]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/send.c
Btrfs: fix incremental send's decision to delay a dir move/rename
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37
38static int g_verbose = 0;
39
40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42/*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
31db9f7c
AB
54
55 char *buf;
1f5a7ff9
DS
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
31db9f7c
AB
58 char inline_buf[];
59 };
ace01050
DS
60 /*
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
64 */
65 char pad[256];
31db9f7c
AB
66 };
67};
68#define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70
71
72/* reused for each extent */
73struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
77
78 u64 found_refs;
79};
80
81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83
84struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 93
31db9f7c
AB
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
98
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
103
104 /*
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
107 */
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
31db9f7c
AB
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
644d1940 115 u64 cur_inode_rdev;
16e7549f 116 u64 cur_inode_last_extent;
31db9f7c
AB
117
118 u64 send_progress;
119
120 struct list_head new_refs;
121 struct list_head deleted_refs;
122
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
125 int name_cache_size;
126
2131bcd3
LB
127 struct file_ra_state ra;
128
31db9f7c 129 char *read_buf;
9f03740a
FDBM
130
131 /*
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
141 *
142 * Tree state when the first send was performed:
143 *
144 * .
145 * |-- a (ino 257)
146 * |-- b (ino 258)
147 * |
148 * |
149 * |-- c (ino 259)
150 * | |-- d (ino 260)
151 * |
152 * |-- c2 (ino 261)
153 *
154 * Tree state when the second (incremental) send is performed:
155 *
156 * .
157 * |-- a (ino 257)
158 * |-- b (ino 258)
159 * |-- c2 (ino 261)
160 * |-- d2 (ino 260)
161 * |-- cc (ino 259)
162 *
163 * The sequence of steps that lead to the second state was:
164 *
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
167 *
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
170 *
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
173 */
174
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
177
178 /*
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
182 */
183 struct rb_root waiting_dir_moves;
9dc44214
FM
184
185 /*
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
190 *
191 * Parent snapshot:
192 *
193 * . (ino 256)
194 * |-- a/ (ino 257)
195 * |-- b/ (ino 258)
196 * |-- c/ (ino 259)
197 * | |-- x/ (ino 260)
198 * |
199 * |-- y/ (ino 261)
200 *
201 * Send snapshot:
202 *
203 * . (ino 256)
204 * |-- a/ (ino 257)
205 * |-- b/ (ino 258)
206 * |-- YY/ (ino 261)
207 * |-- x/ (ino 260)
208 *
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
211 * mv /a/b/y /a/b/YY
212 * mv /a/b/c/x /a/b/YY
213 * rmdir /a/b/c
214 *
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
221 *
222 * Indexed by the inode number of the directory to be deleted.
223 */
224 struct rb_root orphan_dirs;
9f03740a
FDBM
225};
226
227struct pending_dir_move {
228 struct rb_node node;
229 struct list_head list;
230 u64 parent_ino;
231 u64 ino;
232 u64 gen;
233 struct list_head update_refs;
234};
235
236struct waiting_dir_move {
237 struct rb_node node;
238 u64 ino;
9dc44214
FM
239 /*
240 * There might be some directory that could not be removed because it
241 * was waiting for this directory inode to be moved first. Therefore
242 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 */
244 u64 rmdir_ino;
245};
246
247struct orphan_dir_info {
248 struct rb_node node;
249 u64 ino;
250 u64 gen;
31db9f7c
AB
251};
252
253struct name_cache_entry {
254 struct list_head list;
7e0926fe
AB
255 /*
256 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 * more then one inum would fall into the same entry, we use radix_list
259 * to store the additional entries. radix_list is also used to store
260 * entries where two entries have the same inum but different
261 * generations.
262 */
263 struct list_head radix_list;
31db9f7c
AB
264 u64 ino;
265 u64 gen;
266 u64 parent_ino;
267 u64 parent_gen;
268 int ret;
269 int need_later_update;
270 int name_len;
271 char name[];
272};
273
9f03740a
FDBM
274static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
275
9dc44214
FM
276static struct waiting_dir_move *
277get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
278
279static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
280
16e7549f
JB
281static int need_send_hole(struct send_ctx *sctx)
282{
283 return (sctx->parent_root && !sctx->cur_inode_new &&
284 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
285 S_ISREG(sctx->cur_inode_mode));
286}
287
31db9f7c
AB
288static void fs_path_reset(struct fs_path *p)
289{
290 if (p->reversed) {
291 p->start = p->buf + p->buf_len - 1;
292 p->end = p->start;
293 *p->start = 0;
294 } else {
295 p->start = p->buf;
296 p->end = p->start;
297 *p->start = 0;
298 }
299}
300
924794c9 301static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
302{
303 struct fs_path *p;
304
305 p = kmalloc(sizeof(*p), GFP_NOFS);
306 if (!p)
307 return NULL;
308 p->reversed = 0;
31db9f7c
AB
309 p->buf = p->inline_buf;
310 p->buf_len = FS_PATH_INLINE_SIZE;
311 fs_path_reset(p);
312 return p;
313}
314
924794c9 315static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
316{
317 struct fs_path *p;
318
924794c9 319 p = fs_path_alloc();
31db9f7c
AB
320 if (!p)
321 return NULL;
322 p->reversed = 1;
323 fs_path_reset(p);
324 return p;
325}
326
924794c9 327static void fs_path_free(struct fs_path *p)
31db9f7c
AB
328{
329 if (!p)
330 return;
ace01050
DS
331 if (p->buf != p->inline_buf)
332 kfree(p->buf);
31db9f7c
AB
333 kfree(p);
334}
335
336static int fs_path_len(struct fs_path *p)
337{
338 return p->end - p->start;
339}
340
341static int fs_path_ensure_buf(struct fs_path *p, int len)
342{
343 char *tmp_buf;
344 int path_len;
345 int old_buf_len;
346
347 len++;
348
349 if (p->buf_len >= len)
350 return 0;
351
1b2782c8
DS
352 path_len = p->end - p->start;
353 old_buf_len = p->buf_len;
354
ace01050
DS
355 /*
356 * First time the inline_buf does not suffice
357 */
9c9ca00b
DS
358 if (p->buf == p->inline_buf)
359 tmp_buf = kmalloc(len, GFP_NOFS);
360 else
361 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
362 if (!tmp_buf)
363 return -ENOMEM;
364 p->buf = tmp_buf;
365 /*
366 * The real size of the buffer is bigger, this will let the fast path
367 * happen most of the time
368 */
369 p->buf_len = ksize(p->buf);
ace01050 370
31db9f7c
AB
371 if (p->reversed) {
372 tmp_buf = p->buf + old_buf_len - path_len - 1;
373 p->end = p->buf + p->buf_len - 1;
374 p->start = p->end - path_len;
375 memmove(p->start, tmp_buf, path_len + 1);
376 } else {
377 p->start = p->buf;
378 p->end = p->start + path_len;
379 }
380 return 0;
381}
382
b23ab57d
DS
383static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
384 char **prepared)
31db9f7c
AB
385{
386 int ret;
387 int new_len;
388
389 new_len = p->end - p->start + name_len;
390 if (p->start != p->end)
391 new_len++;
392 ret = fs_path_ensure_buf(p, new_len);
393 if (ret < 0)
394 goto out;
395
396 if (p->reversed) {
397 if (p->start != p->end)
398 *--p->start = '/';
399 p->start -= name_len;
b23ab57d 400 *prepared = p->start;
31db9f7c
AB
401 } else {
402 if (p->start != p->end)
403 *p->end++ = '/';
b23ab57d 404 *prepared = p->end;
31db9f7c
AB
405 p->end += name_len;
406 *p->end = 0;
407 }
408
409out:
410 return ret;
411}
412
413static int fs_path_add(struct fs_path *p, const char *name, int name_len)
414{
415 int ret;
b23ab57d 416 char *prepared;
31db9f7c 417
b23ab57d 418 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
419 if (ret < 0)
420 goto out;
b23ab57d 421 memcpy(prepared, name, name_len);
31db9f7c
AB
422
423out:
424 return ret;
425}
426
427static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
428{
429 int ret;
b23ab57d 430 char *prepared;
31db9f7c 431
b23ab57d 432 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
433 if (ret < 0)
434 goto out;
b23ab57d 435 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
436
437out:
438 return ret;
439}
440
441static int fs_path_add_from_extent_buffer(struct fs_path *p,
442 struct extent_buffer *eb,
443 unsigned long off, int len)
444{
445 int ret;
b23ab57d 446 char *prepared;
31db9f7c 447
b23ab57d 448 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
449 if (ret < 0)
450 goto out;
451
b23ab57d 452 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
453
454out:
455 return ret;
456}
457
31db9f7c
AB
458static int fs_path_copy(struct fs_path *p, struct fs_path *from)
459{
460 int ret;
461
462 p->reversed = from->reversed;
463 fs_path_reset(p);
464
465 ret = fs_path_add_path(p, from);
466
467 return ret;
468}
469
470
471static void fs_path_unreverse(struct fs_path *p)
472{
473 char *tmp;
474 int len;
475
476 if (!p->reversed)
477 return;
478
479 tmp = p->start;
480 len = p->end - p->start;
481 p->start = p->buf;
482 p->end = p->start + len;
483 memmove(p->start, tmp, len + 1);
484 p->reversed = 0;
485}
486
487static struct btrfs_path *alloc_path_for_send(void)
488{
489 struct btrfs_path *path;
490
491 path = btrfs_alloc_path();
492 if (!path)
493 return NULL;
494 path->search_commit_root = 1;
495 path->skip_locking = 1;
496 return path;
497}
498
48a3b636 499static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
500{
501 int ret;
502 mm_segment_t old_fs;
503 u32 pos = 0;
504
505 old_fs = get_fs();
506 set_fs(KERNEL_DS);
507
508 while (pos < len) {
1bcea355 509 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
31db9f7c
AB
510 /* TODO handle that correctly */
511 /*if (ret == -ERESTARTSYS) {
512 continue;
513 }*/
514 if (ret < 0)
515 goto out;
516 if (ret == 0) {
517 ret = -EIO;
518 goto out;
519 }
520 pos += ret;
521 }
522
523 ret = 0;
524
525out:
526 set_fs(old_fs);
527 return ret;
528}
529
530static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
531{
532 struct btrfs_tlv_header *hdr;
533 int total_len = sizeof(*hdr) + len;
534 int left = sctx->send_max_size - sctx->send_size;
535
536 if (unlikely(left < total_len))
537 return -EOVERFLOW;
538
539 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
540 hdr->tlv_type = cpu_to_le16(attr);
541 hdr->tlv_len = cpu_to_le16(len);
542 memcpy(hdr + 1, data, len);
543 sctx->send_size += total_len;
544
545 return 0;
546}
547
95bc79d5
DS
548#define TLV_PUT_DEFINE_INT(bits) \
549 static int tlv_put_u##bits(struct send_ctx *sctx, \
550 u##bits attr, u##bits value) \
551 { \
552 __le##bits __tmp = cpu_to_le##bits(value); \
553 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
554 }
31db9f7c 555
95bc79d5 556TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
557
558static int tlv_put_string(struct send_ctx *sctx, u16 attr,
559 const char *str, int len)
560{
561 if (len == -1)
562 len = strlen(str);
563 return tlv_put(sctx, attr, str, len);
564}
565
566static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
567 const u8 *uuid)
568{
569 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
570}
571
31db9f7c
AB
572static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
573 struct extent_buffer *eb,
574 struct btrfs_timespec *ts)
575{
576 struct btrfs_timespec bts;
577 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
578 return tlv_put(sctx, attr, &bts, sizeof(bts));
579}
580
581
582#define TLV_PUT(sctx, attrtype, attrlen, data) \
583 do { \
584 ret = tlv_put(sctx, attrtype, attrlen, data); \
585 if (ret < 0) \
586 goto tlv_put_failure; \
587 } while (0)
588
589#define TLV_PUT_INT(sctx, attrtype, bits, value) \
590 do { \
591 ret = tlv_put_u##bits(sctx, attrtype, value); \
592 if (ret < 0) \
593 goto tlv_put_failure; \
594 } while (0)
595
596#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
597#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
598#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
599#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
600#define TLV_PUT_STRING(sctx, attrtype, str, len) \
601 do { \
602 ret = tlv_put_string(sctx, attrtype, str, len); \
603 if (ret < 0) \
604 goto tlv_put_failure; \
605 } while (0)
606#define TLV_PUT_PATH(sctx, attrtype, p) \
607 do { \
608 ret = tlv_put_string(sctx, attrtype, p->start, \
609 p->end - p->start); \
610 if (ret < 0) \
611 goto tlv_put_failure; \
612 } while(0)
613#define TLV_PUT_UUID(sctx, attrtype, uuid) \
614 do { \
615 ret = tlv_put_uuid(sctx, attrtype, uuid); \
616 if (ret < 0) \
617 goto tlv_put_failure; \
618 } while (0)
31db9f7c
AB
619#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
620 do { \
621 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
622 if (ret < 0) \
623 goto tlv_put_failure; \
624 } while (0)
625
626static int send_header(struct send_ctx *sctx)
627{
628 struct btrfs_stream_header hdr;
629
630 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
631 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
632
1bcea355
AJ
633 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
634 &sctx->send_off);
31db9f7c
AB
635}
636
637/*
638 * For each command/item we want to send to userspace, we call this function.
639 */
640static int begin_cmd(struct send_ctx *sctx, int cmd)
641{
642 struct btrfs_cmd_header *hdr;
643
fae7f21c 644 if (WARN_ON(!sctx->send_buf))
31db9f7c 645 return -EINVAL;
31db9f7c
AB
646
647 BUG_ON(sctx->send_size);
648
649 sctx->send_size += sizeof(*hdr);
650 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
651 hdr->cmd = cpu_to_le16(cmd);
652
653 return 0;
654}
655
656static int send_cmd(struct send_ctx *sctx)
657{
658 int ret;
659 struct btrfs_cmd_header *hdr;
660 u32 crc;
661
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
664 hdr->crc = 0;
665
0b947aff 666 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
667 hdr->crc = cpu_to_le32(crc);
668
1bcea355
AJ
669 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
670 &sctx->send_off);
31db9f7c
AB
671
672 sctx->total_send_size += sctx->send_size;
673 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
674 sctx->send_size = 0;
675
676 return ret;
677}
678
679/*
680 * Sends a move instruction to user space
681 */
682static int send_rename(struct send_ctx *sctx,
683 struct fs_path *from, struct fs_path *to)
684{
685 int ret;
686
687verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
688
689 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
690 if (ret < 0)
691 goto out;
692
693 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
694 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
695
696 ret = send_cmd(sctx);
697
698tlv_put_failure:
699out:
700 return ret;
701}
702
703/*
704 * Sends a link instruction to user space
705 */
706static int send_link(struct send_ctx *sctx,
707 struct fs_path *path, struct fs_path *lnk)
708{
709 int ret;
710
711verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
712
713 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
714 if (ret < 0)
715 goto out;
716
717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
719
720 ret = send_cmd(sctx);
721
722tlv_put_failure:
723out:
724 return ret;
725}
726
727/*
728 * Sends an unlink instruction to user space
729 */
730static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
731{
732 int ret;
733
734verbose_printk("btrfs: send_unlink %s\n", path->start);
735
736 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
737 if (ret < 0)
738 goto out;
739
740 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
741
742 ret = send_cmd(sctx);
743
744tlv_put_failure:
745out:
746 return ret;
747}
748
749/*
750 * Sends a rmdir instruction to user space
751 */
752static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
753{
754 int ret;
755
756verbose_printk("btrfs: send_rmdir %s\n", path->start);
757
758 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
759 if (ret < 0)
760 goto out;
761
762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
763
764 ret = send_cmd(sctx);
765
766tlv_put_failure:
767out:
768 return ret;
769}
770
771/*
772 * Helper function to retrieve some fields from an inode item.
773 */
774static int get_inode_info(struct btrfs_root *root,
775 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
776 u64 *mode, u64 *uid, u64 *gid,
777 u64 *rdev)
31db9f7c
AB
778{
779 int ret;
780 struct btrfs_inode_item *ii;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = alloc_path_for_send();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = ino;
789 key.type = BTRFS_INODE_ITEM_KEY;
790 key.offset = 0;
791 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
792 if (ret < 0)
793 goto out;
794 if (ret) {
795 ret = -ENOENT;
796 goto out;
797 }
798
799 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
800 struct btrfs_inode_item);
801 if (size)
802 *size = btrfs_inode_size(path->nodes[0], ii);
803 if (gen)
804 *gen = btrfs_inode_generation(path->nodes[0], ii);
805 if (mode)
806 *mode = btrfs_inode_mode(path->nodes[0], ii);
807 if (uid)
808 *uid = btrfs_inode_uid(path->nodes[0], ii);
809 if (gid)
810 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
811 if (rdev)
812 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
813
814out:
815 btrfs_free_path(path);
816 return ret;
817}
818
819typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
820 struct fs_path *p,
821 void *ctx);
822
823/*
96b5bd77
JS
824 * Helper function to iterate the entries in ONE btrfs_inode_ref or
825 * btrfs_inode_extref.
31db9f7c
AB
826 * The iterate callback may return a non zero value to stop iteration. This can
827 * be a negative value for error codes or 1 to simply stop it.
828 *
96b5bd77 829 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 830 */
924794c9 831static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
832 struct btrfs_key *found_key, int resolve,
833 iterate_inode_ref_t iterate, void *ctx)
834{
96b5bd77 835 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
836 struct btrfs_item *item;
837 struct btrfs_inode_ref *iref;
96b5bd77 838 struct btrfs_inode_extref *extref;
31db9f7c
AB
839 struct btrfs_path *tmp_path;
840 struct fs_path *p;
96b5bd77 841 u32 cur = 0;
31db9f7c 842 u32 total;
96b5bd77 843 int slot = path->slots[0];
31db9f7c
AB
844 u32 name_len;
845 char *start;
846 int ret = 0;
96b5bd77 847 int num = 0;
31db9f7c 848 int index;
96b5bd77
JS
849 u64 dir;
850 unsigned long name_off;
851 unsigned long elem_size;
852 unsigned long ptr;
31db9f7c 853
924794c9 854 p = fs_path_alloc_reversed();
31db9f7c
AB
855 if (!p)
856 return -ENOMEM;
857
858 tmp_path = alloc_path_for_send();
859 if (!tmp_path) {
924794c9 860 fs_path_free(p);
31db9f7c
AB
861 return -ENOMEM;
862 }
863
31db9f7c 864
96b5bd77
JS
865 if (found_key->type == BTRFS_INODE_REF_KEY) {
866 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
867 struct btrfs_inode_ref);
dd3cc16b 868 item = btrfs_item_nr(slot);
96b5bd77
JS
869 total = btrfs_item_size(eb, item);
870 elem_size = sizeof(*iref);
871 } else {
872 ptr = btrfs_item_ptr_offset(eb, slot);
873 total = btrfs_item_size_nr(eb, slot);
874 elem_size = sizeof(*extref);
875 }
876
31db9f7c
AB
877 while (cur < total) {
878 fs_path_reset(p);
879
96b5bd77
JS
880 if (found_key->type == BTRFS_INODE_REF_KEY) {
881 iref = (struct btrfs_inode_ref *)(ptr + cur);
882 name_len = btrfs_inode_ref_name_len(eb, iref);
883 name_off = (unsigned long)(iref + 1);
884 index = btrfs_inode_ref_index(eb, iref);
885 dir = found_key->offset;
886 } else {
887 extref = (struct btrfs_inode_extref *)(ptr + cur);
888 name_len = btrfs_inode_extref_name_len(eb, extref);
889 name_off = (unsigned long)&extref->name;
890 index = btrfs_inode_extref_index(eb, extref);
891 dir = btrfs_inode_extref_parent(eb, extref);
892 }
893
31db9f7c 894 if (resolve) {
96b5bd77
JS
895 start = btrfs_ref_to_path(root, tmp_path, name_len,
896 name_off, eb, dir,
897 p->buf, p->buf_len);
31db9f7c
AB
898 if (IS_ERR(start)) {
899 ret = PTR_ERR(start);
900 goto out;
901 }
902 if (start < p->buf) {
903 /* overflow , try again with larger buffer */
904 ret = fs_path_ensure_buf(p,
905 p->buf_len + p->buf - start);
906 if (ret < 0)
907 goto out;
96b5bd77
JS
908 start = btrfs_ref_to_path(root, tmp_path,
909 name_len, name_off,
910 eb, dir,
911 p->buf, p->buf_len);
31db9f7c
AB
912 if (IS_ERR(start)) {
913 ret = PTR_ERR(start);
914 goto out;
915 }
916 BUG_ON(start < p->buf);
917 }
918 p->start = start;
919 } else {
96b5bd77
JS
920 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
921 name_len);
31db9f7c
AB
922 if (ret < 0)
923 goto out;
924 }
925
96b5bd77
JS
926 cur += elem_size + name_len;
927 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
928 if (ret)
929 goto out;
31db9f7c
AB
930 num++;
931 }
932
933out:
934 btrfs_free_path(tmp_path);
924794c9 935 fs_path_free(p);
31db9f7c
AB
936 return ret;
937}
938
939typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
940 const char *name, int name_len,
941 const char *data, int data_len,
942 u8 type, void *ctx);
943
944/*
945 * Helper function to iterate the entries in ONE btrfs_dir_item.
946 * The iterate callback may return a non zero value to stop iteration. This can
947 * be a negative value for error codes or 1 to simply stop it.
948 *
949 * path must point to the dir item when called.
950 */
924794c9 951static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
952 struct btrfs_key *found_key,
953 iterate_dir_item_t iterate, void *ctx)
954{
955 int ret = 0;
956 struct extent_buffer *eb;
957 struct btrfs_item *item;
958 struct btrfs_dir_item *di;
31db9f7c
AB
959 struct btrfs_key di_key;
960 char *buf = NULL;
ace01050 961 const int buf_len = PATH_MAX;
31db9f7c
AB
962 u32 name_len;
963 u32 data_len;
964 u32 cur;
965 u32 len;
966 u32 total;
967 int slot;
968 int num;
969 u8 type;
970
31db9f7c
AB
971 buf = kmalloc(buf_len, GFP_NOFS);
972 if (!buf) {
973 ret = -ENOMEM;
974 goto out;
975 }
976
31db9f7c
AB
977 eb = path->nodes[0];
978 slot = path->slots[0];
dd3cc16b 979 item = btrfs_item_nr(slot);
31db9f7c
AB
980 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
981 cur = 0;
982 len = 0;
983 total = btrfs_item_size(eb, item);
984
985 num = 0;
986 while (cur < total) {
987 name_len = btrfs_dir_name_len(eb, di);
988 data_len = btrfs_dir_data_len(eb, di);
989 type = btrfs_dir_type(eb, di);
990 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
991
ace01050
DS
992 /*
993 * Path too long
994 */
31db9f7c 995 if (name_len + data_len > buf_len) {
ace01050
DS
996 ret = -ENAMETOOLONG;
997 goto out;
31db9f7c
AB
998 }
999
1000 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1001 name_len + data_len);
1002
1003 len = sizeof(*di) + name_len + data_len;
1004 di = (struct btrfs_dir_item *)((char *)di + len);
1005 cur += len;
1006
1007 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1008 data_len, type, ctx);
1009 if (ret < 0)
1010 goto out;
1011 if (ret) {
1012 ret = 0;
1013 goto out;
1014 }
1015
1016 num++;
1017 }
1018
1019out:
ace01050 1020 kfree(buf);
31db9f7c
AB
1021 return ret;
1022}
1023
1024static int __copy_first_ref(int num, u64 dir, int index,
1025 struct fs_path *p, void *ctx)
1026{
1027 int ret;
1028 struct fs_path *pt = ctx;
1029
1030 ret = fs_path_copy(pt, p);
1031 if (ret < 0)
1032 return ret;
1033
1034 /* we want the first only */
1035 return 1;
1036}
1037
1038/*
1039 * Retrieve the first path of an inode. If an inode has more then one
1040 * ref/hardlink, this is ignored.
1041 */
924794c9 1042static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1043 u64 ino, struct fs_path *path)
1044{
1045 int ret;
1046 struct btrfs_key key, found_key;
1047 struct btrfs_path *p;
1048
1049 p = alloc_path_for_send();
1050 if (!p)
1051 return -ENOMEM;
1052
1053 fs_path_reset(path);
1054
1055 key.objectid = ino;
1056 key.type = BTRFS_INODE_REF_KEY;
1057 key.offset = 0;
1058
1059 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1060 if (ret < 0)
1061 goto out;
1062 if (ret) {
1063 ret = 1;
1064 goto out;
1065 }
1066 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1067 if (found_key.objectid != ino ||
96b5bd77
JS
1068 (found_key.type != BTRFS_INODE_REF_KEY &&
1069 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1070 ret = -ENOENT;
1071 goto out;
1072 }
1073
924794c9
TI
1074 ret = iterate_inode_ref(root, p, &found_key, 1,
1075 __copy_first_ref, path);
31db9f7c
AB
1076 if (ret < 0)
1077 goto out;
1078 ret = 0;
1079
1080out:
1081 btrfs_free_path(p);
1082 return ret;
1083}
1084
1085struct backref_ctx {
1086 struct send_ctx *sctx;
1087
1088 /* number of total found references */
1089 u64 found;
1090
1091 /*
1092 * used for clones found in send_root. clones found behind cur_objectid
1093 * and cur_offset are not considered as allowed clones.
1094 */
1095 u64 cur_objectid;
1096 u64 cur_offset;
1097
1098 /* may be truncated in case it's the last extent in a file */
1099 u64 extent_len;
1100
1101 /* Just to check for bugs in backref resolving */
ee849c04 1102 int found_itself;
31db9f7c
AB
1103};
1104
1105static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1106{
995e01b7 1107 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1108 struct clone_root *cr = (struct clone_root *)elt;
1109
1110 if (root < cr->root->objectid)
1111 return -1;
1112 if (root > cr->root->objectid)
1113 return 1;
1114 return 0;
1115}
1116
1117static int __clone_root_cmp_sort(const void *e1, const void *e2)
1118{
1119 struct clone_root *cr1 = (struct clone_root *)e1;
1120 struct clone_root *cr2 = (struct clone_root *)e2;
1121
1122 if (cr1->root->objectid < cr2->root->objectid)
1123 return -1;
1124 if (cr1->root->objectid > cr2->root->objectid)
1125 return 1;
1126 return 0;
1127}
1128
1129/*
1130 * Called for every backref that is found for the current extent.
766702ef 1131 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1132 */
1133static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1134{
1135 struct backref_ctx *bctx = ctx_;
1136 struct clone_root *found;
1137 int ret;
1138 u64 i_size;
1139
1140 /* First check if the root is in the list of accepted clone sources */
995e01b7 1141 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1142 bctx->sctx->clone_roots_cnt,
1143 sizeof(struct clone_root),
1144 __clone_root_cmp_bsearch);
1145 if (!found)
1146 return 0;
1147
1148 if (found->root == bctx->sctx->send_root &&
1149 ino == bctx->cur_objectid &&
1150 offset == bctx->cur_offset) {
ee849c04 1151 bctx->found_itself = 1;
31db9f7c
AB
1152 }
1153
1154 /*
766702ef 1155 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1156 * accept clones from these extents.
1157 */
85a7b33b
AB
1158 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1159 NULL);
31db9f7c
AB
1160 if (ret < 0)
1161 return ret;
1162
1163 if (offset + bctx->extent_len > i_size)
1164 return 0;
1165
1166 /*
1167 * Make sure we don't consider clones from send_root that are
1168 * behind the current inode/offset.
1169 */
1170 if (found->root == bctx->sctx->send_root) {
1171 /*
1172 * TODO for the moment we don't accept clones from the inode
1173 * that is currently send. We may change this when
1174 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1175 * file.
1176 */
1177 if (ino >= bctx->cur_objectid)
1178 return 0;
e938c8ad
AB
1179#if 0
1180 if (ino > bctx->cur_objectid)
1181 return 0;
1182 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1183 return 0;
e938c8ad 1184#endif
31db9f7c
AB
1185 }
1186
1187 bctx->found++;
1188 found->found_refs++;
1189 if (ino < found->ino) {
1190 found->ino = ino;
1191 found->offset = offset;
1192 } else if (found->ino == ino) {
1193 /*
1194 * same extent found more then once in the same file.
1195 */
1196 if (found->offset > offset + bctx->extent_len)
1197 found->offset = offset;
1198 }
1199
1200 return 0;
1201}
1202
1203/*
766702ef
AB
1204 * Given an inode, offset and extent item, it finds a good clone for a clone
1205 * instruction. Returns -ENOENT when none could be found. The function makes
1206 * sure that the returned clone is usable at the point where sending is at the
1207 * moment. This means, that no clones are accepted which lie behind the current
1208 * inode+offset.
1209 *
31db9f7c
AB
1210 * path must point to the extent item when called.
1211 */
1212static int find_extent_clone(struct send_ctx *sctx,
1213 struct btrfs_path *path,
1214 u64 ino, u64 data_offset,
1215 u64 ino_size,
1216 struct clone_root **found)
1217{
1218 int ret;
1219 int extent_type;
1220 u64 logical;
74dd17fb 1221 u64 disk_byte;
31db9f7c
AB
1222 u64 num_bytes;
1223 u64 extent_item_pos;
69917e43 1224 u64 flags = 0;
31db9f7c
AB
1225 struct btrfs_file_extent_item *fi;
1226 struct extent_buffer *eb = path->nodes[0];
35075bb0 1227 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1228 struct clone_root *cur_clone_root;
1229 struct btrfs_key found_key;
1230 struct btrfs_path *tmp_path;
74dd17fb 1231 int compressed;
31db9f7c
AB
1232 u32 i;
1233
1234 tmp_path = alloc_path_for_send();
1235 if (!tmp_path)
1236 return -ENOMEM;
1237
35075bb0
AB
1238 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1239 if (!backref_ctx) {
1240 ret = -ENOMEM;
1241 goto out;
1242 }
1243
31db9f7c
AB
1244 if (data_offset >= ino_size) {
1245 /*
1246 * There may be extents that lie behind the file's size.
1247 * I at least had this in combination with snapshotting while
1248 * writing large files.
1249 */
1250 ret = 0;
1251 goto out;
1252 }
1253
1254 fi = btrfs_item_ptr(eb, path->slots[0],
1255 struct btrfs_file_extent_item);
1256 extent_type = btrfs_file_extent_type(eb, fi);
1257 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1258 ret = -ENOENT;
1259 goto out;
1260 }
74dd17fb 1261 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1262
1263 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1264 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1265 if (disk_byte == 0) {
31db9f7c
AB
1266 ret = -ENOENT;
1267 goto out;
1268 }
74dd17fb 1269 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1270
69917e43
LB
1271 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1272 &found_key, &flags);
31db9f7c
AB
1273 btrfs_release_path(tmp_path);
1274
1275 if (ret < 0)
1276 goto out;
69917e43 1277 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1278 ret = -EIO;
1279 goto out;
1280 }
1281
1282 /*
1283 * Setup the clone roots.
1284 */
1285 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1286 cur_clone_root = sctx->clone_roots + i;
1287 cur_clone_root->ino = (u64)-1;
1288 cur_clone_root->offset = 0;
1289 cur_clone_root->found_refs = 0;
1290 }
1291
35075bb0
AB
1292 backref_ctx->sctx = sctx;
1293 backref_ctx->found = 0;
1294 backref_ctx->cur_objectid = ino;
1295 backref_ctx->cur_offset = data_offset;
1296 backref_ctx->found_itself = 0;
1297 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1298
1299 /*
1300 * The last extent of a file may be too large due to page alignment.
1301 * We need to adjust extent_len in this case so that the checks in
1302 * __iterate_backrefs work.
1303 */
1304 if (data_offset + num_bytes >= ino_size)
35075bb0 1305 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1306
1307 /*
1308 * Now collect all backrefs.
1309 */
74dd17fb
CM
1310 if (compressed == BTRFS_COMPRESS_NONE)
1311 extent_item_pos = logical - found_key.objectid;
1312 else
1313 extent_item_pos = 0;
31db9f7c
AB
1314 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1315 found_key.objectid, extent_item_pos, 1,
35075bb0 1316 __iterate_backrefs, backref_ctx);
74dd17fb 1317
31db9f7c
AB
1318 if (ret < 0)
1319 goto out;
1320
35075bb0 1321 if (!backref_ctx->found_itself) {
31db9f7c
AB
1322 /* found a bug in backref code? */
1323 ret = -EIO;
efe120a0 1324 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1325 "send_root. inode=%llu, offset=%llu, "
74dd17fb
CM
1326 "disk_byte=%llu found extent=%llu\n",
1327 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1328 goto out;
1329 }
1330
1331verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1332 "ino=%llu, "
1333 "num_bytes=%llu, logical=%llu\n",
1334 data_offset, ino, num_bytes, logical);
1335
35075bb0 1336 if (!backref_ctx->found)
31db9f7c
AB
1337 verbose_printk("btrfs: no clones found\n");
1338
1339 cur_clone_root = NULL;
1340 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1341 if (sctx->clone_roots[i].found_refs) {
1342 if (!cur_clone_root)
1343 cur_clone_root = sctx->clone_roots + i;
1344 else if (sctx->clone_roots[i].root == sctx->send_root)
1345 /* prefer clones from send_root over others */
1346 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1347 }
1348
1349 }
1350
1351 if (cur_clone_root) {
93de4ba8
FDBM
1352 if (compressed != BTRFS_COMPRESS_NONE) {
1353 /*
1354 * Offsets given by iterate_extent_inodes() are relative
1355 * to the start of the extent, we need to add logical
1356 * offset from the file extent item.
1357 * (See why at backref.c:check_extent_in_eb())
1358 */
1359 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1360 fi);
1361 }
31db9f7c
AB
1362 *found = cur_clone_root;
1363 ret = 0;
1364 } else {
1365 ret = -ENOENT;
1366 }
1367
1368out:
1369 btrfs_free_path(tmp_path);
35075bb0 1370 kfree(backref_ctx);
31db9f7c
AB
1371 return ret;
1372}
1373
924794c9 1374static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1375 u64 ino,
1376 struct fs_path *dest)
1377{
1378 int ret;
1379 struct btrfs_path *path;
1380 struct btrfs_key key;
1381 struct btrfs_file_extent_item *ei;
1382 u8 type;
1383 u8 compression;
1384 unsigned long off;
1385 int len;
1386
1387 path = alloc_path_for_send();
1388 if (!path)
1389 return -ENOMEM;
1390
1391 key.objectid = ino;
1392 key.type = BTRFS_EXTENT_DATA_KEY;
1393 key.offset = 0;
1394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1395 if (ret < 0)
1396 goto out;
1397 BUG_ON(ret);
1398
1399 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1400 struct btrfs_file_extent_item);
1401 type = btrfs_file_extent_type(path->nodes[0], ei);
1402 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1403 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1404 BUG_ON(compression);
1405
1406 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1407 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1408
1409 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1410
1411out:
1412 btrfs_free_path(path);
1413 return ret;
1414}
1415
1416/*
1417 * Helper function to generate a file name that is unique in the root of
1418 * send_root and parent_root. This is used to generate names for orphan inodes.
1419 */
1420static int gen_unique_name(struct send_ctx *sctx,
1421 u64 ino, u64 gen,
1422 struct fs_path *dest)
1423{
1424 int ret = 0;
1425 struct btrfs_path *path;
1426 struct btrfs_dir_item *di;
1427 char tmp[64];
1428 int len;
1429 u64 idx = 0;
1430
1431 path = alloc_path_for_send();
1432 if (!path)
1433 return -ENOMEM;
1434
1435 while (1) {
f74b86d8 1436 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1437 ino, gen, idx);
64792f25 1438 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1439
1440 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1441 path, BTRFS_FIRST_FREE_OBJECTID,
1442 tmp, strlen(tmp), 0);
1443 btrfs_release_path(path);
1444 if (IS_ERR(di)) {
1445 ret = PTR_ERR(di);
1446 goto out;
1447 }
1448 if (di) {
1449 /* not unique, try again */
1450 idx++;
1451 continue;
1452 }
1453
1454 if (!sctx->parent_root) {
1455 /* unique */
1456 ret = 0;
1457 break;
1458 }
1459
1460 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1461 path, BTRFS_FIRST_FREE_OBJECTID,
1462 tmp, strlen(tmp), 0);
1463 btrfs_release_path(path);
1464 if (IS_ERR(di)) {
1465 ret = PTR_ERR(di);
1466 goto out;
1467 }
1468 if (di) {
1469 /* not unique, try again */
1470 idx++;
1471 continue;
1472 }
1473 /* unique */
1474 break;
1475 }
1476
1477 ret = fs_path_add(dest, tmp, strlen(tmp));
1478
1479out:
1480 btrfs_free_path(path);
1481 return ret;
1482}
1483
1484enum inode_state {
1485 inode_state_no_change,
1486 inode_state_will_create,
1487 inode_state_did_create,
1488 inode_state_will_delete,
1489 inode_state_did_delete,
1490};
1491
1492static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1493{
1494 int ret;
1495 int left_ret;
1496 int right_ret;
1497 u64 left_gen;
1498 u64 right_gen;
1499
1500 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1501 NULL, NULL);
31db9f7c
AB
1502 if (ret < 0 && ret != -ENOENT)
1503 goto out;
1504 left_ret = ret;
1505
1506 if (!sctx->parent_root) {
1507 right_ret = -ENOENT;
1508 } else {
1509 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1510 NULL, NULL, NULL, NULL);
31db9f7c
AB
1511 if (ret < 0 && ret != -ENOENT)
1512 goto out;
1513 right_ret = ret;
1514 }
1515
1516 if (!left_ret && !right_ret) {
e938c8ad 1517 if (left_gen == gen && right_gen == gen) {
31db9f7c 1518 ret = inode_state_no_change;
e938c8ad 1519 } else if (left_gen == gen) {
31db9f7c
AB
1520 if (ino < sctx->send_progress)
1521 ret = inode_state_did_create;
1522 else
1523 ret = inode_state_will_create;
1524 } else if (right_gen == gen) {
1525 if (ino < sctx->send_progress)
1526 ret = inode_state_did_delete;
1527 else
1528 ret = inode_state_will_delete;
1529 } else {
1530 ret = -ENOENT;
1531 }
1532 } else if (!left_ret) {
1533 if (left_gen == gen) {
1534 if (ino < sctx->send_progress)
1535 ret = inode_state_did_create;
1536 else
1537 ret = inode_state_will_create;
1538 } else {
1539 ret = -ENOENT;
1540 }
1541 } else if (!right_ret) {
1542 if (right_gen == gen) {
1543 if (ino < sctx->send_progress)
1544 ret = inode_state_did_delete;
1545 else
1546 ret = inode_state_will_delete;
1547 } else {
1548 ret = -ENOENT;
1549 }
1550 } else {
1551 ret = -ENOENT;
1552 }
1553
1554out:
1555 return ret;
1556}
1557
1558static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1559{
1560 int ret;
1561
1562 ret = get_cur_inode_state(sctx, ino, gen);
1563 if (ret < 0)
1564 goto out;
1565
1566 if (ret == inode_state_no_change ||
1567 ret == inode_state_did_create ||
1568 ret == inode_state_will_delete)
1569 ret = 1;
1570 else
1571 ret = 0;
1572
1573out:
1574 return ret;
1575}
1576
1577/*
1578 * Helper function to lookup a dir item in a dir.
1579 */
1580static int lookup_dir_item_inode(struct btrfs_root *root,
1581 u64 dir, const char *name, int name_len,
1582 u64 *found_inode,
1583 u8 *found_type)
1584{
1585 int ret = 0;
1586 struct btrfs_dir_item *di;
1587 struct btrfs_key key;
1588 struct btrfs_path *path;
1589
1590 path = alloc_path_for_send();
1591 if (!path)
1592 return -ENOMEM;
1593
1594 di = btrfs_lookup_dir_item(NULL, root, path,
1595 dir, name, name_len, 0);
1596 if (!di) {
1597 ret = -ENOENT;
1598 goto out;
1599 }
1600 if (IS_ERR(di)) {
1601 ret = PTR_ERR(di);
1602 goto out;
1603 }
1604 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1605 *found_inode = key.objectid;
1606 *found_type = btrfs_dir_type(path->nodes[0], di);
1607
1608out:
1609 btrfs_free_path(path);
1610 return ret;
1611}
1612
766702ef
AB
1613/*
1614 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1615 * generation of the parent dir and the name of the dir entry.
1616 */
924794c9 1617static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1618 u64 *dir, u64 *dir_gen, struct fs_path *name)
1619{
1620 int ret;
1621 struct btrfs_key key;
1622 struct btrfs_key found_key;
1623 struct btrfs_path *path;
31db9f7c 1624 int len;
96b5bd77 1625 u64 parent_dir;
31db9f7c
AB
1626
1627 path = alloc_path_for_send();
1628 if (!path)
1629 return -ENOMEM;
1630
1631 key.objectid = ino;
1632 key.type = BTRFS_INODE_REF_KEY;
1633 key.offset = 0;
1634
1635 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1636 if (ret < 0)
1637 goto out;
1638 if (!ret)
1639 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1640 path->slots[0]);
96b5bd77
JS
1641 if (ret || found_key.objectid != ino ||
1642 (found_key.type != BTRFS_INODE_REF_KEY &&
1643 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1644 ret = -ENOENT;
1645 goto out;
1646 }
1647
96b5bd77
JS
1648 if (key.type == BTRFS_INODE_REF_KEY) {
1649 struct btrfs_inode_ref *iref;
1650 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1651 struct btrfs_inode_ref);
1652 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1653 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1654 (unsigned long)(iref + 1),
1655 len);
1656 parent_dir = found_key.offset;
1657 } else {
1658 struct btrfs_inode_extref *extref;
1659 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1660 struct btrfs_inode_extref);
1661 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1662 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1663 (unsigned long)&extref->name, len);
1664 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1665 }
31db9f7c
AB
1666 if (ret < 0)
1667 goto out;
1668 btrfs_release_path(path);
1669
96b5bd77 1670 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
85a7b33b 1671 NULL, NULL);
31db9f7c
AB
1672 if (ret < 0)
1673 goto out;
1674
96b5bd77 1675 *dir = parent_dir;
31db9f7c
AB
1676
1677out:
1678 btrfs_free_path(path);
1679 return ret;
1680}
1681
924794c9 1682static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1683 u64 ino, u64 dir,
1684 const char *name, int name_len)
1685{
1686 int ret;
1687 struct fs_path *tmp_name;
1688 u64 tmp_dir;
1689 u64 tmp_dir_gen;
1690
924794c9 1691 tmp_name = fs_path_alloc();
31db9f7c
AB
1692 if (!tmp_name)
1693 return -ENOMEM;
1694
924794c9 1695 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
31db9f7c
AB
1696 if (ret < 0)
1697 goto out;
1698
b9291aff 1699 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1700 ret = 0;
1701 goto out;
1702 }
1703
e938c8ad 1704 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1705
1706out:
924794c9 1707 fs_path_free(tmp_name);
31db9f7c
AB
1708 return ret;
1709}
1710
766702ef
AB
1711/*
1712 * Used by process_recorded_refs to determine if a new ref would overwrite an
1713 * already existing ref. In case it detects an overwrite, it returns the
1714 * inode/gen in who_ino/who_gen.
1715 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1716 * to make sure later references to the overwritten inode are possible.
1717 * Orphanizing is however only required for the first ref of an inode.
1718 * process_recorded_refs does an additional is_first_ref check to see if
1719 * orphanizing is really required.
1720 */
31db9f7c
AB
1721static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1722 const char *name, int name_len,
1723 u64 *who_ino, u64 *who_gen)
1724{
1725 int ret = 0;
ebdad913 1726 u64 gen;
31db9f7c
AB
1727 u64 other_inode = 0;
1728 u8 other_type = 0;
1729
1730 if (!sctx->parent_root)
1731 goto out;
1732
1733 ret = is_inode_existent(sctx, dir, dir_gen);
1734 if (ret <= 0)
1735 goto out;
1736
ebdad913
JB
1737 /*
1738 * If we have a parent root we need to verify that the parent dir was
1739 * not delted and then re-created, if it was then we have no overwrite
1740 * and we can just unlink this entry.
1741 */
1742 if (sctx->parent_root) {
1743 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1744 NULL, NULL, NULL);
1745 if (ret < 0 && ret != -ENOENT)
1746 goto out;
1747 if (ret) {
1748 ret = 0;
1749 goto out;
1750 }
1751 if (gen != dir_gen)
1752 goto out;
1753 }
1754
31db9f7c
AB
1755 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1756 &other_inode, &other_type);
1757 if (ret < 0 && ret != -ENOENT)
1758 goto out;
1759 if (ret) {
1760 ret = 0;
1761 goto out;
1762 }
1763
766702ef
AB
1764 /*
1765 * Check if the overwritten ref was already processed. If yes, the ref
1766 * was already unlinked/moved, so we can safely assume that we will not
1767 * overwrite anything at this point in time.
1768 */
31db9f7c
AB
1769 if (other_inode > sctx->send_progress) {
1770 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1771 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1772 if (ret < 0)
1773 goto out;
1774
1775 ret = 1;
1776 *who_ino = other_inode;
1777 } else {
1778 ret = 0;
1779 }
1780
1781out:
1782 return ret;
1783}
1784
766702ef
AB
1785/*
1786 * Checks if the ref was overwritten by an already processed inode. This is
1787 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1788 * thus the orphan name needs be used.
1789 * process_recorded_refs also uses it to avoid unlinking of refs that were
1790 * overwritten.
1791 */
31db9f7c
AB
1792static int did_overwrite_ref(struct send_ctx *sctx,
1793 u64 dir, u64 dir_gen,
1794 u64 ino, u64 ino_gen,
1795 const char *name, int name_len)
1796{
1797 int ret = 0;
1798 u64 gen;
1799 u64 ow_inode;
1800 u8 other_type;
1801
1802 if (!sctx->parent_root)
1803 goto out;
1804
1805 ret = is_inode_existent(sctx, dir, dir_gen);
1806 if (ret <= 0)
1807 goto out;
1808
1809 /* check if the ref was overwritten by another ref */
1810 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1811 &ow_inode, &other_type);
1812 if (ret < 0 && ret != -ENOENT)
1813 goto out;
1814 if (ret) {
1815 /* was never and will never be overwritten */
1816 ret = 0;
1817 goto out;
1818 }
1819
1820 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1821 NULL, NULL);
31db9f7c
AB
1822 if (ret < 0)
1823 goto out;
1824
1825 if (ow_inode == ino && gen == ino_gen) {
1826 ret = 0;
1827 goto out;
1828 }
1829
1830 /* we know that it is or will be overwritten. check this now */
1831 if (ow_inode < sctx->send_progress)
1832 ret = 1;
1833 else
1834 ret = 0;
1835
1836out:
1837 return ret;
1838}
1839
766702ef
AB
1840/*
1841 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1842 * that got overwritten. This is used by process_recorded_refs to determine
1843 * if it has to use the path as returned by get_cur_path or the orphan name.
1844 */
31db9f7c
AB
1845static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1846{
1847 int ret = 0;
1848 struct fs_path *name = NULL;
1849 u64 dir;
1850 u64 dir_gen;
1851
1852 if (!sctx->parent_root)
1853 goto out;
1854
924794c9 1855 name = fs_path_alloc();
31db9f7c
AB
1856 if (!name)
1857 return -ENOMEM;
1858
924794c9 1859 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1860 if (ret < 0)
1861 goto out;
1862
1863 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1864 name->start, fs_path_len(name));
31db9f7c
AB
1865
1866out:
924794c9 1867 fs_path_free(name);
31db9f7c
AB
1868 return ret;
1869}
1870
766702ef
AB
1871/*
1872 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1873 * so we need to do some special handling in case we have clashes. This function
1874 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1875 * In case of error, nce is kfreed.
766702ef 1876 */
31db9f7c
AB
1877static int name_cache_insert(struct send_ctx *sctx,
1878 struct name_cache_entry *nce)
1879{
1880 int ret = 0;
7e0926fe
AB
1881 struct list_head *nce_head;
1882
1883 nce_head = radix_tree_lookup(&sctx->name_cache,
1884 (unsigned long)nce->ino);
1885 if (!nce_head) {
1886 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
cfa7a9cc
TI
1887 if (!nce_head) {
1888 kfree(nce);
31db9f7c 1889 return -ENOMEM;
cfa7a9cc 1890 }
7e0926fe 1891 INIT_LIST_HEAD(nce_head);
31db9f7c 1892
7e0926fe 1893 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1894 if (ret < 0) {
1895 kfree(nce_head);
1896 kfree(nce);
31db9f7c 1897 return ret;
5dc67d0b 1898 }
31db9f7c 1899 }
7e0926fe 1900 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1901 list_add_tail(&nce->list, &sctx->name_cache_list);
1902 sctx->name_cache_size++;
1903
1904 return ret;
1905}
1906
1907static void name_cache_delete(struct send_ctx *sctx,
1908 struct name_cache_entry *nce)
1909{
7e0926fe 1910 struct list_head *nce_head;
31db9f7c 1911
7e0926fe
AB
1912 nce_head = radix_tree_lookup(&sctx->name_cache,
1913 (unsigned long)nce->ino);
57fb8910
DS
1914 if (!nce_head) {
1915 btrfs_err(sctx->send_root->fs_info,
1916 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1917 nce->ino, sctx->name_cache_size);
1918 }
31db9f7c 1919
7e0926fe 1920 list_del(&nce->radix_list);
31db9f7c 1921 list_del(&nce->list);
31db9f7c 1922 sctx->name_cache_size--;
7e0926fe 1923
57fb8910
DS
1924 /*
1925 * We may not get to the final release of nce_head if the lookup fails
1926 */
1927 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
1928 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1929 kfree(nce_head);
1930 }
31db9f7c
AB
1931}
1932
1933static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1934 u64 ino, u64 gen)
1935{
7e0926fe
AB
1936 struct list_head *nce_head;
1937 struct name_cache_entry *cur;
31db9f7c 1938
7e0926fe
AB
1939 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1940 if (!nce_head)
31db9f7c
AB
1941 return NULL;
1942
7e0926fe
AB
1943 list_for_each_entry(cur, nce_head, radix_list) {
1944 if (cur->ino == ino && cur->gen == gen)
1945 return cur;
1946 }
31db9f7c
AB
1947 return NULL;
1948}
1949
766702ef
AB
1950/*
1951 * Removes the entry from the list and adds it back to the end. This marks the
1952 * entry as recently used so that name_cache_clean_unused does not remove it.
1953 */
31db9f7c
AB
1954static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1955{
1956 list_del(&nce->list);
1957 list_add_tail(&nce->list, &sctx->name_cache_list);
1958}
1959
766702ef
AB
1960/*
1961 * Remove some entries from the beginning of name_cache_list.
1962 */
31db9f7c
AB
1963static void name_cache_clean_unused(struct send_ctx *sctx)
1964{
1965 struct name_cache_entry *nce;
1966
1967 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1968 return;
1969
1970 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1971 nce = list_entry(sctx->name_cache_list.next,
1972 struct name_cache_entry, list);
1973 name_cache_delete(sctx, nce);
1974 kfree(nce);
1975 }
1976}
1977
1978static void name_cache_free(struct send_ctx *sctx)
1979{
1980 struct name_cache_entry *nce;
31db9f7c 1981
e938c8ad
AB
1982 while (!list_empty(&sctx->name_cache_list)) {
1983 nce = list_entry(sctx->name_cache_list.next,
1984 struct name_cache_entry, list);
31db9f7c 1985 name_cache_delete(sctx, nce);
17589bd9 1986 kfree(nce);
31db9f7c
AB
1987 }
1988}
1989
766702ef
AB
1990/*
1991 * Used by get_cur_path for each ref up to the root.
1992 * Returns 0 if it succeeded.
1993 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1994 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1995 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1996 * Returns <0 in case of error.
1997 */
31db9f7c
AB
1998static int __get_cur_name_and_parent(struct send_ctx *sctx,
1999 u64 ino, u64 gen,
2000 u64 *parent_ino,
2001 u64 *parent_gen,
2002 struct fs_path *dest)
2003{
2004 int ret;
2005 int nce_ret;
2006 struct btrfs_path *path = NULL;
2007 struct name_cache_entry *nce = NULL;
2008
766702ef
AB
2009 /*
2010 * First check if we already did a call to this function with the same
2011 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2012 * return the cached result.
2013 */
31db9f7c
AB
2014 nce = name_cache_search(sctx, ino, gen);
2015 if (nce) {
2016 if (ino < sctx->send_progress && nce->need_later_update) {
2017 name_cache_delete(sctx, nce);
2018 kfree(nce);
2019 nce = NULL;
2020 } else {
2021 name_cache_used(sctx, nce);
2022 *parent_ino = nce->parent_ino;
2023 *parent_gen = nce->parent_gen;
2024 ret = fs_path_add(dest, nce->name, nce->name_len);
2025 if (ret < 0)
2026 goto out;
2027 ret = nce->ret;
2028 goto out;
2029 }
2030 }
2031
2032 path = alloc_path_for_send();
2033 if (!path)
2034 return -ENOMEM;
2035
766702ef
AB
2036 /*
2037 * If the inode is not existent yet, add the orphan name and return 1.
2038 * This should only happen for the parent dir that we determine in
2039 * __record_new_ref
2040 */
31db9f7c
AB
2041 ret = is_inode_existent(sctx, ino, gen);
2042 if (ret < 0)
2043 goto out;
2044
2045 if (!ret) {
2046 ret = gen_unique_name(sctx, ino, gen, dest);
2047 if (ret < 0)
2048 goto out;
2049 ret = 1;
2050 goto out_cache;
2051 }
2052
766702ef
AB
2053 /*
2054 * Depending on whether the inode was already processed or not, use
2055 * send_root or parent_root for ref lookup.
2056 */
bf0d1f44 2057 if (ino < sctx->send_progress)
924794c9
TI
2058 ret = get_first_ref(sctx->send_root, ino,
2059 parent_ino, parent_gen, dest);
31db9f7c 2060 else
924794c9
TI
2061 ret = get_first_ref(sctx->parent_root, ino,
2062 parent_ino, parent_gen, dest);
31db9f7c
AB
2063 if (ret < 0)
2064 goto out;
2065
766702ef
AB
2066 /*
2067 * Check if the ref was overwritten by an inode's ref that was processed
2068 * earlier. If yes, treat as orphan and return 1.
2069 */
31db9f7c
AB
2070 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2071 dest->start, dest->end - dest->start);
2072 if (ret < 0)
2073 goto out;
2074 if (ret) {
2075 fs_path_reset(dest);
2076 ret = gen_unique_name(sctx, ino, gen, dest);
2077 if (ret < 0)
2078 goto out;
2079 ret = 1;
2080 }
2081
2082out_cache:
766702ef
AB
2083 /*
2084 * Store the result of the lookup in the name cache.
2085 */
31db9f7c
AB
2086 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2087 if (!nce) {
2088 ret = -ENOMEM;
2089 goto out;
2090 }
2091
2092 nce->ino = ino;
2093 nce->gen = gen;
2094 nce->parent_ino = *parent_ino;
2095 nce->parent_gen = *parent_gen;
2096 nce->name_len = fs_path_len(dest);
2097 nce->ret = ret;
2098 strcpy(nce->name, dest->start);
31db9f7c
AB
2099
2100 if (ino < sctx->send_progress)
2101 nce->need_later_update = 0;
2102 else
2103 nce->need_later_update = 1;
2104
2105 nce_ret = name_cache_insert(sctx, nce);
2106 if (nce_ret < 0)
2107 ret = nce_ret;
2108 name_cache_clean_unused(sctx);
2109
2110out:
2111 btrfs_free_path(path);
2112 return ret;
2113}
2114
2115/*
2116 * Magic happens here. This function returns the first ref to an inode as it
2117 * would look like while receiving the stream at this point in time.
2118 * We walk the path up to the root. For every inode in between, we check if it
2119 * was already processed/sent. If yes, we continue with the parent as found
2120 * in send_root. If not, we continue with the parent as found in parent_root.
2121 * If we encounter an inode that was deleted at this point in time, we use the
2122 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2123 * that were not created yet and overwritten inodes/refs.
2124 *
2125 * When do we have have orphan inodes:
2126 * 1. When an inode is freshly created and thus no valid refs are available yet
2127 * 2. When a directory lost all it's refs (deleted) but still has dir items
2128 * inside which were not processed yet (pending for move/delete). If anyone
2129 * tried to get the path to the dir items, it would get a path inside that
2130 * orphan directory.
2131 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2132 * of an unprocessed inode. If in that case the first ref would be
2133 * overwritten, the overwritten inode gets "orphanized". Later when we
2134 * process this overwritten inode, it is restored at a new place by moving
2135 * the orphan inode.
2136 *
2137 * sctx->send_progress tells this function at which point in time receiving
2138 * would be.
2139 */
2140static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2141 struct fs_path *dest)
2142{
2143 int ret = 0;
2144 struct fs_path *name = NULL;
2145 u64 parent_inode = 0;
2146 u64 parent_gen = 0;
2147 int stop = 0;
2148
924794c9 2149 name = fs_path_alloc();
31db9f7c
AB
2150 if (!name) {
2151 ret = -ENOMEM;
2152 goto out;
2153 }
2154
2155 dest->reversed = 1;
2156 fs_path_reset(dest);
2157
2158 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2159 fs_path_reset(name);
2160
9dc44214
FM
2161 if (is_waiting_for_rm(sctx, ino)) {
2162 ret = gen_unique_name(sctx, ino, gen, name);
2163 if (ret < 0)
2164 goto out;
2165 ret = fs_path_add_path(dest, name);
2166 break;
2167 }
2168
bf0d1f44
FM
2169 if (is_waiting_for_move(sctx, ino)) {
2170 ret = get_first_ref(sctx->parent_root, ino,
2171 &parent_inode, &parent_gen, name);
2172 } else {
2173 ret = __get_cur_name_and_parent(sctx, ino, gen,
2174 &parent_inode,
2175 &parent_gen, name);
2176 if (ret)
2177 stop = 1;
2178 }
2179
31db9f7c
AB
2180 if (ret < 0)
2181 goto out;
9f03740a 2182
31db9f7c
AB
2183 ret = fs_path_add_path(dest, name);
2184 if (ret < 0)
2185 goto out;
2186
2187 ino = parent_inode;
2188 gen = parent_gen;
2189 }
2190
2191out:
924794c9 2192 fs_path_free(name);
31db9f7c
AB
2193 if (!ret)
2194 fs_path_unreverse(dest);
2195 return ret;
2196}
2197
31db9f7c
AB
2198/*
2199 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2200 */
2201static int send_subvol_begin(struct send_ctx *sctx)
2202{
2203 int ret;
2204 struct btrfs_root *send_root = sctx->send_root;
2205 struct btrfs_root *parent_root = sctx->parent_root;
2206 struct btrfs_path *path;
2207 struct btrfs_key key;
2208 struct btrfs_root_ref *ref;
2209 struct extent_buffer *leaf;
2210 char *name = NULL;
2211 int namelen;
2212
ffcfaf81 2213 path = btrfs_alloc_path();
31db9f7c
AB
2214 if (!path)
2215 return -ENOMEM;
2216
2217 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2218 if (!name) {
2219 btrfs_free_path(path);
2220 return -ENOMEM;
2221 }
2222
2223 key.objectid = send_root->objectid;
2224 key.type = BTRFS_ROOT_BACKREF_KEY;
2225 key.offset = 0;
2226
2227 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2228 &key, path, 1, 0);
2229 if (ret < 0)
2230 goto out;
2231 if (ret) {
2232 ret = -ENOENT;
2233 goto out;
2234 }
2235
2236 leaf = path->nodes[0];
2237 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2238 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2239 key.objectid != send_root->objectid) {
2240 ret = -ENOENT;
2241 goto out;
2242 }
2243 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2244 namelen = btrfs_root_ref_name_len(leaf, ref);
2245 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2246 btrfs_release_path(path);
2247
31db9f7c
AB
2248 if (parent_root) {
2249 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2250 if (ret < 0)
2251 goto out;
2252 } else {
2253 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2254 if (ret < 0)
2255 goto out;
2256 }
2257
2258 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2259 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2260 sctx->send_root->root_item.uuid);
2261 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2262 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c
AB
2263 if (parent_root) {
2264 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2265 sctx->parent_root->root_item.uuid);
2266 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2267 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2268 }
2269
2270 ret = send_cmd(sctx);
2271
2272tlv_put_failure:
2273out:
2274 btrfs_free_path(path);
2275 kfree(name);
2276 return ret;
2277}
2278
2279static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2280{
2281 int ret = 0;
2282 struct fs_path *p;
2283
2284verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2285
924794c9 2286 p = fs_path_alloc();
31db9f7c
AB
2287 if (!p)
2288 return -ENOMEM;
2289
2290 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2291 if (ret < 0)
2292 goto out;
2293
2294 ret = get_cur_path(sctx, ino, gen, p);
2295 if (ret < 0)
2296 goto out;
2297 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2298 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2299
2300 ret = send_cmd(sctx);
2301
2302tlv_put_failure:
2303out:
924794c9 2304 fs_path_free(p);
31db9f7c
AB
2305 return ret;
2306}
2307
2308static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2309{
2310 int ret = 0;
2311 struct fs_path *p;
2312
2313verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2314
924794c9 2315 p = fs_path_alloc();
31db9f7c
AB
2316 if (!p)
2317 return -ENOMEM;
2318
2319 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2320 if (ret < 0)
2321 goto out;
2322
2323 ret = get_cur_path(sctx, ino, gen, p);
2324 if (ret < 0)
2325 goto out;
2326 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2327 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2328
2329 ret = send_cmd(sctx);
2330
2331tlv_put_failure:
2332out:
924794c9 2333 fs_path_free(p);
31db9f7c
AB
2334 return ret;
2335}
2336
2337static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2338{
2339 int ret = 0;
2340 struct fs_path *p;
2341
2342verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2343
924794c9 2344 p = fs_path_alloc();
31db9f7c
AB
2345 if (!p)
2346 return -ENOMEM;
2347
2348 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2349 if (ret < 0)
2350 goto out;
2351
2352 ret = get_cur_path(sctx, ino, gen, p);
2353 if (ret < 0)
2354 goto out;
2355 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2356 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2357 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2358
2359 ret = send_cmd(sctx);
2360
2361tlv_put_failure:
2362out:
924794c9 2363 fs_path_free(p);
31db9f7c
AB
2364 return ret;
2365}
2366
2367static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2368{
2369 int ret = 0;
2370 struct fs_path *p = NULL;
2371 struct btrfs_inode_item *ii;
2372 struct btrfs_path *path = NULL;
2373 struct extent_buffer *eb;
2374 struct btrfs_key key;
2375 int slot;
2376
2377verbose_printk("btrfs: send_utimes %llu\n", ino);
2378
924794c9 2379 p = fs_path_alloc();
31db9f7c
AB
2380 if (!p)
2381 return -ENOMEM;
2382
2383 path = alloc_path_for_send();
2384 if (!path) {
2385 ret = -ENOMEM;
2386 goto out;
2387 }
2388
2389 key.objectid = ino;
2390 key.type = BTRFS_INODE_ITEM_KEY;
2391 key.offset = 0;
2392 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2393 if (ret < 0)
2394 goto out;
2395
2396 eb = path->nodes[0];
2397 slot = path->slots[0];
2398 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2399
2400 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2401 if (ret < 0)
2402 goto out;
2403
2404 ret = get_cur_path(sctx, ino, gen, p);
2405 if (ret < 0)
2406 goto out;
2407 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2408 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2409 btrfs_inode_atime(ii));
2410 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2411 btrfs_inode_mtime(ii));
2412 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2413 btrfs_inode_ctime(ii));
766702ef 2414 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2415
2416 ret = send_cmd(sctx);
2417
2418tlv_put_failure:
2419out:
924794c9 2420 fs_path_free(p);
31db9f7c
AB
2421 btrfs_free_path(path);
2422 return ret;
2423}
2424
2425/*
2426 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2427 * a valid path yet because we did not process the refs yet. So, the inode
2428 * is created as orphan.
2429 */
1f4692da 2430static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2431{
2432 int ret = 0;
31db9f7c 2433 struct fs_path *p;
31db9f7c 2434 int cmd;
1f4692da 2435 u64 gen;
31db9f7c 2436 u64 mode;
1f4692da 2437 u64 rdev;
31db9f7c 2438
1f4692da 2439verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2440
924794c9 2441 p = fs_path_alloc();
31db9f7c
AB
2442 if (!p)
2443 return -ENOMEM;
2444
644d1940
LB
2445 if (ino != sctx->cur_ino) {
2446 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2447 NULL, NULL, &rdev);
2448 if (ret < 0)
2449 goto out;
2450 } else {
2451 gen = sctx->cur_inode_gen;
2452 mode = sctx->cur_inode_mode;
2453 rdev = sctx->cur_inode_rdev;
2454 }
31db9f7c 2455
e938c8ad 2456 if (S_ISREG(mode)) {
31db9f7c 2457 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2458 } else if (S_ISDIR(mode)) {
31db9f7c 2459 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2460 } else if (S_ISLNK(mode)) {
31db9f7c 2461 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2462 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2463 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2464 } else if (S_ISFIFO(mode)) {
31db9f7c 2465 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2466 } else if (S_ISSOCK(mode)) {
31db9f7c 2467 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2468 } else {
31db9f7c
AB
2469 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2470 (int)(mode & S_IFMT));
2471 ret = -ENOTSUPP;
2472 goto out;
2473 }
2474
2475 ret = begin_cmd(sctx, cmd);
2476 if (ret < 0)
2477 goto out;
2478
1f4692da 2479 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2480 if (ret < 0)
2481 goto out;
2482
2483 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2484 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2485
2486 if (S_ISLNK(mode)) {
2487 fs_path_reset(p);
924794c9 2488 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2489 if (ret < 0)
2490 goto out;
2491 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2492 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2493 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2494 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2495 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2496 }
2497
2498 ret = send_cmd(sctx);
2499 if (ret < 0)
2500 goto out;
2501
2502
2503tlv_put_failure:
2504out:
924794c9 2505 fs_path_free(p);
31db9f7c
AB
2506 return ret;
2507}
2508
1f4692da
AB
2509/*
2510 * We need some special handling for inodes that get processed before the parent
2511 * directory got created. See process_recorded_refs for details.
2512 * This function does the check if we already created the dir out of order.
2513 */
2514static int did_create_dir(struct send_ctx *sctx, u64 dir)
2515{
2516 int ret = 0;
2517 struct btrfs_path *path = NULL;
2518 struct btrfs_key key;
2519 struct btrfs_key found_key;
2520 struct btrfs_key di_key;
2521 struct extent_buffer *eb;
2522 struct btrfs_dir_item *di;
2523 int slot;
2524
2525 path = alloc_path_for_send();
2526 if (!path) {
2527 ret = -ENOMEM;
2528 goto out;
2529 }
2530
2531 key.objectid = dir;
2532 key.type = BTRFS_DIR_INDEX_KEY;
2533 key.offset = 0;
dff6d0ad
FDBM
2534 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2535 if (ret < 0)
2536 goto out;
2537
1f4692da 2538 while (1) {
dff6d0ad
FDBM
2539 eb = path->nodes[0];
2540 slot = path->slots[0];
2541 if (slot >= btrfs_header_nritems(eb)) {
2542 ret = btrfs_next_leaf(sctx->send_root, path);
2543 if (ret < 0) {
2544 goto out;
2545 } else if (ret > 0) {
2546 ret = 0;
2547 break;
2548 }
2549 continue;
1f4692da 2550 }
dff6d0ad
FDBM
2551
2552 btrfs_item_key_to_cpu(eb, &found_key, slot);
2553 if (found_key.objectid != key.objectid ||
1f4692da
AB
2554 found_key.type != key.type) {
2555 ret = 0;
2556 goto out;
2557 }
2558
2559 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2560 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2561
a0525414
JB
2562 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2563 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2564 ret = 1;
2565 goto out;
2566 }
2567
dff6d0ad 2568 path->slots[0]++;
1f4692da
AB
2569 }
2570
2571out:
2572 btrfs_free_path(path);
2573 return ret;
2574}
2575
2576/*
2577 * Only creates the inode if it is:
2578 * 1. Not a directory
2579 * 2. Or a directory which was not created already due to out of order
2580 * directories. See did_create_dir and process_recorded_refs for details.
2581 */
2582static int send_create_inode_if_needed(struct send_ctx *sctx)
2583{
2584 int ret;
2585
2586 if (S_ISDIR(sctx->cur_inode_mode)) {
2587 ret = did_create_dir(sctx, sctx->cur_ino);
2588 if (ret < 0)
2589 goto out;
2590 if (ret) {
2591 ret = 0;
2592 goto out;
2593 }
2594 }
2595
2596 ret = send_create_inode(sctx, sctx->cur_ino);
2597 if (ret < 0)
2598 goto out;
2599
2600out:
2601 return ret;
2602}
2603
31db9f7c
AB
2604struct recorded_ref {
2605 struct list_head list;
2606 char *dir_path;
2607 char *name;
2608 struct fs_path *full_path;
2609 u64 dir;
2610 u64 dir_gen;
2611 int dir_path_len;
2612 int name_len;
2613};
2614
2615/*
2616 * We need to process new refs before deleted refs, but compare_tree gives us
2617 * everything mixed. So we first record all refs and later process them.
2618 * This function is a helper to record one ref.
2619 */
a4d96d62 2620static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2621 u64 dir_gen, struct fs_path *path)
2622{
2623 struct recorded_ref *ref;
31db9f7c
AB
2624
2625 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2626 if (!ref)
2627 return -ENOMEM;
2628
2629 ref->dir = dir;
2630 ref->dir_gen = dir_gen;
2631 ref->full_path = path;
2632
ed84885d
AS
2633 ref->name = (char *)kbasename(ref->full_path->start);
2634 ref->name_len = ref->full_path->end - ref->name;
2635 ref->dir_path = ref->full_path->start;
2636 if (ref->name == ref->full_path->start)
31db9f7c 2637 ref->dir_path_len = 0;
ed84885d 2638 else
31db9f7c
AB
2639 ref->dir_path_len = ref->full_path->end -
2640 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2641
2642 list_add_tail(&ref->list, head);
2643 return 0;
2644}
2645
ba5e8f2e
JB
2646static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2647{
2648 struct recorded_ref *new;
2649
2650 new = kmalloc(sizeof(*ref), GFP_NOFS);
2651 if (!new)
2652 return -ENOMEM;
2653
2654 new->dir = ref->dir;
2655 new->dir_gen = ref->dir_gen;
2656 new->full_path = NULL;
2657 INIT_LIST_HEAD(&new->list);
2658 list_add_tail(&new->list, list);
2659 return 0;
2660}
2661
924794c9 2662static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2663{
2664 struct recorded_ref *cur;
31db9f7c 2665
e938c8ad
AB
2666 while (!list_empty(head)) {
2667 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2668 fs_path_free(cur->full_path);
e938c8ad 2669 list_del(&cur->list);
31db9f7c
AB
2670 kfree(cur);
2671 }
31db9f7c
AB
2672}
2673
2674static void free_recorded_refs(struct send_ctx *sctx)
2675{
924794c9
TI
2676 __free_recorded_refs(&sctx->new_refs);
2677 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2678}
2679
2680/*
766702ef 2681 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2682 * ref of an unprocessed inode gets overwritten and for all non empty
2683 * directories.
2684 */
2685static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2686 struct fs_path *path)
2687{
2688 int ret;
2689 struct fs_path *orphan;
2690
924794c9 2691 orphan = fs_path_alloc();
31db9f7c
AB
2692 if (!orphan)
2693 return -ENOMEM;
2694
2695 ret = gen_unique_name(sctx, ino, gen, orphan);
2696 if (ret < 0)
2697 goto out;
2698
2699 ret = send_rename(sctx, path, orphan);
2700
2701out:
924794c9 2702 fs_path_free(orphan);
31db9f7c
AB
2703 return ret;
2704}
2705
9dc44214
FM
2706static struct orphan_dir_info *
2707add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2708{
2709 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2710 struct rb_node *parent = NULL;
2711 struct orphan_dir_info *entry, *odi;
2712
2713 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2714 if (!odi)
2715 return ERR_PTR(-ENOMEM);
2716 odi->ino = dir_ino;
2717 odi->gen = 0;
2718
2719 while (*p) {
2720 parent = *p;
2721 entry = rb_entry(parent, struct orphan_dir_info, node);
2722 if (dir_ino < entry->ino) {
2723 p = &(*p)->rb_left;
2724 } else if (dir_ino > entry->ino) {
2725 p = &(*p)->rb_right;
2726 } else {
2727 kfree(odi);
2728 return entry;
2729 }
2730 }
2731
2732 rb_link_node(&odi->node, parent, p);
2733 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2734 return odi;
2735}
2736
2737static struct orphan_dir_info *
2738get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2739{
2740 struct rb_node *n = sctx->orphan_dirs.rb_node;
2741 struct orphan_dir_info *entry;
2742
2743 while (n) {
2744 entry = rb_entry(n, struct orphan_dir_info, node);
2745 if (dir_ino < entry->ino)
2746 n = n->rb_left;
2747 else if (dir_ino > entry->ino)
2748 n = n->rb_right;
2749 else
2750 return entry;
2751 }
2752 return NULL;
2753}
2754
2755static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2756{
2757 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2758
2759 return odi != NULL;
2760}
2761
2762static void free_orphan_dir_info(struct send_ctx *sctx,
2763 struct orphan_dir_info *odi)
2764{
2765 if (!odi)
2766 return;
2767 rb_erase(&odi->node, &sctx->orphan_dirs);
2768 kfree(odi);
2769}
2770
31db9f7c
AB
2771/*
2772 * Returns 1 if a directory can be removed at this point in time.
2773 * We check this by iterating all dir items and checking if the inode behind
2774 * the dir item was already processed.
2775 */
9dc44214
FM
2776static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2777 u64 send_progress)
31db9f7c
AB
2778{
2779 int ret = 0;
2780 struct btrfs_root *root = sctx->parent_root;
2781 struct btrfs_path *path;
2782 struct btrfs_key key;
2783 struct btrfs_key found_key;
2784 struct btrfs_key loc;
2785 struct btrfs_dir_item *di;
2786
6d85ed05
AB
2787 /*
2788 * Don't try to rmdir the top/root subvolume dir.
2789 */
2790 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2791 return 0;
2792
31db9f7c
AB
2793 path = alloc_path_for_send();
2794 if (!path)
2795 return -ENOMEM;
2796
2797 key.objectid = dir;
2798 key.type = BTRFS_DIR_INDEX_KEY;
2799 key.offset = 0;
dff6d0ad
FDBM
2800 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2801 if (ret < 0)
2802 goto out;
31db9f7c
AB
2803
2804 while (1) {
9dc44214
FM
2805 struct waiting_dir_move *dm;
2806
dff6d0ad
FDBM
2807 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2808 ret = btrfs_next_leaf(root, path);
2809 if (ret < 0)
2810 goto out;
2811 else if (ret > 0)
2812 break;
2813 continue;
31db9f7c 2814 }
dff6d0ad
FDBM
2815 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2816 path->slots[0]);
2817 if (found_key.objectid != key.objectid ||
2818 found_key.type != key.type)
31db9f7c 2819 break;
31db9f7c
AB
2820
2821 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2822 struct btrfs_dir_item);
2823 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2824
9dc44214
FM
2825 dm = get_waiting_dir_move(sctx, loc.objectid);
2826 if (dm) {
2827 struct orphan_dir_info *odi;
2828
2829 odi = add_orphan_dir_info(sctx, dir);
2830 if (IS_ERR(odi)) {
2831 ret = PTR_ERR(odi);
2832 goto out;
2833 }
2834 odi->gen = dir_gen;
2835 dm->rmdir_ino = dir;
2836 ret = 0;
2837 goto out;
2838 }
2839
31db9f7c
AB
2840 if (loc.objectid > send_progress) {
2841 ret = 0;
2842 goto out;
2843 }
2844
dff6d0ad 2845 path->slots[0]++;
31db9f7c
AB
2846 }
2847
2848 ret = 1;
2849
2850out:
2851 btrfs_free_path(path);
2852 return ret;
2853}
2854
9f03740a
FDBM
2855static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2856{
9dc44214 2857 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 2858
9dc44214 2859 return entry != NULL;
9f03740a
FDBM
2860}
2861
2862static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2863{
2864 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2865 struct rb_node *parent = NULL;
2866 struct waiting_dir_move *entry, *dm;
2867
2868 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2869 if (!dm)
2870 return -ENOMEM;
2871 dm->ino = ino;
9dc44214 2872 dm->rmdir_ino = 0;
9f03740a
FDBM
2873
2874 while (*p) {
2875 parent = *p;
2876 entry = rb_entry(parent, struct waiting_dir_move, node);
2877 if (ino < entry->ino) {
2878 p = &(*p)->rb_left;
2879 } else if (ino > entry->ino) {
2880 p = &(*p)->rb_right;
2881 } else {
2882 kfree(dm);
2883 return -EEXIST;
2884 }
2885 }
2886
2887 rb_link_node(&dm->node, parent, p);
2888 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2889 return 0;
2890}
2891
9dc44214
FM
2892static struct waiting_dir_move *
2893get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
2894{
2895 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2896 struct waiting_dir_move *entry;
2897
2898 while (n) {
2899 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 2900 if (ino < entry->ino)
9f03740a 2901 n = n->rb_left;
9dc44214 2902 else if (ino > entry->ino)
9f03740a 2903 n = n->rb_right;
9dc44214
FM
2904 else
2905 return entry;
9f03740a 2906 }
9dc44214
FM
2907 return NULL;
2908}
2909
2910static void free_waiting_dir_move(struct send_ctx *sctx,
2911 struct waiting_dir_move *dm)
2912{
2913 if (!dm)
2914 return;
2915 rb_erase(&dm->node, &sctx->waiting_dir_moves);
2916 kfree(dm);
9f03740a
FDBM
2917}
2918
9f03740a
FDBM
2919static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2920{
2921 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2922 struct rb_node *parent = NULL;
2923 struct pending_dir_move *entry, *pm;
2924 struct recorded_ref *cur;
2925 int exists = 0;
2926 int ret;
2927
2928 pm = kmalloc(sizeof(*pm), GFP_NOFS);
2929 if (!pm)
2930 return -ENOMEM;
2931 pm->parent_ino = parent_ino;
2932 pm->ino = sctx->cur_ino;
2933 pm->gen = sctx->cur_inode_gen;
2934 INIT_LIST_HEAD(&pm->list);
2935 INIT_LIST_HEAD(&pm->update_refs);
2936 RB_CLEAR_NODE(&pm->node);
2937
2938 while (*p) {
2939 parent = *p;
2940 entry = rb_entry(parent, struct pending_dir_move, node);
2941 if (parent_ino < entry->parent_ino) {
2942 p = &(*p)->rb_left;
2943 } else if (parent_ino > entry->parent_ino) {
2944 p = &(*p)->rb_right;
2945 } else {
2946 exists = 1;
2947 break;
2948 }
2949 }
2950
2951 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2952 ret = dup_ref(cur, &pm->update_refs);
2953 if (ret < 0)
2954 goto out;
2955 }
2956 list_for_each_entry(cur, &sctx->new_refs, list) {
2957 ret = dup_ref(cur, &pm->update_refs);
2958 if (ret < 0)
2959 goto out;
2960 }
2961
2962 ret = add_waiting_dir_move(sctx, pm->ino);
2963 if (ret)
2964 goto out;
2965
2966 if (exists) {
2967 list_add_tail(&pm->list, &entry->list);
2968 } else {
2969 rb_link_node(&pm->node, parent, p);
2970 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2971 }
2972 ret = 0;
2973out:
2974 if (ret) {
2975 __free_recorded_refs(&pm->update_refs);
2976 kfree(pm);
2977 }
2978 return ret;
2979}
2980
2981static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2982 u64 parent_ino)
2983{
2984 struct rb_node *n = sctx->pending_dir_moves.rb_node;
2985 struct pending_dir_move *entry;
2986
2987 while (n) {
2988 entry = rb_entry(n, struct pending_dir_move, node);
2989 if (parent_ino < entry->parent_ino)
2990 n = n->rb_left;
2991 else if (parent_ino > entry->parent_ino)
2992 n = n->rb_right;
2993 else
2994 return entry;
2995 }
2996 return NULL;
2997}
2998
2999static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3000{
3001 struct fs_path *from_path = NULL;
3002 struct fs_path *to_path = NULL;
2b863a13 3003 struct fs_path *name = NULL;
9f03740a
FDBM
3004 u64 orig_progress = sctx->send_progress;
3005 struct recorded_ref *cur;
2b863a13 3006 u64 parent_ino, parent_gen;
9dc44214
FM
3007 struct waiting_dir_move *dm = NULL;
3008 u64 rmdir_ino = 0;
9f03740a
FDBM
3009 int ret;
3010
2b863a13 3011 name = fs_path_alloc();
9f03740a 3012 from_path = fs_path_alloc();
2b863a13
FM
3013 if (!name || !from_path) {
3014 ret = -ENOMEM;
3015 goto out;
3016 }
9f03740a 3017
9dc44214
FM
3018 dm = get_waiting_dir_move(sctx, pm->ino);
3019 ASSERT(dm);
3020 rmdir_ino = dm->rmdir_ino;
3021 free_waiting_dir_move(sctx, dm);
2b863a13
FM
3022
3023 ret = get_first_ref(sctx->parent_root, pm->ino,
3024 &parent_ino, &parent_gen, name);
9f03740a
FDBM
3025 if (ret < 0)
3026 goto out;
3027
2b863a13
FM
3028 if (parent_ino == sctx->cur_ino) {
3029 /* child only renamed, not moved */
3030 ASSERT(parent_gen == sctx->cur_inode_gen);
3031 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3032 from_path);
3033 if (ret < 0)
3034 goto out;
3035 ret = fs_path_add_path(from_path, name);
3036 if (ret < 0)
3037 goto out;
3038 } else {
3039 /* child moved and maybe renamed too */
3040 sctx->send_progress = pm->ino;
3041 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
3042 if (ret < 0)
3043 goto out;
3044 }
3045
3046 fs_path_free(name);
3047 name = NULL;
3048
9f03740a
FDBM
3049 to_path = fs_path_alloc();
3050 if (!to_path) {
3051 ret = -ENOMEM;
3052 goto out;
3053 }
3054
3055 sctx->send_progress = sctx->cur_ino + 1;
9f03740a
FDBM
3056 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3057 if (ret < 0)
3058 goto out;
3059
3060 ret = send_rename(sctx, from_path, to_path);
3061 if (ret < 0)
3062 goto out;
3063
9dc44214
FM
3064 if (rmdir_ino) {
3065 struct orphan_dir_info *odi;
3066
3067 odi = get_orphan_dir_info(sctx, rmdir_ino);
3068 if (!odi) {
3069 /* already deleted */
3070 goto finish;
3071 }
3072 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3073 if (ret < 0)
3074 goto out;
3075 if (!ret)
3076 goto finish;
3077
3078 name = fs_path_alloc();
3079 if (!name) {
3080 ret = -ENOMEM;
3081 goto out;
3082 }
3083 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3084 if (ret < 0)
3085 goto out;
3086 ret = send_rmdir(sctx, name);
3087 if (ret < 0)
3088 goto out;
3089 free_orphan_dir_info(sctx, odi);
3090 }
3091
3092finish:
9f03740a
FDBM
3093 ret = send_utimes(sctx, pm->ino, pm->gen);
3094 if (ret < 0)
3095 goto out;
3096
3097 /*
3098 * After rename/move, need to update the utimes of both new parent(s)
3099 * and old parent(s).
3100 */
3101 list_for_each_entry(cur, &pm->update_refs, list) {
9dc44214
FM
3102 if (cur->dir == rmdir_ino)
3103 continue;
9f03740a
FDBM
3104 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3105 if (ret < 0)
3106 goto out;
3107 }
3108
3109out:
2b863a13 3110 fs_path_free(name);
9f03740a
FDBM
3111 fs_path_free(from_path);
3112 fs_path_free(to_path);
3113 sctx->send_progress = orig_progress;
3114
3115 return ret;
3116}
3117
3118static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3119{
3120 if (!list_empty(&m->list))
3121 list_del(&m->list);
3122 if (!RB_EMPTY_NODE(&m->node))
3123 rb_erase(&m->node, &sctx->pending_dir_moves);
3124 __free_recorded_refs(&m->update_refs);
3125 kfree(m);
3126}
3127
3128static void tail_append_pending_moves(struct pending_dir_move *moves,
3129 struct list_head *stack)
3130{
3131 if (list_empty(&moves->list)) {
3132 list_add_tail(&moves->list, stack);
3133 } else {
3134 LIST_HEAD(list);
3135 list_splice_init(&moves->list, &list);
3136 list_add_tail(&moves->list, stack);
3137 list_splice_tail(&list, stack);
3138 }
3139}
3140
3141static int apply_children_dir_moves(struct send_ctx *sctx)
3142{
3143 struct pending_dir_move *pm;
3144 struct list_head stack;
3145 u64 parent_ino = sctx->cur_ino;
3146 int ret = 0;
3147
3148 pm = get_pending_dir_moves(sctx, parent_ino);
3149 if (!pm)
3150 return 0;
3151
3152 INIT_LIST_HEAD(&stack);
3153 tail_append_pending_moves(pm, &stack);
3154
3155 while (!list_empty(&stack)) {
3156 pm = list_first_entry(&stack, struct pending_dir_move, list);
3157 parent_ino = pm->ino;
3158 ret = apply_dir_move(sctx, pm);
3159 free_pending_move(sctx, pm);
3160 if (ret)
3161 goto out;
3162 pm = get_pending_dir_moves(sctx, parent_ino);
3163 if (pm)
3164 tail_append_pending_moves(pm, &stack);
3165 }
3166 return 0;
3167
3168out:
3169 while (!list_empty(&stack)) {
3170 pm = list_first_entry(&stack, struct pending_dir_move, list);
3171 free_pending_move(sctx, pm);
3172 }
3173 return ret;
3174}
3175
3176static int wait_for_parent_move(struct send_ctx *sctx,
3177 struct recorded_ref *parent_ref)
3178{
3179 int ret;
3180 u64 ino = parent_ref->dir;
3181 u64 parent_ino_before, parent_ino_after;
425b5daf 3182 u64 old_gen;
9f03740a
FDBM
3183 struct fs_path *path_before = NULL;
3184 struct fs_path *path_after = NULL;
3185 int len1, len2;
3186
9f03740a
FDBM
3187 if (is_waiting_for_move(sctx, ino))
3188 return 1;
3189
7b119a8b
FM
3190 if (parent_ref->dir <= sctx->cur_ino)
3191 return 0;
3192
9f03740a
FDBM
3193 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3194 NULL, NULL, NULL, NULL);
3195 if (ret == -ENOENT)
3196 return 0;
3197 else if (ret < 0)
3198 return ret;
3199
425b5daf 3200 if (parent_ref->dir_gen != old_gen)
9f03740a
FDBM
3201 return 0;
3202
3203 path_before = fs_path_alloc();
3204 if (!path_before)
3205 return -ENOMEM;
3206
3207 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3208 NULL, path_before);
3209 if (ret == -ENOENT) {
3210 ret = 0;
3211 goto out;
3212 } else if (ret < 0) {
3213 goto out;
3214 }
3215
3216 path_after = fs_path_alloc();
3217 if (!path_after) {
3218 ret = -ENOMEM;
3219 goto out;
3220 }
3221
3222 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3223 NULL, path_after);
3224 if (ret == -ENOENT) {
3225 ret = 0;
3226 goto out;
3227 } else if (ret < 0) {
3228 goto out;
3229 }
3230
3231 len1 = fs_path_len(path_before);
3232 len2 = fs_path_len(path_after);
5ed7f9ff
FDBM
3233 if (parent_ino_before != parent_ino_after || len1 != len2 ||
3234 memcmp(path_before->start, path_after->start, len1)) {
9f03740a
FDBM
3235 ret = 1;
3236 goto out;
3237 }
3238 ret = 0;
3239
3240out:
3241 fs_path_free(path_before);
3242 fs_path_free(path_after);
3243
3244 return ret;
3245}
3246
31db9f7c
AB
3247/*
3248 * This does all the move/link/unlink/rmdir magic.
3249 */
9f03740a 3250static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3251{
3252 int ret = 0;
3253 struct recorded_ref *cur;
1f4692da 3254 struct recorded_ref *cur2;
ba5e8f2e 3255 struct list_head check_dirs;
31db9f7c 3256 struct fs_path *valid_path = NULL;
b24baf69 3257 u64 ow_inode = 0;
31db9f7c
AB
3258 u64 ow_gen;
3259 int did_overwrite = 0;
3260 int is_orphan = 0;
29d6d30f 3261 u64 last_dir_ino_rm = 0;
31db9f7c
AB
3262
3263verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3264
6d85ed05
AB
3265 /*
3266 * This should never happen as the root dir always has the same ref
3267 * which is always '..'
3268 */
3269 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3270 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3271
924794c9 3272 valid_path = fs_path_alloc();
31db9f7c
AB
3273 if (!valid_path) {
3274 ret = -ENOMEM;
3275 goto out;
3276 }
3277
31db9f7c
AB
3278 /*
3279 * First, check if the first ref of the current inode was overwritten
3280 * before. If yes, we know that the current inode was already orphanized
3281 * and thus use the orphan name. If not, we can use get_cur_path to
3282 * get the path of the first ref as it would like while receiving at
3283 * this point in time.
3284 * New inodes are always orphan at the beginning, so force to use the
3285 * orphan name in this case.
3286 * The first ref is stored in valid_path and will be updated if it
3287 * gets moved around.
3288 */
3289 if (!sctx->cur_inode_new) {
3290 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3291 sctx->cur_inode_gen);
3292 if (ret < 0)
3293 goto out;
3294 if (ret)
3295 did_overwrite = 1;
3296 }
3297 if (sctx->cur_inode_new || did_overwrite) {
3298 ret = gen_unique_name(sctx, sctx->cur_ino,
3299 sctx->cur_inode_gen, valid_path);
3300 if (ret < 0)
3301 goto out;
3302 is_orphan = 1;
3303 } else {
3304 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3305 valid_path);
3306 if (ret < 0)
3307 goto out;
3308 }
3309
3310 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3311 /*
3312 * We may have refs where the parent directory does not exist
3313 * yet. This happens if the parent directories inum is higher
3314 * the the current inum. To handle this case, we create the
3315 * parent directory out of order. But we need to check if this
3316 * did already happen before due to other refs in the same dir.
3317 */
3318 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3319 if (ret < 0)
3320 goto out;
3321 if (ret == inode_state_will_create) {
3322 ret = 0;
3323 /*
3324 * First check if any of the current inodes refs did
3325 * already create the dir.
3326 */
3327 list_for_each_entry(cur2, &sctx->new_refs, list) {
3328 if (cur == cur2)
3329 break;
3330 if (cur2->dir == cur->dir) {
3331 ret = 1;
3332 break;
3333 }
3334 }
3335
3336 /*
3337 * If that did not happen, check if a previous inode
3338 * did already create the dir.
3339 */
3340 if (!ret)
3341 ret = did_create_dir(sctx, cur->dir);
3342 if (ret < 0)
3343 goto out;
3344 if (!ret) {
3345 ret = send_create_inode(sctx, cur->dir);
3346 if (ret < 0)
3347 goto out;
3348 }
3349 }
3350
31db9f7c
AB
3351 /*
3352 * Check if this new ref would overwrite the first ref of
3353 * another unprocessed inode. If yes, orphanize the
3354 * overwritten inode. If we find an overwritten ref that is
3355 * not the first ref, simply unlink it.
3356 */
3357 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3358 cur->name, cur->name_len,
3359 &ow_inode, &ow_gen);
3360 if (ret < 0)
3361 goto out;
3362 if (ret) {
924794c9
TI
3363 ret = is_first_ref(sctx->parent_root,
3364 ow_inode, cur->dir, cur->name,
3365 cur->name_len);
31db9f7c
AB
3366 if (ret < 0)
3367 goto out;
3368 if (ret) {
3369 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3370 cur->full_path);
3371 if (ret < 0)
3372 goto out;
3373 } else {
3374 ret = send_unlink(sctx, cur->full_path);
3375 if (ret < 0)
3376 goto out;
3377 }
3378 }
3379
3380 /*
3381 * link/move the ref to the new place. If we have an orphan
3382 * inode, move it and update valid_path. If not, link or move
3383 * it depending on the inode mode.
3384 */
1f4692da 3385 if (is_orphan) {
31db9f7c
AB
3386 ret = send_rename(sctx, valid_path, cur->full_path);
3387 if (ret < 0)
3388 goto out;
3389 is_orphan = 0;
3390 ret = fs_path_copy(valid_path, cur->full_path);
3391 if (ret < 0)
3392 goto out;
3393 } else {
3394 if (S_ISDIR(sctx->cur_inode_mode)) {
3395 /*
3396 * Dirs can't be linked, so move it. For moved
3397 * dirs, we always have one new and one deleted
3398 * ref. The deleted ref is ignored later.
3399 */
d86477b3
FDBM
3400 ret = wait_for_parent_move(sctx, cur);
3401 if (ret < 0)
3402 goto out;
3403 if (ret) {
9f03740a
FDBM
3404 ret = add_pending_dir_move(sctx,
3405 cur->dir);
3406 *pending_move = 1;
3407 } else {
3408 ret = send_rename(sctx, valid_path,
3409 cur->full_path);
3410 if (!ret)
3411 ret = fs_path_copy(valid_path,
3412 cur->full_path);
3413 }
31db9f7c
AB
3414 if (ret < 0)
3415 goto out;
3416 } else {
3417 ret = send_link(sctx, cur->full_path,
3418 valid_path);
3419 if (ret < 0)
3420 goto out;
3421 }
3422 }
ba5e8f2e 3423 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3424 if (ret < 0)
3425 goto out;
3426 }
3427
3428 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3429 /*
3430 * Check if we can already rmdir the directory. If not,
3431 * orphanize it. For every dir item inside that gets deleted
3432 * later, we do this check again and rmdir it then if possible.
3433 * See the use of check_dirs for more details.
3434 */
9dc44214
FM
3435 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3436 sctx->cur_ino);
31db9f7c
AB
3437 if (ret < 0)
3438 goto out;
3439 if (ret) {
3440 ret = send_rmdir(sctx, valid_path);
3441 if (ret < 0)
3442 goto out;
3443 } else if (!is_orphan) {
3444 ret = orphanize_inode(sctx, sctx->cur_ino,
3445 sctx->cur_inode_gen, valid_path);
3446 if (ret < 0)
3447 goto out;
3448 is_orphan = 1;
3449 }
3450
3451 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3452 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3453 if (ret < 0)
3454 goto out;
3455 }
ccf1626b
AB
3456 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3457 !list_empty(&sctx->deleted_refs)) {
3458 /*
3459 * We have a moved dir. Add the old parent to check_dirs
3460 */
3461 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3462 list);
ba5e8f2e 3463 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3464 if (ret < 0)
3465 goto out;
31db9f7c
AB
3466 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3467 /*
3468 * We have a non dir inode. Go through all deleted refs and
3469 * unlink them if they were not already overwritten by other
3470 * inodes.
3471 */
3472 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3473 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3474 sctx->cur_ino, sctx->cur_inode_gen,
3475 cur->name, cur->name_len);
3476 if (ret < 0)
3477 goto out;
3478 if (!ret) {
1f4692da
AB
3479 ret = send_unlink(sctx, cur->full_path);
3480 if (ret < 0)
3481 goto out;
31db9f7c 3482 }
ba5e8f2e 3483 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3484 if (ret < 0)
3485 goto out;
3486 }
31db9f7c
AB
3487 /*
3488 * If the inode is still orphan, unlink the orphan. This may
3489 * happen when a previous inode did overwrite the first ref
3490 * of this inode and no new refs were added for the current
766702ef
AB
3491 * inode. Unlinking does not mean that the inode is deleted in
3492 * all cases. There may still be links to this inode in other
3493 * places.
31db9f7c 3494 */
1f4692da 3495 if (is_orphan) {
31db9f7c
AB
3496 ret = send_unlink(sctx, valid_path);
3497 if (ret < 0)
3498 goto out;
3499 }
3500 }
3501
3502 /*
3503 * We did collect all parent dirs where cur_inode was once located. We
3504 * now go through all these dirs and check if they are pending for
3505 * deletion and if it's finally possible to perform the rmdir now.
3506 * We also update the inode stats of the parent dirs here.
3507 */
ba5e8f2e 3508 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3509 /*
3510 * In case we had refs into dirs that were not processed yet,
3511 * we don't need to do the utime and rmdir logic for these dirs.
3512 * The dir will be processed later.
3513 */
ba5e8f2e 3514 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3515 continue;
3516
ba5e8f2e 3517 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3518 if (ret < 0)
3519 goto out;
3520
3521 if (ret == inode_state_did_create ||
3522 ret == inode_state_no_change) {
3523 /* TODO delayed utimes */
ba5e8f2e 3524 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3525 if (ret < 0)
3526 goto out;
29d6d30f
FM
3527 } else if (ret == inode_state_did_delete &&
3528 cur->dir != last_dir_ino_rm) {
9dc44214
FM
3529 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3530 sctx->cur_ino);
31db9f7c
AB
3531 if (ret < 0)
3532 goto out;
3533 if (ret) {
ba5e8f2e
JB
3534 ret = get_cur_path(sctx, cur->dir,
3535 cur->dir_gen, valid_path);
31db9f7c
AB
3536 if (ret < 0)
3537 goto out;
3538 ret = send_rmdir(sctx, valid_path);
3539 if (ret < 0)
3540 goto out;
29d6d30f 3541 last_dir_ino_rm = cur->dir;
31db9f7c
AB
3542 }
3543 }
3544 }
3545
31db9f7c
AB
3546 ret = 0;
3547
3548out:
ba5e8f2e 3549 __free_recorded_refs(&check_dirs);
31db9f7c 3550 free_recorded_refs(sctx);
924794c9 3551 fs_path_free(valid_path);
31db9f7c
AB
3552 return ret;
3553}
3554
a4d96d62
LB
3555static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3556 struct fs_path *name, void *ctx, struct list_head *refs)
31db9f7c
AB
3557{
3558 int ret = 0;
3559 struct send_ctx *sctx = ctx;
3560 struct fs_path *p;
3561 u64 gen;
3562
924794c9 3563 p = fs_path_alloc();
31db9f7c
AB
3564 if (!p)
3565 return -ENOMEM;
3566
a4d96d62 3567 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3568 NULL, NULL);
31db9f7c
AB
3569 if (ret < 0)
3570 goto out;
3571
31db9f7c
AB
3572 ret = get_cur_path(sctx, dir, gen, p);
3573 if (ret < 0)
3574 goto out;
3575 ret = fs_path_add_path(p, name);
3576 if (ret < 0)
3577 goto out;
3578
a4d96d62 3579 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
3580
3581out:
3582 if (ret)
924794c9 3583 fs_path_free(p);
31db9f7c
AB
3584 return ret;
3585}
3586
a4d96d62
LB
3587static int __record_new_ref(int num, u64 dir, int index,
3588 struct fs_path *name,
3589 void *ctx)
3590{
3591 struct send_ctx *sctx = ctx;
3592 return record_ref(sctx->send_root, num, dir, index, name,
3593 ctx, &sctx->new_refs);
3594}
3595
3596
31db9f7c
AB
3597static int __record_deleted_ref(int num, u64 dir, int index,
3598 struct fs_path *name,
3599 void *ctx)
3600{
31db9f7c 3601 struct send_ctx *sctx = ctx;
a4d96d62
LB
3602 return record_ref(sctx->parent_root, num, dir, index, name,
3603 ctx, &sctx->deleted_refs);
31db9f7c
AB
3604}
3605
3606static int record_new_ref(struct send_ctx *sctx)
3607{
3608 int ret;
3609
924794c9
TI
3610 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3611 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
3612 if (ret < 0)
3613 goto out;
3614 ret = 0;
3615
3616out:
3617 return ret;
3618}
3619
3620static int record_deleted_ref(struct send_ctx *sctx)
3621{
3622 int ret;
3623
924794c9
TI
3624 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3625 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
3626 if (ret < 0)
3627 goto out;
3628 ret = 0;
3629
3630out:
3631 return ret;
3632}
3633
3634struct find_ref_ctx {
3635 u64 dir;
ba5e8f2e
JB
3636 u64 dir_gen;
3637 struct btrfs_root *root;
31db9f7c
AB
3638 struct fs_path *name;
3639 int found_idx;
3640};
3641
3642static int __find_iref(int num, u64 dir, int index,
3643 struct fs_path *name,
3644 void *ctx_)
3645{
3646 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
3647 u64 dir_gen;
3648 int ret;
31db9f7c
AB
3649
3650 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3651 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
3652 /*
3653 * To avoid doing extra lookups we'll only do this if everything
3654 * else matches.
3655 */
3656 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3657 NULL, NULL, NULL);
3658 if (ret)
3659 return ret;
3660 if (dir_gen != ctx->dir_gen)
3661 return 0;
31db9f7c
AB
3662 ctx->found_idx = num;
3663 return 1;
3664 }
3665 return 0;
3666}
3667
924794c9 3668static int find_iref(struct btrfs_root *root,
31db9f7c
AB
3669 struct btrfs_path *path,
3670 struct btrfs_key *key,
ba5e8f2e 3671 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
3672{
3673 int ret;
3674 struct find_ref_ctx ctx;
3675
3676 ctx.dir = dir;
3677 ctx.name = name;
ba5e8f2e 3678 ctx.dir_gen = dir_gen;
31db9f7c 3679 ctx.found_idx = -1;
ba5e8f2e 3680 ctx.root = root;
31db9f7c 3681
924794c9 3682 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
3683 if (ret < 0)
3684 return ret;
3685
3686 if (ctx.found_idx == -1)
3687 return -ENOENT;
3688
3689 return ctx.found_idx;
3690}
3691
3692static int __record_changed_new_ref(int num, u64 dir, int index,
3693 struct fs_path *name,
3694 void *ctx)
3695{
ba5e8f2e 3696 u64 dir_gen;
31db9f7c
AB
3697 int ret;
3698 struct send_ctx *sctx = ctx;
3699
ba5e8f2e
JB
3700 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3701 NULL, NULL, NULL);
3702 if (ret)
3703 return ret;
3704
924794c9 3705 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 3706 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
3707 if (ret == -ENOENT)
3708 ret = __record_new_ref(num, dir, index, name, sctx);
3709 else if (ret > 0)
3710 ret = 0;
3711
3712 return ret;
3713}
3714
3715static int __record_changed_deleted_ref(int num, u64 dir, int index,
3716 struct fs_path *name,
3717 void *ctx)
3718{
ba5e8f2e 3719 u64 dir_gen;
31db9f7c
AB
3720 int ret;
3721 struct send_ctx *sctx = ctx;
3722
ba5e8f2e
JB
3723 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3724 NULL, NULL, NULL);
3725 if (ret)
3726 return ret;
3727
924794c9 3728 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 3729 dir, dir_gen, name);
31db9f7c
AB
3730 if (ret == -ENOENT)
3731 ret = __record_deleted_ref(num, dir, index, name, sctx);
3732 else if (ret > 0)
3733 ret = 0;
3734
3735 return ret;
3736}
3737
3738static int record_changed_ref(struct send_ctx *sctx)
3739{
3740 int ret = 0;
3741
924794c9 3742 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
3743 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3744 if (ret < 0)
3745 goto out;
924794c9 3746 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3747 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3748 if (ret < 0)
3749 goto out;
3750 ret = 0;
3751
3752out:
3753 return ret;
3754}
3755
3756/*
3757 * Record and process all refs at once. Needed when an inode changes the
3758 * generation number, which means that it was deleted and recreated.
3759 */
3760static int process_all_refs(struct send_ctx *sctx,
3761 enum btrfs_compare_tree_result cmd)
3762{
3763 int ret;
3764 struct btrfs_root *root;
3765 struct btrfs_path *path;
3766 struct btrfs_key key;
3767 struct btrfs_key found_key;
3768 struct extent_buffer *eb;
3769 int slot;
3770 iterate_inode_ref_t cb;
9f03740a 3771 int pending_move = 0;
31db9f7c
AB
3772
3773 path = alloc_path_for_send();
3774 if (!path)
3775 return -ENOMEM;
3776
3777 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3778 root = sctx->send_root;
3779 cb = __record_new_ref;
3780 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3781 root = sctx->parent_root;
3782 cb = __record_deleted_ref;
3783 } else {
4d1a63b2
DS
3784 btrfs_err(sctx->send_root->fs_info,
3785 "Wrong command %d in process_all_refs", cmd);
3786 ret = -EINVAL;
3787 goto out;
31db9f7c
AB
3788 }
3789
3790 key.objectid = sctx->cmp_key->objectid;
3791 key.type = BTRFS_INODE_REF_KEY;
3792 key.offset = 0;
dff6d0ad
FDBM
3793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3794 if (ret < 0)
3795 goto out;
31db9f7c 3796
dff6d0ad 3797 while (1) {
31db9f7c
AB
3798 eb = path->nodes[0];
3799 slot = path->slots[0];
dff6d0ad
FDBM
3800 if (slot >= btrfs_header_nritems(eb)) {
3801 ret = btrfs_next_leaf(root, path);
3802 if (ret < 0)
3803 goto out;
3804 else if (ret > 0)
3805 break;
3806 continue;
3807 }
3808
31db9f7c
AB
3809 btrfs_item_key_to_cpu(eb, &found_key, slot);
3810
3811 if (found_key.objectid != key.objectid ||
96b5bd77
JS
3812 (found_key.type != BTRFS_INODE_REF_KEY &&
3813 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 3814 break;
31db9f7c 3815
924794c9 3816 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
3817 if (ret < 0)
3818 goto out;
3819
dff6d0ad 3820 path->slots[0]++;
31db9f7c 3821 }
e938c8ad 3822 btrfs_release_path(path);
31db9f7c 3823
9f03740a
FDBM
3824 ret = process_recorded_refs(sctx, &pending_move);
3825 /* Only applicable to an incremental send. */
3826 ASSERT(pending_move == 0);
31db9f7c
AB
3827
3828out:
3829 btrfs_free_path(path);
3830 return ret;
3831}
3832
3833static int send_set_xattr(struct send_ctx *sctx,
3834 struct fs_path *path,
3835 const char *name, int name_len,
3836 const char *data, int data_len)
3837{
3838 int ret = 0;
3839
3840 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3841 if (ret < 0)
3842 goto out;
3843
3844 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3845 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3846 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3847
3848 ret = send_cmd(sctx);
3849
3850tlv_put_failure:
3851out:
3852 return ret;
3853}
3854
3855static int send_remove_xattr(struct send_ctx *sctx,
3856 struct fs_path *path,
3857 const char *name, int name_len)
3858{
3859 int ret = 0;
3860
3861 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3862 if (ret < 0)
3863 goto out;
3864
3865 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3866 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3867
3868 ret = send_cmd(sctx);
3869
3870tlv_put_failure:
3871out:
3872 return ret;
3873}
3874
3875static int __process_new_xattr(int num, struct btrfs_key *di_key,
3876 const char *name, int name_len,
3877 const char *data, int data_len,
3878 u8 type, void *ctx)
3879{
3880 int ret;
3881 struct send_ctx *sctx = ctx;
3882 struct fs_path *p;
3883 posix_acl_xattr_header dummy_acl;
3884
924794c9 3885 p = fs_path_alloc();
31db9f7c
AB
3886 if (!p)
3887 return -ENOMEM;
3888
3889 /*
3890 * This hack is needed because empty acl's are stored as zero byte
3891 * data in xattrs. Problem with that is, that receiving these zero byte
3892 * acl's will fail later. To fix this, we send a dummy acl list that
3893 * only contains the version number and no entries.
3894 */
3895 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3896 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3897 if (data_len == 0) {
3898 dummy_acl.a_version =
3899 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3900 data = (char *)&dummy_acl;
3901 data_len = sizeof(dummy_acl);
3902 }
3903 }
3904
3905 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3906 if (ret < 0)
3907 goto out;
3908
3909 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3910
3911out:
924794c9 3912 fs_path_free(p);
31db9f7c
AB
3913 return ret;
3914}
3915
3916static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3917 const char *name, int name_len,
3918 const char *data, int data_len,
3919 u8 type, void *ctx)
3920{
3921 int ret;
3922 struct send_ctx *sctx = ctx;
3923 struct fs_path *p;
3924
924794c9 3925 p = fs_path_alloc();
31db9f7c
AB
3926 if (!p)
3927 return -ENOMEM;
3928
3929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3930 if (ret < 0)
3931 goto out;
3932
3933 ret = send_remove_xattr(sctx, p, name, name_len);
3934
3935out:
924794c9 3936 fs_path_free(p);
31db9f7c
AB
3937 return ret;
3938}
3939
3940static int process_new_xattr(struct send_ctx *sctx)
3941{
3942 int ret = 0;
3943
924794c9
TI
3944 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3945 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
3946
3947 return ret;
3948}
3949
3950static int process_deleted_xattr(struct send_ctx *sctx)
3951{
3952 int ret;
3953
924794c9
TI
3954 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3955 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
3956
3957 return ret;
3958}
3959
3960struct find_xattr_ctx {
3961 const char *name;
3962 int name_len;
3963 int found_idx;
3964 char *found_data;
3965 int found_data_len;
3966};
3967
3968static int __find_xattr(int num, struct btrfs_key *di_key,
3969 const char *name, int name_len,
3970 const char *data, int data_len,
3971 u8 type, void *vctx)
3972{
3973 struct find_xattr_ctx *ctx = vctx;
3974
3975 if (name_len == ctx->name_len &&
3976 strncmp(name, ctx->name, name_len) == 0) {
3977 ctx->found_idx = num;
3978 ctx->found_data_len = data_len;
a5959bc0 3979 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
31db9f7c
AB
3980 if (!ctx->found_data)
3981 return -ENOMEM;
31db9f7c
AB
3982 return 1;
3983 }
3984 return 0;
3985}
3986
924794c9 3987static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
3988 struct btrfs_path *path,
3989 struct btrfs_key *key,
3990 const char *name, int name_len,
3991 char **data, int *data_len)
3992{
3993 int ret;
3994 struct find_xattr_ctx ctx;
3995
3996 ctx.name = name;
3997 ctx.name_len = name_len;
3998 ctx.found_idx = -1;
3999 ctx.found_data = NULL;
4000 ctx.found_data_len = 0;
4001
924794c9 4002 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
4003 if (ret < 0)
4004 return ret;
4005
4006 if (ctx.found_idx == -1)
4007 return -ENOENT;
4008 if (data) {
4009 *data = ctx.found_data;
4010 *data_len = ctx.found_data_len;
4011 } else {
4012 kfree(ctx.found_data);
4013 }
4014 return ctx.found_idx;
4015}
4016
4017
4018static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4019 const char *name, int name_len,
4020 const char *data, int data_len,
4021 u8 type, void *ctx)
4022{
4023 int ret;
4024 struct send_ctx *sctx = ctx;
4025 char *found_data = NULL;
4026 int found_data_len = 0;
31db9f7c 4027
924794c9
TI
4028 ret = find_xattr(sctx->parent_root, sctx->right_path,
4029 sctx->cmp_key, name, name_len, &found_data,
4030 &found_data_len);
31db9f7c
AB
4031 if (ret == -ENOENT) {
4032 ret = __process_new_xattr(num, di_key, name, name_len, data,
4033 data_len, type, ctx);
4034 } else if (ret >= 0) {
4035 if (data_len != found_data_len ||
4036 memcmp(data, found_data, data_len)) {
4037 ret = __process_new_xattr(num, di_key, name, name_len,
4038 data, data_len, type, ctx);
4039 } else {
4040 ret = 0;
4041 }
4042 }
4043
4044 kfree(found_data);
31db9f7c
AB
4045 return ret;
4046}
4047
4048static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4049 const char *name, int name_len,
4050 const char *data, int data_len,
4051 u8 type, void *ctx)
4052{
4053 int ret;
4054 struct send_ctx *sctx = ctx;
4055
924794c9
TI
4056 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4057 name, name_len, NULL, NULL);
31db9f7c
AB
4058 if (ret == -ENOENT)
4059 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4060 data_len, type, ctx);
4061 else if (ret >= 0)
4062 ret = 0;
4063
4064 return ret;
4065}
4066
4067static int process_changed_xattr(struct send_ctx *sctx)
4068{
4069 int ret = 0;
4070
924794c9 4071 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
4072 sctx->cmp_key, __process_changed_new_xattr, sctx);
4073 if (ret < 0)
4074 goto out;
924794c9 4075 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4076 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4077
4078out:
4079 return ret;
4080}
4081
4082static int process_all_new_xattrs(struct send_ctx *sctx)
4083{
4084 int ret;
4085 struct btrfs_root *root;
4086 struct btrfs_path *path;
4087 struct btrfs_key key;
4088 struct btrfs_key found_key;
4089 struct extent_buffer *eb;
4090 int slot;
4091
4092 path = alloc_path_for_send();
4093 if (!path)
4094 return -ENOMEM;
4095
4096 root = sctx->send_root;
4097
4098 key.objectid = sctx->cmp_key->objectid;
4099 key.type = BTRFS_XATTR_ITEM_KEY;
4100 key.offset = 0;
dff6d0ad
FDBM
4101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4102 if (ret < 0)
4103 goto out;
31db9f7c 4104
dff6d0ad 4105 while (1) {
31db9f7c
AB
4106 eb = path->nodes[0];
4107 slot = path->slots[0];
dff6d0ad
FDBM
4108 if (slot >= btrfs_header_nritems(eb)) {
4109 ret = btrfs_next_leaf(root, path);
4110 if (ret < 0) {
4111 goto out;
4112 } else if (ret > 0) {
4113 ret = 0;
4114 break;
4115 }
4116 continue;
4117 }
31db9f7c 4118
dff6d0ad 4119 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4120 if (found_key.objectid != key.objectid ||
4121 found_key.type != key.type) {
4122 ret = 0;
4123 goto out;
4124 }
4125
924794c9
TI
4126 ret = iterate_dir_item(root, path, &found_key,
4127 __process_new_xattr, sctx);
31db9f7c
AB
4128 if (ret < 0)
4129 goto out;
4130
dff6d0ad 4131 path->slots[0]++;
31db9f7c
AB
4132 }
4133
4134out:
4135 btrfs_free_path(path);
4136 return ret;
4137}
4138
ed259095
JB
4139static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4140{
4141 struct btrfs_root *root = sctx->send_root;
4142 struct btrfs_fs_info *fs_info = root->fs_info;
4143 struct inode *inode;
4144 struct page *page;
4145 char *addr;
4146 struct btrfs_key key;
4147 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4148 pgoff_t last_index;
4149 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4150 ssize_t ret = 0;
4151
4152 key.objectid = sctx->cur_ino;
4153 key.type = BTRFS_INODE_ITEM_KEY;
4154 key.offset = 0;
4155
4156 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4157 if (IS_ERR(inode))
4158 return PTR_ERR(inode);
4159
4160 if (offset + len > i_size_read(inode)) {
4161 if (offset > i_size_read(inode))
4162 len = 0;
4163 else
4164 len = offset - i_size_read(inode);
4165 }
4166 if (len == 0)
4167 goto out;
4168
4169 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
2131bcd3
LB
4170
4171 /* initial readahead */
4172 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4173 file_ra_state_init(&sctx->ra, inode->i_mapping);
4174 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4175 last_index - index + 1);
4176
ed259095
JB
4177 while (index <= last_index) {
4178 unsigned cur_len = min_t(unsigned, len,
4179 PAGE_CACHE_SIZE - pg_offset);
4180 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4181 if (!page) {
4182 ret = -ENOMEM;
4183 break;
4184 }
4185
4186 if (!PageUptodate(page)) {
4187 btrfs_readpage(NULL, page);
4188 lock_page(page);
4189 if (!PageUptodate(page)) {
4190 unlock_page(page);
4191 page_cache_release(page);
4192 ret = -EIO;
4193 break;
4194 }
4195 }
4196
4197 addr = kmap(page);
4198 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4199 kunmap(page);
4200 unlock_page(page);
4201 page_cache_release(page);
4202 index++;
4203 pg_offset = 0;
4204 len -= cur_len;
4205 ret += cur_len;
4206 }
4207out:
4208 iput(inode);
4209 return ret;
4210}
4211
31db9f7c
AB
4212/*
4213 * Read some bytes from the current inode/file and send a write command to
4214 * user space.
4215 */
4216static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4217{
4218 int ret = 0;
4219 struct fs_path *p;
ed259095 4220 ssize_t num_read = 0;
31db9f7c 4221
924794c9 4222 p = fs_path_alloc();
31db9f7c
AB
4223 if (!p)
4224 return -ENOMEM;
4225
31db9f7c
AB
4226verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4227
ed259095
JB
4228 num_read = fill_read_buf(sctx, offset, len);
4229 if (num_read <= 0) {
4230 if (num_read < 0)
4231 ret = num_read;
31db9f7c 4232 goto out;
ed259095 4233 }
31db9f7c
AB
4234
4235 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4236 if (ret < 0)
4237 goto out;
4238
4239 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4240 if (ret < 0)
4241 goto out;
4242
4243 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4244 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4245 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4246
4247 ret = send_cmd(sctx);
4248
4249tlv_put_failure:
4250out:
924794c9 4251 fs_path_free(p);
31db9f7c
AB
4252 if (ret < 0)
4253 return ret;
e938c8ad 4254 return num_read;
31db9f7c
AB
4255}
4256
4257/*
4258 * Send a clone command to user space.
4259 */
4260static int send_clone(struct send_ctx *sctx,
4261 u64 offset, u32 len,
4262 struct clone_root *clone_root)
4263{
4264 int ret = 0;
31db9f7c
AB
4265 struct fs_path *p;
4266 u64 gen;
4267
4268verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4269 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4270 clone_root->root->objectid, clone_root->ino,
4271 clone_root->offset);
4272
924794c9 4273 p = fs_path_alloc();
31db9f7c
AB
4274 if (!p)
4275 return -ENOMEM;
4276
4277 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4278 if (ret < 0)
4279 goto out;
4280
4281 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4282 if (ret < 0)
4283 goto out;
4284
4285 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4286 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4287 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4288
e938c8ad 4289 if (clone_root->root == sctx->send_root) {
31db9f7c 4290 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4291 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4292 if (ret < 0)
4293 goto out;
4294 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4295 } else {
924794c9 4296 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4297 }
4298 if (ret < 0)
4299 goto out;
4300
4301 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
e938c8ad 4302 clone_root->root->root_item.uuid);
31db9f7c 4303 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4304 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4305 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4306 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4307 clone_root->offset);
4308
4309 ret = send_cmd(sctx);
4310
4311tlv_put_failure:
4312out:
924794c9 4313 fs_path_free(p);
31db9f7c
AB
4314 return ret;
4315}
4316
cb95e7bf
MF
4317/*
4318 * Send an update extent command to user space.
4319 */
4320static int send_update_extent(struct send_ctx *sctx,
4321 u64 offset, u32 len)
4322{
4323 int ret = 0;
4324 struct fs_path *p;
4325
924794c9 4326 p = fs_path_alloc();
cb95e7bf
MF
4327 if (!p)
4328 return -ENOMEM;
4329
4330 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4331 if (ret < 0)
4332 goto out;
4333
4334 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4335 if (ret < 0)
4336 goto out;
4337
4338 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4339 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4340 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4341
4342 ret = send_cmd(sctx);
4343
4344tlv_put_failure:
4345out:
924794c9 4346 fs_path_free(p);
cb95e7bf
MF
4347 return ret;
4348}
4349
16e7549f
JB
4350static int send_hole(struct send_ctx *sctx, u64 end)
4351{
4352 struct fs_path *p = NULL;
4353 u64 offset = sctx->cur_inode_last_extent;
4354 u64 len;
4355 int ret = 0;
4356
4357 p = fs_path_alloc();
4358 if (!p)
4359 return -ENOMEM;
4360 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4361 while (offset < end) {
4362 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4363
4364 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4365 if (ret < 0)
4366 break;
4367 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4368 if (ret < 0)
4369 break;
4370 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4371 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4372 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4373 ret = send_cmd(sctx);
4374 if (ret < 0)
4375 break;
4376 offset += len;
4377 }
4378tlv_put_failure:
4379 fs_path_free(p);
4380 return ret;
4381}
4382
31db9f7c
AB
4383static int send_write_or_clone(struct send_ctx *sctx,
4384 struct btrfs_path *path,
4385 struct btrfs_key *key,
4386 struct clone_root *clone_root)
4387{
4388 int ret = 0;
4389 struct btrfs_file_extent_item *ei;
4390 u64 offset = key->offset;
4391 u64 pos = 0;
4392 u64 len;
4393 u32 l;
4394 u8 type;
28e5dd8f 4395 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
4396
4397 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4398 struct btrfs_file_extent_item);
4399 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 4400 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4401 len = btrfs_file_extent_inline_len(path->nodes[0],
4402 path->slots[0], ei);
74dd17fb
CM
4403 /*
4404 * it is possible the inline item won't cover the whole page,
4405 * but there may be items after this page. Make
4406 * sure to send the whole thing
4407 */
4408 len = PAGE_CACHE_ALIGN(len);
4409 } else {
31db9f7c 4410 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 4411 }
31db9f7c
AB
4412
4413 if (offset + len > sctx->cur_inode_size)
4414 len = sctx->cur_inode_size - offset;
4415 if (len == 0) {
4416 ret = 0;
4417 goto out;
4418 }
4419
28e5dd8f 4420 if (clone_root && IS_ALIGNED(offset + len, bs)) {
cb95e7bf
MF
4421 ret = send_clone(sctx, offset, len, clone_root);
4422 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4423 ret = send_update_extent(sctx, offset, len);
4424 } else {
31db9f7c
AB
4425 while (pos < len) {
4426 l = len - pos;
4427 if (l > BTRFS_SEND_READ_SIZE)
4428 l = BTRFS_SEND_READ_SIZE;
4429 ret = send_write(sctx, pos + offset, l);
4430 if (ret < 0)
4431 goto out;
4432 if (!ret)
4433 break;
4434 pos += ret;
4435 }
4436 ret = 0;
31db9f7c 4437 }
31db9f7c
AB
4438out:
4439 return ret;
4440}
4441
4442static int is_extent_unchanged(struct send_ctx *sctx,
4443 struct btrfs_path *left_path,
4444 struct btrfs_key *ekey)
4445{
4446 int ret = 0;
4447 struct btrfs_key key;
4448 struct btrfs_path *path = NULL;
4449 struct extent_buffer *eb;
4450 int slot;
4451 struct btrfs_key found_key;
4452 struct btrfs_file_extent_item *ei;
4453 u64 left_disknr;
4454 u64 right_disknr;
4455 u64 left_offset;
4456 u64 right_offset;
4457 u64 left_offset_fixed;
4458 u64 left_len;
4459 u64 right_len;
74dd17fb
CM
4460 u64 left_gen;
4461 u64 right_gen;
31db9f7c
AB
4462 u8 left_type;
4463 u8 right_type;
4464
4465 path = alloc_path_for_send();
4466 if (!path)
4467 return -ENOMEM;
4468
4469 eb = left_path->nodes[0];
4470 slot = left_path->slots[0];
31db9f7c
AB
4471 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4472 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4473
4474 if (left_type != BTRFS_FILE_EXTENT_REG) {
4475 ret = 0;
4476 goto out;
4477 }
74dd17fb
CM
4478 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4479 left_len = btrfs_file_extent_num_bytes(eb, ei);
4480 left_offset = btrfs_file_extent_offset(eb, ei);
4481 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
4482
4483 /*
4484 * Following comments will refer to these graphics. L is the left
4485 * extents which we are checking at the moment. 1-8 are the right
4486 * extents that we iterate.
4487 *
4488 * |-----L-----|
4489 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4490 *
4491 * |-----L-----|
4492 * |--1--|-2b-|...(same as above)
4493 *
4494 * Alternative situation. Happens on files where extents got split.
4495 * |-----L-----|
4496 * |-----------7-----------|-6-|
4497 *
4498 * Alternative situation. Happens on files which got larger.
4499 * |-----L-----|
4500 * |-8-|
4501 * Nothing follows after 8.
4502 */
4503
4504 key.objectid = ekey->objectid;
4505 key.type = BTRFS_EXTENT_DATA_KEY;
4506 key.offset = ekey->offset;
4507 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4508 if (ret < 0)
4509 goto out;
4510 if (ret) {
4511 ret = 0;
4512 goto out;
4513 }
4514
4515 /*
4516 * Handle special case where the right side has no extents at all.
4517 */
4518 eb = path->nodes[0];
4519 slot = path->slots[0];
4520 btrfs_item_key_to_cpu(eb, &found_key, slot);
4521 if (found_key.objectid != key.objectid ||
4522 found_key.type != key.type) {
57cfd462
JB
4523 /* If we're a hole then just pretend nothing changed */
4524 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4525 goto out;
4526 }
4527
4528 /*
4529 * We're now on 2a, 2b or 7.
4530 */
4531 key = found_key;
4532 while (key.offset < ekey->offset + left_len) {
4533 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4534 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4535 if (right_type != BTRFS_FILE_EXTENT_REG) {
4536 ret = 0;
4537 goto out;
4538 }
4539
007d31f7
JB
4540 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4541 right_len = btrfs_file_extent_num_bytes(eb, ei);
4542 right_offset = btrfs_file_extent_offset(eb, ei);
4543 right_gen = btrfs_file_extent_generation(eb, ei);
4544
31db9f7c
AB
4545 /*
4546 * Are we at extent 8? If yes, we know the extent is changed.
4547 * This may only happen on the first iteration.
4548 */
d8347fa4 4549 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
4550 /* If we're a hole just pretend nothing changed */
4551 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4552 goto out;
4553 }
4554
4555 left_offset_fixed = left_offset;
4556 if (key.offset < ekey->offset) {
4557 /* Fix the right offset for 2a and 7. */
4558 right_offset += ekey->offset - key.offset;
4559 } else {
4560 /* Fix the left offset for all behind 2a and 2b */
4561 left_offset_fixed += key.offset - ekey->offset;
4562 }
4563
4564 /*
4565 * Check if we have the same extent.
4566 */
3954096d 4567 if (left_disknr != right_disknr ||
74dd17fb
CM
4568 left_offset_fixed != right_offset ||
4569 left_gen != right_gen) {
31db9f7c
AB
4570 ret = 0;
4571 goto out;
4572 }
4573
4574 /*
4575 * Go to the next extent.
4576 */
4577 ret = btrfs_next_item(sctx->parent_root, path);
4578 if (ret < 0)
4579 goto out;
4580 if (!ret) {
4581 eb = path->nodes[0];
4582 slot = path->slots[0];
4583 btrfs_item_key_to_cpu(eb, &found_key, slot);
4584 }
4585 if (ret || found_key.objectid != key.objectid ||
4586 found_key.type != key.type) {
4587 key.offset += right_len;
4588 break;
adaa4b8e
JS
4589 }
4590 if (found_key.offset != key.offset + right_len) {
4591 ret = 0;
4592 goto out;
31db9f7c
AB
4593 }
4594 key = found_key;
4595 }
4596
4597 /*
4598 * We're now behind the left extent (treat as unchanged) or at the end
4599 * of the right side (treat as changed).
4600 */
4601 if (key.offset >= ekey->offset + left_len)
4602 ret = 1;
4603 else
4604 ret = 0;
4605
4606
4607out:
4608 btrfs_free_path(path);
4609 return ret;
4610}
4611
16e7549f
JB
4612static int get_last_extent(struct send_ctx *sctx, u64 offset)
4613{
4614 struct btrfs_path *path;
4615 struct btrfs_root *root = sctx->send_root;
4616 struct btrfs_file_extent_item *fi;
4617 struct btrfs_key key;
4618 u64 extent_end;
4619 u8 type;
4620 int ret;
4621
4622 path = alloc_path_for_send();
4623 if (!path)
4624 return -ENOMEM;
4625
4626 sctx->cur_inode_last_extent = 0;
4627
4628 key.objectid = sctx->cur_ino;
4629 key.type = BTRFS_EXTENT_DATA_KEY;
4630 key.offset = offset;
4631 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4632 if (ret < 0)
4633 goto out;
4634 ret = 0;
4635 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4636 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4637 goto out;
4638
4639 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4640 struct btrfs_file_extent_item);
4641 type = btrfs_file_extent_type(path->nodes[0], fi);
4642 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4643 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4644 path->slots[0], fi);
16e7549f
JB
4645 extent_end = ALIGN(key.offset + size,
4646 sctx->send_root->sectorsize);
4647 } else {
4648 extent_end = key.offset +
4649 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4650 }
4651 sctx->cur_inode_last_extent = extent_end;
4652out:
4653 btrfs_free_path(path);
4654 return ret;
4655}
4656
4657static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4658 struct btrfs_key *key)
4659{
4660 struct btrfs_file_extent_item *fi;
4661 u64 extent_end;
4662 u8 type;
4663 int ret = 0;
4664
4665 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4666 return 0;
4667
4668 if (sctx->cur_inode_last_extent == (u64)-1) {
4669 ret = get_last_extent(sctx, key->offset - 1);
4670 if (ret)
4671 return ret;
4672 }
4673
4674 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4675 struct btrfs_file_extent_item);
4676 type = btrfs_file_extent_type(path->nodes[0], fi);
4677 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4678 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4679 path->slots[0], fi);
16e7549f
JB
4680 extent_end = ALIGN(key->offset + size,
4681 sctx->send_root->sectorsize);
4682 } else {
4683 extent_end = key->offset +
4684 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4685 }
bf54f412
FDBM
4686
4687 if (path->slots[0] == 0 &&
4688 sctx->cur_inode_last_extent < key->offset) {
4689 /*
4690 * We might have skipped entire leafs that contained only
4691 * file extent items for our current inode. These leafs have
4692 * a generation number smaller (older) than the one in the
4693 * current leaf and the leaf our last extent came from, and
4694 * are located between these 2 leafs.
4695 */
4696 ret = get_last_extent(sctx, key->offset - 1);
4697 if (ret)
4698 return ret;
4699 }
4700
16e7549f
JB
4701 if (sctx->cur_inode_last_extent < key->offset)
4702 ret = send_hole(sctx, key->offset);
4703 sctx->cur_inode_last_extent = extent_end;
4704 return ret;
4705}
4706
31db9f7c
AB
4707static int process_extent(struct send_ctx *sctx,
4708 struct btrfs_path *path,
4709 struct btrfs_key *key)
4710{
31db9f7c 4711 struct clone_root *found_clone = NULL;
57cfd462 4712 int ret = 0;
31db9f7c
AB
4713
4714 if (S_ISLNK(sctx->cur_inode_mode))
4715 return 0;
4716
4717 if (sctx->parent_root && !sctx->cur_inode_new) {
4718 ret = is_extent_unchanged(sctx, path, key);
4719 if (ret < 0)
4720 goto out;
4721 if (ret) {
4722 ret = 0;
16e7549f 4723 goto out_hole;
31db9f7c 4724 }
57cfd462
JB
4725 } else {
4726 struct btrfs_file_extent_item *ei;
4727 u8 type;
4728
4729 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4730 struct btrfs_file_extent_item);
4731 type = btrfs_file_extent_type(path->nodes[0], ei);
4732 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4733 type == BTRFS_FILE_EXTENT_REG) {
4734 /*
4735 * The send spec does not have a prealloc command yet,
4736 * so just leave a hole for prealloc'ed extents until
4737 * we have enough commands queued up to justify rev'ing
4738 * the send spec.
4739 */
4740 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4741 ret = 0;
4742 goto out;
4743 }
4744
4745 /* Have a hole, just skip it. */
4746 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4747 ret = 0;
4748 goto out;
4749 }
4750 }
31db9f7c
AB
4751 }
4752
4753 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4754 sctx->cur_inode_size, &found_clone);
4755 if (ret != -ENOENT && ret < 0)
4756 goto out;
4757
4758 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
4759 if (ret)
4760 goto out;
4761out_hole:
4762 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
4763out:
4764 return ret;
4765}
4766
4767static int process_all_extents(struct send_ctx *sctx)
4768{
4769 int ret;
4770 struct btrfs_root *root;
4771 struct btrfs_path *path;
4772 struct btrfs_key key;
4773 struct btrfs_key found_key;
4774 struct extent_buffer *eb;
4775 int slot;
4776
4777 root = sctx->send_root;
4778 path = alloc_path_for_send();
4779 if (!path)
4780 return -ENOMEM;
4781
4782 key.objectid = sctx->cmp_key->objectid;
4783 key.type = BTRFS_EXTENT_DATA_KEY;
4784 key.offset = 0;
7fdd29d0
FDBM
4785 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4786 if (ret < 0)
4787 goto out;
31db9f7c 4788
7fdd29d0 4789 while (1) {
31db9f7c
AB
4790 eb = path->nodes[0];
4791 slot = path->slots[0];
7fdd29d0
FDBM
4792
4793 if (slot >= btrfs_header_nritems(eb)) {
4794 ret = btrfs_next_leaf(root, path);
4795 if (ret < 0) {
4796 goto out;
4797 } else if (ret > 0) {
4798 ret = 0;
4799 break;
4800 }
4801 continue;
4802 }
4803
31db9f7c
AB
4804 btrfs_item_key_to_cpu(eb, &found_key, slot);
4805
4806 if (found_key.objectid != key.objectid ||
4807 found_key.type != key.type) {
4808 ret = 0;
4809 goto out;
4810 }
4811
4812 ret = process_extent(sctx, path, &found_key);
4813 if (ret < 0)
4814 goto out;
4815
7fdd29d0 4816 path->slots[0]++;
31db9f7c
AB
4817 }
4818
4819out:
4820 btrfs_free_path(path);
4821 return ret;
4822}
4823
9f03740a
FDBM
4824static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4825 int *pending_move,
4826 int *refs_processed)
31db9f7c
AB
4827{
4828 int ret = 0;
4829
4830 if (sctx->cur_ino == 0)
4831 goto out;
4832 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 4833 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
4834 goto out;
4835 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4836 goto out;
4837
9f03740a 4838 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
4839 if (ret < 0)
4840 goto out;
4841
9f03740a 4842 *refs_processed = 1;
31db9f7c
AB
4843out:
4844 return ret;
4845}
4846
4847static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4848{
4849 int ret = 0;
4850 u64 left_mode;
4851 u64 left_uid;
4852 u64 left_gid;
4853 u64 right_mode;
4854 u64 right_uid;
4855 u64 right_gid;
4856 int need_chmod = 0;
4857 int need_chown = 0;
9f03740a
FDBM
4858 int pending_move = 0;
4859 int refs_processed = 0;
31db9f7c 4860
9f03740a
FDBM
4861 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4862 &refs_processed);
31db9f7c
AB
4863 if (ret < 0)
4864 goto out;
4865
9f03740a
FDBM
4866 /*
4867 * We have processed the refs and thus need to advance send_progress.
4868 * Now, calls to get_cur_xxx will take the updated refs of the current
4869 * inode into account.
4870 *
4871 * On the other hand, if our current inode is a directory and couldn't
4872 * be moved/renamed because its parent was renamed/moved too and it has
4873 * a higher inode number, we can only move/rename our current inode
4874 * after we moved/renamed its parent. Therefore in this case operate on
4875 * the old path (pre move/rename) of our current inode, and the
4876 * move/rename will be performed later.
4877 */
4878 if (refs_processed && !pending_move)
4879 sctx->send_progress = sctx->cur_ino + 1;
4880
31db9f7c
AB
4881 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4882 goto out;
4883 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4884 goto out;
4885
4886 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 4887 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
4888 if (ret < 0)
4889 goto out;
4890
e2d044fe
AL
4891 if (!sctx->parent_root || sctx->cur_inode_new) {
4892 need_chown = 1;
4893 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 4894 need_chmod = 1;
e2d044fe
AL
4895 } else {
4896 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4897 NULL, NULL, &right_mode, &right_uid,
4898 &right_gid, NULL);
4899 if (ret < 0)
4900 goto out;
31db9f7c 4901
e2d044fe
AL
4902 if (left_uid != right_uid || left_gid != right_gid)
4903 need_chown = 1;
4904 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4905 need_chmod = 1;
31db9f7c
AB
4906 }
4907
4908 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f
JB
4909 if (need_send_hole(sctx)) {
4910 if (sctx->cur_inode_last_extent == (u64)-1) {
4911 ret = get_last_extent(sctx, (u64)-1);
4912 if (ret)
4913 goto out;
4914 }
4915 if (sctx->cur_inode_last_extent <
4916 sctx->cur_inode_size) {
4917 ret = send_hole(sctx, sctx->cur_inode_size);
4918 if (ret)
4919 goto out;
4920 }
4921 }
31db9f7c
AB
4922 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4923 sctx->cur_inode_size);
4924 if (ret < 0)
4925 goto out;
4926 }
4927
4928 if (need_chown) {
4929 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4930 left_uid, left_gid);
4931 if (ret < 0)
4932 goto out;
4933 }
4934 if (need_chmod) {
4935 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4936 left_mode);
4937 if (ret < 0)
4938 goto out;
4939 }
4940
4941 /*
9f03740a
FDBM
4942 * If other directory inodes depended on our current directory
4943 * inode's move/rename, now do their move/rename operations.
31db9f7c 4944 */
9f03740a
FDBM
4945 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4946 ret = apply_children_dir_moves(sctx);
4947 if (ret)
4948 goto out;
fcbd2154
FM
4949 /*
4950 * Need to send that every time, no matter if it actually
4951 * changed between the two trees as we have done changes to
4952 * the inode before. If our inode is a directory and it's
4953 * waiting to be moved/renamed, we will send its utimes when
4954 * it's moved/renamed, therefore we don't need to do it here.
4955 */
4956 sctx->send_progress = sctx->cur_ino + 1;
4957 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4958 if (ret < 0)
4959 goto out;
9f03740a
FDBM
4960 }
4961
31db9f7c
AB
4962out:
4963 return ret;
4964}
4965
4966static int changed_inode(struct send_ctx *sctx,
4967 enum btrfs_compare_tree_result result)
4968{
4969 int ret = 0;
4970 struct btrfs_key *key = sctx->cmp_key;
4971 struct btrfs_inode_item *left_ii = NULL;
4972 struct btrfs_inode_item *right_ii = NULL;
4973 u64 left_gen = 0;
4974 u64 right_gen = 0;
4975
31db9f7c
AB
4976 sctx->cur_ino = key->objectid;
4977 sctx->cur_inode_new_gen = 0;
16e7549f 4978 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
4979
4980 /*
4981 * Set send_progress to current inode. This will tell all get_cur_xxx
4982 * functions that the current inode's refs are not updated yet. Later,
4983 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4984 */
31db9f7c
AB
4985 sctx->send_progress = sctx->cur_ino;
4986
4987 if (result == BTRFS_COMPARE_TREE_NEW ||
4988 result == BTRFS_COMPARE_TREE_CHANGED) {
4989 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4990 sctx->left_path->slots[0],
4991 struct btrfs_inode_item);
4992 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4993 left_ii);
4994 } else {
4995 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4996 sctx->right_path->slots[0],
4997 struct btrfs_inode_item);
4998 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4999 right_ii);
5000 }
5001 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5002 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5003 sctx->right_path->slots[0],
5004 struct btrfs_inode_item);
5005
5006 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5007 right_ii);
6d85ed05
AB
5008
5009 /*
5010 * The cur_ino = root dir case is special here. We can't treat
5011 * the inode as deleted+reused because it would generate a
5012 * stream that tries to delete/mkdir the root dir.
5013 */
5014 if (left_gen != right_gen &&
5015 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
5016 sctx->cur_inode_new_gen = 1;
5017 }
5018
5019 if (result == BTRFS_COMPARE_TREE_NEW) {
5020 sctx->cur_inode_gen = left_gen;
5021 sctx->cur_inode_new = 1;
5022 sctx->cur_inode_deleted = 0;
5023 sctx->cur_inode_size = btrfs_inode_size(
5024 sctx->left_path->nodes[0], left_ii);
5025 sctx->cur_inode_mode = btrfs_inode_mode(
5026 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5027 sctx->cur_inode_rdev = btrfs_inode_rdev(
5028 sctx->left_path->nodes[0], left_ii);
31db9f7c 5029 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 5030 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5031 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5032 sctx->cur_inode_gen = right_gen;
5033 sctx->cur_inode_new = 0;
5034 sctx->cur_inode_deleted = 1;
5035 sctx->cur_inode_size = btrfs_inode_size(
5036 sctx->right_path->nodes[0], right_ii);
5037 sctx->cur_inode_mode = btrfs_inode_mode(
5038 sctx->right_path->nodes[0], right_ii);
5039 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
5040 /*
5041 * We need to do some special handling in case the inode was
5042 * reported as changed with a changed generation number. This
5043 * means that the original inode was deleted and new inode
5044 * reused the same inum. So we have to treat the old inode as
5045 * deleted and the new one as new.
5046 */
31db9f7c 5047 if (sctx->cur_inode_new_gen) {
766702ef
AB
5048 /*
5049 * First, process the inode as if it was deleted.
5050 */
31db9f7c
AB
5051 sctx->cur_inode_gen = right_gen;
5052 sctx->cur_inode_new = 0;
5053 sctx->cur_inode_deleted = 1;
5054 sctx->cur_inode_size = btrfs_inode_size(
5055 sctx->right_path->nodes[0], right_ii);
5056 sctx->cur_inode_mode = btrfs_inode_mode(
5057 sctx->right_path->nodes[0], right_ii);
5058 ret = process_all_refs(sctx,
5059 BTRFS_COMPARE_TREE_DELETED);
5060 if (ret < 0)
5061 goto out;
5062
766702ef
AB
5063 /*
5064 * Now process the inode as if it was new.
5065 */
31db9f7c
AB
5066 sctx->cur_inode_gen = left_gen;
5067 sctx->cur_inode_new = 1;
5068 sctx->cur_inode_deleted = 0;
5069 sctx->cur_inode_size = btrfs_inode_size(
5070 sctx->left_path->nodes[0], left_ii);
5071 sctx->cur_inode_mode = btrfs_inode_mode(
5072 sctx->left_path->nodes[0], left_ii);
644d1940
LB
5073 sctx->cur_inode_rdev = btrfs_inode_rdev(
5074 sctx->left_path->nodes[0], left_ii);
1f4692da 5075 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
5076 if (ret < 0)
5077 goto out;
5078
5079 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5080 if (ret < 0)
5081 goto out;
e479d9bb
AB
5082 /*
5083 * Advance send_progress now as we did not get into
5084 * process_recorded_refs_if_needed in the new_gen case.
5085 */
5086 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
5087
5088 /*
5089 * Now process all extents and xattrs of the inode as if
5090 * they were all new.
5091 */
31db9f7c
AB
5092 ret = process_all_extents(sctx);
5093 if (ret < 0)
5094 goto out;
5095 ret = process_all_new_xattrs(sctx);
5096 if (ret < 0)
5097 goto out;
5098 } else {
5099 sctx->cur_inode_gen = left_gen;
5100 sctx->cur_inode_new = 0;
5101 sctx->cur_inode_new_gen = 0;
5102 sctx->cur_inode_deleted = 0;
5103 sctx->cur_inode_size = btrfs_inode_size(
5104 sctx->left_path->nodes[0], left_ii);
5105 sctx->cur_inode_mode = btrfs_inode_mode(
5106 sctx->left_path->nodes[0], left_ii);
5107 }
5108 }
5109
5110out:
5111 return ret;
5112}
5113
766702ef
AB
5114/*
5115 * We have to process new refs before deleted refs, but compare_trees gives us
5116 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5117 * first and later process them in process_recorded_refs.
5118 * For the cur_inode_new_gen case, we skip recording completely because
5119 * changed_inode did already initiate processing of refs. The reason for this is
5120 * that in this case, compare_tree actually compares the refs of 2 different
5121 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5122 * refs of the right tree as deleted and all refs of the left tree as new.
5123 */
31db9f7c
AB
5124static int changed_ref(struct send_ctx *sctx,
5125 enum btrfs_compare_tree_result result)
5126{
5127 int ret = 0;
5128
5129 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5130
5131 if (!sctx->cur_inode_new_gen &&
5132 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5133 if (result == BTRFS_COMPARE_TREE_NEW)
5134 ret = record_new_ref(sctx);
5135 else if (result == BTRFS_COMPARE_TREE_DELETED)
5136 ret = record_deleted_ref(sctx);
5137 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5138 ret = record_changed_ref(sctx);
5139 }
5140
5141 return ret;
5142}
5143
766702ef
AB
5144/*
5145 * Process new/deleted/changed xattrs. We skip processing in the
5146 * cur_inode_new_gen case because changed_inode did already initiate processing
5147 * of xattrs. The reason is the same as in changed_ref
5148 */
31db9f7c
AB
5149static int changed_xattr(struct send_ctx *sctx,
5150 enum btrfs_compare_tree_result result)
5151{
5152 int ret = 0;
5153
5154 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5155
5156 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5157 if (result == BTRFS_COMPARE_TREE_NEW)
5158 ret = process_new_xattr(sctx);
5159 else if (result == BTRFS_COMPARE_TREE_DELETED)
5160 ret = process_deleted_xattr(sctx);
5161 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5162 ret = process_changed_xattr(sctx);
5163 }
5164
5165 return ret;
5166}
5167
766702ef
AB
5168/*
5169 * Process new/deleted/changed extents. We skip processing in the
5170 * cur_inode_new_gen case because changed_inode did already initiate processing
5171 * of extents. The reason is the same as in changed_ref
5172 */
31db9f7c
AB
5173static int changed_extent(struct send_ctx *sctx,
5174 enum btrfs_compare_tree_result result)
5175{
5176 int ret = 0;
5177
5178 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5179
5180 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5181 if (result != BTRFS_COMPARE_TREE_DELETED)
5182 ret = process_extent(sctx, sctx->left_path,
5183 sctx->cmp_key);
5184 }
5185
5186 return ret;
5187}
5188
ba5e8f2e
JB
5189static int dir_changed(struct send_ctx *sctx, u64 dir)
5190{
5191 u64 orig_gen, new_gen;
5192 int ret;
5193
5194 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5195 NULL, NULL);
5196 if (ret)
5197 return ret;
5198
5199 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5200 NULL, NULL, NULL);
5201 if (ret)
5202 return ret;
5203
5204 return (orig_gen != new_gen) ? 1 : 0;
5205}
5206
5207static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5208 struct btrfs_key *key)
5209{
5210 struct btrfs_inode_extref *extref;
5211 struct extent_buffer *leaf;
5212 u64 dirid = 0, last_dirid = 0;
5213 unsigned long ptr;
5214 u32 item_size;
5215 u32 cur_offset = 0;
5216 int ref_name_len;
5217 int ret = 0;
5218
5219 /* Easy case, just check this one dirid */
5220 if (key->type == BTRFS_INODE_REF_KEY) {
5221 dirid = key->offset;
5222
5223 ret = dir_changed(sctx, dirid);
5224 goto out;
5225 }
5226
5227 leaf = path->nodes[0];
5228 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5229 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5230 while (cur_offset < item_size) {
5231 extref = (struct btrfs_inode_extref *)(ptr +
5232 cur_offset);
5233 dirid = btrfs_inode_extref_parent(leaf, extref);
5234 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5235 cur_offset += ref_name_len + sizeof(*extref);
5236 if (dirid == last_dirid)
5237 continue;
5238 ret = dir_changed(sctx, dirid);
5239 if (ret)
5240 break;
5241 last_dirid = dirid;
5242 }
5243out:
5244 return ret;
5245}
5246
766702ef
AB
5247/*
5248 * Updates compare related fields in sctx and simply forwards to the actual
5249 * changed_xxx functions.
5250 */
31db9f7c
AB
5251static int changed_cb(struct btrfs_root *left_root,
5252 struct btrfs_root *right_root,
5253 struct btrfs_path *left_path,
5254 struct btrfs_path *right_path,
5255 struct btrfs_key *key,
5256 enum btrfs_compare_tree_result result,
5257 void *ctx)
5258{
5259 int ret = 0;
5260 struct send_ctx *sctx = ctx;
5261
ba5e8f2e 5262 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5263 if (key->type == BTRFS_INODE_REF_KEY ||
5264 key->type == BTRFS_INODE_EXTREF_KEY) {
5265 ret = compare_refs(sctx, left_path, key);
5266 if (!ret)
5267 return 0;
5268 if (ret < 0)
5269 return ret;
5270 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5271 return maybe_send_hole(sctx, left_path, key);
5272 } else {
ba5e8f2e 5273 return 0;
16e7549f 5274 }
ba5e8f2e
JB
5275 result = BTRFS_COMPARE_TREE_CHANGED;
5276 ret = 0;
5277 }
5278
31db9f7c
AB
5279 sctx->left_path = left_path;
5280 sctx->right_path = right_path;
5281 sctx->cmp_key = key;
5282
5283 ret = finish_inode_if_needed(sctx, 0);
5284 if (ret < 0)
5285 goto out;
5286
2981e225
AB
5287 /* Ignore non-FS objects */
5288 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5289 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5290 goto out;
5291
31db9f7c
AB
5292 if (key->type == BTRFS_INODE_ITEM_KEY)
5293 ret = changed_inode(sctx, result);
96b5bd77
JS
5294 else if (key->type == BTRFS_INODE_REF_KEY ||
5295 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5296 ret = changed_ref(sctx, result);
5297 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5298 ret = changed_xattr(sctx, result);
5299 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5300 ret = changed_extent(sctx, result);
5301
5302out:
5303 return ret;
5304}
5305
5306static int full_send_tree(struct send_ctx *sctx)
5307{
5308 int ret;
dcfd5ad2 5309 struct btrfs_trans_handle *trans = NULL;
31db9f7c
AB
5310 struct btrfs_root *send_root = sctx->send_root;
5311 struct btrfs_key key;
5312 struct btrfs_key found_key;
5313 struct btrfs_path *path;
5314 struct extent_buffer *eb;
5315 int slot;
5316 u64 start_ctransid;
5317 u64 ctransid;
5318
5319 path = alloc_path_for_send();
5320 if (!path)
5321 return -ENOMEM;
5322
5f3ab90a 5323 spin_lock(&send_root->root_item_lock);
31db9f7c 5324 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5325 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5326
5327 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5328 key.type = BTRFS_INODE_ITEM_KEY;
5329 key.offset = 0;
5330
dcfd5ad2
WS
5331join_trans:
5332 /*
5333 * We need to make sure the transaction does not get committed
5334 * while we do anything on commit roots. Join a transaction to prevent
5335 * this.
5336 */
5337 trans = btrfs_join_transaction(send_root);
5338 if (IS_ERR(trans)) {
5339 ret = PTR_ERR(trans);
5340 trans = NULL;
5341 goto out;
5342 }
5343
31db9f7c 5344 /*
766702ef
AB
5345 * Make sure the tree has not changed after re-joining. We detect this
5346 * by comparing start_ctransid and ctransid. They should always match.
31db9f7c 5347 */
5f3ab90a 5348 spin_lock(&send_root->root_item_lock);
31db9f7c 5349 ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5350 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5351
5352 if (ctransid != start_ctransid) {
efe120a0 5353 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
31db9f7c
AB
5354 "send was modified in between. This is "
5355 "probably a bug.\n");
5356 ret = -EIO;
5357 goto out;
5358 }
5359
5360 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5361 if (ret < 0)
5362 goto out;
5363 if (ret)
5364 goto out_finish;
5365
5366 while (1) {
dcfd5ad2
WS
5367 /*
5368 * When someone want to commit while we iterate, end the
5369 * joined transaction and rejoin.
5370 */
5371 if (btrfs_should_end_transaction(trans, send_root)) {
5372 ret = btrfs_end_transaction(trans, send_root);
5373 trans = NULL;
5374 if (ret < 0)
5375 goto out;
5376 btrfs_release_path(path);
5377 goto join_trans;
5378 }
5379
31db9f7c
AB
5380 eb = path->nodes[0];
5381 slot = path->slots[0];
5382 btrfs_item_key_to_cpu(eb, &found_key, slot);
5383
5384 ret = changed_cb(send_root, NULL, path, NULL,
5385 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5386 if (ret < 0)
5387 goto out;
5388
5389 key.objectid = found_key.objectid;
5390 key.type = found_key.type;
5391 key.offset = found_key.offset + 1;
5392
5393 ret = btrfs_next_item(send_root, path);
5394 if (ret < 0)
5395 goto out;
5396 if (ret) {
5397 ret = 0;
5398 break;
5399 }
5400 }
5401
5402out_finish:
5403 ret = finish_inode_if_needed(sctx, 1);
5404
5405out:
5406 btrfs_free_path(path);
dcfd5ad2
WS
5407 if (trans) {
5408 if (!ret)
5409 ret = btrfs_end_transaction(trans, send_root);
5410 else
5411 btrfs_end_transaction(trans, send_root);
5412 }
31db9f7c
AB
5413 return ret;
5414}
5415
5416static int send_subvol(struct send_ctx *sctx)
5417{
5418 int ret;
5419
c2c71324
SB
5420 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5421 ret = send_header(sctx);
5422 if (ret < 0)
5423 goto out;
5424 }
31db9f7c
AB
5425
5426 ret = send_subvol_begin(sctx);
5427 if (ret < 0)
5428 goto out;
5429
5430 if (sctx->parent_root) {
5431 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5432 changed_cb, sctx);
5433 if (ret < 0)
5434 goto out;
5435 ret = finish_inode_if_needed(sctx, 1);
5436 if (ret < 0)
5437 goto out;
5438 } else {
5439 ret = full_send_tree(sctx);
5440 if (ret < 0)
5441 goto out;
5442 }
5443
5444out:
31db9f7c
AB
5445 free_recorded_refs(sctx);
5446 return ret;
5447}
5448
66ef7d65
DS
5449static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5450{
5451 spin_lock(&root->root_item_lock);
5452 root->send_in_progress--;
5453 /*
5454 * Not much left to do, we don't know why it's unbalanced and
5455 * can't blindly reset it to 0.
5456 */
5457 if (root->send_in_progress < 0)
5458 btrfs_err(root->fs_info,
5459 "send_in_progres unbalanced %d root %llu\n",
5460 root->send_in_progress, root->root_key.objectid);
5461 spin_unlock(&root->root_item_lock);
5462}
5463
31db9f7c
AB
5464long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5465{
5466 int ret = 0;
5467 struct btrfs_root *send_root;
5468 struct btrfs_root *clone_root;
5469 struct btrfs_fs_info *fs_info;
5470 struct btrfs_ioctl_send_args *arg = NULL;
5471 struct btrfs_key key;
31db9f7c
AB
5472 struct send_ctx *sctx = NULL;
5473 u32 i;
5474 u64 *clone_sources_tmp = NULL;
2c686537 5475 int clone_sources_to_rollback = 0;
896c14f9 5476 int sort_clone_roots = 0;
18f687d5 5477 int index;
31db9f7c
AB
5478
5479 if (!capable(CAP_SYS_ADMIN))
5480 return -EPERM;
5481
496ad9aa 5482 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
5483 fs_info = send_root->fs_info;
5484
2c686537
DS
5485 /*
5486 * The subvolume must remain read-only during send, protect against
5487 * making it RW.
5488 */
5489 spin_lock(&send_root->root_item_lock);
5490 send_root->send_in_progress++;
5491 spin_unlock(&send_root->root_item_lock);
5492
139f807a
JB
5493 /*
5494 * This is done when we lookup the root, it should already be complete
5495 * by the time we get here.
5496 */
5497 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5498
2c686537
DS
5499 /*
5500 * Userspace tools do the checks and warn the user if it's
5501 * not RO.
5502 */
5503 if (!btrfs_root_readonly(send_root)) {
5504 ret = -EPERM;
5505 goto out;
5506 }
5507
31db9f7c
AB
5508 arg = memdup_user(arg_, sizeof(*arg));
5509 if (IS_ERR(arg)) {
5510 ret = PTR_ERR(arg);
5511 arg = NULL;
5512 goto out;
5513 }
5514
5515 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
5516 sizeof(*arg->clone_sources) *
5517 arg->clone_sources_count)) {
31db9f7c
AB
5518 ret = -EFAULT;
5519 goto out;
5520 }
5521
c2c71324 5522 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
5523 ret = -EINVAL;
5524 goto out;
5525 }
5526
31db9f7c
AB
5527 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5528 if (!sctx) {
5529 ret = -ENOMEM;
5530 goto out;
5531 }
5532
5533 INIT_LIST_HEAD(&sctx->new_refs);
5534 INIT_LIST_HEAD(&sctx->deleted_refs);
5535 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5536 INIT_LIST_HEAD(&sctx->name_cache_list);
5537
cb95e7bf
MF
5538 sctx->flags = arg->flags;
5539
31db9f7c 5540 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
5541 if (!sctx->send_filp) {
5542 ret = -EBADF;
31db9f7c
AB
5543 goto out;
5544 }
5545
31db9f7c
AB
5546 sctx->send_root = send_root;
5547 sctx->clone_roots_cnt = arg->clone_sources_count;
5548
5549 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5550 sctx->send_buf = vmalloc(sctx->send_max_size);
5551 if (!sctx->send_buf) {
5552 ret = -ENOMEM;
5553 goto out;
5554 }
5555
5556 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5557 if (!sctx->read_buf) {
5558 ret = -ENOMEM;
5559 goto out;
5560 }
5561
9f03740a
FDBM
5562 sctx->pending_dir_moves = RB_ROOT;
5563 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 5564 sctx->orphan_dirs = RB_ROOT;
9f03740a 5565
31db9f7c
AB
5566 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5567 (arg->clone_sources_count + 1));
5568 if (!sctx->clone_roots) {
5569 ret = -ENOMEM;
5570 goto out;
5571 }
5572
5573 if (arg->clone_sources_count) {
5574 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5575 sizeof(*arg->clone_sources));
5576 if (!clone_sources_tmp) {
5577 ret = -ENOMEM;
5578 goto out;
5579 }
5580
5581 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5582 arg->clone_sources_count *
5583 sizeof(*arg->clone_sources));
5584 if (ret) {
5585 ret = -EFAULT;
5586 goto out;
5587 }
5588
5589 for (i = 0; i < arg->clone_sources_count; i++) {
5590 key.objectid = clone_sources_tmp[i];
5591 key.type = BTRFS_ROOT_ITEM_KEY;
5592 key.offset = (u64)-1;
18f687d5
WS
5593
5594 index = srcu_read_lock(&fs_info->subvol_srcu);
5595
31db9f7c 5596 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 5597 if (IS_ERR(clone_root)) {
18f687d5 5598 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5599 ret = PTR_ERR(clone_root);
5600 goto out;
5601 }
2c686537
DS
5602 clone_sources_to_rollback = i + 1;
5603 spin_lock(&clone_root->root_item_lock);
5604 clone_root->send_in_progress++;
5605 if (!btrfs_root_readonly(clone_root)) {
5606 spin_unlock(&clone_root->root_item_lock);
18f687d5 5607 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5608 ret = -EPERM;
5609 goto out;
5610 }
5611 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
5612 srcu_read_unlock(&fs_info->subvol_srcu, index);
5613
31db9f7c
AB
5614 sctx->clone_roots[i].root = clone_root;
5615 }
5616 vfree(clone_sources_tmp);
5617 clone_sources_tmp = NULL;
5618 }
5619
5620 if (arg->parent_root) {
5621 key.objectid = arg->parent_root;
5622 key.type = BTRFS_ROOT_ITEM_KEY;
5623 key.offset = (u64)-1;
18f687d5
WS
5624
5625 index = srcu_read_lock(&fs_info->subvol_srcu);
5626
31db9f7c 5627 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 5628 if (IS_ERR(sctx->parent_root)) {
18f687d5 5629 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 5630 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
5631 goto out;
5632 }
18f687d5 5633
2c686537
DS
5634 spin_lock(&sctx->parent_root->root_item_lock);
5635 sctx->parent_root->send_in_progress++;
5636 if (!btrfs_root_readonly(sctx->parent_root)) {
5637 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 5638 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5639 ret = -EPERM;
5640 goto out;
5641 }
5642 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
5643
5644 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5645 }
5646
5647 /*
5648 * Clones from send_root are allowed, but only if the clone source
5649 * is behind the current send position. This is checked while searching
5650 * for possible clone sources.
5651 */
5652 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5653
5654 /* We do a bsearch later */
5655 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5656 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5657 NULL);
896c14f9 5658 sort_clone_roots = 1;
31db9f7c
AB
5659
5660 ret = send_subvol(sctx);
5661 if (ret < 0)
5662 goto out;
5663
c2c71324
SB
5664 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5665 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5666 if (ret < 0)
5667 goto out;
5668 ret = send_cmd(sctx);
5669 if (ret < 0)
5670 goto out;
5671 }
31db9f7c
AB
5672
5673out:
9f03740a
FDBM
5674 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5675 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5676 struct rb_node *n;
5677 struct pending_dir_move *pm;
5678
5679 n = rb_first(&sctx->pending_dir_moves);
5680 pm = rb_entry(n, struct pending_dir_move, node);
5681 while (!list_empty(&pm->list)) {
5682 struct pending_dir_move *pm2;
5683
5684 pm2 = list_first_entry(&pm->list,
5685 struct pending_dir_move, list);
5686 free_pending_move(sctx, pm2);
5687 }
5688 free_pending_move(sctx, pm);
5689 }
5690
5691 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5692 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5693 struct rb_node *n;
5694 struct waiting_dir_move *dm;
5695
5696 n = rb_first(&sctx->waiting_dir_moves);
5697 dm = rb_entry(n, struct waiting_dir_move, node);
5698 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5699 kfree(dm);
5700 }
5701
9dc44214
FM
5702 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5703 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5704 struct rb_node *n;
5705 struct orphan_dir_info *odi;
5706
5707 n = rb_first(&sctx->orphan_dirs);
5708 odi = rb_entry(n, struct orphan_dir_info, node);
5709 free_orphan_dir_info(sctx, odi);
5710 }
5711
896c14f9
WS
5712 if (sort_clone_roots) {
5713 for (i = 0; i < sctx->clone_roots_cnt; i++)
5714 btrfs_root_dec_send_in_progress(
5715 sctx->clone_roots[i].root);
5716 } else {
5717 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5718 btrfs_root_dec_send_in_progress(
5719 sctx->clone_roots[i].root);
5720
5721 btrfs_root_dec_send_in_progress(send_root);
5722 }
66ef7d65
DS
5723 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5724 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 5725
31db9f7c
AB
5726 kfree(arg);
5727 vfree(clone_sources_tmp);
5728
5729 if (sctx) {
5730 if (sctx->send_filp)
5731 fput(sctx->send_filp);
5732
5733 vfree(sctx->clone_roots);
5734 vfree(sctx->send_buf);
5735 vfree(sctx->read_buf);
5736
5737 name_cache_free(sctx);
5738
5739 kfree(sctx);
5740 }
5741
5742 return ret;
5743}