]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/scrub.c
btrfs: scrub: reduce width of extent_len/stripe_len from 64 to 32 bits
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c 10#include "ctree.h"
6e80d4f8 11#include "discard.h"
a2de733c
AJ
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
0ef8e451 15#include "transaction.h"
558540c1 16#include "backref.h"
5da6fcbc 17#include "extent_io.h"
ff023aac 18#include "dev-replace.h"
21adbd5c 19#include "check-integrity.h"
606686ee 20#include "rcu-string.h"
53b381b3 21#include "raid56.h"
aac0023c 22#include "block-group.h"
12659251 23#include "zoned.h"
a2de733c
AJ
24
25/*
26 * This is only the first step towards a full-features scrub. It reads all
27 * extent and super block and verifies the checksums. In case a bad checksum
28 * is found or the extent cannot be read, good data will be written back if
29 * any can be found.
30 *
31 * Future enhancements:
a2de733c
AJ
32 * - In case an unrepairable extent is encountered, track which files are
33 * affected and report them
a2de733c 34 * - track and record media errors, throw out bad devices
a2de733c 35 * - add a mode to also read unallocated space
a2de733c
AJ
36 */
37
b5d67f64 38struct scrub_block;
d9d181c1 39struct scrub_ctx;
a2de733c 40
ff023aac
SB
41/*
42 * the following three values only influence the performance.
43 * The last one configures the number of parallel and outstanding I/O
44 * operations. The first two values configure an upper limit for the number
45 * of (dynamically allocated) pages that are added to a bio.
46 */
47#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
48#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
49#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
50
51/*
52 * the following value times PAGE_SIZE needs to be large enough to match the
53 * largest node/leaf/sector size that shall be supported.
54 * Values larger than BTRFS_STRIPE_LEN are not supported.
55 */
b5d67f64 56#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 57
af8e2d1d 58struct scrub_recover {
6f615018 59 refcount_t refs;
af8e2d1d 60 struct btrfs_bio *bbio;
af8e2d1d
MX
61 u64 map_length;
62};
63
a2de733c 64struct scrub_page {
b5d67f64
SB
65 struct scrub_block *sblock;
66 struct page *page;
442a4f63 67 struct btrfs_device *dev;
5a6ac9ea 68 struct list_head list;
a2de733c
AJ
69 u64 flags; /* extent flags */
70 u64 generation;
b5d67f64
SB
71 u64 logical;
72 u64 physical;
ff023aac 73 u64 physical_for_dev_replace;
57019345 74 atomic_t refs;
2c363954
QW
75 u8 mirror_num;
76 int have_csum:1;
77 int io_error:1;
a2de733c 78 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
79
80 struct scrub_recover *recover;
a2de733c
AJ
81};
82
83struct scrub_bio {
84 int index;
d9d181c1 85 struct scrub_ctx *sctx;
a36cf8b8 86 struct btrfs_device *dev;
a2de733c 87 struct bio *bio;
4e4cbee9 88 blk_status_t status;
a2de733c
AJ
89 u64 logical;
90 u64 physical;
ff023aac
SB
91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93#else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95#endif
b5d67f64 96 int page_count;
a2de733c
AJ
97 int next_free;
98 struct btrfs_work work;
99};
100
b5d67f64 101struct scrub_block {
7a9e9987 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
103 int page_count;
104 atomic_t outstanding_pages;
186debd6 105 refcount_t refs; /* free mem on transition to zero */
d9d181c1 106 struct scrub_ctx *sctx;
5a6ac9ea 107 struct scrub_parity *sparity;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
113
114 /* The following is for the data used to check parity */
115 /* It is for the data with checksum */
116 unsigned int data_corrected:1;
b5d67f64 117 };
73ff61db 118 struct btrfs_work work;
b5d67f64
SB
119};
120
5a6ac9ea
MX
121/* Used for the chunks with parity stripe such RAID5/6 */
122struct scrub_parity {
123 struct scrub_ctx *sctx;
124
125 struct btrfs_device *scrub_dev;
126
127 u64 logic_start;
128
129 u64 logic_end;
130
131 int nsectors;
132
fa485d21 133 u32 stripe_len;
5a6ac9ea 134
78a76450 135 refcount_t refs;
5a6ac9ea
MX
136
137 struct list_head spages;
138
139 /* Work of parity check and repair */
140 struct btrfs_work work;
141
142 /* Mark the parity blocks which have data */
143 unsigned long *dbitmap;
144
145 /*
146 * Mark the parity blocks which have data, but errors happen when
147 * read data or check data
148 */
149 unsigned long *ebitmap;
150
a8753ee3 151 unsigned long bitmap[];
5a6ac9ea
MX
152};
153
d9d181c1 154struct scrub_ctx {
ff023aac 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 156 struct btrfs_fs_info *fs_info;
a2de733c
AJ
157 int first_free;
158 int curr;
b6bfebc1
SB
159 atomic_t bios_in_flight;
160 atomic_t workers_pending;
a2de733c
AJ
161 spinlock_t list_lock;
162 wait_queue_head_t list_wait;
a2de733c
AJ
163 struct list_head csum_list;
164 atomic_t cancel_req;
8628764e 165 int readonly;
ff023aac 166 int pages_per_rd_bio;
63a212ab
SB
167
168 int is_dev_replace;
3fb99303
DS
169
170 struct scrub_bio *wr_curr_bio;
171 struct mutex wr_lock;
172 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
3fb99303 173 struct btrfs_device *wr_tgtdev;
2073c4c2 174 bool flush_all_writes;
63a212ab 175
a2de733c
AJ
176 /*
177 * statistics
178 */
179 struct btrfs_scrub_progress stat;
180 spinlock_t stat_lock;
f55985f4
FM
181
182 /*
183 * Use a ref counter to avoid use-after-free issues. Scrub workers
184 * decrement bios_in_flight and workers_pending and then do a wakeup
185 * on the list_wait wait queue. We must ensure the main scrub task
186 * doesn't free the scrub context before or while the workers are
187 * doing the wakeup() call.
188 */
99f4cdb1 189 refcount_t refs;
a2de733c
AJ
190};
191
558540c1
JS
192struct scrub_warning {
193 struct btrfs_path *path;
194 u64 extent_item_size;
558540c1 195 const char *errstr;
6aa21263 196 u64 physical;
558540c1
JS
197 u64 logical;
198 struct btrfs_device *dev;
558540c1
JS
199};
200
0966a7b1
QW
201struct full_stripe_lock {
202 struct rb_node node;
203 u64 logical;
204 u64 refs;
205 struct mutex mutex;
206};
207
b6bfebc1
SB
208static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
209static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
b5d67f64 210static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 211static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 212 struct scrub_block *sblocks_for_recheck);
34f5c8e9 213static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
214 struct scrub_block *sblock,
215 int retry_failed_mirror);
ba7cf988 216static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 217static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 218 struct scrub_block *sblock_good);
b5d67f64
SB
219static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
220 struct scrub_block *sblock_good,
221 int page_num, int force_write);
ff023aac
SB
222static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
223static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
224 int page_num);
b5d67f64
SB
225static int scrub_checksum_data(struct scrub_block *sblock);
226static int scrub_checksum_tree_block(struct scrub_block *sblock);
227static int scrub_checksum_super(struct scrub_block *sblock);
228static void scrub_block_get(struct scrub_block *sblock);
229static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
230static void scrub_page_get(struct scrub_page *spage);
231static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
232static void scrub_parity_get(struct scrub_parity *sparity);
233static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
234static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
235 struct scrub_page *spage);
fa485d21 236static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
a36cf8b8 237 u64 physical, struct btrfs_device *dev, u64 flags,
96e63a45 238 u64 gen, int mirror_num, u8 *csum,
ff023aac 239 u64 physical_for_dev_replace);
4246a0b6 240static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
241static void scrub_bio_end_io_worker(struct btrfs_work *work);
242static void scrub_block_complete(struct scrub_block *sblock);
ff023aac 243static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
fa485d21 244 u64 extent_logical, u32 extent_len,
ff023aac
SB
245 u64 *extent_physical,
246 struct btrfs_device **extent_dev,
247 int *extent_mirror_num);
ff023aac
SB
248static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
249 struct scrub_page *spage);
250static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 251static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac 252static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
cb7ab021 253static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 254static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 255static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 256
261d2dcb 257static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
762221f0 258{
261d2dcb
QW
259 return spage->recover &&
260 (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
762221f0 261}
1623edeb 262
b6bfebc1
SB
263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264{
99f4cdb1 265 refcount_inc(&sctx->refs);
b6bfebc1
SB
266 atomic_inc(&sctx->bios_in_flight);
267}
268
269static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270{
271 atomic_dec(&sctx->bios_in_flight);
272 wake_up(&sctx->list_wait);
f55985f4 273 scrub_put_ctx(sctx);
b6bfebc1
SB
274}
275
cb7ab021 276static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
277{
278 while (atomic_read(&fs_info->scrub_pause_req)) {
279 mutex_unlock(&fs_info->scrub_lock);
280 wait_event(fs_info->scrub_pause_wait,
281 atomic_read(&fs_info->scrub_pause_req) == 0);
282 mutex_lock(&fs_info->scrub_lock);
283 }
284}
285
0e22be89 286static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
287{
288 atomic_inc(&fs_info->scrubs_paused);
289 wake_up(&fs_info->scrub_pause_wait);
0e22be89 290}
cb7ab021 291
0e22be89
Z
292static void scrub_pause_off(struct btrfs_fs_info *fs_info)
293{
cb7ab021
WS
294 mutex_lock(&fs_info->scrub_lock);
295 __scrub_blocked_if_needed(fs_info);
296 atomic_dec(&fs_info->scrubs_paused);
297 mutex_unlock(&fs_info->scrub_lock);
298
299 wake_up(&fs_info->scrub_pause_wait);
300}
301
0e22be89
Z
302static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
303{
304 scrub_pause_on(fs_info);
305 scrub_pause_off(fs_info);
306}
307
0966a7b1
QW
308/*
309 * Insert new full stripe lock into full stripe locks tree
310 *
311 * Return pointer to existing or newly inserted full_stripe_lock structure if
312 * everything works well.
313 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
314 *
315 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
316 * function
317 */
318static struct full_stripe_lock *insert_full_stripe_lock(
319 struct btrfs_full_stripe_locks_tree *locks_root,
320 u64 fstripe_logical)
321{
322 struct rb_node **p;
323 struct rb_node *parent = NULL;
324 struct full_stripe_lock *entry;
325 struct full_stripe_lock *ret;
326
a32bf9a3 327 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
328
329 p = &locks_root->root.rb_node;
330 while (*p) {
331 parent = *p;
332 entry = rb_entry(parent, struct full_stripe_lock, node);
333 if (fstripe_logical < entry->logical) {
334 p = &(*p)->rb_left;
335 } else if (fstripe_logical > entry->logical) {
336 p = &(*p)->rb_right;
337 } else {
338 entry->refs++;
339 return entry;
340 }
341 }
342
a5fb1142
FM
343 /*
344 * Insert new lock.
a5fb1142 345 */
0966a7b1
QW
346 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
347 if (!ret)
348 return ERR_PTR(-ENOMEM);
349 ret->logical = fstripe_logical;
350 ret->refs = 1;
351 mutex_init(&ret->mutex);
352
353 rb_link_node(&ret->node, parent, p);
354 rb_insert_color(&ret->node, &locks_root->root);
355 return ret;
356}
357
358/*
359 * Search for a full stripe lock of a block group
360 *
361 * Return pointer to existing full stripe lock if found
362 * Return NULL if not found
363 */
364static struct full_stripe_lock *search_full_stripe_lock(
365 struct btrfs_full_stripe_locks_tree *locks_root,
366 u64 fstripe_logical)
367{
368 struct rb_node *node;
369 struct full_stripe_lock *entry;
370
a32bf9a3 371 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
372
373 node = locks_root->root.rb_node;
374 while (node) {
375 entry = rb_entry(node, struct full_stripe_lock, node);
376 if (fstripe_logical < entry->logical)
377 node = node->rb_left;
378 else if (fstripe_logical > entry->logical)
379 node = node->rb_right;
380 else
381 return entry;
382 }
383 return NULL;
384}
385
386/*
387 * Helper to get full stripe logical from a normal bytenr.
388 *
389 * Caller must ensure @cache is a RAID56 block group.
390 */
32da5386 391static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
0966a7b1
QW
392{
393 u64 ret;
394
395 /*
396 * Due to chunk item size limit, full stripe length should not be
397 * larger than U32_MAX. Just a sanity check here.
398 */
399 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
400
401 /*
402 * round_down() can only handle power of 2, while RAID56 full
403 * stripe length can be 64KiB * n, so we need to manually round down.
404 */
b3470b5d
DS
405 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
406 cache->full_stripe_len + cache->start;
0966a7b1
QW
407 return ret;
408}
409
410/*
411 * Lock a full stripe to avoid concurrency of recovery and read
412 *
413 * It's only used for profiles with parities (RAID5/6), for other profiles it
414 * does nothing.
415 *
416 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
417 * So caller must call unlock_full_stripe() at the same context.
418 *
419 * Return <0 if encounters error.
420 */
421static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
422 bool *locked_ret)
423{
32da5386 424 struct btrfs_block_group *bg_cache;
0966a7b1
QW
425 struct btrfs_full_stripe_locks_tree *locks_root;
426 struct full_stripe_lock *existing;
427 u64 fstripe_start;
428 int ret = 0;
429
430 *locked_ret = false;
431 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
432 if (!bg_cache) {
433 ASSERT(0);
434 return -ENOENT;
435 }
436
437 /* Profiles not based on parity don't need full stripe lock */
438 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
439 goto out;
440 locks_root = &bg_cache->full_stripe_locks_root;
441
442 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
443
444 /* Now insert the full stripe lock */
445 mutex_lock(&locks_root->lock);
446 existing = insert_full_stripe_lock(locks_root, fstripe_start);
447 mutex_unlock(&locks_root->lock);
448 if (IS_ERR(existing)) {
449 ret = PTR_ERR(existing);
450 goto out;
451 }
452 mutex_lock(&existing->mutex);
453 *locked_ret = true;
454out:
455 btrfs_put_block_group(bg_cache);
456 return ret;
457}
458
459/*
460 * Unlock a full stripe.
461 *
462 * NOTE: Caller must ensure it's the same context calling corresponding
463 * lock_full_stripe().
464 *
465 * Return 0 if we unlock full stripe without problem.
466 * Return <0 for error
467 */
468static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
469 bool locked)
470{
32da5386 471 struct btrfs_block_group *bg_cache;
0966a7b1
QW
472 struct btrfs_full_stripe_locks_tree *locks_root;
473 struct full_stripe_lock *fstripe_lock;
474 u64 fstripe_start;
475 bool freeit = false;
476 int ret = 0;
477
478 /* If we didn't acquire full stripe lock, no need to continue */
479 if (!locked)
480 return 0;
481
482 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
483 if (!bg_cache) {
484 ASSERT(0);
485 return -ENOENT;
486 }
487 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
488 goto out;
489
490 locks_root = &bg_cache->full_stripe_locks_root;
491 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
492
493 mutex_lock(&locks_root->lock);
494 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
495 /* Unpaired unlock_full_stripe() detected */
496 if (!fstripe_lock) {
497 WARN_ON(1);
498 ret = -ENOENT;
499 mutex_unlock(&locks_root->lock);
500 goto out;
501 }
502
503 if (fstripe_lock->refs == 0) {
504 WARN_ON(1);
505 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
506 fstripe_lock->logical);
507 } else {
508 fstripe_lock->refs--;
509 }
510
511 if (fstripe_lock->refs == 0) {
512 rb_erase(&fstripe_lock->node, &locks_root->root);
513 freeit = true;
514 }
515 mutex_unlock(&locks_root->lock);
516
517 mutex_unlock(&fstripe_lock->mutex);
518 if (freeit)
519 kfree(fstripe_lock);
520out:
521 btrfs_put_block_group(bg_cache);
522 return ret;
523}
524
d9d181c1 525static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 526{
d9d181c1 527 while (!list_empty(&sctx->csum_list)) {
a2de733c 528 struct btrfs_ordered_sum *sum;
d9d181c1 529 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
530 struct btrfs_ordered_sum, list);
531 list_del(&sum->list);
532 kfree(sum);
533 }
534}
535
d9d181c1 536static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
537{
538 int i;
a2de733c 539
d9d181c1 540 if (!sctx)
a2de733c
AJ
541 return;
542
b5d67f64 543 /* this can happen when scrub is cancelled */
d9d181c1
SB
544 if (sctx->curr != -1) {
545 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
546
547 for (i = 0; i < sbio->page_count; i++) {
ff023aac 548 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
549 scrub_block_put(sbio->pagev[i]->sblock);
550 }
551 bio_put(sbio->bio);
552 }
553
ff023aac 554 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 555 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
556
557 if (!sbio)
558 break;
a2de733c
AJ
559 kfree(sbio);
560 }
561
3fb99303 562 kfree(sctx->wr_curr_bio);
d9d181c1
SB
563 scrub_free_csums(sctx);
564 kfree(sctx);
a2de733c
AJ
565}
566
f55985f4
FM
567static void scrub_put_ctx(struct scrub_ctx *sctx)
568{
99f4cdb1 569 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
570 scrub_free_ctx(sctx);
571}
572
92f7ba43
DS
573static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
574 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 575{
d9d181c1 576 struct scrub_ctx *sctx;
a2de733c 577 int i;
a2de733c 578
58c4e173 579 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 580 if (!sctx)
a2de733c 581 goto nomem;
99f4cdb1 582 refcount_set(&sctx->refs, 1);
63a212ab 583 sctx->is_dev_replace = is_dev_replace;
b54ffb73 584 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 585 sctx->curr = -1;
92f7ba43 586 sctx->fs_info = fs_info;
e49be14b 587 INIT_LIST_HEAD(&sctx->csum_list);
ff023aac 588 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
589 struct scrub_bio *sbio;
590
58c4e173 591 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
592 if (!sbio)
593 goto nomem;
d9d181c1 594 sctx->bios[i] = sbio;
a2de733c 595
a2de733c 596 sbio->index = i;
d9d181c1 597 sbio->sctx = sctx;
b5d67f64 598 sbio->page_count = 0;
a0cac0ec
OS
599 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
600 NULL);
a2de733c 601
ff023aac 602 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 603 sctx->bios[i]->next_free = i + 1;
0ef8e451 604 else
d9d181c1
SB
605 sctx->bios[i]->next_free = -1;
606 }
607 sctx->first_free = 0;
b6bfebc1
SB
608 atomic_set(&sctx->bios_in_flight, 0);
609 atomic_set(&sctx->workers_pending, 0);
d9d181c1 610 atomic_set(&sctx->cancel_req, 0);
d9d181c1
SB
611
612 spin_lock_init(&sctx->list_lock);
613 spin_lock_init(&sctx->stat_lock);
614 init_waitqueue_head(&sctx->list_wait);
ff023aac 615
3fb99303
DS
616 WARN_ON(sctx->wr_curr_bio != NULL);
617 mutex_init(&sctx->wr_lock);
618 sctx->wr_curr_bio = NULL;
8fcdac3f 619 if (is_dev_replace) {
ded56184 620 WARN_ON(!fs_info->dev_replace.tgtdev);
3fb99303 621 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ded56184 622 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
2073c4c2 623 sctx->flush_all_writes = false;
ff023aac 624 }
8fcdac3f 625
d9d181c1 626 return sctx;
a2de733c
AJ
627
628nomem:
d9d181c1 629 scrub_free_ctx(sctx);
a2de733c
AJ
630 return ERR_PTR(-ENOMEM);
631}
632
ff023aac
SB
633static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
634 void *warn_ctx)
558540c1
JS
635{
636 u64 isize;
637 u32 nlink;
638 int ret;
639 int i;
de2491fd 640 unsigned nofs_flag;
558540c1
JS
641 struct extent_buffer *eb;
642 struct btrfs_inode_item *inode_item;
ff023aac 643 struct scrub_warning *swarn = warn_ctx;
fb456252 644 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
645 struct inode_fs_paths *ipath = NULL;
646 struct btrfs_root *local_root;
1d4c08e0 647 struct btrfs_key key;
558540c1 648
56e9357a 649 local_root = btrfs_get_fs_root(fs_info, root, true);
558540c1
JS
650 if (IS_ERR(local_root)) {
651 ret = PTR_ERR(local_root);
652 goto err;
653 }
654
14692cc1
DS
655 /*
656 * this makes the path point to (inum INODE_ITEM ioff)
657 */
1d4c08e0
DS
658 key.objectid = inum;
659 key.type = BTRFS_INODE_ITEM_KEY;
660 key.offset = 0;
661
662 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1 663 if (ret) {
00246528 664 btrfs_put_root(local_root);
558540c1
JS
665 btrfs_release_path(swarn->path);
666 goto err;
667 }
668
669 eb = swarn->path->nodes[0];
670 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
671 struct btrfs_inode_item);
672 isize = btrfs_inode_size(eb, inode_item);
673 nlink = btrfs_inode_nlink(eb, inode_item);
674 btrfs_release_path(swarn->path);
675
de2491fd
DS
676 /*
677 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
678 * uses GFP_NOFS in this context, so we keep it consistent but it does
679 * not seem to be strictly necessary.
680 */
681 nofs_flag = memalloc_nofs_save();
558540c1 682 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 683 memalloc_nofs_restore(nofs_flag);
26bdef54 684 if (IS_ERR(ipath)) {
00246528 685 btrfs_put_root(local_root);
26bdef54
DC
686 ret = PTR_ERR(ipath);
687 ipath = NULL;
688 goto err;
689 }
558540c1
JS
690 ret = paths_from_inode(inum, ipath);
691
692 if (ret < 0)
693 goto err;
694
695 /*
696 * we deliberately ignore the bit ipath might have been too small to
697 * hold all of the paths here
698 */
699 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 700 btrfs_warn_in_rcu(fs_info,
6aa21263 701"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
5d163e0e
JM
702 swarn->errstr, swarn->logical,
703 rcu_str_deref(swarn->dev->name),
6aa21263 704 swarn->physical,
5d163e0e
JM
705 root, inum, offset,
706 min(isize - offset, (u64)PAGE_SIZE), nlink,
707 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1 708
00246528 709 btrfs_put_root(local_root);
558540c1
JS
710 free_ipath(ipath);
711 return 0;
712
713err:
5d163e0e 714 btrfs_warn_in_rcu(fs_info,
6aa21263 715 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e
JM
716 swarn->errstr, swarn->logical,
717 rcu_str_deref(swarn->dev->name),
6aa21263 718 swarn->physical,
5d163e0e 719 root, inum, offset, ret);
558540c1
JS
720
721 free_ipath(ipath);
722 return 0;
723}
724
b5d67f64 725static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 726{
a36cf8b8
SB
727 struct btrfs_device *dev;
728 struct btrfs_fs_info *fs_info;
558540c1
JS
729 struct btrfs_path *path;
730 struct btrfs_key found_key;
731 struct extent_buffer *eb;
732 struct btrfs_extent_item *ei;
733 struct scrub_warning swarn;
69917e43
LB
734 unsigned long ptr = 0;
735 u64 extent_item_pos;
736 u64 flags = 0;
558540c1 737 u64 ref_root;
69917e43 738 u32 item_size;
07c9a8e0 739 u8 ref_level = 0;
69917e43 740 int ret;
558540c1 741
a36cf8b8 742 WARN_ON(sblock->page_count < 1);
7a9e9987 743 dev = sblock->pagev[0]->dev;
fb456252 744 fs_info = sblock->sctx->fs_info;
a36cf8b8 745
558540c1 746 path = btrfs_alloc_path();
8b9456da
DS
747 if (!path)
748 return;
558540c1 749
6aa21263 750 swarn.physical = sblock->pagev[0]->physical;
7a9e9987 751 swarn.logical = sblock->pagev[0]->logical;
558540c1 752 swarn.errstr = errstr;
a36cf8b8 753 swarn.dev = NULL;
558540c1 754
69917e43
LB
755 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
756 &flags);
558540c1
JS
757 if (ret < 0)
758 goto out;
759
4692cf58 760 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
761 swarn.extent_item_size = found_key.offset;
762
763 eb = path->nodes[0];
764 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
765 item_size = btrfs_item_size_nr(eb, path->slots[0]);
766
69917e43 767 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 768 do {
6eda71d0
LB
769 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
770 item_size, &ref_root,
771 &ref_level);
ecaeb14b 772 btrfs_warn_in_rcu(fs_info,
6aa21263 773"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
5d163e0e 774 errstr, swarn.logical,
606686ee 775 rcu_str_deref(dev->name),
6aa21263 776 swarn.physical,
558540c1
JS
777 ref_level ? "node" : "leaf",
778 ret < 0 ? -1 : ref_level,
779 ret < 0 ? -1 : ref_root);
780 } while (ret != 1);
d8fe29e9 781 btrfs_release_path(path);
558540c1 782 } else {
d8fe29e9 783 btrfs_release_path(path);
558540c1 784 swarn.path = path;
a36cf8b8 785 swarn.dev = dev;
7a3ae2f8
JS
786 iterate_extent_inodes(fs_info, found_key.objectid,
787 extent_item_pos, 1,
c995ab3c 788 scrub_print_warning_inode, &swarn, false);
558540c1
JS
789 }
790
791out:
792 btrfs_free_path(path);
558540c1
JS
793}
794
af8e2d1d
MX
795static inline void scrub_get_recover(struct scrub_recover *recover)
796{
6f615018 797 refcount_inc(&recover->refs);
af8e2d1d
MX
798}
799
e501bfe3
QW
800static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
801 struct scrub_recover *recover)
af8e2d1d 802{
6f615018 803 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 804 btrfs_bio_counter_dec(fs_info);
6e9606d2 805 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
806 kfree(recover);
807 }
808}
809
a2de733c 810/*
b5d67f64
SB
811 * scrub_handle_errored_block gets called when either verification of the
812 * pages failed or the bio failed to read, e.g. with EIO. In the latter
813 * case, this function handles all pages in the bio, even though only one
814 * may be bad.
815 * The goal of this function is to repair the errored block by using the
816 * contents of one of the mirrors.
a2de733c 817 */
b5d67f64 818static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 819{
d9d181c1 820 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 821 struct btrfs_device *dev;
b5d67f64 822 struct btrfs_fs_info *fs_info;
b5d67f64 823 u64 logical;
b5d67f64
SB
824 unsigned int failed_mirror_index;
825 unsigned int is_metadata;
826 unsigned int have_csum;
b5d67f64
SB
827 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828 struct scrub_block *sblock_bad;
829 int ret;
830 int mirror_index;
831 int page_num;
832 int success;
28d70e23 833 bool full_stripe_locked;
7c3c7cb9 834 unsigned int nofs_flag;
8bb1cf1b 835 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
836 DEFAULT_RATELIMIT_BURST);
837
838 BUG_ON(sblock_to_check->page_count < 1);
fb456252 839 fs_info = sctx->fs_info;
4ded4f63
SB
840 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
841 /*
842 * if we find an error in a super block, we just report it.
843 * They will get written with the next transaction commit
844 * anyway
845 */
846 spin_lock(&sctx->stat_lock);
847 ++sctx->stat.super_errors;
848 spin_unlock(&sctx->stat_lock);
849 return 0;
850 }
7a9e9987 851 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 855 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 856 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 857 dev = sblock_to_check->pagev[0]->dev;
13db62b7 858
7c3c7cb9
FM
859 /*
860 * We must use GFP_NOFS because the scrub task might be waiting for a
861 * worker task executing this function and in turn a transaction commit
862 * might be waiting the scrub task to pause (which needs to wait for all
863 * the worker tasks to complete before pausing).
864 * We do allocations in the workers through insert_full_stripe_lock()
865 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
866 * this function.
867 */
868 nofs_flag = memalloc_nofs_save();
28d70e23
QW
869 /*
870 * For RAID5/6, race can happen for a different device scrub thread.
871 * For data corruption, Parity and Data threads will both try
872 * to recovery the data.
873 * Race can lead to doubly added csum error, or even unrecoverable
874 * error.
875 */
876 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
877 if (ret < 0) {
7c3c7cb9 878 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
879 spin_lock(&sctx->stat_lock);
880 if (ret == -ENOMEM)
881 sctx->stat.malloc_errors++;
882 sctx->stat.read_errors++;
883 sctx->stat.uncorrectable_errors++;
884 spin_unlock(&sctx->stat_lock);
885 return ret;
886 }
887
b5d67f64
SB
888 /*
889 * read all mirrors one after the other. This includes to
890 * re-read the extent or metadata block that failed (that was
891 * the cause that this fixup code is called) another time,
892 * page by page this time in order to know which pages
893 * caused I/O errors and which ones are good (for all mirrors).
894 * It is the goal to handle the situation when more than one
895 * mirror contains I/O errors, but the errors do not
896 * overlap, i.e. the data can be repaired by selecting the
897 * pages from those mirrors without I/O error on the
898 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
899 * would be that mirror #1 has an I/O error on the first page,
900 * the second page is good, and mirror #2 has an I/O error on
901 * the second page, but the first page is good.
902 * Then the first page of the first mirror can be repaired by
903 * taking the first page of the second mirror, and the
904 * second page of the second mirror can be repaired by
905 * copying the contents of the 2nd page of the 1st mirror.
906 * One more note: if the pages of one mirror contain I/O
907 * errors, the checksum cannot be verified. In order to get
908 * the best data for repairing, the first attempt is to find
909 * a mirror without I/O errors and with a validated checksum.
910 * Only if this is not possible, the pages are picked from
911 * mirrors with I/O errors without considering the checksum.
912 * If the latter is the case, at the end, the checksum of the
913 * repaired area is verified in order to correctly maintain
914 * the statistics.
915 */
916
31e818fe 917 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
7c3c7cb9 918 sizeof(*sblocks_for_recheck), GFP_KERNEL);
b5d67f64 919 if (!sblocks_for_recheck) {
d9d181c1
SB
920 spin_lock(&sctx->stat_lock);
921 sctx->stat.malloc_errors++;
922 sctx->stat.read_errors++;
923 sctx->stat.uncorrectable_errors++;
924 spin_unlock(&sctx->stat_lock);
a36cf8b8 925 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 926 goto out;
a2de733c
AJ
927 }
928
b5d67f64 929 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 930 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 931 if (ret) {
d9d181c1
SB
932 spin_lock(&sctx->stat_lock);
933 sctx->stat.read_errors++;
934 sctx->stat.uncorrectable_errors++;
935 spin_unlock(&sctx->stat_lock);
a36cf8b8 936 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
937 goto out;
938 }
939 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
940 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 941
b5d67f64 942 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 943 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 944
b5d67f64
SB
945 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
946 sblock_bad->no_io_error_seen) {
947 /*
948 * the error disappeared after reading page by page, or
949 * the area was part of a huge bio and other parts of the
950 * bio caused I/O errors, or the block layer merged several
951 * read requests into one and the error is caused by a
952 * different bio (usually one of the two latter cases is
953 * the cause)
954 */
d9d181c1
SB
955 spin_lock(&sctx->stat_lock);
956 sctx->stat.unverified_errors++;
5a6ac9ea 957 sblock_to_check->data_corrected = 1;
d9d181c1 958 spin_unlock(&sctx->stat_lock);
a2de733c 959
ff023aac
SB
960 if (sctx->is_dev_replace)
961 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 962 goto out;
a2de733c 963 }
a2de733c 964
b5d67f64 965 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
966 spin_lock(&sctx->stat_lock);
967 sctx->stat.read_errors++;
968 spin_unlock(&sctx->stat_lock);
8bb1cf1b 969 if (__ratelimit(&rs))
b5d67f64 970 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 971 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 972 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
973 spin_lock(&sctx->stat_lock);
974 sctx->stat.csum_errors++;
975 spin_unlock(&sctx->stat_lock);
8bb1cf1b 976 if (__ratelimit(&rs))
b5d67f64 977 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 978 btrfs_dev_stat_inc_and_print(dev,
442a4f63 979 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 980 } else if (sblock_bad->header_error) {
d9d181c1
SB
981 spin_lock(&sctx->stat_lock);
982 sctx->stat.verify_errors++;
983 spin_unlock(&sctx->stat_lock);
8bb1cf1b 984 if (__ratelimit(&rs))
b5d67f64
SB
985 scrub_print_warning("checksum/header error",
986 sblock_to_check);
442a4f63 987 if (sblock_bad->generation_error)
a36cf8b8 988 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
989 BTRFS_DEV_STAT_GENERATION_ERRS);
990 else
a36cf8b8 991 btrfs_dev_stat_inc_and_print(dev,
442a4f63 992 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 993 }
a2de733c 994
33ef30ad
ID
995 if (sctx->readonly) {
996 ASSERT(!sctx->is_dev_replace);
997 goto out;
998 }
a2de733c 999
b5d67f64
SB
1000 /*
1001 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1002 * checksums.
1003 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1004 * errors and also does not have a checksum error.
1005 * If one is found, and if a checksum is present, the full block
1006 * that is known to contain an error is rewritten. Afterwards
1007 * the block is known to be corrected.
1008 * If a mirror is found which is completely correct, and no
1009 * checksum is present, only those pages are rewritten that had
1010 * an I/O error in the block to be repaired, since it cannot be
1011 * determined, which copy of the other pages is better (and it
1012 * could happen otherwise that a correct page would be
1013 * overwritten by a bad one).
1014 */
762221f0 1015 for (mirror_index = 0; ;mirror_index++) {
cb2ced73 1016 struct scrub_block *sblock_other;
b5d67f64 1017
cb2ced73
SB
1018 if (mirror_index == failed_mirror_index)
1019 continue;
762221f0
LB
1020
1021 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1022 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1023 if (mirror_index >= BTRFS_MAX_MIRRORS)
1024 break;
1025 if (!sblocks_for_recheck[mirror_index].page_count)
1026 break;
1027
1028 sblock_other = sblocks_for_recheck + mirror_index;
1029 } else {
1030 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1031 int max_allowed = r->bbio->num_stripes -
1032 r->bbio->num_tgtdevs;
1033
1034 if (mirror_index >= max_allowed)
1035 break;
1036 if (!sblocks_for_recheck[1].page_count)
1037 break;
1038
1039 ASSERT(failed_mirror_index == 0);
1040 sblock_other = sblocks_for_recheck + 1;
1041 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1042 }
cb2ced73
SB
1043
1044 /* build and submit the bios, check checksums */
affe4a5a 1045 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1046
1047 if (!sblock_other->header_error &&
b5d67f64
SB
1048 !sblock_other->checksum_error &&
1049 sblock_other->no_io_error_seen) {
ff023aac
SB
1050 if (sctx->is_dev_replace) {
1051 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1052 goto corrected_error;
ff023aac 1053 } else {
ff023aac 1054 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1055 sblock_bad, sblock_other);
1056 if (!ret)
1057 goto corrected_error;
ff023aac 1058 }
b5d67f64
SB
1059 }
1060 }
a2de733c 1061
b968fed1
ZL
1062 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1063 goto did_not_correct_error;
ff023aac
SB
1064
1065 /*
ff023aac 1066 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1067 * repaired, continue by picking good copies of those pages.
1068 * Select the good pages from mirrors to rewrite bad pages from
1069 * the area to fix. Afterwards verify the checksum of the block
1070 * that is supposed to be repaired. This verification step is
1071 * only done for the purpose of statistic counting and for the
1072 * final scrub report, whether errors remain.
1073 * A perfect algorithm could make use of the checksum and try
1074 * all possible combinations of pages from the different mirrors
1075 * until the checksum verification succeeds. For example, when
1076 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1077 * of mirror #2 is readable but the final checksum test fails,
1078 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1079 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1080 * exception and is therefore not implemented. At least it is
1081 * avoided that the good copy is overwritten.
1082 * A more useful improvement would be to pick the sectors
1083 * without I/O error based on sector sizes (512 bytes on legacy
1084 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1085 * mirror could be repaired by taking 512 byte of a different
1086 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1087 * area are unreadable.
a2de733c 1088 */
b5d67f64 1089 success = 1;
b968fed1
ZL
1090 for (page_num = 0; page_num < sblock_bad->page_count;
1091 page_num++) {
261d2dcb 1092 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
b968fed1 1093 struct scrub_block *sblock_other = NULL;
b5d67f64 1094
b968fed1 1095 /* skip no-io-error page in scrub */
261d2dcb 1096 if (!spage_bad->io_error && !sctx->is_dev_replace)
a2de733c 1097 continue;
b5d67f64 1098
4759700a
LB
1099 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1100 /*
1101 * In case of dev replace, if raid56 rebuild process
1102 * didn't work out correct data, then copy the content
1103 * in sblock_bad to make sure target device is identical
1104 * to source device, instead of writing garbage data in
1105 * sblock_for_recheck array to target device.
1106 */
1107 sblock_other = NULL;
261d2dcb 1108 } else if (spage_bad->io_error) {
4759700a 1109 /* try to find no-io-error page in mirrors */
b968fed1
ZL
1110 for (mirror_index = 0;
1111 mirror_index < BTRFS_MAX_MIRRORS &&
1112 sblocks_for_recheck[mirror_index].page_count > 0;
1113 mirror_index++) {
1114 if (!sblocks_for_recheck[mirror_index].
1115 pagev[page_num]->io_error) {
1116 sblock_other = sblocks_for_recheck +
1117 mirror_index;
1118 break;
b5d67f64
SB
1119 }
1120 }
b968fed1
ZL
1121 if (!sblock_other)
1122 success = 0;
96e36920 1123 }
a2de733c 1124
b968fed1
ZL
1125 if (sctx->is_dev_replace) {
1126 /*
1127 * did not find a mirror to fetch the page
1128 * from. scrub_write_page_to_dev_replace()
1129 * handles this case (page->io_error), by
1130 * filling the block with zeros before
1131 * submitting the write request
1132 */
1133 if (!sblock_other)
1134 sblock_other = sblock_bad;
1135
1136 if (scrub_write_page_to_dev_replace(sblock_other,
1137 page_num) != 0) {
e37abe97 1138 atomic64_inc(
0b246afa 1139 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1140 success = 0;
1141 }
1142 } else if (sblock_other) {
1143 ret = scrub_repair_page_from_good_copy(sblock_bad,
1144 sblock_other,
1145 page_num, 0);
1146 if (0 == ret)
261d2dcb 1147 spage_bad->io_error = 0;
b968fed1
ZL
1148 else
1149 success = 0;
b5d67f64 1150 }
a2de733c 1151 }
a2de733c 1152
b968fed1 1153 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1154 if (is_metadata || have_csum) {
1155 /*
1156 * need to verify the checksum now that all
1157 * sectors on disk are repaired (the write
1158 * request for data to be repaired is on its way).
1159 * Just be lazy and use scrub_recheck_block()
1160 * which re-reads the data before the checksum
1161 * is verified, but most likely the data comes out
1162 * of the page cache.
1163 */
affe4a5a 1164 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1165 if (!sblock_bad->header_error &&
b5d67f64
SB
1166 !sblock_bad->checksum_error &&
1167 sblock_bad->no_io_error_seen)
1168 goto corrected_error;
1169 else
1170 goto did_not_correct_error;
1171 } else {
1172corrected_error:
d9d181c1
SB
1173 spin_lock(&sctx->stat_lock);
1174 sctx->stat.corrected_errors++;
5a6ac9ea 1175 sblock_to_check->data_corrected = 1;
d9d181c1 1176 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1177 btrfs_err_rl_in_rcu(fs_info,
1178 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1179 logical, rcu_str_deref(dev->name));
8628764e 1180 }
b5d67f64
SB
1181 } else {
1182did_not_correct_error:
d9d181c1
SB
1183 spin_lock(&sctx->stat_lock);
1184 sctx->stat.uncorrectable_errors++;
1185 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1186 btrfs_err_rl_in_rcu(fs_info,
1187 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1188 logical, rcu_str_deref(dev->name));
96e36920 1189 }
a2de733c 1190
b5d67f64
SB
1191out:
1192 if (sblocks_for_recheck) {
1193 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1194 mirror_index++) {
1195 struct scrub_block *sblock = sblocks_for_recheck +
1196 mirror_index;
af8e2d1d 1197 struct scrub_recover *recover;
b5d67f64
SB
1198 int page_index;
1199
7a9e9987
SB
1200 for (page_index = 0; page_index < sblock->page_count;
1201 page_index++) {
1202 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1203 recover = sblock->pagev[page_index]->recover;
1204 if (recover) {
e501bfe3 1205 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1206 sblock->pagev[page_index]->recover =
1207 NULL;
1208 }
7a9e9987
SB
1209 scrub_page_put(sblock->pagev[page_index]);
1210 }
b5d67f64
SB
1211 }
1212 kfree(sblocks_for_recheck);
1213 }
a2de733c 1214
28d70e23 1215 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
7c3c7cb9 1216 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
1217 if (ret < 0)
1218 return ret;
b5d67f64
SB
1219 return 0;
1220}
a2de733c 1221
8e5cfb55 1222static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1223{
10f11900
ZL
1224 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1225 return 2;
1226 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1227 return 3;
1228 else
af8e2d1d 1229 return (int)bbio->num_stripes;
af8e2d1d
MX
1230}
1231
10f11900
ZL
1232static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1233 u64 *raid_map,
af8e2d1d
MX
1234 u64 mapped_length,
1235 int nstripes, int mirror,
1236 int *stripe_index,
1237 u64 *stripe_offset)
1238{
1239 int i;
1240
ffe2d203 1241 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1242 /* RAID5/6 */
1243 for (i = 0; i < nstripes; i++) {
1244 if (raid_map[i] == RAID6_Q_STRIPE ||
1245 raid_map[i] == RAID5_P_STRIPE)
1246 continue;
1247
1248 if (logical >= raid_map[i] &&
1249 logical < raid_map[i] + mapped_length)
1250 break;
1251 }
1252
1253 *stripe_index = i;
1254 *stripe_offset = logical - raid_map[i];
1255 } else {
1256 /* The other RAID type */
1257 *stripe_index = mirror;
1258 *stripe_offset = 0;
1259 }
1260}
1261
be50a8dd 1262static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1263 struct scrub_block *sblocks_for_recheck)
1264{
be50a8dd 1265 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1266 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1267 u64 length = original_sblock->page_count * PAGE_SIZE;
1268 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1269 u64 generation = original_sblock->pagev[0]->generation;
1270 u64 flags = original_sblock->pagev[0]->flags;
1271 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1272 struct scrub_recover *recover;
1273 struct btrfs_bio *bbio;
af8e2d1d
MX
1274 u64 sublen;
1275 u64 mapped_length;
1276 u64 stripe_offset;
1277 int stripe_index;
be50a8dd 1278 int page_index = 0;
b5d67f64 1279 int mirror_index;
af8e2d1d 1280 int nmirrors;
b5d67f64
SB
1281 int ret;
1282
1283 /*
57019345 1284 * note: the two members refs and outstanding_pages
b5d67f64
SB
1285 * are not used (and not set) in the blocks that are used for
1286 * the recheck procedure
1287 */
1288
b5d67f64 1289 while (length > 0) {
af8e2d1d
MX
1290 sublen = min_t(u64, length, PAGE_SIZE);
1291 mapped_length = sublen;
1292 bbio = NULL;
a2de733c 1293
b5d67f64
SB
1294 /*
1295 * with a length of PAGE_SIZE, each returned stripe
1296 * represents one mirror
1297 */
e501bfe3 1298 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1299 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1300 logical, &mapped_length, &bbio);
b5d67f64 1301 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1302 btrfs_put_bbio(bbio);
e501bfe3 1303 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1304 return -EIO;
1305 }
a2de733c 1306
af8e2d1d
MX
1307 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1308 if (!recover) {
6e9606d2 1309 btrfs_put_bbio(bbio);
e501bfe3 1310 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1311 return -ENOMEM;
1312 }
1313
6f615018 1314 refcount_set(&recover->refs, 1);
af8e2d1d 1315 recover->bbio = bbio;
af8e2d1d
MX
1316 recover->map_length = mapped_length;
1317
24731149 1318 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1319
be50a8dd 1320 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1321
af8e2d1d 1322 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1323 mirror_index++) {
1324 struct scrub_block *sblock;
261d2dcb 1325 struct scrub_page *spage;
b5d67f64 1326
b5d67f64 1327 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1328 sblock->sctx = sctx;
4734b7ed 1329
261d2dcb
QW
1330 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1331 if (!spage) {
7a9e9987 1332leave_nomem:
d9d181c1
SB
1333 spin_lock(&sctx->stat_lock);
1334 sctx->stat.malloc_errors++;
1335 spin_unlock(&sctx->stat_lock);
e501bfe3 1336 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1337 return -ENOMEM;
1338 }
261d2dcb
QW
1339 scrub_page_get(spage);
1340 sblock->pagev[page_index] = spage;
1341 spage->sblock = sblock;
1342 spage->flags = flags;
1343 spage->generation = generation;
1344 spage->logical = logical;
1345 spage->have_csum = have_csum;
4734b7ed 1346 if (have_csum)
261d2dcb 1347 memcpy(spage->csum,
4734b7ed 1348 original_sblock->pagev[0]->csum,
2ae0c2d8 1349 sctx->fs_info->csum_size);
af8e2d1d 1350
10f11900
ZL
1351 scrub_stripe_index_and_offset(logical,
1352 bbio->map_type,
1353 bbio->raid_map,
af8e2d1d 1354 mapped_length,
e34c330d
ZL
1355 bbio->num_stripes -
1356 bbio->num_tgtdevs,
af8e2d1d
MX
1357 mirror_index,
1358 &stripe_index,
1359 &stripe_offset);
261d2dcb 1360 spage->physical = bbio->stripes[stripe_index].physical +
af8e2d1d 1361 stripe_offset;
261d2dcb 1362 spage->dev = bbio->stripes[stripe_index].dev;
af8e2d1d 1363
ff023aac 1364 BUG_ON(page_index >= original_sblock->page_count);
261d2dcb 1365 spage->physical_for_dev_replace =
ff023aac
SB
1366 original_sblock->pagev[page_index]->
1367 physical_for_dev_replace;
7a9e9987 1368 /* for missing devices, dev->bdev is NULL */
261d2dcb 1369 spage->mirror_num = mirror_index + 1;
b5d67f64 1370 sblock->page_count++;
261d2dcb
QW
1371 spage->page = alloc_page(GFP_NOFS);
1372 if (!spage->page)
7a9e9987 1373 goto leave_nomem;
af8e2d1d
MX
1374
1375 scrub_get_recover(recover);
261d2dcb 1376 spage->recover = recover;
b5d67f64 1377 }
e501bfe3 1378 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1379 length -= sublen;
1380 logical += sublen;
1381 page_index++;
1382 }
1383
1384 return 0;
96e36920
ID
1385}
1386
4246a0b6 1387static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d 1388{
b4ff5ad7 1389 complete(bio->bi_private);
af8e2d1d
MX
1390}
1391
af8e2d1d
MX
1392static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1393 struct bio *bio,
261d2dcb 1394 struct scrub_page *spage)
af8e2d1d 1395{
b4ff5ad7 1396 DECLARE_COMPLETION_ONSTACK(done);
af8e2d1d 1397 int ret;
762221f0 1398 int mirror_num;
af8e2d1d 1399
261d2dcb 1400 bio->bi_iter.bi_sector = spage->logical >> 9;
af8e2d1d
MX
1401 bio->bi_private = &done;
1402 bio->bi_end_io = scrub_bio_wait_endio;
1403
261d2dcb
QW
1404 mirror_num = spage->sblock->pagev[0]->mirror_num;
1405 ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1406 spage->recover->map_length,
762221f0 1407 mirror_num, 0);
af8e2d1d
MX
1408 if (ret)
1409 return ret;
1410
b4ff5ad7
LB
1411 wait_for_completion_io(&done);
1412 return blk_status_to_errno(bio->bi_status);
af8e2d1d
MX
1413}
1414
6ca1765b
LB
1415static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1416 struct scrub_block *sblock)
1417{
1418 struct scrub_page *first_page = sblock->pagev[0];
1419 struct bio *bio;
1420 int page_num;
1421
1422 /* All pages in sblock belong to the same stripe on the same device. */
1423 ASSERT(first_page->dev);
1424 if (!first_page->dev->bdev)
1425 goto out;
1426
1427 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1428 bio_set_dev(bio, first_page->dev->bdev);
1429
1430 for (page_num = 0; page_num < sblock->page_count; page_num++) {
261d2dcb 1431 struct scrub_page *spage = sblock->pagev[page_num];
6ca1765b 1432
261d2dcb
QW
1433 WARN_ON(!spage->page);
1434 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
6ca1765b
LB
1435 }
1436
1437 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1438 bio_put(bio);
1439 goto out;
1440 }
1441
1442 bio_put(bio);
1443
1444 scrub_recheck_block_checksum(sblock);
1445
1446 return;
1447out:
1448 for (page_num = 0; page_num < sblock->page_count; page_num++)
1449 sblock->pagev[page_num]->io_error = 1;
1450
1451 sblock->no_io_error_seen = 0;
1452}
1453
b5d67f64
SB
1454/*
1455 * this function will check the on disk data for checksum errors, header
1456 * errors and read I/O errors. If any I/O errors happen, the exact pages
1457 * which are errored are marked as being bad. The goal is to enable scrub
1458 * to take those pages that are not errored from all the mirrors so that
1459 * the pages that are errored in the just handled mirror can be repaired.
1460 */
34f5c8e9 1461static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1462 struct scrub_block *sblock,
1463 int retry_failed_mirror)
96e36920 1464{
b5d67f64 1465 int page_num;
96e36920 1466
b5d67f64 1467 sblock->no_io_error_seen = 1;
96e36920 1468
6ca1765b
LB
1469 /* short cut for raid56 */
1470 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1471 return scrub_recheck_block_on_raid56(fs_info, sblock);
1472
b5d67f64
SB
1473 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1474 struct bio *bio;
261d2dcb 1475 struct scrub_page *spage = sblock->pagev[page_num];
b5d67f64 1476
261d2dcb
QW
1477 if (spage->dev->bdev == NULL) {
1478 spage->io_error = 1;
ea9947b4
SB
1479 sblock->no_io_error_seen = 0;
1480 continue;
1481 }
1482
261d2dcb 1483 WARN_ON(!spage->page);
c5e4c3d7 1484 bio = btrfs_io_bio_alloc(1);
261d2dcb 1485 bio_set_dev(bio, spage->dev->bdev);
b5d67f64 1486
261d2dcb
QW
1487 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1488 bio->bi_iter.bi_sector = spage->physical >> 9;
6ca1765b 1489 bio->bi_opf = REQ_OP_READ;
af8e2d1d 1490
6ca1765b 1491 if (btrfsic_submit_bio_wait(bio)) {
261d2dcb 1492 spage->io_error = 1;
6ca1765b 1493 sblock->no_io_error_seen = 0;
af8e2d1d 1494 }
33879d45 1495
b5d67f64
SB
1496 bio_put(bio);
1497 }
96e36920 1498
b5d67f64 1499 if (sblock->no_io_error_seen)
ba7cf988 1500 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1501}
1502
17a9be2f
MX
1503static inline int scrub_check_fsid(u8 fsid[],
1504 struct scrub_page *spage)
1505{
1506 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1507 int ret;
1508
44880fdc 1509 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
17a9be2f
MX
1510 return !ret;
1511}
1512
ba7cf988 1513static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1514{
ba7cf988
ZL
1515 sblock->header_error = 0;
1516 sblock->checksum_error = 0;
1517 sblock->generation_error = 0;
b5d67f64 1518
ba7cf988
ZL
1519 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1520 scrub_checksum_data(sblock);
1521 else
1522 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1523}
1524
b5d67f64 1525static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1526 struct scrub_block *sblock_good)
b5d67f64
SB
1527{
1528 int page_num;
1529 int ret = 0;
96e36920 1530
b5d67f64
SB
1531 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1532 int ret_sub;
96e36920 1533
b5d67f64
SB
1534 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1535 sblock_good,
114ab50d 1536 page_num, 1);
b5d67f64
SB
1537 if (ret_sub)
1538 ret = ret_sub;
a2de733c 1539 }
b5d67f64
SB
1540
1541 return ret;
1542}
1543
1544static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1545 struct scrub_block *sblock_good,
1546 int page_num, int force_write)
1547{
261d2dcb
QW
1548 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1549 struct scrub_page *spage_good = sblock_good->pagev[page_num];
0b246afa 1550 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1551
261d2dcb
QW
1552 BUG_ON(spage_bad->page == NULL);
1553 BUG_ON(spage_good->page == NULL);
b5d67f64 1554 if (force_write || sblock_bad->header_error ||
261d2dcb 1555 sblock_bad->checksum_error || spage_bad->io_error) {
b5d67f64
SB
1556 struct bio *bio;
1557 int ret;
b5d67f64 1558
261d2dcb 1559 if (!spage_bad->dev->bdev) {
0b246afa 1560 btrfs_warn_rl(fs_info,
5d163e0e 1561 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1562 return -EIO;
1563 }
1564
c5e4c3d7 1565 bio = btrfs_io_bio_alloc(1);
261d2dcb
QW
1566 bio_set_dev(bio, spage_bad->dev->bdev);
1567 bio->bi_iter.bi_sector = spage_bad->physical >> 9;
ebcc3263 1568 bio->bi_opf = REQ_OP_WRITE;
b5d67f64 1569
261d2dcb 1570 ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
b5d67f64
SB
1571 if (PAGE_SIZE != ret) {
1572 bio_put(bio);
1573 return -EIO;
13db62b7 1574 }
b5d67f64 1575
4e49ea4a 1576 if (btrfsic_submit_bio_wait(bio)) {
261d2dcb 1577 btrfs_dev_stat_inc_and_print(spage_bad->dev,
442a4f63 1578 BTRFS_DEV_STAT_WRITE_ERRS);
e37abe97 1579 atomic64_inc(&fs_info->dev_replace.num_write_errors);
442a4f63
SB
1580 bio_put(bio);
1581 return -EIO;
1582 }
b5d67f64 1583 bio_put(bio);
a2de733c
AJ
1584 }
1585
b5d67f64
SB
1586 return 0;
1587}
1588
ff023aac
SB
1589static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1590{
0b246afa 1591 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1592 int page_num;
1593
5a6ac9ea
MX
1594 /*
1595 * This block is used for the check of the parity on the source device,
1596 * so the data needn't be written into the destination device.
1597 */
1598 if (sblock->sparity)
1599 return;
1600
ff023aac
SB
1601 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602 int ret;
1603
1604 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1605 if (ret)
e37abe97 1606 atomic64_inc(&fs_info->dev_replace.num_write_errors);
ff023aac
SB
1607 }
1608}
1609
1610static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1611 int page_num)
1612{
1613 struct scrub_page *spage = sblock->pagev[page_num];
1614
1615 BUG_ON(spage->page == NULL);
a8b3a890
DS
1616 if (spage->io_error)
1617 clear_page(page_address(spage->page));
ff023aac 1618
ff023aac
SB
1619 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1620}
1621
1622static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1623 struct scrub_page *spage)
1624{
ff023aac
SB
1625 struct scrub_bio *sbio;
1626 int ret;
1627
3fb99303 1628 mutex_lock(&sctx->wr_lock);
ff023aac 1629again:
3fb99303
DS
1630 if (!sctx->wr_curr_bio) {
1631 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
58c4e173 1632 GFP_KERNEL);
3fb99303
DS
1633 if (!sctx->wr_curr_bio) {
1634 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1635 return -ENOMEM;
1636 }
3fb99303
DS
1637 sctx->wr_curr_bio->sctx = sctx;
1638 sctx->wr_curr_bio->page_count = 0;
ff023aac 1639 }
3fb99303 1640 sbio = sctx->wr_curr_bio;
ff023aac
SB
1641 if (sbio->page_count == 0) {
1642 struct bio *bio;
1643
1644 sbio->physical = spage->physical_for_dev_replace;
1645 sbio->logical = spage->logical;
3fb99303 1646 sbio->dev = sctx->wr_tgtdev;
ff023aac
SB
1647 bio = sbio->bio;
1648 if (!bio) {
c5e4c3d7 1649 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
ff023aac
SB
1650 sbio->bio = bio;
1651 }
1652
1653 bio->bi_private = sbio;
1654 bio->bi_end_io = scrub_wr_bio_end_io;
74d46992 1655 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 1656 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 1657 bio->bi_opf = REQ_OP_WRITE;
4e4cbee9 1658 sbio->status = 0;
ff023aac
SB
1659 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1660 spage->physical_for_dev_replace ||
1661 sbio->logical + sbio->page_count * PAGE_SIZE !=
1662 spage->logical) {
1663 scrub_wr_submit(sctx);
1664 goto again;
1665 }
1666
1667 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1668 if (ret != PAGE_SIZE) {
1669 if (sbio->page_count < 1) {
1670 bio_put(sbio->bio);
1671 sbio->bio = NULL;
3fb99303 1672 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1673 return -EIO;
1674 }
1675 scrub_wr_submit(sctx);
1676 goto again;
1677 }
1678
1679 sbio->pagev[sbio->page_count] = spage;
1680 scrub_page_get(spage);
1681 sbio->page_count++;
3fb99303 1682 if (sbio->page_count == sctx->pages_per_wr_bio)
ff023aac 1683 scrub_wr_submit(sctx);
3fb99303 1684 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1685
1686 return 0;
1687}
1688
1689static void scrub_wr_submit(struct scrub_ctx *sctx)
1690{
ff023aac
SB
1691 struct scrub_bio *sbio;
1692
3fb99303 1693 if (!sctx->wr_curr_bio)
ff023aac
SB
1694 return;
1695
3fb99303
DS
1696 sbio = sctx->wr_curr_bio;
1697 sctx->wr_curr_bio = NULL;
74d46992 1698 WARN_ON(!sbio->bio->bi_disk);
ff023aac
SB
1699 scrub_pending_bio_inc(sctx);
1700 /* process all writes in a single worker thread. Then the block layer
1701 * orders the requests before sending them to the driver which
1702 * doubled the write performance on spinning disks when measured
1703 * with Linux 3.5 */
4e49ea4a 1704 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1705}
1706
4246a0b6 1707static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1708{
1709 struct scrub_bio *sbio = bio->bi_private;
fb456252 1710 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1711
4e4cbee9 1712 sbio->status = bio->bi_status;
ff023aac
SB
1713 sbio->bio = bio;
1714
a0cac0ec 1715 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1716 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1717}
1718
1719static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1720{
1721 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1722 struct scrub_ctx *sctx = sbio->sctx;
1723 int i;
1724
1725 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
4e4cbee9 1726 if (sbio->status) {
ff023aac 1727 struct btrfs_dev_replace *dev_replace =
fb456252 1728 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1729
1730 for (i = 0; i < sbio->page_count; i++) {
1731 struct scrub_page *spage = sbio->pagev[i];
1732
1733 spage->io_error = 1;
e37abe97 1734 atomic64_inc(&dev_replace->num_write_errors);
ff023aac
SB
1735 }
1736 }
1737
1738 for (i = 0; i < sbio->page_count; i++)
1739 scrub_page_put(sbio->pagev[i]);
1740
1741 bio_put(sbio->bio);
1742 kfree(sbio);
1743 scrub_pending_bio_dec(sctx);
1744}
1745
1746static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1747{
1748 u64 flags;
1749 int ret;
1750
ba7cf988
ZL
1751 /*
1752 * No need to initialize these stats currently,
1753 * because this function only use return value
1754 * instead of these stats value.
1755 *
1756 * Todo:
1757 * always use stats
1758 */
1759 sblock->header_error = 0;
1760 sblock->generation_error = 0;
1761 sblock->checksum_error = 0;
1762
7a9e9987
SB
1763 WARN_ON(sblock->page_count < 1);
1764 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1765 ret = 0;
1766 if (flags & BTRFS_EXTENT_FLAG_DATA)
1767 ret = scrub_checksum_data(sblock);
1768 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1769 ret = scrub_checksum_tree_block(sblock);
1770 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1771 (void)scrub_checksum_super(sblock);
1772 else
1773 WARN_ON(1);
1774 if (ret)
1775 scrub_handle_errored_block(sblock);
ff023aac
SB
1776
1777 return ret;
a2de733c
AJ
1778}
1779
b5d67f64 1780static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1781{
d9d181c1 1782 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1783 struct btrfs_fs_info *fs_info = sctx->fs_info;
1784 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a2de733c 1785 u8 csum[BTRFS_CSUM_SIZE];
d41ebef2 1786 struct scrub_page *spage;
b0485252 1787 char *kaddr;
a2de733c 1788
b5d67f64 1789 BUG_ON(sblock->page_count < 1);
d41ebef2
DS
1790 spage = sblock->pagev[0];
1791 if (!spage->have_csum)
a2de733c
AJ
1792 return 0;
1793
d41ebef2 1794 kaddr = page_address(spage->page);
b5d67f64 1795
771aba0d
DS
1796 shash->tfm = fs_info->csum_shash;
1797 crypto_shash_init(shash);
1798 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
b5d67f64 1799
2ae0c2d8 1800 if (memcmp(csum, spage->csum, sctx->fs_info->csum_size))
ba7cf988 1801 sblock->checksum_error = 1;
a2de733c 1802
ba7cf988 1803 return sblock->checksum_error;
a2de733c
AJ
1804}
1805
b5d67f64 1806static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1807{
d9d181c1 1808 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1809 struct btrfs_header *h;
0b246afa 1810 struct btrfs_fs_info *fs_info = sctx->fs_info;
d5178578 1811 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1812 u8 calculated_csum[BTRFS_CSUM_SIZE];
1813 u8 on_disk_csum[BTRFS_CSUM_SIZE];
521e1022
DS
1814 const int num_pages = sctx->fs_info->nodesize >> PAGE_SHIFT;
1815 int i;
100aa5d9 1816 struct scrub_page *spage;
b0485252 1817 char *kaddr;
d5178578 1818
b5d67f64 1819 BUG_ON(sblock->page_count < 1);
100aa5d9
DS
1820 spage = sblock->pagev[0];
1821 kaddr = page_address(spage->page);
b0485252 1822 h = (struct btrfs_header *)kaddr;
2ae0c2d8 1823 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
a2de733c
AJ
1824
1825 /*
1826 * we don't use the getter functions here, as we
1827 * a) don't have an extent buffer and
1828 * b) the page is already kmapped
1829 */
100aa5d9 1830 if (spage->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1831 sblock->header_error = 1;
a2de733c 1832
100aa5d9 1833 if (spage->generation != btrfs_stack_header_generation(h)) {
ba7cf988
ZL
1834 sblock->header_error = 1;
1835 sblock->generation_error = 1;
1836 }
a2de733c 1837
100aa5d9 1838 if (!scrub_check_fsid(h->fsid, spage))
ba7cf988 1839 sblock->header_error = 1;
a2de733c
AJ
1840
1841 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1842 BTRFS_UUID_SIZE))
ba7cf988 1843 sblock->header_error = 1;
a2de733c 1844
521e1022
DS
1845 shash->tfm = fs_info->csum_shash;
1846 crypto_shash_init(shash);
1847 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1848 PAGE_SIZE - BTRFS_CSUM_SIZE);
b5d67f64 1849
521e1022
DS
1850 for (i = 1; i < num_pages; i++) {
1851 kaddr = page_address(sblock->pagev[i]->page);
1852 crypto_shash_update(shash, kaddr, PAGE_SIZE);
b5d67f64
SB
1853 }
1854
d5178578 1855 crypto_shash_final(shash, calculated_csum);
2ae0c2d8 1856 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
ba7cf988 1857 sblock->checksum_error = 1;
a2de733c 1858
ba7cf988 1859 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1860}
1861
b5d67f64 1862static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1863{
1864 struct btrfs_super_block *s;
d9d181c1 1865 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1866 struct btrfs_fs_info *fs_info = sctx->fs_info;
1867 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64 1868 u8 calculated_csum[BTRFS_CSUM_SIZE];
c7460541 1869 struct scrub_page *spage;
b0485252 1870 char *kaddr;
442a4f63
SB
1871 int fail_gen = 0;
1872 int fail_cor = 0;
d5178578 1873
b5d67f64 1874 BUG_ON(sblock->page_count < 1);
c7460541
DS
1875 spage = sblock->pagev[0];
1876 kaddr = page_address(spage->page);
b0485252 1877 s = (struct btrfs_super_block *)kaddr;
a2de733c 1878
c7460541 1879 if (spage->logical != btrfs_super_bytenr(s))
442a4f63 1880 ++fail_cor;
a2de733c 1881
c7460541 1882 if (spage->generation != btrfs_super_generation(s))
442a4f63 1883 ++fail_gen;
a2de733c 1884
c7460541 1885 if (!scrub_check_fsid(s->fsid, spage))
442a4f63 1886 ++fail_cor;
a2de733c 1887
83cf6d5e
DS
1888 shash->tfm = fs_info->csum_shash;
1889 crypto_shash_init(shash);
1890 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1891 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
b5d67f64 1892
2ae0c2d8 1893 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
442a4f63 1894 ++fail_cor;
a2de733c 1895
442a4f63 1896 if (fail_cor + fail_gen) {
a2de733c
AJ
1897 /*
1898 * if we find an error in a super block, we just report it.
1899 * They will get written with the next transaction commit
1900 * anyway
1901 */
d9d181c1
SB
1902 spin_lock(&sctx->stat_lock);
1903 ++sctx->stat.super_errors;
1904 spin_unlock(&sctx->stat_lock);
442a4f63 1905 if (fail_cor)
c7460541 1906 btrfs_dev_stat_inc_and_print(spage->dev,
442a4f63
SB
1907 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1908 else
c7460541 1909 btrfs_dev_stat_inc_and_print(spage->dev,
442a4f63 1910 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1911 }
1912
442a4f63 1913 return fail_cor + fail_gen;
a2de733c
AJ
1914}
1915
b5d67f64
SB
1916static void scrub_block_get(struct scrub_block *sblock)
1917{
186debd6 1918 refcount_inc(&sblock->refs);
b5d67f64
SB
1919}
1920
1921static void scrub_block_put(struct scrub_block *sblock)
1922{
186debd6 1923 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
1924 int i;
1925
5a6ac9ea
MX
1926 if (sblock->sparity)
1927 scrub_parity_put(sblock->sparity);
1928
b5d67f64 1929 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1930 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1931 kfree(sblock);
1932 }
1933}
1934
7a9e9987
SB
1935static void scrub_page_get(struct scrub_page *spage)
1936{
57019345 1937 atomic_inc(&spage->refs);
7a9e9987
SB
1938}
1939
1940static void scrub_page_put(struct scrub_page *spage)
1941{
57019345 1942 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
1943 if (spage->page)
1944 __free_page(spage->page);
1945 kfree(spage);
1946 }
1947}
1948
d9d181c1 1949static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1950{
1951 struct scrub_bio *sbio;
1952
d9d181c1 1953 if (sctx->curr == -1)
1623edeb 1954 return;
a2de733c 1955
d9d181c1
SB
1956 sbio = sctx->bios[sctx->curr];
1957 sctx->curr = -1;
b6bfebc1 1958 scrub_pending_bio_inc(sctx);
4e49ea4a 1959 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
1960}
1961
ff023aac
SB
1962static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1963 struct scrub_page *spage)
a2de733c 1964{
b5d67f64 1965 struct scrub_block *sblock = spage->sblock;
a2de733c 1966 struct scrub_bio *sbio;
69f4cb52 1967 int ret;
a2de733c
AJ
1968
1969again:
1970 /*
1971 * grab a fresh bio or wait for one to become available
1972 */
d9d181c1
SB
1973 while (sctx->curr == -1) {
1974 spin_lock(&sctx->list_lock);
1975 sctx->curr = sctx->first_free;
1976 if (sctx->curr != -1) {
1977 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1978 sctx->bios[sctx->curr]->next_free = -1;
1979 sctx->bios[sctx->curr]->page_count = 0;
1980 spin_unlock(&sctx->list_lock);
a2de733c 1981 } else {
d9d181c1
SB
1982 spin_unlock(&sctx->list_lock);
1983 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1984 }
1985 }
d9d181c1 1986 sbio = sctx->bios[sctx->curr];
b5d67f64 1987 if (sbio->page_count == 0) {
69f4cb52
AJ
1988 struct bio *bio;
1989
b5d67f64
SB
1990 sbio->physical = spage->physical;
1991 sbio->logical = spage->logical;
a36cf8b8 1992 sbio->dev = spage->dev;
b5d67f64
SB
1993 bio = sbio->bio;
1994 if (!bio) {
c5e4c3d7 1995 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
b5d67f64
SB
1996 sbio->bio = bio;
1997 }
69f4cb52
AJ
1998
1999 bio->bi_private = sbio;
2000 bio->bi_end_io = scrub_bio_end_io;
74d46992 2001 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 2002 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 2003 bio->bi_opf = REQ_OP_READ;
4e4cbee9 2004 sbio->status = 0;
b5d67f64
SB
2005 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2006 spage->physical ||
2007 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2008 spage->logical ||
2009 sbio->dev != spage->dev) {
d9d181c1 2010 scrub_submit(sctx);
a2de733c
AJ
2011 goto again;
2012 }
69f4cb52 2013
b5d67f64
SB
2014 sbio->pagev[sbio->page_count] = spage;
2015 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2016 if (ret != PAGE_SIZE) {
2017 if (sbio->page_count < 1) {
2018 bio_put(sbio->bio);
2019 sbio->bio = NULL;
2020 return -EIO;
2021 }
d9d181c1 2022 scrub_submit(sctx);
69f4cb52
AJ
2023 goto again;
2024 }
2025
ff023aac 2026 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2027 atomic_inc(&sblock->outstanding_pages);
2028 sbio->page_count++;
ff023aac 2029 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2030 scrub_submit(sctx);
b5d67f64
SB
2031
2032 return 0;
2033}
2034
22365979 2035static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2036{
2037 struct scrub_block *sblock = bio->bi_private;
fb456252 2038 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2039
4e4cbee9 2040 if (bio->bi_status)
73ff61db
OS
2041 sblock->no_io_error_seen = 0;
2042
4673272f
ST
2043 bio_put(bio);
2044
73ff61db
OS
2045 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2046}
2047
2048static void scrub_missing_raid56_worker(struct btrfs_work *work)
2049{
2050 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2051 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2052 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2053 u64 logical;
2054 struct btrfs_device *dev;
2055
73ff61db
OS
2056 logical = sblock->pagev[0]->logical;
2057 dev = sblock->pagev[0]->dev;
2058
affe4a5a 2059 if (sblock->no_io_error_seen)
ba7cf988 2060 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2061
2062 if (!sblock->no_io_error_seen) {
2063 spin_lock(&sctx->stat_lock);
2064 sctx->stat.read_errors++;
2065 spin_unlock(&sctx->stat_lock);
0b246afa 2066 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2067 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2068 logical, rcu_str_deref(dev->name));
2069 } else if (sblock->header_error || sblock->checksum_error) {
2070 spin_lock(&sctx->stat_lock);
2071 sctx->stat.uncorrectable_errors++;
2072 spin_unlock(&sctx->stat_lock);
0b246afa 2073 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2074 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2075 logical, rcu_str_deref(dev->name));
2076 } else {
2077 scrub_write_block_to_dev_replace(sblock);
2078 }
2079
2073c4c2 2080 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2081 mutex_lock(&sctx->wr_lock);
73ff61db 2082 scrub_wr_submit(sctx);
3fb99303 2083 mutex_unlock(&sctx->wr_lock);
73ff61db
OS
2084 }
2085
57d4f0b8 2086 scrub_block_put(sblock);
73ff61db
OS
2087 scrub_pending_bio_dec(sctx);
2088}
2089
2090static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2091{
2092 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2093 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2094 u64 length = sblock->page_count * PAGE_SIZE;
2095 u64 logical = sblock->pagev[0]->logical;
f1fee653 2096 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2097 struct bio *bio;
2098 struct btrfs_raid_bio *rbio;
2099 int ret;
2100 int i;
2101
ae6529c3 2102 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2103 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2104 &length, &bbio);
73ff61db
OS
2105 if (ret || !bbio || !bbio->raid_map)
2106 goto bbio_out;
2107
2108 if (WARN_ON(!sctx->is_dev_replace ||
2109 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2110 /*
2111 * We shouldn't be scrubbing a missing device. Even for dev
2112 * replace, we should only get here for RAID 5/6. We either
2113 * managed to mount something with no mirrors remaining or
2114 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2115 */
2116 goto bbio_out;
2117 }
2118
c5e4c3d7 2119 bio = btrfs_io_bio_alloc(0);
73ff61db
OS
2120 bio->bi_iter.bi_sector = logical >> 9;
2121 bio->bi_private = sblock;
2122 bio->bi_end_io = scrub_missing_raid56_end_io;
2123
2ff7e61e 2124 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2125 if (!rbio)
2126 goto rbio_out;
2127
2128 for (i = 0; i < sblock->page_count; i++) {
2129 struct scrub_page *spage = sblock->pagev[i];
2130
2131 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2132 }
2133
a0cac0ec 2134 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
73ff61db
OS
2135 scrub_block_get(sblock);
2136 scrub_pending_bio_inc(sctx);
2137 raid56_submit_missing_rbio(rbio);
2138 return;
2139
2140rbio_out:
2141 bio_put(bio);
2142bbio_out:
ae6529c3 2143 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2144 btrfs_put_bbio(bbio);
2145 spin_lock(&sctx->stat_lock);
2146 sctx->stat.malloc_errors++;
2147 spin_unlock(&sctx->stat_lock);
2148}
2149
fa485d21 2150static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
a36cf8b8 2151 u64 physical, struct btrfs_device *dev, u64 flags,
96e63a45 2152 u64 gen, int mirror_num, u8 *csum,
ff023aac 2153 u64 physical_for_dev_replace)
b5d67f64
SB
2154{
2155 struct scrub_block *sblock;
2156 int index;
2157
58c4e173 2158 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2159 if (!sblock) {
d9d181c1
SB
2160 spin_lock(&sctx->stat_lock);
2161 sctx->stat.malloc_errors++;
2162 spin_unlock(&sctx->stat_lock);
b5d67f64 2163 return -ENOMEM;
a2de733c 2164 }
b5d67f64 2165
7a9e9987
SB
2166 /* one ref inside this function, plus one for each page added to
2167 * a bio later on */
186debd6 2168 refcount_set(&sblock->refs, 1);
d9d181c1 2169 sblock->sctx = sctx;
b5d67f64
SB
2170 sblock->no_io_error_seen = 1;
2171
2172 for (index = 0; len > 0; index++) {
7a9e9987 2173 struct scrub_page *spage;
fa485d21 2174 u32 l = min_t(u32, len, PAGE_SIZE);
b5d67f64 2175
58c4e173 2176 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2177 if (!spage) {
2178leave_nomem:
d9d181c1
SB
2179 spin_lock(&sctx->stat_lock);
2180 sctx->stat.malloc_errors++;
2181 spin_unlock(&sctx->stat_lock);
7a9e9987 2182 scrub_block_put(sblock);
b5d67f64
SB
2183 return -ENOMEM;
2184 }
7a9e9987
SB
2185 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2186 scrub_page_get(spage);
2187 sblock->pagev[index] = spage;
b5d67f64 2188 spage->sblock = sblock;
a36cf8b8 2189 spage->dev = dev;
b5d67f64
SB
2190 spage->flags = flags;
2191 spage->generation = gen;
2192 spage->logical = logical;
2193 spage->physical = physical;
ff023aac 2194 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2195 spage->mirror_num = mirror_num;
2196 if (csum) {
2197 spage->have_csum = 1;
2ae0c2d8 2198 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
b5d67f64
SB
2199 } else {
2200 spage->have_csum = 0;
2201 }
2202 sblock->page_count++;
58c4e173 2203 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2204 if (!spage->page)
2205 goto leave_nomem;
b5d67f64
SB
2206 len -= l;
2207 logical += l;
2208 physical += l;
ff023aac 2209 physical_for_dev_replace += l;
b5d67f64
SB
2210 }
2211
7a9e9987 2212 WARN_ON(sblock->page_count == 0);
e6e674bd 2213 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
73ff61db
OS
2214 /*
2215 * This case should only be hit for RAID 5/6 device replace. See
2216 * the comment in scrub_missing_raid56_pages() for details.
2217 */
2218 scrub_missing_raid56_pages(sblock);
2219 } else {
2220 for (index = 0; index < sblock->page_count; index++) {
2221 struct scrub_page *spage = sblock->pagev[index];
2222 int ret;
1bc87793 2223
73ff61db
OS
2224 ret = scrub_add_page_to_rd_bio(sctx, spage);
2225 if (ret) {
2226 scrub_block_put(sblock);
2227 return ret;
2228 }
b5d67f64 2229 }
a2de733c 2230
96e63a45 2231 if (flags & BTRFS_EXTENT_FLAG_SUPER)
73ff61db
OS
2232 scrub_submit(sctx);
2233 }
a2de733c 2234
b5d67f64
SB
2235 /* last one frees, either here or in bio completion for last page */
2236 scrub_block_put(sblock);
a2de733c
AJ
2237 return 0;
2238}
2239
4246a0b6 2240static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2241{
2242 struct scrub_bio *sbio = bio->bi_private;
fb456252 2243 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2244
4e4cbee9 2245 sbio->status = bio->bi_status;
b5d67f64
SB
2246 sbio->bio = bio;
2247
0339ef2f 2248 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2249}
2250
2251static void scrub_bio_end_io_worker(struct btrfs_work *work)
2252{
2253 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2254 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2255 int i;
2256
ff023aac 2257 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
4e4cbee9 2258 if (sbio->status) {
b5d67f64
SB
2259 for (i = 0; i < sbio->page_count; i++) {
2260 struct scrub_page *spage = sbio->pagev[i];
2261
2262 spage->io_error = 1;
2263 spage->sblock->no_io_error_seen = 0;
2264 }
2265 }
2266
2267 /* now complete the scrub_block items that have all pages completed */
2268 for (i = 0; i < sbio->page_count; i++) {
2269 struct scrub_page *spage = sbio->pagev[i];
2270 struct scrub_block *sblock = spage->sblock;
2271
2272 if (atomic_dec_and_test(&sblock->outstanding_pages))
2273 scrub_block_complete(sblock);
2274 scrub_block_put(sblock);
2275 }
2276
b5d67f64
SB
2277 bio_put(sbio->bio);
2278 sbio->bio = NULL;
d9d181c1
SB
2279 spin_lock(&sctx->list_lock);
2280 sbio->next_free = sctx->first_free;
2281 sctx->first_free = sbio->index;
2282 spin_unlock(&sctx->list_lock);
ff023aac 2283
2073c4c2 2284 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2285 mutex_lock(&sctx->wr_lock);
ff023aac 2286 scrub_wr_submit(sctx);
3fb99303 2287 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
2288 }
2289
b6bfebc1 2290 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2291}
2292
5a6ac9ea
MX
2293static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2294 unsigned long *bitmap,
fa485d21 2295 u64 start, u32 len)
5a6ac9ea 2296{
972d7219 2297 u64 offset;
7736b0a4 2298 u32 nsectors;
ab108d99 2299 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
5a6ac9ea
MX
2300
2301 if (len >= sparity->stripe_len) {
2302 bitmap_set(bitmap, 0, sparity->nsectors);
2303 return;
2304 }
2305
2306 start -= sparity->logic_start;
972d7219 2307 start = div64_u64_rem(start, sparity->stripe_len, &offset);
ab108d99 2308 offset = offset >> sectorsize_bits;
fa485d21 2309 nsectors = len >> sectorsize_bits;
5a6ac9ea
MX
2310
2311 if (offset + nsectors <= sparity->nsectors) {
2312 bitmap_set(bitmap, offset, nsectors);
2313 return;
2314 }
2315
2316 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2317 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2318}
2319
2320static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
fa485d21 2321 u64 start, u32 len)
5a6ac9ea
MX
2322{
2323 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2324}
2325
2326static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
fa485d21 2327 u64 start, u32 len)
5a6ac9ea
MX
2328{
2329 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2330}
2331
b5d67f64
SB
2332static void scrub_block_complete(struct scrub_block *sblock)
2333{
5a6ac9ea
MX
2334 int corrupted = 0;
2335
ff023aac 2336 if (!sblock->no_io_error_seen) {
5a6ac9ea 2337 corrupted = 1;
b5d67f64 2338 scrub_handle_errored_block(sblock);
ff023aac
SB
2339 } else {
2340 /*
2341 * if has checksum error, write via repair mechanism in
2342 * dev replace case, otherwise write here in dev replace
2343 * case.
2344 */
5a6ac9ea
MX
2345 corrupted = scrub_checksum(sblock);
2346 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2347 scrub_write_block_to_dev_replace(sblock);
2348 }
5a6ac9ea
MX
2349
2350 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2351 u64 start = sblock->pagev[0]->logical;
2352 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2353 PAGE_SIZE;
2354
fa485d21 2355 ASSERT(end - start <= U32_MAX);
5a6ac9ea
MX
2356 scrub_parity_mark_sectors_error(sblock->sparity,
2357 start, end - start);
2358 }
b5d67f64
SB
2359}
2360
480a8ec8
QW
2361static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2362{
2363 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2364 list_del(&sum->list);
2365 kfree(sum);
2366}
2367
2368/*
2369 * Find the desired csum for range [logical, logical + sectorsize), and store
2370 * the csum into @csum.
2371 *
2372 * The search source is sctx->csum_list, which is a pre-populated list
2373 * storing bytenr ordered csum ranges. We're reponsible to cleanup any range
2374 * that is before @logical.
2375 *
2376 * Return 0 if there is no csum for the range.
2377 * Return 1 if there is csum for the range and copied to @csum.
2378 */
3b5753ec 2379static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c 2380{
480a8ec8 2381 bool found = false;
a2de733c 2382
d9d181c1 2383 while (!list_empty(&sctx->csum_list)) {
480a8ec8
QW
2384 struct btrfs_ordered_sum *sum = NULL;
2385 unsigned long index;
2386 unsigned long num_sectors;
2387
d9d181c1 2388 sum = list_first_entry(&sctx->csum_list,
a2de733c 2389 struct btrfs_ordered_sum, list);
480a8ec8 2390 /* The current csum range is beyond our range, no csum found */
a2de733c 2391 if (sum->bytenr > logical)
a2de733c
AJ
2392 break;
2393
480a8ec8
QW
2394 /*
2395 * The current sum is before our bytenr, since scrub is always
2396 * done in bytenr order, the csum will never be used anymore,
2397 * clean it up so that later calls won't bother with the range,
2398 * and continue search the next range.
2399 */
2400 if (sum->bytenr + sum->len <= logical) {
2401 drop_csum_range(sctx, sum);
2402 continue;
2403 }
a2de733c 2404
480a8ec8
QW
2405 /* Now the csum range covers our bytenr, copy the csum */
2406 found = true;
2407 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2408 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
1d1bf92d 2409
480a8ec8
QW
2410 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2411 sctx->fs_info->csum_size);
2412
2413 /* Cleanup the range if we're at the end of the csum range */
2414 if (index == num_sectors - 1)
2415 drop_csum_range(sctx, sum);
2416 break;
a2de733c 2417 }
480a8ec8
QW
2418 if (!found)
2419 return 0;
f51a4a18 2420 return 1;
a2de733c
AJ
2421}
2422
2423/* scrub extent tries to collect up to 64 kB for each bio */
6ca1765b 2424static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
fa485d21 2425 u64 logical, u32 len,
a36cf8b8 2426 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2427 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2428{
2429 int ret;
2430 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2431 u32 blocksize;
2432
2433 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b
LB
2434 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2435 blocksize = map->stripe_len;
2436 else
2437 blocksize = sctx->fs_info->sectorsize;
d9d181c1
SB
2438 spin_lock(&sctx->stat_lock);
2439 sctx->stat.data_extents_scrubbed++;
2440 sctx->stat.data_bytes_scrubbed += len;
2441 spin_unlock(&sctx->stat_lock);
b5d67f64 2442 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b
LB
2443 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2444 blocksize = map->stripe_len;
2445 else
2446 blocksize = sctx->fs_info->nodesize;
d9d181c1
SB
2447 spin_lock(&sctx->stat_lock);
2448 sctx->stat.tree_extents_scrubbed++;
2449 sctx->stat.tree_bytes_scrubbed += len;
2450 spin_unlock(&sctx->stat_lock);
b5d67f64 2451 } else {
25cc1226 2452 blocksize = sctx->fs_info->sectorsize;
ff023aac 2453 WARN_ON(1);
b5d67f64 2454 }
a2de733c
AJ
2455
2456 while (len) {
fa485d21 2457 u32 l = min(len, blocksize);
a2de733c
AJ
2458 int have_csum = 0;
2459
2460 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2461 /* push csums to sbio */
3b5753ec 2462 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2463 if (have_csum == 0)
d9d181c1 2464 ++sctx->stat.no_csum;
a2de733c 2465 }
a36cf8b8 2466 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
96e63a45 2467 mirror_num, have_csum ? csum : NULL,
ff023aac 2468 physical_for_dev_replace);
a2de733c
AJ
2469 if (ret)
2470 return ret;
2471 len -= l;
2472 logical += l;
2473 physical += l;
ff023aac 2474 physical_for_dev_replace += l;
a2de733c
AJ
2475 }
2476 return 0;
2477}
2478
5a6ac9ea 2479static int scrub_pages_for_parity(struct scrub_parity *sparity,
fa485d21 2480 u64 logical, u32 len,
5a6ac9ea
MX
2481 u64 physical, struct btrfs_device *dev,
2482 u64 flags, u64 gen, int mirror_num, u8 *csum)
2483{
2484 struct scrub_ctx *sctx = sparity->sctx;
2485 struct scrub_block *sblock;
2486 int index;
2487
58c4e173 2488 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2489 if (!sblock) {
2490 spin_lock(&sctx->stat_lock);
2491 sctx->stat.malloc_errors++;
2492 spin_unlock(&sctx->stat_lock);
2493 return -ENOMEM;
2494 }
2495
2496 /* one ref inside this function, plus one for each page added to
2497 * a bio later on */
186debd6 2498 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2499 sblock->sctx = sctx;
2500 sblock->no_io_error_seen = 1;
2501 sblock->sparity = sparity;
2502 scrub_parity_get(sparity);
2503
2504 for (index = 0; len > 0; index++) {
2505 struct scrub_page *spage;
fa485d21 2506 u32 l = min_t(u32, len, PAGE_SIZE);
5a6ac9ea 2507
58c4e173 2508 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2509 if (!spage) {
2510leave_nomem:
2511 spin_lock(&sctx->stat_lock);
2512 sctx->stat.malloc_errors++;
2513 spin_unlock(&sctx->stat_lock);
2514 scrub_block_put(sblock);
2515 return -ENOMEM;
2516 }
2517 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2518 /* For scrub block */
2519 scrub_page_get(spage);
2520 sblock->pagev[index] = spage;
2521 /* For scrub parity */
2522 scrub_page_get(spage);
2523 list_add_tail(&spage->list, &sparity->spages);
2524 spage->sblock = sblock;
2525 spage->dev = dev;
2526 spage->flags = flags;
2527 spage->generation = gen;
2528 spage->logical = logical;
2529 spage->physical = physical;
2530 spage->mirror_num = mirror_num;
2531 if (csum) {
2532 spage->have_csum = 1;
2ae0c2d8 2533 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
5a6ac9ea
MX
2534 } else {
2535 spage->have_csum = 0;
2536 }
2537 sblock->page_count++;
58c4e173 2538 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2539 if (!spage->page)
2540 goto leave_nomem;
2541 len -= l;
2542 logical += l;
2543 physical += l;
2544 }
2545
2546 WARN_ON(sblock->page_count == 0);
2547 for (index = 0; index < sblock->page_count; index++) {
2548 struct scrub_page *spage = sblock->pagev[index];
2549 int ret;
2550
2551 ret = scrub_add_page_to_rd_bio(sctx, spage);
2552 if (ret) {
2553 scrub_block_put(sblock);
2554 return ret;
2555 }
2556 }
2557
2558 /* last one frees, either here or in bio completion for last page */
2559 scrub_block_put(sblock);
2560 return 0;
2561}
2562
2563static int scrub_extent_for_parity(struct scrub_parity *sparity,
fa485d21 2564 u64 logical, u32 len,
5a6ac9ea
MX
2565 u64 physical, struct btrfs_device *dev,
2566 u64 flags, u64 gen, int mirror_num)
2567{
2568 struct scrub_ctx *sctx = sparity->sctx;
2569 int ret;
2570 u8 csum[BTRFS_CSUM_SIZE];
2571 u32 blocksize;
2572
e6e674bd 2573 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
4a770891
OS
2574 scrub_parity_mark_sectors_error(sparity, logical, len);
2575 return 0;
2576 }
2577
5a6ac9ea 2578 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b 2579 blocksize = sparity->stripe_len;
5a6ac9ea 2580 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b 2581 blocksize = sparity->stripe_len;
5a6ac9ea 2582 } else {
25cc1226 2583 blocksize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2584 WARN_ON(1);
2585 }
2586
2587 while (len) {
fa485d21 2588 u32 l = min(len, blocksize);
5a6ac9ea
MX
2589 int have_csum = 0;
2590
2591 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2592 /* push csums to sbio */
3b5753ec 2593 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2594 if (have_csum == 0)
2595 goto skip;
2596 }
2597 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2598 flags, gen, mirror_num,
2599 have_csum ? csum : NULL);
5a6ac9ea
MX
2600 if (ret)
2601 return ret;
6b6d24b3 2602skip:
5a6ac9ea
MX
2603 len -= l;
2604 logical += l;
2605 physical += l;
2606 }
2607 return 0;
2608}
2609
3b080b25
WS
2610/*
2611 * Given a physical address, this will calculate it's
2612 * logical offset. if this is a parity stripe, it will return
2613 * the most left data stripe's logical offset.
2614 *
2615 * return 0 if it is a data stripe, 1 means parity stripe.
2616 */
2617static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2618 struct map_lookup *map, u64 *offset,
2619 u64 *stripe_start)
3b080b25
WS
2620{
2621 int i;
2622 int j = 0;
2623 u64 stripe_nr;
2624 u64 last_offset;
9d644a62
DS
2625 u32 stripe_index;
2626 u32 rot;
cff82672 2627 const int data_stripes = nr_data_stripes(map);
3b080b25 2628
cff82672 2629 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
2630 if (stripe_start)
2631 *stripe_start = last_offset;
2632
3b080b25 2633 *offset = last_offset;
cff82672 2634 for (i = 0; i < data_stripes; i++) {
3b080b25
WS
2635 *offset = last_offset + i * map->stripe_len;
2636
42c61ab6 2637 stripe_nr = div64_u64(*offset, map->stripe_len);
cff82672 2638 stripe_nr = div_u64(stripe_nr, data_stripes);
3b080b25
WS
2639
2640 /* Work out the disk rotation on this stripe-set */
47c5713f 2641 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2642 /* calculate which stripe this data locates */
2643 rot += i;
e4fbaee2 2644 stripe_index = rot % map->num_stripes;
3b080b25
WS
2645 if (stripe_index == num)
2646 return 0;
2647 if (stripe_index < num)
2648 j++;
2649 }
2650 *offset = last_offset + j * map->stripe_len;
2651 return 1;
2652}
2653
5a6ac9ea
MX
2654static void scrub_free_parity(struct scrub_parity *sparity)
2655{
2656 struct scrub_ctx *sctx = sparity->sctx;
2657 struct scrub_page *curr, *next;
2658 int nbits;
2659
2660 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2661 if (nbits) {
2662 spin_lock(&sctx->stat_lock);
2663 sctx->stat.read_errors += nbits;
2664 sctx->stat.uncorrectable_errors += nbits;
2665 spin_unlock(&sctx->stat_lock);
2666 }
2667
2668 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2669 list_del_init(&curr->list);
2670 scrub_page_put(curr);
2671 }
2672
2673 kfree(sparity);
2674}
2675
20b2e302
ZL
2676static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2677{
2678 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2679 work);
2680 struct scrub_ctx *sctx = sparity->sctx;
2681
2682 scrub_free_parity(sparity);
2683 scrub_pending_bio_dec(sctx);
2684}
2685
4246a0b6 2686static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2687{
2688 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2689 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2690
4e4cbee9 2691 if (bio->bi_status)
5a6ac9ea
MX
2692 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2693 sparity->nsectors);
2694
5a6ac9ea 2695 bio_put(bio);
20b2e302 2696
a0cac0ec
OS
2697 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2698 NULL);
0b246afa 2699 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2700}
2701
2702static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2703{
2704 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2705 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2706 struct bio *bio;
2707 struct btrfs_raid_bio *rbio;
5a6ac9ea 2708 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2709 u64 length;
2710 int ret;
2711
2712 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2713 sparity->nsectors))
2714 goto out;
2715
a0dd59de 2716 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2717
2718 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2719 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2720 &length, &bbio);
8e5cfb55 2721 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2722 goto bbio_out;
2723
c5e4c3d7 2724 bio = btrfs_io_bio_alloc(0);
5a6ac9ea
MX
2725 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2726 bio->bi_private = sparity;
2727 bio->bi_end_io = scrub_parity_bio_endio;
2728
2ff7e61e 2729 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2730 length, sparity->scrub_dev,
5a6ac9ea
MX
2731 sparity->dbitmap,
2732 sparity->nsectors);
2733 if (!rbio)
2734 goto rbio_out;
2735
5a6ac9ea
MX
2736 scrub_pending_bio_inc(sctx);
2737 raid56_parity_submit_scrub_rbio(rbio);
2738 return;
2739
2740rbio_out:
2741 bio_put(bio);
2742bbio_out:
ae6529c3 2743 btrfs_bio_counter_dec(fs_info);
6e9606d2 2744 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2745 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2746 sparity->nsectors);
2747 spin_lock(&sctx->stat_lock);
2748 sctx->stat.malloc_errors++;
2749 spin_unlock(&sctx->stat_lock);
2750out:
2751 scrub_free_parity(sparity);
2752}
2753
2754static inline int scrub_calc_parity_bitmap_len(int nsectors)
2755{
bfca9a6d 2756 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2757}
2758
2759static void scrub_parity_get(struct scrub_parity *sparity)
2760{
78a76450 2761 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2762}
2763
2764static void scrub_parity_put(struct scrub_parity *sparity)
2765{
78a76450 2766 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2767 return;
2768
2769 scrub_parity_check_and_repair(sparity);
2770}
2771
2772static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2773 struct map_lookup *map,
2774 struct btrfs_device *sdev,
2775 struct btrfs_path *path,
2776 u64 logic_start,
2777 u64 logic_end)
2778{
fb456252 2779 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2780 struct btrfs_root *root = fs_info->extent_root;
2781 struct btrfs_root *csum_root = fs_info->csum_root;
2782 struct btrfs_extent_item *extent;
4a770891 2783 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2784 u64 flags;
2785 int ret;
2786 int slot;
2787 struct extent_buffer *l;
2788 struct btrfs_key key;
2789 u64 generation;
2790 u64 extent_logical;
2791 u64 extent_physical;
fa485d21
QW
2792 /* Check the comment in scrub_stripe() for why u32 is enough here */
2793 u32 extent_len;
4a770891 2794 u64 mapped_length;
5a6ac9ea
MX
2795 struct btrfs_device *extent_dev;
2796 struct scrub_parity *sparity;
2797 int nsectors;
2798 int bitmap_len;
2799 int extent_mirror_num;
2800 int stop_loop = 0;
2801
fa485d21 2802 ASSERT(map->stripe_len <= U32_MAX);
ab108d99 2803 nsectors = map->stripe_len >> fs_info->sectorsize_bits;
5a6ac9ea
MX
2804 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2805 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2806 GFP_NOFS);
2807 if (!sparity) {
2808 spin_lock(&sctx->stat_lock);
2809 sctx->stat.malloc_errors++;
2810 spin_unlock(&sctx->stat_lock);
2811 return -ENOMEM;
2812 }
2813
fa485d21 2814 ASSERT(map->stripe_len <= U32_MAX);
5a6ac9ea
MX
2815 sparity->stripe_len = map->stripe_len;
2816 sparity->nsectors = nsectors;
2817 sparity->sctx = sctx;
2818 sparity->scrub_dev = sdev;
2819 sparity->logic_start = logic_start;
2820 sparity->logic_end = logic_end;
78a76450 2821 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2822 INIT_LIST_HEAD(&sparity->spages);
2823 sparity->dbitmap = sparity->bitmap;
2824 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2825
2826 ret = 0;
2827 while (logic_start < logic_end) {
2828 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2829 key.type = BTRFS_METADATA_ITEM_KEY;
2830 else
2831 key.type = BTRFS_EXTENT_ITEM_KEY;
2832 key.objectid = logic_start;
2833 key.offset = (u64)-1;
2834
2835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2836 if (ret < 0)
2837 goto out;
2838
2839 if (ret > 0) {
2840 ret = btrfs_previous_extent_item(root, path, 0);
2841 if (ret < 0)
2842 goto out;
2843 if (ret > 0) {
2844 btrfs_release_path(path);
2845 ret = btrfs_search_slot(NULL, root, &key,
2846 path, 0, 0);
2847 if (ret < 0)
2848 goto out;
2849 }
2850 }
2851
2852 stop_loop = 0;
2853 while (1) {
2854 u64 bytes;
2855
2856 l = path->nodes[0];
2857 slot = path->slots[0];
2858 if (slot >= btrfs_header_nritems(l)) {
2859 ret = btrfs_next_leaf(root, path);
2860 if (ret == 0)
2861 continue;
2862 if (ret < 0)
2863 goto out;
2864
2865 stop_loop = 1;
2866 break;
2867 }
2868 btrfs_item_key_to_cpu(l, &key, slot);
2869
d7cad238
ZL
2870 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2871 key.type != BTRFS_METADATA_ITEM_KEY)
2872 goto next;
2873
5a6ac9ea 2874 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2875 bytes = fs_info->nodesize;
5a6ac9ea
MX
2876 else
2877 bytes = key.offset;
2878
2879 if (key.objectid + bytes <= logic_start)
2880 goto next;
2881
a0dd59de 2882 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2883 stop_loop = 1;
2884 break;
2885 }
2886
2887 while (key.objectid >= logic_start + map->stripe_len)
2888 logic_start += map->stripe_len;
2889
2890 extent = btrfs_item_ptr(l, slot,
2891 struct btrfs_extent_item);
2892 flags = btrfs_extent_flags(l, extent);
2893 generation = btrfs_extent_generation(l, extent);
2894
a323e813
ZL
2895 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2896 (key.objectid < logic_start ||
2897 key.objectid + bytes >
2898 logic_start + map->stripe_len)) {
5d163e0e
JM
2899 btrfs_err(fs_info,
2900 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2901 key.objectid, logic_start);
9799d2c3
ZL
2902 spin_lock(&sctx->stat_lock);
2903 sctx->stat.uncorrectable_errors++;
2904 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2905 goto next;
2906 }
2907again:
2908 extent_logical = key.objectid;
fa485d21 2909 ASSERT(bytes <= U32_MAX);
5a6ac9ea
MX
2910 extent_len = bytes;
2911
2912 if (extent_logical < logic_start) {
2913 extent_len -= logic_start - extent_logical;
2914 extent_logical = logic_start;
2915 }
2916
2917 if (extent_logical + extent_len >
2918 logic_start + map->stripe_len)
2919 extent_len = logic_start + map->stripe_len -
2920 extent_logical;
2921
2922 scrub_parity_mark_sectors_data(sparity, extent_logical,
2923 extent_len);
2924
4a770891 2925 mapped_length = extent_len;
f1fee653 2926 bbio = NULL;
cf8cddd3
CH
2927 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2928 extent_logical, &mapped_length, &bbio,
2929 0);
4a770891
OS
2930 if (!ret) {
2931 if (!bbio || mapped_length < extent_len)
2932 ret = -EIO;
2933 }
2934 if (ret) {
2935 btrfs_put_bbio(bbio);
2936 goto out;
2937 }
2938 extent_physical = bbio->stripes[0].physical;
2939 extent_mirror_num = bbio->mirror_num;
2940 extent_dev = bbio->stripes[0].dev;
2941 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2942
2943 ret = btrfs_lookup_csums_range(csum_root,
2944 extent_logical,
2945 extent_logical + extent_len - 1,
2946 &sctx->csum_list, 1);
2947 if (ret)
2948 goto out;
2949
2950 ret = scrub_extent_for_parity(sparity, extent_logical,
2951 extent_len,
2952 extent_physical,
2953 extent_dev, flags,
2954 generation,
2955 extent_mirror_num);
6fa96d72
ZL
2956
2957 scrub_free_csums(sctx);
2958
5a6ac9ea
MX
2959 if (ret)
2960 goto out;
2961
5a6ac9ea
MX
2962 if (extent_logical + extent_len <
2963 key.objectid + bytes) {
2964 logic_start += map->stripe_len;
2965
2966 if (logic_start >= logic_end) {
2967 stop_loop = 1;
2968 break;
2969 }
2970
2971 if (logic_start < key.objectid + bytes) {
2972 cond_resched();
2973 goto again;
2974 }
2975 }
2976next:
2977 path->slots[0]++;
2978 }
2979
2980 btrfs_release_path(path);
2981
2982 if (stop_loop)
2983 break;
2984
2985 logic_start += map->stripe_len;
2986 }
2987out:
fa485d21
QW
2988 if (ret < 0) {
2989 ASSERT(logic_end - logic_start <= U32_MAX);
5a6ac9ea 2990 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 2991 logic_end - logic_start);
fa485d21 2992 }
5a6ac9ea
MX
2993 scrub_parity_put(sparity);
2994 scrub_submit(sctx);
3fb99303 2995 mutex_lock(&sctx->wr_lock);
5a6ac9ea 2996 scrub_wr_submit(sctx);
3fb99303 2997 mutex_unlock(&sctx->wr_lock);
5a6ac9ea
MX
2998
2999 btrfs_release_path(path);
3000 return ret < 0 ? ret : 0;
3001}
3002
d9d181c1 3003static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3004 struct map_lookup *map,
3005 struct btrfs_device *scrub_dev,
2473d24f
FM
3006 int num, u64 base, u64 length,
3007 struct btrfs_block_group *cache)
a2de733c 3008{
5a6ac9ea 3009 struct btrfs_path *path, *ppath;
fb456252 3010 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3011 struct btrfs_root *root = fs_info->extent_root;
3012 struct btrfs_root *csum_root = fs_info->csum_root;
3013 struct btrfs_extent_item *extent;
e7786c3a 3014 struct blk_plug plug;
a2de733c
AJ
3015 u64 flags;
3016 int ret;
3017 int slot;
a2de733c 3018 u64 nstripes;
a2de733c 3019 struct extent_buffer *l;
a2de733c
AJ
3020 u64 physical;
3021 u64 logical;
625f1c8d 3022 u64 logic_end;
3b080b25 3023 u64 physical_end;
a2de733c 3024 u64 generation;
e12fa9cd 3025 int mirror_num;
7a26285e
AJ
3026 struct reada_control *reada1;
3027 struct reada_control *reada2;
e6c11f9a 3028 struct btrfs_key key;
7a26285e 3029 struct btrfs_key key_end;
a2de733c
AJ
3030 u64 increment = map->stripe_len;
3031 u64 offset;
ff023aac
SB
3032 u64 extent_logical;
3033 u64 extent_physical;
fa485d21
QW
3034 /*
3035 * Unlike chunk length, extent length should never go beyond
3036 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3037 */
3038 u32 extent_len;
5a6ac9ea
MX
3039 u64 stripe_logical;
3040 u64 stripe_end;
ff023aac
SB
3041 struct btrfs_device *extent_dev;
3042 int extent_mirror_num;
3b080b25 3043 int stop_loop = 0;
53b381b3 3044
3b080b25 3045 physical = map->stripes[num].physical;
a2de733c 3046 offset = 0;
42c61ab6 3047 nstripes = div64_u64(length, map->stripe_len);
a2de733c
AJ
3048 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3049 offset = map->stripe_len * num;
3050 increment = map->stripe_len * map->num_stripes;
193ea74b 3051 mirror_num = 1;
a2de733c
AJ
3052 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3053 int factor = map->num_stripes / map->sub_stripes;
3054 offset = map->stripe_len * (num / map->sub_stripes);
3055 increment = map->stripe_len * factor;
193ea74b 3056 mirror_num = num % map->sub_stripes + 1;
c7369b3f 3057 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
a2de733c 3058 increment = map->stripe_len;
193ea74b 3059 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3060 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3061 increment = map->stripe_len;
193ea74b 3062 mirror_num = num % map->num_stripes + 1;
ffe2d203 3063 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3064 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3065 increment = map->stripe_len * nr_data_stripes(map);
3066 mirror_num = 1;
a2de733c
AJ
3067 } else {
3068 increment = map->stripe_len;
193ea74b 3069 mirror_num = 1;
a2de733c
AJ
3070 }
3071
3072 path = btrfs_alloc_path();
3073 if (!path)
3074 return -ENOMEM;
3075
5a6ac9ea
MX
3076 ppath = btrfs_alloc_path();
3077 if (!ppath) {
379d6854 3078 btrfs_free_path(path);
5a6ac9ea
MX
3079 return -ENOMEM;
3080 }
3081
b5d67f64
SB
3082 /*
3083 * work on commit root. The related disk blocks are static as
3084 * long as COW is applied. This means, it is save to rewrite
3085 * them to repair disk errors without any race conditions
3086 */
a2de733c
AJ
3087 path->search_commit_root = 1;
3088 path->skip_locking = 1;
3089
063c54dc
GH
3090 ppath->search_commit_root = 1;
3091 ppath->skip_locking = 1;
a2de733c 3092 /*
7a26285e
AJ
3093 * trigger the readahead for extent tree csum tree and wait for
3094 * completion. During readahead, the scrub is officially paused
3095 * to not hold off transaction commits
a2de733c
AJ
3096 */
3097 logical = base + offset;
3b080b25 3098 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3099 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3100 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3101 map, &logic_end, NULL);
3b080b25
WS
3102 logic_end += base;
3103 } else {
3104 logic_end = logical + increment * nstripes;
3105 }
d9d181c1 3106 wait_event(sctx->list_wait,
b6bfebc1 3107 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3108 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3109
3110 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3111 key.objectid = logical;
3112 key.type = BTRFS_EXTENT_ITEM_KEY;
3113 key.offset = (u64)0;
3b080b25 3114 key_end.objectid = logic_end;
3173a18f
JB
3115 key_end.type = BTRFS_METADATA_ITEM_KEY;
3116 key_end.offset = (u64)-1;
e6c11f9a 3117 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3118
a6889caf
FM
3119 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3120 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3121 key.type = BTRFS_EXTENT_CSUM_KEY;
3122 key.offset = logical;
3123 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3124 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3125 key_end.offset = logic_end;
3126 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3127 } else {
3128 reada2 = NULL;
3129 }
7a26285e
AJ
3130
3131 if (!IS_ERR(reada1))
3132 btrfs_reada_wait(reada1);
a6889caf 3133 if (!IS_ERR_OR_NULL(reada2))
7a26285e
AJ
3134 btrfs_reada_wait(reada2);
3135
a2de733c
AJ
3136
3137 /*
3138 * collect all data csums for the stripe to avoid seeking during
3139 * the scrub. This might currently (crc32) end up to be about 1MB
3140 */
e7786c3a 3141 blk_start_plug(&plug);
a2de733c 3142
a2de733c
AJ
3143 /*
3144 * now find all extents for each stripe and scrub them
3145 */
a2de733c 3146 ret = 0;
3b080b25 3147 while (physical < physical_end) {
a2de733c
AJ
3148 /*
3149 * canceled?
3150 */
3151 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3152 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3153 ret = -ECANCELED;
3154 goto out;
3155 }
3156 /*
3157 * check to see if we have to pause
3158 */
3159 if (atomic_read(&fs_info->scrub_pause_req)) {
3160 /* push queued extents */
2073c4c2 3161 sctx->flush_all_writes = true;
d9d181c1 3162 scrub_submit(sctx);
3fb99303 3163 mutex_lock(&sctx->wr_lock);
ff023aac 3164 scrub_wr_submit(sctx);
3fb99303 3165 mutex_unlock(&sctx->wr_lock);
d9d181c1 3166 wait_event(sctx->list_wait,
b6bfebc1 3167 atomic_read(&sctx->bios_in_flight) == 0);
2073c4c2 3168 sctx->flush_all_writes = false;
3cb0929a 3169 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3170 }
3171
f2f66a2f
ZL
3172 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3173 ret = get_raid56_logic_offset(physical, num, map,
3174 &logical,
3175 &stripe_logical);
3176 logical += base;
3177 if (ret) {
7955323b 3178 /* it is parity strip */
f2f66a2f 3179 stripe_logical += base;
a0dd59de 3180 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3181 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3182 ppath, stripe_logical,
3183 stripe_end);
3184 if (ret)
3185 goto out;
3186 goto skip;
3187 }
3188 }
3189
7c76edb7
WS
3190 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3191 key.type = BTRFS_METADATA_ITEM_KEY;
3192 else
3193 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3194 key.objectid = logical;
625f1c8d 3195 key.offset = (u64)-1;
a2de733c
AJ
3196
3197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3198 if (ret < 0)
3199 goto out;
3173a18f 3200
8c51032f 3201 if (ret > 0) {
ade2e0b3 3202 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3203 if (ret < 0)
3204 goto out;
8c51032f
AJ
3205 if (ret > 0) {
3206 /* there's no smaller item, so stick with the
3207 * larger one */
3208 btrfs_release_path(path);
3209 ret = btrfs_search_slot(NULL, root, &key,
3210 path, 0, 0);
3211 if (ret < 0)
3212 goto out;
3213 }
a2de733c
AJ
3214 }
3215
625f1c8d 3216 stop_loop = 0;
a2de733c 3217 while (1) {
3173a18f
JB
3218 u64 bytes;
3219
a2de733c
AJ
3220 l = path->nodes[0];
3221 slot = path->slots[0];
3222 if (slot >= btrfs_header_nritems(l)) {
3223 ret = btrfs_next_leaf(root, path);
3224 if (ret == 0)
3225 continue;
3226 if (ret < 0)
3227 goto out;
3228
625f1c8d 3229 stop_loop = 1;
a2de733c
AJ
3230 break;
3231 }
3232 btrfs_item_key_to_cpu(l, &key, slot);
3233
d7cad238
ZL
3234 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3235 key.type != BTRFS_METADATA_ITEM_KEY)
3236 goto next;
3237
3173a18f 3238 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3239 bytes = fs_info->nodesize;
3173a18f
JB
3240 else
3241 bytes = key.offset;
3242
3243 if (key.objectid + bytes <= logical)
a2de733c
AJ
3244 goto next;
3245
625f1c8d
LB
3246 if (key.objectid >= logical + map->stripe_len) {
3247 /* out of this device extent */
3248 if (key.objectid >= logic_end)
3249 stop_loop = 1;
3250 break;
3251 }
a2de733c 3252
2473d24f
FM
3253 /*
3254 * If our block group was removed in the meanwhile, just
3255 * stop scrubbing since there is no point in continuing.
3256 * Continuing would prevent reusing its device extents
3257 * for new block groups for a long time.
3258 */
3259 spin_lock(&cache->lock);
3260 if (cache->removed) {
3261 spin_unlock(&cache->lock);
3262 ret = 0;
3263 goto out;
3264 }
3265 spin_unlock(&cache->lock);
3266
a2de733c
AJ
3267 extent = btrfs_item_ptr(l, slot,
3268 struct btrfs_extent_item);
3269 flags = btrfs_extent_flags(l, extent);
3270 generation = btrfs_extent_generation(l, extent);
3271
a323e813
ZL
3272 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3273 (key.objectid < logical ||
3274 key.objectid + bytes >
3275 logical + map->stripe_len)) {
efe120a0 3276 btrfs_err(fs_info,
5d163e0e 3277 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3278 key.objectid, logical);
9799d2c3
ZL
3279 spin_lock(&sctx->stat_lock);
3280 sctx->stat.uncorrectable_errors++;
3281 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3282 goto next;
3283 }
3284
625f1c8d
LB
3285again:
3286 extent_logical = key.objectid;
fa485d21 3287 ASSERT(bytes <= U32_MAX);
625f1c8d
LB
3288 extent_len = bytes;
3289
a2de733c
AJ
3290 /*
3291 * trim extent to this stripe
3292 */
625f1c8d
LB
3293 if (extent_logical < logical) {
3294 extent_len -= logical - extent_logical;
3295 extent_logical = logical;
a2de733c 3296 }
625f1c8d 3297 if (extent_logical + extent_len >
a2de733c 3298 logical + map->stripe_len) {
625f1c8d
LB
3299 extent_len = logical + map->stripe_len -
3300 extent_logical;
a2de733c
AJ
3301 }
3302
625f1c8d 3303 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3304 extent_dev = scrub_dev;
3305 extent_mirror_num = mirror_num;
32934280 3306 if (sctx->is_dev_replace)
ff023aac
SB
3307 scrub_remap_extent(fs_info, extent_logical,
3308 extent_len, &extent_physical,
3309 &extent_dev,
3310 &extent_mirror_num);
625f1c8d 3311
89490303
FM
3312 if (flags & BTRFS_EXTENT_FLAG_DATA) {
3313 ret = btrfs_lookup_csums_range(csum_root,
3314 extent_logical,
3315 extent_logical + extent_len - 1,
3316 &sctx->csum_list, 1);
3317 if (ret)
3318 goto out;
3319 }
625f1c8d 3320
6ca1765b 3321 ret = scrub_extent(sctx, map, extent_logical, extent_len,
ff023aac
SB
3322 extent_physical, extent_dev, flags,
3323 generation, extent_mirror_num,
115930cb 3324 extent_logical - logical + physical);
6fa96d72
ZL
3325
3326 scrub_free_csums(sctx);
3327
a2de733c
AJ
3328 if (ret)
3329 goto out;
3330
625f1c8d
LB
3331 if (extent_logical + extent_len <
3332 key.objectid + bytes) {
ffe2d203 3333 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3334 /*
3335 * loop until we find next data stripe
3336 * or we have finished all stripes.
3337 */
5a6ac9ea
MX
3338loop:
3339 physical += map->stripe_len;
3340 ret = get_raid56_logic_offset(physical,
3341 num, map, &logical,
3342 &stripe_logical);
3343 logical += base;
3344
3345 if (ret && physical < physical_end) {
3346 stripe_logical += base;
3347 stripe_end = stripe_logical +
a0dd59de 3348 increment;
5a6ac9ea
MX
3349 ret = scrub_raid56_parity(sctx,
3350 map, scrub_dev, ppath,
3351 stripe_logical,
3352 stripe_end);
3353 if (ret)
3354 goto out;
3355 goto loop;
3356 }
3b080b25
WS
3357 } else {
3358 physical += map->stripe_len;
3359 logical += increment;
3360 }
625f1c8d
LB
3361 if (logical < key.objectid + bytes) {
3362 cond_resched();
3363 goto again;
3364 }
3365
3b080b25 3366 if (physical >= physical_end) {
625f1c8d
LB
3367 stop_loop = 1;
3368 break;
3369 }
3370 }
a2de733c
AJ
3371next:
3372 path->slots[0]++;
3373 }
71267333 3374 btrfs_release_path(path);
3b080b25 3375skip:
a2de733c
AJ
3376 logical += increment;
3377 physical += map->stripe_len;
d9d181c1 3378 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3379 if (stop_loop)
3380 sctx->stat.last_physical = map->stripes[num].physical +
3381 length;
3382 else
3383 sctx->stat.last_physical = physical;
d9d181c1 3384 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3385 if (stop_loop)
3386 break;
a2de733c 3387 }
ff023aac 3388out:
a2de733c 3389 /* push queued extents */
d9d181c1 3390 scrub_submit(sctx);
3fb99303 3391 mutex_lock(&sctx->wr_lock);
ff023aac 3392 scrub_wr_submit(sctx);
3fb99303 3393 mutex_unlock(&sctx->wr_lock);
a2de733c 3394
e7786c3a 3395 blk_finish_plug(&plug);
a2de733c 3396 btrfs_free_path(path);
5a6ac9ea 3397 btrfs_free_path(ppath);
a2de733c
AJ
3398 return ret < 0 ? ret : 0;
3399}
3400
d9d181c1 3401static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3402 struct btrfs_device *scrub_dev,
a36cf8b8 3403 u64 chunk_offset, u64 length,
020d5b73 3404 u64 dev_offset,
32da5386 3405 struct btrfs_block_group *cache)
a2de733c 3406{
fb456252 3407 struct btrfs_fs_info *fs_info = sctx->fs_info;
c8bf1b67 3408 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3409 struct map_lookup *map;
3410 struct extent_map *em;
3411 int i;
ff023aac 3412 int ret = 0;
a2de733c 3413
c8bf1b67
DS
3414 read_lock(&map_tree->lock);
3415 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3416 read_unlock(&map_tree->lock);
a2de733c 3417
020d5b73
FM
3418 if (!em) {
3419 /*
3420 * Might have been an unused block group deleted by the cleaner
3421 * kthread or relocation.
3422 */
3423 spin_lock(&cache->lock);
3424 if (!cache->removed)
3425 ret = -EINVAL;
3426 spin_unlock(&cache->lock);
3427
3428 return ret;
3429 }
a2de733c 3430
95617d69 3431 map = em->map_lookup;
a2de733c
AJ
3432 if (em->start != chunk_offset)
3433 goto out;
3434
3435 if (em->len < length)
3436 goto out;
3437
3438 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3439 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3440 map->stripes[i].physical == dev_offset) {
a36cf8b8 3441 ret = scrub_stripe(sctx, map, scrub_dev, i,
2473d24f 3442 chunk_offset, length, cache);
a2de733c
AJ
3443 if (ret)
3444 goto out;
3445 }
3446 }
3447out:
3448 free_extent_map(em);
3449
3450 return ret;
3451}
3452
3453static noinline_for_stack
a36cf8b8 3454int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 3455 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
3456{
3457 struct btrfs_dev_extent *dev_extent = NULL;
3458 struct btrfs_path *path;
0b246afa
JM
3459 struct btrfs_fs_info *fs_info = sctx->fs_info;
3460 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3461 u64 length;
a2de733c 3462 u64 chunk_offset;
55e3a601 3463 int ret = 0;
76a8efa1 3464 int ro_set;
a2de733c
AJ
3465 int slot;
3466 struct extent_buffer *l;
3467 struct btrfs_key key;
3468 struct btrfs_key found_key;
32da5386 3469 struct btrfs_block_group *cache;
ff023aac 3470 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3471
3472 path = btrfs_alloc_path();
3473 if (!path)
3474 return -ENOMEM;
3475
e4058b54 3476 path->reada = READA_FORWARD;
a2de733c
AJ
3477 path->search_commit_root = 1;
3478 path->skip_locking = 1;
3479
a36cf8b8 3480 key.objectid = scrub_dev->devid;
a2de733c
AJ
3481 key.offset = 0ull;
3482 key.type = BTRFS_DEV_EXTENT_KEY;
3483
a2de733c
AJ
3484 while (1) {
3485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3486 if (ret < 0)
8c51032f
AJ
3487 break;
3488 if (ret > 0) {
3489 if (path->slots[0] >=
3490 btrfs_header_nritems(path->nodes[0])) {
3491 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3492 if (ret < 0)
3493 break;
3494 if (ret > 0) {
3495 ret = 0;
8c51032f 3496 break;
55e3a601
Z
3497 }
3498 } else {
3499 ret = 0;
8c51032f
AJ
3500 }
3501 }
a2de733c
AJ
3502
3503 l = path->nodes[0];
3504 slot = path->slots[0];
3505
3506 btrfs_item_key_to_cpu(l, &found_key, slot);
3507
a36cf8b8 3508 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3509 break;
3510
962a298f 3511 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3512 break;
3513
3514 if (found_key.offset >= end)
3515 break;
3516
3517 if (found_key.offset < key.offset)
3518 break;
3519
3520 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3521 length = btrfs_dev_extent_length(l, dev_extent);
3522
ced96edc
QW
3523 if (found_key.offset + length <= start)
3524 goto skip;
a2de733c 3525
a2de733c
AJ
3526 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3527
3528 /*
3529 * get a reference on the corresponding block group to prevent
3530 * the chunk from going away while we scrub it
3531 */
3532 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3533
3534 /* some chunks are removed but not committed to disk yet,
3535 * continue scrubbing */
3536 if (!cache)
3537 goto skip;
3538
2473d24f
FM
3539 /*
3540 * Make sure that while we are scrubbing the corresponding block
3541 * group doesn't get its logical address and its device extents
3542 * reused for another block group, which can possibly be of a
3543 * different type and different profile. We do this to prevent
3544 * false error detections and crashes due to bogus attempts to
3545 * repair extents.
3546 */
3547 spin_lock(&cache->lock);
3548 if (cache->removed) {
3549 spin_unlock(&cache->lock);
3550 btrfs_put_block_group(cache);
3551 goto skip;
3552 }
6b7304af 3553 btrfs_freeze_block_group(cache);
2473d24f
FM
3554 spin_unlock(&cache->lock);
3555
55e3a601
Z
3556 /*
3557 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3558 * to avoid deadlock caused by:
3559 * btrfs_inc_block_group_ro()
3560 * -> btrfs_wait_for_commit()
3561 * -> btrfs_commit_transaction()
3562 * -> btrfs_scrub_pause()
3563 */
3564 scrub_pause_on(fs_info);
b12de528
QW
3565
3566 /*
3567 * Don't do chunk preallocation for scrub.
3568 *
3569 * This is especially important for SYSTEM bgs, or we can hit
3570 * -EFBIG from btrfs_finish_chunk_alloc() like:
3571 * 1. The only SYSTEM bg is marked RO.
3572 * Since SYSTEM bg is small, that's pretty common.
3573 * 2. New SYSTEM bg will be allocated
3574 * Due to regular version will allocate new chunk.
3575 * 3. New SYSTEM bg is empty and will get cleaned up
3576 * Before cleanup really happens, it's marked RO again.
3577 * 4. Empty SYSTEM bg get scrubbed
3578 * We go back to 2.
3579 *
3580 * This can easily boost the amount of SYSTEM chunks if cleaner
3581 * thread can't be triggered fast enough, and use up all space
3582 * of btrfs_super_block::sys_chunk_array
1bbb97b8
QW
3583 *
3584 * While for dev replace, we need to try our best to mark block
3585 * group RO, to prevent race between:
3586 * - Write duplication
3587 * Contains latest data
3588 * - Scrub copy
3589 * Contains data from commit tree
3590 *
3591 * If target block group is not marked RO, nocow writes can
3592 * be overwritten by scrub copy, causing data corruption.
3593 * So for dev-replace, it's not allowed to continue if a block
3594 * group is not RO.
b12de528 3595 */
1bbb97b8 3596 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
76a8efa1
Z
3597 if (ret == 0) {
3598 ro_set = 1;
1bbb97b8 3599 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
76a8efa1
Z
3600 /*
3601 * btrfs_inc_block_group_ro return -ENOSPC when it
3602 * failed in creating new chunk for metadata.
1bbb97b8 3603 * It is not a problem for scrub, because
76a8efa1
Z
3604 * metadata are always cowed, and our scrub paused
3605 * commit_transactions.
3606 */
3607 ro_set = 0;
3608 } else {
5d163e0e 3609 btrfs_warn(fs_info,
913e1535 3610 "failed setting block group ro: %d", ret);
6b7304af 3611 btrfs_unfreeze_block_group(cache);
55e3a601 3612 btrfs_put_block_group(cache);
1bbb97b8 3613 scrub_pause_off(fs_info);
55e3a601
Z
3614 break;
3615 }
3616
1bbb97b8
QW
3617 /*
3618 * Now the target block is marked RO, wait for nocow writes to
3619 * finish before dev-replace.
3620 * COW is fine, as COW never overwrites extents in commit tree.
3621 */
3622 if (sctx->is_dev_replace) {
3623 btrfs_wait_nocow_writers(cache);
3624 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3625 cache->length);
3626 }
3627
3628 scrub_pause_off(fs_info);
3ec17a67 3629 down_write(&dev_replace->rwsem);
ff023aac
SB
3630 dev_replace->cursor_right = found_key.offset + length;
3631 dev_replace->cursor_left = found_key.offset;
3632 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
3633 up_write(&dev_replace->rwsem);
3634
8c204c96 3635 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
32934280 3636 found_key.offset, cache);
ff023aac
SB
3637
3638 /*
3639 * flush, submit all pending read and write bios, afterwards
3640 * wait for them.
3641 * Note that in the dev replace case, a read request causes
3642 * write requests that are submitted in the read completion
3643 * worker. Therefore in the current situation, it is required
3644 * that all write requests are flushed, so that all read and
3645 * write requests are really completed when bios_in_flight
3646 * changes to 0.
3647 */
2073c4c2 3648 sctx->flush_all_writes = true;
ff023aac 3649 scrub_submit(sctx);
3fb99303 3650 mutex_lock(&sctx->wr_lock);
ff023aac 3651 scrub_wr_submit(sctx);
3fb99303 3652 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
3653
3654 wait_event(sctx->list_wait,
3655 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3656
3657 scrub_pause_on(fs_info);
12cf9372
WS
3658
3659 /*
3660 * must be called before we decrease @scrub_paused.
3661 * make sure we don't block transaction commit while
3662 * we are waiting pending workers finished.
3663 */
ff023aac
SB
3664 wait_event(sctx->list_wait,
3665 atomic_read(&sctx->workers_pending) == 0);
2073c4c2 3666 sctx->flush_all_writes = false;
12cf9372 3667
b708ce96 3668 scrub_pause_off(fs_info);
ff023aac 3669
3ec17a67 3670 down_write(&dev_replace->rwsem);
1a1a8b73
FM
3671 dev_replace->cursor_left = dev_replace->cursor_right;
3672 dev_replace->item_needs_writeback = 1;
3ec17a67 3673 up_write(&dev_replace->rwsem);
1a1a8b73 3674
76a8efa1 3675 if (ro_set)
2ff7e61e 3676 btrfs_dec_block_group_ro(cache);
ff023aac 3677
758f2dfc
FM
3678 /*
3679 * We might have prevented the cleaner kthread from deleting
3680 * this block group if it was already unused because we raced
3681 * and set it to RO mode first. So add it back to the unused
3682 * list, otherwise it might not ever be deleted unless a manual
3683 * balance is triggered or it becomes used and unused again.
3684 */
3685 spin_lock(&cache->lock);
3686 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
bf38be65 3687 cache->used == 0) {
758f2dfc 3688 spin_unlock(&cache->lock);
6e80d4f8
DZ
3689 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3690 btrfs_discard_queue_work(&fs_info->discard_ctl,
3691 cache);
3692 else
3693 btrfs_mark_bg_unused(cache);
758f2dfc
FM
3694 } else {
3695 spin_unlock(&cache->lock);
3696 }
3697
6b7304af 3698 btrfs_unfreeze_block_group(cache);
a2de733c
AJ
3699 btrfs_put_block_group(cache);
3700 if (ret)
3701 break;
32934280 3702 if (sctx->is_dev_replace &&
af1be4f8 3703 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3704 ret = -EIO;
3705 break;
3706 }
3707 if (sctx->stat.malloc_errors > 0) {
3708 ret = -ENOMEM;
3709 break;
3710 }
ced96edc 3711skip:
a2de733c 3712 key.offset = found_key.offset + length;
71267333 3713 btrfs_release_path(path);
a2de733c
AJ
3714 }
3715
a2de733c 3716 btrfs_free_path(path);
8c51032f 3717
55e3a601 3718 return ret;
a2de733c
AJ
3719}
3720
a36cf8b8
SB
3721static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3722 struct btrfs_device *scrub_dev)
a2de733c
AJ
3723{
3724 int i;
3725 u64 bytenr;
3726 u64 gen;
3727 int ret;
0b246afa 3728 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3729
0b246afa 3730 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
fbabd4a3 3731 return -EROFS;
79787eaa 3732
5f546063 3733 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3734 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3735 gen = scrub_dev->generation;
3736 else
0b246afa 3737 gen = fs_info->last_trans_committed;
a2de733c
AJ
3738
3739 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3740 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3741 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3742 scrub_dev->commit_total_bytes)
a2de733c 3743 break;
12659251
NA
3744 if (!btrfs_check_super_location(scrub_dev, bytenr))
3745 continue;
a2de733c 3746
d9d181c1 3747 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3748 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
96e63a45 3749 NULL, bytenr);
a2de733c
AJ
3750 if (ret)
3751 return ret;
3752 }
b6bfebc1 3753 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3754
3755 return 0;
3756}
3757
e89c4a9c
JB
3758static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3759{
3760 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3761 &fs_info->scrub_lock)) {
3762 struct btrfs_workqueue *scrub_workers = NULL;
3763 struct btrfs_workqueue *scrub_wr_comp = NULL;
3764 struct btrfs_workqueue *scrub_parity = NULL;
3765
3766 scrub_workers = fs_info->scrub_workers;
3767 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3768 scrub_parity = fs_info->scrub_parity_workers;
3769
3770 fs_info->scrub_workers = NULL;
3771 fs_info->scrub_wr_completion_workers = NULL;
3772 fs_info->scrub_parity_workers = NULL;
3773 mutex_unlock(&fs_info->scrub_lock);
3774
3775 btrfs_destroy_workqueue(scrub_workers);
3776 btrfs_destroy_workqueue(scrub_wr_comp);
3777 btrfs_destroy_workqueue(scrub_parity);
3778 }
3779}
3780
a2de733c
AJ
3781/*
3782 * get a reference count on fs_info->scrub_workers. start worker if necessary
3783 */
ff023aac
SB
3784static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3785 int is_dev_replace)
a2de733c 3786{
e89c4a9c
JB
3787 struct btrfs_workqueue *scrub_workers = NULL;
3788 struct btrfs_workqueue *scrub_wr_comp = NULL;
3789 struct btrfs_workqueue *scrub_parity = NULL;
6f011058 3790 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3791 int max_active = fs_info->thread_pool_size;
e89c4a9c 3792 int ret = -ENOMEM;
a2de733c 3793
e89c4a9c
JB
3794 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3795 return 0;
eb4318e5 3796
e89c4a9c
JB
3797 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3798 is_dev_replace ? 1 : max_active, 4);
3799 if (!scrub_workers)
3800 goto fail_scrub_workers;
e82afc52 3801
e89c4a9c 3802 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
20b2e302 3803 max_active, 2);
e89c4a9c
JB
3804 if (!scrub_wr_comp)
3805 goto fail_scrub_wr_completion_workers;
ff09c4ca 3806
e89c4a9c
JB
3807 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808 max_active, 2);
3809 if (!scrub_parity)
3810 goto fail_scrub_parity_workers;
3811
3812 mutex_lock(&fs_info->scrub_lock);
3813 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3814 ASSERT(fs_info->scrub_workers == NULL &&
3815 fs_info->scrub_wr_completion_workers == NULL &&
3816 fs_info->scrub_parity_workers == NULL);
3817 fs_info->scrub_workers = scrub_workers;
3818 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
3819 fs_info->scrub_parity_workers = scrub_parity;
ff09c4ca 3820 refcount_set(&fs_info->scrub_workers_refcnt, 1);
e89c4a9c
JB
3821 mutex_unlock(&fs_info->scrub_lock);
3822 return 0;
632dd772 3823 }
e89c4a9c
JB
3824 /* Other thread raced in and created the workers for us */
3825 refcount_inc(&fs_info->scrub_workers_refcnt);
3826 mutex_unlock(&fs_info->scrub_lock);
e82afc52 3827
e89c4a9c
JB
3828 ret = 0;
3829 btrfs_destroy_workqueue(scrub_parity);
e82afc52 3830fail_scrub_parity_workers:
e89c4a9c 3831 btrfs_destroy_workqueue(scrub_wr_comp);
e82afc52 3832fail_scrub_wr_completion_workers:
e89c4a9c 3833 btrfs_destroy_workqueue(scrub_workers);
e82afc52 3834fail_scrub_workers:
e89c4a9c 3835 return ret;
a2de733c
AJ
3836}
3837
aa1b8cd4
SB
3838int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3839 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3840 int readonly, int is_dev_replace)
a2de733c 3841{
d9d181c1 3842 struct scrub_ctx *sctx;
a2de733c
AJ
3843 int ret;
3844 struct btrfs_device *dev;
a5fb1142 3845 unsigned int nofs_flag;
a2de733c 3846
aa1b8cd4 3847 if (btrfs_fs_closing(fs_info))
6c3abeda 3848 return -EAGAIN;
a2de733c 3849
da17066c 3850 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3851 /*
3852 * in this case scrub is unable to calculate the checksum
3853 * the way scrub is implemented. Do not handle this
3854 * situation at all because it won't ever happen.
3855 */
efe120a0
FH
3856 btrfs_err(fs_info,
3857 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3858 fs_info->nodesize,
3859 BTRFS_STRIPE_LEN);
b5d67f64
SB
3860 return -EINVAL;
3861 }
3862
da17066c 3863 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3864 /* not supported for data w/o checksums */
751bebbe 3865 btrfs_err_rl(fs_info,
5d163e0e 3866 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3867 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3868 return -EINVAL;
3869 }
3870
da17066c 3871 if (fs_info->nodesize >
7a9e9987 3872 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3873 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3874 /*
3875 * would exhaust the array bounds of pagev member in
3876 * struct scrub_block
3877 */
5d163e0e
JM
3878 btrfs_err(fs_info,
3879 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3880 fs_info->nodesize,
7a9e9987 3881 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3882 fs_info->sectorsize,
7a9e9987
SB
3883 SCRUB_MAX_PAGES_PER_BLOCK);
3884 return -EINVAL;
3885 }
3886
0e94c4f4
DS
3887 /* Allocate outside of device_list_mutex */
3888 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3889 if (IS_ERR(sctx))
3890 return PTR_ERR(sctx);
a2de733c 3891
e89c4a9c
JB
3892 ret = scrub_workers_get(fs_info, is_dev_replace);
3893 if (ret)
3894 goto out_free_ctx;
3895
aa1b8cd4 3896 mutex_lock(&fs_info->fs_devices->device_list_mutex);
b2598edf 3897 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
e6e674bd
AJ
3898 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3899 !is_dev_replace)) {
aa1b8cd4 3900 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3901 ret = -ENODEV;
e89c4a9c 3902 goto out;
a2de733c 3903 }
a2de733c 3904
ebbede42
AJ
3905 if (!is_dev_replace && !readonly &&
3906 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 3907 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a4852cf2
DS
3908 btrfs_err_in_rcu(fs_info,
3909 "scrub on devid %llu: filesystem on %s is not writable",
3910 devid, rcu_str_deref(dev->name));
0e94c4f4 3911 ret = -EROFS;
e89c4a9c 3912 goto out;
5d68da3b
MX
3913 }
3914
3b7a016f 3915 mutex_lock(&fs_info->scrub_lock);
e12c9621 3916 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 3917 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 3918 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3919 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3920 ret = -EIO;
e89c4a9c 3921 goto out;
a2de733c
AJ
3922 }
3923
cb5583dd 3924 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 3925 if (dev->scrub_ctx ||
8dabb742
SB
3926 (!is_dev_replace &&
3927 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 3928 up_read(&fs_info->dev_replace.rwsem);
a2de733c 3929 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3930 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3931 ret = -EINPROGRESS;
e89c4a9c 3932 goto out;
a2de733c 3933 }
cb5583dd 3934 up_read(&fs_info->dev_replace.rwsem);
3b7a016f 3935
d9d181c1 3936 sctx->readonly = readonly;
cadbc0a0 3937 dev->scrub_ctx = sctx;
3cb0929a 3938 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3939
3cb0929a
WS
3940 /*
3941 * checking @scrub_pause_req here, we can avoid
3942 * race between committing transaction and scrubbing.
3943 */
cb7ab021 3944 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3945 atomic_inc(&fs_info->scrubs_running);
3946 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3947
a5fb1142
FM
3948 /*
3949 * In order to avoid deadlock with reclaim when there is a transaction
3950 * trying to pause scrub, make sure we use GFP_NOFS for all the
3951 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3952 * invoked by our callees. The pausing request is done when the
3953 * transaction commit starts, and it blocks the transaction until scrub
3954 * is paused (done at specific points at scrub_stripe() or right above
3955 * before incrementing fs_info->scrubs_running).
3956 */
3957 nofs_flag = memalloc_nofs_save();
ff023aac 3958 if (!is_dev_replace) {
d1e14420 3959 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
3960 /*
3961 * by holding device list mutex, we can
3962 * kick off writing super in log tree sync.
3963 */
3cb0929a 3964 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3965 ret = scrub_supers(sctx, dev);
3cb0929a 3966 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3967 }
a2de733c
AJ
3968
3969 if (!ret)
32934280 3970 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 3971 memalloc_nofs_restore(nofs_flag);
a2de733c 3972
b6bfebc1 3973 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3974 atomic_dec(&fs_info->scrubs_running);
3975 wake_up(&fs_info->scrub_pause_wait);
3976
b6bfebc1 3977 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3978
a2de733c 3979 if (progress)
d9d181c1 3980 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 3981
d1e14420
AJ
3982 if (!is_dev_replace)
3983 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3984 ret ? "not finished" : "finished", devid, ret);
3985
a2de733c 3986 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3987 dev->scrub_ctx = NULL;
a2de733c
AJ
3988 mutex_unlock(&fs_info->scrub_lock);
3989
e89c4a9c 3990 scrub_workers_put(fs_info);
f55985f4 3991 scrub_put_ctx(sctx);
a2de733c 3992
0e94c4f4 3993 return ret;
e89c4a9c
JB
3994out:
3995 scrub_workers_put(fs_info);
0e94c4f4
DS
3996out_free_ctx:
3997 scrub_free_ctx(sctx);
3998
a2de733c
AJ
3999 return ret;
4000}
4001
2ff7e61e 4002void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 4003{
a2de733c
AJ
4004 mutex_lock(&fs_info->scrub_lock);
4005 atomic_inc(&fs_info->scrub_pause_req);
4006 while (atomic_read(&fs_info->scrubs_paused) !=
4007 atomic_read(&fs_info->scrubs_running)) {
4008 mutex_unlock(&fs_info->scrub_lock);
4009 wait_event(fs_info->scrub_pause_wait,
4010 atomic_read(&fs_info->scrubs_paused) ==
4011 atomic_read(&fs_info->scrubs_running));
4012 mutex_lock(&fs_info->scrub_lock);
4013 }
4014 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
4015}
4016
2ff7e61e 4017void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 4018{
a2de733c
AJ
4019 atomic_dec(&fs_info->scrub_pause_req);
4020 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
4021}
4022
aa1b8cd4 4023int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 4024{
a2de733c
AJ
4025 mutex_lock(&fs_info->scrub_lock);
4026 if (!atomic_read(&fs_info->scrubs_running)) {
4027 mutex_unlock(&fs_info->scrub_lock);
4028 return -ENOTCONN;
4029 }
4030
4031 atomic_inc(&fs_info->scrub_cancel_req);
4032 while (atomic_read(&fs_info->scrubs_running)) {
4033 mutex_unlock(&fs_info->scrub_lock);
4034 wait_event(fs_info->scrub_pause_wait,
4035 atomic_read(&fs_info->scrubs_running) == 0);
4036 mutex_lock(&fs_info->scrub_lock);
4037 }
4038 atomic_dec(&fs_info->scrub_cancel_req);
4039 mutex_unlock(&fs_info->scrub_lock);
4040
4041 return 0;
4042}
4043
163e97ee 4044int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 4045{
163e97ee 4046 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 4047 struct scrub_ctx *sctx;
a2de733c
AJ
4048
4049 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 4050 sctx = dev->scrub_ctx;
d9d181c1 4051 if (!sctx) {
a2de733c
AJ
4052 mutex_unlock(&fs_info->scrub_lock);
4053 return -ENOTCONN;
4054 }
d9d181c1 4055 atomic_inc(&sctx->cancel_req);
cadbc0a0 4056 while (dev->scrub_ctx) {
a2de733c
AJ
4057 mutex_unlock(&fs_info->scrub_lock);
4058 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 4059 dev->scrub_ctx == NULL);
a2de733c
AJ
4060 mutex_lock(&fs_info->scrub_lock);
4061 }
4062 mutex_unlock(&fs_info->scrub_lock);
4063
4064 return 0;
4065}
1623edeb 4066
2ff7e61e 4067int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4068 struct btrfs_scrub_progress *progress)
4069{
4070 struct btrfs_device *dev;
d9d181c1 4071 struct scrub_ctx *sctx = NULL;
a2de733c 4072
0b246afa 4073 mutex_lock(&fs_info->fs_devices->device_list_mutex);
b2598edf 4074 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
a2de733c 4075 if (dev)
cadbc0a0 4076 sctx = dev->scrub_ctx;
d9d181c1
SB
4077 if (sctx)
4078 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4079 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4080
d9d181c1 4081 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4082}
ff023aac
SB
4083
4084static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
fa485d21 4085 u64 extent_logical, u32 extent_len,
ff023aac
SB
4086 u64 *extent_physical,
4087 struct btrfs_device **extent_dev,
4088 int *extent_mirror_num)
4089{
4090 u64 mapped_length;
4091 struct btrfs_bio *bbio = NULL;
4092 int ret;
4093
4094 mapped_length = extent_len;
cf8cddd3 4095 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4096 &mapped_length, &bbio, 0);
4097 if (ret || !bbio || mapped_length < extent_len ||
4098 !bbio->stripes[0].dev->bdev) {
6e9606d2 4099 btrfs_put_bbio(bbio);
ff023aac
SB
4100 return;
4101 }
4102
4103 *extent_physical = bbio->stripes[0].physical;
4104 *extent_mirror_num = bbio->mirror_num;
4105 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4106 btrfs_put_bbio(bbio);
ff023aac 4107}