]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/scrub.c
btrfs: use btrfs_ino to access inode number
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c
AJ
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include <linux/workqueue.h>
26#include "ctree.h"
27#include "volumes.h"
28#include "disk-io.h"
29#include "ordered-data.h"
30
31/*
32 * This is only the first step towards a full-features scrub. It reads all
33 * extent and super block and verifies the checksums. In case a bad checksum
34 * is found or the extent cannot be read, good data will be written back if
35 * any can be found.
36 *
37 * Future enhancements:
38 * - To enhance the performance, better read-ahead strategies for the
39 * extent-tree can be employed.
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - In case of a read error on files with nodatasum, map the file and read
43 * the extent to trigger a writeback of the good copy
44 * - track and record media errors, throw out bad devices
a2de733c
AJ
45 * - add a mode to also read unallocated space
46 * - make the prefetch cancellable
47 */
48
49struct scrub_bio;
50struct scrub_page;
51struct scrub_dev;
a2de733c
AJ
52static void scrub_bio_end_io(struct bio *bio, int err);
53static void scrub_checksum(struct btrfs_work *work);
54static int scrub_checksum_data(struct scrub_dev *sdev,
55 struct scrub_page *spag, void *buffer);
56static int scrub_checksum_tree_block(struct scrub_dev *sdev,
57 struct scrub_page *spag, u64 logical,
58 void *buffer);
59static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
96e36920
ID
60static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
61static void scrub_fixup_end_io(struct bio *bio, int err);
62static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
63 struct page *page);
64static void scrub_fixup(struct scrub_bio *sbio, int ix);
a2de733c
AJ
65
66#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
67#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
68
69struct scrub_page {
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 mirror_num;
73 int have_csum;
74 u8 csum[BTRFS_CSUM_SIZE];
75};
76
77struct scrub_bio {
78 int index;
79 struct scrub_dev *sdev;
80 struct bio *bio;
81 int err;
82 u64 logical;
83 u64 physical;
84 struct scrub_page spag[SCRUB_PAGES_PER_BIO];
85 u64 count;
86 int next_free;
87 struct btrfs_work work;
88};
89
90struct scrub_dev {
91 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
92 struct btrfs_device *dev;
93 int first_free;
94 int curr;
95 atomic_t in_flight;
96 spinlock_t list_lock;
97 wait_queue_head_t list_wait;
98 u16 csum_size;
99 struct list_head csum_list;
100 atomic_t cancel_req;
8628764e 101 int readonly;
a2de733c
AJ
102 /*
103 * statistics
104 */
105 struct btrfs_scrub_progress stat;
106 spinlock_t stat_lock;
107};
108
a2de733c
AJ
109static void scrub_free_csums(struct scrub_dev *sdev)
110{
111 while (!list_empty(&sdev->csum_list)) {
112 struct btrfs_ordered_sum *sum;
113 sum = list_first_entry(&sdev->csum_list,
114 struct btrfs_ordered_sum, list);
115 list_del(&sum->list);
116 kfree(sum);
117 }
118}
119
1bc87793
AJ
120static void scrub_free_bio(struct bio *bio)
121{
122 int i;
123 struct page *last_page = NULL;
124
125 if (!bio)
126 return;
127
128 for (i = 0; i < bio->bi_vcnt; ++i) {
129 if (bio->bi_io_vec[i].bv_page == last_page)
130 continue;
131 last_page = bio->bi_io_vec[i].bv_page;
132 __free_page(last_page);
133 }
134 bio_put(bio);
135}
136
a2de733c
AJ
137static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
138{
139 int i;
a2de733c
AJ
140
141 if (!sdev)
142 return;
143
144 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
145 struct scrub_bio *sbio = sdev->bios[i];
a2de733c
AJ
146
147 if (!sbio)
148 break;
149
1bc87793 150 scrub_free_bio(sbio->bio);
a2de733c
AJ
151 kfree(sbio);
152 }
153
154 scrub_free_csums(sdev);
155 kfree(sdev);
156}
157
158static noinline_for_stack
159struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
160{
161 struct scrub_dev *sdev;
162 int i;
a2de733c
AJ
163 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
164
165 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
166 if (!sdev)
167 goto nomem;
168 sdev->dev = dev;
169 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
a2de733c
AJ
170 struct scrub_bio *sbio;
171
172 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
173 if (!sbio)
174 goto nomem;
175 sdev->bios[i] = sbio;
176
a2de733c
AJ
177 sbio->index = i;
178 sbio->sdev = sdev;
a2de733c
AJ
179 sbio->count = 0;
180 sbio->work.func = scrub_checksum;
a2de733c
AJ
181
182 if (i != SCRUB_BIOS_PER_DEV-1)
183 sdev->bios[i]->next_free = i + 1;
184 else
185 sdev->bios[i]->next_free = -1;
186 }
187 sdev->first_free = 0;
188 sdev->curr = -1;
189 atomic_set(&sdev->in_flight, 0);
190 atomic_set(&sdev->cancel_req, 0);
191 sdev->csum_size = btrfs_super_csum_size(&fs_info->super_copy);
192 INIT_LIST_HEAD(&sdev->csum_list);
193
194 spin_lock_init(&sdev->list_lock);
195 spin_lock_init(&sdev->stat_lock);
196 init_waitqueue_head(&sdev->list_wait);
197 return sdev;
198
199nomem:
200 scrub_free_dev(sdev);
201 return ERR_PTR(-ENOMEM);
202}
203
204/*
205 * scrub_recheck_error gets called when either verification of the page
206 * failed or the bio failed to read, e.g. with EIO. In the latter case,
207 * recheck_error gets called for every page in the bio, even though only
208 * one may be bad
209 */
210static void scrub_recheck_error(struct scrub_bio *sbio, int ix)
211{
96e36920
ID
212 if (sbio->err) {
213 if (scrub_fixup_io(READ, sbio->sdev->dev->bdev,
214 (sbio->physical + ix * PAGE_SIZE) >> 9,
215 sbio->bio->bi_io_vec[ix].bv_page) == 0) {
216 if (scrub_fixup_check(sbio, ix) == 0)
217 return;
218 }
a2de733c
AJ
219 }
220
96e36920 221 scrub_fixup(sbio, ix);
a2de733c
AJ
222}
223
96e36920 224static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
a2de733c
AJ
225{
226 int ret = 1;
227 struct page *page;
228 void *buffer;
96e36920 229 u64 flags = sbio->spag[ix].flags;
a2de733c 230
96e36920 231 page = sbio->bio->bi_io_vec[ix].bv_page;
a2de733c
AJ
232 buffer = kmap_atomic(page, KM_USER0);
233 if (flags & BTRFS_EXTENT_FLAG_DATA) {
96e36920
ID
234 ret = scrub_checksum_data(sbio->sdev,
235 sbio->spag + ix, buffer);
a2de733c 236 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
96e36920
ID
237 ret = scrub_checksum_tree_block(sbio->sdev,
238 sbio->spag + ix,
239 sbio->logical + ix * PAGE_SIZE,
a2de733c
AJ
240 buffer);
241 } else {
242 WARN_ON(1);
243 }
244 kunmap_atomic(buffer, KM_USER0);
245
246 return ret;
247}
248
a2de733c
AJ
249static void scrub_fixup_end_io(struct bio *bio, int err)
250{
251 complete((struct completion *)bio->bi_private);
252}
253
96e36920 254static void scrub_fixup(struct scrub_bio *sbio, int ix)
a2de733c 255{
96e36920 256 struct scrub_dev *sdev = sbio->sdev;
a2de733c
AJ
257 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
258 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
259 struct btrfs_multi_bio *multi = NULL;
96e36920 260 u64 logical = sbio->logical + ix * PAGE_SIZE;
a2de733c
AJ
261 u64 length;
262 int i;
263 int ret;
264 DECLARE_COMPLETION_ONSTACK(complete);
265
96e36920
ID
266 if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
267 (sbio->spag[ix].have_csum == 0)) {
a2de733c
AJ
268 /*
269 * nodatasum, don't try to fix anything
270 * FIXME: we can do better, open the inode and trigger a
271 * writeback
272 */
273 goto uncorrectable;
274 }
275
276 length = PAGE_SIZE;
96e36920 277 ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
a2de733c
AJ
278 &multi, 0);
279 if (ret || !multi || length < PAGE_SIZE) {
280 printk(KERN_ERR
281 "scrub_fixup: btrfs_map_block failed us for %llu\n",
96e36920 282 (unsigned long long)logical);
a2de733c
AJ
283 WARN_ON(1);
284 return;
285 }
286
96e36920 287 if (multi->num_stripes == 1)
a2de733c
AJ
288 /* there aren't any replicas */
289 goto uncorrectable;
a2de733c
AJ
290
291 /*
292 * first find a good copy
293 */
294 for (i = 0; i < multi->num_stripes; ++i) {
96e36920 295 if (i == sbio->spag[ix].mirror_num)
a2de733c
AJ
296 continue;
297
96e36920
ID
298 if (scrub_fixup_io(READ, multi->stripes[i].dev->bdev,
299 multi->stripes[i].physical >> 9,
300 sbio->bio->bi_io_vec[ix].bv_page)) {
a2de733c
AJ
301 /* I/O-error, this is not a good copy */
302 continue;
96e36920 303 }
a2de733c 304
96e36920 305 if (scrub_fixup_check(sbio, ix) == 0)
a2de733c
AJ
306 break;
307 }
308 if (i == multi->num_stripes)
309 goto uncorrectable;
310
8628764e
AJ
311 if (!sdev->readonly) {
312 /*
313 * bi_io_vec[ix].bv_page now contains good data, write it back
314 */
315 if (scrub_fixup_io(WRITE, sdev->dev->bdev,
316 (sbio->physical + ix * PAGE_SIZE) >> 9,
317 sbio->bio->bi_io_vec[ix].bv_page)) {
318 /* I/O-error, writeback failed, give up */
319 goto uncorrectable;
320 }
96e36920 321 }
a2de733c
AJ
322
323 kfree(multi);
324 spin_lock(&sdev->stat_lock);
325 ++sdev->stat.corrected_errors;
326 spin_unlock(&sdev->stat_lock);
327
328 if (printk_ratelimit())
329 printk(KERN_ERR "btrfs: fixed up at %llu\n",
96e36920 330 (unsigned long long)logical);
a2de733c
AJ
331 return;
332
333uncorrectable:
334 kfree(multi);
335 spin_lock(&sdev->stat_lock);
336 ++sdev->stat.uncorrectable_errors;
337 spin_unlock(&sdev->stat_lock);
338
339 if (printk_ratelimit())
340 printk(KERN_ERR "btrfs: unable to fixup at %llu\n",
96e36920
ID
341 (unsigned long long)logical);
342}
343
344static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
345 struct page *page)
346{
347 struct bio *bio = NULL;
348 int ret;
349 DECLARE_COMPLETION_ONSTACK(complete);
350
351 /* we are going to wait on this IO */
71267333 352 rw |= REQ_SYNC;
96e36920
ID
353
354 bio = bio_alloc(GFP_NOFS, 1);
355 bio->bi_bdev = bdev;
356 bio->bi_sector = sector;
357 bio_add_page(bio, page, PAGE_SIZE, 0);
358 bio->bi_end_io = scrub_fixup_end_io;
359 bio->bi_private = &complete;
360 submit_bio(rw, bio);
361
362 wait_for_completion(&complete);
363
364 ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
365 bio_put(bio);
366 return ret;
a2de733c
AJ
367}
368
369static void scrub_bio_end_io(struct bio *bio, int err)
370{
371 struct scrub_bio *sbio = bio->bi_private;
372 struct scrub_dev *sdev = sbio->sdev;
373 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
374
375 sbio->err = err;
1bc87793 376 sbio->bio = bio;
a2de733c
AJ
377
378 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
379}
380
381static void scrub_checksum(struct btrfs_work *work)
382{
383 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
384 struct scrub_dev *sdev = sbio->sdev;
385 struct page *page;
386 void *buffer;
387 int i;
388 u64 flags;
389 u64 logical;
390 int ret;
391
392 if (sbio->err) {
a2de733c
AJ
393 for (i = 0; i < sbio->count; ++i)
394 scrub_recheck_error(sbio, i);
96e36920
ID
395
396 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
397 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
398 sbio->bio->bi_phys_segments = 0;
399 sbio->bio->bi_idx = 0;
400
401 for (i = 0; i < sbio->count; i++) {
402 struct bio_vec *bi;
403 bi = &sbio->bio->bi_io_vec[i];
404 bi->bv_offset = 0;
405 bi->bv_len = PAGE_SIZE;
406 }
407
a2de733c
AJ
408 spin_lock(&sdev->stat_lock);
409 ++sdev->stat.read_errors;
410 spin_unlock(&sdev->stat_lock);
a2de733c
AJ
411 goto out;
412 }
413 for (i = 0; i < sbio->count; ++i) {
414 page = sbio->bio->bi_io_vec[i].bv_page;
415 buffer = kmap_atomic(page, KM_USER0);
416 flags = sbio->spag[i].flags;
417 logical = sbio->logical + i * PAGE_SIZE;
418 ret = 0;
419 if (flags & BTRFS_EXTENT_FLAG_DATA) {
420 ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
421 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
422 ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
423 logical, buffer);
424 } else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
425 BUG_ON(i);
426 (void)scrub_checksum_super(sbio, buffer);
427 } else {
428 WARN_ON(1);
429 }
430 kunmap_atomic(buffer, KM_USER0);
431 if (ret)
432 scrub_recheck_error(sbio, i);
433 }
434
435out:
1bc87793
AJ
436 scrub_free_bio(sbio->bio);
437 sbio->bio = NULL;
a2de733c
AJ
438 spin_lock(&sdev->list_lock);
439 sbio->next_free = sdev->first_free;
440 sdev->first_free = sbio->index;
441 spin_unlock(&sdev->list_lock);
a2de733c
AJ
442 atomic_dec(&sdev->in_flight);
443 wake_up(&sdev->list_wait);
444}
445
446static int scrub_checksum_data(struct scrub_dev *sdev,
447 struct scrub_page *spag, void *buffer)
448{
449 u8 csum[BTRFS_CSUM_SIZE];
450 u32 crc = ~(u32)0;
451 int fail = 0;
452 struct btrfs_root *root = sdev->dev->dev_root;
453
454 if (!spag->have_csum)
455 return 0;
456
457 crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
458 btrfs_csum_final(crc, csum);
459 if (memcmp(csum, spag->csum, sdev->csum_size))
460 fail = 1;
461
462 spin_lock(&sdev->stat_lock);
463 ++sdev->stat.data_extents_scrubbed;
464 sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
465 if (fail)
466 ++sdev->stat.csum_errors;
467 spin_unlock(&sdev->stat_lock);
468
469 return fail;
470}
471
472static int scrub_checksum_tree_block(struct scrub_dev *sdev,
473 struct scrub_page *spag, u64 logical,
474 void *buffer)
475{
476 struct btrfs_header *h;
477 struct btrfs_root *root = sdev->dev->dev_root;
478 struct btrfs_fs_info *fs_info = root->fs_info;
479 u8 csum[BTRFS_CSUM_SIZE];
480 u32 crc = ~(u32)0;
481 int fail = 0;
482 int crc_fail = 0;
483
484 /*
485 * we don't use the getter functions here, as we
486 * a) don't have an extent buffer and
487 * b) the page is already kmapped
488 */
489 h = (struct btrfs_header *)buffer;
490
491 if (logical != le64_to_cpu(h->bytenr))
492 ++fail;
493
494 if (spag->generation != le64_to_cpu(h->generation))
495 ++fail;
496
497 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
498 ++fail;
499
500 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
501 BTRFS_UUID_SIZE))
502 ++fail;
503
504 crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
505 PAGE_SIZE - BTRFS_CSUM_SIZE);
506 btrfs_csum_final(crc, csum);
507 if (memcmp(csum, h->csum, sdev->csum_size))
508 ++crc_fail;
509
510 spin_lock(&sdev->stat_lock);
511 ++sdev->stat.tree_extents_scrubbed;
512 sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
513 if (crc_fail)
514 ++sdev->stat.csum_errors;
515 if (fail)
516 ++sdev->stat.verify_errors;
517 spin_unlock(&sdev->stat_lock);
518
519 return fail || crc_fail;
520}
521
522static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
523{
524 struct btrfs_super_block *s;
525 u64 logical;
526 struct scrub_dev *sdev = sbio->sdev;
527 struct btrfs_root *root = sdev->dev->dev_root;
528 struct btrfs_fs_info *fs_info = root->fs_info;
529 u8 csum[BTRFS_CSUM_SIZE];
530 u32 crc = ~(u32)0;
531 int fail = 0;
532
533 s = (struct btrfs_super_block *)buffer;
534 logical = sbio->logical;
535
536 if (logical != le64_to_cpu(s->bytenr))
537 ++fail;
538
539 if (sbio->spag[0].generation != le64_to_cpu(s->generation))
540 ++fail;
541
542 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
543 ++fail;
544
545 crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
546 PAGE_SIZE - BTRFS_CSUM_SIZE);
547 btrfs_csum_final(crc, csum);
548 if (memcmp(csum, s->csum, sbio->sdev->csum_size))
549 ++fail;
550
551 if (fail) {
552 /*
553 * if we find an error in a super block, we just report it.
554 * They will get written with the next transaction commit
555 * anyway
556 */
557 spin_lock(&sdev->stat_lock);
558 ++sdev->stat.super_errors;
559 spin_unlock(&sdev->stat_lock);
560 }
561
562 return fail;
563}
564
565static int scrub_submit(struct scrub_dev *sdev)
566{
567 struct scrub_bio *sbio;
1bc87793
AJ
568 struct bio *bio;
569 int i;
a2de733c
AJ
570
571 if (sdev->curr == -1)
572 return 0;
573
574 sbio = sdev->bios[sdev->curr];
575
1bc87793
AJ
576 bio = bio_alloc(GFP_NOFS, sbio->count);
577 if (!bio)
578 goto nomem;
579
580 bio->bi_private = sbio;
581 bio->bi_end_io = scrub_bio_end_io;
582 bio->bi_bdev = sdev->dev->bdev;
583 bio->bi_sector = sbio->physical >> 9;
584
585 for (i = 0; i < sbio->count; ++i) {
586 struct page *page;
587 int ret;
588
589 page = alloc_page(GFP_NOFS);
590 if (!page)
591 goto nomem;
592
593 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
594 if (!ret) {
595 __free_page(page);
596 goto nomem;
597 }
598 }
599
a2de733c
AJ
600 sbio->err = 0;
601 sdev->curr = -1;
602 atomic_inc(&sdev->in_flight);
603
1bc87793 604 submit_bio(READ, bio);
a2de733c
AJ
605
606 return 0;
1bc87793
AJ
607
608nomem:
609 scrub_free_bio(bio);
610
611 return -ENOMEM;
a2de733c
AJ
612}
613
614static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
615 u64 physical, u64 flags, u64 gen, u64 mirror_num,
616 u8 *csum, int force)
617{
618 struct scrub_bio *sbio;
619
620again:
621 /*
622 * grab a fresh bio or wait for one to become available
623 */
624 while (sdev->curr == -1) {
625 spin_lock(&sdev->list_lock);
626 sdev->curr = sdev->first_free;
627 if (sdev->curr != -1) {
628 sdev->first_free = sdev->bios[sdev->curr]->next_free;
629 sdev->bios[sdev->curr]->next_free = -1;
630 sdev->bios[sdev->curr]->count = 0;
631 spin_unlock(&sdev->list_lock);
632 } else {
633 spin_unlock(&sdev->list_lock);
634 wait_event(sdev->list_wait, sdev->first_free != -1);
635 }
636 }
637 sbio = sdev->bios[sdev->curr];
638 if (sbio->count == 0) {
639 sbio->physical = physical;
640 sbio->logical = logical;
00d01bc1
AJ
641 } else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
642 sbio->logical + sbio->count * PAGE_SIZE != logical) {
1bc87793
AJ
643 int ret;
644
645 ret = scrub_submit(sdev);
646 if (ret)
647 return ret;
a2de733c
AJ
648 goto again;
649 }
650 sbio->spag[sbio->count].flags = flags;
651 sbio->spag[sbio->count].generation = gen;
652 sbio->spag[sbio->count].have_csum = 0;
653 sbio->spag[sbio->count].mirror_num = mirror_num;
654 if (csum) {
655 sbio->spag[sbio->count].have_csum = 1;
656 memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
657 }
658 ++sbio->count;
1bc87793
AJ
659 if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
660 int ret;
661
662 ret = scrub_submit(sdev);
663 if (ret)
664 return ret;
665 }
a2de733c
AJ
666
667 return 0;
668}
669
670static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
671 u8 *csum)
672{
673 struct btrfs_ordered_sum *sum = NULL;
674 int ret = 0;
675 unsigned long i;
676 unsigned long num_sectors;
677 u32 sectorsize = sdev->dev->dev_root->sectorsize;
678
679 while (!list_empty(&sdev->csum_list)) {
680 sum = list_first_entry(&sdev->csum_list,
681 struct btrfs_ordered_sum, list);
682 if (sum->bytenr > logical)
683 return 0;
684 if (sum->bytenr + sum->len > logical)
685 break;
686
687 ++sdev->stat.csum_discards;
688 list_del(&sum->list);
689 kfree(sum);
690 sum = NULL;
691 }
692 if (!sum)
693 return 0;
694
695 num_sectors = sum->len / sectorsize;
696 for (i = 0; i < num_sectors; ++i) {
697 if (sum->sums[i].bytenr == logical) {
698 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
699 ret = 1;
700 break;
701 }
702 }
703 if (ret && i == num_sectors - 1) {
704 list_del(&sum->list);
705 kfree(sum);
706 }
707 return ret;
708}
709
710/* scrub extent tries to collect up to 64 kB for each bio */
711static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
712 u64 physical, u64 flags, u64 gen, u64 mirror_num)
713{
714 int ret;
715 u8 csum[BTRFS_CSUM_SIZE];
716
717 while (len) {
718 u64 l = min_t(u64, len, PAGE_SIZE);
719 int have_csum = 0;
720
721 if (flags & BTRFS_EXTENT_FLAG_DATA) {
722 /* push csums to sbio */
723 have_csum = scrub_find_csum(sdev, logical, l, csum);
724 if (have_csum == 0)
725 ++sdev->stat.no_csum;
726 }
727 ret = scrub_page(sdev, logical, l, physical, flags, gen,
728 mirror_num, have_csum ? csum : NULL, 0);
729 if (ret)
730 return ret;
731 len -= l;
732 logical += l;
733 physical += l;
734 }
735 return 0;
736}
737
738static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
739 struct map_lookup *map, int num, u64 base, u64 length)
740{
741 struct btrfs_path *path;
742 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
743 struct btrfs_root *root = fs_info->extent_root;
744 struct btrfs_root *csum_root = fs_info->csum_root;
745 struct btrfs_extent_item *extent;
746 u64 flags;
747 int ret;
748 int slot;
749 int i;
750 u64 nstripes;
751 int start_stripe;
752 struct extent_buffer *l;
753 struct btrfs_key key;
754 u64 physical;
755 u64 logical;
756 u64 generation;
757 u64 mirror_num;
758
759 u64 increment = map->stripe_len;
760 u64 offset;
761
762 nstripes = length;
763 offset = 0;
764 do_div(nstripes, map->stripe_len);
765 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
766 offset = map->stripe_len * num;
767 increment = map->stripe_len * map->num_stripes;
768 mirror_num = 0;
769 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
770 int factor = map->num_stripes / map->sub_stripes;
771 offset = map->stripe_len * (num / map->sub_stripes);
772 increment = map->stripe_len * factor;
773 mirror_num = num % map->sub_stripes;
774 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
775 increment = map->stripe_len;
776 mirror_num = num % map->num_stripes;
777 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
778 increment = map->stripe_len;
779 mirror_num = num % map->num_stripes;
780 } else {
781 increment = map->stripe_len;
782 mirror_num = 0;
783 }
784
785 path = btrfs_alloc_path();
786 if (!path)
787 return -ENOMEM;
788
789 path->reada = 2;
790 path->search_commit_root = 1;
791 path->skip_locking = 1;
792
793 /*
794 * find all extents for each stripe and just read them to get
795 * them into the page cache
796 * FIXME: we can do better. build a more intelligent prefetching
797 */
798 logical = base + offset;
799 physical = map->stripes[num].physical;
800 ret = 0;
801 for (i = 0; i < nstripes; ++i) {
802 key.objectid = logical;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = (u64)0;
805
806 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
807 if (ret < 0)
808 goto out;
809
810 l = path->nodes[0];
811 slot = path->slots[0];
812 btrfs_item_key_to_cpu(l, &key, slot);
813 if (key.objectid != logical) {
814 ret = btrfs_previous_item(root, path, 0,
815 BTRFS_EXTENT_ITEM_KEY);
816 if (ret < 0)
817 goto out;
818 }
819
820 while (1) {
821 l = path->nodes[0];
822 slot = path->slots[0];
823 if (slot >= btrfs_header_nritems(l)) {
824 ret = btrfs_next_leaf(root, path);
825 if (ret == 0)
826 continue;
827 if (ret < 0)
828 goto out;
829
830 break;
831 }
832 btrfs_item_key_to_cpu(l, &key, slot);
833
834 if (key.objectid >= logical + map->stripe_len)
835 break;
836
837 path->slots[0]++;
838 }
71267333 839 btrfs_release_path(path);
a2de733c
AJ
840 logical += increment;
841 physical += map->stripe_len;
842 cond_resched();
843 }
844
845 /*
846 * collect all data csums for the stripe to avoid seeking during
847 * the scrub. This might currently (crc32) end up to be about 1MB
848 */
849 start_stripe = 0;
850again:
851 logical = base + offset + start_stripe * increment;
852 for (i = start_stripe; i < nstripes; ++i) {
853 ret = btrfs_lookup_csums_range(csum_root, logical,
854 logical + map->stripe_len - 1,
855 &sdev->csum_list, 1);
856 if (ret)
857 goto out;
858
859 logical += increment;
860 cond_resched();
861 }
862 /*
863 * now find all extents for each stripe and scrub them
864 */
865 logical = base + offset + start_stripe * increment;
866 physical = map->stripes[num].physical + start_stripe * map->stripe_len;
867 ret = 0;
868 for (i = start_stripe; i < nstripes; ++i) {
869 /*
870 * canceled?
871 */
872 if (atomic_read(&fs_info->scrub_cancel_req) ||
873 atomic_read(&sdev->cancel_req)) {
874 ret = -ECANCELED;
875 goto out;
876 }
877 /*
878 * check to see if we have to pause
879 */
880 if (atomic_read(&fs_info->scrub_pause_req)) {
881 /* push queued extents */
882 scrub_submit(sdev);
883 wait_event(sdev->list_wait,
884 atomic_read(&sdev->in_flight) == 0);
885 atomic_inc(&fs_info->scrubs_paused);
886 wake_up(&fs_info->scrub_pause_wait);
887 mutex_lock(&fs_info->scrub_lock);
888 while (atomic_read(&fs_info->scrub_pause_req)) {
889 mutex_unlock(&fs_info->scrub_lock);
890 wait_event(fs_info->scrub_pause_wait,
891 atomic_read(&fs_info->scrub_pause_req) == 0);
892 mutex_lock(&fs_info->scrub_lock);
893 }
894 atomic_dec(&fs_info->scrubs_paused);
895 mutex_unlock(&fs_info->scrub_lock);
896 wake_up(&fs_info->scrub_pause_wait);
897 scrub_free_csums(sdev);
898 start_stripe = i;
899 goto again;
900 }
901
902 key.objectid = logical;
903 key.type = BTRFS_EXTENT_ITEM_KEY;
904 key.offset = (u64)0;
905
906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
907 if (ret < 0)
908 goto out;
909
910 l = path->nodes[0];
911 slot = path->slots[0];
912 btrfs_item_key_to_cpu(l, &key, slot);
913 if (key.objectid != logical) {
914 ret = btrfs_previous_item(root, path, 0,
915 BTRFS_EXTENT_ITEM_KEY);
916 if (ret < 0)
917 goto out;
918 }
919
920 while (1) {
921 l = path->nodes[0];
922 slot = path->slots[0];
923 if (slot >= btrfs_header_nritems(l)) {
924 ret = btrfs_next_leaf(root, path);
925 if (ret == 0)
926 continue;
927 if (ret < 0)
928 goto out;
929
930 break;
931 }
932 btrfs_item_key_to_cpu(l, &key, slot);
933
934 if (key.objectid + key.offset <= logical)
935 goto next;
936
937 if (key.objectid >= logical + map->stripe_len)
938 break;
939
940 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
941 goto next;
942
943 extent = btrfs_item_ptr(l, slot,
944 struct btrfs_extent_item);
945 flags = btrfs_extent_flags(l, extent);
946 generation = btrfs_extent_generation(l, extent);
947
948 if (key.objectid < logical &&
949 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
950 printk(KERN_ERR
951 "btrfs scrub: tree block %llu spanning "
952 "stripes, ignored. logical=%llu\n",
953 (unsigned long long)key.objectid,
954 (unsigned long long)logical);
955 goto next;
956 }
957
958 /*
959 * trim extent to this stripe
960 */
961 if (key.objectid < logical) {
962 key.offset -= logical - key.objectid;
963 key.objectid = logical;
964 }
965 if (key.objectid + key.offset >
966 logical + map->stripe_len) {
967 key.offset = logical + map->stripe_len -
968 key.objectid;
969 }
970
971 ret = scrub_extent(sdev, key.objectid, key.offset,
972 key.objectid - logical + physical,
973 flags, generation, mirror_num);
974 if (ret)
975 goto out;
976
977next:
978 path->slots[0]++;
979 }
71267333 980 btrfs_release_path(path);
a2de733c
AJ
981 logical += increment;
982 physical += map->stripe_len;
983 spin_lock(&sdev->stat_lock);
984 sdev->stat.last_physical = physical;
985 spin_unlock(&sdev->stat_lock);
986 }
987 /* push queued extents */
988 scrub_submit(sdev);
989
990out:
991 btrfs_free_path(path);
992 return ret < 0 ? ret : 0;
993}
994
995static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
996 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
997{
998 struct btrfs_mapping_tree *map_tree =
999 &sdev->dev->dev_root->fs_info->mapping_tree;
1000 struct map_lookup *map;
1001 struct extent_map *em;
1002 int i;
1003 int ret = -EINVAL;
1004
1005 read_lock(&map_tree->map_tree.lock);
1006 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1007 read_unlock(&map_tree->map_tree.lock);
1008
1009 if (!em)
1010 return -EINVAL;
1011
1012 map = (struct map_lookup *)em->bdev;
1013 if (em->start != chunk_offset)
1014 goto out;
1015
1016 if (em->len < length)
1017 goto out;
1018
1019 for (i = 0; i < map->num_stripes; ++i) {
1020 if (map->stripes[i].dev == sdev->dev) {
1021 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1022 if (ret)
1023 goto out;
1024 }
1025 }
1026out:
1027 free_extent_map(em);
1028
1029 return ret;
1030}
1031
1032static noinline_for_stack
1033int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1034{
1035 struct btrfs_dev_extent *dev_extent = NULL;
1036 struct btrfs_path *path;
1037 struct btrfs_root *root = sdev->dev->dev_root;
1038 struct btrfs_fs_info *fs_info = root->fs_info;
1039 u64 length;
1040 u64 chunk_tree;
1041 u64 chunk_objectid;
1042 u64 chunk_offset;
1043 int ret;
1044 int slot;
1045 struct extent_buffer *l;
1046 struct btrfs_key key;
1047 struct btrfs_key found_key;
1048 struct btrfs_block_group_cache *cache;
1049
1050 path = btrfs_alloc_path();
1051 if (!path)
1052 return -ENOMEM;
1053
1054 path->reada = 2;
1055 path->search_commit_root = 1;
1056 path->skip_locking = 1;
1057
1058 key.objectid = sdev->dev->devid;
1059 key.offset = 0ull;
1060 key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062
1063 while (1) {
1064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1065 if (ret < 0)
1066 goto out;
1067 ret = 0;
1068
1069 l = path->nodes[0];
1070 slot = path->slots[0];
1071
1072 btrfs_item_key_to_cpu(l, &found_key, slot);
1073
1074 if (found_key.objectid != sdev->dev->devid)
1075 break;
1076
1077 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1078 break;
1079
1080 if (found_key.offset >= end)
1081 break;
1082
1083 if (found_key.offset < key.offset)
1084 break;
1085
1086 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1087 length = btrfs_dev_extent_length(l, dev_extent);
1088
1089 if (found_key.offset + length <= start) {
1090 key.offset = found_key.offset + length;
71267333 1091 btrfs_release_path(path);
a2de733c
AJ
1092 continue;
1093 }
1094
1095 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1096 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1097 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1098
1099 /*
1100 * get a reference on the corresponding block group to prevent
1101 * the chunk from going away while we scrub it
1102 */
1103 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1104 if (!cache) {
1105 ret = -ENOENT;
1106 goto out;
1107 }
1108 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1109 chunk_offset, length);
1110 btrfs_put_block_group(cache);
1111 if (ret)
1112 break;
1113
1114 key.offset = found_key.offset + length;
71267333 1115 btrfs_release_path(path);
a2de733c
AJ
1116 }
1117
1118out:
1119 btrfs_free_path(path);
1120 return ret;
1121}
1122
1123static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1124{
1125 int i;
1126 u64 bytenr;
1127 u64 gen;
1128 int ret;
1129 struct btrfs_device *device = sdev->dev;
1130 struct btrfs_root *root = device->dev_root;
1131
1132 gen = root->fs_info->last_trans_committed;
1133
1134 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1135 bytenr = btrfs_sb_offset(i);
1136 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1137 break;
1138
1139 ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1140 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1141 if (ret)
1142 return ret;
1143 }
1144 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1145
1146 return 0;
1147}
1148
1149/*
1150 * get a reference count on fs_info->scrub_workers. start worker if necessary
1151 */
1152static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1153{
1154 struct btrfs_fs_info *fs_info = root->fs_info;
1155
1156 mutex_lock(&fs_info->scrub_lock);
1157 if (fs_info->scrub_workers_refcnt == 0)
1158 btrfs_start_workers(&fs_info->scrub_workers, 1);
1159 ++fs_info->scrub_workers_refcnt;
1160 mutex_unlock(&fs_info->scrub_lock);
1161
1162 return 0;
1163}
1164
1165static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1166{
1167 struct btrfs_fs_info *fs_info = root->fs_info;
1168
1169 mutex_lock(&fs_info->scrub_lock);
1170 if (--fs_info->scrub_workers_refcnt == 0)
1171 btrfs_stop_workers(&fs_info->scrub_workers);
1172 WARN_ON(fs_info->scrub_workers_refcnt < 0);
1173 mutex_unlock(&fs_info->scrub_lock);
1174}
1175
1176
1177int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
8628764e 1178 struct btrfs_scrub_progress *progress, int readonly)
a2de733c
AJ
1179{
1180 struct scrub_dev *sdev;
1181 struct btrfs_fs_info *fs_info = root->fs_info;
1182 int ret;
1183 struct btrfs_device *dev;
1184
1185 if (root->fs_info->closing)
1186 return -EINVAL;
1187
1188 /*
1189 * check some assumptions
1190 */
1191 if (root->sectorsize != PAGE_SIZE ||
1192 root->sectorsize != root->leafsize ||
1193 root->sectorsize != root->nodesize) {
1194 printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1195 return -EINVAL;
1196 }
1197
1198 ret = scrub_workers_get(root);
1199 if (ret)
1200 return ret;
1201
1202 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1203 dev = btrfs_find_device(root, devid, NULL, NULL);
1204 if (!dev || dev->missing) {
1205 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1206 scrub_workers_put(root);
1207 return -ENODEV;
1208 }
1209 mutex_lock(&fs_info->scrub_lock);
1210
1211 if (!dev->in_fs_metadata) {
1212 mutex_unlock(&fs_info->scrub_lock);
1213 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1214 scrub_workers_put(root);
1215 return -ENODEV;
1216 }
1217
1218 if (dev->scrub_device) {
1219 mutex_unlock(&fs_info->scrub_lock);
1220 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1221 scrub_workers_put(root);
1222 return -EINPROGRESS;
1223 }
1224 sdev = scrub_setup_dev(dev);
1225 if (IS_ERR(sdev)) {
1226 mutex_unlock(&fs_info->scrub_lock);
1227 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1228 scrub_workers_put(root);
1229 return PTR_ERR(sdev);
1230 }
8628764e 1231 sdev->readonly = readonly;
a2de733c
AJ
1232 dev->scrub_device = sdev;
1233
1234 atomic_inc(&fs_info->scrubs_running);
1235 mutex_unlock(&fs_info->scrub_lock);
1236 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1237
1238 down_read(&fs_info->scrub_super_lock);
1239 ret = scrub_supers(sdev);
1240 up_read(&fs_info->scrub_super_lock);
1241
1242 if (!ret)
1243 ret = scrub_enumerate_chunks(sdev, start, end);
1244
1245 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1246
1247 atomic_dec(&fs_info->scrubs_running);
1248 wake_up(&fs_info->scrub_pause_wait);
1249
1250 if (progress)
1251 memcpy(progress, &sdev->stat, sizeof(*progress));
1252
1253 mutex_lock(&fs_info->scrub_lock);
1254 dev->scrub_device = NULL;
1255 mutex_unlock(&fs_info->scrub_lock);
1256
1257 scrub_free_dev(sdev);
1258 scrub_workers_put(root);
1259
1260 return ret;
1261}
1262
1263int btrfs_scrub_pause(struct btrfs_root *root)
1264{
1265 struct btrfs_fs_info *fs_info = root->fs_info;
1266
1267 mutex_lock(&fs_info->scrub_lock);
1268 atomic_inc(&fs_info->scrub_pause_req);
1269 while (atomic_read(&fs_info->scrubs_paused) !=
1270 atomic_read(&fs_info->scrubs_running)) {
1271 mutex_unlock(&fs_info->scrub_lock);
1272 wait_event(fs_info->scrub_pause_wait,
1273 atomic_read(&fs_info->scrubs_paused) ==
1274 atomic_read(&fs_info->scrubs_running));
1275 mutex_lock(&fs_info->scrub_lock);
1276 }
1277 mutex_unlock(&fs_info->scrub_lock);
1278
1279 return 0;
1280}
1281
1282int btrfs_scrub_continue(struct btrfs_root *root)
1283{
1284 struct btrfs_fs_info *fs_info = root->fs_info;
1285
1286 atomic_dec(&fs_info->scrub_pause_req);
1287 wake_up(&fs_info->scrub_pause_wait);
1288 return 0;
1289}
1290
1291int btrfs_scrub_pause_super(struct btrfs_root *root)
1292{
1293 down_write(&root->fs_info->scrub_super_lock);
1294 return 0;
1295}
1296
1297int btrfs_scrub_continue_super(struct btrfs_root *root)
1298{
1299 up_write(&root->fs_info->scrub_super_lock);
1300 return 0;
1301}
1302
1303int btrfs_scrub_cancel(struct btrfs_root *root)
1304{
1305 struct btrfs_fs_info *fs_info = root->fs_info;
1306
1307 mutex_lock(&fs_info->scrub_lock);
1308 if (!atomic_read(&fs_info->scrubs_running)) {
1309 mutex_unlock(&fs_info->scrub_lock);
1310 return -ENOTCONN;
1311 }
1312
1313 atomic_inc(&fs_info->scrub_cancel_req);
1314 while (atomic_read(&fs_info->scrubs_running)) {
1315 mutex_unlock(&fs_info->scrub_lock);
1316 wait_event(fs_info->scrub_pause_wait,
1317 atomic_read(&fs_info->scrubs_running) == 0);
1318 mutex_lock(&fs_info->scrub_lock);
1319 }
1320 atomic_dec(&fs_info->scrub_cancel_req);
1321 mutex_unlock(&fs_info->scrub_lock);
1322
1323 return 0;
1324}
1325
1326int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1327{
1328 struct btrfs_fs_info *fs_info = root->fs_info;
1329 struct scrub_dev *sdev;
1330
1331 mutex_lock(&fs_info->scrub_lock);
1332 sdev = dev->scrub_device;
1333 if (!sdev) {
1334 mutex_unlock(&fs_info->scrub_lock);
1335 return -ENOTCONN;
1336 }
1337 atomic_inc(&sdev->cancel_req);
1338 while (dev->scrub_device) {
1339 mutex_unlock(&fs_info->scrub_lock);
1340 wait_event(fs_info->scrub_pause_wait,
1341 dev->scrub_device == NULL);
1342 mutex_lock(&fs_info->scrub_lock);
1343 }
1344 mutex_unlock(&fs_info->scrub_lock);
1345
1346 return 0;
1347}
1348int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1349{
1350 struct btrfs_fs_info *fs_info = root->fs_info;
1351 struct btrfs_device *dev;
1352 int ret;
1353
1354 /*
1355 * we have to hold the device_list_mutex here so the device
1356 * does not go away in cancel_dev. FIXME: find a better solution
1357 */
1358 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1359 dev = btrfs_find_device(root, devid, NULL, NULL);
1360 if (!dev) {
1361 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1362 return -ENODEV;
1363 }
1364 ret = btrfs_scrub_cancel_dev(root, dev);
1365 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1366
1367 return ret;
1368}
1369
1370int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1371 struct btrfs_scrub_progress *progress)
1372{
1373 struct btrfs_device *dev;
1374 struct scrub_dev *sdev = NULL;
1375
1376 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1377 dev = btrfs_find_device(root, devid, NULL, NULL);
1378 if (dev)
1379 sdev = dev->scrub_device;
1380 if (sdev)
1381 memcpy(progress, &sdev->stat, sizeof(*progress));
1382 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1383
1384 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1385}