_num = mirror_num;
2251 if (csum) {
2252 spage->have_csum = 1;
d9d181c1 2253 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2254 } else {
2255 spage->have_csum = 0;
2256 }
2257 sblock->page_count++;
7a9e9987
SB
2258 spage->page = alloc_page(GFP_NOFS);
2259 if (!spage->page)
2260 goto leave_nomem;
b5d67f64
SB
2261 len -= l;
2262 logical += l;
2263 physical += l;
ff023aac 2264 physical_for_dev_replace += l;
b5d67f64
SB
2265 }
2266
7a9e9987 2267 WARN_ON(sblock->page_count == 0);
b5d67f64 2268 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2269 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2270 int ret;
2271
ff023aac 2272 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2273 if (ret) {
2274 scrub_block_put(sblock);
1bc87793 2275 return ret;
b5d67f64 2276 }
1bc87793 2277 }
a2de733c 2278
b5d67f64 2279 if (force)
d9d181c1 2280 scrub_submit(sctx);
a2de733c 2281
b5d67f64
SB
2282 /* last one frees, either here or in bio completion for last page */
2283 scrub_block_put(sblock);
a2de733c
AJ
2284 return 0;
2285}
2286
b5d67f64
SB
2287static void scrub_bio_end_io(struct bio *bio, int err)
2288{
2289 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2290 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2291
2292 sbio->err = err;
2293 sbio->bio = bio;
2294
0339ef2f 2295 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2296}
2297
2298static void scrub_bio_end_io_worker(struct btrfs_work *work)
2299{
2300 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2301 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2302 int i;
2303
ff023aac 2304 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2305 if (sbio->err) {
2306 for (i = 0; i < sbio->page_count; i++) {
2307 struct scrub_page *spage = sbio->pagev[i];
2308
2309 spage->io_error = 1;
2310 spage->sblock->no_io_error_seen = 0;
2311 }
2312 }
2313
2314 /* now complete the scrub_block items that have all pages completed */
2315 for (i = 0; i < sbio->page_count; i++) {
2316 struct scrub_page *spage = sbio->pagev[i];
2317 struct scrub_block *sblock = spage->sblock;
2318
2319 if (atomic_dec_and_test(&sblock->outstanding_pages))
2320 scrub_block_complete(sblock);
2321 scrub_block_put(sblock);
2322 }
2323
b5d67f64
SB
2324 bio_put(sbio->bio);
2325 sbio->bio = NULL;
d9d181c1
SB
2326 spin_lock(&sctx->list_lock);
2327 sbio->next_free = sctx->first_free;
2328 sctx->first_free = sbio->index;
2329 spin_unlock(&sctx->list_lock);
ff023aac
SB
2330
2331 if (sctx->is_dev_replace &&
2332 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2333 mutex_lock(&sctx->wr_ctx.wr_lock);
2334 scrub_wr_submit(sctx);
2335 mutex_unlock(&sctx->wr_ctx.wr_lock);
2336 }
2337
b6bfebc1 2338 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2339}
2340
5a6ac9ea
MX
2341static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2342 unsigned long *bitmap,
2343 u64 start, u64 len)
2344{
2345 int offset;
2346 int nsectors;
2347 int sectorsize = sparity->sctx->dev_root->sectorsize;
2348
2349 if (len >= sparity->stripe_len) {
2350 bitmap_set(bitmap, 0, sparity->nsectors);
2351 return;
2352 }
2353
2354 start -= sparity->logic_start;
2355 offset = (int)do_div(start, sparity->stripe_len);
2356 offset /= sectorsize;
2357 nsectors = (int)len / sectorsize;
2358
2359 if (offset + nsectors <= sparity->nsectors) {
2360 bitmap_set(bitmap, offset, nsectors);
2361 return;
2362 }
2363
2364 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2365 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2366}
2367
2368static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2369 u64 start, u64 len)
2370{
2371 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2372}
2373
2374static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2375 u64 start, u64 len)
2376{
2377 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2378}
2379
b5d67f64
SB
2380static void scrub_block_complete(struct scrub_block *sblock)
2381{
5a6ac9ea
MX
2382 int corrupted = 0;
2383
ff023aac 2384 if (!sblock->no_io_error_seen) {
5a6ac9ea 2385 corrupted = 1;
b5d67f64 2386 scrub_handle_errored_block(sblock);
ff023aac
SB
2387 } else {
2388 /*
2389 * if has checksum error, write via repair mechanism in
2390 * dev replace case, otherwise write here in dev replace
2391 * case.
2392 */
5a6ac9ea
MX
2393 corrupted = scrub_checksum(sblock);
2394 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2395 scrub_write_block_to_dev_replace(sblock);
2396 }
5a6ac9ea
MX
2397
2398 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2399 u64 start = sblock->pagev[0]->logical;
2400 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2401 PAGE_SIZE;
2402
2403 scrub_parity_mark_sectors_error(sblock->sparity,
2404 start, end - start);
2405 }
b5d67f64
SB
2406}
2407
d9d181c1 2408static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2409 u8 *csum)
2410{
2411 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2412 unsigned long index;
a2de733c 2413 unsigned long num_sectors;
a2de733c 2414
d9d181c1
SB
2415 while (!list_empty(&sctx->csum_list)) {
2416 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2417 struct btrfs_ordered_sum, list);
2418 if (sum->bytenr > logical)
2419 return 0;
2420 if (sum->bytenr + sum->len > logical)
2421 break;
2422
d9d181c1 2423 ++sctx->stat.csum_discards;
a2de733c
AJ
2424 list_del(&sum->list);
2425 kfree(sum);
2426 sum = NULL;
2427 }
2428 if (!sum)
2429 return 0;
2430
f51a4a18 2431 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2432 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2433 memcpy(csum, sum->sums + index, sctx->csum_size);
2434 if (index == num_sectors - 1) {
a2de733c
AJ
2435 list_del(&sum->list);
2436 kfree(sum);
2437 }
f51a4a18 2438 return 1;
a2de733c
AJ
2439}
2440
2441/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2442static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2443 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2444 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2445{
2446 int ret;
2447 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2448 u32 blocksize;
2449
2450 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2451 blocksize = sctx->sectorsize;
2452 spin_lock(&sctx->stat_lock);
2453 sctx->stat.data_extents_scrubbed++;
2454 sctx->stat.data_bytes_scrubbed += len;
2455 spin_unlock(&sctx->stat_lock);
b5d67f64 2456 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2457 blocksize = sctx->nodesize;
2458 spin_lock(&sctx->stat_lock);
2459 sctx->stat.tree_extents_scrubbed++;
2460 sctx->stat.tree_bytes_scrubbed += len;
2461 spin_unlock(&sctx->stat_lock);
b5d67f64 2462 } else {
d9d181c1 2463 blocksize = sctx->sectorsize;
ff023aac 2464 WARN_ON(1);
b5d67f64 2465 }
a2de733c
AJ
2466
2467 while (len) {
b5d67f64 2468 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2469 int have_csum = 0;
2470
2471 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2472 /* push csums to sbio */
d9d181c1 2473 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2474 if (have_csum == 0)
d9d181c1 2475 ++sctx->stat.no_csum;
ff023aac
SB
2476 if (sctx->is_dev_replace && !have_csum) {
2477 ret = copy_nocow_pages(sctx, logical, l,
2478 mirror_num,
2479 physical_for_dev_replace);
2480 goto behind_scrub_pages;
2481 }
a2de733c 2482 }
a36cf8b8 2483 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2484 mirror_num, have_csum ? csum : NULL, 0,
2485 physical_for_dev_replace);
2486behind_scrub_pages:
a2de733c
AJ
2487 if (ret)
2488 return ret;
2489 len -= l;
2490 logical += l;
2491 physical += l;
ff023aac 2492 physical_for_dev_replace += l;
a2de733c
AJ
2493 }
2494 return 0;
2495}
2496
5a6ac9ea
MX
2497static int scrub_pages_for_parity(struct scrub_parity *sparity,
2498 u64 logical, u64 len,
2499 u64 physical, struct btrfs_device *dev,
2500 u64 flags, u64 gen, int mirror_num, u8 *csum)
2501{
2502 struct scrub_ctx *sctx = sparity->sctx;
2503 struct scrub_block *sblock;
2504 int index;
2505
2506 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2507 if (!sblock) {
2508 spin_lock(&sctx->stat_lock);
2509 sctx->stat.malloc_errors++;
2510 spin_unlock(&sctx->stat_lock);
2511 return -ENOMEM;
2512 }
2513
2514 /* one ref inside this function, plus one for each page added to
2515 * a bio later on */
2516 atomic_set(&sblock->ref_count, 1);
2517 sblock->sctx = sctx;
2518 sblock->no_io_error_seen = 1;
2519 sblock->sparity = sparity;
2520 scrub_parity_get(sparity);
2521
2522 for (index = 0; len > 0; index++) {
2523 struct scrub_page *spage;
2524 u64 l = min_t(u64, len, PAGE_SIZE);
2525
2526 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2527 if (!spage) {
2528leave_nomem:
2529 spin_lock(&sctx->stat_lock);
2530 sctx->stat.malloc_errors++;
2531 spin_unlock(&sctx->stat_lock);
2532 scrub_block_put(sblock);
2533 return -ENOMEM;
2534 }
2535 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2536 /* For scrub block */
2537 scrub_page_get(spage);
2538 sblock->pagev[index] = spage;
2539 /* For scrub parity */
2540 scrub_page_get(spage);
2541 list_add_tail(&spage->list, &sparity->spages);
2542 spage->sblock = sblock;
2543 spage->dev = dev;
2544 spage->flags = flags;
2545 spage->generation = gen;
2546 spage->logical = logical;
2547 spage->physical = physical;
2548 spage->mirror_num = mirror_num;
2549 if (csum) {
2550 spage->have_csum = 1;
2551 memcpy(spage->csum, csum, sctx->csum_size);
2552 } else {
2553 spage->have_csum = 0;
2554 }
2555 sblock->page_count++;
2556 spage->page = alloc_page(GFP_NOFS);
2557 if (!spage->page)
2558 goto leave_nomem;
2559 len -= l;
2560 logical += l;
2561 physical += l;
2562 }
2563
2564 WARN_ON(sblock->page_count == 0);
2565 for (index = 0; index < sblock->page_count; index++) {
2566 struct scrub_page *spage = sblock->pagev[index];
2567 int ret;
2568
2569 ret = scrub_add_page_to_rd_bio(sctx, spage);
2570 if (ret) {
2571 scrub_block_put(sblock);
2572 return ret;
2573 }
2574 }
2575
2576 /* last one frees, either here or in bio completion for last page */
2577 scrub_block_put(sblock);
2578 return 0;
2579}
2580
2581static int scrub_extent_for_parity(struct scrub_parity *sparity,
2582 u64 logical, u64 len,
2583 u64 physical, struct btrfs_device *dev,
2584 u64 flags, u64 gen, int mirror_num)
2585{
2586 struct scrub_ctx *sctx = sparity->sctx;
2587 int ret;
2588 u8 csum[BTRFS_CSUM_SIZE];
2589 u32 blocksize;
2590
2591 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2592 blocksize = sctx->sectorsize;
2593 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2594 blocksize = sctx->nodesize;
2595 } else {
2596 blocksize = sctx->sectorsize;
2597 WARN_ON(1);
2598 }
2599
2600 while (len) {
2601 u64 l = min_t(u64, len, blocksize);
2602 int have_csum = 0;
2603
2604 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2605 /* push csums to sbio */
2606 have_csum = scrub_find_csum(sctx, logical, l, csum);
2607 if (have_csum == 0)
2608 goto skip;
2609 }
2610 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2611 flags, gen, mirror_num,
2612 have_csum ? csum : NULL);
5a6ac9ea
MX
2613 if (ret)
2614 return ret;
6b6d24b3 2615skip:
5a6ac9ea
MX
2616 len -= l;
2617 logical += l;
2618 physical += l;
2619 }
2620 return 0;
2621}
2622
3b080b25
WS
2623/*
2624 * Given a physical address, this will calculate it's
2625 * logical offset. if this is a parity stripe, it will return
2626 * the most left data stripe's logical offset.
2627 *
2628 * return 0 if it is a data stripe, 1 means parity stripe.
2629 */
2630static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2631 struct map_lookup *map, u64 *offset,
2632 u64 *stripe_start)
3b080b25
WS
2633{
2634 int i;
2635 int j = 0;
2636 u64 stripe_nr;
2637 u64 last_offset;
2638 int stripe_index;
2639 int rot;
2640
2641 last_offset = (physical - map->stripes[num].physical) *
2642 nr_data_stripes(map);
5a6ac9ea
MX
2643 if (stripe_start)
2644 *stripe_start = last_offset;
2645
3b080b25
WS
2646 *offset = last_offset;
2647 for (i = 0; i < nr_data_stripes(map); i++) {
2648 *offset = last_offset + i * map->stripe_len;
2649
2650 stripe_nr = *offset;
2651 do_div(stripe_nr, map->stripe_len);
2652 do_div(stripe_nr, nr_data_stripes(map));
2653
2654 /* Work out the disk rotation on this stripe-set */
2655 rot = do_div(stripe_nr, map->num_stripes);
2656 /* calculate which stripe this data locates */
2657 rot += i;
e4fbaee2 2658 stripe_index = rot % map->num_stripes;
3b080b25
WS
2659 if (stripe_index == num)
2660 return 0;
2661 if (stripe_index < num)
2662 j++;
2663 }
2664 *offset = last_offset + j * map->stripe_len;
2665 return 1;
2666}
2667
5a6ac9ea
MX
2668static void scrub_free_parity(struct scrub_parity *sparity)
2669{
2670 struct scrub_ctx *sctx = sparity->sctx;
2671 struct scrub_page *curr, *next;
2672 int nbits;
2673
2674 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2675 if (nbits) {
2676 spin_lock(&sctx->stat_lock);
2677 sctx->stat.read_errors += nbits;
2678 sctx->stat.uncorrectable_errors += nbits;
2679 spin_unlock(&sctx->stat_lock);
2680 }
2681
2682 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2683 list_del_init(&curr->list);
2684 scrub_page_put(curr);
2685 }
2686
2687 kfree(sparity);
2688}
2689
2690static void scrub_parity_bio_endio(struct bio *bio, int error)
2691{
2692 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2693 struct scrub_ctx *sctx = sparity->sctx;
2694
2695 if (error)
2696 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2697 sparity->nsectors);
2698
2699 scrub_free_parity(sparity);
2700 scrub_pending_bio_dec(sctx);
2701 bio_put(bio);
2702}
2703
2704static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2705{
2706 struct scrub_ctx *sctx = sparity->sctx;
2707 struct bio *bio;
2708 struct btrfs_raid_bio *rbio;
2709 struct scrub_page *spage;
2710 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2711 u64 length;
2712 int ret;
2713
2714 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2715 sparity->nsectors))
2716 goto out;
2717
2718 length = sparity->logic_end - sparity->logic_start + 1;
76035976 2719 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
5a6ac9ea 2720 sparity->logic_start,
8e5cfb55
ZL
2721 &length, &bbio, 0, 1);
2722 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2723 goto bbio_out;
2724
2725 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2726 if (!bio)
2727 goto bbio_out;
2728
2729 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2730 bio->bi_private = sparity;
2731 bio->bi_end_io = scrub_parity_bio_endio;
2732
2733 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
8e5cfb55 2734 length, sparity->scrub_dev,
5a6ac9ea
MX
2735 sparity->dbitmap,
2736 sparity->nsectors);
2737 if (!rbio)
2738 goto rbio_out;
2739
2740 list_for_each_entry(spage, &sparity->spages, list)
2741 raid56_parity_add_scrub_pages(rbio, spage->page,
2742 spage->logical);
2743
2744 scrub_pending_bio_inc(sctx);
2745 raid56_parity_submit_scrub_rbio(rbio);
2746 return;
2747
2748rbio_out:
2749 bio_put(bio);
2750bbio_out:
6e9606d2 2751 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2752 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2753 sparity->nsectors);
2754 spin_lock(&sctx->stat_lock);
2755 sctx->stat.malloc_errors++;
2756 spin_unlock(&sctx->stat_lock);
2757out:
2758 scrub_free_parity(sparity);
2759}
2760
2761static inline int scrub_calc_parity_bitmap_len(int nsectors)
2762{
2763 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2764}
2765
2766static void scrub_parity_get(struct scrub_parity *sparity)
2767{
2768 atomic_inc(&sparity->ref_count);
2769}
2770
2771static void scrub_parity_put(struct scrub_parity *sparity)
2772{
2773 if (!atomic_dec_and_test(&sparity->ref_count))
2774 return;
2775
2776 scrub_parity_check_and_repair(sparity);
2777}
2778
2779static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2780 struct map_lookup *map,
2781 struct btrfs_device *sdev,
2782 struct btrfs_path *path,
2783 u64 logic_start,
2784 u64 logic_end)
2785{
2786 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2787 struct btrfs_root *root = fs_info->extent_root;
2788 struct btrfs_root *csum_root = fs_info->csum_root;
2789 struct btrfs_extent_item *extent;
2790 u64 flags;
2791 int ret;
2792 int slot;
2793 struct extent_buffer *l;
2794 struct btrfs_key key;
2795 u64 generation;
2796 u64 extent_logical;
2797 u64 extent_physical;
2798 u64 extent_len;
2799 struct btrfs_device *extent_dev;
2800 struct scrub_parity *sparity;
2801 int nsectors;
2802 int bitmap_len;
2803 int extent_mirror_num;
2804 int stop_loop = 0;
2805
2806 nsectors = map->stripe_len / root->sectorsize;
2807 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2808 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2809 GFP_NOFS);
2810 if (!sparity) {
2811 spin_lock(&sctx->stat_lock);
2812 sctx->stat.malloc_errors++;
2813 spin_unlock(&sctx->stat_lock);
2814 return -ENOMEM;
2815 }
2816
2817 sparity->stripe_len = map->stripe_len;
2818 sparity->nsectors = nsectors;
2819 sparity->sctx = sctx;
2820 sparity->scrub_dev = sdev;
2821 sparity->logic_start = logic_start;
2822 sparity->logic_end = logic_end;
2823 atomic_set(&sparity->ref_count, 1);
2824 INIT_LIST_HEAD(&sparity->spages);
2825 sparity->dbitmap = sparity->bitmap;
2826 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2827
2828 ret = 0;
2829 while (logic_start < logic_end) {
2830 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2831 key.type = BTRFS_METADATA_ITEM_KEY;
2832 else
2833 key.type = BTRFS_EXTENT_ITEM_KEY;
2834 key.objectid = logic_start;
2835 key.offset = (u64)-1;
2836
2837 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2838 if (ret < 0)
2839 goto out;
2840
2841 if (ret > 0) {
2842 ret = btrfs_previous_extent_item(root, path, 0);
2843 if (ret < 0)
2844 goto out;
2845 if (ret > 0) {
2846 btrfs_release_path(path);
2847 ret = btrfs_search_slot(NULL, root, &key,
2848 path, 0, 0);
2849 if (ret < 0)
2850 goto out;
2851 }
2852 }
2853
2854 stop_loop = 0;
2855 while (1) {
2856 u64 bytes;
2857
2858 l = path->nodes[0];
2859 slot = path->slots[0];
2860 if (slot >= btrfs_header_nritems(l)) {
2861 ret = btrfs_next_leaf(root, path);
2862 if (ret == 0)
2863 continue;
2864 if (ret < 0)
2865 goto out;
2866
2867 stop_loop = 1;
2868 break;
2869 }
2870 btrfs_item_key_to_cpu(l, &key, slot);
2871
2872 if (key.type == BTRFS_METADATA_ITEM_KEY)
2873 bytes = root->nodesize;
2874 else
2875 bytes = key.offset;
2876
2877 if (key.objectid + bytes <= logic_start)
2878 goto next;
2879
2880 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2881 key.type != BTRFS_METADATA_ITEM_KEY)
2882 goto next;
2883
2884 if (key.objectid > logic_end) {
2885 stop_loop = 1;
2886 break;
2887 }
2888
2889 while (key.objectid >= logic_start + map->stripe_len)
2890 logic_start += map->stripe_len;
2891
2892 extent = btrfs_item_ptr(l, slot,
2893 struct btrfs_extent_item);
2894 flags = btrfs_extent_flags(l, extent);
2895 generation = btrfs_extent_generation(l, extent);
2896
2897 if (key.objectid < logic_start &&
2898 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2899 btrfs_err(fs_info,
2900 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2901 key.objectid, logic_start);
2902 goto next;
2903 }
2904again:
2905 extent_logical = key.objectid;
2906 extent_len = bytes;
2907
2908 if (extent_logical < logic_start) {
2909 extent_len -= logic_start - extent_logical;
2910 extent_logical = logic_start;
2911 }
2912
2913 if (extent_logical + extent_len >
2914 logic_start + map->stripe_len)
2915 extent_len = logic_start + map->stripe_len -
2916 extent_logical;
2917
2918 scrub_parity_mark_sectors_data(sparity, extent_logical,
2919 extent_len);
2920
2921 scrub_remap_extent(fs_info, extent_logical,
2922 extent_len, &extent_physical,
2923 &extent_dev,
2924 &extent_mirror_num);
2925
2926 ret = btrfs_lookup_csums_range(csum_root,
2927 extent_logical,
2928 extent_logical + extent_len - 1,
2929 &sctx->csum_list, 1);
2930 if (ret)
2931 goto out;
2932
2933 ret = scrub_extent_for_parity(sparity, extent_logical,
2934 extent_len,
2935 extent_physical,
2936 extent_dev, flags,
2937 generation,
2938 extent_mirror_num);
2939 if (ret)
2940 goto out;
2941
2942 scrub_free_csums(sctx);
2943 if (extent_logical + extent_len <
2944 key.objectid + bytes) {
2945 logic_start += map->stripe_len;
2946
2947 if (logic_start >= logic_end) {
2948 stop_loop = 1;
2949 break;
2950 }
2951
2952 if (logic_start < key.objectid + bytes) {
2953 cond_resched();
2954 goto again;
2955 }
2956 }
2957next:
2958 path->slots[0]++;
2959 }
2960
2961 btrfs_release_path(path);
2962
2963 if (stop_loop)
2964 break;
2965
2966 logic_start += map->stripe_len;
2967 }
2968out:
2969 if (ret < 0)
2970 scrub_parity_mark_sectors_error(sparity, logic_start,
2971 logic_end - logic_start + 1);
2972 scrub_parity_put(sparity);
2973 scrub_submit(sctx);
2974 mutex_lock(&sctx->wr_ctx.wr_lock);
2975 scrub_wr_submit(sctx);
2976 mutex_unlock(&sctx->wr_ctx.wr_lock);
2977
2978 btrfs_release_path(path);
2979 return ret < 0 ? ret : 0;
2980}
2981
d9d181c1 2982static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2983 struct map_lookup *map,
2984 struct btrfs_device *scrub_dev,
ff023aac
SB
2985 int num, u64 base, u64 length,
2986 int is_dev_replace)
a2de733c 2987{
5a6ac9ea 2988 struct btrfs_path *path, *ppath;
a36cf8b8 2989 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
2990 struct btrfs_root *root = fs_info->extent_root;
2991 struct btrfs_root *csum_root = fs_info->csum_root;
2992 struct btrfs_extent_item *extent;
e7786c3a 2993 struct blk_plug plug;
a2de733c
AJ
2994 u64 flags;
2995 int ret;
2996 int slot;
a2de733c 2997 u64 nstripes;
a2de733c
AJ
2998 struct extent_buffer *l;
2999 struct btrfs_key key;
3000 u64 physical;
3001 u64 logical;
625f1c8d 3002 u64 logic_end;
3b080b25 3003 u64 physical_end;
a2de733c 3004 u64 generation;
e12fa9cd 3005 int mirror_num;
7a26285e
AJ
3006 struct reada_control *reada1;
3007 struct reada_control *reada2;
3008 struct btrfs_key key_start;
3009 struct btrfs_key key_end;
a2de733c
AJ
3010 u64 increment = map->stripe_len;
3011 u64 offset;
ff023aac
SB
3012 u64 extent_logical;
3013 u64 extent_physical;
3014 u64 extent_len;
5a6ac9ea
MX
3015 u64 stripe_logical;
3016 u64 stripe_end;
ff023aac
SB
3017 struct btrfs_device *extent_dev;
3018 int extent_mirror_num;
3b080b25 3019 int stop_loop = 0;
53b381b3 3020
a2de733c 3021 nstripes = length;
3b080b25 3022 physical = map->stripes[num].physical;
a2de733c
AJ
3023 offset = 0;
3024 do_div(nstripes, map->stripe_len);
3025 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3026 offset = map->stripe_len * num;
3027 increment = map->stripe_len * map->num_stripes;
193ea74b 3028 mirror_num = 1;
a2de733c
AJ
3029 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3030 int factor = map->num_stripes / map->sub_stripes;
3031 offset = map->stripe_len * (num / map->sub_stripes);
3032 increment = map->stripe_len * factor;
193ea74b 3033 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
3034 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3035 increment = map->stripe_len;
193ea74b 3036 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3037 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3038 increment = map->stripe_len;
193ea74b 3039 mirror_num = num % map->num_stripes + 1;
3b080b25
WS
3040 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3041 BTRFS_BLOCK_GROUP_RAID6)) {
5a6ac9ea 3042 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3043 increment = map->stripe_len * nr_data_stripes(map);
3044 mirror_num = 1;
a2de733c
AJ
3045 } else {
3046 increment = map->stripe_len;
193ea74b 3047 mirror_num = 1;
a2de733c
AJ
3048 }
3049
3050 path = btrfs_alloc_path();
3051 if (!path)
3052 return -ENOMEM;
3053
5a6ac9ea
MX
3054 ppath = btrfs_alloc_path();
3055 if (!ppath) {
3056 btrfs_free_path(ppath);
3057 return -ENOMEM;
3058 }
3059
b5d67f64
SB
3060 /*
3061 * work on commit root. The related disk blocks are static as
3062 * long as COW is applied. This means, it is save to rewrite
3063 * them to repair disk errors without any race conditions
3064 */
a2de733c
AJ
3065 path->search_commit_root = 1;
3066 path->skip_locking = 1;
3067
3068 /*
7a26285e
AJ
3069 * trigger the readahead for extent tree csum tree and wait for
3070 * completion. During readahead, the scrub is officially paused
3071 * to not hold off transaction commits
a2de733c
AJ
3072 */
3073 logical = base + offset;
3b080b25
WS
3074 physical_end = physical + nstripes * map->stripe_len;
3075 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3076 BTRFS_BLOCK_GROUP_RAID6)) {
3077 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3078 map, &logic_end, NULL);
3b080b25
WS
3079 logic_end += base;
3080 } else {
3081 logic_end = logical + increment * nstripes;
3082 }
d9d181c1 3083 wait_event(sctx->list_wait,
b6bfebc1 3084 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3085 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3086
3087 /* FIXME it might be better to start readahead at commit root */
3088 key_start.objectid = logical;
3089 key_start.type = BTRFS_EXTENT_ITEM_KEY;
3090 key_start.offset = (u64)0;
3b080b25 3091 key_end.objectid = logic_end;
3173a18f
JB
3092 key_end.type = BTRFS_METADATA_ITEM_KEY;
3093 key_end.offset = (u64)-1;
7a26285e
AJ
3094 reada1 = btrfs_reada_add(root, &key_start, &key_end);
3095
3096 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3097 key_start.type = BTRFS_EXTENT_CSUM_KEY;
3098 key_start.offset = logical;
3099 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3100 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3101 key_end.offset = logic_end;
7a26285e
AJ
3102 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3103
3104 if (!IS_ERR(reada1))
3105 btrfs_reada_wait(reada1);
3106 if (!IS_ERR(reada2))
3107 btrfs_reada_wait(reada2);
3108
a2de733c
AJ
3109
3110 /*
3111 * collect all data csums for the stripe to avoid seeking during
3112 * the scrub. This might currently (crc32) end up to be about 1MB
3113 */
e7786c3a 3114 blk_start_plug(&plug);
a2de733c 3115
a2de733c
AJ
3116 /*
3117 * now find all extents for each stripe and scrub them
3118 */
a2de733c 3119 ret = 0;
3b080b25
WS
3120 while (physical < physical_end) {
3121 /* for raid56, we skip parity stripe */
3122 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3123 BTRFS_BLOCK_GROUP_RAID6)) {
3124 ret = get_raid56_logic_offset(physical, num,
5a6ac9ea 3125 map, &logical, &stripe_logical);
3b080b25 3126 logical += base;
5a6ac9ea
MX
3127 if (ret) {
3128 stripe_logical += base;
3129 stripe_end = stripe_logical + increment - 1;
3130 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3131 ppath, stripe_logical,
3132 stripe_end);
3133 if (ret)
3134 goto out;
3b080b25 3135 goto skip;
5a6ac9ea 3136 }
3b080b25 3137 }
a2de733c
AJ
3138 /*
3139 * canceled?
3140 */
3141 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3142 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3143 ret = -ECANCELED;
3144 goto out;
3145 }
3146 /*
3147 * check to see if we have to pause
3148 */
3149 if (atomic_read(&fs_info->scrub_pause_req)) {
3150 /* push queued extents */
ff023aac 3151 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 3152 scrub_submit(sctx);
ff023aac
SB
3153 mutex_lock(&sctx->wr_ctx.wr_lock);
3154 scrub_wr_submit(sctx);
3155 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 3156 wait_event(sctx->list_wait,
b6bfebc1 3157 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 3158 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 3159 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3160 }
3161
7c76edb7
WS
3162 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3163 key.type = BTRFS_METADATA_ITEM_KEY;
3164 else
3165 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3166 key.objectid = logical;
625f1c8d 3167 key.offset = (u64)-1;
a2de733c
AJ
3168
3169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3170 if (ret < 0)
3171 goto out;
3173a18f 3172
8c51032f 3173 if (ret > 0) {
ade2e0b3 3174 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3175 if (ret < 0)
3176 goto out;
8c51032f
AJ
3177 if (ret > 0) {
3178 /* there's no smaller item, so stick with the
3179 * larger one */
3180 btrfs_release_path(path);
3181 ret = btrfs_search_slot(NULL, root, &key,
3182 path, 0, 0);
3183 if (ret < 0)
3184 goto out;
3185 }
a2de733c
AJ
3186 }
3187
625f1c8d 3188 stop_loop = 0;
a2de733c 3189 while (1) {
3173a18f
JB
3190 u64 bytes;
3191
a2de733c
AJ
3192 l = path->nodes[0];
3193 slot = path->slots[0];
3194 if (slot >= btrfs_header_nritems(l)) {
3195 ret = btrfs_next_leaf(root, path);
3196 if (ret == 0)
3197 continue;
3198 if (ret < 0)
3199 goto out;
3200
625f1c8d 3201 stop_loop = 1;
a2de733c
AJ
3202 break;
3203 }
3204 btrfs_item_key_to_cpu(l, &key, slot);
3205
3173a18f 3206 if (key.type == BTRFS_METADATA_ITEM_KEY)
707e8a07 3207 bytes = root->nodesize;
3173a18f
JB
3208 else
3209 bytes = key.offset;
3210
3211 if (key.objectid + bytes <= logical)
a2de733c
AJ
3212 goto next;
3213
625f1c8d
LB
3214 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3215 key.type != BTRFS_METADATA_ITEM_KEY)
3216 goto next;
a2de733c 3217
625f1c8d
LB
3218 if (key.objectid >= logical + map->stripe_len) {
3219 /* out of this device extent */
3220 if (key.objectid >= logic_end)
3221 stop_loop = 1;
3222 break;
3223 }
a2de733c
AJ
3224
3225 extent = btrfs_item_ptr(l, slot,
3226 struct btrfs_extent_item);
3227 flags = btrfs_extent_flags(l, extent);
3228 generation = btrfs_extent_generation(l, extent);
3229
3230 if (key.objectid < logical &&
3231 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
efe120a0
FH
3232 btrfs_err(fs_info,
3233 "scrub: tree block %llu spanning "
3234 "stripes, ignored. logical=%llu",
c1c9ff7c 3235 key.objectid, logical);
a2de733c
AJ
3236 goto next;
3237 }
3238
625f1c8d
LB
3239again:
3240 extent_logical = key.objectid;
3241 extent_len = bytes;
3242
a2de733c
AJ
3243 /*
3244 * trim extent to this stripe
3245 */
625f1c8d
LB
3246 if (extent_logical < logical) {
3247 extent_len -= logical - extent_logical;
3248 extent_logical = logical;
a2de733c 3249 }
625f1c8d 3250 if (extent_logical + extent_len >
a2de733c 3251 logical + map->stripe_len) {
625f1c8d
LB
3252 extent_len = logical + map->stripe_len -
3253 extent_logical;
a2de733c
AJ
3254 }
3255
625f1c8d 3256 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3257 extent_dev = scrub_dev;
3258 extent_mirror_num = mirror_num;
3259 if (is_dev_replace)
3260 scrub_remap_extent(fs_info, extent_logical,
3261 extent_len, &extent_physical,
3262 &extent_dev,
3263 &extent_mirror_num);
625f1c8d
LB
3264
3265 ret = btrfs_lookup_csums_range(csum_root, logical,
3266 logical + map->stripe_len - 1,
3267 &sctx->csum_list, 1);
3268 if (ret)
3269 goto out;
3270
ff023aac
SB
3271 ret = scrub_extent(sctx, extent_logical, extent_len,
3272 extent_physical, extent_dev, flags,
3273 generation, extent_mirror_num,
115930cb 3274 extent_logical - logical + physical);
a2de733c
AJ
3275 if (ret)
3276 goto out;
3277
d88d46c6 3278 scrub_free_csums(sctx);
625f1c8d
LB
3279 if (extent_logical + extent_len <
3280 key.objectid + bytes) {
3b080b25
WS
3281 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
3282 BTRFS_BLOCK_GROUP_RAID6)) {
3283 /*
3284 * loop until we find next data stripe
3285 * or we have finished all stripes.
3286 */
5a6ac9ea
MX
3287loop:
3288 physical += map->stripe_len;
3289 ret = get_raid56_logic_offset(physical,
3290 num, map, &logical,
3291 &stripe_logical);
3292 logical += base;
3293
3294 if (ret && physical < physical_end) {
3295 stripe_logical += base;
3296 stripe_end = stripe_logical +
3297 increment - 1;
3298 ret = scrub_raid56_parity(sctx,
3299 map, scrub_dev, ppath,
3300 stripe_logical,
3301 stripe_end);
3302 if (ret)
3303 goto out;
3304 goto loop;
3305 }
3b080b25
WS
3306 } else {
3307 physical += map->stripe_len;
3308 logical += increment;
3309 }
625f1c8d
LB
3310 if (logical < key.objectid + bytes) {
3311 cond_resched();
3312 goto again;
3313 }
3314
3b080b25 3315 if (physical >= physical_end) {
625f1c8d
LB
3316 stop_loop = 1;
3317 break;
3318 }
3319 }
a2de733c
AJ
3320next:
3321 path->slots[0]++;
3322 }
71267333 3323 btrfs_release_path(path);
3b080b25 3324skip:
a2de733c
AJ
3325 logical += increment;
3326 physical += map->stripe_len;
d9d181c1 3327 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3328 if (stop_loop)
3329 sctx->stat.last_physical = map->stripes[num].physical +
3330 length;
3331 else
3332 sctx->stat.last_physical = physical;
d9d181c1 3333 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3334 if (stop_loop)
3335 break;
a2de733c 3336 }
ff023aac 3337out:
a2de733c 3338 /* push queued extents */
d9d181c1 3339 scrub_submit(sctx);
ff023aac
SB
3340 mutex_lock(&sctx->wr_ctx.wr_lock);
3341 scrub_wr_submit(sctx);
3342 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 3343
e7786c3a 3344 blk_finish_plug(&plug);
a2de733c 3345 btrfs_free_path(path);
5a6ac9ea 3346 btrfs_free_path(ppath);
a2de733c
AJ
3347 return ret < 0 ? ret : 0;
3348}
3349
d9d181c1 3350static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
3351 struct btrfs_device *scrub_dev,
3352 u64 chunk_tree, u64 chunk_objectid,
3353 u64 chunk_offset, u64 length,
ff023aac 3354 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
3355{
3356 struct btrfs_mapping_tree *map_tree =
a36cf8b8 3357 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
3358 struct map_lookup *map;
3359 struct extent_map *em;
3360 int i;
ff023aac 3361 int ret = 0;
a2de733c
AJ
3362
3363 read_lock(&map_tree->map_tree.lock);
3364 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3365 read_unlock(&map_tree->map_tree.lock);
3366
3367 if (!em)
3368 return -EINVAL;
3369
3370 map = (struct map_lookup *)em->bdev;
3371 if (em->start != chunk_offset)
3372 goto out;
3373
3374 if (em->len < length)
3375 goto out;
3376
3377 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3378 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3379 map->stripes[i].physical == dev_offset) {
a36cf8b8 3380 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
3381 chunk_offset, length,
3382 is_dev_replace);
a2de733c
AJ
3383 if (ret)
3384 goto out;
3385 }
3386 }
3387out:
3388 free_extent_map(em);
3389
3390 return ret;
3391}
3392
3393static noinline_for_stack
a36cf8b8 3394int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
3395 struct btrfs_device *scrub_dev, u64 start, u64 end,
3396 int is_dev_replace)
a2de733c
AJ
3397{
3398 struct btrfs_dev_extent *dev_extent = NULL;
3399 struct btrfs_path *path;
a36cf8b8 3400 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
3401 struct btrfs_fs_info *fs_info = root->fs_info;
3402 u64 length;
3403 u64 chunk_tree;
3404 u64 chunk_objectid;
3405 u64 chunk_offset;
3406 int ret;
3407 int slot;
3408 struct extent_buffer *l;
3409 struct btrfs_key key;
3410 struct btrfs_key found_key;
3411 struct btrfs_block_group_cache *cache;
ff023aac 3412 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3413
3414 path = btrfs_alloc_path();
3415 if (!path)
3416 return -ENOMEM;
3417
3418 path->reada = 2;
3419 path->search_commit_root = 1;
3420 path->skip_locking = 1;
3421
a36cf8b8 3422 key.objectid = scrub_dev->devid;
a2de733c
AJ
3423 key.offset = 0ull;
3424 key.type = BTRFS_DEV_EXTENT_KEY;
3425
a2de733c
AJ
3426 while (1) {
3427 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3428 if (ret < 0)
8c51032f
AJ
3429 break;
3430 if (ret > 0) {
3431 if (path->slots[0] >=
3432 btrfs_header_nritems(path->nodes[0])) {
3433 ret = btrfs_next_leaf(root, path);
3434 if (ret)
3435 break;
3436 }
3437 }
a2de733c
AJ
3438
3439 l = path->nodes[0];
3440 slot = path->slots[0];
3441
3442 btrfs_item_key_to_cpu(l, &found_key, slot);
3443
a36cf8b8 3444 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3445 break;
3446
962a298f 3447 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3448 break;
3449
3450 if (found_key.offset >= end)
3451 break;
3452
3453 if (found_key.offset < key.offset)
3454 break;
3455
3456 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3457 length = btrfs_dev_extent_length(l, dev_extent);
3458
ced96edc
QW
3459 if (found_key.offset + length <= start)
3460 goto skip;
a2de733c
AJ
3461
3462 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3463 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3464 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3465
3466 /*
3467 * get a reference on the corresponding block group to prevent
3468 * the chunk from going away while we scrub it
3469 */
3470 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3471
3472 /* some chunks are removed but not committed to disk yet,
3473 * continue scrubbing */
3474 if (!cache)
3475 goto skip;
3476
ff023aac
SB
3477 dev_replace->cursor_right = found_key.offset + length;
3478 dev_replace->cursor_left = found_key.offset;
3479 dev_replace->item_needs_writeback = 1;
a36cf8b8 3480 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
3481 chunk_offset, length, found_key.offset,
3482 is_dev_replace);
3483
3484 /*
3485 * flush, submit all pending read and write bios, afterwards
3486 * wait for them.
3487 * Note that in the dev replace case, a read request causes
3488 * write requests that are submitted in the read completion
3489 * worker. Therefore in the current situation, it is required
3490 * that all write requests are flushed, so that all read and
3491 * write requests are really completed when bios_in_flight
3492 * changes to 0.
3493 */
3494 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3495 scrub_submit(sctx);
3496 mutex_lock(&sctx->wr_ctx.wr_lock);
3497 scrub_wr_submit(sctx);
3498 mutex_unlock(&sctx->wr_ctx.wr_lock);
3499
3500 wait_event(sctx->list_wait,
3501 atomic_read(&sctx->bios_in_flight) == 0);
12cf9372
WS
3502 atomic_inc(&fs_info->scrubs_paused);
3503 wake_up(&fs_info->scrub_pause_wait);
3504
3505 /*
3506 * must be called before we decrease @scrub_paused.
3507 * make sure we don't block transaction commit while
3508 * we are waiting pending workers finished.
3509 */
ff023aac
SB
3510 wait_event(sctx->list_wait,
3511 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
3512 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3513
3514 mutex_lock(&fs_info->scrub_lock);
3515 __scrub_blocked_if_needed(fs_info);
3516 atomic_dec(&fs_info->scrubs_paused);
3517 mutex_unlock(&fs_info->scrub_lock);
3518 wake_up(&fs_info->scrub_pause_wait);
ff023aac 3519
a2de733c
AJ
3520 btrfs_put_block_group(cache);
3521 if (ret)
3522 break;
af1be4f8
SB
3523 if (is_dev_replace &&
3524 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3525 ret = -EIO;
3526 break;
3527 }
3528 if (sctx->stat.malloc_errors > 0) {
3529 ret = -ENOMEM;
3530 break;
3531 }
a2de733c 3532
539f358a
ID
3533 dev_replace->cursor_left = dev_replace->cursor_right;
3534 dev_replace->item_needs_writeback = 1;
ced96edc 3535skip:
a2de733c 3536 key.offset = found_key.offset + length;
71267333 3537 btrfs_release_path(path);
a2de733c
AJ
3538 }
3539
a2de733c 3540 btrfs_free_path(path);
8c51032f
AJ
3541
3542 /*
3543 * ret can still be 1 from search_slot or next_leaf,
3544 * that's not an error
3545 */
3546 return ret < 0 ? ret : 0;
a2de733c
AJ
3547}
3548
a36cf8b8
SB
3549static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3550 struct btrfs_device *scrub_dev)
a2de733c
AJ
3551{
3552 int i;
3553 u64 bytenr;
3554 u64 gen;
3555 int ret;
a36cf8b8 3556 struct btrfs_root *root = sctx->dev_root;
a2de733c 3557
87533c47 3558 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
3559 return -EIO;
3560
5f546063
MX
3561 /* Seed devices of a new filesystem has their own generation. */
3562 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3563 gen = scrub_dev->generation;
3564 else
3565 gen = root->fs_info->last_trans_committed;
a2de733c
AJ
3566
3567 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3568 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3569 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3570 scrub_dev->commit_total_bytes)
a2de733c
AJ
3571 break;
3572
d9d181c1 3573 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3574 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3575 NULL, 1, bytenr);
a2de733c
AJ
3576 if (ret)
3577 return ret;
3578 }
b6bfebc1 3579 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3580
3581 return 0;
3582}
3583
3584/*
3585 * get a reference count on fs_info->scrub_workers. start worker if necessary
3586 */
ff023aac
SB
3587static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3588 int is_dev_replace)
a2de733c 3589{
0dc3b84a 3590 int ret = 0;
0339ef2f
QW
3591 int flags = WQ_FREEZABLE | WQ_UNBOUND;
3592 int max_active = fs_info->thread_pool_size;
a2de733c 3593
632dd772 3594 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 3595 if (is_dev_replace)
0339ef2f
QW
3596 fs_info->scrub_workers =
3597 btrfs_alloc_workqueue("btrfs-scrub", flags,
3598 1, 4);
ff023aac 3599 else
0339ef2f
QW
3600 fs_info->scrub_workers =
3601 btrfs_alloc_workqueue("btrfs-scrub", flags,
3602 max_active, 4);
3603 if (!fs_info->scrub_workers) {
3604 ret = -ENOMEM;
0dc3b84a 3605 goto out;
0339ef2f
QW
3606 }
3607 fs_info->scrub_wr_completion_workers =
3608 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3609 max_active, 2);
3610 if (!fs_info->scrub_wr_completion_workers) {
3611 ret = -ENOMEM;
ff023aac 3612 goto out;
0339ef2f
QW
3613 }
3614 fs_info->scrub_nocow_workers =
3615 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3616 if (!fs_info->scrub_nocow_workers) {
3617 ret = -ENOMEM;
ff023aac 3618 goto out;
0339ef2f 3619 }
632dd772 3620 }
a2de733c 3621 ++fs_info->scrub_workers_refcnt;
0dc3b84a 3622out:
0dc3b84a 3623 return ret;
a2de733c
AJ
3624}
3625
aa1b8cd4 3626static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 3627{
ff023aac 3628 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
3629 btrfs_destroy_workqueue(fs_info->scrub_workers);
3630 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3631 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
ff023aac 3632 }
a2de733c 3633 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
3634}
3635
aa1b8cd4
SB
3636int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3637 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3638 int readonly, int is_dev_replace)
a2de733c 3639{
d9d181c1 3640 struct scrub_ctx *sctx;
a2de733c
AJ
3641 int ret;
3642 struct btrfs_device *dev;
5d68da3b 3643 struct rcu_string *name;
a2de733c 3644
aa1b8cd4 3645 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
3646 return -EINVAL;
3647
aa1b8cd4 3648 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3649 /*
3650 * in this case scrub is unable to calculate the checksum
3651 * the way scrub is implemented. Do not handle this
3652 * situation at all because it won't ever happen.
3653 */
efe120a0
FH
3654 btrfs_err(fs_info,
3655 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
aa1b8cd4 3656 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
3657 return -EINVAL;
3658 }
3659
aa1b8cd4 3660 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64 3661 /* not supported for data w/o checksums */
efe120a0
FH
3662 btrfs_err(fs_info,
3663 "scrub: size assumption sectorsize != PAGE_SIZE "
3664 "(%d != %lu) fails",
27f9f023 3665 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
3666 return -EINVAL;
3667 }
3668
7a9e9987
SB
3669 if (fs_info->chunk_root->nodesize >
3670 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3671 fs_info->chunk_root->sectorsize >
3672 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3673 /*
3674 * would exhaust the array bounds of pagev member in
3675 * struct scrub_block
3676 */
efe120a0
FH
3677 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3678 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
7a9e9987
SB
3679 fs_info->chunk_root->nodesize,
3680 SCRUB_MAX_PAGES_PER_BLOCK,
3681 fs_info->chunk_root->sectorsize,
3682 SCRUB_MAX_PAGES_PER_BLOCK);
3683 return -EINVAL;
3684 }
3685
a2de733c 3686
aa1b8cd4
SB
3687 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3688 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 3689 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 3690 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3691 return -ENODEV;
3692 }
a2de733c 3693
5d68da3b
MX
3694 if (!is_dev_replace && !readonly && !dev->writeable) {
3695 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3696 rcu_read_lock();
3697 name = rcu_dereference(dev->name);
3698 btrfs_err(fs_info, "scrub: device %s is not writable",
3699 name->str);
3700 rcu_read_unlock();
3701 return -EROFS;
3702 }
3703
3b7a016f 3704 mutex_lock(&fs_info->scrub_lock);
63a212ab 3705 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 3706 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3707 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3708 return -EIO;
a2de733c
AJ
3709 }
3710
8dabb742
SB
3711 btrfs_dev_replace_lock(&fs_info->dev_replace);
3712 if (dev->scrub_device ||
3713 (!is_dev_replace &&
3714 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3715 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 3716 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3717 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3718 return -EINPROGRESS;
3719 }
8dabb742 3720 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3b7a016f
WS
3721
3722 ret = scrub_workers_get(fs_info, is_dev_replace);
3723 if (ret) {
3724 mutex_unlock(&fs_info->scrub_lock);
3725 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3726 return ret;
3727 }
3728
63a212ab 3729 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 3730 if (IS_ERR(sctx)) {
a2de733c 3731 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
3732 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3733 scrub_workers_put(fs_info);
d9d181c1 3734 return PTR_ERR(sctx);
a2de733c 3735 }
d9d181c1
SB
3736 sctx->readonly = readonly;
3737 dev->scrub_device = sctx;
3cb0929a 3738 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3739
3cb0929a
WS
3740 /*
3741 * checking @scrub_pause_req here, we can avoid
3742 * race between committing transaction and scrubbing.
3743 */
cb7ab021 3744 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3745 atomic_inc(&fs_info->scrubs_running);
3746 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3747
ff023aac 3748 if (!is_dev_replace) {
9b011adf
WS
3749 /*
3750 * by holding device list mutex, we can
3751 * kick off writing super in log tree sync.
3752 */
3cb0929a 3753 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3754 ret = scrub_supers(sctx, dev);
3cb0929a 3755 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3756 }
a2de733c
AJ
3757
3758 if (!ret)
ff023aac
SB
3759 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3760 is_dev_replace);
a2de733c 3761
b6bfebc1 3762 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3763 atomic_dec(&fs_info->scrubs_running);
3764 wake_up(&fs_info->scrub_pause_wait);
3765
b6bfebc1 3766 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3767
a2de733c 3768 if (progress)
d9d181c1 3769 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3770
3771 mutex_lock(&fs_info->scrub_lock);
3772 dev->scrub_device = NULL;
3b7a016f 3773 scrub_workers_put(fs_info);
a2de733c
AJ
3774 mutex_unlock(&fs_info->scrub_lock);
3775
d9d181c1 3776 scrub_free_ctx(sctx);
a2de733c
AJ
3777
3778 return ret;
3779}
3780
143bede5 3781void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
3782{
3783 struct btrfs_fs_info *fs_info = root->fs_info;
3784
3785 mutex_lock(&fs_info->scrub_lock);
3786 atomic_inc(&fs_info->scrub_pause_req);
3787 while (atomic_read(&fs_info->scrubs_paused) !=
3788 atomic_read(&fs_info->scrubs_running)) {
3789 mutex_unlock(&fs_info->scrub_lock);
3790 wait_event(fs_info->scrub_pause_wait,
3791 atomic_read(&fs_info->scrubs_paused) ==
3792 atomic_read(&fs_info->scrubs_running));
3793 mutex_lock(&fs_info->scrub_lock);
3794 }
3795 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3796}
3797
143bede5 3798void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
3799{
3800 struct btrfs_fs_info *fs_info = root->fs_info;
3801
3802 atomic_dec(&fs_info->scrub_pause_req);
3803 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3804}
3805
aa1b8cd4 3806int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3807{
a2de733c
AJ
3808 mutex_lock(&fs_info->scrub_lock);
3809 if (!atomic_read(&fs_info->scrubs_running)) {
3810 mutex_unlock(&fs_info->scrub_lock);
3811 return -ENOTCONN;
3812 }
3813
3814 atomic_inc(&fs_info->scrub_cancel_req);
3815 while (atomic_read(&fs_info->scrubs_running)) {
3816 mutex_unlock(&fs_info->scrub_lock);
3817 wait_event(fs_info->scrub_pause_wait,
3818 atomic_read(&fs_info->scrubs_running) == 0);
3819 mutex_lock(&fs_info->scrub_lock);
3820 }
3821 atomic_dec(&fs_info->scrub_cancel_req);
3822 mutex_unlock(&fs_info->scrub_lock);
3823
3824 return 0;
3825}
3826
aa1b8cd4
SB
3827int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3828 struct btrfs_device *dev)
49b25e05 3829{
d9d181c1 3830 struct scrub_ctx *sctx;
a2de733c
AJ
3831
3832 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
3833 sctx = dev->scrub_device;
3834 if (!sctx) {
a2de733c
AJ
3835 mutex_unlock(&fs_info->scrub_lock);
3836 return -ENOTCONN;
3837 }
d9d181c1 3838 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3839 while (dev->scrub_device) {
3840 mutex_unlock(&fs_info->scrub_lock);
3841 wait_event(fs_info->scrub_pause_wait,
3842 dev->scrub_device == NULL);
3843 mutex_lock(&fs_info->scrub_lock);
3844 }
3845 mutex_unlock(&fs_info->scrub_lock);
3846
3847 return 0;
3848}
1623edeb 3849
a2de733c
AJ
3850int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3851 struct btrfs_scrub_progress *progress)
3852{
3853 struct btrfs_device *dev;
d9d181c1 3854 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3855
3856 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3857 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3858 if (dev)
d9d181c1
SB
3859 sctx = dev->scrub_device;
3860 if (sctx)
3861 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3863
d9d181c1 3864 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3865}
ff023aac
SB
3866
3867static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3868 u64 extent_logical, u64 extent_len,
3869 u64 *extent_physical,
3870 struct btrfs_device **extent_dev,
3871 int *extent_mirror_num)
3872{
3873 u64 mapped_length;
3874 struct btrfs_bio *bbio = NULL;
3875 int ret;
3876
3877 mapped_length = extent_len;
3878 ret = btrfs_map_block(fs_info, READ, extent_logical,
3879 &mapped_length, &bbio, 0);
3880 if (ret || !bbio || mapped_length < extent_len ||
3881 !bbio->stripes[0].dev->bdev) {
6e9606d2 3882 btrfs_put_bbio(bbio);
ff023aac
SB
3883 return;
3884 }
3885
3886 *extent_physical = bbio->stripes[0].physical;
3887 *extent_mirror_num = bbio->mirror_num;
3888 *extent_dev = bbio->stripes[0].dev;
6e9606d2 3889 btrfs_put_bbio(bbio);
ff023aac
SB
3890}
3891
3892static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3893 struct scrub_wr_ctx *wr_ctx,
3894 struct btrfs_fs_info *fs_info,
3895 struct btrfs_device *dev,
3896 int is_dev_replace)
3897{
3898 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3899
3900 mutex_init(&wr_ctx->wr_lock);
3901 wr_ctx->wr_curr_bio = NULL;
3902 if (!is_dev_replace)
3903 return 0;
3904
3905 WARN_ON(!dev->bdev);
3906 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3907 bio_get_nr_vecs(dev->bdev));
3908 wr_ctx->tgtdev = dev;
3909 atomic_set(&wr_ctx->flush_all_writes, 0);
3910 return 0;
3911}
3912
3913static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3914{
3915 mutex_lock(&wr_ctx->wr_lock);
3916 kfree(wr_ctx->wr_curr_bio);
3917 wr_ctx->wr_curr_bio = NULL;
3918 mutex_unlock(&wr_ctx->wr_lock);
3919}
3920
3921static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3922 int mirror_num, u64 physical_for_dev_replace)
3923{
3924 struct scrub_copy_nocow_ctx *nocow_ctx;
3925 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3926
3927 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3928 if (!nocow_ctx) {
3929 spin_lock(&sctx->stat_lock);
3930 sctx->stat.malloc_errors++;
3931 spin_unlock(&sctx->stat_lock);
3932 return -ENOMEM;
3933 }
3934
3935 scrub_pending_trans_workers_inc(sctx);
3936
3937 nocow_ctx->sctx = sctx;
3938 nocow_ctx->logical = logical;
3939 nocow_ctx->len = len;
3940 nocow_ctx->mirror_num = mirror_num;
3941 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
3942 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3943 copy_nocow_pages_worker, NULL, NULL);
652f25a2 3944 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
3945 btrfs_queue_work(fs_info->scrub_nocow_workers,
3946 &nocow_ctx->work);
ff023aac
SB
3947
3948 return 0;
3949}
3950
652f25a2
JB
3951static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3952{
3953 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3954 struct scrub_nocow_inode *nocow_inode;
3955
3956 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3957 if (!nocow_inode)
3958 return -ENOMEM;
3959 nocow_inode->inum = inum;
3960 nocow_inode->offset = offset;
3961 nocow_inode->root = root;
3962 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3963 return 0;
3964}
3965
3966#define COPY_COMPLETE 1
3967
ff023aac
SB
3968static void copy_nocow_pages_worker(struct btrfs_work *work)
3969{
3970 struct scrub_copy_nocow_ctx *nocow_ctx =
3971 container_of(work, struct scrub_copy_nocow_ctx, work);
3972 struct scrub_ctx *sctx = nocow_ctx->sctx;
3973 u64 logical = nocow_ctx->logical;
3974 u64 len = nocow_ctx->len;
3975 int mirror_num = nocow_ctx->mirror_num;
3976 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3977 int ret;
3978 struct btrfs_trans_handle *trans = NULL;
3979 struct btrfs_fs_info *fs_info;
3980 struct btrfs_path *path;
3981 struct btrfs_root *root;
3982 int not_written = 0;
3983
3984 fs_info = sctx->dev_root->fs_info;
3985 root = fs_info->extent_root;
3986
3987 path = btrfs_alloc_path();
3988 if (!path) {
3989 spin_lock(&sctx->stat_lock);
3990 sctx->stat.malloc_errors++;
3991 spin_unlock(&sctx->stat_lock);
3992 not_written = 1;
3993 goto out;
3994 }
3995
3996 trans = btrfs_join_transaction(root);
3997 if (IS_ERR(trans)) {
3998 not_written = 1;
3999 goto out;
4000 }
4001
4002 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 4003 record_inode_for_nocow, nocow_ctx);
ff023aac 4004 if (ret != 0 && ret != -ENOENT) {
efe120a0
FH
4005 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4006 "phys %llu, len %llu, mir %u, ret %d",
118a0a25
GU
4007 logical, physical_for_dev_replace, len, mirror_num,
4008 ret);
ff023aac
SB
4009 not_written = 1;
4010 goto out;
4011 }
4012
652f25a2
JB
4013 btrfs_end_transaction(trans, root);
4014 trans = NULL;
4015 while (!list_empty(&nocow_ctx->inodes)) {
4016 struct scrub_nocow_inode *entry;
4017 entry = list_first_entry(&nocow_ctx->inodes,
4018 struct scrub_nocow_inode,
4019 list);
4020 list_del_init(&entry->list);
4021 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4022 entry->root, nocow_ctx);
4023 kfree(entry);
4024 if (ret == COPY_COMPLETE) {
4025 ret = 0;
4026 break;
4027 } else if (ret) {
4028 break;
4029 }
4030 }
ff023aac 4031out:
652f25a2
JB
4032 while (!list_empty(&nocow_ctx->inodes)) {
4033 struct scrub_nocow_inode *entry;
4034 entry = list_first_entry(&nocow_ctx->inodes,
4035 struct scrub_nocow_inode,
4036 list);
4037 list_del_init(&entry->list);
4038 kfree(entry);
4039 }
ff023aac
SB
4040 if (trans && !IS_ERR(trans))
4041 btrfs_end_transaction(trans, root);
4042 if (not_written)
4043 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4044 num_uncorrectable_read_errors);
4045
4046 btrfs_free_path(path);
4047 kfree(nocow_ctx);
4048
4049 scrub_pending_trans_workers_dec(sctx);
4050}
4051
32159242
GH
4052static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4053 u64 logical)
4054{
4055 struct extent_state *cached_state = NULL;
4056 struct btrfs_ordered_extent *ordered;
4057 struct extent_io_tree *io_tree;
4058 struct extent_map *em;
4059 u64 lockstart = start, lockend = start + len - 1;
4060 int ret = 0;
4061
4062 io_tree = &BTRFS_I(inode)->io_tree;
4063
4064 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4065 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4066 if (ordered) {
4067 btrfs_put_ordered_extent(ordered);
4068 ret = 1;
4069 goto out_unlock;
4070 }
4071
4072 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4073 if (IS_ERR(em)) {
4074 ret = PTR_ERR(em);
4075 goto out_unlock;
4076 }
4077
4078 /*
4079 * This extent does not actually cover the logical extent anymore,
4080 * move on to the next inode.
4081 */
4082 if (em->block_start > logical ||
4083 em->block_start + em->block_len < logical + len) {
4084 free_extent_map(em);
4085 ret = 1;
4086 goto out_unlock;
4087 }
4088 free_extent_map(em);
4089
4090out_unlock:
4091 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4092 GFP_NOFS);
4093 return ret;
4094}
4095
652f25a2
JB
4096static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4097 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 4098{
826aa0a8 4099 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 4100 struct btrfs_key key;
826aa0a8
MX
4101 struct inode *inode;
4102 struct page *page;
ff023aac 4103 struct btrfs_root *local_root;
652f25a2 4104 struct extent_io_tree *io_tree;
ff023aac 4105 u64 physical_for_dev_replace;
32159242 4106 u64 nocow_ctx_logical;
652f25a2 4107 u64 len = nocow_ctx->len;
826aa0a8 4108 unsigned long index;
6f1c3605 4109 int srcu_index;
652f25a2
JB
4110 int ret = 0;
4111 int err = 0;
ff023aac
SB
4112
4113 key.objectid = root;
4114 key.type = BTRFS_ROOT_ITEM_KEY;
4115 key.offset = (u64)-1;
6f1c3605
LB
4116
4117 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4118
ff023aac 4119 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
4120 if (IS_ERR(local_root)) {
4121 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 4122 return PTR_ERR(local_root);
6f1c3605 4123 }
ff023aac
SB
4124
4125 key.type = BTRFS_INODE_ITEM_KEY;
4126 key.objectid = inum;
4127 key.offset = 0;
4128 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 4129 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
4130 if (IS_ERR(inode))
4131 return PTR_ERR(inode);
4132
edd1400b
MX
4133 /* Avoid truncate/dio/punch hole.. */
4134 mutex_lock(&inode->i_mutex);
4135 inode_dio_wait(inode);
4136
ff023aac 4137 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2 4138 io_tree = &BTRFS_I(inode)->io_tree;
32159242 4139 nocow_ctx_logical = nocow_ctx->logical;
652f25a2 4140
32159242
GH
4141 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4142 if (ret) {
4143 ret = ret > 0 ? 0 : ret;
4144 goto out;
652f25a2 4145 }
652f25a2 4146
ff023aac 4147 while (len >= PAGE_CACHE_SIZE) {
ff023aac 4148 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 4149again:
ff023aac
SB
4150 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4151 if (!page) {
efe120a0 4152 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 4153 ret = -ENOMEM;
826aa0a8 4154 goto out;
ff023aac
SB
4155 }
4156
4157 if (PageUptodate(page)) {
4158 if (PageDirty(page))
4159 goto next_page;
4160 } else {
4161 ClearPageError(page);
32159242 4162 err = extent_read_full_page(io_tree, page,
652f25a2
JB
4163 btrfs_get_extent,
4164 nocow_ctx->mirror_num);
826aa0a8
MX
4165 if (err) {
4166 ret = err;
ff023aac
SB
4167 goto next_page;
4168 }
edd1400b 4169
26b25891 4170 lock_page(page);
edd1400b
MX
4171 /*
4172 * If the page has been remove from the page cache,
4173 * the data on it is meaningless, because it may be
4174 * old one, the new data may be written into the new
4175 * page in the page cache.
4176 */
4177 if (page->mapping != inode->i_mapping) {
652f25a2 4178 unlock_page(page);
edd1400b
MX
4179 page_cache_release(page);
4180 goto again;
4181 }
ff023aac
SB
4182 if (!PageUptodate(page)) {
4183 ret = -EIO;
4184 goto next_page;
4185 }
4186 }
32159242
GH
4187
4188 ret = check_extent_to_block(inode, offset, len,
4189 nocow_ctx_logical);
4190 if (ret) {
4191 ret = ret > 0 ? 0 : ret;
4192 goto next_page;
4193 }
4194
826aa0a8
MX
4195 err = write_page_nocow(nocow_ctx->sctx,
4196 physical_for_dev_replace, page);
4197 if (err)
4198 ret = err;
ff023aac 4199next_page:
826aa0a8
MX
4200 unlock_page(page);
4201 page_cache_release(page);
4202
4203 if (ret)
4204 break;
4205
ff023aac
SB
4206 offset += PAGE_CACHE_SIZE;
4207 physical_for_dev_replace += PAGE_CACHE_SIZE;
32159242 4208 nocow_ctx_logical += PAGE_CACHE_SIZE;
ff023aac
SB
4209 len -= PAGE_CACHE_SIZE;
4210 }
652f25a2 4211 ret = COPY_COMPLETE;
826aa0a8 4212out:
edd1400b 4213 mutex_unlock(&inode->i_mutex);
826aa0a8 4214 iput(inode);
ff023aac
SB
4215 return ret;
4216}
4217
4218static int write_page_nocow(struct scrub_ctx *sctx,
4219 u64 physical_for_dev_replace, struct page *page)
4220{
4221 struct bio *bio;
4222 struct btrfs_device *dev;
4223 int ret;
ff023aac
SB
4224
4225 dev = sctx->wr_ctx.tgtdev;
4226 if (!dev)
4227 return -EIO;
4228 if (!dev->bdev) {
4229 printk_ratelimited(KERN_WARNING
efe120a0 4230 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
ff023aac
SB
4231 return -EIO;
4232 }
9be3395b 4233 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
4234 if (!bio) {
4235 spin_lock(&sctx->stat_lock);
4236 sctx->stat.malloc_errors++;
4237 spin_unlock(&sctx->stat_lock);
4238 return -ENOMEM;
4239 }
4f024f37
KO
4240 bio->bi_iter.bi_size = 0;
4241 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac
SB
4242 bio->bi_bdev = dev->bdev;
4243 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4244 if (ret != PAGE_CACHE_SIZE) {
4245leave_with_eio:
4246 bio_put(bio);
4247 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4248 return -EIO;
4249 }
ff023aac 4250
33879d45 4251 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
4252 goto leave_with_eio;
4253
4254 bio_put(bio);
4255 return 0;
4256}