]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/scrub.c
Btrfs: update delayed ref's tracepoints to show sequence
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c
AJ
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
21adbd5c 28#include "check-integrity.h"
606686ee 29#include "rcu-string.h"
a2de733c
AJ
30
31/*
32 * This is only the first step towards a full-features scrub. It reads all
33 * extent and super block and verifies the checksums. In case a bad checksum
34 * is found or the extent cannot be read, good data will be written back if
35 * any can be found.
36 *
37 * Future enhancements:
a2de733c
AJ
38 * - In case an unrepairable extent is encountered, track which files are
39 * affected and report them
a2de733c 40 * - track and record media errors, throw out bad devices
a2de733c 41 * - add a mode to also read unallocated space
a2de733c
AJ
42 */
43
b5d67f64 44struct scrub_block;
a2de733c 45struct scrub_dev;
a2de733c
AJ
46
47#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
48#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
b5d67f64 49#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c
AJ
50
51struct scrub_page {
b5d67f64
SB
52 struct scrub_block *sblock;
53 struct page *page;
442a4f63 54 struct btrfs_device *dev;
a2de733c
AJ
55 u64 flags; /* extent flags */
56 u64 generation;
b5d67f64
SB
57 u64 logical;
58 u64 physical;
59 struct {
60 unsigned int mirror_num:8;
61 unsigned int have_csum:1;
62 unsigned int io_error:1;
63 };
a2de733c
AJ
64 u8 csum[BTRFS_CSUM_SIZE];
65};
66
67struct scrub_bio {
68 int index;
69 struct scrub_dev *sdev;
70 struct bio *bio;
71 int err;
72 u64 logical;
73 u64 physical;
b5d67f64
SB
74 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
75 int page_count;
a2de733c
AJ
76 int next_free;
77 struct btrfs_work work;
78};
79
b5d67f64
SB
80struct scrub_block {
81 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
82 int page_count;
83 atomic_t outstanding_pages;
84 atomic_t ref_count; /* free mem on transition to zero */
85 struct scrub_dev *sdev;
86 struct {
87 unsigned int header_error:1;
88 unsigned int checksum_error:1;
89 unsigned int no_io_error_seen:1;
442a4f63 90 unsigned int generation_error:1; /* also sets header_error */
b5d67f64
SB
91 };
92};
93
a2de733c
AJ
94struct scrub_dev {
95 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
96 struct btrfs_device *dev;
97 int first_free;
98 int curr;
99 atomic_t in_flight;
0ef8e451 100 atomic_t fixup_cnt;
a2de733c
AJ
101 spinlock_t list_lock;
102 wait_queue_head_t list_wait;
103 u16 csum_size;
104 struct list_head csum_list;
105 atomic_t cancel_req;
8628764e 106 int readonly;
b5d67f64
SB
107 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
108 u32 sectorsize;
109 u32 nodesize;
110 u32 leafsize;
a2de733c
AJ
111 /*
112 * statistics
113 */
114 struct btrfs_scrub_progress stat;
115 spinlock_t stat_lock;
116};
117
0ef8e451
JS
118struct scrub_fixup_nodatasum {
119 struct scrub_dev *sdev;
120 u64 logical;
121 struct btrfs_root *root;
122 struct btrfs_work work;
123 int mirror_num;
124};
125
558540c1
JS
126struct scrub_warning {
127 struct btrfs_path *path;
128 u64 extent_item_size;
129 char *scratch_buf;
130 char *msg_buf;
131 const char *errstr;
132 sector_t sector;
133 u64 logical;
134 struct btrfs_device *dev;
135 int msg_bufsize;
136 int scratch_bufsize;
137};
138
b5d67f64
SB
139
140static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
141static int scrub_setup_recheck_block(struct scrub_dev *sdev,
142 struct btrfs_mapping_tree *map_tree,
143 u64 length, u64 logical,
144 struct scrub_block *sblock);
145static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
146 struct scrub_block *sblock, int is_metadata,
147 int have_csum, u8 *csum, u64 generation,
148 u16 csum_size);
149static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
150 struct scrub_block *sblock,
151 int is_metadata, int have_csum,
152 const u8 *csum, u64 generation,
153 u16 csum_size);
154static void scrub_complete_bio_end_io(struct bio *bio, int err);
155static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
156 struct scrub_block *sblock_good,
157 int force_write);
158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
159 struct scrub_block *sblock_good,
160 int page_num, int force_write);
161static int scrub_checksum_data(struct scrub_block *sblock);
162static int scrub_checksum_tree_block(struct scrub_block *sblock);
163static int scrub_checksum_super(struct scrub_block *sblock);
164static void scrub_block_get(struct scrub_block *sblock);
165static void scrub_block_put(struct scrub_block *sblock);
166static int scrub_add_page_to_bio(struct scrub_dev *sdev,
167 struct scrub_page *spage);
168static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
169 u64 physical, u64 flags, u64 gen, int mirror_num,
170 u8 *csum, int force);
1623edeb 171static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
172static void scrub_bio_end_io_worker(struct btrfs_work *work);
173static void scrub_block_complete(struct scrub_block *sblock);
1623edeb
SB
174
175
a2de733c
AJ
176static void scrub_free_csums(struct scrub_dev *sdev)
177{
178 while (!list_empty(&sdev->csum_list)) {
179 struct btrfs_ordered_sum *sum;
180 sum = list_first_entry(&sdev->csum_list,
181 struct btrfs_ordered_sum, list);
182 list_del(&sum->list);
183 kfree(sum);
184 }
185}
186
187static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
188{
189 int i;
a2de733c
AJ
190
191 if (!sdev)
192 return;
193
b5d67f64
SB
194 /* this can happen when scrub is cancelled */
195 if (sdev->curr != -1) {
196 struct scrub_bio *sbio = sdev->bios[sdev->curr];
197
198 for (i = 0; i < sbio->page_count; i++) {
199 BUG_ON(!sbio->pagev[i]);
200 BUG_ON(!sbio->pagev[i]->page);
201 scrub_block_put(sbio->pagev[i]->sblock);
202 }
203 bio_put(sbio->bio);
204 }
205
a2de733c
AJ
206 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
207 struct scrub_bio *sbio = sdev->bios[i];
a2de733c
AJ
208
209 if (!sbio)
210 break;
a2de733c
AJ
211 kfree(sbio);
212 }
213
214 scrub_free_csums(sdev);
215 kfree(sdev);
216}
217
218static noinline_for_stack
219struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
220{
221 struct scrub_dev *sdev;
222 int i;
a2de733c 223 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
b5d67f64 224 int pages_per_bio;
a2de733c 225
b5d67f64
SB
226 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
227 bio_get_nr_vecs(dev->bdev));
a2de733c
AJ
228 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
229 if (!sdev)
230 goto nomem;
231 sdev->dev = dev;
b5d67f64
SB
232 sdev->pages_per_bio = pages_per_bio;
233 sdev->curr = -1;
a2de733c 234 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
a2de733c
AJ
235 struct scrub_bio *sbio;
236
237 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
238 if (!sbio)
239 goto nomem;
240 sdev->bios[i] = sbio;
241
a2de733c
AJ
242 sbio->index = i;
243 sbio->sdev = sdev;
b5d67f64
SB
244 sbio->page_count = 0;
245 sbio->work.func = scrub_bio_end_io_worker;
a2de733c
AJ
246
247 if (i != SCRUB_BIOS_PER_DEV-1)
248 sdev->bios[i]->next_free = i + 1;
0ef8e451 249 else
a2de733c
AJ
250 sdev->bios[i]->next_free = -1;
251 }
252 sdev->first_free = 0;
b5d67f64
SB
253 sdev->nodesize = dev->dev_root->nodesize;
254 sdev->leafsize = dev->dev_root->leafsize;
255 sdev->sectorsize = dev->dev_root->sectorsize;
a2de733c 256 atomic_set(&sdev->in_flight, 0);
0ef8e451 257 atomic_set(&sdev->fixup_cnt, 0);
a2de733c 258 atomic_set(&sdev->cancel_req, 0);
6c41761f 259 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
a2de733c
AJ
260 INIT_LIST_HEAD(&sdev->csum_list);
261
262 spin_lock_init(&sdev->list_lock);
263 spin_lock_init(&sdev->stat_lock);
264 init_waitqueue_head(&sdev->list_wait);
265 return sdev;
266
267nomem:
268 scrub_free_dev(sdev);
269 return ERR_PTR(-ENOMEM);
270}
271
558540c1
JS
272static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
273{
274 u64 isize;
275 u32 nlink;
276 int ret;
277 int i;
278 struct extent_buffer *eb;
279 struct btrfs_inode_item *inode_item;
280 struct scrub_warning *swarn = ctx;
281 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
282 struct inode_fs_paths *ipath = NULL;
283 struct btrfs_root *local_root;
284 struct btrfs_key root_key;
285
286 root_key.objectid = root;
287 root_key.type = BTRFS_ROOT_ITEM_KEY;
288 root_key.offset = (u64)-1;
289 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
290 if (IS_ERR(local_root)) {
291 ret = PTR_ERR(local_root);
292 goto err;
293 }
294
295 ret = inode_item_info(inum, 0, local_root, swarn->path);
296 if (ret) {
297 btrfs_release_path(swarn->path);
298 goto err;
299 }
300
301 eb = swarn->path->nodes[0];
302 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
303 struct btrfs_inode_item);
304 isize = btrfs_inode_size(eb, inode_item);
305 nlink = btrfs_inode_nlink(eb, inode_item);
306 btrfs_release_path(swarn->path);
307
308 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
309 if (IS_ERR(ipath)) {
310 ret = PTR_ERR(ipath);
311 ipath = NULL;
312 goto err;
313 }
558540c1
JS
314 ret = paths_from_inode(inum, ipath);
315
316 if (ret < 0)
317 goto err;
318
319 /*
320 * we deliberately ignore the bit ipath might have been too small to
321 * hold all of the paths here
322 */
323 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
606686ee 324 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
558540c1
JS
325 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
326 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 327 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
328 (unsigned long long)swarn->sector, root, inum, offset,
329 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 330 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
331
332 free_ipath(ipath);
333 return 0;
334
335err:
606686ee 336 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
558540c1
JS
337 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
338 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 339 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
340 (unsigned long long)swarn->sector, root, inum, offset, ret);
341
342 free_ipath(ipath);
343 return 0;
344}
345
b5d67f64 346static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 347{
b5d67f64 348 struct btrfs_device *dev = sblock->sdev->dev;
558540c1
JS
349 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
350 struct btrfs_path *path;
351 struct btrfs_key found_key;
352 struct extent_buffer *eb;
353 struct btrfs_extent_item *ei;
354 struct scrub_warning swarn;
355 u32 item_size;
356 int ret;
357 u64 ref_root;
358 u8 ref_level;
359 unsigned long ptr = 0;
360 const int bufsize = 4096;
4692cf58 361 u64 extent_item_pos;
558540c1
JS
362
363 path = btrfs_alloc_path();
364
365 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
366 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
b5d67f64
SB
367 BUG_ON(sblock->page_count < 1);
368 swarn.sector = (sblock->pagev[0].physical) >> 9;
369 swarn.logical = sblock->pagev[0].logical;
558540c1
JS
370 swarn.errstr = errstr;
371 swarn.dev = dev;
372 swarn.msg_bufsize = bufsize;
373 swarn.scratch_bufsize = bufsize;
374
375 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
376 goto out;
377
378 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
379 if (ret < 0)
380 goto out;
381
4692cf58 382 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
383 swarn.extent_item_size = found_key.offset;
384
385 eb = path->nodes[0];
386 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
387 item_size = btrfs_item_size_nr(eb, path->slots[0]);
4692cf58 388 btrfs_release_path(path);
558540c1
JS
389
390 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
391 do {
392 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
393 &ref_root, &ref_level);
606686ee 394 printk_in_rcu(KERN_WARNING
1623edeb 395 "btrfs: %s at logical %llu on dev %s, "
558540c1 396 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
397 "%llu\n", errstr, swarn.logical,
398 rcu_str_deref(dev->name),
558540c1
JS
399 (unsigned long long)swarn.sector,
400 ref_level ? "node" : "leaf",
401 ret < 0 ? -1 : ref_level,
402 ret < 0 ? -1 : ref_root);
403 } while (ret != 1);
404 } else {
405 swarn.path = path;
7a3ae2f8
JS
406 iterate_extent_inodes(fs_info, found_key.objectid,
407 extent_item_pos, 1,
558540c1
JS
408 scrub_print_warning_inode, &swarn);
409 }
410
411out:
412 btrfs_free_path(path);
413 kfree(swarn.scratch_buf);
414 kfree(swarn.msg_buf);
415}
416
0ef8e451
JS
417static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
418{
5da6fcbc 419 struct page *page = NULL;
0ef8e451
JS
420 unsigned long index;
421 struct scrub_fixup_nodatasum *fixup = ctx;
422 int ret;
5da6fcbc 423 int corrected = 0;
0ef8e451 424 struct btrfs_key key;
5da6fcbc 425 struct inode *inode = NULL;
0ef8e451
JS
426 u64 end = offset + PAGE_SIZE - 1;
427 struct btrfs_root *local_root;
428
429 key.objectid = root;
430 key.type = BTRFS_ROOT_ITEM_KEY;
431 key.offset = (u64)-1;
432 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
433 if (IS_ERR(local_root))
434 return PTR_ERR(local_root);
435
436 key.type = BTRFS_INODE_ITEM_KEY;
437 key.objectid = inum;
438 key.offset = 0;
439 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
440 if (IS_ERR(inode))
441 return PTR_ERR(inode);
442
0ef8e451
JS
443 index = offset >> PAGE_CACHE_SHIFT;
444
445 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
446 if (!page) {
447 ret = -ENOMEM;
448 goto out;
449 }
450
451 if (PageUptodate(page)) {
452 struct btrfs_mapping_tree *map_tree;
453 if (PageDirty(page)) {
454 /*
455 * we need to write the data to the defect sector. the
456 * data that was in that sector is not in memory,
457 * because the page was modified. we must not write the
458 * modified page to that sector.
459 *
460 * TODO: what could be done here: wait for the delalloc
461 * runner to write out that page (might involve
462 * COW) and see whether the sector is still
463 * referenced afterwards.
464 *
465 * For the meantime, we'll treat this error
466 * incorrectable, although there is a chance that a
467 * later scrub will find the bad sector again and that
468 * there's no dirty page in memory, then.
469 */
470 ret = -EIO;
471 goto out;
472 }
473 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
474 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
475 fixup->logical, page,
476 fixup->mirror_num);
477 unlock_page(page);
478 corrected = !ret;
479 } else {
480 /*
481 * we need to get good data first. the general readpage path
482 * will call repair_io_failure for us, we just have to make
483 * sure we read the bad mirror.
484 */
485 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
486 EXTENT_DAMAGED, GFP_NOFS);
487 if (ret) {
488 /* set_extent_bits should give proper error */
489 WARN_ON(ret > 0);
490 if (ret > 0)
491 ret = -EFAULT;
492 goto out;
493 }
494
495 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
496 btrfs_get_extent,
497 fixup->mirror_num);
498 wait_on_page_locked(page);
499
500 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
501 end, EXTENT_DAMAGED, 0, NULL);
502 if (!corrected)
503 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
504 EXTENT_DAMAGED, GFP_NOFS);
505 }
506
507out:
508 if (page)
509 put_page(page);
510 if (inode)
511 iput(inode);
0ef8e451
JS
512
513 if (ret < 0)
514 return ret;
515
516 if (ret == 0 && corrected) {
517 /*
518 * we only need to call readpage for one of the inodes belonging
519 * to this extent. so make iterate_extent_inodes stop
520 */
521 return 1;
522 }
523
524 return -EIO;
525}
526
527static void scrub_fixup_nodatasum(struct btrfs_work *work)
528{
529 int ret;
530 struct scrub_fixup_nodatasum *fixup;
531 struct scrub_dev *sdev;
532 struct btrfs_trans_handle *trans = NULL;
533 struct btrfs_fs_info *fs_info;
534 struct btrfs_path *path;
535 int uncorrectable = 0;
536
537 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
538 sdev = fixup->sdev;
539 fs_info = fixup->root->fs_info;
540
541 path = btrfs_alloc_path();
542 if (!path) {
543 spin_lock(&sdev->stat_lock);
544 ++sdev->stat.malloc_errors;
545 spin_unlock(&sdev->stat_lock);
546 uncorrectable = 1;
547 goto out;
548 }
549
550 trans = btrfs_join_transaction(fixup->root);
551 if (IS_ERR(trans)) {
552 uncorrectable = 1;
553 goto out;
554 }
555
556 /*
557 * the idea is to trigger a regular read through the standard path. we
558 * read a page from the (failed) logical address by specifying the
559 * corresponding copynum of the failed sector. thus, that readpage is
560 * expected to fail.
561 * that is the point where on-the-fly error correction will kick in
562 * (once it's finished) and rewrite the failed sector if a good copy
563 * can be found.
564 */
565 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
566 path, scrub_fixup_readpage,
567 fixup);
568 if (ret < 0) {
569 uncorrectable = 1;
570 goto out;
571 }
572 WARN_ON(ret != 1);
573
574 spin_lock(&sdev->stat_lock);
575 ++sdev->stat.corrected_errors;
576 spin_unlock(&sdev->stat_lock);
577
578out:
579 if (trans && !IS_ERR(trans))
580 btrfs_end_transaction(trans, fixup->root);
581 if (uncorrectable) {
582 spin_lock(&sdev->stat_lock);
583 ++sdev->stat.uncorrectable_errors;
584 spin_unlock(&sdev->stat_lock);
606686ee
JB
585
586 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 587 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
606686ee
JB
588 (unsigned long long)fixup->logical,
589 rcu_str_deref(sdev->dev->name));
0ef8e451
JS
590 }
591
592 btrfs_free_path(path);
593 kfree(fixup);
594
595 /* see caller why we're pretending to be paused in the scrub counters */
596 mutex_lock(&fs_info->scrub_lock);
597 atomic_dec(&fs_info->scrubs_running);
598 atomic_dec(&fs_info->scrubs_paused);
599 mutex_unlock(&fs_info->scrub_lock);
600 atomic_dec(&sdev->fixup_cnt);
601 wake_up(&fs_info->scrub_pause_wait);
602 wake_up(&sdev->list_wait);
603}
604
a2de733c 605/*
b5d67f64
SB
606 * scrub_handle_errored_block gets called when either verification of the
607 * pages failed or the bio failed to read, e.g. with EIO. In the latter
608 * case, this function handles all pages in the bio, even though only one
609 * may be bad.
610 * The goal of this function is to repair the errored block by using the
611 * contents of one of the mirrors.
a2de733c 612 */
b5d67f64 613static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 614{
b5d67f64
SB
615 struct scrub_dev *sdev = sblock_to_check->sdev;
616 struct btrfs_fs_info *fs_info;
617 u64 length;
618 u64 logical;
619 u64 generation;
620 unsigned int failed_mirror_index;
621 unsigned int is_metadata;
622 unsigned int have_csum;
623 u8 *csum;
624 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
625 struct scrub_block *sblock_bad;
626 int ret;
627 int mirror_index;
628 int page_num;
629 int success;
558540c1 630 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
631 DEFAULT_RATELIMIT_BURST);
632
633 BUG_ON(sblock_to_check->page_count < 1);
634 fs_info = sdev->dev->dev_root->fs_info;
635 length = sblock_to_check->page_count * PAGE_SIZE;
636 logical = sblock_to_check->pagev[0].logical;
637 generation = sblock_to_check->pagev[0].generation;
638 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
639 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
640 is_metadata = !(sblock_to_check->pagev[0].flags &
641 BTRFS_EXTENT_FLAG_DATA);
642 have_csum = sblock_to_check->pagev[0].have_csum;
643 csum = sblock_to_check->pagev[0].csum;
13db62b7 644
b5d67f64
SB
645 /*
646 * read all mirrors one after the other. This includes to
647 * re-read the extent or metadata block that failed (that was
648 * the cause that this fixup code is called) another time,
649 * page by page this time in order to know which pages
650 * caused I/O errors and which ones are good (for all mirrors).
651 * It is the goal to handle the situation when more than one
652 * mirror contains I/O errors, but the errors do not
653 * overlap, i.e. the data can be repaired by selecting the
654 * pages from those mirrors without I/O error on the
655 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
656 * would be that mirror #1 has an I/O error on the first page,
657 * the second page is good, and mirror #2 has an I/O error on
658 * the second page, but the first page is good.
659 * Then the first page of the first mirror can be repaired by
660 * taking the first page of the second mirror, and the
661 * second page of the second mirror can be repaired by
662 * copying the contents of the 2nd page of the 1st mirror.
663 * One more note: if the pages of one mirror contain I/O
664 * errors, the checksum cannot be verified. In order to get
665 * the best data for repairing, the first attempt is to find
666 * a mirror without I/O errors and with a validated checksum.
667 * Only if this is not possible, the pages are picked from
668 * mirrors with I/O errors without considering the checksum.
669 * If the latter is the case, at the end, the checksum of the
670 * repaired area is verified in order to correctly maintain
671 * the statistics.
672 */
673
674 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
675 sizeof(*sblocks_for_recheck),
676 GFP_NOFS);
677 if (!sblocks_for_recheck) {
678 spin_lock(&sdev->stat_lock);
679 sdev->stat.malloc_errors++;
680 sdev->stat.read_errors++;
681 sdev->stat.uncorrectable_errors++;
682 spin_unlock(&sdev->stat_lock);
442a4f63
SB
683 btrfs_dev_stat_inc_and_print(sdev->dev,
684 BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 685 goto out;
a2de733c
AJ
686 }
687
b5d67f64
SB
688 /* setup the context, map the logical blocks and alloc the pages */
689 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
690 logical, sblocks_for_recheck);
691 if (ret) {
692 spin_lock(&sdev->stat_lock);
693 sdev->stat.read_errors++;
694 sdev->stat.uncorrectable_errors++;
695 spin_unlock(&sdev->stat_lock);
442a4f63
SB
696 btrfs_dev_stat_inc_and_print(sdev->dev,
697 BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
698 goto out;
699 }
700 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
701 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 702
b5d67f64
SB
703 /* build and submit the bios for the failed mirror, check checksums */
704 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
705 csum, generation, sdev->csum_size);
706 if (ret) {
707 spin_lock(&sdev->stat_lock);
708 sdev->stat.read_errors++;
709 sdev->stat.uncorrectable_errors++;
710 spin_unlock(&sdev->stat_lock);
442a4f63
SB
711 btrfs_dev_stat_inc_and_print(sdev->dev,
712 BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
713 goto out;
714 }
a2de733c 715
b5d67f64
SB
716 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
717 sblock_bad->no_io_error_seen) {
718 /*
719 * the error disappeared after reading page by page, or
720 * the area was part of a huge bio and other parts of the
721 * bio caused I/O errors, or the block layer merged several
722 * read requests into one and the error is caused by a
723 * different bio (usually one of the two latter cases is
724 * the cause)
725 */
726 spin_lock(&sdev->stat_lock);
727 sdev->stat.unverified_errors++;
728 spin_unlock(&sdev->stat_lock);
a2de733c 729
b5d67f64 730 goto out;
a2de733c 731 }
a2de733c 732
b5d67f64
SB
733 if (!sblock_bad->no_io_error_seen) {
734 spin_lock(&sdev->stat_lock);
735 sdev->stat.read_errors++;
736 spin_unlock(&sdev->stat_lock);
737 if (__ratelimit(&_rs))
738 scrub_print_warning("i/o error", sblock_to_check);
442a4f63
SB
739 btrfs_dev_stat_inc_and_print(sdev->dev,
740 BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
741 } else if (sblock_bad->checksum_error) {
742 spin_lock(&sdev->stat_lock);
743 sdev->stat.csum_errors++;
744 spin_unlock(&sdev->stat_lock);
745 if (__ratelimit(&_rs))
746 scrub_print_warning("checksum error", sblock_to_check);
442a4f63
SB
747 btrfs_dev_stat_inc_and_print(sdev->dev,
748 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64
SB
749 } else if (sblock_bad->header_error) {
750 spin_lock(&sdev->stat_lock);
751 sdev->stat.verify_errors++;
752 spin_unlock(&sdev->stat_lock);
753 if (__ratelimit(&_rs))
754 scrub_print_warning("checksum/header error",
755 sblock_to_check);
442a4f63
SB
756 if (sblock_bad->generation_error)
757 btrfs_dev_stat_inc_and_print(sdev->dev,
758 BTRFS_DEV_STAT_GENERATION_ERRS);
759 else
760 btrfs_dev_stat_inc_and_print(sdev->dev,
761 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 762 }
a2de733c 763
b5d67f64
SB
764 if (sdev->readonly)
765 goto did_not_correct_error;
a2de733c 766
b5d67f64
SB
767 if (!is_metadata && !have_csum) {
768 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 769
b5d67f64
SB
770 /*
771 * !is_metadata and !have_csum, this means that the data
772 * might not be COW'ed, that it might be modified
773 * concurrently. The general strategy to work on the
774 * commit root does not help in the case when COW is not
775 * used.
776 */
777 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
778 if (!fixup_nodatasum)
779 goto did_not_correct_error;
780 fixup_nodatasum->sdev = sdev;
781 fixup_nodatasum->logical = logical;
782 fixup_nodatasum->root = fs_info->extent_root;
783 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
a2de733c 784 /*
0ef8e451
JS
785 * increment scrubs_running to prevent cancel requests from
786 * completing as long as a fixup worker is running. we must also
787 * increment scrubs_paused to prevent deadlocking on pause
788 * requests used for transactions commits (as the worker uses a
789 * transaction context). it is safe to regard the fixup worker
790 * as paused for all matters practical. effectively, we only
791 * avoid cancellation requests from completing.
a2de733c 792 */
0ef8e451
JS
793 mutex_lock(&fs_info->scrub_lock);
794 atomic_inc(&fs_info->scrubs_running);
795 atomic_inc(&fs_info->scrubs_paused);
796 mutex_unlock(&fs_info->scrub_lock);
797 atomic_inc(&sdev->fixup_cnt);
b5d67f64
SB
798 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
799 btrfs_queue_worker(&fs_info->scrub_workers,
800 &fixup_nodatasum->work);
801 goto out;
a2de733c
AJ
802 }
803
b5d67f64
SB
804 /*
805 * now build and submit the bios for the other mirrors, check
806 * checksums
807 */
808 for (mirror_index = 0;
809 mirror_index < BTRFS_MAX_MIRRORS &&
810 sblocks_for_recheck[mirror_index].page_count > 0;
811 mirror_index++) {
812 if (mirror_index == failed_mirror_index)
813 continue;
814
815 /* build and submit the bios, check checksums */
816 ret = scrub_recheck_block(fs_info,
817 sblocks_for_recheck + mirror_index,
818 is_metadata, have_csum, csum,
819 generation, sdev->csum_size);
820 if (ret)
821 goto did_not_correct_error;
a2de733c
AJ
822 }
823
b5d67f64
SB
824 /*
825 * first try to pick the mirror which is completely without I/O
826 * errors and also does not have a checksum error.
827 * If one is found, and if a checksum is present, the full block
828 * that is known to contain an error is rewritten. Afterwards
829 * the block is known to be corrected.
830 * If a mirror is found which is completely correct, and no
831 * checksum is present, only those pages are rewritten that had
832 * an I/O error in the block to be repaired, since it cannot be
833 * determined, which copy of the other pages is better (and it
834 * could happen otherwise that a correct page would be
835 * overwritten by a bad one).
836 */
837 for (mirror_index = 0;
838 mirror_index < BTRFS_MAX_MIRRORS &&
839 sblocks_for_recheck[mirror_index].page_count > 0;
840 mirror_index++) {
841 struct scrub_block *sblock_other = sblocks_for_recheck +
842 mirror_index;
843
844 if (!sblock_other->header_error &&
845 !sblock_other->checksum_error &&
846 sblock_other->no_io_error_seen) {
847 int force_write = is_metadata || have_csum;
848
849 ret = scrub_repair_block_from_good_copy(sblock_bad,
850 sblock_other,
851 force_write);
852 if (0 == ret)
853 goto corrected_error;
854 }
855 }
a2de733c
AJ
856
857 /*
b5d67f64
SB
858 * in case of I/O errors in the area that is supposed to be
859 * repaired, continue by picking good copies of those pages.
860 * Select the good pages from mirrors to rewrite bad pages from
861 * the area to fix. Afterwards verify the checksum of the block
862 * that is supposed to be repaired. This verification step is
863 * only done for the purpose of statistic counting and for the
864 * final scrub report, whether errors remain.
865 * A perfect algorithm could make use of the checksum and try
866 * all possible combinations of pages from the different mirrors
867 * until the checksum verification succeeds. For example, when
868 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
869 * of mirror #2 is readable but the final checksum test fails,
870 * then the 2nd page of mirror #3 could be tried, whether now
871 * the final checksum succeedes. But this would be a rare
872 * exception and is therefore not implemented. At least it is
873 * avoided that the good copy is overwritten.
874 * A more useful improvement would be to pick the sectors
875 * without I/O error based on sector sizes (512 bytes on legacy
876 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
877 * mirror could be repaired by taking 512 byte of a different
878 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
879 * area are unreadable.
a2de733c 880 */
a2de733c 881
b5d67f64
SB
882 /* can only fix I/O errors from here on */
883 if (sblock_bad->no_io_error_seen)
884 goto did_not_correct_error;
885
886 success = 1;
887 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
888 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
889
890 if (!page_bad->io_error)
a2de733c 891 continue;
b5d67f64
SB
892
893 for (mirror_index = 0;
894 mirror_index < BTRFS_MAX_MIRRORS &&
895 sblocks_for_recheck[mirror_index].page_count > 0;
896 mirror_index++) {
897 struct scrub_block *sblock_other = sblocks_for_recheck +
898 mirror_index;
899 struct scrub_page *page_other = sblock_other->pagev +
900 page_num;
901
902 if (!page_other->io_error) {
903 ret = scrub_repair_page_from_good_copy(
904 sblock_bad, sblock_other, page_num, 0);
905 if (0 == ret) {
906 page_bad->io_error = 0;
907 break; /* succeeded for this page */
908 }
909 }
96e36920 910 }
a2de733c 911
b5d67f64
SB
912 if (page_bad->io_error) {
913 /* did not find a mirror to copy the page from */
914 success = 0;
915 }
a2de733c 916 }
a2de733c 917
b5d67f64
SB
918 if (success) {
919 if (is_metadata || have_csum) {
920 /*
921 * need to verify the checksum now that all
922 * sectors on disk are repaired (the write
923 * request for data to be repaired is on its way).
924 * Just be lazy and use scrub_recheck_block()
925 * which re-reads the data before the checksum
926 * is verified, but most likely the data comes out
927 * of the page cache.
928 */
929 ret = scrub_recheck_block(fs_info, sblock_bad,
930 is_metadata, have_csum, csum,
931 generation, sdev->csum_size);
932 if (!ret && !sblock_bad->header_error &&
933 !sblock_bad->checksum_error &&
934 sblock_bad->no_io_error_seen)
935 goto corrected_error;
936 else
937 goto did_not_correct_error;
938 } else {
939corrected_error:
940 spin_lock(&sdev->stat_lock);
941 sdev->stat.corrected_errors++;
942 spin_unlock(&sdev->stat_lock);
606686ee 943 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 944 "btrfs: fixed up error at logical %llu on dev %s\n",
606686ee
JB
945 (unsigned long long)logical,
946 rcu_str_deref(sdev->dev->name));
8628764e 947 }
b5d67f64
SB
948 } else {
949did_not_correct_error:
950 spin_lock(&sdev->stat_lock);
951 sdev->stat.uncorrectable_errors++;
952 spin_unlock(&sdev->stat_lock);
606686ee 953 printk_ratelimited_in_rcu(KERN_ERR
b5d67f64 954 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
606686ee
JB
955 (unsigned long long)logical,
956 rcu_str_deref(sdev->dev->name));
96e36920 957 }
a2de733c 958
b5d67f64
SB
959out:
960 if (sblocks_for_recheck) {
961 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
962 mirror_index++) {
963 struct scrub_block *sblock = sblocks_for_recheck +
964 mirror_index;
965 int page_index;
966
967 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
968 page_index++)
969 if (sblock->pagev[page_index].page)
970 __free_page(
971 sblock->pagev[page_index].page);
972 }
973 kfree(sblocks_for_recheck);
974 }
a2de733c 975
b5d67f64
SB
976 return 0;
977}
a2de733c 978
b5d67f64
SB
979static int scrub_setup_recheck_block(struct scrub_dev *sdev,
980 struct btrfs_mapping_tree *map_tree,
981 u64 length, u64 logical,
982 struct scrub_block *sblocks_for_recheck)
983{
984 int page_index;
985 int mirror_index;
986 int ret;
987
988 /*
989 * note: the three members sdev, ref_count and outstanding_pages
990 * are not used (and not set) in the blocks that are used for
991 * the recheck procedure
992 */
993
994 page_index = 0;
995 while (length > 0) {
996 u64 sublen = min_t(u64, length, PAGE_SIZE);
997 u64 mapped_length = sublen;
998 struct btrfs_bio *bbio = NULL;
a2de733c 999
b5d67f64
SB
1000 /*
1001 * with a length of PAGE_SIZE, each returned stripe
1002 * represents one mirror
1003 */
1004 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1005 &bbio, 0);
1006 if (ret || !bbio || mapped_length < sublen) {
1007 kfree(bbio);
1008 return -EIO;
1009 }
a2de733c 1010
b5d67f64
SB
1011 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1012 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1013 mirror_index++) {
1014 struct scrub_block *sblock;
1015 struct scrub_page *page;
1016
1017 if (mirror_index >= BTRFS_MAX_MIRRORS)
1018 continue;
1019
1020 sblock = sblocks_for_recheck + mirror_index;
1021 page = sblock->pagev + page_index;
1022 page->logical = logical;
1023 page->physical = bbio->stripes[mirror_index].physical;
442a4f63
SB
1024 /* for missing devices, dev->bdev is NULL */
1025 page->dev = bbio->stripes[mirror_index].dev;
b5d67f64
SB
1026 page->mirror_num = mirror_index + 1;
1027 page->page = alloc_page(GFP_NOFS);
1028 if (!page->page) {
1029 spin_lock(&sdev->stat_lock);
1030 sdev->stat.malloc_errors++;
1031 spin_unlock(&sdev->stat_lock);
cf93dcce 1032 kfree(bbio);
b5d67f64
SB
1033 return -ENOMEM;
1034 }
1035 sblock->page_count++;
1036 }
1037 kfree(bbio);
1038 length -= sublen;
1039 logical += sublen;
1040 page_index++;
1041 }
1042
1043 return 0;
96e36920
ID
1044}
1045
b5d67f64
SB
1046/*
1047 * this function will check the on disk data for checksum errors, header
1048 * errors and read I/O errors. If any I/O errors happen, the exact pages
1049 * which are errored are marked as being bad. The goal is to enable scrub
1050 * to take those pages that are not errored from all the mirrors so that
1051 * the pages that are errored in the just handled mirror can be repaired.
1052 */
1053static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1054 struct scrub_block *sblock, int is_metadata,
1055 int have_csum, u8 *csum, u64 generation,
1056 u16 csum_size)
96e36920 1057{
b5d67f64 1058 int page_num;
96e36920 1059
b5d67f64
SB
1060 sblock->no_io_error_seen = 1;
1061 sblock->header_error = 0;
1062 sblock->checksum_error = 0;
96e36920 1063
b5d67f64
SB
1064 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1065 struct bio *bio;
1066 int ret;
1067 struct scrub_page *page = sblock->pagev + page_num;
1068 DECLARE_COMPLETION_ONSTACK(complete);
1069
442a4f63 1070 if (page->dev->bdev == NULL) {
ea9947b4
SB
1071 page->io_error = 1;
1072 sblock->no_io_error_seen = 0;
1073 continue;
1074 }
1075
b5d67f64
SB
1076 BUG_ON(!page->page);
1077 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1078 if (!bio)
1079 return -EIO;
442a4f63 1080 bio->bi_bdev = page->dev->bdev;
b5d67f64
SB
1081 bio->bi_sector = page->physical >> 9;
1082 bio->bi_end_io = scrub_complete_bio_end_io;
1083 bio->bi_private = &complete;
1084
1085 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1086 if (PAGE_SIZE != ret) {
1087 bio_put(bio);
1088 return -EIO;
1089 }
1090 btrfsic_submit_bio(READ, bio);
96e36920 1091
b5d67f64
SB
1092 /* this will also unplug the queue */
1093 wait_for_completion(&complete);
96e36920 1094
b5d67f64
SB
1095 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1096 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1097 sblock->no_io_error_seen = 0;
1098 bio_put(bio);
1099 }
96e36920 1100
b5d67f64
SB
1101 if (sblock->no_io_error_seen)
1102 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1103 have_csum, csum, generation,
1104 csum_size);
1105
1106 return 0;
a2de733c
AJ
1107}
1108
b5d67f64
SB
1109static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1110 struct scrub_block *sblock,
1111 int is_metadata, int have_csum,
1112 const u8 *csum, u64 generation,
1113 u16 csum_size)
a2de733c 1114{
b5d67f64
SB
1115 int page_num;
1116 u8 calculated_csum[BTRFS_CSUM_SIZE];
1117 u32 crc = ~(u32)0;
1118 struct btrfs_root *root = fs_info->extent_root;
1119 void *mapped_buffer;
1120
1121 BUG_ON(!sblock->pagev[0].page);
1122 if (is_metadata) {
1123 struct btrfs_header *h;
1124
9613bebb 1125 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
b5d67f64
SB
1126 h = (struct btrfs_header *)mapped_buffer;
1127
1128 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
b5d67f64
SB
1129 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1130 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1131 BTRFS_UUID_SIZE)) {
b5d67f64 1132 sblock->header_error = 1;
442a4f63
SB
1133 } else if (generation != le64_to_cpu(h->generation)) {
1134 sblock->header_error = 1;
1135 sblock->generation_error = 1;
1136 }
b5d67f64
SB
1137 csum = h->csum;
1138 } else {
1139 if (!have_csum)
1140 return;
a2de733c 1141
9613bebb 1142 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
b5d67f64 1143 }
a2de733c 1144
b5d67f64
SB
1145 for (page_num = 0;;) {
1146 if (page_num == 0 && is_metadata)
1147 crc = btrfs_csum_data(root,
1148 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1149 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1150 else
1151 crc = btrfs_csum_data(root, mapped_buffer, crc,
1152 PAGE_SIZE);
1153
9613bebb 1154 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1155 page_num++;
1156 if (page_num >= sblock->page_count)
1157 break;
1158 BUG_ON(!sblock->pagev[page_num].page);
1159
9613bebb 1160 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
b5d67f64
SB
1161 }
1162
1163 btrfs_csum_final(crc, calculated_csum);
1164 if (memcmp(calculated_csum, csum, csum_size))
1165 sblock->checksum_error = 1;
a2de733c
AJ
1166}
1167
b5d67f64 1168static void scrub_complete_bio_end_io(struct bio *bio, int err)
a2de733c 1169{
b5d67f64
SB
1170 complete((struct completion *)bio->bi_private);
1171}
a2de733c 1172
b5d67f64
SB
1173static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1174 struct scrub_block *sblock_good,
1175 int force_write)
1176{
1177 int page_num;
1178 int ret = 0;
96e36920 1179
b5d67f64
SB
1180 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1181 int ret_sub;
96e36920 1182
b5d67f64
SB
1183 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1184 sblock_good,
1185 page_num,
1186 force_write);
1187 if (ret_sub)
1188 ret = ret_sub;
a2de733c 1189 }
b5d67f64
SB
1190
1191 return ret;
1192}
1193
1194static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1195 struct scrub_block *sblock_good,
1196 int page_num, int force_write)
1197{
1198 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1199 struct scrub_page *page_good = sblock_good->pagev + page_num;
1200
1201 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1202 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1203 if (force_write || sblock_bad->header_error ||
1204 sblock_bad->checksum_error || page_bad->io_error) {
1205 struct bio *bio;
1206 int ret;
1207 DECLARE_COMPLETION_ONSTACK(complete);
1208
1209 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1210 if (!bio)
1211 return -EIO;
442a4f63 1212 bio->bi_bdev = page_bad->dev->bdev;
b5d67f64
SB
1213 bio->bi_sector = page_bad->physical >> 9;
1214 bio->bi_end_io = scrub_complete_bio_end_io;
1215 bio->bi_private = &complete;
1216
1217 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1218 if (PAGE_SIZE != ret) {
1219 bio_put(bio);
1220 return -EIO;
13db62b7 1221 }
b5d67f64
SB
1222 btrfsic_submit_bio(WRITE, bio);
1223
1224 /* this will also unplug the queue */
1225 wait_for_completion(&complete);
442a4f63
SB
1226 if (!bio_flagged(bio, BIO_UPTODATE)) {
1227 btrfs_dev_stat_inc_and_print(page_bad->dev,
1228 BTRFS_DEV_STAT_WRITE_ERRS);
1229 bio_put(bio);
1230 return -EIO;
1231 }
b5d67f64 1232 bio_put(bio);
a2de733c
AJ
1233 }
1234
b5d67f64
SB
1235 return 0;
1236}
1237
1238static void scrub_checksum(struct scrub_block *sblock)
1239{
1240 u64 flags;
1241 int ret;
1242
1243 BUG_ON(sblock->page_count < 1);
1244 flags = sblock->pagev[0].flags;
1245 ret = 0;
1246 if (flags & BTRFS_EXTENT_FLAG_DATA)
1247 ret = scrub_checksum_data(sblock);
1248 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1249 ret = scrub_checksum_tree_block(sblock);
1250 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1251 (void)scrub_checksum_super(sblock);
1252 else
1253 WARN_ON(1);
1254 if (ret)
1255 scrub_handle_errored_block(sblock);
a2de733c
AJ
1256}
1257
b5d67f64 1258static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1259{
b5d67f64 1260 struct scrub_dev *sdev = sblock->sdev;
a2de733c 1261 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1262 u8 *on_disk_csum;
1263 struct page *page;
1264 void *buffer;
a2de733c
AJ
1265 u32 crc = ~(u32)0;
1266 int fail = 0;
1267 struct btrfs_root *root = sdev->dev->dev_root;
b5d67f64
SB
1268 u64 len;
1269 int index;
a2de733c 1270
b5d67f64
SB
1271 BUG_ON(sblock->page_count < 1);
1272 if (!sblock->pagev[0].have_csum)
a2de733c
AJ
1273 return 0;
1274
b5d67f64
SB
1275 on_disk_csum = sblock->pagev[0].csum;
1276 page = sblock->pagev[0].page;
9613bebb 1277 buffer = kmap_atomic(page);
b5d67f64
SB
1278
1279 len = sdev->sectorsize;
1280 index = 0;
1281 for (;;) {
1282 u64 l = min_t(u64, len, PAGE_SIZE);
1283
1284 crc = btrfs_csum_data(root, buffer, crc, l);
9613bebb 1285 kunmap_atomic(buffer);
b5d67f64
SB
1286 len -= l;
1287 if (len == 0)
1288 break;
1289 index++;
1290 BUG_ON(index >= sblock->page_count);
1291 BUG_ON(!sblock->pagev[index].page);
1292 page = sblock->pagev[index].page;
9613bebb 1293 buffer = kmap_atomic(page);
b5d67f64
SB
1294 }
1295
a2de733c 1296 btrfs_csum_final(crc, csum);
b5d67f64 1297 if (memcmp(csum, on_disk_csum, sdev->csum_size))
a2de733c
AJ
1298 fail = 1;
1299
a2de733c
AJ
1300 return fail;
1301}
1302
b5d67f64 1303static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1304{
b5d67f64 1305 struct scrub_dev *sdev = sblock->sdev;
a2de733c
AJ
1306 struct btrfs_header *h;
1307 struct btrfs_root *root = sdev->dev->dev_root;
1308 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1309 u8 calculated_csum[BTRFS_CSUM_SIZE];
1310 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1311 struct page *page;
1312 void *mapped_buffer;
1313 u64 mapped_size;
1314 void *p;
a2de733c
AJ
1315 u32 crc = ~(u32)0;
1316 int fail = 0;
1317 int crc_fail = 0;
b5d67f64
SB
1318 u64 len;
1319 int index;
1320
1321 BUG_ON(sblock->page_count < 1);
1322 page = sblock->pagev[0].page;
9613bebb 1323 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1324 h = (struct btrfs_header *)mapped_buffer;
1325 memcpy(on_disk_csum, h->csum, sdev->csum_size);
a2de733c
AJ
1326
1327 /*
1328 * we don't use the getter functions here, as we
1329 * a) don't have an extent buffer and
1330 * b) the page is already kmapped
1331 */
a2de733c 1332
b5d67f64 1333 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
a2de733c
AJ
1334 ++fail;
1335
b5d67f64 1336 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
a2de733c
AJ
1337 ++fail;
1338
1339 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1340 ++fail;
1341
1342 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1343 BTRFS_UUID_SIZE))
1344 ++fail;
1345
b5d67f64
SB
1346 BUG_ON(sdev->nodesize != sdev->leafsize);
1347 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1348 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1349 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1350 index = 0;
1351 for (;;) {
1352 u64 l = min_t(u64, len, mapped_size);
1353
1354 crc = btrfs_csum_data(root, p, crc, l);
9613bebb 1355 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1356 len -= l;
1357 if (len == 0)
1358 break;
1359 index++;
1360 BUG_ON(index >= sblock->page_count);
1361 BUG_ON(!sblock->pagev[index].page);
1362 page = sblock->pagev[index].page;
9613bebb 1363 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1364 mapped_size = PAGE_SIZE;
1365 p = mapped_buffer;
1366 }
1367
1368 btrfs_csum_final(crc, calculated_csum);
1369 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
a2de733c
AJ
1370 ++crc_fail;
1371
a2de733c
AJ
1372 return fail || crc_fail;
1373}
1374
b5d67f64 1375static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1376{
1377 struct btrfs_super_block *s;
b5d67f64 1378 struct scrub_dev *sdev = sblock->sdev;
a2de733c
AJ
1379 struct btrfs_root *root = sdev->dev->dev_root;
1380 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1381 u8 calculated_csum[BTRFS_CSUM_SIZE];
1382 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1383 struct page *page;
1384 void *mapped_buffer;
1385 u64 mapped_size;
1386 void *p;
a2de733c 1387 u32 crc = ~(u32)0;
442a4f63
SB
1388 int fail_gen = 0;
1389 int fail_cor = 0;
b5d67f64
SB
1390 u64 len;
1391 int index;
a2de733c 1392
b5d67f64
SB
1393 BUG_ON(sblock->page_count < 1);
1394 page = sblock->pagev[0].page;
9613bebb 1395 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1396 s = (struct btrfs_super_block *)mapped_buffer;
1397 memcpy(on_disk_csum, s->csum, sdev->csum_size);
a2de733c 1398
b5d67f64 1399 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
442a4f63 1400 ++fail_cor;
a2de733c 1401
b5d67f64 1402 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
442a4f63 1403 ++fail_gen;
a2de733c
AJ
1404
1405 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
442a4f63 1406 ++fail_cor;
a2de733c 1407
b5d67f64
SB
1408 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1409 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1410 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1411 index = 0;
1412 for (;;) {
1413 u64 l = min_t(u64, len, mapped_size);
1414
1415 crc = btrfs_csum_data(root, p, crc, l);
9613bebb 1416 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1417 len -= l;
1418 if (len == 0)
1419 break;
1420 index++;
1421 BUG_ON(index >= sblock->page_count);
1422 BUG_ON(!sblock->pagev[index].page);
1423 page = sblock->pagev[index].page;
9613bebb 1424 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1425 mapped_size = PAGE_SIZE;
1426 p = mapped_buffer;
1427 }
1428
1429 btrfs_csum_final(crc, calculated_csum);
1430 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
442a4f63 1431 ++fail_cor;
a2de733c 1432
442a4f63 1433 if (fail_cor + fail_gen) {
a2de733c
AJ
1434 /*
1435 * if we find an error in a super block, we just report it.
1436 * They will get written with the next transaction commit
1437 * anyway
1438 */
1439 spin_lock(&sdev->stat_lock);
1440 ++sdev->stat.super_errors;
1441 spin_unlock(&sdev->stat_lock);
442a4f63
SB
1442 if (fail_cor)
1443 btrfs_dev_stat_inc_and_print(sdev->dev,
1444 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1445 else
1446 btrfs_dev_stat_inc_and_print(sdev->dev,
1447 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1448 }
1449
442a4f63 1450 return fail_cor + fail_gen;
a2de733c
AJ
1451}
1452
b5d67f64
SB
1453static void scrub_block_get(struct scrub_block *sblock)
1454{
1455 atomic_inc(&sblock->ref_count);
1456}
1457
1458static void scrub_block_put(struct scrub_block *sblock)
1459{
1460 if (atomic_dec_and_test(&sblock->ref_count)) {
1461 int i;
1462
1463 for (i = 0; i < sblock->page_count; i++)
1464 if (sblock->pagev[i].page)
1465 __free_page(sblock->pagev[i].page);
1466 kfree(sblock);
1467 }
1468}
1469
1623edeb 1470static void scrub_submit(struct scrub_dev *sdev)
a2de733c
AJ
1471{
1472 struct scrub_bio *sbio;
1473
1474 if (sdev->curr == -1)
1623edeb 1475 return;
a2de733c
AJ
1476
1477 sbio = sdev->bios[sdev->curr];
a2de733c
AJ
1478 sdev->curr = -1;
1479 atomic_inc(&sdev->in_flight);
1480
21adbd5c 1481 btrfsic_submit_bio(READ, sbio->bio);
a2de733c
AJ
1482}
1483
b5d67f64
SB
1484static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1485 struct scrub_page *spage)
a2de733c 1486{
b5d67f64 1487 struct scrub_block *sblock = spage->sblock;
a2de733c 1488 struct scrub_bio *sbio;
69f4cb52 1489 int ret;
a2de733c
AJ
1490
1491again:
1492 /*
1493 * grab a fresh bio or wait for one to become available
1494 */
1495 while (sdev->curr == -1) {
1496 spin_lock(&sdev->list_lock);
1497 sdev->curr = sdev->first_free;
1498 if (sdev->curr != -1) {
1499 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1500 sdev->bios[sdev->curr]->next_free = -1;
b5d67f64 1501 sdev->bios[sdev->curr]->page_count = 0;
a2de733c
AJ
1502 spin_unlock(&sdev->list_lock);
1503 } else {
1504 spin_unlock(&sdev->list_lock);
1505 wait_event(sdev->list_wait, sdev->first_free != -1);
1506 }
1507 }
1508 sbio = sdev->bios[sdev->curr];
b5d67f64 1509 if (sbio->page_count == 0) {
69f4cb52
AJ
1510 struct bio *bio;
1511
b5d67f64
SB
1512 sbio->physical = spage->physical;
1513 sbio->logical = spage->logical;
1514 bio = sbio->bio;
1515 if (!bio) {
1516 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1517 if (!bio)
1518 return -ENOMEM;
1519 sbio->bio = bio;
1520 }
69f4cb52
AJ
1521
1522 bio->bi_private = sbio;
1523 bio->bi_end_io = scrub_bio_end_io;
1524 bio->bi_bdev = sdev->dev->bdev;
b5d67f64 1525 bio->bi_sector = spage->physical >> 9;
69f4cb52 1526 sbio->err = 0;
b5d67f64
SB
1527 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1528 spage->physical ||
1529 sbio->logical + sbio->page_count * PAGE_SIZE !=
1530 spage->logical) {
1623edeb 1531 scrub_submit(sdev);
a2de733c
AJ
1532 goto again;
1533 }
69f4cb52 1534
b5d67f64
SB
1535 sbio->pagev[sbio->page_count] = spage;
1536 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1537 if (ret != PAGE_SIZE) {
1538 if (sbio->page_count < 1) {
1539 bio_put(sbio->bio);
1540 sbio->bio = NULL;
1541 return -EIO;
1542 }
1623edeb 1543 scrub_submit(sdev);
69f4cb52
AJ
1544 goto again;
1545 }
1546
b5d67f64
SB
1547 scrub_block_get(sblock); /* one for the added page */
1548 atomic_inc(&sblock->outstanding_pages);
1549 sbio->page_count++;
1550 if (sbio->page_count == sdev->pages_per_bio)
1551 scrub_submit(sdev);
1552
1553 return 0;
1554}
1555
1556static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1557 u64 physical, u64 flags, u64 gen, int mirror_num,
1558 u8 *csum, int force)
1559{
1560 struct scrub_block *sblock;
1561 int index;
1562
1563 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1564 if (!sblock) {
1565 spin_lock(&sdev->stat_lock);
1566 sdev->stat.malloc_errors++;
1567 spin_unlock(&sdev->stat_lock);
1568 return -ENOMEM;
a2de733c 1569 }
b5d67f64
SB
1570
1571 /* one ref inside this function, plus one for each page later on */
1572 atomic_set(&sblock->ref_count, 1);
1573 sblock->sdev = sdev;
1574 sblock->no_io_error_seen = 1;
1575
1576 for (index = 0; len > 0; index++) {
1577 struct scrub_page *spage = sblock->pagev + index;
1578 u64 l = min_t(u64, len, PAGE_SIZE);
1579
1580 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1581 spage->page = alloc_page(GFP_NOFS);
1582 if (!spage->page) {
1583 spin_lock(&sdev->stat_lock);
1584 sdev->stat.malloc_errors++;
1585 spin_unlock(&sdev->stat_lock);
1586 while (index > 0) {
1587 index--;
1588 __free_page(sblock->pagev[index].page);
1589 }
1590 kfree(sblock);
1591 return -ENOMEM;
1592 }
1593 spage->sblock = sblock;
442a4f63 1594 spage->dev = sdev->dev;
b5d67f64
SB
1595 spage->flags = flags;
1596 spage->generation = gen;
1597 spage->logical = logical;
1598 spage->physical = physical;
1599 spage->mirror_num = mirror_num;
1600 if (csum) {
1601 spage->have_csum = 1;
1602 memcpy(spage->csum, csum, sdev->csum_size);
1603 } else {
1604 spage->have_csum = 0;
1605 }
1606 sblock->page_count++;
1607 len -= l;
1608 logical += l;
1609 physical += l;
1610 }
1611
1612 BUG_ON(sblock->page_count == 0);
1613 for (index = 0; index < sblock->page_count; index++) {
1614 struct scrub_page *spage = sblock->pagev + index;
1bc87793
AJ
1615 int ret;
1616
b5d67f64
SB
1617 ret = scrub_add_page_to_bio(sdev, spage);
1618 if (ret) {
1619 scrub_block_put(sblock);
1bc87793 1620 return ret;
b5d67f64 1621 }
1bc87793 1622 }
a2de733c 1623
b5d67f64 1624 if (force)
1623edeb 1625 scrub_submit(sdev);
a2de733c 1626
b5d67f64
SB
1627 /* last one frees, either here or in bio completion for last page */
1628 scrub_block_put(sblock);
a2de733c
AJ
1629 return 0;
1630}
1631
b5d67f64
SB
1632static void scrub_bio_end_io(struct bio *bio, int err)
1633{
1634 struct scrub_bio *sbio = bio->bi_private;
1635 struct scrub_dev *sdev = sbio->sdev;
1636 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1637
1638 sbio->err = err;
1639 sbio->bio = bio;
1640
1641 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1642}
1643
1644static void scrub_bio_end_io_worker(struct btrfs_work *work)
1645{
1646 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1647 struct scrub_dev *sdev = sbio->sdev;
1648 int i;
1649
1650 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1651 if (sbio->err) {
1652 for (i = 0; i < sbio->page_count; i++) {
1653 struct scrub_page *spage = sbio->pagev[i];
1654
1655 spage->io_error = 1;
1656 spage->sblock->no_io_error_seen = 0;
1657 }
1658 }
1659
1660 /* now complete the scrub_block items that have all pages completed */
1661 for (i = 0; i < sbio->page_count; i++) {
1662 struct scrub_page *spage = sbio->pagev[i];
1663 struct scrub_block *sblock = spage->sblock;
1664
1665 if (atomic_dec_and_test(&sblock->outstanding_pages))
1666 scrub_block_complete(sblock);
1667 scrub_block_put(sblock);
1668 }
1669
1670 if (sbio->err) {
1671 /* what is this good for??? */
1672 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1673 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1674 sbio->bio->bi_phys_segments = 0;
1675 sbio->bio->bi_idx = 0;
1676
1677 for (i = 0; i < sbio->page_count; i++) {
1678 struct bio_vec *bi;
1679 bi = &sbio->bio->bi_io_vec[i];
1680 bi->bv_offset = 0;
1681 bi->bv_len = PAGE_SIZE;
1682 }
1683 }
1684
1685 bio_put(sbio->bio);
1686 sbio->bio = NULL;
1687 spin_lock(&sdev->list_lock);
1688 sbio->next_free = sdev->first_free;
1689 sdev->first_free = sbio->index;
1690 spin_unlock(&sdev->list_lock);
1691 atomic_dec(&sdev->in_flight);
1692 wake_up(&sdev->list_wait);
1693}
1694
1695static void scrub_block_complete(struct scrub_block *sblock)
1696{
1697 if (!sblock->no_io_error_seen)
1698 scrub_handle_errored_block(sblock);
1699 else
1700 scrub_checksum(sblock);
1701}
1702
a2de733c
AJ
1703static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1704 u8 *csum)
1705{
1706 struct btrfs_ordered_sum *sum = NULL;
1707 int ret = 0;
1708 unsigned long i;
1709 unsigned long num_sectors;
a2de733c
AJ
1710
1711 while (!list_empty(&sdev->csum_list)) {
1712 sum = list_first_entry(&sdev->csum_list,
1713 struct btrfs_ordered_sum, list);
1714 if (sum->bytenr > logical)
1715 return 0;
1716 if (sum->bytenr + sum->len > logical)
1717 break;
1718
1719 ++sdev->stat.csum_discards;
1720 list_del(&sum->list);
1721 kfree(sum);
1722 sum = NULL;
1723 }
1724 if (!sum)
1725 return 0;
1726
b5d67f64 1727 num_sectors = sum->len / sdev->sectorsize;
a2de733c
AJ
1728 for (i = 0; i < num_sectors; ++i) {
1729 if (sum->sums[i].bytenr == logical) {
1730 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1731 ret = 1;
1732 break;
1733 }
1734 }
1735 if (ret && i == num_sectors - 1) {
1736 list_del(&sum->list);
1737 kfree(sum);
1738 }
1739 return ret;
1740}
1741
1742/* scrub extent tries to collect up to 64 kB for each bio */
1743static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
e12fa9cd 1744 u64 physical, u64 flags, u64 gen, int mirror_num)
a2de733c
AJ
1745{
1746 int ret;
1747 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1748 u32 blocksize;
1749
1750 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1751 blocksize = sdev->sectorsize;
1752 spin_lock(&sdev->stat_lock);
1753 sdev->stat.data_extents_scrubbed++;
1754 sdev->stat.data_bytes_scrubbed += len;
1755 spin_unlock(&sdev->stat_lock);
1756 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1757 BUG_ON(sdev->nodesize != sdev->leafsize);
1758 blocksize = sdev->nodesize;
1759 spin_lock(&sdev->stat_lock);
1760 sdev->stat.tree_extents_scrubbed++;
1761 sdev->stat.tree_bytes_scrubbed += len;
1762 spin_unlock(&sdev->stat_lock);
1763 } else {
1764 blocksize = sdev->sectorsize;
1765 BUG_ON(1);
1766 }
a2de733c
AJ
1767
1768 while (len) {
b5d67f64 1769 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
1770 int have_csum = 0;
1771
1772 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1773 /* push csums to sbio */
1774 have_csum = scrub_find_csum(sdev, logical, l, csum);
1775 if (have_csum == 0)
1776 ++sdev->stat.no_csum;
1777 }
b5d67f64
SB
1778 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1779 mirror_num, have_csum ? csum : NULL, 0);
a2de733c
AJ
1780 if (ret)
1781 return ret;
1782 len -= l;
1783 logical += l;
1784 physical += l;
1785 }
1786 return 0;
1787}
1788
1789static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1790 struct map_lookup *map, int num, u64 base, u64 length)
1791{
1792 struct btrfs_path *path;
1793 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1794 struct btrfs_root *root = fs_info->extent_root;
1795 struct btrfs_root *csum_root = fs_info->csum_root;
1796 struct btrfs_extent_item *extent;
e7786c3a 1797 struct blk_plug plug;
a2de733c
AJ
1798 u64 flags;
1799 int ret;
1800 int slot;
1801 int i;
1802 u64 nstripes;
a2de733c
AJ
1803 struct extent_buffer *l;
1804 struct btrfs_key key;
1805 u64 physical;
1806 u64 logical;
1807 u64 generation;
e12fa9cd 1808 int mirror_num;
7a26285e
AJ
1809 struct reada_control *reada1;
1810 struct reada_control *reada2;
1811 struct btrfs_key key_start;
1812 struct btrfs_key key_end;
a2de733c
AJ
1813
1814 u64 increment = map->stripe_len;
1815 u64 offset;
1816
1817 nstripes = length;
1818 offset = 0;
1819 do_div(nstripes, map->stripe_len);
1820 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1821 offset = map->stripe_len * num;
1822 increment = map->stripe_len * map->num_stripes;
193ea74b 1823 mirror_num = 1;
a2de733c
AJ
1824 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1825 int factor = map->num_stripes / map->sub_stripes;
1826 offset = map->stripe_len * (num / map->sub_stripes);
1827 increment = map->stripe_len * factor;
193ea74b 1828 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
1829 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1830 increment = map->stripe_len;
193ea74b 1831 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
1832 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1833 increment = map->stripe_len;
193ea74b 1834 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
1835 } else {
1836 increment = map->stripe_len;
193ea74b 1837 mirror_num = 1;
a2de733c
AJ
1838 }
1839
1840 path = btrfs_alloc_path();
1841 if (!path)
1842 return -ENOMEM;
1843
b5d67f64
SB
1844 /*
1845 * work on commit root. The related disk blocks are static as
1846 * long as COW is applied. This means, it is save to rewrite
1847 * them to repair disk errors without any race conditions
1848 */
a2de733c
AJ
1849 path->search_commit_root = 1;
1850 path->skip_locking = 1;
1851
1852 /*
7a26285e
AJ
1853 * trigger the readahead for extent tree csum tree and wait for
1854 * completion. During readahead, the scrub is officially paused
1855 * to not hold off transaction commits
a2de733c
AJ
1856 */
1857 logical = base + offset;
a2de733c 1858
7a26285e
AJ
1859 wait_event(sdev->list_wait,
1860 atomic_read(&sdev->in_flight) == 0);
1861 atomic_inc(&fs_info->scrubs_paused);
1862 wake_up(&fs_info->scrub_pause_wait);
1863
1864 /* FIXME it might be better to start readahead at commit root */
1865 key_start.objectid = logical;
1866 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1867 key_start.offset = (u64)0;
1868 key_end.objectid = base + offset + nstripes * increment;
1869 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1870 key_end.offset = (u64)0;
1871 reada1 = btrfs_reada_add(root, &key_start, &key_end);
1872
1873 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1874 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1875 key_start.offset = logical;
1876 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1877 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1878 key_end.offset = base + offset + nstripes * increment;
1879 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1880
1881 if (!IS_ERR(reada1))
1882 btrfs_reada_wait(reada1);
1883 if (!IS_ERR(reada2))
1884 btrfs_reada_wait(reada2);
1885
1886 mutex_lock(&fs_info->scrub_lock);
1887 while (atomic_read(&fs_info->scrub_pause_req)) {
1888 mutex_unlock(&fs_info->scrub_lock);
1889 wait_event(fs_info->scrub_pause_wait,
1890 atomic_read(&fs_info->scrub_pause_req) == 0);
1891 mutex_lock(&fs_info->scrub_lock);
a2de733c 1892 }
7a26285e
AJ
1893 atomic_dec(&fs_info->scrubs_paused);
1894 mutex_unlock(&fs_info->scrub_lock);
1895 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
1896
1897 /*
1898 * collect all data csums for the stripe to avoid seeking during
1899 * the scrub. This might currently (crc32) end up to be about 1MB
1900 */
e7786c3a 1901 blk_start_plug(&plug);
a2de733c 1902
a2de733c
AJ
1903 /*
1904 * now find all extents for each stripe and scrub them
1905 */
7a26285e
AJ
1906 logical = base + offset;
1907 physical = map->stripes[num].physical;
a2de733c 1908 ret = 0;
7a26285e 1909 for (i = 0; i < nstripes; ++i) {
a2de733c
AJ
1910 /*
1911 * canceled?
1912 */
1913 if (atomic_read(&fs_info->scrub_cancel_req) ||
1914 atomic_read(&sdev->cancel_req)) {
1915 ret = -ECANCELED;
1916 goto out;
1917 }
1918 /*
1919 * check to see if we have to pause
1920 */
1921 if (atomic_read(&fs_info->scrub_pause_req)) {
1922 /* push queued extents */
1923 scrub_submit(sdev);
1924 wait_event(sdev->list_wait,
1925 atomic_read(&sdev->in_flight) == 0);
1926 atomic_inc(&fs_info->scrubs_paused);
1927 wake_up(&fs_info->scrub_pause_wait);
1928 mutex_lock(&fs_info->scrub_lock);
1929 while (atomic_read(&fs_info->scrub_pause_req)) {
1930 mutex_unlock(&fs_info->scrub_lock);
1931 wait_event(fs_info->scrub_pause_wait,
1932 atomic_read(&fs_info->scrub_pause_req) == 0);
1933 mutex_lock(&fs_info->scrub_lock);
1934 }
1935 atomic_dec(&fs_info->scrubs_paused);
1936 mutex_unlock(&fs_info->scrub_lock);
1937 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
1938 }
1939
7a26285e
AJ
1940 ret = btrfs_lookup_csums_range(csum_root, logical,
1941 logical + map->stripe_len - 1,
1942 &sdev->csum_list, 1);
1943 if (ret)
1944 goto out;
1945
a2de733c
AJ
1946 key.objectid = logical;
1947 key.type = BTRFS_EXTENT_ITEM_KEY;
1948 key.offset = (u64)0;
1949
1950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1951 if (ret < 0)
1952 goto out;
8c51032f 1953 if (ret > 0) {
a2de733c
AJ
1954 ret = btrfs_previous_item(root, path, 0,
1955 BTRFS_EXTENT_ITEM_KEY);
1956 if (ret < 0)
1957 goto out;
8c51032f
AJ
1958 if (ret > 0) {
1959 /* there's no smaller item, so stick with the
1960 * larger one */
1961 btrfs_release_path(path);
1962 ret = btrfs_search_slot(NULL, root, &key,
1963 path, 0, 0);
1964 if (ret < 0)
1965 goto out;
1966 }
a2de733c
AJ
1967 }
1968
1969 while (1) {
1970 l = path->nodes[0];
1971 slot = path->slots[0];
1972 if (slot >= btrfs_header_nritems(l)) {
1973 ret = btrfs_next_leaf(root, path);
1974 if (ret == 0)
1975 continue;
1976 if (ret < 0)
1977 goto out;
1978
1979 break;
1980 }
1981 btrfs_item_key_to_cpu(l, &key, slot);
1982
1983 if (key.objectid + key.offset <= logical)
1984 goto next;
1985
1986 if (key.objectid >= logical + map->stripe_len)
1987 break;
1988
1989 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1990 goto next;
1991
1992 extent = btrfs_item_ptr(l, slot,
1993 struct btrfs_extent_item);
1994 flags = btrfs_extent_flags(l, extent);
1995 generation = btrfs_extent_generation(l, extent);
1996
1997 if (key.objectid < logical &&
1998 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1999 printk(KERN_ERR
2000 "btrfs scrub: tree block %llu spanning "
2001 "stripes, ignored. logical=%llu\n",
2002 (unsigned long long)key.objectid,
2003 (unsigned long long)logical);
2004 goto next;
2005 }
2006
2007 /*
2008 * trim extent to this stripe
2009 */
2010 if (key.objectid < logical) {
2011 key.offset -= logical - key.objectid;
2012 key.objectid = logical;
2013 }
2014 if (key.objectid + key.offset >
2015 logical + map->stripe_len) {
2016 key.offset = logical + map->stripe_len -
2017 key.objectid;
2018 }
2019
2020 ret = scrub_extent(sdev, key.objectid, key.offset,
2021 key.objectid - logical + physical,
2022 flags, generation, mirror_num);
2023 if (ret)
2024 goto out;
2025
2026next:
2027 path->slots[0]++;
2028 }
71267333 2029 btrfs_release_path(path);
a2de733c
AJ
2030 logical += increment;
2031 physical += map->stripe_len;
2032 spin_lock(&sdev->stat_lock);
2033 sdev->stat.last_physical = physical;
2034 spin_unlock(&sdev->stat_lock);
2035 }
2036 /* push queued extents */
2037 scrub_submit(sdev);
2038
2039out:
e7786c3a 2040 blk_finish_plug(&plug);
a2de733c
AJ
2041 btrfs_free_path(path);
2042 return ret < 0 ? ret : 0;
2043}
2044
2045static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
859acaf1
AJ
2046 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2047 u64 dev_offset)
a2de733c
AJ
2048{
2049 struct btrfs_mapping_tree *map_tree =
2050 &sdev->dev->dev_root->fs_info->mapping_tree;
2051 struct map_lookup *map;
2052 struct extent_map *em;
2053 int i;
2054 int ret = -EINVAL;
2055
2056 read_lock(&map_tree->map_tree.lock);
2057 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2058 read_unlock(&map_tree->map_tree.lock);
2059
2060 if (!em)
2061 return -EINVAL;
2062
2063 map = (struct map_lookup *)em->bdev;
2064 if (em->start != chunk_offset)
2065 goto out;
2066
2067 if (em->len < length)
2068 goto out;
2069
2070 for (i = 0; i < map->num_stripes; ++i) {
859acaf1
AJ
2071 if (map->stripes[i].dev == sdev->dev &&
2072 map->stripes[i].physical == dev_offset) {
a2de733c
AJ
2073 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2074 if (ret)
2075 goto out;
2076 }
2077 }
2078out:
2079 free_extent_map(em);
2080
2081 return ret;
2082}
2083
2084static noinline_for_stack
2085int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2086{
2087 struct btrfs_dev_extent *dev_extent = NULL;
2088 struct btrfs_path *path;
2089 struct btrfs_root *root = sdev->dev->dev_root;
2090 struct btrfs_fs_info *fs_info = root->fs_info;
2091 u64 length;
2092 u64 chunk_tree;
2093 u64 chunk_objectid;
2094 u64 chunk_offset;
2095 int ret;
2096 int slot;
2097 struct extent_buffer *l;
2098 struct btrfs_key key;
2099 struct btrfs_key found_key;
2100 struct btrfs_block_group_cache *cache;
2101
2102 path = btrfs_alloc_path();
2103 if (!path)
2104 return -ENOMEM;
2105
2106 path->reada = 2;
2107 path->search_commit_root = 1;
2108 path->skip_locking = 1;
2109
2110 key.objectid = sdev->dev->devid;
2111 key.offset = 0ull;
2112 key.type = BTRFS_DEV_EXTENT_KEY;
2113
2114
2115 while (1) {
2116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2117 if (ret < 0)
8c51032f
AJ
2118 break;
2119 if (ret > 0) {
2120 if (path->slots[0] >=
2121 btrfs_header_nritems(path->nodes[0])) {
2122 ret = btrfs_next_leaf(root, path);
2123 if (ret)
2124 break;
2125 }
2126 }
a2de733c
AJ
2127
2128 l = path->nodes[0];
2129 slot = path->slots[0];
2130
2131 btrfs_item_key_to_cpu(l, &found_key, slot);
2132
2133 if (found_key.objectid != sdev->dev->devid)
2134 break;
2135
8c51032f 2136 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2137 break;
2138
2139 if (found_key.offset >= end)
2140 break;
2141
2142 if (found_key.offset < key.offset)
2143 break;
2144
2145 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2146 length = btrfs_dev_extent_length(l, dev_extent);
2147
2148 if (found_key.offset + length <= start) {
2149 key.offset = found_key.offset + length;
71267333 2150 btrfs_release_path(path);
a2de733c
AJ
2151 continue;
2152 }
2153
2154 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2155 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2156 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2157
2158 /*
2159 * get a reference on the corresponding block group to prevent
2160 * the chunk from going away while we scrub it
2161 */
2162 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2163 if (!cache) {
2164 ret = -ENOENT;
8c51032f 2165 break;
a2de733c
AJ
2166 }
2167 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
859acaf1 2168 chunk_offset, length, found_key.offset);
a2de733c
AJ
2169 btrfs_put_block_group(cache);
2170 if (ret)
2171 break;
2172
2173 key.offset = found_key.offset + length;
71267333 2174 btrfs_release_path(path);
a2de733c
AJ
2175 }
2176
a2de733c 2177 btrfs_free_path(path);
8c51032f
AJ
2178
2179 /*
2180 * ret can still be 1 from search_slot or next_leaf,
2181 * that's not an error
2182 */
2183 return ret < 0 ? ret : 0;
a2de733c
AJ
2184}
2185
2186static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2187{
2188 int i;
2189 u64 bytenr;
2190 u64 gen;
2191 int ret;
2192 struct btrfs_device *device = sdev->dev;
2193 struct btrfs_root *root = device->dev_root;
2194
79787eaa
JM
2195 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2196 return -EIO;
2197
a2de733c
AJ
2198 gen = root->fs_info->last_trans_committed;
2199
2200 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2201 bytenr = btrfs_sb_offset(i);
1623edeb 2202 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
a2de733c
AJ
2203 break;
2204
b5d67f64
SB
2205 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2206 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
a2de733c
AJ
2207 if (ret)
2208 return ret;
2209 }
2210 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2211
2212 return 0;
2213}
2214
2215/*
2216 * get a reference count on fs_info->scrub_workers. start worker if necessary
2217 */
2218static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2219{
2220 struct btrfs_fs_info *fs_info = root->fs_info;
0dc3b84a 2221 int ret = 0;
a2de733c
AJ
2222
2223 mutex_lock(&fs_info->scrub_lock);
632dd772
AJ
2224 if (fs_info->scrub_workers_refcnt == 0) {
2225 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2226 fs_info->thread_pool_size, &fs_info->generic_worker);
2227 fs_info->scrub_workers.idle_thresh = 4;
0dc3b84a
JB
2228 ret = btrfs_start_workers(&fs_info->scrub_workers);
2229 if (ret)
2230 goto out;
632dd772 2231 }
a2de733c 2232 ++fs_info->scrub_workers_refcnt;
0dc3b84a 2233out:
a2de733c
AJ
2234 mutex_unlock(&fs_info->scrub_lock);
2235
0dc3b84a 2236 return ret;
a2de733c
AJ
2237}
2238
2239static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2240{
2241 struct btrfs_fs_info *fs_info = root->fs_info;
2242
2243 mutex_lock(&fs_info->scrub_lock);
2244 if (--fs_info->scrub_workers_refcnt == 0)
2245 btrfs_stop_workers(&fs_info->scrub_workers);
2246 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2247 mutex_unlock(&fs_info->scrub_lock);
2248}
2249
2250
2251int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
8628764e 2252 struct btrfs_scrub_progress *progress, int readonly)
a2de733c
AJ
2253{
2254 struct scrub_dev *sdev;
2255 struct btrfs_fs_info *fs_info = root->fs_info;
2256 int ret;
2257 struct btrfs_device *dev;
2258
7841cb28 2259 if (btrfs_fs_closing(root->fs_info))
a2de733c
AJ
2260 return -EINVAL;
2261
2262 /*
2263 * check some assumptions
2264 */
b5d67f64
SB
2265 if (root->nodesize != root->leafsize) {
2266 printk(KERN_ERR
2267 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2268 root->nodesize, root->leafsize);
2269 return -EINVAL;
2270 }
2271
2272 if (root->nodesize > BTRFS_STRIPE_LEN) {
2273 /*
2274 * in this case scrub is unable to calculate the checksum
2275 * the way scrub is implemented. Do not handle this
2276 * situation at all because it won't ever happen.
2277 */
2278 printk(KERN_ERR
2279 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2280 root->nodesize, BTRFS_STRIPE_LEN);
2281 return -EINVAL;
2282 }
2283
2284 if (root->sectorsize != PAGE_SIZE) {
2285 /* not supported for data w/o checksums */
2286 printk(KERN_ERR
2287 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2288 root->sectorsize, (unsigned long long)PAGE_SIZE);
a2de733c
AJ
2289 return -EINVAL;
2290 }
2291
2292 ret = scrub_workers_get(root);
2293 if (ret)
2294 return ret;
2295
2296 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2297 dev = btrfs_find_device(root, devid, NULL, NULL);
2298 if (!dev || dev->missing) {
2299 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2300 scrub_workers_put(root);
2301 return -ENODEV;
2302 }
2303 mutex_lock(&fs_info->scrub_lock);
2304
2305 if (!dev->in_fs_metadata) {
2306 mutex_unlock(&fs_info->scrub_lock);
2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 scrub_workers_put(root);
2309 return -ENODEV;
2310 }
2311
2312 if (dev->scrub_device) {
2313 mutex_unlock(&fs_info->scrub_lock);
2314 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2315 scrub_workers_put(root);
2316 return -EINPROGRESS;
2317 }
2318 sdev = scrub_setup_dev(dev);
2319 if (IS_ERR(sdev)) {
2320 mutex_unlock(&fs_info->scrub_lock);
2321 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2322 scrub_workers_put(root);
2323 return PTR_ERR(sdev);
2324 }
8628764e 2325 sdev->readonly = readonly;
a2de733c
AJ
2326 dev->scrub_device = sdev;
2327
2328 atomic_inc(&fs_info->scrubs_running);
2329 mutex_unlock(&fs_info->scrub_lock);
2330 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2331
2332 down_read(&fs_info->scrub_super_lock);
2333 ret = scrub_supers(sdev);
2334 up_read(&fs_info->scrub_super_lock);
2335
2336 if (!ret)
2337 ret = scrub_enumerate_chunks(sdev, start, end);
2338
2339 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
a2de733c
AJ
2340 atomic_dec(&fs_info->scrubs_running);
2341 wake_up(&fs_info->scrub_pause_wait);
2342
0ef8e451
JS
2343 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2344
a2de733c
AJ
2345 if (progress)
2346 memcpy(progress, &sdev->stat, sizeof(*progress));
2347
2348 mutex_lock(&fs_info->scrub_lock);
2349 dev->scrub_device = NULL;
2350 mutex_unlock(&fs_info->scrub_lock);
2351
2352 scrub_free_dev(sdev);
2353 scrub_workers_put(root);
2354
2355 return ret;
2356}
2357
143bede5 2358void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
2359{
2360 struct btrfs_fs_info *fs_info = root->fs_info;
2361
2362 mutex_lock(&fs_info->scrub_lock);
2363 atomic_inc(&fs_info->scrub_pause_req);
2364 while (atomic_read(&fs_info->scrubs_paused) !=
2365 atomic_read(&fs_info->scrubs_running)) {
2366 mutex_unlock(&fs_info->scrub_lock);
2367 wait_event(fs_info->scrub_pause_wait,
2368 atomic_read(&fs_info->scrubs_paused) ==
2369 atomic_read(&fs_info->scrubs_running));
2370 mutex_lock(&fs_info->scrub_lock);
2371 }
2372 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
2373}
2374
143bede5 2375void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
2376{
2377 struct btrfs_fs_info *fs_info = root->fs_info;
2378
2379 atomic_dec(&fs_info->scrub_pause_req);
2380 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
2381}
2382
143bede5 2383void btrfs_scrub_pause_super(struct btrfs_root *root)
a2de733c
AJ
2384{
2385 down_write(&root->fs_info->scrub_super_lock);
a2de733c
AJ
2386}
2387
143bede5 2388void btrfs_scrub_continue_super(struct btrfs_root *root)
a2de733c
AJ
2389{
2390 up_write(&root->fs_info->scrub_super_lock);
a2de733c
AJ
2391}
2392
49b25e05 2393int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 2394{
a2de733c
AJ
2395
2396 mutex_lock(&fs_info->scrub_lock);
2397 if (!atomic_read(&fs_info->scrubs_running)) {
2398 mutex_unlock(&fs_info->scrub_lock);
2399 return -ENOTCONN;
2400 }
2401
2402 atomic_inc(&fs_info->scrub_cancel_req);
2403 while (atomic_read(&fs_info->scrubs_running)) {
2404 mutex_unlock(&fs_info->scrub_lock);
2405 wait_event(fs_info->scrub_pause_wait,
2406 atomic_read(&fs_info->scrubs_running) == 0);
2407 mutex_lock(&fs_info->scrub_lock);
2408 }
2409 atomic_dec(&fs_info->scrub_cancel_req);
2410 mutex_unlock(&fs_info->scrub_lock);
2411
2412 return 0;
2413}
2414
49b25e05
JM
2415int btrfs_scrub_cancel(struct btrfs_root *root)
2416{
2417 return __btrfs_scrub_cancel(root->fs_info);
2418}
2419
a2de733c
AJ
2420int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2421{
2422 struct btrfs_fs_info *fs_info = root->fs_info;
2423 struct scrub_dev *sdev;
2424
2425 mutex_lock(&fs_info->scrub_lock);
2426 sdev = dev->scrub_device;
2427 if (!sdev) {
2428 mutex_unlock(&fs_info->scrub_lock);
2429 return -ENOTCONN;
2430 }
2431 atomic_inc(&sdev->cancel_req);
2432 while (dev->scrub_device) {
2433 mutex_unlock(&fs_info->scrub_lock);
2434 wait_event(fs_info->scrub_pause_wait,
2435 dev->scrub_device == NULL);
2436 mutex_lock(&fs_info->scrub_lock);
2437 }
2438 mutex_unlock(&fs_info->scrub_lock);
2439
2440 return 0;
2441}
1623edeb 2442
a2de733c
AJ
2443int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2444{
2445 struct btrfs_fs_info *fs_info = root->fs_info;
2446 struct btrfs_device *dev;
2447 int ret;
2448
2449 /*
2450 * we have to hold the device_list_mutex here so the device
2451 * does not go away in cancel_dev. FIXME: find a better solution
2452 */
2453 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2454 dev = btrfs_find_device(root, devid, NULL, NULL);
2455 if (!dev) {
2456 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2457 return -ENODEV;
2458 }
2459 ret = btrfs_scrub_cancel_dev(root, dev);
2460 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2461
2462 return ret;
2463}
2464
2465int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2466 struct btrfs_scrub_progress *progress)
2467{
2468 struct btrfs_device *dev;
2469 struct scrub_dev *sdev = NULL;
2470
2471 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2472 dev = btrfs_find_device(root, devid, NULL, NULL);
2473 if (dev)
2474 sdev = dev->scrub_device;
2475 if (sdev)
2476 memcpy(progress, &sdev->stat, sizeof(*progress));
2477 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2478
2479 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2480}