]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/send.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / send.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
31db9f7c
AB
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
31db9f7c
AB
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
a1857ebe 14#include <linux/vmalloc.h>
ed84885d 15#include <linux/string.h>
2351f431 16#include <linux/compat.h>
9678c543 17#include <linux/crc32c.h>
31db9f7c
AB
18
19#include "send.h"
20#include "backref.h"
21#include "locking.h"
22#include "disk-io.h"
23#include "btrfs_inode.h"
24#include "transaction.h"
ebb8765b 25#include "compression.h"
31db9f7c 26
fd0ddbe2
FM
27/*
28 * Maximum number of references an extent can have in order for us to attempt to
29 * issue clone operations instead of write operations. This currently exists to
30 * avoid hitting limitations of the backreference walking code (taking a lot of
31 * time and using too much memory for extents with large number of references).
32 */
33#define SEND_MAX_EXTENT_REFS 64
34
31db9f7c
AB
35/*
36 * A fs_path is a helper to dynamically build path names with unknown size.
37 * It reallocates the internal buffer on demand.
38 * It allows fast adding of path elements on the right side (normal path) and
39 * fast adding to the left side (reversed path). A reversed path can also be
40 * unreversed if needed.
41 */
42struct fs_path {
43 union {
44 struct {
45 char *start;
46 char *end;
31db9f7c
AB
47
48 char *buf;
1f5a7ff9
DS
49 unsigned short buf_len:15;
50 unsigned short reversed:1;
31db9f7c
AB
51 char inline_buf[];
52 };
ace01050
DS
53 /*
54 * Average path length does not exceed 200 bytes, we'll have
55 * better packing in the slab and higher chance to satisfy
56 * a allocation later during send.
57 */
58 char pad[256];
31db9f7c
AB
59 };
60};
61#define FS_PATH_INLINE_SIZE \
62 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
63
64
65/* reused for each extent */
66struct clone_root {
67 struct btrfs_root *root;
68 u64 ino;
69 u64 offset;
70
71 u64 found_refs;
72};
73
74#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
75#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
76
77struct send_ctx {
78 struct file *send_filp;
79 loff_t send_off;
80 char *send_buf;
81 u32 send_size;
82 u32 send_max_size;
83 u64 total_send_size;
84 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 85 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 86
31db9f7c
AB
87 struct btrfs_root *send_root;
88 struct btrfs_root *parent_root;
89 struct clone_root *clone_roots;
90 int clone_roots_cnt;
91
92 /* current state of the compare_tree call */
93 struct btrfs_path *left_path;
94 struct btrfs_path *right_path;
95 struct btrfs_key *cmp_key;
96
97 /*
98 * infos of the currently processed inode. In case of deleted inodes,
99 * these are the values from the deleted inode.
100 */
101 u64 cur_ino;
102 u64 cur_inode_gen;
103 int cur_inode_new;
104 int cur_inode_new_gen;
105 int cur_inode_deleted;
31db9f7c
AB
106 u64 cur_inode_size;
107 u64 cur_inode_mode;
644d1940 108 u64 cur_inode_rdev;
16e7549f 109 u64 cur_inode_last_extent;
ffa7c429 110 u64 cur_inode_next_write_offset;
46b2f459 111 bool ignore_cur_inode;
31db9f7c
AB
112
113 u64 send_progress;
114
115 struct list_head new_refs;
116 struct list_head deleted_refs;
117
118 struct radix_tree_root name_cache;
119 struct list_head name_cache_list;
120 int name_cache_size;
121
2131bcd3
LB
122 struct file_ra_state ra;
123
31db9f7c 124 char *read_buf;
9f03740a
FDBM
125
126 /*
127 * We process inodes by their increasing order, so if before an
128 * incremental send we reverse the parent/child relationship of
129 * directories such that a directory with a lower inode number was
130 * the parent of a directory with a higher inode number, and the one
131 * becoming the new parent got renamed too, we can't rename/move the
132 * directory with lower inode number when we finish processing it - we
133 * must process the directory with higher inode number first, then
134 * rename/move it and then rename/move the directory with lower inode
135 * number. Example follows.
136 *
137 * Tree state when the first send was performed:
138 *
139 * .
140 * |-- a (ino 257)
141 * |-- b (ino 258)
142 * |
143 * |
144 * |-- c (ino 259)
145 * | |-- d (ino 260)
146 * |
147 * |-- c2 (ino 261)
148 *
149 * Tree state when the second (incremental) send is performed:
150 *
151 * .
152 * |-- a (ino 257)
153 * |-- b (ino 258)
154 * |-- c2 (ino 261)
155 * |-- d2 (ino 260)
156 * |-- cc (ino 259)
157 *
158 * The sequence of steps that lead to the second state was:
159 *
160 * mv /a/b/c/d /a/b/c2/d2
161 * mv /a/b/c /a/b/c2/d2/cc
162 *
163 * "c" has lower inode number, but we can't move it (2nd mv operation)
164 * before we move "d", which has higher inode number.
165 *
166 * So we just memorize which move/rename operations must be performed
167 * later when their respective parent is processed and moved/renamed.
168 */
169
170 /* Indexed by parent directory inode number. */
171 struct rb_root pending_dir_moves;
172
173 /*
174 * Reverse index, indexed by the inode number of a directory that
175 * is waiting for the move/rename of its immediate parent before its
176 * own move/rename can be performed.
177 */
178 struct rb_root waiting_dir_moves;
9dc44214
FM
179
180 /*
181 * A directory that is going to be rm'ed might have a child directory
182 * which is in the pending directory moves index above. In this case,
183 * the directory can only be removed after the move/rename of its child
184 * is performed. Example:
185 *
186 * Parent snapshot:
187 *
188 * . (ino 256)
189 * |-- a/ (ino 257)
190 * |-- b/ (ino 258)
191 * |-- c/ (ino 259)
192 * | |-- x/ (ino 260)
193 * |
194 * |-- y/ (ino 261)
195 *
196 * Send snapshot:
197 *
198 * . (ino 256)
199 * |-- a/ (ino 257)
200 * |-- b/ (ino 258)
201 * |-- YY/ (ino 261)
202 * |-- x/ (ino 260)
203 *
204 * Sequence of steps that lead to the send snapshot:
205 * rm -f /a/b/c/foo.txt
206 * mv /a/b/y /a/b/YY
207 * mv /a/b/c/x /a/b/YY
208 * rmdir /a/b/c
209 *
210 * When the child is processed, its move/rename is delayed until its
211 * parent is processed (as explained above), but all other operations
212 * like update utimes, chown, chgrp, etc, are performed and the paths
213 * that it uses for those operations must use the orphanized name of
214 * its parent (the directory we're going to rm later), so we need to
215 * memorize that name.
216 *
217 * Indexed by the inode number of the directory to be deleted.
218 */
219 struct rb_root orphan_dirs;
9f03740a
FDBM
220};
221
222struct pending_dir_move {
223 struct rb_node node;
224 struct list_head list;
225 u64 parent_ino;
226 u64 ino;
227 u64 gen;
228 struct list_head update_refs;
229};
230
231struct waiting_dir_move {
232 struct rb_node node;
233 u64 ino;
9dc44214
FM
234 /*
235 * There might be some directory that could not be removed because it
236 * was waiting for this directory inode to be moved first. Therefore
237 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
238 */
239 u64 rmdir_ino;
8b191a68 240 bool orphanized;
9dc44214
FM
241};
242
243struct orphan_dir_info {
244 struct rb_node node;
245 u64 ino;
246 u64 gen;
0f96f517 247 u64 last_dir_index_offset;
31db9f7c
AB
248};
249
250struct name_cache_entry {
251 struct list_head list;
7e0926fe
AB
252 /*
253 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 * more then one inum would fall into the same entry, we use radix_list
256 * to store the additional entries. radix_list is also used to store
257 * entries where two entries have the same inum but different
258 * generations.
259 */
260 struct list_head radix_list;
31db9f7c
AB
261 u64 ino;
262 u64 gen;
263 u64 parent_ino;
264 u64 parent_gen;
265 int ret;
266 int need_later_update;
267 int name_len;
268 char name[];
269};
270
18d0f5c6
DS
271#define ADVANCE 1
272#define ADVANCE_ONLY_NEXT -1
273
274enum btrfs_compare_tree_result {
275 BTRFS_COMPARE_TREE_NEW,
276 BTRFS_COMPARE_TREE_DELETED,
277 BTRFS_COMPARE_TREE_CHANGED,
278 BTRFS_COMPARE_TREE_SAME,
279};
280typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
281 struct btrfs_path *right_path,
282 struct btrfs_key *key,
283 enum btrfs_compare_tree_result result,
284 void *ctx);
285
e67c718b 286__cold
95155585
FM
287static void inconsistent_snapshot_error(struct send_ctx *sctx,
288 enum btrfs_compare_tree_result result,
289 const char *what)
290{
291 const char *result_string;
292
293 switch (result) {
294 case BTRFS_COMPARE_TREE_NEW:
295 result_string = "new";
296 break;
297 case BTRFS_COMPARE_TREE_DELETED:
298 result_string = "deleted";
299 break;
300 case BTRFS_COMPARE_TREE_CHANGED:
301 result_string = "updated";
302 break;
303 case BTRFS_COMPARE_TREE_SAME:
304 ASSERT(0);
305 result_string = "unchanged";
306 break;
307 default:
308 ASSERT(0);
309 result_string = "unexpected";
310 }
311
312 btrfs_err(sctx->send_root->fs_info,
313 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
314 result_string, what, sctx->cmp_key->objectid,
315 sctx->send_root->root_key.objectid,
316 (sctx->parent_root ?
317 sctx->parent_root->root_key.objectid : 0));
318}
319
9f03740a
FDBM
320static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
321
9dc44214
FM
322static struct waiting_dir_move *
323get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
324
325static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
326
16e7549f
JB
327static int need_send_hole(struct send_ctx *sctx)
328{
329 return (sctx->parent_root && !sctx->cur_inode_new &&
330 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
331 S_ISREG(sctx->cur_inode_mode));
332}
333
31db9f7c
AB
334static void fs_path_reset(struct fs_path *p)
335{
336 if (p->reversed) {
337 p->start = p->buf + p->buf_len - 1;
338 p->end = p->start;
339 *p->start = 0;
340 } else {
341 p->start = p->buf;
342 p->end = p->start;
343 *p->start = 0;
344 }
345}
346
924794c9 347static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
348{
349 struct fs_path *p;
350
e780b0d1 351 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
352 if (!p)
353 return NULL;
354 p->reversed = 0;
31db9f7c
AB
355 p->buf = p->inline_buf;
356 p->buf_len = FS_PATH_INLINE_SIZE;
357 fs_path_reset(p);
358 return p;
359}
360
924794c9 361static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
362{
363 struct fs_path *p;
364
924794c9 365 p = fs_path_alloc();
31db9f7c
AB
366 if (!p)
367 return NULL;
368 p->reversed = 1;
369 fs_path_reset(p);
370 return p;
371}
372
924794c9 373static void fs_path_free(struct fs_path *p)
31db9f7c
AB
374{
375 if (!p)
376 return;
ace01050
DS
377 if (p->buf != p->inline_buf)
378 kfree(p->buf);
31db9f7c
AB
379 kfree(p);
380}
381
382static int fs_path_len(struct fs_path *p)
383{
384 return p->end - p->start;
385}
386
387static int fs_path_ensure_buf(struct fs_path *p, int len)
388{
389 char *tmp_buf;
390 int path_len;
391 int old_buf_len;
392
393 len++;
394
395 if (p->buf_len >= len)
396 return 0;
397
cfd4a535
CM
398 if (len > PATH_MAX) {
399 WARN_ON(1);
400 return -ENOMEM;
401 }
402
1b2782c8
DS
403 path_len = p->end - p->start;
404 old_buf_len = p->buf_len;
405
ace01050
DS
406 /*
407 * First time the inline_buf does not suffice
408 */
01a9a8a9 409 if (p->buf == p->inline_buf) {
e780b0d1 410 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
411 if (tmp_buf)
412 memcpy(tmp_buf, p->buf, old_buf_len);
413 } else {
e780b0d1 414 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 415 }
9c9ca00b
DS
416 if (!tmp_buf)
417 return -ENOMEM;
418 p->buf = tmp_buf;
419 /*
420 * The real size of the buffer is bigger, this will let the fast path
421 * happen most of the time
422 */
423 p->buf_len = ksize(p->buf);
ace01050 424
31db9f7c
AB
425 if (p->reversed) {
426 tmp_buf = p->buf + old_buf_len - path_len - 1;
427 p->end = p->buf + p->buf_len - 1;
428 p->start = p->end - path_len;
429 memmove(p->start, tmp_buf, path_len + 1);
430 } else {
431 p->start = p->buf;
432 p->end = p->start + path_len;
433 }
434 return 0;
435}
436
b23ab57d
DS
437static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
438 char **prepared)
31db9f7c
AB
439{
440 int ret;
441 int new_len;
442
443 new_len = p->end - p->start + name_len;
444 if (p->start != p->end)
445 new_len++;
446 ret = fs_path_ensure_buf(p, new_len);
447 if (ret < 0)
448 goto out;
449
450 if (p->reversed) {
451 if (p->start != p->end)
452 *--p->start = '/';
453 p->start -= name_len;
b23ab57d 454 *prepared = p->start;
31db9f7c
AB
455 } else {
456 if (p->start != p->end)
457 *p->end++ = '/';
b23ab57d 458 *prepared = p->end;
31db9f7c
AB
459 p->end += name_len;
460 *p->end = 0;
461 }
462
463out:
464 return ret;
465}
466
467static int fs_path_add(struct fs_path *p, const char *name, int name_len)
468{
469 int ret;
b23ab57d 470 char *prepared;
31db9f7c 471
b23ab57d 472 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
473 if (ret < 0)
474 goto out;
b23ab57d 475 memcpy(prepared, name, name_len);
31db9f7c
AB
476
477out:
478 return ret;
479}
480
481static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
482{
483 int ret;
b23ab57d 484 char *prepared;
31db9f7c 485
b23ab57d 486 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
487 if (ret < 0)
488 goto out;
b23ab57d 489 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
490
491out:
492 return ret;
493}
494
495static int fs_path_add_from_extent_buffer(struct fs_path *p,
496 struct extent_buffer *eb,
497 unsigned long off, int len)
498{
499 int ret;
b23ab57d 500 char *prepared;
31db9f7c 501
b23ab57d 502 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
503 if (ret < 0)
504 goto out;
505
b23ab57d 506 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
507
508out:
509 return ret;
510}
511
31db9f7c
AB
512static int fs_path_copy(struct fs_path *p, struct fs_path *from)
513{
514 int ret;
515
516 p->reversed = from->reversed;
517 fs_path_reset(p);
518
519 ret = fs_path_add_path(p, from);
520
521 return ret;
522}
523
524
525static void fs_path_unreverse(struct fs_path *p)
526{
527 char *tmp;
528 int len;
529
530 if (!p->reversed)
531 return;
532
533 tmp = p->start;
534 len = p->end - p->start;
535 p->start = p->buf;
536 p->end = p->start + len;
537 memmove(p->start, tmp, len + 1);
538 p->reversed = 0;
539}
540
541static struct btrfs_path *alloc_path_for_send(void)
542{
543 struct btrfs_path *path;
544
545 path = btrfs_alloc_path();
546 if (!path)
547 return NULL;
548 path->search_commit_root = 1;
549 path->skip_locking = 1;
3f8a18cc 550 path->need_commit_sem = 1;
31db9f7c
AB
551 return path;
552}
553
48a3b636 554static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
555{
556 int ret;
31db9f7c
AB
557 u32 pos = 0;
558
31db9f7c 559 while (pos < len) {
8e93157b 560 ret = kernel_write(filp, buf + pos, len - pos, off);
31db9f7c
AB
561 /* TODO handle that correctly */
562 /*if (ret == -ERESTARTSYS) {
563 continue;
564 }*/
565 if (ret < 0)
8e93157b 566 return ret;
31db9f7c 567 if (ret == 0) {
8e93157b 568 return -EIO;
31db9f7c
AB
569 }
570 pos += ret;
571 }
572
8e93157b 573 return 0;
31db9f7c
AB
574}
575
576static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
577{
578 struct btrfs_tlv_header *hdr;
579 int total_len = sizeof(*hdr) + len;
580 int left = sctx->send_max_size - sctx->send_size;
581
582 if (unlikely(left < total_len))
583 return -EOVERFLOW;
584
585 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
586 hdr->tlv_type = cpu_to_le16(attr);
587 hdr->tlv_len = cpu_to_le16(len);
588 memcpy(hdr + 1, data, len);
589 sctx->send_size += total_len;
590
591 return 0;
592}
593
95bc79d5
DS
594#define TLV_PUT_DEFINE_INT(bits) \
595 static int tlv_put_u##bits(struct send_ctx *sctx, \
596 u##bits attr, u##bits value) \
597 { \
598 __le##bits __tmp = cpu_to_le##bits(value); \
599 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
600 }
31db9f7c 601
95bc79d5 602TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
603
604static int tlv_put_string(struct send_ctx *sctx, u16 attr,
605 const char *str, int len)
606{
607 if (len == -1)
608 len = strlen(str);
609 return tlv_put(sctx, attr, str, len);
610}
611
612static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
613 const u8 *uuid)
614{
615 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
616}
617
31db9f7c
AB
618static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
619 struct extent_buffer *eb,
620 struct btrfs_timespec *ts)
621{
622 struct btrfs_timespec bts;
623 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
624 return tlv_put(sctx, attr, &bts, sizeof(bts));
625}
626
627
895a72be 628#define TLV_PUT(sctx, attrtype, data, attrlen) \
31db9f7c 629 do { \
895a72be 630 ret = tlv_put(sctx, attrtype, data, attrlen); \
31db9f7c
AB
631 if (ret < 0) \
632 goto tlv_put_failure; \
633 } while (0)
634
635#define TLV_PUT_INT(sctx, attrtype, bits, value) \
636 do { \
637 ret = tlv_put_u##bits(sctx, attrtype, value); \
638 if (ret < 0) \
639 goto tlv_put_failure; \
640 } while (0)
641
642#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
643#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
644#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
645#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
646#define TLV_PUT_STRING(sctx, attrtype, str, len) \
647 do { \
648 ret = tlv_put_string(sctx, attrtype, str, len); \
649 if (ret < 0) \
650 goto tlv_put_failure; \
651 } while (0)
652#define TLV_PUT_PATH(sctx, attrtype, p) \
653 do { \
654 ret = tlv_put_string(sctx, attrtype, p->start, \
655 p->end - p->start); \
656 if (ret < 0) \
657 goto tlv_put_failure; \
658 } while(0)
659#define TLV_PUT_UUID(sctx, attrtype, uuid) \
660 do { \
661 ret = tlv_put_uuid(sctx, attrtype, uuid); \
662 if (ret < 0) \
663 goto tlv_put_failure; \
664 } while (0)
31db9f7c
AB
665#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
666 do { \
667 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
668 if (ret < 0) \
669 goto tlv_put_failure; \
670 } while (0)
671
672static int send_header(struct send_ctx *sctx)
673{
674 struct btrfs_stream_header hdr;
675
676 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
677 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
678
1bcea355
AJ
679 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
680 &sctx->send_off);
31db9f7c
AB
681}
682
683/*
684 * For each command/item we want to send to userspace, we call this function.
685 */
686static int begin_cmd(struct send_ctx *sctx, int cmd)
687{
688 struct btrfs_cmd_header *hdr;
689
fae7f21c 690 if (WARN_ON(!sctx->send_buf))
31db9f7c 691 return -EINVAL;
31db9f7c
AB
692
693 BUG_ON(sctx->send_size);
694
695 sctx->send_size += sizeof(*hdr);
696 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
697 hdr->cmd = cpu_to_le16(cmd);
698
699 return 0;
700}
701
702static int send_cmd(struct send_ctx *sctx)
703{
704 int ret;
705 struct btrfs_cmd_header *hdr;
706 u32 crc;
707
708 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
709 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
710 hdr->crc = 0;
711
65019df8 712 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
713 hdr->crc = cpu_to_le32(crc);
714
1bcea355
AJ
715 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
716 &sctx->send_off);
31db9f7c
AB
717
718 sctx->total_send_size += sctx->send_size;
719 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
720 sctx->send_size = 0;
721
722 return ret;
723}
724
725/*
726 * Sends a move instruction to user space
727 */
728static int send_rename(struct send_ctx *sctx,
729 struct fs_path *from, struct fs_path *to)
730{
04ab956e 731 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
732 int ret;
733
04ab956e 734 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
31db9f7c
AB
735
736 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
737 if (ret < 0)
738 goto out;
739
740 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
742
743 ret = send_cmd(sctx);
744
745tlv_put_failure:
746out:
747 return ret;
748}
749
750/*
751 * Sends a link instruction to user space
752 */
753static int send_link(struct send_ctx *sctx,
754 struct fs_path *path, struct fs_path *lnk)
755{
04ab956e 756 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
757 int ret;
758
04ab956e 759 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
31db9f7c
AB
760
761 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
762 if (ret < 0)
763 goto out;
764
765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
767
768 ret = send_cmd(sctx);
769
770tlv_put_failure:
771out:
772 return ret;
773}
774
775/*
776 * Sends an unlink instruction to user space
777 */
778static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
779{
04ab956e 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
781 int ret;
782
04ab956e 783 btrfs_debug(fs_info, "send_unlink %s", path->start);
31db9f7c
AB
784
785 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
786 if (ret < 0)
787 goto out;
788
789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790
791 ret = send_cmd(sctx);
792
793tlv_put_failure:
794out:
795 return ret;
796}
797
798/*
799 * Sends a rmdir instruction to user space
800 */
801static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
802{
04ab956e 803 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
804 int ret;
805
04ab956e 806 btrfs_debug(fs_info, "send_rmdir %s", path->start);
31db9f7c
AB
807
808 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
809 if (ret < 0)
810 goto out;
811
812 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
813
814 ret = send_cmd(sctx);
815
816tlv_put_failure:
817out:
818 return ret;
819}
820
821/*
822 * Helper function to retrieve some fields from an inode item.
823 */
3f8a18cc
JB
824static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
825 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
826 u64 *gid, u64 *rdev)
31db9f7c
AB
827{
828 int ret;
829 struct btrfs_inode_item *ii;
830 struct btrfs_key key;
31db9f7c
AB
831
832 key.objectid = ino;
833 key.type = BTRFS_INODE_ITEM_KEY;
834 key.offset = 0;
835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 836 if (ret) {
3f8a18cc
JB
837 if (ret > 0)
838 ret = -ENOENT;
839 return ret;
31db9f7c
AB
840 }
841
842 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
843 struct btrfs_inode_item);
844 if (size)
845 *size = btrfs_inode_size(path->nodes[0], ii);
846 if (gen)
847 *gen = btrfs_inode_generation(path->nodes[0], ii);
848 if (mode)
849 *mode = btrfs_inode_mode(path->nodes[0], ii);
850 if (uid)
851 *uid = btrfs_inode_uid(path->nodes[0], ii);
852 if (gid)
853 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
854 if (rdev)
855 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 856
3f8a18cc
JB
857 return ret;
858}
859
860static int get_inode_info(struct btrfs_root *root,
861 u64 ino, u64 *size, u64 *gen,
862 u64 *mode, u64 *uid, u64 *gid,
863 u64 *rdev)
864{
865 struct btrfs_path *path;
866 int ret;
867
868 path = alloc_path_for_send();
869 if (!path)
870 return -ENOMEM;
871 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
872 rdev);
31db9f7c
AB
873 btrfs_free_path(path);
874 return ret;
875}
876
877typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
878 struct fs_path *p,
879 void *ctx);
880
881/*
96b5bd77
JS
882 * Helper function to iterate the entries in ONE btrfs_inode_ref or
883 * btrfs_inode_extref.
31db9f7c
AB
884 * The iterate callback may return a non zero value to stop iteration. This can
885 * be a negative value for error codes or 1 to simply stop it.
886 *
96b5bd77 887 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 888 */
924794c9 889static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
890 struct btrfs_key *found_key, int resolve,
891 iterate_inode_ref_t iterate, void *ctx)
892{
96b5bd77 893 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
894 struct btrfs_item *item;
895 struct btrfs_inode_ref *iref;
96b5bd77 896 struct btrfs_inode_extref *extref;
31db9f7c
AB
897 struct btrfs_path *tmp_path;
898 struct fs_path *p;
96b5bd77 899 u32 cur = 0;
31db9f7c 900 u32 total;
96b5bd77 901 int slot = path->slots[0];
31db9f7c
AB
902 u32 name_len;
903 char *start;
904 int ret = 0;
96b5bd77 905 int num = 0;
31db9f7c 906 int index;
96b5bd77
JS
907 u64 dir;
908 unsigned long name_off;
909 unsigned long elem_size;
910 unsigned long ptr;
31db9f7c 911
924794c9 912 p = fs_path_alloc_reversed();
31db9f7c
AB
913 if (!p)
914 return -ENOMEM;
915
916 tmp_path = alloc_path_for_send();
917 if (!tmp_path) {
924794c9 918 fs_path_free(p);
31db9f7c
AB
919 return -ENOMEM;
920 }
921
31db9f7c 922
96b5bd77
JS
923 if (found_key->type == BTRFS_INODE_REF_KEY) {
924 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
925 struct btrfs_inode_ref);
dd3cc16b 926 item = btrfs_item_nr(slot);
96b5bd77
JS
927 total = btrfs_item_size(eb, item);
928 elem_size = sizeof(*iref);
929 } else {
930 ptr = btrfs_item_ptr_offset(eb, slot);
931 total = btrfs_item_size_nr(eb, slot);
932 elem_size = sizeof(*extref);
933 }
934
31db9f7c
AB
935 while (cur < total) {
936 fs_path_reset(p);
937
96b5bd77
JS
938 if (found_key->type == BTRFS_INODE_REF_KEY) {
939 iref = (struct btrfs_inode_ref *)(ptr + cur);
940 name_len = btrfs_inode_ref_name_len(eb, iref);
941 name_off = (unsigned long)(iref + 1);
942 index = btrfs_inode_ref_index(eb, iref);
943 dir = found_key->offset;
944 } else {
945 extref = (struct btrfs_inode_extref *)(ptr + cur);
946 name_len = btrfs_inode_extref_name_len(eb, extref);
947 name_off = (unsigned long)&extref->name;
948 index = btrfs_inode_extref_index(eb, extref);
949 dir = btrfs_inode_extref_parent(eb, extref);
950 }
951
31db9f7c 952 if (resolve) {
96b5bd77
JS
953 start = btrfs_ref_to_path(root, tmp_path, name_len,
954 name_off, eb, dir,
955 p->buf, p->buf_len);
31db9f7c
AB
956 if (IS_ERR(start)) {
957 ret = PTR_ERR(start);
958 goto out;
959 }
960 if (start < p->buf) {
961 /* overflow , try again with larger buffer */
962 ret = fs_path_ensure_buf(p,
963 p->buf_len + p->buf - start);
964 if (ret < 0)
965 goto out;
96b5bd77
JS
966 start = btrfs_ref_to_path(root, tmp_path,
967 name_len, name_off,
968 eb, dir,
969 p->buf, p->buf_len);
31db9f7c
AB
970 if (IS_ERR(start)) {
971 ret = PTR_ERR(start);
972 goto out;
973 }
974 BUG_ON(start < p->buf);
975 }
976 p->start = start;
977 } else {
96b5bd77
JS
978 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 name_len);
31db9f7c
AB
980 if (ret < 0)
981 goto out;
982 }
983
96b5bd77
JS
984 cur += elem_size + name_len;
985 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
986 if (ret)
987 goto out;
31db9f7c
AB
988 num++;
989 }
990
991out:
992 btrfs_free_path(tmp_path);
924794c9 993 fs_path_free(p);
31db9f7c
AB
994 return ret;
995}
996
997typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
998 const char *name, int name_len,
999 const char *data, int data_len,
1000 u8 type, void *ctx);
1001
1002/*
1003 * Helper function to iterate the entries in ONE btrfs_dir_item.
1004 * The iterate callback may return a non zero value to stop iteration. This can
1005 * be a negative value for error codes or 1 to simply stop it.
1006 *
1007 * path must point to the dir item when called.
1008 */
924794c9 1009static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
1010 iterate_dir_item_t iterate, void *ctx)
1011{
1012 int ret = 0;
1013 struct extent_buffer *eb;
1014 struct btrfs_item *item;
1015 struct btrfs_dir_item *di;
31db9f7c
AB
1016 struct btrfs_key di_key;
1017 char *buf = NULL;
7e3ae33e 1018 int buf_len;
31db9f7c
AB
1019 u32 name_len;
1020 u32 data_len;
1021 u32 cur;
1022 u32 len;
1023 u32 total;
1024 int slot;
1025 int num;
1026 u8 type;
1027
4395e0c4
FM
1028 /*
1029 * Start with a small buffer (1 page). If later we end up needing more
1030 * space, which can happen for xattrs on a fs with a leaf size greater
1031 * then the page size, attempt to increase the buffer. Typically xattr
1032 * values are small.
1033 */
1034 buf_len = PATH_MAX;
e780b0d1 1035 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1036 if (!buf) {
1037 ret = -ENOMEM;
1038 goto out;
1039 }
1040
31db9f7c
AB
1041 eb = path->nodes[0];
1042 slot = path->slots[0];
dd3cc16b 1043 item = btrfs_item_nr(slot);
31db9f7c
AB
1044 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1045 cur = 0;
1046 len = 0;
1047 total = btrfs_item_size(eb, item);
1048
1049 num = 0;
1050 while (cur < total) {
1051 name_len = btrfs_dir_name_len(eb, di);
1052 data_len = btrfs_dir_data_len(eb, di);
1053 type = btrfs_dir_type(eb, di);
1054 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1055
7e3ae33e
FM
1056 if (type == BTRFS_FT_XATTR) {
1057 if (name_len > XATTR_NAME_MAX) {
1058 ret = -ENAMETOOLONG;
1059 goto out;
1060 }
da17066c
JM
1061 if (name_len + data_len >
1062 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
7e3ae33e
FM
1063 ret = -E2BIG;
1064 goto out;
1065 }
1066 } else {
1067 /*
1068 * Path too long
1069 */
4395e0c4 1070 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1071 ret = -ENAMETOOLONG;
1072 goto out;
1073 }
31db9f7c
AB
1074 }
1075
4395e0c4
FM
1076 if (name_len + data_len > buf_len) {
1077 buf_len = name_len + data_len;
1078 if (is_vmalloc_addr(buf)) {
1079 vfree(buf);
1080 buf = NULL;
1081 } else {
1082 char *tmp = krealloc(buf, buf_len,
e780b0d1 1083 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1084
1085 if (!tmp)
1086 kfree(buf);
1087 buf = tmp;
1088 }
1089 if (!buf) {
f11f7441 1090 buf = kvmalloc(buf_len, GFP_KERNEL);
4395e0c4
FM
1091 if (!buf) {
1092 ret = -ENOMEM;
1093 goto out;
1094 }
1095 }
1096 }
1097
31db9f7c
AB
1098 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1099 name_len + data_len);
1100
1101 len = sizeof(*di) + name_len + data_len;
1102 di = (struct btrfs_dir_item *)((char *)di + len);
1103 cur += len;
1104
1105 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1106 data_len, type, ctx);
1107 if (ret < 0)
1108 goto out;
1109 if (ret) {
1110 ret = 0;
1111 goto out;
1112 }
1113
1114 num++;
1115 }
1116
1117out:
4395e0c4 1118 kvfree(buf);
31db9f7c
AB
1119 return ret;
1120}
1121
1122static int __copy_first_ref(int num, u64 dir, int index,
1123 struct fs_path *p, void *ctx)
1124{
1125 int ret;
1126 struct fs_path *pt = ctx;
1127
1128 ret = fs_path_copy(pt, p);
1129 if (ret < 0)
1130 return ret;
1131
1132 /* we want the first only */
1133 return 1;
1134}
1135
1136/*
1137 * Retrieve the first path of an inode. If an inode has more then one
1138 * ref/hardlink, this is ignored.
1139 */
924794c9 1140static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1141 u64 ino, struct fs_path *path)
1142{
1143 int ret;
1144 struct btrfs_key key, found_key;
1145 struct btrfs_path *p;
1146
1147 p = alloc_path_for_send();
1148 if (!p)
1149 return -ENOMEM;
1150
1151 fs_path_reset(path);
1152
1153 key.objectid = ino;
1154 key.type = BTRFS_INODE_REF_KEY;
1155 key.offset = 0;
1156
1157 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1158 if (ret < 0)
1159 goto out;
1160 if (ret) {
1161 ret = 1;
1162 goto out;
1163 }
1164 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1165 if (found_key.objectid != ino ||
96b5bd77
JS
1166 (found_key.type != BTRFS_INODE_REF_KEY &&
1167 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1168 ret = -ENOENT;
1169 goto out;
1170 }
1171
924794c9
TI
1172 ret = iterate_inode_ref(root, p, &found_key, 1,
1173 __copy_first_ref, path);
31db9f7c
AB
1174 if (ret < 0)
1175 goto out;
1176 ret = 0;
1177
1178out:
1179 btrfs_free_path(p);
1180 return ret;
1181}
1182
1183struct backref_ctx {
1184 struct send_ctx *sctx;
1185
1186 /* number of total found references */
1187 u64 found;
1188
1189 /*
1190 * used for clones found in send_root. clones found behind cur_objectid
1191 * and cur_offset are not considered as allowed clones.
1192 */
1193 u64 cur_objectid;
1194 u64 cur_offset;
1195
1196 /* may be truncated in case it's the last extent in a file */
1197 u64 extent_len;
1198
619d8c4e
FM
1199 /* data offset in the file extent item */
1200 u64 data_offset;
1201
31db9f7c 1202 /* Just to check for bugs in backref resolving */
ee849c04 1203 int found_itself;
31db9f7c
AB
1204};
1205
1206static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1207{
995e01b7 1208 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1209 struct clone_root *cr = (struct clone_root *)elt;
1210
4fd786e6 1211 if (root < cr->root->root_key.objectid)
31db9f7c 1212 return -1;
4fd786e6 1213 if (root > cr->root->root_key.objectid)
31db9f7c
AB
1214 return 1;
1215 return 0;
1216}
1217
1218static int __clone_root_cmp_sort(const void *e1, const void *e2)
1219{
1220 struct clone_root *cr1 = (struct clone_root *)e1;
1221 struct clone_root *cr2 = (struct clone_root *)e2;
1222
4fd786e6 1223 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
31db9f7c 1224 return -1;
4fd786e6 1225 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
31db9f7c
AB
1226 return 1;
1227 return 0;
1228}
1229
1230/*
1231 * Called for every backref that is found for the current extent.
766702ef 1232 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1233 */
1234static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1235{
1236 struct backref_ctx *bctx = ctx_;
1237 struct clone_root *found;
31db9f7c
AB
1238
1239 /* First check if the root is in the list of accepted clone sources */
995e01b7 1240 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1241 bctx->sctx->clone_roots_cnt,
1242 sizeof(struct clone_root),
1243 __clone_root_cmp_bsearch);
1244 if (!found)
1245 return 0;
1246
1247 if (found->root == bctx->sctx->send_root &&
1248 ino == bctx->cur_objectid &&
1249 offset == bctx->cur_offset) {
ee849c04 1250 bctx->found_itself = 1;
31db9f7c
AB
1251 }
1252
31db9f7c
AB
1253 /*
1254 * Make sure we don't consider clones from send_root that are
1255 * behind the current inode/offset.
1256 */
1257 if (found->root == bctx->sctx->send_root) {
1258 /*
11f2069c
FM
1259 * If the source inode was not yet processed we can't issue a
1260 * clone operation, as the source extent does not exist yet at
1261 * the destination of the stream.
31db9f7c 1262 */
11f2069c
FM
1263 if (ino > bctx->cur_objectid)
1264 return 0;
1265 /*
1266 * We clone from the inode currently being sent as long as the
1267 * source extent is already processed, otherwise we could try
1268 * to clone from an extent that does not exist yet at the
1269 * destination of the stream.
1270 */
1271 if (ino == bctx->cur_objectid &&
1272 offset >= bctx->sctx->cur_inode_next_write_offset)
31db9f7c 1273 return 0;
31db9f7c
AB
1274 }
1275
1276 bctx->found++;
1277 found->found_refs++;
1278 if (ino < found->ino) {
1279 found->ino = ino;
1280 found->offset = offset;
1281 } else if (found->ino == ino) {
1282 /*
1283 * same extent found more then once in the same file.
1284 */
1285 if (found->offset > offset + bctx->extent_len)
1286 found->offset = offset;
1287 }
1288
1289 return 0;
1290}
1291
1292/*
766702ef
AB
1293 * Given an inode, offset and extent item, it finds a good clone for a clone
1294 * instruction. Returns -ENOENT when none could be found. The function makes
1295 * sure that the returned clone is usable at the point where sending is at the
1296 * moment. This means, that no clones are accepted which lie behind the current
1297 * inode+offset.
1298 *
31db9f7c
AB
1299 * path must point to the extent item when called.
1300 */
1301static int find_extent_clone(struct send_ctx *sctx,
1302 struct btrfs_path *path,
1303 u64 ino, u64 data_offset,
1304 u64 ino_size,
1305 struct clone_root **found)
1306{
04ab956e 1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
1308 int ret;
1309 int extent_type;
1310 u64 logical;
74dd17fb 1311 u64 disk_byte;
31db9f7c
AB
1312 u64 num_bytes;
1313 u64 extent_item_pos;
69917e43 1314 u64 flags = 0;
31db9f7c
AB
1315 struct btrfs_file_extent_item *fi;
1316 struct extent_buffer *eb = path->nodes[0];
35075bb0 1317 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1318 struct clone_root *cur_clone_root;
1319 struct btrfs_key found_key;
1320 struct btrfs_path *tmp_path;
fd0ddbe2 1321 struct btrfs_extent_item *ei;
74dd17fb 1322 int compressed;
31db9f7c
AB
1323 u32 i;
1324
1325 tmp_path = alloc_path_for_send();
1326 if (!tmp_path)
1327 return -ENOMEM;
1328
3f8a18cc
JB
1329 /* We only use this path under the commit sem */
1330 tmp_path->need_commit_sem = 0;
1331
e780b0d1 1332 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
35075bb0
AB
1333 if (!backref_ctx) {
1334 ret = -ENOMEM;
1335 goto out;
1336 }
1337
31db9f7c
AB
1338 if (data_offset >= ino_size) {
1339 /*
1340 * There may be extents that lie behind the file's size.
1341 * I at least had this in combination with snapshotting while
1342 * writing large files.
1343 */
1344 ret = 0;
1345 goto out;
1346 }
1347
1348 fi = btrfs_item_ptr(eb, path->slots[0],
1349 struct btrfs_file_extent_item);
1350 extent_type = btrfs_file_extent_type(eb, fi);
1351 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1352 ret = -ENOENT;
1353 goto out;
1354 }
74dd17fb 1355 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1356
1357 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1358 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1359 if (disk_byte == 0) {
31db9f7c
AB
1360 ret = -ENOENT;
1361 goto out;
1362 }
74dd17fb 1363 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1364
04ab956e
JM
1365 down_read(&fs_info->commit_root_sem);
1366 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
69917e43 1367 &found_key, &flags);
04ab956e 1368 up_read(&fs_info->commit_root_sem);
31db9f7c
AB
1369
1370 if (ret < 0)
1371 goto out;
69917e43 1372 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1373 ret = -EIO;
1374 goto out;
1375 }
1376
fd0ddbe2
FM
1377 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1378 struct btrfs_extent_item);
1379 /*
1380 * Backreference walking (iterate_extent_inodes() below) is currently
1381 * too expensive when an extent has a large number of references, both
1382 * in time spent and used memory. So for now just fallback to write
1383 * operations instead of clone operations when an extent has more than
1384 * a certain amount of references.
1385 */
1386 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1387 ret = -ENOENT;
1388 goto out;
1389 }
1390 btrfs_release_path(tmp_path);
1391
31db9f7c
AB
1392 /*
1393 * Setup the clone roots.
1394 */
1395 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1396 cur_clone_root = sctx->clone_roots + i;
1397 cur_clone_root->ino = (u64)-1;
1398 cur_clone_root->offset = 0;
1399 cur_clone_root->found_refs = 0;
1400 }
1401
35075bb0
AB
1402 backref_ctx->sctx = sctx;
1403 backref_ctx->found = 0;
1404 backref_ctx->cur_objectid = ino;
1405 backref_ctx->cur_offset = data_offset;
1406 backref_ctx->found_itself = 0;
1407 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1408 /*
1409 * For non-compressed extents iterate_extent_inodes() gives us extent
1410 * offsets that already take into account the data offset, but not for
1411 * compressed extents, since the offset is logical and not relative to
1412 * the physical extent locations. We must take this into account to
1413 * avoid sending clone offsets that go beyond the source file's size,
1414 * which would result in the clone ioctl failing with -EINVAL on the
1415 * receiving end.
1416 */
1417 if (compressed == BTRFS_COMPRESS_NONE)
1418 backref_ctx->data_offset = 0;
1419 else
1420 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1421
1422 /*
1423 * The last extent of a file may be too large due to page alignment.
1424 * We need to adjust extent_len in this case so that the checks in
1425 * __iterate_backrefs work.
1426 */
1427 if (data_offset + num_bytes >= ino_size)
35075bb0 1428 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1429
1430 /*
1431 * Now collect all backrefs.
1432 */
74dd17fb
CM
1433 if (compressed == BTRFS_COMPRESS_NONE)
1434 extent_item_pos = logical - found_key.objectid;
1435 else
1436 extent_item_pos = 0;
0b246afa
JM
1437 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1438 extent_item_pos, 1, __iterate_backrefs,
c995ab3c 1439 backref_ctx, false);
74dd17fb 1440
31db9f7c
AB
1441 if (ret < 0)
1442 goto out;
1443
35075bb0 1444 if (!backref_ctx->found_itself) {
31db9f7c
AB
1445 /* found a bug in backref code? */
1446 ret = -EIO;
04ab956e 1447 btrfs_err(fs_info,
5d163e0e 1448 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
04ab956e 1449 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1450 goto out;
1451 }
1452
04ab956e
JM
1453 btrfs_debug(fs_info,
1454 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1455 data_offset, ino, num_bytes, logical);
31db9f7c 1456
35075bb0 1457 if (!backref_ctx->found)
04ab956e 1458 btrfs_debug(fs_info, "no clones found");
31db9f7c
AB
1459
1460 cur_clone_root = NULL;
1461 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1462 if (sctx->clone_roots[i].found_refs) {
1463 if (!cur_clone_root)
1464 cur_clone_root = sctx->clone_roots + i;
1465 else if (sctx->clone_roots[i].root == sctx->send_root)
1466 /* prefer clones from send_root over others */
1467 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1468 }
1469
1470 }
1471
1472 if (cur_clone_root) {
1473 *found = cur_clone_root;
1474 ret = 0;
1475 } else {
1476 ret = -ENOENT;
1477 }
1478
1479out:
1480 btrfs_free_path(tmp_path);
35075bb0 1481 kfree(backref_ctx);
31db9f7c
AB
1482 return ret;
1483}
1484
924794c9 1485static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1486 u64 ino,
1487 struct fs_path *dest)
1488{
1489 int ret;
1490 struct btrfs_path *path;
1491 struct btrfs_key key;
1492 struct btrfs_file_extent_item *ei;
1493 u8 type;
1494 u8 compression;
1495 unsigned long off;
1496 int len;
1497
1498 path = alloc_path_for_send();
1499 if (!path)
1500 return -ENOMEM;
1501
1502 key.objectid = ino;
1503 key.type = BTRFS_EXTENT_DATA_KEY;
1504 key.offset = 0;
1505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1506 if (ret < 0)
1507 goto out;
a879719b
FM
1508 if (ret) {
1509 /*
1510 * An empty symlink inode. Can happen in rare error paths when
1511 * creating a symlink (transaction committed before the inode
1512 * eviction handler removed the symlink inode items and a crash
1513 * happened in between or the subvol was snapshoted in between).
1514 * Print an informative message to dmesg/syslog so that the user
1515 * can delete the symlink.
1516 */
1517 btrfs_err(root->fs_info,
1518 "Found empty symlink inode %llu at root %llu",
1519 ino, root->root_key.objectid);
1520 ret = -EIO;
1521 goto out;
1522 }
31db9f7c
AB
1523
1524 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1525 struct btrfs_file_extent_item);
1526 type = btrfs_file_extent_type(path->nodes[0], ei);
1527 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1528 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1529 BUG_ON(compression);
1530
1531 off = btrfs_file_extent_inline_start(ei);
e41ca589 1532 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
31db9f7c
AB
1533
1534 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1535
1536out:
1537 btrfs_free_path(path);
1538 return ret;
1539}
1540
1541/*
1542 * Helper function to generate a file name that is unique in the root of
1543 * send_root and parent_root. This is used to generate names for orphan inodes.
1544 */
1545static int gen_unique_name(struct send_ctx *sctx,
1546 u64 ino, u64 gen,
1547 struct fs_path *dest)
1548{
1549 int ret = 0;
1550 struct btrfs_path *path;
1551 struct btrfs_dir_item *di;
1552 char tmp[64];
1553 int len;
1554 u64 idx = 0;
1555
1556 path = alloc_path_for_send();
1557 if (!path)
1558 return -ENOMEM;
1559
1560 while (1) {
f74b86d8 1561 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1562 ino, gen, idx);
64792f25 1563 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1564
1565 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1566 path, BTRFS_FIRST_FREE_OBJECTID,
1567 tmp, strlen(tmp), 0);
1568 btrfs_release_path(path);
1569 if (IS_ERR(di)) {
1570 ret = PTR_ERR(di);
1571 goto out;
1572 }
1573 if (di) {
1574 /* not unique, try again */
1575 idx++;
1576 continue;
1577 }
1578
1579 if (!sctx->parent_root) {
1580 /* unique */
1581 ret = 0;
1582 break;
1583 }
1584
1585 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1586 path, BTRFS_FIRST_FREE_OBJECTID,
1587 tmp, strlen(tmp), 0);
1588 btrfs_release_path(path);
1589 if (IS_ERR(di)) {
1590 ret = PTR_ERR(di);
1591 goto out;
1592 }
1593 if (di) {
1594 /* not unique, try again */
1595 idx++;
1596 continue;
1597 }
1598 /* unique */
1599 break;
1600 }
1601
1602 ret = fs_path_add(dest, tmp, strlen(tmp));
1603
1604out:
1605 btrfs_free_path(path);
1606 return ret;
1607}
1608
1609enum inode_state {
1610 inode_state_no_change,
1611 inode_state_will_create,
1612 inode_state_did_create,
1613 inode_state_will_delete,
1614 inode_state_did_delete,
1615};
1616
1617static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1618{
1619 int ret;
1620 int left_ret;
1621 int right_ret;
1622 u64 left_gen;
1623 u64 right_gen;
1624
1625 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1626 NULL, NULL);
31db9f7c
AB
1627 if (ret < 0 && ret != -ENOENT)
1628 goto out;
1629 left_ret = ret;
1630
1631 if (!sctx->parent_root) {
1632 right_ret = -ENOENT;
1633 } else {
1634 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1635 NULL, NULL, NULL, NULL);
31db9f7c
AB
1636 if (ret < 0 && ret != -ENOENT)
1637 goto out;
1638 right_ret = ret;
1639 }
1640
1641 if (!left_ret && !right_ret) {
e938c8ad 1642 if (left_gen == gen && right_gen == gen) {
31db9f7c 1643 ret = inode_state_no_change;
e938c8ad 1644 } else if (left_gen == gen) {
31db9f7c
AB
1645 if (ino < sctx->send_progress)
1646 ret = inode_state_did_create;
1647 else
1648 ret = inode_state_will_create;
1649 } else if (right_gen == gen) {
1650 if (ino < sctx->send_progress)
1651 ret = inode_state_did_delete;
1652 else
1653 ret = inode_state_will_delete;
1654 } else {
1655 ret = -ENOENT;
1656 }
1657 } else if (!left_ret) {
1658 if (left_gen == gen) {
1659 if (ino < sctx->send_progress)
1660 ret = inode_state_did_create;
1661 else
1662 ret = inode_state_will_create;
1663 } else {
1664 ret = -ENOENT;
1665 }
1666 } else if (!right_ret) {
1667 if (right_gen == gen) {
1668 if (ino < sctx->send_progress)
1669 ret = inode_state_did_delete;
1670 else
1671 ret = inode_state_will_delete;
1672 } else {
1673 ret = -ENOENT;
1674 }
1675 } else {
1676 ret = -ENOENT;
1677 }
1678
1679out:
1680 return ret;
1681}
1682
1683static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1684{
1685 int ret;
1686
4dd9920d
RK
1687 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1688 return 1;
1689
31db9f7c
AB
1690 ret = get_cur_inode_state(sctx, ino, gen);
1691 if (ret < 0)
1692 goto out;
1693
1694 if (ret == inode_state_no_change ||
1695 ret == inode_state_did_create ||
1696 ret == inode_state_will_delete)
1697 ret = 1;
1698 else
1699 ret = 0;
1700
1701out:
1702 return ret;
1703}
1704
1705/*
1706 * Helper function to lookup a dir item in a dir.
1707 */
1708static int lookup_dir_item_inode(struct btrfs_root *root,
1709 u64 dir, const char *name, int name_len,
1710 u64 *found_inode,
1711 u8 *found_type)
1712{
1713 int ret = 0;
1714 struct btrfs_dir_item *di;
1715 struct btrfs_key key;
1716 struct btrfs_path *path;
1717
1718 path = alloc_path_for_send();
1719 if (!path)
1720 return -ENOMEM;
1721
1722 di = btrfs_lookup_dir_item(NULL, root, path,
1723 dir, name, name_len, 0);
3cf5068f
LB
1724 if (IS_ERR_OR_NULL(di)) {
1725 ret = di ? PTR_ERR(di) : -ENOENT;
31db9f7c
AB
1726 goto out;
1727 }
1728 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1729 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1730 ret = -ENOENT;
1731 goto out;
1732 }
31db9f7c
AB
1733 *found_inode = key.objectid;
1734 *found_type = btrfs_dir_type(path->nodes[0], di);
1735
1736out:
1737 btrfs_free_path(path);
1738 return ret;
1739}
1740
766702ef
AB
1741/*
1742 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1743 * generation of the parent dir and the name of the dir entry.
1744 */
924794c9 1745static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1746 u64 *dir, u64 *dir_gen, struct fs_path *name)
1747{
1748 int ret;
1749 struct btrfs_key key;
1750 struct btrfs_key found_key;
1751 struct btrfs_path *path;
31db9f7c 1752 int len;
96b5bd77 1753 u64 parent_dir;
31db9f7c
AB
1754
1755 path = alloc_path_for_send();
1756 if (!path)
1757 return -ENOMEM;
1758
1759 key.objectid = ino;
1760 key.type = BTRFS_INODE_REF_KEY;
1761 key.offset = 0;
1762
1763 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1764 if (ret < 0)
1765 goto out;
1766 if (!ret)
1767 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1768 path->slots[0]);
96b5bd77
JS
1769 if (ret || found_key.objectid != ino ||
1770 (found_key.type != BTRFS_INODE_REF_KEY &&
1771 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1772 ret = -ENOENT;
1773 goto out;
1774 }
1775
51a60253 1776 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1777 struct btrfs_inode_ref *iref;
1778 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 struct btrfs_inode_ref);
1780 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 (unsigned long)(iref + 1),
1783 len);
1784 parent_dir = found_key.offset;
1785 } else {
1786 struct btrfs_inode_extref *extref;
1787 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 struct btrfs_inode_extref);
1789 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1790 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1791 (unsigned long)&extref->name, len);
1792 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1793 }
31db9f7c
AB
1794 if (ret < 0)
1795 goto out;
1796 btrfs_release_path(path);
1797
b46ab97b
FM
1798 if (dir_gen) {
1799 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1800 NULL, NULL, NULL);
1801 if (ret < 0)
1802 goto out;
1803 }
31db9f7c 1804
96b5bd77 1805 *dir = parent_dir;
31db9f7c
AB
1806
1807out:
1808 btrfs_free_path(path);
1809 return ret;
1810}
1811
924794c9 1812static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1813 u64 ino, u64 dir,
1814 const char *name, int name_len)
1815{
1816 int ret;
1817 struct fs_path *tmp_name;
1818 u64 tmp_dir;
31db9f7c 1819
924794c9 1820 tmp_name = fs_path_alloc();
31db9f7c
AB
1821 if (!tmp_name)
1822 return -ENOMEM;
1823
b46ab97b 1824 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1825 if (ret < 0)
1826 goto out;
1827
b9291aff 1828 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1829 ret = 0;
1830 goto out;
1831 }
1832
e938c8ad 1833 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1834
1835out:
924794c9 1836 fs_path_free(tmp_name);
31db9f7c
AB
1837 return ret;
1838}
1839
766702ef
AB
1840/*
1841 * Used by process_recorded_refs to determine if a new ref would overwrite an
1842 * already existing ref. In case it detects an overwrite, it returns the
1843 * inode/gen in who_ino/who_gen.
1844 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1845 * to make sure later references to the overwritten inode are possible.
1846 * Orphanizing is however only required for the first ref of an inode.
1847 * process_recorded_refs does an additional is_first_ref check to see if
1848 * orphanizing is really required.
1849 */
31db9f7c
AB
1850static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1851 const char *name, int name_len,
f5962781 1852 u64 *who_ino, u64 *who_gen, u64 *who_mode)
31db9f7c
AB
1853{
1854 int ret = 0;
ebdad913 1855 u64 gen;
31db9f7c
AB
1856 u64 other_inode = 0;
1857 u8 other_type = 0;
1858
1859 if (!sctx->parent_root)
1860 goto out;
1861
1862 ret = is_inode_existent(sctx, dir, dir_gen);
1863 if (ret <= 0)
1864 goto out;
1865
ebdad913
JB
1866 /*
1867 * If we have a parent root we need to verify that the parent dir was
01327610 1868 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1869 * and we can just unlink this entry.
1870 */
4dd9920d 1871 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
ebdad913
JB
1872 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1873 NULL, NULL, NULL);
1874 if (ret < 0 && ret != -ENOENT)
1875 goto out;
1876 if (ret) {
1877 ret = 0;
1878 goto out;
1879 }
1880 if (gen != dir_gen)
1881 goto out;
1882 }
1883
31db9f7c
AB
1884 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1885 &other_inode, &other_type);
1886 if (ret < 0 && ret != -ENOENT)
1887 goto out;
1888 if (ret) {
1889 ret = 0;
1890 goto out;
1891 }
1892
766702ef
AB
1893 /*
1894 * Check if the overwritten ref was already processed. If yes, the ref
1895 * was already unlinked/moved, so we can safely assume that we will not
1896 * overwrite anything at this point in time.
1897 */
801bec36
RK
1898 if (other_inode > sctx->send_progress ||
1899 is_waiting_for_move(sctx, other_inode)) {
31db9f7c 1900 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
f5962781 1901 who_gen, who_mode, NULL, NULL, NULL);
31db9f7c
AB
1902 if (ret < 0)
1903 goto out;
1904
1905 ret = 1;
1906 *who_ino = other_inode;
1907 } else {
1908 ret = 0;
1909 }
1910
1911out:
1912 return ret;
1913}
1914
766702ef
AB
1915/*
1916 * Checks if the ref was overwritten by an already processed inode. This is
1917 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1918 * thus the orphan name needs be used.
1919 * process_recorded_refs also uses it to avoid unlinking of refs that were
1920 * overwritten.
1921 */
31db9f7c
AB
1922static int did_overwrite_ref(struct send_ctx *sctx,
1923 u64 dir, u64 dir_gen,
1924 u64 ino, u64 ino_gen,
1925 const char *name, int name_len)
1926{
1927 int ret = 0;
1928 u64 gen;
1929 u64 ow_inode;
1930 u8 other_type;
1931
1932 if (!sctx->parent_root)
1933 goto out;
1934
1935 ret = is_inode_existent(sctx, dir, dir_gen);
1936 if (ret <= 0)
1937 goto out;
1938
01914101
RK
1939 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1940 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1941 NULL, NULL, NULL);
1942 if (ret < 0 && ret != -ENOENT)
1943 goto out;
1944 if (ret) {
1945 ret = 0;
1946 goto out;
1947 }
1948 if (gen != dir_gen)
1949 goto out;
1950 }
1951
31db9f7c
AB
1952 /* check if the ref was overwritten by another ref */
1953 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1954 &ow_inode, &other_type);
1955 if (ret < 0 && ret != -ENOENT)
1956 goto out;
1957 if (ret) {
1958 /* was never and will never be overwritten */
1959 ret = 0;
1960 goto out;
1961 }
1962
1963 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1964 NULL, NULL);
31db9f7c
AB
1965 if (ret < 0)
1966 goto out;
1967
1968 if (ow_inode == ino && gen == ino_gen) {
1969 ret = 0;
1970 goto out;
1971 }
1972
8b191a68
FM
1973 /*
1974 * We know that it is or will be overwritten. Check this now.
1975 * The current inode being processed might have been the one that caused
b786f16a
FM
1976 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1977 * the current inode being processed.
8b191a68 1978 */
b786f16a
FM
1979 if ((ow_inode < sctx->send_progress) ||
1980 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1981 gen == sctx->cur_inode_gen))
31db9f7c
AB
1982 ret = 1;
1983 else
1984 ret = 0;
1985
1986out:
1987 return ret;
1988}
1989
766702ef
AB
1990/*
1991 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1992 * that got overwritten. This is used by process_recorded_refs to determine
1993 * if it has to use the path as returned by get_cur_path or the orphan name.
1994 */
31db9f7c
AB
1995static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1996{
1997 int ret = 0;
1998 struct fs_path *name = NULL;
1999 u64 dir;
2000 u64 dir_gen;
2001
2002 if (!sctx->parent_root)
2003 goto out;
2004
924794c9 2005 name = fs_path_alloc();
31db9f7c
AB
2006 if (!name)
2007 return -ENOMEM;
2008
924794c9 2009 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
2010 if (ret < 0)
2011 goto out;
2012
2013 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2014 name->start, fs_path_len(name));
31db9f7c
AB
2015
2016out:
924794c9 2017 fs_path_free(name);
31db9f7c
AB
2018 return ret;
2019}
2020
766702ef
AB
2021/*
2022 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2023 * so we need to do some special handling in case we have clashes. This function
2024 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2025 * In case of error, nce is kfreed.
766702ef 2026 */
31db9f7c
AB
2027static int name_cache_insert(struct send_ctx *sctx,
2028 struct name_cache_entry *nce)
2029{
2030 int ret = 0;
7e0926fe
AB
2031 struct list_head *nce_head;
2032
2033 nce_head = radix_tree_lookup(&sctx->name_cache,
2034 (unsigned long)nce->ino);
2035 if (!nce_head) {
e780b0d1 2036 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2037 if (!nce_head) {
2038 kfree(nce);
31db9f7c 2039 return -ENOMEM;
cfa7a9cc 2040 }
7e0926fe 2041 INIT_LIST_HEAD(nce_head);
31db9f7c 2042
7e0926fe 2043 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2044 if (ret < 0) {
2045 kfree(nce_head);
2046 kfree(nce);
31db9f7c 2047 return ret;
5dc67d0b 2048 }
31db9f7c 2049 }
7e0926fe 2050 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2051 list_add_tail(&nce->list, &sctx->name_cache_list);
2052 sctx->name_cache_size++;
2053
2054 return ret;
2055}
2056
2057static void name_cache_delete(struct send_ctx *sctx,
2058 struct name_cache_entry *nce)
2059{
7e0926fe 2060 struct list_head *nce_head;
31db9f7c 2061
7e0926fe
AB
2062 nce_head = radix_tree_lookup(&sctx->name_cache,
2063 (unsigned long)nce->ino);
57fb8910
DS
2064 if (!nce_head) {
2065 btrfs_err(sctx->send_root->fs_info,
2066 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2067 nce->ino, sctx->name_cache_size);
2068 }
31db9f7c 2069
7e0926fe 2070 list_del(&nce->radix_list);
31db9f7c 2071 list_del(&nce->list);
31db9f7c 2072 sctx->name_cache_size--;
7e0926fe 2073
57fb8910
DS
2074 /*
2075 * We may not get to the final release of nce_head if the lookup fails
2076 */
2077 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2078 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2079 kfree(nce_head);
2080 }
31db9f7c
AB
2081}
2082
2083static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2084 u64 ino, u64 gen)
2085{
7e0926fe
AB
2086 struct list_head *nce_head;
2087 struct name_cache_entry *cur;
31db9f7c 2088
7e0926fe
AB
2089 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2090 if (!nce_head)
31db9f7c
AB
2091 return NULL;
2092
7e0926fe
AB
2093 list_for_each_entry(cur, nce_head, radix_list) {
2094 if (cur->ino == ino && cur->gen == gen)
2095 return cur;
2096 }
31db9f7c
AB
2097 return NULL;
2098}
2099
766702ef
AB
2100/*
2101 * Removes the entry from the list and adds it back to the end. This marks the
2102 * entry as recently used so that name_cache_clean_unused does not remove it.
2103 */
31db9f7c
AB
2104static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2105{
2106 list_del(&nce->list);
2107 list_add_tail(&nce->list, &sctx->name_cache_list);
2108}
2109
766702ef
AB
2110/*
2111 * Remove some entries from the beginning of name_cache_list.
2112 */
31db9f7c
AB
2113static void name_cache_clean_unused(struct send_ctx *sctx)
2114{
2115 struct name_cache_entry *nce;
2116
2117 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2118 return;
2119
2120 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2121 nce = list_entry(sctx->name_cache_list.next,
2122 struct name_cache_entry, list);
2123 name_cache_delete(sctx, nce);
2124 kfree(nce);
2125 }
2126}
2127
2128static void name_cache_free(struct send_ctx *sctx)
2129{
2130 struct name_cache_entry *nce;
31db9f7c 2131
e938c8ad
AB
2132 while (!list_empty(&sctx->name_cache_list)) {
2133 nce = list_entry(sctx->name_cache_list.next,
2134 struct name_cache_entry, list);
31db9f7c 2135 name_cache_delete(sctx, nce);
17589bd9 2136 kfree(nce);
31db9f7c
AB
2137 }
2138}
2139
766702ef
AB
2140/*
2141 * Used by get_cur_path for each ref up to the root.
2142 * Returns 0 if it succeeded.
2143 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2144 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2145 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2146 * Returns <0 in case of error.
2147 */
31db9f7c
AB
2148static int __get_cur_name_and_parent(struct send_ctx *sctx,
2149 u64 ino, u64 gen,
2150 u64 *parent_ino,
2151 u64 *parent_gen,
2152 struct fs_path *dest)
2153{
2154 int ret;
2155 int nce_ret;
31db9f7c
AB
2156 struct name_cache_entry *nce = NULL;
2157
766702ef
AB
2158 /*
2159 * First check if we already did a call to this function with the same
2160 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2161 * return the cached result.
2162 */
31db9f7c
AB
2163 nce = name_cache_search(sctx, ino, gen);
2164 if (nce) {
2165 if (ino < sctx->send_progress && nce->need_later_update) {
2166 name_cache_delete(sctx, nce);
2167 kfree(nce);
2168 nce = NULL;
2169 } else {
2170 name_cache_used(sctx, nce);
2171 *parent_ino = nce->parent_ino;
2172 *parent_gen = nce->parent_gen;
2173 ret = fs_path_add(dest, nce->name, nce->name_len);
2174 if (ret < 0)
2175 goto out;
2176 ret = nce->ret;
2177 goto out;
2178 }
2179 }
2180
766702ef
AB
2181 /*
2182 * If the inode is not existent yet, add the orphan name and return 1.
2183 * This should only happen for the parent dir that we determine in
2184 * __record_new_ref
2185 */
31db9f7c
AB
2186 ret = is_inode_existent(sctx, ino, gen);
2187 if (ret < 0)
2188 goto out;
2189
2190 if (!ret) {
2191 ret = gen_unique_name(sctx, ino, gen, dest);
2192 if (ret < 0)
2193 goto out;
2194 ret = 1;
2195 goto out_cache;
2196 }
2197
766702ef
AB
2198 /*
2199 * Depending on whether the inode was already processed or not, use
2200 * send_root or parent_root for ref lookup.
2201 */
bf0d1f44 2202 if (ino < sctx->send_progress)
924794c9
TI
2203 ret = get_first_ref(sctx->send_root, ino,
2204 parent_ino, parent_gen, dest);
31db9f7c 2205 else
924794c9
TI
2206 ret = get_first_ref(sctx->parent_root, ino,
2207 parent_ino, parent_gen, dest);
31db9f7c
AB
2208 if (ret < 0)
2209 goto out;
2210
766702ef
AB
2211 /*
2212 * Check if the ref was overwritten by an inode's ref that was processed
2213 * earlier. If yes, treat as orphan and return 1.
2214 */
31db9f7c
AB
2215 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2216 dest->start, dest->end - dest->start);
2217 if (ret < 0)
2218 goto out;
2219 if (ret) {
2220 fs_path_reset(dest);
2221 ret = gen_unique_name(sctx, ino, gen, dest);
2222 if (ret < 0)
2223 goto out;
2224 ret = 1;
2225 }
2226
2227out_cache:
766702ef
AB
2228 /*
2229 * Store the result of the lookup in the name cache.
2230 */
e780b0d1 2231 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2232 if (!nce) {
2233 ret = -ENOMEM;
2234 goto out;
2235 }
2236
2237 nce->ino = ino;
2238 nce->gen = gen;
2239 nce->parent_ino = *parent_ino;
2240 nce->parent_gen = *parent_gen;
2241 nce->name_len = fs_path_len(dest);
2242 nce->ret = ret;
2243 strcpy(nce->name, dest->start);
31db9f7c
AB
2244
2245 if (ino < sctx->send_progress)
2246 nce->need_later_update = 0;
2247 else
2248 nce->need_later_update = 1;
2249
2250 nce_ret = name_cache_insert(sctx, nce);
2251 if (nce_ret < 0)
2252 ret = nce_ret;
2253 name_cache_clean_unused(sctx);
2254
2255out:
31db9f7c
AB
2256 return ret;
2257}
2258
2259/*
2260 * Magic happens here. This function returns the first ref to an inode as it
2261 * would look like while receiving the stream at this point in time.
2262 * We walk the path up to the root. For every inode in between, we check if it
2263 * was already processed/sent. If yes, we continue with the parent as found
2264 * in send_root. If not, we continue with the parent as found in parent_root.
2265 * If we encounter an inode that was deleted at this point in time, we use the
2266 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2267 * that were not created yet and overwritten inodes/refs.
2268 *
52042d8e 2269 * When do we have orphan inodes:
31db9f7c
AB
2270 * 1. When an inode is freshly created and thus no valid refs are available yet
2271 * 2. When a directory lost all it's refs (deleted) but still has dir items
2272 * inside which were not processed yet (pending for move/delete). If anyone
2273 * tried to get the path to the dir items, it would get a path inside that
2274 * orphan directory.
2275 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2276 * of an unprocessed inode. If in that case the first ref would be
2277 * overwritten, the overwritten inode gets "orphanized". Later when we
2278 * process this overwritten inode, it is restored at a new place by moving
2279 * the orphan inode.
2280 *
2281 * sctx->send_progress tells this function at which point in time receiving
2282 * would be.
2283 */
2284static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2285 struct fs_path *dest)
2286{
2287 int ret = 0;
2288 struct fs_path *name = NULL;
2289 u64 parent_inode = 0;
2290 u64 parent_gen = 0;
2291 int stop = 0;
2292
924794c9 2293 name = fs_path_alloc();
31db9f7c
AB
2294 if (!name) {
2295 ret = -ENOMEM;
2296 goto out;
2297 }
2298
2299 dest->reversed = 1;
2300 fs_path_reset(dest);
2301
2302 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2303 struct waiting_dir_move *wdm;
2304
31db9f7c
AB
2305 fs_path_reset(name);
2306
9dc44214
FM
2307 if (is_waiting_for_rm(sctx, ino)) {
2308 ret = gen_unique_name(sctx, ino, gen, name);
2309 if (ret < 0)
2310 goto out;
2311 ret = fs_path_add_path(dest, name);
2312 break;
2313 }
2314
8b191a68
FM
2315 wdm = get_waiting_dir_move(sctx, ino);
2316 if (wdm && wdm->orphanized) {
2317 ret = gen_unique_name(sctx, ino, gen, name);
2318 stop = 1;
2319 } else if (wdm) {
bf0d1f44
FM
2320 ret = get_first_ref(sctx->parent_root, ino,
2321 &parent_inode, &parent_gen, name);
2322 } else {
2323 ret = __get_cur_name_and_parent(sctx, ino, gen,
2324 &parent_inode,
2325 &parent_gen, name);
2326 if (ret)
2327 stop = 1;
2328 }
2329
31db9f7c
AB
2330 if (ret < 0)
2331 goto out;
9f03740a 2332
31db9f7c
AB
2333 ret = fs_path_add_path(dest, name);
2334 if (ret < 0)
2335 goto out;
2336
2337 ino = parent_inode;
2338 gen = parent_gen;
2339 }
2340
2341out:
924794c9 2342 fs_path_free(name);
31db9f7c
AB
2343 if (!ret)
2344 fs_path_unreverse(dest);
2345 return ret;
2346}
2347
31db9f7c
AB
2348/*
2349 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2350 */
2351static int send_subvol_begin(struct send_ctx *sctx)
2352{
2353 int ret;
2354 struct btrfs_root *send_root = sctx->send_root;
2355 struct btrfs_root *parent_root = sctx->parent_root;
2356 struct btrfs_path *path;
2357 struct btrfs_key key;
2358 struct btrfs_root_ref *ref;
2359 struct extent_buffer *leaf;
2360 char *name = NULL;
2361 int namelen;
2362
ffcfaf81 2363 path = btrfs_alloc_path();
31db9f7c
AB
2364 if (!path)
2365 return -ENOMEM;
2366
e780b0d1 2367 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2368 if (!name) {
2369 btrfs_free_path(path);
2370 return -ENOMEM;
2371 }
2372
4fd786e6 2373 key.objectid = send_root->root_key.objectid;
31db9f7c
AB
2374 key.type = BTRFS_ROOT_BACKREF_KEY;
2375 key.offset = 0;
2376
2377 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2378 &key, path, 1, 0);
2379 if (ret < 0)
2380 goto out;
2381 if (ret) {
2382 ret = -ENOENT;
2383 goto out;
2384 }
2385
2386 leaf = path->nodes[0];
2387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2388 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
4fd786e6 2389 key.objectid != send_root->root_key.objectid) {
31db9f7c
AB
2390 ret = -ENOENT;
2391 goto out;
2392 }
2393 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2394 namelen = btrfs_root_ref_name_len(leaf, ref);
2395 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2396 btrfs_release_path(path);
2397
31db9f7c
AB
2398 if (parent_root) {
2399 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2400 if (ret < 0)
2401 goto out;
2402 } else {
2403 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2404 if (ret < 0)
2405 goto out;
2406 }
2407
2408 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2409
2410 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2411 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2412 sctx->send_root->root_item.received_uuid);
2413 else
2414 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2415 sctx->send_root->root_item.uuid);
2416
31db9f7c 2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2418 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2419 if (parent_root) {
37b8d27d
JB
2420 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2422 parent_root->root_item.received_uuid);
2423 else
2424 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2425 parent_root->root_item.uuid);
31db9f7c 2426 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2427 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2428 }
2429
2430 ret = send_cmd(sctx);
2431
2432tlv_put_failure:
2433out:
2434 btrfs_free_path(path);
2435 kfree(name);
2436 return ret;
2437}
2438
2439static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2440{
04ab956e 2441 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2442 int ret = 0;
2443 struct fs_path *p;
2444
04ab956e 2445 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
31db9f7c 2446
924794c9 2447 p = fs_path_alloc();
31db9f7c
AB
2448 if (!p)
2449 return -ENOMEM;
2450
2451 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2452 if (ret < 0)
2453 goto out;
2454
2455 ret = get_cur_path(sctx, ino, gen, p);
2456 if (ret < 0)
2457 goto out;
2458 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2459 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2460
2461 ret = send_cmd(sctx);
2462
2463tlv_put_failure:
2464out:
924794c9 2465 fs_path_free(p);
31db9f7c
AB
2466 return ret;
2467}
2468
2469static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2470{
04ab956e 2471 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2472 int ret = 0;
2473 struct fs_path *p;
2474
04ab956e 2475 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
31db9f7c 2476
924794c9 2477 p = fs_path_alloc();
31db9f7c
AB
2478 if (!p)
2479 return -ENOMEM;
2480
2481 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2482 if (ret < 0)
2483 goto out;
2484
2485 ret = get_cur_path(sctx, ino, gen, p);
2486 if (ret < 0)
2487 goto out;
2488 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2490
2491 ret = send_cmd(sctx);
2492
2493tlv_put_failure:
2494out:
924794c9 2495 fs_path_free(p);
31db9f7c
AB
2496 return ret;
2497}
2498
2499static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2500{
04ab956e 2501 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2502 int ret = 0;
2503 struct fs_path *p;
2504
04ab956e
JM
2505 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2506 ino, uid, gid);
31db9f7c 2507
924794c9 2508 p = fs_path_alloc();
31db9f7c
AB
2509 if (!p)
2510 return -ENOMEM;
2511
2512 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2513 if (ret < 0)
2514 goto out;
2515
2516 ret = get_cur_path(sctx, ino, gen, p);
2517 if (ret < 0)
2518 goto out;
2519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2520 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2521 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2522
2523 ret = send_cmd(sctx);
2524
2525tlv_put_failure:
2526out:
924794c9 2527 fs_path_free(p);
31db9f7c
AB
2528 return ret;
2529}
2530
2531static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2532{
04ab956e 2533 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2534 int ret = 0;
2535 struct fs_path *p = NULL;
2536 struct btrfs_inode_item *ii;
2537 struct btrfs_path *path = NULL;
2538 struct extent_buffer *eb;
2539 struct btrfs_key key;
2540 int slot;
2541
04ab956e 2542 btrfs_debug(fs_info, "send_utimes %llu", ino);
31db9f7c 2543
924794c9 2544 p = fs_path_alloc();
31db9f7c
AB
2545 if (!p)
2546 return -ENOMEM;
2547
2548 path = alloc_path_for_send();
2549 if (!path) {
2550 ret = -ENOMEM;
2551 goto out;
2552 }
2553
2554 key.objectid = ino;
2555 key.type = BTRFS_INODE_ITEM_KEY;
2556 key.offset = 0;
2557 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2558 if (ret > 0)
2559 ret = -ENOENT;
31db9f7c
AB
2560 if (ret < 0)
2561 goto out;
2562
2563 eb = path->nodes[0];
2564 slot = path->slots[0];
2565 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2566
2567 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2568 if (ret < 0)
2569 goto out;
2570
2571 ret = get_cur_path(sctx, ino, gen, p);
2572 if (ret < 0)
2573 goto out;
2574 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2575 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2578 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2579
2580 ret = send_cmd(sctx);
2581
2582tlv_put_failure:
2583out:
924794c9 2584 fs_path_free(p);
31db9f7c
AB
2585 btrfs_free_path(path);
2586 return ret;
2587}
2588
2589/*
2590 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2591 * a valid path yet because we did not process the refs yet. So, the inode
2592 * is created as orphan.
2593 */
1f4692da 2594static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c 2595{
04ab956e 2596 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c 2597 int ret = 0;
31db9f7c 2598 struct fs_path *p;
31db9f7c 2599 int cmd;
1f4692da 2600 u64 gen;
31db9f7c 2601 u64 mode;
1f4692da 2602 u64 rdev;
31db9f7c 2603
04ab956e 2604 btrfs_debug(fs_info, "send_create_inode %llu", ino);
31db9f7c 2605
924794c9 2606 p = fs_path_alloc();
31db9f7c
AB
2607 if (!p)
2608 return -ENOMEM;
2609
644d1940
LB
2610 if (ino != sctx->cur_ino) {
2611 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2612 NULL, NULL, &rdev);
2613 if (ret < 0)
2614 goto out;
2615 } else {
2616 gen = sctx->cur_inode_gen;
2617 mode = sctx->cur_inode_mode;
2618 rdev = sctx->cur_inode_rdev;
2619 }
31db9f7c 2620
e938c8ad 2621 if (S_ISREG(mode)) {
31db9f7c 2622 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2623 } else if (S_ISDIR(mode)) {
31db9f7c 2624 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2625 } else if (S_ISLNK(mode)) {
31db9f7c 2626 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2627 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2628 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2629 } else if (S_ISFIFO(mode)) {
31db9f7c 2630 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2631 } else if (S_ISSOCK(mode)) {
31db9f7c 2632 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2633 } else {
f14d104d 2634 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c 2635 (int)(mode & S_IFMT));
ca6842bf 2636 ret = -EOPNOTSUPP;
31db9f7c
AB
2637 goto out;
2638 }
2639
2640 ret = begin_cmd(sctx, cmd);
2641 if (ret < 0)
2642 goto out;
2643
1f4692da 2644 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2645 if (ret < 0)
2646 goto out;
2647
2648 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2649 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2650
2651 if (S_ISLNK(mode)) {
2652 fs_path_reset(p);
924794c9 2653 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2654 if (ret < 0)
2655 goto out;
2656 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2657 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2658 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2659 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2661 }
2662
2663 ret = send_cmd(sctx);
2664 if (ret < 0)
2665 goto out;
2666
2667
2668tlv_put_failure:
2669out:
924794c9 2670 fs_path_free(p);
31db9f7c
AB
2671 return ret;
2672}
2673
1f4692da
AB
2674/*
2675 * We need some special handling for inodes that get processed before the parent
2676 * directory got created. See process_recorded_refs for details.
2677 * This function does the check if we already created the dir out of order.
2678 */
2679static int did_create_dir(struct send_ctx *sctx, u64 dir)
2680{
2681 int ret = 0;
2682 struct btrfs_path *path = NULL;
2683 struct btrfs_key key;
2684 struct btrfs_key found_key;
2685 struct btrfs_key di_key;
2686 struct extent_buffer *eb;
2687 struct btrfs_dir_item *di;
2688 int slot;
2689
2690 path = alloc_path_for_send();
2691 if (!path) {
2692 ret = -ENOMEM;
2693 goto out;
2694 }
2695
2696 key.objectid = dir;
2697 key.type = BTRFS_DIR_INDEX_KEY;
2698 key.offset = 0;
dff6d0ad
FDBM
2699 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2700 if (ret < 0)
2701 goto out;
2702
1f4692da 2703 while (1) {
dff6d0ad
FDBM
2704 eb = path->nodes[0];
2705 slot = path->slots[0];
2706 if (slot >= btrfs_header_nritems(eb)) {
2707 ret = btrfs_next_leaf(sctx->send_root, path);
2708 if (ret < 0) {
2709 goto out;
2710 } else if (ret > 0) {
2711 ret = 0;
2712 break;
2713 }
2714 continue;
1f4692da 2715 }
dff6d0ad
FDBM
2716
2717 btrfs_item_key_to_cpu(eb, &found_key, slot);
2718 if (found_key.objectid != key.objectid ||
1f4692da
AB
2719 found_key.type != key.type) {
2720 ret = 0;
2721 goto out;
2722 }
2723
2724 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2725 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2726
a0525414
JB
2727 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2728 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2729 ret = 1;
2730 goto out;
2731 }
2732
dff6d0ad 2733 path->slots[0]++;
1f4692da
AB
2734 }
2735
2736out:
2737 btrfs_free_path(path);
2738 return ret;
2739}
2740
2741/*
2742 * Only creates the inode if it is:
2743 * 1. Not a directory
2744 * 2. Or a directory which was not created already due to out of order
2745 * directories. See did_create_dir and process_recorded_refs for details.
2746 */
2747static int send_create_inode_if_needed(struct send_ctx *sctx)
2748{
2749 int ret;
2750
2751 if (S_ISDIR(sctx->cur_inode_mode)) {
2752 ret = did_create_dir(sctx, sctx->cur_ino);
2753 if (ret < 0)
2754 goto out;
2755 if (ret) {
2756 ret = 0;
2757 goto out;
2758 }
2759 }
2760
2761 ret = send_create_inode(sctx, sctx->cur_ino);
2762 if (ret < 0)
2763 goto out;
2764
2765out:
2766 return ret;
2767}
2768
31db9f7c
AB
2769struct recorded_ref {
2770 struct list_head list;
31db9f7c
AB
2771 char *name;
2772 struct fs_path *full_path;
2773 u64 dir;
2774 u64 dir_gen;
31db9f7c
AB
2775 int name_len;
2776};
2777
fdb13889
FM
2778static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2779{
2780 ref->full_path = path;
2781 ref->name = (char *)kbasename(ref->full_path->start);
2782 ref->name_len = ref->full_path->end - ref->name;
2783}
2784
31db9f7c
AB
2785/*
2786 * We need to process new refs before deleted refs, but compare_tree gives us
2787 * everything mixed. So we first record all refs and later process them.
2788 * This function is a helper to record one ref.
2789 */
a4d96d62 2790static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2791 u64 dir_gen, struct fs_path *path)
2792{
2793 struct recorded_ref *ref;
31db9f7c 2794
e780b0d1 2795 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
31db9f7c
AB
2796 if (!ref)
2797 return -ENOMEM;
2798
2799 ref->dir = dir;
2800 ref->dir_gen = dir_gen;
fdb13889 2801 set_ref_path(ref, path);
31db9f7c
AB
2802 list_add_tail(&ref->list, head);
2803 return 0;
2804}
2805
ba5e8f2e
JB
2806static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2807{
2808 struct recorded_ref *new;
2809
e780b0d1 2810 new = kmalloc(sizeof(*ref), GFP_KERNEL);
ba5e8f2e
JB
2811 if (!new)
2812 return -ENOMEM;
2813
2814 new->dir = ref->dir;
2815 new->dir_gen = ref->dir_gen;
2816 new->full_path = NULL;
2817 INIT_LIST_HEAD(&new->list);
2818 list_add_tail(&new->list, list);
2819 return 0;
2820}
2821
924794c9 2822static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2823{
2824 struct recorded_ref *cur;
31db9f7c 2825
e938c8ad
AB
2826 while (!list_empty(head)) {
2827 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2828 fs_path_free(cur->full_path);
e938c8ad 2829 list_del(&cur->list);
31db9f7c
AB
2830 kfree(cur);
2831 }
31db9f7c
AB
2832}
2833
2834static void free_recorded_refs(struct send_ctx *sctx)
2835{
924794c9
TI
2836 __free_recorded_refs(&sctx->new_refs);
2837 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2838}
2839
2840/*
766702ef 2841 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2842 * ref of an unprocessed inode gets overwritten and for all non empty
2843 * directories.
2844 */
2845static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2846 struct fs_path *path)
2847{
2848 int ret;
2849 struct fs_path *orphan;
2850
924794c9 2851 orphan = fs_path_alloc();
31db9f7c
AB
2852 if (!orphan)
2853 return -ENOMEM;
2854
2855 ret = gen_unique_name(sctx, ino, gen, orphan);
2856 if (ret < 0)
2857 goto out;
2858
2859 ret = send_rename(sctx, path, orphan);
2860
2861out:
924794c9 2862 fs_path_free(orphan);
31db9f7c
AB
2863 return ret;
2864}
2865
9dc44214
FM
2866static struct orphan_dir_info *
2867add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2868{
2869 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2870 struct rb_node *parent = NULL;
2871 struct orphan_dir_info *entry, *odi;
2872
9dc44214
FM
2873 while (*p) {
2874 parent = *p;
2875 entry = rb_entry(parent, struct orphan_dir_info, node);
2876 if (dir_ino < entry->ino) {
2877 p = &(*p)->rb_left;
2878 } else if (dir_ino > entry->ino) {
2879 p = &(*p)->rb_right;
2880 } else {
9dc44214
FM
2881 return entry;
2882 }
2883 }
2884
35c8eda1
RK
2885 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2886 if (!odi)
2887 return ERR_PTR(-ENOMEM);
2888 odi->ino = dir_ino;
2889 odi->gen = 0;
0f96f517 2890 odi->last_dir_index_offset = 0;
35c8eda1 2891
9dc44214
FM
2892 rb_link_node(&odi->node, parent, p);
2893 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2894 return odi;
2895}
2896
2897static struct orphan_dir_info *
2898get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2899{
2900 struct rb_node *n = sctx->orphan_dirs.rb_node;
2901 struct orphan_dir_info *entry;
2902
2903 while (n) {
2904 entry = rb_entry(n, struct orphan_dir_info, node);
2905 if (dir_ino < entry->ino)
2906 n = n->rb_left;
2907 else if (dir_ino > entry->ino)
2908 n = n->rb_right;
2909 else
2910 return entry;
2911 }
2912 return NULL;
2913}
2914
2915static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2916{
2917 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2918
2919 return odi != NULL;
2920}
2921
2922static void free_orphan_dir_info(struct send_ctx *sctx,
2923 struct orphan_dir_info *odi)
2924{
2925 if (!odi)
2926 return;
2927 rb_erase(&odi->node, &sctx->orphan_dirs);
2928 kfree(odi);
2929}
2930
31db9f7c
AB
2931/*
2932 * Returns 1 if a directory can be removed at this point in time.
2933 * We check this by iterating all dir items and checking if the inode behind
2934 * the dir item was already processed.
2935 */
9dc44214
FM
2936static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2937 u64 send_progress)
31db9f7c
AB
2938{
2939 int ret = 0;
2940 struct btrfs_root *root = sctx->parent_root;
2941 struct btrfs_path *path;
2942 struct btrfs_key key;
2943 struct btrfs_key found_key;
2944 struct btrfs_key loc;
2945 struct btrfs_dir_item *di;
0f96f517 2946 struct orphan_dir_info *odi = NULL;
31db9f7c 2947
6d85ed05
AB
2948 /*
2949 * Don't try to rmdir the top/root subvolume dir.
2950 */
2951 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2952 return 0;
2953
31db9f7c
AB
2954 path = alloc_path_for_send();
2955 if (!path)
2956 return -ENOMEM;
2957
2958 key.objectid = dir;
2959 key.type = BTRFS_DIR_INDEX_KEY;
2960 key.offset = 0;
0f96f517
RK
2961
2962 odi = get_orphan_dir_info(sctx, dir);
2963 if (odi)
2964 key.offset = odi->last_dir_index_offset;
2965
dff6d0ad
FDBM
2966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2967 if (ret < 0)
2968 goto out;
31db9f7c
AB
2969
2970 while (1) {
9dc44214
FM
2971 struct waiting_dir_move *dm;
2972
dff6d0ad
FDBM
2973 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2974 ret = btrfs_next_leaf(root, path);
2975 if (ret < 0)
2976 goto out;
2977 else if (ret > 0)
2978 break;
2979 continue;
31db9f7c 2980 }
dff6d0ad
FDBM
2981 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2982 path->slots[0]);
2983 if (found_key.objectid != key.objectid ||
2984 found_key.type != key.type)
31db9f7c 2985 break;
31db9f7c
AB
2986
2987 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2988 struct btrfs_dir_item);
2989 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2990
9dc44214
FM
2991 dm = get_waiting_dir_move(sctx, loc.objectid);
2992 if (dm) {
9dc44214
FM
2993 odi = add_orphan_dir_info(sctx, dir);
2994 if (IS_ERR(odi)) {
2995 ret = PTR_ERR(odi);
2996 goto out;
2997 }
2998 odi->gen = dir_gen;
0f96f517 2999 odi->last_dir_index_offset = found_key.offset;
9dc44214
FM
3000 dm->rmdir_ino = dir;
3001 ret = 0;
3002 goto out;
3003 }
3004
31db9f7c 3005 if (loc.objectid > send_progress) {
0f96f517
RK
3006 odi = add_orphan_dir_info(sctx, dir);
3007 if (IS_ERR(odi)) {
3008 ret = PTR_ERR(odi);
3009 goto out;
3010 }
3011 odi->gen = dir_gen;
3012 odi->last_dir_index_offset = found_key.offset;
31db9f7c
AB
3013 ret = 0;
3014 goto out;
3015 }
3016
dff6d0ad 3017 path->slots[0]++;
31db9f7c 3018 }
0f96f517 3019 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
3020
3021 ret = 1;
3022
3023out:
3024 btrfs_free_path(path);
3025 return ret;
3026}
3027
9f03740a
FDBM
3028static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3029{
9dc44214 3030 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3031
9dc44214 3032 return entry != NULL;
9f03740a
FDBM
3033}
3034
8b191a68 3035static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3036{
3037 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3038 struct rb_node *parent = NULL;
3039 struct waiting_dir_move *entry, *dm;
3040
e780b0d1 3041 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3042 if (!dm)
3043 return -ENOMEM;
3044 dm->ino = ino;
9dc44214 3045 dm->rmdir_ino = 0;
8b191a68 3046 dm->orphanized = orphanized;
9f03740a
FDBM
3047
3048 while (*p) {
3049 parent = *p;
3050 entry = rb_entry(parent, struct waiting_dir_move, node);
3051 if (ino < entry->ino) {
3052 p = &(*p)->rb_left;
3053 } else if (ino > entry->ino) {
3054 p = &(*p)->rb_right;
3055 } else {
3056 kfree(dm);
3057 return -EEXIST;
3058 }
3059 }
3060
3061 rb_link_node(&dm->node, parent, p);
3062 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3063 return 0;
3064}
3065
9dc44214
FM
3066static struct waiting_dir_move *
3067get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3068{
3069 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3070 struct waiting_dir_move *entry;
3071
3072 while (n) {
3073 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3074 if (ino < entry->ino)
9f03740a 3075 n = n->rb_left;
9dc44214 3076 else if (ino > entry->ino)
9f03740a 3077 n = n->rb_right;
9dc44214
FM
3078 else
3079 return entry;
9f03740a 3080 }
9dc44214
FM
3081 return NULL;
3082}
3083
3084static void free_waiting_dir_move(struct send_ctx *sctx,
3085 struct waiting_dir_move *dm)
3086{
3087 if (!dm)
3088 return;
3089 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3090 kfree(dm);
9f03740a
FDBM
3091}
3092
bfa7e1f8
FM
3093static int add_pending_dir_move(struct send_ctx *sctx,
3094 u64 ino,
3095 u64 ino_gen,
f959492f
FM
3096 u64 parent_ino,
3097 struct list_head *new_refs,
84471e24
FM
3098 struct list_head *deleted_refs,
3099 const bool is_orphan)
9f03740a
FDBM
3100{
3101 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3102 struct rb_node *parent = NULL;
73b802f4 3103 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3104 struct recorded_ref *cur;
3105 int exists = 0;
3106 int ret;
3107
e780b0d1 3108 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3109 if (!pm)
3110 return -ENOMEM;
3111 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3112 pm->ino = ino;
3113 pm->gen = ino_gen;
9f03740a
FDBM
3114 INIT_LIST_HEAD(&pm->list);
3115 INIT_LIST_HEAD(&pm->update_refs);
3116 RB_CLEAR_NODE(&pm->node);
3117
3118 while (*p) {
3119 parent = *p;
3120 entry = rb_entry(parent, struct pending_dir_move, node);
3121 if (parent_ino < entry->parent_ino) {
3122 p = &(*p)->rb_left;
3123 } else if (parent_ino > entry->parent_ino) {
3124 p = &(*p)->rb_right;
3125 } else {
3126 exists = 1;
3127 break;
3128 }
3129 }
3130
f959492f 3131 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3132 ret = dup_ref(cur, &pm->update_refs);
3133 if (ret < 0)
3134 goto out;
3135 }
f959492f 3136 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3137 ret = dup_ref(cur, &pm->update_refs);
3138 if (ret < 0)
3139 goto out;
3140 }
3141
8b191a68 3142 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3143 if (ret)
3144 goto out;
3145
3146 if (exists) {
3147 list_add_tail(&pm->list, &entry->list);
3148 } else {
3149 rb_link_node(&pm->node, parent, p);
3150 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3151 }
3152 ret = 0;
3153out:
3154 if (ret) {
3155 __free_recorded_refs(&pm->update_refs);
3156 kfree(pm);
3157 }
3158 return ret;
3159}
3160
3161static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3162 u64 parent_ino)
3163{
3164 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3165 struct pending_dir_move *entry;
3166
3167 while (n) {
3168 entry = rb_entry(n, struct pending_dir_move, node);
3169 if (parent_ino < entry->parent_ino)
3170 n = n->rb_left;
3171 else if (parent_ino > entry->parent_ino)
3172 n = n->rb_right;
3173 else
3174 return entry;
3175 }
3176 return NULL;
3177}
3178
801bec36
RK
3179static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3180 u64 ino, u64 gen, u64 *ancestor_ino)
3181{
3182 int ret = 0;
3183 u64 parent_inode = 0;
3184 u64 parent_gen = 0;
3185 u64 start_ino = ino;
3186
3187 *ancestor_ino = 0;
3188 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3189 fs_path_reset(name);
3190
3191 if (is_waiting_for_rm(sctx, ino))
3192 break;
3193 if (is_waiting_for_move(sctx, ino)) {
3194 if (*ancestor_ino == 0)
3195 *ancestor_ino = ino;
3196 ret = get_first_ref(sctx->parent_root, ino,
3197 &parent_inode, &parent_gen, name);
3198 } else {
3199 ret = __get_cur_name_and_parent(sctx, ino, gen,
3200 &parent_inode,
3201 &parent_gen, name);
3202 if (ret > 0) {
3203 ret = 0;
3204 break;
3205 }
3206 }
3207 if (ret < 0)
3208 break;
3209 if (parent_inode == start_ino) {
3210 ret = 1;
3211 if (*ancestor_ino == 0)
3212 *ancestor_ino = ino;
3213 break;
3214 }
3215 ino = parent_inode;
3216 gen = parent_gen;
3217 }
3218 return ret;
3219}
3220
9f03740a
FDBM
3221static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3222{
3223 struct fs_path *from_path = NULL;
3224 struct fs_path *to_path = NULL;
2b863a13 3225 struct fs_path *name = NULL;
9f03740a
FDBM
3226 u64 orig_progress = sctx->send_progress;
3227 struct recorded_ref *cur;
2b863a13 3228 u64 parent_ino, parent_gen;
9dc44214
FM
3229 struct waiting_dir_move *dm = NULL;
3230 u64 rmdir_ino = 0;
801bec36
RK
3231 u64 ancestor;
3232 bool is_orphan;
9f03740a
FDBM
3233 int ret;
3234
2b863a13 3235 name = fs_path_alloc();
9f03740a 3236 from_path = fs_path_alloc();
2b863a13
FM
3237 if (!name || !from_path) {
3238 ret = -ENOMEM;
3239 goto out;
3240 }
9f03740a 3241
9dc44214
FM
3242 dm = get_waiting_dir_move(sctx, pm->ino);
3243 ASSERT(dm);
3244 rmdir_ino = dm->rmdir_ino;
801bec36 3245 is_orphan = dm->orphanized;
9dc44214 3246 free_waiting_dir_move(sctx, dm);
2b863a13 3247
801bec36 3248 if (is_orphan) {
84471e24
FM
3249 ret = gen_unique_name(sctx, pm->ino,
3250 pm->gen, from_path);
3251 } else {
3252 ret = get_first_ref(sctx->parent_root, pm->ino,
3253 &parent_ino, &parent_gen, name);
3254 if (ret < 0)
3255 goto out;
3256 ret = get_cur_path(sctx, parent_ino, parent_gen,
3257 from_path);
3258 if (ret < 0)
3259 goto out;
3260 ret = fs_path_add_path(from_path, name);
3261 }
c992ec94
FM
3262 if (ret < 0)
3263 goto out;
2b863a13 3264
f959492f 3265 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3266 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3267 if (ret < 0)
3268 goto out;
801bec36
RK
3269 if (ret) {
3270 LIST_HEAD(deleted_refs);
3271 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3272 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3273 &pm->update_refs, &deleted_refs,
3274 is_orphan);
3275 if (ret < 0)
3276 goto out;
3277 if (rmdir_ino) {
3278 dm = get_waiting_dir_move(sctx, pm->ino);
3279 ASSERT(dm);
3280 dm->rmdir_ino = rmdir_ino;
3281 }
3282 goto out;
3283 }
c992ec94
FM
3284 fs_path_reset(name);
3285 to_path = name;
2b863a13 3286 name = NULL;
9f03740a
FDBM
3287 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3288 if (ret < 0)
3289 goto out;
3290
3291 ret = send_rename(sctx, from_path, to_path);
3292 if (ret < 0)
3293 goto out;
3294
9dc44214
FM
3295 if (rmdir_ino) {
3296 struct orphan_dir_info *odi;
0f96f517 3297 u64 gen;
9dc44214
FM
3298
3299 odi = get_orphan_dir_info(sctx, rmdir_ino);
3300 if (!odi) {
3301 /* already deleted */
3302 goto finish;
3303 }
0f96f517
RK
3304 gen = odi->gen;
3305
3306 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
9dc44214
FM
3307 if (ret < 0)
3308 goto out;
3309 if (!ret)
3310 goto finish;
3311
3312 name = fs_path_alloc();
3313 if (!name) {
3314 ret = -ENOMEM;
3315 goto out;
3316 }
0f96f517 3317 ret = get_cur_path(sctx, rmdir_ino, gen, name);
9dc44214
FM
3318 if (ret < 0)
3319 goto out;
3320 ret = send_rmdir(sctx, name);
3321 if (ret < 0)
3322 goto out;
9dc44214
FM
3323 }
3324
3325finish:
9f03740a
FDBM
3326 ret = send_utimes(sctx, pm->ino, pm->gen);
3327 if (ret < 0)
3328 goto out;
3329
3330 /*
3331 * After rename/move, need to update the utimes of both new parent(s)
3332 * and old parent(s).
3333 */
3334 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3335 /*
3336 * The parent inode might have been deleted in the send snapshot
3337 */
3338 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3339 NULL, NULL, NULL, NULL, NULL);
3340 if (ret == -ENOENT) {
3341 ret = 0;
9dc44214 3342 continue;
764433a1
RK
3343 }
3344 if (ret < 0)
3345 goto out;
3346
9f03740a
FDBM
3347 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3348 if (ret < 0)
3349 goto out;
3350 }
3351
3352out:
2b863a13 3353 fs_path_free(name);
9f03740a
FDBM
3354 fs_path_free(from_path);
3355 fs_path_free(to_path);
3356 sctx->send_progress = orig_progress;
3357
3358 return ret;
3359}
3360
3361static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3362{
3363 if (!list_empty(&m->list))
3364 list_del(&m->list);
3365 if (!RB_EMPTY_NODE(&m->node))
3366 rb_erase(&m->node, &sctx->pending_dir_moves);
3367 __free_recorded_refs(&m->update_refs);
3368 kfree(m);
3369}
3370
a4390aee
RK
3371static void tail_append_pending_moves(struct send_ctx *sctx,
3372 struct pending_dir_move *moves,
9f03740a
FDBM
3373 struct list_head *stack)
3374{
3375 if (list_empty(&moves->list)) {
3376 list_add_tail(&moves->list, stack);
3377 } else {
3378 LIST_HEAD(list);
3379 list_splice_init(&moves->list, &list);
3380 list_add_tail(&moves->list, stack);
3381 list_splice_tail(&list, stack);
3382 }
a4390aee
RK
3383 if (!RB_EMPTY_NODE(&moves->node)) {
3384 rb_erase(&moves->node, &sctx->pending_dir_moves);
3385 RB_CLEAR_NODE(&moves->node);
3386 }
9f03740a
FDBM
3387}
3388
3389static int apply_children_dir_moves(struct send_ctx *sctx)
3390{
3391 struct pending_dir_move *pm;
3392 struct list_head stack;
3393 u64 parent_ino = sctx->cur_ino;
3394 int ret = 0;
3395
3396 pm = get_pending_dir_moves(sctx, parent_ino);
3397 if (!pm)
3398 return 0;
3399
3400 INIT_LIST_HEAD(&stack);
a4390aee 3401 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3402
3403 while (!list_empty(&stack)) {
3404 pm = list_first_entry(&stack, struct pending_dir_move, list);
3405 parent_ino = pm->ino;
3406 ret = apply_dir_move(sctx, pm);
3407 free_pending_move(sctx, pm);
3408 if (ret)
3409 goto out;
3410 pm = get_pending_dir_moves(sctx, parent_ino);
3411 if (pm)
a4390aee 3412 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3413 }
3414 return 0;
3415
3416out:
3417 while (!list_empty(&stack)) {
3418 pm = list_first_entry(&stack, struct pending_dir_move, list);
3419 free_pending_move(sctx, pm);
3420 }
3421 return ret;
3422}
3423
84471e24
FM
3424/*
3425 * We might need to delay a directory rename even when no ancestor directory
3426 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3427 * renamed. This happens when we rename a directory to the old name (the name
3428 * in the parent root) of some other unrelated directory that got its rename
3429 * delayed due to some ancestor with higher number that got renamed.
3430 *
3431 * Example:
3432 *
3433 * Parent snapshot:
3434 * . (ino 256)
3435 * |---- a/ (ino 257)
3436 * | |---- file (ino 260)
3437 * |
3438 * |---- b/ (ino 258)
3439 * |---- c/ (ino 259)
3440 *
3441 * Send snapshot:
3442 * . (ino 256)
3443 * |---- a/ (ino 258)
3444 * |---- x/ (ino 259)
3445 * |---- y/ (ino 257)
3446 * |----- file (ino 260)
3447 *
3448 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3449 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3450 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3451 * must issue is:
3452 *
3453 * 1 - rename 259 from 'c' to 'x'
3454 * 2 - rename 257 from 'a' to 'x/y'
3455 * 3 - rename 258 from 'b' to 'a'
3456 *
3457 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3458 * be done right away and < 0 on error.
3459 */
3460static int wait_for_dest_dir_move(struct send_ctx *sctx,
3461 struct recorded_ref *parent_ref,
3462 const bool is_orphan)
3463{
2ff7e61e 3464 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
84471e24
FM
3465 struct btrfs_path *path;
3466 struct btrfs_key key;
3467 struct btrfs_key di_key;
3468 struct btrfs_dir_item *di;
3469 u64 left_gen;
3470 u64 right_gen;
3471 int ret = 0;
801bec36 3472 struct waiting_dir_move *wdm;
84471e24
FM
3473
3474 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3475 return 0;
3476
3477 path = alloc_path_for_send();
3478 if (!path)
3479 return -ENOMEM;
3480
3481 key.objectid = parent_ref->dir;
3482 key.type = BTRFS_DIR_ITEM_KEY;
3483 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3484
3485 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3486 if (ret < 0) {
3487 goto out;
3488 } else if (ret > 0) {
3489 ret = 0;
3490 goto out;
3491 }
3492
2ff7e61e
JM
3493 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3494 parent_ref->name_len);
84471e24
FM
3495 if (!di) {
3496 ret = 0;
3497 goto out;
3498 }
3499 /*
3500 * di_key.objectid has the number of the inode that has a dentry in the
3501 * parent directory with the same name that sctx->cur_ino is being
3502 * renamed to. We need to check if that inode is in the send root as
3503 * well and if it is currently marked as an inode with a pending rename,
3504 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3505 * that it happens after that other inode is renamed.
3506 */
3507 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3508 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3509 ret = 0;
3510 goto out;
3511 }
3512
3513 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3514 &left_gen, NULL, NULL, NULL, NULL);
3515 if (ret < 0)
3516 goto out;
3517 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3518 &right_gen, NULL, NULL, NULL, NULL);
3519 if (ret < 0) {
3520 if (ret == -ENOENT)
3521 ret = 0;
3522 goto out;
3523 }
3524
3525 /* Different inode, no need to delay the rename of sctx->cur_ino */
3526 if (right_gen != left_gen) {
3527 ret = 0;
3528 goto out;
3529 }
3530
801bec36
RK
3531 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3532 if (wdm && !wdm->orphanized) {
84471e24
FM
3533 ret = add_pending_dir_move(sctx,
3534 sctx->cur_ino,
3535 sctx->cur_inode_gen,
3536 di_key.objectid,
3537 &sctx->new_refs,
3538 &sctx->deleted_refs,
3539 is_orphan);
3540 if (!ret)
3541 ret = 1;
3542 }
3543out:
3544 btrfs_free_path(path);
3545 return ret;
3546}
3547
80aa6027 3548/*
ea37d599
FM
3549 * Check if inode ino2, or any of its ancestors, is inode ino1.
3550 * Return 1 if true, 0 if false and < 0 on error.
3551 */
3552static int check_ino_in_path(struct btrfs_root *root,
3553 const u64 ino1,
3554 const u64 ino1_gen,
3555 const u64 ino2,
3556 const u64 ino2_gen,
3557 struct fs_path *fs_path)
3558{
3559 u64 ino = ino2;
3560
3561 if (ino1 == ino2)
3562 return ino1_gen == ino2_gen;
3563
3564 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3565 u64 parent;
3566 u64 parent_gen;
3567 int ret;
3568
3569 fs_path_reset(fs_path);
3570 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3571 if (ret < 0)
3572 return ret;
3573 if (parent == ino1)
3574 return parent_gen == ino1_gen;
3575 ino = parent;
3576 }
3577 return 0;
3578}
3579
3580/*
3581 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3582 * possible path (in case ino2 is not a directory and has multiple hard links).
80aa6027
FM
3583 * Return 1 if true, 0 if false and < 0 on error.
3584 */
3585static int is_ancestor(struct btrfs_root *root,
3586 const u64 ino1,
3587 const u64 ino1_gen,
3588 const u64 ino2,
3589 struct fs_path *fs_path)
3590{
ea37d599 3591 bool free_fs_path = false;
72c3668f 3592 int ret = 0;
ea37d599
FM
3593 struct btrfs_path *path = NULL;
3594 struct btrfs_key key;
72c3668f
FM
3595
3596 if (!fs_path) {
3597 fs_path = fs_path_alloc();
3598 if (!fs_path)
3599 return -ENOMEM;
ea37d599 3600 free_fs_path = true;
72c3668f 3601 }
80aa6027 3602
ea37d599
FM
3603 path = alloc_path_for_send();
3604 if (!path) {
3605 ret = -ENOMEM;
3606 goto out;
3607 }
80aa6027 3608
ea37d599
FM
3609 key.objectid = ino2;
3610 key.type = BTRFS_INODE_REF_KEY;
3611 key.offset = 0;
3612
3613 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3614 if (ret < 0)
3615 goto out;
3616
3617 while (true) {
3618 struct extent_buffer *leaf = path->nodes[0];
3619 int slot = path->slots[0];
3620 u32 cur_offset = 0;
3621 u32 item_size;
3622
3623 if (slot >= btrfs_header_nritems(leaf)) {
3624 ret = btrfs_next_leaf(root, path);
3625 if (ret < 0)
3626 goto out;
3627 if (ret > 0)
3628 break;
3629 continue;
72c3668f 3630 }
ea37d599
FM
3631
3632 btrfs_item_key_to_cpu(leaf, &key, slot);
3633 if (key.objectid != ino2)
3634 break;
3635 if (key.type != BTRFS_INODE_REF_KEY &&
3636 key.type != BTRFS_INODE_EXTREF_KEY)
3637 break;
3638
3639 item_size = btrfs_item_size_nr(leaf, slot);
3640 while (cur_offset < item_size) {
3641 u64 parent;
3642 u64 parent_gen;
3643
3644 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3645 unsigned long ptr;
3646 struct btrfs_inode_extref *extref;
3647
3648 ptr = btrfs_item_ptr_offset(leaf, slot);
3649 extref = (struct btrfs_inode_extref *)
3650 (ptr + cur_offset);
3651 parent = btrfs_inode_extref_parent(leaf,
3652 extref);
3653 cur_offset += sizeof(*extref);
3654 cur_offset += btrfs_inode_extref_name_len(leaf,
3655 extref);
3656 } else {
3657 parent = key.offset;
3658 cur_offset = item_size;
3659 }
3660
3661 ret = get_inode_info(root, parent, NULL, &parent_gen,
3662 NULL, NULL, NULL, NULL);
3663 if (ret < 0)
3664 goto out;
3665 ret = check_ino_in_path(root, ino1, ino1_gen,
3666 parent, parent_gen, fs_path);
3667 if (ret)
3668 goto out;
80aa6027 3669 }
ea37d599 3670 path->slots[0]++;
80aa6027 3671 }
ea37d599 3672 ret = 0;
72c3668f 3673 out:
ea37d599
FM
3674 btrfs_free_path(path);
3675 if (free_fs_path)
72c3668f
FM
3676 fs_path_free(fs_path);
3677 return ret;
80aa6027
FM
3678}
3679
9f03740a 3680static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3681 struct recorded_ref *parent_ref,
3682 const bool is_orphan)
9f03740a 3683{
f959492f 3684 int ret = 0;
9f03740a 3685 u64 ino = parent_ref->dir;
fe9c798d 3686 u64 ino_gen = parent_ref->dir_gen;
9f03740a 3687 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3688 struct fs_path *path_before = NULL;
3689 struct fs_path *path_after = NULL;
3690 int len1, len2;
9f03740a
FDBM
3691
3692 path_after = fs_path_alloc();
f959492f
FM
3693 path_before = fs_path_alloc();
3694 if (!path_after || !path_before) {
9f03740a
FDBM
3695 ret = -ENOMEM;
3696 goto out;
3697 }
3698
bfa7e1f8 3699 /*
f959492f
FM
3700 * Our current directory inode may not yet be renamed/moved because some
3701 * ancestor (immediate or not) has to be renamed/moved first. So find if
3702 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3703 * that ancestor is processed to avoid path build infinite loops (done
3704 * at get_cur_path()).
bfa7e1f8 3705 */
f959492f 3706 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
fe9c798d
FM
3707 u64 parent_ino_after_gen;
3708
f959492f 3709 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3710 /*
3711 * If the current inode is an ancestor of ino in the
3712 * parent root, we need to delay the rename of the
3713 * current inode, otherwise don't delayed the rename
3714 * because we can end up with a circular dependency
3715 * of renames, resulting in some directories never
3716 * getting the respective rename operations issued in
3717 * the send stream or getting into infinite path build
3718 * loops.
3719 */
3720 ret = is_ancestor(sctx->parent_root,
3721 sctx->cur_ino, sctx->cur_inode_gen,
3722 ino, path_before);
4122ea64
FM
3723 if (ret)
3724 break;
f959492f 3725 }
bfa7e1f8
FM
3726
3727 fs_path_reset(path_before);
3728 fs_path_reset(path_after);
3729
3730 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
fe9c798d 3731 &parent_ino_after_gen, path_after);
bfa7e1f8
FM
3732 if (ret < 0)
3733 goto out;
3734 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3735 NULL, path_before);
f959492f 3736 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3737 goto out;
f959492f 3738 } else if (ret == -ENOENT) {
bf8e8ca6 3739 ret = 0;
f959492f 3740 break;
bfa7e1f8
FM
3741 }
3742
3743 len1 = fs_path_len(path_before);
3744 len2 = fs_path_len(path_after);
f959492f
FM
3745 if (ino > sctx->cur_ino &&
3746 (parent_ino_before != parent_ino_after || len1 != len2 ||
3747 memcmp(path_before->start, path_after->start, len1))) {
fe9c798d
FM
3748 u64 parent_ino_gen;
3749
3750 ret = get_inode_info(sctx->parent_root, ino, NULL,
3751 &parent_ino_gen, NULL, NULL, NULL,
3752 NULL);
3753 if (ret < 0)
3754 goto out;
3755 if (ino_gen == parent_ino_gen) {
3756 ret = 1;
3757 break;
3758 }
bfa7e1f8 3759 }
bfa7e1f8 3760 ino = parent_ino_after;
fe9c798d 3761 ino_gen = parent_ino_after_gen;
bfa7e1f8
FM
3762 }
3763
9f03740a
FDBM
3764out:
3765 fs_path_free(path_before);
3766 fs_path_free(path_after);
3767
f959492f
FM
3768 if (ret == 1) {
3769 ret = add_pending_dir_move(sctx,
3770 sctx->cur_ino,
3771 sctx->cur_inode_gen,
3772 ino,
3773 &sctx->new_refs,
84471e24 3774 &sctx->deleted_refs,
8b191a68 3775 is_orphan);
f959492f
FM
3776 if (!ret)
3777 ret = 1;
3778 }
3779
9f03740a
FDBM
3780 return ret;
3781}
3782
f5962781
FM
3783static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3784{
3785 int ret;
3786 struct fs_path *new_path;
3787
3788 /*
3789 * Our reference's name member points to its full_path member string, so
3790 * we use here a new path.
3791 */
3792 new_path = fs_path_alloc();
3793 if (!new_path)
3794 return -ENOMEM;
3795
3796 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3797 if (ret < 0) {
3798 fs_path_free(new_path);
3799 return ret;
3800 }
3801 ret = fs_path_add(new_path, ref->name, ref->name_len);
3802 if (ret < 0) {
3803 fs_path_free(new_path);
3804 return ret;
3805 }
3806
3807 fs_path_free(ref->full_path);
3808 set_ref_path(ref, new_path);
3809
3810 return 0;
3811}
3812
31db9f7c
AB
3813/*
3814 * This does all the move/link/unlink/rmdir magic.
3815 */
9f03740a 3816static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c 3817{
04ab956e 3818 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
3819 int ret = 0;
3820 struct recorded_ref *cur;
1f4692da 3821 struct recorded_ref *cur2;
ba5e8f2e 3822 struct list_head check_dirs;
31db9f7c 3823 struct fs_path *valid_path = NULL;
b24baf69 3824 u64 ow_inode = 0;
31db9f7c 3825 u64 ow_gen;
f5962781 3826 u64 ow_mode;
31db9f7c
AB
3827 int did_overwrite = 0;
3828 int is_orphan = 0;
29d6d30f 3829 u64 last_dir_ino_rm = 0;
84471e24 3830 bool can_rename = true;
f5962781 3831 bool orphanized_dir = false;
fdb13889 3832 bool orphanized_ancestor = false;
31db9f7c 3833
04ab956e 3834 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
31db9f7c 3835
6d85ed05
AB
3836 /*
3837 * This should never happen as the root dir always has the same ref
3838 * which is always '..'
3839 */
3840 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3841 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3842
924794c9 3843 valid_path = fs_path_alloc();
31db9f7c
AB
3844 if (!valid_path) {
3845 ret = -ENOMEM;
3846 goto out;
3847 }
3848
31db9f7c
AB
3849 /*
3850 * First, check if the first ref of the current inode was overwritten
3851 * before. If yes, we know that the current inode was already orphanized
3852 * and thus use the orphan name. If not, we can use get_cur_path to
3853 * get the path of the first ref as it would like while receiving at
3854 * this point in time.
3855 * New inodes are always orphan at the beginning, so force to use the
3856 * orphan name in this case.
3857 * The first ref is stored in valid_path and will be updated if it
3858 * gets moved around.
3859 */
3860 if (!sctx->cur_inode_new) {
3861 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3862 sctx->cur_inode_gen);
3863 if (ret < 0)
3864 goto out;
3865 if (ret)
3866 did_overwrite = 1;
3867 }
3868 if (sctx->cur_inode_new || did_overwrite) {
3869 ret = gen_unique_name(sctx, sctx->cur_ino,
3870 sctx->cur_inode_gen, valid_path);
3871 if (ret < 0)
3872 goto out;
3873 is_orphan = 1;
3874 } else {
3875 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3876 valid_path);
3877 if (ret < 0)
3878 goto out;
3879 }
3880
3881 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3882 /*
3883 * We may have refs where the parent directory does not exist
3884 * yet. This happens if the parent directories inum is higher
52042d8e 3885 * than the current inum. To handle this case, we create the
1f4692da
AB
3886 * parent directory out of order. But we need to check if this
3887 * did already happen before due to other refs in the same dir.
3888 */
3889 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3890 if (ret < 0)
3891 goto out;
3892 if (ret == inode_state_will_create) {
3893 ret = 0;
3894 /*
3895 * First check if any of the current inodes refs did
3896 * already create the dir.
3897 */
3898 list_for_each_entry(cur2, &sctx->new_refs, list) {
3899 if (cur == cur2)
3900 break;
3901 if (cur2->dir == cur->dir) {
3902 ret = 1;
3903 break;
3904 }
3905 }
3906
3907 /*
3908 * If that did not happen, check if a previous inode
3909 * did already create the dir.
3910 */
3911 if (!ret)
3912 ret = did_create_dir(sctx, cur->dir);
3913 if (ret < 0)
3914 goto out;
3915 if (!ret) {
3916 ret = send_create_inode(sctx, cur->dir);
3917 if (ret < 0)
3918 goto out;
3919 }
3920 }
3921
31db9f7c
AB
3922 /*
3923 * Check if this new ref would overwrite the first ref of
3924 * another unprocessed inode. If yes, orphanize the
3925 * overwritten inode. If we find an overwritten ref that is
3926 * not the first ref, simply unlink it.
3927 */
3928 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3929 cur->name, cur->name_len,
f5962781 3930 &ow_inode, &ow_gen, &ow_mode);
31db9f7c
AB
3931 if (ret < 0)
3932 goto out;
3933 if (ret) {
924794c9
TI
3934 ret = is_first_ref(sctx->parent_root,
3935 ow_inode, cur->dir, cur->name,
3936 cur->name_len);
31db9f7c
AB
3937 if (ret < 0)
3938 goto out;
3939 if (ret) {
8996a48c 3940 struct name_cache_entry *nce;
801bec36 3941 struct waiting_dir_move *wdm;
8996a48c 3942
31db9f7c
AB
3943 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3944 cur->full_path);
3945 if (ret < 0)
3946 goto out;
f5962781
FM
3947 if (S_ISDIR(ow_mode))
3948 orphanized_dir = true;
801bec36
RK
3949
3950 /*
3951 * If ow_inode has its rename operation delayed
3952 * make sure that its orphanized name is used in
3953 * the source path when performing its rename
3954 * operation.
3955 */
3956 if (is_waiting_for_move(sctx, ow_inode)) {
3957 wdm = get_waiting_dir_move(sctx,
3958 ow_inode);
3959 ASSERT(wdm);
3960 wdm->orphanized = true;
3961 }
3962
8996a48c
FM
3963 /*
3964 * Make sure we clear our orphanized inode's
3965 * name from the name cache. This is because the
3966 * inode ow_inode might be an ancestor of some
3967 * other inode that will be orphanized as well
3968 * later and has an inode number greater than
3969 * sctx->send_progress. We need to prevent
3970 * future name lookups from using the old name
3971 * and get instead the orphan name.
3972 */
3973 nce = name_cache_search(sctx, ow_inode, ow_gen);
3974 if (nce) {
3975 name_cache_delete(sctx, nce);
3976 kfree(nce);
3977 }
801bec36
RK
3978
3979 /*
3980 * ow_inode might currently be an ancestor of
3981 * cur_ino, therefore compute valid_path (the
3982 * current path of cur_ino) again because it
3983 * might contain the pre-orphanization name of
3984 * ow_inode, which is no longer valid.
3985 */
72c3668f
FM
3986 ret = is_ancestor(sctx->parent_root,
3987 ow_inode, ow_gen,
3988 sctx->cur_ino, NULL);
3989 if (ret > 0) {
fdb13889 3990 orphanized_ancestor = true;
72c3668f
FM
3991 fs_path_reset(valid_path);
3992 ret = get_cur_path(sctx, sctx->cur_ino,
3993 sctx->cur_inode_gen,
3994 valid_path);
3995 }
801bec36
RK
3996 if (ret < 0)
3997 goto out;
31db9f7c
AB
3998 } else {
3999 ret = send_unlink(sctx, cur->full_path);
4000 if (ret < 0)
4001 goto out;
4002 }
4003 }
4004
84471e24
FM
4005 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4006 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4007 if (ret < 0)
4008 goto out;
4009 if (ret == 1) {
4010 can_rename = false;
4011 *pending_move = 1;
4012 }
4013 }
4014
8b191a68
FM
4015 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4016 can_rename) {
4017 ret = wait_for_parent_move(sctx, cur, is_orphan);
4018 if (ret < 0)
4019 goto out;
4020 if (ret == 1) {
4021 can_rename = false;
4022 *pending_move = 1;
4023 }
4024 }
4025
31db9f7c
AB
4026 /*
4027 * link/move the ref to the new place. If we have an orphan
4028 * inode, move it and update valid_path. If not, link or move
4029 * it depending on the inode mode.
4030 */
84471e24 4031 if (is_orphan && can_rename) {
31db9f7c
AB
4032 ret = send_rename(sctx, valid_path, cur->full_path);
4033 if (ret < 0)
4034 goto out;
4035 is_orphan = 0;
4036 ret = fs_path_copy(valid_path, cur->full_path);
4037 if (ret < 0)
4038 goto out;
84471e24 4039 } else if (can_rename) {
31db9f7c
AB
4040 if (S_ISDIR(sctx->cur_inode_mode)) {
4041 /*
4042 * Dirs can't be linked, so move it. For moved
4043 * dirs, we always have one new and one deleted
4044 * ref. The deleted ref is ignored later.
4045 */
8b191a68
FM
4046 ret = send_rename(sctx, valid_path,
4047 cur->full_path);
4048 if (!ret)
4049 ret = fs_path_copy(valid_path,
4050 cur->full_path);
31db9f7c
AB
4051 if (ret < 0)
4052 goto out;
4053 } else {
f5962781
FM
4054 /*
4055 * We might have previously orphanized an inode
4056 * which is an ancestor of our current inode,
4057 * so our reference's full path, which was
4058 * computed before any such orphanizations, must
4059 * be updated.
4060 */
4061 if (orphanized_dir) {
4062 ret = update_ref_path(sctx, cur);
4063 if (ret < 0)
4064 goto out;
4065 }
31db9f7c
AB
4066 ret = send_link(sctx, cur->full_path,
4067 valid_path);
4068 if (ret < 0)
4069 goto out;
4070 }
4071 }
ba5e8f2e 4072 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4073 if (ret < 0)
4074 goto out;
4075 }
4076
4077 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4078 /*
4079 * Check if we can already rmdir the directory. If not,
4080 * orphanize it. For every dir item inside that gets deleted
4081 * later, we do this check again and rmdir it then if possible.
4082 * See the use of check_dirs for more details.
4083 */
9dc44214
FM
4084 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4085 sctx->cur_ino);
31db9f7c
AB
4086 if (ret < 0)
4087 goto out;
4088 if (ret) {
4089 ret = send_rmdir(sctx, valid_path);
4090 if (ret < 0)
4091 goto out;
4092 } else if (!is_orphan) {
4093 ret = orphanize_inode(sctx, sctx->cur_ino,
4094 sctx->cur_inode_gen, valid_path);
4095 if (ret < 0)
4096 goto out;
4097 is_orphan = 1;
4098 }
4099
4100 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 4101 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4102 if (ret < 0)
4103 goto out;
4104 }
ccf1626b
AB
4105 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4106 !list_empty(&sctx->deleted_refs)) {
4107 /*
4108 * We have a moved dir. Add the old parent to check_dirs
4109 */
4110 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4111 list);
ba5e8f2e 4112 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
4113 if (ret < 0)
4114 goto out;
31db9f7c
AB
4115 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4116 /*
4117 * We have a non dir inode. Go through all deleted refs and
4118 * unlink them if they were not already overwritten by other
4119 * inodes.
4120 */
4121 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4122 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4123 sctx->cur_ino, sctx->cur_inode_gen,
4124 cur->name, cur->name_len);
4125 if (ret < 0)
4126 goto out;
4127 if (!ret) {
fdb13889
FM
4128 /*
4129 * If we orphanized any ancestor before, we need
4130 * to recompute the full path for deleted names,
4131 * since any such path was computed before we
4132 * processed any references and orphanized any
4133 * ancestor inode.
4134 */
4135 if (orphanized_ancestor) {
f5962781
FM
4136 ret = update_ref_path(sctx, cur);
4137 if (ret < 0)
fdb13889 4138 goto out;
fdb13889 4139 }
1f4692da
AB
4140 ret = send_unlink(sctx, cur->full_path);
4141 if (ret < 0)
4142 goto out;
31db9f7c 4143 }
ba5e8f2e 4144 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4145 if (ret < 0)
4146 goto out;
4147 }
31db9f7c
AB
4148 /*
4149 * If the inode is still orphan, unlink the orphan. This may
4150 * happen when a previous inode did overwrite the first ref
4151 * of this inode and no new refs were added for the current
766702ef
AB
4152 * inode. Unlinking does not mean that the inode is deleted in
4153 * all cases. There may still be links to this inode in other
4154 * places.
31db9f7c 4155 */
1f4692da 4156 if (is_orphan) {
31db9f7c
AB
4157 ret = send_unlink(sctx, valid_path);
4158 if (ret < 0)
4159 goto out;
4160 }
4161 }
4162
4163 /*
4164 * We did collect all parent dirs where cur_inode was once located. We
4165 * now go through all these dirs and check if they are pending for
4166 * deletion and if it's finally possible to perform the rmdir now.
4167 * We also update the inode stats of the parent dirs here.
4168 */
ba5e8f2e 4169 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
4170 /*
4171 * In case we had refs into dirs that were not processed yet,
4172 * we don't need to do the utime and rmdir logic for these dirs.
4173 * The dir will be processed later.
4174 */
ba5e8f2e 4175 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
4176 continue;
4177
ba5e8f2e 4178 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4179 if (ret < 0)
4180 goto out;
4181
4182 if (ret == inode_state_did_create ||
4183 ret == inode_state_no_change) {
4184 /* TODO delayed utimes */
ba5e8f2e 4185 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4186 if (ret < 0)
4187 goto out;
29d6d30f
FM
4188 } else if (ret == inode_state_did_delete &&
4189 cur->dir != last_dir_ino_rm) {
9dc44214
FM
4190 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4191 sctx->cur_ino);
31db9f7c
AB
4192 if (ret < 0)
4193 goto out;
4194 if (ret) {
ba5e8f2e
JB
4195 ret = get_cur_path(sctx, cur->dir,
4196 cur->dir_gen, valid_path);
31db9f7c
AB
4197 if (ret < 0)
4198 goto out;
4199 ret = send_rmdir(sctx, valid_path);
4200 if (ret < 0)
4201 goto out;
29d6d30f 4202 last_dir_ino_rm = cur->dir;
31db9f7c
AB
4203 }
4204 }
4205 }
4206
31db9f7c
AB
4207 ret = 0;
4208
4209out:
ba5e8f2e 4210 __free_recorded_refs(&check_dirs);
31db9f7c 4211 free_recorded_refs(sctx);
924794c9 4212 fs_path_free(valid_path);
31db9f7c
AB
4213 return ret;
4214}
4215
a0357511
NB
4216static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4217 void *ctx, struct list_head *refs)
31db9f7c
AB
4218{
4219 int ret = 0;
4220 struct send_ctx *sctx = ctx;
4221 struct fs_path *p;
4222 u64 gen;
4223
924794c9 4224 p = fs_path_alloc();
31db9f7c
AB
4225 if (!p)
4226 return -ENOMEM;
4227
a4d96d62 4228 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 4229 NULL, NULL);
31db9f7c
AB
4230 if (ret < 0)
4231 goto out;
4232
31db9f7c
AB
4233 ret = get_cur_path(sctx, dir, gen, p);
4234 if (ret < 0)
4235 goto out;
4236 ret = fs_path_add_path(p, name);
4237 if (ret < 0)
4238 goto out;
4239
a4d96d62 4240 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
4241
4242out:
4243 if (ret)
924794c9 4244 fs_path_free(p);
31db9f7c
AB
4245 return ret;
4246}
4247
a4d96d62
LB
4248static int __record_new_ref(int num, u64 dir, int index,
4249 struct fs_path *name,
4250 void *ctx)
4251{
4252 struct send_ctx *sctx = ctx;
a0357511 4253 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
a4d96d62
LB
4254}
4255
4256
31db9f7c
AB
4257static int __record_deleted_ref(int num, u64 dir, int index,
4258 struct fs_path *name,
4259 void *ctx)
4260{
31db9f7c 4261 struct send_ctx *sctx = ctx;
a0357511
NB
4262 return record_ref(sctx->parent_root, dir, name, ctx,
4263 &sctx->deleted_refs);
31db9f7c
AB
4264}
4265
4266static int record_new_ref(struct send_ctx *sctx)
4267{
4268 int ret;
4269
924794c9
TI
4270 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4271 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
4272 if (ret < 0)
4273 goto out;
4274 ret = 0;
4275
4276out:
4277 return ret;
4278}
4279
4280static int record_deleted_ref(struct send_ctx *sctx)
4281{
4282 int ret;
4283
924794c9
TI
4284 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4285 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
4286 if (ret < 0)
4287 goto out;
4288 ret = 0;
4289
4290out:
4291 return ret;
4292}
4293
4294struct find_ref_ctx {
4295 u64 dir;
ba5e8f2e
JB
4296 u64 dir_gen;
4297 struct btrfs_root *root;
31db9f7c
AB
4298 struct fs_path *name;
4299 int found_idx;
4300};
4301
4302static int __find_iref(int num, u64 dir, int index,
4303 struct fs_path *name,
4304 void *ctx_)
4305{
4306 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
4307 u64 dir_gen;
4308 int ret;
31db9f7c
AB
4309
4310 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4311 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
4312 /*
4313 * To avoid doing extra lookups we'll only do this if everything
4314 * else matches.
4315 */
4316 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4317 NULL, NULL, NULL);
4318 if (ret)
4319 return ret;
4320 if (dir_gen != ctx->dir_gen)
4321 return 0;
31db9f7c
AB
4322 ctx->found_idx = num;
4323 return 1;
4324 }
4325 return 0;
4326}
4327
924794c9 4328static int find_iref(struct btrfs_root *root,
31db9f7c
AB
4329 struct btrfs_path *path,
4330 struct btrfs_key *key,
ba5e8f2e 4331 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
4332{
4333 int ret;
4334 struct find_ref_ctx ctx;
4335
4336 ctx.dir = dir;
4337 ctx.name = name;
ba5e8f2e 4338 ctx.dir_gen = dir_gen;
31db9f7c 4339 ctx.found_idx = -1;
ba5e8f2e 4340 ctx.root = root;
31db9f7c 4341
924794c9 4342 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
4343 if (ret < 0)
4344 return ret;
4345
4346 if (ctx.found_idx == -1)
4347 return -ENOENT;
4348
4349 return ctx.found_idx;
4350}
4351
4352static int __record_changed_new_ref(int num, u64 dir, int index,
4353 struct fs_path *name,
4354 void *ctx)
4355{
ba5e8f2e 4356 u64 dir_gen;
31db9f7c
AB
4357 int ret;
4358 struct send_ctx *sctx = ctx;
4359
ba5e8f2e
JB
4360 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4361 NULL, NULL, NULL);
4362 if (ret)
4363 return ret;
4364
924794c9 4365 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4366 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4367 if (ret == -ENOENT)
4368 ret = __record_new_ref(num, dir, index, name, sctx);
4369 else if (ret > 0)
4370 ret = 0;
4371
4372 return ret;
4373}
4374
4375static int __record_changed_deleted_ref(int num, u64 dir, int index,
4376 struct fs_path *name,
4377 void *ctx)
4378{
ba5e8f2e 4379 u64 dir_gen;
31db9f7c
AB
4380 int ret;
4381 struct send_ctx *sctx = ctx;
4382
ba5e8f2e
JB
4383 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4384 NULL, NULL, NULL);
4385 if (ret)
4386 return ret;
4387
924794c9 4388 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4389 dir, dir_gen, name);
31db9f7c
AB
4390 if (ret == -ENOENT)
4391 ret = __record_deleted_ref(num, dir, index, name, sctx);
4392 else if (ret > 0)
4393 ret = 0;
4394
4395 return ret;
4396}
4397
4398static int record_changed_ref(struct send_ctx *sctx)
4399{
4400 int ret = 0;
4401
924794c9 4402 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4403 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4404 if (ret < 0)
4405 goto out;
924794c9 4406 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4407 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4408 if (ret < 0)
4409 goto out;
4410 ret = 0;
4411
4412out:
4413 return ret;
4414}
4415
4416/*
4417 * Record and process all refs at once. Needed when an inode changes the
4418 * generation number, which means that it was deleted and recreated.
4419 */
4420static int process_all_refs(struct send_ctx *sctx,
4421 enum btrfs_compare_tree_result cmd)
4422{
4423 int ret;
4424 struct btrfs_root *root;
4425 struct btrfs_path *path;
4426 struct btrfs_key key;
4427 struct btrfs_key found_key;
4428 struct extent_buffer *eb;
4429 int slot;
4430 iterate_inode_ref_t cb;
9f03740a 4431 int pending_move = 0;
31db9f7c
AB
4432
4433 path = alloc_path_for_send();
4434 if (!path)
4435 return -ENOMEM;
4436
4437 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4438 root = sctx->send_root;
4439 cb = __record_new_ref;
4440 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4441 root = sctx->parent_root;
4442 cb = __record_deleted_ref;
4443 } else {
4d1a63b2
DS
4444 btrfs_err(sctx->send_root->fs_info,
4445 "Wrong command %d in process_all_refs", cmd);
4446 ret = -EINVAL;
4447 goto out;
31db9f7c
AB
4448 }
4449
4450 key.objectid = sctx->cmp_key->objectid;
4451 key.type = BTRFS_INODE_REF_KEY;
4452 key.offset = 0;
dff6d0ad
FDBM
4453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4454 if (ret < 0)
4455 goto out;
31db9f7c 4456
dff6d0ad 4457 while (1) {
31db9f7c
AB
4458 eb = path->nodes[0];
4459 slot = path->slots[0];
dff6d0ad
FDBM
4460 if (slot >= btrfs_header_nritems(eb)) {
4461 ret = btrfs_next_leaf(root, path);
4462 if (ret < 0)
4463 goto out;
4464 else if (ret > 0)
4465 break;
4466 continue;
4467 }
4468
31db9f7c
AB
4469 btrfs_item_key_to_cpu(eb, &found_key, slot);
4470
4471 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4472 (found_key.type != BTRFS_INODE_REF_KEY &&
4473 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4474 break;
31db9f7c 4475
924794c9 4476 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4477 if (ret < 0)
4478 goto out;
4479
dff6d0ad 4480 path->slots[0]++;
31db9f7c 4481 }
e938c8ad 4482 btrfs_release_path(path);
31db9f7c 4483
3dc09ec8
JB
4484 /*
4485 * We don't actually care about pending_move as we are simply
4486 * re-creating this inode and will be rename'ing it into place once we
4487 * rename the parent directory.
4488 */
9f03740a 4489 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4490out:
4491 btrfs_free_path(path);
4492 return ret;
4493}
4494
4495static int send_set_xattr(struct send_ctx *sctx,
4496 struct fs_path *path,
4497 const char *name, int name_len,
4498 const char *data, int data_len)
4499{
4500 int ret = 0;
4501
4502 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4503 if (ret < 0)
4504 goto out;
4505
4506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4507 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4508 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4509
4510 ret = send_cmd(sctx);
4511
4512tlv_put_failure:
4513out:
4514 return ret;
4515}
4516
4517static int send_remove_xattr(struct send_ctx *sctx,
4518 struct fs_path *path,
4519 const char *name, int name_len)
4520{
4521 int ret = 0;
4522
4523 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4524 if (ret < 0)
4525 goto out;
4526
4527 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4528 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4529
4530 ret = send_cmd(sctx);
4531
4532tlv_put_failure:
4533out:
4534 return ret;
4535}
4536
4537static int __process_new_xattr(int num, struct btrfs_key *di_key,
4538 const char *name, int name_len,
4539 const char *data, int data_len,
4540 u8 type, void *ctx)
4541{
4542 int ret;
4543 struct send_ctx *sctx = ctx;
4544 struct fs_path *p;
2211d5ba 4545 struct posix_acl_xattr_header dummy_acl;
31db9f7c 4546
924794c9 4547 p = fs_path_alloc();
31db9f7c
AB
4548 if (!p)
4549 return -ENOMEM;
4550
4551 /*
01327610 4552 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4553 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4554 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4555 * only contains the version number and no entries.
4556 */
4557 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4558 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4559 if (data_len == 0) {
4560 dummy_acl.a_version =
4561 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4562 data = (char *)&dummy_acl;
4563 data_len = sizeof(dummy_acl);
4564 }
4565 }
4566
4567 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4568 if (ret < 0)
4569 goto out;
4570
4571 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4572
4573out:
924794c9 4574 fs_path_free(p);
31db9f7c
AB
4575 return ret;
4576}
4577
4578static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4579 const char *name, int name_len,
4580 const char *data, int data_len,
4581 u8 type, void *ctx)
4582{
4583 int ret;
4584 struct send_ctx *sctx = ctx;
4585 struct fs_path *p;
4586
924794c9 4587 p = fs_path_alloc();
31db9f7c
AB
4588 if (!p)
4589 return -ENOMEM;
4590
4591 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4592 if (ret < 0)
4593 goto out;
4594
4595 ret = send_remove_xattr(sctx, p, name, name_len);
4596
4597out:
924794c9 4598 fs_path_free(p);
31db9f7c
AB
4599 return ret;
4600}
4601
4602static int process_new_xattr(struct send_ctx *sctx)
4603{
4604 int ret = 0;
4605
924794c9 4606 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4607 __process_new_xattr, sctx);
31db9f7c
AB
4608
4609 return ret;
4610}
4611
4612static int process_deleted_xattr(struct send_ctx *sctx)
4613{
e2c89907 4614 return iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4615 __process_deleted_xattr, sctx);
31db9f7c
AB
4616}
4617
4618struct find_xattr_ctx {
4619 const char *name;
4620 int name_len;
4621 int found_idx;
4622 char *found_data;
4623 int found_data_len;
4624};
4625
4626static int __find_xattr(int num, struct btrfs_key *di_key,
4627 const char *name, int name_len,
4628 const char *data, int data_len,
4629 u8 type, void *vctx)
4630{
4631 struct find_xattr_ctx *ctx = vctx;
4632
4633 if (name_len == ctx->name_len &&
4634 strncmp(name, ctx->name, name_len) == 0) {
4635 ctx->found_idx = num;
4636 ctx->found_data_len = data_len;
e780b0d1 4637 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4638 if (!ctx->found_data)
4639 return -ENOMEM;
31db9f7c
AB
4640 return 1;
4641 }
4642 return 0;
4643}
4644
924794c9 4645static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4646 struct btrfs_path *path,
4647 struct btrfs_key *key,
4648 const char *name, int name_len,
4649 char **data, int *data_len)
4650{
4651 int ret;
4652 struct find_xattr_ctx ctx;
4653
4654 ctx.name = name;
4655 ctx.name_len = name_len;
4656 ctx.found_idx = -1;
4657 ctx.found_data = NULL;
4658 ctx.found_data_len = 0;
4659
a0357511 4660 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
31db9f7c
AB
4661 if (ret < 0)
4662 return ret;
4663
4664 if (ctx.found_idx == -1)
4665 return -ENOENT;
4666 if (data) {
4667 *data = ctx.found_data;
4668 *data_len = ctx.found_data_len;
4669 } else {
4670 kfree(ctx.found_data);
4671 }
4672 return ctx.found_idx;
4673}
4674
4675
4676static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4677 const char *name, int name_len,
4678 const char *data, int data_len,
4679 u8 type, void *ctx)
4680{
4681 int ret;
4682 struct send_ctx *sctx = ctx;
4683 char *found_data = NULL;
4684 int found_data_len = 0;
31db9f7c 4685
924794c9
TI
4686 ret = find_xattr(sctx->parent_root, sctx->right_path,
4687 sctx->cmp_key, name, name_len, &found_data,
4688 &found_data_len);
31db9f7c
AB
4689 if (ret == -ENOENT) {
4690 ret = __process_new_xattr(num, di_key, name, name_len, data,
4691 data_len, type, ctx);
4692 } else if (ret >= 0) {
4693 if (data_len != found_data_len ||
4694 memcmp(data, found_data, data_len)) {
4695 ret = __process_new_xattr(num, di_key, name, name_len,
4696 data, data_len, type, ctx);
4697 } else {
4698 ret = 0;
4699 }
4700 }
4701
4702 kfree(found_data);
31db9f7c
AB
4703 return ret;
4704}
4705
4706static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4707 const char *name, int name_len,
4708 const char *data, int data_len,
4709 u8 type, void *ctx)
4710{
4711 int ret;
4712 struct send_ctx *sctx = ctx;
4713
924794c9
TI
4714 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4715 name, name_len, NULL, NULL);
31db9f7c
AB
4716 if (ret == -ENOENT)
4717 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4718 data_len, type, ctx);
4719 else if (ret >= 0)
4720 ret = 0;
4721
4722 return ret;
4723}
4724
4725static int process_changed_xattr(struct send_ctx *sctx)
4726{
4727 int ret = 0;
4728
924794c9 4729 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4730 __process_changed_new_xattr, sctx);
31db9f7c
AB
4731 if (ret < 0)
4732 goto out;
924794c9 4733 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4734 __process_changed_deleted_xattr, sctx);
31db9f7c
AB
4735
4736out:
4737 return ret;
4738}
4739
4740static int process_all_new_xattrs(struct send_ctx *sctx)
4741{
4742 int ret;
4743 struct btrfs_root *root;
4744 struct btrfs_path *path;
4745 struct btrfs_key key;
4746 struct btrfs_key found_key;
4747 struct extent_buffer *eb;
4748 int slot;
4749
4750 path = alloc_path_for_send();
4751 if (!path)
4752 return -ENOMEM;
4753
4754 root = sctx->send_root;
4755
4756 key.objectid = sctx->cmp_key->objectid;
4757 key.type = BTRFS_XATTR_ITEM_KEY;
4758 key.offset = 0;
dff6d0ad
FDBM
4759 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4760 if (ret < 0)
4761 goto out;
31db9f7c 4762
dff6d0ad 4763 while (1) {
31db9f7c
AB
4764 eb = path->nodes[0];
4765 slot = path->slots[0];
dff6d0ad
FDBM
4766 if (slot >= btrfs_header_nritems(eb)) {
4767 ret = btrfs_next_leaf(root, path);
4768 if (ret < 0) {
4769 goto out;
4770 } else if (ret > 0) {
4771 ret = 0;
4772 break;
4773 }
4774 continue;
4775 }
31db9f7c 4776
dff6d0ad 4777 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4778 if (found_key.objectid != key.objectid ||
4779 found_key.type != key.type) {
4780 ret = 0;
4781 goto out;
4782 }
4783
a0357511 4784 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
31db9f7c
AB
4785 if (ret < 0)
4786 goto out;
4787
dff6d0ad 4788 path->slots[0]++;
31db9f7c
AB
4789 }
4790
4791out:
4792 btrfs_free_path(path);
4793 return ret;
4794}
4795
ed259095
JB
4796static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4797{
4798 struct btrfs_root *root = sctx->send_root;
4799 struct btrfs_fs_info *fs_info = root->fs_info;
4800 struct inode *inode;
4801 struct page *page;
4802 char *addr;
4803 struct btrfs_key key;
09cbfeaf 4804 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 4805 pgoff_t last_index;
7073017a 4806 unsigned pg_offset = offset_in_page(offset);
ed259095
JB
4807 ssize_t ret = 0;
4808
4809 key.objectid = sctx->cur_ino;
4810 key.type = BTRFS_INODE_ITEM_KEY;
4811 key.offset = 0;
4812
4c66e0d4 4813 inode = btrfs_iget(fs_info->sb, &key, root);
ed259095
JB
4814 if (IS_ERR(inode))
4815 return PTR_ERR(inode);
4816
4817 if (offset + len > i_size_read(inode)) {
4818 if (offset > i_size_read(inode))
4819 len = 0;
4820 else
4821 len = offset - i_size_read(inode);
4822 }
4823 if (len == 0)
4824 goto out;
4825
09cbfeaf 4826 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3
LB
4827
4828 /* initial readahead */
4829 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4830 file_ra_state_init(&sctx->ra, inode->i_mapping);
2131bcd3 4831
ed259095
JB
4832 while (index <= last_index) {
4833 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 4834 PAGE_SIZE - pg_offset);
eef16ba2
KH
4835
4836 page = find_lock_page(inode->i_mapping, index);
ed259095 4837 if (!page) {
eef16ba2
KH
4838 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4839 NULL, index, last_index + 1 - index);
4840
4841 page = find_or_create_page(inode->i_mapping, index,
4842 GFP_KERNEL);
4843 if (!page) {
4844 ret = -ENOMEM;
4845 break;
4846 }
4847 }
4848
4849 if (PageReadahead(page)) {
4850 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4851 NULL, page, index, last_index + 1 - index);
ed259095
JB
4852 }
4853
4854 if (!PageUptodate(page)) {
4855 btrfs_readpage(NULL, page);
4856 lock_page(page);
4857 if (!PageUptodate(page)) {
4858 unlock_page(page);
09cbfeaf 4859 put_page(page);
ed259095
JB
4860 ret = -EIO;
4861 break;
4862 }
4863 }
4864
4865 addr = kmap(page);
4866 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4867 kunmap(page);
4868 unlock_page(page);
09cbfeaf 4869 put_page(page);
ed259095
JB
4870 index++;
4871 pg_offset = 0;
4872 len -= cur_len;
4873 ret += cur_len;
4874 }
4875out:
4876 iput(inode);
4877 return ret;
4878}
4879
31db9f7c
AB
4880/*
4881 * Read some bytes from the current inode/file and send a write command to
4882 * user space.
4883 */
4884static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4885{
04ab956e 4886 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
4887 int ret = 0;
4888 struct fs_path *p;
ed259095 4889 ssize_t num_read = 0;
31db9f7c 4890
924794c9 4891 p = fs_path_alloc();
31db9f7c
AB
4892 if (!p)
4893 return -ENOMEM;
4894
04ab956e 4895 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
31db9f7c 4896
ed259095
JB
4897 num_read = fill_read_buf(sctx, offset, len);
4898 if (num_read <= 0) {
4899 if (num_read < 0)
4900 ret = num_read;
31db9f7c 4901 goto out;
ed259095 4902 }
31db9f7c
AB
4903
4904 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4905 if (ret < 0)
4906 goto out;
4907
4908 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4909 if (ret < 0)
4910 goto out;
4911
4912 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4913 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4914 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4915
4916 ret = send_cmd(sctx);
4917
4918tlv_put_failure:
4919out:
924794c9 4920 fs_path_free(p);
31db9f7c
AB
4921 if (ret < 0)
4922 return ret;
e938c8ad 4923 return num_read;
31db9f7c
AB
4924}
4925
4926/*
4927 * Send a clone command to user space.
4928 */
4929static int send_clone(struct send_ctx *sctx,
4930 u64 offset, u32 len,
4931 struct clone_root *clone_root)
4932{
4933 int ret = 0;
31db9f7c
AB
4934 struct fs_path *p;
4935 u64 gen;
4936
04ab956e
JM
4937 btrfs_debug(sctx->send_root->fs_info,
4938 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4fd786e6
MT
4939 offset, len, clone_root->root->root_key.objectid,
4940 clone_root->ino, clone_root->offset);
31db9f7c 4941
924794c9 4942 p = fs_path_alloc();
31db9f7c
AB
4943 if (!p)
4944 return -ENOMEM;
4945
4946 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4947 if (ret < 0)
4948 goto out;
4949
4950 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4951 if (ret < 0)
4952 goto out;
4953
4954 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4955 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4956 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4957
e938c8ad 4958 if (clone_root->root == sctx->send_root) {
31db9f7c 4959 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4960 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4961 if (ret < 0)
4962 goto out;
4963 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4964 } else {
924794c9 4965 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4966 }
4967 if (ret < 0)
4968 goto out;
4969
37b8d27d
JB
4970 /*
4971 * If the parent we're using has a received_uuid set then use that as
4972 * our clone source as that is what we will look for when doing a
4973 * receive.
4974 *
4975 * This covers the case that we create a snapshot off of a received
4976 * subvolume and then use that as the parent and try to receive on a
4977 * different host.
4978 */
4979 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4980 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4981 clone_root->root->root_item.received_uuid);
4982 else
4983 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4984 clone_root->root->root_item.uuid);
31db9f7c 4985 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4986 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4987 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4988 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4989 clone_root->offset);
4990
4991 ret = send_cmd(sctx);
4992
4993tlv_put_failure:
4994out:
924794c9 4995 fs_path_free(p);
31db9f7c
AB
4996 return ret;
4997}
4998
cb95e7bf
MF
4999/*
5000 * Send an update extent command to user space.
5001 */
5002static int send_update_extent(struct send_ctx *sctx,
5003 u64 offset, u32 len)
5004{
5005 int ret = 0;
5006 struct fs_path *p;
5007
924794c9 5008 p = fs_path_alloc();
cb95e7bf
MF
5009 if (!p)
5010 return -ENOMEM;
5011
5012 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5013 if (ret < 0)
5014 goto out;
5015
5016 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5017 if (ret < 0)
5018 goto out;
5019
5020 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5021 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5022 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5023
5024 ret = send_cmd(sctx);
5025
5026tlv_put_failure:
5027out:
924794c9 5028 fs_path_free(p);
cb95e7bf
MF
5029 return ret;
5030}
5031
16e7549f
JB
5032static int send_hole(struct send_ctx *sctx, u64 end)
5033{
5034 struct fs_path *p = NULL;
5035 u64 offset = sctx->cur_inode_last_extent;
5036 u64 len;
5037 int ret = 0;
5038
22d3151c
FM
5039 /*
5040 * A hole that starts at EOF or beyond it. Since we do not yet support
5041 * fallocate (for extent preallocation and hole punching), sending a
5042 * write of zeroes starting at EOF or beyond would later require issuing
5043 * a truncate operation which would undo the write and achieve nothing.
5044 */
5045 if (offset >= sctx->cur_inode_size)
5046 return 0;
5047
6b1f72e5
FM
5048 /*
5049 * Don't go beyond the inode's i_size due to prealloc extents that start
5050 * after the i_size.
5051 */
5052 end = min_t(u64, end, sctx->cur_inode_size);
5053
d4dfc0f4
FM
5054 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5055 return send_update_extent(sctx, offset, end - offset);
5056
16e7549f
JB
5057 p = fs_path_alloc();
5058 if (!p)
5059 return -ENOMEM;
c715e155
FM
5060 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5061 if (ret < 0)
5062 goto tlv_put_failure;
16e7549f
JB
5063 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5064 while (offset < end) {
5065 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5066
5067 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
5068 if (ret < 0)
5069 break;
5070 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5071 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5072 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5073 ret = send_cmd(sctx);
5074 if (ret < 0)
5075 break;
5076 offset += len;
5077 }
ffa7c429 5078 sctx->cur_inode_next_write_offset = offset;
16e7549f
JB
5079tlv_put_failure:
5080 fs_path_free(p);
5081 return ret;
5082}
5083
d906d49f
FM
5084static int send_extent_data(struct send_ctx *sctx,
5085 const u64 offset,
5086 const u64 len)
5087{
5088 u64 sent = 0;
5089
5090 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5091 return send_update_extent(sctx, offset, len);
5092
5093 while (sent < len) {
5094 u64 size = len - sent;
5095 int ret;
5096
5097 if (size > BTRFS_SEND_READ_SIZE)
5098 size = BTRFS_SEND_READ_SIZE;
5099 ret = send_write(sctx, offset + sent, size);
5100 if (ret < 0)
5101 return ret;
5102 if (!ret)
5103 break;
5104 sent += ret;
5105 }
5106 return 0;
5107}
5108
5109static int clone_range(struct send_ctx *sctx,
5110 struct clone_root *clone_root,
5111 const u64 disk_byte,
5112 u64 data_offset,
5113 u64 offset,
5114 u64 len)
5115{
5116 struct btrfs_path *path;
5117 struct btrfs_key key;
5118 int ret;
431d3988 5119 u64 clone_src_i_size = 0;
d906d49f 5120
72610b1b
FM
5121 /*
5122 * Prevent cloning from a zero offset with a length matching the sector
5123 * size because in some scenarios this will make the receiver fail.
5124 *
5125 * For example, if in the source filesystem the extent at offset 0
5126 * has a length of sectorsize and it was written using direct IO, then
5127 * it can never be an inline extent (even if compression is enabled).
5128 * Then this extent can be cloned in the original filesystem to a non
5129 * zero file offset, but it may not be possible to clone in the
5130 * destination filesystem because it can be inlined due to compression
5131 * on the destination filesystem (as the receiver's write operations are
5132 * always done using buffered IO). The same happens when the original
5133 * filesystem does not have compression enabled but the destination
5134 * filesystem has.
5135 */
5136 if (clone_root->offset == 0 &&
5137 len == sctx->send_root->fs_info->sectorsize)
5138 return send_extent_data(sctx, offset, len);
5139
d906d49f
FM
5140 path = alloc_path_for_send();
5141 if (!path)
5142 return -ENOMEM;
5143
040ee612
RK
5144 /*
5145 * There are inodes that have extents that lie behind its i_size. Don't
5146 * accept clones from these extents.
5147 */
5148 ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5149 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5150 btrfs_release_path(path);
5151 if (ret < 0)
5152 goto out;
5153
d906d49f
FM
5154 /*
5155 * We can't send a clone operation for the entire range if we find
5156 * extent items in the respective range in the source file that
5157 * refer to different extents or if we find holes.
5158 * So check for that and do a mix of clone and regular write/copy
5159 * operations if needed.
5160 *
5161 * Example:
5162 *
5163 * mkfs.btrfs -f /dev/sda
5164 * mount /dev/sda /mnt
5165 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5166 * cp --reflink=always /mnt/foo /mnt/bar
5167 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5168 * btrfs subvolume snapshot -r /mnt /mnt/snap
5169 *
5170 * If when we send the snapshot and we are processing file bar (which
5171 * has a higher inode number than foo) we blindly send a clone operation
5172 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5173 * a file bar that matches the content of file foo - iow, doesn't match
5174 * the content from bar in the original filesystem.
5175 */
5176 key.objectid = clone_root->ino;
5177 key.type = BTRFS_EXTENT_DATA_KEY;
5178 key.offset = clone_root->offset;
5179 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5180 if (ret < 0)
5181 goto out;
5182 if (ret > 0 && path->slots[0] > 0) {
5183 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5184 if (key.objectid == clone_root->ino &&
5185 key.type == BTRFS_EXTENT_DATA_KEY)
5186 path->slots[0]--;
5187 }
5188
5189 while (true) {
5190 struct extent_buffer *leaf = path->nodes[0];
5191 int slot = path->slots[0];
5192 struct btrfs_file_extent_item *ei;
5193 u8 type;
5194 u64 ext_len;
5195 u64 clone_len;
040ee612 5196 u64 clone_data_offset;
d906d49f
FM
5197
5198 if (slot >= btrfs_header_nritems(leaf)) {
5199 ret = btrfs_next_leaf(clone_root->root, path);
5200 if (ret < 0)
5201 goto out;
5202 else if (ret > 0)
5203 break;
5204 continue;
5205 }
5206
5207 btrfs_item_key_to_cpu(leaf, &key, slot);
5208
5209 /*
5210 * We might have an implicit trailing hole (NO_HOLES feature
5211 * enabled). We deal with it after leaving this loop.
5212 */
5213 if (key.objectid != clone_root->ino ||
5214 key.type != BTRFS_EXTENT_DATA_KEY)
5215 break;
5216
5217 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5218 type = btrfs_file_extent_type(leaf, ei);
5219 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5220 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
09cbfeaf 5221 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
5222 } else {
5223 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5224 }
5225
5226 if (key.offset + ext_len <= clone_root->offset)
5227 goto next;
5228
5229 if (key.offset > clone_root->offset) {
5230 /* Implicit hole, NO_HOLES feature enabled. */
5231 u64 hole_len = key.offset - clone_root->offset;
5232
5233 if (hole_len > len)
5234 hole_len = len;
5235 ret = send_extent_data(sctx, offset, hole_len);
5236 if (ret < 0)
5237 goto out;
5238
5239 len -= hole_len;
5240 if (len == 0)
5241 break;
5242 offset += hole_len;
5243 clone_root->offset += hole_len;
5244 data_offset += hole_len;
5245 }
5246
5247 if (key.offset >= clone_root->offset + len)
5248 break;
5249
040ee612
RK
5250 if (key.offset >= clone_src_i_size)
5251 break;
5252
5253 if (key.offset + ext_len > clone_src_i_size)
5254 ext_len = clone_src_i_size - key.offset;
5255
5256 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5257 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5258 clone_root->offset = key.offset;
5259 if (clone_data_offset < data_offset &&
5260 clone_data_offset + ext_len > data_offset) {
5261 u64 extent_offset;
5262
5263 extent_offset = data_offset - clone_data_offset;
5264 ext_len -= extent_offset;
5265 clone_data_offset += extent_offset;
5266 clone_root->offset += extent_offset;
5267 }
5268 }
5269
d906d49f
FM
5270 clone_len = min_t(u64, ext_len, len);
5271
5272 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
3c850b45
FM
5273 clone_data_offset == data_offset) {
5274 const u64 src_end = clone_root->offset + clone_len;
5275 const u64 sectorsize = SZ_64K;
5276
5277 /*
5278 * We can't clone the last block, when its size is not
5279 * sector size aligned, into the middle of a file. If we
5280 * do so, the receiver will get a failure (-EINVAL) when
5281 * trying to clone or will silently corrupt the data in
5282 * the destination file if it's on a kernel without the
5283 * fix introduced by commit ac765f83f1397646
5284 * ("Btrfs: fix data corruption due to cloning of eof
5285 * block).
5286 *
5287 * So issue a clone of the aligned down range plus a
5288 * regular write for the eof block, if we hit that case.
5289 *
5290 * Also, we use the maximum possible sector size, 64K,
5291 * because we don't know what's the sector size of the
5292 * filesystem that receives the stream, so we have to
5293 * assume the largest possible sector size.
5294 */
5295 if (src_end == clone_src_i_size &&
5296 !IS_ALIGNED(src_end, sectorsize) &&
5297 offset + clone_len < sctx->cur_inode_size) {
5298 u64 slen;
5299
5300 slen = ALIGN_DOWN(src_end - clone_root->offset,
5301 sectorsize);
5302 if (slen > 0) {
5303 ret = send_clone(sctx, offset, slen,
5304 clone_root);
5305 if (ret < 0)
5306 goto out;
5307 }
5308 ret = send_extent_data(sctx, offset + slen,
5309 clone_len - slen);
5310 } else {
5311 ret = send_clone(sctx, offset, clone_len,
5312 clone_root);
5313 }
5314 } else {
d906d49f 5315 ret = send_extent_data(sctx, offset, clone_len);
3c850b45 5316 }
d906d49f
FM
5317
5318 if (ret < 0)
5319 goto out;
5320
5321 len -= clone_len;
5322 if (len == 0)
5323 break;
5324 offset += clone_len;
5325 clone_root->offset += clone_len;
5326 data_offset += clone_len;
5327next:
5328 path->slots[0]++;
5329 }
5330
5331 if (len > 0)
5332 ret = send_extent_data(sctx, offset, len);
5333 else
5334 ret = 0;
5335out:
5336 btrfs_free_path(path);
5337 return ret;
5338}
5339
31db9f7c
AB
5340static int send_write_or_clone(struct send_ctx *sctx,
5341 struct btrfs_path *path,
5342 struct btrfs_key *key,
5343 struct clone_root *clone_root)
5344{
5345 int ret = 0;
5346 struct btrfs_file_extent_item *ei;
5347 u64 offset = key->offset;
31db9f7c 5348 u64 len;
31db9f7c 5349 u8 type;
28e5dd8f 5350 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
5351
5352 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5353 struct btrfs_file_extent_item);
5354 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 5355 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5356 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
74dd17fb
CM
5357 /*
5358 * it is possible the inline item won't cover the whole page,
5359 * but there may be items after this page. Make
5360 * sure to send the whole thing
5361 */
09cbfeaf 5362 len = PAGE_ALIGN(len);
74dd17fb 5363 } else {
31db9f7c 5364 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 5365 }
31db9f7c 5366
a6aa10c7
FM
5367 if (offset >= sctx->cur_inode_size) {
5368 ret = 0;
5369 goto out;
5370 }
31db9f7c
AB
5371 if (offset + len > sctx->cur_inode_size)
5372 len = sctx->cur_inode_size - offset;
5373 if (len == 0) {
5374 ret = 0;
5375 goto out;
5376 }
5377
28e5dd8f 5378 if (clone_root && IS_ALIGNED(offset + len, bs)) {
d906d49f
FM
5379 u64 disk_byte;
5380 u64 data_offset;
5381
5382 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5383 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5384 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5385 offset, len);
cb95e7bf 5386 } else {
d906d49f 5387 ret = send_extent_data(sctx, offset, len);
31db9f7c 5388 }
ffa7c429 5389 sctx->cur_inode_next_write_offset = offset + len;
31db9f7c
AB
5390out:
5391 return ret;
5392}
5393
5394static int is_extent_unchanged(struct send_ctx *sctx,
5395 struct btrfs_path *left_path,
5396 struct btrfs_key *ekey)
5397{
5398 int ret = 0;
5399 struct btrfs_key key;
5400 struct btrfs_path *path = NULL;
5401 struct extent_buffer *eb;
5402 int slot;
5403 struct btrfs_key found_key;
5404 struct btrfs_file_extent_item *ei;
5405 u64 left_disknr;
5406 u64 right_disknr;
5407 u64 left_offset;
5408 u64 right_offset;
5409 u64 left_offset_fixed;
5410 u64 left_len;
5411 u64 right_len;
74dd17fb
CM
5412 u64 left_gen;
5413 u64 right_gen;
31db9f7c
AB
5414 u8 left_type;
5415 u8 right_type;
5416
5417 path = alloc_path_for_send();
5418 if (!path)
5419 return -ENOMEM;
5420
5421 eb = left_path->nodes[0];
5422 slot = left_path->slots[0];
31db9f7c
AB
5423 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5424 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5425
5426 if (left_type != BTRFS_FILE_EXTENT_REG) {
5427 ret = 0;
5428 goto out;
5429 }
74dd17fb
CM
5430 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5431 left_len = btrfs_file_extent_num_bytes(eb, ei);
5432 left_offset = btrfs_file_extent_offset(eb, ei);
5433 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5434
5435 /*
5436 * Following comments will refer to these graphics. L is the left
5437 * extents which we are checking at the moment. 1-8 are the right
5438 * extents that we iterate.
5439 *
5440 * |-----L-----|
5441 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5442 *
5443 * |-----L-----|
5444 * |--1--|-2b-|...(same as above)
5445 *
5446 * Alternative situation. Happens on files where extents got split.
5447 * |-----L-----|
5448 * |-----------7-----------|-6-|
5449 *
5450 * Alternative situation. Happens on files which got larger.
5451 * |-----L-----|
5452 * |-8-|
5453 * Nothing follows after 8.
5454 */
5455
5456 key.objectid = ekey->objectid;
5457 key.type = BTRFS_EXTENT_DATA_KEY;
5458 key.offset = ekey->offset;
5459 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5460 if (ret < 0)
5461 goto out;
5462 if (ret) {
5463 ret = 0;
5464 goto out;
5465 }
5466
5467 /*
5468 * Handle special case where the right side has no extents at all.
5469 */
5470 eb = path->nodes[0];
5471 slot = path->slots[0];
5472 btrfs_item_key_to_cpu(eb, &found_key, slot);
5473 if (found_key.objectid != key.objectid ||
5474 found_key.type != key.type) {
57cfd462
JB
5475 /* If we're a hole then just pretend nothing changed */
5476 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5477 goto out;
5478 }
5479
5480 /*
5481 * We're now on 2a, 2b or 7.
5482 */
5483 key = found_key;
5484 while (key.offset < ekey->offset + left_len) {
5485 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5486 right_type = btrfs_file_extent_type(eb, ei);
e1cbfd7b
FM
5487 if (right_type != BTRFS_FILE_EXTENT_REG &&
5488 right_type != BTRFS_FILE_EXTENT_INLINE) {
31db9f7c
AB
5489 ret = 0;
5490 goto out;
5491 }
5492
e1cbfd7b 5493 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5494 right_len = btrfs_file_extent_ram_bytes(eb, ei);
e1cbfd7b
FM
5495 right_len = PAGE_ALIGN(right_len);
5496 } else {
5497 right_len = btrfs_file_extent_num_bytes(eb, ei);
5498 }
007d31f7 5499
31db9f7c
AB
5500 /*
5501 * Are we at extent 8? If yes, we know the extent is changed.
5502 * This may only happen on the first iteration.
5503 */
d8347fa4 5504 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
5505 /* If we're a hole just pretend nothing changed */
5506 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5507 goto out;
5508 }
5509
e1cbfd7b
FM
5510 /*
5511 * We just wanted to see if when we have an inline extent, what
5512 * follows it is a regular extent (wanted to check the above
5513 * condition for inline extents too). This should normally not
5514 * happen but it's possible for example when we have an inline
5515 * compressed extent representing data with a size matching
5516 * the page size (currently the same as sector size).
5517 */
5518 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5519 ret = 0;
5520 goto out;
5521 }
5522
24e52b11
FM
5523 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5524 right_offset = btrfs_file_extent_offset(eb, ei);
5525 right_gen = btrfs_file_extent_generation(eb, ei);
5526
31db9f7c
AB
5527 left_offset_fixed = left_offset;
5528 if (key.offset < ekey->offset) {
5529 /* Fix the right offset for 2a and 7. */
5530 right_offset += ekey->offset - key.offset;
5531 } else {
5532 /* Fix the left offset for all behind 2a and 2b */
5533 left_offset_fixed += key.offset - ekey->offset;
5534 }
5535
5536 /*
5537 * Check if we have the same extent.
5538 */
3954096d 5539 if (left_disknr != right_disknr ||
74dd17fb
CM
5540 left_offset_fixed != right_offset ||
5541 left_gen != right_gen) {
31db9f7c
AB
5542 ret = 0;
5543 goto out;
5544 }
5545
5546 /*
5547 * Go to the next extent.
5548 */
5549 ret = btrfs_next_item(sctx->parent_root, path);
5550 if (ret < 0)
5551 goto out;
5552 if (!ret) {
5553 eb = path->nodes[0];
5554 slot = path->slots[0];
5555 btrfs_item_key_to_cpu(eb, &found_key, slot);
5556 }
5557 if (ret || found_key.objectid != key.objectid ||
5558 found_key.type != key.type) {
5559 key.offset += right_len;
5560 break;
adaa4b8e
JS
5561 }
5562 if (found_key.offset != key.offset + right_len) {
5563 ret = 0;
5564 goto out;
31db9f7c
AB
5565 }
5566 key = found_key;
5567 }
5568
5569 /*
5570 * We're now behind the left extent (treat as unchanged) or at the end
5571 * of the right side (treat as changed).
5572 */
5573 if (key.offset >= ekey->offset + left_len)
5574 ret = 1;
5575 else
5576 ret = 0;
5577
5578
5579out:
5580 btrfs_free_path(path);
5581 return ret;
5582}
5583
16e7549f
JB
5584static int get_last_extent(struct send_ctx *sctx, u64 offset)
5585{
5586 struct btrfs_path *path;
5587 struct btrfs_root *root = sctx->send_root;
5588 struct btrfs_file_extent_item *fi;
5589 struct btrfs_key key;
5590 u64 extent_end;
5591 u8 type;
5592 int ret;
5593
5594 path = alloc_path_for_send();
5595 if (!path)
5596 return -ENOMEM;
5597
5598 sctx->cur_inode_last_extent = 0;
5599
5600 key.objectid = sctx->cur_ino;
5601 key.type = BTRFS_EXTENT_DATA_KEY;
5602 key.offset = offset;
5603 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5604 if (ret < 0)
5605 goto out;
5606 ret = 0;
5607 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5608 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5609 goto out;
5610
5611 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5612 struct btrfs_file_extent_item);
5613 type = btrfs_file_extent_type(path->nodes[0], fi);
5614 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5615 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
16e7549f 5616 extent_end = ALIGN(key.offset + size,
da17066c 5617 sctx->send_root->fs_info->sectorsize);
16e7549f
JB
5618 } else {
5619 extent_end = key.offset +
5620 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5621 }
5622 sctx->cur_inode_last_extent = extent_end;
5623out:
5624 btrfs_free_path(path);
5625 return ret;
5626}
5627
82bfb2e7
FM
5628static int range_is_hole_in_parent(struct send_ctx *sctx,
5629 const u64 start,
5630 const u64 end)
5631{
5632 struct btrfs_path *path;
5633 struct btrfs_key key;
5634 struct btrfs_root *root = sctx->parent_root;
5635 u64 search_start = start;
5636 int ret;
5637
5638 path = alloc_path_for_send();
5639 if (!path)
5640 return -ENOMEM;
5641
5642 key.objectid = sctx->cur_ino;
5643 key.type = BTRFS_EXTENT_DATA_KEY;
5644 key.offset = search_start;
5645 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5646 if (ret < 0)
5647 goto out;
5648 if (ret > 0 && path->slots[0] > 0)
5649 path->slots[0]--;
5650
5651 while (search_start < end) {
5652 struct extent_buffer *leaf = path->nodes[0];
5653 int slot = path->slots[0];
5654 struct btrfs_file_extent_item *fi;
5655 u64 extent_end;
5656
5657 if (slot >= btrfs_header_nritems(leaf)) {
5658 ret = btrfs_next_leaf(root, path);
5659 if (ret < 0)
5660 goto out;
5661 else if (ret > 0)
5662 break;
5663 continue;
5664 }
5665
5666 btrfs_item_key_to_cpu(leaf, &key, slot);
5667 if (key.objectid < sctx->cur_ino ||
5668 key.type < BTRFS_EXTENT_DATA_KEY)
5669 goto next;
5670 if (key.objectid > sctx->cur_ino ||
5671 key.type > BTRFS_EXTENT_DATA_KEY ||
5672 key.offset >= end)
5673 break;
5674
5675 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5676 if (btrfs_file_extent_type(leaf, fi) ==
5677 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5678 u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
82bfb2e7
FM
5679
5680 extent_end = ALIGN(key.offset + size,
5681 root->fs_info->sectorsize);
5682 } else {
5683 extent_end = key.offset +
5684 btrfs_file_extent_num_bytes(leaf, fi);
5685 }
5686 if (extent_end <= start)
5687 goto next;
5688 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5689 search_start = extent_end;
5690 goto next;
5691 }
5692 ret = 0;
5693 goto out;
5694next:
5695 path->slots[0]++;
5696 }
5697 ret = 1;
5698out:
5699 btrfs_free_path(path);
5700 return ret;
5701}
5702
16e7549f
JB
5703static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5704 struct btrfs_key *key)
5705{
5706 struct btrfs_file_extent_item *fi;
5707 u64 extent_end;
5708 u8 type;
5709 int ret = 0;
5710
5711 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5712 return 0;
5713
5714 if (sctx->cur_inode_last_extent == (u64)-1) {
5715 ret = get_last_extent(sctx, key->offset - 1);
5716 if (ret)
5717 return ret;
5718 }
5719
5720 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5721 struct btrfs_file_extent_item);
5722 type = btrfs_file_extent_type(path->nodes[0], fi);
5723 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5724 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
16e7549f 5725 extent_end = ALIGN(key->offset + size,
da17066c 5726 sctx->send_root->fs_info->sectorsize);
16e7549f
JB
5727 } else {
5728 extent_end = key->offset +
5729 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5730 }
bf54f412
FDBM
5731
5732 if (path->slots[0] == 0 &&
5733 sctx->cur_inode_last_extent < key->offset) {
5734 /*
5735 * We might have skipped entire leafs that contained only
5736 * file extent items for our current inode. These leafs have
5737 * a generation number smaller (older) than the one in the
5738 * current leaf and the leaf our last extent came from, and
5739 * are located between these 2 leafs.
5740 */
5741 ret = get_last_extent(sctx, key->offset - 1);
5742 if (ret)
5743 return ret;
5744 }
5745
82bfb2e7
FM
5746 if (sctx->cur_inode_last_extent < key->offset) {
5747 ret = range_is_hole_in_parent(sctx,
5748 sctx->cur_inode_last_extent,
5749 key->offset);
5750 if (ret < 0)
5751 return ret;
5752 else if (ret == 0)
5753 ret = send_hole(sctx, key->offset);
5754 else
5755 ret = 0;
5756 }
16e7549f
JB
5757 sctx->cur_inode_last_extent = extent_end;
5758 return ret;
5759}
5760
31db9f7c
AB
5761static int process_extent(struct send_ctx *sctx,
5762 struct btrfs_path *path,
5763 struct btrfs_key *key)
5764{
31db9f7c 5765 struct clone_root *found_clone = NULL;
57cfd462 5766 int ret = 0;
31db9f7c
AB
5767
5768 if (S_ISLNK(sctx->cur_inode_mode))
5769 return 0;
5770
5771 if (sctx->parent_root && !sctx->cur_inode_new) {
5772 ret = is_extent_unchanged(sctx, path, key);
5773 if (ret < 0)
5774 goto out;
5775 if (ret) {
5776 ret = 0;
16e7549f 5777 goto out_hole;
31db9f7c 5778 }
57cfd462
JB
5779 } else {
5780 struct btrfs_file_extent_item *ei;
5781 u8 type;
5782
5783 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5784 struct btrfs_file_extent_item);
5785 type = btrfs_file_extent_type(path->nodes[0], ei);
5786 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5787 type == BTRFS_FILE_EXTENT_REG) {
5788 /*
5789 * The send spec does not have a prealloc command yet,
5790 * so just leave a hole for prealloc'ed extents until
5791 * we have enough commands queued up to justify rev'ing
5792 * the send spec.
5793 */
5794 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5795 ret = 0;
5796 goto out;
5797 }
5798
5799 /* Have a hole, just skip it. */
5800 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5801 ret = 0;
5802 goto out;
5803 }
5804 }
31db9f7c
AB
5805 }
5806
5807 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5808 sctx->cur_inode_size, &found_clone);
5809 if (ret != -ENOENT && ret < 0)
5810 goto out;
5811
5812 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5813 if (ret)
5814 goto out;
5815out_hole:
5816 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5817out:
5818 return ret;
5819}
5820
5821static int process_all_extents(struct send_ctx *sctx)
5822{
5823 int ret;
5824 struct btrfs_root *root;
5825 struct btrfs_path *path;
5826 struct btrfs_key key;
5827 struct btrfs_key found_key;
5828 struct extent_buffer *eb;
5829 int slot;
5830
5831 root = sctx->send_root;
5832 path = alloc_path_for_send();
5833 if (!path)
5834 return -ENOMEM;
5835
5836 key.objectid = sctx->cmp_key->objectid;
5837 key.type = BTRFS_EXTENT_DATA_KEY;
5838 key.offset = 0;
7fdd29d0
FDBM
5839 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5840 if (ret < 0)
5841 goto out;
31db9f7c 5842
7fdd29d0 5843 while (1) {
31db9f7c
AB
5844 eb = path->nodes[0];
5845 slot = path->slots[0];
7fdd29d0
FDBM
5846
5847 if (slot >= btrfs_header_nritems(eb)) {
5848 ret = btrfs_next_leaf(root, path);
5849 if (ret < 0) {
5850 goto out;
5851 } else if (ret > 0) {
5852 ret = 0;
5853 break;
5854 }
5855 continue;
5856 }
5857
31db9f7c
AB
5858 btrfs_item_key_to_cpu(eb, &found_key, slot);
5859
5860 if (found_key.objectid != key.objectid ||
5861 found_key.type != key.type) {
5862 ret = 0;
5863 goto out;
5864 }
5865
5866 ret = process_extent(sctx, path, &found_key);
5867 if (ret < 0)
5868 goto out;
5869
7fdd29d0 5870 path->slots[0]++;
31db9f7c
AB
5871 }
5872
5873out:
5874 btrfs_free_path(path);
5875 return ret;
5876}
5877
9f03740a
FDBM
5878static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5879 int *pending_move,
5880 int *refs_processed)
31db9f7c
AB
5881{
5882 int ret = 0;
5883
5884 if (sctx->cur_ino == 0)
5885 goto out;
5886 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5887 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5888 goto out;
5889 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5890 goto out;
5891
9f03740a 5892 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5893 if (ret < 0)
5894 goto out;
5895
9f03740a 5896 *refs_processed = 1;
31db9f7c
AB
5897out:
5898 return ret;
5899}
5900
5901static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5902{
5903 int ret = 0;
5904 u64 left_mode;
5905 u64 left_uid;
5906 u64 left_gid;
5907 u64 right_mode;
5908 u64 right_uid;
5909 u64 right_gid;
5910 int need_chmod = 0;
5911 int need_chown = 0;
ffa7c429 5912 int need_truncate = 1;
9f03740a
FDBM
5913 int pending_move = 0;
5914 int refs_processed = 0;
31db9f7c 5915
46b2f459
FM
5916 if (sctx->ignore_cur_inode)
5917 return 0;
5918
9f03740a
FDBM
5919 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5920 &refs_processed);
31db9f7c
AB
5921 if (ret < 0)
5922 goto out;
5923
9f03740a
FDBM
5924 /*
5925 * We have processed the refs and thus need to advance send_progress.
5926 * Now, calls to get_cur_xxx will take the updated refs of the current
5927 * inode into account.
5928 *
5929 * On the other hand, if our current inode is a directory and couldn't
5930 * be moved/renamed because its parent was renamed/moved too and it has
5931 * a higher inode number, we can only move/rename our current inode
5932 * after we moved/renamed its parent. Therefore in this case operate on
5933 * the old path (pre move/rename) of our current inode, and the
5934 * move/rename will be performed later.
5935 */
5936 if (refs_processed && !pending_move)
5937 sctx->send_progress = sctx->cur_ino + 1;
5938
31db9f7c
AB
5939 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5940 goto out;
5941 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5942 goto out;
5943
5944 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5945 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5946 if (ret < 0)
5947 goto out;
5948
e2d044fe
AL
5949 if (!sctx->parent_root || sctx->cur_inode_new) {
5950 need_chown = 1;
5951 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5952 need_chmod = 1;
ffa7c429
FM
5953 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5954 need_truncate = 0;
e2d044fe 5955 } else {
ffa7c429
FM
5956 u64 old_size;
5957
e2d044fe 5958 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
ffa7c429 5959 &old_size, NULL, &right_mode, &right_uid,
e2d044fe
AL
5960 &right_gid, NULL);
5961 if (ret < 0)
5962 goto out;
31db9f7c 5963
e2d044fe
AL
5964 if (left_uid != right_uid || left_gid != right_gid)
5965 need_chown = 1;
5966 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5967 need_chmod = 1;
ffa7c429
FM
5968 if ((old_size == sctx->cur_inode_size) ||
5969 (sctx->cur_inode_size > old_size &&
5970 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5971 need_truncate = 0;
31db9f7c
AB
5972 }
5973
5974 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5975 if (need_send_hole(sctx)) {
766b5e5a
FM
5976 if (sctx->cur_inode_last_extent == (u64)-1 ||
5977 sctx->cur_inode_last_extent <
5978 sctx->cur_inode_size) {
16e7549f
JB
5979 ret = get_last_extent(sctx, (u64)-1);
5980 if (ret)
5981 goto out;
5982 }
5983 if (sctx->cur_inode_last_extent <
5984 sctx->cur_inode_size) {
5985 ret = send_hole(sctx, sctx->cur_inode_size);
5986 if (ret)
5987 goto out;
5988 }
5989 }
ffa7c429
FM
5990 if (need_truncate) {
5991 ret = send_truncate(sctx, sctx->cur_ino,
5992 sctx->cur_inode_gen,
5993 sctx->cur_inode_size);
5994 if (ret < 0)
5995 goto out;
5996 }
31db9f7c
AB
5997 }
5998
5999 if (need_chown) {
6000 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6001 left_uid, left_gid);
6002 if (ret < 0)
6003 goto out;
6004 }
6005 if (need_chmod) {
6006 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6007 left_mode);
6008 if (ret < 0)
6009 goto out;
6010 }
6011
6012 /*
9f03740a
FDBM
6013 * If other directory inodes depended on our current directory
6014 * inode's move/rename, now do their move/rename operations.
31db9f7c 6015 */
9f03740a
FDBM
6016 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6017 ret = apply_children_dir_moves(sctx);
6018 if (ret)
6019 goto out;
fcbd2154
FM
6020 /*
6021 * Need to send that every time, no matter if it actually
6022 * changed between the two trees as we have done changes to
6023 * the inode before. If our inode is a directory and it's
6024 * waiting to be moved/renamed, we will send its utimes when
6025 * it's moved/renamed, therefore we don't need to do it here.
6026 */
6027 sctx->send_progress = sctx->cur_ino + 1;
6028 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6029 if (ret < 0)
6030 goto out;
9f03740a
FDBM
6031 }
6032
31db9f7c
AB
6033out:
6034 return ret;
6035}
6036
46b2f459
FM
6037struct parent_paths_ctx {
6038 struct list_head *refs;
6039 struct send_ctx *sctx;
6040};
6041
6042static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6043 void *ctx)
6044{
6045 struct parent_paths_ctx *ppctx = ctx;
6046
6047 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6048 ppctx->refs);
6049}
6050
6051/*
6052 * Issue unlink operations for all paths of the current inode found in the
6053 * parent snapshot.
6054 */
6055static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6056{
6057 LIST_HEAD(deleted_refs);
6058 struct btrfs_path *path;
6059 struct btrfs_key key;
6060 struct parent_paths_ctx ctx;
6061 int ret;
6062
6063 path = alloc_path_for_send();
6064 if (!path)
6065 return -ENOMEM;
6066
6067 key.objectid = sctx->cur_ino;
6068 key.type = BTRFS_INODE_REF_KEY;
6069 key.offset = 0;
6070 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6071 if (ret < 0)
6072 goto out;
6073
6074 ctx.refs = &deleted_refs;
6075 ctx.sctx = sctx;
6076
6077 while (true) {
6078 struct extent_buffer *eb = path->nodes[0];
6079 int slot = path->slots[0];
6080
6081 if (slot >= btrfs_header_nritems(eb)) {
6082 ret = btrfs_next_leaf(sctx->parent_root, path);
6083 if (ret < 0)
6084 goto out;
6085 else if (ret > 0)
6086 break;
6087 continue;
6088 }
6089
6090 btrfs_item_key_to_cpu(eb, &key, slot);
6091 if (key.objectid != sctx->cur_ino)
6092 break;
6093 if (key.type != BTRFS_INODE_REF_KEY &&
6094 key.type != BTRFS_INODE_EXTREF_KEY)
6095 break;
6096
6097 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6098 record_parent_ref, &ctx);
6099 if (ret < 0)
6100 goto out;
6101
6102 path->slots[0]++;
6103 }
6104
6105 while (!list_empty(&deleted_refs)) {
6106 struct recorded_ref *ref;
6107
6108 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6109 ret = send_unlink(sctx, ref->full_path);
6110 if (ret < 0)
6111 goto out;
6112 fs_path_free(ref->full_path);
6113 list_del(&ref->list);
6114 kfree(ref);
6115 }
6116 ret = 0;
6117out:
6118 btrfs_free_path(path);
6119 if (ret)
6120 __free_recorded_refs(&deleted_refs);
6121 return ret;
6122}
6123
31db9f7c
AB
6124static int changed_inode(struct send_ctx *sctx,
6125 enum btrfs_compare_tree_result result)
6126{
6127 int ret = 0;
6128 struct btrfs_key *key = sctx->cmp_key;
6129 struct btrfs_inode_item *left_ii = NULL;
6130 struct btrfs_inode_item *right_ii = NULL;
6131 u64 left_gen = 0;
6132 u64 right_gen = 0;
6133
31db9f7c
AB
6134 sctx->cur_ino = key->objectid;
6135 sctx->cur_inode_new_gen = 0;
16e7549f 6136 sctx->cur_inode_last_extent = (u64)-1;
ffa7c429 6137 sctx->cur_inode_next_write_offset = 0;
46b2f459 6138 sctx->ignore_cur_inode = false;
e479d9bb
AB
6139
6140 /*
6141 * Set send_progress to current inode. This will tell all get_cur_xxx
6142 * functions that the current inode's refs are not updated yet. Later,
6143 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6144 */
31db9f7c
AB
6145 sctx->send_progress = sctx->cur_ino;
6146
6147 if (result == BTRFS_COMPARE_TREE_NEW ||
6148 result == BTRFS_COMPARE_TREE_CHANGED) {
6149 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6150 sctx->left_path->slots[0],
6151 struct btrfs_inode_item);
6152 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6153 left_ii);
6154 } else {
6155 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6156 sctx->right_path->slots[0],
6157 struct btrfs_inode_item);
6158 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6159 right_ii);
6160 }
6161 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6162 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6163 sctx->right_path->slots[0],
6164 struct btrfs_inode_item);
6165
6166 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6167 right_ii);
6d85ed05
AB
6168
6169 /*
6170 * The cur_ino = root dir case is special here. We can't treat
6171 * the inode as deleted+reused because it would generate a
6172 * stream that tries to delete/mkdir the root dir.
6173 */
6174 if (left_gen != right_gen &&
6175 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
6176 sctx->cur_inode_new_gen = 1;
6177 }
6178
46b2f459
FM
6179 /*
6180 * Normally we do not find inodes with a link count of zero (orphans)
6181 * because the most common case is to create a snapshot and use it
6182 * for a send operation. However other less common use cases involve
6183 * using a subvolume and send it after turning it to RO mode just
6184 * after deleting all hard links of a file while holding an open
6185 * file descriptor against it or turning a RO snapshot into RW mode,
6186 * keep an open file descriptor against a file, delete it and then
6187 * turn the snapshot back to RO mode before using it for a send
6188 * operation. So if we find such cases, ignore the inode and all its
6189 * items completely if it's a new inode, or if it's a changed inode
6190 * make sure all its previous paths (from the parent snapshot) are all
6191 * unlinked and all other the inode items are ignored.
6192 */
6193 if (result == BTRFS_COMPARE_TREE_NEW ||
6194 result == BTRFS_COMPARE_TREE_CHANGED) {
6195 u32 nlinks;
6196
6197 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6198 if (nlinks == 0) {
6199 sctx->ignore_cur_inode = true;
6200 if (result == BTRFS_COMPARE_TREE_CHANGED)
6201 ret = btrfs_unlink_all_paths(sctx);
6202 goto out;
6203 }
6204 }
6205
31db9f7c
AB
6206 if (result == BTRFS_COMPARE_TREE_NEW) {
6207 sctx->cur_inode_gen = left_gen;
6208 sctx->cur_inode_new = 1;
6209 sctx->cur_inode_deleted = 0;
6210 sctx->cur_inode_size = btrfs_inode_size(
6211 sctx->left_path->nodes[0], left_ii);
6212 sctx->cur_inode_mode = btrfs_inode_mode(
6213 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6214 sctx->cur_inode_rdev = btrfs_inode_rdev(
6215 sctx->left_path->nodes[0], left_ii);
31db9f7c 6216 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 6217 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6218 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6219 sctx->cur_inode_gen = right_gen;
6220 sctx->cur_inode_new = 0;
6221 sctx->cur_inode_deleted = 1;
6222 sctx->cur_inode_size = btrfs_inode_size(
6223 sctx->right_path->nodes[0], right_ii);
6224 sctx->cur_inode_mode = btrfs_inode_mode(
6225 sctx->right_path->nodes[0], right_ii);
6226 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
6227 /*
6228 * We need to do some special handling in case the inode was
6229 * reported as changed with a changed generation number. This
6230 * means that the original inode was deleted and new inode
6231 * reused the same inum. So we have to treat the old inode as
6232 * deleted and the new one as new.
6233 */
31db9f7c 6234 if (sctx->cur_inode_new_gen) {
766702ef
AB
6235 /*
6236 * First, process the inode as if it was deleted.
6237 */
31db9f7c
AB
6238 sctx->cur_inode_gen = right_gen;
6239 sctx->cur_inode_new = 0;
6240 sctx->cur_inode_deleted = 1;
6241 sctx->cur_inode_size = btrfs_inode_size(
6242 sctx->right_path->nodes[0], right_ii);
6243 sctx->cur_inode_mode = btrfs_inode_mode(
6244 sctx->right_path->nodes[0], right_ii);
6245 ret = process_all_refs(sctx,
6246 BTRFS_COMPARE_TREE_DELETED);
6247 if (ret < 0)
6248 goto out;
6249
766702ef
AB
6250 /*
6251 * Now process the inode as if it was new.
6252 */
31db9f7c
AB
6253 sctx->cur_inode_gen = left_gen;
6254 sctx->cur_inode_new = 1;
6255 sctx->cur_inode_deleted = 0;
6256 sctx->cur_inode_size = btrfs_inode_size(
6257 sctx->left_path->nodes[0], left_ii);
6258 sctx->cur_inode_mode = btrfs_inode_mode(
6259 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6260 sctx->cur_inode_rdev = btrfs_inode_rdev(
6261 sctx->left_path->nodes[0], left_ii);
1f4692da 6262 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6263 if (ret < 0)
6264 goto out;
6265
6266 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6267 if (ret < 0)
6268 goto out;
e479d9bb
AB
6269 /*
6270 * Advance send_progress now as we did not get into
6271 * process_recorded_refs_if_needed in the new_gen case.
6272 */
6273 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
6274
6275 /*
6276 * Now process all extents and xattrs of the inode as if
6277 * they were all new.
6278 */
31db9f7c
AB
6279 ret = process_all_extents(sctx);
6280 if (ret < 0)
6281 goto out;
6282 ret = process_all_new_xattrs(sctx);
6283 if (ret < 0)
6284 goto out;
6285 } else {
6286 sctx->cur_inode_gen = left_gen;
6287 sctx->cur_inode_new = 0;
6288 sctx->cur_inode_new_gen = 0;
6289 sctx->cur_inode_deleted = 0;
6290 sctx->cur_inode_size = btrfs_inode_size(
6291 sctx->left_path->nodes[0], left_ii);
6292 sctx->cur_inode_mode = btrfs_inode_mode(
6293 sctx->left_path->nodes[0], left_ii);
6294 }
6295 }
6296
6297out:
6298 return ret;
6299}
6300
766702ef
AB
6301/*
6302 * We have to process new refs before deleted refs, but compare_trees gives us
6303 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6304 * first and later process them in process_recorded_refs.
6305 * For the cur_inode_new_gen case, we skip recording completely because
6306 * changed_inode did already initiate processing of refs. The reason for this is
6307 * that in this case, compare_tree actually compares the refs of 2 different
6308 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6309 * refs of the right tree as deleted and all refs of the left tree as new.
6310 */
31db9f7c
AB
6311static int changed_ref(struct send_ctx *sctx,
6312 enum btrfs_compare_tree_result result)
6313{
6314 int ret = 0;
6315
95155585
FM
6316 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6317 inconsistent_snapshot_error(sctx, result, "reference");
6318 return -EIO;
6319 }
31db9f7c
AB
6320
6321 if (!sctx->cur_inode_new_gen &&
6322 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6323 if (result == BTRFS_COMPARE_TREE_NEW)
6324 ret = record_new_ref(sctx);
6325 else if (result == BTRFS_COMPARE_TREE_DELETED)
6326 ret = record_deleted_ref(sctx);
6327 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6328 ret = record_changed_ref(sctx);
6329 }
6330
6331 return ret;
6332}
6333
766702ef
AB
6334/*
6335 * Process new/deleted/changed xattrs. We skip processing in the
6336 * cur_inode_new_gen case because changed_inode did already initiate processing
6337 * of xattrs. The reason is the same as in changed_ref
6338 */
31db9f7c
AB
6339static int changed_xattr(struct send_ctx *sctx,
6340 enum btrfs_compare_tree_result result)
6341{
6342 int ret = 0;
6343
95155585
FM
6344 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6345 inconsistent_snapshot_error(sctx, result, "xattr");
6346 return -EIO;
6347 }
31db9f7c
AB
6348
6349 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6350 if (result == BTRFS_COMPARE_TREE_NEW)
6351 ret = process_new_xattr(sctx);
6352 else if (result == BTRFS_COMPARE_TREE_DELETED)
6353 ret = process_deleted_xattr(sctx);
6354 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6355 ret = process_changed_xattr(sctx);
6356 }
6357
6358 return ret;
6359}
6360
766702ef
AB
6361/*
6362 * Process new/deleted/changed extents. We skip processing in the
6363 * cur_inode_new_gen case because changed_inode did already initiate processing
6364 * of extents. The reason is the same as in changed_ref
6365 */
31db9f7c
AB
6366static int changed_extent(struct send_ctx *sctx,
6367 enum btrfs_compare_tree_result result)
6368{
6369 int ret = 0;
6370
b4f9a1a8
FM
6371 /*
6372 * We have found an extent item that changed without the inode item
6373 * having changed. This can happen either after relocation (where the
6374 * disk_bytenr of an extent item is replaced at
6375 * relocation.c:replace_file_extents()) or after deduplication into a
6376 * file in both the parent and send snapshots (where an extent item can
6377 * get modified or replaced with a new one). Note that deduplication
6378 * updates the inode item, but it only changes the iversion (sequence
6379 * field in the inode item) of the inode, so if a file is deduplicated
6380 * the same amount of times in both the parent and send snapshots, its
6381 * iversion becames the same in both snapshots, whence the inode item is
6382 * the same on both snapshots.
6383 */
6384 if (sctx->cur_ino != sctx->cmp_key->objectid)
6385 return 0;
31db9f7c
AB
6386
6387 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6388 if (result != BTRFS_COMPARE_TREE_DELETED)
6389 ret = process_extent(sctx, sctx->left_path,
6390 sctx->cmp_key);
6391 }
6392
6393 return ret;
6394}
6395
ba5e8f2e
JB
6396static int dir_changed(struct send_ctx *sctx, u64 dir)
6397{
6398 u64 orig_gen, new_gen;
6399 int ret;
6400
6401 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6402 NULL, NULL);
6403 if (ret)
6404 return ret;
6405
6406 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6407 NULL, NULL, NULL);
6408 if (ret)
6409 return ret;
6410
6411 return (orig_gen != new_gen) ? 1 : 0;
6412}
6413
6414static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6415 struct btrfs_key *key)
6416{
6417 struct btrfs_inode_extref *extref;
6418 struct extent_buffer *leaf;
6419 u64 dirid = 0, last_dirid = 0;
6420 unsigned long ptr;
6421 u32 item_size;
6422 u32 cur_offset = 0;
6423 int ref_name_len;
6424 int ret = 0;
6425
6426 /* Easy case, just check this one dirid */
6427 if (key->type == BTRFS_INODE_REF_KEY) {
6428 dirid = key->offset;
6429
6430 ret = dir_changed(sctx, dirid);
6431 goto out;
6432 }
6433
6434 leaf = path->nodes[0];
6435 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6436 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6437 while (cur_offset < item_size) {
6438 extref = (struct btrfs_inode_extref *)(ptr +
6439 cur_offset);
6440 dirid = btrfs_inode_extref_parent(leaf, extref);
6441 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6442 cur_offset += ref_name_len + sizeof(*extref);
6443 if (dirid == last_dirid)
6444 continue;
6445 ret = dir_changed(sctx, dirid);
6446 if (ret)
6447 break;
6448 last_dirid = dirid;
6449 }
6450out:
6451 return ret;
6452}
6453
766702ef
AB
6454/*
6455 * Updates compare related fields in sctx and simply forwards to the actual
6456 * changed_xxx functions.
6457 */
ee8c494f 6458static int changed_cb(struct btrfs_path *left_path,
31db9f7c
AB
6459 struct btrfs_path *right_path,
6460 struct btrfs_key *key,
6461 enum btrfs_compare_tree_result result,
6462 void *ctx)
6463{
6464 int ret = 0;
6465 struct send_ctx *sctx = ctx;
6466
ba5e8f2e 6467 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
6468 if (key->type == BTRFS_INODE_REF_KEY ||
6469 key->type == BTRFS_INODE_EXTREF_KEY) {
6470 ret = compare_refs(sctx, left_path, key);
6471 if (!ret)
6472 return 0;
6473 if (ret < 0)
6474 return ret;
6475 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6476 return maybe_send_hole(sctx, left_path, key);
6477 } else {
ba5e8f2e 6478 return 0;
16e7549f 6479 }
ba5e8f2e
JB
6480 result = BTRFS_COMPARE_TREE_CHANGED;
6481 ret = 0;
6482 }
6483
31db9f7c
AB
6484 sctx->left_path = left_path;
6485 sctx->right_path = right_path;
6486 sctx->cmp_key = key;
6487
6488 ret = finish_inode_if_needed(sctx, 0);
6489 if (ret < 0)
6490 goto out;
6491
2981e225
AB
6492 /* Ignore non-FS objects */
6493 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6494 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6495 goto out;
6496
46b2f459 6497 if (key->type == BTRFS_INODE_ITEM_KEY) {
31db9f7c 6498 ret = changed_inode(sctx, result);
46b2f459
FM
6499 } else if (!sctx->ignore_cur_inode) {
6500 if (key->type == BTRFS_INODE_REF_KEY ||
6501 key->type == BTRFS_INODE_EXTREF_KEY)
6502 ret = changed_ref(sctx, result);
6503 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6504 ret = changed_xattr(sctx, result);
6505 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6506 ret = changed_extent(sctx, result);
6507 }
31db9f7c
AB
6508
6509out:
6510 return ret;
6511}
6512
6513static int full_send_tree(struct send_ctx *sctx)
6514{
6515 int ret;
31db9f7c
AB
6516 struct btrfs_root *send_root = sctx->send_root;
6517 struct btrfs_key key;
31db9f7c
AB
6518 struct btrfs_path *path;
6519 struct extent_buffer *eb;
6520 int slot;
31db9f7c
AB
6521
6522 path = alloc_path_for_send();
6523 if (!path)
6524 return -ENOMEM;
6525
31db9f7c
AB
6526 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6527 key.type = BTRFS_INODE_ITEM_KEY;
6528 key.offset = 0;
6529
31db9f7c
AB
6530 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6531 if (ret < 0)
6532 goto out;
6533 if (ret)
6534 goto out_finish;
6535
6536 while (1) {
31db9f7c
AB
6537 eb = path->nodes[0];
6538 slot = path->slots[0];
ca5d2ba1 6539 btrfs_item_key_to_cpu(eb, &key, slot);
31db9f7c 6540
ca5d2ba1 6541 ret = changed_cb(path, NULL, &key,
ee8c494f 6542 BTRFS_COMPARE_TREE_NEW, sctx);
31db9f7c
AB
6543 if (ret < 0)
6544 goto out;
6545
31db9f7c
AB
6546 ret = btrfs_next_item(send_root, path);
6547 if (ret < 0)
6548 goto out;
6549 if (ret) {
6550 ret = 0;
6551 break;
6552 }
6553 }
6554
6555out_finish:
6556 ret = finish_inode_if_needed(sctx, 1);
6557
6558out:
6559 btrfs_free_path(path);
31db9f7c
AB
6560 return ret;
6561}
6562
18d0f5c6
DS
6563static int tree_move_down(struct btrfs_path *path, int *level)
6564{
6565 struct extent_buffer *eb;
6566
6567 BUG_ON(*level == 0);
6568 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6569 if (IS_ERR(eb))
6570 return PTR_ERR(eb);
6571
6572 path->nodes[*level - 1] = eb;
6573 path->slots[*level - 1] = 0;
6574 (*level)--;
6575 return 0;
6576}
6577
6578static int tree_move_next_or_upnext(struct btrfs_path *path,
6579 int *level, int root_level)
6580{
6581 int ret = 0;
6582 int nritems;
6583 nritems = btrfs_header_nritems(path->nodes[*level]);
6584
6585 path->slots[*level]++;
6586
6587 while (path->slots[*level] >= nritems) {
6588 if (*level == root_level)
6589 return -1;
6590
6591 /* move upnext */
6592 path->slots[*level] = 0;
6593 free_extent_buffer(path->nodes[*level]);
6594 path->nodes[*level] = NULL;
6595 (*level)++;
6596 path->slots[*level]++;
6597
6598 nritems = btrfs_header_nritems(path->nodes[*level]);
6599 ret = 1;
6600 }
6601 return ret;
6602}
6603
6604/*
6605 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6606 * or down.
6607 */
6608static int tree_advance(struct btrfs_path *path,
6609 int *level, int root_level,
6610 int allow_down,
6611 struct btrfs_key *key)
6612{
6613 int ret;
6614
6615 if (*level == 0 || !allow_down) {
6616 ret = tree_move_next_or_upnext(path, level, root_level);
6617 } else {
6618 ret = tree_move_down(path, level);
6619 }
6620 if (ret >= 0) {
6621 if (*level == 0)
6622 btrfs_item_key_to_cpu(path->nodes[*level], key,
6623 path->slots[*level]);
6624 else
6625 btrfs_node_key_to_cpu(path->nodes[*level], key,
6626 path->slots[*level]);
6627 }
6628 return ret;
6629}
6630
6631static int tree_compare_item(struct btrfs_path *left_path,
6632 struct btrfs_path *right_path,
6633 char *tmp_buf)
6634{
6635 int cmp;
6636 int len1, len2;
6637 unsigned long off1, off2;
6638
6639 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6640 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6641 if (len1 != len2)
6642 return 1;
6643
6644 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6645 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6646 right_path->slots[0]);
6647
6648 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6649
6650 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6651 if (cmp)
6652 return 1;
6653 return 0;
6654}
6655
6656/*
6657 * This function compares two trees and calls the provided callback for
6658 * every changed/new/deleted item it finds.
6659 * If shared tree blocks are encountered, whole subtrees are skipped, making
6660 * the compare pretty fast on snapshotted subvolumes.
6661 *
6662 * This currently works on commit roots only. As commit roots are read only,
6663 * we don't do any locking. The commit roots are protected with transactions.
6664 * Transactions are ended and rejoined when a commit is tried in between.
6665 *
6666 * This function checks for modifications done to the trees while comparing.
6667 * If it detects a change, it aborts immediately.
6668 */
6669static int btrfs_compare_trees(struct btrfs_root *left_root,
6670 struct btrfs_root *right_root,
6671 btrfs_changed_cb_t changed_cb, void *ctx)
6672{
6673 struct btrfs_fs_info *fs_info = left_root->fs_info;
6674 int ret;
6675 int cmp;
6676 struct btrfs_path *left_path = NULL;
6677 struct btrfs_path *right_path = NULL;
6678 struct btrfs_key left_key;
6679 struct btrfs_key right_key;
6680 char *tmp_buf = NULL;
6681 int left_root_level;
6682 int right_root_level;
6683 int left_level;
6684 int right_level;
6685 int left_end_reached;
6686 int right_end_reached;
6687 int advance_left;
6688 int advance_right;
6689 u64 left_blockptr;
6690 u64 right_blockptr;
6691 u64 left_gen;
6692 u64 right_gen;
6693
6694 left_path = btrfs_alloc_path();
6695 if (!left_path) {
6696 ret = -ENOMEM;
6697 goto out;
6698 }
6699 right_path = btrfs_alloc_path();
6700 if (!right_path) {
6701 ret = -ENOMEM;
6702 goto out;
6703 }
6704
6705 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6706 if (!tmp_buf) {
6707 ret = -ENOMEM;
6708 goto out;
6709 }
6710
6711 left_path->search_commit_root = 1;
6712 left_path->skip_locking = 1;
6713 right_path->search_commit_root = 1;
6714 right_path->skip_locking = 1;
6715
6716 /*
6717 * Strategy: Go to the first items of both trees. Then do
6718 *
6719 * If both trees are at level 0
6720 * Compare keys of current items
6721 * If left < right treat left item as new, advance left tree
6722 * and repeat
6723 * If left > right treat right item as deleted, advance right tree
6724 * and repeat
6725 * If left == right do deep compare of items, treat as changed if
6726 * needed, advance both trees and repeat
6727 * If both trees are at the same level but not at level 0
6728 * Compare keys of current nodes/leafs
6729 * If left < right advance left tree and repeat
6730 * If left > right advance right tree and repeat
6731 * If left == right compare blockptrs of the next nodes/leafs
6732 * If they match advance both trees but stay at the same level
6733 * and repeat
6734 * If they don't match advance both trees while allowing to go
6735 * deeper and repeat
6736 * If tree levels are different
6737 * Advance the tree that needs it and repeat
6738 *
6739 * Advancing a tree means:
6740 * If we are at level 0, try to go to the next slot. If that's not
6741 * possible, go one level up and repeat. Stop when we found a level
6742 * where we could go to the next slot. We may at this point be on a
6743 * node or a leaf.
6744 *
6745 * If we are not at level 0 and not on shared tree blocks, go one
6746 * level deeper.
6747 *
6748 * If we are not at level 0 and on shared tree blocks, go one slot to
6749 * the right if possible or go up and right.
6750 */
6751
6752 down_read(&fs_info->commit_root_sem);
6753 left_level = btrfs_header_level(left_root->commit_root);
6754 left_root_level = left_level;
6755 left_path->nodes[left_level] =
6756 btrfs_clone_extent_buffer(left_root->commit_root);
6757 if (!left_path->nodes[left_level]) {
6758 up_read(&fs_info->commit_root_sem);
6759 ret = -ENOMEM;
6760 goto out;
6761 }
6762
6763 right_level = btrfs_header_level(right_root->commit_root);
6764 right_root_level = right_level;
6765 right_path->nodes[right_level] =
6766 btrfs_clone_extent_buffer(right_root->commit_root);
6767 if (!right_path->nodes[right_level]) {
6768 up_read(&fs_info->commit_root_sem);
6769 ret = -ENOMEM;
6770 goto out;
6771 }
6772 up_read(&fs_info->commit_root_sem);
6773
6774 if (left_level == 0)
6775 btrfs_item_key_to_cpu(left_path->nodes[left_level],
6776 &left_key, left_path->slots[left_level]);
6777 else
6778 btrfs_node_key_to_cpu(left_path->nodes[left_level],
6779 &left_key, left_path->slots[left_level]);
6780 if (right_level == 0)
6781 btrfs_item_key_to_cpu(right_path->nodes[right_level],
6782 &right_key, right_path->slots[right_level]);
6783 else
6784 btrfs_node_key_to_cpu(right_path->nodes[right_level],
6785 &right_key, right_path->slots[right_level]);
6786
6787 left_end_reached = right_end_reached = 0;
6788 advance_left = advance_right = 0;
6789
6790 while (1) {
6af112b1 6791 cond_resched();
18d0f5c6
DS
6792 if (advance_left && !left_end_reached) {
6793 ret = tree_advance(left_path, &left_level,
6794 left_root_level,
6795 advance_left != ADVANCE_ONLY_NEXT,
6796 &left_key);
6797 if (ret == -1)
6798 left_end_reached = ADVANCE;
6799 else if (ret < 0)
6800 goto out;
6801 advance_left = 0;
6802 }
6803 if (advance_right && !right_end_reached) {
6804 ret = tree_advance(right_path, &right_level,
6805 right_root_level,
6806 advance_right != ADVANCE_ONLY_NEXT,
6807 &right_key);
6808 if (ret == -1)
6809 right_end_reached = ADVANCE;
6810 else if (ret < 0)
6811 goto out;
6812 advance_right = 0;
6813 }
6814
6815 if (left_end_reached && right_end_reached) {
6816 ret = 0;
6817 goto out;
6818 } else if (left_end_reached) {
6819 if (right_level == 0) {
6820 ret = changed_cb(left_path, right_path,
6821 &right_key,
6822 BTRFS_COMPARE_TREE_DELETED,
6823 ctx);
6824 if (ret < 0)
6825 goto out;
6826 }
6827 advance_right = ADVANCE;
6828 continue;
6829 } else if (right_end_reached) {
6830 if (left_level == 0) {
6831 ret = changed_cb(left_path, right_path,
6832 &left_key,
6833 BTRFS_COMPARE_TREE_NEW,
6834 ctx);
6835 if (ret < 0)
6836 goto out;
6837 }
6838 advance_left = ADVANCE;
6839 continue;
6840 }
6841
6842 if (left_level == 0 && right_level == 0) {
6843 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6844 if (cmp < 0) {
6845 ret = changed_cb(left_path, right_path,
6846 &left_key,
6847 BTRFS_COMPARE_TREE_NEW,
6848 ctx);
6849 if (ret < 0)
6850 goto out;
6851 advance_left = ADVANCE;
6852 } else if (cmp > 0) {
6853 ret = changed_cb(left_path, right_path,
6854 &right_key,
6855 BTRFS_COMPARE_TREE_DELETED,
6856 ctx);
6857 if (ret < 0)
6858 goto out;
6859 advance_right = ADVANCE;
6860 } else {
6861 enum btrfs_compare_tree_result result;
6862
6863 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6864 ret = tree_compare_item(left_path, right_path,
6865 tmp_buf);
6866 if (ret)
6867 result = BTRFS_COMPARE_TREE_CHANGED;
6868 else
6869 result = BTRFS_COMPARE_TREE_SAME;
6870 ret = changed_cb(left_path, right_path,
6871 &left_key, result, ctx);
6872 if (ret < 0)
6873 goto out;
6874 advance_left = ADVANCE;
6875 advance_right = ADVANCE;
6876 }
6877 } else if (left_level == right_level) {
6878 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6879 if (cmp < 0) {
6880 advance_left = ADVANCE;
6881 } else if (cmp > 0) {
6882 advance_right = ADVANCE;
6883 } else {
6884 left_blockptr = btrfs_node_blockptr(
6885 left_path->nodes[left_level],
6886 left_path->slots[left_level]);
6887 right_blockptr = btrfs_node_blockptr(
6888 right_path->nodes[right_level],
6889 right_path->slots[right_level]);
6890 left_gen = btrfs_node_ptr_generation(
6891 left_path->nodes[left_level],
6892 left_path->slots[left_level]);
6893 right_gen = btrfs_node_ptr_generation(
6894 right_path->nodes[right_level],
6895 right_path->slots[right_level]);
6896 if (left_blockptr == right_blockptr &&
6897 left_gen == right_gen) {
6898 /*
6899 * As we're on a shared block, don't
6900 * allow to go deeper.
6901 */
6902 advance_left = ADVANCE_ONLY_NEXT;
6903 advance_right = ADVANCE_ONLY_NEXT;
6904 } else {
6905 advance_left = ADVANCE;
6906 advance_right = ADVANCE;
6907 }
6908 }
6909 } else if (left_level < right_level) {
6910 advance_right = ADVANCE;
6911 } else {
6912 advance_left = ADVANCE;
6913 }
6914 }
6915
6916out:
6917 btrfs_free_path(left_path);
6918 btrfs_free_path(right_path);
6919 kvfree(tmp_buf);
6920 return ret;
6921}
6922
31db9f7c
AB
6923static int send_subvol(struct send_ctx *sctx)
6924{
6925 int ret;
6926
c2c71324
SB
6927 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6928 ret = send_header(sctx);
6929 if (ret < 0)
6930 goto out;
6931 }
31db9f7c
AB
6932
6933 ret = send_subvol_begin(sctx);
6934 if (ret < 0)
6935 goto out;
6936
6937 if (sctx->parent_root) {
6938 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6939 changed_cb, sctx);
6940 if (ret < 0)
6941 goto out;
6942 ret = finish_inode_if_needed(sctx, 1);
6943 if (ret < 0)
6944 goto out;
6945 } else {
6946 ret = full_send_tree(sctx);
6947 if (ret < 0)
6948 goto out;
6949 }
6950
6951out:
31db9f7c
AB
6952 free_recorded_refs(sctx);
6953 return ret;
6954}
6955
e5fa8f86
FM
6956/*
6957 * If orphan cleanup did remove any orphans from a root, it means the tree
6958 * was modified and therefore the commit root is not the same as the current
6959 * root anymore. This is a problem, because send uses the commit root and
6960 * therefore can see inode items that don't exist in the current root anymore,
6961 * and for example make calls to btrfs_iget, which will do tree lookups based
6962 * on the current root and not on the commit root. Those lookups will fail,
6963 * returning a -ESTALE error, and making send fail with that error. So make
6964 * sure a send does not see any orphans we have just removed, and that it will
6965 * see the same inodes regardless of whether a transaction commit happened
6966 * before it started (meaning that the commit root will be the same as the
6967 * current root) or not.
6968 */
6969static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6970{
6971 int i;
6972 struct btrfs_trans_handle *trans = NULL;
6973
6974again:
6975 if (sctx->parent_root &&
6976 sctx->parent_root->node != sctx->parent_root->commit_root)
6977 goto commit_trans;
6978
6979 for (i = 0; i < sctx->clone_roots_cnt; i++)
6980 if (sctx->clone_roots[i].root->node !=
6981 sctx->clone_roots[i].root->commit_root)
6982 goto commit_trans;
6983
6984 if (trans)
3a45bb20 6985 return btrfs_end_transaction(trans);
e5fa8f86
FM
6986
6987 return 0;
6988
6989commit_trans:
6990 /* Use any root, all fs roots will get their commit roots updated. */
6991 if (!trans) {
6992 trans = btrfs_join_transaction(sctx->send_root);
6993 if (IS_ERR(trans))
6994 return PTR_ERR(trans);
6995 goto again;
6996 }
6997
3a45bb20 6998 return btrfs_commit_transaction(trans);
e5fa8f86
FM
6999}
7000
9f89d5de
FM
7001/*
7002 * Make sure any existing dellaloc is flushed for any root used by a send
7003 * operation so that we do not miss any data and we do not race with writeback
7004 * finishing and changing a tree while send is using the tree. This could
7005 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7006 * a send operation then uses the subvolume.
7007 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7008 */
7009static int flush_delalloc_roots(struct send_ctx *sctx)
7010{
7011 struct btrfs_root *root = sctx->parent_root;
7012 int ret;
7013 int i;
7014
7015 if (root) {
7016 ret = btrfs_start_delalloc_snapshot(root);
7017 if (ret)
7018 return ret;
7019 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7020 }
7021
7022 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7023 root = sctx->clone_roots[i].root;
7024 ret = btrfs_start_delalloc_snapshot(root);
7025 if (ret)
7026 return ret;
7027 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7028 }
7029
7030 return 0;
7031}
7032
66ef7d65
DS
7033static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7034{
7035 spin_lock(&root->root_item_lock);
7036 root->send_in_progress--;
7037 /*
7038 * Not much left to do, we don't know why it's unbalanced and
7039 * can't blindly reset it to 0.
7040 */
7041 if (root->send_in_progress < 0)
7042 btrfs_err(root->fs_info,
f5686e3a 7043 "send_in_progress unbalanced %d root %llu",
0b246afa 7044 root->send_in_progress, root->root_key.objectid);
66ef7d65
DS
7045 spin_unlock(&root->root_item_lock);
7046}
7047
62d54f3a
FM
7048static void dedupe_in_progress_warn(const struct btrfs_root *root)
7049{
7050 btrfs_warn_rl(root->fs_info,
7051"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7052 root->root_key.objectid, root->dedupe_in_progress);
7053}
7054
2351f431 7055long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
31db9f7c
AB
7056{
7057 int ret = 0;
0b246afa
JM
7058 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7059 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 7060 struct btrfs_root *clone_root;
31db9f7c 7061 struct btrfs_key key;
31db9f7c
AB
7062 struct send_ctx *sctx = NULL;
7063 u32 i;
7064 u64 *clone_sources_tmp = NULL;
2c686537 7065 int clone_sources_to_rollback = 0;
e55d1153 7066 unsigned alloc_size;
896c14f9 7067 int sort_clone_roots = 0;
18f687d5 7068 int index;
31db9f7c
AB
7069
7070 if (!capable(CAP_SYS_ADMIN))
7071 return -EPERM;
7072
2c686537
DS
7073 /*
7074 * The subvolume must remain read-only during send, protect against
521e0546 7075 * making it RW. This also protects against deletion.
2c686537
DS
7076 */
7077 spin_lock(&send_root->root_item_lock);
62d54f3a
FM
7078 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7079 dedupe_in_progress_warn(send_root);
7080 spin_unlock(&send_root->root_item_lock);
7081 return -EAGAIN;
7082 }
2c686537
DS
7083 send_root->send_in_progress++;
7084 spin_unlock(&send_root->root_item_lock);
7085
2c686537
DS
7086 /*
7087 * Userspace tools do the checks and warn the user if it's
7088 * not RO.
7089 */
7090 if (!btrfs_root_readonly(send_root)) {
7091 ret = -EPERM;
7092 goto out;
7093 }
7094
457ae726
DC
7095 /*
7096 * Check that we don't overflow at later allocations, we request
7097 * clone_sources_count + 1 items, and compare to unsigned long inside
7098 * access_ok.
7099 */
f5ecec3c 7100 if (arg->clone_sources_count >
457ae726 7101 ULONG_MAX / sizeof(struct clone_root) - 1) {
f5ecec3c
DC
7102 ret = -EINVAL;
7103 goto out;
7104 }
7105
96d4f267 7106 if (!access_ok(arg->clone_sources,
700ff4f0
DC
7107 sizeof(*arg->clone_sources) *
7108 arg->clone_sources_count)) {
31db9f7c
AB
7109 ret = -EFAULT;
7110 goto out;
7111 }
7112
c2c71324 7113 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
7114 ret = -EINVAL;
7115 goto out;
7116 }
7117
e780b0d1 7118 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
7119 if (!sctx) {
7120 ret = -ENOMEM;
7121 goto out;
7122 }
7123
7124 INIT_LIST_HEAD(&sctx->new_refs);
7125 INIT_LIST_HEAD(&sctx->deleted_refs);
e780b0d1 7126 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
7127 INIT_LIST_HEAD(&sctx->name_cache_list);
7128
cb95e7bf
MF
7129 sctx->flags = arg->flags;
7130
31db9f7c 7131 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
7132 if (!sctx->send_filp) {
7133 ret = -EBADF;
31db9f7c
AB
7134 goto out;
7135 }
7136
31db9f7c 7137 sctx->send_root = send_root;
521e0546
DS
7138 /*
7139 * Unlikely but possible, if the subvolume is marked for deletion but
7140 * is slow to remove the directory entry, send can still be started
7141 */
7142 if (btrfs_root_dead(sctx->send_root)) {
7143 ret = -EPERM;
7144 goto out;
7145 }
7146
31db9f7c
AB
7147 sctx->clone_roots_cnt = arg->clone_sources_count;
7148
7149 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
752ade68 7150 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
31db9f7c 7151 if (!sctx->send_buf) {
752ade68
MH
7152 ret = -ENOMEM;
7153 goto out;
31db9f7c
AB
7154 }
7155
752ade68 7156 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
31db9f7c 7157 if (!sctx->read_buf) {
752ade68
MH
7158 ret = -ENOMEM;
7159 goto out;
31db9f7c
AB
7160 }
7161
9f03740a
FDBM
7162 sctx->pending_dir_moves = RB_ROOT;
7163 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 7164 sctx->orphan_dirs = RB_ROOT;
9f03740a 7165
e55d1153
DS
7166 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7167
818e010b 7168 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
31db9f7c 7169 if (!sctx->clone_roots) {
818e010b
DS
7170 ret = -ENOMEM;
7171 goto out;
31db9f7c
AB
7172 }
7173
e55d1153
DS
7174 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7175
31db9f7c 7176 if (arg->clone_sources_count) {
752ade68 7177 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
31db9f7c 7178 if (!clone_sources_tmp) {
752ade68
MH
7179 ret = -ENOMEM;
7180 goto out;
31db9f7c
AB
7181 }
7182
7183 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 7184 alloc_size);
31db9f7c
AB
7185 if (ret) {
7186 ret = -EFAULT;
7187 goto out;
7188 }
7189
7190 for (i = 0; i < arg->clone_sources_count; i++) {
7191 key.objectid = clone_sources_tmp[i];
7192 key.type = BTRFS_ROOT_ITEM_KEY;
7193 key.offset = (u64)-1;
18f687d5
WS
7194
7195 index = srcu_read_lock(&fs_info->subvol_srcu);
7196
31db9f7c 7197 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 7198 if (IS_ERR(clone_root)) {
18f687d5 7199 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
7200 ret = PTR_ERR(clone_root);
7201 goto out;
7202 }
2c686537 7203 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
7204 if (!btrfs_root_readonly(clone_root) ||
7205 btrfs_root_dead(clone_root)) {
2c686537 7206 spin_unlock(&clone_root->root_item_lock);
18f687d5 7207 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
7208 ret = -EPERM;
7209 goto out;
7210 }
62d54f3a
FM
7211 if (clone_root->dedupe_in_progress) {
7212 dedupe_in_progress_warn(clone_root);
7213 spin_unlock(&clone_root->root_item_lock);
7214 srcu_read_unlock(&fs_info->subvol_srcu, index);
7215 ret = -EAGAIN;
7216 goto out;
7217 }
2f1f465a 7218 clone_root->send_in_progress++;
2c686537 7219 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
7220 srcu_read_unlock(&fs_info->subvol_srcu, index);
7221
31db9f7c 7222 sctx->clone_roots[i].root = clone_root;
2f1f465a 7223 clone_sources_to_rollback = i + 1;
31db9f7c 7224 }
2f91306a 7225 kvfree(clone_sources_tmp);
31db9f7c
AB
7226 clone_sources_tmp = NULL;
7227 }
7228
7229 if (arg->parent_root) {
7230 key.objectid = arg->parent_root;
7231 key.type = BTRFS_ROOT_ITEM_KEY;
7232 key.offset = (u64)-1;
18f687d5
WS
7233
7234 index = srcu_read_lock(&fs_info->subvol_srcu);
7235
31db9f7c 7236 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 7237 if (IS_ERR(sctx->parent_root)) {
18f687d5 7238 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 7239 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
7240 goto out;
7241 }
18f687d5 7242
2c686537
DS
7243 spin_lock(&sctx->parent_root->root_item_lock);
7244 sctx->parent_root->send_in_progress++;
521e0546
DS
7245 if (!btrfs_root_readonly(sctx->parent_root) ||
7246 btrfs_root_dead(sctx->parent_root)) {
2c686537 7247 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 7248 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
7249 ret = -EPERM;
7250 goto out;
7251 }
62d54f3a
FM
7252 if (sctx->parent_root->dedupe_in_progress) {
7253 dedupe_in_progress_warn(sctx->parent_root);
7254 spin_unlock(&sctx->parent_root->root_item_lock);
7255 srcu_read_unlock(&fs_info->subvol_srcu, index);
7256 ret = -EAGAIN;
7257 goto out;
7258 }
2c686537 7259 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
7260
7261 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
7262 }
7263
7264 /*
7265 * Clones from send_root are allowed, but only if the clone source
7266 * is behind the current send position. This is checked while searching
7267 * for possible clone sources.
7268 */
7269 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7270
7271 /* We do a bsearch later */
7272 sort(sctx->clone_roots, sctx->clone_roots_cnt,
7273 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7274 NULL);
896c14f9 7275 sort_clone_roots = 1;
31db9f7c 7276
9f89d5de
FM
7277 ret = flush_delalloc_roots(sctx);
7278 if (ret)
7279 goto out;
7280
e5fa8f86
FM
7281 ret = ensure_commit_roots_uptodate(sctx);
7282 if (ret)
7283 goto out;
7284
9e967495
FM
7285 mutex_lock(&fs_info->balance_mutex);
7286 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7287 mutex_unlock(&fs_info->balance_mutex);
7288 btrfs_warn_rl(fs_info,
7289 "cannot run send because a balance operation is in progress");
7290 ret = -EAGAIN;
7291 goto out;
7292 }
7293 fs_info->send_in_progress++;
7294 mutex_unlock(&fs_info->balance_mutex);
7295
2755a0de 7296 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 7297 ret = send_subvol(sctx);
a26e8c9f 7298 current->journal_info = NULL;
9e967495
FM
7299 mutex_lock(&fs_info->balance_mutex);
7300 fs_info->send_in_progress--;
7301 mutex_unlock(&fs_info->balance_mutex);
31db9f7c
AB
7302 if (ret < 0)
7303 goto out;
7304
c2c71324
SB
7305 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7306 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7307 if (ret < 0)
7308 goto out;
7309 ret = send_cmd(sctx);
7310 if (ret < 0)
7311 goto out;
7312 }
31db9f7c
AB
7313
7314out:
9f03740a
FDBM
7315 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7316 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7317 struct rb_node *n;
7318 struct pending_dir_move *pm;
7319
7320 n = rb_first(&sctx->pending_dir_moves);
7321 pm = rb_entry(n, struct pending_dir_move, node);
7322 while (!list_empty(&pm->list)) {
7323 struct pending_dir_move *pm2;
7324
7325 pm2 = list_first_entry(&pm->list,
7326 struct pending_dir_move, list);
7327 free_pending_move(sctx, pm2);
7328 }
7329 free_pending_move(sctx, pm);
7330 }
7331
7332 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7333 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7334 struct rb_node *n;
7335 struct waiting_dir_move *dm;
7336
7337 n = rb_first(&sctx->waiting_dir_moves);
7338 dm = rb_entry(n, struct waiting_dir_move, node);
7339 rb_erase(&dm->node, &sctx->waiting_dir_moves);
7340 kfree(dm);
7341 }
7342
9dc44214
FM
7343 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7344 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7345 struct rb_node *n;
7346 struct orphan_dir_info *odi;
7347
7348 n = rb_first(&sctx->orphan_dirs);
7349 odi = rb_entry(n, struct orphan_dir_info, node);
7350 free_orphan_dir_info(sctx, odi);
7351 }
7352
896c14f9
WS
7353 if (sort_clone_roots) {
7354 for (i = 0; i < sctx->clone_roots_cnt; i++)
7355 btrfs_root_dec_send_in_progress(
7356 sctx->clone_roots[i].root);
7357 } else {
7358 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7359 btrfs_root_dec_send_in_progress(
7360 sctx->clone_roots[i].root);
7361
7362 btrfs_root_dec_send_in_progress(send_root);
7363 }
66ef7d65
DS
7364 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7365 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 7366
2f91306a 7367 kvfree(clone_sources_tmp);
31db9f7c
AB
7368
7369 if (sctx) {
7370 if (sctx->send_filp)
7371 fput(sctx->send_filp);
7372
c03d01f3 7373 kvfree(sctx->clone_roots);
6ff48ce0 7374 kvfree(sctx->send_buf);
eb5b75fe 7375 kvfree(sctx->read_buf);
31db9f7c
AB
7376
7377 name_cache_free(sctx);
7378
7379 kfree(sctx);
7380 }
7381
7382 return ret;
7383}