]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/send.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / send.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
31db9f7c
AB
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
31db9f7c
AB
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
a1857ebe 14#include <linux/vmalloc.h>
ed84885d 15#include <linux/string.h>
2351f431 16#include <linux/compat.h>
9678c543 17#include <linux/crc32c.h>
31db9f7c
AB
18
19#include "send.h"
20#include "backref.h"
21#include "locking.h"
22#include "disk-io.h"
23#include "btrfs_inode.h"
24#include "transaction.h"
ebb8765b 25#include "compression.h"
31db9f7c 26
31db9f7c
AB
27/*
28 * A fs_path is a helper to dynamically build path names with unknown size.
29 * It reallocates the internal buffer on demand.
30 * It allows fast adding of path elements on the right side (normal path) and
31 * fast adding to the left side (reversed path). A reversed path can also be
32 * unreversed if needed.
33 */
34struct fs_path {
35 union {
36 struct {
37 char *start;
38 char *end;
31db9f7c
AB
39
40 char *buf;
1f5a7ff9
DS
41 unsigned short buf_len:15;
42 unsigned short reversed:1;
31db9f7c
AB
43 char inline_buf[];
44 };
ace01050
DS
45 /*
46 * Average path length does not exceed 200 bytes, we'll have
47 * better packing in the slab and higher chance to satisfy
48 * a allocation later during send.
49 */
50 char pad[256];
31db9f7c
AB
51 };
52};
53#define FS_PATH_INLINE_SIZE \
54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55
56
57/* reused for each extent */
58struct clone_root {
59 struct btrfs_root *root;
60 u64 ino;
61 u64 offset;
62
63 u64 found_refs;
64};
65
66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68
69struct send_ctx {
70 struct file *send_filp;
71 loff_t send_off;
72 char *send_buf;
73 u32 send_size;
74 u32 send_max_size;
75 u64 total_send_size;
76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 78
31db9f7c
AB
79 struct btrfs_root *send_root;
80 struct btrfs_root *parent_root;
81 struct clone_root *clone_roots;
82 int clone_roots_cnt;
83
84 /* current state of the compare_tree call */
85 struct btrfs_path *left_path;
86 struct btrfs_path *right_path;
87 struct btrfs_key *cmp_key;
88
89 /*
90 * infos of the currently processed inode. In case of deleted inodes,
91 * these are the values from the deleted inode.
92 */
93 u64 cur_ino;
94 u64 cur_inode_gen;
95 int cur_inode_new;
96 int cur_inode_new_gen;
97 int cur_inode_deleted;
31db9f7c
AB
98 u64 cur_inode_size;
99 u64 cur_inode_mode;
644d1940 100 u64 cur_inode_rdev;
16e7549f 101 u64 cur_inode_last_extent;
ffa7c429 102 u64 cur_inode_next_write_offset;
46b2f459 103 bool ignore_cur_inode;
31db9f7c
AB
104
105 u64 send_progress;
106
107 struct list_head new_refs;
108 struct list_head deleted_refs;
109
110 struct radix_tree_root name_cache;
111 struct list_head name_cache_list;
112 int name_cache_size;
113
2131bcd3
LB
114 struct file_ra_state ra;
115
31db9f7c 116 char *read_buf;
9f03740a
FDBM
117
118 /*
119 * We process inodes by their increasing order, so if before an
120 * incremental send we reverse the parent/child relationship of
121 * directories such that a directory with a lower inode number was
122 * the parent of a directory with a higher inode number, and the one
123 * becoming the new parent got renamed too, we can't rename/move the
124 * directory with lower inode number when we finish processing it - we
125 * must process the directory with higher inode number first, then
126 * rename/move it and then rename/move the directory with lower inode
127 * number. Example follows.
128 *
129 * Tree state when the first send was performed:
130 *
131 * .
132 * |-- a (ino 257)
133 * |-- b (ino 258)
134 * |
135 * |
136 * |-- c (ino 259)
137 * | |-- d (ino 260)
138 * |
139 * |-- c2 (ino 261)
140 *
141 * Tree state when the second (incremental) send is performed:
142 *
143 * .
144 * |-- a (ino 257)
145 * |-- b (ino 258)
146 * |-- c2 (ino 261)
147 * |-- d2 (ino 260)
148 * |-- cc (ino 259)
149 *
150 * The sequence of steps that lead to the second state was:
151 *
152 * mv /a/b/c/d /a/b/c2/d2
153 * mv /a/b/c /a/b/c2/d2/cc
154 *
155 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 * before we move "d", which has higher inode number.
157 *
158 * So we just memorize which move/rename operations must be performed
159 * later when their respective parent is processed and moved/renamed.
160 */
161
162 /* Indexed by parent directory inode number. */
163 struct rb_root pending_dir_moves;
164
165 /*
166 * Reverse index, indexed by the inode number of a directory that
167 * is waiting for the move/rename of its immediate parent before its
168 * own move/rename can be performed.
169 */
170 struct rb_root waiting_dir_moves;
9dc44214
FM
171
172 /*
173 * A directory that is going to be rm'ed might have a child directory
174 * which is in the pending directory moves index above. In this case,
175 * the directory can only be removed after the move/rename of its child
176 * is performed. Example:
177 *
178 * Parent snapshot:
179 *
180 * . (ino 256)
181 * |-- a/ (ino 257)
182 * |-- b/ (ino 258)
183 * |-- c/ (ino 259)
184 * | |-- x/ (ino 260)
185 * |
186 * |-- y/ (ino 261)
187 *
188 * Send snapshot:
189 *
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- YY/ (ino 261)
194 * |-- x/ (ino 260)
195 *
196 * Sequence of steps that lead to the send snapshot:
197 * rm -f /a/b/c/foo.txt
198 * mv /a/b/y /a/b/YY
199 * mv /a/b/c/x /a/b/YY
200 * rmdir /a/b/c
201 *
202 * When the child is processed, its move/rename is delayed until its
203 * parent is processed (as explained above), but all other operations
204 * like update utimes, chown, chgrp, etc, are performed and the paths
205 * that it uses for those operations must use the orphanized name of
206 * its parent (the directory we're going to rm later), so we need to
207 * memorize that name.
208 *
209 * Indexed by the inode number of the directory to be deleted.
210 */
211 struct rb_root orphan_dirs;
9f03740a
FDBM
212};
213
214struct pending_dir_move {
215 struct rb_node node;
216 struct list_head list;
217 u64 parent_ino;
218 u64 ino;
219 u64 gen;
220 struct list_head update_refs;
221};
222
223struct waiting_dir_move {
224 struct rb_node node;
225 u64 ino;
9dc44214
FM
226 /*
227 * There might be some directory that could not be removed because it
228 * was waiting for this directory inode to be moved first. Therefore
229 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
230 */
231 u64 rmdir_ino;
8b191a68 232 bool orphanized;
9dc44214
FM
233};
234
235struct orphan_dir_info {
236 struct rb_node node;
237 u64 ino;
238 u64 gen;
0f96f517 239 u64 last_dir_index_offset;
31db9f7c
AB
240};
241
242struct name_cache_entry {
243 struct list_head list;
7e0926fe
AB
244 /*
245 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 * more then one inum would fall into the same entry, we use radix_list
248 * to store the additional entries. radix_list is also used to store
249 * entries where two entries have the same inum but different
250 * generations.
251 */
252 struct list_head radix_list;
31db9f7c
AB
253 u64 ino;
254 u64 gen;
255 u64 parent_ino;
256 u64 parent_gen;
257 int ret;
258 int need_later_update;
259 int name_len;
260 char name[];
261};
262
e67c718b 263__cold
95155585
FM
264static void inconsistent_snapshot_error(struct send_ctx *sctx,
265 enum btrfs_compare_tree_result result,
266 const char *what)
267{
268 const char *result_string;
269
270 switch (result) {
271 case BTRFS_COMPARE_TREE_NEW:
272 result_string = "new";
273 break;
274 case BTRFS_COMPARE_TREE_DELETED:
275 result_string = "deleted";
276 break;
277 case BTRFS_COMPARE_TREE_CHANGED:
278 result_string = "updated";
279 break;
280 case BTRFS_COMPARE_TREE_SAME:
281 ASSERT(0);
282 result_string = "unchanged";
283 break;
284 default:
285 ASSERT(0);
286 result_string = "unexpected";
287 }
288
289 btrfs_err(sctx->send_root->fs_info,
290 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
291 result_string, what, sctx->cmp_key->objectid,
292 sctx->send_root->root_key.objectid,
293 (sctx->parent_root ?
294 sctx->parent_root->root_key.objectid : 0));
295}
296
9f03740a
FDBM
297static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
298
9dc44214
FM
299static struct waiting_dir_move *
300get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
301
302static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
303
16e7549f
JB
304static int need_send_hole(struct send_ctx *sctx)
305{
306 return (sctx->parent_root && !sctx->cur_inode_new &&
307 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
308 S_ISREG(sctx->cur_inode_mode));
309}
310
31db9f7c
AB
311static void fs_path_reset(struct fs_path *p)
312{
313 if (p->reversed) {
314 p->start = p->buf + p->buf_len - 1;
315 p->end = p->start;
316 *p->start = 0;
317 } else {
318 p->start = p->buf;
319 p->end = p->start;
320 *p->start = 0;
321 }
322}
323
924794c9 324static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
325{
326 struct fs_path *p;
327
e780b0d1 328 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
329 if (!p)
330 return NULL;
331 p->reversed = 0;
31db9f7c
AB
332 p->buf = p->inline_buf;
333 p->buf_len = FS_PATH_INLINE_SIZE;
334 fs_path_reset(p);
335 return p;
336}
337
924794c9 338static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
339{
340 struct fs_path *p;
341
924794c9 342 p = fs_path_alloc();
31db9f7c
AB
343 if (!p)
344 return NULL;
345 p->reversed = 1;
346 fs_path_reset(p);
347 return p;
348}
349
924794c9 350static void fs_path_free(struct fs_path *p)
31db9f7c
AB
351{
352 if (!p)
353 return;
ace01050
DS
354 if (p->buf != p->inline_buf)
355 kfree(p->buf);
31db9f7c
AB
356 kfree(p);
357}
358
359static int fs_path_len(struct fs_path *p)
360{
361 return p->end - p->start;
362}
363
364static int fs_path_ensure_buf(struct fs_path *p, int len)
365{
366 char *tmp_buf;
367 int path_len;
368 int old_buf_len;
369
370 len++;
371
372 if (p->buf_len >= len)
373 return 0;
374
cfd4a535
CM
375 if (len > PATH_MAX) {
376 WARN_ON(1);
377 return -ENOMEM;
378 }
379
1b2782c8
DS
380 path_len = p->end - p->start;
381 old_buf_len = p->buf_len;
382
ace01050
DS
383 /*
384 * First time the inline_buf does not suffice
385 */
01a9a8a9 386 if (p->buf == p->inline_buf) {
e780b0d1 387 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
388 if (tmp_buf)
389 memcpy(tmp_buf, p->buf, old_buf_len);
390 } else {
e780b0d1 391 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 392 }
9c9ca00b
DS
393 if (!tmp_buf)
394 return -ENOMEM;
395 p->buf = tmp_buf;
396 /*
397 * The real size of the buffer is bigger, this will let the fast path
398 * happen most of the time
399 */
400 p->buf_len = ksize(p->buf);
ace01050 401
31db9f7c
AB
402 if (p->reversed) {
403 tmp_buf = p->buf + old_buf_len - path_len - 1;
404 p->end = p->buf + p->buf_len - 1;
405 p->start = p->end - path_len;
406 memmove(p->start, tmp_buf, path_len + 1);
407 } else {
408 p->start = p->buf;
409 p->end = p->start + path_len;
410 }
411 return 0;
412}
413
b23ab57d
DS
414static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
415 char **prepared)
31db9f7c
AB
416{
417 int ret;
418 int new_len;
419
420 new_len = p->end - p->start + name_len;
421 if (p->start != p->end)
422 new_len++;
423 ret = fs_path_ensure_buf(p, new_len);
424 if (ret < 0)
425 goto out;
426
427 if (p->reversed) {
428 if (p->start != p->end)
429 *--p->start = '/';
430 p->start -= name_len;
b23ab57d 431 *prepared = p->start;
31db9f7c
AB
432 } else {
433 if (p->start != p->end)
434 *p->end++ = '/';
b23ab57d 435 *prepared = p->end;
31db9f7c
AB
436 p->end += name_len;
437 *p->end = 0;
438 }
439
440out:
441 return ret;
442}
443
444static int fs_path_add(struct fs_path *p, const char *name, int name_len)
445{
446 int ret;
b23ab57d 447 char *prepared;
31db9f7c 448
b23ab57d 449 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
450 if (ret < 0)
451 goto out;
b23ab57d 452 memcpy(prepared, name, name_len);
31db9f7c
AB
453
454out:
455 return ret;
456}
457
458static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
459{
460 int ret;
b23ab57d 461 char *prepared;
31db9f7c 462
b23ab57d 463 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
464 if (ret < 0)
465 goto out;
b23ab57d 466 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
467
468out:
469 return ret;
470}
471
472static int fs_path_add_from_extent_buffer(struct fs_path *p,
473 struct extent_buffer *eb,
474 unsigned long off, int len)
475{
476 int ret;
b23ab57d 477 char *prepared;
31db9f7c 478
b23ab57d 479 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
480 if (ret < 0)
481 goto out;
482
b23ab57d 483 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
484
485out:
486 return ret;
487}
488
31db9f7c
AB
489static int fs_path_copy(struct fs_path *p, struct fs_path *from)
490{
491 int ret;
492
493 p->reversed = from->reversed;
494 fs_path_reset(p);
495
496 ret = fs_path_add_path(p, from);
497
498 return ret;
499}
500
501
502static void fs_path_unreverse(struct fs_path *p)
503{
504 char *tmp;
505 int len;
506
507 if (!p->reversed)
508 return;
509
510 tmp = p->start;
511 len = p->end - p->start;
512 p->start = p->buf;
513 p->end = p->start + len;
514 memmove(p->start, tmp, len + 1);
515 p->reversed = 0;
516}
517
518static struct btrfs_path *alloc_path_for_send(void)
519{
520 struct btrfs_path *path;
521
522 path = btrfs_alloc_path();
523 if (!path)
524 return NULL;
525 path->search_commit_root = 1;
526 path->skip_locking = 1;
3f8a18cc 527 path->need_commit_sem = 1;
31db9f7c
AB
528 return path;
529}
530
48a3b636 531static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
532{
533 int ret;
31db9f7c
AB
534 u32 pos = 0;
535
31db9f7c 536 while (pos < len) {
8e93157b 537 ret = kernel_write(filp, buf + pos, len - pos, off);
31db9f7c
AB
538 /* TODO handle that correctly */
539 /*if (ret == -ERESTARTSYS) {
540 continue;
541 }*/
542 if (ret < 0)
8e93157b 543 return ret;
31db9f7c 544 if (ret == 0) {
8e93157b 545 return -EIO;
31db9f7c
AB
546 }
547 pos += ret;
548 }
549
8e93157b 550 return 0;
31db9f7c
AB
551}
552
553static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
554{
555 struct btrfs_tlv_header *hdr;
556 int total_len = sizeof(*hdr) + len;
557 int left = sctx->send_max_size - sctx->send_size;
558
559 if (unlikely(left < total_len))
560 return -EOVERFLOW;
561
562 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
563 hdr->tlv_type = cpu_to_le16(attr);
564 hdr->tlv_len = cpu_to_le16(len);
565 memcpy(hdr + 1, data, len);
566 sctx->send_size += total_len;
567
568 return 0;
569}
570
95bc79d5
DS
571#define TLV_PUT_DEFINE_INT(bits) \
572 static int tlv_put_u##bits(struct send_ctx *sctx, \
573 u##bits attr, u##bits value) \
574 { \
575 __le##bits __tmp = cpu_to_le##bits(value); \
576 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
577 }
31db9f7c 578
95bc79d5 579TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
580
581static int tlv_put_string(struct send_ctx *sctx, u16 attr,
582 const char *str, int len)
583{
584 if (len == -1)
585 len = strlen(str);
586 return tlv_put(sctx, attr, str, len);
587}
588
589static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
590 const u8 *uuid)
591{
592 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
593}
594
31db9f7c
AB
595static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
596 struct extent_buffer *eb,
597 struct btrfs_timespec *ts)
598{
599 struct btrfs_timespec bts;
600 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
601 return tlv_put(sctx, attr, &bts, sizeof(bts));
602}
603
604
895a72be 605#define TLV_PUT(sctx, attrtype, data, attrlen) \
31db9f7c 606 do { \
895a72be 607 ret = tlv_put(sctx, attrtype, data, attrlen); \
31db9f7c
AB
608 if (ret < 0) \
609 goto tlv_put_failure; \
610 } while (0)
611
612#define TLV_PUT_INT(sctx, attrtype, bits, value) \
613 do { \
614 ret = tlv_put_u##bits(sctx, attrtype, value); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
618
619#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
620#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
621#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
622#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
623#define TLV_PUT_STRING(sctx, attrtype, str, len) \
624 do { \
625 ret = tlv_put_string(sctx, attrtype, str, len); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629#define TLV_PUT_PATH(sctx, attrtype, p) \
630 do { \
631 ret = tlv_put_string(sctx, attrtype, p->start, \
632 p->end - p->start); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while(0)
636#define TLV_PUT_UUID(sctx, attrtype, uuid) \
637 do { \
638 ret = tlv_put_uuid(sctx, attrtype, uuid); \
639 if (ret < 0) \
640 goto tlv_put_failure; \
641 } while (0)
31db9f7c
AB
642#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
643 do { \
644 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
645 if (ret < 0) \
646 goto tlv_put_failure; \
647 } while (0)
648
649static int send_header(struct send_ctx *sctx)
650{
651 struct btrfs_stream_header hdr;
652
653 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
654 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
655
1bcea355
AJ
656 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
657 &sctx->send_off);
31db9f7c
AB
658}
659
660/*
661 * For each command/item we want to send to userspace, we call this function.
662 */
663static int begin_cmd(struct send_ctx *sctx, int cmd)
664{
665 struct btrfs_cmd_header *hdr;
666
fae7f21c 667 if (WARN_ON(!sctx->send_buf))
31db9f7c 668 return -EINVAL;
31db9f7c
AB
669
670 BUG_ON(sctx->send_size);
671
672 sctx->send_size += sizeof(*hdr);
673 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 hdr->cmd = cpu_to_le16(cmd);
675
676 return 0;
677}
678
679static int send_cmd(struct send_ctx *sctx)
680{
681 int ret;
682 struct btrfs_cmd_header *hdr;
683 u32 crc;
684
685 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
686 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
687 hdr->crc = 0;
688
9678c543 689 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
690 hdr->crc = cpu_to_le32(crc);
691
1bcea355
AJ
692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
693 &sctx->send_off);
31db9f7c
AB
694
695 sctx->total_send_size += sctx->send_size;
696 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
697 sctx->send_size = 0;
698
699 return ret;
700}
701
702/*
703 * Sends a move instruction to user space
704 */
705static int send_rename(struct send_ctx *sctx,
706 struct fs_path *from, struct fs_path *to)
707{
04ab956e 708 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
709 int ret;
710
04ab956e 711 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
31db9f7c
AB
712
713 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
714 if (ret < 0)
715 goto out;
716
717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
719
720 ret = send_cmd(sctx);
721
722tlv_put_failure:
723out:
724 return ret;
725}
726
727/*
728 * Sends a link instruction to user space
729 */
730static int send_link(struct send_ctx *sctx,
731 struct fs_path *path, struct fs_path *lnk)
732{
04ab956e 733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
734 int ret;
735
04ab956e 736 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
31db9f7c
AB
737
738 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
739 if (ret < 0)
740 goto out;
741
742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
744
745 ret = send_cmd(sctx);
746
747tlv_put_failure:
748out:
749 return ret;
750}
751
752/*
753 * Sends an unlink instruction to user space
754 */
755static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
756{
04ab956e 757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
758 int ret;
759
04ab956e 760 btrfs_debug(fs_info, "send_unlink %s", path->start);
31db9f7c
AB
761
762 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
763 if (ret < 0)
764 goto out;
765
766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
767
768 ret = send_cmd(sctx);
769
770tlv_put_failure:
771out:
772 return ret;
773}
774
775/*
776 * Sends a rmdir instruction to user space
777 */
778static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
779{
04ab956e 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
781 int ret;
782
04ab956e 783 btrfs_debug(fs_info, "send_rmdir %s", path->start);
31db9f7c
AB
784
785 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
786 if (ret < 0)
787 goto out;
788
789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790
791 ret = send_cmd(sctx);
792
793tlv_put_failure:
794out:
795 return ret;
796}
797
798/*
799 * Helper function to retrieve some fields from an inode item.
800 */
3f8a18cc
JB
801static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
802 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
803 u64 *gid, u64 *rdev)
31db9f7c
AB
804{
805 int ret;
806 struct btrfs_inode_item *ii;
807 struct btrfs_key key;
31db9f7c
AB
808
809 key.objectid = ino;
810 key.type = BTRFS_INODE_ITEM_KEY;
811 key.offset = 0;
812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 813 if (ret) {
3f8a18cc
JB
814 if (ret > 0)
815 ret = -ENOENT;
816 return ret;
31db9f7c
AB
817 }
818
819 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 struct btrfs_inode_item);
821 if (size)
822 *size = btrfs_inode_size(path->nodes[0], ii);
823 if (gen)
824 *gen = btrfs_inode_generation(path->nodes[0], ii);
825 if (mode)
826 *mode = btrfs_inode_mode(path->nodes[0], ii);
827 if (uid)
828 *uid = btrfs_inode_uid(path->nodes[0], ii);
829 if (gid)
830 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
831 if (rdev)
832 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 833
3f8a18cc
JB
834 return ret;
835}
836
837static int get_inode_info(struct btrfs_root *root,
838 u64 ino, u64 *size, u64 *gen,
839 u64 *mode, u64 *uid, u64 *gid,
840 u64 *rdev)
841{
842 struct btrfs_path *path;
843 int ret;
844
845 path = alloc_path_for_send();
846 if (!path)
847 return -ENOMEM;
848 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
849 rdev);
31db9f7c
AB
850 btrfs_free_path(path);
851 return ret;
852}
853
854typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
855 struct fs_path *p,
856 void *ctx);
857
858/*
96b5bd77
JS
859 * Helper function to iterate the entries in ONE btrfs_inode_ref or
860 * btrfs_inode_extref.
31db9f7c
AB
861 * The iterate callback may return a non zero value to stop iteration. This can
862 * be a negative value for error codes or 1 to simply stop it.
863 *
96b5bd77 864 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 865 */
924794c9 866static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
867 struct btrfs_key *found_key, int resolve,
868 iterate_inode_ref_t iterate, void *ctx)
869{
96b5bd77 870 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
871 struct btrfs_item *item;
872 struct btrfs_inode_ref *iref;
96b5bd77 873 struct btrfs_inode_extref *extref;
31db9f7c
AB
874 struct btrfs_path *tmp_path;
875 struct fs_path *p;
96b5bd77 876 u32 cur = 0;
31db9f7c 877 u32 total;
96b5bd77 878 int slot = path->slots[0];
31db9f7c
AB
879 u32 name_len;
880 char *start;
881 int ret = 0;
96b5bd77 882 int num = 0;
31db9f7c 883 int index;
96b5bd77
JS
884 u64 dir;
885 unsigned long name_off;
886 unsigned long elem_size;
887 unsigned long ptr;
31db9f7c 888
924794c9 889 p = fs_path_alloc_reversed();
31db9f7c
AB
890 if (!p)
891 return -ENOMEM;
892
893 tmp_path = alloc_path_for_send();
894 if (!tmp_path) {
924794c9 895 fs_path_free(p);
31db9f7c
AB
896 return -ENOMEM;
897 }
898
31db9f7c 899
96b5bd77
JS
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
902 struct btrfs_inode_ref);
dd3cc16b 903 item = btrfs_item_nr(slot);
96b5bd77
JS
904 total = btrfs_item_size(eb, item);
905 elem_size = sizeof(*iref);
906 } else {
907 ptr = btrfs_item_ptr_offset(eb, slot);
908 total = btrfs_item_size_nr(eb, slot);
909 elem_size = sizeof(*extref);
910 }
911
31db9f7c
AB
912 while (cur < total) {
913 fs_path_reset(p);
914
96b5bd77
JS
915 if (found_key->type == BTRFS_INODE_REF_KEY) {
916 iref = (struct btrfs_inode_ref *)(ptr + cur);
917 name_len = btrfs_inode_ref_name_len(eb, iref);
918 name_off = (unsigned long)(iref + 1);
919 index = btrfs_inode_ref_index(eb, iref);
920 dir = found_key->offset;
921 } else {
922 extref = (struct btrfs_inode_extref *)(ptr + cur);
923 name_len = btrfs_inode_extref_name_len(eb, extref);
924 name_off = (unsigned long)&extref->name;
925 index = btrfs_inode_extref_index(eb, extref);
926 dir = btrfs_inode_extref_parent(eb, extref);
927 }
928
31db9f7c 929 if (resolve) {
96b5bd77
JS
930 start = btrfs_ref_to_path(root, tmp_path, name_len,
931 name_off, eb, dir,
932 p->buf, p->buf_len);
31db9f7c
AB
933 if (IS_ERR(start)) {
934 ret = PTR_ERR(start);
935 goto out;
936 }
937 if (start < p->buf) {
938 /* overflow , try again with larger buffer */
939 ret = fs_path_ensure_buf(p,
940 p->buf_len + p->buf - start);
941 if (ret < 0)
942 goto out;
96b5bd77
JS
943 start = btrfs_ref_to_path(root, tmp_path,
944 name_len, name_off,
945 eb, dir,
946 p->buf, p->buf_len);
31db9f7c
AB
947 if (IS_ERR(start)) {
948 ret = PTR_ERR(start);
949 goto out;
950 }
951 BUG_ON(start < p->buf);
952 }
953 p->start = start;
954 } else {
96b5bd77
JS
955 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
956 name_len);
31db9f7c
AB
957 if (ret < 0)
958 goto out;
959 }
960
96b5bd77
JS
961 cur += elem_size + name_len;
962 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
963 if (ret)
964 goto out;
31db9f7c
AB
965 num++;
966 }
967
968out:
969 btrfs_free_path(tmp_path);
924794c9 970 fs_path_free(p);
31db9f7c
AB
971 return ret;
972}
973
974typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
975 const char *name, int name_len,
976 const char *data, int data_len,
977 u8 type, void *ctx);
978
979/*
980 * Helper function to iterate the entries in ONE btrfs_dir_item.
981 * The iterate callback may return a non zero value to stop iteration. This can
982 * be a negative value for error codes or 1 to simply stop it.
983 *
984 * path must point to the dir item when called.
985 */
924794c9 986static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
987 iterate_dir_item_t iterate, void *ctx)
988{
989 int ret = 0;
990 struct extent_buffer *eb;
991 struct btrfs_item *item;
992 struct btrfs_dir_item *di;
31db9f7c
AB
993 struct btrfs_key di_key;
994 char *buf = NULL;
7e3ae33e 995 int buf_len;
31db9f7c
AB
996 u32 name_len;
997 u32 data_len;
998 u32 cur;
999 u32 len;
1000 u32 total;
1001 int slot;
1002 int num;
1003 u8 type;
1004
4395e0c4
FM
1005 /*
1006 * Start with a small buffer (1 page). If later we end up needing more
1007 * space, which can happen for xattrs on a fs with a leaf size greater
1008 * then the page size, attempt to increase the buffer. Typically xattr
1009 * values are small.
1010 */
1011 buf_len = PATH_MAX;
e780b0d1 1012 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1013 if (!buf) {
1014 ret = -ENOMEM;
1015 goto out;
1016 }
1017
31db9f7c
AB
1018 eb = path->nodes[0];
1019 slot = path->slots[0];
dd3cc16b 1020 item = btrfs_item_nr(slot);
31db9f7c
AB
1021 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1022 cur = 0;
1023 len = 0;
1024 total = btrfs_item_size(eb, item);
1025
1026 num = 0;
1027 while (cur < total) {
1028 name_len = btrfs_dir_name_len(eb, di);
1029 data_len = btrfs_dir_data_len(eb, di);
1030 type = btrfs_dir_type(eb, di);
1031 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1032
7e3ae33e
FM
1033 if (type == BTRFS_FT_XATTR) {
1034 if (name_len > XATTR_NAME_MAX) {
1035 ret = -ENAMETOOLONG;
1036 goto out;
1037 }
da17066c
JM
1038 if (name_len + data_len >
1039 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
7e3ae33e
FM
1040 ret = -E2BIG;
1041 goto out;
1042 }
1043 } else {
1044 /*
1045 * Path too long
1046 */
4395e0c4 1047 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1048 ret = -ENAMETOOLONG;
1049 goto out;
1050 }
31db9f7c
AB
1051 }
1052
4395e0c4
FM
1053 if (name_len + data_len > buf_len) {
1054 buf_len = name_len + data_len;
1055 if (is_vmalloc_addr(buf)) {
1056 vfree(buf);
1057 buf = NULL;
1058 } else {
1059 char *tmp = krealloc(buf, buf_len,
e780b0d1 1060 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1061
1062 if (!tmp)
1063 kfree(buf);
1064 buf = tmp;
1065 }
1066 if (!buf) {
f11f7441 1067 buf = kvmalloc(buf_len, GFP_KERNEL);
4395e0c4
FM
1068 if (!buf) {
1069 ret = -ENOMEM;
1070 goto out;
1071 }
1072 }
1073 }
1074
31db9f7c
AB
1075 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076 name_len + data_len);
1077
1078 len = sizeof(*di) + name_len + data_len;
1079 di = (struct btrfs_dir_item *)((char *)di + len);
1080 cur += len;
1081
1082 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083 data_len, type, ctx);
1084 if (ret < 0)
1085 goto out;
1086 if (ret) {
1087 ret = 0;
1088 goto out;
1089 }
1090
1091 num++;
1092 }
1093
1094out:
4395e0c4 1095 kvfree(buf);
31db9f7c
AB
1096 return ret;
1097}
1098
1099static int __copy_first_ref(int num, u64 dir, int index,
1100 struct fs_path *p, void *ctx)
1101{
1102 int ret;
1103 struct fs_path *pt = ctx;
1104
1105 ret = fs_path_copy(pt, p);
1106 if (ret < 0)
1107 return ret;
1108
1109 /* we want the first only */
1110 return 1;
1111}
1112
1113/*
1114 * Retrieve the first path of an inode. If an inode has more then one
1115 * ref/hardlink, this is ignored.
1116 */
924794c9 1117static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1118 u64 ino, struct fs_path *path)
1119{
1120 int ret;
1121 struct btrfs_key key, found_key;
1122 struct btrfs_path *p;
1123
1124 p = alloc_path_for_send();
1125 if (!p)
1126 return -ENOMEM;
1127
1128 fs_path_reset(path);
1129
1130 key.objectid = ino;
1131 key.type = BTRFS_INODE_REF_KEY;
1132 key.offset = 0;
1133
1134 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1135 if (ret < 0)
1136 goto out;
1137 if (ret) {
1138 ret = 1;
1139 goto out;
1140 }
1141 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142 if (found_key.objectid != ino ||
96b5bd77
JS
1143 (found_key.type != BTRFS_INODE_REF_KEY &&
1144 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1145 ret = -ENOENT;
1146 goto out;
1147 }
1148
924794c9
TI
1149 ret = iterate_inode_ref(root, p, &found_key, 1,
1150 __copy_first_ref, path);
31db9f7c
AB
1151 if (ret < 0)
1152 goto out;
1153 ret = 0;
1154
1155out:
1156 btrfs_free_path(p);
1157 return ret;
1158}
1159
1160struct backref_ctx {
1161 struct send_ctx *sctx;
1162
3f8a18cc 1163 struct btrfs_path *path;
31db9f7c
AB
1164 /* number of total found references */
1165 u64 found;
1166
1167 /*
1168 * used for clones found in send_root. clones found behind cur_objectid
1169 * and cur_offset are not considered as allowed clones.
1170 */
1171 u64 cur_objectid;
1172 u64 cur_offset;
1173
1174 /* may be truncated in case it's the last extent in a file */
1175 u64 extent_len;
1176
619d8c4e
FM
1177 /* data offset in the file extent item */
1178 u64 data_offset;
1179
31db9f7c 1180 /* Just to check for bugs in backref resolving */
ee849c04 1181 int found_itself;
31db9f7c
AB
1182};
1183
1184static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1185{
995e01b7 1186 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1187 struct clone_root *cr = (struct clone_root *)elt;
1188
1189 if (root < cr->root->objectid)
1190 return -1;
1191 if (root > cr->root->objectid)
1192 return 1;
1193 return 0;
1194}
1195
1196static int __clone_root_cmp_sort(const void *e1, const void *e2)
1197{
1198 struct clone_root *cr1 = (struct clone_root *)e1;
1199 struct clone_root *cr2 = (struct clone_root *)e2;
1200
1201 if (cr1->root->objectid < cr2->root->objectid)
1202 return -1;
1203 if (cr1->root->objectid > cr2->root->objectid)
1204 return 1;
1205 return 0;
1206}
1207
1208/*
1209 * Called for every backref that is found for the current extent.
766702ef 1210 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1211 */
1212static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1213{
1214 struct backref_ctx *bctx = ctx_;
1215 struct clone_root *found;
1216 int ret;
1217 u64 i_size;
1218
1219 /* First check if the root is in the list of accepted clone sources */
995e01b7 1220 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1221 bctx->sctx->clone_roots_cnt,
1222 sizeof(struct clone_root),
1223 __clone_root_cmp_bsearch);
1224 if (!found)
1225 return 0;
1226
1227 if (found->root == bctx->sctx->send_root &&
1228 ino == bctx->cur_objectid &&
1229 offset == bctx->cur_offset) {
ee849c04 1230 bctx->found_itself = 1;
31db9f7c
AB
1231 }
1232
1233 /*
766702ef 1234 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1235 * accept clones from these extents.
1236 */
3f8a18cc
JB
1237 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1238 NULL, NULL, NULL);
1239 btrfs_release_path(bctx->path);
31db9f7c
AB
1240 if (ret < 0)
1241 return ret;
1242
619d8c4e 1243 if (offset + bctx->data_offset + bctx->extent_len > i_size)
31db9f7c
AB
1244 return 0;
1245
1246 /*
1247 * Make sure we don't consider clones from send_root that are
1248 * behind the current inode/offset.
1249 */
1250 if (found->root == bctx->sctx->send_root) {
1251 /*
1252 * TODO for the moment we don't accept clones from the inode
1253 * that is currently send. We may change this when
1254 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1255 * file.
1256 */
1257 if (ino >= bctx->cur_objectid)
1258 return 0;
31db9f7c
AB
1259 }
1260
1261 bctx->found++;
1262 found->found_refs++;
1263 if (ino < found->ino) {
1264 found->ino = ino;
1265 found->offset = offset;
1266 } else if (found->ino == ino) {
1267 /*
1268 * same extent found more then once in the same file.
1269 */
1270 if (found->offset > offset + bctx->extent_len)
1271 found->offset = offset;
1272 }
1273
1274 return 0;
1275}
1276
1277/*
766702ef
AB
1278 * Given an inode, offset and extent item, it finds a good clone for a clone
1279 * instruction. Returns -ENOENT when none could be found. The function makes
1280 * sure that the returned clone is usable at the point where sending is at the
1281 * moment. This means, that no clones are accepted which lie behind the current
1282 * inode+offset.
1283 *
31db9f7c
AB
1284 * path must point to the extent item when called.
1285 */
1286static int find_extent_clone(struct send_ctx *sctx,
1287 struct btrfs_path *path,
1288 u64 ino, u64 data_offset,
1289 u64 ino_size,
1290 struct clone_root **found)
1291{
04ab956e 1292 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
1293 int ret;
1294 int extent_type;
1295 u64 logical;
74dd17fb 1296 u64 disk_byte;
31db9f7c
AB
1297 u64 num_bytes;
1298 u64 extent_item_pos;
69917e43 1299 u64 flags = 0;
31db9f7c
AB
1300 struct btrfs_file_extent_item *fi;
1301 struct extent_buffer *eb = path->nodes[0];
35075bb0 1302 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1303 struct clone_root *cur_clone_root;
1304 struct btrfs_key found_key;
1305 struct btrfs_path *tmp_path;
74dd17fb 1306 int compressed;
31db9f7c
AB
1307 u32 i;
1308
1309 tmp_path = alloc_path_for_send();
1310 if (!tmp_path)
1311 return -ENOMEM;
1312
3f8a18cc
JB
1313 /* We only use this path under the commit sem */
1314 tmp_path->need_commit_sem = 0;
1315
e780b0d1 1316 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
35075bb0
AB
1317 if (!backref_ctx) {
1318 ret = -ENOMEM;
1319 goto out;
1320 }
1321
3f8a18cc
JB
1322 backref_ctx->path = tmp_path;
1323
31db9f7c
AB
1324 if (data_offset >= ino_size) {
1325 /*
1326 * There may be extents that lie behind the file's size.
1327 * I at least had this in combination with snapshotting while
1328 * writing large files.
1329 */
1330 ret = 0;
1331 goto out;
1332 }
1333
1334 fi = btrfs_item_ptr(eb, path->slots[0],
1335 struct btrfs_file_extent_item);
1336 extent_type = btrfs_file_extent_type(eb, fi);
1337 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338 ret = -ENOENT;
1339 goto out;
1340 }
74dd17fb 1341 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1342
1343 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1344 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345 if (disk_byte == 0) {
31db9f7c
AB
1346 ret = -ENOENT;
1347 goto out;
1348 }
74dd17fb 1349 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1350
04ab956e
JM
1351 down_read(&fs_info->commit_root_sem);
1352 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
69917e43 1353 &found_key, &flags);
04ab956e 1354 up_read(&fs_info->commit_root_sem);
31db9f7c
AB
1355 btrfs_release_path(tmp_path);
1356
1357 if (ret < 0)
1358 goto out;
69917e43 1359 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1360 ret = -EIO;
1361 goto out;
1362 }
1363
1364 /*
1365 * Setup the clone roots.
1366 */
1367 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368 cur_clone_root = sctx->clone_roots + i;
1369 cur_clone_root->ino = (u64)-1;
1370 cur_clone_root->offset = 0;
1371 cur_clone_root->found_refs = 0;
1372 }
1373
35075bb0
AB
1374 backref_ctx->sctx = sctx;
1375 backref_ctx->found = 0;
1376 backref_ctx->cur_objectid = ino;
1377 backref_ctx->cur_offset = data_offset;
1378 backref_ctx->found_itself = 0;
1379 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1380 /*
1381 * For non-compressed extents iterate_extent_inodes() gives us extent
1382 * offsets that already take into account the data offset, but not for
1383 * compressed extents, since the offset is logical and not relative to
1384 * the physical extent locations. We must take this into account to
1385 * avoid sending clone offsets that go beyond the source file's size,
1386 * which would result in the clone ioctl failing with -EINVAL on the
1387 * receiving end.
1388 */
1389 if (compressed == BTRFS_COMPRESS_NONE)
1390 backref_ctx->data_offset = 0;
1391 else
1392 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1393
1394 /*
1395 * The last extent of a file may be too large due to page alignment.
1396 * We need to adjust extent_len in this case so that the checks in
1397 * __iterate_backrefs work.
1398 */
1399 if (data_offset + num_bytes >= ino_size)
35075bb0 1400 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1401
1402 /*
1403 * Now collect all backrefs.
1404 */
74dd17fb
CM
1405 if (compressed == BTRFS_COMPRESS_NONE)
1406 extent_item_pos = logical - found_key.objectid;
1407 else
1408 extent_item_pos = 0;
0b246afa
JM
1409 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410 extent_item_pos, 1, __iterate_backrefs,
c995ab3c 1411 backref_ctx, false);
74dd17fb 1412
31db9f7c
AB
1413 if (ret < 0)
1414 goto out;
1415
35075bb0 1416 if (!backref_ctx->found_itself) {
31db9f7c
AB
1417 /* found a bug in backref code? */
1418 ret = -EIO;
04ab956e 1419 btrfs_err(fs_info,
5d163e0e 1420 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
04ab956e 1421 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1422 goto out;
1423 }
1424
04ab956e
JM
1425 btrfs_debug(fs_info,
1426 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427 data_offset, ino, num_bytes, logical);
31db9f7c 1428
35075bb0 1429 if (!backref_ctx->found)
04ab956e 1430 btrfs_debug(fs_info, "no clones found");
31db9f7c
AB
1431
1432 cur_clone_root = NULL;
1433 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434 if (sctx->clone_roots[i].found_refs) {
1435 if (!cur_clone_root)
1436 cur_clone_root = sctx->clone_roots + i;
1437 else if (sctx->clone_roots[i].root == sctx->send_root)
1438 /* prefer clones from send_root over others */
1439 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1440 }
1441
1442 }
1443
1444 if (cur_clone_root) {
1445 *found = cur_clone_root;
1446 ret = 0;
1447 } else {
1448 ret = -ENOENT;
1449 }
1450
1451out:
1452 btrfs_free_path(tmp_path);
35075bb0 1453 kfree(backref_ctx);
31db9f7c
AB
1454 return ret;
1455}
1456
924794c9 1457static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1458 u64 ino,
1459 struct fs_path *dest)
1460{
1461 int ret;
1462 struct btrfs_path *path;
1463 struct btrfs_key key;
1464 struct btrfs_file_extent_item *ei;
1465 u8 type;
1466 u8 compression;
1467 unsigned long off;
1468 int len;
1469
1470 path = alloc_path_for_send();
1471 if (!path)
1472 return -ENOMEM;
1473
1474 key.objectid = ino;
1475 key.type = BTRFS_EXTENT_DATA_KEY;
1476 key.offset = 0;
1477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1478 if (ret < 0)
1479 goto out;
a879719b
FM
1480 if (ret) {
1481 /*
1482 * An empty symlink inode. Can happen in rare error paths when
1483 * creating a symlink (transaction committed before the inode
1484 * eviction handler removed the symlink inode items and a crash
1485 * happened in between or the subvol was snapshoted in between).
1486 * Print an informative message to dmesg/syslog so that the user
1487 * can delete the symlink.
1488 */
1489 btrfs_err(root->fs_info,
1490 "Found empty symlink inode %llu at root %llu",
1491 ino, root->root_key.objectid);
1492 ret = -EIO;
1493 goto out;
1494 }
31db9f7c
AB
1495
1496 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497 struct btrfs_file_extent_item);
1498 type = btrfs_file_extent_type(path->nodes[0], ei);
1499 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501 BUG_ON(compression);
1502
1503 off = btrfs_file_extent_inline_start(ei);
e41ca589 1504 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
31db9f7c
AB
1505
1506 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1507
1508out:
1509 btrfs_free_path(path);
1510 return ret;
1511}
1512
1513/*
1514 * Helper function to generate a file name that is unique in the root of
1515 * send_root and parent_root. This is used to generate names for orphan inodes.
1516 */
1517static int gen_unique_name(struct send_ctx *sctx,
1518 u64 ino, u64 gen,
1519 struct fs_path *dest)
1520{
1521 int ret = 0;
1522 struct btrfs_path *path;
1523 struct btrfs_dir_item *di;
1524 char tmp[64];
1525 int len;
1526 u64 idx = 0;
1527
1528 path = alloc_path_for_send();
1529 if (!path)
1530 return -ENOMEM;
1531
1532 while (1) {
f74b86d8 1533 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1534 ino, gen, idx);
64792f25 1535 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1536
1537 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538 path, BTRFS_FIRST_FREE_OBJECTID,
1539 tmp, strlen(tmp), 0);
1540 btrfs_release_path(path);
1541 if (IS_ERR(di)) {
1542 ret = PTR_ERR(di);
1543 goto out;
1544 }
1545 if (di) {
1546 /* not unique, try again */
1547 idx++;
1548 continue;
1549 }
1550
1551 if (!sctx->parent_root) {
1552 /* unique */
1553 ret = 0;
1554 break;
1555 }
1556
1557 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558 path, BTRFS_FIRST_FREE_OBJECTID,
1559 tmp, strlen(tmp), 0);
1560 btrfs_release_path(path);
1561 if (IS_ERR(di)) {
1562 ret = PTR_ERR(di);
1563 goto out;
1564 }
1565 if (di) {
1566 /* not unique, try again */
1567 idx++;
1568 continue;
1569 }
1570 /* unique */
1571 break;
1572 }
1573
1574 ret = fs_path_add(dest, tmp, strlen(tmp));
1575
1576out:
1577 btrfs_free_path(path);
1578 return ret;
1579}
1580
1581enum inode_state {
1582 inode_state_no_change,
1583 inode_state_will_create,
1584 inode_state_did_create,
1585 inode_state_will_delete,
1586 inode_state_did_delete,
1587};
1588
1589static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1590{
1591 int ret;
1592 int left_ret;
1593 int right_ret;
1594 u64 left_gen;
1595 u64 right_gen;
1596
1597 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1598 NULL, NULL);
31db9f7c
AB
1599 if (ret < 0 && ret != -ENOENT)
1600 goto out;
1601 left_ret = ret;
1602
1603 if (!sctx->parent_root) {
1604 right_ret = -ENOENT;
1605 } else {
1606 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1607 NULL, NULL, NULL, NULL);
31db9f7c
AB
1608 if (ret < 0 && ret != -ENOENT)
1609 goto out;
1610 right_ret = ret;
1611 }
1612
1613 if (!left_ret && !right_ret) {
e938c8ad 1614 if (left_gen == gen && right_gen == gen) {
31db9f7c 1615 ret = inode_state_no_change;
e938c8ad 1616 } else if (left_gen == gen) {
31db9f7c
AB
1617 if (ino < sctx->send_progress)
1618 ret = inode_state_did_create;
1619 else
1620 ret = inode_state_will_create;
1621 } else if (right_gen == gen) {
1622 if (ino < sctx->send_progress)
1623 ret = inode_state_did_delete;
1624 else
1625 ret = inode_state_will_delete;
1626 } else {
1627 ret = -ENOENT;
1628 }
1629 } else if (!left_ret) {
1630 if (left_gen == gen) {
1631 if (ino < sctx->send_progress)
1632 ret = inode_state_did_create;
1633 else
1634 ret = inode_state_will_create;
1635 } else {
1636 ret = -ENOENT;
1637 }
1638 } else if (!right_ret) {
1639 if (right_gen == gen) {
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_delete;
1642 else
1643 ret = inode_state_will_delete;
1644 } else {
1645 ret = -ENOENT;
1646 }
1647 } else {
1648 ret = -ENOENT;
1649 }
1650
1651out:
1652 return ret;
1653}
1654
1655static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1656{
1657 int ret;
1658
4dd9920d
RK
1659 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1660 return 1;
1661
31db9f7c
AB
1662 ret = get_cur_inode_state(sctx, ino, gen);
1663 if (ret < 0)
1664 goto out;
1665
1666 if (ret == inode_state_no_change ||
1667 ret == inode_state_did_create ||
1668 ret == inode_state_will_delete)
1669 ret = 1;
1670 else
1671 ret = 0;
1672
1673out:
1674 return ret;
1675}
1676
1677/*
1678 * Helper function to lookup a dir item in a dir.
1679 */
1680static int lookup_dir_item_inode(struct btrfs_root *root,
1681 u64 dir, const char *name, int name_len,
1682 u64 *found_inode,
1683 u8 *found_type)
1684{
1685 int ret = 0;
1686 struct btrfs_dir_item *di;
1687 struct btrfs_key key;
1688 struct btrfs_path *path;
1689
1690 path = alloc_path_for_send();
1691 if (!path)
1692 return -ENOMEM;
1693
1694 di = btrfs_lookup_dir_item(NULL, root, path,
1695 dir, name, name_len, 0);
1696 if (!di) {
1697 ret = -ENOENT;
1698 goto out;
1699 }
1700 if (IS_ERR(di)) {
1701 ret = PTR_ERR(di);
1702 goto out;
1703 }
1704 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1705 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1706 ret = -ENOENT;
1707 goto out;
1708 }
31db9f7c
AB
1709 *found_inode = key.objectid;
1710 *found_type = btrfs_dir_type(path->nodes[0], di);
1711
1712out:
1713 btrfs_free_path(path);
1714 return ret;
1715}
1716
766702ef
AB
1717/*
1718 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1719 * generation of the parent dir and the name of the dir entry.
1720 */
924794c9 1721static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1722 u64 *dir, u64 *dir_gen, struct fs_path *name)
1723{
1724 int ret;
1725 struct btrfs_key key;
1726 struct btrfs_key found_key;
1727 struct btrfs_path *path;
31db9f7c 1728 int len;
96b5bd77 1729 u64 parent_dir;
31db9f7c
AB
1730
1731 path = alloc_path_for_send();
1732 if (!path)
1733 return -ENOMEM;
1734
1735 key.objectid = ino;
1736 key.type = BTRFS_INODE_REF_KEY;
1737 key.offset = 0;
1738
1739 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1740 if (ret < 0)
1741 goto out;
1742 if (!ret)
1743 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1744 path->slots[0]);
96b5bd77
JS
1745 if (ret || found_key.objectid != ino ||
1746 (found_key.type != BTRFS_INODE_REF_KEY &&
1747 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1748 ret = -ENOENT;
1749 goto out;
1750 }
1751
51a60253 1752 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1753 struct btrfs_inode_ref *iref;
1754 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1755 struct btrfs_inode_ref);
1756 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1757 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1758 (unsigned long)(iref + 1),
1759 len);
1760 parent_dir = found_key.offset;
1761 } else {
1762 struct btrfs_inode_extref *extref;
1763 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 struct btrfs_inode_extref);
1765 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1766 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 (unsigned long)&extref->name, len);
1768 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1769 }
31db9f7c
AB
1770 if (ret < 0)
1771 goto out;
1772 btrfs_release_path(path);
1773
b46ab97b
FM
1774 if (dir_gen) {
1775 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1776 NULL, NULL, NULL);
1777 if (ret < 0)
1778 goto out;
1779 }
31db9f7c 1780
96b5bd77 1781 *dir = parent_dir;
31db9f7c
AB
1782
1783out:
1784 btrfs_free_path(path);
1785 return ret;
1786}
1787
924794c9 1788static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1789 u64 ino, u64 dir,
1790 const char *name, int name_len)
1791{
1792 int ret;
1793 struct fs_path *tmp_name;
1794 u64 tmp_dir;
31db9f7c 1795
924794c9 1796 tmp_name = fs_path_alloc();
31db9f7c
AB
1797 if (!tmp_name)
1798 return -ENOMEM;
1799
b46ab97b 1800 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1801 if (ret < 0)
1802 goto out;
1803
b9291aff 1804 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1805 ret = 0;
1806 goto out;
1807 }
1808
e938c8ad 1809 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1810
1811out:
924794c9 1812 fs_path_free(tmp_name);
31db9f7c
AB
1813 return ret;
1814}
1815
766702ef
AB
1816/*
1817 * Used by process_recorded_refs to determine if a new ref would overwrite an
1818 * already existing ref. In case it detects an overwrite, it returns the
1819 * inode/gen in who_ino/who_gen.
1820 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1821 * to make sure later references to the overwritten inode are possible.
1822 * Orphanizing is however only required for the first ref of an inode.
1823 * process_recorded_refs does an additional is_first_ref check to see if
1824 * orphanizing is really required.
1825 */
31db9f7c
AB
1826static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1827 const char *name, int name_len,
f5962781 1828 u64 *who_ino, u64 *who_gen, u64 *who_mode)
31db9f7c
AB
1829{
1830 int ret = 0;
ebdad913 1831 u64 gen;
31db9f7c
AB
1832 u64 other_inode = 0;
1833 u8 other_type = 0;
1834
1835 if (!sctx->parent_root)
1836 goto out;
1837
1838 ret = is_inode_existent(sctx, dir, dir_gen);
1839 if (ret <= 0)
1840 goto out;
1841
ebdad913
JB
1842 /*
1843 * If we have a parent root we need to verify that the parent dir was
01327610 1844 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1845 * and we can just unlink this entry.
1846 */
4dd9920d 1847 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
ebdad913
JB
1848 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1849 NULL, NULL, NULL);
1850 if (ret < 0 && ret != -ENOENT)
1851 goto out;
1852 if (ret) {
1853 ret = 0;
1854 goto out;
1855 }
1856 if (gen != dir_gen)
1857 goto out;
1858 }
1859
31db9f7c
AB
1860 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1861 &other_inode, &other_type);
1862 if (ret < 0 && ret != -ENOENT)
1863 goto out;
1864 if (ret) {
1865 ret = 0;
1866 goto out;
1867 }
1868
766702ef
AB
1869 /*
1870 * Check if the overwritten ref was already processed. If yes, the ref
1871 * was already unlinked/moved, so we can safely assume that we will not
1872 * overwrite anything at this point in time.
1873 */
801bec36
RK
1874 if (other_inode > sctx->send_progress ||
1875 is_waiting_for_move(sctx, other_inode)) {
31db9f7c 1876 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
f5962781 1877 who_gen, who_mode, NULL, NULL, NULL);
31db9f7c
AB
1878 if (ret < 0)
1879 goto out;
1880
1881 ret = 1;
1882 *who_ino = other_inode;
1883 } else {
1884 ret = 0;
1885 }
1886
1887out:
1888 return ret;
1889}
1890
766702ef
AB
1891/*
1892 * Checks if the ref was overwritten by an already processed inode. This is
1893 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1894 * thus the orphan name needs be used.
1895 * process_recorded_refs also uses it to avoid unlinking of refs that were
1896 * overwritten.
1897 */
31db9f7c
AB
1898static int did_overwrite_ref(struct send_ctx *sctx,
1899 u64 dir, u64 dir_gen,
1900 u64 ino, u64 ino_gen,
1901 const char *name, int name_len)
1902{
1903 int ret = 0;
1904 u64 gen;
1905 u64 ow_inode;
1906 u8 other_type;
1907
1908 if (!sctx->parent_root)
1909 goto out;
1910
1911 ret = is_inode_existent(sctx, dir, dir_gen);
1912 if (ret <= 0)
1913 goto out;
1914
01914101
RK
1915 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1916 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1917 NULL, NULL, NULL);
1918 if (ret < 0 && ret != -ENOENT)
1919 goto out;
1920 if (ret) {
1921 ret = 0;
1922 goto out;
1923 }
1924 if (gen != dir_gen)
1925 goto out;
1926 }
1927
31db9f7c
AB
1928 /* check if the ref was overwritten by another ref */
1929 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1930 &ow_inode, &other_type);
1931 if (ret < 0 && ret != -ENOENT)
1932 goto out;
1933 if (ret) {
1934 /* was never and will never be overwritten */
1935 ret = 0;
1936 goto out;
1937 }
1938
1939 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1940 NULL, NULL);
31db9f7c
AB
1941 if (ret < 0)
1942 goto out;
1943
1944 if (ow_inode == ino && gen == ino_gen) {
1945 ret = 0;
1946 goto out;
1947 }
1948
8b191a68
FM
1949 /*
1950 * We know that it is or will be overwritten. Check this now.
1951 * The current inode being processed might have been the one that caused
b786f16a
FM
1952 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1953 * the current inode being processed.
8b191a68 1954 */
b786f16a
FM
1955 if ((ow_inode < sctx->send_progress) ||
1956 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1957 gen == sctx->cur_inode_gen))
31db9f7c
AB
1958 ret = 1;
1959 else
1960 ret = 0;
1961
1962out:
1963 return ret;
1964}
1965
766702ef
AB
1966/*
1967 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1968 * that got overwritten. This is used by process_recorded_refs to determine
1969 * if it has to use the path as returned by get_cur_path or the orphan name.
1970 */
31db9f7c
AB
1971static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1972{
1973 int ret = 0;
1974 struct fs_path *name = NULL;
1975 u64 dir;
1976 u64 dir_gen;
1977
1978 if (!sctx->parent_root)
1979 goto out;
1980
924794c9 1981 name = fs_path_alloc();
31db9f7c
AB
1982 if (!name)
1983 return -ENOMEM;
1984
924794c9 1985 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1986 if (ret < 0)
1987 goto out;
1988
1989 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1990 name->start, fs_path_len(name));
31db9f7c
AB
1991
1992out:
924794c9 1993 fs_path_free(name);
31db9f7c
AB
1994 return ret;
1995}
1996
766702ef
AB
1997/*
1998 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1999 * so we need to do some special handling in case we have clashes. This function
2000 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2001 * In case of error, nce is kfreed.
766702ef 2002 */
31db9f7c
AB
2003static int name_cache_insert(struct send_ctx *sctx,
2004 struct name_cache_entry *nce)
2005{
2006 int ret = 0;
7e0926fe
AB
2007 struct list_head *nce_head;
2008
2009 nce_head = radix_tree_lookup(&sctx->name_cache,
2010 (unsigned long)nce->ino);
2011 if (!nce_head) {
e780b0d1 2012 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2013 if (!nce_head) {
2014 kfree(nce);
31db9f7c 2015 return -ENOMEM;
cfa7a9cc 2016 }
7e0926fe 2017 INIT_LIST_HEAD(nce_head);
31db9f7c 2018
7e0926fe 2019 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2020 if (ret < 0) {
2021 kfree(nce_head);
2022 kfree(nce);
31db9f7c 2023 return ret;
5dc67d0b 2024 }
31db9f7c 2025 }
7e0926fe 2026 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2027 list_add_tail(&nce->list, &sctx->name_cache_list);
2028 sctx->name_cache_size++;
2029
2030 return ret;
2031}
2032
2033static void name_cache_delete(struct send_ctx *sctx,
2034 struct name_cache_entry *nce)
2035{
7e0926fe 2036 struct list_head *nce_head;
31db9f7c 2037
7e0926fe
AB
2038 nce_head = radix_tree_lookup(&sctx->name_cache,
2039 (unsigned long)nce->ino);
57fb8910
DS
2040 if (!nce_head) {
2041 btrfs_err(sctx->send_root->fs_info,
2042 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2043 nce->ino, sctx->name_cache_size);
2044 }
31db9f7c 2045
7e0926fe 2046 list_del(&nce->radix_list);
31db9f7c 2047 list_del(&nce->list);
31db9f7c 2048 sctx->name_cache_size--;
7e0926fe 2049
57fb8910
DS
2050 /*
2051 * We may not get to the final release of nce_head if the lookup fails
2052 */
2053 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2054 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2055 kfree(nce_head);
2056 }
31db9f7c
AB
2057}
2058
2059static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2060 u64 ino, u64 gen)
2061{
7e0926fe
AB
2062 struct list_head *nce_head;
2063 struct name_cache_entry *cur;
31db9f7c 2064
7e0926fe
AB
2065 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2066 if (!nce_head)
31db9f7c
AB
2067 return NULL;
2068
7e0926fe
AB
2069 list_for_each_entry(cur, nce_head, radix_list) {
2070 if (cur->ino == ino && cur->gen == gen)
2071 return cur;
2072 }
31db9f7c
AB
2073 return NULL;
2074}
2075
766702ef
AB
2076/*
2077 * Removes the entry from the list and adds it back to the end. This marks the
2078 * entry as recently used so that name_cache_clean_unused does not remove it.
2079 */
31db9f7c
AB
2080static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2081{
2082 list_del(&nce->list);
2083 list_add_tail(&nce->list, &sctx->name_cache_list);
2084}
2085
766702ef
AB
2086/*
2087 * Remove some entries from the beginning of name_cache_list.
2088 */
31db9f7c
AB
2089static void name_cache_clean_unused(struct send_ctx *sctx)
2090{
2091 struct name_cache_entry *nce;
2092
2093 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2094 return;
2095
2096 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2097 nce = list_entry(sctx->name_cache_list.next,
2098 struct name_cache_entry, list);
2099 name_cache_delete(sctx, nce);
2100 kfree(nce);
2101 }
2102}
2103
2104static void name_cache_free(struct send_ctx *sctx)
2105{
2106 struct name_cache_entry *nce;
31db9f7c 2107
e938c8ad
AB
2108 while (!list_empty(&sctx->name_cache_list)) {
2109 nce = list_entry(sctx->name_cache_list.next,
2110 struct name_cache_entry, list);
31db9f7c 2111 name_cache_delete(sctx, nce);
17589bd9 2112 kfree(nce);
31db9f7c
AB
2113 }
2114}
2115
766702ef
AB
2116/*
2117 * Used by get_cur_path for each ref up to the root.
2118 * Returns 0 if it succeeded.
2119 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2120 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2121 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2122 * Returns <0 in case of error.
2123 */
31db9f7c
AB
2124static int __get_cur_name_and_parent(struct send_ctx *sctx,
2125 u64 ino, u64 gen,
2126 u64 *parent_ino,
2127 u64 *parent_gen,
2128 struct fs_path *dest)
2129{
2130 int ret;
2131 int nce_ret;
31db9f7c
AB
2132 struct name_cache_entry *nce = NULL;
2133
766702ef
AB
2134 /*
2135 * First check if we already did a call to this function with the same
2136 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2137 * return the cached result.
2138 */
31db9f7c
AB
2139 nce = name_cache_search(sctx, ino, gen);
2140 if (nce) {
2141 if (ino < sctx->send_progress && nce->need_later_update) {
2142 name_cache_delete(sctx, nce);
2143 kfree(nce);
2144 nce = NULL;
2145 } else {
2146 name_cache_used(sctx, nce);
2147 *parent_ino = nce->parent_ino;
2148 *parent_gen = nce->parent_gen;
2149 ret = fs_path_add(dest, nce->name, nce->name_len);
2150 if (ret < 0)
2151 goto out;
2152 ret = nce->ret;
2153 goto out;
2154 }
2155 }
2156
766702ef
AB
2157 /*
2158 * If the inode is not existent yet, add the orphan name and return 1.
2159 * This should only happen for the parent dir that we determine in
2160 * __record_new_ref
2161 */
31db9f7c
AB
2162 ret = is_inode_existent(sctx, ino, gen);
2163 if (ret < 0)
2164 goto out;
2165
2166 if (!ret) {
2167 ret = gen_unique_name(sctx, ino, gen, dest);
2168 if (ret < 0)
2169 goto out;
2170 ret = 1;
2171 goto out_cache;
2172 }
2173
766702ef
AB
2174 /*
2175 * Depending on whether the inode was already processed or not, use
2176 * send_root or parent_root for ref lookup.
2177 */
bf0d1f44 2178 if (ino < sctx->send_progress)
924794c9
TI
2179 ret = get_first_ref(sctx->send_root, ino,
2180 parent_ino, parent_gen, dest);
31db9f7c 2181 else
924794c9
TI
2182 ret = get_first_ref(sctx->parent_root, ino,
2183 parent_ino, parent_gen, dest);
31db9f7c
AB
2184 if (ret < 0)
2185 goto out;
2186
766702ef
AB
2187 /*
2188 * Check if the ref was overwritten by an inode's ref that was processed
2189 * earlier. If yes, treat as orphan and return 1.
2190 */
31db9f7c
AB
2191 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192 dest->start, dest->end - dest->start);
2193 if (ret < 0)
2194 goto out;
2195 if (ret) {
2196 fs_path_reset(dest);
2197 ret = gen_unique_name(sctx, ino, gen, dest);
2198 if (ret < 0)
2199 goto out;
2200 ret = 1;
2201 }
2202
2203out_cache:
766702ef
AB
2204 /*
2205 * Store the result of the lookup in the name cache.
2206 */
e780b0d1 2207 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2208 if (!nce) {
2209 ret = -ENOMEM;
2210 goto out;
2211 }
2212
2213 nce->ino = ino;
2214 nce->gen = gen;
2215 nce->parent_ino = *parent_ino;
2216 nce->parent_gen = *parent_gen;
2217 nce->name_len = fs_path_len(dest);
2218 nce->ret = ret;
2219 strcpy(nce->name, dest->start);
31db9f7c
AB
2220
2221 if (ino < sctx->send_progress)
2222 nce->need_later_update = 0;
2223 else
2224 nce->need_later_update = 1;
2225
2226 nce_ret = name_cache_insert(sctx, nce);
2227 if (nce_ret < 0)
2228 ret = nce_ret;
2229 name_cache_clean_unused(sctx);
2230
2231out:
31db9f7c
AB
2232 return ret;
2233}
2234
2235/*
2236 * Magic happens here. This function returns the first ref to an inode as it
2237 * would look like while receiving the stream at this point in time.
2238 * We walk the path up to the root. For every inode in between, we check if it
2239 * was already processed/sent. If yes, we continue with the parent as found
2240 * in send_root. If not, we continue with the parent as found in parent_root.
2241 * If we encounter an inode that was deleted at this point in time, we use the
2242 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243 * that were not created yet and overwritten inodes/refs.
2244 *
2245 * When do we have have orphan inodes:
2246 * 1. When an inode is freshly created and thus no valid refs are available yet
2247 * 2. When a directory lost all it's refs (deleted) but still has dir items
2248 * inside which were not processed yet (pending for move/delete). If anyone
2249 * tried to get the path to the dir items, it would get a path inside that
2250 * orphan directory.
2251 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252 * of an unprocessed inode. If in that case the first ref would be
2253 * overwritten, the overwritten inode gets "orphanized". Later when we
2254 * process this overwritten inode, it is restored at a new place by moving
2255 * the orphan inode.
2256 *
2257 * sctx->send_progress tells this function at which point in time receiving
2258 * would be.
2259 */
2260static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261 struct fs_path *dest)
2262{
2263 int ret = 0;
2264 struct fs_path *name = NULL;
2265 u64 parent_inode = 0;
2266 u64 parent_gen = 0;
2267 int stop = 0;
2268
924794c9 2269 name = fs_path_alloc();
31db9f7c
AB
2270 if (!name) {
2271 ret = -ENOMEM;
2272 goto out;
2273 }
2274
2275 dest->reversed = 1;
2276 fs_path_reset(dest);
2277
2278 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2279 struct waiting_dir_move *wdm;
2280
31db9f7c
AB
2281 fs_path_reset(name);
2282
9dc44214
FM
2283 if (is_waiting_for_rm(sctx, ino)) {
2284 ret = gen_unique_name(sctx, ino, gen, name);
2285 if (ret < 0)
2286 goto out;
2287 ret = fs_path_add_path(dest, name);
2288 break;
2289 }
2290
8b191a68
FM
2291 wdm = get_waiting_dir_move(sctx, ino);
2292 if (wdm && wdm->orphanized) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2294 stop = 1;
2295 } else if (wdm) {
bf0d1f44
FM
2296 ret = get_first_ref(sctx->parent_root, ino,
2297 &parent_inode, &parent_gen, name);
2298 } else {
2299 ret = __get_cur_name_and_parent(sctx, ino, gen,
2300 &parent_inode,
2301 &parent_gen, name);
2302 if (ret)
2303 stop = 1;
2304 }
2305
31db9f7c
AB
2306 if (ret < 0)
2307 goto out;
9f03740a 2308
31db9f7c
AB
2309 ret = fs_path_add_path(dest, name);
2310 if (ret < 0)
2311 goto out;
2312
2313 ino = parent_inode;
2314 gen = parent_gen;
2315 }
2316
2317out:
924794c9 2318 fs_path_free(name);
31db9f7c
AB
2319 if (!ret)
2320 fs_path_unreverse(dest);
2321 return ret;
2322}
2323
31db9f7c
AB
2324/*
2325 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2326 */
2327static int send_subvol_begin(struct send_ctx *sctx)
2328{
2329 int ret;
2330 struct btrfs_root *send_root = sctx->send_root;
2331 struct btrfs_root *parent_root = sctx->parent_root;
2332 struct btrfs_path *path;
2333 struct btrfs_key key;
2334 struct btrfs_root_ref *ref;
2335 struct extent_buffer *leaf;
2336 char *name = NULL;
2337 int namelen;
2338
ffcfaf81 2339 path = btrfs_alloc_path();
31db9f7c
AB
2340 if (!path)
2341 return -ENOMEM;
2342
e780b0d1 2343 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2344 if (!name) {
2345 btrfs_free_path(path);
2346 return -ENOMEM;
2347 }
2348
2349 key.objectid = send_root->objectid;
2350 key.type = BTRFS_ROOT_BACKREF_KEY;
2351 key.offset = 0;
2352
2353 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2354 &key, path, 1, 0);
2355 if (ret < 0)
2356 goto out;
2357 if (ret) {
2358 ret = -ENOENT;
2359 goto out;
2360 }
2361
2362 leaf = path->nodes[0];
2363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365 key.objectid != send_root->objectid) {
2366 ret = -ENOENT;
2367 goto out;
2368 }
2369 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370 namelen = btrfs_root_ref_name_len(leaf, ref);
2371 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372 btrfs_release_path(path);
2373
31db9f7c
AB
2374 if (parent_root) {
2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2376 if (ret < 0)
2377 goto out;
2378 } else {
2379 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2380 if (ret < 0)
2381 goto out;
2382 }
2383
2384 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2385
2386 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388 sctx->send_root->root_item.received_uuid);
2389 else
2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391 sctx->send_root->root_item.uuid);
2392
31db9f7c 2393 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2394 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2395 if (parent_root) {
37b8d27d
JB
2396 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398 parent_root->root_item.received_uuid);
2399 else
2400 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401 parent_root->root_item.uuid);
31db9f7c 2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2403 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2404 }
2405
2406 ret = send_cmd(sctx);
2407
2408tlv_put_failure:
2409out:
2410 btrfs_free_path(path);
2411 kfree(name);
2412 return ret;
2413}
2414
2415static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2416{
04ab956e 2417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2418 int ret = 0;
2419 struct fs_path *p;
2420
04ab956e 2421 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
31db9f7c 2422
924794c9 2423 p = fs_path_alloc();
31db9f7c
AB
2424 if (!p)
2425 return -ENOMEM;
2426
2427 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2428 if (ret < 0)
2429 goto out;
2430
2431 ret = get_cur_path(sctx, ino, gen, p);
2432 if (ret < 0)
2433 goto out;
2434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2436
2437 ret = send_cmd(sctx);
2438
2439tlv_put_failure:
2440out:
924794c9 2441 fs_path_free(p);
31db9f7c
AB
2442 return ret;
2443}
2444
2445static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2446{
04ab956e 2447 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2448 int ret = 0;
2449 struct fs_path *p;
2450
04ab956e 2451 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
31db9f7c 2452
924794c9 2453 p = fs_path_alloc();
31db9f7c
AB
2454 if (!p)
2455 return -ENOMEM;
2456
2457 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2458 if (ret < 0)
2459 goto out;
2460
2461 ret = get_cur_path(sctx, ino, gen, p);
2462 if (ret < 0)
2463 goto out;
2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2466
2467 ret = send_cmd(sctx);
2468
2469tlv_put_failure:
2470out:
924794c9 2471 fs_path_free(p);
31db9f7c
AB
2472 return ret;
2473}
2474
2475static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2476{
04ab956e 2477 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2478 int ret = 0;
2479 struct fs_path *p;
2480
04ab956e
JM
2481 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2482 ino, uid, gid);
31db9f7c 2483
924794c9 2484 p = fs_path_alloc();
31db9f7c
AB
2485 if (!p)
2486 return -ENOMEM;
2487
2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2489 if (ret < 0)
2490 goto out;
2491
2492 ret = get_cur_path(sctx, ino, gen, p);
2493 if (ret < 0)
2494 goto out;
2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2498
2499 ret = send_cmd(sctx);
2500
2501tlv_put_failure:
2502out:
924794c9 2503 fs_path_free(p);
31db9f7c
AB
2504 return ret;
2505}
2506
2507static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2508{
04ab956e 2509 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2510 int ret = 0;
2511 struct fs_path *p = NULL;
2512 struct btrfs_inode_item *ii;
2513 struct btrfs_path *path = NULL;
2514 struct extent_buffer *eb;
2515 struct btrfs_key key;
2516 int slot;
2517
04ab956e 2518 btrfs_debug(fs_info, "send_utimes %llu", ino);
31db9f7c 2519
924794c9 2520 p = fs_path_alloc();
31db9f7c
AB
2521 if (!p)
2522 return -ENOMEM;
2523
2524 path = alloc_path_for_send();
2525 if (!path) {
2526 ret = -ENOMEM;
2527 goto out;
2528 }
2529
2530 key.objectid = ino;
2531 key.type = BTRFS_INODE_ITEM_KEY;
2532 key.offset = 0;
2533 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2534 if (ret > 0)
2535 ret = -ENOENT;
31db9f7c
AB
2536 if (ret < 0)
2537 goto out;
2538
2539 eb = path->nodes[0];
2540 slot = path->slots[0];
2541 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2542
2543 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2544 if (ret < 0)
2545 goto out;
2546
2547 ret = get_cur_path(sctx, ino, gen, p);
2548 if (ret < 0)
2549 goto out;
2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2551 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2554 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2555
2556 ret = send_cmd(sctx);
2557
2558tlv_put_failure:
2559out:
924794c9 2560 fs_path_free(p);
31db9f7c
AB
2561 btrfs_free_path(path);
2562 return ret;
2563}
2564
2565/*
2566 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567 * a valid path yet because we did not process the refs yet. So, the inode
2568 * is created as orphan.
2569 */
1f4692da 2570static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c 2571{
04ab956e 2572 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c 2573 int ret = 0;
31db9f7c 2574 struct fs_path *p;
31db9f7c 2575 int cmd;
1f4692da 2576 u64 gen;
31db9f7c 2577 u64 mode;
1f4692da 2578 u64 rdev;
31db9f7c 2579
04ab956e 2580 btrfs_debug(fs_info, "send_create_inode %llu", ino);
31db9f7c 2581
924794c9 2582 p = fs_path_alloc();
31db9f7c
AB
2583 if (!p)
2584 return -ENOMEM;
2585
644d1940
LB
2586 if (ino != sctx->cur_ino) {
2587 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2588 NULL, NULL, &rdev);
2589 if (ret < 0)
2590 goto out;
2591 } else {
2592 gen = sctx->cur_inode_gen;
2593 mode = sctx->cur_inode_mode;
2594 rdev = sctx->cur_inode_rdev;
2595 }
31db9f7c 2596
e938c8ad 2597 if (S_ISREG(mode)) {
31db9f7c 2598 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2599 } else if (S_ISDIR(mode)) {
31db9f7c 2600 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2601 } else if (S_ISLNK(mode)) {
31db9f7c 2602 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2603 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2604 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2605 } else if (S_ISFIFO(mode)) {
31db9f7c 2606 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2607 } else if (S_ISSOCK(mode)) {
31db9f7c 2608 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2609 } else {
f14d104d 2610 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c 2611 (int)(mode & S_IFMT));
ca6842bf 2612 ret = -EOPNOTSUPP;
31db9f7c
AB
2613 goto out;
2614 }
2615
2616 ret = begin_cmd(sctx, cmd);
2617 if (ret < 0)
2618 goto out;
2619
1f4692da 2620 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2621 if (ret < 0)
2622 goto out;
2623
2624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2625 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2626
2627 if (S_ISLNK(mode)) {
2628 fs_path_reset(p);
924794c9 2629 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2630 if (ret < 0)
2631 goto out;
2632 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2635 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2637 }
2638
2639 ret = send_cmd(sctx);
2640 if (ret < 0)
2641 goto out;
2642
2643
2644tlv_put_failure:
2645out:
924794c9 2646 fs_path_free(p);
31db9f7c
AB
2647 return ret;
2648}
2649
1f4692da
AB
2650/*
2651 * We need some special handling for inodes that get processed before the parent
2652 * directory got created. See process_recorded_refs for details.
2653 * This function does the check if we already created the dir out of order.
2654 */
2655static int did_create_dir(struct send_ctx *sctx, u64 dir)
2656{
2657 int ret = 0;
2658 struct btrfs_path *path = NULL;
2659 struct btrfs_key key;
2660 struct btrfs_key found_key;
2661 struct btrfs_key di_key;
2662 struct extent_buffer *eb;
2663 struct btrfs_dir_item *di;
2664 int slot;
2665
2666 path = alloc_path_for_send();
2667 if (!path) {
2668 ret = -ENOMEM;
2669 goto out;
2670 }
2671
2672 key.objectid = dir;
2673 key.type = BTRFS_DIR_INDEX_KEY;
2674 key.offset = 0;
dff6d0ad
FDBM
2675 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2676 if (ret < 0)
2677 goto out;
2678
1f4692da 2679 while (1) {
dff6d0ad
FDBM
2680 eb = path->nodes[0];
2681 slot = path->slots[0];
2682 if (slot >= btrfs_header_nritems(eb)) {
2683 ret = btrfs_next_leaf(sctx->send_root, path);
2684 if (ret < 0) {
2685 goto out;
2686 } else if (ret > 0) {
2687 ret = 0;
2688 break;
2689 }
2690 continue;
1f4692da 2691 }
dff6d0ad
FDBM
2692
2693 btrfs_item_key_to_cpu(eb, &found_key, slot);
2694 if (found_key.objectid != key.objectid ||
1f4692da
AB
2695 found_key.type != key.type) {
2696 ret = 0;
2697 goto out;
2698 }
2699
2700 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2702
a0525414
JB
2703 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2705 ret = 1;
2706 goto out;
2707 }
2708
dff6d0ad 2709 path->slots[0]++;
1f4692da
AB
2710 }
2711
2712out:
2713 btrfs_free_path(path);
2714 return ret;
2715}
2716
2717/*
2718 * Only creates the inode if it is:
2719 * 1. Not a directory
2720 * 2. Or a directory which was not created already due to out of order
2721 * directories. See did_create_dir and process_recorded_refs for details.
2722 */
2723static int send_create_inode_if_needed(struct send_ctx *sctx)
2724{
2725 int ret;
2726
2727 if (S_ISDIR(sctx->cur_inode_mode)) {
2728 ret = did_create_dir(sctx, sctx->cur_ino);
2729 if (ret < 0)
2730 goto out;
2731 if (ret) {
2732 ret = 0;
2733 goto out;
2734 }
2735 }
2736
2737 ret = send_create_inode(sctx, sctx->cur_ino);
2738 if (ret < 0)
2739 goto out;
2740
2741out:
2742 return ret;
2743}
2744
31db9f7c
AB
2745struct recorded_ref {
2746 struct list_head list;
31db9f7c
AB
2747 char *name;
2748 struct fs_path *full_path;
2749 u64 dir;
2750 u64 dir_gen;
31db9f7c
AB
2751 int name_len;
2752};
2753
fdb13889
FM
2754static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2755{
2756 ref->full_path = path;
2757 ref->name = (char *)kbasename(ref->full_path->start);
2758 ref->name_len = ref->full_path->end - ref->name;
2759}
2760
31db9f7c
AB
2761/*
2762 * We need to process new refs before deleted refs, but compare_tree gives us
2763 * everything mixed. So we first record all refs and later process them.
2764 * This function is a helper to record one ref.
2765 */
a4d96d62 2766static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2767 u64 dir_gen, struct fs_path *path)
2768{
2769 struct recorded_ref *ref;
31db9f7c 2770
e780b0d1 2771 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
31db9f7c
AB
2772 if (!ref)
2773 return -ENOMEM;
2774
2775 ref->dir = dir;
2776 ref->dir_gen = dir_gen;
fdb13889 2777 set_ref_path(ref, path);
31db9f7c
AB
2778 list_add_tail(&ref->list, head);
2779 return 0;
2780}
2781
ba5e8f2e
JB
2782static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2783{
2784 struct recorded_ref *new;
2785
e780b0d1 2786 new = kmalloc(sizeof(*ref), GFP_KERNEL);
ba5e8f2e
JB
2787 if (!new)
2788 return -ENOMEM;
2789
2790 new->dir = ref->dir;
2791 new->dir_gen = ref->dir_gen;
2792 new->full_path = NULL;
2793 INIT_LIST_HEAD(&new->list);
2794 list_add_tail(&new->list, list);
2795 return 0;
2796}
2797
924794c9 2798static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2799{
2800 struct recorded_ref *cur;
31db9f7c 2801
e938c8ad
AB
2802 while (!list_empty(head)) {
2803 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2804 fs_path_free(cur->full_path);
e938c8ad 2805 list_del(&cur->list);
31db9f7c
AB
2806 kfree(cur);
2807 }
31db9f7c
AB
2808}
2809
2810static void free_recorded_refs(struct send_ctx *sctx)
2811{
924794c9
TI
2812 __free_recorded_refs(&sctx->new_refs);
2813 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2814}
2815
2816/*
766702ef 2817 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2818 * ref of an unprocessed inode gets overwritten and for all non empty
2819 * directories.
2820 */
2821static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822 struct fs_path *path)
2823{
2824 int ret;
2825 struct fs_path *orphan;
2826
924794c9 2827 orphan = fs_path_alloc();
31db9f7c
AB
2828 if (!orphan)
2829 return -ENOMEM;
2830
2831 ret = gen_unique_name(sctx, ino, gen, orphan);
2832 if (ret < 0)
2833 goto out;
2834
2835 ret = send_rename(sctx, path, orphan);
2836
2837out:
924794c9 2838 fs_path_free(orphan);
31db9f7c
AB
2839 return ret;
2840}
2841
9dc44214
FM
2842static struct orphan_dir_info *
2843add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2844{
2845 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846 struct rb_node *parent = NULL;
2847 struct orphan_dir_info *entry, *odi;
2848
9dc44214
FM
2849 while (*p) {
2850 parent = *p;
2851 entry = rb_entry(parent, struct orphan_dir_info, node);
2852 if (dir_ino < entry->ino) {
2853 p = &(*p)->rb_left;
2854 } else if (dir_ino > entry->ino) {
2855 p = &(*p)->rb_right;
2856 } else {
9dc44214
FM
2857 return entry;
2858 }
2859 }
2860
35c8eda1
RK
2861 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2862 if (!odi)
2863 return ERR_PTR(-ENOMEM);
2864 odi->ino = dir_ino;
2865 odi->gen = 0;
0f96f517 2866 odi->last_dir_index_offset = 0;
35c8eda1 2867
9dc44214
FM
2868 rb_link_node(&odi->node, parent, p);
2869 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2870 return odi;
2871}
2872
2873static struct orphan_dir_info *
2874get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2875{
2876 struct rb_node *n = sctx->orphan_dirs.rb_node;
2877 struct orphan_dir_info *entry;
2878
2879 while (n) {
2880 entry = rb_entry(n, struct orphan_dir_info, node);
2881 if (dir_ino < entry->ino)
2882 n = n->rb_left;
2883 else if (dir_ino > entry->ino)
2884 n = n->rb_right;
2885 else
2886 return entry;
2887 }
2888 return NULL;
2889}
2890
2891static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2892{
2893 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2894
2895 return odi != NULL;
2896}
2897
2898static void free_orphan_dir_info(struct send_ctx *sctx,
2899 struct orphan_dir_info *odi)
2900{
2901 if (!odi)
2902 return;
2903 rb_erase(&odi->node, &sctx->orphan_dirs);
2904 kfree(odi);
2905}
2906
31db9f7c
AB
2907/*
2908 * Returns 1 if a directory can be removed at this point in time.
2909 * We check this by iterating all dir items and checking if the inode behind
2910 * the dir item was already processed.
2911 */
9dc44214
FM
2912static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2913 u64 send_progress)
31db9f7c
AB
2914{
2915 int ret = 0;
2916 struct btrfs_root *root = sctx->parent_root;
2917 struct btrfs_path *path;
2918 struct btrfs_key key;
2919 struct btrfs_key found_key;
2920 struct btrfs_key loc;
2921 struct btrfs_dir_item *di;
0f96f517 2922 struct orphan_dir_info *odi = NULL;
31db9f7c 2923
6d85ed05
AB
2924 /*
2925 * Don't try to rmdir the top/root subvolume dir.
2926 */
2927 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2928 return 0;
2929
31db9f7c
AB
2930 path = alloc_path_for_send();
2931 if (!path)
2932 return -ENOMEM;
2933
2934 key.objectid = dir;
2935 key.type = BTRFS_DIR_INDEX_KEY;
2936 key.offset = 0;
0f96f517
RK
2937
2938 odi = get_orphan_dir_info(sctx, dir);
2939 if (odi)
2940 key.offset = odi->last_dir_index_offset;
2941
dff6d0ad
FDBM
2942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2943 if (ret < 0)
2944 goto out;
31db9f7c
AB
2945
2946 while (1) {
9dc44214
FM
2947 struct waiting_dir_move *dm;
2948
dff6d0ad
FDBM
2949 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2950 ret = btrfs_next_leaf(root, path);
2951 if (ret < 0)
2952 goto out;
2953 else if (ret > 0)
2954 break;
2955 continue;
31db9f7c 2956 }
dff6d0ad
FDBM
2957 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2958 path->slots[0]);
2959 if (found_key.objectid != key.objectid ||
2960 found_key.type != key.type)
31db9f7c 2961 break;
31db9f7c
AB
2962
2963 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2964 struct btrfs_dir_item);
2965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2966
9dc44214
FM
2967 dm = get_waiting_dir_move(sctx, loc.objectid);
2968 if (dm) {
9dc44214
FM
2969 odi = add_orphan_dir_info(sctx, dir);
2970 if (IS_ERR(odi)) {
2971 ret = PTR_ERR(odi);
2972 goto out;
2973 }
2974 odi->gen = dir_gen;
0f96f517 2975 odi->last_dir_index_offset = found_key.offset;
9dc44214
FM
2976 dm->rmdir_ino = dir;
2977 ret = 0;
2978 goto out;
2979 }
2980
31db9f7c 2981 if (loc.objectid > send_progress) {
0f96f517
RK
2982 odi = add_orphan_dir_info(sctx, dir);
2983 if (IS_ERR(odi)) {
2984 ret = PTR_ERR(odi);
2985 goto out;
2986 }
2987 odi->gen = dir_gen;
2988 odi->last_dir_index_offset = found_key.offset;
31db9f7c
AB
2989 ret = 0;
2990 goto out;
2991 }
2992
dff6d0ad 2993 path->slots[0]++;
31db9f7c 2994 }
0f96f517 2995 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
2996
2997 ret = 1;
2998
2999out:
3000 btrfs_free_path(path);
3001 return ret;
3002}
3003
9f03740a
FDBM
3004static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3005{
9dc44214 3006 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3007
9dc44214 3008 return entry != NULL;
9f03740a
FDBM
3009}
3010
8b191a68 3011static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3012{
3013 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3014 struct rb_node *parent = NULL;
3015 struct waiting_dir_move *entry, *dm;
3016
e780b0d1 3017 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3018 if (!dm)
3019 return -ENOMEM;
3020 dm->ino = ino;
9dc44214 3021 dm->rmdir_ino = 0;
8b191a68 3022 dm->orphanized = orphanized;
9f03740a
FDBM
3023
3024 while (*p) {
3025 parent = *p;
3026 entry = rb_entry(parent, struct waiting_dir_move, node);
3027 if (ino < entry->ino) {
3028 p = &(*p)->rb_left;
3029 } else if (ino > entry->ino) {
3030 p = &(*p)->rb_right;
3031 } else {
3032 kfree(dm);
3033 return -EEXIST;
3034 }
3035 }
3036
3037 rb_link_node(&dm->node, parent, p);
3038 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3039 return 0;
3040}
3041
9dc44214
FM
3042static struct waiting_dir_move *
3043get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3044{
3045 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3046 struct waiting_dir_move *entry;
3047
3048 while (n) {
3049 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3050 if (ino < entry->ino)
9f03740a 3051 n = n->rb_left;
9dc44214 3052 else if (ino > entry->ino)
9f03740a 3053 n = n->rb_right;
9dc44214
FM
3054 else
3055 return entry;
9f03740a 3056 }
9dc44214
FM
3057 return NULL;
3058}
3059
3060static void free_waiting_dir_move(struct send_ctx *sctx,
3061 struct waiting_dir_move *dm)
3062{
3063 if (!dm)
3064 return;
3065 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3066 kfree(dm);
9f03740a
FDBM
3067}
3068
bfa7e1f8
FM
3069static int add_pending_dir_move(struct send_ctx *sctx,
3070 u64 ino,
3071 u64 ino_gen,
f959492f
FM
3072 u64 parent_ino,
3073 struct list_head *new_refs,
84471e24
FM
3074 struct list_head *deleted_refs,
3075 const bool is_orphan)
9f03740a
FDBM
3076{
3077 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3078 struct rb_node *parent = NULL;
73b802f4 3079 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3080 struct recorded_ref *cur;
3081 int exists = 0;
3082 int ret;
3083
e780b0d1 3084 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3085 if (!pm)
3086 return -ENOMEM;
3087 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3088 pm->ino = ino;
3089 pm->gen = ino_gen;
9f03740a
FDBM
3090 INIT_LIST_HEAD(&pm->list);
3091 INIT_LIST_HEAD(&pm->update_refs);
3092 RB_CLEAR_NODE(&pm->node);
3093
3094 while (*p) {
3095 parent = *p;
3096 entry = rb_entry(parent, struct pending_dir_move, node);
3097 if (parent_ino < entry->parent_ino) {
3098 p = &(*p)->rb_left;
3099 } else if (parent_ino > entry->parent_ino) {
3100 p = &(*p)->rb_right;
3101 } else {
3102 exists = 1;
3103 break;
3104 }
3105 }
3106
f959492f 3107 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3108 ret = dup_ref(cur, &pm->update_refs);
3109 if (ret < 0)
3110 goto out;
3111 }
f959492f 3112 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3113 ret = dup_ref(cur, &pm->update_refs);
3114 if (ret < 0)
3115 goto out;
3116 }
3117
8b191a68 3118 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3119 if (ret)
3120 goto out;
3121
3122 if (exists) {
3123 list_add_tail(&pm->list, &entry->list);
3124 } else {
3125 rb_link_node(&pm->node, parent, p);
3126 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3127 }
3128 ret = 0;
3129out:
3130 if (ret) {
3131 __free_recorded_refs(&pm->update_refs);
3132 kfree(pm);
3133 }
3134 return ret;
3135}
3136
3137static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3138 u64 parent_ino)
3139{
3140 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3141 struct pending_dir_move *entry;
3142
3143 while (n) {
3144 entry = rb_entry(n, struct pending_dir_move, node);
3145 if (parent_ino < entry->parent_ino)
3146 n = n->rb_left;
3147 else if (parent_ino > entry->parent_ino)
3148 n = n->rb_right;
3149 else
3150 return entry;
3151 }
3152 return NULL;
3153}
3154
801bec36
RK
3155static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3156 u64 ino, u64 gen, u64 *ancestor_ino)
3157{
3158 int ret = 0;
3159 u64 parent_inode = 0;
3160 u64 parent_gen = 0;
3161 u64 start_ino = ino;
3162
3163 *ancestor_ino = 0;
3164 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3165 fs_path_reset(name);
3166
3167 if (is_waiting_for_rm(sctx, ino))
3168 break;
3169 if (is_waiting_for_move(sctx, ino)) {
3170 if (*ancestor_ino == 0)
3171 *ancestor_ino = ino;
3172 ret = get_first_ref(sctx->parent_root, ino,
3173 &parent_inode, &parent_gen, name);
3174 } else {
3175 ret = __get_cur_name_and_parent(sctx, ino, gen,
3176 &parent_inode,
3177 &parent_gen, name);
3178 if (ret > 0) {
3179 ret = 0;
3180 break;
3181 }
3182 }
3183 if (ret < 0)
3184 break;
3185 if (parent_inode == start_ino) {
3186 ret = 1;
3187 if (*ancestor_ino == 0)
3188 *ancestor_ino = ino;
3189 break;
3190 }
3191 ino = parent_inode;
3192 gen = parent_gen;
3193 }
3194 return ret;
3195}
3196
9f03740a
FDBM
3197static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3198{
3199 struct fs_path *from_path = NULL;
3200 struct fs_path *to_path = NULL;
2b863a13 3201 struct fs_path *name = NULL;
9f03740a
FDBM
3202 u64 orig_progress = sctx->send_progress;
3203 struct recorded_ref *cur;
2b863a13 3204 u64 parent_ino, parent_gen;
9dc44214
FM
3205 struct waiting_dir_move *dm = NULL;
3206 u64 rmdir_ino = 0;
801bec36
RK
3207 u64 ancestor;
3208 bool is_orphan;
9f03740a
FDBM
3209 int ret;
3210
2b863a13 3211 name = fs_path_alloc();
9f03740a 3212 from_path = fs_path_alloc();
2b863a13
FM
3213 if (!name || !from_path) {
3214 ret = -ENOMEM;
3215 goto out;
3216 }
9f03740a 3217
9dc44214
FM
3218 dm = get_waiting_dir_move(sctx, pm->ino);
3219 ASSERT(dm);
3220 rmdir_ino = dm->rmdir_ino;
801bec36 3221 is_orphan = dm->orphanized;
9dc44214 3222 free_waiting_dir_move(sctx, dm);
2b863a13 3223
801bec36 3224 if (is_orphan) {
84471e24
FM
3225 ret = gen_unique_name(sctx, pm->ino,
3226 pm->gen, from_path);
3227 } else {
3228 ret = get_first_ref(sctx->parent_root, pm->ino,
3229 &parent_ino, &parent_gen, name);
3230 if (ret < 0)
3231 goto out;
3232 ret = get_cur_path(sctx, parent_ino, parent_gen,
3233 from_path);
3234 if (ret < 0)
3235 goto out;
3236 ret = fs_path_add_path(from_path, name);
3237 }
c992ec94
FM
3238 if (ret < 0)
3239 goto out;
2b863a13 3240
f959492f 3241 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3242 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3243 if (ret < 0)
3244 goto out;
801bec36
RK
3245 if (ret) {
3246 LIST_HEAD(deleted_refs);
3247 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3248 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3249 &pm->update_refs, &deleted_refs,
3250 is_orphan);
3251 if (ret < 0)
3252 goto out;
3253 if (rmdir_ino) {
3254 dm = get_waiting_dir_move(sctx, pm->ino);
3255 ASSERT(dm);
3256 dm->rmdir_ino = rmdir_ino;
3257 }
3258 goto out;
3259 }
c992ec94
FM
3260 fs_path_reset(name);
3261 to_path = name;
2b863a13 3262 name = NULL;
9f03740a
FDBM
3263 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3264 if (ret < 0)
3265 goto out;
3266
3267 ret = send_rename(sctx, from_path, to_path);
3268 if (ret < 0)
3269 goto out;
3270
9dc44214
FM
3271 if (rmdir_ino) {
3272 struct orphan_dir_info *odi;
0f96f517 3273 u64 gen;
9dc44214
FM
3274
3275 odi = get_orphan_dir_info(sctx, rmdir_ino);
3276 if (!odi) {
3277 /* already deleted */
3278 goto finish;
3279 }
0f96f517
RK
3280 gen = odi->gen;
3281
3282 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
9dc44214
FM
3283 if (ret < 0)
3284 goto out;
3285 if (!ret)
3286 goto finish;
3287
3288 name = fs_path_alloc();
3289 if (!name) {
3290 ret = -ENOMEM;
3291 goto out;
3292 }
0f96f517 3293 ret = get_cur_path(sctx, rmdir_ino, gen, name);
9dc44214
FM
3294 if (ret < 0)
3295 goto out;
3296 ret = send_rmdir(sctx, name);
3297 if (ret < 0)
3298 goto out;
9dc44214
FM
3299 }
3300
3301finish:
9f03740a
FDBM
3302 ret = send_utimes(sctx, pm->ino, pm->gen);
3303 if (ret < 0)
3304 goto out;
3305
3306 /*
3307 * After rename/move, need to update the utimes of both new parent(s)
3308 * and old parent(s).
3309 */
3310 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3311 /*
3312 * The parent inode might have been deleted in the send snapshot
3313 */
3314 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3315 NULL, NULL, NULL, NULL, NULL);
3316 if (ret == -ENOENT) {
3317 ret = 0;
9dc44214 3318 continue;
764433a1
RK
3319 }
3320 if (ret < 0)
3321 goto out;
3322
9f03740a
FDBM
3323 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3324 if (ret < 0)
3325 goto out;
3326 }
3327
3328out:
2b863a13 3329 fs_path_free(name);
9f03740a
FDBM
3330 fs_path_free(from_path);
3331 fs_path_free(to_path);
3332 sctx->send_progress = orig_progress;
3333
3334 return ret;
3335}
3336
3337static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3338{
3339 if (!list_empty(&m->list))
3340 list_del(&m->list);
3341 if (!RB_EMPTY_NODE(&m->node))
3342 rb_erase(&m->node, &sctx->pending_dir_moves);
3343 __free_recorded_refs(&m->update_refs);
3344 kfree(m);
3345}
3346
3347static void tail_append_pending_moves(struct pending_dir_move *moves,
3348 struct list_head *stack)
3349{
3350 if (list_empty(&moves->list)) {
3351 list_add_tail(&moves->list, stack);
3352 } else {
3353 LIST_HEAD(list);
3354 list_splice_init(&moves->list, &list);
3355 list_add_tail(&moves->list, stack);
3356 list_splice_tail(&list, stack);
3357 }
3358}
3359
3360static int apply_children_dir_moves(struct send_ctx *sctx)
3361{
3362 struct pending_dir_move *pm;
3363 struct list_head stack;
3364 u64 parent_ino = sctx->cur_ino;
3365 int ret = 0;
3366
3367 pm = get_pending_dir_moves(sctx, parent_ino);
3368 if (!pm)
3369 return 0;
3370
3371 INIT_LIST_HEAD(&stack);
3372 tail_append_pending_moves(pm, &stack);
3373
3374 while (!list_empty(&stack)) {
3375 pm = list_first_entry(&stack, struct pending_dir_move, list);
3376 parent_ino = pm->ino;
3377 ret = apply_dir_move(sctx, pm);
3378 free_pending_move(sctx, pm);
3379 if (ret)
3380 goto out;
3381 pm = get_pending_dir_moves(sctx, parent_ino);
3382 if (pm)
3383 tail_append_pending_moves(pm, &stack);
3384 }
3385 return 0;
3386
3387out:
3388 while (!list_empty(&stack)) {
3389 pm = list_first_entry(&stack, struct pending_dir_move, list);
3390 free_pending_move(sctx, pm);
3391 }
3392 return ret;
3393}
3394
84471e24
FM
3395/*
3396 * We might need to delay a directory rename even when no ancestor directory
3397 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3398 * renamed. This happens when we rename a directory to the old name (the name
3399 * in the parent root) of some other unrelated directory that got its rename
3400 * delayed due to some ancestor with higher number that got renamed.
3401 *
3402 * Example:
3403 *
3404 * Parent snapshot:
3405 * . (ino 256)
3406 * |---- a/ (ino 257)
3407 * | |---- file (ino 260)
3408 * |
3409 * |---- b/ (ino 258)
3410 * |---- c/ (ino 259)
3411 *
3412 * Send snapshot:
3413 * . (ino 256)
3414 * |---- a/ (ino 258)
3415 * |---- x/ (ino 259)
3416 * |---- y/ (ino 257)
3417 * |----- file (ino 260)
3418 *
3419 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3420 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3421 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3422 * must issue is:
3423 *
3424 * 1 - rename 259 from 'c' to 'x'
3425 * 2 - rename 257 from 'a' to 'x/y'
3426 * 3 - rename 258 from 'b' to 'a'
3427 *
3428 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3429 * be done right away and < 0 on error.
3430 */
3431static int wait_for_dest_dir_move(struct send_ctx *sctx,
3432 struct recorded_ref *parent_ref,
3433 const bool is_orphan)
3434{
2ff7e61e 3435 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
84471e24
FM
3436 struct btrfs_path *path;
3437 struct btrfs_key key;
3438 struct btrfs_key di_key;
3439 struct btrfs_dir_item *di;
3440 u64 left_gen;
3441 u64 right_gen;
3442 int ret = 0;
801bec36 3443 struct waiting_dir_move *wdm;
84471e24
FM
3444
3445 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3446 return 0;
3447
3448 path = alloc_path_for_send();
3449 if (!path)
3450 return -ENOMEM;
3451
3452 key.objectid = parent_ref->dir;
3453 key.type = BTRFS_DIR_ITEM_KEY;
3454 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3455
3456 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3457 if (ret < 0) {
3458 goto out;
3459 } else if (ret > 0) {
3460 ret = 0;
3461 goto out;
3462 }
3463
2ff7e61e
JM
3464 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3465 parent_ref->name_len);
84471e24
FM
3466 if (!di) {
3467 ret = 0;
3468 goto out;
3469 }
3470 /*
3471 * di_key.objectid has the number of the inode that has a dentry in the
3472 * parent directory with the same name that sctx->cur_ino is being
3473 * renamed to. We need to check if that inode is in the send root as
3474 * well and if it is currently marked as an inode with a pending rename,
3475 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3476 * that it happens after that other inode is renamed.
3477 */
3478 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3479 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3480 ret = 0;
3481 goto out;
3482 }
3483
3484 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3485 &left_gen, NULL, NULL, NULL, NULL);
3486 if (ret < 0)
3487 goto out;
3488 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3489 &right_gen, NULL, NULL, NULL, NULL);
3490 if (ret < 0) {
3491 if (ret == -ENOENT)
3492 ret = 0;
3493 goto out;
3494 }
3495
3496 /* Different inode, no need to delay the rename of sctx->cur_ino */
3497 if (right_gen != left_gen) {
3498 ret = 0;
3499 goto out;
3500 }
3501
801bec36
RK
3502 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3503 if (wdm && !wdm->orphanized) {
84471e24
FM
3504 ret = add_pending_dir_move(sctx,
3505 sctx->cur_ino,
3506 sctx->cur_inode_gen,
3507 di_key.objectid,
3508 &sctx->new_refs,
3509 &sctx->deleted_refs,
3510 is_orphan);
3511 if (!ret)
3512 ret = 1;
3513 }
3514out:
3515 btrfs_free_path(path);
3516 return ret;
3517}
3518
80aa6027 3519/*
ea37d599
FM
3520 * Check if inode ino2, or any of its ancestors, is inode ino1.
3521 * Return 1 if true, 0 if false and < 0 on error.
3522 */
3523static int check_ino_in_path(struct btrfs_root *root,
3524 const u64 ino1,
3525 const u64 ino1_gen,
3526 const u64 ino2,
3527 const u64 ino2_gen,
3528 struct fs_path *fs_path)
3529{
3530 u64 ino = ino2;
3531
3532 if (ino1 == ino2)
3533 return ino1_gen == ino2_gen;
3534
3535 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3536 u64 parent;
3537 u64 parent_gen;
3538 int ret;
3539
3540 fs_path_reset(fs_path);
3541 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3542 if (ret < 0)
3543 return ret;
3544 if (parent == ino1)
3545 return parent_gen == ino1_gen;
3546 ino = parent;
3547 }
3548 return 0;
3549}
3550
3551/*
3552 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3553 * possible path (in case ino2 is not a directory and has multiple hard links).
80aa6027
FM
3554 * Return 1 if true, 0 if false and < 0 on error.
3555 */
3556static int is_ancestor(struct btrfs_root *root,
3557 const u64 ino1,
3558 const u64 ino1_gen,
3559 const u64 ino2,
3560 struct fs_path *fs_path)
3561{
ea37d599 3562 bool free_fs_path = false;
72c3668f 3563 int ret = 0;
ea37d599
FM
3564 struct btrfs_path *path = NULL;
3565 struct btrfs_key key;
72c3668f
FM
3566
3567 if (!fs_path) {
3568 fs_path = fs_path_alloc();
3569 if (!fs_path)
3570 return -ENOMEM;
ea37d599 3571 free_fs_path = true;
72c3668f 3572 }
80aa6027 3573
ea37d599
FM
3574 path = alloc_path_for_send();
3575 if (!path) {
3576 ret = -ENOMEM;
3577 goto out;
3578 }
80aa6027 3579
ea37d599
FM
3580 key.objectid = ino2;
3581 key.type = BTRFS_INODE_REF_KEY;
3582 key.offset = 0;
3583
3584 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3585 if (ret < 0)
3586 goto out;
3587
3588 while (true) {
3589 struct extent_buffer *leaf = path->nodes[0];
3590 int slot = path->slots[0];
3591 u32 cur_offset = 0;
3592 u32 item_size;
3593
3594 if (slot >= btrfs_header_nritems(leaf)) {
3595 ret = btrfs_next_leaf(root, path);
3596 if (ret < 0)
3597 goto out;
3598 if (ret > 0)
3599 break;
3600 continue;
72c3668f 3601 }
ea37d599
FM
3602
3603 btrfs_item_key_to_cpu(leaf, &key, slot);
3604 if (key.objectid != ino2)
3605 break;
3606 if (key.type != BTRFS_INODE_REF_KEY &&
3607 key.type != BTRFS_INODE_EXTREF_KEY)
3608 break;
3609
3610 item_size = btrfs_item_size_nr(leaf, slot);
3611 while (cur_offset < item_size) {
3612 u64 parent;
3613 u64 parent_gen;
3614
3615 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3616 unsigned long ptr;
3617 struct btrfs_inode_extref *extref;
3618
3619 ptr = btrfs_item_ptr_offset(leaf, slot);
3620 extref = (struct btrfs_inode_extref *)
3621 (ptr + cur_offset);
3622 parent = btrfs_inode_extref_parent(leaf,
3623 extref);
3624 cur_offset += sizeof(*extref);
3625 cur_offset += btrfs_inode_extref_name_len(leaf,
3626 extref);
3627 } else {
3628 parent = key.offset;
3629 cur_offset = item_size;
3630 }
3631
3632 ret = get_inode_info(root, parent, NULL, &parent_gen,
3633 NULL, NULL, NULL, NULL);
3634 if (ret < 0)
3635 goto out;
3636 ret = check_ino_in_path(root, ino1, ino1_gen,
3637 parent, parent_gen, fs_path);
3638 if (ret)
3639 goto out;
80aa6027 3640 }
ea37d599 3641 path->slots[0]++;
80aa6027 3642 }
ea37d599 3643 ret = 0;
72c3668f 3644 out:
ea37d599
FM
3645 btrfs_free_path(path);
3646 if (free_fs_path)
72c3668f
FM
3647 fs_path_free(fs_path);
3648 return ret;
80aa6027
FM
3649}
3650
9f03740a 3651static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3652 struct recorded_ref *parent_ref,
3653 const bool is_orphan)
9f03740a 3654{
f959492f 3655 int ret = 0;
9f03740a 3656 u64 ino = parent_ref->dir;
fe9c798d 3657 u64 ino_gen = parent_ref->dir_gen;
9f03740a 3658 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3659 struct fs_path *path_before = NULL;
3660 struct fs_path *path_after = NULL;
3661 int len1, len2;
9f03740a
FDBM
3662
3663 path_after = fs_path_alloc();
f959492f
FM
3664 path_before = fs_path_alloc();
3665 if (!path_after || !path_before) {
9f03740a
FDBM
3666 ret = -ENOMEM;
3667 goto out;
3668 }
3669
bfa7e1f8 3670 /*
f959492f
FM
3671 * Our current directory inode may not yet be renamed/moved because some
3672 * ancestor (immediate or not) has to be renamed/moved first. So find if
3673 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3674 * that ancestor is processed to avoid path build infinite loops (done
3675 * at get_cur_path()).
bfa7e1f8 3676 */
f959492f 3677 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
fe9c798d
FM
3678 u64 parent_ino_after_gen;
3679
f959492f 3680 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3681 /*
3682 * If the current inode is an ancestor of ino in the
3683 * parent root, we need to delay the rename of the
3684 * current inode, otherwise don't delayed the rename
3685 * because we can end up with a circular dependency
3686 * of renames, resulting in some directories never
3687 * getting the respective rename operations issued in
3688 * the send stream or getting into infinite path build
3689 * loops.
3690 */
3691 ret = is_ancestor(sctx->parent_root,
3692 sctx->cur_ino, sctx->cur_inode_gen,
3693 ino, path_before);
4122ea64
FM
3694 if (ret)
3695 break;
f959492f 3696 }
bfa7e1f8
FM
3697
3698 fs_path_reset(path_before);
3699 fs_path_reset(path_after);
3700
3701 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
fe9c798d 3702 &parent_ino_after_gen, path_after);
bfa7e1f8
FM
3703 if (ret < 0)
3704 goto out;
3705 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3706 NULL, path_before);
f959492f 3707 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3708 goto out;
f959492f 3709 } else if (ret == -ENOENT) {
bf8e8ca6 3710 ret = 0;
f959492f 3711 break;
bfa7e1f8
FM
3712 }
3713
3714 len1 = fs_path_len(path_before);
3715 len2 = fs_path_len(path_after);
f959492f
FM
3716 if (ino > sctx->cur_ino &&
3717 (parent_ino_before != parent_ino_after || len1 != len2 ||
3718 memcmp(path_before->start, path_after->start, len1))) {
fe9c798d
FM
3719 u64 parent_ino_gen;
3720
3721 ret = get_inode_info(sctx->parent_root, ino, NULL,
3722 &parent_ino_gen, NULL, NULL, NULL,
3723 NULL);
3724 if (ret < 0)
3725 goto out;
3726 if (ino_gen == parent_ino_gen) {
3727 ret = 1;
3728 break;
3729 }
bfa7e1f8 3730 }
bfa7e1f8 3731 ino = parent_ino_after;
fe9c798d 3732 ino_gen = parent_ino_after_gen;
bfa7e1f8
FM
3733 }
3734
9f03740a
FDBM
3735out:
3736 fs_path_free(path_before);
3737 fs_path_free(path_after);
3738
f959492f
FM
3739 if (ret == 1) {
3740 ret = add_pending_dir_move(sctx,
3741 sctx->cur_ino,
3742 sctx->cur_inode_gen,
3743 ino,
3744 &sctx->new_refs,
84471e24 3745 &sctx->deleted_refs,
8b191a68 3746 is_orphan);
f959492f
FM
3747 if (!ret)
3748 ret = 1;
3749 }
3750
9f03740a
FDBM
3751 return ret;
3752}
3753
f5962781
FM
3754static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3755{
3756 int ret;
3757 struct fs_path *new_path;
3758
3759 /*
3760 * Our reference's name member points to its full_path member string, so
3761 * we use here a new path.
3762 */
3763 new_path = fs_path_alloc();
3764 if (!new_path)
3765 return -ENOMEM;
3766
3767 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3768 if (ret < 0) {
3769 fs_path_free(new_path);
3770 return ret;
3771 }
3772 ret = fs_path_add(new_path, ref->name, ref->name_len);
3773 if (ret < 0) {
3774 fs_path_free(new_path);
3775 return ret;
3776 }
3777
3778 fs_path_free(ref->full_path);
3779 set_ref_path(ref, new_path);
3780
3781 return 0;
3782}
3783
31db9f7c
AB
3784/*
3785 * This does all the move/link/unlink/rmdir magic.
3786 */
9f03740a 3787static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c 3788{
04ab956e 3789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
3790 int ret = 0;
3791 struct recorded_ref *cur;
1f4692da 3792 struct recorded_ref *cur2;
ba5e8f2e 3793 struct list_head check_dirs;
31db9f7c 3794 struct fs_path *valid_path = NULL;
b24baf69 3795 u64 ow_inode = 0;
31db9f7c 3796 u64 ow_gen;
f5962781 3797 u64 ow_mode;
31db9f7c
AB
3798 int did_overwrite = 0;
3799 int is_orphan = 0;
29d6d30f 3800 u64 last_dir_ino_rm = 0;
84471e24 3801 bool can_rename = true;
f5962781 3802 bool orphanized_dir = false;
fdb13889 3803 bool orphanized_ancestor = false;
31db9f7c 3804
04ab956e 3805 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
31db9f7c 3806
6d85ed05
AB
3807 /*
3808 * This should never happen as the root dir always has the same ref
3809 * which is always '..'
3810 */
3811 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3812 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3813
924794c9 3814 valid_path = fs_path_alloc();
31db9f7c
AB
3815 if (!valid_path) {
3816 ret = -ENOMEM;
3817 goto out;
3818 }
3819
31db9f7c
AB
3820 /*
3821 * First, check if the first ref of the current inode was overwritten
3822 * before. If yes, we know that the current inode was already orphanized
3823 * and thus use the orphan name. If not, we can use get_cur_path to
3824 * get the path of the first ref as it would like while receiving at
3825 * this point in time.
3826 * New inodes are always orphan at the beginning, so force to use the
3827 * orphan name in this case.
3828 * The first ref is stored in valid_path and will be updated if it
3829 * gets moved around.
3830 */
3831 if (!sctx->cur_inode_new) {
3832 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3833 sctx->cur_inode_gen);
3834 if (ret < 0)
3835 goto out;
3836 if (ret)
3837 did_overwrite = 1;
3838 }
3839 if (sctx->cur_inode_new || did_overwrite) {
3840 ret = gen_unique_name(sctx, sctx->cur_ino,
3841 sctx->cur_inode_gen, valid_path);
3842 if (ret < 0)
3843 goto out;
3844 is_orphan = 1;
3845 } else {
3846 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3847 valid_path);
3848 if (ret < 0)
3849 goto out;
3850 }
3851
3852 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3853 /*
3854 * We may have refs where the parent directory does not exist
3855 * yet. This happens if the parent directories inum is higher
3856 * the the current inum. To handle this case, we create the
3857 * parent directory out of order. But we need to check if this
3858 * did already happen before due to other refs in the same dir.
3859 */
3860 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3861 if (ret < 0)
3862 goto out;
3863 if (ret == inode_state_will_create) {
3864 ret = 0;
3865 /*
3866 * First check if any of the current inodes refs did
3867 * already create the dir.
3868 */
3869 list_for_each_entry(cur2, &sctx->new_refs, list) {
3870 if (cur == cur2)
3871 break;
3872 if (cur2->dir == cur->dir) {
3873 ret = 1;
3874 break;
3875 }
3876 }
3877
3878 /*
3879 * If that did not happen, check if a previous inode
3880 * did already create the dir.
3881 */
3882 if (!ret)
3883 ret = did_create_dir(sctx, cur->dir);
3884 if (ret < 0)
3885 goto out;
3886 if (!ret) {
3887 ret = send_create_inode(sctx, cur->dir);
3888 if (ret < 0)
3889 goto out;
3890 }
3891 }
3892
31db9f7c
AB
3893 /*
3894 * Check if this new ref would overwrite the first ref of
3895 * another unprocessed inode. If yes, orphanize the
3896 * overwritten inode. If we find an overwritten ref that is
3897 * not the first ref, simply unlink it.
3898 */
3899 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3900 cur->name, cur->name_len,
f5962781 3901 &ow_inode, &ow_gen, &ow_mode);
31db9f7c
AB
3902 if (ret < 0)
3903 goto out;
3904 if (ret) {
924794c9
TI
3905 ret = is_first_ref(sctx->parent_root,
3906 ow_inode, cur->dir, cur->name,
3907 cur->name_len);
31db9f7c
AB
3908 if (ret < 0)
3909 goto out;
3910 if (ret) {
8996a48c 3911 struct name_cache_entry *nce;
801bec36 3912 struct waiting_dir_move *wdm;
8996a48c 3913
31db9f7c
AB
3914 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3915 cur->full_path);
3916 if (ret < 0)
3917 goto out;
f5962781
FM
3918 if (S_ISDIR(ow_mode))
3919 orphanized_dir = true;
801bec36
RK
3920
3921 /*
3922 * If ow_inode has its rename operation delayed
3923 * make sure that its orphanized name is used in
3924 * the source path when performing its rename
3925 * operation.
3926 */
3927 if (is_waiting_for_move(sctx, ow_inode)) {
3928 wdm = get_waiting_dir_move(sctx,
3929 ow_inode);
3930 ASSERT(wdm);
3931 wdm->orphanized = true;
3932 }
3933
8996a48c
FM
3934 /*
3935 * Make sure we clear our orphanized inode's
3936 * name from the name cache. This is because the
3937 * inode ow_inode might be an ancestor of some
3938 * other inode that will be orphanized as well
3939 * later and has an inode number greater than
3940 * sctx->send_progress. We need to prevent
3941 * future name lookups from using the old name
3942 * and get instead the orphan name.
3943 */
3944 nce = name_cache_search(sctx, ow_inode, ow_gen);
3945 if (nce) {
3946 name_cache_delete(sctx, nce);
3947 kfree(nce);
3948 }
801bec36
RK
3949
3950 /*
3951 * ow_inode might currently be an ancestor of
3952 * cur_ino, therefore compute valid_path (the
3953 * current path of cur_ino) again because it
3954 * might contain the pre-orphanization name of
3955 * ow_inode, which is no longer valid.
3956 */
72c3668f
FM
3957 ret = is_ancestor(sctx->parent_root,
3958 ow_inode, ow_gen,
3959 sctx->cur_ino, NULL);
3960 if (ret > 0) {
fdb13889 3961 orphanized_ancestor = true;
72c3668f
FM
3962 fs_path_reset(valid_path);
3963 ret = get_cur_path(sctx, sctx->cur_ino,
3964 sctx->cur_inode_gen,
3965 valid_path);
3966 }
801bec36
RK
3967 if (ret < 0)
3968 goto out;
31db9f7c
AB
3969 } else {
3970 ret = send_unlink(sctx, cur->full_path);
3971 if (ret < 0)
3972 goto out;
3973 }
3974 }
3975
84471e24
FM
3976 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3977 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3978 if (ret < 0)
3979 goto out;
3980 if (ret == 1) {
3981 can_rename = false;
3982 *pending_move = 1;
3983 }
3984 }
3985
8b191a68
FM
3986 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3987 can_rename) {
3988 ret = wait_for_parent_move(sctx, cur, is_orphan);
3989 if (ret < 0)
3990 goto out;
3991 if (ret == 1) {
3992 can_rename = false;
3993 *pending_move = 1;
3994 }
3995 }
3996
31db9f7c
AB
3997 /*
3998 * link/move the ref to the new place. If we have an orphan
3999 * inode, move it and update valid_path. If not, link or move
4000 * it depending on the inode mode.
4001 */
84471e24 4002 if (is_orphan && can_rename) {
31db9f7c
AB
4003 ret = send_rename(sctx, valid_path, cur->full_path);
4004 if (ret < 0)
4005 goto out;
4006 is_orphan = 0;
4007 ret = fs_path_copy(valid_path, cur->full_path);
4008 if (ret < 0)
4009 goto out;
84471e24 4010 } else if (can_rename) {
31db9f7c
AB
4011 if (S_ISDIR(sctx->cur_inode_mode)) {
4012 /*
4013 * Dirs can't be linked, so move it. For moved
4014 * dirs, we always have one new and one deleted
4015 * ref. The deleted ref is ignored later.
4016 */
8b191a68
FM
4017 ret = send_rename(sctx, valid_path,
4018 cur->full_path);
4019 if (!ret)
4020 ret = fs_path_copy(valid_path,
4021 cur->full_path);
31db9f7c
AB
4022 if (ret < 0)
4023 goto out;
4024 } else {
f5962781
FM
4025 /*
4026 * We might have previously orphanized an inode
4027 * which is an ancestor of our current inode,
4028 * so our reference's full path, which was
4029 * computed before any such orphanizations, must
4030 * be updated.
4031 */
4032 if (orphanized_dir) {
4033 ret = update_ref_path(sctx, cur);
4034 if (ret < 0)
4035 goto out;
4036 }
31db9f7c
AB
4037 ret = send_link(sctx, cur->full_path,
4038 valid_path);
4039 if (ret < 0)
4040 goto out;
4041 }
4042 }
ba5e8f2e 4043 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4044 if (ret < 0)
4045 goto out;
4046 }
4047
4048 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4049 /*
4050 * Check if we can already rmdir the directory. If not,
4051 * orphanize it. For every dir item inside that gets deleted
4052 * later, we do this check again and rmdir it then if possible.
4053 * See the use of check_dirs for more details.
4054 */
9dc44214
FM
4055 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4056 sctx->cur_ino);
31db9f7c
AB
4057 if (ret < 0)
4058 goto out;
4059 if (ret) {
4060 ret = send_rmdir(sctx, valid_path);
4061 if (ret < 0)
4062 goto out;
4063 } else if (!is_orphan) {
4064 ret = orphanize_inode(sctx, sctx->cur_ino,
4065 sctx->cur_inode_gen, valid_path);
4066 if (ret < 0)
4067 goto out;
4068 is_orphan = 1;
4069 }
4070
4071 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 4072 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4073 if (ret < 0)
4074 goto out;
4075 }
ccf1626b
AB
4076 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4077 !list_empty(&sctx->deleted_refs)) {
4078 /*
4079 * We have a moved dir. Add the old parent to check_dirs
4080 */
4081 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4082 list);
ba5e8f2e 4083 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
4084 if (ret < 0)
4085 goto out;
31db9f7c
AB
4086 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4087 /*
4088 * We have a non dir inode. Go through all deleted refs and
4089 * unlink them if they were not already overwritten by other
4090 * inodes.
4091 */
4092 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4093 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4094 sctx->cur_ino, sctx->cur_inode_gen,
4095 cur->name, cur->name_len);
4096 if (ret < 0)
4097 goto out;
4098 if (!ret) {
fdb13889
FM
4099 /*
4100 * If we orphanized any ancestor before, we need
4101 * to recompute the full path for deleted names,
4102 * since any such path was computed before we
4103 * processed any references and orphanized any
4104 * ancestor inode.
4105 */
4106 if (orphanized_ancestor) {
f5962781
FM
4107 ret = update_ref_path(sctx, cur);
4108 if (ret < 0)
fdb13889 4109 goto out;
fdb13889 4110 }
1f4692da
AB
4111 ret = send_unlink(sctx, cur->full_path);
4112 if (ret < 0)
4113 goto out;
31db9f7c 4114 }
ba5e8f2e 4115 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4116 if (ret < 0)
4117 goto out;
4118 }
31db9f7c
AB
4119 /*
4120 * If the inode is still orphan, unlink the orphan. This may
4121 * happen when a previous inode did overwrite the first ref
4122 * of this inode and no new refs were added for the current
766702ef
AB
4123 * inode. Unlinking does not mean that the inode is deleted in
4124 * all cases. There may still be links to this inode in other
4125 * places.
31db9f7c 4126 */
1f4692da 4127 if (is_orphan) {
31db9f7c
AB
4128 ret = send_unlink(sctx, valid_path);
4129 if (ret < 0)
4130 goto out;
4131 }
4132 }
4133
4134 /*
4135 * We did collect all parent dirs where cur_inode was once located. We
4136 * now go through all these dirs and check if they are pending for
4137 * deletion and if it's finally possible to perform the rmdir now.
4138 * We also update the inode stats of the parent dirs here.
4139 */
ba5e8f2e 4140 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
4141 /*
4142 * In case we had refs into dirs that were not processed yet,
4143 * we don't need to do the utime and rmdir logic for these dirs.
4144 * The dir will be processed later.
4145 */
ba5e8f2e 4146 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
4147 continue;
4148
ba5e8f2e 4149 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4150 if (ret < 0)
4151 goto out;
4152
4153 if (ret == inode_state_did_create ||
4154 ret == inode_state_no_change) {
4155 /* TODO delayed utimes */
ba5e8f2e 4156 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4157 if (ret < 0)
4158 goto out;
29d6d30f
FM
4159 } else if (ret == inode_state_did_delete &&
4160 cur->dir != last_dir_ino_rm) {
9dc44214
FM
4161 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4162 sctx->cur_ino);
31db9f7c
AB
4163 if (ret < 0)
4164 goto out;
4165 if (ret) {
ba5e8f2e
JB
4166 ret = get_cur_path(sctx, cur->dir,
4167 cur->dir_gen, valid_path);
31db9f7c
AB
4168 if (ret < 0)
4169 goto out;
4170 ret = send_rmdir(sctx, valid_path);
4171 if (ret < 0)
4172 goto out;
29d6d30f 4173 last_dir_ino_rm = cur->dir;
31db9f7c
AB
4174 }
4175 }
4176 }
4177
31db9f7c
AB
4178 ret = 0;
4179
4180out:
ba5e8f2e 4181 __free_recorded_refs(&check_dirs);
31db9f7c 4182 free_recorded_refs(sctx);
924794c9 4183 fs_path_free(valid_path);
31db9f7c
AB
4184 return ret;
4185}
4186
a0357511
NB
4187static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4188 void *ctx, struct list_head *refs)
31db9f7c
AB
4189{
4190 int ret = 0;
4191 struct send_ctx *sctx = ctx;
4192 struct fs_path *p;
4193 u64 gen;
4194
924794c9 4195 p = fs_path_alloc();
31db9f7c
AB
4196 if (!p)
4197 return -ENOMEM;
4198
a4d96d62 4199 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 4200 NULL, NULL);
31db9f7c
AB
4201 if (ret < 0)
4202 goto out;
4203
31db9f7c
AB
4204 ret = get_cur_path(sctx, dir, gen, p);
4205 if (ret < 0)
4206 goto out;
4207 ret = fs_path_add_path(p, name);
4208 if (ret < 0)
4209 goto out;
4210
a4d96d62 4211 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
4212
4213out:
4214 if (ret)
924794c9 4215 fs_path_free(p);
31db9f7c
AB
4216 return ret;
4217}
4218
a4d96d62
LB
4219static int __record_new_ref(int num, u64 dir, int index,
4220 struct fs_path *name,
4221 void *ctx)
4222{
4223 struct send_ctx *sctx = ctx;
a0357511 4224 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
a4d96d62
LB
4225}
4226
4227
31db9f7c
AB
4228static int __record_deleted_ref(int num, u64 dir, int index,
4229 struct fs_path *name,
4230 void *ctx)
4231{
31db9f7c 4232 struct send_ctx *sctx = ctx;
a0357511
NB
4233 return record_ref(sctx->parent_root, dir, name, ctx,
4234 &sctx->deleted_refs);
31db9f7c
AB
4235}
4236
4237static int record_new_ref(struct send_ctx *sctx)
4238{
4239 int ret;
4240
924794c9
TI
4241 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4242 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
4243 if (ret < 0)
4244 goto out;
4245 ret = 0;
4246
4247out:
4248 return ret;
4249}
4250
4251static int record_deleted_ref(struct send_ctx *sctx)
4252{
4253 int ret;
4254
924794c9
TI
4255 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4256 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
4257 if (ret < 0)
4258 goto out;
4259 ret = 0;
4260
4261out:
4262 return ret;
4263}
4264
4265struct find_ref_ctx {
4266 u64 dir;
ba5e8f2e
JB
4267 u64 dir_gen;
4268 struct btrfs_root *root;
31db9f7c
AB
4269 struct fs_path *name;
4270 int found_idx;
4271};
4272
4273static int __find_iref(int num, u64 dir, int index,
4274 struct fs_path *name,
4275 void *ctx_)
4276{
4277 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
4278 u64 dir_gen;
4279 int ret;
31db9f7c
AB
4280
4281 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4282 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
4283 /*
4284 * To avoid doing extra lookups we'll only do this if everything
4285 * else matches.
4286 */
4287 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4288 NULL, NULL, NULL);
4289 if (ret)
4290 return ret;
4291 if (dir_gen != ctx->dir_gen)
4292 return 0;
31db9f7c
AB
4293 ctx->found_idx = num;
4294 return 1;
4295 }
4296 return 0;
4297}
4298
924794c9 4299static int find_iref(struct btrfs_root *root,
31db9f7c
AB
4300 struct btrfs_path *path,
4301 struct btrfs_key *key,
ba5e8f2e 4302 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
4303{
4304 int ret;
4305 struct find_ref_ctx ctx;
4306
4307 ctx.dir = dir;
4308 ctx.name = name;
ba5e8f2e 4309 ctx.dir_gen = dir_gen;
31db9f7c 4310 ctx.found_idx = -1;
ba5e8f2e 4311 ctx.root = root;
31db9f7c 4312
924794c9 4313 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
4314 if (ret < 0)
4315 return ret;
4316
4317 if (ctx.found_idx == -1)
4318 return -ENOENT;
4319
4320 return ctx.found_idx;
4321}
4322
4323static int __record_changed_new_ref(int num, u64 dir, int index,
4324 struct fs_path *name,
4325 void *ctx)
4326{
ba5e8f2e 4327 u64 dir_gen;
31db9f7c
AB
4328 int ret;
4329 struct send_ctx *sctx = ctx;
4330
ba5e8f2e
JB
4331 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4332 NULL, NULL, NULL);
4333 if (ret)
4334 return ret;
4335
924794c9 4336 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4337 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4338 if (ret == -ENOENT)
4339 ret = __record_new_ref(num, dir, index, name, sctx);
4340 else if (ret > 0)
4341 ret = 0;
4342
4343 return ret;
4344}
4345
4346static int __record_changed_deleted_ref(int num, u64 dir, int index,
4347 struct fs_path *name,
4348 void *ctx)
4349{
ba5e8f2e 4350 u64 dir_gen;
31db9f7c
AB
4351 int ret;
4352 struct send_ctx *sctx = ctx;
4353
ba5e8f2e
JB
4354 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4355 NULL, NULL, NULL);
4356 if (ret)
4357 return ret;
4358
924794c9 4359 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4360 dir, dir_gen, name);
31db9f7c
AB
4361 if (ret == -ENOENT)
4362 ret = __record_deleted_ref(num, dir, index, name, sctx);
4363 else if (ret > 0)
4364 ret = 0;
4365
4366 return ret;
4367}
4368
4369static int record_changed_ref(struct send_ctx *sctx)
4370{
4371 int ret = 0;
4372
924794c9 4373 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4374 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4375 if (ret < 0)
4376 goto out;
924794c9 4377 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4378 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4379 if (ret < 0)
4380 goto out;
4381 ret = 0;
4382
4383out:
4384 return ret;
4385}
4386
4387/*
4388 * Record and process all refs at once. Needed when an inode changes the
4389 * generation number, which means that it was deleted and recreated.
4390 */
4391static int process_all_refs(struct send_ctx *sctx,
4392 enum btrfs_compare_tree_result cmd)
4393{
4394 int ret;
4395 struct btrfs_root *root;
4396 struct btrfs_path *path;
4397 struct btrfs_key key;
4398 struct btrfs_key found_key;
4399 struct extent_buffer *eb;
4400 int slot;
4401 iterate_inode_ref_t cb;
9f03740a 4402 int pending_move = 0;
31db9f7c
AB
4403
4404 path = alloc_path_for_send();
4405 if (!path)
4406 return -ENOMEM;
4407
4408 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4409 root = sctx->send_root;
4410 cb = __record_new_ref;
4411 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4412 root = sctx->parent_root;
4413 cb = __record_deleted_ref;
4414 } else {
4d1a63b2
DS
4415 btrfs_err(sctx->send_root->fs_info,
4416 "Wrong command %d in process_all_refs", cmd);
4417 ret = -EINVAL;
4418 goto out;
31db9f7c
AB
4419 }
4420
4421 key.objectid = sctx->cmp_key->objectid;
4422 key.type = BTRFS_INODE_REF_KEY;
4423 key.offset = 0;
dff6d0ad
FDBM
4424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4425 if (ret < 0)
4426 goto out;
31db9f7c 4427
dff6d0ad 4428 while (1) {
31db9f7c
AB
4429 eb = path->nodes[0];
4430 slot = path->slots[0];
dff6d0ad
FDBM
4431 if (slot >= btrfs_header_nritems(eb)) {
4432 ret = btrfs_next_leaf(root, path);
4433 if (ret < 0)
4434 goto out;
4435 else if (ret > 0)
4436 break;
4437 continue;
4438 }
4439
31db9f7c
AB
4440 btrfs_item_key_to_cpu(eb, &found_key, slot);
4441
4442 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4443 (found_key.type != BTRFS_INODE_REF_KEY &&
4444 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4445 break;
31db9f7c 4446
924794c9 4447 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4448 if (ret < 0)
4449 goto out;
4450
dff6d0ad 4451 path->slots[0]++;
31db9f7c 4452 }
e938c8ad 4453 btrfs_release_path(path);
31db9f7c 4454
3dc09ec8
JB
4455 /*
4456 * We don't actually care about pending_move as we are simply
4457 * re-creating this inode and will be rename'ing it into place once we
4458 * rename the parent directory.
4459 */
9f03740a 4460 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4461out:
4462 btrfs_free_path(path);
4463 return ret;
4464}
4465
4466static int send_set_xattr(struct send_ctx *sctx,
4467 struct fs_path *path,
4468 const char *name, int name_len,
4469 const char *data, int data_len)
4470{
4471 int ret = 0;
4472
4473 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4474 if (ret < 0)
4475 goto out;
4476
4477 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4478 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4479 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4480
4481 ret = send_cmd(sctx);
4482
4483tlv_put_failure:
4484out:
4485 return ret;
4486}
4487
4488static int send_remove_xattr(struct send_ctx *sctx,
4489 struct fs_path *path,
4490 const char *name, int name_len)
4491{
4492 int ret = 0;
4493
4494 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4495 if (ret < 0)
4496 goto out;
4497
4498 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4499 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4500
4501 ret = send_cmd(sctx);
4502
4503tlv_put_failure:
4504out:
4505 return ret;
4506}
4507
4508static int __process_new_xattr(int num, struct btrfs_key *di_key,
4509 const char *name, int name_len,
4510 const char *data, int data_len,
4511 u8 type, void *ctx)
4512{
4513 int ret;
4514 struct send_ctx *sctx = ctx;
4515 struct fs_path *p;
2211d5ba 4516 struct posix_acl_xattr_header dummy_acl;
31db9f7c 4517
924794c9 4518 p = fs_path_alloc();
31db9f7c
AB
4519 if (!p)
4520 return -ENOMEM;
4521
4522 /*
01327610 4523 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4524 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4525 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4526 * only contains the version number and no entries.
4527 */
4528 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4529 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4530 if (data_len == 0) {
4531 dummy_acl.a_version =
4532 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4533 data = (char *)&dummy_acl;
4534 data_len = sizeof(dummy_acl);
4535 }
4536 }
4537
4538 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4539 if (ret < 0)
4540 goto out;
4541
4542 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4543
4544out:
924794c9 4545 fs_path_free(p);
31db9f7c
AB
4546 return ret;
4547}
4548
4549static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4550 const char *name, int name_len,
4551 const char *data, int data_len,
4552 u8 type, void *ctx)
4553{
4554 int ret;
4555 struct send_ctx *sctx = ctx;
4556 struct fs_path *p;
4557
924794c9 4558 p = fs_path_alloc();
31db9f7c
AB
4559 if (!p)
4560 return -ENOMEM;
4561
4562 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4563 if (ret < 0)
4564 goto out;
4565
4566 ret = send_remove_xattr(sctx, p, name, name_len);
4567
4568out:
924794c9 4569 fs_path_free(p);
31db9f7c
AB
4570 return ret;
4571}
4572
4573static int process_new_xattr(struct send_ctx *sctx)
4574{
4575 int ret = 0;
4576
924794c9 4577 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4578 __process_new_xattr, sctx);
31db9f7c
AB
4579
4580 return ret;
4581}
4582
4583static int process_deleted_xattr(struct send_ctx *sctx)
4584{
e2c89907 4585 return iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4586 __process_deleted_xattr, sctx);
31db9f7c
AB
4587}
4588
4589struct find_xattr_ctx {
4590 const char *name;
4591 int name_len;
4592 int found_idx;
4593 char *found_data;
4594 int found_data_len;
4595};
4596
4597static int __find_xattr(int num, struct btrfs_key *di_key,
4598 const char *name, int name_len,
4599 const char *data, int data_len,
4600 u8 type, void *vctx)
4601{
4602 struct find_xattr_ctx *ctx = vctx;
4603
4604 if (name_len == ctx->name_len &&
4605 strncmp(name, ctx->name, name_len) == 0) {
4606 ctx->found_idx = num;
4607 ctx->found_data_len = data_len;
e780b0d1 4608 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4609 if (!ctx->found_data)
4610 return -ENOMEM;
31db9f7c
AB
4611 return 1;
4612 }
4613 return 0;
4614}
4615
924794c9 4616static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4617 struct btrfs_path *path,
4618 struct btrfs_key *key,
4619 const char *name, int name_len,
4620 char **data, int *data_len)
4621{
4622 int ret;
4623 struct find_xattr_ctx ctx;
4624
4625 ctx.name = name;
4626 ctx.name_len = name_len;
4627 ctx.found_idx = -1;
4628 ctx.found_data = NULL;
4629 ctx.found_data_len = 0;
4630
a0357511 4631 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
31db9f7c
AB
4632 if (ret < 0)
4633 return ret;
4634
4635 if (ctx.found_idx == -1)
4636 return -ENOENT;
4637 if (data) {
4638 *data = ctx.found_data;
4639 *data_len = ctx.found_data_len;
4640 } else {
4641 kfree(ctx.found_data);
4642 }
4643 return ctx.found_idx;
4644}
4645
4646
4647static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4648 const char *name, int name_len,
4649 const char *data, int data_len,
4650 u8 type, void *ctx)
4651{
4652 int ret;
4653 struct send_ctx *sctx = ctx;
4654 char *found_data = NULL;
4655 int found_data_len = 0;
31db9f7c 4656
924794c9
TI
4657 ret = find_xattr(sctx->parent_root, sctx->right_path,
4658 sctx->cmp_key, name, name_len, &found_data,
4659 &found_data_len);
31db9f7c
AB
4660 if (ret == -ENOENT) {
4661 ret = __process_new_xattr(num, di_key, name, name_len, data,
4662 data_len, type, ctx);
4663 } else if (ret >= 0) {
4664 if (data_len != found_data_len ||
4665 memcmp(data, found_data, data_len)) {
4666 ret = __process_new_xattr(num, di_key, name, name_len,
4667 data, data_len, type, ctx);
4668 } else {
4669 ret = 0;
4670 }
4671 }
4672
4673 kfree(found_data);
31db9f7c
AB
4674 return ret;
4675}
4676
4677static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4678 const char *name, int name_len,
4679 const char *data, int data_len,
4680 u8 type, void *ctx)
4681{
4682 int ret;
4683 struct send_ctx *sctx = ctx;
4684
924794c9
TI
4685 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4686 name, name_len, NULL, NULL);
31db9f7c
AB
4687 if (ret == -ENOENT)
4688 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4689 data_len, type, ctx);
4690 else if (ret >= 0)
4691 ret = 0;
4692
4693 return ret;
4694}
4695
4696static int process_changed_xattr(struct send_ctx *sctx)
4697{
4698 int ret = 0;
4699
924794c9 4700 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4701 __process_changed_new_xattr, sctx);
31db9f7c
AB
4702 if (ret < 0)
4703 goto out;
924794c9 4704 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4705 __process_changed_deleted_xattr, sctx);
31db9f7c
AB
4706
4707out:
4708 return ret;
4709}
4710
4711static int process_all_new_xattrs(struct send_ctx *sctx)
4712{
4713 int ret;
4714 struct btrfs_root *root;
4715 struct btrfs_path *path;
4716 struct btrfs_key key;
4717 struct btrfs_key found_key;
4718 struct extent_buffer *eb;
4719 int slot;
4720
4721 path = alloc_path_for_send();
4722 if (!path)
4723 return -ENOMEM;
4724
4725 root = sctx->send_root;
4726
4727 key.objectid = sctx->cmp_key->objectid;
4728 key.type = BTRFS_XATTR_ITEM_KEY;
4729 key.offset = 0;
dff6d0ad
FDBM
4730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731 if (ret < 0)
4732 goto out;
31db9f7c 4733
dff6d0ad 4734 while (1) {
31db9f7c
AB
4735 eb = path->nodes[0];
4736 slot = path->slots[0];
dff6d0ad
FDBM
4737 if (slot >= btrfs_header_nritems(eb)) {
4738 ret = btrfs_next_leaf(root, path);
4739 if (ret < 0) {
4740 goto out;
4741 } else if (ret > 0) {
4742 ret = 0;
4743 break;
4744 }
4745 continue;
4746 }
31db9f7c 4747
dff6d0ad 4748 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4749 if (found_key.objectid != key.objectid ||
4750 found_key.type != key.type) {
4751 ret = 0;
4752 goto out;
4753 }
4754
a0357511 4755 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
31db9f7c
AB
4756 if (ret < 0)
4757 goto out;
4758
dff6d0ad 4759 path->slots[0]++;
31db9f7c
AB
4760 }
4761
4762out:
4763 btrfs_free_path(path);
4764 return ret;
4765}
4766
ed259095
JB
4767static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4768{
4769 struct btrfs_root *root = sctx->send_root;
4770 struct btrfs_fs_info *fs_info = root->fs_info;
4771 struct inode *inode;
4772 struct page *page;
4773 char *addr;
4774 struct btrfs_key key;
09cbfeaf 4775 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 4776 pgoff_t last_index;
09cbfeaf 4777 unsigned pg_offset = offset & ~PAGE_MASK;
ed259095
JB
4778 ssize_t ret = 0;
4779
4780 key.objectid = sctx->cur_ino;
4781 key.type = BTRFS_INODE_ITEM_KEY;
4782 key.offset = 0;
4783
4784 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4785 if (IS_ERR(inode))
4786 return PTR_ERR(inode);
4787
4788 if (offset + len > i_size_read(inode)) {
4789 if (offset > i_size_read(inode))
4790 len = 0;
4791 else
4792 len = offset - i_size_read(inode);
4793 }
4794 if (len == 0)
4795 goto out;
4796
09cbfeaf 4797 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3
LB
4798
4799 /* initial readahead */
4800 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4801 file_ra_state_init(&sctx->ra, inode->i_mapping);
2131bcd3 4802
ed259095
JB
4803 while (index <= last_index) {
4804 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 4805 PAGE_SIZE - pg_offset);
eef16ba2
KH
4806
4807 page = find_lock_page(inode->i_mapping, index);
ed259095 4808 if (!page) {
eef16ba2
KH
4809 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4810 NULL, index, last_index + 1 - index);
4811
4812 page = find_or_create_page(inode->i_mapping, index,
4813 GFP_KERNEL);
4814 if (!page) {
4815 ret = -ENOMEM;
4816 break;
4817 }
4818 }
4819
4820 if (PageReadahead(page)) {
4821 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4822 NULL, page, index, last_index + 1 - index);
ed259095
JB
4823 }
4824
4825 if (!PageUptodate(page)) {
4826 btrfs_readpage(NULL, page);
4827 lock_page(page);
4828 if (!PageUptodate(page)) {
4829 unlock_page(page);
09cbfeaf 4830 put_page(page);
ed259095
JB
4831 ret = -EIO;
4832 break;
4833 }
4834 }
4835
4836 addr = kmap(page);
4837 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4838 kunmap(page);
4839 unlock_page(page);
09cbfeaf 4840 put_page(page);
ed259095
JB
4841 index++;
4842 pg_offset = 0;
4843 len -= cur_len;
4844 ret += cur_len;
4845 }
4846out:
4847 iput(inode);
4848 return ret;
4849}
4850
31db9f7c
AB
4851/*
4852 * Read some bytes from the current inode/file and send a write command to
4853 * user space.
4854 */
4855static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4856{
04ab956e 4857 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
4858 int ret = 0;
4859 struct fs_path *p;
ed259095 4860 ssize_t num_read = 0;
31db9f7c 4861
924794c9 4862 p = fs_path_alloc();
31db9f7c
AB
4863 if (!p)
4864 return -ENOMEM;
4865
04ab956e 4866 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
31db9f7c 4867
ed259095
JB
4868 num_read = fill_read_buf(sctx, offset, len);
4869 if (num_read <= 0) {
4870 if (num_read < 0)
4871 ret = num_read;
31db9f7c 4872 goto out;
ed259095 4873 }
31db9f7c
AB
4874
4875 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4876 if (ret < 0)
4877 goto out;
4878
4879 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4880 if (ret < 0)
4881 goto out;
4882
4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4884 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4885 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4886
4887 ret = send_cmd(sctx);
4888
4889tlv_put_failure:
4890out:
924794c9 4891 fs_path_free(p);
31db9f7c
AB
4892 if (ret < 0)
4893 return ret;
e938c8ad 4894 return num_read;
31db9f7c
AB
4895}
4896
4897/*
4898 * Send a clone command to user space.
4899 */
4900static int send_clone(struct send_ctx *sctx,
4901 u64 offset, u32 len,
4902 struct clone_root *clone_root)
4903{
4904 int ret = 0;
31db9f7c
AB
4905 struct fs_path *p;
4906 u64 gen;
4907
04ab956e
JM
4908 btrfs_debug(sctx->send_root->fs_info,
4909 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4910 offset, len, clone_root->root->objectid, clone_root->ino,
4911 clone_root->offset);
31db9f7c 4912
924794c9 4913 p = fs_path_alloc();
31db9f7c
AB
4914 if (!p)
4915 return -ENOMEM;
4916
4917 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4918 if (ret < 0)
4919 goto out;
4920
4921 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4922 if (ret < 0)
4923 goto out;
4924
4925 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4926 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4927 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4928
e938c8ad 4929 if (clone_root->root == sctx->send_root) {
31db9f7c 4930 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4931 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4932 if (ret < 0)
4933 goto out;
4934 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4935 } else {
924794c9 4936 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4937 }
4938 if (ret < 0)
4939 goto out;
4940
37b8d27d
JB
4941 /*
4942 * If the parent we're using has a received_uuid set then use that as
4943 * our clone source as that is what we will look for when doing a
4944 * receive.
4945 *
4946 * This covers the case that we create a snapshot off of a received
4947 * subvolume and then use that as the parent and try to receive on a
4948 * different host.
4949 */
4950 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4951 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4952 clone_root->root->root_item.received_uuid);
4953 else
4954 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4955 clone_root->root->root_item.uuid);
31db9f7c 4956 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4957 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4958 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4959 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4960 clone_root->offset);
4961
4962 ret = send_cmd(sctx);
4963
4964tlv_put_failure:
4965out:
924794c9 4966 fs_path_free(p);
31db9f7c
AB
4967 return ret;
4968}
4969
cb95e7bf
MF
4970/*
4971 * Send an update extent command to user space.
4972 */
4973static int send_update_extent(struct send_ctx *sctx,
4974 u64 offset, u32 len)
4975{
4976 int ret = 0;
4977 struct fs_path *p;
4978
924794c9 4979 p = fs_path_alloc();
cb95e7bf
MF
4980 if (!p)
4981 return -ENOMEM;
4982
4983 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4984 if (ret < 0)
4985 goto out;
4986
4987 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4988 if (ret < 0)
4989 goto out;
4990
4991 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4992 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4993 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4994
4995 ret = send_cmd(sctx);
4996
4997tlv_put_failure:
4998out:
924794c9 4999 fs_path_free(p);
cb95e7bf
MF
5000 return ret;
5001}
5002
16e7549f
JB
5003static int send_hole(struct send_ctx *sctx, u64 end)
5004{
5005 struct fs_path *p = NULL;
5006 u64 offset = sctx->cur_inode_last_extent;
5007 u64 len;
5008 int ret = 0;
5009
22d3151c
FM
5010 /*
5011 * A hole that starts at EOF or beyond it. Since we do not yet support
5012 * fallocate (for extent preallocation and hole punching), sending a
5013 * write of zeroes starting at EOF or beyond would later require issuing
5014 * a truncate operation which would undo the write and achieve nothing.
5015 */
5016 if (offset >= sctx->cur_inode_size)
5017 return 0;
5018
d4dfc0f4
FM
5019 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5020 return send_update_extent(sctx, offset, end - offset);
5021
16e7549f
JB
5022 p = fs_path_alloc();
5023 if (!p)
5024 return -ENOMEM;
c715e155
FM
5025 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5026 if (ret < 0)
5027 goto tlv_put_failure;
16e7549f
JB
5028 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5029 while (offset < end) {
5030 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5031
5032 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
5033 if (ret < 0)
5034 break;
5035 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5036 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5037 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5038 ret = send_cmd(sctx);
5039 if (ret < 0)
5040 break;
5041 offset += len;
5042 }
ffa7c429 5043 sctx->cur_inode_next_write_offset = offset;
16e7549f
JB
5044tlv_put_failure:
5045 fs_path_free(p);
5046 return ret;
5047}
5048
d906d49f
FM
5049static int send_extent_data(struct send_ctx *sctx,
5050 const u64 offset,
5051 const u64 len)
5052{
5053 u64 sent = 0;
5054
5055 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056 return send_update_extent(sctx, offset, len);
5057
5058 while (sent < len) {
5059 u64 size = len - sent;
5060 int ret;
5061
5062 if (size > BTRFS_SEND_READ_SIZE)
5063 size = BTRFS_SEND_READ_SIZE;
5064 ret = send_write(sctx, offset + sent, size);
5065 if (ret < 0)
5066 return ret;
5067 if (!ret)
5068 break;
5069 sent += ret;
5070 }
5071 return 0;
5072}
5073
5074static int clone_range(struct send_ctx *sctx,
5075 struct clone_root *clone_root,
5076 const u64 disk_byte,
5077 u64 data_offset,
5078 u64 offset,
5079 u64 len)
5080{
5081 struct btrfs_path *path;
5082 struct btrfs_key key;
5083 int ret;
5084
72610b1b
FM
5085 /*
5086 * Prevent cloning from a zero offset with a length matching the sector
5087 * size because in some scenarios this will make the receiver fail.
5088 *
5089 * For example, if in the source filesystem the extent at offset 0
5090 * has a length of sectorsize and it was written using direct IO, then
5091 * it can never be an inline extent (even if compression is enabled).
5092 * Then this extent can be cloned in the original filesystem to a non
5093 * zero file offset, but it may not be possible to clone in the
5094 * destination filesystem because it can be inlined due to compression
5095 * on the destination filesystem (as the receiver's write operations are
5096 * always done using buffered IO). The same happens when the original
5097 * filesystem does not have compression enabled but the destination
5098 * filesystem has.
5099 */
5100 if (clone_root->offset == 0 &&
5101 len == sctx->send_root->fs_info->sectorsize)
5102 return send_extent_data(sctx, offset, len);
5103
d906d49f
FM
5104 path = alloc_path_for_send();
5105 if (!path)
5106 return -ENOMEM;
5107
5108 /*
5109 * We can't send a clone operation for the entire range if we find
5110 * extent items in the respective range in the source file that
5111 * refer to different extents or if we find holes.
5112 * So check for that and do a mix of clone and regular write/copy
5113 * operations if needed.
5114 *
5115 * Example:
5116 *
5117 * mkfs.btrfs -f /dev/sda
5118 * mount /dev/sda /mnt
5119 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5120 * cp --reflink=always /mnt/foo /mnt/bar
5121 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5122 * btrfs subvolume snapshot -r /mnt /mnt/snap
5123 *
5124 * If when we send the snapshot and we are processing file bar (which
5125 * has a higher inode number than foo) we blindly send a clone operation
5126 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5127 * a file bar that matches the content of file foo - iow, doesn't match
5128 * the content from bar in the original filesystem.
5129 */
5130 key.objectid = clone_root->ino;
5131 key.type = BTRFS_EXTENT_DATA_KEY;
5132 key.offset = clone_root->offset;
5133 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5134 if (ret < 0)
5135 goto out;
5136 if (ret > 0 && path->slots[0] > 0) {
5137 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5138 if (key.objectid == clone_root->ino &&
5139 key.type == BTRFS_EXTENT_DATA_KEY)
5140 path->slots[0]--;
5141 }
5142
5143 while (true) {
5144 struct extent_buffer *leaf = path->nodes[0];
5145 int slot = path->slots[0];
5146 struct btrfs_file_extent_item *ei;
5147 u8 type;
5148 u64 ext_len;
5149 u64 clone_len;
5150
5151 if (slot >= btrfs_header_nritems(leaf)) {
5152 ret = btrfs_next_leaf(clone_root->root, path);
5153 if (ret < 0)
5154 goto out;
5155 else if (ret > 0)
5156 break;
5157 continue;
5158 }
5159
5160 btrfs_item_key_to_cpu(leaf, &key, slot);
5161
5162 /*
5163 * We might have an implicit trailing hole (NO_HOLES feature
5164 * enabled). We deal with it after leaving this loop.
5165 */
5166 if (key.objectid != clone_root->ino ||
5167 key.type != BTRFS_EXTENT_DATA_KEY)
5168 break;
5169
5170 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5171 type = btrfs_file_extent_type(leaf, ei);
5172 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5173 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
09cbfeaf 5174 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
5175 } else {
5176 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5177 }
5178
5179 if (key.offset + ext_len <= clone_root->offset)
5180 goto next;
5181
5182 if (key.offset > clone_root->offset) {
5183 /* Implicit hole, NO_HOLES feature enabled. */
5184 u64 hole_len = key.offset - clone_root->offset;
5185
5186 if (hole_len > len)
5187 hole_len = len;
5188 ret = send_extent_data(sctx, offset, hole_len);
5189 if (ret < 0)
5190 goto out;
5191
5192 len -= hole_len;
5193 if (len == 0)
5194 break;
5195 offset += hole_len;
5196 clone_root->offset += hole_len;
5197 data_offset += hole_len;
5198 }
5199
5200 if (key.offset >= clone_root->offset + len)
5201 break;
5202
5203 clone_len = min_t(u64, ext_len, len);
5204
5205 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5206 btrfs_file_extent_offset(leaf, ei) == data_offset)
5207 ret = send_clone(sctx, offset, clone_len, clone_root);
5208 else
5209 ret = send_extent_data(sctx, offset, clone_len);
5210
5211 if (ret < 0)
5212 goto out;
5213
5214 len -= clone_len;
5215 if (len == 0)
5216 break;
5217 offset += clone_len;
5218 clone_root->offset += clone_len;
5219 data_offset += clone_len;
5220next:
5221 path->slots[0]++;
5222 }
5223
5224 if (len > 0)
5225 ret = send_extent_data(sctx, offset, len);
5226 else
5227 ret = 0;
5228out:
5229 btrfs_free_path(path);
5230 return ret;
5231}
5232
31db9f7c
AB
5233static int send_write_or_clone(struct send_ctx *sctx,
5234 struct btrfs_path *path,
5235 struct btrfs_key *key,
5236 struct clone_root *clone_root)
5237{
5238 int ret = 0;
5239 struct btrfs_file_extent_item *ei;
5240 u64 offset = key->offset;
31db9f7c 5241 u64 len;
31db9f7c 5242 u8 type;
28e5dd8f 5243 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
5244
5245 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5246 struct btrfs_file_extent_item);
5247 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 5248 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5249 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
74dd17fb
CM
5250 /*
5251 * it is possible the inline item won't cover the whole page,
5252 * but there may be items after this page. Make
5253 * sure to send the whole thing
5254 */
09cbfeaf 5255 len = PAGE_ALIGN(len);
74dd17fb 5256 } else {
31db9f7c 5257 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 5258 }
31db9f7c 5259
a6aa10c7
FM
5260 if (offset >= sctx->cur_inode_size) {
5261 ret = 0;
5262 goto out;
5263 }
31db9f7c
AB
5264 if (offset + len > sctx->cur_inode_size)
5265 len = sctx->cur_inode_size - offset;
5266 if (len == 0) {
5267 ret = 0;
5268 goto out;
5269 }
5270
28e5dd8f 5271 if (clone_root && IS_ALIGNED(offset + len, bs)) {
d906d49f
FM
5272 u64 disk_byte;
5273 u64 data_offset;
5274
5275 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5276 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5277 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5278 offset, len);
cb95e7bf 5279 } else {
d906d49f 5280 ret = send_extent_data(sctx, offset, len);
31db9f7c 5281 }
ffa7c429 5282 sctx->cur_inode_next_write_offset = offset + len;
31db9f7c
AB
5283out:
5284 return ret;
5285}
5286
5287static int is_extent_unchanged(struct send_ctx *sctx,
5288 struct btrfs_path *left_path,
5289 struct btrfs_key *ekey)
5290{
5291 int ret = 0;
5292 struct btrfs_key key;
5293 struct btrfs_path *path = NULL;
5294 struct extent_buffer *eb;
5295 int slot;
5296 struct btrfs_key found_key;
5297 struct btrfs_file_extent_item *ei;
5298 u64 left_disknr;
5299 u64 right_disknr;
5300 u64 left_offset;
5301 u64 right_offset;
5302 u64 left_offset_fixed;
5303 u64 left_len;
5304 u64 right_len;
74dd17fb
CM
5305 u64 left_gen;
5306 u64 right_gen;
31db9f7c
AB
5307 u8 left_type;
5308 u8 right_type;
5309
5310 path = alloc_path_for_send();
5311 if (!path)
5312 return -ENOMEM;
5313
5314 eb = left_path->nodes[0];
5315 slot = left_path->slots[0];
31db9f7c
AB
5316 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5317 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5318
5319 if (left_type != BTRFS_FILE_EXTENT_REG) {
5320 ret = 0;
5321 goto out;
5322 }
74dd17fb
CM
5323 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5324 left_len = btrfs_file_extent_num_bytes(eb, ei);
5325 left_offset = btrfs_file_extent_offset(eb, ei);
5326 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5327
5328 /*
5329 * Following comments will refer to these graphics. L is the left
5330 * extents which we are checking at the moment. 1-8 are the right
5331 * extents that we iterate.
5332 *
5333 * |-----L-----|
5334 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5335 *
5336 * |-----L-----|
5337 * |--1--|-2b-|...(same as above)
5338 *
5339 * Alternative situation. Happens on files where extents got split.
5340 * |-----L-----|
5341 * |-----------7-----------|-6-|
5342 *
5343 * Alternative situation. Happens on files which got larger.
5344 * |-----L-----|
5345 * |-8-|
5346 * Nothing follows after 8.
5347 */
5348
5349 key.objectid = ekey->objectid;
5350 key.type = BTRFS_EXTENT_DATA_KEY;
5351 key.offset = ekey->offset;
5352 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5353 if (ret < 0)
5354 goto out;
5355 if (ret) {
5356 ret = 0;
5357 goto out;
5358 }
5359
5360 /*
5361 * Handle special case where the right side has no extents at all.
5362 */
5363 eb = path->nodes[0];
5364 slot = path->slots[0];
5365 btrfs_item_key_to_cpu(eb, &found_key, slot);
5366 if (found_key.objectid != key.objectid ||
5367 found_key.type != key.type) {
57cfd462
JB
5368 /* If we're a hole then just pretend nothing changed */
5369 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5370 goto out;
5371 }
5372
5373 /*
5374 * We're now on 2a, 2b or 7.
5375 */
5376 key = found_key;
5377 while (key.offset < ekey->offset + left_len) {
5378 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5379 right_type = btrfs_file_extent_type(eb, ei);
e1cbfd7b
FM
5380 if (right_type != BTRFS_FILE_EXTENT_REG &&
5381 right_type != BTRFS_FILE_EXTENT_INLINE) {
31db9f7c
AB
5382 ret = 0;
5383 goto out;
5384 }
5385
e1cbfd7b 5386 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5387 right_len = btrfs_file_extent_ram_bytes(eb, ei);
e1cbfd7b
FM
5388 right_len = PAGE_ALIGN(right_len);
5389 } else {
5390 right_len = btrfs_file_extent_num_bytes(eb, ei);
5391 }
007d31f7 5392
31db9f7c
AB
5393 /*
5394 * Are we at extent 8? If yes, we know the extent is changed.
5395 * This may only happen on the first iteration.
5396 */
d8347fa4 5397 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
5398 /* If we're a hole just pretend nothing changed */
5399 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5400 goto out;
5401 }
5402
e1cbfd7b
FM
5403 /*
5404 * We just wanted to see if when we have an inline extent, what
5405 * follows it is a regular extent (wanted to check the above
5406 * condition for inline extents too). This should normally not
5407 * happen but it's possible for example when we have an inline
5408 * compressed extent representing data with a size matching
5409 * the page size (currently the same as sector size).
5410 */
5411 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5412 ret = 0;
5413 goto out;
5414 }
5415
24e52b11
FM
5416 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5417 right_offset = btrfs_file_extent_offset(eb, ei);
5418 right_gen = btrfs_file_extent_generation(eb, ei);
5419
31db9f7c
AB
5420 left_offset_fixed = left_offset;
5421 if (key.offset < ekey->offset) {
5422 /* Fix the right offset for 2a and 7. */
5423 right_offset += ekey->offset - key.offset;
5424 } else {
5425 /* Fix the left offset for all behind 2a and 2b */
5426 left_offset_fixed += key.offset - ekey->offset;
5427 }
5428
5429 /*
5430 * Check if we have the same extent.
5431 */
3954096d 5432 if (left_disknr != right_disknr ||
74dd17fb
CM
5433 left_offset_fixed != right_offset ||
5434 left_gen != right_gen) {
31db9f7c
AB
5435 ret = 0;
5436 goto out;
5437 }
5438
5439 /*
5440 * Go to the next extent.
5441 */
5442 ret = btrfs_next_item(sctx->parent_root, path);
5443 if (ret < 0)
5444 goto out;
5445 if (!ret) {
5446 eb = path->nodes[0];
5447 slot = path->slots[0];
5448 btrfs_item_key_to_cpu(eb, &found_key, slot);
5449 }
5450 if (ret || found_key.objectid != key.objectid ||
5451 found_key.type != key.type) {
5452 key.offset += right_len;
5453 break;
adaa4b8e
JS
5454 }
5455 if (found_key.offset != key.offset + right_len) {
5456 ret = 0;
5457 goto out;
31db9f7c
AB
5458 }
5459 key = found_key;
5460 }
5461
5462 /*
5463 * We're now behind the left extent (treat as unchanged) or at the end
5464 * of the right side (treat as changed).
5465 */
5466 if (key.offset >= ekey->offset + left_len)
5467 ret = 1;
5468 else
5469 ret = 0;
5470
5471
5472out:
5473 btrfs_free_path(path);
5474 return ret;
5475}
5476
16e7549f
JB
5477static int get_last_extent(struct send_ctx *sctx, u64 offset)
5478{
5479 struct btrfs_path *path;
5480 struct btrfs_root *root = sctx->send_root;
5481 struct btrfs_file_extent_item *fi;
5482 struct btrfs_key key;
5483 u64 extent_end;
5484 u8 type;
5485 int ret;
5486
5487 path = alloc_path_for_send();
5488 if (!path)
5489 return -ENOMEM;
5490
5491 sctx->cur_inode_last_extent = 0;
5492
5493 key.objectid = sctx->cur_ino;
5494 key.type = BTRFS_EXTENT_DATA_KEY;
5495 key.offset = offset;
5496 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5497 if (ret < 0)
5498 goto out;
5499 ret = 0;
5500 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5501 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5502 goto out;
5503
5504 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5505 struct btrfs_file_extent_item);
5506 type = btrfs_file_extent_type(path->nodes[0], fi);
5507 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5508 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
16e7549f 5509 extent_end = ALIGN(key.offset + size,
da17066c 5510 sctx->send_root->fs_info->sectorsize);
16e7549f
JB
5511 } else {
5512 extent_end = key.offset +
5513 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5514 }
5515 sctx->cur_inode_last_extent = extent_end;
5516out:
5517 btrfs_free_path(path);
5518 return ret;
5519}
5520
82bfb2e7
FM
5521static int range_is_hole_in_parent(struct send_ctx *sctx,
5522 const u64 start,
5523 const u64 end)
5524{
5525 struct btrfs_path *path;
5526 struct btrfs_key key;
5527 struct btrfs_root *root = sctx->parent_root;
5528 u64 search_start = start;
5529 int ret;
5530
5531 path = alloc_path_for_send();
5532 if (!path)
5533 return -ENOMEM;
5534
5535 key.objectid = sctx->cur_ino;
5536 key.type = BTRFS_EXTENT_DATA_KEY;
5537 key.offset = search_start;
5538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5539 if (ret < 0)
5540 goto out;
5541 if (ret > 0 && path->slots[0] > 0)
5542 path->slots[0]--;
5543
5544 while (search_start < end) {
5545 struct extent_buffer *leaf = path->nodes[0];
5546 int slot = path->slots[0];
5547 struct btrfs_file_extent_item *fi;
5548 u64 extent_end;
5549
5550 if (slot >= btrfs_header_nritems(leaf)) {
5551 ret = btrfs_next_leaf(root, path);
5552 if (ret < 0)
5553 goto out;
5554 else if (ret > 0)
5555 break;
5556 continue;
5557 }
5558
5559 btrfs_item_key_to_cpu(leaf, &key, slot);
5560 if (key.objectid < sctx->cur_ino ||
5561 key.type < BTRFS_EXTENT_DATA_KEY)
5562 goto next;
5563 if (key.objectid > sctx->cur_ino ||
5564 key.type > BTRFS_EXTENT_DATA_KEY ||
5565 key.offset >= end)
5566 break;
5567
5568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5569 if (btrfs_file_extent_type(leaf, fi) ==
5570 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5571 u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
82bfb2e7
FM
5572
5573 extent_end = ALIGN(key.offset + size,
5574 root->fs_info->sectorsize);
5575 } else {
5576 extent_end = key.offset +
5577 btrfs_file_extent_num_bytes(leaf, fi);
5578 }
5579 if (extent_end <= start)
5580 goto next;
5581 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5582 search_start = extent_end;
5583 goto next;
5584 }
5585 ret = 0;
5586 goto out;
5587next:
5588 path->slots[0]++;
5589 }
5590 ret = 1;
5591out:
5592 btrfs_free_path(path);
5593 return ret;
5594}
5595
16e7549f
JB
5596static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5597 struct btrfs_key *key)
5598{
5599 struct btrfs_file_extent_item *fi;
5600 u64 extent_end;
5601 u8 type;
5602 int ret = 0;
5603
5604 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5605 return 0;
5606
5607 if (sctx->cur_inode_last_extent == (u64)-1) {
5608 ret = get_last_extent(sctx, key->offset - 1);
5609 if (ret)
5610 return ret;
5611 }
5612
5613 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5614 struct btrfs_file_extent_item);
5615 type = btrfs_file_extent_type(path->nodes[0], fi);
5616 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5617 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
16e7549f 5618 extent_end = ALIGN(key->offset + size,
da17066c 5619 sctx->send_root->fs_info->sectorsize);
16e7549f
JB
5620 } else {
5621 extent_end = key->offset +
5622 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5623 }
bf54f412
FDBM
5624
5625 if (path->slots[0] == 0 &&
5626 sctx->cur_inode_last_extent < key->offset) {
5627 /*
5628 * We might have skipped entire leafs that contained only
5629 * file extent items for our current inode. These leafs have
5630 * a generation number smaller (older) than the one in the
5631 * current leaf and the leaf our last extent came from, and
5632 * are located between these 2 leafs.
5633 */
5634 ret = get_last_extent(sctx, key->offset - 1);
5635 if (ret)
5636 return ret;
5637 }
5638
82bfb2e7
FM
5639 if (sctx->cur_inode_last_extent < key->offset) {
5640 ret = range_is_hole_in_parent(sctx,
5641 sctx->cur_inode_last_extent,
5642 key->offset);
5643 if (ret < 0)
5644 return ret;
5645 else if (ret == 0)
5646 ret = send_hole(sctx, key->offset);
5647 else
5648 ret = 0;
5649 }
16e7549f
JB
5650 sctx->cur_inode_last_extent = extent_end;
5651 return ret;
5652}
5653
31db9f7c
AB
5654static int process_extent(struct send_ctx *sctx,
5655 struct btrfs_path *path,
5656 struct btrfs_key *key)
5657{
31db9f7c 5658 struct clone_root *found_clone = NULL;
57cfd462 5659 int ret = 0;
31db9f7c
AB
5660
5661 if (S_ISLNK(sctx->cur_inode_mode))
5662 return 0;
5663
5664 if (sctx->parent_root && !sctx->cur_inode_new) {
5665 ret = is_extent_unchanged(sctx, path, key);
5666 if (ret < 0)
5667 goto out;
5668 if (ret) {
5669 ret = 0;
16e7549f 5670 goto out_hole;
31db9f7c 5671 }
57cfd462
JB
5672 } else {
5673 struct btrfs_file_extent_item *ei;
5674 u8 type;
5675
5676 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5677 struct btrfs_file_extent_item);
5678 type = btrfs_file_extent_type(path->nodes[0], ei);
5679 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5680 type == BTRFS_FILE_EXTENT_REG) {
5681 /*
5682 * The send spec does not have a prealloc command yet,
5683 * so just leave a hole for prealloc'ed extents until
5684 * we have enough commands queued up to justify rev'ing
5685 * the send spec.
5686 */
5687 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5688 ret = 0;
5689 goto out;
5690 }
5691
5692 /* Have a hole, just skip it. */
5693 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5694 ret = 0;
5695 goto out;
5696 }
5697 }
31db9f7c
AB
5698 }
5699
5700 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5701 sctx->cur_inode_size, &found_clone);
5702 if (ret != -ENOENT && ret < 0)
5703 goto out;
5704
5705 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5706 if (ret)
5707 goto out;
5708out_hole:
5709 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5710out:
5711 return ret;
5712}
5713
5714static int process_all_extents(struct send_ctx *sctx)
5715{
5716 int ret;
5717 struct btrfs_root *root;
5718 struct btrfs_path *path;
5719 struct btrfs_key key;
5720 struct btrfs_key found_key;
5721 struct extent_buffer *eb;
5722 int slot;
5723
5724 root = sctx->send_root;
5725 path = alloc_path_for_send();
5726 if (!path)
5727 return -ENOMEM;
5728
5729 key.objectid = sctx->cmp_key->objectid;
5730 key.type = BTRFS_EXTENT_DATA_KEY;
5731 key.offset = 0;
7fdd29d0
FDBM
5732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733 if (ret < 0)
5734 goto out;
31db9f7c 5735
7fdd29d0 5736 while (1) {
31db9f7c
AB
5737 eb = path->nodes[0];
5738 slot = path->slots[0];
7fdd29d0
FDBM
5739
5740 if (slot >= btrfs_header_nritems(eb)) {
5741 ret = btrfs_next_leaf(root, path);
5742 if (ret < 0) {
5743 goto out;
5744 } else if (ret > 0) {
5745 ret = 0;
5746 break;
5747 }
5748 continue;
5749 }
5750
31db9f7c
AB
5751 btrfs_item_key_to_cpu(eb, &found_key, slot);
5752
5753 if (found_key.objectid != key.objectid ||
5754 found_key.type != key.type) {
5755 ret = 0;
5756 goto out;
5757 }
5758
5759 ret = process_extent(sctx, path, &found_key);
5760 if (ret < 0)
5761 goto out;
5762
7fdd29d0 5763 path->slots[0]++;
31db9f7c
AB
5764 }
5765
5766out:
5767 btrfs_free_path(path);
5768 return ret;
5769}
5770
9f03740a
FDBM
5771static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5772 int *pending_move,
5773 int *refs_processed)
31db9f7c
AB
5774{
5775 int ret = 0;
5776
5777 if (sctx->cur_ino == 0)
5778 goto out;
5779 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5780 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5781 goto out;
5782 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5783 goto out;
5784
9f03740a 5785 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5786 if (ret < 0)
5787 goto out;
5788
9f03740a 5789 *refs_processed = 1;
31db9f7c
AB
5790out:
5791 return ret;
5792}
5793
5794static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5795{
5796 int ret = 0;
5797 u64 left_mode;
5798 u64 left_uid;
5799 u64 left_gid;
5800 u64 right_mode;
5801 u64 right_uid;
5802 u64 right_gid;
5803 int need_chmod = 0;
5804 int need_chown = 0;
ffa7c429 5805 int need_truncate = 1;
9f03740a
FDBM
5806 int pending_move = 0;
5807 int refs_processed = 0;
31db9f7c 5808
46b2f459
FM
5809 if (sctx->ignore_cur_inode)
5810 return 0;
5811
9f03740a
FDBM
5812 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5813 &refs_processed);
31db9f7c
AB
5814 if (ret < 0)
5815 goto out;
5816
9f03740a
FDBM
5817 /*
5818 * We have processed the refs and thus need to advance send_progress.
5819 * Now, calls to get_cur_xxx will take the updated refs of the current
5820 * inode into account.
5821 *
5822 * On the other hand, if our current inode is a directory and couldn't
5823 * be moved/renamed because its parent was renamed/moved too and it has
5824 * a higher inode number, we can only move/rename our current inode
5825 * after we moved/renamed its parent. Therefore in this case operate on
5826 * the old path (pre move/rename) of our current inode, and the
5827 * move/rename will be performed later.
5828 */
5829 if (refs_processed && !pending_move)
5830 sctx->send_progress = sctx->cur_ino + 1;
5831
31db9f7c
AB
5832 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5833 goto out;
5834 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5835 goto out;
5836
5837 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5838 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5839 if (ret < 0)
5840 goto out;
5841
e2d044fe
AL
5842 if (!sctx->parent_root || sctx->cur_inode_new) {
5843 need_chown = 1;
5844 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5845 need_chmod = 1;
ffa7c429
FM
5846 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5847 need_truncate = 0;
e2d044fe 5848 } else {
ffa7c429
FM
5849 u64 old_size;
5850
e2d044fe 5851 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
ffa7c429 5852 &old_size, NULL, &right_mode, &right_uid,
e2d044fe
AL
5853 &right_gid, NULL);
5854 if (ret < 0)
5855 goto out;
31db9f7c 5856
e2d044fe
AL
5857 if (left_uid != right_uid || left_gid != right_gid)
5858 need_chown = 1;
5859 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5860 need_chmod = 1;
ffa7c429
FM
5861 if ((old_size == sctx->cur_inode_size) ||
5862 (sctx->cur_inode_size > old_size &&
5863 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5864 need_truncate = 0;
31db9f7c
AB
5865 }
5866
5867 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5868 if (need_send_hole(sctx)) {
766b5e5a
FM
5869 if (sctx->cur_inode_last_extent == (u64)-1 ||
5870 sctx->cur_inode_last_extent <
5871 sctx->cur_inode_size) {
16e7549f
JB
5872 ret = get_last_extent(sctx, (u64)-1);
5873 if (ret)
5874 goto out;
5875 }
5876 if (sctx->cur_inode_last_extent <
5877 sctx->cur_inode_size) {
5878 ret = send_hole(sctx, sctx->cur_inode_size);
5879 if (ret)
5880 goto out;
5881 }
5882 }
ffa7c429
FM
5883 if (need_truncate) {
5884 ret = send_truncate(sctx, sctx->cur_ino,
5885 sctx->cur_inode_gen,
5886 sctx->cur_inode_size);
5887 if (ret < 0)
5888 goto out;
5889 }
31db9f7c
AB
5890 }
5891
5892 if (need_chown) {
5893 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5894 left_uid, left_gid);
5895 if (ret < 0)
5896 goto out;
5897 }
5898 if (need_chmod) {
5899 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5900 left_mode);
5901 if (ret < 0)
5902 goto out;
5903 }
5904
5905 /*
9f03740a
FDBM
5906 * If other directory inodes depended on our current directory
5907 * inode's move/rename, now do their move/rename operations.
31db9f7c 5908 */
9f03740a
FDBM
5909 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5910 ret = apply_children_dir_moves(sctx);
5911 if (ret)
5912 goto out;
fcbd2154
FM
5913 /*
5914 * Need to send that every time, no matter if it actually
5915 * changed between the two trees as we have done changes to
5916 * the inode before. If our inode is a directory and it's
5917 * waiting to be moved/renamed, we will send its utimes when
5918 * it's moved/renamed, therefore we don't need to do it here.
5919 */
5920 sctx->send_progress = sctx->cur_ino + 1;
5921 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5922 if (ret < 0)
5923 goto out;
9f03740a
FDBM
5924 }
5925
31db9f7c
AB
5926out:
5927 return ret;
5928}
5929
46b2f459
FM
5930struct parent_paths_ctx {
5931 struct list_head *refs;
5932 struct send_ctx *sctx;
5933};
5934
5935static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5936 void *ctx)
5937{
5938 struct parent_paths_ctx *ppctx = ctx;
5939
5940 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
5941 ppctx->refs);
5942}
5943
5944/*
5945 * Issue unlink operations for all paths of the current inode found in the
5946 * parent snapshot.
5947 */
5948static int btrfs_unlink_all_paths(struct send_ctx *sctx)
5949{
5950 LIST_HEAD(deleted_refs);
5951 struct btrfs_path *path;
5952 struct btrfs_key key;
5953 struct parent_paths_ctx ctx;
5954 int ret;
5955
5956 path = alloc_path_for_send();
5957 if (!path)
5958 return -ENOMEM;
5959
5960 key.objectid = sctx->cur_ino;
5961 key.type = BTRFS_INODE_REF_KEY;
5962 key.offset = 0;
5963 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
5964 if (ret < 0)
5965 goto out;
5966
5967 ctx.refs = &deleted_refs;
5968 ctx.sctx = sctx;
5969
5970 while (true) {
5971 struct extent_buffer *eb = path->nodes[0];
5972 int slot = path->slots[0];
5973
5974 if (slot >= btrfs_header_nritems(eb)) {
5975 ret = btrfs_next_leaf(sctx->parent_root, path);
5976 if (ret < 0)
5977 goto out;
5978 else if (ret > 0)
5979 break;
5980 continue;
5981 }
5982
5983 btrfs_item_key_to_cpu(eb, &key, slot);
5984 if (key.objectid != sctx->cur_ino)
5985 break;
5986 if (key.type != BTRFS_INODE_REF_KEY &&
5987 key.type != BTRFS_INODE_EXTREF_KEY)
5988 break;
5989
5990 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
5991 record_parent_ref, &ctx);
5992 if (ret < 0)
5993 goto out;
5994
5995 path->slots[0]++;
5996 }
5997
5998 while (!list_empty(&deleted_refs)) {
5999 struct recorded_ref *ref;
6000
6001 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6002 ret = send_unlink(sctx, ref->full_path);
6003 if (ret < 0)
6004 goto out;
6005 fs_path_free(ref->full_path);
6006 list_del(&ref->list);
6007 kfree(ref);
6008 }
6009 ret = 0;
6010out:
6011 btrfs_free_path(path);
6012 if (ret)
6013 __free_recorded_refs(&deleted_refs);
6014 return ret;
6015}
6016
31db9f7c
AB
6017static int changed_inode(struct send_ctx *sctx,
6018 enum btrfs_compare_tree_result result)
6019{
6020 int ret = 0;
6021 struct btrfs_key *key = sctx->cmp_key;
6022 struct btrfs_inode_item *left_ii = NULL;
6023 struct btrfs_inode_item *right_ii = NULL;
6024 u64 left_gen = 0;
6025 u64 right_gen = 0;
6026
31db9f7c
AB
6027 sctx->cur_ino = key->objectid;
6028 sctx->cur_inode_new_gen = 0;
16e7549f 6029 sctx->cur_inode_last_extent = (u64)-1;
ffa7c429 6030 sctx->cur_inode_next_write_offset = 0;
46b2f459 6031 sctx->ignore_cur_inode = false;
e479d9bb
AB
6032
6033 /*
6034 * Set send_progress to current inode. This will tell all get_cur_xxx
6035 * functions that the current inode's refs are not updated yet. Later,
6036 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6037 */
31db9f7c
AB
6038 sctx->send_progress = sctx->cur_ino;
6039
6040 if (result == BTRFS_COMPARE_TREE_NEW ||
6041 result == BTRFS_COMPARE_TREE_CHANGED) {
6042 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6043 sctx->left_path->slots[0],
6044 struct btrfs_inode_item);
6045 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6046 left_ii);
6047 } else {
6048 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6049 sctx->right_path->slots[0],
6050 struct btrfs_inode_item);
6051 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6052 right_ii);
6053 }
6054 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6055 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6056 sctx->right_path->slots[0],
6057 struct btrfs_inode_item);
6058
6059 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6060 right_ii);
6d85ed05
AB
6061
6062 /*
6063 * The cur_ino = root dir case is special here. We can't treat
6064 * the inode as deleted+reused because it would generate a
6065 * stream that tries to delete/mkdir the root dir.
6066 */
6067 if (left_gen != right_gen &&
6068 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
6069 sctx->cur_inode_new_gen = 1;
6070 }
6071
46b2f459
FM
6072 /*
6073 * Normally we do not find inodes with a link count of zero (orphans)
6074 * because the most common case is to create a snapshot and use it
6075 * for a send operation. However other less common use cases involve
6076 * using a subvolume and send it after turning it to RO mode just
6077 * after deleting all hard links of a file while holding an open
6078 * file descriptor against it or turning a RO snapshot into RW mode,
6079 * keep an open file descriptor against a file, delete it and then
6080 * turn the snapshot back to RO mode before using it for a send
6081 * operation. So if we find such cases, ignore the inode and all its
6082 * items completely if it's a new inode, or if it's a changed inode
6083 * make sure all its previous paths (from the parent snapshot) are all
6084 * unlinked and all other the inode items are ignored.
6085 */
6086 if (result == BTRFS_COMPARE_TREE_NEW ||
6087 result == BTRFS_COMPARE_TREE_CHANGED) {
6088 u32 nlinks;
6089
6090 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6091 if (nlinks == 0) {
6092 sctx->ignore_cur_inode = true;
6093 if (result == BTRFS_COMPARE_TREE_CHANGED)
6094 ret = btrfs_unlink_all_paths(sctx);
6095 goto out;
6096 }
6097 }
6098
31db9f7c
AB
6099 if (result == BTRFS_COMPARE_TREE_NEW) {
6100 sctx->cur_inode_gen = left_gen;
6101 sctx->cur_inode_new = 1;
6102 sctx->cur_inode_deleted = 0;
6103 sctx->cur_inode_size = btrfs_inode_size(
6104 sctx->left_path->nodes[0], left_ii);
6105 sctx->cur_inode_mode = btrfs_inode_mode(
6106 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6107 sctx->cur_inode_rdev = btrfs_inode_rdev(
6108 sctx->left_path->nodes[0], left_ii);
31db9f7c 6109 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 6110 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6111 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6112 sctx->cur_inode_gen = right_gen;
6113 sctx->cur_inode_new = 0;
6114 sctx->cur_inode_deleted = 1;
6115 sctx->cur_inode_size = btrfs_inode_size(
6116 sctx->right_path->nodes[0], right_ii);
6117 sctx->cur_inode_mode = btrfs_inode_mode(
6118 sctx->right_path->nodes[0], right_ii);
6119 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
6120 /*
6121 * We need to do some special handling in case the inode was
6122 * reported as changed with a changed generation number. This
6123 * means that the original inode was deleted and new inode
6124 * reused the same inum. So we have to treat the old inode as
6125 * deleted and the new one as new.
6126 */
31db9f7c 6127 if (sctx->cur_inode_new_gen) {
766702ef
AB
6128 /*
6129 * First, process the inode as if it was deleted.
6130 */
31db9f7c
AB
6131 sctx->cur_inode_gen = right_gen;
6132 sctx->cur_inode_new = 0;
6133 sctx->cur_inode_deleted = 1;
6134 sctx->cur_inode_size = btrfs_inode_size(
6135 sctx->right_path->nodes[0], right_ii);
6136 sctx->cur_inode_mode = btrfs_inode_mode(
6137 sctx->right_path->nodes[0], right_ii);
6138 ret = process_all_refs(sctx,
6139 BTRFS_COMPARE_TREE_DELETED);
6140 if (ret < 0)
6141 goto out;
6142
766702ef
AB
6143 /*
6144 * Now process the inode as if it was new.
6145 */
31db9f7c
AB
6146 sctx->cur_inode_gen = left_gen;
6147 sctx->cur_inode_new = 1;
6148 sctx->cur_inode_deleted = 0;
6149 sctx->cur_inode_size = btrfs_inode_size(
6150 sctx->left_path->nodes[0], left_ii);
6151 sctx->cur_inode_mode = btrfs_inode_mode(
6152 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6153 sctx->cur_inode_rdev = btrfs_inode_rdev(
6154 sctx->left_path->nodes[0], left_ii);
1f4692da 6155 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6156 if (ret < 0)
6157 goto out;
6158
6159 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6160 if (ret < 0)
6161 goto out;
e479d9bb
AB
6162 /*
6163 * Advance send_progress now as we did not get into
6164 * process_recorded_refs_if_needed in the new_gen case.
6165 */
6166 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
6167
6168 /*
6169 * Now process all extents and xattrs of the inode as if
6170 * they were all new.
6171 */
31db9f7c
AB
6172 ret = process_all_extents(sctx);
6173 if (ret < 0)
6174 goto out;
6175 ret = process_all_new_xattrs(sctx);
6176 if (ret < 0)
6177 goto out;
6178 } else {
6179 sctx->cur_inode_gen = left_gen;
6180 sctx->cur_inode_new = 0;
6181 sctx->cur_inode_new_gen = 0;
6182 sctx->cur_inode_deleted = 0;
6183 sctx->cur_inode_size = btrfs_inode_size(
6184 sctx->left_path->nodes[0], left_ii);
6185 sctx->cur_inode_mode = btrfs_inode_mode(
6186 sctx->left_path->nodes[0], left_ii);
6187 }
6188 }
6189
6190out:
6191 return ret;
6192}
6193
766702ef
AB
6194/*
6195 * We have to process new refs before deleted refs, but compare_trees gives us
6196 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6197 * first and later process them in process_recorded_refs.
6198 * For the cur_inode_new_gen case, we skip recording completely because
6199 * changed_inode did already initiate processing of refs. The reason for this is
6200 * that in this case, compare_tree actually compares the refs of 2 different
6201 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6202 * refs of the right tree as deleted and all refs of the left tree as new.
6203 */
31db9f7c
AB
6204static int changed_ref(struct send_ctx *sctx,
6205 enum btrfs_compare_tree_result result)
6206{
6207 int ret = 0;
6208
95155585
FM
6209 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6210 inconsistent_snapshot_error(sctx, result, "reference");
6211 return -EIO;
6212 }
31db9f7c
AB
6213
6214 if (!sctx->cur_inode_new_gen &&
6215 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6216 if (result == BTRFS_COMPARE_TREE_NEW)
6217 ret = record_new_ref(sctx);
6218 else if (result == BTRFS_COMPARE_TREE_DELETED)
6219 ret = record_deleted_ref(sctx);
6220 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6221 ret = record_changed_ref(sctx);
6222 }
6223
6224 return ret;
6225}
6226
766702ef
AB
6227/*
6228 * Process new/deleted/changed xattrs. We skip processing in the
6229 * cur_inode_new_gen case because changed_inode did already initiate processing
6230 * of xattrs. The reason is the same as in changed_ref
6231 */
31db9f7c
AB
6232static int changed_xattr(struct send_ctx *sctx,
6233 enum btrfs_compare_tree_result result)
6234{
6235 int ret = 0;
6236
95155585
FM
6237 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6238 inconsistent_snapshot_error(sctx, result, "xattr");
6239 return -EIO;
6240 }
31db9f7c
AB
6241
6242 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6243 if (result == BTRFS_COMPARE_TREE_NEW)
6244 ret = process_new_xattr(sctx);
6245 else if (result == BTRFS_COMPARE_TREE_DELETED)
6246 ret = process_deleted_xattr(sctx);
6247 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6248 ret = process_changed_xattr(sctx);
6249 }
6250
6251 return ret;
6252}
6253
766702ef
AB
6254/*
6255 * Process new/deleted/changed extents. We skip processing in the
6256 * cur_inode_new_gen case because changed_inode did already initiate processing
6257 * of extents. The reason is the same as in changed_ref
6258 */
31db9f7c
AB
6259static int changed_extent(struct send_ctx *sctx,
6260 enum btrfs_compare_tree_result result)
6261{
6262 int ret = 0;
6263
95155585 6264 if (sctx->cur_ino != sctx->cmp_key->objectid) {
d5e84fd8
FM
6265
6266 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6267 struct extent_buffer *leaf_l;
6268 struct extent_buffer *leaf_r;
6269 struct btrfs_file_extent_item *ei_l;
6270 struct btrfs_file_extent_item *ei_r;
6271
6272 leaf_l = sctx->left_path->nodes[0];
6273 leaf_r = sctx->right_path->nodes[0];
6274 ei_l = btrfs_item_ptr(leaf_l,
6275 sctx->left_path->slots[0],
6276 struct btrfs_file_extent_item);
6277 ei_r = btrfs_item_ptr(leaf_r,
6278 sctx->right_path->slots[0],
6279 struct btrfs_file_extent_item);
6280
6281 /*
6282 * We may have found an extent item that has changed
6283 * only its disk_bytenr field and the corresponding
6284 * inode item was not updated. This case happens due to
6285 * very specific timings during relocation when a leaf
6286 * that contains file extent items is COWed while
6287 * relocation is ongoing and its in the stage where it
6288 * updates data pointers. So when this happens we can
6289 * safely ignore it since we know it's the same extent,
6290 * but just at different logical and physical locations
6291 * (when an extent is fully replaced with a new one, we
6292 * know the generation number must have changed too,
6293 * since snapshot creation implies committing the current
6294 * transaction, and the inode item must have been updated
6295 * as well).
6296 * This replacement of the disk_bytenr happens at
6297 * relocation.c:replace_file_extents() through
6298 * relocation.c:btrfs_reloc_cow_block().
6299 */
6300 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6301 btrfs_file_extent_generation(leaf_r, ei_r) &&
6302 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6303 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6304 btrfs_file_extent_compression(leaf_l, ei_l) ==
6305 btrfs_file_extent_compression(leaf_r, ei_r) &&
6306 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6307 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6308 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6309 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6310 btrfs_file_extent_type(leaf_l, ei_l) ==
6311 btrfs_file_extent_type(leaf_r, ei_r) &&
6312 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6313 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6314 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6315 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6316 btrfs_file_extent_offset(leaf_l, ei_l) ==
6317 btrfs_file_extent_offset(leaf_r, ei_r) &&
6318 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6319 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6320 return 0;
6321 }
6322
95155585
FM
6323 inconsistent_snapshot_error(sctx, result, "extent");
6324 return -EIO;
6325 }
31db9f7c
AB
6326
6327 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6328 if (result != BTRFS_COMPARE_TREE_DELETED)
6329 ret = process_extent(sctx, sctx->left_path,
6330 sctx->cmp_key);
6331 }
6332
6333 return ret;
6334}
6335
ba5e8f2e
JB
6336static int dir_changed(struct send_ctx *sctx, u64 dir)
6337{
6338 u64 orig_gen, new_gen;
6339 int ret;
6340
6341 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6342 NULL, NULL);
6343 if (ret)
6344 return ret;
6345
6346 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6347 NULL, NULL, NULL);
6348 if (ret)
6349 return ret;
6350
6351 return (orig_gen != new_gen) ? 1 : 0;
6352}
6353
6354static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6355 struct btrfs_key *key)
6356{
6357 struct btrfs_inode_extref *extref;
6358 struct extent_buffer *leaf;
6359 u64 dirid = 0, last_dirid = 0;
6360 unsigned long ptr;
6361 u32 item_size;
6362 u32 cur_offset = 0;
6363 int ref_name_len;
6364 int ret = 0;
6365
6366 /* Easy case, just check this one dirid */
6367 if (key->type == BTRFS_INODE_REF_KEY) {
6368 dirid = key->offset;
6369
6370 ret = dir_changed(sctx, dirid);
6371 goto out;
6372 }
6373
6374 leaf = path->nodes[0];
6375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6376 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6377 while (cur_offset < item_size) {
6378 extref = (struct btrfs_inode_extref *)(ptr +
6379 cur_offset);
6380 dirid = btrfs_inode_extref_parent(leaf, extref);
6381 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6382 cur_offset += ref_name_len + sizeof(*extref);
6383 if (dirid == last_dirid)
6384 continue;
6385 ret = dir_changed(sctx, dirid);
6386 if (ret)
6387 break;
6388 last_dirid = dirid;
6389 }
6390out:
6391 return ret;
6392}
6393
766702ef
AB
6394/*
6395 * Updates compare related fields in sctx and simply forwards to the actual
6396 * changed_xxx functions.
6397 */
ee8c494f 6398static int changed_cb(struct btrfs_path *left_path,
31db9f7c
AB
6399 struct btrfs_path *right_path,
6400 struct btrfs_key *key,
6401 enum btrfs_compare_tree_result result,
6402 void *ctx)
6403{
6404 int ret = 0;
6405 struct send_ctx *sctx = ctx;
6406
ba5e8f2e 6407 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
6408 if (key->type == BTRFS_INODE_REF_KEY ||
6409 key->type == BTRFS_INODE_EXTREF_KEY) {
6410 ret = compare_refs(sctx, left_path, key);
6411 if (!ret)
6412 return 0;
6413 if (ret < 0)
6414 return ret;
6415 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6416 return maybe_send_hole(sctx, left_path, key);
6417 } else {
ba5e8f2e 6418 return 0;
16e7549f 6419 }
ba5e8f2e
JB
6420 result = BTRFS_COMPARE_TREE_CHANGED;
6421 ret = 0;
6422 }
6423
31db9f7c
AB
6424 sctx->left_path = left_path;
6425 sctx->right_path = right_path;
6426 sctx->cmp_key = key;
6427
6428 ret = finish_inode_if_needed(sctx, 0);
6429 if (ret < 0)
6430 goto out;
6431
2981e225
AB
6432 /* Ignore non-FS objects */
6433 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6434 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6435 goto out;
6436
46b2f459 6437 if (key->type == BTRFS_INODE_ITEM_KEY) {
31db9f7c 6438 ret = changed_inode(sctx, result);
46b2f459
FM
6439 } else if (!sctx->ignore_cur_inode) {
6440 if (key->type == BTRFS_INODE_REF_KEY ||
6441 key->type == BTRFS_INODE_EXTREF_KEY)
6442 ret = changed_ref(sctx, result);
6443 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6444 ret = changed_xattr(sctx, result);
6445 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6446 ret = changed_extent(sctx, result);
6447 }
31db9f7c
AB
6448
6449out:
6450 return ret;
6451}
6452
6453static int full_send_tree(struct send_ctx *sctx)
6454{
6455 int ret;
31db9f7c
AB
6456 struct btrfs_root *send_root = sctx->send_root;
6457 struct btrfs_key key;
31db9f7c
AB
6458 struct btrfs_path *path;
6459 struct extent_buffer *eb;
6460 int slot;
31db9f7c
AB
6461
6462 path = alloc_path_for_send();
6463 if (!path)
6464 return -ENOMEM;
6465
31db9f7c
AB
6466 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6467 key.type = BTRFS_INODE_ITEM_KEY;
6468 key.offset = 0;
6469
31db9f7c
AB
6470 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6471 if (ret < 0)
6472 goto out;
6473 if (ret)
6474 goto out_finish;
6475
6476 while (1) {
31db9f7c
AB
6477 eb = path->nodes[0];
6478 slot = path->slots[0];
ca5d2ba1 6479 btrfs_item_key_to_cpu(eb, &key, slot);
31db9f7c 6480
ca5d2ba1 6481 ret = changed_cb(path, NULL, &key,
ee8c494f 6482 BTRFS_COMPARE_TREE_NEW, sctx);
31db9f7c
AB
6483 if (ret < 0)
6484 goto out;
6485
31db9f7c
AB
6486 ret = btrfs_next_item(send_root, path);
6487 if (ret < 0)
6488 goto out;
6489 if (ret) {
6490 ret = 0;
6491 break;
6492 }
6493 }
6494
6495out_finish:
6496 ret = finish_inode_if_needed(sctx, 1);
6497
6498out:
6499 btrfs_free_path(path);
31db9f7c
AB
6500 return ret;
6501}
6502
6503static int send_subvol(struct send_ctx *sctx)
6504{
6505 int ret;
6506
c2c71324
SB
6507 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6508 ret = send_header(sctx);
6509 if (ret < 0)
6510 goto out;
6511 }
31db9f7c
AB
6512
6513 ret = send_subvol_begin(sctx);
6514 if (ret < 0)
6515 goto out;
6516
6517 if (sctx->parent_root) {
6518 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6519 changed_cb, sctx);
6520 if (ret < 0)
6521 goto out;
6522 ret = finish_inode_if_needed(sctx, 1);
6523 if (ret < 0)
6524 goto out;
6525 } else {
6526 ret = full_send_tree(sctx);
6527 if (ret < 0)
6528 goto out;
6529 }
6530
6531out:
31db9f7c
AB
6532 free_recorded_refs(sctx);
6533 return ret;
6534}
6535
e5fa8f86
FM
6536/*
6537 * If orphan cleanup did remove any orphans from a root, it means the tree
6538 * was modified and therefore the commit root is not the same as the current
6539 * root anymore. This is a problem, because send uses the commit root and
6540 * therefore can see inode items that don't exist in the current root anymore,
6541 * and for example make calls to btrfs_iget, which will do tree lookups based
6542 * on the current root and not on the commit root. Those lookups will fail,
6543 * returning a -ESTALE error, and making send fail with that error. So make
6544 * sure a send does not see any orphans we have just removed, and that it will
6545 * see the same inodes regardless of whether a transaction commit happened
6546 * before it started (meaning that the commit root will be the same as the
6547 * current root) or not.
6548 */
6549static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6550{
6551 int i;
6552 struct btrfs_trans_handle *trans = NULL;
6553
6554again:
6555 if (sctx->parent_root &&
6556 sctx->parent_root->node != sctx->parent_root->commit_root)
6557 goto commit_trans;
6558
6559 for (i = 0; i < sctx->clone_roots_cnt; i++)
6560 if (sctx->clone_roots[i].root->node !=
6561 sctx->clone_roots[i].root->commit_root)
6562 goto commit_trans;
6563
6564 if (trans)
3a45bb20 6565 return btrfs_end_transaction(trans);
e5fa8f86
FM
6566
6567 return 0;
6568
6569commit_trans:
6570 /* Use any root, all fs roots will get their commit roots updated. */
6571 if (!trans) {
6572 trans = btrfs_join_transaction(sctx->send_root);
6573 if (IS_ERR(trans))
6574 return PTR_ERR(trans);
6575 goto again;
6576 }
6577
3a45bb20 6578 return btrfs_commit_transaction(trans);
e5fa8f86
FM
6579}
6580
66ef7d65
DS
6581static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6582{
6583 spin_lock(&root->root_item_lock);
6584 root->send_in_progress--;
6585 /*
6586 * Not much left to do, we don't know why it's unbalanced and
6587 * can't blindly reset it to 0.
6588 */
6589 if (root->send_in_progress < 0)
6590 btrfs_err(root->fs_info,
f5686e3a 6591 "send_in_progress unbalanced %d root %llu",
0b246afa 6592 root->send_in_progress, root->root_key.objectid);
66ef7d65
DS
6593 spin_unlock(&root->root_item_lock);
6594}
6595
2351f431 6596long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
31db9f7c
AB
6597{
6598 int ret = 0;
0b246afa
JM
6599 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6600 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 6601 struct btrfs_root *clone_root;
31db9f7c 6602 struct btrfs_key key;
31db9f7c
AB
6603 struct send_ctx *sctx = NULL;
6604 u32 i;
6605 u64 *clone_sources_tmp = NULL;
2c686537 6606 int clone_sources_to_rollback = 0;
e55d1153 6607 unsigned alloc_size;
896c14f9 6608 int sort_clone_roots = 0;
18f687d5 6609 int index;
31db9f7c
AB
6610
6611 if (!capable(CAP_SYS_ADMIN))
6612 return -EPERM;
6613
2c686537
DS
6614 /*
6615 * The subvolume must remain read-only during send, protect against
521e0546 6616 * making it RW. This also protects against deletion.
2c686537
DS
6617 */
6618 spin_lock(&send_root->root_item_lock);
6619 send_root->send_in_progress++;
6620 spin_unlock(&send_root->root_item_lock);
6621
139f807a
JB
6622 /*
6623 * This is done when we lookup the root, it should already be complete
6624 * by the time we get here.
6625 */
6626 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6627
2c686537
DS
6628 /*
6629 * Userspace tools do the checks and warn the user if it's
6630 * not RO.
6631 */
6632 if (!btrfs_root_readonly(send_root)) {
6633 ret = -EPERM;
6634 goto out;
6635 }
6636
457ae726
DC
6637 /*
6638 * Check that we don't overflow at later allocations, we request
6639 * clone_sources_count + 1 items, and compare to unsigned long inside
6640 * access_ok.
6641 */
f5ecec3c 6642 if (arg->clone_sources_count >
457ae726 6643 ULONG_MAX / sizeof(struct clone_root) - 1) {
f5ecec3c
DC
6644 ret = -EINVAL;
6645 goto out;
6646 }
6647
31db9f7c 6648 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
6649 sizeof(*arg->clone_sources) *
6650 arg->clone_sources_count)) {
31db9f7c
AB
6651 ret = -EFAULT;
6652 goto out;
6653 }
6654
c2c71324 6655 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
6656 ret = -EINVAL;
6657 goto out;
6658 }
6659
e780b0d1 6660 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
6661 if (!sctx) {
6662 ret = -ENOMEM;
6663 goto out;
6664 }
6665
6666 INIT_LIST_HEAD(&sctx->new_refs);
6667 INIT_LIST_HEAD(&sctx->deleted_refs);
e780b0d1 6668 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
6669 INIT_LIST_HEAD(&sctx->name_cache_list);
6670
cb95e7bf
MF
6671 sctx->flags = arg->flags;
6672
31db9f7c 6673 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
6674 if (!sctx->send_filp) {
6675 ret = -EBADF;
31db9f7c
AB
6676 goto out;
6677 }
6678
31db9f7c 6679 sctx->send_root = send_root;
521e0546
DS
6680 /*
6681 * Unlikely but possible, if the subvolume is marked for deletion but
6682 * is slow to remove the directory entry, send can still be started
6683 */
6684 if (btrfs_root_dead(sctx->send_root)) {
6685 ret = -EPERM;
6686 goto out;
6687 }
6688
31db9f7c
AB
6689 sctx->clone_roots_cnt = arg->clone_sources_count;
6690
6691 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
752ade68 6692 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
31db9f7c 6693 if (!sctx->send_buf) {
752ade68
MH
6694 ret = -ENOMEM;
6695 goto out;
31db9f7c
AB
6696 }
6697
752ade68 6698 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
31db9f7c 6699 if (!sctx->read_buf) {
752ade68
MH
6700 ret = -ENOMEM;
6701 goto out;
31db9f7c
AB
6702 }
6703
9f03740a
FDBM
6704 sctx->pending_dir_moves = RB_ROOT;
6705 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 6706 sctx->orphan_dirs = RB_ROOT;
9f03740a 6707
e55d1153
DS
6708 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6709
818e010b 6710 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
31db9f7c 6711 if (!sctx->clone_roots) {
818e010b
DS
6712 ret = -ENOMEM;
6713 goto out;
31db9f7c
AB
6714 }
6715
e55d1153
DS
6716 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6717
31db9f7c 6718 if (arg->clone_sources_count) {
752ade68 6719 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
31db9f7c 6720 if (!clone_sources_tmp) {
752ade68
MH
6721 ret = -ENOMEM;
6722 goto out;
31db9f7c
AB
6723 }
6724
6725 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 6726 alloc_size);
31db9f7c
AB
6727 if (ret) {
6728 ret = -EFAULT;
6729 goto out;
6730 }
6731
6732 for (i = 0; i < arg->clone_sources_count; i++) {
6733 key.objectid = clone_sources_tmp[i];
6734 key.type = BTRFS_ROOT_ITEM_KEY;
6735 key.offset = (u64)-1;
18f687d5
WS
6736
6737 index = srcu_read_lock(&fs_info->subvol_srcu);
6738
31db9f7c 6739 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 6740 if (IS_ERR(clone_root)) {
18f687d5 6741 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6742 ret = PTR_ERR(clone_root);
6743 goto out;
6744 }
2c686537 6745 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
6746 if (!btrfs_root_readonly(clone_root) ||
6747 btrfs_root_dead(clone_root)) {
2c686537 6748 spin_unlock(&clone_root->root_item_lock);
18f687d5 6749 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6750 ret = -EPERM;
6751 goto out;
6752 }
2f1f465a 6753 clone_root->send_in_progress++;
2c686537 6754 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
6755 srcu_read_unlock(&fs_info->subvol_srcu, index);
6756
31db9f7c 6757 sctx->clone_roots[i].root = clone_root;
2f1f465a 6758 clone_sources_to_rollback = i + 1;
31db9f7c 6759 }
2f91306a 6760 kvfree(clone_sources_tmp);
31db9f7c
AB
6761 clone_sources_tmp = NULL;
6762 }
6763
6764 if (arg->parent_root) {
6765 key.objectid = arg->parent_root;
6766 key.type = BTRFS_ROOT_ITEM_KEY;
6767 key.offset = (u64)-1;
18f687d5
WS
6768
6769 index = srcu_read_lock(&fs_info->subvol_srcu);
6770
31db9f7c 6771 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 6772 if (IS_ERR(sctx->parent_root)) {
18f687d5 6773 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 6774 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
6775 goto out;
6776 }
18f687d5 6777
2c686537
DS
6778 spin_lock(&sctx->parent_root->root_item_lock);
6779 sctx->parent_root->send_in_progress++;
521e0546
DS
6780 if (!btrfs_root_readonly(sctx->parent_root) ||
6781 btrfs_root_dead(sctx->parent_root)) {
2c686537 6782 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 6783 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
6784 ret = -EPERM;
6785 goto out;
6786 }
6787 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
6788
6789 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
6790 }
6791
6792 /*
6793 * Clones from send_root are allowed, but only if the clone source
6794 * is behind the current send position. This is checked while searching
6795 * for possible clone sources.
6796 */
6797 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6798
6799 /* We do a bsearch later */
6800 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6801 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6802 NULL);
896c14f9 6803 sort_clone_roots = 1;
31db9f7c 6804
e5fa8f86
FM
6805 ret = ensure_commit_roots_uptodate(sctx);
6806 if (ret)
6807 goto out;
6808
2755a0de 6809 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 6810 ret = send_subvol(sctx);
a26e8c9f 6811 current->journal_info = NULL;
31db9f7c
AB
6812 if (ret < 0)
6813 goto out;
6814
c2c71324
SB
6815 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6816 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6817 if (ret < 0)
6818 goto out;
6819 ret = send_cmd(sctx);
6820 if (ret < 0)
6821 goto out;
6822 }
31db9f7c
AB
6823
6824out:
9f03740a
FDBM
6825 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6826 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6827 struct rb_node *n;
6828 struct pending_dir_move *pm;
6829
6830 n = rb_first(&sctx->pending_dir_moves);
6831 pm = rb_entry(n, struct pending_dir_move, node);
6832 while (!list_empty(&pm->list)) {
6833 struct pending_dir_move *pm2;
6834
6835 pm2 = list_first_entry(&pm->list,
6836 struct pending_dir_move, list);
6837 free_pending_move(sctx, pm2);
6838 }
6839 free_pending_move(sctx, pm);
6840 }
6841
6842 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6843 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6844 struct rb_node *n;
6845 struct waiting_dir_move *dm;
6846
6847 n = rb_first(&sctx->waiting_dir_moves);
6848 dm = rb_entry(n, struct waiting_dir_move, node);
6849 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6850 kfree(dm);
6851 }
6852
9dc44214
FM
6853 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6854 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6855 struct rb_node *n;
6856 struct orphan_dir_info *odi;
6857
6858 n = rb_first(&sctx->orphan_dirs);
6859 odi = rb_entry(n, struct orphan_dir_info, node);
6860 free_orphan_dir_info(sctx, odi);
6861 }
6862
896c14f9
WS
6863 if (sort_clone_roots) {
6864 for (i = 0; i < sctx->clone_roots_cnt; i++)
6865 btrfs_root_dec_send_in_progress(
6866 sctx->clone_roots[i].root);
6867 } else {
6868 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6869 btrfs_root_dec_send_in_progress(
6870 sctx->clone_roots[i].root);
6871
6872 btrfs_root_dec_send_in_progress(send_root);
6873 }
66ef7d65
DS
6874 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6875 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 6876
2f91306a 6877 kvfree(clone_sources_tmp);
31db9f7c
AB
6878
6879 if (sctx) {
6880 if (sctx->send_filp)
6881 fput(sctx->send_filp);
6882
c03d01f3 6883 kvfree(sctx->clone_roots);
6ff48ce0 6884 kvfree(sctx->send_buf);
eb5b75fe 6885 kvfree(sctx->read_buf);
31db9f7c
AB
6886
6887 name_cache_free(sctx);
6888
6889 kfree(sctx);
6890 }
6891
6892 return ret;
6893}