]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/send.c
btrfs: send: remove BUG from process_all_refs
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37
38static int g_verbose = 0;
39
40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42/*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
31db9f7c
AB
54
55 char *buf;
1f5a7ff9
DS
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
31db9f7c
AB
58 char inline_buf[];
59 };
60 char pad[PAGE_SIZE];
61 };
62};
63#define FS_PATH_INLINE_SIZE \
64 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
65
66
67/* reused for each extent */
68struct clone_root {
69 struct btrfs_root *root;
70 u64 ino;
71 u64 offset;
72
73 u64 found_refs;
74};
75
76#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
77#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
78
79struct send_ctx {
80 struct file *send_filp;
81 loff_t send_off;
82 char *send_buf;
83 u32 send_size;
84 u32 send_max_size;
85 u64 total_send_size;
86 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 87 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 88
31db9f7c
AB
89 struct btrfs_root *send_root;
90 struct btrfs_root *parent_root;
91 struct clone_root *clone_roots;
92 int clone_roots_cnt;
93
94 /* current state of the compare_tree call */
95 struct btrfs_path *left_path;
96 struct btrfs_path *right_path;
97 struct btrfs_key *cmp_key;
98
99 /*
100 * infos of the currently processed inode. In case of deleted inodes,
101 * these are the values from the deleted inode.
102 */
103 u64 cur_ino;
104 u64 cur_inode_gen;
105 int cur_inode_new;
106 int cur_inode_new_gen;
107 int cur_inode_deleted;
31db9f7c
AB
108 u64 cur_inode_size;
109 u64 cur_inode_mode;
16e7549f 110 u64 cur_inode_last_extent;
31db9f7c
AB
111
112 u64 send_progress;
113
114 struct list_head new_refs;
115 struct list_head deleted_refs;
116
117 struct radix_tree_root name_cache;
118 struct list_head name_cache_list;
119 int name_cache_size;
120
31db9f7c 121 char *read_buf;
9f03740a
FDBM
122
123 /*
124 * We process inodes by their increasing order, so if before an
125 * incremental send we reverse the parent/child relationship of
126 * directories such that a directory with a lower inode number was
127 * the parent of a directory with a higher inode number, and the one
128 * becoming the new parent got renamed too, we can't rename/move the
129 * directory with lower inode number when we finish processing it - we
130 * must process the directory with higher inode number first, then
131 * rename/move it and then rename/move the directory with lower inode
132 * number. Example follows.
133 *
134 * Tree state when the first send was performed:
135 *
136 * .
137 * |-- a (ino 257)
138 * |-- b (ino 258)
139 * |
140 * |
141 * |-- c (ino 259)
142 * | |-- d (ino 260)
143 * |
144 * |-- c2 (ino 261)
145 *
146 * Tree state when the second (incremental) send is performed:
147 *
148 * .
149 * |-- a (ino 257)
150 * |-- b (ino 258)
151 * |-- c2 (ino 261)
152 * |-- d2 (ino 260)
153 * |-- cc (ino 259)
154 *
155 * The sequence of steps that lead to the second state was:
156 *
157 * mv /a/b/c/d /a/b/c2/d2
158 * mv /a/b/c /a/b/c2/d2/cc
159 *
160 * "c" has lower inode number, but we can't move it (2nd mv operation)
161 * before we move "d", which has higher inode number.
162 *
163 * So we just memorize which move/rename operations must be performed
164 * later when their respective parent is processed and moved/renamed.
165 */
166
167 /* Indexed by parent directory inode number. */
168 struct rb_root pending_dir_moves;
169
170 /*
171 * Reverse index, indexed by the inode number of a directory that
172 * is waiting for the move/rename of its immediate parent before its
173 * own move/rename can be performed.
174 */
175 struct rb_root waiting_dir_moves;
176};
177
178struct pending_dir_move {
179 struct rb_node node;
180 struct list_head list;
181 u64 parent_ino;
182 u64 ino;
183 u64 gen;
184 struct list_head update_refs;
185};
186
187struct waiting_dir_move {
188 struct rb_node node;
189 u64 ino;
31db9f7c
AB
190};
191
192struct name_cache_entry {
193 struct list_head list;
7e0926fe
AB
194 /*
195 * radix_tree has only 32bit entries but we need to handle 64bit inums.
196 * We use the lower 32bit of the 64bit inum to store it in the tree. If
197 * more then one inum would fall into the same entry, we use radix_list
198 * to store the additional entries. radix_list is also used to store
199 * entries where two entries have the same inum but different
200 * generations.
201 */
202 struct list_head radix_list;
31db9f7c
AB
203 u64 ino;
204 u64 gen;
205 u64 parent_ino;
206 u64 parent_gen;
207 int ret;
208 int need_later_update;
209 int name_len;
210 char name[];
211};
212
9f03740a
FDBM
213static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
214
16e7549f
JB
215static int need_send_hole(struct send_ctx *sctx)
216{
217 return (sctx->parent_root && !sctx->cur_inode_new &&
218 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
219 S_ISREG(sctx->cur_inode_mode));
220}
221
31db9f7c
AB
222static void fs_path_reset(struct fs_path *p)
223{
224 if (p->reversed) {
225 p->start = p->buf + p->buf_len - 1;
226 p->end = p->start;
227 *p->start = 0;
228 } else {
229 p->start = p->buf;
230 p->end = p->start;
231 *p->start = 0;
232 }
233}
234
924794c9 235static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
236{
237 struct fs_path *p;
238
239 p = kmalloc(sizeof(*p), GFP_NOFS);
240 if (!p)
241 return NULL;
242 p->reversed = 0;
31db9f7c
AB
243 p->buf = p->inline_buf;
244 p->buf_len = FS_PATH_INLINE_SIZE;
245 fs_path_reset(p);
246 return p;
247}
248
924794c9 249static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
250{
251 struct fs_path *p;
252
924794c9 253 p = fs_path_alloc();
31db9f7c
AB
254 if (!p)
255 return NULL;
256 p->reversed = 1;
257 fs_path_reset(p);
258 return p;
259}
260
924794c9 261static void fs_path_free(struct fs_path *p)
31db9f7c
AB
262{
263 if (!p)
264 return;
265 if (p->buf != p->inline_buf) {
e25a8122 266 if (is_vmalloc_addr(p->buf))
31db9f7c
AB
267 vfree(p->buf);
268 else
269 kfree(p->buf);
270 }
271 kfree(p);
272}
273
274static int fs_path_len(struct fs_path *p)
275{
276 return p->end - p->start;
277}
278
279static int fs_path_ensure_buf(struct fs_path *p, int len)
280{
281 char *tmp_buf;
282 int path_len;
283 int old_buf_len;
284
285 len++;
286
287 if (p->buf_len >= len)
288 return 0;
289
290 path_len = p->end - p->start;
291 old_buf_len = p->buf_len;
292 len = PAGE_ALIGN(len);
293
294 if (p->buf == p->inline_buf) {
8be04b93 295 tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
31db9f7c
AB
296 if (!tmp_buf) {
297 tmp_buf = vmalloc(len);
298 if (!tmp_buf)
299 return -ENOMEM;
31db9f7c
AB
300 }
301 memcpy(tmp_buf, p->buf, p->buf_len);
302 p->buf = tmp_buf;
303 p->buf_len = len;
304 } else {
e25a8122 305 if (is_vmalloc_addr(p->buf)) {
31db9f7c
AB
306 tmp_buf = vmalloc(len);
307 if (!tmp_buf)
308 return -ENOMEM;
309 memcpy(tmp_buf, p->buf, p->buf_len);
310 vfree(p->buf);
311 } else {
312 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
313 if (!tmp_buf) {
314 tmp_buf = vmalloc(len);
315 if (!tmp_buf)
316 return -ENOMEM;
317 memcpy(tmp_buf, p->buf, p->buf_len);
318 kfree(p->buf);
31db9f7c
AB
319 }
320 }
321 p->buf = tmp_buf;
322 p->buf_len = len;
323 }
324 if (p->reversed) {
325 tmp_buf = p->buf + old_buf_len - path_len - 1;
326 p->end = p->buf + p->buf_len - 1;
327 p->start = p->end - path_len;
328 memmove(p->start, tmp_buf, path_len + 1);
329 } else {
330 p->start = p->buf;
331 p->end = p->start + path_len;
332 }
333 return 0;
334}
335
b23ab57d
DS
336static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
337 char **prepared)
31db9f7c
AB
338{
339 int ret;
340 int new_len;
341
342 new_len = p->end - p->start + name_len;
343 if (p->start != p->end)
344 new_len++;
345 ret = fs_path_ensure_buf(p, new_len);
346 if (ret < 0)
347 goto out;
348
349 if (p->reversed) {
350 if (p->start != p->end)
351 *--p->start = '/';
352 p->start -= name_len;
b23ab57d 353 *prepared = p->start;
31db9f7c
AB
354 } else {
355 if (p->start != p->end)
356 *p->end++ = '/';
b23ab57d 357 *prepared = p->end;
31db9f7c
AB
358 p->end += name_len;
359 *p->end = 0;
360 }
361
362out:
363 return ret;
364}
365
366static int fs_path_add(struct fs_path *p, const char *name, int name_len)
367{
368 int ret;
b23ab57d 369 char *prepared;
31db9f7c 370
b23ab57d 371 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
372 if (ret < 0)
373 goto out;
b23ab57d 374 memcpy(prepared, name, name_len);
31db9f7c
AB
375
376out:
377 return ret;
378}
379
380static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
381{
382 int ret;
b23ab57d 383 char *prepared;
31db9f7c 384
b23ab57d 385 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
386 if (ret < 0)
387 goto out;
b23ab57d 388 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
389
390out:
391 return ret;
392}
393
394static int fs_path_add_from_extent_buffer(struct fs_path *p,
395 struct extent_buffer *eb,
396 unsigned long off, int len)
397{
398 int ret;
b23ab57d 399 char *prepared;
31db9f7c 400
b23ab57d 401 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
402 if (ret < 0)
403 goto out;
404
b23ab57d 405 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
406
407out:
408 return ret;
409}
410
31db9f7c
AB
411static int fs_path_copy(struct fs_path *p, struct fs_path *from)
412{
413 int ret;
414
415 p->reversed = from->reversed;
416 fs_path_reset(p);
417
418 ret = fs_path_add_path(p, from);
419
420 return ret;
421}
422
423
424static void fs_path_unreverse(struct fs_path *p)
425{
426 char *tmp;
427 int len;
428
429 if (!p->reversed)
430 return;
431
432 tmp = p->start;
433 len = p->end - p->start;
434 p->start = p->buf;
435 p->end = p->start + len;
436 memmove(p->start, tmp, len + 1);
437 p->reversed = 0;
438}
439
440static struct btrfs_path *alloc_path_for_send(void)
441{
442 struct btrfs_path *path;
443
444 path = btrfs_alloc_path();
445 if (!path)
446 return NULL;
447 path->search_commit_root = 1;
448 path->skip_locking = 1;
449 return path;
450}
451
48a3b636 452static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
453{
454 int ret;
455 mm_segment_t old_fs;
456 u32 pos = 0;
457
458 old_fs = get_fs();
459 set_fs(KERNEL_DS);
460
461 while (pos < len) {
1bcea355 462 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
31db9f7c
AB
463 /* TODO handle that correctly */
464 /*if (ret == -ERESTARTSYS) {
465 continue;
466 }*/
467 if (ret < 0)
468 goto out;
469 if (ret == 0) {
470 ret = -EIO;
471 goto out;
472 }
473 pos += ret;
474 }
475
476 ret = 0;
477
478out:
479 set_fs(old_fs);
480 return ret;
481}
482
483static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
484{
485 struct btrfs_tlv_header *hdr;
486 int total_len = sizeof(*hdr) + len;
487 int left = sctx->send_max_size - sctx->send_size;
488
489 if (unlikely(left < total_len))
490 return -EOVERFLOW;
491
492 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
493 hdr->tlv_type = cpu_to_le16(attr);
494 hdr->tlv_len = cpu_to_le16(len);
495 memcpy(hdr + 1, data, len);
496 sctx->send_size += total_len;
497
498 return 0;
499}
500
95bc79d5
DS
501#define TLV_PUT_DEFINE_INT(bits) \
502 static int tlv_put_u##bits(struct send_ctx *sctx, \
503 u##bits attr, u##bits value) \
504 { \
505 __le##bits __tmp = cpu_to_le##bits(value); \
506 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
507 }
31db9f7c 508
95bc79d5 509TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
510
511static int tlv_put_string(struct send_ctx *sctx, u16 attr,
512 const char *str, int len)
513{
514 if (len == -1)
515 len = strlen(str);
516 return tlv_put(sctx, attr, str, len);
517}
518
519static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
520 const u8 *uuid)
521{
522 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
523}
524
31db9f7c
AB
525static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
526 struct extent_buffer *eb,
527 struct btrfs_timespec *ts)
528{
529 struct btrfs_timespec bts;
530 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
531 return tlv_put(sctx, attr, &bts, sizeof(bts));
532}
533
534
535#define TLV_PUT(sctx, attrtype, attrlen, data) \
536 do { \
537 ret = tlv_put(sctx, attrtype, attrlen, data); \
538 if (ret < 0) \
539 goto tlv_put_failure; \
540 } while (0)
541
542#define TLV_PUT_INT(sctx, attrtype, bits, value) \
543 do { \
544 ret = tlv_put_u##bits(sctx, attrtype, value); \
545 if (ret < 0) \
546 goto tlv_put_failure; \
547 } while (0)
548
549#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
550#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
551#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
552#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
553#define TLV_PUT_STRING(sctx, attrtype, str, len) \
554 do { \
555 ret = tlv_put_string(sctx, attrtype, str, len); \
556 if (ret < 0) \
557 goto tlv_put_failure; \
558 } while (0)
559#define TLV_PUT_PATH(sctx, attrtype, p) \
560 do { \
561 ret = tlv_put_string(sctx, attrtype, p->start, \
562 p->end - p->start); \
563 if (ret < 0) \
564 goto tlv_put_failure; \
565 } while(0)
566#define TLV_PUT_UUID(sctx, attrtype, uuid) \
567 do { \
568 ret = tlv_put_uuid(sctx, attrtype, uuid); \
569 if (ret < 0) \
570 goto tlv_put_failure; \
571 } while (0)
31db9f7c
AB
572#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
573 do { \
574 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
575 if (ret < 0) \
576 goto tlv_put_failure; \
577 } while (0)
578
579static int send_header(struct send_ctx *sctx)
580{
581 struct btrfs_stream_header hdr;
582
583 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
584 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
585
1bcea355
AJ
586 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
587 &sctx->send_off);
31db9f7c
AB
588}
589
590/*
591 * For each command/item we want to send to userspace, we call this function.
592 */
593static int begin_cmd(struct send_ctx *sctx, int cmd)
594{
595 struct btrfs_cmd_header *hdr;
596
fae7f21c 597 if (WARN_ON(!sctx->send_buf))
31db9f7c 598 return -EINVAL;
31db9f7c
AB
599
600 BUG_ON(sctx->send_size);
601
602 sctx->send_size += sizeof(*hdr);
603 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
604 hdr->cmd = cpu_to_le16(cmd);
605
606 return 0;
607}
608
609static int send_cmd(struct send_ctx *sctx)
610{
611 int ret;
612 struct btrfs_cmd_header *hdr;
613 u32 crc;
614
615 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
616 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
617 hdr->crc = 0;
618
0b947aff 619 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
620 hdr->crc = cpu_to_le32(crc);
621
1bcea355
AJ
622 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
623 &sctx->send_off);
31db9f7c
AB
624
625 sctx->total_send_size += sctx->send_size;
626 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
627 sctx->send_size = 0;
628
629 return ret;
630}
631
632/*
633 * Sends a move instruction to user space
634 */
635static int send_rename(struct send_ctx *sctx,
636 struct fs_path *from, struct fs_path *to)
637{
638 int ret;
639
640verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
641
642 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
643 if (ret < 0)
644 goto out;
645
646 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
648
649 ret = send_cmd(sctx);
650
651tlv_put_failure:
652out:
653 return ret;
654}
655
656/*
657 * Sends a link instruction to user space
658 */
659static int send_link(struct send_ctx *sctx,
660 struct fs_path *path, struct fs_path *lnk)
661{
662 int ret;
663
664verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
665
666 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
667 if (ret < 0)
668 goto out;
669
670 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
671 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
672
673 ret = send_cmd(sctx);
674
675tlv_put_failure:
676out:
677 return ret;
678}
679
680/*
681 * Sends an unlink instruction to user space
682 */
683static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
684{
685 int ret;
686
687verbose_printk("btrfs: send_unlink %s\n", path->start);
688
689 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
690 if (ret < 0)
691 goto out;
692
693 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
694
695 ret = send_cmd(sctx);
696
697tlv_put_failure:
698out:
699 return ret;
700}
701
702/*
703 * Sends a rmdir instruction to user space
704 */
705static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
706{
707 int ret;
708
709verbose_printk("btrfs: send_rmdir %s\n", path->start);
710
711 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
712 if (ret < 0)
713 goto out;
714
715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
716
717 ret = send_cmd(sctx);
718
719tlv_put_failure:
720out:
721 return ret;
722}
723
724/*
725 * Helper function to retrieve some fields from an inode item.
726 */
727static int get_inode_info(struct btrfs_root *root,
728 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
729 u64 *mode, u64 *uid, u64 *gid,
730 u64 *rdev)
31db9f7c
AB
731{
732 int ret;
733 struct btrfs_inode_item *ii;
734 struct btrfs_key key;
735 struct btrfs_path *path;
736
737 path = alloc_path_for_send();
738 if (!path)
739 return -ENOMEM;
740
741 key.objectid = ino;
742 key.type = BTRFS_INODE_ITEM_KEY;
743 key.offset = 0;
744 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
745 if (ret < 0)
746 goto out;
747 if (ret) {
748 ret = -ENOENT;
749 goto out;
750 }
751
752 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
753 struct btrfs_inode_item);
754 if (size)
755 *size = btrfs_inode_size(path->nodes[0], ii);
756 if (gen)
757 *gen = btrfs_inode_generation(path->nodes[0], ii);
758 if (mode)
759 *mode = btrfs_inode_mode(path->nodes[0], ii);
760 if (uid)
761 *uid = btrfs_inode_uid(path->nodes[0], ii);
762 if (gid)
763 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
764 if (rdev)
765 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
766
767out:
768 btrfs_free_path(path);
769 return ret;
770}
771
772typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
773 struct fs_path *p,
774 void *ctx);
775
776/*
96b5bd77
JS
777 * Helper function to iterate the entries in ONE btrfs_inode_ref or
778 * btrfs_inode_extref.
31db9f7c
AB
779 * The iterate callback may return a non zero value to stop iteration. This can
780 * be a negative value for error codes or 1 to simply stop it.
781 *
96b5bd77 782 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 783 */
924794c9 784static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
785 struct btrfs_key *found_key, int resolve,
786 iterate_inode_ref_t iterate, void *ctx)
787{
96b5bd77 788 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
789 struct btrfs_item *item;
790 struct btrfs_inode_ref *iref;
96b5bd77 791 struct btrfs_inode_extref *extref;
31db9f7c
AB
792 struct btrfs_path *tmp_path;
793 struct fs_path *p;
96b5bd77 794 u32 cur = 0;
31db9f7c 795 u32 total;
96b5bd77 796 int slot = path->slots[0];
31db9f7c
AB
797 u32 name_len;
798 char *start;
799 int ret = 0;
96b5bd77 800 int num = 0;
31db9f7c 801 int index;
96b5bd77
JS
802 u64 dir;
803 unsigned long name_off;
804 unsigned long elem_size;
805 unsigned long ptr;
31db9f7c 806
924794c9 807 p = fs_path_alloc_reversed();
31db9f7c
AB
808 if (!p)
809 return -ENOMEM;
810
811 tmp_path = alloc_path_for_send();
812 if (!tmp_path) {
924794c9 813 fs_path_free(p);
31db9f7c
AB
814 return -ENOMEM;
815 }
816
31db9f7c 817
96b5bd77
JS
818 if (found_key->type == BTRFS_INODE_REF_KEY) {
819 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
820 struct btrfs_inode_ref);
dd3cc16b 821 item = btrfs_item_nr(slot);
96b5bd77
JS
822 total = btrfs_item_size(eb, item);
823 elem_size = sizeof(*iref);
824 } else {
825 ptr = btrfs_item_ptr_offset(eb, slot);
826 total = btrfs_item_size_nr(eb, slot);
827 elem_size = sizeof(*extref);
828 }
829
31db9f7c
AB
830 while (cur < total) {
831 fs_path_reset(p);
832
96b5bd77
JS
833 if (found_key->type == BTRFS_INODE_REF_KEY) {
834 iref = (struct btrfs_inode_ref *)(ptr + cur);
835 name_len = btrfs_inode_ref_name_len(eb, iref);
836 name_off = (unsigned long)(iref + 1);
837 index = btrfs_inode_ref_index(eb, iref);
838 dir = found_key->offset;
839 } else {
840 extref = (struct btrfs_inode_extref *)(ptr + cur);
841 name_len = btrfs_inode_extref_name_len(eb, extref);
842 name_off = (unsigned long)&extref->name;
843 index = btrfs_inode_extref_index(eb, extref);
844 dir = btrfs_inode_extref_parent(eb, extref);
845 }
846
31db9f7c 847 if (resolve) {
96b5bd77
JS
848 start = btrfs_ref_to_path(root, tmp_path, name_len,
849 name_off, eb, dir,
850 p->buf, p->buf_len);
31db9f7c
AB
851 if (IS_ERR(start)) {
852 ret = PTR_ERR(start);
853 goto out;
854 }
855 if (start < p->buf) {
856 /* overflow , try again with larger buffer */
857 ret = fs_path_ensure_buf(p,
858 p->buf_len + p->buf - start);
859 if (ret < 0)
860 goto out;
96b5bd77
JS
861 start = btrfs_ref_to_path(root, tmp_path,
862 name_len, name_off,
863 eb, dir,
864 p->buf, p->buf_len);
31db9f7c
AB
865 if (IS_ERR(start)) {
866 ret = PTR_ERR(start);
867 goto out;
868 }
869 BUG_ON(start < p->buf);
870 }
871 p->start = start;
872 } else {
96b5bd77
JS
873 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
874 name_len);
31db9f7c
AB
875 if (ret < 0)
876 goto out;
877 }
878
96b5bd77
JS
879 cur += elem_size + name_len;
880 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
881 if (ret)
882 goto out;
31db9f7c
AB
883 num++;
884 }
885
886out:
887 btrfs_free_path(tmp_path);
924794c9 888 fs_path_free(p);
31db9f7c
AB
889 return ret;
890}
891
892typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
893 const char *name, int name_len,
894 const char *data, int data_len,
895 u8 type, void *ctx);
896
897/*
898 * Helper function to iterate the entries in ONE btrfs_dir_item.
899 * The iterate callback may return a non zero value to stop iteration. This can
900 * be a negative value for error codes or 1 to simply stop it.
901 *
902 * path must point to the dir item when called.
903 */
924794c9 904static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
905 struct btrfs_key *found_key,
906 iterate_dir_item_t iterate, void *ctx)
907{
908 int ret = 0;
909 struct extent_buffer *eb;
910 struct btrfs_item *item;
911 struct btrfs_dir_item *di;
31db9f7c
AB
912 struct btrfs_key di_key;
913 char *buf = NULL;
914 char *buf2 = NULL;
915 int buf_len;
916 int buf_virtual = 0;
917 u32 name_len;
918 u32 data_len;
919 u32 cur;
920 u32 len;
921 u32 total;
922 int slot;
923 int num;
924 u8 type;
925
926 buf_len = PAGE_SIZE;
927 buf = kmalloc(buf_len, GFP_NOFS);
928 if (!buf) {
929 ret = -ENOMEM;
930 goto out;
931 }
932
31db9f7c
AB
933 eb = path->nodes[0];
934 slot = path->slots[0];
dd3cc16b 935 item = btrfs_item_nr(slot);
31db9f7c
AB
936 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
937 cur = 0;
938 len = 0;
939 total = btrfs_item_size(eb, item);
940
941 num = 0;
942 while (cur < total) {
943 name_len = btrfs_dir_name_len(eb, di);
944 data_len = btrfs_dir_data_len(eb, di);
945 type = btrfs_dir_type(eb, di);
946 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
947
948 if (name_len + data_len > buf_len) {
949 buf_len = PAGE_ALIGN(name_len + data_len);
950 if (buf_virtual) {
951 buf2 = vmalloc(buf_len);
952 if (!buf2) {
953 ret = -ENOMEM;
954 goto out;
955 }
956 vfree(buf);
957 } else {
958 buf2 = krealloc(buf, buf_len, GFP_NOFS);
959 if (!buf2) {
960 buf2 = vmalloc(buf_len);
961 if (!buf2) {
962 ret = -ENOMEM;
963 goto out;
964 }
965 kfree(buf);
966 buf_virtual = 1;
967 }
968 }
969
970 buf = buf2;
971 buf2 = NULL;
972 }
973
974 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
975 name_len + data_len);
976
977 len = sizeof(*di) + name_len + data_len;
978 di = (struct btrfs_dir_item *)((char *)di + len);
979 cur += len;
980
981 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
982 data_len, type, ctx);
983 if (ret < 0)
984 goto out;
985 if (ret) {
986 ret = 0;
987 goto out;
988 }
989
990 num++;
991 }
992
993out:
31db9f7c
AB
994 if (buf_virtual)
995 vfree(buf);
996 else
997 kfree(buf);
998 return ret;
999}
1000
1001static int __copy_first_ref(int num, u64 dir, int index,
1002 struct fs_path *p, void *ctx)
1003{
1004 int ret;
1005 struct fs_path *pt = ctx;
1006
1007 ret = fs_path_copy(pt, p);
1008 if (ret < 0)
1009 return ret;
1010
1011 /* we want the first only */
1012 return 1;
1013}
1014
1015/*
1016 * Retrieve the first path of an inode. If an inode has more then one
1017 * ref/hardlink, this is ignored.
1018 */
924794c9 1019static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1020 u64 ino, struct fs_path *path)
1021{
1022 int ret;
1023 struct btrfs_key key, found_key;
1024 struct btrfs_path *p;
1025
1026 p = alloc_path_for_send();
1027 if (!p)
1028 return -ENOMEM;
1029
1030 fs_path_reset(path);
1031
1032 key.objectid = ino;
1033 key.type = BTRFS_INODE_REF_KEY;
1034 key.offset = 0;
1035
1036 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1037 if (ret < 0)
1038 goto out;
1039 if (ret) {
1040 ret = 1;
1041 goto out;
1042 }
1043 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1044 if (found_key.objectid != ino ||
96b5bd77
JS
1045 (found_key.type != BTRFS_INODE_REF_KEY &&
1046 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1047 ret = -ENOENT;
1048 goto out;
1049 }
1050
924794c9
TI
1051 ret = iterate_inode_ref(root, p, &found_key, 1,
1052 __copy_first_ref, path);
31db9f7c
AB
1053 if (ret < 0)
1054 goto out;
1055 ret = 0;
1056
1057out:
1058 btrfs_free_path(p);
1059 return ret;
1060}
1061
1062struct backref_ctx {
1063 struct send_ctx *sctx;
1064
1065 /* number of total found references */
1066 u64 found;
1067
1068 /*
1069 * used for clones found in send_root. clones found behind cur_objectid
1070 * and cur_offset are not considered as allowed clones.
1071 */
1072 u64 cur_objectid;
1073 u64 cur_offset;
1074
1075 /* may be truncated in case it's the last extent in a file */
1076 u64 extent_len;
1077
1078 /* Just to check for bugs in backref resolving */
ee849c04 1079 int found_itself;
31db9f7c
AB
1080};
1081
1082static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1083{
995e01b7 1084 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1085 struct clone_root *cr = (struct clone_root *)elt;
1086
1087 if (root < cr->root->objectid)
1088 return -1;
1089 if (root > cr->root->objectid)
1090 return 1;
1091 return 0;
1092}
1093
1094static int __clone_root_cmp_sort(const void *e1, const void *e2)
1095{
1096 struct clone_root *cr1 = (struct clone_root *)e1;
1097 struct clone_root *cr2 = (struct clone_root *)e2;
1098
1099 if (cr1->root->objectid < cr2->root->objectid)
1100 return -1;
1101 if (cr1->root->objectid > cr2->root->objectid)
1102 return 1;
1103 return 0;
1104}
1105
1106/*
1107 * Called for every backref that is found for the current extent.
766702ef 1108 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1109 */
1110static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1111{
1112 struct backref_ctx *bctx = ctx_;
1113 struct clone_root *found;
1114 int ret;
1115 u64 i_size;
1116
1117 /* First check if the root is in the list of accepted clone sources */
995e01b7 1118 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1119 bctx->sctx->clone_roots_cnt,
1120 sizeof(struct clone_root),
1121 __clone_root_cmp_bsearch);
1122 if (!found)
1123 return 0;
1124
1125 if (found->root == bctx->sctx->send_root &&
1126 ino == bctx->cur_objectid &&
1127 offset == bctx->cur_offset) {
ee849c04 1128 bctx->found_itself = 1;
31db9f7c
AB
1129 }
1130
1131 /*
766702ef 1132 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1133 * accept clones from these extents.
1134 */
85a7b33b
AB
1135 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1136 NULL);
31db9f7c
AB
1137 if (ret < 0)
1138 return ret;
1139
1140 if (offset + bctx->extent_len > i_size)
1141 return 0;
1142
1143 /*
1144 * Make sure we don't consider clones from send_root that are
1145 * behind the current inode/offset.
1146 */
1147 if (found->root == bctx->sctx->send_root) {
1148 /*
1149 * TODO for the moment we don't accept clones from the inode
1150 * that is currently send. We may change this when
1151 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1152 * file.
1153 */
1154 if (ino >= bctx->cur_objectid)
1155 return 0;
e938c8ad
AB
1156#if 0
1157 if (ino > bctx->cur_objectid)
1158 return 0;
1159 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1160 return 0;
e938c8ad 1161#endif
31db9f7c
AB
1162 }
1163
1164 bctx->found++;
1165 found->found_refs++;
1166 if (ino < found->ino) {
1167 found->ino = ino;
1168 found->offset = offset;
1169 } else if (found->ino == ino) {
1170 /*
1171 * same extent found more then once in the same file.
1172 */
1173 if (found->offset > offset + bctx->extent_len)
1174 found->offset = offset;
1175 }
1176
1177 return 0;
1178}
1179
1180/*
766702ef
AB
1181 * Given an inode, offset and extent item, it finds a good clone for a clone
1182 * instruction. Returns -ENOENT when none could be found. The function makes
1183 * sure that the returned clone is usable at the point where sending is at the
1184 * moment. This means, that no clones are accepted which lie behind the current
1185 * inode+offset.
1186 *
31db9f7c
AB
1187 * path must point to the extent item when called.
1188 */
1189static int find_extent_clone(struct send_ctx *sctx,
1190 struct btrfs_path *path,
1191 u64 ino, u64 data_offset,
1192 u64 ino_size,
1193 struct clone_root **found)
1194{
1195 int ret;
1196 int extent_type;
1197 u64 logical;
74dd17fb 1198 u64 disk_byte;
31db9f7c
AB
1199 u64 num_bytes;
1200 u64 extent_item_pos;
69917e43 1201 u64 flags = 0;
31db9f7c
AB
1202 struct btrfs_file_extent_item *fi;
1203 struct extent_buffer *eb = path->nodes[0];
35075bb0 1204 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1205 struct clone_root *cur_clone_root;
1206 struct btrfs_key found_key;
1207 struct btrfs_path *tmp_path;
74dd17fb 1208 int compressed;
31db9f7c
AB
1209 u32 i;
1210
1211 tmp_path = alloc_path_for_send();
1212 if (!tmp_path)
1213 return -ENOMEM;
1214
35075bb0
AB
1215 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1216 if (!backref_ctx) {
1217 ret = -ENOMEM;
1218 goto out;
1219 }
1220
31db9f7c
AB
1221 if (data_offset >= ino_size) {
1222 /*
1223 * There may be extents that lie behind the file's size.
1224 * I at least had this in combination with snapshotting while
1225 * writing large files.
1226 */
1227 ret = 0;
1228 goto out;
1229 }
1230
1231 fi = btrfs_item_ptr(eb, path->slots[0],
1232 struct btrfs_file_extent_item);
1233 extent_type = btrfs_file_extent_type(eb, fi);
1234 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1235 ret = -ENOENT;
1236 goto out;
1237 }
74dd17fb 1238 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1239
1240 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1241 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1242 if (disk_byte == 0) {
31db9f7c
AB
1243 ret = -ENOENT;
1244 goto out;
1245 }
74dd17fb 1246 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1247
69917e43
LB
1248 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1249 &found_key, &flags);
31db9f7c
AB
1250 btrfs_release_path(tmp_path);
1251
1252 if (ret < 0)
1253 goto out;
69917e43 1254 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1255 ret = -EIO;
1256 goto out;
1257 }
1258
1259 /*
1260 * Setup the clone roots.
1261 */
1262 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1263 cur_clone_root = sctx->clone_roots + i;
1264 cur_clone_root->ino = (u64)-1;
1265 cur_clone_root->offset = 0;
1266 cur_clone_root->found_refs = 0;
1267 }
1268
35075bb0
AB
1269 backref_ctx->sctx = sctx;
1270 backref_ctx->found = 0;
1271 backref_ctx->cur_objectid = ino;
1272 backref_ctx->cur_offset = data_offset;
1273 backref_ctx->found_itself = 0;
1274 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1275
1276 /*
1277 * The last extent of a file may be too large due to page alignment.
1278 * We need to adjust extent_len in this case so that the checks in
1279 * __iterate_backrefs work.
1280 */
1281 if (data_offset + num_bytes >= ino_size)
35075bb0 1282 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1283
1284 /*
1285 * Now collect all backrefs.
1286 */
74dd17fb
CM
1287 if (compressed == BTRFS_COMPRESS_NONE)
1288 extent_item_pos = logical - found_key.objectid;
1289 else
1290 extent_item_pos = 0;
1291
31db9f7c
AB
1292 extent_item_pos = logical - found_key.objectid;
1293 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1294 found_key.objectid, extent_item_pos, 1,
35075bb0 1295 __iterate_backrefs, backref_ctx);
74dd17fb 1296
31db9f7c
AB
1297 if (ret < 0)
1298 goto out;
1299
35075bb0 1300 if (!backref_ctx->found_itself) {
31db9f7c
AB
1301 /* found a bug in backref code? */
1302 ret = -EIO;
efe120a0 1303 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1304 "send_root. inode=%llu, offset=%llu, "
74dd17fb
CM
1305 "disk_byte=%llu found extent=%llu\n",
1306 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1307 goto out;
1308 }
1309
1310verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1311 "ino=%llu, "
1312 "num_bytes=%llu, logical=%llu\n",
1313 data_offset, ino, num_bytes, logical);
1314
35075bb0 1315 if (!backref_ctx->found)
31db9f7c
AB
1316 verbose_printk("btrfs: no clones found\n");
1317
1318 cur_clone_root = NULL;
1319 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1320 if (sctx->clone_roots[i].found_refs) {
1321 if (!cur_clone_root)
1322 cur_clone_root = sctx->clone_roots + i;
1323 else if (sctx->clone_roots[i].root == sctx->send_root)
1324 /* prefer clones from send_root over others */
1325 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1326 }
1327
1328 }
1329
1330 if (cur_clone_root) {
93de4ba8
FDBM
1331 if (compressed != BTRFS_COMPRESS_NONE) {
1332 /*
1333 * Offsets given by iterate_extent_inodes() are relative
1334 * to the start of the extent, we need to add logical
1335 * offset from the file extent item.
1336 * (See why at backref.c:check_extent_in_eb())
1337 */
1338 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1339 fi);
1340 }
31db9f7c
AB
1341 *found = cur_clone_root;
1342 ret = 0;
1343 } else {
1344 ret = -ENOENT;
1345 }
1346
1347out:
1348 btrfs_free_path(tmp_path);
35075bb0 1349 kfree(backref_ctx);
31db9f7c
AB
1350 return ret;
1351}
1352
924794c9 1353static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1354 u64 ino,
1355 struct fs_path *dest)
1356{
1357 int ret;
1358 struct btrfs_path *path;
1359 struct btrfs_key key;
1360 struct btrfs_file_extent_item *ei;
1361 u8 type;
1362 u8 compression;
1363 unsigned long off;
1364 int len;
1365
1366 path = alloc_path_for_send();
1367 if (!path)
1368 return -ENOMEM;
1369
1370 key.objectid = ino;
1371 key.type = BTRFS_EXTENT_DATA_KEY;
1372 key.offset = 0;
1373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1374 if (ret < 0)
1375 goto out;
1376 BUG_ON(ret);
1377
1378 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1379 struct btrfs_file_extent_item);
1380 type = btrfs_file_extent_type(path->nodes[0], ei);
1381 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1382 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1383 BUG_ON(compression);
1384
1385 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1386 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1387
1388 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1389
1390out:
1391 btrfs_free_path(path);
1392 return ret;
1393}
1394
1395/*
1396 * Helper function to generate a file name that is unique in the root of
1397 * send_root and parent_root. This is used to generate names for orphan inodes.
1398 */
1399static int gen_unique_name(struct send_ctx *sctx,
1400 u64 ino, u64 gen,
1401 struct fs_path *dest)
1402{
1403 int ret = 0;
1404 struct btrfs_path *path;
1405 struct btrfs_dir_item *di;
1406 char tmp[64];
1407 int len;
1408 u64 idx = 0;
1409
1410 path = alloc_path_for_send();
1411 if (!path)
1412 return -ENOMEM;
1413
1414 while (1) {
f74b86d8 1415 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1416 ino, gen, idx);
64792f25 1417 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1418
1419 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1420 path, BTRFS_FIRST_FREE_OBJECTID,
1421 tmp, strlen(tmp), 0);
1422 btrfs_release_path(path);
1423 if (IS_ERR(di)) {
1424 ret = PTR_ERR(di);
1425 goto out;
1426 }
1427 if (di) {
1428 /* not unique, try again */
1429 idx++;
1430 continue;
1431 }
1432
1433 if (!sctx->parent_root) {
1434 /* unique */
1435 ret = 0;
1436 break;
1437 }
1438
1439 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1440 path, BTRFS_FIRST_FREE_OBJECTID,
1441 tmp, strlen(tmp), 0);
1442 btrfs_release_path(path);
1443 if (IS_ERR(di)) {
1444 ret = PTR_ERR(di);
1445 goto out;
1446 }
1447 if (di) {
1448 /* not unique, try again */
1449 idx++;
1450 continue;
1451 }
1452 /* unique */
1453 break;
1454 }
1455
1456 ret = fs_path_add(dest, tmp, strlen(tmp));
1457
1458out:
1459 btrfs_free_path(path);
1460 return ret;
1461}
1462
1463enum inode_state {
1464 inode_state_no_change,
1465 inode_state_will_create,
1466 inode_state_did_create,
1467 inode_state_will_delete,
1468 inode_state_did_delete,
1469};
1470
1471static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1472{
1473 int ret;
1474 int left_ret;
1475 int right_ret;
1476 u64 left_gen;
1477 u64 right_gen;
1478
1479 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1480 NULL, NULL);
31db9f7c
AB
1481 if (ret < 0 && ret != -ENOENT)
1482 goto out;
1483 left_ret = ret;
1484
1485 if (!sctx->parent_root) {
1486 right_ret = -ENOENT;
1487 } else {
1488 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1489 NULL, NULL, NULL, NULL);
31db9f7c
AB
1490 if (ret < 0 && ret != -ENOENT)
1491 goto out;
1492 right_ret = ret;
1493 }
1494
1495 if (!left_ret && !right_ret) {
e938c8ad 1496 if (left_gen == gen && right_gen == gen) {
31db9f7c 1497 ret = inode_state_no_change;
e938c8ad 1498 } else if (left_gen == gen) {
31db9f7c
AB
1499 if (ino < sctx->send_progress)
1500 ret = inode_state_did_create;
1501 else
1502 ret = inode_state_will_create;
1503 } else if (right_gen == gen) {
1504 if (ino < sctx->send_progress)
1505 ret = inode_state_did_delete;
1506 else
1507 ret = inode_state_will_delete;
1508 } else {
1509 ret = -ENOENT;
1510 }
1511 } else if (!left_ret) {
1512 if (left_gen == gen) {
1513 if (ino < sctx->send_progress)
1514 ret = inode_state_did_create;
1515 else
1516 ret = inode_state_will_create;
1517 } else {
1518 ret = -ENOENT;
1519 }
1520 } else if (!right_ret) {
1521 if (right_gen == gen) {
1522 if (ino < sctx->send_progress)
1523 ret = inode_state_did_delete;
1524 else
1525 ret = inode_state_will_delete;
1526 } else {
1527 ret = -ENOENT;
1528 }
1529 } else {
1530 ret = -ENOENT;
1531 }
1532
1533out:
1534 return ret;
1535}
1536
1537static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1538{
1539 int ret;
1540
1541 ret = get_cur_inode_state(sctx, ino, gen);
1542 if (ret < 0)
1543 goto out;
1544
1545 if (ret == inode_state_no_change ||
1546 ret == inode_state_did_create ||
1547 ret == inode_state_will_delete)
1548 ret = 1;
1549 else
1550 ret = 0;
1551
1552out:
1553 return ret;
1554}
1555
1556/*
1557 * Helper function to lookup a dir item in a dir.
1558 */
1559static int lookup_dir_item_inode(struct btrfs_root *root,
1560 u64 dir, const char *name, int name_len,
1561 u64 *found_inode,
1562 u8 *found_type)
1563{
1564 int ret = 0;
1565 struct btrfs_dir_item *di;
1566 struct btrfs_key key;
1567 struct btrfs_path *path;
1568
1569 path = alloc_path_for_send();
1570 if (!path)
1571 return -ENOMEM;
1572
1573 di = btrfs_lookup_dir_item(NULL, root, path,
1574 dir, name, name_len, 0);
1575 if (!di) {
1576 ret = -ENOENT;
1577 goto out;
1578 }
1579 if (IS_ERR(di)) {
1580 ret = PTR_ERR(di);
1581 goto out;
1582 }
1583 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1584 *found_inode = key.objectid;
1585 *found_type = btrfs_dir_type(path->nodes[0], di);
1586
1587out:
1588 btrfs_free_path(path);
1589 return ret;
1590}
1591
766702ef
AB
1592/*
1593 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1594 * generation of the parent dir and the name of the dir entry.
1595 */
924794c9 1596static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1597 u64 *dir, u64 *dir_gen, struct fs_path *name)
1598{
1599 int ret;
1600 struct btrfs_key key;
1601 struct btrfs_key found_key;
1602 struct btrfs_path *path;
31db9f7c 1603 int len;
96b5bd77 1604 u64 parent_dir;
31db9f7c
AB
1605
1606 path = alloc_path_for_send();
1607 if (!path)
1608 return -ENOMEM;
1609
1610 key.objectid = ino;
1611 key.type = BTRFS_INODE_REF_KEY;
1612 key.offset = 0;
1613
1614 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1615 if (ret < 0)
1616 goto out;
1617 if (!ret)
1618 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1619 path->slots[0]);
96b5bd77
JS
1620 if (ret || found_key.objectid != ino ||
1621 (found_key.type != BTRFS_INODE_REF_KEY &&
1622 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1623 ret = -ENOENT;
1624 goto out;
1625 }
1626
96b5bd77
JS
1627 if (key.type == BTRFS_INODE_REF_KEY) {
1628 struct btrfs_inode_ref *iref;
1629 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1630 struct btrfs_inode_ref);
1631 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1632 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1633 (unsigned long)(iref + 1),
1634 len);
1635 parent_dir = found_key.offset;
1636 } else {
1637 struct btrfs_inode_extref *extref;
1638 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1639 struct btrfs_inode_extref);
1640 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1641 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1642 (unsigned long)&extref->name, len);
1643 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1644 }
31db9f7c
AB
1645 if (ret < 0)
1646 goto out;
1647 btrfs_release_path(path);
1648
96b5bd77 1649 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
85a7b33b 1650 NULL, NULL);
31db9f7c
AB
1651 if (ret < 0)
1652 goto out;
1653
96b5bd77 1654 *dir = parent_dir;
31db9f7c
AB
1655
1656out:
1657 btrfs_free_path(path);
1658 return ret;
1659}
1660
924794c9 1661static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1662 u64 ino, u64 dir,
1663 const char *name, int name_len)
1664{
1665 int ret;
1666 struct fs_path *tmp_name;
1667 u64 tmp_dir;
1668 u64 tmp_dir_gen;
1669
924794c9 1670 tmp_name = fs_path_alloc();
31db9f7c
AB
1671 if (!tmp_name)
1672 return -ENOMEM;
1673
924794c9 1674 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
31db9f7c
AB
1675 if (ret < 0)
1676 goto out;
1677
b9291aff 1678 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1679 ret = 0;
1680 goto out;
1681 }
1682
e938c8ad 1683 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1684
1685out:
924794c9 1686 fs_path_free(tmp_name);
31db9f7c
AB
1687 return ret;
1688}
1689
766702ef
AB
1690/*
1691 * Used by process_recorded_refs to determine if a new ref would overwrite an
1692 * already existing ref. In case it detects an overwrite, it returns the
1693 * inode/gen in who_ino/who_gen.
1694 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1695 * to make sure later references to the overwritten inode are possible.
1696 * Orphanizing is however only required for the first ref of an inode.
1697 * process_recorded_refs does an additional is_first_ref check to see if
1698 * orphanizing is really required.
1699 */
31db9f7c
AB
1700static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1701 const char *name, int name_len,
1702 u64 *who_ino, u64 *who_gen)
1703{
1704 int ret = 0;
ebdad913 1705 u64 gen;
31db9f7c
AB
1706 u64 other_inode = 0;
1707 u8 other_type = 0;
1708
1709 if (!sctx->parent_root)
1710 goto out;
1711
1712 ret = is_inode_existent(sctx, dir, dir_gen);
1713 if (ret <= 0)
1714 goto out;
1715
ebdad913
JB
1716 /*
1717 * If we have a parent root we need to verify that the parent dir was
1718 * not delted and then re-created, if it was then we have no overwrite
1719 * and we can just unlink this entry.
1720 */
1721 if (sctx->parent_root) {
1722 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1723 NULL, NULL, NULL);
1724 if (ret < 0 && ret != -ENOENT)
1725 goto out;
1726 if (ret) {
1727 ret = 0;
1728 goto out;
1729 }
1730 if (gen != dir_gen)
1731 goto out;
1732 }
1733
31db9f7c
AB
1734 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1735 &other_inode, &other_type);
1736 if (ret < 0 && ret != -ENOENT)
1737 goto out;
1738 if (ret) {
1739 ret = 0;
1740 goto out;
1741 }
1742
766702ef
AB
1743 /*
1744 * Check if the overwritten ref was already processed. If yes, the ref
1745 * was already unlinked/moved, so we can safely assume that we will not
1746 * overwrite anything at this point in time.
1747 */
31db9f7c
AB
1748 if (other_inode > sctx->send_progress) {
1749 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1750 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1751 if (ret < 0)
1752 goto out;
1753
1754 ret = 1;
1755 *who_ino = other_inode;
1756 } else {
1757 ret = 0;
1758 }
1759
1760out:
1761 return ret;
1762}
1763
766702ef
AB
1764/*
1765 * Checks if the ref was overwritten by an already processed inode. This is
1766 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1767 * thus the orphan name needs be used.
1768 * process_recorded_refs also uses it to avoid unlinking of refs that were
1769 * overwritten.
1770 */
31db9f7c
AB
1771static int did_overwrite_ref(struct send_ctx *sctx,
1772 u64 dir, u64 dir_gen,
1773 u64 ino, u64 ino_gen,
1774 const char *name, int name_len)
1775{
1776 int ret = 0;
1777 u64 gen;
1778 u64 ow_inode;
1779 u8 other_type;
1780
1781 if (!sctx->parent_root)
1782 goto out;
1783
1784 ret = is_inode_existent(sctx, dir, dir_gen);
1785 if (ret <= 0)
1786 goto out;
1787
1788 /* check if the ref was overwritten by another ref */
1789 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1790 &ow_inode, &other_type);
1791 if (ret < 0 && ret != -ENOENT)
1792 goto out;
1793 if (ret) {
1794 /* was never and will never be overwritten */
1795 ret = 0;
1796 goto out;
1797 }
1798
1799 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1800 NULL, NULL);
31db9f7c
AB
1801 if (ret < 0)
1802 goto out;
1803
1804 if (ow_inode == ino && gen == ino_gen) {
1805 ret = 0;
1806 goto out;
1807 }
1808
1809 /* we know that it is or will be overwritten. check this now */
1810 if (ow_inode < sctx->send_progress)
1811 ret = 1;
1812 else
1813 ret = 0;
1814
1815out:
1816 return ret;
1817}
1818
766702ef
AB
1819/*
1820 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1821 * that got overwritten. This is used by process_recorded_refs to determine
1822 * if it has to use the path as returned by get_cur_path or the orphan name.
1823 */
31db9f7c
AB
1824static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1825{
1826 int ret = 0;
1827 struct fs_path *name = NULL;
1828 u64 dir;
1829 u64 dir_gen;
1830
1831 if (!sctx->parent_root)
1832 goto out;
1833
924794c9 1834 name = fs_path_alloc();
31db9f7c
AB
1835 if (!name)
1836 return -ENOMEM;
1837
924794c9 1838 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1839 if (ret < 0)
1840 goto out;
1841
1842 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1843 name->start, fs_path_len(name));
31db9f7c
AB
1844
1845out:
924794c9 1846 fs_path_free(name);
31db9f7c
AB
1847 return ret;
1848}
1849
766702ef
AB
1850/*
1851 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1852 * so we need to do some special handling in case we have clashes. This function
1853 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1854 * In case of error, nce is kfreed.
766702ef 1855 */
31db9f7c
AB
1856static int name_cache_insert(struct send_ctx *sctx,
1857 struct name_cache_entry *nce)
1858{
1859 int ret = 0;
7e0926fe
AB
1860 struct list_head *nce_head;
1861
1862 nce_head = radix_tree_lookup(&sctx->name_cache,
1863 (unsigned long)nce->ino);
1864 if (!nce_head) {
1865 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
cfa7a9cc
TI
1866 if (!nce_head) {
1867 kfree(nce);
31db9f7c 1868 return -ENOMEM;
cfa7a9cc 1869 }
7e0926fe 1870 INIT_LIST_HEAD(nce_head);
31db9f7c 1871
7e0926fe 1872 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1873 if (ret < 0) {
1874 kfree(nce_head);
1875 kfree(nce);
31db9f7c 1876 return ret;
5dc67d0b 1877 }
31db9f7c 1878 }
7e0926fe 1879 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1880 list_add_tail(&nce->list, &sctx->name_cache_list);
1881 sctx->name_cache_size++;
1882
1883 return ret;
1884}
1885
1886static void name_cache_delete(struct send_ctx *sctx,
1887 struct name_cache_entry *nce)
1888{
7e0926fe 1889 struct list_head *nce_head;
31db9f7c 1890
7e0926fe
AB
1891 nce_head = radix_tree_lookup(&sctx->name_cache,
1892 (unsigned long)nce->ino);
1893 BUG_ON(!nce_head);
31db9f7c 1894
7e0926fe 1895 list_del(&nce->radix_list);
31db9f7c 1896 list_del(&nce->list);
31db9f7c 1897 sctx->name_cache_size--;
7e0926fe
AB
1898
1899 if (list_empty(nce_head)) {
1900 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1901 kfree(nce_head);
1902 }
31db9f7c
AB
1903}
1904
1905static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1906 u64 ino, u64 gen)
1907{
7e0926fe
AB
1908 struct list_head *nce_head;
1909 struct name_cache_entry *cur;
31db9f7c 1910
7e0926fe
AB
1911 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1912 if (!nce_head)
31db9f7c
AB
1913 return NULL;
1914
7e0926fe
AB
1915 list_for_each_entry(cur, nce_head, radix_list) {
1916 if (cur->ino == ino && cur->gen == gen)
1917 return cur;
1918 }
31db9f7c
AB
1919 return NULL;
1920}
1921
766702ef
AB
1922/*
1923 * Removes the entry from the list and adds it back to the end. This marks the
1924 * entry as recently used so that name_cache_clean_unused does not remove it.
1925 */
31db9f7c
AB
1926static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1927{
1928 list_del(&nce->list);
1929 list_add_tail(&nce->list, &sctx->name_cache_list);
1930}
1931
766702ef
AB
1932/*
1933 * Remove some entries from the beginning of name_cache_list.
1934 */
31db9f7c
AB
1935static void name_cache_clean_unused(struct send_ctx *sctx)
1936{
1937 struct name_cache_entry *nce;
1938
1939 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1940 return;
1941
1942 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1943 nce = list_entry(sctx->name_cache_list.next,
1944 struct name_cache_entry, list);
1945 name_cache_delete(sctx, nce);
1946 kfree(nce);
1947 }
1948}
1949
1950static void name_cache_free(struct send_ctx *sctx)
1951{
1952 struct name_cache_entry *nce;
31db9f7c 1953
e938c8ad
AB
1954 while (!list_empty(&sctx->name_cache_list)) {
1955 nce = list_entry(sctx->name_cache_list.next,
1956 struct name_cache_entry, list);
31db9f7c 1957 name_cache_delete(sctx, nce);
17589bd9 1958 kfree(nce);
31db9f7c
AB
1959 }
1960}
1961
766702ef
AB
1962/*
1963 * Used by get_cur_path for each ref up to the root.
1964 * Returns 0 if it succeeded.
1965 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1966 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1967 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1968 * Returns <0 in case of error.
1969 */
31db9f7c
AB
1970static int __get_cur_name_and_parent(struct send_ctx *sctx,
1971 u64 ino, u64 gen,
9f03740a 1972 int skip_name_cache,
31db9f7c
AB
1973 u64 *parent_ino,
1974 u64 *parent_gen,
1975 struct fs_path *dest)
1976{
1977 int ret;
1978 int nce_ret;
1979 struct btrfs_path *path = NULL;
1980 struct name_cache_entry *nce = NULL;
1981
9f03740a
FDBM
1982 if (skip_name_cache)
1983 goto get_ref;
766702ef
AB
1984 /*
1985 * First check if we already did a call to this function with the same
1986 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1987 * return the cached result.
1988 */
31db9f7c
AB
1989 nce = name_cache_search(sctx, ino, gen);
1990 if (nce) {
1991 if (ino < sctx->send_progress && nce->need_later_update) {
1992 name_cache_delete(sctx, nce);
1993 kfree(nce);
1994 nce = NULL;
1995 } else {
1996 name_cache_used(sctx, nce);
1997 *parent_ino = nce->parent_ino;
1998 *parent_gen = nce->parent_gen;
1999 ret = fs_path_add(dest, nce->name, nce->name_len);
2000 if (ret < 0)
2001 goto out;
2002 ret = nce->ret;
2003 goto out;
2004 }
2005 }
2006
2007 path = alloc_path_for_send();
2008 if (!path)
2009 return -ENOMEM;
2010
766702ef
AB
2011 /*
2012 * If the inode is not existent yet, add the orphan name and return 1.
2013 * This should only happen for the parent dir that we determine in
2014 * __record_new_ref
2015 */
31db9f7c
AB
2016 ret = is_inode_existent(sctx, ino, gen);
2017 if (ret < 0)
2018 goto out;
2019
2020 if (!ret) {
2021 ret = gen_unique_name(sctx, ino, gen, dest);
2022 if (ret < 0)
2023 goto out;
2024 ret = 1;
2025 goto out_cache;
2026 }
2027
9f03740a 2028get_ref:
766702ef
AB
2029 /*
2030 * Depending on whether the inode was already processed or not, use
2031 * send_root or parent_root for ref lookup.
2032 */
9f03740a 2033 if (ino < sctx->send_progress && !skip_name_cache)
924794c9
TI
2034 ret = get_first_ref(sctx->send_root, ino,
2035 parent_ino, parent_gen, dest);
31db9f7c 2036 else
924794c9
TI
2037 ret = get_first_ref(sctx->parent_root, ino,
2038 parent_ino, parent_gen, dest);
31db9f7c
AB
2039 if (ret < 0)
2040 goto out;
2041
766702ef
AB
2042 /*
2043 * Check if the ref was overwritten by an inode's ref that was processed
2044 * earlier. If yes, treat as orphan and return 1.
2045 */
31db9f7c
AB
2046 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2047 dest->start, dest->end - dest->start);
2048 if (ret < 0)
2049 goto out;
2050 if (ret) {
2051 fs_path_reset(dest);
2052 ret = gen_unique_name(sctx, ino, gen, dest);
2053 if (ret < 0)
2054 goto out;
2055 ret = 1;
2056 }
9f03740a
FDBM
2057 if (skip_name_cache)
2058 goto out;
31db9f7c
AB
2059
2060out_cache:
766702ef
AB
2061 /*
2062 * Store the result of the lookup in the name cache.
2063 */
31db9f7c
AB
2064 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2065 if (!nce) {
2066 ret = -ENOMEM;
2067 goto out;
2068 }
2069
2070 nce->ino = ino;
2071 nce->gen = gen;
2072 nce->parent_ino = *parent_ino;
2073 nce->parent_gen = *parent_gen;
2074 nce->name_len = fs_path_len(dest);
2075 nce->ret = ret;
2076 strcpy(nce->name, dest->start);
31db9f7c
AB
2077
2078 if (ino < sctx->send_progress)
2079 nce->need_later_update = 0;
2080 else
2081 nce->need_later_update = 1;
2082
2083 nce_ret = name_cache_insert(sctx, nce);
2084 if (nce_ret < 0)
2085 ret = nce_ret;
2086 name_cache_clean_unused(sctx);
2087
2088out:
2089 btrfs_free_path(path);
2090 return ret;
2091}
2092
2093/*
2094 * Magic happens here. This function returns the first ref to an inode as it
2095 * would look like while receiving the stream at this point in time.
2096 * We walk the path up to the root. For every inode in between, we check if it
2097 * was already processed/sent. If yes, we continue with the parent as found
2098 * in send_root. If not, we continue with the parent as found in parent_root.
2099 * If we encounter an inode that was deleted at this point in time, we use the
2100 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2101 * that were not created yet and overwritten inodes/refs.
2102 *
2103 * When do we have have orphan inodes:
2104 * 1. When an inode is freshly created and thus no valid refs are available yet
2105 * 2. When a directory lost all it's refs (deleted) but still has dir items
2106 * inside which were not processed yet (pending for move/delete). If anyone
2107 * tried to get the path to the dir items, it would get a path inside that
2108 * orphan directory.
2109 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2110 * of an unprocessed inode. If in that case the first ref would be
2111 * overwritten, the overwritten inode gets "orphanized". Later when we
2112 * process this overwritten inode, it is restored at a new place by moving
2113 * the orphan inode.
2114 *
2115 * sctx->send_progress tells this function at which point in time receiving
2116 * would be.
2117 */
2118static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2119 struct fs_path *dest)
2120{
2121 int ret = 0;
2122 struct fs_path *name = NULL;
2123 u64 parent_inode = 0;
2124 u64 parent_gen = 0;
2125 int stop = 0;
9f03740a 2126 int skip_name_cache = 0;
31db9f7c 2127
924794c9 2128 name = fs_path_alloc();
31db9f7c
AB
2129 if (!name) {
2130 ret = -ENOMEM;
2131 goto out;
2132 }
2133
9f03740a
FDBM
2134 if (is_waiting_for_move(sctx, ino))
2135 skip_name_cache = 1;
2136
31db9f7c
AB
2137 dest->reversed = 1;
2138 fs_path_reset(dest);
2139
2140 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2141 fs_path_reset(name);
2142
9f03740a 2143 ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
31db9f7c
AB
2144 &parent_inode, &parent_gen, name);
2145 if (ret < 0)
2146 goto out;
2147 if (ret)
2148 stop = 1;
2149
9f03740a 2150 if (!skip_name_cache &&
03cb4fb9 2151 is_waiting_for_move(sctx, parent_inode))
9f03740a 2152 skip_name_cache = 1;
9f03740a 2153
31db9f7c
AB
2154 ret = fs_path_add_path(dest, name);
2155 if (ret < 0)
2156 goto out;
2157
2158 ino = parent_inode;
2159 gen = parent_gen;
2160 }
2161
2162out:
924794c9 2163 fs_path_free(name);
31db9f7c
AB
2164 if (!ret)
2165 fs_path_unreverse(dest);
2166 return ret;
2167}
2168
31db9f7c
AB
2169/*
2170 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2171 */
2172static int send_subvol_begin(struct send_ctx *sctx)
2173{
2174 int ret;
2175 struct btrfs_root *send_root = sctx->send_root;
2176 struct btrfs_root *parent_root = sctx->parent_root;
2177 struct btrfs_path *path;
2178 struct btrfs_key key;
2179 struct btrfs_root_ref *ref;
2180 struct extent_buffer *leaf;
2181 char *name = NULL;
2182 int namelen;
2183
ffcfaf81 2184 path = btrfs_alloc_path();
31db9f7c
AB
2185 if (!path)
2186 return -ENOMEM;
2187
2188 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2189 if (!name) {
2190 btrfs_free_path(path);
2191 return -ENOMEM;
2192 }
2193
2194 key.objectid = send_root->objectid;
2195 key.type = BTRFS_ROOT_BACKREF_KEY;
2196 key.offset = 0;
2197
2198 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2199 &key, path, 1, 0);
2200 if (ret < 0)
2201 goto out;
2202 if (ret) {
2203 ret = -ENOENT;
2204 goto out;
2205 }
2206
2207 leaf = path->nodes[0];
2208 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2209 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2210 key.objectid != send_root->objectid) {
2211 ret = -ENOENT;
2212 goto out;
2213 }
2214 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2215 namelen = btrfs_root_ref_name_len(leaf, ref);
2216 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2217 btrfs_release_path(path);
2218
31db9f7c
AB
2219 if (parent_root) {
2220 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2221 if (ret < 0)
2222 goto out;
2223 } else {
2224 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2225 if (ret < 0)
2226 goto out;
2227 }
2228
2229 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2230 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2231 sctx->send_root->root_item.uuid);
2232 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2233 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c
AB
2234 if (parent_root) {
2235 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2236 sctx->parent_root->root_item.uuid);
2237 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2238 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2239 }
2240
2241 ret = send_cmd(sctx);
2242
2243tlv_put_failure:
2244out:
2245 btrfs_free_path(path);
2246 kfree(name);
2247 return ret;
2248}
2249
2250static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2251{
2252 int ret = 0;
2253 struct fs_path *p;
2254
2255verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2256
924794c9 2257 p = fs_path_alloc();
31db9f7c
AB
2258 if (!p)
2259 return -ENOMEM;
2260
2261 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2262 if (ret < 0)
2263 goto out;
2264
2265 ret = get_cur_path(sctx, ino, gen, p);
2266 if (ret < 0)
2267 goto out;
2268 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2269 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2270
2271 ret = send_cmd(sctx);
2272
2273tlv_put_failure:
2274out:
924794c9 2275 fs_path_free(p);
31db9f7c
AB
2276 return ret;
2277}
2278
2279static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2280{
2281 int ret = 0;
2282 struct fs_path *p;
2283
2284verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2285
924794c9 2286 p = fs_path_alloc();
31db9f7c
AB
2287 if (!p)
2288 return -ENOMEM;
2289
2290 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2291 if (ret < 0)
2292 goto out;
2293
2294 ret = get_cur_path(sctx, ino, gen, p);
2295 if (ret < 0)
2296 goto out;
2297 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2298 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2299
2300 ret = send_cmd(sctx);
2301
2302tlv_put_failure:
2303out:
924794c9 2304 fs_path_free(p);
31db9f7c
AB
2305 return ret;
2306}
2307
2308static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2309{
2310 int ret = 0;
2311 struct fs_path *p;
2312
2313verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2314
924794c9 2315 p = fs_path_alloc();
31db9f7c
AB
2316 if (!p)
2317 return -ENOMEM;
2318
2319 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2320 if (ret < 0)
2321 goto out;
2322
2323 ret = get_cur_path(sctx, ino, gen, p);
2324 if (ret < 0)
2325 goto out;
2326 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2327 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2328 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2329
2330 ret = send_cmd(sctx);
2331
2332tlv_put_failure:
2333out:
924794c9 2334 fs_path_free(p);
31db9f7c
AB
2335 return ret;
2336}
2337
2338static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2339{
2340 int ret = 0;
2341 struct fs_path *p = NULL;
2342 struct btrfs_inode_item *ii;
2343 struct btrfs_path *path = NULL;
2344 struct extent_buffer *eb;
2345 struct btrfs_key key;
2346 int slot;
2347
2348verbose_printk("btrfs: send_utimes %llu\n", ino);
2349
924794c9 2350 p = fs_path_alloc();
31db9f7c
AB
2351 if (!p)
2352 return -ENOMEM;
2353
2354 path = alloc_path_for_send();
2355 if (!path) {
2356 ret = -ENOMEM;
2357 goto out;
2358 }
2359
2360 key.objectid = ino;
2361 key.type = BTRFS_INODE_ITEM_KEY;
2362 key.offset = 0;
2363 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2364 if (ret < 0)
2365 goto out;
2366
2367 eb = path->nodes[0];
2368 slot = path->slots[0];
2369 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2370
2371 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2372 if (ret < 0)
2373 goto out;
2374
2375 ret = get_cur_path(sctx, ino, gen, p);
2376 if (ret < 0)
2377 goto out;
2378 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2379 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2380 btrfs_inode_atime(ii));
2381 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2382 btrfs_inode_mtime(ii));
2383 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2384 btrfs_inode_ctime(ii));
766702ef 2385 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2386
2387 ret = send_cmd(sctx);
2388
2389tlv_put_failure:
2390out:
924794c9 2391 fs_path_free(p);
31db9f7c
AB
2392 btrfs_free_path(path);
2393 return ret;
2394}
2395
2396/*
2397 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2398 * a valid path yet because we did not process the refs yet. So, the inode
2399 * is created as orphan.
2400 */
1f4692da 2401static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2402{
2403 int ret = 0;
31db9f7c 2404 struct fs_path *p;
31db9f7c 2405 int cmd;
1f4692da 2406 u64 gen;
31db9f7c 2407 u64 mode;
1f4692da 2408 u64 rdev;
31db9f7c 2409
1f4692da 2410verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2411
924794c9 2412 p = fs_path_alloc();
31db9f7c
AB
2413 if (!p)
2414 return -ENOMEM;
2415
1f4692da
AB
2416 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2417 NULL, &rdev);
2418 if (ret < 0)
2419 goto out;
31db9f7c 2420
e938c8ad 2421 if (S_ISREG(mode)) {
31db9f7c 2422 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2423 } else if (S_ISDIR(mode)) {
31db9f7c 2424 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2425 } else if (S_ISLNK(mode)) {
31db9f7c 2426 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2427 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2428 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2429 } else if (S_ISFIFO(mode)) {
31db9f7c 2430 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2431 } else if (S_ISSOCK(mode)) {
31db9f7c 2432 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2433 } else {
31db9f7c
AB
2434 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2435 (int)(mode & S_IFMT));
2436 ret = -ENOTSUPP;
2437 goto out;
2438 }
2439
2440 ret = begin_cmd(sctx, cmd);
2441 if (ret < 0)
2442 goto out;
2443
1f4692da 2444 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2445 if (ret < 0)
2446 goto out;
2447
2448 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2449 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2450
2451 if (S_ISLNK(mode)) {
2452 fs_path_reset(p);
924794c9 2453 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2454 if (ret < 0)
2455 goto out;
2456 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2457 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2458 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2459 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2460 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2461 }
2462
2463 ret = send_cmd(sctx);
2464 if (ret < 0)
2465 goto out;
2466
2467
2468tlv_put_failure:
2469out:
924794c9 2470 fs_path_free(p);
31db9f7c
AB
2471 return ret;
2472}
2473
1f4692da
AB
2474/*
2475 * We need some special handling for inodes that get processed before the parent
2476 * directory got created. See process_recorded_refs for details.
2477 * This function does the check if we already created the dir out of order.
2478 */
2479static int did_create_dir(struct send_ctx *sctx, u64 dir)
2480{
2481 int ret = 0;
2482 struct btrfs_path *path = NULL;
2483 struct btrfs_key key;
2484 struct btrfs_key found_key;
2485 struct btrfs_key di_key;
2486 struct extent_buffer *eb;
2487 struct btrfs_dir_item *di;
2488 int slot;
2489
2490 path = alloc_path_for_send();
2491 if (!path) {
2492 ret = -ENOMEM;
2493 goto out;
2494 }
2495
2496 key.objectid = dir;
2497 key.type = BTRFS_DIR_INDEX_KEY;
2498 key.offset = 0;
2499 while (1) {
2500 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2501 1, 0);
2502 if (ret < 0)
2503 goto out;
2504 if (!ret) {
2505 eb = path->nodes[0];
2506 slot = path->slots[0];
2507 btrfs_item_key_to_cpu(eb, &found_key, slot);
2508 }
2509 if (ret || found_key.objectid != key.objectid ||
2510 found_key.type != key.type) {
2511 ret = 0;
2512 goto out;
2513 }
2514
2515 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2516 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2517
a0525414
JB
2518 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2519 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2520 ret = 1;
2521 goto out;
2522 }
2523
2524 key.offset = found_key.offset + 1;
2525 btrfs_release_path(path);
2526 }
2527
2528out:
2529 btrfs_free_path(path);
2530 return ret;
2531}
2532
2533/*
2534 * Only creates the inode if it is:
2535 * 1. Not a directory
2536 * 2. Or a directory which was not created already due to out of order
2537 * directories. See did_create_dir and process_recorded_refs for details.
2538 */
2539static int send_create_inode_if_needed(struct send_ctx *sctx)
2540{
2541 int ret;
2542
2543 if (S_ISDIR(sctx->cur_inode_mode)) {
2544 ret = did_create_dir(sctx, sctx->cur_ino);
2545 if (ret < 0)
2546 goto out;
2547 if (ret) {
2548 ret = 0;
2549 goto out;
2550 }
2551 }
2552
2553 ret = send_create_inode(sctx, sctx->cur_ino);
2554 if (ret < 0)
2555 goto out;
2556
2557out:
2558 return ret;
2559}
2560
31db9f7c
AB
2561struct recorded_ref {
2562 struct list_head list;
2563 char *dir_path;
2564 char *name;
2565 struct fs_path *full_path;
2566 u64 dir;
2567 u64 dir_gen;
2568 int dir_path_len;
2569 int name_len;
2570};
2571
2572/*
2573 * We need to process new refs before deleted refs, but compare_tree gives us
2574 * everything mixed. So we first record all refs and later process them.
2575 * This function is a helper to record one ref.
2576 */
2577static int record_ref(struct list_head *head, u64 dir,
2578 u64 dir_gen, struct fs_path *path)
2579{
2580 struct recorded_ref *ref;
31db9f7c
AB
2581
2582 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2583 if (!ref)
2584 return -ENOMEM;
2585
2586 ref->dir = dir;
2587 ref->dir_gen = dir_gen;
2588 ref->full_path = path;
2589
ed84885d
AS
2590 ref->name = (char *)kbasename(ref->full_path->start);
2591 ref->name_len = ref->full_path->end - ref->name;
2592 ref->dir_path = ref->full_path->start;
2593 if (ref->name == ref->full_path->start)
31db9f7c 2594 ref->dir_path_len = 0;
ed84885d 2595 else
31db9f7c
AB
2596 ref->dir_path_len = ref->full_path->end -
2597 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2598
2599 list_add_tail(&ref->list, head);
2600 return 0;
2601}
2602
ba5e8f2e
JB
2603static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2604{
2605 struct recorded_ref *new;
2606
2607 new = kmalloc(sizeof(*ref), GFP_NOFS);
2608 if (!new)
2609 return -ENOMEM;
2610
2611 new->dir = ref->dir;
2612 new->dir_gen = ref->dir_gen;
2613 new->full_path = NULL;
2614 INIT_LIST_HEAD(&new->list);
2615 list_add_tail(&new->list, list);
2616 return 0;
2617}
2618
924794c9 2619static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2620{
2621 struct recorded_ref *cur;
31db9f7c 2622
e938c8ad
AB
2623 while (!list_empty(head)) {
2624 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2625 fs_path_free(cur->full_path);
e938c8ad 2626 list_del(&cur->list);
31db9f7c
AB
2627 kfree(cur);
2628 }
31db9f7c
AB
2629}
2630
2631static void free_recorded_refs(struct send_ctx *sctx)
2632{
924794c9
TI
2633 __free_recorded_refs(&sctx->new_refs);
2634 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2635}
2636
2637/*
766702ef 2638 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2639 * ref of an unprocessed inode gets overwritten and for all non empty
2640 * directories.
2641 */
2642static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2643 struct fs_path *path)
2644{
2645 int ret;
2646 struct fs_path *orphan;
2647
924794c9 2648 orphan = fs_path_alloc();
31db9f7c
AB
2649 if (!orphan)
2650 return -ENOMEM;
2651
2652 ret = gen_unique_name(sctx, ino, gen, orphan);
2653 if (ret < 0)
2654 goto out;
2655
2656 ret = send_rename(sctx, path, orphan);
2657
2658out:
924794c9 2659 fs_path_free(orphan);
31db9f7c
AB
2660 return ret;
2661}
2662
2663/*
2664 * Returns 1 if a directory can be removed at this point in time.
2665 * We check this by iterating all dir items and checking if the inode behind
2666 * the dir item was already processed.
2667 */
2668static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2669{
2670 int ret = 0;
2671 struct btrfs_root *root = sctx->parent_root;
2672 struct btrfs_path *path;
2673 struct btrfs_key key;
2674 struct btrfs_key found_key;
2675 struct btrfs_key loc;
2676 struct btrfs_dir_item *di;
2677
6d85ed05
AB
2678 /*
2679 * Don't try to rmdir the top/root subvolume dir.
2680 */
2681 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2682 return 0;
2683
31db9f7c
AB
2684 path = alloc_path_for_send();
2685 if (!path)
2686 return -ENOMEM;
2687
2688 key.objectid = dir;
2689 key.type = BTRFS_DIR_INDEX_KEY;
2690 key.offset = 0;
2691
2692 while (1) {
2693 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2694 if (ret < 0)
2695 goto out;
2696 if (!ret) {
2697 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2698 path->slots[0]);
2699 }
2700 if (ret || found_key.objectid != key.objectid ||
2701 found_key.type != key.type) {
2702 break;
2703 }
2704
2705 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2706 struct btrfs_dir_item);
2707 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2708
2709 if (loc.objectid > send_progress) {
2710 ret = 0;
2711 goto out;
2712 }
2713
2714 btrfs_release_path(path);
2715 key.offset = found_key.offset + 1;
2716 }
2717
2718 ret = 1;
2719
2720out:
2721 btrfs_free_path(path);
2722 return ret;
2723}
2724
9f03740a
FDBM
2725static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2726{
2727 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2728 struct waiting_dir_move *entry;
2729
2730 while (n) {
2731 entry = rb_entry(n, struct waiting_dir_move, node);
2732 if (ino < entry->ino)
2733 n = n->rb_left;
2734 else if (ino > entry->ino)
2735 n = n->rb_right;
2736 else
2737 return 1;
2738 }
2739 return 0;
2740}
2741
2742static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2743{
2744 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2745 struct rb_node *parent = NULL;
2746 struct waiting_dir_move *entry, *dm;
2747
2748 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2749 if (!dm)
2750 return -ENOMEM;
2751 dm->ino = ino;
2752
2753 while (*p) {
2754 parent = *p;
2755 entry = rb_entry(parent, struct waiting_dir_move, node);
2756 if (ino < entry->ino) {
2757 p = &(*p)->rb_left;
2758 } else if (ino > entry->ino) {
2759 p = &(*p)->rb_right;
2760 } else {
2761 kfree(dm);
2762 return -EEXIST;
2763 }
2764 }
2765
2766 rb_link_node(&dm->node, parent, p);
2767 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2768 return 0;
2769}
2770
9f03740a
FDBM
2771static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2772{
2773 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2774 struct waiting_dir_move *entry;
2775
2776 while (n) {
2777 entry = rb_entry(n, struct waiting_dir_move, node);
2778 if (ino < entry->ino) {
2779 n = n->rb_left;
2780 } else if (ino > entry->ino) {
2781 n = n->rb_right;
2782 } else {
2783 rb_erase(&entry->node, &sctx->waiting_dir_moves);
2784 kfree(entry);
2785 return 0;
2786 }
2787 }
2788 return -ENOENT;
2789}
2790
9f03740a
FDBM
2791static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2792{
2793 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2794 struct rb_node *parent = NULL;
2795 struct pending_dir_move *entry, *pm;
2796 struct recorded_ref *cur;
2797 int exists = 0;
2798 int ret;
2799
2800 pm = kmalloc(sizeof(*pm), GFP_NOFS);
2801 if (!pm)
2802 return -ENOMEM;
2803 pm->parent_ino = parent_ino;
2804 pm->ino = sctx->cur_ino;
2805 pm->gen = sctx->cur_inode_gen;
2806 INIT_LIST_HEAD(&pm->list);
2807 INIT_LIST_HEAD(&pm->update_refs);
2808 RB_CLEAR_NODE(&pm->node);
2809
2810 while (*p) {
2811 parent = *p;
2812 entry = rb_entry(parent, struct pending_dir_move, node);
2813 if (parent_ino < entry->parent_ino) {
2814 p = &(*p)->rb_left;
2815 } else if (parent_ino > entry->parent_ino) {
2816 p = &(*p)->rb_right;
2817 } else {
2818 exists = 1;
2819 break;
2820 }
2821 }
2822
2823 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2824 ret = dup_ref(cur, &pm->update_refs);
2825 if (ret < 0)
2826 goto out;
2827 }
2828 list_for_each_entry(cur, &sctx->new_refs, list) {
2829 ret = dup_ref(cur, &pm->update_refs);
2830 if (ret < 0)
2831 goto out;
2832 }
2833
2834 ret = add_waiting_dir_move(sctx, pm->ino);
2835 if (ret)
2836 goto out;
2837
2838 if (exists) {
2839 list_add_tail(&pm->list, &entry->list);
2840 } else {
2841 rb_link_node(&pm->node, parent, p);
2842 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2843 }
2844 ret = 0;
2845out:
2846 if (ret) {
2847 __free_recorded_refs(&pm->update_refs);
2848 kfree(pm);
2849 }
2850 return ret;
2851}
2852
2853static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2854 u64 parent_ino)
2855{
2856 struct rb_node *n = sctx->pending_dir_moves.rb_node;
2857 struct pending_dir_move *entry;
2858
2859 while (n) {
2860 entry = rb_entry(n, struct pending_dir_move, node);
2861 if (parent_ino < entry->parent_ino)
2862 n = n->rb_left;
2863 else if (parent_ino > entry->parent_ino)
2864 n = n->rb_right;
2865 else
2866 return entry;
2867 }
2868 return NULL;
2869}
2870
2871static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2872{
2873 struct fs_path *from_path = NULL;
2874 struct fs_path *to_path = NULL;
2875 u64 orig_progress = sctx->send_progress;
2876 struct recorded_ref *cur;
2877 int ret;
2878
2879 from_path = fs_path_alloc();
2880 if (!from_path)
2881 return -ENOMEM;
2882
2883 sctx->send_progress = pm->ino;
2884 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2885 if (ret < 0)
2886 goto out;
2887
2888 to_path = fs_path_alloc();
2889 if (!to_path) {
2890 ret = -ENOMEM;
2891 goto out;
2892 }
2893
2894 sctx->send_progress = sctx->cur_ino + 1;
6cc98d90
JB
2895 ret = del_waiting_dir_move(sctx, pm->ino);
2896 ASSERT(ret == 0);
2897
9f03740a
FDBM
2898 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2899 if (ret < 0)
2900 goto out;
2901
2902 ret = send_rename(sctx, from_path, to_path);
2903 if (ret < 0)
2904 goto out;
2905
2906 ret = send_utimes(sctx, pm->ino, pm->gen);
2907 if (ret < 0)
2908 goto out;
2909
2910 /*
2911 * After rename/move, need to update the utimes of both new parent(s)
2912 * and old parent(s).
2913 */
2914 list_for_each_entry(cur, &pm->update_refs, list) {
2915 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2916 if (ret < 0)
2917 goto out;
2918 }
2919
2920out:
2921 fs_path_free(from_path);
2922 fs_path_free(to_path);
2923 sctx->send_progress = orig_progress;
2924
2925 return ret;
2926}
2927
2928static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2929{
2930 if (!list_empty(&m->list))
2931 list_del(&m->list);
2932 if (!RB_EMPTY_NODE(&m->node))
2933 rb_erase(&m->node, &sctx->pending_dir_moves);
2934 __free_recorded_refs(&m->update_refs);
2935 kfree(m);
2936}
2937
2938static void tail_append_pending_moves(struct pending_dir_move *moves,
2939 struct list_head *stack)
2940{
2941 if (list_empty(&moves->list)) {
2942 list_add_tail(&moves->list, stack);
2943 } else {
2944 LIST_HEAD(list);
2945 list_splice_init(&moves->list, &list);
2946 list_add_tail(&moves->list, stack);
2947 list_splice_tail(&list, stack);
2948 }
2949}
2950
2951static int apply_children_dir_moves(struct send_ctx *sctx)
2952{
2953 struct pending_dir_move *pm;
2954 struct list_head stack;
2955 u64 parent_ino = sctx->cur_ino;
2956 int ret = 0;
2957
2958 pm = get_pending_dir_moves(sctx, parent_ino);
2959 if (!pm)
2960 return 0;
2961
2962 INIT_LIST_HEAD(&stack);
2963 tail_append_pending_moves(pm, &stack);
2964
2965 while (!list_empty(&stack)) {
2966 pm = list_first_entry(&stack, struct pending_dir_move, list);
2967 parent_ino = pm->ino;
2968 ret = apply_dir_move(sctx, pm);
2969 free_pending_move(sctx, pm);
2970 if (ret)
2971 goto out;
2972 pm = get_pending_dir_moves(sctx, parent_ino);
2973 if (pm)
2974 tail_append_pending_moves(pm, &stack);
2975 }
2976 return 0;
2977
2978out:
2979 while (!list_empty(&stack)) {
2980 pm = list_first_entry(&stack, struct pending_dir_move, list);
2981 free_pending_move(sctx, pm);
2982 }
2983 return ret;
2984}
2985
2986static int wait_for_parent_move(struct send_ctx *sctx,
2987 struct recorded_ref *parent_ref)
2988{
2989 int ret;
2990 u64 ino = parent_ref->dir;
2991 u64 parent_ino_before, parent_ino_after;
2992 u64 new_gen, old_gen;
2993 struct fs_path *path_before = NULL;
2994 struct fs_path *path_after = NULL;
2995 int len1, len2;
2996
2997 if (parent_ref->dir <= sctx->cur_ino)
2998 return 0;
2999
3000 if (is_waiting_for_move(sctx, ino))
3001 return 1;
3002
3003 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3004 NULL, NULL, NULL, NULL);
3005 if (ret == -ENOENT)
3006 return 0;
3007 else if (ret < 0)
3008 return ret;
3009
3010 ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3011 NULL, NULL, NULL, NULL);
3012 if (ret < 0)
3013 return ret;
3014
3015 if (new_gen != old_gen)
3016 return 0;
3017
3018 path_before = fs_path_alloc();
3019 if (!path_before)
3020 return -ENOMEM;
3021
3022 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3023 NULL, path_before);
3024 if (ret == -ENOENT) {
3025 ret = 0;
3026 goto out;
3027 } else if (ret < 0) {
3028 goto out;
3029 }
3030
3031 path_after = fs_path_alloc();
3032 if (!path_after) {
3033 ret = -ENOMEM;
3034 goto out;
3035 }
3036
3037 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3038 NULL, path_after);
3039 if (ret == -ENOENT) {
3040 ret = 0;
3041 goto out;
3042 } else if (ret < 0) {
3043 goto out;
3044 }
3045
3046 len1 = fs_path_len(path_before);
3047 len2 = fs_path_len(path_after);
5ed7f9ff
FDBM
3048 if (parent_ino_before != parent_ino_after || len1 != len2 ||
3049 memcmp(path_before->start, path_after->start, len1)) {
9f03740a
FDBM
3050 ret = 1;
3051 goto out;
3052 }
3053 ret = 0;
3054
3055out:
3056 fs_path_free(path_before);
3057 fs_path_free(path_after);
3058
3059 return ret;
3060}
3061
31db9f7c
AB
3062/*
3063 * This does all the move/link/unlink/rmdir magic.
3064 */
9f03740a 3065static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3066{
3067 int ret = 0;
3068 struct recorded_ref *cur;
1f4692da 3069 struct recorded_ref *cur2;
ba5e8f2e 3070 struct list_head check_dirs;
31db9f7c 3071 struct fs_path *valid_path = NULL;
b24baf69 3072 u64 ow_inode = 0;
31db9f7c
AB
3073 u64 ow_gen;
3074 int did_overwrite = 0;
3075 int is_orphan = 0;
3076
3077verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3078
6d85ed05
AB
3079 /*
3080 * This should never happen as the root dir always has the same ref
3081 * which is always '..'
3082 */
3083 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3084 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3085
924794c9 3086 valid_path = fs_path_alloc();
31db9f7c
AB
3087 if (!valid_path) {
3088 ret = -ENOMEM;
3089 goto out;
3090 }
3091
31db9f7c
AB
3092 /*
3093 * First, check if the first ref of the current inode was overwritten
3094 * before. If yes, we know that the current inode was already orphanized
3095 * and thus use the orphan name. If not, we can use get_cur_path to
3096 * get the path of the first ref as it would like while receiving at
3097 * this point in time.
3098 * New inodes are always orphan at the beginning, so force to use the
3099 * orphan name in this case.
3100 * The first ref is stored in valid_path and will be updated if it
3101 * gets moved around.
3102 */
3103 if (!sctx->cur_inode_new) {
3104 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3105 sctx->cur_inode_gen);
3106 if (ret < 0)
3107 goto out;
3108 if (ret)
3109 did_overwrite = 1;
3110 }
3111 if (sctx->cur_inode_new || did_overwrite) {
3112 ret = gen_unique_name(sctx, sctx->cur_ino,
3113 sctx->cur_inode_gen, valid_path);
3114 if (ret < 0)
3115 goto out;
3116 is_orphan = 1;
3117 } else {
3118 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3119 valid_path);
3120 if (ret < 0)
3121 goto out;
3122 }
3123
3124 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3125 /*
3126 * We may have refs where the parent directory does not exist
3127 * yet. This happens if the parent directories inum is higher
3128 * the the current inum. To handle this case, we create the
3129 * parent directory out of order. But we need to check if this
3130 * did already happen before due to other refs in the same dir.
3131 */
3132 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3133 if (ret < 0)
3134 goto out;
3135 if (ret == inode_state_will_create) {
3136 ret = 0;
3137 /*
3138 * First check if any of the current inodes refs did
3139 * already create the dir.
3140 */
3141 list_for_each_entry(cur2, &sctx->new_refs, list) {
3142 if (cur == cur2)
3143 break;
3144 if (cur2->dir == cur->dir) {
3145 ret = 1;
3146 break;
3147 }
3148 }
3149
3150 /*
3151 * If that did not happen, check if a previous inode
3152 * did already create the dir.
3153 */
3154 if (!ret)
3155 ret = did_create_dir(sctx, cur->dir);
3156 if (ret < 0)
3157 goto out;
3158 if (!ret) {
3159 ret = send_create_inode(sctx, cur->dir);
3160 if (ret < 0)
3161 goto out;
3162 }
3163 }
3164
31db9f7c
AB
3165 /*
3166 * Check if this new ref would overwrite the first ref of
3167 * another unprocessed inode. If yes, orphanize the
3168 * overwritten inode. If we find an overwritten ref that is
3169 * not the first ref, simply unlink it.
3170 */
3171 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3172 cur->name, cur->name_len,
3173 &ow_inode, &ow_gen);
3174 if (ret < 0)
3175 goto out;
3176 if (ret) {
924794c9
TI
3177 ret = is_first_ref(sctx->parent_root,
3178 ow_inode, cur->dir, cur->name,
3179 cur->name_len);
31db9f7c
AB
3180 if (ret < 0)
3181 goto out;
3182 if (ret) {
3183 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3184 cur->full_path);
3185 if (ret < 0)
3186 goto out;
3187 } else {
3188 ret = send_unlink(sctx, cur->full_path);
3189 if (ret < 0)
3190 goto out;
3191 }
3192 }
3193
3194 /*
3195 * link/move the ref to the new place. If we have an orphan
3196 * inode, move it and update valid_path. If not, link or move
3197 * it depending on the inode mode.
3198 */
1f4692da 3199 if (is_orphan) {
31db9f7c
AB
3200 ret = send_rename(sctx, valid_path, cur->full_path);
3201 if (ret < 0)
3202 goto out;
3203 is_orphan = 0;
3204 ret = fs_path_copy(valid_path, cur->full_path);
3205 if (ret < 0)
3206 goto out;
3207 } else {
3208 if (S_ISDIR(sctx->cur_inode_mode)) {
3209 /*
3210 * Dirs can't be linked, so move it. For moved
3211 * dirs, we always have one new and one deleted
3212 * ref. The deleted ref is ignored later.
3213 */
d86477b3
FDBM
3214 ret = wait_for_parent_move(sctx, cur);
3215 if (ret < 0)
3216 goto out;
3217 if (ret) {
9f03740a
FDBM
3218 ret = add_pending_dir_move(sctx,
3219 cur->dir);
3220 *pending_move = 1;
3221 } else {
3222 ret = send_rename(sctx, valid_path,
3223 cur->full_path);
3224 if (!ret)
3225 ret = fs_path_copy(valid_path,
3226 cur->full_path);
3227 }
31db9f7c
AB
3228 if (ret < 0)
3229 goto out;
3230 } else {
3231 ret = send_link(sctx, cur->full_path,
3232 valid_path);
3233 if (ret < 0)
3234 goto out;
3235 }
3236 }
ba5e8f2e 3237 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3238 if (ret < 0)
3239 goto out;
3240 }
3241
3242 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3243 /*
3244 * Check if we can already rmdir the directory. If not,
3245 * orphanize it. For every dir item inside that gets deleted
3246 * later, we do this check again and rmdir it then if possible.
3247 * See the use of check_dirs for more details.
3248 */
3249 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3250 if (ret < 0)
3251 goto out;
3252 if (ret) {
3253 ret = send_rmdir(sctx, valid_path);
3254 if (ret < 0)
3255 goto out;
3256 } else if (!is_orphan) {
3257 ret = orphanize_inode(sctx, sctx->cur_ino,
3258 sctx->cur_inode_gen, valid_path);
3259 if (ret < 0)
3260 goto out;
3261 is_orphan = 1;
3262 }
3263
3264 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3265 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3266 if (ret < 0)
3267 goto out;
3268 }
ccf1626b
AB
3269 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3270 !list_empty(&sctx->deleted_refs)) {
3271 /*
3272 * We have a moved dir. Add the old parent to check_dirs
3273 */
3274 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3275 list);
ba5e8f2e 3276 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3277 if (ret < 0)
3278 goto out;
31db9f7c
AB
3279 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3280 /*
3281 * We have a non dir inode. Go through all deleted refs and
3282 * unlink them if they were not already overwritten by other
3283 * inodes.
3284 */
3285 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3286 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3287 sctx->cur_ino, sctx->cur_inode_gen,
3288 cur->name, cur->name_len);
3289 if (ret < 0)
3290 goto out;
3291 if (!ret) {
1f4692da
AB
3292 ret = send_unlink(sctx, cur->full_path);
3293 if (ret < 0)
3294 goto out;
31db9f7c 3295 }
ba5e8f2e 3296 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3297 if (ret < 0)
3298 goto out;
3299 }
31db9f7c
AB
3300 /*
3301 * If the inode is still orphan, unlink the orphan. This may
3302 * happen when a previous inode did overwrite the first ref
3303 * of this inode and no new refs were added for the current
766702ef
AB
3304 * inode. Unlinking does not mean that the inode is deleted in
3305 * all cases. There may still be links to this inode in other
3306 * places.
31db9f7c 3307 */
1f4692da 3308 if (is_orphan) {
31db9f7c
AB
3309 ret = send_unlink(sctx, valid_path);
3310 if (ret < 0)
3311 goto out;
3312 }
3313 }
3314
3315 /*
3316 * We did collect all parent dirs where cur_inode was once located. We
3317 * now go through all these dirs and check if they are pending for
3318 * deletion and if it's finally possible to perform the rmdir now.
3319 * We also update the inode stats of the parent dirs here.
3320 */
ba5e8f2e 3321 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3322 /*
3323 * In case we had refs into dirs that were not processed yet,
3324 * we don't need to do the utime and rmdir logic for these dirs.
3325 * The dir will be processed later.
3326 */
ba5e8f2e 3327 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3328 continue;
3329
ba5e8f2e 3330 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3331 if (ret < 0)
3332 goto out;
3333
3334 if (ret == inode_state_did_create ||
3335 ret == inode_state_no_change) {
3336 /* TODO delayed utimes */
ba5e8f2e 3337 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3338 if (ret < 0)
3339 goto out;
3340 } else if (ret == inode_state_did_delete) {
ba5e8f2e 3341 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
31db9f7c
AB
3342 if (ret < 0)
3343 goto out;
3344 if (ret) {
ba5e8f2e
JB
3345 ret = get_cur_path(sctx, cur->dir,
3346 cur->dir_gen, valid_path);
31db9f7c
AB
3347 if (ret < 0)
3348 goto out;
3349 ret = send_rmdir(sctx, valid_path);
3350 if (ret < 0)
3351 goto out;
3352 }
3353 }
3354 }
3355
31db9f7c
AB
3356 ret = 0;
3357
3358out:
ba5e8f2e 3359 __free_recorded_refs(&check_dirs);
31db9f7c 3360 free_recorded_refs(sctx);
924794c9 3361 fs_path_free(valid_path);
31db9f7c
AB
3362 return ret;
3363}
3364
3365static int __record_new_ref(int num, u64 dir, int index,
3366 struct fs_path *name,
3367 void *ctx)
3368{
3369 int ret = 0;
3370 struct send_ctx *sctx = ctx;
3371 struct fs_path *p;
3372 u64 gen;
3373
924794c9 3374 p = fs_path_alloc();
31db9f7c
AB
3375 if (!p)
3376 return -ENOMEM;
3377
3378 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3379 NULL, NULL);
31db9f7c
AB
3380 if (ret < 0)
3381 goto out;
3382
31db9f7c
AB
3383 ret = get_cur_path(sctx, dir, gen, p);
3384 if (ret < 0)
3385 goto out;
3386 ret = fs_path_add_path(p, name);
3387 if (ret < 0)
3388 goto out;
3389
3390 ret = record_ref(&sctx->new_refs, dir, gen, p);
3391
3392out:
3393 if (ret)
924794c9 3394 fs_path_free(p);
31db9f7c
AB
3395 return ret;
3396}
3397
3398static int __record_deleted_ref(int num, u64 dir, int index,
3399 struct fs_path *name,
3400 void *ctx)
3401{
3402 int ret = 0;
3403 struct send_ctx *sctx = ctx;
3404 struct fs_path *p;
3405 u64 gen;
3406
924794c9 3407 p = fs_path_alloc();
31db9f7c
AB
3408 if (!p)
3409 return -ENOMEM;
3410
3411 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3412 NULL, NULL);
31db9f7c
AB
3413 if (ret < 0)
3414 goto out;
3415
3416 ret = get_cur_path(sctx, dir, gen, p);
3417 if (ret < 0)
3418 goto out;
3419 ret = fs_path_add_path(p, name);
3420 if (ret < 0)
3421 goto out;
3422
3423 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3424
3425out:
3426 if (ret)
924794c9 3427 fs_path_free(p);
31db9f7c
AB
3428 return ret;
3429}
3430
3431static int record_new_ref(struct send_ctx *sctx)
3432{
3433 int ret;
3434
924794c9
TI
3435 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3436 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
3437 if (ret < 0)
3438 goto out;
3439 ret = 0;
3440
3441out:
3442 return ret;
3443}
3444
3445static int record_deleted_ref(struct send_ctx *sctx)
3446{
3447 int ret;
3448
924794c9
TI
3449 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3450 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
3451 if (ret < 0)
3452 goto out;
3453 ret = 0;
3454
3455out:
3456 return ret;
3457}
3458
3459struct find_ref_ctx {
3460 u64 dir;
ba5e8f2e
JB
3461 u64 dir_gen;
3462 struct btrfs_root *root;
31db9f7c
AB
3463 struct fs_path *name;
3464 int found_idx;
3465};
3466
3467static int __find_iref(int num, u64 dir, int index,
3468 struct fs_path *name,
3469 void *ctx_)
3470{
3471 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
3472 u64 dir_gen;
3473 int ret;
31db9f7c
AB
3474
3475 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3476 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
3477 /*
3478 * To avoid doing extra lookups we'll only do this if everything
3479 * else matches.
3480 */
3481 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3482 NULL, NULL, NULL);
3483 if (ret)
3484 return ret;
3485 if (dir_gen != ctx->dir_gen)
3486 return 0;
31db9f7c
AB
3487 ctx->found_idx = num;
3488 return 1;
3489 }
3490 return 0;
3491}
3492
924794c9 3493static int find_iref(struct btrfs_root *root,
31db9f7c
AB
3494 struct btrfs_path *path,
3495 struct btrfs_key *key,
ba5e8f2e 3496 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
3497{
3498 int ret;
3499 struct find_ref_ctx ctx;
3500
3501 ctx.dir = dir;
3502 ctx.name = name;
ba5e8f2e 3503 ctx.dir_gen = dir_gen;
31db9f7c 3504 ctx.found_idx = -1;
ba5e8f2e 3505 ctx.root = root;
31db9f7c 3506
924794c9 3507 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
3508 if (ret < 0)
3509 return ret;
3510
3511 if (ctx.found_idx == -1)
3512 return -ENOENT;
3513
3514 return ctx.found_idx;
3515}
3516
3517static int __record_changed_new_ref(int num, u64 dir, int index,
3518 struct fs_path *name,
3519 void *ctx)
3520{
ba5e8f2e 3521 u64 dir_gen;
31db9f7c
AB
3522 int ret;
3523 struct send_ctx *sctx = ctx;
3524
ba5e8f2e
JB
3525 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3526 NULL, NULL, NULL);
3527 if (ret)
3528 return ret;
3529
924794c9 3530 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 3531 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
3532 if (ret == -ENOENT)
3533 ret = __record_new_ref(num, dir, index, name, sctx);
3534 else if (ret > 0)
3535 ret = 0;
3536
3537 return ret;
3538}
3539
3540static int __record_changed_deleted_ref(int num, u64 dir, int index,
3541 struct fs_path *name,
3542 void *ctx)
3543{
ba5e8f2e 3544 u64 dir_gen;
31db9f7c
AB
3545 int ret;
3546 struct send_ctx *sctx = ctx;
3547
ba5e8f2e
JB
3548 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3549 NULL, NULL, NULL);
3550 if (ret)
3551 return ret;
3552
924794c9 3553 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 3554 dir, dir_gen, name);
31db9f7c
AB
3555 if (ret == -ENOENT)
3556 ret = __record_deleted_ref(num, dir, index, name, sctx);
3557 else if (ret > 0)
3558 ret = 0;
3559
3560 return ret;
3561}
3562
3563static int record_changed_ref(struct send_ctx *sctx)
3564{
3565 int ret = 0;
3566
924794c9 3567 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
3568 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3569 if (ret < 0)
3570 goto out;
924794c9 3571 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3572 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3573 if (ret < 0)
3574 goto out;
3575 ret = 0;
3576
3577out:
3578 return ret;
3579}
3580
3581/*
3582 * Record and process all refs at once. Needed when an inode changes the
3583 * generation number, which means that it was deleted and recreated.
3584 */
3585static int process_all_refs(struct send_ctx *sctx,
3586 enum btrfs_compare_tree_result cmd)
3587{
3588 int ret;
3589 struct btrfs_root *root;
3590 struct btrfs_path *path;
3591 struct btrfs_key key;
3592 struct btrfs_key found_key;
3593 struct extent_buffer *eb;
3594 int slot;
3595 iterate_inode_ref_t cb;
9f03740a 3596 int pending_move = 0;
31db9f7c
AB
3597
3598 path = alloc_path_for_send();
3599 if (!path)
3600 return -ENOMEM;
3601
3602 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3603 root = sctx->send_root;
3604 cb = __record_new_ref;
3605 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3606 root = sctx->parent_root;
3607 cb = __record_deleted_ref;
3608 } else {
4d1a63b2
DS
3609 btrfs_err(sctx->send_root->fs_info,
3610 "Wrong command %d in process_all_refs", cmd);
3611 ret = -EINVAL;
3612 goto out;
31db9f7c
AB
3613 }
3614
3615 key.objectid = sctx->cmp_key->objectid;
3616 key.type = BTRFS_INODE_REF_KEY;
3617 key.offset = 0;
3618 while (1) {
3619 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
e938c8ad 3620 if (ret < 0)
31db9f7c 3621 goto out;
e938c8ad 3622 if (ret)
31db9f7c 3623 break;
31db9f7c
AB
3624
3625 eb = path->nodes[0];
3626 slot = path->slots[0];
3627 btrfs_item_key_to_cpu(eb, &found_key, slot);
3628
3629 if (found_key.objectid != key.objectid ||
96b5bd77
JS
3630 (found_key.type != BTRFS_INODE_REF_KEY &&
3631 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 3632 break;
31db9f7c 3633
924794c9 3634 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
3635 btrfs_release_path(path);
3636 if (ret < 0)
3637 goto out;
3638
3639 key.offset = found_key.offset + 1;
3640 }
e938c8ad 3641 btrfs_release_path(path);
31db9f7c 3642
9f03740a
FDBM
3643 ret = process_recorded_refs(sctx, &pending_move);
3644 /* Only applicable to an incremental send. */
3645 ASSERT(pending_move == 0);
31db9f7c
AB
3646
3647out:
3648 btrfs_free_path(path);
3649 return ret;
3650}
3651
3652static int send_set_xattr(struct send_ctx *sctx,
3653 struct fs_path *path,
3654 const char *name, int name_len,
3655 const char *data, int data_len)
3656{
3657 int ret = 0;
3658
3659 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3660 if (ret < 0)
3661 goto out;
3662
3663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3664 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3665 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3666
3667 ret = send_cmd(sctx);
3668
3669tlv_put_failure:
3670out:
3671 return ret;
3672}
3673
3674static int send_remove_xattr(struct send_ctx *sctx,
3675 struct fs_path *path,
3676 const char *name, int name_len)
3677{
3678 int ret = 0;
3679
3680 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3681 if (ret < 0)
3682 goto out;
3683
3684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3685 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3686
3687 ret = send_cmd(sctx);
3688
3689tlv_put_failure:
3690out:
3691 return ret;
3692}
3693
3694static int __process_new_xattr(int num, struct btrfs_key *di_key,
3695 const char *name, int name_len,
3696 const char *data, int data_len,
3697 u8 type, void *ctx)
3698{
3699 int ret;
3700 struct send_ctx *sctx = ctx;
3701 struct fs_path *p;
3702 posix_acl_xattr_header dummy_acl;
3703
924794c9 3704 p = fs_path_alloc();
31db9f7c
AB
3705 if (!p)
3706 return -ENOMEM;
3707
3708 /*
3709 * This hack is needed because empty acl's are stored as zero byte
3710 * data in xattrs. Problem with that is, that receiving these zero byte
3711 * acl's will fail later. To fix this, we send a dummy acl list that
3712 * only contains the version number and no entries.
3713 */
3714 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3715 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3716 if (data_len == 0) {
3717 dummy_acl.a_version =
3718 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3719 data = (char *)&dummy_acl;
3720 data_len = sizeof(dummy_acl);
3721 }
3722 }
3723
3724 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3725 if (ret < 0)
3726 goto out;
3727
3728 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3729
3730out:
924794c9 3731 fs_path_free(p);
31db9f7c
AB
3732 return ret;
3733}
3734
3735static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3736 const char *name, int name_len,
3737 const char *data, int data_len,
3738 u8 type, void *ctx)
3739{
3740 int ret;
3741 struct send_ctx *sctx = ctx;
3742 struct fs_path *p;
3743
924794c9 3744 p = fs_path_alloc();
31db9f7c
AB
3745 if (!p)
3746 return -ENOMEM;
3747
3748 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3749 if (ret < 0)
3750 goto out;
3751
3752 ret = send_remove_xattr(sctx, p, name, name_len);
3753
3754out:
924794c9 3755 fs_path_free(p);
31db9f7c
AB
3756 return ret;
3757}
3758
3759static int process_new_xattr(struct send_ctx *sctx)
3760{
3761 int ret = 0;
3762
924794c9
TI
3763 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3764 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
3765
3766 return ret;
3767}
3768
3769static int process_deleted_xattr(struct send_ctx *sctx)
3770{
3771 int ret;
3772
924794c9
TI
3773 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3774 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
3775
3776 return ret;
3777}
3778
3779struct find_xattr_ctx {
3780 const char *name;
3781 int name_len;
3782 int found_idx;
3783 char *found_data;
3784 int found_data_len;
3785};
3786
3787static int __find_xattr(int num, struct btrfs_key *di_key,
3788 const char *name, int name_len,
3789 const char *data, int data_len,
3790 u8 type, void *vctx)
3791{
3792 struct find_xattr_ctx *ctx = vctx;
3793
3794 if (name_len == ctx->name_len &&
3795 strncmp(name, ctx->name, name_len) == 0) {
3796 ctx->found_idx = num;
3797 ctx->found_data_len = data_len;
a5959bc0 3798 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
31db9f7c
AB
3799 if (!ctx->found_data)
3800 return -ENOMEM;
31db9f7c
AB
3801 return 1;
3802 }
3803 return 0;
3804}
3805
924794c9 3806static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
3807 struct btrfs_path *path,
3808 struct btrfs_key *key,
3809 const char *name, int name_len,
3810 char **data, int *data_len)
3811{
3812 int ret;
3813 struct find_xattr_ctx ctx;
3814
3815 ctx.name = name;
3816 ctx.name_len = name_len;
3817 ctx.found_idx = -1;
3818 ctx.found_data = NULL;
3819 ctx.found_data_len = 0;
3820
924794c9 3821 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
3822 if (ret < 0)
3823 return ret;
3824
3825 if (ctx.found_idx == -1)
3826 return -ENOENT;
3827 if (data) {
3828 *data = ctx.found_data;
3829 *data_len = ctx.found_data_len;
3830 } else {
3831 kfree(ctx.found_data);
3832 }
3833 return ctx.found_idx;
3834}
3835
3836
3837static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3838 const char *name, int name_len,
3839 const char *data, int data_len,
3840 u8 type, void *ctx)
3841{
3842 int ret;
3843 struct send_ctx *sctx = ctx;
3844 char *found_data = NULL;
3845 int found_data_len = 0;
31db9f7c 3846
924794c9
TI
3847 ret = find_xattr(sctx->parent_root, sctx->right_path,
3848 sctx->cmp_key, name, name_len, &found_data,
3849 &found_data_len);
31db9f7c
AB
3850 if (ret == -ENOENT) {
3851 ret = __process_new_xattr(num, di_key, name, name_len, data,
3852 data_len, type, ctx);
3853 } else if (ret >= 0) {
3854 if (data_len != found_data_len ||
3855 memcmp(data, found_data, data_len)) {
3856 ret = __process_new_xattr(num, di_key, name, name_len,
3857 data, data_len, type, ctx);
3858 } else {
3859 ret = 0;
3860 }
3861 }
3862
3863 kfree(found_data);
31db9f7c
AB
3864 return ret;
3865}
3866
3867static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3868 const char *name, int name_len,
3869 const char *data, int data_len,
3870 u8 type, void *ctx)
3871{
3872 int ret;
3873 struct send_ctx *sctx = ctx;
3874
924794c9
TI
3875 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3876 name, name_len, NULL, NULL);
31db9f7c
AB
3877 if (ret == -ENOENT)
3878 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3879 data_len, type, ctx);
3880 else if (ret >= 0)
3881 ret = 0;
3882
3883 return ret;
3884}
3885
3886static int process_changed_xattr(struct send_ctx *sctx)
3887{
3888 int ret = 0;
3889
924794c9 3890 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
3891 sctx->cmp_key, __process_changed_new_xattr, sctx);
3892 if (ret < 0)
3893 goto out;
924794c9 3894 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3895 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3896
3897out:
3898 return ret;
3899}
3900
3901static int process_all_new_xattrs(struct send_ctx *sctx)
3902{
3903 int ret;
3904 struct btrfs_root *root;
3905 struct btrfs_path *path;
3906 struct btrfs_key key;
3907 struct btrfs_key found_key;
3908 struct extent_buffer *eb;
3909 int slot;
3910
3911 path = alloc_path_for_send();
3912 if (!path)
3913 return -ENOMEM;
3914
3915 root = sctx->send_root;
3916
3917 key.objectid = sctx->cmp_key->objectid;
3918 key.type = BTRFS_XATTR_ITEM_KEY;
3919 key.offset = 0;
3920 while (1) {
3921 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3922 if (ret < 0)
3923 goto out;
3924 if (ret) {
3925 ret = 0;
3926 goto out;
3927 }
3928
3929 eb = path->nodes[0];
3930 slot = path->slots[0];
3931 btrfs_item_key_to_cpu(eb, &found_key, slot);
3932
3933 if (found_key.objectid != key.objectid ||
3934 found_key.type != key.type) {
3935 ret = 0;
3936 goto out;
3937 }
3938
924794c9
TI
3939 ret = iterate_dir_item(root, path, &found_key,
3940 __process_new_xattr, sctx);
31db9f7c
AB
3941 if (ret < 0)
3942 goto out;
3943
3944 btrfs_release_path(path);
3945 key.offset = found_key.offset + 1;
3946 }
3947
3948out:
3949 btrfs_free_path(path);
3950 return ret;
3951}
3952
ed259095
JB
3953static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3954{
3955 struct btrfs_root *root = sctx->send_root;
3956 struct btrfs_fs_info *fs_info = root->fs_info;
3957 struct inode *inode;
3958 struct page *page;
3959 char *addr;
3960 struct btrfs_key key;
3961 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3962 pgoff_t last_index;
3963 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3964 ssize_t ret = 0;
3965
3966 key.objectid = sctx->cur_ino;
3967 key.type = BTRFS_INODE_ITEM_KEY;
3968 key.offset = 0;
3969
3970 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3971 if (IS_ERR(inode))
3972 return PTR_ERR(inode);
3973
3974 if (offset + len > i_size_read(inode)) {
3975 if (offset > i_size_read(inode))
3976 len = 0;
3977 else
3978 len = offset - i_size_read(inode);
3979 }
3980 if (len == 0)
3981 goto out;
3982
3983 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
3984 while (index <= last_index) {
3985 unsigned cur_len = min_t(unsigned, len,
3986 PAGE_CACHE_SIZE - pg_offset);
3987 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3988 if (!page) {
3989 ret = -ENOMEM;
3990 break;
3991 }
3992
3993 if (!PageUptodate(page)) {
3994 btrfs_readpage(NULL, page);
3995 lock_page(page);
3996 if (!PageUptodate(page)) {
3997 unlock_page(page);
3998 page_cache_release(page);
3999 ret = -EIO;
4000 break;
4001 }
4002 }
4003
4004 addr = kmap(page);
4005 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4006 kunmap(page);
4007 unlock_page(page);
4008 page_cache_release(page);
4009 index++;
4010 pg_offset = 0;
4011 len -= cur_len;
4012 ret += cur_len;
4013 }
4014out:
4015 iput(inode);
4016 return ret;
4017}
4018
31db9f7c
AB
4019/*
4020 * Read some bytes from the current inode/file and send a write command to
4021 * user space.
4022 */
4023static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4024{
4025 int ret = 0;
4026 struct fs_path *p;
ed259095 4027 ssize_t num_read = 0;
31db9f7c 4028
924794c9 4029 p = fs_path_alloc();
31db9f7c
AB
4030 if (!p)
4031 return -ENOMEM;
4032
31db9f7c
AB
4033verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4034
ed259095
JB
4035 num_read = fill_read_buf(sctx, offset, len);
4036 if (num_read <= 0) {
4037 if (num_read < 0)
4038 ret = num_read;
31db9f7c 4039 goto out;
ed259095 4040 }
31db9f7c
AB
4041
4042 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4043 if (ret < 0)
4044 goto out;
4045
4046 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4047 if (ret < 0)
4048 goto out;
4049
4050 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4051 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4052 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4053
4054 ret = send_cmd(sctx);
4055
4056tlv_put_failure:
4057out:
924794c9 4058 fs_path_free(p);
31db9f7c
AB
4059 if (ret < 0)
4060 return ret;
e938c8ad 4061 return num_read;
31db9f7c
AB
4062}
4063
4064/*
4065 * Send a clone command to user space.
4066 */
4067static int send_clone(struct send_ctx *sctx,
4068 u64 offset, u32 len,
4069 struct clone_root *clone_root)
4070{
4071 int ret = 0;
31db9f7c
AB
4072 struct fs_path *p;
4073 u64 gen;
4074
4075verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4076 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4077 clone_root->root->objectid, clone_root->ino,
4078 clone_root->offset);
4079
924794c9 4080 p = fs_path_alloc();
31db9f7c
AB
4081 if (!p)
4082 return -ENOMEM;
4083
4084 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4085 if (ret < 0)
4086 goto out;
4087
4088 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4089 if (ret < 0)
4090 goto out;
4091
4092 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4093 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4094 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4095
e938c8ad 4096 if (clone_root->root == sctx->send_root) {
31db9f7c 4097 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4098 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4099 if (ret < 0)
4100 goto out;
4101 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4102 } else {
924794c9 4103 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4104 }
4105 if (ret < 0)
4106 goto out;
4107
4108 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
e938c8ad 4109 clone_root->root->root_item.uuid);
31db9f7c 4110 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4111 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4112 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4113 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4114 clone_root->offset);
4115
4116 ret = send_cmd(sctx);
4117
4118tlv_put_failure:
4119out:
924794c9 4120 fs_path_free(p);
31db9f7c
AB
4121 return ret;
4122}
4123
cb95e7bf
MF
4124/*
4125 * Send an update extent command to user space.
4126 */
4127static int send_update_extent(struct send_ctx *sctx,
4128 u64 offset, u32 len)
4129{
4130 int ret = 0;
4131 struct fs_path *p;
4132
924794c9 4133 p = fs_path_alloc();
cb95e7bf
MF
4134 if (!p)
4135 return -ENOMEM;
4136
4137 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4138 if (ret < 0)
4139 goto out;
4140
4141 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4142 if (ret < 0)
4143 goto out;
4144
4145 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4146 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4147 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4148
4149 ret = send_cmd(sctx);
4150
4151tlv_put_failure:
4152out:
924794c9 4153 fs_path_free(p);
cb95e7bf
MF
4154 return ret;
4155}
4156
16e7549f
JB
4157static int send_hole(struct send_ctx *sctx, u64 end)
4158{
4159 struct fs_path *p = NULL;
4160 u64 offset = sctx->cur_inode_last_extent;
4161 u64 len;
4162 int ret = 0;
4163
4164 p = fs_path_alloc();
4165 if (!p)
4166 return -ENOMEM;
4167 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4168 while (offset < end) {
4169 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4170
4171 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4172 if (ret < 0)
4173 break;
4174 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4175 if (ret < 0)
4176 break;
4177 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4178 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4179 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4180 ret = send_cmd(sctx);
4181 if (ret < 0)
4182 break;
4183 offset += len;
4184 }
4185tlv_put_failure:
4186 fs_path_free(p);
4187 return ret;
4188}
4189
31db9f7c
AB
4190static int send_write_or_clone(struct send_ctx *sctx,
4191 struct btrfs_path *path,
4192 struct btrfs_key *key,
4193 struct clone_root *clone_root)
4194{
4195 int ret = 0;
4196 struct btrfs_file_extent_item *ei;
4197 u64 offset = key->offset;
4198 u64 pos = 0;
4199 u64 len;
4200 u32 l;
4201 u8 type;
28e5dd8f 4202 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
4203
4204 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4205 struct btrfs_file_extent_item);
4206 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 4207 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4208 len = btrfs_file_extent_inline_len(path->nodes[0],
4209 path->slots[0], ei);
74dd17fb
CM
4210 /*
4211 * it is possible the inline item won't cover the whole page,
4212 * but there may be items after this page. Make
4213 * sure to send the whole thing
4214 */
4215 len = PAGE_CACHE_ALIGN(len);
4216 } else {
31db9f7c 4217 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 4218 }
31db9f7c
AB
4219
4220 if (offset + len > sctx->cur_inode_size)
4221 len = sctx->cur_inode_size - offset;
4222 if (len == 0) {
4223 ret = 0;
4224 goto out;
4225 }
4226
28e5dd8f 4227 if (clone_root && IS_ALIGNED(offset + len, bs)) {
cb95e7bf
MF
4228 ret = send_clone(sctx, offset, len, clone_root);
4229 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4230 ret = send_update_extent(sctx, offset, len);
4231 } else {
31db9f7c
AB
4232 while (pos < len) {
4233 l = len - pos;
4234 if (l > BTRFS_SEND_READ_SIZE)
4235 l = BTRFS_SEND_READ_SIZE;
4236 ret = send_write(sctx, pos + offset, l);
4237 if (ret < 0)
4238 goto out;
4239 if (!ret)
4240 break;
4241 pos += ret;
4242 }
4243 ret = 0;
31db9f7c 4244 }
31db9f7c
AB
4245out:
4246 return ret;
4247}
4248
4249static int is_extent_unchanged(struct send_ctx *sctx,
4250 struct btrfs_path *left_path,
4251 struct btrfs_key *ekey)
4252{
4253 int ret = 0;
4254 struct btrfs_key key;
4255 struct btrfs_path *path = NULL;
4256 struct extent_buffer *eb;
4257 int slot;
4258 struct btrfs_key found_key;
4259 struct btrfs_file_extent_item *ei;
4260 u64 left_disknr;
4261 u64 right_disknr;
4262 u64 left_offset;
4263 u64 right_offset;
4264 u64 left_offset_fixed;
4265 u64 left_len;
4266 u64 right_len;
74dd17fb
CM
4267 u64 left_gen;
4268 u64 right_gen;
31db9f7c
AB
4269 u8 left_type;
4270 u8 right_type;
4271
4272 path = alloc_path_for_send();
4273 if (!path)
4274 return -ENOMEM;
4275
4276 eb = left_path->nodes[0];
4277 slot = left_path->slots[0];
31db9f7c
AB
4278 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4279 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4280
4281 if (left_type != BTRFS_FILE_EXTENT_REG) {
4282 ret = 0;
4283 goto out;
4284 }
74dd17fb
CM
4285 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4286 left_len = btrfs_file_extent_num_bytes(eb, ei);
4287 left_offset = btrfs_file_extent_offset(eb, ei);
4288 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
4289
4290 /*
4291 * Following comments will refer to these graphics. L is the left
4292 * extents which we are checking at the moment. 1-8 are the right
4293 * extents that we iterate.
4294 *
4295 * |-----L-----|
4296 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4297 *
4298 * |-----L-----|
4299 * |--1--|-2b-|...(same as above)
4300 *
4301 * Alternative situation. Happens on files where extents got split.
4302 * |-----L-----|
4303 * |-----------7-----------|-6-|
4304 *
4305 * Alternative situation. Happens on files which got larger.
4306 * |-----L-----|
4307 * |-8-|
4308 * Nothing follows after 8.
4309 */
4310
4311 key.objectid = ekey->objectid;
4312 key.type = BTRFS_EXTENT_DATA_KEY;
4313 key.offset = ekey->offset;
4314 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4315 if (ret < 0)
4316 goto out;
4317 if (ret) {
4318 ret = 0;
4319 goto out;
4320 }
4321
4322 /*
4323 * Handle special case where the right side has no extents at all.
4324 */
4325 eb = path->nodes[0];
4326 slot = path->slots[0];
4327 btrfs_item_key_to_cpu(eb, &found_key, slot);
4328 if (found_key.objectid != key.objectid ||
4329 found_key.type != key.type) {
57cfd462
JB
4330 /* If we're a hole then just pretend nothing changed */
4331 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4332 goto out;
4333 }
4334
4335 /*
4336 * We're now on 2a, 2b or 7.
4337 */
4338 key = found_key;
4339 while (key.offset < ekey->offset + left_len) {
4340 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4341 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4342 if (right_type != BTRFS_FILE_EXTENT_REG) {
4343 ret = 0;
4344 goto out;
4345 }
4346
007d31f7
JB
4347 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4348 right_len = btrfs_file_extent_num_bytes(eb, ei);
4349 right_offset = btrfs_file_extent_offset(eb, ei);
4350 right_gen = btrfs_file_extent_generation(eb, ei);
4351
31db9f7c
AB
4352 /*
4353 * Are we at extent 8? If yes, we know the extent is changed.
4354 * This may only happen on the first iteration.
4355 */
d8347fa4 4356 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
4357 /* If we're a hole just pretend nothing changed */
4358 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4359 goto out;
4360 }
4361
4362 left_offset_fixed = left_offset;
4363 if (key.offset < ekey->offset) {
4364 /* Fix the right offset for 2a and 7. */
4365 right_offset += ekey->offset - key.offset;
4366 } else {
4367 /* Fix the left offset for all behind 2a and 2b */
4368 left_offset_fixed += key.offset - ekey->offset;
4369 }
4370
4371 /*
4372 * Check if we have the same extent.
4373 */
3954096d 4374 if (left_disknr != right_disknr ||
74dd17fb
CM
4375 left_offset_fixed != right_offset ||
4376 left_gen != right_gen) {
31db9f7c
AB
4377 ret = 0;
4378 goto out;
4379 }
4380
4381 /*
4382 * Go to the next extent.
4383 */
4384 ret = btrfs_next_item(sctx->parent_root, path);
4385 if (ret < 0)
4386 goto out;
4387 if (!ret) {
4388 eb = path->nodes[0];
4389 slot = path->slots[0];
4390 btrfs_item_key_to_cpu(eb, &found_key, slot);
4391 }
4392 if (ret || found_key.objectid != key.objectid ||
4393 found_key.type != key.type) {
4394 key.offset += right_len;
4395 break;
adaa4b8e
JS
4396 }
4397 if (found_key.offset != key.offset + right_len) {
4398 ret = 0;
4399 goto out;
31db9f7c
AB
4400 }
4401 key = found_key;
4402 }
4403
4404 /*
4405 * We're now behind the left extent (treat as unchanged) or at the end
4406 * of the right side (treat as changed).
4407 */
4408 if (key.offset >= ekey->offset + left_len)
4409 ret = 1;
4410 else
4411 ret = 0;
4412
4413
4414out:
4415 btrfs_free_path(path);
4416 return ret;
4417}
4418
16e7549f
JB
4419static int get_last_extent(struct send_ctx *sctx, u64 offset)
4420{
4421 struct btrfs_path *path;
4422 struct btrfs_root *root = sctx->send_root;
4423 struct btrfs_file_extent_item *fi;
4424 struct btrfs_key key;
4425 u64 extent_end;
4426 u8 type;
4427 int ret;
4428
4429 path = alloc_path_for_send();
4430 if (!path)
4431 return -ENOMEM;
4432
4433 sctx->cur_inode_last_extent = 0;
4434
4435 key.objectid = sctx->cur_ino;
4436 key.type = BTRFS_EXTENT_DATA_KEY;
4437 key.offset = offset;
4438 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4439 if (ret < 0)
4440 goto out;
4441 ret = 0;
4442 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4443 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4444 goto out;
4445
4446 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4447 struct btrfs_file_extent_item);
4448 type = btrfs_file_extent_type(path->nodes[0], fi);
4449 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4450 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4451 path->slots[0], fi);
16e7549f
JB
4452 extent_end = ALIGN(key.offset + size,
4453 sctx->send_root->sectorsize);
4454 } else {
4455 extent_end = key.offset +
4456 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4457 }
4458 sctx->cur_inode_last_extent = extent_end;
4459out:
4460 btrfs_free_path(path);
4461 return ret;
4462}
4463
4464static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4465 struct btrfs_key *key)
4466{
4467 struct btrfs_file_extent_item *fi;
4468 u64 extent_end;
4469 u8 type;
4470 int ret = 0;
4471
4472 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4473 return 0;
4474
4475 if (sctx->cur_inode_last_extent == (u64)-1) {
4476 ret = get_last_extent(sctx, key->offset - 1);
4477 if (ret)
4478 return ret;
4479 }
4480
4481 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4482 struct btrfs_file_extent_item);
4483 type = btrfs_file_extent_type(path->nodes[0], fi);
4484 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4485 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4486 path->slots[0], fi);
16e7549f
JB
4487 extent_end = ALIGN(key->offset + size,
4488 sctx->send_root->sectorsize);
4489 } else {
4490 extent_end = key->offset +
4491 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4492 }
bf54f412
FDBM
4493
4494 if (path->slots[0] == 0 &&
4495 sctx->cur_inode_last_extent < key->offset) {
4496 /*
4497 * We might have skipped entire leafs that contained only
4498 * file extent items for our current inode. These leafs have
4499 * a generation number smaller (older) than the one in the
4500 * current leaf and the leaf our last extent came from, and
4501 * are located between these 2 leafs.
4502 */
4503 ret = get_last_extent(sctx, key->offset - 1);
4504 if (ret)
4505 return ret;
4506 }
4507
16e7549f
JB
4508 if (sctx->cur_inode_last_extent < key->offset)
4509 ret = send_hole(sctx, key->offset);
4510 sctx->cur_inode_last_extent = extent_end;
4511 return ret;
4512}
4513
31db9f7c
AB
4514static int process_extent(struct send_ctx *sctx,
4515 struct btrfs_path *path,
4516 struct btrfs_key *key)
4517{
31db9f7c 4518 struct clone_root *found_clone = NULL;
57cfd462 4519 int ret = 0;
31db9f7c
AB
4520
4521 if (S_ISLNK(sctx->cur_inode_mode))
4522 return 0;
4523
4524 if (sctx->parent_root && !sctx->cur_inode_new) {
4525 ret = is_extent_unchanged(sctx, path, key);
4526 if (ret < 0)
4527 goto out;
4528 if (ret) {
4529 ret = 0;
16e7549f 4530 goto out_hole;
31db9f7c 4531 }
57cfd462
JB
4532 } else {
4533 struct btrfs_file_extent_item *ei;
4534 u8 type;
4535
4536 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4537 struct btrfs_file_extent_item);
4538 type = btrfs_file_extent_type(path->nodes[0], ei);
4539 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4540 type == BTRFS_FILE_EXTENT_REG) {
4541 /*
4542 * The send spec does not have a prealloc command yet,
4543 * so just leave a hole for prealloc'ed extents until
4544 * we have enough commands queued up to justify rev'ing
4545 * the send spec.
4546 */
4547 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4548 ret = 0;
4549 goto out;
4550 }
4551
4552 /* Have a hole, just skip it. */
4553 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4554 ret = 0;
4555 goto out;
4556 }
4557 }
31db9f7c
AB
4558 }
4559
4560 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4561 sctx->cur_inode_size, &found_clone);
4562 if (ret != -ENOENT && ret < 0)
4563 goto out;
4564
4565 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
4566 if (ret)
4567 goto out;
4568out_hole:
4569 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
4570out:
4571 return ret;
4572}
4573
4574static int process_all_extents(struct send_ctx *sctx)
4575{
4576 int ret;
4577 struct btrfs_root *root;
4578 struct btrfs_path *path;
4579 struct btrfs_key key;
4580 struct btrfs_key found_key;
4581 struct extent_buffer *eb;
4582 int slot;
4583
4584 root = sctx->send_root;
4585 path = alloc_path_for_send();
4586 if (!path)
4587 return -ENOMEM;
4588
4589 key.objectid = sctx->cmp_key->objectid;
4590 key.type = BTRFS_EXTENT_DATA_KEY;
4591 key.offset = 0;
7fdd29d0
FDBM
4592 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4593 if (ret < 0)
4594 goto out;
31db9f7c 4595
7fdd29d0 4596 while (1) {
31db9f7c
AB
4597 eb = path->nodes[0];
4598 slot = path->slots[0];
7fdd29d0
FDBM
4599
4600 if (slot >= btrfs_header_nritems(eb)) {
4601 ret = btrfs_next_leaf(root, path);
4602 if (ret < 0) {
4603 goto out;
4604 } else if (ret > 0) {
4605 ret = 0;
4606 break;
4607 }
4608 continue;
4609 }
4610
31db9f7c
AB
4611 btrfs_item_key_to_cpu(eb, &found_key, slot);
4612
4613 if (found_key.objectid != key.objectid ||
4614 found_key.type != key.type) {
4615 ret = 0;
4616 goto out;
4617 }
4618
4619 ret = process_extent(sctx, path, &found_key);
4620 if (ret < 0)
4621 goto out;
4622
7fdd29d0 4623 path->slots[0]++;
31db9f7c
AB
4624 }
4625
4626out:
4627 btrfs_free_path(path);
4628 return ret;
4629}
4630
9f03740a
FDBM
4631static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4632 int *pending_move,
4633 int *refs_processed)
31db9f7c
AB
4634{
4635 int ret = 0;
4636
4637 if (sctx->cur_ino == 0)
4638 goto out;
4639 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 4640 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
4641 goto out;
4642 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4643 goto out;
4644
9f03740a 4645 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
4646 if (ret < 0)
4647 goto out;
4648
9f03740a 4649 *refs_processed = 1;
31db9f7c
AB
4650out:
4651 return ret;
4652}
4653
4654static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4655{
4656 int ret = 0;
4657 u64 left_mode;
4658 u64 left_uid;
4659 u64 left_gid;
4660 u64 right_mode;
4661 u64 right_uid;
4662 u64 right_gid;
4663 int need_chmod = 0;
4664 int need_chown = 0;
9f03740a
FDBM
4665 int pending_move = 0;
4666 int refs_processed = 0;
31db9f7c 4667
9f03740a
FDBM
4668 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4669 &refs_processed);
31db9f7c
AB
4670 if (ret < 0)
4671 goto out;
4672
9f03740a
FDBM
4673 /*
4674 * We have processed the refs and thus need to advance send_progress.
4675 * Now, calls to get_cur_xxx will take the updated refs of the current
4676 * inode into account.
4677 *
4678 * On the other hand, if our current inode is a directory and couldn't
4679 * be moved/renamed because its parent was renamed/moved too and it has
4680 * a higher inode number, we can only move/rename our current inode
4681 * after we moved/renamed its parent. Therefore in this case operate on
4682 * the old path (pre move/rename) of our current inode, and the
4683 * move/rename will be performed later.
4684 */
4685 if (refs_processed && !pending_move)
4686 sctx->send_progress = sctx->cur_ino + 1;
4687
31db9f7c
AB
4688 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4689 goto out;
4690 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4691 goto out;
4692
4693 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 4694 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
4695 if (ret < 0)
4696 goto out;
4697
e2d044fe
AL
4698 if (!sctx->parent_root || sctx->cur_inode_new) {
4699 need_chown = 1;
4700 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 4701 need_chmod = 1;
e2d044fe
AL
4702 } else {
4703 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4704 NULL, NULL, &right_mode, &right_uid,
4705 &right_gid, NULL);
4706 if (ret < 0)
4707 goto out;
31db9f7c 4708
e2d044fe
AL
4709 if (left_uid != right_uid || left_gid != right_gid)
4710 need_chown = 1;
4711 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4712 need_chmod = 1;
31db9f7c
AB
4713 }
4714
4715 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f
JB
4716 if (need_send_hole(sctx)) {
4717 if (sctx->cur_inode_last_extent == (u64)-1) {
4718 ret = get_last_extent(sctx, (u64)-1);
4719 if (ret)
4720 goto out;
4721 }
4722 if (sctx->cur_inode_last_extent <
4723 sctx->cur_inode_size) {
4724 ret = send_hole(sctx, sctx->cur_inode_size);
4725 if (ret)
4726 goto out;
4727 }
4728 }
31db9f7c
AB
4729 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4730 sctx->cur_inode_size);
4731 if (ret < 0)
4732 goto out;
4733 }
4734
4735 if (need_chown) {
4736 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4737 left_uid, left_gid);
4738 if (ret < 0)
4739 goto out;
4740 }
4741 if (need_chmod) {
4742 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4743 left_mode);
4744 if (ret < 0)
4745 goto out;
4746 }
4747
4748 /*
9f03740a
FDBM
4749 * If other directory inodes depended on our current directory
4750 * inode's move/rename, now do their move/rename operations.
31db9f7c 4751 */
9f03740a
FDBM
4752 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4753 ret = apply_children_dir_moves(sctx);
4754 if (ret)
4755 goto out;
4756 }
4757
4758 /*
4759 * Need to send that every time, no matter if it actually
4760 * changed between the two trees as we have done changes to
4761 * the inode before.
4762 */
4763 sctx->send_progress = sctx->cur_ino + 1;
31db9f7c
AB
4764 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4765 if (ret < 0)
4766 goto out;
4767
4768out:
4769 return ret;
4770}
4771
4772static int changed_inode(struct send_ctx *sctx,
4773 enum btrfs_compare_tree_result result)
4774{
4775 int ret = 0;
4776 struct btrfs_key *key = sctx->cmp_key;
4777 struct btrfs_inode_item *left_ii = NULL;
4778 struct btrfs_inode_item *right_ii = NULL;
4779 u64 left_gen = 0;
4780 u64 right_gen = 0;
4781
31db9f7c
AB
4782 sctx->cur_ino = key->objectid;
4783 sctx->cur_inode_new_gen = 0;
16e7549f 4784 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
4785
4786 /*
4787 * Set send_progress to current inode. This will tell all get_cur_xxx
4788 * functions that the current inode's refs are not updated yet. Later,
4789 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4790 */
31db9f7c
AB
4791 sctx->send_progress = sctx->cur_ino;
4792
4793 if (result == BTRFS_COMPARE_TREE_NEW ||
4794 result == BTRFS_COMPARE_TREE_CHANGED) {
4795 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4796 sctx->left_path->slots[0],
4797 struct btrfs_inode_item);
4798 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4799 left_ii);
4800 } else {
4801 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4802 sctx->right_path->slots[0],
4803 struct btrfs_inode_item);
4804 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4805 right_ii);
4806 }
4807 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4808 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4809 sctx->right_path->slots[0],
4810 struct btrfs_inode_item);
4811
4812 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4813 right_ii);
6d85ed05
AB
4814
4815 /*
4816 * The cur_ino = root dir case is special here. We can't treat
4817 * the inode as deleted+reused because it would generate a
4818 * stream that tries to delete/mkdir the root dir.
4819 */
4820 if (left_gen != right_gen &&
4821 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
4822 sctx->cur_inode_new_gen = 1;
4823 }
4824
4825 if (result == BTRFS_COMPARE_TREE_NEW) {
4826 sctx->cur_inode_gen = left_gen;
4827 sctx->cur_inode_new = 1;
4828 sctx->cur_inode_deleted = 0;
4829 sctx->cur_inode_size = btrfs_inode_size(
4830 sctx->left_path->nodes[0], left_ii);
4831 sctx->cur_inode_mode = btrfs_inode_mode(
4832 sctx->left_path->nodes[0], left_ii);
4833 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 4834 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4835 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4836 sctx->cur_inode_gen = right_gen;
4837 sctx->cur_inode_new = 0;
4838 sctx->cur_inode_deleted = 1;
4839 sctx->cur_inode_size = btrfs_inode_size(
4840 sctx->right_path->nodes[0], right_ii);
4841 sctx->cur_inode_mode = btrfs_inode_mode(
4842 sctx->right_path->nodes[0], right_ii);
4843 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
4844 /*
4845 * We need to do some special handling in case the inode was
4846 * reported as changed with a changed generation number. This
4847 * means that the original inode was deleted and new inode
4848 * reused the same inum. So we have to treat the old inode as
4849 * deleted and the new one as new.
4850 */
31db9f7c 4851 if (sctx->cur_inode_new_gen) {
766702ef
AB
4852 /*
4853 * First, process the inode as if it was deleted.
4854 */
31db9f7c
AB
4855 sctx->cur_inode_gen = right_gen;
4856 sctx->cur_inode_new = 0;
4857 sctx->cur_inode_deleted = 1;
4858 sctx->cur_inode_size = btrfs_inode_size(
4859 sctx->right_path->nodes[0], right_ii);
4860 sctx->cur_inode_mode = btrfs_inode_mode(
4861 sctx->right_path->nodes[0], right_ii);
4862 ret = process_all_refs(sctx,
4863 BTRFS_COMPARE_TREE_DELETED);
4864 if (ret < 0)
4865 goto out;
4866
766702ef
AB
4867 /*
4868 * Now process the inode as if it was new.
4869 */
31db9f7c
AB
4870 sctx->cur_inode_gen = left_gen;
4871 sctx->cur_inode_new = 1;
4872 sctx->cur_inode_deleted = 0;
4873 sctx->cur_inode_size = btrfs_inode_size(
4874 sctx->left_path->nodes[0], left_ii);
4875 sctx->cur_inode_mode = btrfs_inode_mode(
4876 sctx->left_path->nodes[0], left_ii);
1f4692da 4877 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4878 if (ret < 0)
4879 goto out;
4880
4881 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4882 if (ret < 0)
4883 goto out;
e479d9bb
AB
4884 /*
4885 * Advance send_progress now as we did not get into
4886 * process_recorded_refs_if_needed in the new_gen case.
4887 */
4888 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
4889
4890 /*
4891 * Now process all extents and xattrs of the inode as if
4892 * they were all new.
4893 */
31db9f7c
AB
4894 ret = process_all_extents(sctx);
4895 if (ret < 0)
4896 goto out;
4897 ret = process_all_new_xattrs(sctx);
4898 if (ret < 0)
4899 goto out;
4900 } else {
4901 sctx->cur_inode_gen = left_gen;
4902 sctx->cur_inode_new = 0;
4903 sctx->cur_inode_new_gen = 0;
4904 sctx->cur_inode_deleted = 0;
4905 sctx->cur_inode_size = btrfs_inode_size(
4906 sctx->left_path->nodes[0], left_ii);
4907 sctx->cur_inode_mode = btrfs_inode_mode(
4908 sctx->left_path->nodes[0], left_ii);
4909 }
4910 }
4911
4912out:
4913 return ret;
4914}
4915
766702ef
AB
4916/*
4917 * We have to process new refs before deleted refs, but compare_trees gives us
4918 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4919 * first and later process them in process_recorded_refs.
4920 * For the cur_inode_new_gen case, we skip recording completely because
4921 * changed_inode did already initiate processing of refs. The reason for this is
4922 * that in this case, compare_tree actually compares the refs of 2 different
4923 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4924 * refs of the right tree as deleted and all refs of the left tree as new.
4925 */
31db9f7c
AB
4926static int changed_ref(struct send_ctx *sctx,
4927 enum btrfs_compare_tree_result result)
4928{
4929 int ret = 0;
4930
4931 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4932
4933 if (!sctx->cur_inode_new_gen &&
4934 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4935 if (result == BTRFS_COMPARE_TREE_NEW)
4936 ret = record_new_ref(sctx);
4937 else if (result == BTRFS_COMPARE_TREE_DELETED)
4938 ret = record_deleted_ref(sctx);
4939 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4940 ret = record_changed_ref(sctx);
4941 }
4942
4943 return ret;
4944}
4945
766702ef
AB
4946/*
4947 * Process new/deleted/changed xattrs. We skip processing in the
4948 * cur_inode_new_gen case because changed_inode did already initiate processing
4949 * of xattrs. The reason is the same as in changed_ref
4950 */
31db9f7c
AB
4951static int changed_xattr(struct send_ctx *sctx,
4952 enum btrfs_compare_tree_result result)
4953{
4954 int ret = 0;
4955
4956 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4957
4958 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4959 if (result == BTRFS_COMPARE_TREE_NEW)
4960 ret = process_new_xattr(sctx);
4961 else if (result == BTRFS_COMPARE_TREE_DELETED)
4962 ret = process_deleted_xattr(sctx);
4963 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4964 ret = process_changed_xattr(sctx);
4965 }
4966
4967 return ret;
4968}
4969
766702ef
AB
4970/*
4971 * Process new/deleted/changed extents. We skip processing in the
4972 * cur_inode_new_gen case because changed_inode did already initiate processing
4973 * of extents. The reason is the same as in changed_ref
4974 */
31db9f7c
AB
4975static int changed_extent(struct send_ctx *sctx,
4976 enum btrfs_compare_tree_result result)
4977{
4978 int ret = 0;
4979
4980 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4981
4982 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4983 if (result != BTRFS_COMPARE_TREE_DELETED)
4984 ret = process_extent(sctx, sctx->left_path,
4985 sctx->cmp_key);
4986 }
4987
4988 return ret;
4989}
4990
ba5e8f2e
JB
4991static int dir_changed(struct send_ctx *sctx, u64 dir)
4992{
4993 u64 orig_gen, new_gen;
4994 int ret;
4995
4996 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
4997 NULL, NULL);
4998 if (ret)
4999 return ret;
5000
5001 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5002 NULL, NULL, NULL);
5003 if (ret)
5004 return ret;
5005
5006 return (orig_gen != new_gen) ? 1 : 0;
5007}
5008
5009static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5010 struct btrfs_key *key)
5011{
5012 struct btrfs_inode_extref *extref;
5013 struct extent_buffer *leaf;
5014 u64 dirid = 0, last_dirid = 0;
5015 unsigned long ptr;
5016 u32 item_size;
5017 u32 cur_offset = 0;
5018 int ref_name_len;
5019 int ret = 0;
5020
5021 /* Easy case, just check this one dirid */
5022 if (key->type == BTRFS_INODE_REF_KEY) {
5023 dirid = key->offset;
5024
5025 ret = dir_changed(sctx, dirid);
5026 goto out;
5027 }
5028
5029 leaf = path->nodes[0];
5030 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5031 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5032 while (cur_offset < item_size) {
5033 extref = (struct btrfs_inode_extref *)(ptr +
5034 cur_offset);
5035 dirid = btrfs_inode_extref_parent(leaf, extref);
5036 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5037 cur_offset += ref_name_len + sizeof(*extref);
5038 if (dirid == last_dirid)
5039 continue;
5040 ret = dir_changed(sctx, dirid);
5041 if (ret)
5042 break;
5043 last_dirid = dirid;
5044 }
5045out:
5046 return ret;
5047}
5048
766702ef
AB
5049/*
5050 * Updates compare related fields in sctx and simply forwards to the actual
5051 * changed_xxx functions.
5052 */
31db9f7c
AB
5053static int changed_cb(struct btrfs_root *left_root,
5054 struct btrfs_root *right_root,
5055 struct btrfs_path *left_path,
5056 struct btrfs_path *right_path,
5057 struct btrfs_key *key,
5058 enum btrfs_compare_tree_result result,
5059 void *ctx)
5060{
5061 int ret = 0;
5062 struct send_ctx *sctx = ctx;
5063
ba5e8f2e 5064 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5065 if (key->type == BTRFS_INODE_REF_KEY ||
5066 key->type == BTRFS_INODE_EXTREF_KEY) {
5067 ret = compare_refs(sctx, left_path, key);
5068 if (!ret)
5069 return 0;
5070 if (ret < 0)
5071 return ret;
5072 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5073 return maybe_send_hole(sctx, left_path, key);
5074 } else {
ba5e8f2e 5075 return 0;
16e7549f 5076 }
ba5e8f2e
JB
5077 result = BTRFS_COMPARE_TREE_CHANGED;
5078 ret = 0;
5079 }
5080
31db9f7c
AB
5081 sctx->left_path = left_path;
5082 sctx->right_path = right_path;
5083 sctx->cmp_key = key;
5084
5085 ret = finish_inode_if_needed(sctx, 0);
5086 if (ret < 0)
5087 goto out;
5088
2981e225
AB
5089 /* Ignore non-FS objects */
5090 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5091 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5092 goto out;
5093
31db9f7c
AB
5094 if (key->type == BTRFS_INODE_ITEM_KEY)
5095 ret = changed_inode(sctx, result);
96b5bd77
JS
5096 else if (key->type == BTRFS_INODE_REF_KEY ||
5097 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5098 ret = changed_ref(sctx, result);
5099 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5100 ret = changed_xattr(sctx, result);
5101 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5102 ret = changed_extent(sctx, result);
5103
5104out:
5105 return ret;
5106}
5107
5108static int full_send_tree(struct send_ctx *sctx)
5109{
5110 int ret;
31db9f7c
AB
5111 struct btrfs_root *send_root = sctx->send_root;
5112 struct btrfs_key key;
5113 struct btrfs_key found_key;
5114 struct btrfs_path *path;
5115 struct extent_buffer *eb;
5116 int slot;
5117 u64 start_ctransid;
5118 u64 ctransid;
5119
5120 path = alloc_path_for_send();
5121 if (!path)
5122 return -ENOMEM;
5123
5f3ab90a 5124 spin_lock(&send_root->root_item_lock);
31db9f7c 5125 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5126 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5127
5128 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5129 key.type = BTRFS_INODE_ITEM_KEY;
5130 key.offset = 0;
5131
31db9f7c 5132 /*
766702ef
AB
5133 * Make sure the tree has not changed after re-joining. We detect this
5134 * by comparing start_ctransid and ctransid. They should always match.
31db9f7c 5135 */
5f3ab90a 5136 spin_lock(&send_root->root_item_lock);
31db9f7c 5137 ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5138 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5139
5140 if (ctransid != start_ctransid) {
efe120a0 5141 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
31db9f7c
AB
5142 "send was modified in between. This is "
5143 "probably a bug.\n");
5144 ret = -EIO;
5145 goto out;
5146 }
5147
5148 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5149 if (ret < 0)
5150 goto out;
5151 if (ret)
5152 goto out_finish;
5153
5154 while (1) {
31db9f7c
AB
5155 eb = path->nodes[0];
5156 slot = path->slots[0];
5157 btrfs_item_key_to_cpu(eb, &found_key, slot);
5158
5159 ret = changed_cb(send_root, NULL, path, NULL,
5160 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5161 if (ret < 0)
5162 goto out;
5163
5164 key.objectid = found_key.objectid;
5165 key.type = found_key.type;
5166 key.offset = found_key.offset + 1;
5167
5168 ret = btrfs_next_item(send_root, path);
5169 if (ret < 0)
5170 goto out;
5171 if (ret) {
5172 ret = 0;
5173 break;
5174 }
5175 }
5176
5177out_finish:
5178 ret = finish_inode_if_needed(sctx, 1);
5179
5180out:
5181 btrfs_free_path(path);
31db9f7c
AB
5182 return ret;
5183}
5184
5185static int send_subvol(struct send_ctx *sctx)
5186{
5187 int ret;
5188
c2c71324
SB
5189 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5190 ret = send_header(sctx);
5191 if (ret < 0)
5192 goto out;
5193 }
31db9f7c
AB
5194
5195 ret = send_subvol_begin(sctx);
5196 if (ret < 0)
5197 goto out;
5198
5199 if (sctx->parent_root) {
5200 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5201 changed_cb, sctx);
5202 if (ret < 0)
5203 goto out;
5204 ret = finish_inode_if_needed(sctx, 1);
5205 if (ret < 0)
5206 goto out;
5207 } else {
5208 ret = full_send_tree(sctx);
5209 if (ret < 0)
5210 goto out;
5211 }
5212
5213out:
31db9f7c
AB
5214 free_recorded_refs(sctx);
5215 return ret;
5216}
5217
66ef7d65
DS
5218static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5219{
5220 spin_lock(&root->root_item_lock);
5221 root->send_in_progress--;
5222 /*
5223 * Not much left to do, we don't know why it's unbalanced and
5224 * can't blindly reset it to 0.
5225 */
5226 if (root->send_in_progress < 0)
5227 btrfs_err(root->fs_info,
5228 "send_in_progres unbalanced %d root %llu\n",
5229 root->send_in_progress, root->root_key.objectid);
5230 spin_unlock(&root->root_item_lock);
5231}
5232
31db9f7c
AB
5233long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5234{
5235 int ret = 0;
5236 struct btrfs_root *send_root;
5237 struct btrfs_root *clone_root;
5238 struct btrfs_fs_info *fs_info;
5239 struct btrfs_ioctl_send_args *arg = NULL;
5240 struct btrfs_key key;
31db9f7c
AB
5241 struct send_ctx *sctx = NULL;
5242 u32 i;
5243 u64 *clone_sources_tmp = NULL;
2c686537 5244 int clone_sources_to_rollback = 0;
896c14f9 5245 int sort_clone_roots = 0;
18f687d5 5246 int index;
31db9f7c
AB
5247
5248 if (!capable(CAP_SYS_ADMIN))
5249 return -EPERM;
5250
496ad9aa 5251 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
5252 fs_info = send_root->fs_info;
5253
2c686537
DS
5254 /*
5255 * The subvolume must remain read-only during send, protect against
5256 * making it RW.
5257 */
5258 spin_lock(&send_root->root_item_lock);
5259 send_root->send_in_progress++;
5260 spin_unlock(&send_root->root_item_lock);
5261
139f807a
JB
5262 /*
5263 * This is done when we lookup the root, it should already be complete
5264 * by the time we get here.
5265 */
5266 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5267
2c686537
DS
5268 /*
5269 * Userspace tools do the checks and warn the user if it's
5270 * not RO.
5271 */
5272 if (!btrfs_root_readonly(send_root)) {
5273 ret = -EPERM;
5274 goto out;
5275 }
5276
31db9f7c
AB
5277 arg = memdup_user(arg_, sizeof(*arg));
5278 if (IS_ERR(arg)) {
5279 ret = PTR_ERR(arg);
5280 arg = NULL;
5281 goto out;
5282 }
5283
5284 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
5285 sizeof(*arg->clone_sources) *
5286 arg->clone_sources_count)) {
31db9f7c
AB
5287 ret = -EFAULT;
5288 goto out;
5289 }
5290
c2c71324 5291 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
31db9f7c
AB
5296 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5297 if (!sctx) {
5298 ret = -ENOMEM;
5299 goto out;
5300 }
5301
5302 INIT_LIST_HEAD(&sctx->new_refs);
5303 INIT_LIST_HEAD(&sctx->deleted_refs);
5304 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5305 INIT_LIST_HEAD(&sctx->name_cache_list);
5306
cb95e7bf
MF
5307 sctx->flags = arg->flags;
5308
31db9f7c 5309 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
5310 if (!sctx->send_filp) {
5311 ret = -EBADF;
31db9f7c
AB
5312 goto out;
5313 }
5314
31db9f7c
AB
5315 sctx->send_root = send_root;
5316 sctx->clone_roots_cnt = arg->clone_sources_count;
5317
5318 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5319 sctx->send_buf = vmalloc(sctx->send_max_size);
5320 if (!sctx->send_buf) {
5321 ret = -ENOMEM;
5322 goto out;
5323 }
5324
5325 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5326 if (!sctx->read_buf) {
5327 ret = -ENOMEM;
5328 goto out;
5329 }
5330
9f03740a
FDBM
5331 sctx->pending_dir_moves = RB_ROOT;
5332 sctx->waiting_dir_moves = RB_ROOT;
5333
31db9f7c
AB
5334 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5335 (arg->clone_sources_count + 1));
5336 if (!sctx->clone_roots) {
5337 ret = -ENOMEM;
5338 goto out;
5339 }
5340
5341 if (arg->clone_sources_count) {
5342 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5343 sizeof(*arg->clone_sources));
5344 if (!clone_sources_tmp) {
5345 ret = -ENOMEM;
5346 goto out;
5347 }
5348
5349 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5350 arg->clone_sources_count *
5351 sizeof(*arg->clone_sources));
5352 if (ret) {
5353 ret = -EFAULT;
5354 goto out;
5355 }
5356
5357 for (i = 0; i < arg->clone_sources_count; i++) {
5358 key.objectid = clone_sources_tmp[i];
5359 key.type = BTRFS_ROOT_ITEM_KEY;
5360 key.offset = (u64)-1;
18f687d5
WS
5361
5362 index = srcu_read_lock(&fs_info->subvol_srcu);
5363
31db9f7c 5364 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 5365 if (IS_ERR(clone_root)) {
18f687d5 5366 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5367 ret = PTR_ERR(clone_root);
5368 goto out;
5369 }
2c686537
DS
5370 clone_sources_to_rollback = i + 1;
5371 spin_lock(&clone_root->root_item_lock);
5372 clone_root->send_in_progress++;
5373 if (!btrfs_root_readonly(clone_root)) {
5374 spin_unlock(&clone_root->root_item_lock);
18f687d5 5375 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5376 ret = -EPERM;
5377 goto out;
5378 }
5379 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
5380 srcu_read_unlock(&fs_info->subvol_srcu, index);
5381
31db9f7c
AB
5382 sctx->clone_roots[i].root = clone_root;
5383 }
5384 vfree(clone_sources_tmp);
5385 clone_sources_tmp = NULL;
5386 }
5387
5388 if (arg->parent_root) {
5389 key.objectid = arg->parent_root;
5390 key.type = BTRFS_ROOT_ITEM_KEY;
5391 key.offset = (u64)-1;
18f687d5
WS
5392
5393 index = srcu_read_lock(&fs_info->subvol_srcu);
5394
31db9f7c 5395 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 5396 if (IS_ERR(sctx->parent_root)) {
18f687d5 5397 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 5398 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
5399 goto out;
5400 }
18f687d5 5401
2c686537
DS
5402 spin_lock(&sctx->parent_root->root_item_lock);
5403 sctx->parent_root->send_in_progress++;
5404 if (!btrfs_root_readonly(sctx->parent_root)) {
5405 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 5406 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5407 ret = -EPERM;
5408 goto out;
5409 }
5410 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
5411
5412 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5413 }
5414
5415 /*
5416 * Clones from send_root are allowed, but only if the clone source
5417 * is behind the current send position. This is checked while searching
5418 * for possible clone sources.
5419 */
5420 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5421
5422 /* We do a bsearch later */
5423 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5424 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5425 NULL);
896c14f9 5426 sort_clone_roots = 1;
31db9f7c
AB
5427
5428 ret = send_subvol(sctx);
5429 if (ret < 0)
5430 goto out;
5431
c2c71324
SB
5432 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5433 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5434 if (ret < 0)
5435 goto out;
5436 ret = send_cmd(sctx);
5437 if (ret < 0)
5438 goto out;
5439 }
31db9f7c
AB
5440
5441out:
9f03740a
FDBM
5442 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5443 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5444 struct rb_node *n;
5445 struct pending_dir_move *pm;
5446
5447 n = rb_first(&sctx->pending_dir_moves);
5448 pm = rb_entry(n, struct pending_dir_move, node);
5449 while (!list_empty(&pm->list)) {
5450 struct pending_dir_move *pm2;
5451
5452 pm2 = list_first_entry(&pm->list,
5453 struct pending_dir_move, list);
5454 free_pending_move(sctx, pm2);
5455 }
5456 free_pending_move(sctx, pm);
5457 }
5458
5459 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5460 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5461 struct rb_node *n;
5462 struct waiting_dir_move *dm;
5463
5464 n = rb_first(&sctx->waiting_dir_moves);
5465 dm = rb_entry(n, struct waiting_dir_move, node);
5466 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5467 kfree(dm);
5468 }
5469
896c14f9
WS
5470 if (sort_clone_roots) {
5471 for (i = 0; i < sctx->clone_roots_cnt; i++)
5472 btrfs_root_dec_send_in_progress(
5473 sctx->clone_roots[i].root);
5474 } else {
5475 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5476 btrfs_root_dec_send_in_progress(
5477 sctx->clone_roots[i].root);
5478
5479 btrfs_root_dec_send_in_progress(send_root);
5480 }
66ef7d65
DS
5481 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5482 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 5483
31db9f7c
AB
5484 kfree(arg);
5485 vfree(clone_sources_tmp);
5486
5487 if (sctx) {
5488 if (sctx->send_filp)
5489 fput(sctx->send_filp);
5490
5491 vfree(sctx->clone_roots);
5492 vfree(sctx->send_buf);
5493 vfree(sctx->read_buf);
5494
5495 name_cache_free(sctx);
5496
5497 kfree(sctx);
5498 }
5499
5500 return ret;
5501}