]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/scrub.c
Btrfs: enable repair during read for raid56 profile
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 65
af8e2d1d 66struct scrub_recover {
6f615018 67 refcount_t refs;
af8e2d1d 68 struct btrfs_bio *bbio;
af8e2d1d
MX
69 u64 map_length;
70};
71
a2de733c 72struct scrub_page {
b5d67f64
SB
73 struct scrub_block *sblock;
74 struct page *page;
442a4f63 75 struct btrfs_device *dev;
5a6ac9ea 76 struct list_head list;
a2de733c
AJ
77 u64 flags; /* extent flags */
78 u64 generation;
b5d67f64
SB
79 u64 logical;
80 u64 physical;
ff023aac 81 u64 physical_for_dev_replace;
57019345 82 atomic_t refs;
b5d67f64
SB
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
a2de733c 88 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
89
90 struct scrub_recover *recover;
a2de733c
AJ
91};
92
93struct scrub_bio {
94 int index;
d9d181c1 95 struct scrub_ctx *sctx;
a36cf8b8 96 struct btrfs_device *dev;
a2de733c
AJ
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
ff023aac
SB
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
b5d67f64 106 int page_count;
a2de733c
AJ
107 int next_free;
108 struct btrfs_work work;
109};
110
b5d67f64 111struct scrub_block {
7a9e9987 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
113 int page_count;
114 atomic_t outstanding_pages;
186debd6 115 refcount_t refs; /* free mem on transition to zero */
d9d181c1 116 struct scrub_ctx *sctx;
5a6ac9ea 117 struct scrub_parity *sparity;
b5d67f64
SB
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
442a4f63 122 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
b5d67f64 127 };
73ff61db 128 struct btrfs_work work;
b5d67f64
SB
129};
130
5a6ac9ea
MX
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
143 int stripe_len;
144
78a76450 145 refcount_t refs;
5a6ac9ea
MX
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
ff023aac
SB
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
d9d181c1 172struct scrub_ctx {
ff023aac 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 174 struct btrfs_fs_info *fs_info;
a2de733c
AJ
175 int first_free;
176 int curr;
b6bfebc1
SB
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
a2de733c
AJ
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
8628764e 184 int readonly;
ff023aac 185 int pages_per_rd_bio;
b5d67f64
SB
186 u32 sectorsize;
187 u32 nodesize;
63a212ab
SB
188
189 int is_dev_replace;
ff023aac 190 struct scrub_wr_ctx wr_ctx;
63a212ab 191
a2de733c
AJ
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
f55985f4
FM
197
198 /*
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
204 */
99f4cdb1 205 refcount_t refs;
a2de733c
AJ
206};
207
0ef8e451 208struct scrub_fixup_nodatasum {
d9d181c1 209 struct scrub_ctx *sctx;
a36cf8b8 210 struct btrfs_device *dev;
0ef8e451
JS
211 u64 logical;
212 struct btrfs_root *root;
213 struct btrfs_work work;
214 int mirror_num;
215};
216
652f25a2
JB
217struct scrub_nocow_inode {
218 u64 inum;
219 u64 offset;
220 u64 root;
221 struct list_head list;
222};
223
ff023aac
SB
224struct scrub_copy_nocow_ctx {
225 struct scrub_ctx *sctx;
226 u64 logical;
227 u64 len;
228 int mirror_num;
229 u64 physical_for_dev_replace;
652f25a2 230 struct list_head inodes;
ff023aac
SB
231 struct btrfs_work work;
232};
233
558540c1
JS
234struct scrub_warning {
235 struct btrfs_path *path;
236 u64 extent_item_size;
558540c1
JS
237 const char *errstr;
238 sector_t sector;
239 u64 logical;
240 struct btrfs_device *dev;
558540c1
JS
241};
242
b6bfebc1
SB
243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 249 struct scrub_block *sblocks_for_recheck);
34f5c8e9 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
251 struct scrub_block *sblock,
252 int retry_failed_mirror);
ba7cf988 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 255 struct scrub_block *sblock_good);
b5d67f64
SB
256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
257 struct scrub_block *sblock_good,
258 int page_num, int force_write);
ff023aac
SB
259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
261 int page_num);
b5d67f64
SB
262static int scrub_checksum_data(struct scrub_block *sblock);
263static int scrub_checksum_tree_block(struct scrub_block *sblock);
264static int scrub_checksum_super(struct scrub_block *sblock);
265static void scrub_block_get(struct scrub_block *sblock);
266static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
267static void scrub_page_get(struct scrub_page *spage);
268static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
269static void scrub_parity_get(struct scrub_parity *sparity);
270static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
272 struct scrub_page *spage);
d9d181c1 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 274 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
275 u64 gen, int mirror_num, u8 *csum, int force,
276 u64 physical_for_dev_replace);
4246a0b6 277static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
278static void scrub_bio_end_io_worker(struct btrfs_work *work);
279static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
281 u64 extent_logical, u64 extent_len,
282 u64 *extent_physical,
283 struct btrfs_device **extent_dev,
284 int *extent_mirror_num);
e5987e13 285static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
ff023aac
SB
286 struct btrfs_device *dev,
287 int is_dev_replace);
288static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
289static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
290 struct scrub_page *spage);
291static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 292static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac
SB
293static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
294static int write_page_nocow(struct scrub_ctx *sctx,
295 u64 physical_for_dev_replace, struct page *page);
296static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 297 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
298static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
299 int mirror_num, u64 physical_for_dev_replace);
300static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 301static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 302static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 303static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb
SB
304
305
b6bfebc1
SB
306static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
307{
99f4cdb1 308 refcount_inc(&sctx->refs);
b6bfebc1
SB
309 atomic_inc(&sctx->bios_in_flight);
310}
311
312static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
313{
314 atomic_dec(&sctx->bios_in_flight);
315 wake_up(&sctx->list_wait);
f55985f4 316 scrub_put_ctx(sctx);
b6bfebc1
SB
317}
318
cb7ab021 319static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
320{
321 while (atomic_read(&fs_info->scrub_pause_req)) {
322 mutex_unlock(&fs_info->scrub_lock);
323 wait_event(fs_info->scrub_pause_wait,
324 atomic_read(&fs_info->scrub_pause_req) == 0);
325 mutex_lock(&fs_info->scrub_lock);
326 }
327}
328
0e22be89 329static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
330{
331 atomic_inc(&fs_info->scrubs_paused);
332 wake_up(&fs_info->scrub_pause_wait);
0e22be89 333}
cb7ab021 334
0e22be89
Z
335static void scrub_pause_off(struct btrfs_fs_info *fs_info)
336{
cb7ab021
WS
337 mutex_lock(&fs_info->scrub_lock);
338 __scrub_blocked_if_needed(fs_info);
339 atomic_dec(&fs_info->scrubs_paused);
340 mutex_unlock(&fs_info->scrub_lock);
341
342 wake_up(&fs_info->scrub_pause_wait);
343}
344
0e22be89
Z
345static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
346{
347 scrub_pause_on(fs_info);
348 scrub_pause_off(fs_info);
349}
350
b6bfebc1
SB
351/*
352 * used for workers that require transaction commits (i.e., for the
353 * NOCOW case)
354 */
355static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
356{
fb456252 357 struct btrfs_fs_info *fs_info = sctx->fs_info;
b6bfebc1 358
99f4cdb1 359 refcount_inc(&sctx->refs);
b6bfebc1
SB
360 /*
361 * increment scrubs_running to prevent cancel requests from
362 * completing as long as a worker is running. we must also
363 * increment scrubs_paused to prevent deadlocking on pause
364 * requests used for transactions commits (as the worker uses a
365 * transaction context). it is safe to regard the worker
366 * as paused for all matters practical. effectively, we only
367 * avoid cancellation requests from completing.
368 */
369 mutex_lock(&fs_info->scrub_lock);
370 atomic_inc(&fs_info->scrubs_running);
371 atomic_inc(&fs_info->scrubs_paused);
372 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
373
374 /*
375 * check if @scrubs_running=@scrubs_paused condition
376 * inside wait_event() is not an atomic operation.
377 * which means we may inc/dec @scrub_running/paused
378 * at any time. Let's wake up @scrub_pause_wait as
379 * much as we can to let commit transaction blocked less.
380 */
381 wake_up(&fs_info->scrub_pause_wait);
382
b6bfebc1
SB
383 atomic_inc(&sctx->workers_pending);
384}
385
386/* used for workers that require transaction commits */
387static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
388{
fb456252 389 struct btrfs_fs_info *fs_info = sctx->fs_info;
b6bfebc1
SB
390
391 /*
392 * see scrub_pending_trans_workers_inc() why we're pretending
393 * to be paused in the scrub counters
394 */
395 mutex_lock(&fs_info->scrub_lock);
396 atomic_dec(&fs_info->scrubs_running);
397 atomic_dec(&fs_info->scrubs_paused);
398 mutex_unlock(&fs_info->scrub_lock);
399 atomic_dec(&sctx->workers_pending);
400 wake_up(&fs_info->scrub_pause_wait);
401 wake_up(&sctx->list_wait);
f55985f4 402 scrub_put_ctx(sctx);
b6bfebc1
SB
403}
404
d9d181c1 405static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 406{
d9d181c1 407 while (!list_empty(&sctx->csum_list)) {
a2de733c 408 struct btrfs_ordered_sum *sum;
d9d181c1 409 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
410 struct btrfs_ordered_sum, list);
411 list_del(&sum->list);
412 kfree(sum);
413 }
414}
415
d9d181c1 416static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
417{
418 int i;
a2de733c 419
d9d181c1 420 if (!sctx)
a2de733c
AJ
421 return;
422
ff023aac
SB
423 scrub_free_wr_ctx(&sctx->wr_ctx);
424
b5d67f64 425 /* this can happen when scrub is cancelled */
d9d181c1
SB
426 if (sctx->curr != -1) {
427 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
428
429 for (i = 0; i < sbio->page_count; i++) {
ff023aac 430 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
431 scrub_block_put(sbio->pagev[i]->sblock);
432 }
433 bio_put(sbio->bio);
434 }
435
ff023aac 436 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 437 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
438
439 if (!sbio)
440 break;
a2de733c
AJ
441 kfree(sbio);
442 }
443
d9d181c1
SB
444 scrub_free_csums(sctx);
445 kfree(sctx);
a2de733c
AJ
446}
447
f55985f4
FM
448static void scrub_put_ctx(struct scrub_ctx *sctx)
449{
99f4cdb1 450 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
451 scrub_free_ctx(sctx);
452}
453
a2de733c 454static noinline_for_stack
63a212ab 455struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 456{
d9d181c1 457 struct scrub_ctx *sctx;
a2de733c 458 int i;
fb456252 459 struct btrfs_fs_info *fs_info = dev->fs_info;
ff023aac 460 int ret;
a2de733c 461
58c4e173 462 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 463 if (!sctx)
a2de733c 464 goto nomem;
99f4cdb1 465 refcount_set(&sctx->refs, 1);
63a212ab 466 sctx->is_dev_replace = is_dev_replace;
b54ffb73 467 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 468 sctx->curr = -1;
fb456252 469 sctx->fs_info = dev->fs_info;
ff023aac 470 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
471 struct scrub_bio *sbio;
472
58c4e173 473 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
474 if (!sbio)
475 goto nomem;
d9d181c1 476 sctx->bios[i] = sbio;
a2de733c 477
a2de733c 478 sbio->index = i;
d9d181c1 479 sbio->sctx = sctx;
b5d67f64 480 sbio->page_count = 0;
9e0af237
LB
481 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
482 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 483
ff023aac 484 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 485 sctx->bios[i]->next_free = i + 1;
0ef8e451 486 else
d9d181c1
SB
487 sctx->bios[i]->next_free = -1;
488 }
489 sctx->first_free = 0;
0b246afa
JM
490 sctx->nodesize = fs_info->nodesize;
491 sctx->sectorsize = fs_info->sectorsize;
b6bfebc1
SB
492 atomic_set(&sctx->bios_in_flight, 0);
493 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
494 atomic_set(&sctx->cancel_req, 0);
495 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
496 INIT_LIST_HEAD(&sctx->csum_list);
497
498 spin_lock_init(&sctx->list_lock);
499 spin_lock_init(&sctx->stat_lock);
500 init_waitqueue_head(&sctx->list_wait);
ff023aac 501
e5987e13 502 ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
ff023aac
SB
503 fs_info->dev_replace.tgtdev, is_dev_replace);
504 if (ret) {
505 scrub_free_ctx(sctx);
506 return ERR_PTR(ret);
507 }
d9d181c1 508 return sctx;
a2de733c
AJ
509
510nomem:
d9d181c1 511 scrub_free_ctx(sctx);
a2de733c
AJ
512 return ERR_PTR(-ENOMEM);
513}
514
ff023aac
SB
515static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
516 void *warn_ctx)
558540c1
JS
517{
518 u64 isize;
519 u32 nlink;
520 int ret;
521 int i;
522 struct extent_buffer *eb;
523 struct btrfs_inode_item *inode_item;
ff023aac 524 struct scrub_warning *swarn = warn_ctx;
fb456252 525 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
526 struct inode_fs_paths *ipath = NULL;
527 struct btrfs_root *local_root;
528 struct btrfs_key root_key;
1d4c08e0 529 struct btrfs_key key;
558540c1
JS
530
531 root_key.objectid = root;
532 root_key.type = BTRFS_ROOT_ITEM_KEY;
533 root_key.offset = (u64)-1;
534 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
535 if (IS_ERR(local_root)) {
536 ret = PTR_ERR(local_root);
537 goto err;
538 }
539
14692cc1
DS
540 /*
541 * this makes the path point to (inum INODE_ITEM ioff)
542 */
1d4c08e0
DS
543 key.objectid = inum;
544 key.type = BTRFS_INODE_ITEM_KEY;
545 key.offset = 0;
546
547 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
548 if (ret) {
549 btrfs_release_path(swarn->path);
550 goto err;
551 }
552
553 eb = swarn->path->nodes[0];
554 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
555 struct btrfs_inode_item);
556 isize = btrfs_inode_size(eb, inode_item);
557 nlink = btrfs_inode_nlink(eb, inode_item);
558 btrfs_release_path(swarn->path);
559
560 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
561 if (IS_ERR(ipath)) {
562 ret = PTR_ERR(ipath);
563 ipath = NULL;
564 goto err;
565 }
558540c1
JS
566 ret = paths_from_inode(inum, ipath);
567
568 if (ret < 0)
569 goto err;
570
571 /*
572 * we deliberately ignore the bit ipath might have been too small to
573 * hold all of the paths here
574 */
575 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e
JM
576 btrfs_warn_in_rcu(fs_info,
577 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
578 swarn->errstr, swarn->logical,
579 rcu_str_deref(swarn->dev->name),
580 (unsigned long long)swarn->sector,
581 root, inum, offset,
582 min(isize - offset, (u64)PAGE_SIZE), nlink,
583 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
584
585 free_ipath(ipath);
586 return 0;
587
588err:
5d163e0e
JM
589 btrfs_warn_in_rcu(fs_info,
590 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
591 swarn->errstr, swarn->logical,
592 rcu_str_deref(swarn->dev->name),
593 (unsigned long long)swarn->sector,
594 root, inum, offset, ret);
558540c1
JS
595
596 free_ipath(ipath);
597 return 0;
598}
599
b5d67f64 600static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 601{
a36cf8b8
SB
602 struct btrfs_device *dev;
603 struct btrfs_fs_info *fs_info;
558540c1
JS
604 struct btrfs_path *path;
605 struct btrfs_key found_key;
606 struct extent_buffer *eb;
607 struct btrfs_extent_item *ei;
608 struct scrub_warning swarn;
69917e43
LB
609 unsigned long ptr = 0;
610 u64 extent_item_pos;
611 u64 flags = 0;
558540c1 612 u64 ref_root;
69917e43 613 u32 item_size;
07c9a8e0 614 u8 ref_level = 0;
69917e43 615 int ret;
558540c1 616
a36cf8b8 617 WARN_ON(sblock->page_count < 1);
7a9e9987 618 dev = sblock->pagev[0]->dev;
fb456252 619 fs_info = sblock->sctx->fs_info;
a36cf8b8 620
558540c1 621 path = btrfs_alloc_path();
8b9456da
DS
622 if (!path)
623 return;
558540c1 624
7a9e9987
SB
625 swarn.sector = (sblock->pagev[0]->physical) >> 9;
626 swarn.logical = sblock->pagev[0]->logical;
558540c1 627 swarn.errstr = errstr;
a36cf8b8 628 swarn.dev = NULL;
558540c1 629
69917e43
LB
630 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
631 &flags);
558540c1
JS
632 if (ret < 0)
633 goto out;
634
4692cf58 635 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
636 swarn.extent_item_size = found_key.offset;
637
638 eb = path->nodes[0];
639 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
640 item_size = btrfs_item_size_nr(eb, path->slots[0]);
641
69917e43 642 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 643 do {
6eda71d0
LB
644 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
645 item_size, &ref_root,
646 &ref_level);
ecaeb14b 647 btrfs_warn_in_rcu(fs_info,
5d163e0e
JM
648 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
649 errstr, swarn.logical,
606686ee 650 rcu_str_deref(dev->name),
558540c1
JS
651 (unsigned long long)swarn.sector,
652 ref_level ? "node" : "leaf",
653 ret < 0 ? -1 : ref_level,
654 ret < 0 ? -1 : ref_root);
655 } while (ret != 1);
d8fe29e9 656 btrfs_release_path(path);
558540c1 657 } else {
d8fe29e9 658 btrfs_release_path(path);
558540c1 659 swarn.path = path;
a36cf8b8 660 swarn.dev = dev;
7a3ae2f8
JS
661 iterate_extent_inodes(fs_info, found_key.objectid,
662 extent_item_pos, 1,
558540c1
JS
663 scrub_print_warning_inode, &swarn);
664 }
665
666out:
667 btrfs_free_path(path);
558540c1
JS
668}
669
ff023aac 670static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 671{
5da6fcbc 672 struct page *page = NULL;
0ef8e451 673 unsigned long index;
ff023aac 674 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 675 int ret;
5da6fcbc 676 int corrected = 0;
0ef8e451 677 struct btrfs_key key;
5da6fcbc 678 struct inode *inode = NULL;
6f1c3605 679 struct btrfs_fs_info *fs_info;
0ef8e451
JS
680 u64 end = offset + PAGE_SIZE - 1;
681 struct btrfs_root *local_root;
6f1c3605 682 int srcu_index;
0ef8e451
JS
683
684 key.objectid = root;
685 key.type = BTRFS_ROOT_ITEM_KEY;
686 key.offset = (u64)-1;
6f1c3605
LB
687
688 fs_info = fixup->root->fs_info;
689 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
690
691 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
692 if (IS_ERR(local_root)) {
693 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 694 return PTR_ERR(local_root);
6f1c3605 695 }
0ef8e451
JS
696
697 key.type = BTRFS_INODE_ITEM_KEY;
698 key.objectid = inum;
699 key.offset = 0;
6f1c3605
LB
700 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
701 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
702 if (IS_ERR(inode))
703 return PTR_ERR(inode);
704
09cbfeaf 705 index = offset >> PAGE_SHIFT;
0ef8e451
JS
706
707 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
708 if (!page) {
709 ret = -ENOMEM;
710 goto out;
711 }
712
713 if (PageUptodate(page)) {
5da6fcbc
JS
714 if (PageDirty(page)) {
715 /*
716 * we need to write the data to the defect sector. the
717 * data that was in that sector is not in memory,
718 * because the page was modified. we must not write the
719 * modified page to that sector.
720 *
721 * TODO: what could be done here: wait for the delalloc
722 * runner to write out that page (might involve
723 * COW) and see whether the sector is still
724 * referenced afterwards.
725 *
726 * For the meantime, we'll treat this error
727 * incorrectable, although there is a chance that a
728 * later scrub will find the bad sector again and that
729 * there's no dirty page in memory, then.
730 */
731 ret = -EIO;
732 goto out;
733 }
9d4f7f8a 734 ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
5da6fcbc 735 fixup->logical, page,
ffdd2018 736 offset - page_offset(page),
5da6fcbc
JS
737 fixup->mirror_num);
738 unlock_page(page);
739 corrected = !ret;
740 } else {
741 /*
742 * we need to get good data first. the general readpage path
743 * will call repair_io_failure for us, we just have to make
744 * sure we read the bad mirror.
745 */
746 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
ceeb0ae7 747 EXTENT_DAMAGED);
5da6fcbc
JS
748 if (ret) {
749 /* set_extent_bits should give proper error */
750 WARN_ON(ret > 0);
751 if (ret > 0)
752 ret = -EFAULT;
753 goto out;
754 }
755
756 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
757 btrfs_get_extent,
758 fixup->mirror_num);
759 wait_on_page_locked(page);
760
761 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
762 end, EXTENT_DAMAGED, 0, NULL);
763 if (!corrected)
764 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
91166212 765 EXTENT_DAMAGED);
5da6fcbc
JS
766 }
767
768out:
769 if (page)
770 put_page(page);
7fb18a06
TK
771
772 iput(inode);
0ef8e451
JS
773
774 if (ret < 0)
775 return ret;
776
777 if (ret == 0 && corrected) {
778 /*
779 * we only need to call readpage for one of the inodes belonging
780 * to this extent. so make iterate_extent_inodes stop
781 */
782 return 1;
783 }
784
785 return -EIO;
786}
787
788static void scrub_fixup_nodatasum(struct btrfs_work *work)
789{
0b246afa 790 struct btrfs_fs_info *fs_info;
0ef8e451
JS
791 int ret;
792 struct scrub_fixup_nodatasum *fixup;
d9d181c1 793 struct scrub_ctx *sctx;
0ef8e451 794 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
795 struct btrfs_path *path;
796 int uncorrectable = 0;
797
798 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 799 sctx = fixup->sctx;
0b246afa 800 fs_info = fixup->root->fs_info;
0ef8e451
JS
801
802 path = btrfs_alloc_path();
803 if (!path) {
d9d181c1
SB
804 spin_lock(&sctx->stat_lock);
805 ++sctx->stat.malloc_errors;
806 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
807 uncorrectable = 1;
808 goto out;
809 }
810
811 trans = btrfs_join_transaction(fixup->root);
812 if (IS_ERR(trans)) {
813 uncorrectable = 1;
814 goto out;
815 }
816
817 /*
818 * the idea is to trigger a regular read through the standard path. we
819 * read a page from the (failed) logical address by specifying the
820 * corresponding copynum of the failed sector. thus, that readpage is
821 * expected to fail.
822 * that is the point where on-the-fly error correction will kick in
823 * (once it's finished) and rewrite the failed sector if a good copy
824 * can be found.
825 */
0b246afa
JM
826 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
827 scrub_fixup_readpage, fixup);
0ef8e451
JS
828 if (ret < 0) {
829 uncorrectable = 1;
830 goto out;
831 }
832 WARN_ON(ret != 1);
833
d9d181c1
SB
834 spin_lock(&sctx->stat_lock);
835 ++sctx->stat.corrected_errors;
836 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
837
838out:
839 if (trans && !IS_ERR(trans))
3a45bb20 840 btrfs_end_transaction(trans);
0ef8e451 841 if (uncorrectable) {
d9d181c1
SB
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.uncorrectable_errors;
844 spin_unlock(&sctx->stat_lock);
ff023aac 845 btrfs_dev_replace_stats_inc(
0b246afa
JM
846 &fs_info->dev_replace.num_uncorrectable_read_errors);
847 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 848 "unable to fixup (nodatasum) error at logical %llu on dev %s",
c1c9ff7c 849 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
850 }
851
852 btrfs_free_path(path);
853 kfree(fixup);
854
b6bfebc1 855 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
856}
857
af8e2d1d
MX
858static inline void scrub_get_recover(struct scrub_recover *recover)
859{
6f615018 860 refcount_inc(&recover->refs);
af8e2d1d
MX
861}
862
e501bfe3
QW
863static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
864 struct scrub_recover *recover)
af8e2d1d 865{
6f615018 866 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 867 btrfs_bio_counter_dec(fs_info);
6e9606d2 868 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
869 kfree(recover);
870 }
871}
872
a2de733c 873/*
b5d67f64
SB
874 * scrub_handle_errored_block gets called when either verification of the
875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
876 * case, this function handles all pages in the bio, even though only one
877 * may be bad.
878 * The goal of this function is to repair the errored block by using the
879 * contents of one of the mirrors.
a2de733c 880 */
b5d67f64 881static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 882{
d9d181c1 883 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 884 struct btrfs_device *dev;
b5d67f64
SB
885 struct btrfs_fs_info *fs_info;
886 u64 length;
887 u64 logical;
b5d67f64
SB
888 unsigned int failed_mirror_index;
889 unsigned int is_metadata;
890 unsigned int have_csum;
b5d67f64
SB
891 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
892 struct scrub_block *sblock_bad;
893 int ret;
894 int mirror_index;
895 int page_num;
896 int success;
558540c1 897 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
898 DEFAULT_RATELIMIT_BURST);
899
900 BUG_ON(sblock_to_check->page_count < 1);
fb456252 901 fs_info = sctx->fs_info;
4ded4f63
SB
902 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
903 /*
904 * if we find an error in a super block, we just report it.
905 * They will get written with the next transaction commit
906 * anyway
907 */
908 spin_lock(&sctx->stat_lock);
909 ++sctx->stat.super_errors;
910 spin_unlock(&sctx->stat_lock);
911 return 0;
912 }
b5d67f64 913 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987 914 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
915 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
916 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
917 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 918 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 919 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 920 dev = sblock_to_check->pagev[0]->dev;
13db62b7 921
ff023aac
SB
922 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
923 sblocks_for_recheck = NULL;
924 goto nodatasum_case;
925 }
926
b5d67f64
SB
927 /*
928 * read all mirrors one after the other. This includes to
929 * re-read the extent or metadata block that failed (that was
930 * the cause that this fixup code is called) another time,
931 * page by page this time in order to know which pages
932 * caused I/O errors and which ones are good (for all mirrors).
933 * It is the goal to handle the situation when more than one
934 * mirror contains I/O errors, but the errors do not
935 * overlap, i.e. the data can be repaired by selecting the
936 * pages from those mirrors without I/O error on the
937 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
938 * would be that mirror #1 has an I/O error on the first page,
939 * the second page is good, and mirror #2 has an I/O error on
940 * the second page, but the first page is good.
941 * Then the first page of the first mirror can be repaired by
942 * taking the first page of the second mirror, and the
943 * second page of the second mirror can be repaired by
944 * copying the contents of the 2nd page of the 1st mirror.
945 * One more note: if the pages of one mirror contain I/O
946 * errors, the checksum cannot be verified. In order to get
947 * the best data for repairing, the first attempt is to find
948 * a mirror without I/O errors and with a validated checksum.
949 * Only if this is not possible, the pages are picked from
950 * mirrors with I/O errors without considering the checksum.
951 * If the latter is the case, at the end, the checksum of the
952 * repaired area is verified in order to correctly maintain
953 * the statistics.
954 */
955
31e818fe
DS
956 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
957 sizeof(*sblocks_for_recheck), GFP_NOFS);
b5d67f64 958 if (!sblocks_for_recheck) {
d9d181c1
SB
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.malloc_errors++;
961 sctx->stat.read_errors++;
962 sctx->stat.uncorrectable_errors++;
963 spin_unlock(&sctx->stat_lock);
a36cf8b8 964 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 965 goto out;
a2de733c
AJ
966 }
967
b5d67f64 968 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 969 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 970 if (ret) {
d9d181c1
SB
971 spin_lock(&sctx->stat_lock);
972 sctx->stat.read_errors++;
973 sctx->stat.uncorrectable_errors++;
974 spin_unlock(&sctx->stat_lock);
a36cf8b8 975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
976 goto out;
977 }
978 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
979 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 980
b5d67f64 981 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 982 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 983
b5d67f64
SB
984 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
985 sblock_bad->no_io_error_seen) {
986 /*
987 * the error disappeared after reading page by page, or
988 * the area was part of a huge bio and other parts of the
989 * bio caused I/O errors, or the block layer merged several
990 * read requests into one and the error is caused by a
991 * different bio (usually one of the two latter cases is
992 * the cause)
993 */
d9d181c1
SB
994 spin_lock(&sctx->stat_lock);
995 sctx->stat.unverified_errors++;
5a6ac9ea 996 sblock_to_check->data_corrected = 1;
d9d181c1 997 spin_unlock(&sctx->stat_lock);
a2de733c 998
ff023aac
SB
999 if (sctx->is_dev_replace)
1000 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 1001 goto out;
a2de733c 1002 }
a2de733c 1003
b5d67f64 1004 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
1005 spin_lock(&sctx->stat_lock);
1006 sctx->stat.read_errors++;
1007 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1008 if (__ratelimit(&_rs))
1009 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 1010 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1011 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
1012 spin_lock(&sctx->stat_lock);
1013 sctx->stat.csum_errors++;
1014 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1015 if (__ratelimit(&_rs))
1016 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 1017 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1018 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1019 } else if (sblock_bad->header_error) {
d9d181c1
SB
1020 spin_lock(&sctx->stat_lock);
1021 sctx->stat.verify_errors++;
1022 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1023 if (__ratelimit(&_rs))
1024 scrub_print_warning("checksum/header error",
1025 sblock_to_check);
442a4f63 1026 if (sblock_bad->generation_error)
a36cf8b8 1027 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
1028 BTRFS_DEV_STAT_GENERATION_ERRS);
1029 else
a36cf8b8 1030 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1031 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1032 }
a2de733c 1033
33ef30ad
ID
1034 if (sctx->readonly) {
1035 ASSERT(!sctx->is_dev_replace);
1036 goto out;
1037 }
a2de733c 1038
b5d67f64
SB
1039 if (!is_metadata && !have_csum) {
1040 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 1041
ff023aac
SB
1042 WARN_ON(sctx->is_dev_replace);
1043
b25c94c5
ZL
1044nodatasum_case:
1045
b5d67f64
SB
1046 /*
1047 * !is_metadata and !have_csum, this means that the data
01327610 1048 * might not be COWed, that it might be modified
b5d67f64
SB
1049 * concurrently. The general strategy to work on the
1050 * commit root does not help in the case when COW is not
1051 * used.
1052 */
1053 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054 if (!fixup_nodatasum)
1055 goto did_not_correct_error;
d9d181c1 1056 fixup_nodatasum->sctx = sctx;
a36cf8b8 1057 fixup_nodatasum->dev = dev;
b5d67f64
SB
1058 fixup_nodatasum->logical = logical;
1059 fixup_nodatasum->root = fs_info->extent_root;
1060 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 1061 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1062 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1064 btrfs_queue_work(fs_info->scrub_workers,
1065 &fixup_nodatasum->work);
b5d67f64 1066 goto out;
a2de733c
AJ
1067 }
1068
b5d67f64
SB
1069 /*
1070 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1071 * checksums.
1072 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1073 * errors and also does not have a checksum error.
1074 * If one is found, and if a checksum is present, the full block
1075 * that is known to contain an error is rewritten. Afterwards
1076 * the block is known to be corrected.
1077 * If a mirror is found which is completely correct, and no
1078 * checksum is present, only those pages are rewritten that had
1079 * an I/O error in the block to be repaired, since it cannot be
1080 * determined, which copy of the other pages is better (and it
1081 * could happen otherwise that a correct page would be
1082 * overwritten by a bad one).
1083 */
1084 for (mirror_index = 0;
1085 mirror_index < BTRFS_MAX_MIRRORS &&
1086 sblocks_for_recheck[mirror_index].page_count > 0;
1087 mirror_index++) {
cb2ced73 1088 struct scrub_block *sblock_other;
b5d67f64 1089
cb2ced73
SB
1090 if (mirror_index == failed_mirror_index)
1091 continue;
1092 sblock_other = sblocks_for_recheck + mirror_index;
1093
1094 /* build and submit the bios, check checksums */
affe4a5a 1095 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1096
1097 if (!sblock_other->header_error &&
b5d67f64
SB
1098 !sblock_other->checksum_error &&
1099 sblock_other->no_io_error_seen) {
ff023aac
SB
1100 if (sctx->is_dev_replace) {
1101 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1102 goto corrected_error;
ff023aac 1103 } else {
ff023aac 1104 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1105 sblock_bad, sblock_other);
1106 if (!ret)
1107 goto corrected_error;
ff023aac 1108 }
b5d67f64
SB
1109 }
1110 }
a2de733c 1111
b968fed1
ZL
1112 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113 goto did_not_correct_error;
ff023aac
SB
1114
1115 /*
ff023aac 1116 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1117 * repaired, continue by picking good copies of those pages.
1118 * Select the good pages from mirrors to rewrite bad pages from
1119 * the area to fix. Afterwards verify the checksum of the block
1120 * that is supposed to be repaired. This verification step is
1121 * only done for the purpose of statistic counting and for the
1122 * final scrub report, whether errors remain.
1123 * A perfect algorithm could make use of the checksum and try
1124 * all possible combinations of pages from the different mirrors
1125 * until the checksum verification succeeds. For example, when
1126 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 * of mirror #2 is readable but the final checksum test fails,
1128 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1129 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1130 * exception and is therefore not implemented. At least it is
1131 * avoided that the good copy is overwritten.
1132 * A more useful improvement would be to pick the sectors
1133 * without I/O error based on sector sizes (512 bytes on legacy
1134 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 * mirror could be repaired by taking 512 byte of a different
1136 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 * area are unreadable.
a2de733c 1138 */
b5d67f64 1139 success = 1;
b968fed1
ZL
1140 for (page_num = 0; page_num < sblock_bad->page_count;
1141 page_num++) {
7a9e9987 1142 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1143 struct scrub_block *sblock_other = NULL;
b5d67f64 1144
b968fed1
ZL
1145 /* skip no-io-error page in scrub */
1146 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1147 continue;
b5d67f64 1148
b968fed1
ZL
1149 /* try to find no-io-error page in mirrors */
1150 if (page_bad->io_error) {
1151 for (mirror_index = 0;
1152 mirror_index < BTRFS_MAX_MIRRORS &&
1153 sblocks_for_recheck[mirror_index].page_count > 0;
1154 mirror_index++) {
1155 if (!sblocks_for_recheck[mirror_index].
1156 pagev[page_num]->io_error) {
1157 sblock_other = sblocks_for_recheck +
1158 mirror_index;
1159 break;
b5d67f64
SB
1160 }
1161 }
b968fed1
ZL
1162 if (!sblock_other)
1163 success = 0;
96e36920 1164 }
a2de733c 1165
b968fed1
ZL
1166 if (sctx->is_dev_replace) {
1167 /*
1168 * did not find a mirror to fetch the page
1169 * from. scrub_write_page_to_dev_replace()
1170 * handles this case (page->io_error), by
1171 * filling the block with zeros before
1172 * submitting the write request
1173 */
1174 if (!sblock_other)
1175 sblock_other = sblock_bad;
1176
1177 if (scrub_write_page_to_dev_replace(sblock_other,
1178 page_num) != 0) {
1179 btrfs_dev_replace_stats_inc(
0b246afa 1180 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1181 success = 0;
1182 }
1183 } else if (sblock_other) {
1184 ret = scrub_repair_page_from_good_copy(sblock_bad,
1185 sblock_other,
1186 page_num, 0);
1187 if (0 == ret)
1188 page_bad->io_error = 0;
1189 else
1190 success = 0;
b5d67f64 1191 }
a2de733c 1192 }
a2de733c 1193
b968fed1 1194 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1195 if (is_metadata || have_csum) {
1196 /*
1197 * need to verify the checksum now that all
1198 * sectors on disk are repaired (the write
1199 * request for data to be repaired is on its way).
1200 * Just be lazy and use scrub_recheck_block()
1201 * which re-reads the data before the checksum
1202 * is verified, but most likely the data comes out
1203 * of the page cache.
1204 */
affe4a5a 1205 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1206 if (!sblock_bad->header_error &&
b5d67f64
SB
1207 !sblock_bad->checksum_error &&
1208 sblock_bad->no_io_error_seen)
1209 goto corrected_error;
1210 else
1211 goto did_not_correct_error;
1212 } else {
1213corrected_error:
d9d181c1
SB
1214 spin_lock(&sctx->stat_lock);
1215 sctx->stat.corrected_errors++;
5a6ac9ea 1216 sblock_to_check->data_corrected = 1;
d9d181c1 1217 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1218 btrfs_err_rl_in_rcu(fs_info,
1219 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1220 logical, rcu_str_deref(dev->name));
8628764e 1221 }
b5d67f64
SB
1222 } else {
1223did_not_correct_error:
d9d181c1
SB
1224 spin_lock(&sctx->stat_lock);
1225 sctx->stat.uncorrectable_errors++;
1226 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1227 btrfs_err_rl_in_rcu(fs_info,
1228 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1229 logical, rcu_str_deref(dev->name));
96e36920 1230 }
a2de733c 1231
b5d67f64
SB
1232out:
1233 if (sblocks_for_recheck) {
1234 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235 mirror_index++) {
1236 struct scrub_block *sblock = sblocks_for_recheck +
1237 mirror_index;
af8e2d1d 1238 struct scrub_recover *recover;
b5d67f64
SB
1239 int page_index;
1240
7a9e9987
SB
1241 for (page_index = 0; page_index < sblock->page_count;
1242 page_index++) {
1243 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1244 recover = sblock->pagev[page_index]->recover;
1245 if (recover) {
e501bfe3 1246 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1247 sblock->pagev[page_index]->recover =
1248 NULL;
1249 }
7a9e9987
SB
1250 scrub_page_put(sblock->pagev[page_index]);
1251 }
b5d67f64
SB
1252 }
1253 kfree(sblocks_for_recheck);
1254 }
a2de733c 1255
b5d67f64
SB
1256 return 0;
1257}
a2de733c 1258
8e5cfb55 1259static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1260{
10f11900
ZL
1261 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262 return 2;
1263 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264 return 3;
1265 else
af8e2d1d 1266 return (int)bbio->num_stripes;
af8e2d1d
MX
1267}
1268
10f11900
ZL
1269static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270 u64 *raid_map,
af8e2d1d
MX
1271 u64 mapped_length,
1272 int nstripes, int mirror,
1273 int *stripe_index,
1274 u64 *stripe_offset)
1275{
1276 int i;
1277
ffe2d203 1278 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1279 /* RAID5/6 */
1280 for (i = 0; i < nstripes; i++) {
1281 if (raid_map[i] == RAID6_Q_STRIPE ||
1282 raid_map[i] == RAID5_P_STRIPE)
1283 continue;
1284
1285 if (logical >= raid_map[i] &&
1286 logical < raid_map[i] + mapped_length)
1287 break;
1288 }
1289
1290 *stripe_index = i;
1291 *stripe_offset = logical - raid_map[i];
1292 } else {
1293 /* The other RAID type */
1294 *stripe_index = mirror;
1295 *stripe_offset = 0;
1296 }
1297}
1298
be50a8dd 1299static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1300 struct scrub_block *sblocks_for_recheck)
1301{
be50a8dd 1302 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1303 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1304 u64 length = original_sblock->page_count * PAGE_SIZE;
1305 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1306 u64 generation = original_sblock->pagev[0]->generation;
1307 u64 flags = original_sblock->pagev[0]->flags;
1308 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1309 struct scrub_recover *recover;
1310 struct btrfs_bio *bbio;
af8e2d1d
MX
1311 u64 sublen;
1312 u64 mapped_length;
1313 u64 stripe_offset;
1314 int stripe_index;
be50a8dd 1315 int page_index = 0;
b5d67f64 1316 int mirror_index;
af8e2d1d 1317 int nmirrors;
b5d67f64
SB
1318 int ret;
1319
1320 /*
57019345 1321 * note: the two members refs and outstanding_pages
b5d67f64
SB
1322 * are not used (and not set) in the blocks that are used for
1323 * the recheck procedure
1324 */
1325
b5d67f64 1326 while (length > 0) {
af8e2d1d
MX
1327 sublen = min_t(u64, length, PAGE_SIZE);
1328 mapped_length = sublen;
1329 bbio = NULL;
a2de733c 1330
b5d67f64
SB
1331 /*
1332 * with a length of PAGE_SIZE, each returned stripe
1333 * represents one mirror
1334 */
e501bfe3 1335 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1336 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1337 logical, &mapped_length, &bbio);
b5d67f64 1338 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1339 btrfs_put_bbio(bbio);
e501bfe3 1340 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1341 return -EIO;
1342 }
a2de733c 1343
af8e2d1d
MX
1344 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1345 if (!recover) {
6e9606d2 1346 btrfs_put_bbio(bbio);
e501bfe3 1347 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1348 return -ENOMEM;
1349 }
1350
6f615018 1351 refcount_set(&recover->refs, 1);
af8e2d1d 1352 recover->bbio = bbio;
af8e2d1d
MX
1353 recover->map_length = mapped_length;
1354
24731149 1355 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1356
be50a8dd 1357 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1358
af8e2d1d 1359 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1360 mirror_index++) {
1361 struct scrub_block *sblock;
1362 struct scrub_page *page;
1363
b5d67f64 1364 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1365 sblock->sctx = sctx;
4734b7ed 1366
7a9e9987
SB
1367 page = kzalloc(sizeof(*page), GFP_NOFS);
1368 if (!page) {
1369leave_nomem:
d9d181c1
SB
1370 spin_lock(&sctx->stat_lock);
1371 sctx->stat.malloc_errors++;
1372 spin_unlock(&sctx->stat_lock);
e501bfe3 1373 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1374 return -ENOMEM;
1375 }
7a9e9987
SB
1376 scrub_page_get(page);
1377 sblock->pagev[page_index] = page;
4734b7ed
ZL
1378 page->sblock = sblock;
1379 page->flags = flags;
1380 page->generation = generation;
7a9e9987 1381 page->logical = logical;
4734b7ed
ZL
1382 page->have_csum = have_csum;
1383 if (have_csum)
1384 memcpy(page->csum,
1385 original_sblock->pagev[0]->csum,
1386 sctx->csum_size);
af8e2d1d 1387
10f11900
ZL
1388 scrub_stripe_index_and_offset(logical,
1389 bbio->map_type,
1390 bbio->raid_map,
af8e2d1d 1391 mapped_length,
e34c330d
ZL
1392 bbio->num_stripes -
1393 bbio->num_tgtdevs,
af8e2d1d
MX
1394 mirror_index,
1395 &stripe_index,
1396 &stripe_offset);
1397 page->physical = bbio->stripes[stripe_index].physical +
1398 stripe_offset;
1399 page->dev = bbio->stripes[stripe_index].dev;
1400
ff023aac
SB
1401 BUG_ON(page_index >= original_sblock->page_count);
1402 page->physical_for_dev_replace =
1403 original_sblock->pagev[page_index]->
1404 physical_for_dev_replace;
7a9e9987 1405 /* for missing devices, dev->bdev is NULL */
7a9e9987 1406 page->mirror_num = mirror_index + 1;
b5d67f64 1407 sblock->page_count++;
7a9e9987
SB
1408 page->page = alloc_page(GFP_NOFS);
1409 if (!page->page)
1410 goto leave_nomem;
af8e2d1d
MX
1411
1412 scrub_get_recover(recover);
1413 page->recover = recover;
b5d67f64 1414 }
e501bfe3 1415 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1416 length -= sublen;
1417 logical += sublen;
1418 page_index++;
1419 }
1420
1421 return 0;
96e36920
ID
1422}
1423
af8e2d1d
MX
1424struct scrub_bio_ret {
1425 struct completion event;
1426 int error;
1427};
1428
4246a0b6 1429static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d
MX
1430{
1431 struct scrub_bio_ret *ret = bio->bi_private;
1432
4246a0b6 1433 ret->error = bio->bi_error;
af8e2d1d
MX
1434 complete(&ret->event);
1435}
1436
1437static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1438{
10f11900 1439 return page->recover &&
ffe2d203 1440 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
af8e2d1d
MX
1441}
1442
1443static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1444 struct bio *bio,
1445 struct scrub_page *page)
1446{
1447 struct scrub_bio_ret done;
1448 int ret;
1449
1450 init_completion(&done.event);
1451 done.error = 0;
1452 bio->bi_iter.bi_sector = page->logical >> 9;
1453 bio->bi_private = &done;
1454 bio->bi_end_io = scrub_bio_wait_endio;
1455
2ff7e61e 1456 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1457 page->recover->map_length,
4245215d 1458 page->mirror_num, 0);
af8e2d1d
MX
1459 if (ret)
1460 return ret;
1461
1462 wait_for_completion(&done.event);
1463 if (done.error)
1464 return -EIO;
1465
1466 return 0;
1467}
1468
b5d67f64
SB
1469/*
1470 * this function will check the on disk data for checksum errors, header
1471 * errors and read I/O errors. If any I/O errors happen, the exact pages
1472 * which are errored are marked as being bad. The goal is to enable scrub
1473 * to take those pages that are not errored from all the mirrors so that
1474 * the pages that are errored in the just handled mirror can be repaired.
1475 */
34f5c8e9 1476static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1477 struct scrub_block *sblock,
1478 int retry_failed_mirror)
96e36920 1479{
b5d67f64 1480 int page_num;
96e36920 1481
b5d67f64 1482 sblock->no_io_error_seen = 1;
96e36920 1483
b5d67f64
SB
1484 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1485 struct bio *bio;
7a9e9987 1486 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1487
442a4f63 1488 if (page->dev->bdev == NULL) {
ea9947b4
SB
1489 page->io_error = 1;
1490 sblock->no_io_error_seen = 0;
1491 continue;
1492 }
1493
7a9e9987 1494 WARN_ON(!page->page);
9be3395b 1495 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1496 if (!bio) {
1497 page->io_error = 1;
1498 sblock->no_io_error_seen = 0;
1499 continue;
1500 }
442a4f63 1501 bio->bi_bdev = page->dev->bdev;
b5d67f64 1502
34f5c8e9 1503 bio_add_page(bio, page->page, PAGE_SIZE, 0);
af8e2d1d 1504 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1bcd7aa1
LB
1505 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1506 page->io_error = 1;
af8e2d1d 1507 sblock->no_io_error_seen = 0;
1bcd7aa1 1508 }
af8e2d1d
MX
1509 } else {
1510 bio->bi_iter.bi_sector = page->physical >> 9;
37226b21 1511 bio_set_op_attrs(bio, REQ_OP_READ, 0);
af8e2d1d 1512
1bcd7aa1
LB
1513 if (btrfsic_submit_bio_wait(bio)) {
1514 page->io_error = 1;
af8e2d1d 1515 sblock->no_io_error_seen = 0;
1bcd7aa1 1516 }
af8e2d1d 1517 }
33879d45 1518
b5d67f64
SB
1519 bio_put(bio);
1520 }
96e36920 1521
b5d67f64 1522 if (sblock->no_io_error_seen)
ba7cf988 1523 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1524}
1525
17a9be2f
MX
1526static inline int scrub_check_fsid(u8 fsid[],
1527 struct scrub_page *spage)
1528{
1529 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1530 int ret;
1531
1532 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1533 return !ret;
1534}
1535
ba7cf988 1536static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1537{
ba7cf988
ZL
1538 sblock->header_error = 0;
1539 sblock->checksum_error = 0;
1540 sblock->generation_error = 0;
b5d67f64 1541
ba7cf988
ZL
1542 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1543 scrub_checksum_data(sblock);
1544 else
1545 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1546}
1547
b5d67f64 1548static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1549 struct scrub_block *sblock_good)
b5d67f64
SB
1550{
1551 int page_num;
1552 int ret = 0;
96e36920 1553
b5d67f64
SB
1554 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1555 int ret_sub;
96e36920 1556
b5d67f64
SB
1557 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1558 sblock_good,
114ab50d 1559 page_num, 1);
b5d67f64
SB
1560 if (ret_sub)
1561 ret = ret_sub;
a2de733c 1562 }
b5d67f64
SB
1563
1564 return ret;
1565}
1566
1567static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1568 struct scrub_block *sblock_good,
1569 int page_num, int force_write)
1570{
7a9e9987
SB
1571 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1572 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1573 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1574
7a9e9987
SB
1575 BUG_ON(page_bad->page == NULL);
1576 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1577 if (force_write || sblock_bad->header_error ||
1578 sblock_bad->checksum_error || page_bad->io_error) {
1579 struct bio *bio;
1580 int ret;
b5d67f64 1581
ff023aac 1582 if (!page_bad->dev->bdev) {
0b246afa 1583 btrfs_warn_rl(fs_info,
5d163e0e 1584 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1585 return -EIO;
1586 }
1587
9be3395b 1588 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1589 if (!bio)
1590 return -EIO;
442a4f63 1591 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1592 bio->bi_iter.bi_sector = page_bad->physical >> 9;
37226b21 1593 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b5d67f64
SB
1594
1595 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1596 if (PAGE_SIZE != ret) {
1597 bio_put(bio);
1598 return -EIO;
13db62b7 1599 }
b5d67f64 1600
4e49ea4a 1601 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1602 btrfs_dev_stat_inc_and_print(page_bad->dev,
1603 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac 1604 btrfs_dev_replace_stats_inc(
0b246afa 1605 &fs_info->dev_replace.num_write_errors);
442a4f63
SB
1606 bio_put(bio);
1607 return -EIO;
1608 }
b5d67f64 1609 bio_put(bio);
a2de733c
AJ
1610 }
1611
b5d67f64
SB
1612 return 0;
1613}
1614
ff023aac
SB
1615static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1616{
0b246afa 1617 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1618 int page_num;
1619
5a6ac9ea
MX
1620 /*
1621 * This block is used for the check of the parity on the source device,
1622 * so the data needn't be written into the destination device.
1623 */
1624 if (sblock->sparity)
1625 return;
1626
ff023aac
SB
1627 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1628 int ret;
1629
1630 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1631 if (ret)
1632 btrfs_dev_replace_stats_inc(
0b246afa 1633 &fs_info->dev_replace.num_write_errors);
ff023aac
SB
1634 }
1635}
1636
1637static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1638 int page_num)
1639{
1640 struct scrub_page *spage = sblock->pagev[page_num];
1641
1642 BUG_ON(spage->page == NULL);
1643 if (spage->io_error) {
1644 void *mapped_buffer = kmap_atomic(spage->page);
1645
619a9742 1646 clear_page(mapped_buffer);
ff023aac
SB
1647 flush_dcache_page(spage->page);
1648 kunmap_atomic(mapped_buffer);
1649 }
1650 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1651}
1652
1653static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1654 struct scrub_page *spage)
1655{
1656 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1657 struct scrub_bio *sbio;
1658 int ret;
1659
1660 mutex_lock(&wr_ctx->wr_lock);
1661again:
1662 if (!wr_ctx->wr_curr_bio) {
1663 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
58c4e173 1664 GFP_KERNEL);
ff023aac
SB
1665 if (!wr_ctx->wr_curr_bio) {
1666 mutex_unlock(&wr_ctx->wr_lock);
1667 return -ENOMEM;
1668 }
1669 wr_ctx->wr_curr_bio->sctx = sctx;
1670 wr_ctx->wr_curr_bio->page_count = 0;
1671 }
1672 sbio = wr_ctx->wr_curr_bio;
1673 if (sbio->page_count == 0) {
1674 struct bio *bio;
1675
1676 sbio->physical = spage->physical_for_dev_replace;
1677 sbio->logical = spage->logical;
1678 sbio->dev = wr_ctx->tgtdev;
1679 bio = sbio->bio;
1680 if (!bio) {
58c4e173
DS
1681 bio = btrfs_io_bio_alloc(GFP_KERNEL,
1682 wr_ctx->pages_per_wr_bio);
ff023aac
SB
1683 if (!bio) {
1684 mutex_unlock(&wr_ctx->wr_lock);
1685 return -ENOMEM;
1686 }
1687 sbio->bio = bio;
1688 }
1689
1690 bio->bi_private = sbio;
1691 bio->bi_end_io = scrub_wr_bio_end_io;
1692 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1693 bio->bi_iter.bi_sector = sbio->physical >> 9;
37226b21 1694 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
ff023aac
SB
1695 sbio->err = 0;
1696 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1697 spage->physical_for_dev_replace ||
1698 sbio->logical + sbio->page_count * PAGE_SIZE !=
1699 spage->logical) {
1700 scrub_wr_submit(sctx);
1701 goto again;
1702 }
1703
1704 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1705 if (ret != PAGE_SIZE) {
1706 if (sbio->page_count < 1) {
1707 bio_put(sbio->bio);
1708 sbio->bio = NULL;
1709 mutex_unlock(&wr_ctx->wr_lock);
1710 return -EIO;
1711 }
1712 scrub_wr_submit(sctx);
1713 goto again;
1714 }
1715
1716 sbio->pagev[sbio->page_count] = spage;
1717 scrub_page_get(spage);
1718 sbio->page_count++;
1719 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1720 scrub_wr_submit(sctx);
1721 mutex_unlock(&wr_ctx->wr_lock);
1722
1723 return 0;
1724}
1725
1726static void scrub_wr_submit(struct scrub_ctx *sctx)
1727{
1728 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1729 struct scrub_bio *sbio;
1730
1731 if (!wr_ctx->wr_curr_bio)
1732 return;
1733
1734 sbio = wr_ctx->wr_curr_bio;
1735 wr_ctx->wr_curr_bio = NULL;
1736 WARN_ON(!sbio->bio->bi_bdev);
1737 scrub_pending_bio_inc(sctx);
1738 /* process all writes in a single worker thread. Then the block layer
1739 * orders the requests before sending them to the driver which
1740 * doubled the write performance on spinning disks when measured
1741 * with Linux 3.5 */
4e49ea4a 1742 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1743}
1744
4246a0b6 1745static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1746{
1747 struct scrub_bio *sbio = bio->bi_private;
fb456252 1748 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1749
4246a0b6 1750 sbio->err = bio->bi_error;
ff023aac
SB
1751 sbio->bio = bio;
1752
9e0af237
LB
1753 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1754 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1755 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1756}
1757
1758static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1759{
1760 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1761 struct scrub_ctx *sctx = sbio->sctx;
1762 int i;
1763
1764 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1765 if (sbio->err) {
1766 struct btrfs_dev_replace *dev_replace =
fb456252 1767 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1768
1769 for (i = 0; i < sbio->page_count; i++) {
1770 struct scrub_page *spage = sbio->pagev[i];
1771
1772 spage->io_error = 1;
1773 btrfs_dev_replace_stats_inc(&dev_replace->
1774 num_write_errors);
1775 }
1776 }
1777
1778 for (i = 0; i < sbio->page_count; i++)
1779 scrub_page_put(sbio->pagev[i]);
1780
1781 bio_put(sbio->bio);
1782 kfree(sbio);
1783 scrub_pending_bio_dec(sctx);
1784}
1785
1786static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1787{
1788 u64 flags;
1789 int ret;
1790
ba7cf988
ZL
1791 /*
1792 * No need to initialize these stats currently,
1793 * because this function only use return value
1794 * instead of these stats value.
1795 *
1796 * Todo:
1797 * always use stats
1798 */
1799 sblock->header_error = 0;
1800 sblock->generation_error = 0;
1801 sblock->checksum_error = 0;
1802
7a9e9987
SB
1803 WARN_ON(sblock->page_count < 1);
1804 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1805 ret = 0;
1806 if (flags & BTRFS_EXTENT_FLAG_DATA)
1807 ret = scrub_checksum_data(sblock);
1808 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1809 ret = scrub_checksum_tree_block(sblock);
1810 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1811 (void)scrub_checksum_super(sblock);
1812 else
1813 WARN_ON(1);
1814 if (ret)
1815 scrub_handle_errored_block(sblock);
ff023aac
SB
1816
1817 return ret;
a2de733c
AJ
1818}
1819
b5d67f64 1820static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1821{
d9d181c1 1822 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1823 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1824 u8 *on_disk_csum;
1825 struct page *page;
1826 void *buffer;
a2de733c 1827 u32 crc = ~(u32)0;
b5d67f64
SB
1828 u64 len;
1829 int index;
a2de733c 1830
b5d67f64 1831 BUG_ON(sblock->page_count < 1);
7a9e9987 1832 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1833 return 0;
1834
7a9e9987
SB
1835 on_disk_csum = sblock->pagev[0]->csum;
1836 page = sblock->pagev[0]->page;
9613bebb 1837 buffer = kmap_atomic(page);
b5d67f64 1838
d9d181c1 1839 len = sctx->sectorsize;
b5d67f64
SB
1840 index = 0;
1841 for (;;) {
1842 u64 l = min_t(u64, len, PAGE_SIZE);
1843
b0496686 1844 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1845 kunmap_atomic(buffer);
b5d67f64
SB
1846 len -= l;
1847 if (len == 0)
1848 break;
1849 index++;
1850 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1851 BUG_ON(!sblock->pagev[index]->page);
1852 page = sblock->pagev[index]->page;
9613bebb 1853 buffer = kmap_atomic(page);
b5d67f64
SB
1854 }
1855
a2de733c 1856 btrfs_csum_final(crc, csum);
d9d181c1 1857 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 1858 sblock->checksum_error = 1;
a2de733c 1859
ba7cf988 1860 return sblock->checksum_error;
a2de733c
AJ
1861}
1862
b5d67f64 1863static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1864{
d9d181c1 1865 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1866 struct btrfs_header *h;
0b246afa 1867 struct btrfs_fs_info *fs_info = sctx->fs_info;
b5d67f64
SB
1868 u8 calculated_csum[BTRFS_CSUM_SIZE];
1869 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1870 struct page *page;
1871 void *mapped_buffer;
1872 u64 mapped_size;
1873 void *p;
a2de733c 1874 u32 crc = ~(u32)0;
b5d67f64
SB
1875 u64 len;
1876 int index;
1877
1878 BUG_ON(sblock->page_count < 1);
7a9e9987 1879 page = sblock->pagev[0]->page;
9613bebb 1880 mapped_buffer = kmap_atomic(page);
b5d67f64 1881 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1882 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1883
1884 /*
1885 * we don't use the getter functions here, as we
1886 * a) don't have an extent buffer and
1887 * b) the page is already kmapped
1888 */
3cae210f 1889 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1890 sblock->header_error = 1;
a2de733c 1891
ba7cf988
ZL
1892 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1893 sblock->header_error = 1;
1894 sblock->generation_error = 1;
1895 }
a2de733c 1896
17a9be2f 1897 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 1898 sblock->header_error = 1;
a2de733c
AJ
1899
1900 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1901 BTRFS_UUID_SIZE))
ba7cf988 1902 sblock->header_error = 1;
a2de733c 1903
d9d181c1 1904 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1905 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1906 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1907 index = 0;
1908 for (;;) {
1909 u64 l = min_t(u64, len, mapped_size);
1910
b0496686 1911 crc = btrfs_csum_data(p, crc, l);
9613bebb 1912 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1913 len -= l;
1914 if (len == 0)
1915 break;
1916 index++;
1917 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1918 BUG_ON(!sblock->pagev[index]->page);
1919 page = sblock->pagev[index]->page;
9613bebb 1920 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1921 mapped_size = PAGE_SIZE;
1922 p = mapped_buffer;
1923 }
1924
1925 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1926 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1927 sblock->checksum_error = 1;
a2de733c 1928
ba7cf988 1929 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1930}
1931
b5d67f64 1932static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1933{
1934 struct btrfs_super_block *s;
d9d181c1 1935 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
1936 u8 calculated_csum[BTRFS_CSUM_SIZE];
1937 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1938 struct page *page;
1939 void *mapped_buffer;
1940 u64 mapped_size;
1941 void *p;
a2de733c 1942 u32 crc = ~(u32)0;
442a4f63
SB
1943 int fail_gen = 0;
1944 int fail_cor = 0;
b5d67f64
SB
1945 u64 len;
1946 int index;
a2de733c 1947
b5d67f64 1948 BUG_ON(sblock->page_count < 1);
7a9e9987 1949 page = sblock->pagev[0]->page;
9613bebb 1950 mapped_buffer = kmap_atomic(page);
b5d67f64 1951 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1952 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1953
3cae210f 1954 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1955 ++fail_cor;
a2de733c 1956
3cae210f 1957 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1958 ++fail_gen;
a2de733c 1959
17a9be2f 1960 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1961 ++fail_cor;
a2de733c 1962
b5d67f64
SB
1963 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1964 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1965 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1966 index = 0;
1967 for (;;) {
1968 u64 l = min_t(u64, len, mapped_size);
1969
b0496686 1970 crc = btrfs_csum_data(p, crc, l);
9613bebb 1971 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1972 len -= l;
1973 if (len == 0)
1974 break;
1975 index++;
1976 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1977 BUG_ON(!sblock->pagev[index]->page);
1978 page = sblock->pagev[index]->page;
9613bebb 1979 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1980 mapped_size = PAGE_SIZE;
1981 p = mapped_buffer;
1982 }
1983
1984 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1985 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1986 ++fail_cor;
a2de733c 1987
442a4f63 1988 if (fail_cor + fail_gen) {
a2de733c
AJ
1989 /*
1990 * if we find an error in a super block, we just report it.
1991 * They will get written with the next transaction commit
1992 * anyway
1993 */
d9d181c1
SB
1994 spin_lock(&sctx->stat_lock);
1995 ++sctx->stat.super_errors;
1996 spin_unlock(&sctx->stat_lock);
442a4f63 1997 if (fail_cor)
7a9e9987 1998 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1999 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2000 else
7a9e9987 2001 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 2002 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
2003 }
2004
442a4f63 2005 return fail_cor + fail_gen;
a2de733c
AJ
2006}
2007
b5d67f64
SB
2008static void scrub_block_get(struct scrub_block *sblock)
2009{
186debd6 2010 refcount_inc(&sblock->refs);
b5d67f64
SB
2011}
2012
2013static void scrub_block_put(struct scrub_block *sblock)
2014{
186debd6 2015 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
2016 int i;
2017
5a6ac9ea
MX
2018 if (sblock->sparity)
2019 scrub_parity_put(sblock->sparity);
2020
b5d67f64 2021 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2022 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2023 kfree(sblock);
2024 }
2025}
2026
7a9e9987
SB
2027static void scrub_page_get(struct scrub_page *spage)
2028{
57019345 2029 atomic_inc(&spage->refs);
7a9e9987
SB
2030}
2031
2032static void scrub_page_put(struct scrub_page *spage)
2033{
57019345 2034 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2035 if (spage->page)
2036 __free_page(spage->page);
2037 kfree(spage);
2038 }
2039}
2040
d9d181c1 2041static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2042{
2043 struct scrub_bio *sbio;
2044
d9d181c1 2045 if (sctx->curr == -1)
1623edeb 2046 return;
a2de733c 2047
d9d181c1
SB
2048 sbio = sctx->bios[sctx->curr];
2049 sctx->curr = -1;
b6bfebc1 2050 scrub_pending_bio_inc(sctx);
4e49ea4a 2051 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2052}
2053
ff023aac
SB
2054static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2055 struct scrub_page *spage)
a2de733c 2056{
b5d67f64 2057 struct scrub_block *sblock = spage->sblock;
a2de733c 2058 struct scrub_bio *sbio;
69f4cb52 2059 int ret;
a2de733c
AJ
2060
2061again:
2062 /*
2063 * grab a fresh bio or wait for one to become available
2064 */
d9d181c1
SB
2065 while (sctx->curr == -1) {
2066 spin_lock(&sctx->list_lock);
2067 sctx->curr = sctx->first_free;
2068 if (sctx->curr != -1) {
2069 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2070 sctx->bios[sctx->curr]->next_free = -1;
2071 sctx->bios[sctx->curr]->page_count = 0;
2072 spin_unlock(&sctx->list_lock);
a2de733c 2073 } else {
d9d181c1
SB
2074 spin_unlock(&sctx->list_lock);
2075 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2076 }
2077 }
d9d181c1 2078 sbio = sctx->bios[sctx->curr];
b5d67f64 2079 if (sbio->page_count == 0) {
69f4cb52
AJ
2080 struct bio *bio;
2081
b5d67f64
SB
2082 sbio->physical = spage->physical;
2083 sbio->logical = spage->logical;
a36cf8b8 2084 sbio->dev = spage->dev;
b5d67f64
SB
2085 bio = sbio->bio;
2086 if (!bio) {
58c4e173
DS
2087 bio = btrfs_io_bio_alloc(GFP_KERNEL,
2088 sctx->pages_per_rd_bio);
b5d67f64
SB
2089 if (!bio)
2090 return -ENOMEM;
2091 sbio->bio = bio;
2092 }
69f4cb52
AJ
2093
2094 bio->bi_private = sbio;
2095 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 2096 bio->bi_bdev = sbio->dev->bdev;
4f024f37 2097 bio->bi_iter.bi_sector = sbio->physical >> 9;
37226b21 2098 bio_set_op_attrs(bio, REQ_OP_READ, 0);
69f4cb52 2099 sbio->err = 0;
b5d67f64
SB
2100 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2101 spage->physical ||
2102 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2103 spage->logical ||
2104 sbio->dev != spage->dev) {
d9d181c1 2105 scrub_submit(sctx);
a2de733c
AJ
2106 goto again;
2107 }
69f4cb52 2108
b5d67f64
SB
2109 sbio->pagev[sbio->page_count] = spage;
2110 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2111 if (ret != PAGE_SIZE) {
2112 if (sbio->page_count < 1) {
2113 bio_put(sbio->bio);
2114 sbio->bio = NULL;
2115 return -EIO;
2116 }
d9d181c1 2117 scrub_submit(sctx);
69f4cb52
AJ
2118 goto again;
2119 }
2120
ff023aac 2121 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2122 atomic_inc(&sblock->outstanding_pages);
2123 sbio->page_count++;
ff023aac 2124 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2125 scrub_submit(sctx);
b5d67f64
SB
2126
2127 return 0;
2128}
2129
22365979 2130static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2131{
2132 struct scrub_block *sblock = bio->bi_private;
fb456252 2133 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2134
22365979 2135 if (bio->bi_error)
73ff61db
OS
2136 sblock->no_io_error_seen = 0;
2137
4673272f
ST
2138 bio_put(bio);
2139
73ff61db
OS
2140 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2141}
2142
2143static void scrub_missing_raid56_worker(struct btrfs_work *work)
2144{
2145 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2146 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2147 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2148 u64 logical;
2149 struct btrfs_device *dev;
2150
73ff61db
OS
2151 logical = sblock->pagev[0]->logical;
2152 dev = sblock->pagev[0]->dev;
2153
affe4a5a 2154 if (sblock->no_io_error_seen)
ba7cf988 2155 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2156
2157 if (!sblock->no_io_error_seen) {
2158 spin_lock(&sctx->stat_lock);
2159 sctx->stat.read_errors++;
2160 spin_unlock(&sctx->stat_lock);
0b246afa 2161 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2162 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2163 logical, rcu_str_deref(dev->name));
2164 } else if (sblock->header_error || sblock->checksum_error) {
2165 spin_lock(&sctx->stat_lock);
2166 sctx->stat.uncorrectable_errors++;
2167 spin_unlock(&sctx->stat_lock);
0b246afa 2168 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2169 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2170 logical, rcu_str_deref(dev->name));
2171 } else {
2172 scrub_write_block_to_dev_replace(sblock);
2173 }
2174
2175 scrub_block_put(sblock);
2176
2177 if (sctx->is_dev_replace &&
2178 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2179 mutex_lock(&sctx->wr_ctx.wr_lock);
2180 scrub_wr_submit(sctx);
2181 mutex_unlock(&sctx->wr_ctx.wr_lock);
2182 }
2183
2184 scrub_pending_bio_dec(sctx);
2185}
2186
2187static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2188{
2189 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2190 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2191 u64 length = sblock->page_count * PAGE_SIZE;
2192 u64 logical = sblock->pagev[0]->logical;
f1fee653 2193 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2194 struct bio *bio;
2195 struct btrfs_raid_bio *rbio;
2196 int ret;
2197 int i;
2198
ae6529c3 2199 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2200 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2201 &length, &bbio);
73ff61db
OS
2202 if (ret || !bbio || !bbio->raid_map)
2203 goto bbio_out;
2204
2205 if (WARN_ON(!sctx->is_dev_replace ||
2206 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2207 /*
2208 * We shouldn't be scrubbing a missing device. Even for dev
2209 * replace, we should only get here for RAID 5/6. We either
2210 * managed to mount something with no mirrors remaining or
2211 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2212 */
2213 goto bbio_out;
2214 }
2215
2216 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2217 if (!bio)
2218 goto bbio_out;
2219
2220 bio->bi_iter.bi_sector = logical >> 9;
2221 bio->bi_private = sblock;
2222 bio->bi_end_io = scrub_missing_raid56_end_io;
2223
2ff7e61e 2224 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2225 if (!rbio)
2226 goto rbio_out;
2227
2228 for (i = 0; i < sblock->page_count; i++) {
2229 struct scrub_page *spage = sblock->pagev[i];
2230
2231 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2232 }
2233
2234 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2235 scrub_missing_raid56_worker, NULL, NULL);
2236 scrub_block_get(sblock);
2237 scrub_pending_bio_inc(sctx);
2238 raid56_submit_missing_rbio(rbio);
2239 return;
2240
2241rbio_out:
2242 bio_put(bio);
2243bbio_out:
ae6529c3 2244 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2245 btrfs_put_bbio(bbio);
2246 spin_lock(&sctx->stat_lock);
2247 sctx->stat.malloc_errors++;
2248 spin_unlock(&sctx->stat_lock);
2249}
2250
d9d181c1 2251static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2252 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2253 u64 gen, int mirror_num, u8 *csum, int force,
2254 u64 physical_for_dev_replace)
b5d67f64
SB
2255{
2256 struct scrub_block *sblock;
2257 int index;
2258
58c4e173 2259 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2260 if (!sblock) {
d9d181c1
SB
2261 spin_lock(&sctx->stat_lock);
2262 sctx->stat.malloc_errors++;
2263 spin_unlock(&sctx->stat_lock);
b5d67f64 2264 return -ENOMEM;
a2de733c 2265 }
b5d67f64 2266
7a9e9987
SB
2267 /* one ref inside this function, plus one for each page added to
2268 * a bio later on */
186debd6 2269 refcount_set(&sblock->refs, 1);
d9d181c1 2270 sblock->sctx = sctx;
b5d67f64
SB
2271 sblock->no_io_error_seen = 1;
2272
2273 for (index = 0; len > 0; index++) {
7a9e9987 2274 struct scrub_page *spage;
b5d67f64
SB
2275 u64 l = min_t(u64, len, PAGE_SIZE);
2276
58c4e173 2277 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2278 if (!spage) {
2279leave_nomem:
d9d181c1
SB
2280 spin_lock(&sctx->stat_lock);
2281 sctx->stat.malloc_errors++;
2282 spin_unlock(&sctx->stat_lock);
7a9e9987 2283 scrub_block_put(sblock);
b5d67f64
SB
2284 return -ENOMEM;
2285 }
7a9e9987
SB
2286 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2287 scrub_page_get(spage);
2288 sblock->pagev[index] = spage;
b5d67f64 2289 spage->sblock = sblock;
a36cf8b8 2290 spage->dev = dev;
b5d67f64
SB
2291 spage->flags = flags;
2292 spage->generation = gen;
2293 spage->logical = logical;
2294 spage->physical = physical;
ff023aac 2295 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2296 spage->mirror_num = mirror_num;
2297 if (csum) {
2298 spage->have_csum = 1;
d9d181c1 2299 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2300 } else {
2301 spage->have_csum = 0;
2302 }
2303 sblock->page_count++;
58c4e173 2304 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2305 if (!spage->page)
2306 goto leave_nomem;
b5d67f64
SB
2307 len -= l;
2308 logical += l;
2309 physical += l;
ff023aac 2310 physical_for_dev_replace += l;
b5d67f64
SB
2311 }
2312
7a9e9987 2313 WARN_ON(sblock->page_count == 0);
73ff61db
OS
2314 if (dev->missing) {
2315 /*
2316 * This case should only be hit for RAID 5/6 device replace. See
2317 * the comment in scrub_missing_raid56_pages() for details.
2318 */
2319 scrub_missing_raid56_pages(sblock);
2320 } else {
2321 for (index = 0; index < sblock->page_count; index++) {
2322 struct scrub_page *spage = sblock->pagev[index];
2323 int ret;
1bc87793 2324
73ff61db
OS
2325 ret = scrub_add_page_to_rd_bio(sctx, spage);
2326 if (ret) {
2327 scrub_block_put(sblock);
2328 return ret;
2329 }
b5d67f64 2330 }
a2de733c 2331
73ff61db
OS
2332 if (force)
2333 scrub_submit(sctx);
2334 }
a2de733c 2335
b5d67f64
SB
2336 /* last one frees, either here or in bio completion for last page */
2337 scrub_block_put(sblock);
a2de733c
AJ
2338 return 0;
2339}
2340
4246a0b6 2341static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2342{
2343 struct scrub_bio *sbio = bio->bi_private;
fb456252 2344 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2345
4246a0b6 2346 sbio->err = bio->bi_error;
b5d67f64
SB
2347 sbio->bio = bio;
2348
0339ef2f 2349 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2350}
2351
2352static void scrub_bio_end_io_worker(struct btrfs_work *work)
2353{
2354 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2355 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2356 int i;
2357
ff023aac 2358 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2359 if (sbio->err) {
2360 for (i = 0; i < sbio->page_count; i++) {
2361 struct scrub_page *spage = sbio->pagev[i];
2362
2363 spage->io_error = 1;
2364 spage->sblock->no_io_error_seen = 0;
2365 }
2366 }
2367
2368 /* now complete the scrub_block items that have all pages completed */
2369 for (i = 0; i < sbio->page_count; i++) {
2370 struct scrub_page *spage = sbio->pagev[i];
2371 struct scrub_block *sblock = spage->sblock;
2372
2373 if (atomic_dec_and_test(&sblock->outstanding_pages))
2374 scrub_block_complete(sblock);
2375 scrub_block_put(sblock);
2376 }
2377
b5d67f64
SB
2378 bio_put(sbio->bio);
2379 sbio->bio = NULL;
d9d181c1
SB
2380 spin_lock(&sctx->list_lock);
2381 sbio->next_free = sctx->first_free;
2382 sctx->first_free = sbio->index;
2383 spin_unlock(&sctx->list_lock);
ff023aac
SB
2384
2385 if (sctx->is_dev_replace &&
2386 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2387 mutex_lock(&sctx->wr_ctx.wr_lock);
2388 scrub_wr_submit(sctx);
2389 mutex_unlock(&sctx->wr_ctx.wr_lock);
2390 }
2391
b6bfebc1 2392 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2393}
2394
5a6ac9ea
MX
2395static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2396 unsigned long *bitmap,
2397 u64 start, u64 len)
2398{
9d644a62 2399 u32 offset;
5a6ac9ea 2400 int nsectors;
da17066c 2401 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2402
2403 if (len >= sparity->stripe_len) {
2404 bitmap_set(bitmap, 0, sparity->nsectors);
2405 return;
2406 }
2407
2408 start -= sparity->logic_start;
47c5713f 2409 start = div_u64_rem(start, sparity->stripe_len, &offset);
5a6ac9ea
MX
2410 offset /= sectorsize;
2411 nsectors = (int)len / sectorsize;
2412
2413 if (offset + nsectors <= sparity->nsectors) {
2414 bitmap_set(bitmap, offset, nsectors);
2415 return;
2416 }
2417
2418 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2419 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2420}
2421
2422static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2423 u64 start, u64 len)
2424{
2425 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2426}
2427
2428static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2429 u64 start, u64 len)
2430{
2431 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2432}
2433
b5d67f64
SB
2434static void scrub_block_complete(struct scrub_block *sblock)
2435{
5a6ac9ea
MX
2436 int corrupted = 0;
2437
ff023aac 2438 if (!sblock->no_io_error_seen) {
5a6ac9ea 2439 corrupted = 1;
b5d67f64 2440 scrub_handle_errored_block(sblock);
ff023aac
SB
2441 } else {
2442 /*
2443 * if has checksum error, write via repair mechanism in
2444 * dev replace case, otherwise write here in dev replace
2445 * case.
2446 */
5a6ac9ea
MX
2447 corrupted = scrub_checksum(sblock);
2448 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2449 scrub_write_block_to_dev_replace(sblock);
2450 }
5a6ac9ea
MX
2451
2452 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2453 u64 start = sblock->pagev[0]->logical;
2454 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2455 PAGE_SIZE;
2456
2457 scrub_parity_mark_sectors_error(sblock->sparity,
2458 start, end - start);
2459 }
b5d67f64
SB
2460}
2461
3b5753ec 2462static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2463{
2464 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2465 unsigned long index;
a2de733c 2466 unsigned long num_sectors;
a2de733c 2467
d9d181c1
SB
2468 while (!list_empty(&sctx->csum_list)) {
2469 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2470 struct btrfs_ordered_sum, list);
2471 if (sum->bytenr > logical)
2472 return 0;
2473 if (sum->bytenr + sum->len > logical)
2474 break;
2475
d9d181c1 2476 ++sctx->stat.csum_discards;
a2de733c
AJ
2477 list_del(&sum->list);
2478 kfree(sum);
2479 sum = NULL;
2480 }
2481 if (!sum)
2482 return 0;
2483
f51a4a18 2484 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2485 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2486 memcpy(csum, sum->sums + index, sctx->csum_size);
2487 if (index == num_sectors - 1) {
a2de733c
AJ
2488 list_del(&sum->list);
2489 kfree(sum);
2490 }
f51a4a18 2491 return 1;
a2de733c
AJ
2492}
2493
2494/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2495static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2496 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2497 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2498{
2499 int ret;
2500 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2501 u32 blocksize;
2502
2503 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2504 blocksize = sctx->sectorsize;
2505 spin_lock(&sctx->stat_lock);
2506 sctx->stat.data_extents_scrubbed++;
2507 sctx->stat.data_bytes_scrubbed += len;
2508 spin_unlock(&sctx->stat_lock);
b5d67f64 2509 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2510 blocksize = sctx->nodesize;
2511 spin_lock(&sctx->stat_lock);
2512 sctx->stat.tree_extents_scrubbed++;
2513 sctx->stat.tree_bytes_scrubbed += len;
2514 spin_unlock(&sctx->stat_lock);
b5d67f64 2515 } else {
d9d181c1 2516 blocksize = sctx->sectorsize;
ff023aac 2517 WARN_ON(1);
b5d67f64 2518 }
a2de733c
AJ
2519
2520 while (len) {
b5d67f64 2521 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2522 int have_csum = 0;
2523
2524 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2525 /* push csums to sbio */
3b5753ec 2526 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2527 if (have_csum == 0)
d9d181c1 2528 ++sctx->stat.no_csum;
ff023aac
SB
2529 if (sctx->is_dev_replace && !have_csum) {
2530 ret = copy_nocow_pages(sctx, logical, l,
2531 mirror_num,
2532 physical_for_dev_replace);
2533 goto behind_scrub_pages;
2534 }
a2de733c 2535 }
a36cf8b8 2536 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2537 mirror_num, have_csum ? csum : NULL, 0,
2538 physical_for_dev_replace);
2539behind_scrub_pages:
a2de733c
AJ
2540 if (ret)
2541 return ret;
2542 len -= l;
2543 logical += l;
2544 physical += l;
ff023aac 2545 physical_for_dev_replace += l;
a2de733c
AJ
2546 }
2547 return 0;
2548}
2549
5a6ac9ea
MX
2550static int scrub_pages_for_parity(struct scrub_parity *sparity,
2551 u64 logical, u64 len,
2552 u64 physical, struct btrfs_device *dev,
2553 u64 flags, u64 gen, int mirror_num, u8 *csum)
2554{
2555 struct scrub_ctx *sctx = sparity->sctx;
2556 struct scrub_block *sblock;
2557 int index;
2558
58c4e173 2559 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2560 if (!sblock) {
2561 spin_lock(&sctx->stat_lock);
2562 sctx->stat.malloc_errors++;
2563 spin_unlock(&sctx->stat_lock);
2564 return -ENOMEM;
2565 }
2566
2567 /* one ref inside this function, plus one for each page added to
2568 * a bio later on */
186debd6 2569 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2570 sblock->sctx = sctx;
2571 sblock->no_io_error_seen = 1;
2572 sblock->sparity = sparity;
2573 scrub_parity_get(sparity);
2574
2575 for (index = 0; len > 0; index++) {
2576 struct scrub_page *spage;
2577 u64 l = min_t(u64, len, PAGE_SIZE);
2578
58c4e173 2579 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2580 if (!spage) {
2581leave_nomem:
2582 spin_lock(&sctx->stat_lock);
2583 sctx->stat.malloc_errors++;
2584 spin_unlock(&sctx->stat_lock);
2585 scrub_block_put(sblock);
2586 return -ENOMEM;
2587 }
2588 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2589 /* For scrub block */
2590 scrub_page_get(spage);
2591 sblock->pagev[index] = spage;
2592 /* For scrub parity */
2593 scrub_page_get(spage);
2594 list_add_tail(&spage->list, &sparity->spages);
2595 spage->sblock = sblock;
2596 spage->dev = dev;
2597 spage->flags = flags;
2598 spage->generation = gen;
2599 spage->logical = logical;
2600 spage->physical = physical;
2601 spage->mirror_num = mirror_num;
2602 if (csum) {
2603 spage->have_csum = 1;
2604 memcpy(spage->csum, csum, sctx->csum_size);
2605 } else {
2606 spage->have_csum = 0;
2607 }
2608 sblock->page_count++;
58c4e173 2609 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2610 if (!spage->page)
2611 goto leave_nomem;
2612 len -= l;
2613 logical += l;
2614 physical += l;
2615 }
2616
2617 WARN_ON(sblock->page_count == 0);
2618 for (index = 0; index < sblock->page_count; index++) {
2619 struct scrub_page *spage = sblock->pagev[index];
2620 int ret;
2621
2622 ret = scrub_add_page_to_rd_bio(sctx, spage);
2623 if (ret) {
2624 scrub_block_put(sblock);
2625 return ret;
2626 }
2627 }
2628
2629 /* last one frees, either here or in bio completion for last page */
2630 scrub_block_put(sblock);
2631 return 0;
2632}
2633
2634static int scrub_extent_for_parity(struct scrub_parity *sparity,
2635 u64 logical, u64 len,
2636 u64 physical, struct btrfs_device *dev,
2637 u64 flags, u64 gen, int mirror_num)
2638{
2639 struct scrub_ctx *sctx = sparity->sctx;
2640 int ret;
2641 u8 csum[BTRFS_CSUM_SIZE];
2642 u32 blocksize;
2643
4a770891
OS
2644 if (dev->missing) {
2645 scrub_parity_mark_sectors_error(sparity, logical, len);
2646 return 0;
2647 }
2648
5a6ac9ea
MX
2649 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2650 blocksize = sctx->sectorsize;
2651 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2652 blocksize = sctx->nodesize;
2653 } else {
2654 blocksize = sctx->sectorsize;
2655 WARN_ON(1);
2656 }
2657
2658 while (len) {
2659 u64 l = min_t(u64, len, blocksize);
2660 int have_csum = 0;
2661
2662 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2663 /* push csums to sbio */
3b5753ec 2664 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2665 if (have_csum == 0)
2666 goto skip;
2667 }
2668 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2669 flags, gen, mirror_num,
2670 have_csum ? csum : NULL);
5a6ac9ea
MX
2671 if (ret)
2672 return ret;
6b6d24b3 2673skip:
5a6ac9ea
MX
2674 len -= l;
2675 logical += l;
2676 physical += l;
2677 }
2678 return 0;
2679}
2680
3b080b25
WS
2681/*
2682 * Given a physical address, this will calculate it's
2683 * logical offset. if this is a parity stripe, it will return
2684 * the most left data stripe's logical offset.
2685 *
2686 * return 0 if it is a data stripe, 1 means parity stripe.
2687 */
2688static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2689 struct map_lookup *map, u64 *offset,
2690 u64 *stripe_start)
3b080b25
WS
2691{
2692 int i;
2693 int j = 0;
2694 u64 stripe_nr;
2695 u64 last_offset;
9d644a62
DS
2696 u32 stripe_index;
2697 u32 rot;
3b080b25
WS
2698
2699 last_offset = (physical - map->stripes[num].physical) *
2700 nr_data_stripes(map);
5a6ac9ea
MX
2701 if (stripe_start)
2702 *stripe_start = last_offset;
2703
3b080b25
WS
2704 *offset = last_offset;
2705 for (i = 0; i < nr_data_stripes(map); i++) {
2706 *offset = last_offset + i * map->stripe_len;
2707
b8b93add
DS
2708 stripe_nr = div_u64(*offset, map->stripe_len);
2709 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
3b080b25
WS
2710
2711 /* Work out the disk rotation on this stripe-set */
47c5713f 2712 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2713 /* calculate which stripe this data locates */
2714 rot += i;
e4fbaee2 2715 stripe_index = rot % map->num_stripes;
3b080b25
WS
2716 if (stripe_index == num)
2717 return 0;
2718 if (stripe_index < num)
2719 j++;
2720 }
2721 *offset = last_offset + j * map->stripe_len;
2722 return 1;
2723}
2724
5a6ac9ea
MX
2725static void scrub_free_parity(struct scrub_parity *sparity)
2726{
2727 struct scrub_ctx *sctx = sparity->sctx;
2728 struct scrub_page *curr, *next;
2729 int nbits;
2730
2731 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2732 if (nbits) {
2733 spin_lock(&sctx->stat_lock);
2734 sctx->stat.read_errors += nbits;
2735 sctx->stat.uncorrectable_errors += nbits;
2736 spin_unlock(&sctx->stat_lock);
2737 }
2738
2739 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2740 list_del_init(&curr->list);
2741 scrub_page_put(curr);
2742 }
2743
2744 kfree(sparity);
2745}
2746
20b2e302
ZL
2747static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2748{
2749 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2750 work);
2751 struct scrub_ctx *sctx = sparity->sctx;
2752
2753 scrub_free_parity(sparity);
2754 scrub_pending_bio_dec(sctx);
2755}
2756
4246a0b6 2757static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2758{
2759 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2760 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2761
4246a0b6 2762 if (bio->bi_error)
5a6ac9ea
MX
2763 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2764 sparity->nsectors);
2765
5a6ac9ea 2766 bio_put(bio);
20b2e302
ZL
2767
2768 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2769 scrub_parity_bio_endio_worker, NULL, NULL);
0b246afa 2770 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2771}
2772
2773static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2774{
2775 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2776 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2777 struct bio *bio;
2778 struct btrfs_raid_bio *rbio;
5a6ac9ea 2779 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2780 u64 length;
2781 int ret;
2782
2783 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2784 sparity->nsectors))
2785 goto out;
2786
a0dd59de 2787 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2788
2789 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2790 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2791 &length, &bbio);
8e5cfb55 2792 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2793 goto bbio_out;
2794
2795 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2796 if (!bio)
2797 goto bbio_out;
2798
2799 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2800 bio->bi_private = sparity;
2801 bio->bi_end_io = scrub_parity_bio_endio;
2802
2ff7e61e 2803 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2804 length, sparity->scrub_dev,
5a6ac9ea
MX
2805 sparity->dbitmap,
2806 sparity->nsectors);
2807 if (!rbio)
2808 goto rbio_out;
2809
5a6ac9ea
MX
2810 scrub_pending_bio_inc(sctx);
2811 raid56_parity_submit_scrub_rbio(rbio);
2812 return;
2813
2814rbio_out:
2815 bio_put(bio);
2816bbio_out:
ae6529c3 2817 btrfs_bio_counter_dec(fs_info);
6e9606d2 2818 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2819 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2820 sparity->nsectors);
2821 spin_lock(&sctx->stat_lock);
2822 sctx->stat.malloc_errors++;
2823 spin_unlock(&sctx->stat_lock);
2824out:
2825 scrub_free_parity(sparity);
2826}
2827
2828static inline int scrub_calc_parity_bitmap_len(int nsectors)
2829{
bfca9a6d 2830 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2831}
2832
2833static void scrub_parity_get(struct scrub_parity *sparity)
2834{
78a76450 2835 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2836}
2837
2838static void scrub_parity_put(struct scrub_parity *sparity)
2839{
78a76450 2840 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2841 return;
2842
2843 scrub_parity_check_and_repair(sparity);
2844}
2845
2846static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2847 struct map_lookup *map,
2848 struct btrfs_device *sdev,
2849 struct btrfs_path *path,
2850 u64 logic_start,
2851 u64 logic_end)
2852{
fb456252 2853 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2854 struct btrfs_root *root = fs_info->extent_root;
2855 struct btrfs_root *csum_root = fs_info->csum_root;
2856 struct btrfs_extent_item *extent;
4a770891 2857 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2858 u64 flags;
2859 int ret;
2860 int slot;
2861 struct extent_buffer *l;
2862 struct btrfs_key key;
2863 u64 generation;
2864 u64 extent_logical;
2865 u64 extent_physical;
2866 u64 extent_len;
4a770891 2867 u64 mapped_length;
5a6ac9ea
MX
2868 struct btrfs_device *extent_dev;
2869 struct scrub_parity *sparity;
2870 int nsectors;
2871 int bitmap_len;
2872 int extent_mirror_num;
2873 int stop_loop = 0;
2874
0b246afa 2875 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
2876 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2877 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2878 GFP_NOFS);
2879 if (!sparity) {
2880 spin_lock(&sctx->stat_lock);
2881 sctx->stat.malloc_errors++;
2882 spin_unlock(&sctx->stat_lock);
2883 return -ENOMEM;
2884 }
2885
2886 sparity->stripe_len = map->stripe_len;
2887 sparity->nsectors = nsectors;
2888 sparity->sctx = sctx;
2889 sparity->scrub_dev = sdev;
2890 sparity->logic_start = logic_start;
2891 sparity->logic_end = logic_end;
78a76450 2892 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2893 INIT_LIST_HEAD(&sparity->spages);
2894 sparity->dbitmap = sparity->bitmap;
2895 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2896
2897 ret = 0;
2898 while (logic_start < logic_end) {
2899 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2900 key.type = BTRFS_METADATA_ITEM_KEY;
2901 else
2902 key.type = BTRFS_EXTENT_ITEM_KEY;
2903 key.objectid = logic_start;
2904 key.offset = (u64)-1;
2905
2906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2907 if (ret < 0)
2908 goto out;
2909
2910 if (ret > 0) {
2911 ret = btrfs_previous_extent_item(root, path, 0);
2912 if (ret < 0)
2913 goto out;
2914 if (ret > 0) {
2915 btrfs_release_path(path);
2916 ret = btrfs_search_slot(NULL, root, &key,
2917 path, 0, 0);
2918 if (ret < 0)
2919 goto out;
2920 }
2921 }
2922
2923 stop_loop = 0;
2924 while (1) {
2925 u64 bytes;
2926
2927 l = path->nodes[0];
2928 slot = path->slots[0];
2929 if (slot >= btrfs_header_nritems(l)) {
2930 ret = btrfs_next_leaf(root, path);
2931 if (ret == 0)
2932 continue;
2933 if (ret < 0)
2934 goto out;
2935
2936 stop_loop = 1;
2937 break;
2938 }
2939 btrfs_item_key_to_cpu(l, &key, slot);
2940
d7cad238
ZL
2941 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2942 key.type != BTRFS_METADATA_ITEM_KEY)
2943 goto next;
2944
5a6ac9ea 2945 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2946 bytes = fs_info->nodesize;
5a6ac9ea
MX
2947 else
2948 bytes = key.offset;
2949
2950 if (key.objectid + bytes <= logic_start)
2951 goto next;
2952
a0dd59de 2953 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2954 stop_loop = 1;
2955 break;
2956 }
2957
2958 while (key.objectid >= logic_start + map->stripe_len)
2959 logic_start += map->stripe_len;
2960
2961 extent = btrfs_item_ptr(l, slot,
2962 struct btrfs_extent_item);
2963 flags = btrfs_extent_flags(l, extent);
2964 generation = btrfs_extent_generation(l, extent);
2965
a323e813
ZL
2966 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2967 (key.objectid < logic_start ||
2968 key.objectid + bytes >
2969 logic_start + map->stripe_len)) {
5d163e0e
JM
2970 btrfs_err(fs_info,
2971 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2972 key.objectid, logic_start);
9799d2c3
ZL
2973 spin_lock(&sctx->stat_lock);
2974 sctx->stat.uncorrectable_errors++;
2975 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2976 goto next;
2977 }
2978again:
2979 extent_logical = key.objectid;
2980 extent_len = bytes;
2981
2982 if (extent_logical < logic_start) {
2983 extent_len -= logic_start - extent_logical;
2984 extent_logical = logic_start;
2985 }
2986
2987 if (extent_logical + extent_len >
2988 logic_start + map->stripe_len)
2989 extent_len = logic_start + map->stripe_len -
2990 extent_logical;
2991
2992 scrub_parity_mark_sectors_data(sparity, extent_logical,
2993 extent_len);
2994
4a770891 2995 mapped_length = extent_len;
f1fee653 2996 bbio = NULL;
cf8cddd3
CH
2997 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2998 extent_logical, &mapped_length, &bbio,
2999 0);
4a770891
OS
3000 if (!ret) {
3001 if (!bbio || mapped_length < extent_len)
3002 ret = -EIO;
3003 }
3004 if (ret) {
3005 btrfs_put_bbio(bbio);
3006 goto out;
3007 }
3008 extent_physical = bbio->stripes[0].physical;
3009 extent_mirror_num = bbio->mirror_num;
3010 extent_dev = bbio->stripes[0].dev;
3011 btrfs_put_bbio(bbio);
5a6ac9ea
MX
3012
3013 ret = btrfs_lookup_csums_range(csum_root,
3014 extent_logical,
3015 extent_logical + extent_len - 1,
3016 &sctx->csum_list, 1);
3017 if (ret)
3018 goto out;
3019
3020 ret = scrub_extent_for_parity(sparity, extent_logical,
3021 extent_len,
3022 extent_physical,
3023 extent_dev, flags,
3024 generation,
3025 extent_mirror_num);
6fa96d72
ZL
3026
3027 scrub_free_csums(sctx);
3028
5a6ac9ea
MX
3029 if (ret)
3030 goto out;
3031
5a6ac9ea
MX
3032 if (extent_logical + extent_len <
3033 key.objectid + bytes) {
3034 logic_start += map->stripe_len;
3035
3036 if (logic_start >= logic_end) {
3037 stop_loop = 1;
3038 break;
3039 }
3040
3041 if (logic_start < key.objectid + bytes) {
3042 cond_resched();
3043 goto again;
3044 }
3045 }
3046next:
3047 path->slots[0]++;
3048 }
3049
3050 btrfs_release_path(path);
3051
3052 if (stop_loop)
3053 break;
3054
3055 logic_start += map->stripe_len;
3056 }
3057out:
3058 if (ret < 0)
3059 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3060 logic_end - logic_start);
5a6ac9ea
MX
3061 scrub_parity_put(sparity);
3062 scrub_submit(sctx);
3063 mutex_lock(&sctx->wr_ctx.wr_lock);
3064 scrub_wr_submit(sctx);
3065 mutex_unlock(&sctx->wr_ctx.wr_lock);
3066
3067 btrfs_release_path(path);
3068 return ret < 0 ? ret : 0;
3069}
3070
d9d181c1 3071static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3072 struct map_lookup *map,
3073 struct btrfs_device *scrub_dev,
ff023aac
SB
3074 int num, u64 base, u64 length,
3075 int is_dev_replace)
a2de733c 3076{
5a6ac9ea 3077 struct btrfs_path *path, *ppath;
fb456252 3078 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3079 struct btrfs_root *root = fs_info->extent_root;
3080 struct btrfs_root *csum_root = fs_info->csum_root;
3081 struct btrfs_extent_item *extent;
e7786c3a 3082 struct blk_plug plug;
a2de733c
AJ
3083 u64 flags;
3084 int ret;
3085 int slot;
a2de733c 3086 u64 nstripes;
a2de733c 3087 struct extent_buffer *l;
a2de733c
AJ
3088 u64 physical;
3089 u64 logical;
625f1c8d 3090 u64 logic_end;
3b080b25 3091 u64 physical_end;
a2de733c 3092 u64 generation;
e12fa9cd 3093 int mirror_num;
7a26285e
AJ
3094 struct reada_control *reada1;
3095 struct reada_control *reada2;
e6c11f9a 3096 struct btrfs_key key;
7a26285e 3097 struct btrfs_key key_end;
a2de733c
AJ
3098 u64 increment = map->stripe_len;
3099 u64 offset;
ff023aac
SB
3100 u64 extent_logical;
3101 u64 extent_physical;
3102 u64 extent_len;
5a6ac9ea
MX
3103 u64 stripe_logical;
3104 u64 stripe_end;
ff023aac
SB
3105 struct btrfs_device *extent_dev;
3106 int extent_mirror_num;
3b080b25 3107 int stop_loop = 0;
53b381b3 3108
3b080b25 3109 physical = map->stripes[num].physical;
a2de733c 3110 offset = 0;
b8b93add 3111 nstripes = div_u64(length, map->stripe_len);
a2de733c
AJ
3112 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3113 offset = map->stripe_len * num;
3114 increment = map->stripe_len * map->num_stripes;
193ea74b 3115 mirror_num = 1;
a2de733c
AJ
3116 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3117 int factor = map->num_stripes / map->sub_stripes;
3118 offset = map->stripe_len * (num / map->sub_stripes);
3119 increment = map->stripe_len * factor;
193ea74b 3120 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
3121 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3122 increment = map->stripe_len;
193ea74b 3123 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3124 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3125 increment = map->stripe_len;
193ea74b 3126 mirror_num = num % map->num_stripes + 1;
ffe2d203 3127 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3128 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3129 increment = map->stripe_len * nr_data_stripes(map);
3130 mirror_num = 1;
a2de733c
AJ
3131 } else {
3132 increment = map->stripe_len;
193ea74b 3133 mirror_num = 1;
a2de733c
AJ
3134 }
3135
3136 path = btrfs_alloc_path();
3137 if (!path)
3138 return -ENOMEM;
3139
5a6ac9ea
MX
3140 ppath = btrfs_alloc_path();
3141 if (!ppath) {
379d6854 3142 btrfs_free_path(path);
5a6ac9ea
MX
3143 return -ENOMEM;
3144 }
3145
b5d67f64
SB
3146 /*
3147 * work on commit root. The related disk blocks are static as
3148 * long as COW is applied. This means, it is save to rewrite
3149 * them to repair disk errors without any race conditions
3150 */
a2de733c
AJ
3151 path->search_commit_root = 1;
3152 path->skip_locking = 1;
3153
063c54dc
GH
3154 ppath->search_commit_root = 1;
3155 ppath->skip_locking = 1;
a2de733c 3156 /*
7a26285e
AJ
3157 * trigger the readahead for extent tree csum tree and wait for
3158 * completion. During readahead, the scrub is officially paused
3159 * to not hold off transaction commits
a2de733c
AJ
3160 */
3161 logical = base + offset;
3b080b25 3162 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3163 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3164 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3165 map, &logic_end, NULL);
3b080b25
WS
3166 logic_end += base;
3167 } else {
3168 logic_end = logical + increment * nstripes;
3169 }
d9d181c1 3170 wait_event(sctx->list_wait,
b6bfebc1 3171 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3172 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3173
3174 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3175 key.objectid = logical;
3176 key.type = BTRFS_EXTENT_ITEM_KEY;
3177 key.offset = (u64)0;
3b080b25 3178 key_end.objectid = logic_end;
3173a18f
JB
3179 key_end.type = BTRFS_METADATA_ITEM_KEY;
3180 key_end.offset = (u64)-1;
e6c11f9a 3181 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3182
e6c11f9a
DS
3183 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3184 key.type = BTRFS_EXTENT_CSUM_KEY;
3185 key.offset = logical;
7a26285e
AJ
3186 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3187 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3188 key_end.offset = logic_end;
e6c11f9a 3189 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3190
3191 if (!IS_ERR(reada1))
3192 btrfs_reada_wait(reada1);
3193 if (!IS_ERR(reada2))
3194 btrfs_reada_wait(reada2);
3195
a2de733c
AJ
3196
3197 /*
3198 * collect all data csums for the stripe to avoid seeking during
3199 * the scrub. This might currently (crc32) end up to be about 1MB
3200 */
e7786c3a 3201 blk_start_plug(&plug);
a2de733c 3202
a2de733c
AJ
3203 /*
3204 * now find all extents for each stripe and scrub them
3205 */
a2de733c 3206 ret = 0;
3b080b25 3207 while (physical < physical_end) {
a2de733c
AJ
3208 /*
3209 * canceled?
3210 */
3211 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3212 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3213 ret = -ECANCELED;
3214 goto out;
3215 }
3216 /*
3217 * check to see if we have to pause
3218 */
3219 if (atomic_read(&fs_info->scrub_pause_req)) {
3220 /* push queued extents */
ff023aac 3221 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 3222 scrub_submit(sctx);
ff023aac
SB
3223 mutex_lock(&sctx->wr_ctx.wr_lock);
3224 scrub_wr_submit(sctx);
3225 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 3226 wait_event(sctx->list_wait,
b6bfebc1 3227 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 3228 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 3229 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3230 }
3231
f2f66a2f
ZL
3232 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3233 ret = get_raid56_logic_offset(physical, num, map,
3234 &logical,
3235 &stripe_logical);
3236 logical += base;
3237 if (ret) {
7955323b 3238 /* it is parity strip */
f2f66a2f 3239 stripe_logical += base;
a0dd59de 3240 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3241 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3242 ppath, stripe_logical,
3243 stripe_end);
3244 if (ret)
3245 goto out;
3246 goto skip;
3247 }
3248 }
3249
7c76edb7
WS
3250 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3251 key.type = BTRFS_METADATA_ITEM_KEY;
3252 else
3253 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3254 key.objectid = logical;
625f1c8d 3255 key.offset = (u64)-1;
a2de733c
AJ
3256
3257 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3258 if (ret < 0)
3259 goto out;
3173a18f 3260
8c51032f 3261 if (ret > 0) {
ade2e0b3 3262 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3263 if (ret < 0)
3264 goto out;
8c51032f
AJ
3265 if (ret > 0) {
3266 /* there's no smaller item, so stick with the
3267 * larger one */
3268 btrfs_release_path(path);
3269 ret = btrfs_search_slot(NULL, root, &key,
3270 path, 0, 0);
3271 if (ret < 0)
3272 goto out;
3273 }
a2de733c
AJ
3274 }
3275
625f1c8d 3276 stop_loop = 0;
a2de733c 3277 while (1) {
3173a18f
JB
3278 u64 bytes;
3279
a2de733c
AJ
3280 l = path->nodes[0];
3281 slot = path->slots[0];
3282 if (slot >= btrfs_header_nritems(l)) {
3283 ret = btrfs_next_leaf(root, path);
3284 if (ret == 0)
3285 continue;
3286 if (ret < 0)
3287 goto out;
3288
625f1c8d 3289 stop_loop = 1;
a2de733c
AJ
3290 break;
3291 }
3292 btrfs_item_key_to_cpu(l, &key, slot);
3293
d7cad238
ZL
3294 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3295 key.type != BTRFS_METADATA_ITEM_KEY)
3296 goto next;
3297
3173a18f 3298 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3299 bytes = fs_info->nodesize;
3173a18f
JB
3300 else
3301 bytes = key.offset;
3302
3303 if (key.objectid + bytes <= logical)
a2de733c
AJ
3304 goto next;
3305
625f1c8d
LB
3306 if (key.objectid >= logical + map->stripe_len) {
3307 /* out of this device extent */
3308 if (key.objectid >= logic_end)
3309 stop_loop = 1;
3310 break;
3311 }
a2de733c
AJ
3312
3313 extent = btrfs_item_ptr(l, slot,
3314 struct btrfs_extent_item);
3315 flags = btrfs_extent_flags(l, extent);
3316 generation = btrfs_extent_generation(l, extent);
3317
a323e813
ZL
3318 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3319 (key.objectid < logical ||
3320 key.objectid + bytes >
3321 logical + map->stripe_len)) {
efe120a0 3322 btrfs_err(fs_info,
5d163e0e 3323 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3324 key.objectid, logical);
9799d2c3
ZL
3325 spin_lock(&sctx->stat_lock);
3326 sctx->stat.uncorrectable_errors++;
3327 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3328 goto next;
3329 }
3330
625f1c8d
LB
3331again:
3332 extent_logical = key.objectid;
3333 extent_len = bytes;
3334
a2de733c
AJ
3335 /*
3336 * trim extent to this stripe
3337 */
625f1c8d
LB
3338 if (extent_logical < logical) {
3339 extent_len -= logical - extent_logical;
3340 extent_logical = logical;
a2de733c 3341 }
625f1c8d 3342 if (extent_logical + extent_len >
a2de733c 3343 logical + map->stripe_len) {
625f1c8d
LB
3344 extent_len = logical + map->stripe_len -
3345 extent_logical;
a2de733c
AJ
3346 }
3347
625f1c8d 3348 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3349 extent_dev = scrub_dev;
3350 extent_mirror_num = mirror_num;
3351 if (is_dev_replace)
3352 scrub_remap_extent(fs_info, extent_logical,
3353 extent_len, &extent_physical,
3354 &extent_dev,
3355 &extent_mirror_num);
625f1c8d 3356
fe8cf654
ZL
3357 ret = btrfs_lookup_csums_range(csum_root,
3358 extent_logical,
3359 extent_logical +
3360 extent_len - 1,
3361 &sctx->csum_list, 1);
625f1c8d
LB
3362 if (ret)
3363 goto out;
3364
ff023aac
SB
3365 ret = scrub_extent(sctx, extent_logical, extent_len,
3366 extent_physical, extent_dev, flags,
3367 generation, extent_mirror_num,
115930cb 3368 extent_logical - logical + physical);
6fa96d72
ZL
3369
3370 scrub_free_csums(sctx);
3371
a2de733c
AJ
3372 if (ret)
3373 goto out;
3374
625f1c8d
LB
3375 if (extent_logical + extent_len <
3376 key.objectid + bytes) {
ffe2d203 3377 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3378 /*
3379 * loop until we find next data stripe
3380 * or we have finished all stripes.
3381 */
5a6ac9ea
MX
3382loop:
3383 physical += map->stripe_len;
3384 ret = get_raid56_logic_offset(physical,
3385 num, map, &logical,
3386 &stripe_logical);
3387 logical += base;
3388
3389 if (ret && physical < physical_end) {
3390 stripe_logical += base;
3391 stripe_end = stripe_logical +
a0dd59de 3392 increment;
5a6ac9ea
MX
3393 ret = scrub_raid56_parity(sctx,
3394 map, scrub_dev, ppath,
3395 stripe_logical,
3396 stripe_end);
3397 if (ret)
3398 goto out;
3399 goto loop;
3400 }
3b080b25
WS
3401 } else {
3402 physical += map->stripe_len;
3403 logical += increment;
3404 }
625f1c8d
LB
3405 if (logical < key.objectid + bytes) {
3406 cond_resched();
3407 goto again;
3408 }
3409
3b080b25 3410 if (physical >= physical_end) {
625f1c8d
LB
3411 stop_loop = 1;
3412 break;
3413 }
3414 }
a2de733c
AJ
3415next:
3416 path->slots[0]++;
3417 }
71267333 3418 btrfs_release_path(path);
3b080b25 3419skip:
a2de733c
AJ
3420 logical += increment;
3421 physical += map->stripe_len;
d9d181c1 3422 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3423 if (stop_loop)
3424 sctx->stat.last_physical = map->stripes[num].physical +
3425 length;
3426 else
3427 sctx->stat.last_physical = physical;
d9d181c1 3428 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3429 if (stop_loop)
3430 break;
a2de733c 3431 }
ff023aac 3432out:
a2de733c 3433 /* push queued extents */
d9d181c1 3434 scrub_submit(sctx);
ff023aac
SB
3435 mutex_lock(&sctx->wr_ctx.wr_lock);
3436 scrub_wr_submit(sctx);
3437 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 3438
e7786c3a 3439 blk_finish_plug(&plug);
a2de733c 3440 btrfs_free_path(path);
5a6ac9ea 3441 btrfs_free_path(ppath);
a2de733c
AJ
3442 return ret < 0 ? ret : 0;
3443}
3444
d9d181c1 3445static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3446 struct btrfs_device *scrub_dev,
a36cf8b8 3447 u64 chunk_offset, u64 length,
020d5b73
FM
3448 u64 dev_offset,
3449 struct btrfs_block_group_cache *cache,
3450 int is_dev_replace)
a2de733c 3451{
fb456252
JM
3452 struct btrfs_fs_info *fs_info = sctx->fs_info;
3453 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3454 struct map_lookup *map;
3455 struct extent_map *em;
3456 int i;
ff023aac 3457 int ret = 0;
a2de733c
AJ
3458
3459 read_lock(&map_tree->map_tree.lock);
3460 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3461 read_unlock(&map_tree->map_tree.lock);
3462
020d5b73
FM
3463 if (!em) {
3464 /*
3465 * Might have been an unused block group deleted by the cleaner
3466 * kthread or relocation.
3467 */
3468 spin_lock(&cache->lock);
3469 if (!cache->removed)
3470 ret = -EINVAL;
3471 spin_unlock(&cache->lock);
3472
3473 return ret;
3474 }
a2de733c 3475
95617d69 3476 map = em->map_lookup;
a2de733c
AJ
3477 if (em->start != chunk_offset)
3478 goto out;
3479
3480 if (em->len < length)
3481 goto out;
3482
3483 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3484 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3485 map->stripes[i].physical == dev_offset) {
a36cf8b8 3486 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
3487 chunk_offset, length,
3488 is_dev_replace);
a2de733c
AJ
3489 if (ret)
3490 goto out;
3491 }
3492 }
3493out:
3494 free_extent_map(em);
3495
3496 return ret;
3497}
3498
3499static noinline_for_stack
a36cf8b8 3500int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
3501 struct btrfs_device *scrub_dev, u64 start, u64 end,
3502 int is_dev_replace)
a2de733c
AJ
3503{
3504 struct btrfs_dev_extent *dev_extent = NULL;
3505 struct btrfs_path *path;
0b246afa
JM
3506 struct btrfs_fs_info *fs_info = sctx->fs_info;
3507 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3508 u64 length;
a2de733c 3509 u64 chunk_offset;
55e3a601 3510 int ret = 0;
76a8efa1 3511 int ro_set;
a2de733c
AJ
3512 int slot;
3513 struct extent_buffer *l;
3514 struct btrfs_key key;
3515 struct btrfs_key found_key;
3516 struct btrfs_block_group_cache *cache;
ff023aac 3517 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3518
3519 path = btrfs_alloc_path();
3520 if (!path)
3521 return -ENOMEM;
3522
e4058b54 3523 path->reada = READA_FORWARD;
a2de733c
AJ
3524 path->search_commit_root = 1;
3525 path->skip_locking = 1;
3526
a36cf8b8 3527 key.objectid = scrub_dev->devid;
a2de733c
AJ
3528 key.offset = 0ull;
3529 key.type = BTRFS_DEV_EXTENT_KEY;
3530
a2de733c
AJ
3531 while (1) {
3532 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3533 if (ret < 0)
8c51032f
AJ
3534 break;
3535 if (ret > 0) {
3536 if (path->slots[0] >=
3537 btrfs_header_nritems(path->nodes[0])) {
3538 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3539 if (ret < 0)
3540 break;
3541 if (ret > 0) {
3542 ret = 0;
8c51032f 3543 break;
55e3a601
Z
3544 }
3545 } else {
3546 ret = 0;
8c51032f
AJ
3547 }
3548 }
a2de733c
AJ
3549
3550 l = path->nodes[0];
3551 slot = path->slots[0];
3552
3553 btrfs_item_key_to_cpu(l, &found_key, slot);
3554
a36cf8b8 3555 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3556 break;
3557
962a298f 3558 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3559 break;
3560
3561 if (found_key.offset >= end)
3562 break;
3563
3564 if (found_key.offset < key.offset)
3565 break;
3566
3567 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3568 length = btrfs_dev_extent_length(l, dev_extent);
3569
ced96edc
QW
3570 if (found_key.offset + length <= start)
3571 goto skip;
a2de733c 3572
a2de733c
AJ
3573 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3574
3575 /*
3576 * get a reference on the corresponding block group to prevent
3577 * the chunk from going away while we scrub it
3578 */
3579 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3580
3581 /* some chunks are removed but not committed to disk yet,
3582 * continue scrubbing */
3583 if (!cache)
3584 goto skip;
3585
55e3a601
Z
3586 /*
3587 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3588 * to avoid deadlock caused by:
3589 * btrfs_inc_block_group_ro()
3590 * -> btrfs_wait_for_commit()
3591 * -> btrfs_commit_transaction()
3592 * -> btrfs_scrub_pause()
3593 */
3594 scrub_pause_on(fs_info);
5e00f193 3595 ret = btrfs_inc_block_group_ro(fs_info, cache);
f0e9b7d6
FM
3596 if (!ret && is_dev_replace) {
3597 /*
3598 * If we are doing a device replace wait for any tasks
3599 * that started dellaloc right before we set the block
3600 * group to RO mode, as they might have just allocated
3601 * an extent from it or decided they could do a nocow
3602 * write. And if any such tasks did that, wait for their
3603 * ordered extents to complete and then commit the
3604 * current transaction, so that we can later see the new
3605 * extent items in the extent tree - the ordered extents
3606 * create delayed data references (for cow writes) when
3607 * they complete, which will be run and insert the
3608 * corresponding extent items into the extent tree when
3609 * we commit the transaction they used when running
3610 * inode.c:btrfs_finish_ordered_io(). We later use
3611 * the commit root of the extent tree to find extents
3612 * to copy from the srcdev into the tgtdev, and we don't
3613 * want to miss any new extents.
3614 */
3615 btrfs_wait_block_group_reservations(cache);
3616 btrfs_wait_nocow_writers(cache);
3617 ret = btrfs_wait_ordered_roots(fs_info, -1,
3618 cache->key.objectid,
3619 cache->key.offset);
3620 if (ret > 0) {
3621 struct btrfs_trans_handle *trans;
3622
3623 trans = btrfs_join_transaction(root);
3624 if (IS_ERR(trans))
3625 ret = PTR_ERR(trans);
3626 else
3a45bb20 3627 ret = btrfs_commit_transaction(trans);
f0e9b7d6
FM
3628 if (ret) {
3629 scrub_pause_off(fs_info);
3630 btrfs_put_block_group(cache);
3631 break;
3632 }
3633 }
3634 }
55e3a601 3635 scrub_pause_off(fs_info);
76a8efa1
Z
3636
3637 if (ret == 0) {
3638 ro_set = 1;
3639 } else if (ret == -ENOSPC) {
3640 /*
3641 * btrfs_inc_block_group_ro return -ENOSPC when it
3642 * failed in creating new chunk for metadata.
3643 * It is not a problem for scrub/replace, because
3644 * metadata are always cowed, and our scrub paused
3645 * commit_transactions.
3646 */
3647 ro_set = 0;
3648 } else {
5d163e0e
JM
3649 btrfs_warn(fs_info,
3650 "failed setting block group ro, ret=%d\n",
76a8efa1 3651 ret);
55e3a601
Z
3652 btrfs_put_block_group(cache);
3653 break;
3654 }
3655
81e87a73 3656 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
ff023aac
SB
3657 dev_replace->cursor_right = found_key.offset + length;
3658 dev_replace->cursor_left = found_key.offset;
3659 dev_replace->item_needs_writeback = 1;
81e87a73 3660 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
8c204c96 3661 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
020d5b73 3662 found_key.offset, cache, is_dev_replace);
ff023aac
SB
3663
3664 /*
3665 * flush, submit all pending read and write bios, afterwards
3666 * wait for them.
3667 * Note that in the dev replace case, a read request causes
3668 * write requests that are submitted in the read completion
3669 * worker. Therefore in the current situation, it is required
3670 * that all write requests are flushed, so that all read and
3671 * write requests are really completed when bios_in_flight
3672 * changes to 0.
3673 */
3674 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3675 scrub_submit(sctx);
3676 mutex_lock(&sctx->wr_ctx.wr_lock);
3677 scrub_wr_submit(sctx);
3678 mutex_unlock(&sctx->wr_ctx.wr_lock);
3679
3680 wait_event(sctx->list_wait,
3681 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3682
3683 scrub_pause_on(fs_info);
12cf9372
WS
3684
3685 /*
3686 * must be called before we decrease @scrub_paused.
3687 * make sure we don't block transaction commit while
3688 * we are waiting pending workers finished.
3689 */
ff023aac
SB
3690 wait_event(sctx->list_wait,
3691 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
3692 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3693
b708ce96 3694 scrub_pause_off(fs_info);
ff023aac 3695
1a1a8b73
FM
3696 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3697 dev_replace->cursor_left = dev_replace->cursor_right;
3698 dev_replace->item_needs_writeback = 1;
3699 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3700
76a8efa1 3701 if (ro_set)
2ff7e61e 3702 btrfs_dec_block_group_ro(cache);
ff023aac 3703
758f2dfc
FM
3704 /*
3705 * We might have prevented the cleaner kthread from deleting
3706 * this block group if it was already unused because we raced
3707 * and set it to RO mode first. So add it back to the unused
3708 * list, otherwise it might not ever be deleted unless a manual
3709 * balance is triggered or it becomes used and unused again.
3710 */
3711 spin_lock(&cache->lock);
3712 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3713 btrfs_block_group_used(&cache->item) == 0) {
3714 spin_unlock(&cache->lock);
3715 spin_lock(&fs_info->unused_bgs_lock);
3716 if (list_empty(&cache->bg_list)) {
3717 btrfs_get_block_group(cache);
3718 list_add_tail(&cache->bg_list,
3719 &fs_info->unused_bgs);
3720 }
3721 spin_unlock(&fs_info->unused_bgs_lock);
3722 } else {
3723 spin_unlock(&cache->lock);
3724 }
3725
a2de733c
AJ
3726 btrfs_put_block_group(cache);
3727 if (ret)
3728 break;
af1be4f8
SB
3729 if (is_dev_replace &&
3730 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3731 ret = -EIO;
3732 break;
3733 }
3734 if (sctx->stat.malloc_errors > 0) {
3735 ret = -ENOMEM;
3736 break;
3737 }
ced96edc 3738skip:
a2de733c 3739 key.offset = found_key.offset + length;
71267333 3740 btrfs_release_path(path);
a2de733c
AJ
3741 }
3742
a2de733c 3743 btrfs_free_path(path);
8c51032f 3744
55e3a601 3745 return ret;
a2de733c
AJ
3746}
3747
a36cf8b8
SB
3748static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3749 struct btrfs_device *scrub_dev)
a2de733c
AJ
3750{
3751 int i;
3752 u64 bytenr;
3753 u64 gen;
3754 int ret;
0b246afa 3755 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3756
0b246afa 3757 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
79787eaa
JM
3758 return -EIO;
3759
5f546063 3760 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3761 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3762 gen = scrub_dev->generation;
3763 else
0b246afa 3764 gen = fs_info->last_trans_committed;
a2de733c
AJ
3765
3766 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3767 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3768 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3769 scrub_dev->commit_total_bytes)
a2de733c
AJ
3770 break;
3771
d9d181c1 3772 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3773 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3774 NULL, 1, bytenr);
a2de733c
AJ
3775 if (ret)
3776 return ret;
3777 }
b6bfebc1 3778 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3779
3780 return 0;
3781}
3782
3783/*
3784 * get a reference count on fs_info->scrub_workers. start worker if necessary
3785 */
ff023aac
SB
3786static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3787 int is_dev_replace)
a2de733c 3788{
6f011058 3789 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3790 int max_active = fs_info->thread_pool_size;
a2de733c 3791
632dd772 3792 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 3793 if (is_dev_replace)
0339ef2f 3794 fs_info->scrub_workers =
cb001095 3795 btrfs_alloc_workqueue(fs_info, "scrub", flags,
0339ef2f 3796 1, 4);
ff023aac 3797 else
0339ef2f 3798 fs_info->scrub_workers =
cb001095 3799 btrfs_alloc_workqueue(fs_info, "scrub", flags,
0339ef2f 3800 max_active, 4);
e82afc52
ZL
3801 if (!fs_info->scrub_workers)
3802 goto fail_scrub_workers;
3803
0339ef2f 3804 fs_info->scrub_wr_completion_workers =
cb001095 3805 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
0339ef2f 3806 max_active, 2);
e82afc52
ZL
3807 if (!fs_info->scrub_wr_completion_workers)
3808 goto fail_scrub_wr_completion_workers;
3809
0339ef2f 3810 fs_info->scrub_nocow_workers =
cb001095 3811 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
e82afc52
ZL
3812 if (!fs_info->scrub_nocow_workers)
3813 goto fail_scrub_nocow_workers;
20b2e302 3814 fs_info->scrub_parity_workers =
cb001095 3815 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
20b2e302 3816 max_active, 2);
e82afc52
ZL
3817 if (!fs_info->scrub_parity_workers)
3818 goto fail_scrub_parity_workers;
632dd772 3819 }
a2de733c 3820 ++fs_info->scrub_workers_refcnt;
e82afc52
ZL
3821 return 0;
3822
3823fail_scrub_parity_workers:
3824 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3825fail_scrub_nocow_workers:
3826 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3827fail_scrub_wr_completion_workers:
3828 btrfs_destroy_workqueue(fs_info->scrub_workers);
3829fail_scrub_workers:
3830 return -ENOMEM;
a2de733c
AJ
3831}
3832
aa1b8cd4 3833static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 3834{
ff023aac 3835 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
3836 btrfs_destroy_workqueue(fs_info->scrub_workers);
3837 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3838 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
20b2e302 3839 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
ff023aac 3840 }
a2de733c 3841 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
3842}
3843
aa1b8cd4
SB
3844int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3845 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3846 int readonly, int is_dev_replace)
a2de733c 3847{
d9d181c1 3848 struct scrub_ctx *sctx;
a2de733c
AJ
3849 int ret;
3850 struct btrfs_device *dev;
5d68da3b 3851 struct rcu_string *name;
a2de733c 3852
aa1b8cd4 3853 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
3854 return -EINVAL;
3855
da17066c 3856 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3857 /*
3858 * in this case scrub is unable to calculate the checksum
3859 * the way scrub is implemented. Do not handle this
3860 * situation at all because it won't ever happen.
3861 */
efe120a0
FH
3862 btrfs_err(fs_info,
3863 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3864 fs_info->nodesize,
3865 BTRFS_STRIPE_LEN);
b5d67f64
SB
3866 return -EINVAL;
3867 }
3868
da17066c 3869 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3870 /* not supported for data w/o checksums */
751bebbe 3871 btrfs_err_rl(fs_info,
5d163e0e 3872 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3873 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3874 return -EINVAL;
3875 }
3876
da17066c 3877 if (fs_info->nodesize >
7a9e9987 3878 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3879 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3880 /*
3881 * would exhaust the array bounds of pagev member in
3882 * struct scrub_block
3883 */
5d163e0e
JM
3884 btrfs_err(fs_info,
3885 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3886 fs_info->nodesize,
7a9e9987 3887 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3888 fs_info->sectorsize,
7a9e9987
SB
3889 SCRUB_MAX_PAGES_PER_BLOCK);
3890 return -EINVAL;
3891 }
3892
a2de733c 3893
aa1b8cd4
SB
3894 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3895 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 3896 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 3897 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3898 return -ENODEV;
3899 }
a2de733c 3900
5d68da3b
MX
3901 if (!is_dev_replace && !readonly && !dev->writeable) {
3902 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3903 rcu_read_lock();
3904 name = rcu_dereference(dev->name);
3905 btrfs_err(fs_info, "scrub: device %s is not writable",
3906 name->str);
3907 rcu_read_unlock();
3908 return -EROFS;
3909 }
3910
3b7a016f 3911 mutex_lock(&fs_info->scrub_lock);
63a212ab 3912 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 3913 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3914 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3915 return -EIO;
a2de733c
AJ
3916 }
3917
73beece9 3918 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3919 if (dev->scrub_device ||
3920 (!is_dev_replace &&
3921 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
73beece9 3922 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
a2de733c 3923 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
3925 return -EINPROGRESS;
3926 }
73beece9 3927 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3b7a016f
WS
3928
3929 ret = scrub_workers_get(fs_info, is_dev_replace);
3930 if (ret) {
3931 mutex_unlock(&fs_info->scrub_lock);
3932 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3933 return ret;
3934 }
3935
63a212ab 3936 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 3937 if (IS_ERR(sctx)) {
a2de733c 3938 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
3939 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3940 scrub_workers_put(fs_info);
d9d181c1 3941 return PTR_ERR(sctx);
a2de733c 3942 }
d9d181c1
SB
3943 sctx->readonly = readonly;
3944 dev->scrub_device = sctx;
3cb0929a 3945 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3946
3cb0929a
WS
3947 /*
3948 * checking @scrub_pause_req here, we can avoid
3949 * race between committing transaction and scrubbing.
3950 */
cb7ab021 3951 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3952 atomic_inc(&fs_info->scrubs_running);
3953 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3954
ff023aac 3955 if (!is_dev_replace) {
9b011adf
WS
3956 /*
3957 * by holding device list mutex, we can
3958 * kick off writing super in log tree sync.
3959 */
3cb0929a 3960 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3961 ret = scrub_supers(sctx, dev);
3cb0929a 3962 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3963 }
a2de733c
AJ
3964
3965 if (!ret)
ff023aac
SB
3966 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3967 is_dev_replace);
a2de733c 3968
b6bfebc1 3969 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3970 atomic_dec(&fs_info->scrubs_running);
3971 wake_up(&fs_info->scrub_pause_wait);
3972
b6bfebc1 3973 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3974
a2de733c 3975 if (progress)
d9d181c1 3976 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3977
3978 mutex_lock(&fs_info->scrub_lock);
3979 dev->scrub_device = NULL;
3b7a016f 3980 scrub_workers_put(fs_info);
a2de733c
AJ
3981 mutex_unlock(&fs_info->scrub_lock);
3982
f55985f4 3983 scrub_put_ctx(sctx);
a2de733c
AJ
3984
3985 return ret;
3986}
3987
2ff7e61e 3988void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3989{
a2de733c
AJ
3990 mutex_lock(&fs_info->scrub_lock);
3991 atomic_inc(&fs_info->scrub_pause_req);
3992 while (atomic_read(&fs_info->scrubs_paused) !=
3993 atomic_read(&fs_info->scrubs_running)) {
3994 mutex_unlock(&fs_info->scrub_lock);
3995 wait_event(fs_info->scrub_pause_wait,
3996 atomic_read(&fs_info->scrubs_paused) ==
3997 atomic_read(&fs_info->scrubs_running));
3998 mutex_lock(&fs_info->scrub_lock);
3999 }
4000 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
4001}
4002
2ff7e61e 4003void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 4004{
a2de733c
AJ
4005 atomic_dec(&fs_info->scrub_pause_req);
4006 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
4007}
4008
aa1b8cd4 4009int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 4010{
a2de733c
AJ
4011 mutex_lock(&fs_info->scrub_lock);
4012 if (!atomic_read(&fs_info->scrubs_running)) {
4013 mutex_unlock(&fs_info->scrub_lock);
4014 return -ENOTCONN;
4015 }
4016
4017 atomic_inc(&fs_info->scrub_cancel_req);
4018 while (atomic_read(&fs_info->scrubs_running)) {
4019 mutex_unlock(&fs_info->scrub_lock);
4020 wait_event(fs_info->scrub_pause_wait,
4021 atomic_read(&fs_info->scrubs_running) == 0);
4022 mutex_lock(&fs_info->scrub_lock);
4023 }
4024 atomic_dec(&fs_info->scrub_cancel_req);
4025 mutex_unlock(&fs_info->scrub_lock);
4026
4027 return 0;
4028}
4029
aa1b8cd4
SB
4030int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4031 struct btrfs_device *dev)
49b25e05 4032{
d9d181c1 4033 struct scrub_ctx *sctx;
a2de733c
AJ
4034
4035 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
4036 sctx = dev->scrub_device;
4037 if (!sctx) {
a2de733c
AJ
4038 mutex_unlock(&fs_info->scrub_lock);
4039 return -ENOTCONN;
4040 }
d9d181c1 4041 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
4042 while (dev->scrub_device) {
4043 mutex_unlock(&fs_info->scrub_lock);
4044 wait_event(fs_info->scrub_pause_wait,
4045 dev->scrub_device == NULL);
4046 mutex_lock(&fs_info->scrub_lock);
4047 }
4048 mutex_unlock(&fs_info->scrub_lock);
4049
4050 return 0;
4051}
1623edeb 4052
2ff7e61e 4053int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4054 struct btrfs_scrub_progress *progress)
4055{
4056 struct btrfs_device *dev;
d9d181c1 4057 struct scrub_ctx *sctx = NULL;
a2de733c 4058
0b246afa
JM
4059 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4060 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
a2de733c 4061 if (dev)
d9d181c1
SB
4062 sctx = dev->scrub_device;
4063 if (sctx)
4064 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4065 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4066
d9d181c1 4067 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4068}
ff023aac
SB
4069
4070static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4071 u64 extent_logical, u64 extent_len,
4072 u64 *extent_physical,
4073 struct btrfs_device **extent_dev,
4074 int *extent_mirror_num)
4075{
4076 u64 mapped_length;
4077 struct btrfs_bio *bbio = NULL;
4078 int ret;
4079
4080 mapped_length = extent_len;
cf8cddd3 4081 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4082 &mapped_length, &bbio, 0);
4083 if (ret || !bbio || mapped_length < extent_len ||
4084 !bbio->stripes[0].dev->bdev) {
6e9606d2 4085 btrfs_put_bbio(bbio);
ff023aac
SB
4086 return;
4087 }
4088
4089 *extent_physical = bbio->stripes[0].physical;
4090 *extent_mirror_num = bbio->mirror_num;
4091 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4092 btrfs_put_bbio(bbio);
ff023aac
SB
4093}
4094
e5987e13 4095static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
ff023aac
SB
4096 struct btrfs_device *dev,
4097 int is_dev_replace)
4098{
4099 WARN_ON(wr_ctx->wr_curr_bio != NULL);
4100
4101 mutex_init(&wr_ctx->wr_lock);
4102 wr_ctx->wr_curr_bio = NULL;
4103 if (!is_dev_replace)
4104 return 0;
4105
4106 WARN_ON(!dev->bdev);
b54ffb73 4107 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ff023aac
SB
4108 wr_ctx->tgtdev = dev;
4109 atomic_set(&wr_ctx->flush_all_writes, 0);
4110 return 0;
4111}
4112
4113static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4114{
4115 mutex_lock(&wr_ctx->wr_lock);
4116 kfree(wr_ctx->wr_curr_bio);
4117 wr_ctx->wr_curr_bio = NULL;
4118 mutex_unlock(&wr_ctx->wr_lock);
4119}
4120
4121static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4122 int mirror_num, u64 physical_for_dev_replace)
4123{
4124 struct scrub_copy_nocow_ctx *nocow_ctx;
fb456252 4125 struct btrfs_fs_info *fs_info = sctx->fs_info;
ff023aac
SB
4126
4127 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4128 if (!nocow_ctx) {
4129 spin_lock(&sctx->stat_lock);
4130 sctx->stat.malloc_errors++;
4131 spin_unlock(&sctx->stat_lock);
4132 return -ENOMEM;
4133 }
4134
4135 scrub_pending_trans_workers_inc(sctx);
4136
4137 nocow_ctx->sctx = sctx;
4138 nocow_ctx->logical = logical;
4139 nocow_ctx->len = len;
4140 nocow_ctx->mirror_num = mirror_num;
4141 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
4142 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4143 copy_nocow_pages_worker, NULL, NULL);
652f25a2 4144 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
4145 btrfs_queue_work(fs_info->scrub_nocow_workers,
4146 &nocow_ctx->work);
ff023aac
SB
4147
4148 return 0;
4149}
4150
652f25a2
JB
4151static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4152{
4153 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4154 struct scrub_nocow_inode *nocow_inode;
4155
4156 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4157 if (!nocow_inode)
4158 return -ENOMEM;
4159 nocow_inode->inum = inum;
4160 nocow_inode->offset = offset;
4161 nocow_inode->root = root;
4162 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4163 return 0;
4164}
4165
4166#define COPY_COMPLETE 1
4167
ff023aac
SB
4168static void copy_nocow_pages_worker(struct btrfs_work *work)
4169{
4170 struct scrub_copy_nocow_ctx *nocow_ctx =
4171 container_of(work, struct scrub_copy_nocow_ctx, work);
4172 struct scrub_ctx *sctx = nocow_ctx->sctx;
0b246afa
JM
4173 struct btrfs_fs_info *fs_info = sctx->fs_info;
4174 struct btrfs_root *root = fs_info->extent_root;
ff023aac
SB
4175 u64 logical = nocow_ctx->logical;
4176 u64 len = nocow_ctx->len;
4177 int mirror_num = nocow_ctx->mirror_num;
4178 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4179 int ret;
4180 struct btrfs_trans_handle *trans = NULL;
ff023aac 4181 struct btrfs_path *path;
ff023aac
SB
4182 int not_written = 0;
4183
ff023aac
SB
4184 path = btrfs_alloc_path();
4185 if (!path) {
4186 spin_lock(&sctx->stat_lock);
4187 sctx->stat.malloc_errors++;
4188 spin_unlock(&sctx->stat_lock);
4189 not_written = 1;
4190 goto out;
4191 }
4192
4193 trans = btrfs_join_transaction(root);
4194 if (IS_ERR(trans)) {
4195 not_written = 1;
4196 goto out;
4197 }
4198
4199 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 4200 record_inode_for_nocow, nocow_ctx);
ff023aac 4201 if (ret != 0 && ret != -ENOENT) {
5d163e0e
JM
4202 btrfs_warn(fs_info,
4203 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4204 logical, physical_for_dev_replace, len, mirror_num,
4205 ret);
ff023aac
SB
4206 not_written = 1;
4207 goto out;
4208 }
4209
3a45bb20 4210 btrfs_end_transaction(trans);
652f25a2
JB
4211 trans = NULL;
4212 while (!list_empty(&nocow_ctx->inodes)) {
4213 struct scrub_nocow_inode *entry;
4214 entry = list_first_entry(&nocow_ctx->inodes,
4215 struct scrub_nocow_inode,
4216 list);
4217 list_del_init(&entry->list);
4218 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4219 entry->root, nocow_ctx);
4220 kfree(entry);
4221 if (ret == COPY_COMPLETE) {
4222 ret = 0;
4223 break;
4224 } else if (ret) {
4225 break;
4226 }
4227 }
ff023aac 4228out:
652f25a2
JB
4229 while (!list_empty(&nocow_ctx->inodes)) {
4230 struct scrub_nocow_inode *entry;
4231 entry = list_first_entry(&nocow_ctx->inodes,
4232 struct scrub_nocow_inode,
4233 list);
4234 list_del_init(&entry->list);
4235 kfree(entry);
4236 }
ff023aac 4237 if (trans && !IS_ERR(trans))
3a45bb20 4238 btrfs_end_transaction(trans);
ff023aac
SB
4239 if (not_written)
4240 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4241 num_uncorrectable_read_errors);
4242
4243 btrfs_free_path(path);
4244 kfree(nocow_ctx);
4245
4246 scrub_pending_trans_workers_dec(sctx);
4247}
4248
1c8c9c52 4249static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
32159242
GH
4250 u64 logical)
4251{
4252 struct extent_state *cached_state = NULL;
4253 struct btrfs_ordered_extent *ordered;
4254 struct extent_io_tree *io_tree;
4255 struct extent_map *em;
4256 u64 lockstart = start, lockend = start + len - 1;
4257 int ret = 0;
4258
1c8c9c52 4259 io_tree = &inode->io_tree;
32159242 4260
ff13db41 4261 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
1c8c9c52 4262 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
32159242
GH
4263 if (ordered) {
4264 btrfs_put_ordered_extent(ordered);
4265 ret = 1;
4266 goto out_unlock;
4267 }
4268
4269 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4270 if (IS_ERR(em)) {
4271 ret = PTR_ERR(em);
4272 goto out_unlock;
4273 }
4274
4275 /*
4276 * This extent does not actually cover the logical extent anymore,
4277 * move on to the next inode.
4278 */
4279 if (em->block_start > logical ||
4280 em->block_start + em->block_len < logical + len) {
4281 free_extent_map(em);
4282 ret = 1;
4283 goto out_unlock;
4284 }
4285 free_extent_map(em);
4286
4287out_unlock:
4288 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4289 GFP_NOFS);
4290 return ret;
4291}
4292
652f25a2
JB
4293static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4294 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 4295{
fb456252 4296 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
ff023aac 4297 struct btrfs_key key;
826aa0a8
MX
4298 struct inode *inode;
4299 struct page *page;
ff023aac 4300 struct btrfs_root *local_root;
652f25a2 4301 struct extent_io_tree *io_tree;
ff023aac 4302 u64 physical_for_dev_replace;
32159242 4303 u64 nocow_ctx_logical;
652f25a2 4304 u64 len = nocow_ctx->len;
826aa0a8 4305 unsigned long index;
6f1c3605 4306 int srcu_index;
652f25a2
JB
4307 int ret = 0;
4308 int err = 0;
ff023aac
SB
4309
4310 key.objectid = root;
4311 key.type = BTRFS_ROOT_ITEM_KEY;
4312 key.offset = (u64)-1;
6f1c3605
LB
4313
4314 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4315
ff023aac 4316 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
4317 if (IS_ERR(local_root)) {
4318 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 4319 return PTR_ERR(local_root);
6f1c3605 4320 }
ff023aac
SB
4321
4322 key.type = BTRFS_INODE_ITEM_KEY;
4323 key.objectid = inum;
4324 key.offset = 0;
4325 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 4326 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
4327 if (IS_ERR(inode))
4328 return PTR_ERR(inode);
4329
edd1400b 4330 /* Avoid truncate/dio/punch hole.. */
5955102c 4331 inode_lock(inode);
edd1400b
MX
4332 inode_dio_wait(inode);
4333
ff023aac 4334 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2 4335 io_tree = &BTRFS_I(inode)->io_tree;
32159242 4336 nocow_ctx_logical = nocow_ctx->logical;
652f25a2 4337
1c8c9c52
NB
4338 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4339 nocow_ctx_logical);
32159242
GH
4340 if (ret) {
4341 ret = ret > 0 ? 0 : ret;
4342 goto out;
652f25a2 4343 }
652f25a2 4344
09cbfeaf
KS
4345 while (len >= PAGE_SIZE) {
4346 index = offset >> PAGE_SHIFT;
edd1400b 4347again:
ff023aac
SB
4348 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4349 if (!page) {
efe120a0 4350 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 4351 ret = -ENOMEM;
826aa0a8 4352 goto out;
ff023aac
SB
4353 }
4354
4355 if (PageUptodate(page)) {
4356 if (PageDirty(page))
4357 goto next_page;
4358 } else {
4359 ClearPageError(page);
32159242 4360 err = extent_read_full_page(io_tree, page,
652f25a2
JB
4361 btrfs_get_extent,
4362 nocow_ctx->mirror_num);
826aa0a8
MX
4363 if (err) {
4364 ret = err;
ff023aac
SB
4365 goto next_page;
4366 }
edd1400b 4367
26b25891 4368 lock_page(page);
edd1400b
MX
4369 /*
4370 * If the page has been remove from the page cache,
4371 * the data on it is meaningless, because it may be
4372 * old one, the new data may be written into the new
4373 * page in the page cache.
4374 */
4375 if (page->mapping != inode->i_mapping) {
652f25a2 4376 unlock_page(page);
09cbfeaf 4377 put_page(page);
edd1400b
MX
4378 goto again;
4379 }
ff023aac
SB
4380 if (!PageUptodate(page)) {
4381 ret = -EIO;
4382 goto next_page;
4383 }
4384 }
32159242 4385
1c8c9c52 4386 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
32159242
GH
4387 nocow_ctx_logical);
4388 if (ret) {
4389 ret = ret > 0 ? 0 : ret;
4390 goto next_page;
4391 }
4392
826aa0a8
MX
4393 err = write_page_nocow(nocow_ctx->sctx,
4394 physical_for_dev_replace, page);
4395 if (err)
4396 ret = err;
ff023aac 4397next_page:
826aa0a8 4398 unlock_page(page);
09cbfeaf 4399 put_page(page);
826aa0a8
MX
4400
4401 if (ret)
4402 break;
4403
09cbfeaf
KS
4404 offset += PAGE_SIZE;
4405 physical_for_dev_replace += PAGE_SIZE;
4406 nocow_ctx_logical += PAGE_SIZE;
4407 len -= PAGE_SIZE;
ff023aac 4408 }
652f25a2 4409 ret = COPY_COMPLETE;
826aa0a8 4410out:
5955102c 4411 inode_unlock(inode);
826aa0a8 4412 iput(inode);
ff023aac
SB
4413 return ret;
4414}
4415
4416static int write_page_nocow(struct scrub_ctx *sctx,
4417 u64 physical_for_dev_replace, struct page *page)
4418{
4419 struct bio *bio;
4420 struct btrfs_device *dev;
4421 int ret;
ff023aac
SB
4422
4423 dev = sctx->wr_ctx.tgtdev;
4424 if (!dev)
4425 return -EIO;
4426 if (!dev->bdev) {
fb456252 4427 btrfs_warn_rl(dev->fs_info,
94647322 4428 "scrub write_page_nocow(bdev == NULL) is unexpected");
ff023aac
SB
4429 return -EIO;
4430 }
9be3395b 4431 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
4432 if (!bio) {
4433 spin_lock(&sctx->stat_lock);
4434 sctx->stat.malloc_errors++;
4435 spin_unlock(&sctx->stat_lock);
4436 return -ENOMEM;
4437 }
4f024f37
KO
4438 bio->bi_iter.bi_size = 0;
4439 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac 4440 bio->bi_bdev = dev->bdev;
70fd7614 4441 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
09cbfeaf
KS
4442 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4443 if (ret != PAGE_SIZE) {
ff023aac
SB
4444leave_with_eio:
4445 bio_put(bio);
4446 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4447 return -EIO;
4448 }
ff023aac 4449
4e49ea4a 4450 if (btrfsic_submit_bio_wait(bio))
ff023aac
SB
4451 goto leave_with_eio;
4452
4453 bio_put(bio);
4454 return 0;
4455}